National Library of Energy BETA

Sample records for health pathways analysis

  1. Pathway Analysis Revealed Potential Diverse Health Impacts of Flavonoids that Bind Estrogen Receptors

    DOE PAGES [OSTI]

    Ye, Hao; Ng, Hui; Sakkiah, Sugunadevi; Ge, Weigong; Perkins, Roger; Tong, Weida; Hong, Huixiao

    2016-03-26

    Flavonoids are frequently used as dietary supplements in the absence of research evidence regarding health benefits or toxicity. Furthermore, ingested doses could far exceed those received from diet in the course of normal living. Some flavonoids exhibit binding to estrogen receptors (ERs) with consequential vigilance by regulatory authorities at the U.S. EPA and FDA. Regulatory authorities must consider both beneficial claims and potential adverse effects, warranting the increases in research that has spanned almost two decades. Here, we report pathway enrichment of 14 targets from the Comparative Toxicogenomics Database (CTD) and the Herbal Ingredients’ Targets (HIT) database for 22 flavonoidsmore » that bind ERs. The selected flavonoids are confirmed ER binders from our earlier studies, and were here found in mainly involved in three types of biological processes, ER regulation, estrogen metabolism and synthesis, and apoptosis. Besides cancers, we conjecture that the flavonoids may affect several diseases via apoptosis pathways. We find diseases such as amyotrophic lateral sclerosis, viral myocarditis and non-alcoholic fatty liver disease could be implicated. More generally, apoptosis processes may be importantly evolved biological functions of flavonoids that bind ERs and high dose ingestion of those flavonoids could adversely disrupt the cellular apoptosis process.« less

  2. Techno-Economic Boundary Analysis of Biological Pathways to Hydrogen...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Techno-Economic Boundary Analysis of Biological Pathways to Hydrogen Production (2009) Techno-Economic Boundary Analysis of Biological Pathways to Hydrogen Production (2009) ...

  3. Supply Chain Sustainability Analysis of Three Biofuel Pathways...

    Office of Scientific and Technical Information (OSTI)

    Supply Chain Sustainability Analysis of Three Biofuel Pathways Citation Details In-Document Search Title: Supply Chain Sustainability Analysis of Three Biofuel Pathways The ...

  4. Technoeconomic Boundary Analysis of Biological Pathways to Hydrogen...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Technoeconomic Boundary Analysis of Biological Pathways to Hydrogen Production Technoeconomic Boundary Analysis of Biological Pathways to Hydrogen Production Report documenting the ...

  5. Final report on the Pathway Analysis Task

    SciTech Connect

    Whicker, F.W.; Kirchner, T.B.

    1993-04-01

    The Pathway Analysis Task constituted one of several multi-laboratory efforts to estimate radiation doses to people, considering all important pathways of exposure, from the testing of nuclear devices at the Nevada Test Site (NTS). The primary goal of the Pathway Analysis Task was to predict radionuclide ingestion by residents of Utah, Nevada, and portions of seven other adjoining western states following radioactive fallout deposition from individual events at the NTS. This report provides comprehensive documentation of the activities and accomplishments of Colorado State University`s Pathway Analysis Task during the entire period of support (1979--91). The history of the project will be summarized, indicating the principal dates and milestones, personnel involved, subcontractors, and budget information. Accomplishments, both primary and auxiliary, will be summarized with general results rather than technical details being emphasized. This will also serve as a guide to the reports and open literature publications produced, where the methodological details and specific results are documented. Selected examples of results on internal dose estimates are provided in this report because the data have not been published elsewhere.

  6. Hydrogen Supply: Cost Estimate for Hydrogen Pathways-Scoping Analysis.

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    January 22, 2002-July 22, 2002 | Department of Energy Supply: Cost Estimate for Hydrogen Pathways-Scoping Analysis. January 22, 2002-July 22, 2002 Hydrogen Supply: Cost Estimate for Hydrogen Pathways-Scoping Analysis. January 22, 2002-July 22, 2002 A report showing a comparative scooping economic analysis of 19 pathways for producing, handling, distributing, and dispensing hydrogen for fuel cell vehicle applications. 32525.pdf (1.48 MB) More Documents & Publications Analysis of a Cluster

  7. Pathway analysis for a contaminated landfill in Middlesex, New Jersey

    SciTech Connect

    Yu, C.; Merry-Libby, P.; Yang, J.Y.

    1985-01-01

    Under the Formerly Utilized Sites Remedial Action Program, the US Department of Energy began excavating contaminated materials from the Middlesex Municipal landfill in 1984. A total of 16,000 mT of landfill materials covering a 0.2-ha area was excavated, of which 11,000 mT was contaminated and has been transported to the nearby sampling plant site for interim storage. Based on the pathway analysis for the onsite and near-site resident scenarios, the radiation dose rates and radionuclide concentrations in groundwater would be below the regulatory requirements for both the short-term and long-term scenarios. Hence, the potential health risks to maximally exposed individuals due to radioactive releases from the Middlesex landfill would be insignificant.

  8. CRITICAL RADIONUCLIDE AND PATHWAY ANALYSIS FOR THE SAVANNAH RIVER SITE

    SciTech Connect

    Jannik, T.

    2011-08-30

    This report is an update to the analysis, Assessment of SRS Radiological Liquid and Airborne Contaminants and Pathways, that was performed in 1997. An electronic version of this large original report is included in the attached CD to this report. During the operational history (1954 to the present) of the Savannah River Site (SRS), many different radionuclides have been released to the environment from the various production facilities. However, as will be shown by this updated radiological critical contaminant/critical pathway analysis, only a small number of the released radionuclides have been significant contributors to potential doses and risks to offsite people. The analysis covers radiological releases to the atmosphere and to surface waters, the principal media that carry contaminants offsite. These releases potentially result in exposure to offsite people. The groundwater monitoring performed at the site shows that an estimated 5 to 10% of SRS has been contaminated by radionuclides, no evidence exists from the extensive monitoring performed that groundwater contaminated with these constituents has migrated off the site (SRS 2011). Therefore, with the notable exception of radiological source terms originating from shallow surface water migration into site streams, onsite groundwater was not considered as a potential exposure pathway to offsite people. In addition, in response to the Department of Energy's (DOE) Order 435.1, several Performance Assessments (WSRC 2008; LWO 2009; SRR 2010; SRR 2011) and a Comprehensive SRS Composite Analysis (SRNO 2010) have recently been completed at SRS. The critical radionuclides and pathways identified in these extensive reports are discussed and, where applicable, included in this analysis.

  9. Decision Analysis Tool to Compare Energy Pathways for Transportation

    SciTech Connect

    Bloyd, Cary N.

    2010-06-30

    With the goals of reducing greenhouse gas emissions, oil imports, and energy costs, a wide variety of automotive technologies are proposed to replace the traditional gasoline-powered internal combustion engine (g-ICE). Biomass is seen as an important domestic energy feedstock, and there are multiple pathways in which it can be linked to the transport sector. Contenders include the use of cellulosic ethanol from biomass to replace gasoline or the use of a biomass-fueled combined cycle electrical power generation facility in conjunction plug-in hybrid electric vehicles (PHEVs). This paper reviews a project that is developing a scenario decision analysis tool to assist policy makers, program managers, and others to obtain a better understanding of these uncertain possibilities and how they may interact over time.

  10. Supply Chain Sustainability Analysis of Three Biofuel Pathways

    SciTech Connect

    Jacob J. Jacobson; Erin Searcy; Kara Cafferty; Jennifer B. Dunn; Michael Johnson; Zhichao Wang; Michael Wang; Mary Biddy; Abhijit Dutta; Daniel Inman; Eric Tan; Sue Jones; Lesley Snowden-Swan

    2013-11-01

    The Department of Energy’s (DOE) Bioenergy Technologies Office (BETO) collaborates with industrial, agricultural, and non-profit partners to develop and deploy biofuels and other biologically-derived products. As part of this effort, BETO and its national laboratory teams conduct in-depth techno-economic assessments (TEA) of technologies to produce biofuels as part state of technology (SOT) analyses. An SOT assesses progress within and across relevant technology areas based on actual experimental results relative to technical targets and cost goals from design cases and includes technical, economic, and environmental criteria as available. Overall assessments of biofuel pathways begin with feedstock production and the logistics of transporting the feedstock from the farm or plantation to the conversion facility or biorefinery. The conversion process itself is modeled in detail as part of the SOT analysis. The teams then develop an estimate of the biofuel minimum selling price (MSP) and assess the cost competitiveness of the biofuel with conventional fuels such as gasoline.

  11. 2013-01 "Action in Analysis of Disposal Pathways for Disposition of 33

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Shafts" | Department of Energy 1 "Action in Analysis of Disposal Pathways for Disposition of 33 Shafts" 2013-01 "Action in Analysis of Disposal Pathways for Disposition of 33 Shafts" The intent of this Recommendation 2013-01 remains the same as 2010-01, namely to discourage inaction in addressing the permanent disposition of the 33 shafts. Rec 2013-01 - January 30, 2013 (204.48

  12. Decision Analysis Tool to Compare Energy Pathways for Transportation

    SciTech Connect

    Bloyd, Cary N.; Stork, Kevin

    2011-02-01

    With the goals of reducing greenhouse gas emissions, oil imports, and energy costs, a wide variety of automotive technologies are proposed to replace the traditional gasoline-powered internal combustion engine (g-ICE). A prototype model, Analytica Transportation Energy Analysis Model (ATEAM), has been developed using the Analytica decision modeling environment, visualizing the structure as a hierarchy of influence diagrams. The report summarized the FY2010 ATEAM accomplishments.

  13. Completing the link between exposure science and toxicology for improved environmental health decision making: The aggregate exposure pathway framework

    DOE PAGES [OSTI]

    Teeguarden, Justin G.; Tan, Yu -Mei; Edwards, Stephen W.; Leonard, Jeremy A.; Anderson, Kim A.; Corley, Richard A.; Kile, Molly L.; Simonich, Staci M.; Stone, David; Tanguay, Robert L.; et al

    2016-01-13

    Here, driven by major scientific advances in analytical methods, biomonitoring, computation, and a newly articulated vision for a greater impact in public health, the field of exposure science is undergoing a rapid transition from a field of observation to a field of prediction. Deployment of an organizational and predictive framework for exposure science analogous to the “systems approaches” used in the biological sciences is a necessary step in this evolution. Here we propose the aggregate exposure pathway (AEP) concept as the natural and complementary companion in the exposure sciences to the adverse outcome pathway (AOP) concept in the toxicological sciences.more » Aggregate exposure pathways offer an intuitive framework to organize exposure data within individual units of prediction common to the field, setting the stage for exposure forecasting. Looking farther ahead, we envision direct linkages between aggregate exposure pathways and adverse outcome pathways, completing the source to outcome continuum for more meaningful integration of exposure assessment and hazard identification. Together, the two frameworks form and inform a decision-making framework with the flexibility for risk-based, hazard-based, or exposure-based decision making.« less

  14. Integrated analysis of hydrogen passenger vehicle transportation pathways

    SciTech Connect

    Thomas, C.E.; James, B.D.; Lomax, F.D. Jr.; Kuhn, I.F. Jr.

    1998-08-01

    Hydrogen-powered fuel cell vehicles will reduce local air pollution, greenhouse gas emissions and oil imports. Other alternative vehicles such as gasoline- or methanol-powered fuel cell vehicles, natural gas vehicles and various hybrid electric vehicles with internal combustion engines may also provide significant environmental and national security advantages. This report summarizes a two-year project to compare the direct hydrogen fuel cell vehicle with other alternatives in terms of estimated cost and estimated societal benefits, all relative to a conventional gasoline-powered internal combustion engine vehicle. The cost estimates used in this study involve ground-up, detailed analysis of the major components of a fuel cell vehicle system, assuming mass production in automotive quantities. The authors have also estimated the cost of both gasoline and methanol onboard fuel processors, as well as the cost of stationary hydrogen fueling system components including steam methane reformers, electrolyzers, compressors and stationary storage systems. Sixteen different vehicle types are compared with respect to mass production cost, local air pollution and greenhouse gas emissions.

  15. Transcriptomic analysis in the developing zebrafish embryo after compound exposure: Individual gene expression and pathway regulation

    SciTech Connect

    Hermsen, Sanne A.B.; Pronk, Tessa E.; Brandhof, Evert-Jan van den; Ven, Leo T.M. van der; Piersma, Aldert H.

    2013-10-01

    The zebrafish embryotoxicity test is a promising alternative assay for developmental toxicity. Classically, morphological assessment of the embryos is applied to evaluate the effects of compound exposure. However, by applying differential gene expression analysis the sensitivity and predictability of the test may be increased. For defining gene expression signatures of developmental toxicity, we explored the possibility of using gene expression signatures of compound exposures based on commonly expressed individual genes as well as based on regulated gene pathways. Four developmental toxic compounds were tested in concentration-response design, caffeine, carbamazepine, retinoic acid and valproic acid, and two non-embryotoxic compounds, D-mannitol and saccharin, were included. With transcriptomic analyses we were able to identify commonly expressed genes, which were mostly development related, after exposure to the embryotoxicants. We also identified gene pathways regulated by the embryotoxicants, suggestive of their modes of action. Furthermore, whereas pathways may be regulated by all compounds, individual gene expression within these pathways can differ for each compound. Overall, the present study suggests that the use of individual gene expression signatures as well as pathway regulation may be useful starting points for defining gene biomarkers for predicting embryotoxicity. - Highlights: • The zebrafish embryotoxicity test in combination with transcriptomics was used. • We explored two approaches of defining gene biomarkers for developmental toxicity. • Four compounds in concentration-response design were tested. • We identified commonly expressed individual genes as well as regulated gene pathways. • Both approaches seem suitable starting points for defining gene biomarkers.

  16. Probabilistic approach to identify sensitive parameter distributions in multimedia pathway analysis.

    SciTech Connect

    Kamboj, S.; Gnanapragasam, E.; LePoire, D.; Biwer, B. M.; Cheng, J.; Arnish, J.; Yu, C.; Chen, S. Y.; Mo, T.; Abu-Eid, R.; Thaggard, M.; Environmental Assessment; NRC

    2002-01-01

    Sensitive parameter distributions were identified with the use of probabilistic analysis in the RESRAD computer code. RESRAD is a multimedia pathway analysis code designed to evaluate radiological exposures resulting from radiological contamination in soil. The dose distribution was obtained by using a set of default parameter distribution/values. Most of the variations in the output dose distribution could be attributed to uncertainty in a small set of input parameters that could be considered as sensitive parameter distributions. The identification of the sensitive parameters is a first step in the prioritization of future research and information gathering. When site-specific parameter distribution/values are available for an actual site, the same process should be used with these site-specific data. Regression analysis used to identify sensitive parameters indicated that the dominant pathways depended on the radionuclide and source configurations. However, two parameter distributions were sensitive for many radionuclides: the external shielding factor when external exposure was the dominant pathway and the plant transfer factor when plant ingestion was the dominant pathway. No single correlation or regression coefficient can be used alone to identify sensitive parameters in all the cases. The coefficients are useful guides, but they have to be used in conjunction with other aids, such as scatter plots, and should undergo further analysis.

  17. Transcriptome Analysis of Manganese-deficient Chlamydomonas reinhardtii Provides Insight on the Chlorophyll Biosynthesis Pathway

    SciTech Connect

    Lockhart, Ainsley; Zvenigorodsky, Natasha; Pedraza, Mary Ann; Lindquist, Erika

    2011-08-11

    The biosynthesis of chlorophyll and other tetrapyrroles is a vital but poorly understood process. Recent genomic advances with the unicellular green algae Chlamydomonas reinhardtii have created opportunity to more closely examine the mechanisms of the chlorophyll biosynthesis pathway via transcriptome analysis. Manganese is a nutrient of interest for complex reactions because of its multiple stable oxidation states and role in molecular oxygen coordination. C. reinhardtii was cultured in Manganese-deplete Tris-acetate-phosphate (TAP) media for 24 hours and used to create cDNA libraries for sequencing using Illumina TruSeq technology. Transcriptome analysis provided intriguing insight on possible regulatory mechanisms in the pathway. Evidence supports similarities of GTR (Glutamyl-tRNA synthase) to its Chlorella vulgaris homolog in terms of Mn requirements. Data was also suggestive of Mn-related compensatory up-regulation for pathway proteins CHLH1 (Manganese Chelatase), GUN4 (Magnesium chelatase activating protein), and POR1 (Light-dependent protochlorophyllide reductase). Intriguingly, data suggests possible reciprocal expression of oxygen dependent CPX1 (coproporphyrinogen III oxidase) and oxygen independent CPX2. Further analysis using RT-PCR could provide compelling evidence for several novel regulatory mechanisms in the chlorophyll biosynthesis pathway.

  18. Employee Job Task Analysis (EJTA) - HPMC Occupational Health Services

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Information Form Employee Information Form New Employee Information Form (103.85 KB) More Documents & Publications TEE-0074 - In the Matter of GE Appliances & Lighting CX-007131: Categorical Exclusion Determination CX-007148: Categorical Exclusion Determination

    Occupational Health Services > Employee Job Task Analysis (EJTA) Occupational Health Services Behavioral Health Services Beryllium Beryllium-Associated Worker Registry Employee Job Task Analysis (EJTA) Environmental

  19. Uncertainty and sensitivity analysis of food pathway results with the MACCS Reactor Accident Consequence Model

    SciTech Connect

    Helton, J.C.; Johnson, J.D.; Rollstin, J.A.; Shiver, A.W.; Sprung, J.L.

    1995-01-01

    Uncertainty and sensitivity analysis techniques based on Latin hypercube sampling, partial correlation analysis and stepwise regression analysis are used in an investigation with the MACCS model of the food pathways associated with a severe accident at a nuclear power station. The primary purpose of this study is to provide guidance on the variables to be considered in future review work to reduce the uncertainty in the important variables used in the calculation of reactor accident consequences. The effects of 87 imprecisely-known input variables on the following reactor accident consequences are studied: crop growing season dose, crop long-term dose, milk growing season dose, total food pathways dose, total ingestion pathways dose, total long-term pathways dose, area dependent cost, crop disposal cost, milk disposal cost, condemnation area, crop disposal area and milk disposal area. When the predicted variables are considered collectively, the following input variables were found to be the dominant contributors to uncertainty: fraction of cesium deposition on grain fields that is retained on plant surfaces and transferred directly to grain, maximum allowable ground concentrations of Cs-137 and Sr-90 for production of crops, ground concentrations of Cs-134, Cs-137 and I-131 at which the disposal of milk will be initiated due to accidents that occur during the growing season, ground concentrations of Cs-134, I-131 and Sr-90 at which the disposal of crops will be initiated due to accidents that occur during the growing season, rate of depletion of Cs-137 and Sr-90 from the root zone, transfer of Sr-90 from soil to legumes, transfer of Cs-137 from soil to pasture, transfer of cesium from animal feed to meat, and the transfer of cesium, iodine and strontium from animal feed to milk.

  20. Aligning ontologies and integrating textual evidence for pathway analysis of microarray data

    SciTech Connect

    Gopalan, Banu; Posse, Christian; Sanfilippo, Antonio P.; Stenzel-Poore, Mary; Stevens, S.L.; Castano, Jose; Beagley, Nathaniel; Riensche, Roderick M.; Baddeley, Bob; Simon, R.P.; Pustejovsky, James

    2006-10-08

    Expression arrays are introducing a paradigmatic change in biology by shifting experimental approaches from single gene studies to genome-level analysis, monitoring the ex-pression levels of several thousands of genes in parallel. The massive amounts of data obtained from the microarray data needs to be integrated and interpreted to infer biological meaning within the context of information-rich pathways. In this paper, we present a methodology that integrates textual information with annotations from cross-referenced ontolo-gies to map genes to pathways in a semi-automated way. We illustrate this approach and compare it favorably to other tools by analyzing the gene expression changes underlying the biological phenomena related to stroke. Stroke is the third leading cause of death and a major disabler in the United States. Through years of study, researchers have amassed a significant knowledge base about stroke, and this knowledge, coupled with new technologies, is providing a wealth of new scientific opportunities. The potential for neu-roprotective stroke therapy is enormous. However, the roles of neurogenesis, angiogenesis, and other proliferative re-sponses in the recovery process following ischemia and the molecular mechanisms that lead to these processes still need to be uncovered. Improved annotation of genomic and pro-teomic data, including annotation of pathways in which genes and proteins are involved, is required to facilitate their interpretation and clinical application. While our approach is not aimed at replacing existing curated pathway databases, it reveals multiple hidden relationships that are not evident with the way these databases analyze functional groupings of genes from the Gene Ontology.

  1. Well-to-wheels analysis of fast pyrolysis pathways with the GREET model.

    SciTech Connect

    Han, J.; Elgowainy, A.; Palou-Rivera, I.; Dunn, J.B.; Wang, M.Q.

    2011-12-01

    The pyrolysis of biomass can help produce liquid transportation fuels with properties similar to those of petroleum gasoline and diesel fuel. Argonne National Laboratory conducted a life-cycle (i.e., well-to-wheels [WTW]) analysis of various pyrolysis pathways by expanding and employing the Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model. The WTW energy use and greenhouse gas (GHG) emissions from the pyrolysis pathways were compared with those from the baseline petroleum gasoline and diesel pathways. Various pyrolysis pathway scenarios with a wide variety of possible hydrogen sources, liquid fuel yields, and co-product application and treatment methods were considered. At one extreme, when hydrogen is produced from natural gas and when bio-char is used for process energy needs, the pyrolysis-based liquid fuel yield is high (32% of the dry mass of biomass input). The reductions in WTW fossil energy use and GHG emissions relative to those that occur when baseline petroleum fuels are used, however, is modest, at 50% and 51%, respectively, on a per unit of fuel energy basis. At the other extreme, when hydrogen is produced internally via reforming of pyrolysis oil and when bio-char is sequestered in soil applications, the pyrolysis-based liquid fuel yield is low (15% of the dry mass of biomass input), but the reductions in WTW fossil energy use and GHG emissions are large, at 79% and 96%, respectively, relative to those that occur when baseline petroleum fuels are used. The petroleum energy use in all scenarios was restricted to biomass collection and transportation activities, which resulted in a reduction in WTW petroleum energy use of 92-95% relative to that found when baseline petroleum fuels are used. Internal hydrogen production (i.e., via reforming of pyrolysis oil) significantly reduces fossil fuel use and GHG emissions because the hydrogen from fuel gas or pyrolysis oil (renewable sources) displaces that from fossil fuel

  2. Deduction and Analysis of the Interacting Stress Response Pathways of Metal/Radionuclide-reducing Bacteria

    SciTech Connect

    Zhou, Jizhong; He, Zhili

    2010-02-28

    Project Title: Deduction and Analysis of the Interacting Stress Response Pathways of Metal/Radionuclide-reducing Bacteria DOE Grant Number: DE-FG02-06ER64205 Principal Investigator: Jizhong (Joe) Zhou (University of Oklahoma) Key members: Zhili He, Aifen Zhou, Christopher Hemme, Joy Van Nostrand, Ye Deng, and Qichao Tu Collaborators: Terry Hazen, Judy Wall, Adam Arkin, Matthew Fields, Aindrila Mukhopadhyay, and David Stahl Summary Three major objectives have been conducted in the Zhou group at the University of Oklahoma (OU): (i) understanding of gene function, regulation, network and evolution of Desulfovibrio vugaris Hildenborough in response to environmental stresses, (ii) development of metagenomics technologies for microbial community analysis, and (iii) functional characterization of microbial communities with metagenomic approaches. In the past a few years, we characterized four CRP/FNR regulators, sequenced ancestor and evolved D. vulgaris strains, and functionally analyzed those mutated genes identified in salt-adapted strains. Also, a new version of GeoChip 4.0 has been developed, which also includes stress response genes (StressChip), and a random matrix theory-based conceptual framework for identifying functional molecular ecological networks has been developed with the high throughput functional gene array hybridization data as well as pyrosequencing data from 16S rRNA genes. In addition, GeoChip and sequencing technologies as well as network analysis approaches have been used to analyze microbial communities from different habitats. Those studies provide a comprehensive understanding of gene function, regulation, network, and evolution in D. vulgaris, and microbial community diversity, composition and structure as well as their linkages with environmental factors and ecosystem functioning, which has resulted in more than 60 publications.

  3. ALL-PATHWAYS DOSE ANALYSIS FOR THE PORTSMOUTH ON-SITE WASTE DISPOSAL FACILITY

    SciTech Connect

    Smith, F.; Phifer, M.

    2014-04-10

    A Portsmouth On-Site Waste Disposal Facility (OSWDF) All-Pathways analysis has been conducted that considers the radiological impacts to a resident farmer. It is assumed that the resident farmer utilizes a farm pond contaminated by the OSWDF to irrigate a garden and pasture and water livestock from which food for the resident farmer is obtained, and that the farmer utilizes groundwater from the Berea sandstone aquifer for domestic purposes (i.e. drinking water and showering). As described by FBP 2014b the Hydrologic Evaluation of Landfill Performance (HELP) model (Schroeder et al. 1994) and the Surface Transport Over Multiple Phases (STOMP) model (White and Oostrom 2000, 2006) were used to model the flow and transport from the OSWDF to the Points of Assessment (POAs) associated with the 680-ft elevation sandstone layer (680 SSL) and the Berea sandstone aquifer. From this modeling the activity concentrations radionuclides were projected over time at the POAs. The activity concentrations were utilized as input to a GoldSimTM (GTG 2010) dose model, described herein, in order to project the dose to a resident farmer over time. A base case and five sensitivity cases were analyzed. The sensitivity cases included an evaluation of the impacts of using a conservative inventory, an uncased well to the Berea sandstone aquifer, a low waste zone uranium distribution coefficient (Kd), different transfer factors, and reference person exposure parameters (i.e. at 95 percentile). The maximum base case dose within the 1,000 year assessment period was projected to be 1.5E-14 mrem/yr, and the maximum base case dose at any time less than 10,000 years was projected to be 0.002 mrem/yr. The maximum projected dose of any sensitivity case was approximately 2.6 mrem/yr associated with the use of an uncased well to the Berea sandstone aquifer. This sensitivity case is considered very unlikely because it assumes leakage from the location of greatest concentration in the 680 SSL in to the

  4. SPECIAL ANALYSIS AIR PATHWAY MODELING OF E-AREA LOW-LEVEL WASTE FACILITY

    SciTech Connect

    Hiergesell, R.; Taylor, G.

    2011-08-30

    This Special Analysis (SA) was initiated to address a concern expressed by the Department of Energy's Low Level Waste Disposal Facility Federal Review Group (LFRG) Review Team during their review of the 2008 E-Area Performance Assessment (PA) (WSRC, 2008). Their concern was the potential for overlapping of atmospheric plumes, emanating from the soil surface above SRS LLW disposal facilities within the E-Area, to contribute to the dose received by a member of the public during the Institutional Control (IC) period. The implication of this concern was that the dose to the maximally-exposed individual (MEI) located at the SRS boundary might be underestimated during this time interval. To address this concern a re-analysis of the atmospheric pathway releases from E-Area was required. In the process of developing a new atmospheric release model (ARM) capable of addressing the LFRG plume overlap concern, it became obvious that new and better atmospheric pathway disposal limits should be developed for each of the E-Area disposal facilities using the new ARM. The scope of the SA was therefore expanded to include the generation of these new limits. The initial work conducted in this SA was to develop a new ARM using the GoldSim{reg_sign} program (GTG, 2009). The model simulates the subsurface vapor diffusion of volatile radionuclides as they release from E-Area disposal facility waste zones and migrate to the land surface. In the process of this work, many new features, including several new physical and chemical transport mechanisms, were incorporated into the model. One of the most important improvements was to incorporate a mechanism to partition volatile contaminants across the water-air interface within the partially saturated pore space of the engineered and natural materials through which vapor phase transport occurs. A second mechanism that was equally important was to incorporate a maximum concentration of 1.9E-07 Ci/m{sup 3} of {sup 14}CO{sub 2} in the air

  5. Flux analysis of central metabolic pathways in Geobactermetallireducens during reduction of solubleFe(III)-NTA

    SciTech Connect

    Tang, Yinjie J.; Chakraborty, Romy; Garcia-Martin, Hector; Chu,Jeannie; Hazen, Terry C.; Keasling, Jay D.

    2007-01-01

    We analyzed the carbon fluxes in the central metabolism ofGeobacter metallireducens strain GS-15 using 13C isotopomer modeling.Acetate labeled in the 1st or 2nd position was the sole carbon source,and Fe-NTA was the sole terminal electron acceptor. The measured labeledacetate uptake rate was 21 mmol/gdw/h in the exponential growth phase.The resulting isotope labeling pattern of amino acids allowed an accuratedetermination of the in vivo global metabolic reaction rates (fluxes)through the central metabolic pathways using a computational isotopomermodel. The tracer experiments showed that G. metallireducens containedcomplete biosynthesis pathways for essential metabolism, and this strainmight also have an unusual isoleucine biosynthesis route (usingacetyl-CoA and pyruvate as the precursors). The model indicated that over90 percent of the acetate was completely oxidized to CO2 via a completetricarboxylic acid (TCA) cycle while reducing iron. Pyruvate carboxylaseand phosphoenolpyruvate carboxykinase were present under theseconditions, but enzymes in the glyoxylate shunt and malic enzyme wereabsent. Gluconeogenesis and the pentose phosphate pathway were mainlyemployed for biosynthesis and accounted for less than 3 percent of totalcarbon consumption. The model also indicated surprisingly highreversibility in the reaction between oxoglutarate and succinate. Thisstep operates close to the thermodynamic equilibrium possibly becausesuccinate is synthesized via a transferase reaction, and the conversionof oxoglutarate to succinate is a rate limiting step for carbonmetabolism. These findings enable a better understanding of therelationship between genome annotation and extant metabolic pathways inG. metallireducens.

  6. Comparative genomic analysis of nine Sphingobium strains: Insights into their evolution and hexachlorocyclohexane (HCH) degradation pathways

    DOE PAGES [OSTI]

    Verma, Helianthous; Kumar, Roshan; Oldach, Phoebe; Sangwan, Naseer; Khurana, Jitendra P.; Gilbert, Jack A.; Lal, Rup

    2014-11-23

    Background: Sphingobium spp. are efficient degraders of a wide range of chlorinated and aromatic hydrocarbons. In particular, strains which harbour the lin pathway genes mediating the degradation of hexachlorocyclohexane (HCH) isomers are of interest due to the widespread persistence of this contaminant. Here, we examined the evolution and diversification of the lin pathway under the selective pressure of HCH, by comparing the draft genomes of six newly-sequenced Sphingobium spp. (strains LL03, DS20, IP26, HDIPO4, P25 and RL3) isolated from HCH dumpsites, with three existing genomes (S. indicum B90A, S. japonicum UT26S and Sphingobium sp. SYK6). Results: Efficient HCH degraders phylogeneticallymore » clustered in a closely related group comprising of UT26S, B90A, HDIPO4 and IP26, where HDIPO4 and IP26 were classified as subspecies with ANI value >98%. Less than 10% of the total gene content was shared among all nine strains, but among the eight HCH-associated strains, that is all except SYK6, the shared gene content jumped to nearly 25%. Genes associated with nitrogen stress response and two-component systems were found to be enriched. The strains also housed many xenobiotic degradation pathways other than HCH, despite the absence of these xenobiotics from isolation sources. In addition, these strains, although non-motile, but posses flagellar assembly genes. While strains HDIPO4 and IP26 contained the complete set of lin genes, DS20 was entirely devoid of lin genes (except linKLMN) whereas, LL03, P25 and RL3 were identified as lin deficient strains, as they housed incomplete lin pathways. Further, in HDIPO4, linA was found as a hybrid of two natural variants i.e., linA1 and linA2 known for their different enantioselectivity. In conclusion, the bacteria isolated from HCH dumpsites provide a natural testing ground to study variations in the lin system and their effects on degradation efficacy. Further, the diversity in the lin gene sequences and copy number, their

  7. Pathway and Resource Overview

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Pathway and Resource Overview Delivering Renewable Hydrogen Workshop - A Focus on Near-Term Applications Mark F. Ruth November 16, 2009 Palm Springs, CA NREL/PR-6A1-47108 National Renewable Energy Laboratory Innovation for Our Energy Future Definition and Presentation Outline Hydrogen pathway analysis is analysis of the total levelized cost (including return on investment), well-to- wheels (WTW) energy use, and WTW emissions for hydrogen production, delivery, and distribution pathways. This

  8. Pathway and Resource Overview (Presentation)

    SciTech Connect

    Ruth, M. F.

    2009-11-16

    This presentation provides information about hydrogen pathway analysis, which is analysis of the total levelized cost (including return on investment). Well-to-wheels (WTW) energy use, and WTW emissions for hydrogen production, delivery, and distribution pathways.

  9. Waste-to-wheel analysis of anaerobic-digestion-based renewable natural gas pathways with the GREET model.

    SciTech Connect

    Han, J.; Mintz, M.; Wang, M.

    2011-12-14

    In 2009, manure management accounted for 2,356 Gg or 107 billion standard cubic ft of methane (CH{sub 4}) emissions in the United States, equivalent to 0.5% of U.S. natural gas (NG) consumption. Owing to the high global warming potential of methane, capturing and utilizing this methane source could reduce greenhouse gas (GHG) emissions. The extent of that reduction depends on several factors - most notably, how much of this manure-based methane can be captured, how much GHG is produced in the course of converting it to vehicular fuel, and how much GHG was produced by the fossil fuel it might displace. A life-cycle analysis was conducted to quantify these factors and, in so doing, assess the impact of converting methane from animal manure into renewable NG (RNG) and utilizing the gas in vehicles. Several manure-based RNG pathways were characterized in the GREET (Greenhouse gases, Regulated Emissions, and Energy use in Transportation) model, and their fuel-cycle energy use and GHG emissions were compared to petroleum-based pathways as well as to conventional fossil NG pathways. Results show that despite increased total energy use, both fossil fuel use and GHG emissions decline for most RNG pathways as compared with fossil NG and petroleum. However, GHG emissions for RNG pathways are highly dependent on the specifics of the reference case, as well as on the process energy emissions and methane conversion factors assumed for the RNG pathways. The most critical factors are the share of flared controllable CH{sub 4} and the quantity of CH{sub 4} lost during NG extraction in the reference case, the magnitude of N{sub 2}O lost in the anaerobic digestion (AD) process and in AD residue, and the amount of carbon sequestered in AD residue. In many cases, data for these parameters are limited and uncertain. Therefore, more research is needed to gain a better understanding of the range and magnitude of environmental benefits from converting animal manure to RNG via AD.

  10. Improved Protein Arrays for Quantitative Systems Analysis of the Dynamics of Signaling Pathway Interactions

    SciTech Connect

    YANG, CHIN-RANG

    2013-12-11

    Astronauts and workers in nuclear plants who repeatedly exposed to low doses of ionizing radiation (IR, <10 cGy) are likely to incur specific changes in signal transduction and gene expression in various tissues of their body. Remarkable advances in high throughput genomics and proteomics technologies enable researchers to broaden their focus from examining single gene/protein kinetics to better understanding global gene/protein expression profiling and biological pathway analyses, namely Systems Biology. An ultimate goal of systems biology is to develop dynamic mathematical models of interacting biological systems capable of simulating living systems in a computer. This Glue Grant is to complement Dr. Boothman’s existing DOE grant (No. DE-FG02-06ER64186) entitled “The IGF1/IGF-1R-MAPK-Secretory Clusterin (sCLU) Pathway: Mediator of a Low Dose IR-Inducible Bystander Effect” to develop sensitive and quantitative proteomic technology that suitable for low dose radiobiology researches. An improved version of quantitative protein array platform utilizing linear Quantum dot signaling for systematically measuring protein levels and phosphorylation states for systems biology modeling is presented. The signals are amplified by a confocal laser Quantum dot scanner resulting in ~1000-fold more sensitivity than traditional Western blots and show the good linearity that is impossible for the signals of HRP-amplification. Therefore this improved protein array technology is suitable to detect weak responses of low dose radiation. Software is developed to facilitate the quantitative readout of signaling network activities. Kinetics of EGFRvIII mutant signaling was analyzed to quantify cross-talks between EGFR and other signaling pathways.

  11. Integrated analysis of breast cancer cell lines reveals unique signaling pathways

    SciTech Connect

    Heiser, Laura M.; Wang, Nicholas J.; Talcott, Carolyn L.; Laderoute, Keith R.; Knapp, Merrill; Guan, Yinghui; Hu, Zhi; Ziyad, Safiyyah; Weber, Barbara L.; Laquerre, Sylvie; Jackson, Jeffrey R.; Wooster, Richard F.; Kuo, Wen-Lin; Gray, Joe W.; Spellman, Paul T.

    2009-03-31

    Cancer is a heterogeneous disease resulting from the accumulation of genetic defects that negatively impact control of cell division, motility, adhesion and apoptosis. Deregulation in signaling along the EGFR-MAPK pathway is common in breast cancer, though the manner in which deregulation occurs varies between both individuals and cancer subtypes. We were interested in identifying subnetworks within the EGFR-MAPK pathway that are similarly deregulated across subsets of breast cancers. To that end, we mapped genomic, transcriptional and proteomic profiles for 30 breast cancer cell lines onto a curated Pathway Logic symbolic systems model of EGFR-MEK signaling. This model was comprised of 539 molecular states and 396 rules governing signaling between active states. We analyzed these models and identified several subtype specific subnetworks, including one that suggested PAK1 is particularly important in regulating the MAPK cascade when it is over-expressed. We hypothesized that PAK1 overexpressing cell lines would have increased sensitivity to MEK inhibitors. We tested this experimentally by measuring quantitative responses of 20 breast cancer cell lines to three MEK inhibitors. We found that PAK1 over-expressing luminal breast cancer cell lines are significantly more sensitive to MEK inhibition as compared to those that express PAK1 at low levels. This indicates that PAK1 over-expression may be a useful clinical marker to identify patient populations that may be sensitive to MEK inhibitors. All together, our results support the utility of symbolic system biology models for identification of therapeutic approaches that will be effective against breast cancer subsets.

  12. Integrated analysis of transportation demand pathway options for hydrogen production, storage, and distribution

    SciTech Connect

    Thomas, C.E.S.

    1996-10-01

    Directed Technologies, Inc. has begun the development of a computer model with the goal of providing guidance to the Hydrogen Program Office regarding the most cost effective use of limited resources to meet national energy security and environmental goals through the use of hydrogen as a major energy carrier. The underlying assumption of this programmatic pathway model is that government and industry must work together to bring clean hydrogen energy devices into the marketplace. Industry cannot provide the long term resources necessary to overcome technological, regulatory, institutional, and perceptual barriers to the use of hydrogen as an energy carrier, and government cannot provide the substantial investments required to develop hydrogen energy products and increased hydrogen production capacity. The computer model recognizes this necessary government/industry partnership by determining the early investments required by government to bring hydrogen energy end uses within the time horizon and profitability criteria of industry, and by estimating the subsequent investments required by industry. The model then predicts the cost/benefit ratio for government, based on contributions of each hydrogen project to meeting societal goals, and it predicts the return on investment for industry. Sensitivity analyses with respect to various government investments such as hydrogen research and development and demonstration projects will then provide guidance as to the most cost effective mix of government actions. The initial model considers the hydrogen transportation market, but this programmatic pathway methodology will be extended to other market segments in the future.

  13. Final Technical Report: Genetic and Molecular Analysis of a new control pathway in assimilate partitioning.

    SciTech Connect

    Bush, Daniel, R.

    2009-03-10

    Assimilate partitioning refers to the systemic distribution of photoassimilate from sites of primary assimilation (source tissue) to import-dependent tissues and organs (sinks). One of the defining questions in this area is how plants balance source productivity with sink demand. We discovered a sucrose-sensing signal transduction pathway that controls the activity of BvSUT1, a proton-sucrose symporter in sugar beet leaf tissue. Sucrose symporters are responsible for sucrose accumulation in the phloem of many plants and, therefore, they mediate the pivotal step in the long-distance transport of photoassimilate to non-photosynthetic tissues, such as roots and seed. We previously showed that sucrose transport activity is directly proportional to the transcription rate of BvSUT1 and that symporter mRNA and protein have high rates of turnover with half-lives on the order of 2 h. We further demonstrated that symporter transcription is regulated by sucrose levels in the leaf and that sucrose-dependent regulation of BvSUT1 transcription is mediated, at least in part, by a protein phosphorylation relay pathway. The goal of the experiments during this current grant were to use genetic and molecular approaches to identify essential components of this vital regulatory system. The initial objectives were to: (1) to characterize Arabidopsis mutants we've isolated that are resistant to growth inhibition by sucrose analogues that are recognized by the sucrose-sensor, (2) to screen for loss of function mutants in BvSUT1-promoter:luciferase transgenic plants that no longer respond to sucrose accumulation in the leaf using non-destructive visualization of luciferase activity, (3) to use gel mobility-shift assays and nuclease protection experiments to identify cis elements in the symporter promoter and DNA-binding proteins that are involved in sucrose regulation of symporter expression.

  14. Techno-Economic Boundary Analysis of Biological Pathways to Hydrogen Production (2009)

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation by Brian James, Strategic Analysis Inc., at the Biological Hydrogen Production Workshop held September 24-25, 2013, at the National Renewable Energy Laboratory in Golden, Colorado.

  15. Conformational selection in a protein-protein interaction revealed by dynamic pathway analysis

    DOE PAGES [OSTI]

    Chakrabarti, Kalyan S.; Agafonov, Roman V.; Pontiggia, Francesco; Otten, Renee; Higgins, Matthew K.; Schertler, Gebhard F. X.; Oprian, Daniel D.; Kern, Dorothee

    2015-12-24

    Molecular recognition plays a central role in biology, and protein dynamics has been acknowledged to be important in this process. However, it is highly debated whether conformational changes happen before ligand binding to produce a binding-competent state (conformational selection) or are caused in response to ligand binding (induced fit). Proposals for both mechanisms in protein/protein recognition have been primarily based on structural arguments. However, the distinction between them is a question of the probabilities of going via these two opposing pathways. Here we present a direct demonstration of exclusive conformational selection in protein/protein recognition by measuring the flux for rhodopsinmore » kinase binding to its regulator recoverin, an important molecular recognition in the vision system. Using NMR spectroscopy, stopped-flow kinetics and isothermal titration calorimetry we show that recoverin populates a minor conformation in solution that exposes a hydrophobic binding pocket responsible for binding rhodopsin kinase. Lastly, protein dynamics in free recoverin limits the overall rate of binding.« less

  16. Conformational selection in a protein-protein interaction revealed by dynamic pathway analysis

    SciTech Connect

    Chakrabarti, Kalyan S.; Agafonov, Roman V.; Pontiggia, Francesco; Otten, Renee; Higgins, Matthew K.; Schertler, Gebhard F. X.; Oprian, Daniel D.; Kern, Dorothee

    2015-12-24

    Molecular recognition plays a central role in biology, and protein dynamics has been acknowledged to be important in this process. However, it is highly debated whether conformational changes happen before ligand binding to produce a binding-competent state (conformational selection) or are caused in response to ligand binding (induced fit). Proposals for both mechanisms in protein/protein recognition have been primarily based on structural arguments. However, the distinction between them is a question of the probabilities of going via these two opposing pathways. Here we present a direct demonstration of exclusive conformational selection in protein/protein recognition by measuring the flux for rhodopsin kinase binding to its regulator recoverin, an important molecular recognition in the vision system. Using NMR spectroscopy, stopped-flow kinetics and isothermal titration calorimetry we show that recoverin populates a minor conformation in solution that exposes a hydrophobic binding pocket responsible for binding rhodopsin kinase. Lastly, protein dynamics in free recoverin limits the overall rate of binding.

  17. Pathways analysis and radiation-dose estimates for radioactive residues at formerly utilized MED/AEC sites

    SciTech Connect

    Gilbert, T.L.; Chee, P.C.; Knight, M.J.; Peterson, J.M.; Roberts, C.J.; Robinson, J.E.; Tsai, S.Y.H.; Yuan, Y.C.

    1983-03-01

    Methods of analysis are developed for estimating the largest individual radiation dose that could result from residual radioactivity at sites identified by the Formerly Utilized Sites Remedial Action Program (FUSRAP) of the US Department of Energy. Two unique aspects of the methods are (1) a systematic structuring of the radiation pathways analysis into source terms, source-to-exposure analysis, and exposure-to-dose analysis, and (2) the systematic use of data on the average concentrations of naturally occurring radionuclides in soil, food, and the human body in order to assess the validity of model calculations and obtain more realistic values. The methods are applied to a typical FUSRAP site in order to obtain generic source-to-dose (D/S) conversion factors for estimating the radiation dose to the maximally exposed individual from a known concentration of radionuclides in the soil. The D/S factors are used to derive soil guidelines, i.e., the limiting concentrations of radionuclides at a typical FUSRAP site that are unlikely to result in individual dose limits that exceed generally accepted radiation protection standards. The results lead to the conclusion that the soil guidelines should not exceed 17, 75, and 300 pCi/g for Ra-226, U-238, and Th-230, respectively.

  18. Techno-Economic Boundary Analysis of Biological Pathways to Hydrogen Production (2009)

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    September 2013 Presentation to: Biological Hydrogen Production Workshop By: Brian D. James Strategic Analysis Inc. Bjames@sainc.com (703) 778-7114 1 This presentation does not contain any proprietary, confidential, or otherwise restricted information * DOE/NREL Bio H 2 Working Group * Roxanne Garland, DOE * Ali Jalalzadeh-Azar, NREL * Mike Seibert, NREL * Maria Ghirardi, NREL * Pin-Ching Maness, NREL * Tasio Melis, UC Berkeley * Gerald C. Dismukes - Princeton University * Bruce Logan, Penn

  19. Session on computation in biological pathways

    SciTech Connect

    Karp, P.D.; Riley, M.

    1996-12-31

    The papers in this session focus on the development of pathway databases and computational tools for pathway analysis. The discussion involves existing databases of sequenced genomes, as well as techniques for studying regulatory pathways.

  20. EVMS Training Snippet: 5.3 PARSII Analysis: Schedule Health Assessment...

    Office of Environmental Management (EM)

    EVMS Training Snippet: 5.3 PARSII Analysis: Schedule Health Assessment This EVMS Training Snippet, sponsored by the Office of Project Management (PM) is one in a series regarding ...

  1. National Dialogue on Career Pathways

    Energy.gov [DOE]

    On Tuesday, September 23, 2014, the U.S. Departments of Labor, Education and Health and Human Services will host a National Dialogue on Career Pathways.  Federal agency leaders from each Department...

  2. Comparative genomic analysis of nine Sphingobium strains: Insights into their evolution and hexachlorocyclohexane (HCH) degradation pathways

    SciTech Connect

    Verma, Helianthous; Kumar, Roshan; Oldach, Phoebe; Sangwan, Naseer; Khurana, Jitendra P.; Gilbert, Jack A.; Lal, Rup

    2014-11-23

    Background: Sphingobium spp. are efficient degraders of a wide range of chlorinated and aromatic hydrocarbons. In particular, strains which harbour the lin pathway genes mediating the degradation of hexachlorocyclohexane (HCH) isomers are of interest due to the widespread persistence of this contaminant. Here, we examined the evolution and diversification of the lin pathway under the selective pressure of HCH, by comparing the draft genomes of six newly-sequenced Sphingobium spp. (strains LL03, DS20, IP26, HDIPO4, P25 and RL3) isolated from HCH dumpsites, with three existing genomes (S. indicum B90A, S. japonicum UT26S and Sphingobium sp. SYK6). Results: Efficient HCH degraders phylogenetically clustered in a closely related group comprising of UT26S, B90A, HDIPO4 and IP26, where HDIPO4 and IP26 were classified as subspecies with ANI value >98%. Less than 10% of the total gene content was shared among all nine strains, but among the eight HCH-associated strains, that is all except SYK6, the shared gene content jumped to nearly 25%. Genes associated with nitrogen stress response and two-component systems were found to be enriched. The strains also housed many xenobiotic degradation pathways other than HCH, despite the absence of these xenobiotics from isolation sources. In addition, these strains, although non-motile, but posses flagellar assembly genes. While strains HDIPO4 and IP26 contained the complete set of lin genes, DS20 was entirely devoid of lin genes (except linKLMN) whereas, LL03, P25 and RL3 were identified as lin deficient strains, as they housed incomplete lin pathways. Further, in HDIPO4, linA was found as a hybrid of two natural variants i.e., linA1 and linA2 known for their different enantioselectivity. In conclusion, the bacteria isolated from HCH dumpsites provide a natural testing ground to study variations in the lin system and their

  3. Well-to-Wheels analysis of landfill gas-based pathways and their addition to the GREET model.

    SciTech Connect

    Mintz, M.; Han, J.; Wang, M.; Saricks, C.; Energy Systems

    2010-06-30

    Today, approximately 300 million standard cubic ft/day (mmscfd) of natural gas and 1600 MW of electricity are produced from the decomposition of organic waste at 519 U.S. landfills (EPA 2010a). Since landfill gas (LFG) is a renewable resource, this energy is considered renewable. When used as a vehicle fuel, compressed natural gas (CNG) produced from LFG consumes up to 185,000 Btu of fossil fuel and generates from 1.5 to 18.4 kg of carbon dioxide-equivalent (CO{sub 2}e) emissions per million Btu of fuel on a 'well-to-wheel' (WTW) basis. This compares with approximately 1.1 million Btu and 78.2 kg of CO{sub 2}e per million Btu for CNG from fossil natural gas and 1.2 million Btu and 97.5 kg of CO{sub 2}e per million Btu for petroleum gasoline. Because of the additional energy required for liquefaction, LFG-based liquefied natural gas (LNG) requires more fossil fuel (222,000-227,000 Btu/million Btu WTW) and generates more GHG emissions (approximately 22 kg CO{sub 2}e /MM Btu WTW) if grid electricity is used for the liquefaction process. However, if some of the LFG is used to generate electricity for gas cleanup and liquefaction (or compression, in the case of CNG), vehicle fuel produced from LFG can have no fossil fuel input and only minimal GHG emissions (1.5-7.7 kg CO{sub 2}e /MM Btu) on a WTW basis. Thus, LFG-based natural gas can be one of the lowest GHG-emitting fuels for light- or heavy-duty vehicles. This report discusses the size and scope of biomethane resources from landfills and the pathways by which those resources can be turned into and utilized as vehicle fuel. It includes characterizations of the LFG stream and the processes used to convert low-Btu LFG into high-Btu renewable natural gas (RNG); documents the conversion efficiencies and losses of those processes, the choice of processes modeled in GREET, and other assumptions used to construct GREET pathways; and presents GREET results by pathway stage. GREET estimates of well-to-pump (WTP), pump

  4. An analysis of uranium dispersal and health effects using a Gulf War case study.

    SciTech Connect

    Marshall, Albert Christian

    2005-07-01

    The study described in this report used mathematical modeling to estimate health risks from exposure to depleted uranium (DU) during the 1991 Gulf War for both U.S. troops and nearby Iraqi civilians. The analysis found that the risks of DU-induced leukemia or birth defects are far too small to result in an observable increase in these health effects among exposed veterans or Iraqi civilians. Only a few veterans in vehicles accidentally struck by U.S. DU munitions are predicted to have inhaled sufficient quantities of DU particulate to incur any significant health risk (i.e., the possibility of temporary kidney damage from the chemical toxicity of uranium and about a 1% chance of fatal lung cancer). The health risk to all downwind civilians is predicted to be extremely small. Recommendations for monitoring are made for certain exposed groups. Although the study found fairly large calculational uncertainties, the models developed and used are generally valid. The analysis was also used to assess potential uranium health hazards for workers in the weapons complex. No illnesses are projected for uranium workers following standard guidelines; nonetheless, some research suggests that more conservative guidelines should be considered.

  5. Integrated analysis reveals that STAT3 is central to the crosstalk between HER/ErbB receptor signaling pathways in human mammary epithelial cells

    SciTech Connect

    Gong, Chunhong; Zhang, Yi; Shankaran, Harish; Resat, Haluk

    2014-10-02

    Human epidermal growth factor receptors (HER, also known as ErbB) drive cellular proliferation, pro-survival and stress responses by activating several downstream kinases, in particular ERK, p38, JNK (SAPK), the PI3K/AKT, as well as various transcriptional regulators such as STAT3. When co-expressed, first three members of HER family (HER1-3) can form homo- and hetero-dimers. Based on the considerable evidence which suggest that every receptor dimer activates intracellular signaling pathways differentially, we hypothesized that the HER dimerization pattern is a better predictor of downstream signaling than the total receptor activation levels. We validated our hypothesis using a combination of model-based analysis to quantify the HER dimerization patterns and multi-factorial experiments where HER dimerization patterns and signaling crosstalk were rationally perturbed. We have measured the activation of HER1-3 receptors and of the sentinel signaling proteins ERK, AKT, p38, JNK, STAT3 as a function of time in a panel of human mammary epithelial (HME) cells expressing different levels of HER1-3 stimulated with various ligand combinations. Our analysis using multiple ways of clustering the activation data has confirmed that the HER receptor dimer is a better predictor of the signaling through p38, ERK and AKT pathways than the total HER receptor expression and activation levels. Targeted inhibition studies to identify the causal effects allowed us to obtain a consensus regulatory interaction model, which revealed that STAT3 occupies a central role in the crosstalk between the studied pathways.

  6. Integrated analysis reveals that STAT3 is central to the crosstalk between HER/ErbB receptor signaling pathways in human mammary epithelial cells

    DOE PAGES [OSTI]

    Gong, Chunhong; Zhang, Yi; Shankaran, Harish; Resat, Haluk

    2014-10-02

    Human epidermal growth factor receptors (HER, also known as ErbB) drive cellular proliferation, pro-survival and stress responses by activating several downstream kinases, in particular ERK, p38, JNK (SAPK), the PI3K/AKT, as well as various transcriptional regulators such as STAT3. When co-expressed, first three members of HER family (HER1-3) can form homo- and hetero-dimers. Based on the considerable evidence which suggest that every receptor dimer activates intracellular signaling pathways differentially, we hypothesized that the HER dimerization pattern is a better predictor of downstream signaling than the total receptor activation levels. We validated our hypothesis using a combination of model-based analysis tomore » quantify the HER dimerization patterns and multi-factorial experiments where HER dimerization patterns and signaling crosstalk were rationally perturbed. We have measured the activation of HER1-3 receptors and of the sentinel signaling proteins ERK, AKT, p38, JNK, STAT3 as a function of time in a panel of human mammary epithelial (HME) cells expressing different levels of HER1-3 stimulated with various ligand combinations. Our analysis using multiple ways of clustering the activation data has confirmed that the HER receptor dimer is a better predictor of the signaling through p38, ERK and AKT pathways than the total HER receptor expression and activation levels. Targeted inhibition studies to identify the causal effects allowed us to obtain a consensus regulatory interaction model, which revealed that STAT3 occupies a central role in the crosstalk between the studied pathways.« less

  7. Integrated analysis reveals that STAT3 is central to the crosstalk between HER/ErbB receptor signaling pathways in human mammary epithelial cells

    SciTech Connect

    Gong, Chunhong; Zhang, Yi; Shankaran, Harish; Resat, Haluk

    2015-01-01

    Human epidermal growth factor receptors (HER, also known as ErbB) drive cellular proliferation, pro-survival and stress responses by activating several downstream kinases, in particular ERK, p38, JNK (SAPK), the PI3K/AKT, as well as various transcriptional regulators such as STAT3. When co-expressed, first three members of HER family (HER1-3) can form homo- and hetero-dimers. Based on the considerable evidence which suggest that every receptor dimer activates intracellular signaling pathways differentially, we hypothesized that the HER dimerization pattern is a better predictor of downstream signaling than the total receptor activation levels. We validated our hypothesis using a combination of model-based analysis to quantify the HER dimerization patterns and multi-factorial experiments where HER dimerization patterns and signaling crosstalk were rationally perturbed. We have measured the activation of HER1-3 receptors and of the sentinel signaling proteins ERK, AKT, p38, JNK, STAT3 as a function of time in a panel of human mammary epithelial (HME) cells expressing different levels of HER1-3 stimulated with various ligand combinations. Our analysis using multiple ways of clustering the activation data has confirmed that the HER receptor dimer is a better predictor of the signaling through p38, ERK and AKT pathways than the total HER receptor expression and activation levels. Targeted inhibition studies to identify the causal effects allowed us to obtain a consensus regulatory interaction model, which revealed that STAT3 occupies a central role in the crosstalk between the studied pathways.

  8. Metabolic analysis of the soil microbe Dechloromonas aromatica str. RCB: indications of a surprisingly complex life-style and cryptic anaerobic pathways for aromatic degradation

    SciTech Connect

    Salinero, Kennan Kellaris; Keller, Keith; Feil, William S.; Feil, Helene; Trong, Stephan; Di Bartolo, Genevieve; Lapidus, Alla

    2008-11-17

    Initial interest in Dechloromonas aromatica strain RCB arose from its ability to anaerobically degrade benzene. It is also able to reduce perchlorate and oxidize chlorobenzoate, toluene, and xylene, creating interest in using this organism for bioremediation. Little physiological data has been published for this microbe. It is considered to be a free-living organism. The a priori prediction that the D. aromatica genome would contain previously characterized 'central' enzymes involved in anaerobic aromatic degradation proved to be false, suggesting the presence of novel anaerobic aromatic degradation pathways in this species. These missing pathways include the benzyl succinyl synthase (bssABC) genes (responsible for formate addition to toluene) and the central benzoylCoA pathway for monoaromatics. In depth analyses using existing TIGRfam, COG, and InterPro models, and the creation of de novo HMM models, indicate a highly complex lifestyle with a large number of environmental sensors and signaling pathways, including a relatively large number of GGDEF domain signal receptors and multiple quorum sensors. A number of proteins indicate interactions with an as yet unknown host, as indicated by the presence of predicted cell host remodeling enzymes, effector enzymes, hemolysin-like proteins, adhesins, NO reductase, and both type III and type VI secretory complexes. Evidence of biofilm formation including a proposed exopolysaccharide complex with the somewhat rare exosortase (epsH), is also present. Annotation described in this paper also reveals evidence for several metabolic pathways that have yet to be observed experimentally, including a sulphur oxidation (soxFCDYZAXB) gene cluster, Calvin cycle enzymes, and nitrogen fixation (including RubisCo, ribulose-phosphate 3-epimerase, and nif gene families, respectively). Analysis of the D. aromatica genome indicates there is much to be learned regarding the metabolic capabilities, and life-style, for this microbial species

  9. Density Functional Theory Calculations and Analysis of Reaction Pathways for Reduction of Nitric Oxide by Hydrogen on Pt(111)

    SciTech Connect

    Farberow, Carrie A.; Dumesic, James A.; Mavrikakis, Manos

    2014-10-03

    Reaction pathways are explored for low temperature (e.g., 400 K) reduction of nitric oxide by hydrogen on Pt(111). First-principles electronic structure calculations based on periodic, self-consistent density functional theory(DFT-GGA, PW91) are employed to obtain thermodynamic and kinetic parameters for proposed reaction schemes on Pt(111). The surface of Pt(111) during NO reduction by H? at low temperatures is predicted to operate at a high NO coverage, and this environment is explicitly taken into account in the DFT calculations. Maximum rate analyses are performed to assess the most likely reaction mechanisms leading to formation of N?O, the major product observed experimentally at low temperatures. The results of these analyses suggest that the reaction most likely proceeds via the addition of at least two H atoms to adsorbed NO, followed by cleavage of the N-O bond.

  10. SRNL ALL-PATHWAYS APPLICATION

    SciTech Connect

    Koffman, L; Elmer Wilhite, E; Leonard Collard, L

    2007-05-29

    The Environmental Analysis and Performance Modeling group of Savannah River National Laboratory (SRNL) performs performance assessments of the Savannah River Site (SRS) low-level waste facilities to meet the requirements of DOE Order 435.1. One of the performance objectives in the DOE Order is that the radiological dose to representative members of the public shall not exceed 25 mrem in a year total effective dose equivalent from all exposure pathways, excluding radon. Analysis to meet this performance objective is generally referred to as all-pathways analysis. SRNL performs detailed transient groundwater transport analysis for the waste disposal units, which has been used as input for the groundwater part of all-pathways analysis. The desire to better integrate all-pathways analysis with the groundwater transport analysis lead to the development of a software application named the SRNL All-Pathways Application. Another requirement of DOE Order 435.1 is to assess the impact of nuclear waste disposal on water resources, which SRS has interpreted for groundwater protection as meeting the EPA regulations for radionuclides in drinking water. EPA specifies four separate criteria as part of their implementation guidance for radionuclides, which are specified as maximum contaminant levels (MCL). (1) Beta/gamma emitters have a combined dose limit of 4 mrem/year. (2) Alpha emitters have a combined concentration limit of 15 pCi/L (called gross alpha), excluding uranium and radon, but including radium-226. (3) Combined radium-226 and radium-228 have a concentration limit of 5 pCi/L. (4) Isotopes of uranium have a combined concentration limit of 30 {micro}g/L. The All-Pathways Application was designed to be an easy-to-use software application that utilizes transient concentration results from groundwater transport analysis to (1) calculate the groundwater part of all-pathways dose and to (2) evaluate the four EPA criteria for groundwater protection.

  11. Hydrogen Pathway Cost Distributions | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Pathway Cost Distributions Hydrogen Pathway Cost Distributions Presentation on hydrogen pathway cost distributions presented January 25, 2006. wkshp_storage_uihlein.pdf (189.04 KB) More Documents & Publications Manufacturing Cost Analysis of 1 kW and 5 kW Solid Oxide Fuel Cell (SOFC) for Auxiliary Power Applications Natural Gas Imports and Exports First Quarter Report 2016 Pathway and Resource Overview

  12. Engineering ESPT Pathways Based on Structural Analysis of LSSmKate Red Fluorescent Proteins with Large Stokes Shift

    SciTech Connect

    Piatkevich, K.; Malashkevich, V; Almo, S; Verkhusha, V

    2010-01-01

    LSSmKate1 and LSSmKate2 are monomeric red fluorescent proteins (RFPs) with large Stokes shifts (LSSs), which allows for efficient separation of absorbance and emission maxima, as well as for excitation with conventional two-photon laser sources. These LSSmKates differ by a single amino acid substitution at position 160 and exhibit absorbance maxima around 460 nm, corresponding to a neutral DsRed-like chromophore. However, excitation at 460 nm leads to fluorescence emission above 600 nm. Structures of LSSmKate1 and LSSmKate2, determined at resolutions of 2.0 and 1.5 {angstrom}, respectively, revealed that the predominant DsRed-chromophore configurations are cis for LSSmKate1 but trans for LSSmKate2. Crystallographic and mutagenesis analyses, as well as isotope and temperature dependences, suggest that an excited-state proton transfer (ESPT) is responsible for the LSSs observed in LSSmKates. Hydrogen bonding between the chromophore hydroxyl and Glu160 in LSSmKate1 and a proton relay involving the chromophore tyrosine hydroxyl, Ser158, and the Asp160 carboxylate in LSSmKate2 represent the putative ESPT pathways. Comparisons with mKeima LSS RFP suggest that similar proton relays could be engineered in other FPs. Accordingly, we mutated positions 158 and 160 in several conventional red-shifted FPs, including mNeptune, mCherry, mStrawberry, mOrange, and mKO, and the resulting FP variants exhibited LSS fluorescence emission in a wide range of wavelengths from 560 to 640 nm. These data suggest that different chromophores formed by distinct tripeptides in different environments can be rationally modified to yield RFPs with novel photochemical properties.

  13. Needs analysis and project schedule for the Los Alamos National Laboratory (LANL) Health Physics Analysis Laboratory (HPAL) upgrade

    SciTech Connect

    Rhea, T.A.; Rucker, T.L.; Stafford, M.W.

    1990-09-28

    This report is a needs assessment and project schedule for the Health Physics Analysis Laboratory (HPAL) upgrade project at Los Alamos National Laboratory (LANL). After reviewing current and projected HPAL operations, two custom-developed laboratory information management systems (LIMS) for similar facilities were reviewed; four commercially available LIMS products were also evaluated. This project is motivated by new regulations for radiation protection and training and by increased emphasis on quality assurance (QA). HPAL data are used to: protect the health of radiation workers; document contamination levels for transportation of radioactive materials and for release of materials to the public for uncontrolled use; and verify compliance with environmental emission regulations. Phase 1 of the HPAL upgrade project concentrates on four types of counting instruments which support in excess of 90% of the sample workload at the existing central laboratories. Phase 2 is a refinement phase and also integrates summary-level databases on the central Health, Safety, and Environment (HSE) VAX. Phase 3 incorporates additional instrument types and integrates satellite laboratories into the HPAL LIMS. Phase 1 will be a multi-year, multimillion dollar project. The temptation to approach the upgrade of the HPAL program in a piece meal fashion should be avoided. This is a major project, with clearly-defined goals and priorities, and should be approached as such. Major programmatic and operational impacts will be felt throughout HSE as a result of this upgrade, so effective coordination with key customer contacts will be critical.

  14. Health effects model for nuclear power plant accident consequence analysis. Part I. Introduction, integration, and summary. Part II. Scientific basis for health effects models

    SciTech Connect

    Evans, J.S.; Moeller, D.W.; Cooper, D.W.

    1985-07-01

    Analysis of the radiological health effects of nuclear power plant accidents requires models for predicting early health effects, cancers and benign thyroid nodules, and genetic effects. Since the publication of the Reactor Safety Study, additional information on radiological health effects has become available. This report summarizes the efforts of a program designed to provide revised health effects models for nuclear power plant accident consequence modeling. The new models for early effects address four causes of mortality and nine categories of morbidity. The models for early effects are based upon two parameter Weibull functions. They permit evaluation of the influence of dose protraction and address the issue of variation in radiosensitivity among the population. The piecewise-linear dose-response models used in the Reactor Safety Study to predict cancers and thyroid nodules have been replaced by linear and linear-quadratic models. The new models reflect the most recently reported results of the follow-up of the survivors of the bombings of Hiroshima and Nagasaki and permit analysis of both morbidity and mortality. The new models for genetic effects allow prediction of genetic risks in each of the first five generations after an accident and include information on the relative severity of various classes of genetic effects. The uncertainty in modeloling radiological health risks is addressed by providing central, upper, and lower estimates of risks. An approach is outlined for summarizing the health consequences of nuclear power plant accidents. 298 refs., 9 figs., 49 tabs.

  15. Exposure Based Health Issues Project Report: Phase I of High Level Tank Operations, Retrieval, Pretreatment, and Vitrification Exposure Based Health Issues Analysis

    SciTech Connect

    Stenner, Robert D.; Bowers, Harold N.; Kenoyer, Judson L.; Strenge, Dennis L.; Brady, William H.; Ladue, Buffi; Samuels, Joseph K.

    2001-11-30

    The Department of Energy (DOE) has the responsibility to understand the ''big picture'' of worker health and safety which includes fully recognizing the vulnerabilities and associated programs necessary to protect workers at the various DOE sites across the complex. Exposure analysis and medical surveillance are key aspects for understanding this big picture, as is understanding current health and safety practices and how they may need to change to relate to future health and safety management needs. The exposure-based health issues project was initiated to assemble the components necessary to understand potential exposure situations and their medical surveillance and clinical aspects. Phase I focused only on current Hanford tank farm operations and serves as a starting point for the overall project. It is also anticipated that once the pilot is fully developed for Hanford HLW (i.e., current operations, retrieval, pretreatment, vitrification, and disposal), the process and analysis methods developed will be available and applicable for other DOE operations and sites. The purpose of this Phase I project report is to present the health impact information collected regarding ongoing tank waste maintenance operations, show the various aspects of health and safety involved in protecting workers, introduce the reader to the kinds of information that will need to be analyzed in order to effectively manage worker safety.

  16. Fuel Pathways Integration Tech Team | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Pathways Integration Tech Team Fuel Pathways Integration Tech Team Presentation on Fuel Pathways Integration Tech Team to the DOE Systems Analysis Workshop held in Washington, D.C. July 28-29, 2004. 8_fpitt_gardner.pdf (109.24 KB) More Documents & Publications Systems Analysis Workshop Agenda Hydrogen Analysis Analysis Activities at National Renewable Energy Laboratory

  17. Pathways and transformations of dissolved methane and dissolved inorganic carbon in Arctic tundra watersheds: Evidence from analysis of stable isotopes

    SciTech Connect

    Throckmorton, Heather M.; Heikoop, Jeffrey M.; Newman, Brent D.; Altmann, Garrett L.; Conrad, Mark S.; Muss, Jordan D.; Perkins, George B.; Smith, Lydia J.; Torn, Margaret S.; Wullschleger, Stan D.; Wilson, Cathy J.

    2015-11-08

    Arctic soils contain a large pool of terrestrial C and are of interest due to their potential for releasing significant carbon dioxide (CO2) and methane (CH4) to the atmosphere. Due to substantial landscape heterogeneity, predicting ecosystem-scale CH4 and CO2 production is challenging. This study assessed dissolved inorganic carbon (DIC = Σ (total) dissolved CO2) and CH4 in watershed drainages in Barrow, Alaska as critical convergent zones of regional geochemistry, substrates, and nutrients. In July and September of 2013, surface waters and saturated subsurface pore waters were collected from 17 drainages. Based on simultaneous DIC and CH4 cycling, we synthesized isotopic and geochemical methods to develop a subsurface CH4 and DIC balance by estimating mechanisms of CH4 and DIC production and transport pathways and oxidation of subsurface CH4. We observed a shift from acetoclastic (July) toward hydrogenotropic (September) methanogenesis at sites located toward the end of major freshwater drainages, adjacent to salty estuarine waters, suggesting an interesting landscape-scale effect on CH4 production mechanism. The majority of subsurface CH4 was transported upward by plant-mediated transport and ebullition, predominantly bypassing the potential for CH4 oxidation. Thus, surprisingly, CH4 oxidation only consumed approximately 2.51± 0.82% (July) and 0.79 ± 0.79% (September) of CH4 produced at the frost table, contributing to <0.1% of DIC production. DIC was primarily produced from respiration, with iron and organic matter serving as likely e- acceptors. Furthermore, this work highlights the importance of spatial and temporal variability of CH4 production at the watershed scale and suggests broad scale investigations are required to build better regional or pan-Arctic representations of CH

  18. Future prospects for compression ignition fuel in California : fuel-related implications of possible pathways to mitigation of public health threats.

    SciTech Connect

    Eberhardt, J. J.; Rote, D. M.; Saricks, C. L.; Stodolsky, F.

    1999-04-08

    This paper documents methods and results of an investigation of the options for and year 2010 consequences of possible new limitations on the use of diesel fuel in California, USA. California's Air Resources Board will undertake a risk management process to determine steps necessary to protect the health and safety of the public from carcinogenic species resident on diesel combustion exhaust particles. Environmental activist groups continue to call for the elimination of diesel fuel in California and other populous states. It is the declared intention of CARB not to ban or restrict diesel fuel, per se, at this time. Thus, two ''mid-course'' strategies now appear feasible: (1) Increased penetration of natural gas, LPG, and possibly lower alcohols into the transportation fuels market, to the extent that some Cl applications would revert to spark-ignition (SI) engines. (2) New specifications requiring diesel fuel reformulation based on more detailed investigation of exhaust products of individual diesel fuel constituents.

  19. Method of assessing a lipid-related health risk based on ion mobility analysis of lipoproteins

    DOEpatents

    Benner, W. Henry; Krauss, Ronald M.; Blanche, Patricia J.

    2010-12-14

    A medical diagnostic method and instrumentation system for analyzing noncovalently bonded agglomerated biological particles is described. The method and system comprises: a method of preparation for the biological particles; an electrospray generator; an alpha particle radiation source; a differential mobility analyzer; a particle counter; and data acquisition and analysis means. The medical device is useful for the assessment of human diseases, such as cardiac disease risk and hyperlipidemia, by rapid quantitative analysis of lipoprotein fraction densities. Initially, purification procedures are described to reduce an initial blood sample to an analytical input to the instrument. The measured sizes from the analytical sample are correlated with densities, resulting in a spectrum of lipoprotein densities. The lipoprotein density distribution can then be used to characterize cardiac and other lipid-related health risks.

  20. What are pathways?

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    body. For the inhalation or airborne pathway, a material is inhaled directly into the lungs and then moves into the bloodstream. For the ingestion pathway, there are several...

  1. Microsoft PowerPoint - Snippet 5.3 PARSII Analysis Schedule Health...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... some subtle differences as compared to the results using other software programs to run schedule health metrics; for example, running the same types of schedule health checks on ...

  2. Analysis of Potential Leakage Pathways and Mineralization within Caprocks for Geologic Storage of CO2

    SciTech Connect

    Evans, James

    2013-05-01

    normal faults in the Permian Cedar Mesa Sandstone, southeastern Utah. These faults are characterized by a single slip surfaces and damage zones containing deformation bands, veins, and joints. Field observations include crosscutting relationships, permeability increase, rock strength decrease, and ultraviolet light induced mineral fluorescence within the damage zone. These field observations combined with the interpreted paragenetic sequence from petrographic analysis, suggests a deformation history of reactivation and several mineralization events in an otherwise low-permeability fault. All deformation bands and veins fluoresce under ultraviolet light, suggesting connectivity and a shared mineralization history. Pre-­existing deformation features act as loci for younger deformation and mineralization events, this fault and its damage zone illustrate the importance of the fault damage zone to subsurface fluid flow. We model a simplified stress history in order to understand the importance of rock properties and magnitude of tectonic stress on the deformation features within the damage zone. The moderate confining pressures, possible variations in pore pressure, and the porous, fine-­grained nature of the Cedar Mesa Sandstone results in a fault damage zone characterized by enhanced permeability, subsurface fluid flow, and mineralization. Structural setting greatly influences fracture spacing and orientation. Three structural settings were examined and include fault proximity, a fold limb of constant dip, and a setting proximal to the syncline hinge. Fracture spacing and dominant fracture orientation vary at each setting and distinctions between regional and local paleo-stress directions can be made. Joints on the fold limb strike normal to the fold axis/bedding and are interpreted to be sub-parallel to the maximum regional paleo-stress direction as there is no fold related strain. Joints proximal to faults and the syncline hinge may have formed under local stress

  3. Probabilistic accident consequence uncertainty analysis -- Late health effects uncertain assessment. Volume 2: Appendices

    SciTech Connect

    Little, M.P.; Muirhead, C.R.; Goossens, L.H.J.; Kraan, B.C.P.; Cooke, R.M.; Harper, F.T.; Hora, S.C.

    1997-12-01

    The development of two new probabilistic accident consequence codes, MACCS and COSYMA, was completed in 1990. These codes estimate the consequence from the accidental releases of radiological material from hypothesized accidents at nuclear installations. In 1991, the US Nuclear Regulatory Commission and the Commission of the European Communities began cosponsoring a joint uncertainty analysis of the two codes. The ultimate objective of this joint effort was to systematically develop credible and traceable uncertainty distributions for the respective code input variables. A formal expert judgment elicitation and evaluation process was identified as the best technology available for developing a library of uncertainty distributions for these consequence parameters. This report focuses on the results of the study to develop distribution for variables related to the MACCS and COSYMA late health effects models. This volume contains appendices that include (1) a summary of the MACCS and COSYMA consequence codes, (2) the elicitation questionnaires and case structures, (3) the rationales and results for the expert panel on late health effects, (4) short biographies of the experts, and (5) the aggregated results of their responses.

  4. Probabilistic accident consequence uncertainty analysis -- Early health effects uncertainty assessment. Volume 2: Appendices

    SciTech Connect

    Haskin, F.E.; Harper, F.T.; Goossens, L.H.J.; Kraan, B.C.P.

    1997-12-01

    The development of two new probabilistic accident consequence codes, MACCS and COSYMA, was completed in 1990. These codes estimate the consequence from the accidental releases of radiological material from hypothesized accidents at nuclear installations. In 1991, the US Nuclear Regulatory Commission and the Commission of the European Communities began cosponsoring a joint uncertainty analysis of the two codes. The ultimate objective of this joint effort was to systematically develop credible and traceable uncertainty distributions for the respective code input variables. A formal expert judgment elicitation and evaluation process was identified as the best technology available for developing a library of uncertainty distributions for these consequence parameters. This report focuses on the results of the study to develop distribution for variables related to the MACCS and COSYMA early health effects models. This volume contains appendices that include (1) a summary of the MACCS and COSYMA consequence codes, (2) the elicitation questionnaires and case structures, (3) the rationales and results for the panel on early health effects, (4) short biographies of the experts, and (5) the aggregated results of their responses.

  5. Analysis and comparison of five contractor safety and health manuals (EG and G, SR II, ORNL, Ashland, and MLGW)

    SciTech Connect

    Crowder, C.; Hurley, T.

    1981-03-01

    An analysis is presented of five safety and health contractor manuals against the requirements of the FE OSH Manual (FE 5480.1), and a breakdown in chart form of how the manuals compare to each other is given. It is pointed out that the manuals are inadequate, but that site visits will be necessary to determine the actual comprehensiveness of the facilities' safety and health programs.

  6. Worker Safety and Health and Nuclear Safety Quarterly Performance Analysis (January - March 2008)

    SciTech Connect

    Kerr, C E

    2009-10-07

    The DOE Office of Enforcement expects LLNL to 'implement comprehensive management and independent assessments that are effective in identifying deficiencies and broader problems in safety and security programs, as well as opportunities for continuous improvement within the organization' and to 'regularly perform assessments to evaluate implementation of the contractor's processes for screening and internal reporting.' LLNL has a self-assessment program, described in ES&H Manual Document 4.1, that includes line, management and independent assessments. LLNL also has in place a process to identify and report deficiencies of nuclear, worker safety and health and security requirements. In addition, the DOE Office of Enforcement expects LLNL to evaluate 'issues management databases to identify adverse trends, dominant problem areas, and potential repetitive events or conditions' (page 14, DOE Enforcement Process Overview, December 2007). LLNL requires that all worker safety and health and nuclear safety noncompliances be tracked as 'deficiencies' in the LLNL Issues Tracking System (ITS). Data from the ITS are analyzed for worker safety and health (WSH) and nuclear safety noncompliances that may meet the threshold for reporting to the DOE Noncompliance Tracking System (NTS). This report meets the expectations defined by the DOE Office of Enforcement to review the assessments conducted by LLNL, analyze the issues and noncompliances found in these assessments, and evaluate the data in the ITS database to identify adverse trends, dominant problem areas, and potential repetitive events or conditions. The report attempts to answer three questions: (1) Is LLNL evaluating its programs and state of compliance? (2) What is LLNL finding? (3) Is LLNL appropriately managing what it finds? The analysis in this report focuses on data from the first quarter of 2008 (January through March). This quarter is analyzed within the context of information identified in previous quarters to

  7. Global Pathways Analysis Tool (GPAT)

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Users are able to vary key assumptions, including resource availability and cost, vehicle shares and efficiencies, carbon taxes, and renewable portfolio standards, and view ...

  8. Hydrogen Pathway Cost Distributions

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Pathway Cost Distributions Jim Uihlein Fuel Pathways Integration Tech Team January 25, 2006 2 Outline * Pathway-Independent Cost Goal * Cost Distribution Objective * Overview * H2A Influence * Approach * Implementation * Results * Discussion Process * Summary 3 Hydrogen R&D Cost Goal * Goal is pathway independent * Developed through a well defined, transparent process * Consumer fueling costs are equivalent or less on a cents per mile basis * Evolved gasoline ICE and gasoline-electric

  9. Pathway and Resource Overview | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    and Resource Overview Pathway and Resource Overview Presented at the Renewable Hydrogen Workshop, Nov. 16, 2009, in Palm Springs, CA renewable_hydrogen_workshop_nov16_ruth.pdf (684.83 KB) More Documents & Publications US DOE Hydrgoen Program- HyDRA (Hydrogen Demand and Resource Analysis Tool Hydrogen Pathways: Cost, Well-to-Wheels Energy Use, and Emissions for the Current Technology Status of Seven Hydrogen Production, Delivery, and Distribution Scenarios Analysis Models and Tools: Systems

  10. Aquatic pathways model to predict the fate of phenolic compounds

    SciTech Connect

    Aaberg, R.L.; Peloquin, R.A.; Strenge, D.L.; Mellinger, P.J.

    1983-04-01

    Organic materials released from energy-related activities could affect human health and the environment. To better assess possible impacts, we developed a model to predict the fate of spills or discharges of pollutants into flowing or static bodies of fresh water. A computer code, Aquatic Pathways Model (APM), was written to implement the model. The computer programs use compartmental analysis to simulate aquatic ecosystems. The APM estimates the concentrations of chemicals in fish tissue, water and sediment, and is therefore useful for assessing exposure to humans through aquatic pathways. The APM will consider any aquatic pathway for which the user has transport data. Additionally, APM will estimate transport rates from physical and chemical properties of chemicals between several key compartments. The major pathways considered are biodegradation, fish and sediment uptake, photolysis, and evaporation. The model has been implemented with parameters for distribution of phenols, an important class of compounds found in the water-soluble fractions of coal liquids. Current modeling efforts show that, in comparison with many pesticides and polyaromatic hydrocarbons (PAH), the lighter phenolics (the cresols) are not persistent in the environment. The properties of heavier molecular weight phenolics (indanols, naphthols) are not well enough understood at this time to make similar judgements. For the twelve phenolics studied, biodegradation appears to be the major pathway for elimination from aquatic environments. A pond system simulation (using APM) of a spill of solvent refined coal (SRC-II) materials indicates that phenol, cresols, and other single cyclic phenolics are degraded to 16 to 25 percent of their original concentrations within 30 hours. Adsorption of these compounds into sediments and accumulation by fish was minor.

  11. Technology Pathway Selection Effort

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    BIOMASS PROGRAM Technology Pathway Selection Effort Alicia Lindauer 27 November 2012 2 | Biomass Program eere.energy.gov * Setting R&D priorities * Benchmarking * Informing multi-sectoral analytical activities * Track Program R&D progress against goals * Identify technology process routes and prioritize funding * Program direction decisions: * Are we spending our money on the right technology pathways? * Within a pathway: Are we focusing our funding on the highest priority activities?

  12. Pathways to commercial success

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    HYDROGEN, FUEL CELLS & INFRASTRUCTURE TECHNOLOGIES (HFCIT) PROGRAM Pathways to Commercial Success: Technologies and Products Supported by the Hydrogen, Fuel Cells & Infrastructure ...

  13. Pathways to Low-Cost Electrochemical Energy Storage: A Comparison...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    September 16, 2014, Research Highlights Pathways to Low-Cost Electrochemical Energy Storage: A ... and aqueous flow batteries for future and existing chemistries Analysis ...

  14. ORISE: Health Physics Training

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Health Physics Training Student performs an analysis during an ORAU health physics training course Training and educating a highly skilled workforce that can meet operational ...

  15. Solar Market Pathways

    Energy.gov [DOE]

    The Solar Market Pathways website distributes key insights from 15 SunShot Initiative projects that are advancing solar deployment across the United States. These projects take a variety of...

  16. Sustainability & Strategic Analysis

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... Technologies Office * Design cases of biofuel pathways * Environmental sustainability metrics for conversion stage * GREET analysis of full pathway to identify drivers of GHG ...

  17. Program Design Analysis using BEopt Building Energy Optimization Software: Defining a Technology Pathway Leading to New Homes with Zero Peak Cooling Demand; Preprint

    SciTech Connect

    Anderson, R.; Christensen, C.; Horowitz, S.

    2006-08-01

    An optimization method based on the evaluation of a broad range of different combinations of specific energy efficiency and renewable-energy options is used to determine the least-cost pathway to the development of new homes with zero peak cooling demand. The optimization approach conducts a sequential search of a large number of possible option combinations and uses the most cost-effective alternatives to generate a least-cost curve to achieve home-performance levels ranging from a Title 24-compliant home to a home that uses zero net source energy on an annual basis. By evaluating peak cooling load reductions on the least-cost curve, it is then possible to determine the most cost-effective combination of energy efficiency and renewable-energy options that both maximize annual energy savings and minimize peak-cooling demand.

  18. 2015 Annual Workforce Analysis and Staffing Plan Report- Office of Environment, Health, Safety and Security

    Energy.gov [DOE]

    Managers perform an annual workforce analysis of their organization and develop staffing plans that identify technical capabilities and positions they need to ensure safe operation of defense nuclear facilities.

  19. EVMS Training Snippet: 5.3 PARSII Analysis: Schedule Health Assessment

    Energy.gov [DOE]

    This EVMS Training Snippet, sponsored by the Office of Project Management (PM) is one in a series regarding PARS II Analysis reports. PARS II offers direct insight into EVM project data from the...

  20. 2010 Annual Workforce Analysis and Staffing Plan Report- Office of Health, Safety and Security

    Energy.gov [DOE]

    Managers perform an annual workforce analysis of their organization and develop staffing plans that identify technical capabilities and positions they need to ensure safe operation of defense nuclear facilities.

  1. 2014 Annual Workforce Analysis and Staffing Plan Report- Office of Environment, Health, Safety and Security

    Energy.gov [DOE]

    Managers perform an annual workforce analysis of their organization and develop staffing plans that identify technical capabilities and positions they need to ensure safe operation of defense nuclear facilities.

  2. 2013 Annual Workforce Analysis and Staffing Plan Report- Office of Health, Safety and Security

    Energy.gov [DOE]

    Managers perform an annual workforce analysis of their organization and develop staffing plans that identify technical capabilities and positions they need to ensure safe operation of defense nuclear facilities.

  3. 2011 Annual Workforce Analysis and Staffing Plan Report- Office of Health, Safety and Security

    Energy.gov [DOE]

    Managers perform an annual workforce analysis of their organization and develop staffing plans that identify technical capabilities and positions they need to ensure safe operation of defense nuclear facilities.

  4. 2012 Annual Workforce Analysis and Staffing Plan Report- Office of Health, Safety and Security

    Energy.gov [DOE]

    Managers perform an annual workforce analysis of their organization and develop staffing plans that identify technical capabilities and positions they need to ensure safe operation of defense nuclear facilities.

  5. Technical and Analytical Support Services to the Office of Environmental Analysis, Office of Environment, Safety and Health. Final report

    SciTech Connect

    1995-02-01

    The primary purpose of this contract was to provide technical analyses, studies, and reviews related to land use/water issues and energy resource development in support of the activities of the Office of Environmental Analysis, Office of Environment, Safety and Health. Tasks under this contract included: Issue Papers. Energetics provided issue papers on a number of specific energy and environmental issue areas. Each issue paper consisted of a systematic review and analysis of major factors (technical, legal, environmental, economic, energy, health and social) that could enter into DOE`s environmental/energy policy decisions; Special Analyses. Energetics conducted special in-depth technical analyses as requested by the Contracting Officer`s Technical Representative (COTR); and Critical Review and Evaluation of Program Reports. Energetics performed critical reviews of a number of technical reports arising from DOE program activities. These documents included issue papers and reports resulting from special technical analyses of specific issues, technologies, or broad areas of concern. Reviews focused on both the technical and programmatic impact of the report. Energetics made recommendations and gave input to assist DOE in determining the environmental impacts of energy policies and projects.

  6. Solar Market Pathways Website

    Energy.gov [DOE]

    The Solar Market Pathways website distributes key insights from 15 SunShot Initiative projects that are advancing solar deployment across the United States. These projects take a variety of approaches to develop actionable strategic plans to expand solar electricity use for residential, community, and commercial properties.

  7. Solar Market Pathways

    Energy.gov [DOE]

    The Solar Market Pathways website distributes key insights from 15 SunShot Initiative projects that are advancing solar deployment across the United States. These projects take a variety of approaches to develop actionable strategic plans to expand solar electricity use for residential, community, and commercial properties.

  8. Crack Propagation Analysis Using Acoustic Emission Sensors for Structural Health Monitoring Systems

    DOE PAGES [OSTI]

    Kral, Zachary; Horn, Walter; Steck, James

    2013-01-01

    Aerospace systems are expected to remain in service well beyond their designed life. Consequently, maintenance is an important issue. A novel method of implementing artificial neural networks and acoustic emission sensors to form a structural health monitoring (SHM) system for aerospace inspection routines was the focus of this research. Simple structural elements, consisting of flat aluminum plates of AL 2024-T3, were subjected to increasing static tensile loading. As the loading increased, designed cracks extended in length, releasing strain waves in the process. Strain wave signals, measured by acoustic emission sensors, were further analyzed in post-processing by artificial neural networks (ANN).more » Several experiments were performed to determine the severity and location of the crack extensions in the structure. ANNs were trained on a portion of the data acquired by the sensors and the ANNs were then validated with the remaining data. The combination of a system of acoustic emission sensors, and an ANN could determine crack extension accurately. The difference between predicted and actual crack extensions was determined to be between 0.004 in. and 0.015 in. with 95% confidence. These ANNs, coupled with acoustic emission sensors, showed promise for the creation of an SHM system for aerospace systems.« less

  9. PROJECT PROFILE: Salt Lake City Corporation (Solar Market Pathways) |

    Energy Saver

    Department of Energy Salt Lake City Corporation (Solar Market Pathways) PROJECT PROFILE: Salt Lake City Corporation (Solar Market Pathways) Title: Wasatch Solar Project WASATCH solar logo.png Funding Opportunity: Solar Market Pathways SunShot Subprogram: Soft Costs Location: Salt Lake City, UT Amount Awarded: $600,000 Awardee Cost Share: $164,645 Salt Lake City and its partners are developing a comprehensive long-term solar deployment strategy, which includes an analysis of the value of

  10. Gamma-Ray Signatures for State-Of-Health Analysis and Monitoring of Widely-Arrayed Radiation Portal Monitor Systems

    SciTech Connect

    Woodring, Mitchell L.; Ely, James H.; Angel, Linda K.; Wright, Ingrid H.; Eslinger, Melany A.; Pospical, A. Jill; Ellis, John E.

    2008-05-15

    Pacific Northwest National Laboratory (PNNL) has deployed a large array of radiation portal monitors for the Department of Homeland Security U.S. Customs and Border Protection. These portal monitors scan incoming vehicles crossing the U.S. border and shipping containers leaving international ports for radioactive material via gamma-ray and neutron detection. Data produced and captured by these systems are recorded for every vehicle related to radiation signature, sensor/system status, and local background, as well as a host of other variables. Within the Radiation Portal Monitor Project at PNNL, state-of-health observation and analysis for the whole RPM system using these data to determine functionality and performance is being developed. (PIET-43741-TM-492)

  11. Theoretical analysis of the sequential proton-coupled electron transfer mechanisms for H2 oxidation and production pathways catalyzed by nickel molecular electrocatalysts

    SciTech Connect

    Fernandez, Laura; Horvath, Samantha; Hammes-Schiffer, Sharon

    2012-02-02

    The design of electrocatalysts for the oxidation and production of H2 is important for the development of alternative energy sources. This paper focuses on the electrocatalysts, where denotes 1,5-diaza-3,7-diphosphacyclooctane ligands with substituent groups R and R' covalently bound to the phosphorus and nitrogen atoms, respectively. Theoretical methods are used to investigate the mechanism of the step in the catalytic cycle corresponding to e ? for H2 oxidation and the reverse reaction for H2 production. This step involves electron transfer (ET) between the Ni complex and the electrode as well as proton transfer (PT) between the Ni and the N. The sequential mechanisms, PTET and ETPT, are investigated for the following (R,R) substituents: (Me,Me), (Ph,Ph), and (Ph,Bz), where Me, Ph, and Bz denote methyl, phenyl, and benzyl substituents. Density functional theory is used to calculate reduction potentials, pKas, and PT pathways, and Marcus theory is used to describe the electrochemical electron transfer, including the effects of solute and solvent reorganization energies. For the (Ph,Ph) and (Ph,Bz) systems, the sequential PTET mechanism would require surmounting a large free energy barrier for the initial PT step, followed by thermodynamically favorable or thermoneutral ET. The sequential ETPT mechanism for these systems would require a relatively large initial applied overpotential, followed by a PT reaction with a relatively low free energy barrier. Consistent with experimental data, the calculated overpotential required for the initial reduction in the ETPT mechanism is lower for the (Ph,Bz) system than for the (Ph,Ph) system. The concerted mechanism, in which the electron and proton transfer simultaneously without a stable intermediate, may be thermodynamically favorable and is a direction of future research. This material is based upon work supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the

  12. Pathways for Algal Biofuels

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    DEPARTMENT OF ENERGY BIOMASS PROGRAM Pathways for Algal Biofuels November 27, 2012 Daniel B. Fishman Lead Technology Development Manager 2 | Biomass Program eere.energy.gov Adds value to unproductive or marginal lands of a range of biofuel feedstocks suitable for diesel and aviation fuels Activities include R&D on algal feedstocks and issues related to the sustainable production of algae-derived biofuels. Algae Feedstocks Courtesy Sapphire Courtesy Sapphire Courtesy University of Arizona 3

  13. Potential Bioproduct Production Pathways

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Recent Activity on Bioproducts that Enable Biofuels in the Bioenergy Technologies Office July 13, 2016 Andrea Bailey - ORISE Fellow, Conversion Technologies 2 | Bioenergy Technologies Office Potential Bioproduct Production Pathways Platform chemical. (e.g. Vertimass EtOH to jet, levulinic acid) Coproduction. May utilize waste stream/slip stream conversion (e.g. C5 to succinic, lignin utilization, starch ethanol, etc.) Variety of potential setups for bioproducts enabling biofuels Fuel alone.

  14. Light Duty Vehicle Pathways

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Pathways July 26, 2010 Sam Baldwin Chief Technology Officer Office of Energy Efficiency and Renewable Energy U.S. Department of Energy 2 Conventional Oil International Energy Agency, 2008 * Across 798 of world's largest oil fields, average production decline of 6.7%/year. * Of 798 fields, 580 had passed peak. * To meet growth & replace exhausted resources, will have to add 64 MB/d by 2030, or 6X Saudi Arabia. * Sources: (Figure 1) Fredrik Robelius, Uppsala Universitet; (Figure 2) Association

  15. Pathway modeling of microarray data: A case study of pathway activity changes in the testis following in utero exposure to dibutyl phthalate (DBP)

    SciTech Connect

    Ovacik, Meric A.; Sen, Banalata; Euling, Susan Y.; Gaido, Kevin W.; Ierapetritou, Marianthi G.; Androulakis, Ioannis P.

    2013-09-15

    Pathway activity level analysis, the approach pursued in this study, focuses on all genes that are known to be members of metabolic and signaling pathways as defined by the KEGG database. The pathway activity level analysis entails singular value decomposition (SVD) of the expression data of the genes constituting a given pathway. We explore an extension of the pathway activity methodology for application to time-course microarray data. We show that pathway analysis enhances our ability to detect biologically relevant changes in pathway activity using synthetic data. As a case study, we apply the pathway activity level formulation coupled with significance analysis to microarray data from two different rat testes exposed in utero to Dibutyl Phthalate (DBP). In utero DBP exposure in the rat results in developmental toxicity of a number of male reproductive organs, including the testes. One well-characterized mode of action for DBP and the male reproductive developmental effects is the repression of expression of genes involved in cholesterol transport, steroid biosynthesis and testosterone synthesis that lead to a decreased fetal testicular testosterone. Previous analyses of DBP testes microarray data focused on either individual gene expression changes or changes in the expression of specific genes that are hypothesized, or known, to be important in testicular development and testosterone synthesis. However, a pathway analysis may inform whether there are additional affected pathways that could inform additional modes of action linked to DBP developmental toxicity. We show that Pathway activity analysis may be considered for a more comprehensive analysis of microarray data.

  16. Use of bioassays in assessing health hazards from complex mixtures: A RASH analysis

    SciTech Connect

    Jones, T.D.

    1993-10-14

    The Finney harmonic mean model for joint toxicity of ingredients in mixtures can be used to estimate the toxicity of the neat compound if one component can be substituted in potency-adjusted-doses for each of the other components. Chemical analysis data and relative potency values (computed according to the Rapid Screening of Hazard (RASH) method) were used to compare the toxicities as predicted from ingredients of cigarette smoke, PAHs in diesel exhaust, asphalt, coal tar, pitch, and creosote with the measured toxicities of the neat mixtures. Accuracy for cigarette smoke condensate, coal tar, pitch, and creosote were within a factor of three; asphalt within a factor of 18; but the PAC content of diesel particulate was inadequate to accurately describe the toxicity of diesel emissions.

  17. Career Pathways | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Career Pathways Career Pathways The Energy/National Nuclear Security Administration (NNSA) Career Pathways Program is an innovative employment program targeting students and recent college graduates. If you are seeking an entry-level federal job or a federal internship, then check out our various opportunities! Intern Program The Pathways intern program allows students taking at least a half-time course load in an accredited high school, home schooling program, technical school, vocational

  18. Health effects models for nuclear power plant accident consequence analysis: Low LET radiation: Part 2, Scientific bases for health effects models

    SciTech Connect

    Abrahamson, S.; Bender, M.; Book, S.; Buncher, C.; Denniston, C.; Gilbert, E.; Hahn, F.; Hertzberg, V.; Maxon, H.; Scott, B.

    1989-05-01

    This report provides dose-response models intended to be used in estimating the radiological health effects of nuclear power plant accidents. Models of early and continuing effects, cancers and thyroid nodules, and genetic effects are provided. Two-parameter Weibull hazard functions are recommended for estimating the risks of early and continuing health effects. Three potentially lethal early effects -- the hematopoietic, pulmonary and gastrointestinal syndromes -- are considered. Linear and linear-quadratic models are recommended for estimating cancer risks. Parameters are given for analyzing the risks of seven types of cancer in adults -- leukemia, bone, lung, breast, gastrointestinal, thyroid and ''other''. The category, ''other'' cancers, is intended to reflect the combined risks of multiple myeloma, lymphoma, and cancers of the bladder, kidney, brain, ovary, uterus and cervix. Models of childhood cancers due to in utero exposure are also provided. For most cancers, both incidence and mortality are addressed. Linear and linear-quadratic models are also recommended for assessing genetic risks. Five classes of genetic disease -- dominant, x-linked, aneuploidy, unbalanced translocation and multifactorial diseases --are considered. In addition, the impact of radiation-induced genetic damage on the incidence of peri-implantation embryo losses is discussed. The uncertainty in modeling radiological health risks is addressed by providing central, upper, and lower estimates of all model parameters. Data are provided which should enable analysts to consider the timing and severity of each type of health risk. 22 refs., 14 figs., 51 tabs.

  19. Improving carbon fixation pathways

    SciTech Connect

    Ducat, DC; Silver, PA

    2012-08-01

    A recent resurgence in basic and applied research on photosynthesis has been driven in part by recognition that fulfilling future food and energy requirements will necessitate improvements in crop carbon-fixation efficiencies. Photosynthesis in traditional terrestrial crops is being reexamined in light of molecular strategies employed by photosynthetic microbes to enhance the activity of the Calvin cycle. Synthetic biology is well-situated to provide original approaches for compartmentalizing and enhancing photosynthetic reactions in a species independent manner. Furthermore, the elucidation of alternative carbon-fixation routes distinct from the Calvin cycle raises possibilities that novel pathways and organisms can be utilized to fix atmospheric carbon dioxide into useful materials.

  20. Solar Market Pathways | Department of Energy

    Energy Saver

    Solar Market Pathways Solar Market Pathways The Solar Market Pathways program supports 15 SunShot projects that are advancing solar deployment across the United States. These...

  1. Solar Market Pathways | Department of Energy

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Market Pathways Solar Market Pathways The Solar Market Pathways program supports 15 SunShot projects that are advancing solar deployment across the United States. These projects ...

  2. Analysis of the Durability of PEM FC Membrane Electrode Assemblies in Automotive Applications through the Fundamental Understanding of Membrane and MEA Degradation Pathways

    SciTech Connect

    Perry, Randal L.

    2013-10-31

    The Project focused on mitigation of degradation processes on membrane electrode assemblies. The approach was to develop a model to improve understanding of the mechanisms, and to use it to focus mitigation strategies. The detailed effects of various accelerated stress tests (ASTs) were evaluated to determine the best subset to use in model development. A combination of ASTs developed by the Fuel Cell Commercialization Conference of Japan and the Fuel Cell Tech Team were selected for use. The ASTs were compared by measuring effects on performance, running in-situ diagnostics, and performing microscopic analyses of the membrane electrode assemblies after the stress tests were complete. Nissan ran FCCJ AST protocols and performed in situ and ex-situ electrochemical testing. DuPont ran FCTT and USFCC AST protocols, performed scanning and transmission electron microscopy and ran in-situ electrochemical tests. Other ex-situ testing was performed by IIT, along with much of the data analysis and model development. These tests were then modified to generate time-dependent data of the degradation mechanisms. Three different catalyst types and four membrane variants were then used to generate data for a theoretically-based degradation model. An important part of the approach was to use commercially available materials in the electrodes and membranes made in scalable semiworks processes rather than lab-based materials. This constraint ensured all materials would be practicable for full-scale testing. The initial model for the electrode layer was tested for internal consistency and agreement with the data. A Java-based computer application was developed to analyze the time-dependent AST data using polarization curves with four different cathode gas feeds and generate model parameters. Data showed very good reproducibility and good consistency as cathode catalyst loadings were varied. At the point of termination of the project, a basic electrode model was in hand with several

  3. Leakage pathway layer for solar cell

    SciTech Connect

    Luan, Andy; Smith, David; Cousins, Peter; Sun, Sheng

    2015-12-01

    Leakage pathway layers for solar cells and methods of forming leakage pathway layers for solar cells are described.

  4. ORISE: Health Physics Training

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Health Physics Training Student performs an analysis during an ORAU health physics training course Training and educating a highly skilled workforce that can meet operational commitments in the areas of radiation and health physics is an essential part of protecting your workers, the public and the environment. ORAU, the managing contractor of the Oak Ridge Institute for Science and Education, offers hands-on, laboratory-based training courses in a variety of health physics areas. Training

  5. Protein design for pathway engineering

    SciTech Connect

    Eriksen, DT; Lian, JZ; Zhao, HM

    2014-02-01

    Design and construction of biochemical pathways has increased the complexity of biosynthetically-produced compounds when compared to single enzyme biocatalysis. However, the coordination of multiple enzymes can introduce a complicated set of obstacles to overcome in order to achieve a high titer and yield of the desired compound. Metabolic engineering has made great strides in developing tools to optimize the flux through a target pathway, but the inherent characteristics of a particular enzyme within the pathway can still limit the productivity. Thus, judicious protein design is critical for metabolic and pathway engineering. This review will describe various strategies and examples of applying protein design to pathway engineering to optimize the flux through the pathway. The proteins can be engineered for altered substrate specificity/selectivity, increased catalytic activity, reduced mass transfer limitations through specific protein localization, and reduced substrate/product inhibition. Protein engineering can also be expanded to design biosensors to enable high through-put screening and to customize cell signaling networks. These strategies have successfully engineered pathways for significantly increased productivity of the desired product or in the production of novel compounds. (C) 2013 Elsevier Inc. All rights reserved.

  6. Implementing 10 CFR 830 at the FEMP Silos: Nuclear Health and Safety Plans as Documented Safety Analysis

    SciTech Connect

    Fisk, Patricia; Rutherford, Lavon

    2003-06-01

    The objective of the Silos Project at the Fernald Closure Project (FCP) is to safely remediate high-grade uranium ore residues (Silos 1 and 2) and metal oxide residues (Silo 3). The evolution of Documented Safety Analyses (DSAs) for these facilities has reflected the changes in remediation processes. The final stage in silos DSAs is an interpretation of 10 CFR 830 Safe Harbor Requirements that combines a Health and Safety Plan with nuclear safety requirements. This paper will address the development of a Nuclear Health and Safety Plan, or N-HASP.

  7. Health & Safety

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Health & Safety Health & Safety1354608000000Health & SafetySome of these resources are LANL-only and will require Remote Access.NoQuestions? 667-5809library@lanl.gov Health &...

  8. China 2050 Pathways Calculator | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    2050 Pathways Calculator Jump to: navigation, search Tool Summary LAUNCH TOOL Name: China 2050 Pathways Calculator AgencyCompany Organization: China's Energy Research Institute...

  9. Transportation Energy Pathways LDRD.

    SciTech Connect

    Barter, Garrett.; Reichmuth, David.; Westbrook, Jessica; Malczynski, Leonard A.; Yoshimura, Ann S.; Peterson, Meghan B.; West, Todd H.; Manley, Dawn Kataoka; Guzman, Katherine Dunphy; Edwards, Donna M.; Hines, Valerie Ann-Peters

    2012-09-01

    This report presents a system dynamics based model of the supply-demand interactions between the USlight-duty vehicle (LDV) fleet, its fuels, and the corresponding primary energy sources through the year2050. An important capability of our model is the ability to conduct parametric analyses. Others have reliedupon scenario-based analysis, where one discrete set of values is assigned to the input variables and used togenerate one possible realization of the future. While these scenarios can be illustrative of dominant trendsand tradeoffs under certain circumstances, changes in input values or assumptions can have a significantimpact on results, especially when output metrics are associated with projections far into the future. Thistype of uncertainty can be addressed by using a parametric study to examine a range of values for the inputvariables, offering a richer source of data to an analyst.The parametric analysis featured here focuses on a trade space exploration, with emphasis on factors thatinfluence the adoption rates of electric vehicles (EVs), the reduction of GHG emissions, and the reduction ofpetroleum consumption within the US LDV fleet. The underlying model emphasizes competition between13 different types of powertrains, including conventional internal combustion engine (ICE) vehicles, flex-fuel vehicles (FFVs), conventional hybrids(HEVs), plug-in hybrids (PHEVs), and battery electric vehicles(BEVs).We find that many factors contribute to the adoption rates of EVs. These include the pace of technologicaldevelopment for the electric powertrain, battery performance, as well as the efficiency improvements inconventional vehicles. Policy initiatives can also have a dramatic impact on the degree of EV adoption. Theconsumer effective payback period, in particular, can significantly increase the market penetration rates ifextended towards the vehicle lifetime.Widespread EV adoption can have noticeable impact on petroleum consumption and greenhouse gas

  10. Molecular pathways of angiogenesis inhibition

    SciTech Connect

    Tabruyn, Sebastien P.; Griffioen, Arjan W. . E-mail: aw.griffioen@path.unimaas.nl

    2007-03-30

    A large body of evidence now demonstrates that angiostatic therapy represents a promising way to fight cancer. This research recently resulted in the approval of First angiostatic agent for clinical treatment of cancer. Progress has been achieved in decrypting the cellular signaling in endothelial cells induced by angiostatic agents. These agents predominantly interfere with the molecular pathways involved in migration, proliferation and endothelial cell survival. In the current review, these pathways are discussed. A thorough understanding of the mechanism of action of angiostatic agents is required to develop efficient anti-tumor therapies.

  11. Rapid prototype extruded conductive pathways

    DOEpatents

    Bobbitt, III, John T.

    2016-06-21

    A process of producing electrically conductive pathways within additively manufactured parts and similar parts made by plastic extrusion nozzles. The process allows for a three-dimensional part having both conductive and non-conductive portions and allows for such parts to be manufactured in a single production step.

  12. The development and application of the chemical mixture methodology in analysis of potential health impacts from airborne release in emergencies

    SciTech Connect

    Yu, Xiao-Ying; Petrocchi, Achille J.; Craig, Douglas K.; Glantz, Clifford S.; Trott, Donna M.; Ciolek, John T.; Lu, Po-Yung; Bond, Jayne-Anne; Tuccinardi, Thomas E.; Bouslaugh, Philip R.

    2010-07-15

    The Chemical Mixture Methodology (CMM) is used for emergency response and safety planning by the U.S. Department of Energy, its contractors, and other private and public sector organizations. The CMM estimates potential health impacts on individuals and their ability to take protective actions as a result of exposure to airborne chemical mixtures. They are based on the concentration of each chemical in the mixture at a designated receptor location, the protective action criteria (PAC) providing chemical-specific exposure limit values, and the health code numbers (HCNs) that identify the target organ groupings that may be impacted by exposure to each chemical in a mixture. The CMM has been significantly improved since its introduction more than 10 years ago. Major enhancements involve the expansion of the number of HCNs from 44 to 60 and inclusion of updated PAC values based on an improved development methodology and updates in the data used to derive the PAC values. Comparisons between the 1999 and 2009 versions of the CMM show potentially substantial changes in the assessment results for selected sets of chemical mixtures. In particular, the toxic mode hazard indices (HIs) and target organ HIs are based on more refined acute HCNs, thereby improving the quality of chemical consequence assessment, emergency planning, and emergency response decision making. Seven hypothetical chemical storage and processing scenarios are used to demonstrate how the CMM is applied in emergency planning and hazard assessment.

  13. Health Videos

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Health Videos Health Videos Our videos speak more than a thousand words about our science and technology, community outreach, collaborations, careers, and much more. News Releases...

  14. Health Physicist

    Energy.gov [DOE]

    This position is located in the Office of Environment, Health, Safety and Security (EHSS) which manages the Department of Energy's (DOE) major staff organizations responsible for health, safety,...

  15. Kaiser Permanente-Sandia National Health Care Model: Phase 1 prototype final report. Part 2 -- Domain analysis

    SciTech Connect

    Edwards, D.; Yoshimura, A.; Butler, D.; Judson, R.; Mason, W.; Napolitano, L.; Mariano, R.; Eddy, D.; Schlessinger, L.

    1996-11-01

    This report describes the results of a Cooperative Research and Development Agreement between Sandia National Laboratories and Kaiser Permanente Southern California to develop a prototype computer model of Kaiser Permanente`s health care delivery system. As a discrete event simulation, SimHCO models for each of 100,000 patients the progression of disease, individual resource usage, and patient choices in a competitive environment. SimHCO is implemented in the object-oriented programming language C{sup 2}, stressing reusable knowledge and reusable software components. The versioned implementation of SimHCO showed that the object-oriented framework allows the program to grow in complexity in an incremental way. Furthermore, timing calculations showed that SimHCO runs in a reasonable time on typical workstations, and that a second phase model will scale proportionally and run within the system constraints of contemporary computer technology.

  16. DOE SMR Workshop - The Pathway

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    DOE SMR Workshop - The Pathway to SMR Commercialization Bethesda, Maryland June 22 and 23, 2016 Report and Stakeholder Recommendations SMR Workshop Final Report October 2016 2 DISCLAIMER This report was funded by the U.S. DOE through Allegheny Science and Technology under contract No. DE-0000638. This report was prepared as an account of work sponsored by the United States Department of Energy. Neither the United States Government nor any agency thereof, nor any of their employees or officers,

  17. Pathways for Algal Biofuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Pathways for Algal Biofuels Pathways for Algal Biofuels This is a presentation from the November 27, 2012, Sustainable Alternative Fuels Cost Workshop given by Daniel B. Fishman, of the Biomass Program. fishman_caafi_workshop.pdf (1.3 MB) More Documents & Publications Bioenergy Technologies Office Conversion R&D Pathway: Whole Algae Hydrothermal Liquefaction Technology Pathway Selection Effort Whole Algae Hydrothermal Liquefaction

  18. Light Duty Vehicle Pathways | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Vehicle Pathways Light Duty Vehicle Pathways Presented at the U.S. Department of Energy Light Duty Vehicle Workshop in Washington, D.C. on July 26, 2010. lightduty_vehicle_studies.pdf (561.55 KB) More Documents & Publications Presentation to EAC: Renewable Electricity Futures Activities & Status, October 29, 2010 CAAFI Progress Update Light Duty Vehicle Pathways Chapter 1 - Energy Challenges

  19. Enhancing Automatic Biological Pathway Generation with GO-based Gene Similarity

    SciTech Connect

    Sanfilippo, Antonio P.; Baddeley, Robert L.; Beagley, Nathaniel; Riensche, Roderick M.; Gopalan, Banu

    2009-08-03

    One of the greatest challenges in today’s analysis of microarray gene expression data is to identify pathways across regulated genes that underlie structural and functional changes of living cells in specific pathologies. Most current approaches to pathway generation are based on a reverse engineering approach in which pathway plausibility is solely induced from observed pathway data. These approaches tend to lack in generality as they are too dependent on the pathway observables from which they are induced. By contrast, alternative approaches that rely on prior biological knowledge may err in the opposite direction as the prior knowledge is usually not sufficiently tuned to the pathology of focus. In this paper, we present a novel pathway generation approach which combines insights from the reverse engineering and knowledge-based approaches to increase the biological plausibility and specificity of induced regulatory networks.

  20. ERβ induces the differentiation of cultured osteoblasts by both Wnt/β-catenin signaling pathway and estrogen signaling pathways

    SciTech Connect

    Yin, Xinhua; Wang, Xiaoyuan; Hu, Xiongke; Chen, Yong; Zeng, Kefeng; Zhang, Hongqi

    2015-07-01

    Although 17β-estradial (E2) is known to stimulate bone formation, the underlying mechanisms are not fully understood. Recent studies have implicated the Wnt/β-catenin pathway as a major signaling cascade in bone biology. The interactions between Wnt/β-catenin signaling pathway and estrogen signaling pathways have been reported in many tissues. In this study, E2 significantly increased the expression of β-catenin by inducing phosphorylations of GSK3β at serine 9. ERβ siRNAs were transfected into MC3T3-E1 cells and revealed that ERβ involved E2-induced osteoblasts proliferation and differentiation via Wnt/β-catenin signaling. The osteoblast differentiation genes (BGP, ALP and OPN) and proliferation related gene (cyclin D1) expression were significantly induced by E2-mediated ERβ. Furthermore immunofluorescence and immunoprecipitation analysis demonstrated that E2 induced the accumulation of β-catenin protein in the nucleus which leads to interaction with T-cell-specific transcription factor/lymphoid enhancer binding factor (TCF/LEF) transcription factors. Taken together, these findings suggest that E2 promotes osteoblastic proliferation and differentiation by inducing proliferation-related and differentiation-related gene expression via ERβ/GSK-3β-dependent Wnt/β-catenin signaling pathway. Our findings provide novel insights into the mechanisms of action of E2 in osteoblastogenesis. - Highlights: • 17β-estradial (E2) promotes GSK3-β phosphorylation. • E2 activates the Wnt/β-catenin signaling pathway. • The Wnt/β-catenin signaling pathway interacts with estrogen signaling pathways. • E2-mediated ER induced osteoblast differentiation and proliferation related genes expression.

  1. Metabolic Pathways and Metabolic Engineering

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Metabolic pathways and metabolic engineering Adam Guss Genetic and Metabolic Engineer Oak Ridge National Laboratory Sept 25, 2013 2 Managed by UT-Battelle for the U.S. Department of Energy Metabolic engineering of Clostridium thermocellum for cellulosic ethanol production NAD(P)H NAD(P) + Acetyl-P 2 H + NAD + NAD + NADH NADH P i CoA ADP ATP L-Lactic Acid Acetic Acid Ethanol NADH NAD + NADH NAD + H 2 2 H + Fd oxidized Fd reduced Formic acid H 2 Cellulose Acetaldehyde Pyruvate Acetyl-CoA

  2. US DRIVE Fuel Pathway Integration Technical Team Roadmap | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fuel Pathway Integration Technical Team Roadmap US DRIVE Fuel Pathway Integration Technical Team Roadmap The Fuel Pathway Integration Technical Team (FPITT) supports the U.S. DRIVE ...

  3. Combustion kinetics and reaction pathways

    SciTech Connect

    Klemm, R.B.; Sutherland, J.W.

    1993-12-01

    This project is focused on the fundamental chemistry of combustion. The overall objectives are to determine rate constants for elementary reactions and to elucidate the pathways of multichannel reactions. A multitechnique approach that features three independent experiments provides unique capabilities in performing reliable kinetic measurements over an exceptionally wide range in temperature, 300 to 2500 K. Recent kinetic work has focused on experimental studies and theoretical calculations of the methane dissociation system (CH{sub 4} + Ar {yields} CH{sub 3} + H + Ar and H + CH{sub 4} {yields} CH{sub 3} + H{sub 2}). Additionally, a discharge flow-photoionization mass spectrometer (DF-PIMS) experiment is used to determine branching fractions for multichannel reactions and to measure ionization thresholds of free radicals. Thus, these photoionization experiments generate data that are relevant to both reaction pathways studies (reaction dynamics) and fundamental thermochemical research. Two distinct advantages of performing PIMS with high intensity, tunable vacuum ultraviolet light at the National Synchrotron Light Source are high detection sensitivity and exceptional selectivity in monitoring radical species.

  4. The role of technology in reducing health care costs. Final project report

    SciTech Connect

    Sill, A.E.; Warren, S.; Dillinger, J.D.; Cloer, B.K.

    1997-08-01

    Sandia National Laboratories applied a systems approach to identifying innovative biomedical technologies with the potential to reduce U.S. health care delivery costs while maintaining care quality. This study was conducted by implementing both top-down and bottom-up strategies. The top-down approach used prosperity gaming methodology to identify future health care delivery needs. This effort provided roadmaps for the development and integration of technology to meet perceived care delivery requirements. The bottom-up approach identified and ranked interventional therapies employed in existing care delivery systems for a host of health-related conditions. Economic analysis formed the basis for development of care pathway interaction models for two of the most pervasive, chronic disease/disability conditions: coronary artery disease (CAD) and benign prostatic hypertrophy (BPH). Societal cost-benefit relationships based on these analyses were used to evaluate the effect of emerging technology in these treatment areas. 17 figs., 48 tabs.

  5. Employee Agreement for Pathways Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Agreement for Pathways Program Employee Agreement for Pathways Program Employee Agreement for Pathways Program (331.12 KB) More Documents & Publications Career Pathways Frequently Asked Questions (FAQs) DOE Mentoring Guidance and Program Plan Book1

  6. Fuel Dependence of Benzene Pathways

    SciTech Connect

    Zhang, H; Eddings, E; Sarofim, A; Westbrook, C

    2008-07-14

    The relative importance of formation pathways for benzene, an important precursor to soot formation, was determined from the simulation of 22 premixed flames for a wide range of equivalence ratios (1.0 to 3.06), fuels (C{sub 1}-C{sub 12}), and pressures (20 to 760 torr). The maximum benzene concentrations in 15 out of these flames were well reproduced within 30% of the experimental data. Fuel structural properties were found to be critical for benzene production. Cyclohexanes and C{sub 3} and C{sub 4} fuels were found to be among the most productive in benzene formation; and long-chain normal paraffins produce the least amount of benzene. Other properties, such as equivalence ratio and combustion temperatures, were also found to be important in determining the amount of benzene produced in flames. Reaction pathways for benzene formation were examined critically in four premixed flames of structurally different fuels of acetylene, n-decane, butadiene, and cyclohexane. Reactions involving precursors, such as C{sub 3} and C{sub 4} species, were examined. Combination reactions of C{sub 3} species were identified to be the major benzene formation routes with the exception of the cyclohexane flame, in which benzene is formed exclusively from cascading fuel dehydrogenation via cyclohexene and cyclohexadiene intermediates. Acetylene addition makes a minor contribution to benzene formation, except in the butadiene flame where C{sub 4}H{sub 5} radicals are produced directly from the fuel, and in the n-decane flame where C{sub 4}H{sub 5} radicals are produced from large alkyl radical decomposition and H atom abstraction from the resulting large olefins.

  7. Iron deficiency is associated with increased levels of blood cadmium in the Korean general population: Analysis of 2008-2009 Korean National Health and Nutrition Examination Survey data

    SciTech Connect

    Lee, Byung-Kook; Kim, Yangho

    2012-01-15

    Introduction: We present data from the Korean National Health and Nutrition Examination Survey 2008-2009 on the distribution of blood cadmium levels and their association with iron deficiency in a representative sample of the adult Korean population. Methods: Serum ferritin was categorized into three levels: low (serum ferritin <15.0 {mu}g/L), low normal (15.0-30.0 {mu}g/L for women and 15.0-50.0 for men), and normal ({>=}30.0 {mu}g/L for women and {>=}50.0 for men), and its association with blood cadmium level was assessed after adjustment for various demographic and lifestyle factors. Results: Geometric means of blood cadmium in the low serum ferritin group in women, men, and all participants were significantly higher than in the normal group. Additionally, multiple regression analysis after adjusting for various covariates showed that blood cadmium was significantly higher in the low-ferritin group in women, men, and all participants compared with the normal group. We also found an association between serum ferritin and blood cadmium among never-smoking participants. Discussion: We found, similar to other recent population-based studies, an association between iron deficiency and increased blood cadmium in men and women, independent of smoking status. The results of the present study show that iron deficiency is associated with increased levels of blood cadmium in the general population.

  8. Minneapolis, Minnesota: Energy Pathways Project | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Minneapolis, Minnesota: Energy Pathways Project This presentation features Brian Ross, a consultant for the City of Minneapolis, Minnesota with CR Planning. Ross provides an ...

  9. Titanium ? - ? phase transformation pathway and a predicted...

    Office of Scientific and Technical Information (OSTI)

    Titanium - phase transformation pathway and a predicted metastable structure Citation Details In-Document Search This content will become publicly available on January 14,...

  10. H2A Hydrogen Delivery Infrastructure Analysis Models and Conventional...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    A Hydrogen Delivery Infrastructure Analysis Models and Conventional Pathway Options Analysis Results - Interim Report H2A Hydrogen Delivery Infrastructure Analysis Models and ...

  11. Fuel Pathway Integration Technical Team Roadmap

    SciTech Connect

    2013-06-01

    The Fuel Pathway Integration Technical Team (FPITT) supports the U.S. DRIVE Partnership (the Partnership) in the identification and evaluation of implementation scenarios for fuel cell technology pathways, including hydrogen and fuel cell electric vehicles in the transportation sector, both during a transition period and in the long term.

  12. Technology Pathway Selection Effort | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Pathway Selection Effort Technology Pathway Selection Effort This is a presentation from the November 27, 2012, Sustainable Alternative Fuels Cost Workshop given by Alicia Lindauer. lindauer_caafi_workshop.pdf (525.95 KB) More Documents & Publications Conversion Technologies for Advanced Biofuels - Bio-Oil Production 2013 Peer Review Presentations-Plenaries Thermochemical Conversion Proceeses to Aviation Fuels

  13. NREL: Energy Analysis - Mackay Miller

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    and multilateral initiatives including the US-China Renewable Energy Partnership and 21st Century Power Partnership Quantitative social network analysis of innovation pathways...

  14. Bottom-Up Energy Analysis System (BUENAS) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Lawrence Berkeley National Laboratory Sector: Energy Focus Area: Buildings, Energy Efficiency Topics: Baseline projection, - Macroeconomic, Pathways analysis Resource Type:...

  15. Syngas Upgrading to Hydrocarbon Fuels Technology Pathway

    SciTech Connect

    Talmadge, M.; Biddy, M.; Dutta, A.; Jones, S.; Meyer, A.

    2013-03-01

    This technology pathway case investigates the upgrading of woody biomass derived synthesis gas (syngas) to hydrocarbon biofuels. While this specific discussion focuses on the conversion of syngas via a methanol intermediate to hydrocarbon blendstocks, there are a number of alternative conversion routes for production of hydrocarbons through a wide array of intermediates from syngas. Future work will also consider the variations to this pathway to determine the most economically viable and lowest risk conversion route. Technical barriers and key research needs have been identified that should be pursued for the syngas-to-hydrocarbon pathway to be competitive with petroleum-derived gasoline-, diesel- and jet-range hydrocarbon blendstocks.

  16. Emergency Response Health Physics

    SciTech Connect

    Mena, R., Pemberton, W., Beal, W.

    2012-05-01

    Health physics is an important discipline with regard to understanding the effects of radiation on human health. Topics of discussion included in this manuscript are related to responding to a radiation emergency, and the necessary balance between desired high accuracy laboratory results and rapid turnaround requirements. Considerations are addressed for methodology with which to provide the most competent solutions despite challenges presented from incomplete datasets and, at times, limited methodology. An emphasis is placed on error and uncertainty of sample analysis results, how error affects products, and what is communicated in the final product.

  17. Pathways to Energy Development and Energy Security

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Pathways to Energy Development & Energy Security March 24, 2013 Lizana Pierce, Project Manager Pathway to Project Development Strategic Energy Planning * Creating a roadmap Feasibility Study * Possible roads to the future Organizational Development * Vehicles of change Project Development * Where the rubber meets the road Strategic Energy Planning Begins with an Energy Vision " The Energy Vision of the Penobscot Nation is to maximize the efficiency of energy usage and develop energy

  18. Pathways to Energy Developmenty & Energy Security

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    U.S. DEPARTMENT OF ENERGY OFFICE OF ENERGY EFFICIENCY AND RENEWABLE ENERGY DOE's Tribal Energy Program Pathways to Energy Development & Energy Security November 13, 2012 Lizana Pierce, Project Manager U.S. DOE, Tribal Energy Program Pathway to Project Development Strategic Energy Planning * CreaDng a roadmap Feasibility Study * Possible roads to the future OrganizaDonal Development * Vehicles of change Project Development * Where the rubber meets the road Strategic Energy Planning Begins

  19. Nonradiative Recombination Pathways in Noncarcinogenic Quantum Dot

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Composites | Department of Energy Nonradiative Recombination Pathways in Noncarcinogenic Quantum Dot Composites Nonradiative Recombination Pathways in Noncarcinogenic Quantum Dot Composites Lead Performer: UbiQD, LLC - Los Alamos, NM DOE Total Funding: $150,000 Project Term: February 22, 2016 - November 21, 2016 Funding Type: SBIR PROJECT OBJECTIVE Quantum dots composed of I-III-VI materials such as CuInS2 offer a compelling alternative to typical semiconductor quantum-dot systems, because

  20. ORISE: Statistical Analyses of Worker Health

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    appropriate methods of statistical analysis to a variety of problems in occupational health and other areas. Our expertise spans a range of capabilities essential for statistical...

  1. Analysis of environment, safety, and health (ES{ampersand}H) management systems for Department of Energy (DOE) Defense Programs (DP) facilities

    SciTech Connect

    Neglia, A. V., LLNL

    1998-03-01

    The purpose of this paper is to provide a summary analysis and comparison of various environment, safety, and health (ES&H) management systems required of, or suggested for use by, the Departrnent of Energy Defense Programs` sites. The summary analysis is provided by means of a comparison matrix, a set of Vean diagrams that highlights the focus of the systems, and an `End Gate` filter diagram that integrates the three Vean diagrams. It is intended that this paper will act as a starting point for implementing a particular system or in establishing a comprehensive site-wide integrated ES&H management system. Obviously, the source documents for each system would need to be reviewed to assure proper implementation of a particular system. The matrix compares nine ES&H management systems against a list of elements generated by identifying the unique elements of all the systems. To simplify the matrix, the elements are listed by means of a brief title. An explanation of the matrix elements is provided in Attachment 2 entitled, `Description of System Elements.` The elements are categorized under the Total Quality Management (TQM) `Plan, Do, Check, Act` framework with the added category of `Policy`. (The TQM concept is explained in the `DOE Quality Management implementation Guidelines,` July 1997 (DOE/QM- 0008)). The matrix provides a series of columns and rows to compare the unique elements found in each of the management systems. A `V` is marked if the element is explicitly identified as part of the particular ES&H management system. An `X` is marked if the element is not found in the particular ES&H management system, or if it is considered to be inadequately addressed. A `?` is marked if incorporation of the element is not clear. Attachment I provides additional background information which explains the justification for the marks in the matrix cells. Through the Vean diagrams and the `End Gate` filter in Section 3, the paper attempts to pictorially display the focus of

  2. Natural Gas Pathways and Fuel Economy Guide Comparison | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Pathways and Fuel Economy Guide Comparison Natural Gas Pathways and Fuel Economy Guide Comparison Presentation by Bob Wimmer, Toyota, at the Natural Gas and Hydrogen Infrastructure ...

  3. Ad Lucem: Modeling of Market Transformation Pathways Workshop...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Ad Lucem: Modeling of Market Transformation Pathways Workshop Agenda This document details the agenda for the DOE Ad Lucem: Modeling of Market Transformation Pathways Workshop on ...

  4. DOE Materials-Based Hydrogen Storage Summit: Defining Pathways...

    Office of Environmental Management (EM)

    Materials-Based Hydrogen Storage Summit: Defining Pathways for Onboard Automotive Applications DOE Materials-Based Hydrogen Storage Summit: Defining Pathways for Onboard Automotive ...

  5. Rotary Vapor Compression Cycle Technology: A Pathway to Ultra...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Rotary Vapor Compression Cycle Technology: A Pathway to Ultra-Efficient Air Conditioning, Heating and Refrigeration Rotary Vapor Compression Cycle Technology: A Pathway to...

  6. 2011 Pathways to Commercial Success: Technologies and Products...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    1 Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program 2011 Pathways to Commercial Success: Technologies and Products Supported ...

  7. 2013 Pathways to Commercial Success: Technologies and Products...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    3 Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Office 2013 Pathways to Commercial Success: Technologies and Products Supported ...

  8. 2014 Pathways to Commercial Success: Technologies and Products...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    4 Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Office 2014 Pathways to Commercial Success: Technologies and Products Supported ...

  9. 2012 Pathways to Commercial Success: Technologies and Products...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    2012 Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program 2012 Pathways to Commercial Success: Technologies and Products ...

  10. 2010 Pathways to Commercial Success: Technologies and Products...

    Office of Environmental Management (EM)

    0 Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program 2010 Pathways to Commercial Success: Technologies and Products Supported ...

  11. Fuel Cell and Hydrogen Pathways to Clean Cities: A Stakeholder...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fuel Cell and Hydrogen Pathways to Clean Cities: A Stakeholder - Government Engagement Fuel Cell and Hydrogen Pathways to Clean Cities: A Stakeholder - Government Engagement May ...

  12. Bioenergy Technologies Office R&D Pathways: Fast Pyrolysis and...

    Energy.gov [DOE] (indexed site)

    Bioenergy Technologies Office R&D Pathways: Fast Pyrolysis and Hydroprocessing (471.51 KB) More Documents & Publications Bioenergy Technologies Office R&D Pathways: In-Situ ...

  13. The Pathway to Energy Security | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Pathway to Energy Security The Pathway to Energy Security Diesel Engine Emissions Reduction (DEER) 2004 Conference Presentation: U.S. Department of Energy, FreedomCAR and Vehicle ...

  14. Molecular details of a starch utilization pathway in the human...

    Office of Scientific and Technical Information (OSTI)

    pathway in the human gut symbiont Eubacterium rectale Citation Details In-Document Search Title: Molecular details of a starch utilization pathway in the human gut symbiont ...

  15. Quantum control and pathway manipulation in rubidium (Journal...

    Office of Scientific and Technical Information (OSTI)

    Quantum control and pathway manipulation in rubidium This content will become publicly available on September 28, 2016 Prev Next Title: Quantum control and pathway ...

  16. Simplified Protein Models: Predicting Folding Pathways and Structure...

    Office of Scientific and Technical Information (OSTI)

    Simplified Protein Models: Predicting Folding Pathways and Structure Using Amino Acid Sequences Title: Simplified Protein Models: Predicting Folding Pathways and Structure Using ...

  17. New Cyanobacteria Metabolic Pathway Critical to Energy Conversion

    SciTech Connect

    2015-12-01

    A little-known metabolic pathway in photosynthetic organisms is actually a major pathway for converting carbon dioxide to biofuels and bioproducts.

  18. Syngas Upgrading to Hydrocarbon Fuels Technology Pathway | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Pathway This technology pathway case investigates the upgrading of woody biomass derived synthesis gas (syngas) to hydrocarbon biofuels. While this specific discussion...

  19. In-Situ Catalytic Fast Pyrolysis Technology Pathway | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    needs that should be pursued for this pathway to be competitive with petroleum-derived blendstocks have been identified. In-Situ Catalytic Fast Pyrolysis Technology Pathway...

  20. Biofuels Fuels Technology Pathway Options for Advanced Drop-in Biofuels Production

    SciTech Connect

    Kevin L Kenney

    2011-09-01

    Advanced drop-in hydrocarbon biofuels require biofuel alternatives for refinery products other than gasoline. Candidate biofuels must have performance characteristics equivalent to conventional petroleum-based fuels. The technology pathways for biofuel alternatives also must be plausible, sustainable (e.g., positive energy balance, environmentally benign, etc.), and demonstrate a reasonable pathway to economic viability and end-user affordability. Viable biofuels technology pathways must address feedstock production and environmental issues through to the fuel or chemical end products. Potential end products include compatible replacement fuel products (e.g., gasoline, diesel, and JP8 and JP5 jet fuel) and other petroleum products or chemicals typically produced from a barrel of crude. Considering the complexity and technology diversity of a complete biofuels supply chain, no single entity or technology provider is capable of addressing in depth all aspects of any given pathway; however, all the necessary expert entities exist. As such, we propose the assembly of a team capable of conducting an in-depth technology pathway options analysis (including sustainability indicators and complete LCA) to identify and define the domestic biofuel pathways for a Green Fleet. This team is not only capable of conducting in-depth analyses on technology pathways, but collectively they are able to trouble shoot and/or engineer solutions that would give industrial technology providers the highest potential for success. Such a team would provide the greatest possible down-side protection for high-risk advanced drop-in biofuels procurement(s).

  1. Including the temporal change in PM{sub 2.5} concentration in the assessment of human health impact: Illustration with renewable energy scenarios to 2050

    SciTech Connect

    Gschwind, Benoit; Lefevre, Mireille; Blanc, Isabelle; Ranchin, Thierry; Wyrwa, Artur; Drebszok, Kamila; Cofala, Janusz; Fuss, Sabine

    2015-04-15

    This article proposes a new method to assess the health impact of populations exposed to fine particles (PM{sub 2.5}) during their whole lifetime, which is suitable for comparative analysis of energy scenarios. The method takes into account the variation of particle concentrations over time as well as the evolution of population cohorts. Its capabilities are demonstrated for two pathways of European energy system development up to 2050: the Baseline (BL) and the Low Carbon, Maximum Renewable Power (LC-MRP). These pathways were combined with three sets of assumptions about emission control measures: Current Legislation (CLE), Fixed Emission Factors (FEFs), and the Maximum Technically Feasible Reductions (MTFRs). Analysis was carried out for 45 European countries. Average PM{sub 2.5} concentration over Europe in the LC-MRP/CLE scenario is reduced by 58% compared with the BL/FEF case. Health impacts (expressed in days of loss of life expectancy) decrease by 21%. For the LC-MRP/MTFR scenario the average PM{sub 2.5} concentration is reduced by 85% and the health impact by 34%. The methodology was developed within the framework of the EU's FP7 EnerGEO project and was implemented in the Platform of Integrated Assessment (PIA). The Platform enables performing health impact assessments for various energy scenarios. - Highlights: • A new method to assess health impact of PM{sub 2.5} for energy scenarios is proposed. • An algorithm to compute Loss of Life Expectancy attributable to exposure to PM{sub 2.5} is depicted. • Its capabilities are demonstrated for two pathways of European energy system development up to 2050. • Integrating the temporal evolution of PM{sub 2.5} is of great interest for assessing the potential impacts of energy scenarios.

  2. H2A Hydrogen Delivery Infrastructure Analysis Models and Conventional

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Pathway Options Analysis Results - Interim Report | Department of Energy Delivery Infrastructure Analysis Models and Conventional Pathway Options Analysis Results - Interim Report H2A Hydrogen Delivery Infrastructure Analysis Models and Conventional Pathway Options Analysis Results - Interim Report An in-depth comparative analysis of promising infrastructure options for hydrogen delivery and distribution to refueling stations from central, semi-central, and distributed production facilities.

  3. EPA-Integrated Environmental Strategies | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Background analysis, Co-benefits assessment, - Environmental and Biodiversity, - Health, - Macroeconomic, Implementation, Pathways analysis, Policiesdeployment programs...

  4. Technoeconomic Boundary Analysis of Biological Pathways to Hydrogen Production

    SciTech Connect

    James, B. D.; Baum, G. N.; Perez, J.; Baum, K. N.

    2009-09-01

    Report documenting the biological and engineering characteristics of five algal and bacterial hydrogen production systems selected by DOE and NREL for evaluation.

  5. Deduction and Analysis of the Interacting Stress Response Pathways...

    Office of Scientific and Technical Information (OSTI)

    gene function, regulation, network and evolution of Desulfovibrio vugaris Hildenborough ... gene function, regulation, network, and evolution in D. vulgaris, and microbial community ...

  6. Technoeconomic Boundary Analysis of Biological Pathways to Hydrogen Production

    Energy.gov [DOE]

    Report documenting the biological and engineering characteristics of five algal and bacterial hydrogen production systems selected by DOE and NREL for evaluation.

  7. Analysis of Metabolic Pathways and Fluxes in a Newly Discovered...

    Office of Scientific and Technical Information (OSTI)

    a maximum ethanol yield of 0.38+-0.07 mol mol-1 more glucose. In silico flux balance modeling demonstrates that lactate and acetate production from G. thermoglucosidasius...

  8. Analysis of Metabolic Pathways and Fluxes in a Newly Discovered...

    Office of Scientific and Technical Information (OSTI)

    provided as a public service. Visit OSTI to utilize additional information resources in energy science and technology. A paper copy of this document is also available for sale to...

  9. Technoeconomic Boundary Analysis of Biological Pathways to Hydrogen...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... 2 1.1 SOLAR ASSUMPTIONS ... MICROBIAL ELECTROLYSIS CELL (MEC) SYSTEM ......... 3 Figure 1-3. ETR vs. ...

  10. Ethanol Pathways in the 2050 North American Transportation Futures Study

    SciTech Connect

    2009-01-18

    A paper discussing the various ethanol pathways in the 2050 North American Transportation Futures Study

  11. Health effects of risk-assessment categories

    SciTech Connect

    Kramer, C.F.; Rybicka, K.; Knutson, A.; Morris, S.C.

    1983-10-01

    Environmental and occupational health effects associated with exposures to various chemicals are a subject of increasing concern. One recently developed methodology for assessing the health impacts of various chemical compounds involves the classification of similar chemicals into risk-assessment categories (RACs). This report reviews documented human health effects for a broad range of pollutants, classified by RACs. It complements other studies that have estimated human health effects by RAC based on analysis and extrapolation of data from animal research.

  12. Syngas Upgrading to Hydrocarbon Fuels Technology Pathway

    SciTech Connect

    Talmadge, M.; Biddy, Mary J.; Dutta, Abhijit; Jones, Susanne B.; Meyer, Pimphan A.

    2013-03-31

    In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to hydrocarbon fuels to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This pathway case investigates the upgrading of biomass derived synthesis gas (‘syngas’) to hydrocarbon biofuels. While this specific discussion focuses on the conversion of syngas via a methanol intermediate to hydrocarbon blendstocks, there are a number of alternative conversion routes for production of hydrocarbons through a wide array of intermediates from syngas. Future work will also consider the variations to this pathway to determine the most economically viable and risk adverse conversion route. Technical barriers and key research needs have been identified that should be pursued for the syngas to hydrocarbon pathway to be competitive with petroleum-derived gasoline, diesel and jet range blendstocks.

  13. Whole Algae Hydrothermal Liquefaction Technology Pathway

    Energy.gov [DOE]

    This technology pathway case investigates the feasibility of using whole wet microalgae as a feedstock for conversion via hydrothermal liquefaction. Technical barriers and key research needs have been assessed in order for the hydrothermal liquefaction of microalgae to be competitive with petroleum-derived gasoline-, diesel-, and jet-range hydrocarbon blendstocks.

  14. Whole Algae Hydrothermal Liquefaction Technology Pathway

    SciTech Connect

    Biddy, M.; Davis, R.; Jones, S.

    2013-03-01

    This technology pathway case investigates the feasibility of using whole wet microalgae as a feedstock for conversion via hydrothermal liquefaction. Technical barriers and key research needs have been assessed in order for the hydrothermal liquefaction of microalgae to be competitive with petroleum-derived gasoline-, diesel-, and jet-range hydrocarbon blendstocks.

  15. Structural Health Monitoring

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Structural Health Monitoring Engineering Institute Structural Health Monitoring Structural Health Monitoring is the process of implementing a damage detection strategy for...

  16. Poster Thur Eve 51: An analysis of the effectiveness of automated pre-, post- and intra-treatment auditing of electronic health records

    SciTech Connect

    Joseph, A.; Seuntjens, J.; Parker, W.; Kildea, J.; Freeman, C.

    2014-08-15

    We describe development of automated, web-based, electronic health record (EHR) auditing software for use within our paperless radiation oncology clinic. By facilitating access to multiple databases within the clinic, each patient's EHR is audited prior to treatment, regularly during treatment, and post treatment. Anomalies such as missing documentation, non-compliant workflow and treatment parameters that differ significantly from the norm may be monitored, flagged and brought to the attention of clinicians. By determining historical trends using existing patient data and by comparing new patient data with the historical, we expect our software to provide a measurable improvement in the quality of radiotherapy at our centre.

  17. AIR AND RADON PATHWAY MODELING FOR THE F AREA TANK FARM

    SciTech Connect

    Dixon, K.; Phifer, M.

    2010-07-30

    An air and radon pathways analysis was conducted for the F-Area Tank Farm (FTF) to estimate the flux of volatile radionuclides and radon at the ground surface due to residual waste remaining in the tanks following closure. This analysis was used as the basis to estimate the dose to the maximally exposed individual (MEI) for the air pathway per Curie (Ci) of each radionuclide remaining in the combined FTF waste tanks. For the air pathway analysis, several gaseous radionuclides were considered. These included carbon-14 (C-14), chlorine-36 (Cl-36), iodine-129 (I-129), selenium-79 (Se-79), antimony-125 (Sb-125), tin-126 (Sn-126), tritium (H-3), and technetium-99 (Tc-99). The dose to the MEI was estimated at the SRS Boundary during the 100 year institutional control period. For the 10,000 year post closure compliance period, the dose to the MEI was estimated at the 100 m compliance point. Additionally, the dose to the MEI was estimated at a seepage outcrop located 1600 m from the facility. For the radon pathway analysis, five parent radionuclides and their progeny were analyzed. These parent radionuclides included uranium-238 (U-238), plutonium-238 (Pu-238), uranium-234 (U-234), thorium-230 (Th-230), and radium-226 (Ra-226). The peak flux of radon-222 due to each parent radionuclide was estimated for the simulation period of 10,100 years.

  18. LWRS Fuels Pathway: Engineering Design and Fuels Pathway Initial Testing of the Hot Water Corrosion System

    SciTech Connect

    Dr. John Garnier; Dr. Kevin McHugh

    2012-09-01

    The Advanced LWR Nuclear Fuel Development R&D pathway performs strategic research focused on cladding designs leading to improved reactor core economics and safety margins. The research performed is to demonstrate the nuclear fuel technology advancements while satisfying safety and regulatory limits. These goals are met through rigorous testing and analysis. The nuclear fuel technology developed will assist in moving existing nuclear fuel technology to an improved level that would not be practical by industry acting independently. Strategic mission goals are to improve the scientific knowledge basis for understanding and predicting fundamental nuclear fuel and cladding performance in nuclear power plants, and to apply this information in the development of high-performance, high burn-up fuels. These will result in improved safety, cladding, integrity, and nuclear fuel cycle economics. To achieve these goals various methods for non-irradiated characterization testing of advanced cladding systems are needed. One such new test system is the Hot Water Corrosion System (HWCS) designed to develop new data for cladding performance assessment and material behavior under simulated off-normal reactor conditions. The HWCS is capable of exposing prototype rodlets to heated, high velocity water at elevated pressure for long periods of time (days, weeks, months). Water chemistry (dissolved oxygen, conductivity and pH) is continuously monitored. In addition, internal rodlet heaters inserted into cladding tubes are used to evaluate repeated thermal stressing and heat transfer characteristics of the prototype rodlets. In summary, the HWCS provides rapid ex-reactor evaluation of cladding designs in normal (flowing hot water) and off-normal (induced cladding stress), enabling engineering and manufacturing improvements to cladding designs before initiation of the more expensive and time consuming in-reactor irradiation testing.

  19. Whole Algae Hydrothermal Liquefaction Technology Pathway

    SciTech Connect

    Biddy, Mary J.; Davis, Ryan; Jones, Susanne B.; Zhu, Yunhua

    2013-03-31

    In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to hydrocarbon fuels to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This pathway case investigates the feasibility of using whole wet microalgae as a feedstock for conversion via hydrothermal liquefaction. Technical barriers and key research needs have been assessed in order for the hydrothermal liquefaction of microalgae to be competitive with petroleum-derived gasoline, diesel and jet range blendstocks.

  20. Discovering Market Pathways for National Laboratory Research

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Discovering Market Pathways for National Laboratory Research The U.S. Department of Energy (DOE) Lab-Corps program is a specialized training curriculum aimed at accelerating the transfer of clean energy technologies from national laboratories into the commercial marketplace. Lab-Corps provides entrepreneurial education to national laboratory researchers and connects them to potential customers and industry partners, helping to close the knowledge gap between researchers and the marketplace. As

  1. Controlling degradation pathways in organic electrochemistry via

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    redox-mediated Li+ coordination - Joint Center for Energy Storage Research March 24, 2016, Research Highlights Controlling degradation pathways in organic electrochemistry via redox-mediated Li+ coordination Scientific Achievement Exhaustive DFT experiments are well-matched to in-situ spectroscopic data showing Li+ coordination to basic methoxy groups. Li+ coordination promotes improved redox reversibility within Li+ electrolytes. Significance and Impact Redox-mediated Li+ interactions are

  2. DOE Workshop: Pathway to SMR Commercialization

    Office of Energy Efficiency and Renewable Energy (EERE)

    DOE Workshop: Pathway to SMR Commercialization The Office of Nuclear Energy requests domestic industry participation in a 2-day comprehensive workshop to elicit opinions on two key topics: (1) manufacturing technologies to reduce cost and schedule for Small Modular Reactor (SMR) parts and components and meet the demands of the industry as it grows; and (2) additional SMR capabilities beyond baseload electricity generation, including use of SMRs in hybrid energy systems and in meeting national security needs.

  3. Syngas Upgrading to Hydrocarbon Fuels Technology Pathway

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Syngas Upgrading to Hydrocarbon Fuels Technology Pathway Michael Talmadge, Mary Biddy, and Abhijit Dutta National Renewable Energy Laboratory Susanne Jones and Aye Meyer Pacific Northwest National Laboratory NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC, under contract DE-AC36-08GO28308. Pacific Northwest National Laboratory is operated by Battelle for the United States

  4. Pathways, Networks and Systems Medicine Conferences

    SciTech Connect

    Nadeau, Joseph H.

    2013-11-25

    The 6th Pathways, Networks and Systems Medicine Conference was held at the Minoa Palace Conference Center, Chania, Crete, Greece (16-21 June 2008). The Organizing Committee was composed of Joe Nadeau (CWRU, Cleveland), Rudi Balling (German Research Centre, Brauschweig), David Galas (Institute for Systems Biology, Seattle), Lee Hood (Institute for Systems Biology, Seattle), Diane Isonaka (Seattle), Fotis Kafatos (Imperial College, London), John Lambris (Univ. Pennsylvania, Philadelphia),Harris Lewin (Univ. of Indiana, Urbana-Champaign), Edison Liu (Genome Institute of Singapore, Singapore), and Shankar Subramaniam (Univ. California, San Diego). A total of 101 individuals from 21 countries participated in the conference: USA (48), Canada (5), France (5), Austria (4), Germany (3), Italy (3), UK (3), Greece (2), New Zealand (2), Singapore (2), Argentina (1), Australia (1), Cuba (1), Denmark (1), Japan (1), Mexico (1), Netherlands (1), Spain (1), Sweden (1), Switzerland (1). With respect to speakers, 29 were established faculty members and 13 were graduate students or postdoctoral fellows. With respect to gender representation, among speakers, 13 were female and 28 were male, and among all participants 43 were female and 58 were male. Program these included the following topics: Cancer Pathways and Networks (Day 1), Metabolic Disease Networks (Day 2), Day 3 ? Organs, Pathways and Stem Cells (Day 3), and Day 4 ? Inflammation, Immunity, Microbes and the Environment (Day 4). Proceedings of the Conference were not published.

  5. Corporate Analysis of DOE Safety Performance

    Energy.gov [DOE]

    The Office of Environment, Health, Safety and Security (EHSS), Office of Analysis develops analysis tools and performance dashboards, and conducts analysis of DOE safety performance corporately and on a variety of specific environment, safety and health topics.

  6. EIS-0465: Mid-Atlantic Power Pathway Transmission Line Project...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    5: Mid-Atlantic Power Pathway Transmission Line Project in Maryland and Delaware EIS-0465: Mid-Atlantic Power Pathway Transmission Line Project in Maryland and Delaware March 4, ...

  7. Feedstock Pathways for Bio-oil and Syngas Conversi (Technical...

    Office of Scientific and Technical Information (OSTI)

    Feedstock Pathways for Bio-oil and Syngas Conversi Citation Details In-Document Search Title: Feedstock Pathways for Bio-oil and Syngas Conversi You are accessing a document ...

  8. Appendix A: Office Technology Pathway Structure, Bioenergy Technologie...

    Energy.gov [DOE] (indexed site)

    A-1 Last updated: November 2014 Appendix A: Technology Pathway Structure High-level block flow diagrams for each biorefinery pathway are presented in Figures A-1 through A-5....

  9. Pathways to Solar Hydrogen Technologies Leiden, The Netherlands...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Pathways to Solar Hydrogen Technologies Leiden, The Netherlands) Pathways to Solar Hydrogen Technologies Leiden, The Netherlands) Mon, Jun 13, 2016 11:30am 11:30 Fri, Jun 17, 2016 ...

  10. Ad Lucem: Modeling Market Transformation Pathways Workshop | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Market Transformation Pathways Workshop Ad Lucem: Modeling Market Transformation Pathways Workshop This white paper summarizes the information discussed during the Ad Lucem: Modeling Market Transformation Pathways Workshop, Feb. 17, 2012, in Berkeley, California. adlucem2012_whitepaper.pdf (547.71 KB) More Documents & Publications Ad Lucem: Modeling of Market Transformation Pathways Workshop Agenda Ad Lucem Workshop Welcome Materials from 2014 SunShot Summit BREAKOUT SESSION: THE

  11. Ad Lucem: Modeling of Market Transformation Pathways Workshop Agenda |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy of Market Transformation Pathways Workshop Agenda Ad Lucem: Modeling of Market Transformation Pathways Workshop Agenda This document details the agenda for the DOE Ad Lucem: Modeling of Market Transformation Pathways Workshop on Feb. 17, 2012. adlucem2012_agenda.pdf (295.01 KB) More Documents & Publications Ad Lucem Workshop Welcome Ad Lucem: Modeling Market Transformation Pathways Workshop The Ad Lucem Research Network

  12. Biological Conversion of Sugars to Hydrocarbons Technology Pathway |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy to Hydrocarbons Technology Pathway Biological Conversion of Sugars to Hydrocarbons Technology Pathway This technology pathway case investigates the biological conversion of biomass-derived sugars to hydrocarbon biofuels, utilizing data from recent literature references and information consistent with recent pilot-scale demonstrations at NREL. Technical barriers and key research needs have been identified that should be pursued for the pathway to become competitive with

  13. Career Pathways Frequently Asked Questions (FAQs) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Career Pathways Frequently Asked Questions (FAQs) Career Pathways Frequently Asked Questions (FAQs) The following frequently asked questions were developed by OPM's Student Programs Office. They will clarify the use of the authority and assist managers, supervisors, and human resources professionals in effectively administering the Career Pathways Program. Career Pathways FAQs (343.17 KB) Responsible Contacts Kimberly Chappell SUPERVISORY HUMAN RESOURCES SPECIALIST E-mail

  14. Catalytic Upgrading of Sugars to Hydrocarbons Technology Pathway |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy of Sugars to Hydrocarbons Technology Pathway Catalytic Upgrading of Sugars to Hydrocarbons Technology Pathway This technology pathway case investigates the catalytic conversion of solubilized carbohydrate streams to hydrocarbon biofuels, utilizing data from recent efforts within the National Advanced Biofuels Consortium (NABC) in collaboration with Virent, Inc. Technical barriers and key research needs that should be pursued for the catalytic conversion of sugars pathway

  15. PROJECT PROFILE: Dominion Virginia Power (Solar Market Pathways) |

    Energy Saver

    Department of Energy Dominion Virginia Power (Solar Market Pathways) PROJECT PROFILE: Dominion Virginia Power (Solar Market Pathways) Title: Virginia Solar Pathways Project Dominion logo.png Funding Opportunity: Solar Market Pathways SunShot Subprogram: Soft Costs Location: Richmond, VA Amount Awarded: $2,430,682 Awardee Cost Share: $610,721 Virginia Electric and Power Company is leading a broad-based team that includes representatives from state government, research institutions,

  16. PROJECT PROFILE: Ecolibrium3 (Solar Market Pathways) | Department of Energy

    Energy Saver

    Ecolibrium3 (Solar Market Pathways) PROJECT PROFILE: Ecolibrium3 (Solar Market Pathways) Title: Local Energy Matters: Solar Market Development in Duluth, MN Ecolibrium3.png Funding Opportunity: Solar Market Pathways SunShot Subprogram: Soft Costs Location: Duluth, MN Amount Awarded: $209,005 Awardee Cost Share: $52,266 Ecolibrium3's "Local Energy Matters" Solar Market Pathways project is working with state and local stakeholders to further develop residential rooftop, community, and

  17. Behavioral Health Insurance Plan

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Behavioral Health Behavioral Health Preauthorization from BCBSNM is required for all behavioral health services. Contact Behavioral Health Unit Mental health services for retirees BlueCross BlueShield of New Mexico (BCBSNM) helps Lab employees identify and benefit from the mental health and substance abuse services they may need through a network of providers, programs and facilities. Use the BCBSNM Provider Finder to select an independently contracted and licensed behavioral health professional

  18. Funding Opportunity Announcement: Solar Market Pathways

    Energy.gov [DOE]

    The Solar Market Pathways funding opportunity announcement (FOA) seeks to support regional, state, tribal, and locally-driven efforts to develop multi-year solar deployment plans that will help provide business certainty and establish a clear path for the next five to ten years of solar deployment. Specifically, this FOA is intended to enable replicable multi-year strategies that spur significant solar deployment, drive down solar soft costs, support local economic development efforts, and address the potential challenges arising from increased solar penetration on the electrical grid.

  19. Curation and Computational Design of Bioenergy-Related Metabolic Pathways

    SciTech Connect

    Karp, Peter D.

    2014-09-12

    Pathway Tools is a systems-biology software package written by SRI International (SRI) that produces Pathway/Genome Databases (PGDBs) for organisms with a sequenced genome. Pathway Tools also provides a wide range of capabilities for analyzing predicted metabolic networks and user-generated omics data. More than 5,000 academic, industrial, and government groups have licensed Pathway Tools. This user community includes researchers at all three DOE bioenergy centers, as well as academic and industrial metabolic engineering (ME) groups. An integral part of the Pathway Tools software is MetaCyc, a large, multiorganism database of metabolic pathways and enzymes that SRI and its academic collaborators manually curate. This project included two main goals: I. Enhance the MetaCyc content of bioenergy-related enzymes and pathways. II. Develop computational tools for engineering metabolic pathways that satisfy specified design goals, in particular for bioenergy-related pathways. In part I, SRI proposed to significantly expand the coverage of bioenergy-related metabolic information in MetaCyc, followed by the generation of organism-specific PGDBs for all energy-relevant organisms sequenced at the DOE Joint Genome Institute (JGI). Part I objectives included: 1: Expand the content of MetaCyc to include bioenergy-related enzymes and pathways. 2: Enhance the Pathway Tools software to enable display of complex polymer degradation processes. 3: Create new PGDBs for the energy-related organisms sequenced by JGI, update existing PGDBs with new MetaCyc content, and make these data available to JBEI via the BioCyc website. In part II, SRI proposed to develop an efficient computational tool for the engineering of metabolic pathways. Part II objectives included: 4: Develop computational tools for generating metabolic pathways that satisfy specified design goals, enabling users to specify parameters such as starting and ending compounds, and preferred or disallowed intermediate compounds

  20. Health.PDF

    Energy Saver

    at that time to determine if contractor employee health benefit costs were reasonable. ... its fair share of management and operating contractors' employee health benefit costs. ...

  1. Environment, Safety, and Health Reporting

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    2003-08-19

    To ensure timely collection, reporting, analysis, and dissemination of information on environment, safety, and health issues as required by law or regulations or as needed to ensure that the Department of Energy (DOE) and National Nuclear Security Administration (NNSA) are kept fully informed on a timely basis about events that could adversely affect the health and safety of the public or the workers, the environment, the intended purpose of DOE facilities, or the credibility of the Department. Cancels DOE O 210.1, DOE O 231.1, and DOE O 232.1A. Canceled by DOE O 232.2.

  2. Multistage reaction pathways in detonating high explosives

    SciTech Connect

    Li, Ying; Kalia, Rajiv K.; Nakano, Aiichiro; Nomura, Ken-ichi; Vashishta, Priya

    2014-11-17

    Atomistic mechanisms underlying the reaction time and intermediate reaction products of detonating high explosives far from equilibrium have been elusive. This is because detonation is one of the hardest multiscale physics problems, in which diverse length and time scales play important roles. Here, large spatiotemporal-scale reactive molecular dynamics simulations validated by quantum molecular dynamics simulations reveal a two-stage reaction mechanism during the detonation of cyclotrimethylenetrinitramine crystal. Rapid production of N{sub 2} and H{sub 2}O within ?10 ps is followed by delayed production of CO molecules beyond ns. We found that further decomposition towards the final products is inhibited by the formation of large metastable carbon- and oxygen-rich clusters with fractal geometry. In addition, we found distinct unimolecular and intermolecular reaction pathways, respectively, for the rapid N{sub 2} and H{sub 2}O productions.

  3. Environment/Health/Safety (EHS): Monthly Accident Statistics

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Personal Protective Equipment (PPE) Injury Review & Analysis Worker Safety and Health Program: PUB-3851 Monthly Accident Statistics Latest Accident Statistics Accident...

  4. Robust, High-Throughput Analysis of Protein Structures

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    applying SAXS to focused biological problems. Current directions include the analysis of DNA repair pathways, which, if malfunctioning, are a leading cause of cancer. An equally...

  5. Climate Change Mitigation: An Analysis of Advanced Technology Scenarios

    SciTech Connect

    Clarke, Leon E.; Wise, Marshall A.; Placet, Marylynn; Izaurralde, R Cesar; Lurz, Joshua P.; Kim, Son H.; Smith, Steven J.; Thomson, Allison M.

    2006-09-18

    This report documents a scenario analysis that explores three advanced technology pathways toward climate stabilization using the MiniCAM model.

  6. Using the Gene Ontology to Enrich Biological Pathways

    SciTech Connect

    Sanfilippo, Antonio P.; Baddeley, Robert L.; Beagley, Nathaniel; McDermott, Jason E.; Riensche, Roderick M.; Taylor, Ronald C.; Gopalan, Banu

    2009-12-10

    Most current approaches to automatic pathway generation are based on a reverse engineering approach in which pathway plausibility is solely derived from microarray gene expression data. These approaches tend to lack in generality and offer no independent validation as they are too reliant on the pathway observables that guide pathway generation. By contrast, alternative approaches that use prior biological knowledge to validate pathways inferred from gene expression data may err in the opposite direction as the prior knowledge is usually not sufficiently tuned to the pathology of focus. In this paper, we present a novel pathway generation approach that combines insights from the reverse engineering and knowledge-based approaches to increase the biological plausibility of automatically generated regulatory networks and describe an application of this approach to transcriptional data from a mouse model of neuroprotection during stroke.

  7. Systems Analysis Workshop Agenda | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Agenda Systems Analysis Workshop Agenda Agenda from DOE Systems Analysis Workshop held in Washington, D.C. July 28-29, 2004 to discuss and define role of systems analysis in DOE Hydrogen Program. saw_agenda.pdf (113.03 KB) More Documents & Publications Systems Analysis Workshop Welcome & Introductions Fuel Pathways Integration Tech Team Systems Analysis Workshop Purpose

  8. Pathways Toward Sustainable Bioenergy Feedstock Production in the Mississippi River Watershed

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Pathways Toward Sustainable Bioenergy Feedstock Production in the Mississippi River Watershed March 24, 2015 Analysis and Sustainability Review Jason Hill University of Minnesota This presentation does not contain any proprietary, confidential, or otherwise restricted information Goal Statement * The overall goal of this project is to use an ecosystem service framework to evaluate the environmental impact of biomass production options and their placement on the landscape so as to guide the

  9. Environment, Safety and Health Reporting

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    2012-01-01

    To ensure timely collection, reporting, analysis, and dissemination of information on environment, safety, and health issues as required by law or regulations or as needed to ensure that the Department of Energy (DOE) and National Nuclear Security Administration are kept fully informed on a timely basis about events that could adversely affect the health and safety of the public or the workers, the environment, the intended purpose of DOE facilities, or the credibility of the Department. Cancels DOE O 210.1, DOE O 231.1, DOE O 232.1A. Canceled by DOE O 231.1B. DOE O 231.1B cancels all portions pertaining to environment, safety, and health reporting. Occurrence reporting and processing of operations information provisions remain in effect until January 1, 2012.

  10. A Metabolic Pathway in Cyanobacteria Could Yield Better Biofuels and

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Bioproducts from Photosynthesis - News Releases | NREL A Metabolic Pathway in Cyanobacteria Could Yield Better Biofuels and Bioproducts from Photosynthesis December 11, 2015 Scientists from the Energy Department's National Renewable Energy Laboratory (NREL) have discovered that a metabolic pathway previously only suggested to be functional in photosynthetic organisms is actually a major pathway and can enable efficient conversion of carbon dioxide to organic compounds. The discovery shines

  11. Fusing the Audacity of Imagination with Pathways to Excellence | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Fusing the Audacity of Imagination with Pathways to Excellence Fusing the Audacity of Imagination with Pathways to Excellence April 6, 2016 - 1:39pm Addthis Awardees and distinguished guests at PNNL’s Pathway to Excellence Celebration are (left to right) Jud Virden, Associate Laboratory Director, Energy and Environment, Malin Young, Deputy Director for Science and Technology, Jetta Wong, Director for the Office of Technology Transitions, Shari Li, Distinguished Inventor of

  12. Algal Lipid Extraction and Upgrading to Hydrocarbons Technology Pathway

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Algal Lipid Extraction and Upgrading to Hydrocarbons Technology Pathway Citation Details In-Document Search Title: Algal Lipid Extraction and Upgrading to Hydrocarbons Technology Pathway This technology pathway case investigates the cultivation of algal biomass followed by further lipid extraction and upgrading to hydrocarbon biofuels. Technical barriers and key research needs have been assessed in order for the algal lipid extraction and upgrading

  13. Whole Algae Hydrothermal Liquefaction Technology Pathway (Technical Report)

    Office of Scientific and Technical Information (OSTI)

    | SciTech Connect Technical Report: Whole Algae Hydrothermal Liquefaction Technology Pathway Citation Details In-Document Search Title: Whole Algae Hydrothermal Liquefaction Technology Pathway This technology pathway case investigates the feasibility of using whole wet microalgae as a feedstock for conversion via hydrothermal liquefaction. Technical barriers and key research needs have been assessed in order for the hydrothermal liquefaction of microalgae to be competitive with

  14. PROJECT PROFILE: City University of New York (Solar Market Pathways) |

    Energy Saver

    Department of Energy University of New York (Solar Market Pathways) PROJECT PROFILE: City University of New York (Solar Market Pathways) Title: NYSolar Smart DG Hub - Resilient Solar Project CUNY logo.png Funding Opportunity: Solar Market Pathways SunShot Subprogram: Soft Costs Location: New York, New York Amount Awarded: $859,720 Awardee Cost Share: $314,669 The NYSolar Smart Distributed Generation (DG) Hub - Resilient Solar Project was created by the City University of New York (CUNY), in

  15. PROJECT PROFILE: Pace Energy and Climate Center (Solar Market Pathways) |

    Energy Saver

    Department of Energy Pace Energy and Climate Center (Solar Market Pathways) PROJECT PROFILE: Pace Energy and Climate Center (Solar Market Pathways) Title: Northeast Solar Energy Market Coalition (NESEMC) Pace Logo.png Funding Opportunity: Solar Market Pathways SunShot Subprogram: Soft Costs Location: White Plains, NY Amount Awarded: $599,908 Awardee Cost Share: $150,000 The Pace Energy and Climate Center, in concert with a regional coalition of northeast solar photovoltaic business

  16. Worker Safety and Health

    Energy.gov [DOE]

    Worker Safety and Health Policy establishes Departmental expectations for worker safety and health through the development of rules, directives and guidance. Worker safety and health policy will ensure that workers are adequately protected from hazards associated with DOE sites and operations and reflect national worker safety and health laws, regulations, and standards where applicable.

  17. USDOE study: Human health and ecological risk assessment for produced water discharges

    SciTech Connect

    Meinhold, A.F.; Holtzman, S.; DePhillips, M.; Hamilton, L.D.

    1994-12-31

    Produced water generated during the production of oil and gas can contain high concentrations of radionuclides, organics and heavy metals. There are concerns about potential human health and ecological impacts from the discharge of these contaminants to the Gulf of Mexico. Data collected in the United States Department of Energy (USDOE) field study are being used in a series of human health and ecological risk assessments. These assessments will support scientifically-based regulation and risk management. This presentation: summarizes risk assessments performed for produced water discharges; describes how uncertainties in these assessments are guiding data collection efforts in the USDOE field study; and outlines ongoing risk assessment studies. In these studies, risk assessment is treated as an iterative process. An initial screening-level assessment is performed to identify important contaminants, transport and exposure pathways, and parameters. These intermediate results are used to guide data collection efforts and refinements to the analysis. At this stage in the analysis, risk is described in terms of probabilities; the uncertainties in each measured or modeled parameter are considered explicitly.

  18. CBEI: Career Pathways for the Energy Retrofit Workforce - 2015...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    CBEI: Career Pathways for the Energy Retrofit Workforce - 2015 Peer Review (2.3 MB) More Documents & Publications Advanced Critical Advanced Energy Retrofit Education and Training ...

  19. Prioritizing Acquisition Pathways in the State Level Concept...

    Office of Scientific and Technical Information (OSTI)

    activities and the State evaluation process to draw safeguards conclusions ... proliferation pathways based on an assessment of a State's capabilities and assumed ...

  20. Identification of Low Emissions Agricultural Pathways and Priorities...

    OpenEI (Open Energy Information) [EERE & EIA]

    Pathways and Priorities for Mitigation in Agricultural Landscapes using Integrated Assessment Modeling and Scenarios Jump to: navigation, search Name Identification of Low...

  1. Charting a Path Forward:New Pathways to Hydrocarbon Biofuels

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... Process Design and Economics for Conversion of Lignocellulosic Biomass to Ethanol: Thermochemical Pathway by Indirect Gasification and Mixed Alcohol Synthesis. 187 pp.; NREL Report ...

  2. Bioenergy Technologies Office Conversion R&D Pathway: Syngas...

    Energy.gov [DOE] (indexed site)

    chosen to convert biomass into hydrocarbon fuels by the Bioenergy Technologies Office. ... to Hydrocarbon Fuels Technology Pathway 2013 Peer Review Presentations-Gasification

  3. Pathways to Commercial Success: Technologies and Products Supported...

    Office of Scientific and Technical Information (OSTI)

    the Fuel Cell Technologies Office - 2015 Citation Details In-Document Search Title: Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell ...

  4. Biological Conversion of Sugars to Hydrocarbons Technology Pathway...

    Office of Scientific and Technical Information (OSTI)

    This technology pathway case investigates the biological conversion of biomass-derived ... Sponsoring Org: USDOE Office of Energy Efficiency and Renewable Energy Biomass Program ...

  5. Syngas Upgrading to Hydrocarbon Fuels Technology Pathway (Technical...

    Office of Scientific and Technical Information (OSTI)

    This technology pathway case investigates the upgrading of woody biomass derived synthesis ... Sponsoring Org: USDOE Office of Energy Efficiency and Renewable Energy Biomass Program ...

  6. In-Situ Catalytic Fast Pyrolysis Technology Pathway (Technical...

    Office of Scientific and Technical Information (OSTI)

    This technology pathway case investigates converting woody biomass using in-situ catalytic ... Sponsoring Org: USDOE Office of Energy Efficiency and Renewable Energy Biomass Program ...

  7. Ex-Situ Catalytic Fast Pyrolysis Technology Pathway (Technical...

    Office of Scientific and Technical Information (OSTI)

    This technology pathway case investigates converting woody biomass using ex-situ catalytic ... Sponsoring Org: USDOE Office of Energy Efficiency and Renewable Energy Biomass Program ...

  8. A General Strategy for the Discovery of Metabolic Pathways: d...

    Office of Scientific and Technical Information (OSTI)

    Title: A General Strategy for the Discovery of Metabolic Pathways: d-Threitol, l-Threitol, and Erythritol Utilization in Mycobacterium smegmatis Authors: Huang, Hua ; Carter, ...

  9. Emissions pathways, climate change, and impacts on California...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Emissions pathways, climate change, and impacts on California Citation ... OSTI Identifier: 831116 Report Number(s): LBNL--56119-Journal R&D Project: G31501; TRN: ...

  10. Biosensor-based engineering of biosynthetic pathways (Journal...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Biosensor-based engineering of biosynthetic pathways Citation Details ... GrantContract Number: DEFG02-02ER63445 Type: Published Article Journal Name: Current ...

  11. Pathways to Hydrocarbon Biofuels: Update on the Office's Techno...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Pathway TEA - Sustainability Coordination Design Report Environmental Sustainability Metrics GHG emissions kg CO2eGJ Conversion Plant Fossil Energy Consumption MJMJ ...

  12. 2009 Pathways to Commercial Success: Technologies and Products...

    Office of Environmental Management (EM)

    Office of Energy Efficiency and Renewable Energy. 2009 Pathways to Commercial Success: Technologies and Products Supported by the Hydrogen, Fuel Cells and Infrastructure ...

  13. BETO Announces Notice of Intent (NOI) to Develop Pathways to...

    Energy.gov [DOE] (indexed site)

    opportunity announcement (FOA) entitled "MEGA-BIO: Bioproducts to Enable Biofuels." ... pathways that produce biofuels, with little or no emphasis on coproducing bioproducts. ...

  14. Prioritizing Acquisition Pathways in the State Level Concept...

    Office of Scientific and Technical Information (OSTI)

    Prioritizing Acquisition Pathways in the State Level Concept Citation Details In-Document ... Sponsoring Org: DOELANL Country of Publication: United States Language: English Subject: ...

  15. Monitoring Long-Range Electron Transfer Pathways in Proteins...

    Office of Scientific and Technical Information (OSTI)

    Published Article: Monitoring Long-Range Electron Transfer Pathways in Proteins by Stimulated Attosecond Broadband X-ray Raman Spectroscopy Title: Monitoring Long-Range Electron ...

  16. Quantum control and pathway manipulation in rubidium (Journal...

    Office of Scientific and Technical Information (OSTI)

    Quantum control and pathway manipulation in rubidium Citation Details In-Document Search This content will become publicly available on September 28, 2016 Title: Quantum control ...

  17. A Multidisciplinary Approach To Detect Active Pathways For Magma...

    OpenEI (Open Energy Information) [EERE & EIA]

    Multidisciplinary Approach To Detect Active Pathways For Magma Migration And Eruption At Mt Etna (Sicily, Italy) Before The 2001 And 2002-2003 Eruptions Jump to: navigation, search...

  18. A Study of Past, Present, and Future Radiation Dose Pathways...

    Office of Scientific and Technical Information (OSTI)

    Study of Past, Present, and Future Radiation Dose Pathways from Hanford Site Effluents Citation Details In-Document Search Title: A Study of Past, Present, and Future Radiation ...

  19. Bioenergy Technologies Office R&D Pathways: Algal Lipid Upgrading...

    Office of Environmental Management (EM)

    Algal Lipid Upgrading Bioenergy Technologies Office R&D Pathways: Algal Lipid Upgrading ... chosen to convert biomass into hydrocarbon fuels by the Bioenergy Technologies Office. ...

  20. ORISE: Worker Health Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Worker Health Research Worker Health Research The Oak Ridge Institute for Science and Education (ORISE) provides technical assistance to the U.S. Department of Energy (DOE) and other government agencies by performing specialized worker health research to assess the health of workers and other populations. Statistical methods, epidemiologic research and hazard assessments are core ORISE worker health research competencies. Because information technology is an integral part of the epidemiologic

  1. Occupational Health Services - HPMC Occupational Health Services

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    exercise physiology and work conditioning, monitored care and case management, fitness for duty evaluations, health education and wellness promotion, infection control,...

  2. Ex-Situ Catalytic Fast Pyrolysis Technology Pathway

    Energy.gov [DOE]

    This technology pathway case investigates converting woody biomass using ex-situ catalytic fast pyrolysis followed by upgrading to gasoline-, diesel-, and jet-range hydrocarbon blendstocks. Technical barriers and key research needs that should be pursued for this pathway to be competitive with petroleum-derived blendstocks have been identified.

  3. Algal Lipid Extraction and Upgrading to Hydrocarbons Technology Pathway

    Energy.gov [DOE]

    This technology pathway case investigates the cultivation of algal biomass followed by further lipid extraction and upgrading to hydrocarbon biofuels. Technical barriers and key research needs have been assessed in order for the algal lipid extraction and upgrading pathway to be competitive with petroleum-derived gasoline-, diesel-, and jet-range hydrocarbon blendstocks.

  4. Ex-Situ Catalytic Fast Pyrolysis Technology Pathway

    SciTech Connect

    Biddy, M.; Dutta, A.; Jones, S.; Meyer, A.

    2013-03-01

    This technology pathway case investigates converting woody biomass using ex-situ catalytic fast pyrolysis followed by upgrading to gasoline-, diesel-, and jet-range hydrocarbon blendstocks. Technical barriers and key research needs that should be pursued for this pathway to be competitive with petroleum-derived blendstocks have been identified.

  5. Algal Lipid Extraction and Upgrading to Hydrocarbons Technology Pathway

    SciTech Connect

    Davis, R.; Biddy, M.; Jones, S.

    2013-03-01

    This technology pathway case investigates the cultivation of algal biomass followed by further lipid extraction and upgrading to hydrocarbon biofuels. Technical barriers and key research needs have been assessed in order for the algal lipid extraction and upgrading pathway to be competitive with petroleum-derived gasoline-, diesel-, and jet-range hydrocarbon blendstocks.

  6. In-Situ Catalytic Fast Pyrolysis Technology Pathway

    SciTech Connect

    Biddy, M.; Dutta, A.; Jones, S.; Meyer, A.

    2013-03-01

    This technology pathway case investigates converting woody biomass using in-situ catalytic fast pyrolysis followed by upgrading to gasoline-, diesel-, and jet-range hydrocarbon blendstocks. Technical barriers and key research needs that should be pursued for this pathway to be competitive with petroleum-derived blendstocks have been identified.

  7. Cyclone-cyclone Interactions through the Ocean Pathway

    SciTech Connect

    Balaguru, Karthik; Taraphdar, Sourav; Leung, Lai-Yung R.; Foltz, Gregory R.; Knaff, John A.

    2014-10-16

    The intense SST (Sea Surface Temperature) cooling caused by hurricane-induced mixing is restored at timescales on the order of weeks(1) and thus may persist long enough to influence a later hurricane passing over it. Though many studies have evaluated the effects of SST cool-ing induced by a hurricane on its own intensification(2, 3), none has looked at its effect on later storms. Using an analysis of observations and numerical model simulations, we demonstrate that hurricanes may influence the intensity of later hurricanes that pass over their linger-ing wakes. On average, when hurricanes encounter cold wakes, they experience SSTs that are ~0.4oC lower than when they do not encounter wakes and consequently decay(intensify) at a rate that is nearly three times faster(slower). In the region of warm SSTs (* 26.5oC) where the most intense and damaging hurricanes tend to occur, the percentage of hurricanes that encounter lingering cold wakes increases with hurricane frequency and was found to be as high as 40%. Furthermore, we estimate that the cumulative power dissipated(4) by the most energetic hurricanes has been reduced by as much as ~7% in a season through this effect. As the debate on changes in Atlantic hurricane activity associated with global warming(5) continues, the negative feedback between hurricane frequency and intensity resulting from hurricane-hurricane interactions through the ocean pathway deserves attention.

  8. Browse by Discipline -- E-print Network Subject Pathways: Computer...

    Office of Scientific and Technical Information (OSTI)

    - Centre for Bayesian Statistics in Health Economics & Department of Probability and ... A. (Richard A. Olshen) - Departments of Health Research and Policy & Statistics, ...

  9. Aquatic Pathways Model to predict the fate of phenolic compounds. Appendixes A through D

    SciTech Connect

    Aaberg, R.L.; Peloquin, R.A.; Strenge, D.L.; Mellinger, P.L.

    1983-04-01

    Organic materials released from energy-related activities could affect human health and the environment. We have developed a model to predict the fate of spills or discharges of pollutants into flowing or static bodies of fresh water. A computer code, Aquatic Pathways Model (APM), was written to implement the model. The APM estimates the concentrations of chemicals in fish tissue, water and sediment, and is therefore useful for assessing exposure to humans through aquatic pathways. The major pathways considered are biodegradation, fish and sediment uptake, photolysis, and evaporation. The model has been implemented with parameters for the distribution of phenols, an important class of compounds found in the water-soluble fractions of coal liquids. The model was developed to estimate the fate of liquids derived from coal. Current modeling efforts show that, in comparison with many pesticides and polyaromatic hydrocarbons (PAH), the lighter phenolics (the cresols) are not persistent in the environment. For the twelve phenolics studied, biodegradation appears to be the major pathway for elimination from aquatic environments. A pond system simulation of a spill of solvent-refined coal (SRC-II) materials indicates that phenol, cresols, and other single cyclic phenolics are degraded to 16 to 25 percent of their original concentrations within 30 hours. Adsorption of these compounds into sediments and accumulation by fish was minor. Results of a simulated spill of a coal liquid (SRC-II) into a pond show that APM predicted the allocation of 12 phenolic components among six compartments at 30 hours after a small spill. The simulation indicated that most of the introduced phenolic compounds were biodegraded. The phenolics remaining in the aquatic system partitioned according to their molecular weight and structure. A substantial amount was predicted to remain in the water, with less than 0.01% distributed in sediment or fish.

  10. Associations of blood lead, cadmium, and mercury with estimated glomerular filtration rate in the Korean general population: Analysis of 2008-2010 Korean National Health and Nutrition Examination Survey data

    SciTech Connect

    Kim, Yangho; Lee, Byung-Kook

    2012-10-15

    Introduction: The objective of this study was to evaluate associations between blood lead, cadmium, and mercury levels with estimated glomerular filtration rate in a general population of South Korean adults. Methods: This was a cross-sectional study based on data obtained in the Korean National Health and Nutrition Examination Survey (KNHANES) (2008-2010). The final analytical sample consisted of 5924 participants. Estimated glomerular filtration rate (eGFR) was calculated using the MDRD Study equation as an indicator of glomerular function. Results: In multiple linear regression analysis of log2-transformed blood lead as a continuous variable on eGFR, after adjusting for covariates including cadmium and mercury, the difference in eGFR levels associated with doubling of blood lead were -2.624 mL/min per 1.73 m Superscript-Two (95% CI: -3.803 to -1.445). In multiple linear regression analysis using quartiles of blood lead as the independent variable, the difference in eGFR levels comparing participants in the highest versus the lowest quartiles of blood lead was -3.835 mL/min per 1.73 m Superscript-Two (95% CI: -5.730 to -1.939). In a multiple linear regression analysis using blood cadmium and mercury, as continuous or categorical variables, as independent variables, neither metal was a significant predictor of eGFR. Odds ratios (ORs) and 95% CI values for reduced eGFR calculated for log2-transformed blood metals and quartiles of the three metals showed similar trends after adjustment for covariates. Discussion: In this large, representative sample of South Korean adults, elevated blood lead level was consistently associated with lower eGFR levels and with the prevalence of reduced eGFR even in blood lead levels below 10 {mu}g/dL. In conclusion, elevated blood lead level was associated with lower eGFR in a Korean general population, supporting the role of lead as a risk factor for chronic kidney disease.

  11. Hawaii Department of Health Indoor and Radiological Health Branch...

    OpenEI (Open Energy Information) [EERE & EIA]

    Indoor and Radiological Health Branch Jump to: navigation, search Name: Hawaii Department of Health Indoor and Radiological Health Branch From Open Energy Information Address: 591...

  12. Update of Part 61 Impacts Analysis Methodology. Methodology report. Volume 1

    SciTech Connect

    Oztunali, O.I.; Roles, G.W.

    1986-01-01

    Under contract to the US Nuclear Regulatory Commission, the Envirosphere Company has expanded and updated the impacts analysis methodology used during the development of the 10 CFR Part 61 rule to allow improved consideration of the costs and impacts of treatment and disposal of low-level waste that is close to or exceeds Class C concentrations. The modifications described in this report principally include: (1) an update of the low-level radioactive waste source term, (2) consideration of additional alternative disposal technologies, (3) expansion of the methodology used to calculate disposal costs, (4) consideration of an additional exposure pathway involving direct human contact with disposed waste due to a hypothetical drilling scenario, and (5) use of updated health physics analysis procedures (ICRP-30). Volume 1 of this report describes the calculational algorithms of the updated analysis methodology.

  13. Pathways for Ethanol Dehydrogenation and Dehydration Catalyzed by Ceria (111) and (100) Surfaces

    SciTech Connect

    Beste, Ariana; Overbury, Steven {Steve} H

    2015-01-01

    We have performed computations to better understand how surface structure affects selectivity in dehydrogenation and dehydration reactions of alcohols. Ethanol reactions on the (111) and (100) ceria surfaces were studied starting from the dominant surface species, ethoxy. We used DFT (PBE+U) to explore reaction pathways leading to ethylene and acetaldehyde and calculated estimates of rate constants employing transition state theory. To assess pathway contributions, we carried out kinetic analysis. Our results show that intermediate and transition state structures are stabilized on the (100) surface compared to the (111) surface. Formation of acetaldehyde over ethylene is kinetically and thermodynamically preferred on both surfaces. Our results are consistent with temperature programmed surface reaction and steady-state experiments, where acetaldehyde was found as the main product and evidence was presented that ethylene formation at higher temperature originates from changes in adsorbate and surface structure.

  14. Pathways for Ethanol Dehydrogenation and Dehydration Catalyzed by Ceria (111) and (100) Surfaces

    DOE PAGES [OSTI]

    Beste, Ariana; Steven Overbury

    2015-01-08

    We have performed computations to better understand how surface structure affects selectivity in dehydrogenation and dehydration reactions of alcohols. Ethanol reactions on the (111) and (100) ceria surfaces were studied starting from the dominant surface species, ethoxy. We used DFT (PBE+U) to explore reaction pathways leading to ethylene and acetaldehyde and calculated estimates of rate constants employing transition state theory. To assess pathway contributions, we carried out kinetic analysis. Our results show that intermediate and transition state structures are stabilized on the (100) surface compared to the (111) surface. Formation of acetaldehyde over ethylene is kinetically and thermodynamically preferred onmore » both surfaces. Our results are consistent with temperature programmed surface reaction and steady-state experiments, where acetaldehyde was found as the main product and evidence was presented that ethylene formation at higher temperature originates from changes in adsorbate and surface structure.« less

  15. Computational inference of the structure and regulation of the lignin pathway in Panicum virgatum

    DOE PAGES [OSTI]

    Faraji, Mojdeh; Fonseca, Luis L.; Escamilla-Treviño, Luis; Dixon, Richard A.; Voit, Eberhard O.

    2015-09-17

    Switchgrass is a prime target for biofuel production from inedible plant parts and has been the subject of numerous investigations in recent years. Yet, one of the main obstacles to effective biofuel production remains to be the major problem of recalcitrance. Recalcitrance emerges in part from the 3-D structure of lignin as a polymer in the secondary cell wall. Lignin limits accessibility of the sugars in the cellulose and hemicellulose polymers to enzymes and ultimately decreases ethanol yield. Monolignols, the building blocks of lignin polymers, are synthesized in the cytosol and translocated to the plant cell wall, where they undergomore » polymerization. The biosynthetic pathway leading to monolignols in switchgrass is not completely known, and difficulties associated with in vivo measurements of these intermediates pose a challenge for a true understanding of the functioning of the pathway. In this study, a systems biological modeling approach is used to address this challenge and to elucidate the structure and regulation of the lignin pathway through a computational characterization of alternate candidate topologies. The analysis is based on experimental data characterizing stem and tiller tissue of four transgenic lines (knock-downs of genes coding for key enzymes in the pathway) as well as wild-type switchgrass plants. These data consist of the observed content and composition of monolignols. The possibility of a G-lignin specific metabolic channel associated with the production and degradation of coniferaldehyde is examined, and the results support previous findings from another plant species. The computational analysis suggests regulatory mechanisms of product inhibition and enzyme competition, which are well known in biochemistry, but so far had not been reported in switchgrass. By including these mechanisms, the pathway model is able to represent all observations. In conclusion, the results show that the presence of the coniferaldehyde channel is

  16. Determine metrics and set targets for soil quality on agriculture residue and energy crop pathways

    SciTech Connect

    Ian Bonner; David Muth

    2013-09-01

    There are three objectives for this project: 1) support OBP in meeting MYPP stated performance goals for the Sustainability Platform, 2) develop integrated feedstock production system designs that increase total productivity of the land, decrease delivered feedstock cost to the conversion facilities, and increase environmental performance of the production system, and 3) deliver to the bioenergy community robust datasets and flexible analysis tools for establishing sustainable and viable use of agricultural residues and dedicated energy crops. The key project outcome to date has been the development and deployment of a sustainable agricultural residue removal decision support framework. The modeling framework has been used to produce a revised national assessment of sustainable residue removal potential. The national assessment datasets are being used to update national resource assessment supply curves using POLYSIS. The residue removal modeling framework has also been enhanced to support high fidelity sub-field scale sustainable removal analyses. The framework has been deployed through a web application and a mobile application. The mobile application is being used extensively in the field with industry, research, and USDA NRCS partners to support and validate sustainable residue removal decisions. The results detailed in this report have set targets for increasing soil sustainability by focusing on primary soil quality indicators (total organic carbon and erosion) in two agricultural residue management pathways and a dedicated energy crop pathway. The two residue pathway targets were set to, 1) increase residue removal by 50% while maintaining soil quality, and 2) increase soil quality by 5% as measured by Soil Management Assessment Framework indicators. The energy crop pathway was set to increase soil quality by 10% using these same indicators. To demonstrate the feasibility and impact of each of these targets, seven case studies spanning the US are presented

  17. Understanding Contaminant Transport Pathways at Rocky Flats - A Basis for the Remediation Strategy

    SciTech Connect

    Paton, Ian

    2008-01-15

    qualitative description of the relationships among potential actinide sources and transport pathways at RFETS. One conceptual model was developed specifically for plutonium and americium, because of their similar geochemical and transport properties. A separate model was developed for uranium because of its different properties and mobility in the environment. These conceptual models were guidelines for quantitative analyses described in the RFETS Pathway Analysis Report, which used existing data from the literature as well as site-specific analyses, including field, laboratory and modeling studies to provide quantitative estimates of actinide migration in the RFETS environment. For pathways where more than one method was used to estimate offsite loads for a specific pathway, the method yielding the highest estimated off-site was used for comparison purposes. For all actinides studied, for pre-remediation conditions, air and surface water were identified to be the dominant transport mechanisms. The estimated annual airborne plutonium-239/240 load transported off site exceeded the surface water load by roughly a factor of 40. However, despite being the largest transport pathway, airborne radionuclide concentrations at the monitoring location with the highest measurements during the period studied were less than two percent of the allowable 10 milli-rem standard governing DOE facilities. Estimated actinide loads for other pathways were much less. Shallow groundwater was approximately two orders of magnitude lower, or 1/100 of the load conveyed in surface water. The estimated biological pathway load for plutonium was approximately five orders of magnitude less, or 1/100,000, of the load estimated for surface-water. The pathway analysis results were taken into consideration during subsequent remediation activities that occurred at the site. For example, when the 903 Pad area was remediated to address elevated concentrations of Pu and Am in the surface soil, portable tent

  18. NREL: Energy Analysis - Scott Jenne

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Jenne Photo of Scott Jenne Scott Jenne is a member of the Technology Systems and Sustainability Analysis Group in the Strategic Energy Analysis Center. Multidisciplinary Energy Engineer On staff since 2011 Phone number: 303-384-7248 E-mail: scott.jenne@nrel.gov Areas of expertise Techno-Economic Analysis Mechanical design 3D modeling and finite element analysis (FEA) Wave energy conversion Geothermal power cycles Primary research interests Cost reduction pathways of RE systems Integration of RE

  19. Analysis | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Analysis Analysis The Bioenergy Technologies Office uses a wide range of analytical tools, data, and methodologies to support decision making, guide research, and demonstrate progress toward goals. The wide variety of available biomass feedstocks, conversion technologies, and integration strategies offer a broad range of feasible biofuels scenarios, so the Office focuses its analytical activities on the biofuels research and development (R&D) pathways that offer the best potential for

  20. Significant accumulation of persistent organic pollutants and dysregulation in multiple DNA damage repair pathways in the electronic-waste-exposed populations

    SciTech Connect

    He, Xiaobo; Jing, Yaqing; Wang, Jianhai; Li, Keqiu; Yang, Qiaoyun; Zhao, Yuxia; Li, Ran; Ge, Jie; Qiu, Xinghua; Li, Guang

    2015-02-15

    Electronic waste (e-waste) has created a worldwide environmental and health problem, by generating a diverse group of hazardous compounds such as persistent organic pollutants (POPs). Our previous studies demonstrated that populations from e-waste exposed region have a significantly higher level of chromosomal aberrancy and incidence of DNA damage. In this study, we further demonstrated that various POPs persisted at a significantly higher concentration in the exposed group than those in the unexposed group. The level of reactive oxygen species and micronucleus rate were also significantly elevated in the exposed group. RNA sequencing analysis revealed 31 genes in DNA damage responses and repair pathways that were differentially expressed between the two groups (Log 2 ratio >1 or <−1). Our data demonstrated that both females and males of the exposed group have activated a series of DNA damage response genes; however many important DNA repair pathways have been dysregulated. Expressions of NEIL1/3 and RPA3, which are critical in initiating base pair and nucleotide excision repairs respectively, have been downregulated in both females and males of the exposed group. In contrast, expression of RNF8, an E3 ligase involved in an error prone non-homologous end joining repair for DNA double strand break, was upregulated in both genders of the exposed group. The other genes appeared to be differentially expressed only when the males or females of the two groups were compared respectively. Importantly, the expression of cell cycle regulatory gene CDC25A that has been implicated in multiple kinds of malignant transformation was significantly upregulated among the exposed males while downregulated among the exposed females. In conclusion, our studies have demonstrated significant correlations between e-waste disposing and POPs accumulation, DNA lesions and dysregulation of multiple DNA damage repair mechanisms in the residents of the e-waste exposed region. - Highlights:

  1. Dynamic pathway of the photoinduced magnetic phase transition...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Dynamic pathway of the photoinduced magnetic phase transition of multiferroic TbMnO3 Wednesday, November 25, 2015 - 3:00pm SLAC, Redtail Hawk Conference Room 108A Speaker:...

  2. Protein Bridges DNA Base and Nucleotide Excision Repair Pathways

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... It turns out that ATL bridges two DNA repair pathways (base repair and nucleotide excision ... By mapping conservation of amino acid sequences between their ATL and sequences in other ...

  3. Competing Pathways for Nucleation of the Double Perovskite Structure...

    Office of Scientific and Technical Information (OSTI)

    Double Perovskite Structure in the Epitaxial Synthesis of La 2 MnNiO 6 Citation Details In-Document Search Title: Competing Pathways for Nucleation of the Double Perovskite ...

  4. Negotiating NORM cleanup and land use limits: Practical use of dose assessment and cost benefit analysis

    SciTech Connect

    Blanchard, A.D.H.

    1997-06-01

    Oil companies are presently faced with complex and costly environmental decisions, especially concerning NORM cleanup and disposal. Strict cleanup limits and disposal restrictions are established, in theory, to protect public health and environment. While public health is directly measured in terms of dose (mrem/yr), most NORM regulations adopt soil concentration limits to ensure future public health is maintained. These derived soil limits create the potential for unnecessary burden to operators without additional health benefit to society. Operators may use a dose assessment to show direct compliance with dose limits, negotiating less restrictive cleanup levels and land use limits. This paper discusses why a dose assessment is useful to Oilfield operators, NORM exposure scenarios and pathways, assessment advantages, variables and recommendations and one recent dose assessment application. Finally, a cost benefit analysis tool for regulatory negotiations will be presented allowing comparison of Oilfield NORM health benefit costs to that of other industries. One use for this tool--resulting in the savings of approximately $100,000--will be discussed.

  5. AIR AND RADON PATHWAY MODELING FOR THE F-AREA TANK FARM

    SciTech Connect

    Dixon, K; Mark Phifer, M

    2007-09-17

    The F-Area Tank Farm (FTF) is located within F-Area in the General Separations Area (GSA) of the Savannah River Site (SRS) as seen in Figure 1. The GSA contains the F and H Area Separations Facilities, the S-Area Defense Waste Processing Facility, the Z-Area Saltstone Facility, and the E-Area Low-Level Waste Disposal Facilities. The FTF is a nearly rectangular shaped area and comprises approximately 20 acres, which is bounded by SRS coordinates N 76,604.5 to N 77,560.0 and E 52,435.0 to E 53,369.0. SRS is in the process of preparing a Performance Assessment (PA) to support FTF closure. As part of the PA process, an analysis was conducted to evaluate the potential magnitude of gaseous release of radionuclides from the FTF over the 100-year institutional control period and 10,000-year post-closure compliance period. Specifically, an air and radon pathways analysis has been conducted to estimate the flux of volatile radionuclides and radon at the ground surface due to residual waste remaining in the tanks following closure. This analysis was used as the basis to estimate the dose to the maximally exposed individual (MEI) for the air pathway per Curie (Ci) of each radionuclide remaining in the combined FTF waste tanks. For the air pathway analysis, several gaseous radionuclides were considered. These included carbon-14 (C-14), chlorine-36 (Cl-36), iodine-129 (I-129), selenium-79 (Se-79), antimony-125 (Sb-125), tin-126 (Sn-126), tritium (H-3), and technetium-99 (Tc-99). The dose to the MEI was estimated at the SRS Boundary during the 100 year institutional control period. For the 10,000 year post closure compliance period, the dose to the MEI was estimated at the 100 m compliance point. For the radon pathway analysis, five parent radionuclides and their progeny were analyzed. These parent radionuclides included uranium-238 (U-238), plutonium-238 (Pu-238), uranium-234 (U-234), thorium-230 (Th-230), and radium-226 (Ra-226). The peak flux of radon-222 due to each parent

  6. NREL: Hydrogen and Fuel Cells Research - Pathways to Renewable Hydrogen

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Video (Text Version) Pathways to Renewable Hydrogen Video (Text Version) Below is the text version of the Pathways to Renewable Hydrogen video. Voiceover: It is the most plentiful element in the universe and it's a key component in the suite of renewable options needed as we transition to a cleaner, more secure energy strategy. Keith Wipke: Hydrogen is a really important part of the portfolio of our energy in this country. Voiceover: In nature hydrogen is combined with other elements but,

  7. Metabolic Pathways and Metabolic Engineering | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Metabolic Pathways and Metabolic Engineering Metabolic Pathways and Metabolic Engineering Presentation by Adam Guss, Oak Ridge National Laboratory, at the Biological Hydrogen Production Workshop held September 24-25, 2013, at the National Renewable Energy Laboratory in Golden, Colorado. bio_h2_workshop_guss.pdf (429.35 KB) More Documents & Publications The Hydrogen Program at NREL: A Brief Overview Anaerobic Digestion (AD): not only methane 2013 Biological Hydrogen Production Workshop

  8. 2010 Pathways to Commercial Success: Technologies and Products Supported by

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    the Fuel Cell Technologies Program | Department of Energy Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program 2010 Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program This FY 2010 report updates the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Fuel Cell Technologies Office

  9. 2011 Pathways to Commercial Success: Technologies and Products Supported by

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    the Fuel Cell Technologies Program | Department of Energy Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program 2011 Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program This FY 2011 report updates the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Fuel Cell Technologies Office

  10. 2012 Pathways to Commercial Success: Technologies and Products Supported by

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    the Fuel Cell Technologies Program | Department of Energy Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program 2012 Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program This FY 2012 report updates the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Fuel Cell Technologies Office

  11. 2013 Pathways to Commercial Success: Technologies and Products Supported by

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    the Fuel Cell Technologies Office | Department of Energy Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Office 2013 Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Office This FY 2013 report updates the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Fuel Cell Technologies Office and

  12. 2014 Pathways to Commercial Success: Technologies and Products Supported by

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    the Fuel Cell Technologies Office | Department of Energy Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Office 2014 Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Office This FY 2014 report updates the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Fuel Cell Technologies Office and

  13. Pathways to Solar Hydrogen Technologies (Leiden, The Netherlands) - JCAP

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Pathways to Solar Hydrogen Technologies (Leiden, The Netherlands) Pathways to Solar Hydrogen Technologies (Leiden, The Netherlands) Mon, Jun 13, 2016 11:30am 11:30 Fri, Jun 17, 2016 12:30pm 12:30 Lorentz Center, Leiden, The Netherlands Frances Houle, "Materials Research toward Technology Development" May 29 229th Electrochemical Society (ECS) Meeting (San Diego, CA) June 14 20th Annual Green Chemistry & Engineering Conference (Portland, OR

  14. 2015 Pathways to Commercial Success: Technologies and Products Supported by

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    the Fuel Cell Technologies Office | Department of Energy Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Office 2015 Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Office This 2015 report updates the results of an effort to identify and document the commercial and emerging (projected to be commercialized within the next 3 to 5 years) hydrogen and fuel cell technologies and products that

  15. Simplified Protein Models: Predicting Folding Pathways and Structure Using

    Office of Scientific and Technical Information (OSTI)

    Amino Acid Sequences (Journal Article) | DOE PAGES Simplified Protein Models: Predicting Folding Pathways and Structure Using Amino Acid Sequences Title: Simplified Protein Models: Predicting Folding Pathways and Structure Using Amino Acid Sequences Authors: Adhikari, Aashish N. ; Freed, Karl F. ; Sosnick, Tobin R. Publication Date: 2013-07-11 OSTI Identifier: 1103786 Type: Publisher's Accepted Manuscript Journal Name: Physical Review Letters Additional Journal Information: Journal Volume:

  16. Expansion of Signal Transduction Pathways in Fungi by Extensive Genome

    Office of Scientific and Technical Information (OSTI)

    Duplication (Journal Article) | DOE PAGES Expansion of Signal Transduction Pathways in Fungi by Extensive Genome Duplication This content will become publicly available on June 20, 2017 Title: Expansion of Signal Transduction Pathways in Fungi by Extensive Genome Duplication Authors: Corrochano, Luis M. ; Kuo, Alan ; Marcet-Houben, Marina ; Polaino, Silvia ; Salamov, Asaf ; Villalobos-Escobedo, José M. ; Grimwood, Jane ; Álvarez, M. Isabel ; Avalos, Javier ; Bauer, Diane ; Benito, Ernesto

  17. Energy/National Nuclear Security Administration (NNSA) Career Pathways

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Program | Department of Energy Graduates » Energy/National Nuclear Security Administration (NNSA) Career Pathways Program Energy/National Nuclear Security Administration (NNSA) Career Pathways Program Intern Program The intern program allows students taking at least a half-time course load in an accredited high school, home schooling program, technical school, vocational school, two- or four- year college or university, or graduate or professional school to be part of a cooperative-learning

  18. Catalytic Upgrading of Sugars to Hydrocarbons Technology Pathway

    SciTech Connect

    Biddy, M.; Jones, S.

    2013-03-01

    This technology pathway case investigates the catalytic conversion of solubilized carbohydrate streams to hydrocarbon biofuels, utilizing data from recent efforts within the National Advanced Biofuels Consortium (NABC) in collaboration with Virent, Inc. Technical barriers and key research needs that should be pursued for the catalytic conversion of sugars pathway to be competitive with petroleum-derived gasoline-, diesel-, and jet-range hydrocarbon blendstocks have been identified.

  19. Hawaii Clean Energy Initiative Scenario Analysis

    Energy.gov [DOE]

    Analysis of potential policy options to help the state reach the 70% Hawaii Clean Energy Initiative (HCEI) goal, including possible pathways to attain the goal based on currently available technology.

  20. Bioscience: Bioenergy, Biosecurity, and Health

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Bioscience: Bioenergy, Biosecurity, and Health science-innovationassetsimagesicon-science.jpg Bioscience: Bioenergy, Biosecurity, and Health Los Alamos scientists are ...

  1. Competing retention pathways of uranium upon reaction with Fe(II)

    SciTech Connect

    Massey, Michael S.; Lezama Pacheco, Juan S.; Jones, Morris; Ilton, Eugene S.; Cerrato, Jose M.; Bargar, John R.; Fendorf, Scott

    2014-10-01

    Biogeochemical retention processes, including adsorption, reductive precipitation, and incorporation into host minerals, are important in contaminant transport, remediation, and geologic deposition of uranium. Recent work has shown that U can become incorporated into iron (hydr)oxide minerals, with a key pathway arising from Fe(II)-induced transformation of ferrihydrite, (Fe(OH)3nH2O) to goethite (?-FeO(OH)); this is a possible U retention mechanism in soils and sediments. Several key questions, however, remain unanswered regarding U incorporation into iron (hydr)oxides and this pathways contribution to U retention, including: (i) the competitiveness of U incorporation versus reduction to U(IV) and subsequent precipitation of UO2; (ii) the oxidation state of incorporated U; (iii) the effects of uranyl aqueous speciation on U incorporation; and, (iv) the mechanism of U incorporation. Here we use a series of batch reactions conducted at pH ~7, [U(VI)] from 1 to 170 ?M, [Fe(II)] from 0 to 3 mM, and [Ca] at 0 or 4 mM) coupled with spectroscopic examination of reaction products of Fe(II)-induced ferrihydrite transformation to address these outstanding questions. Uranium retention pathways were identified and quantified using extended x-ray absorption fine structure (EXAFS) spectroscopy, x-ray powder diffraction, x-ray photoelectron spectroscopy, and transmission electron microscopy. Analysis of EXAFS spectra showed that 14 to 89% of total U was incorporated into goethite, upon reaction with Fe(II) and ferrihydrite. Uranium incorporation was a particularly dominant retention pathway at U concentrations ? 50 ?M when either uranyl-carbonato or calcium-uranyl-carbonato complexes were dominant, accounting for 64 to 89% of total U. With increasing U(VI) and Fe(II) concentrations, U(VI) reduction to U(IV) became more prevalent, but U incorporation remained a functioning retention pathway. These findings highlight the potential importance of U(V) incorporation within iron

  2. The minute virus of mice exploits different endocytic pathways for cellular uptake

    SciTech Connect

    Garcin, Pierre O.; Panté, Nelly

    2015-08-15

    The minute virus of mice, prototype strain (MVMp), is a non-enveloped, single-stranded DNA virus of the family Parvoviridae. Unlike other parvoviruses, the mechanism of cellular uptake of MVMp has not been studied in detail. We analyzed MVMp endocytosis in mouse LA9 fibroblasts and a tumor cell line derived from epithelial–mesenchymal transition through polyomavirus middle T antigen transformation in transgenic mice. By a combination of immunofluorescence and electron microscopy, we found that MVMp endocytosis occurs at the leading edge of migrating cells in proximity to focal adhesion sites. By using drug inhibitors of various endocytic pathways together with immunofluorescence microscopy and flow cytometry analysis, we discovered that MVMp can use a number of endocytic pathways, depending on the host cell type. At least three different mechanisms were identified: clathrin-, caveolin-, and clathrin-independent carrier-mediated endocytosis, with the latter occurring in transformed cells but not in LA9 fibroblasts. - Highlights: • MVMp uptake takes place at the leading edge of migrating cells. • MVMp exploits a variety of endocytic pathways. • MVMp could use clathrin- and caveolin-mediated endocytosis. • MVMp could also use clathrin-independent carriers for cellular uptake.

  3. BFV activates the NF-kappaB pathway through its transactivator (BTas) to enhance viral transcription

    SciTech Connect

    Wang Jian; Tan Juan; Zhang Xihui; Guo Hongyan; Zhang Qicheng; Guo Tingting; Geng Yunqi; Qiao Wentao

    2010-05-10

    Multiple families of viruses have evolved sophisticated strategies to regulate nuclear factor-kappaB (NF-kappaB) signaling, which plays a pivotal role in diverse cellular events, including virus-host interactions. In this study, we report that bovine foamy virus (BFV) is able to activate the NF-kappaB pathway through the action of its transactivator, BTas. Both cellular IKKbeta and IkappaBalpha also participate in this activation. In addition, we demonstrate that BTas induces the processing of p100, which implies that BTas can activate NF-kappaB through a noncanonical pathway as well. Co-immunoprecipitation analysis shows that BTas interacts with IKK catalytic subunits (IKKalpha and IKKbeta), which may be responsible for regulation of IKK kinase activity and persistent NF-kappaB activation. Furthermore, our results indicate that the level of BTas-mediated LTR transcription correlates with the activity of cellular NF-kappaB. Together, this study suggests that BFV activates the NF-kappaB pathway through BTas to enhance viral transcription.

  4. ORISE: Health physics services

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Health physics services Nuclear power plant The Oak Ridge Institute for Science and Education (ORISE) offers comprehensive health physics services in a number of technical areas for the U.S. Department of Energy (DOE) and U.S. Nuclear Regulatory Commission (NRC), as well as other federal and state agencies. From radiological facility audits and reviews to dose modeling and technical evaluations, ORISE is nationally-recognized for its health physics support to decontamination and decommissioning

  5. Hydrogen Pathways: Cost, Well-to-Wheels Energy Use, and Emissions...

    Energy.gov [DOE] (indexed site)

    emission benefits of the seven hydrogen production, delivery, and distribution pathways. ... Hydrogen Pathways: Cost, Well-to-Wheels Energy Use, and Emissions for the Current ...

  6. Bioenergy Technologies Office R&D Pathways: Ex-Situ Catalytic...

    Energy.gov [DOE] (indexed site)

    Documents & Publications Bioenergy Technologies Office R&D Pathways: In-Situ Catalytic Fast Pyrolysis Bioenergy Technologies Office R&D Pathways: Fast Pyrolysis and Hydroprocessing

  7. Bioenergy Technologies Office R&D Pathways: In-Situ Catalytic...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Documents & Publications Bioenergy Technologies Office R&D Pathways: Ex-Situ Catalytic Fast Pyrolysis Bioenergy Technologies Office R&D Pathways: Fast Pyrolysis and Hydroprocessing

  8. ORISE: Health physics services

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Health physics services Nuclear power plant The Oak Ridge Institute for Science and ... Nuclear power plant Dose modeling and sssessments We perform dose modeling and assessment ...

  9. Pathway structure determination in complex stochastic networks with non-exponential dwell times

    SciTech Connect

    Li, Xin; Kolomeisky, Anatoly B.; Valleriani, Angelo

    2014-05-14

    Analysis of complex networks has been widely used as a powerful tool for investigating various physical, chemical, and biological processes. To understand the emergent properties of these complex systems, one of the most basic issues is to determine the structure and topology of the underlying networks. Recently, a new theoretical approach based on first-passage analysis has been developed for investigating the relationship between structure and dynamic properties for network systems with exponential dwell time distributions. However, many real phenomena involve transitions with non-exponential waiting times. We extend the first-passage method to uncover the structure of distinct pathways in complex networks with non-exponential dwell time distributions. It is found that the analysis of early time dynamics provides explicit information on the length of the pathways associated to their dynamic properties. It reveals a universal relationship that we have condensed in one general equation, which relates the number of intermediate states on the shortest path to the early time behavior of the first-passage distributions. Our theoretical predictions are confirmed by extensive Monte Carlo simulations.

  10. Virtual Institute of Microbial Stress and Survival: Deduction of Stress Response Pathways in Metal and Radionuclide Reducing Microorganisms

    SciTech Connect

    2004-04-17

    The projects application goals are to: (1) To understand bacterial stress-response to the unique stressors in metal/radionuclide contamination sites; (2) To turn this understanding into a quantitative, data-driven model for exploring policies for natural and biostimulatory bioremediation; (3) To implement proposed policies in the field and compare results to model predictions; and (4) Close the experimental/computation cycle by using discrepancies between models and predictions to drive new measurements and construction of new models. The projects science goals are to: (1) Compare physiological and molecular response of three target microorganisms to environmental perturbation; (2) Deduce the underlying regulatory pathways that control these responses through analysis of phenotype, functional genomic, and molecular interaction data; (3) Use differences in the cellular responses among the target organisms to understand niche specific adaptations of the stress and metal reduction pathways; (4) From this analysis derive an understanding of the mechanisms of pathway evolution in the environment; and (5) Ultimately, derive dynamical models for the control of these pathways to predict how natural stimulation can optimize growth and metal reduction efficiency at field sites.

  11. Dioscin inhibits colon tumor growth and tumor angiogenesis through regulating VEGFR2 and AKT/MAPK signaling pathways

    SciTech Connect

    Tong, Qingyi; Qing, Yong; Wu, Yang; Hu, Xiaojuan; Jiang, Lei; Wu, Xiaohua

    2014-12-01

    Dioscin has shown cytotoxicity against cancer cells, but its in vivo effects and the mechanisms have not elucidated yet. The purpose of the current study was to assess the antitumor effects and the molecular mechanisms of dioscin. We showed that dioscin could inhibit tumor growth in vivo and has no toxicity at the test condition. The growth suppression was accompanied by obvious blood vessel decrease within solid tumors. We also found dioscin treatment inhibited the proliferation of cancer and endothelial cell lines, and most sensitive to primary cultured human umbilical vein endothelial cells (HUVECs). What's more, analysis of HUVECs migration, invasion, and tube formation exhibited that dioscin has significantly inhibitive effects to these actions. Further analysis of blood vessel formation in the matrigel plugs indicated that dioscin could inhibit VEGF-induced blood vessel formation in vivo. We also identified that dioscin could suppress the downstream protein kinases of VEGFR2, including Src, FAK, AKT and Erk1/2, accompanied by the increase of phosphorylated P38MAPK. The results potently suggest that dioscin may be a potential anticancer drug, which efficiently inhibits angiogenesis induced by VEGFR2 signaling pathway as well as AKT/MAPK pathways. - Highlights: • Dioscin inhibits tumor growth in vivo and does not exhibit any toxicity. • Dioscin inhibits angiogenesis within solid tumors. • Dioscin inhibits the proliferation, migration, invasion, and tube formation of HUVECs. • Dioscin inhibits VEGF–induced blood vessel formation in vivo. • Dioscin inhibits VEGFR2 signaling pathway as well as AKT/MAPK pathway.

  12. Pollutant transfer through air and water pathways in an urban environment

    SciTech Connect

    Brown, M.; Burian, S.; McPherson, T.; Streit, G.; Costigan, K.; Greene, B.

    1998-12-31

    The authors are attempting to simulate the transport and fate of pollutants through air and water pathways in an urban environment. This cross-disciplinary study involves linking together models of mesoscale meteorology, air pollution chemistry and deposition, urban runoff and stormwater transport, water quality, and wetland chemistry and biology. The authors are focusing on the transport and fate of nitrogen species because (1) they track through both air and water pathways, (2) the physics, chemistry, and biology of the complete cycle is not well understood, and (3) they have important health, local ecosystem, and global climate implications. The authors will apply their linked modeling system to the Los Angeles basin, following the fate of nitrates from their beginning as nitrate-precursors produced by auto emissions and industrial processes, tracking their dispersion and chemistry as they are transported by regional winds and eventually wet or dry deposit on the ground, tracing their path as they are entrained into surface water runoff during rain events and carried into the stormwater system, and then evaluating their impact on receiving water bodies such as wetlands where biologically-mediated chemical reactions take place. In this paper, the authors wish to give an overview of the project and at the conference show preliminary results.

  13. Safety and Health

    Energy.gov [DOE]

    PPPO’s Safety and Health (S&H) program integrates safety and health requirements and controls into all work activities and oversees implementation of Integrated Safety Management (ISM) within contractor activities to ensure protection to workers, the public, and the environment.

  14. Developmental defects in zebrafish for classification of EGF pathway inhibitors

    SciTech Connect

    Pruvot, Benoist; Curé, Yoann; Djiotsa, Joachim; Voncken, Audrey; Muller, Marc

    2014-01-15

    One of the major challenges when testing drug candidates targeted at a specific pathway in whole animals is the discrimination between specific effects and unwanted, off-target effects. Here we used the zebrafish to define several developmental defects caused by impairment of Egf signaling, a major pathway of interest in tumor biology. We inactivated Egf signaling by genetically blocking Egf expression or using specific inhibitors of the Egf receptor function. We show that the combined occurrence of defects in cartilage formation, disturbance of blood flow in the trunk and a decrease of myelin basic protein expression represent good indicators for impairment of Egf signaling. Finally, we present a classification of known tyrosine kinase inhibitors according to their specificity for the Egf pathway. In conclusion, we show that developmental indicators can help to discriminate between specific effects on the target pathway from off-target effects in molecularly targeted drug screening experiments in whole animal systems. - Highlights: • We analyze the functions of Egf signaling on zebrafish development. • Genetic blocking of Egf expression causes cartilage, myelin and circulatory defects. • Chemical inhibition of Egf receptor function causes similar defects. • Developmental defects can reveal the specificity of Egf pathway inhibitors.

  15. Health impact assessment in planning: Development of the design for health HIA tools

    SciTech Connect

    Forsyth, Ann; Slotterback, Carissa Schively; Krizek, Kevin J.

    2010-01-15

    How can planners more systematically incorporate health concerns into practical planning processes? This paper describes a suite of health impact assessment tools (HIAs) developed specifically for planning practice. Taking an evidence-based approach the tools are designed to fit into existing planning activities. The tools include: a short audit tool, the Preliminary Checklist; a structured participatory workshop, the Rapid HIA; an intermediate health impact assessment, the Threshold Analysis; and a set of Plan Review Checklists. This description provides a basis for future work including assessing tool validity, refining specific tools, and creating alternatives.

  16. Towards repurposing the yeast peroxisome for compartmentalizing heterologous metabolic pathways

    DOE PAGES [OSTI]

    DeLoache, William C.; Russ, Zachary N.; Dueber, John E.

    2016-03-30

    Compartmentalization of enzymes into organelles is a promising strategy for limiting metabolic crosstalk and improving pathway efficiency, but improved tools and design rules are needed to make this strategy available to more engineered pathways. Here we focus on the Saccharomyces cerevisiae peroxisome and develop a sensitive high-throughput assay for peroxisomal cargo import. We identify an enhanced peroxisomal targeting signal type 1 (PTS1) for rapidly sequestering non-native cargo proteins. Additionally, we perform the first systematic in vivo measurements of nonspecific metabolite permeability across the peroxisomal membrane using a polymer exclusion assay. Finally, we apply these new insights to compartmentalize a two-enzymemore » pathway in the peroxisome and characterize the expression regimes where compartmentalization leads to improved product titre. Lastly, this work builds a foundation for using the peroxisome as a synthetic organelle, highlighting both promise and future challenges on the way to realizing this goal.« less

  17. In-Situ Catalytic Fast Pyrolysis Technology Pathway

    SciTech Connect

    Biddy, Mary J.; Dutta, Abhijit; Jones, Susanne B.; Meyer, Pimphan A.

    2013-03-31

    In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to hydrocarbon fuels to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This pathway case investigates converting woody biomass using in-situ catalytic fast pyrolysis followed by upgrading to gasoline, diesel, and jet range blendstocks. Technical barriers and key research needs that should be pursued for this pathway to be competitive with petroleum-derived blendstocks have been identified.

  18. Ex-Situ Catalytic Fast Pyrolysis Technology Pathway

    SciTech Connect

    Biddy, Mary J.; Dutta, Abhijit; Jones, Susanne B.; Meyer, Pimphan A.

    2013-03-31

    In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to hydrocarbon fuels to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This pathway case investigates converting woody biomass using ex-situ catalytic fast pyrolysis followed by upgrading to gasoline , diesel and jet range blendstocks . Technical barriers and key research needs that should be pursued for this pathway to be competitive with petroleum-derived blendstocks have been identified.

  19. Biological Conversion of Sugars to Hydrocarbons Technology Pathway

    SciTech Connect

    Davis, Ryan; Biddy, Mary J.; Tan, Eric; Tao, Ling; Jones, Susanne B.

    2013-03-31

    In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This technology pathway case investigates the biological conversion of biomass derived sugars to hydrocarbon biofuels, utilizing data from recent literature references and information consistent with recent pilot scale demonstrations at NREL. Technical barriers and key research needs have been identified that should be pursued for the pathway to become competitive with petroleum-derived gasoline, diesel and jet range hydrocarbon blendstocks.

  20. Catalytic Upgrading of Sugars to Hydrocarbons Technology Pathway

    SciTech Connect

    Biddy, Mary J.; Jones, Susanne B.

    2013-03-31

    In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to hydrocarbon fuels to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This technology pathway case investigates the catalytic conversion of solubilized carbohydrate streams to hydrocarbon biofuels, utilizing data from recent efforts within the National Advanced Biofuels Consortium (NABC) in collaboration with Virent, Inc.. Technical barriers and key research needs that should be pursued for the catalytic conversion of sugars pathway to be competitive with petroleum-derived gasoline, diesel and jet range hydrocarbon blendstocks have been identified.

  1. Algal Lipid Extraction and Upgrading to Hydrocarbons Technology Pathway

    SciTech Connect

    Davis, Ryan; Biddy, Mary J.; Jones, Susanne B.

    2013-03-31

    In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This technology pathway case investigates the cultivation of algal biomass followed by further lipid extraction and upgrading to hydrocarbon biofuels. Technical barriers and key research needs have been assessed in order for the algal lipid extraction and upgrading pathway to be competitive with petroleum-derived gasoline, diesel and jet range hydrocarbon blendstocks.

  2. Heterologous protein production using the twin arginine translocation pathway

    DOEpatents

    Pohlschroder, Mechtild; Kissinger, Jessica C; Rose, R. Wesley; Brueser, Thomas; Dilks, Kieran

    2008-11-04

    Provided are means for evaluating and identifying putative substrates of the twin arginine translocation (Tat) secretory pathway in Streptomyces and other bacterial species. Also provided, therefore, are simple ways to express, secrete and purify correctly folded heterologous proteins on a large scale using host microorganisms, such as, Streptomyces and the Tat pathway therein. Many of the thus-produced proteins are of significant therapeutic value in the pharmaceutical and biochemical industries, particularly when they can be secreted from the host in fully-folded active form. Accordingly, there are further provided the heterologous proteins produced by the Tat secretion pathway using the foregoing methods, and the computer algorithm used to identify the Tat signal sequence and putative substrates.

  3. ORISE: Health Communication and Training

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Oak Ridge Institute for Science Education Health Communication, Marketing and Training Health communication, marketing and training services are provided through ORAU, the managing contractor of DOE's Oak Ridge Institute for Science and Education. ORAU blends communication, marketing, and technical training skills with public health, preparedness, epidemiology and environmental health, and cutting edge technology to develop communication programs that inform the public and equip health

  4. Natural Gas Pathways and Fuel Economy Guide Comparison

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    I presentation slides: Natural Gas pathways and Fuel economy Guide Comparison Bob Wimmer, Toyota Natural Gas Pathways Toyota estimation Vehicle Total Fuel efficiency Range Refueling Time processing production generation Mining/Liquefaction/Transportation NG Efficiency efficiency CNG 82% ※ ※ ※ ※ 34% × × × × = = = = CNG HV 28 % 250 Mi Minutes 60% ※ ※ ※ ※ × × × × Hydrogen 60% FCV = = = = 36 % 400 Mi Minutes 30% ※ ※ ※ ※ 81% × × × × = = = =

  5. Assessment of health risks of policies

    SciTech Connect

    Ádám, Balázs; Molnár, Ágnes; Ádány, Róza; Bianchi, Fabrizio; Bitenc, Katarina; Chereches, Razvan; Cori, Liliana; Fehr, Rainer; Kobza, Joanna; Kollarova, Jana; and others

    2014-09-15

    The assessment of health risks of policies is an inevitable, although challenging prerequisite for the inclusion of health considerations in political decision making. The aim of our project was to develop a so far missing methodological guide for the assessment of the complex impact structure of policies. The guide was developed in a consensual way based on experiences gathered during the assessment of specific national policies selected by the partners of an EU project. Methodological considerations were discussed and summarized in workshops and pilot tested on the EU Health Strategy for finalization. The combined tool, which includes a textual guidance and a checklist, follows the top-down approach, that is, it guides the analysis of causal chains from the policy through related health determinants and risk factors to health outcomes. The tool discusses the most important practical issues of assessment by impact level. It emphasises the transparent identification and prioritisation of factors, the consideration of the feasibility of exposure and outcome assessment with special focus on quantification. The developed guide provides useful methodological instructions for the comprehensive assessment of health risks of policies that can be effectively used in the health impact assessment of policy proposals. - Highlights: • Methodological guide for the assessment of health risks of policies is introduced. • The tool is developed based on the experiences from several case studies. • The combined tool consists of a textual guidance and a checklist. • The top-down approach is followed through the levels of the full impact chain. • The guide provides assistance for the health impact assessment of policy proposals.

  6. HPMC Occupational Health Services

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Food Safety WLC Play Featured Presentation November InsideOut WorkFit Training Event Calendar Site-Wide Health Fairs: MOVE December 1, 2016 Weight Loss Convoy Maintenance Meeting December 6, 2016 Convoy Alumni Meeting December 7, 2016 Site-Wide Health Fairs: MOVE December 8, 2016 WorkFit Leader Training December 14, 2016 The MOVE Challenge January 2, 2017 News and Information August 29, 2016 BE WELL Get Shots to Protect Your Health August 29, 2016 BE WELL Gear Up for Food Safety Infographic

  7. mir-30d Regulates multiple genes in the autophagy pathway and impairs autophagy process in human cancer cells

    SciTech Connect

    Yang, Xiaojun; Department of General Surgery, Gansu Provincial Hospital, Lanzhou, Gansu 710000 ; Zhong, Xiaomin; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011 ; Tanyi, Janos L.; Shen, Jianfeng; Xu, Congjian; Gao, Peng; Zheng, Tim M.; DeMichele, Angela; Zhang, Lin

    2013-02-15

    Highlights: ? Gene set enrichment analysis indicated mir-30d might regulate the autophagy pathway. ? mir-30d represses the expression of BECN1, BNIP3L, ATG12, ATG5 and ATG2. ? BECN1, BNIP3L, ATG12, ATG5 and ATG2 are direct targets of mir-30d. ? mir-30d inhibits autophagosome formation and LC3B-I conversion to LC3B-II. ? mir-30d regulates the autophagy process. -- Abstract: In human epithelial cancers, the microRNA (miRNA) mir-30d is amplified with high frequency and serves as a critical oncomir by regulating metastasis, apoptosis, proliferation, and differentiation. Autophagy, a degradation pathway for long-lived protein and organelles, regulates the survival and death of many cell types. Increasing evidence suggests that autophagy plays an important function in epithelial tumor initiation and progression. Using a combined bioinformatics approach, gene set enrichment analysis, and miRNA target prediction, we found that mir-30d might regulate multiple genes in the autophagy pathway including BECN1, BNIP3L, ATG12, ATG5, and ATG2. Our further functional experiments demonstrated that the expression of these core proteins in the autophagy pathway was directly suppressed by mir-30d in cancer cells. Finally, we showed that mir-30d regulated the autophagy process by inhibiting autophagosome formation and LC3B-I conversion to LC3B-II. Taken together, our results provide evidence that the oncomir mir-30d impairs the autophagy process by targeting multiple genes in the autophagy pathway. This result will contribute to understanding the molecular mechanism of mir-30d in tumorigenesis and developing novel cancer therapy strategy.

  8. Pathway Aggregation in the Risk Assessment of Proliferation Resistance and Physical Protection (PR&PP) of Nuclear Energy Systems

    SciTech Connect

    Aldemir, Tunc; Denning, Richard; Catalyurek, Umit; Yilmaz, Alper; Yue, Meng; Cheng, Lap-Yan

    2015-01-23

    The framework for Proliferation Resistance and Physical Protection (PR & PP) evaluation is to define a set of challenges, to obtain the system responses, and to assess the outcomes. The assessment of outcomes heavily relies on pathways, defined as sequences of events or actions that could potentially be followed by a State or a group of individuals in order to achieve a proliferation objective, with the defined threats as initiating events. There may be large number of segments connecting pathway stages (e.g. acquisition, processing, and fabrication for PR) which can lead to even larger number of pathways or scenarios through possible different combinations of segment connections, each with associated probabilities contributing to the overall risk. Clustering of these scenarios in specified stage attribute intervals is important for their tractable analysis and outcome assessment. A software tool for scenario generation and clustering (OSUPR) is developed that utilizes the PRCALC code developed at the Brookhaven National Laboratory for scenario generation and the K- means, mean shift and adaptive mean shift algorithms as possible clustering schemes. The results of the study using the Example Sodium Fast Breeder as an example system show that clustering facilitates the probabilistic or deterministic analysis of scenarios to identify system vulnerabilities and communication of the major risk contributors to stakeholders. The results of the study also show that the mean shift algorithm has the most potential for assisting the analysis of the scenarios generated by PRCALC.

  9. Bioenergy Technologies Office R&D Pathways: Algal Lipid Upgrading |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Algal Lipid Upgrading Bioenergy Technologies Office R&D Pathways: Algal Lipid Upgrading Algal lipid upgrading is one of eight priority pathways chosen to convert biomass into hydrocarbon fuels by the Bioenergy Technologies Office. These pathways were down-selected from an initial list of 18. Bioenergy Technologies Office R&D Pathways: Algal Lipid Upgrading (490.16 KB) More Documents & Publications Pathways for Algal Biofuels Algal Lipid Extraction and

  10. ORISE: Public Health Preparedness

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    FEMA Work Group Aimed at Helping the U.S. Prepare for a Radiation Emergency Travelers' Health Campaign Takes Critical Messages Worldwide ORISE Responds to H1N1 Outbreak,...

  11. Biosecurity and Health

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Biosecurity and Health Biosecurity and Health Los Alamos scientists are developing science and technology designed to battle pathogens responsible for causing disease epidemics, and extreme cases, pandemics. Contact Us Kirsten McCabe Emerging Threats Program Manager Email Andrew Bradbury Bioscience Group Leader Email Nick Hengartner Theoretical Biology and Biophysics Group Leader Email Rebecca McDonald Communication Specialist Email Projects in this subject area are concerned with countering

  12. Biosecurity and Public Health

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Biosecurity and Public Health Biosecurity and Public Health Los Alamos scientists are developing science and technology to improve pathogen detection, create better therapeutics, and anticipate-even prevent-epidemics and pandemics. Contact Us Group Leader Alina Deshpande Email Deputy Group Leader Jeanne Fair Email Group Office (505) 667-2690 Profile pages header Search our Profile pages Los Alamos scientist prepares a sample for screening in a flow cytometer. Ramesh Jha prepares a sample for

  13. DOE SMR Workshop- The Pathway to SMR Commercialization

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Office of Nuclear Energy held a workshop entitled "Pathway to Small Modular Reactor (SMR) Commercialization" on June 22-23, 2016 in North Bethesda, MD. The workshop was an industry-focused event that sought to identify a collaborative, public-private path forward to achieving the deployment of SMR technologies in the next decade.

  14. Roaming radical pathways for the decomposition of alkanes.

    SciTech Connect

    Harding, L. B.; Klippenstein, S. J.

    2010-01-01

    CASPT2 calculations predict the existence of roaming radical pathways for the decomposition of propane, n-butane, isobutane and neopentane. The roaming radical paths lead to the formation of an alkane and an alkene instead of the expected radical products. The predicted barriers for the roaming radical paths lie {approx}1 kcal/mol below the corresponding radical asymptotes.

  15. Browse by Discipline -- E-print Network Subject Pathways: Geosciences...

    Office of Scientific and Technical Information (OSTI)

    C. Rau) - Laboratory of Physical and Structural Biology, National Institute of Child Health and Human Development Rauchfuss, Thomas B. (Thomas B. Rauchfuss) - Department of ...

  16. Browse by Discipline -- E-print Network Subject Pathways: Fossil...

    Office of Scientific and Technical Information (OSTI)

    National Institute of Standards and Technology (NIST), Biochemical Science Division, ForensicsHuman Identity Project Team National Institutes of Health, Laboratory of Functional ...

  17. Browse by Discipline -- E-print Network Subject Pathways: Fission...

    Office of Scientific and Technical Information (OSTI)

    Observation, Universiteit Twente Puterman, Martin L. (Martin L. Puterman) - Centre for Health Care Management, University of British Columbia Go back to Individual Researchers ...

  18. Browse by Discipline -- E-print Network Subject Pathways: Physics...

    Office of Scientific and Technical Information (OSTI)

    for Spoken Language Understanding & Division of Biomedical Computer Science, Oregon Health and Science University Kaiser, Todd J. (Todd J. Kaiser) - Electrical and Computer ...

  19. Browse by Discipline -- E-print Network Subject Pathways: Fossil...

    Office of Scientific and Technical Information (OSTI)

    Baylor College of Medicine Mirny, Leonid (Leonid Mirny) - Harvard-MIT Division of Health Sciences and Technology & Department of Physics, Massachusetts Institute of Technology ...

  20. Environment/Health/Safety Concerns

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    EHS Emergencies Report AccidentIncident Stop Work Policy Environment, Health & Safety Concerns hardhat Environment Health Safety Concerns construction workers If you have a...

  1. ORISE: Applied health physics projects

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Applied health physics projects The Oak Ridge Institute for Science and Education (ORISE) provides applied health physics services to government agencies needing technical support ...

  2. Health assessment for Stringfellow, Glen Avon, California, Region 9. CERCLIS No. CAT08001286. Final report

    SciTech Connect

    Not Available

    1989-05-25

    The Stringfellow Hazardous Waste site lies at the head of the Pyrite Canyon in Riverside County less than a mile north of the community of Glen Avon. The principal contaminants of concern in the ground water include trichloroethene (TCE), chloroform, chlorobenzene, dichlorobenzene, nitrate, sodium, sulfate, para-chlorobenzene sulfonic acid (p-CBSA), chromium, and cadmium. The principal environmental pathways for contaminant transport include ground water, surface water, soil, sediment, and air. The Pyrite Canyon portion of the site is of public health concern because of the risk to human health resulting from probable past and present exposure to hazardous substances that may result in adverse human health effects.

  3. Emergency Response Health Physics

    SciTech Connect

    Mena, RaJah; Pemberton, Wendy; Beal, William

    2012-05-01

    Health physics is an important discipline with regard to understanding the effects of radiation on human health; however, there are major differences between health physics for research or occupational safety and health physics during a large-scale radiological emergency. The deployment of a U.S. Department of Energy/National Nuclear Security Administration (DOE/NNSA) monitoring and assessment team to Japan in the wake of the March 2011 accident at Fukushima Daiichi Nuclear Power Plant yielded a wealth of lessons on these difference. Critical teams (CMOC (Consequence Management Outside the Continental U.S.) and CMHT (Consequence Management Home Team) ) worked together to collect, compile, review, and analyze radiological data from Japan to support the response needs of and answer questions from the Government of Japan, the U.S. military in Japan, the U.S. Embassy and U.S. citizens in Japan, and U.S. citizens in America. This paper addresses the unique challenges presented to the health physicist or analyst of radiological data in a large-scale emergency. A key lesson learned was that public perception and the availability of technology with social media requires a diligent effort to keep the public informed of the science behind the decisions in a manner that is meaningful to them.

  4. Security, Safety and Health

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    8, Fourth Quarter, 2012 www.fossil.energy.gov/news/energytoday.html HigHligHts inside 2 Security and Sustainability A Column from the FE Director of Health, Security, Safety and Health 4 Training Goes 3-D NETL's AVESTAR Center Deploys New Virtual Training System 5 Secretary Achievement Awards Two FE Teams Earn Secretary of Energy Recognition 7 Vast Energy Resource Identified FE Study Says Billions of Barrels of Oil in Residual Oil Zones 8 Presidential Award NETL-RUA Engineer Earns Highest

  5. Engineering Heteromaterials to Control Lithium Ion Transport Pathways

    SciTech Connect

    Liu, Yang; Vishniakou, Siarhei; Yoo, Jinkyoung; Dayeh, Shadi A.

    2015-12-21

    Safe and efficient operation of lithium ion batteries requires precisely directed flow of lithium ions and electrons to control the first directional volume changes in anode and cathode materials. Understanding and controlling the lithium ion transport in battery electrodes becomes crucial to the design of high performance and durable batteries. Recent work revealed that the chemical potential barriers encountered at the surfaces of heteromaterials play an important role in directing lithium ion transport at nanoscale. Here, we utilize in situ transmission electron microscopy to demonstrate that we can switch lithiation pathways from radial to axial to grain-by-grain lithiation through the systematic creation of heteromaterial combinations in the Si-Ge nanowire system. Lastly, our systematic studies show that engineered materials at nanoscale can overcome the intrinsic orientation-dependent lithiation, and open new pathways to aid in the development of compact, safe, and efficient batteries.

  6. Engineering Heteromaterials to Control Lithium Ion Transport Pathways

    DOE PAGES [OSTI]

    Liu, Yang; Vishniakou, Siarhei; Yoo, Jinkyoung; Dayeh, Shadi A.

    2015-12-21

    Safe and efficient operation of lithium ion batteries requires precisely directed flow of lithium ions and electrons to control the first directional volume changes in anode and cathode materials. Understanding and controlling the lithium ion transport in battery electrodes becomes crucial to the design of high performance and durable batteries. Recent work revealed that the chemical potential barriers encountered at the surfaces of heteromaterials play an important role in directing lithium ion transport at nanoscale. Here, we utilize in situ transmission electron microscopy to demonstrate that we can switch lithiation pathways from radial to axial to grain-by-grain lithiation through themore » systematic creation of heteromaterial combinations in the Si-Ge nanowire system. Lastly, our systematic studies show that engineered materials at nanoscale can overcome the intrinsic orientation-dependent lithiation, and open new pathways to aid in the development of compact, safe, and efficient batteries.« less

  7. Environment, Health, and Safety | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Environment, Health, Safety & Security Environment, Health, Safety & Security Worker Safety and Health Training at Oak Ridge Operations Office on December 5 - 8, 2016 Worker Safety and Health Training at Oak Ridge Operations Office on December 5 - 8, 2016 The Office of Worker Safety and Health Policy will provide OSHA 30-hour Construction Safety training to 25 individuals at the Oak Ridge Operations Office. Read more 2016 DOE Analytical Services Program Workshop 2016 DOE Analytical

  8. NREL Examines Solar Policy Pathways for States - News Releases | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    NREL Examines Solar Policy Pathways for States February 26, 2014 The Energy Department's National Renewable Energy Laboratory (NREL) has published a report that aligns solar policy and market success with state demographics. By organizing the 48 contiguous states into four peer groups based on shared non-policy characteristics, the NREL research team was able to contextualize the impact of various solar policies on photovoltaic (PV) installations. "Although it is widely accepted that solar

  9. Microsoft PowerPoint - HAB Cesium pathway latest.pptx

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Management for the Low Activity Waste Pretreatment System (LAWPS) David Bernhard ERWM Program Nez Perce Tribe P.O. Box 365 Lapwai, ID 83540 September 23, 2015 2 Outline * Reasons for not returning cesium to tanks. * Current ORP plans are the only path to make critical decision timeline for 2022 startup. * Cesium pathways considered for WSC, several possible waste types. * Possible change in cesium removal to increase efficiency; experimental but could likely work and has advantages. Would be

  10. Catalytic Upgrading of Sugars to Hydrocarbons Technology Pathway

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Catalytic Upgrading of Sugars to Hydrocarbons Technology Pathway Mary Biddy National Renewable Energy Laboratory Susanne Jones Pacific Northwest National Laboratory NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC, under contract DE-AC36-08GO28308. Pacific Northwest National Laboratory is operated by Battelle for the United States Department of Energy under contract

  11. Ex-Situ Catalytic Fast Pyrolysis Technology Pathway

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Ex-Situ Catalytic Fast Pyrolysis Technology Pathway Mary Biddy and Abhijit Dutta National Renewable Energy Laboratory Susanne Jones and Aye Meyer Pacific Northwest National Laboratory NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC, under contract DE-AC36-08GO28308. Pacific Northwest National Laboratory is operated by Battelle for the United States Department of Energy under

  12. Non-Equilibrium Pathways during Electrochemical Phase Transformations in

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Single Crystals Revealed by Dynamic Chemical Imaging at Nanoscale Resolution | Stanford Synchrotron Radiation Lightsource Non-Equilibrium Pathways during Electrochemical Phase Transformations in Single Crystals Revealed by Dynamic Chemical Imaging at Nanoscale Resolution Friday, February 27, 2015 The energy density of current batteries is limited by the practical capacity of the positive electrode, which is the determined by the properties of the active material and its concentration in the

  13. Technology Improvement Pathway to Cost-effective Vehicle Electrification: Preprint

    Alternative Fuels and Advanced Vehicles Data Center

    454 February 2010 Technology Improvement Pathways to Cost-Effective Vehicle Electrification Preprint A. Brooker, M. Thornton, and J. Rugh National Renewable Energy Laboratory To be presented at SAE 2010 World Congress Detroit, Michigan April 13-15, 2010 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (ASE), a contractor of the US Government under Contract No. DE-AC36-08-GO28308. Accordingly, the US Government and ASE retain a

  14. Modeling most likely pathways for smuggling radioactive and special nuclear materials on a worldwide multi-modal transportation network

    SciTech Connect

    Saeger, Kevin J; Cuellar, Leticia

    2010-10-28

    Nuclear weapons proliferation is an existing and growing worldwide problem. To help with devising strategies and supporting decisions to interdict the transport of nuclear material, we developed the Pathway Analysis, Threat Response and Interdiction Options Tool (PATRIOT) that provides an analytical approach for evaluating the probability that an adversary smuggling radioactive or special nuclear material will be detected during transit. We incorporate a global, multi-modal transportation network, explicit representation of designed and serendipitous detection opportunities, and multiple threat devices, material types, and shielding levels. This paper presents the general structure of PATRIOT, all focuses on the theoretical framework used to model the reliabilities of all network components that are used to predict the most likely pathways to the target.

  15. Modeling most likely pathways for smuggling radioactive and special nuclear materials on a worldwide multimodal transportation network

    SciTech Connect

    Saeger, Kevin J; Cuellar, Leticia

    2010-01-01

    Nuclear weapons proliferation is an existing and growing worldwide problem. To help with devising strategies and supporting decisions to interdict the transport of nuclear material, we developed the Pathway Analysis, Threat Response and Interdiction Options Tool (PATRIOT) that provides an analytical approach for evaluating the probability that an adversary smuggling radioactive or special nuclear material will be detected during transit. We incorporate a global, multi-modal transportation network, explicit representation of designed and serendipitous detection opportunities, and multiple threat devices, material types, and shielding levels. This paper presents the general structure of PATRIOT, and focuses on the theoretical framework used to model the reliabilities of all network components that are used to predict the most likely pathways to the target.

  16. Transport Energy Impact Analysis; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    Gonder, J.

    2015-05-13

    Presented at the Sustainable Transportation Energy Pathways Spring 2015 Symposium on May 13, 2015, this presentation by Jeff Gonder of the National Renewable Energy Laboratory (NREL) provides information about NREL's transportation energy impact analysis of connected and automated vehicles.

  17. HotSpot Health Physics Codes

    Energy Science and Technology Software Center

    2013-04-18

    The HotSpot Health Physics Codes were created to provide emergency response personnel and emergency planners with a fast, field-portable set of software tools for evaluating insidents involving redioactive material. The software is also used for safety-analysis of facilities handling nuclear material. HotSpot provides a fast and usually conservative means for estimation the radiation effects associated with the short-term (less than 24 hours) atmospheric release of radioactive materials.

  18. HotSpot Health Physics Codes

    Energy Science and Technology Software Center

    2010-03-02

    The HotSpot Health Physics Codes were created to provide emergency response personnel and emergency planners with a fast, field-portable set of software tools for evaluating incidents involving radioactive material. The software is also used for safety-analysis of facilities handling nuclear material. HotSpot provides a fast and usually conservative means for estimation the radiation effects associated with the short-term (less than 24 hours) atmospheric release of radioactive materials.

  19. Brazil-Pathways to a Low Carbon Economy | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Pathways to a Low Carbon Economy Jump to: navigation, search Name Pathways to a Low Carbon Economy for Brazil AgencyCompany Organization McKinsey and Company Topics...

  20. Browse by Discipline -- E-print Network Subject Pathways: Power...

    Office of Scientific and Technical Information (OSTI)

    Y Z Xi, Weimin (Weimin Xi) - Department of Biological and Health Sciences, Texas A&M University at Kingsville Xu, Kehui "Kevin" (Kehui "Kevin" Xu) - Department of Marine Science, ...

  1. Browse by Discipline -- E-print Network Subject Pathways: Fossil...

    Office of Scientific and Technical Information (OSTI)

    Cui, Yan (Yan Cui) - Department of Molecular Sciences, University of Tennessee Health Science Center Go back to Individual Researchers Collections: A B C D E F G H I J K L ...

  2. Browse by Discipline -- E-print Network Subject Pathways: Fossil...

    Office of Scientific and Technical Information (OSTI)

    of Technology Vu, Tania (Tania Vu) - Division of Biomedical Engineering, Oregon Health and Science University Go back to Individual Researchers Collections: A B C D E F G H ...

  3. In-Situ Catalytic Fast Pyrolysis Technology Pathway | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    In-Situ Catalytic Fast Pyrolysis Technology Pathway In-Situ Catalytic Fast Pyrolysis Technology Pathway This technology pathway case investigates converting woody biomass using in-situ catalytic fast pyrolysis followed by upgrading to gasoline-, diesel-, and jet-range hydrocarbon blendstocks. Technical barriers and key research needs that should be pursued for this pathway to be competitive with petroleum-derived blendstocks have been identified. In-Situ Catalytic Fast Pyrolysis Technology

  4. Getting from here to there – energy technology transformation pathways in the EMF-27 scenarios

    SciTech Connect

    Krey, Volker; Luderer, Gunnar; Clarke, Leon E.; Kriegler, Elmar

    2014-04-01

    This apper discusses Getting from here to there – energy technology transformation pathways in the EMF-27 scenarios

  5. Bioenergy Technologies Office Conversion R&D Pathway: Syngas Upgrading to

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Hydrocarbon Fuels | Department of Energy Syngas Upgrading to Hydrocarbon Fuels Bioenergy Technologies Office Conversion R&D Pathway: Syngas Upgrading to Hydrocarbon Fuels Syngas upgrading to hydrocarbon fuels is one of eight priority pathways chosen to convert biomass into hydrocarbon fuels by the Bioenergy Technologies Office. These pathways were down-selected from an initial list of 18. Bioenergy Technologies Office Conversion R&D Pathway: Syngas Upgrading to Hydrocarbon Fuels

  6. Bioenergy Technologies Office Conversion R&D Pathway: Whole Algae

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Hydrothermal Liquefaction | Department of Energy Whole Algae Hydrothermal Liquefaction Bioenergy Technologies Office Conversion R&D Pathway: Whole Algae Hydrothermal Liquefaction Whole algae hydrothermal liquefaction is one of eight priority pathways chosen to convert biomass into hydrocarbon fuels by the Bioenergy Technologies Office. These pathways were down-selected from an initial list of 18. Bioenergy Technologies Office Conversion R&D Pathway: Whole Algae Hydrothermal

  7. A causal analysis framework for land-use change and the potential role of bioenergy policy

    DOE PAGES [OSTI]

    Efroymson, Rebecca A.; Kline, Keith L.; Angelsen, Arild; Verburg, Peter H.; Dale, Virginia H.; Langeveld, Johannes W. A.; McBride, Allen

    2016-10-05

    Here we propose a causal analysis framework to increase the reliability of land-use change (LUC) models and the accuracy of net greenhouse gas (GHG) emissions calculations for biofuels. The health-sciences-inspired framework is used here to determine probable causes of LUC, with an emphasis on bioenergy and deforestation. Calculations of net GHG emissions for LUC are critical in determining whether a fuel qualifies as a biofuel or advanced biofuel category under national (U.S., U.K.), state (California), and European Union regulations. Biofuel policymakers and scientists continue to discuss whether presumed indirect land-use change (ILUC) estimates, which often involve deforestation, should be includedmore » in GHG accounting for biofuel pathways. Current estimates of ILUC for bioenergy rely largely on economic simulation models that focus on causal pathways involving global commodity trade and use coarse land cover data with simple land classification systems. ILUC estimates are highly uncertain, partly because changes are not clearly defined and key causal links are not sufficiently included in the models. The proposed causal analysis framework begins with a definition of the change that has occurred and proceeds to a strength-of-evidence approach based on types of epidemiological evidence including plausibility of the relationship, completeness of the causal pathway, spatial co-occurrence, time order, analogous agents, simulation model results, and quantitative agent response relationships.Lastly, we discuss how LUC may be allocated among probable causes for policy purposes and how the application of the framework has the potential to increase the validity of LUC models and resolve ILUC and biofuel controversies.« less

  8. Enhancing a Pathway-Genome Database (PGDB) to Capture Subcellular Localization of Metabolites and Enzymes: The Nucleotide-Sugar Biosynthetic Pathways of Populus trichocarpa

    SciTech Connect

    Nag, A.; Karpinets, T. V.; Chang, C. H.; Bar-Peled, M.

    2012-01-01

    Understanding how cellular metabolism works and is regulated requires that the underlying biochemical pathways be adequately represented and integrated with large metabolomic data sets to establish a robust network model. Genetically engineering energy crops to be less recalcitrant to saccharification requires detailed knowledge of plant polysaccharide structures and a thorough understanding of the metabolic pathways involved in forming and regulating cell-wall synthesis. Nucleotide-sugars are building blocks for synthesis of cell wall polysaccharides. The biosynthesis of nucleotide-sugars is catalyzed by a multitude of enzymes that reside in different subcellular organelles, and precise representation of these pathways requires accurate capture of this biological compartmentalization. The lack of simple localization cues in genomic sequence data and annotations however leads to missing compartmentalization information for eukaryotes in automatically generated databases, such as the Pathway-Genome Databases (PGDBs) of the SRI Pathway Tools software that drives much biochemical knowledge representation on the internet. In this report, we provide an informal mechanism using the existing Pathway Tools framework to integrate protein and metabolite sub-cellular localization data with the existing representation of the nucleotide-sugar metabolic pathways in a prototype PGDB for Populus trichocarpa. The enhanced pathway representations have been successfully used to map SNP abundance data to individual nucleotide-sugar biosynthetic genes in the PGDB. The manually curated pathway representations are more conducive to the construction of a computational platform that will allow the simulation of natural and engineered nucleotide-sugar precursor fluxes into specific recalcitrant polysaccharide(s).

  9. Accident tolerant fuel analysis

    SciTech Connect

    Smith, Curtis; Chichester, Heather; Johns, Jesse; Teague, Melissa; Tonks, Michael Idaho National Laboratory; Youngblood, Robert

    2014-09-01

    Safety is central to the design, licensing, operation, and economics of Nuclear Power Plants (NPPs). Consequently, the ability to better characterize and quantify safety margin holds the key to improved decision making about light water reactor design, operation, and plant life extension. A systematic approach to characterization of safety margins and the subsequent margins management options represents a vital input to the licensee and regulatory analysis and decision making that will be involved. The purpose of the Risk Informed Safety Margin Characterization (RISMC) Pathway research and development (R&D) is to support plant decisions for risk-informed margins management by improving economics and reliability, and sustaining safety, of current NPPs. Goals of the RISMC Pathway are twofold: (1) Develop and demonstrate a risk-assessment method coupled to safety margin quantification that can be used by NPP decision makers as part of their margin recovery strategies. (2) Create an advanced ''RISMC toolkit'' that enables more accurate representation of NPP safety margin. In order to carry out the R&D needed for the Pathway, the Idaho National Laboratory is performing a series of case studies that will explore methods- and tools-development issues, in addition to being of current interest in their own right. One such study is a comparative analysis of safety margins of plants using different fuel cladding types: specifically, a comparison between current-technology Zircaloy cladding and a notional ''accident-tolerant'' (e.g., SiC-based) cladding. The present report begins the process of applying capabilities that are still under development to the problem of assessing new fuel designs. The approach and lessons learned from this case study will be included in future Technical Basis Guides produced by the RISMC Pathway. These guides will be the mechanism for developing the specifications for RISMC tools and for defining how plant decision makers should propose and

  10. Accident Tolerant Fuel Analysis

    SciTech Connect

    Curtis Smith; Heather Chichester; Jesse Johns; Melissa Teague; Michael Tonks; Robert Youngblood

    2014-09-01

    Safety is central to the design, licensing, operation, and economics of Nuclear Power Plants (NPPs). Consequently, the ability to better characterize and quantify safety margin holds the key to improved decision making about light water reactor design, operation, and plant life extension. A systematic approach to characterization of safety margins and the subsequent margins management options represents a vital input to the licensee and regulatory analysis and decision making that will be involved. The purpose of the Risk Informed Safety Margin Characterization (RISMC) Pathway research and development (R&D) is to support plant decisions for risk-informed margins management by improving economics and reliability, and sustaining safety, of current NPPs. Goals of the RISMC Pathway are twofold: (1) Develop and demonstrate a risk-assessment method coupled to safety margin quantification that can be used by NPP decision makers as part of their margin recovery strategies. (2) Create an advanced “RISMC toolkit” that enables more accurate representation of NPP safety margin. In order to carry out the R&D needed for the Pathway, the Idaho National Laboratory is performing a series of case studies that will explore methods- and tools-development issues, in addition to being of current interest in their own right. One such study is a comparative analysis of safety margins of plants using different fuel cladding types: specifically, a comparison between current-technology Zircaloy cladding and a notional “accident-tolerant” (e.g., SiC-based) cladding. The present report begins the process of applying capabilities that are still under development to the problem of assessing new fuel designs. The approach and lessons learned from this case study will be included in future Technical Basis Guides produced by the RISMC Pathway. These guides will be the mechanism for developing the specifications for RISMC tools and for defining how plant decision makers should propose and

  11. Health and safety

    SciTech Connect

    Snyder, K. )

    1990-05-01

    This article discusses health and safety in coal mines and the primary issues in this area during 1989. Particular attention is given to the employment figures as well as the fatality statistics. According to this article, employment was up during 1989 to approximately 164,000 workers as compared to 136,000 in 1969. Attention is also given to dealing with coal mining regulations as well as a crackdown on illegal operators in the industry.

  12. Rural health clinics infrastructure

    SciTech Connect

    Olson, K.

    1997-12-01

    The author discusses programs which were directed at the installation of photovoltaic power systems in rural health clinics. The objectives included: vaccine refrigeration; ice pack freezing; lighting; communications; medical appliances; sterilization; water purification; and income generation. The paper discusses two case histories, one in the Dominican Republic and one in Colombia. The author summarizes the results of the programs, both successes and failures, and offers an array of conclusions with regard to the implementation of future programs of this general nature.

  13. Operational health physics training

    SciTech Connect

    1992-06-01

    The initial four sections treat basic information concerning atomic structure and other useful physical quantities, natural radioactivity, the properties of {alpha}, {beta}, {gamma}, x rays and neutrons, and the concepts and units of radiation dosimetry (including SI units). Section 5 deals with biological effects and the risks associated with radiation exposure. Background radiation and man-made sources are discussed next. The basic recommendations of the ICRP concerning dose limitations: justification, optimization (ALARA concepts and applications) and dose limits are covered in Section seven. Section eight is an expanded version of shielding, and the internal dosimetry discussion has been extensively revised to reflect the concepts contained in the MIRD methodology and ICRP 30. The remaining sections discuss the operational health physics approach to monitoring radiation. Individual sections include radiation detection principles, instrument operation and counting statistics, health physics instruments and personnel monitoring devices. The last five sections deal with the nature of, operation principles of, health physics aspects of, and monitoring approaches to air sampling, reactors, nuclear safety, gloveboxes and hot cells, accelerators and x ray sources. Decontamination, waste disposal and transportation of radionuclides are added topics. Several appendices containing constants, symbols, selected mathematical topics, and the Chart of the Nuclides, and an index have been included.

  14. Health and Safety Research Division progress report, April 1, 1981-September 30, 1982

    SciTech Connect

    Not Available

    1983-02-01

    Research progress for the reporting period is briefly summarized for the following sections: (1) health studies, (2) technology assessments, (3) biological and radiation physics, (4) chemical physics, (5) Office of Risk Analysis, and (6) health and environmental risk and analysis. (ACR)

  15. Possible Pathways for Increasing Natural Gas Use for Transportation (Presentation)

    SciTech Connect

    Zigler, B.

    2014-10-01

    A collaborative partnership of DOE National Laboratories is working with DOE to identify critical RD&D needs to significantly increase the speed and breadth of NG uptake into the transportation sector. Drivers for increased utilization of natural gas for transportation are discussed. Key needs in research, development, and deployment are proposed, as well as possible pathways to address those needs. This presentation is intended to serve as a catalyst to solicit input from stakeholders regarding what technical areas they deem the most important.

  16. 2013 Pathways to Science Summit | Princeton Plasma Physics Lab

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Pathways to Science Summit View larger image IMG 2061 View larger image IMG 2063 View larger image IMG 2062 View larger image IMG 2067 View larger image IMG 2068 View larger image IMG 2069 View larger image IMG 2070 View larger image IMG 2073 View larger image IMG 2081 View larger image IMG 2085 View larger image IMG 2096 View larger image IMG 2101 View larger image IMG 2103 View larger image IMG 2104 View larger image IMG 2105 View larger image IMG 2106 View larger image IMG 2107

  17. Identifying Critical Pathways to High-Performance PV: Preprint

    SciTech Connect

    Symko-Davies, M.; Noufi, R.; Kurtz, S.

    2002-05-01

    This conference paper describes the High-Performance Photovoltaic (HiPerf PV)Project was initiated by the U.S. Department of Energy to substantially increase the viability of photovoltaics (PV) for cost-competitive applications so that PV can contribute significantly to our energy supply and our environment in the 21st century. To accomplish this, the NCPV directs in-house and subcontracted research in high-performance polycrystalline thin-film and multijunction concentrator devices. Details of the subcontractor and in-house progress will be described toward identifying critical pathways of 25% polycrystalline thin-film tandem cells and developing multijunction concentrator modules to 33%.

  18. STATEOFNEWMEXICO ENVIRONMENT DEPARTMENT ENVIRONMENTAL HEALTH...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    STATEOFNEWMEXICO ENVIRONMENT DEPARTMENT ENVIRONMENTAL HEALTH DIVISION, HAZARDOUS WASTE ... OF NEW MEXICO BEFORE THE SECRETARY OF ENVIRONMENT NEW MEXICO ENVIRONMENT DEPARTMENT, ...

  19. Health Effects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Health Effects Health Effects The U.S. Department of Energy (DOE) administers research programs and monitoring activities, both domestic and international, that support the protection and promotion of the health of DOE workers, their families, and residents of neighboring communities near DOE sites, affected by exposure to hazardous materials from DOE sites or a result of nuclear weapons testing, use or accident. Domestic health activities include studies of historical workplace exposures,

  20. "Protecting Public Health through Biosecurity"

    SciTech Connect

    Seiders, Barbara AB; Campbell, James R.

    2006-03-04

    "Protecting Public Health through Biosecurity" is an article writen for the Tri-City Herald newspaper special Progress Edition.

  1. Deep sequencing of the Camellia sinensis transcriptome revealed candidate genes for major metabolic pathways of tea-specific compounds

    SciTech Connect

    Shi, CY; Yang, H; Wei, CL; Yu, O; Zhang, ZZ; Sun, J; Wan, XC

    2011-01-01

    Tea is one of the most popular non-alcoholic beverages worldwide. However, the tea plant, Camellia sinensis, is difficult to culture in vitro, to transform, and has a large genome, rendering little genomic information available. Recent advances in large-scale RNA sequencing (RNA-seq) provide a fast, cost-effective, and reliable approach to generate large expression datasets for functional genomic analysis, which is especially suitable for non-model species with un-sequenced genomes. Using high-throughput Illumina RNA-seq, the transcriptome from poly (A){sup +} RNA of C. sinensis was analyzed at an unprecedented depth (2.59 gigabase pairs). Approximate 34.5 million reads were obtained, trimmed, and assembled into 127,094 unigenes, with an average length of 355 bp and an N50 of 506 bp, which consisted of 788 contig clusters and 126,306 singletons. This number of unigenes was 10-fold higher than existing C. sinensis sequences deposited in GenBank (as of August 2010). Sequence similarity analyses against six public databases (Uniprot, NR and COGs at NCBI, Pfam, InterPro and KEGG) found 55,088 unigenes that could be annotated with gene descriptions, conserved protein domains, or gene ontology terms. Some of the unigenes were assigned to putative metabolic pathways. Targeted searches using these annotations identified the majority of genes associated with several primary metabolic pathways and natural product pathways that are important to tea quality, such as flavonoid, theanine and caffeine biosynthesis pathways. Novel candidate genes of these secondary pathways were discovered. Comparisons with four previously prepared cDNA libraries revealed that this transcriptome dataset has both a high degree of consistency with previous EST data and an approximate 20 times increase in coverage. Thirteen unigenes related to theanine and flavonoid synthesis were validated. Their expression patterns in different organs of the tea plant were analyzed by RT-PCR and quantitative real

  2. Carlsbad Industrial Safety and Health PIA

    Energy Saver

    Career Pathways Frequently Asked Questions (FAQs) Career Pathways Frequently Asked Questions (FAQs) The following frequently asked questions were developed by OPM's Student Programs Office. They will clarify the use of the authority and assist managers, supervisors, and human resources professionals in effectively administering the Career Pathways Program. Career Pathways FAQs (343.17 KB) Responsible Contacts Kimberly Chappell SUPERVISORY HUMAN RESOURCES SPECIALIST E-mail

  3. Health and Safety Training Reciprocity

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    2014-04-14

    Establishes a policy for reciprocity of employee health and safety training among DOE entities responsible for employee health and safety at DOE sites and facilities to increase efficiency and effectiveness of Departmental operations while meeting established health and safety requirements. Does not cancel other directives.

  4. Pathway of Fermentative Hydrogen Production by Sulfate-reducing Bacteria

    SciTech Connect

    Wall, Judy D.

    2015-02-16

    Biofuels are a promising source of sustainable energy. Such biofuels are intermediate products of microbial metabolism of renewable substrates, in particular, plant biomass. Not only are alcohols and solvents produced in this degradative process but energy-rich hydrogen as well. Non photosynthetic microbial hydrogen generation from compounds other than sugars has not been fully explored. We propose to examine the capacity of the abundant soil anaerobes, sulfate-reducing bacteria, for hydrogen generation from organic acids. These apparently simple pathways have yet to be clearly established. Information obtained may facilitate the exploitation of other microbes not yet readily examined by molecular tools. Identification of the flexibility of the metabolic processes to channel reductant to hydrogen will be useful in consideration of practical applications. Because the tools for genetic and molecular manipulation of sulfate-reducing bacteria of the genus Desulfovibrio are developed, our efforts will focus on two strains, D. vulgaris Hildenborough and Desulfovibrio G20.Therefore total metabolism, flux through the pathways, and regulation are likely to be limiting factors which we can elucidate in the following experiments.

  5. Market Analysis Reports | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Information Resources » Technical Publications » Market Analysis Reports Market Analysis Reports Reports about fuel cell and hydrogen technology market analysis are provided in these publication categories: Fuel Cell Technologies Office Market Reports Pathways to Commercial Success Business Case for Fuel Cells State of the States General Fuel Cell Technologies Office Market Reports 2015 Fuel Cell Technologies Market Report (Fuel Cell Technologies Office, October 2016) 2014 Fuel Cell

  6. Augmented Fish Health Monitoring, 1988 Annual Report.

    SciTech Connect

    Warren, James W.

    1989-08-15

    Augmented Fish Health Monitoring Contract AI79-87BP35585 was implemented on July 20, 1987. Second year activities focused on full implementation of disease surveillance activities and histopathological support services to participating state agencies. Persistent and sometimes severe disease losses were caused by infectious hematopoietic necrosis (IHN) in summer steelhead trout in Idaho and in spring chinook salmon at hatcheries on the lower Columbia River. Diagnostic capability was enhanced by the installation, for field use, of enzyme-linked immunosorbent assay (ELISA) technology at the Dworshak Fish Health Center for the detection and assay of bacterial kidney disease and by a dot-blot'' training session for virus identification at the Lower Columbia Fish Health Center. Complete diagnostic and inspection services were provided to 13 Columbia River basin National Fish hatcheries. Case history data was fully documented in a computerized data base for storage and analysis. This report briefly describes work being done to meet contract requirements for fish disease surveillance at Service facilities in the Columbia River basin. It also summarizes the health status of fish reared at those hatcheries and provides a summary of case history data for calendar year 1988. 2 refs., 4 tabs.

  7. Health Insurance Marketplace Notice New Health Insurance Marketplace Coverage Options and Your Health Coverage

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Health Effects Health Effects The U.S. Department of Energy (DOE) administers research programs and monitoring activities, both domestic and international, that support the protection and promotion of the health of DOE workers, their families, and residents of neighboring communities near DOE sites, affected by exposure to hazardous materials from DOE sites or a result of nuclear weapons testing, use or accident. Domestic health activities include studies of historical workplace exposures,

  8. World Health Organization (WHO) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Health Organization (WHO) Jump to: navigation, search Logo: World Health Organization (WHO) Name: World Health Organization (WHO) Address: 20, avenue Appia 1211 Geneva, Switzerland...

  9. Southern Nevada Health District | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Health District Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Southern Nevada Health District Author Southern Nevada Health District Published...

  10. US Department of Energy - Office of FreedomCar and Vehicle Technologies and US Centers for Disease Control and Prevention - National Institute for Occupational Safety and Health Inter-Agency Agreement Research on "The Analysis of Genotoxic Activities of Exhaust Emissions from Mobile Natural Gas, Diesel, and Spark-Ignition Engines"

    SciTech Connect

    William E. Wallace

    2006-09-30

    The US Department of Energy-Office of Heavy Vehicle Technologies (now the DOE-Office of FreedomCar and Vehicle Technologies) signed an Interagency Agreement (IAA) with National Institute for Occupational Safety and Health (NIOSH), No.01-15 DOE, 9/4/01, for 'The analysis of genotoxic activities of exhaust emissions from mobile natural gas, diesel, and spark-ignition engines'; subsequently modified on 3/27/02 (DOE IAG No.01-15-02M1); subsequently modified 9/02/03 (IAA Mod No. 01-15-03M1), as 'The analysis of genotoxic activities of exhaust emissions from mobile internal combustion engines: identification of engine design and operational parameters controlling exhaust genotoxicity'. The DOE Award/Contract number was DE-AI26-01CH11089. The IAA ended 9/30/06. This is the final summary technical report of National Institute for Occupational Safety and Health research performed with the US Department of Energy-Office of FreedomCar and Vehicle Technologies under that IAA: (A) NIOSH participation was requested by the DOE to provide in vitro genotoxicity assays of the organic solvent extracts of exhaust emissions from a suite of in-use diesel or spark-ignition vehicles; (B) research also was directed to develop and apply genotoxicity assays to the particulate phase of diesel exhaust, exploiting the NIOSH finding of genotoxicity expression by diesel exhaust particulate matter dispersed into the primary components of the surfactant coating the surface of the deep lung; (C) from the surfactant-dispersed DPM genotoxicity findings, the need for direct collection of DPM aerosols into surfactant for bioassay was recognized, and design and developmental testing of such samplers was initiated.

  11. Sorting through the many total-energy-cycle pathways possible with early plug-in hybrids.

    SciTech Connect

    Gaines, L.; Burnham, A.; Rousseau, A.; Santini, D.; Energy Systems

    2008-01-01

    Using the 'total energy cycle' methodology, we compare U.S. near term (to {approx}2015) alternative pathways for converting energy to light-duty vehicle kilometers of travel (VKT) in plug-in hybrids (PHEVs), hybrids (HEVs), and conventional vehicles (CVs). For PHEVs, we present total energy-per-unit-of-VKT information two ways (1) energy from the grid during charge depletion (CD); (2) energy from stored on-board fossil fuel when charge sustaining (CS). We examine 'incremental sources of supply of liquid fuel such as (a) oil sands from Canada, (b) Fischer-Tropsch diesel via natural gas imported by LNG tanker, and (c) ethanol from cellulosic biomass. We compare such fuel pathways to various possible power converters producing electricity, including (i) new coal boilers, (ii) new integrated, gasified coal combined cycle (IGCC), (iii) existing natural gas fueled combined cycle (NGCC), (iv) existing natural gas combustion turbines, (v) wood-to-electricity, and (vi) wind/solar. We simulate a fuel cell HEV and also consider the possibility of a plug-in hybrid fuel cell vehicle (FCV). For the simulated FCV our results address the merits of converting some fuels to hydrogen to power the fuel cell vs. conversion of those same fuels to electricity to charge the PHEV battery. The investigation is confined to a U.S. compact sized car (i.e. a world passenger car). Where most other studies have focused on emissions (greenhouse gases and conventional air pollutants), this study focuses on identification of the pathway providing the most vehicle kilometers from each of five feedstocks examined. The GREET 1.7 fuel cycle model and the new GREET 2.7 vehicle cycle model were used as the foundation for this study. Total energy, energy by fuel type, total greenhouse gases (GHGs), volatile organic compounds (VOC), carbon monoxide (CO), nitrogen oxides (NO{sub x}), fine particulate (PM2.5) and sulfur oxides (SO{sub x}) values are presented. We also isolate the PHEV emissions contribution

  12. Chromatin landscaping in algae reveals novel regulation pathway for biofuels production

    SciTech Connect

    Ngan, Chew Yee; Wong, Chee-Hong; Choi, Cindy; Pratap, Abhishek; Han, James; Wei, Chia-Lin

    2013-02-19

    The diminishing reserve of fossil fuels calls for the development of biofuels. Biofuels are produced from renewable resources, including photosynthetic organisms, generating clean energy. Microalgae is one of the potential feedstock for biofuels production. It grows easily even in waste water, and poses no competition to agricultural crops for arable land. However, little is known about the algae lipid biosynthetic regulatory mechanisms. Most studies relied on the homology to other plant model organisms, in particular Arabidopsis or through low coverage expression analysis to identify key enzymes. This limits the discovery of new components in the biosynthetic pathways, particularly the genetic regulators and effort to maximize the production efficiency of algal biofuels. Here we report an unprecedented and de novo approach to dissect the algal lipid pathways through disclosing the temporal regulations of chromatin states during lipid biosynthesis. We have generated genome wide chromatin maps in chlamydomonas genome using ChIP-seq targeting 7 histone modifications and RNA polymerase II in a time-series manner throughout conditions activating lipid biosynthesis. To our surprise, the combinatory profiles of histone codes uncovered new regulatory mechanism in gene expression in algae. Coupled with matched RNA-seq data, chromatin changes revealed potential novel regulators and candidate genes involved in the activation of lipid accumulations. Genetic perturbation on these candidate regulators further demonstrated the potential to manipulate the regulatory cascade for lipid synthesis efficiency. Exploring epigenetic landscape in microalgae shown here provides powerful tools needed in improving biofuel production and new technology platform for renewable energy generation, global carbon management, and environmental survey.

  13. ‘N-of-1- pathways ’ unveils personal deregulated mechanisms from a single pair of RNA-Seq samples: Towards precision medicine

    SciTech Connect

    Gardeux, Vincent; Achour, Ikbel; Li, Jianrong; Maienschein-Cline, Mark; Li, Haiquan; Pesce, Lorenzo; Parinandi, Gurunadh; Bahroos, Neil; Winn, Robert; Garcia, Joe G. N.; Foster, Ian; Lussier, Yves A.

    2014-11-01

    Background: The emergence of precision medicine allowed the incorporation of individual molecular data into patient care. This research entails, DNA sequencing predicts somatic mutations in individual patients. However, these genetic features overlook dynamic epigenetic and phenotypic response to therapy. Meanwhile, accurate personal transcriptome interpretation remains an unmet challenge. Further, N-of-1 (single-subject) efficacy trials are increasingly pursued, but are underpowered for molecular marker discovery. Method: ‘N-of-1-pathways’ is a global framework relying on three principles: (i) the statistical universe is a single patient; (ii) significance is derived from geneset/biomodules powered by paired samples from the same patient; and (iii) similarity between genesets/biomodules assesses commonality and differences, within-study and cross-studies. Thus, patient gene-level profiles are transformed into deregulated pathways. From RNA-Seq of 55 lung adenocarcinoma patients, N-of-1-pathways predicts the deregulated pathways of each patient. Results: Cross-patient N-of-1-pathways obtains comparable results with conventional genesets enrichment analysis (GSEA) and differentially expressed gene (DEG) enrichment, validated in three external evaluations. Moreover, heatmap and star plots highlight both individual and shared mechanisms ranging from molecular to organ-systems levels (eg, DNA repair, signaling, immune response). Patients were ranked based on the similarity of their deregulated mechanisms to those of an independent gold standard, generating unsupervised clusters of diametric extreme survival phenotypes (p=0.03). Conclusions: The N-of-1-pathways framework provides a robust statistical and relevant biological interpretation of individual disease-free survival that is often overlooked in conventional cross-patient studies. It enables mechanism-level classifiers with smaller cohorts as well as N-of-1 studies.

  14. Pathway engineering to improve ethanol production by thermophilic bacteria

    SciTech Connect

    Lynd, L.R.

    1998-12-31

    Continuation of a research project jointly funded by the NSF and DOE is proposed. The primary project goal is to develop and characterize strains of C. thermocellum and C. thermosaccharolyticum having ethanol selectivity similar to more convenient ethanol-producing organisms. An additional goal is to document the maximum concentration of ethanol that can be produced by thermophiles. These goals build on results from the previous project, including development of most of the genetic tools required for pathway engineering in the target organisms. As well, we demonstrated that the tolerance of C. thermosaccharolyticum to added ethanol is sufficiently high to allow practical utilization should similar tolerance to produced ethanol be demonstrated, and that inhibition by neutralizing agents may explain the limited concentrations of ethanol produced in studies to date. Task 1 involves optimization of electrotransformation, using either modified conditions or alternative plasmids to improve upon the low but reproducible transformation, frequencies we have obtained thus far.

  15. Phosphoketolase Pathway Engineering for Carbon-Efficient Biocatalysis

    SciTech Connect

    Henard, Calvin Andrew; Freed, Emily Frances; Guarnieri, Michael Thomas

    2015-09-08

    Recent advances in metabolic engineering have facilitated the development of microbial biocatalysts capable of producing an array of bio-products, ranging from fuels to drug molecules. These bio-products are commonly generated through an acetyl-CoA intermediate, which serves as a key precursor in the biological conversion of carbon substrates. Moreover, conventional biocatalytic upgrading strategies proceeding through this route are limited by low carbon efficiencies, in large part due to carbon losses associated with pyruvate decarboxylation to acetyl-CoA. Bypass of pyruvate decarboxylation offers a means to dramatically enhance carbon yields and, in turn, bioprocess economics. Here, we discuss recent advances and prospects for employing the phosphoketolase pathway for direct biosynthesis of acetyl-CoA from carbon substrates, and phosphoketolase-based metabolic engineering strategies for carbon efficient biocatalysis.

  16. Risk D&D Rapid Prototype: Scenario Documentation and Analysis Tool

    SciTech Connect

    Unwin, Stephen D.; Seiple, Timothy E.

    2009-05-28

    Report describes process and methodology associated with a rapid prototype tool for integrating project risk analysis and health & safety risk analysis for decontamination and decommissioning projects.

  17. Hydrogen Supply: Cost Estimate for Hydrogen Pathways-Scoping...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    PDF icon 32525.pdf More Documents & Publications Analysis of a Cluster Strategy for Near Term Hydrogen Infrastructure Rollout in Southern California Hydrogen Delivery ...

  18. Efficient CO2 Fixation Pathways: Energy Plant: High Efficiency Photosynthetic Organisms

    SciTech Connect

    2012-01-01

    PETRO Project: UCLA is redesigning the carbon fixation pathways of plants to make them more efficient at capturing the energy in sunlight. Carbon fixation is the key process that plants use to convert carbon dioxide (CO2) from the atmosphere into higher energy molecules (such as sugars) using energy from the sun. UCLA is addressing the inefficiency of the process through an alternative biochemical pathway that uses 50% less energy than the pathway used by all land plants. In addition, instead of producing sugars, UCLA’s designer pathway will produce pyruvate, the precursor of choice for a wide variety of liquid fuels. Theoretically, the new biochemical pathway will allow a plant to capture 200% as much CO2 using the same amount of light. The pathways will first be tested on model photosynthetic organisms and later incorporated into other plants, thus dramatically improving the productivity of both food and fuel crops.

  19. Computational protein design enables a novel one-carbon assimilation pathway

    SciTech Connect

    Siegel, JB; Smith, AL; Poust, S; Wargacki, AJ; Bar-Even, A; Louw, C; Shen, BW; Eiben, CB; Tran, HM; Noor, E; Gallaher, JL; Bale, J; Yoshikuni, Y; Gelb, MH; Keasling, JD; Stoddard, BL; Lidstrom, ME; Baker, D

    2015-03-09

    We describe a computationally designed enzyme, formolase (FLS), which catalyzes the carboligation of three one-carbon formaldehyde molecules into one three-carbon dihydroxyacetone molecule. The existence of FLS enables the design of a new carbon fixation pathway, the formolase pathway, consisting of a small number of thermodynamically favorable chemical transformations that convert formate into a three-carbon sugar in central metabolism. The formolase pathway is predicted to use carbon more efficiently and with less backward flux than any naturally occurring one-carbon assimilation pathway. When supplemented with enzymes carrying out the other steps in the pathway, FLS converts formate into dihydroxyacetone phosphate and other central metabolites in vitro. These results demonstrate how modern protein engineering and design tools can facilitate the construction of a completely new biosynthetic pathway.

  20. CBEI: Career Pathways for the Energy Retrofit Workforce - 2015 Peer Review

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    | Department of Energy Career Pathways for the Energy Retrofit Workforce - 2015 Peer Review CBEI: Career Pathways for the Energy Retrofit Workforce - 2015 Peer Review Presenter: Lisa Shulock, PSU View the Presentation CBEI: Career Pathways for the Energy Retrofit Workforce - 2015 Peer Review (2.3 MB) More Documents & Publications Advanced Critical Advanced Energy Retrofit Education and Training and Credentialing - 2014 BTO Peer Review Workforce Overview - 2015 BTO Peer Review Better

  1. EIS-0465: Mid-Atlantic Power Pathway Transmission Line Project in Maryland

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    and Delaware | Department of Energy 5: Mid-Atlantic Power Pathway Transmission Line Project in Maryland and Delaware EIS-0465: Mid-Atlantic Power Pathway Transmission Line Project in Maryland and Delaware March 4, 2011 EIS-0465: Notice of Intent to Prepare an Environmental Impact Statement Construction of Phase II of the Mid-Atlantic Power Pathway Transmission Line Project, in Maryland and Delaware February 4, 2011 EIS-0465: Announcement of Public Scoping Meetings Construction of Phase II of

  2. DOE Materials-Based Hydrogen Storage Summit: Defining Pathways for Onboard

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Automotive Applications | Department of Energy Materials-Based Hydrogen Storage Summit: Defining Pathways for Onboard Automotive Applications DOE Materials-Based Hydrogen Storage Summit: Defining Pathways for Onboard Automotive Applications The U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) hosted the DOE Materials-Based Hydrogen Storage Summit: Defining Pathways to Onboard Automotive Applications on January 27-28, 2015, in Golden, Colorado. The objectives of

  3. Hydropower Vision: New Report Highlights Future Pathways for U.S.

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Hydropower | Department of Energy Hydropower Vision: New Report Highlights Future Pathways for U.S. Hydropower Hydropower Vision: New Report Highlights Future Pathways for U.S. Hydropower July 26, 2016 - 3:00pm Addthis Hydropower Vision: New Report Highlights Future Pathways for U.S. Hydropower Jose Zayas Jose Zayas Wind Energy Technologies Office Director Hydropower has been around for more than a century, and is currently the nation's largest source of clean, domestic, renewable

  4. Summary of Conceptual Models and Data Needs to Support the INL Remote-Handled Low-Level Waste Disposal Facility Performance Assessment and Composite Analysis

    SciTech Connect

    A. Jeff Sondrup; Annette L. Schafter; Arthur S. Rood

    2010-09-01

    An overview of the technical approach and data required to support development of the performance assessment, and composite analysis are presented for the remote handled low-level waste disposal facility on-site alternative being considered at Idaho National Laboratory. Previous analyses and available data that meet requirements are identified and discussed. Outstanding data and analysis needs are also identified and summarized. The on-site disposal facility is being evaluated in anticipation of the closure of the Radioactive Waste Management Complex at the INL. An assessment of facility performance and of the composite performance are required to meet the Department of Energys Low-Level Waste requirements (DOE Order 435.1, 2001) which stipulate that operation and closure of the disposal facility will be managed in a manner that is protective of worker and public health and safety, and the environment. The corresponding established procedures to ensure these protections are contained in DOE Manual 435.1-1, Radioactive Waste Management Manual (DOE M 435.1-1 2001). Requirements include assessment of (1) all-exposure pathways, (2) air pathway, (3) radon, and (4) groundwater pathway doses. Doses are computed from radionuclide concentrations in the environment. The performance assessment and composite analysis are being prepared to assess compliance with performance objectives and to establish limits on concentrations and inventories of radionuclides at the facility and to support specification of design, construction, operation and closure requirements. Technical objectives of the PA and CA are primarily accomplished through the development of an establish inventory, and through the use of predictive environmental transport models implementing an overarching conceptual framework. This document reviews the conceptual model, inherent assumptions, and data required to implement the conceptual model in a numerical framework. Available site-specific data and data sources

  5. Powering Health | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Health AgencyCompany Organization: USAID Sector: Energy Focus Area: Renewable Energy Phase: Determine Baseline, Evaluate Options, Develop Goals, Prepare a Plan, Develop...

  6. ORISE: Health Promotion and Outreach

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    and outreach support to government agencies and organizations seeking to provide health information to targeted populations. ORISE develops culturally-sensitive programs and...

  7. Health impact assessment in Korea

    SciTech Connect

    Kang, Eunjeong; Lee, Youngsoo; Harris, Patrick; Koh, Kwangwook; Kim, Keonyeop

    2011-07-15

    Recently, Health Impact Assessment has gained great attention in Korea. First, the Ministry of Environment introduced HIA within existing Environment Impact Assessment. Second, the Korea Institute for Health and Social Affairs began an HIA program in 2008 in alliance with Healthy Cities. In this short report, these two different efforts are introduced and their opportunities and challenges discussed. We believe these two approaches complement each other and both need to be strengthened. We also believe that both can contribute to the development of health in policy and project development and ultimately to improvements in the Korean population's health.

  8. Beryllium Health Advocates - Hanford Site

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Health Advocates About Us Beryllium Program Beryllium Program Points of Contact Beryllium Facilities & Areas Beryllium Program Information Hanford CBDPP Committee Beryllium FAQs...

  9. Health & Safety Exposition - Hanford Site

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Events Exhibitor Information What is EXPO Electronic Registration Form Contact Us Health & Safety Exposition Email Email Page | Print Print Page |Text Increase Font Size...

  10. Health Care Buildings: Subcategories Table

    Energy Information Administration (EIA) (indexed site)

    Subcategories Table Selected Data by Type of Health Care Building Number of Buildings (thousand) Percent of Buildings Floorspace (million square feet) Percent of Floorspace Square...

  11. Health Care Buildings: Equipment Table

    Energy Information Administration (EIA) (indexed site)

    Equipment Table Buildings, Size and Age Data by Equipment Types for Health Care Buildings Number of Buildings (thousand) Percent of Buildings Floorspace (million square feet)...

  12. Complementary Energy and Health Strategies

    Energy.gov [DOE]

    Better Buildings Residential Network Program Sustainability Peer Exchange Call Series: Complementary Energy and Health Strategies, Call Slides and Discussion Summary, April 10, 2014.

  13. Wind Vision Chapter 4: The Wind Vision Roadmap: A Pathway Forward

    Energy.gov [DOE] (indexed site)

    Wind Vision Roadmap: A Pathway Forward Summary Chapter 4 and Appendix M provide a detailed roadmap of technical, economic, and institu- tional actions by the wind industry, the ...

  14. Bioenergy Technologies Office R&D Pathways: In-Situ Catalytic Fast

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Pyrolysis | Department of Energy In-Situ Catalytic Fast Pyrolysis Bioenergy Technologies Office R&D Pathways: In-Situ Catalytic Fast Pyrolysis The in-situ catalytic fast pyrolysis pathway involves rapidly heating biomass with a catalyst to create bio-oils, which can be used to produce biofuel blendstocks. Bioenergy Technologies Office R&D Pathways: In-Situ Catalytic Fast Pyrolysis (456.62 KB) More Documents & Publications Bioenergy Technologies Office R&D Pathways: Ex-Situ

  15. Further improvement of conventional diesel NOx aftertreatment concepts as pathway for SULEV

    Energy.gov [DOE]

    Discusses possible improvement potential and various pathways for LNT after-treatment systems for diesel applications to comply with Tier 2 Bin 5 and SULEV regulations

  16. Structural Health Monitoring Tools

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Example Usages LANL/UCSD Engineering Institute LA-CC-14-046 LA-UR-14-21093 c Copyright 2014, Los Alamos National Security, LLC All rights reserved. May 30, 2014 Example Usages Contents Data Set Descriptions Integrating Examples Modal Analysis Condition-Based Monitoring Active Sensing Outlier Detection Data Set Descriptions Experimental Procedure Description of the 3-Story Structure Experimental Procedure Description of the Condition-Based Monitoring Example Data Integrating Examples Example

  17. SOURCE AND PATHWAY DETERMINATION FOR BERYLLIUM FOUND IN BECHTEL NEVADA NORTH LAS VEGAS FACILITIES

    SciTech Connect

    BECHTEL NEVADA

    2004-07-01

    records indicate that there are locations at the NTS which contain hazardous quantities of beryllium; however, because beryllium was not always considered a contaminant of concern, complete characterization was not performed prior to remediation efforts. Today, it is not practical to characterize Area 25 for beryllium due to the successful remediation. Analysis of sample data collected in B-1 for the BIAT was performed for the purpose of confirming past results and identifying a source of beryllium through the use of markers. The results confirmed the presence of man-made beryllium contamination in the B-1 High Bay at levels consistent with the NNSA Report. No source markers were found that would be associated with NTS historical nuclear rocket or weapons-related operations. Beryllium contamination was identified in the southwest area of the B-1 High Bay in characteristic association with materials handled during historic metal-working operations. Use of source marker analysis suggests a contributor of beryllium found in carpeted areas of the B-Complex may be naturally occurring. Naturally occurring beryllium is not regulated by Title 10 Code of Federal Regulations Part 850 (10 CFR 850) (see Appendix A). No current uncontrolled beryllium source or transport pathways have been identified as available for spread of contamination to uncontrolled areas from the NTS.

  18. NREL: Energy Analysis - Garvin Heath

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Garvin Heath Photo of Garvin Heath Garvin Heath is a member of the Technology Systems and Sustainability Analysis Group in the Strategic Energy Analysis Center. Senior Scientist On staff since January 2008 Phone number: 303-384-7460 E-mail: garvin.heath@nrel.gov Areas of expertise Life cycle assessment Sustainability analysis Air quality modeling Exposure assessment Primary research interests Health and environmental impacts of energy technologies, including externalities Life cycle assessment

  19. Browse by Discipline -- E-print Network Subject Pathways: Fossil...

    Office of Scientific and Technical Information (OSTI)

    U V W X Y Z Ussery, David W. (David W. Ussery) - Center for Biological Sequence Analysis & Department of Systems Biology,Danmarks Tekniske Universitet Go back to Individual ...

  20. Browse by Discipline -- E-print Network Subject Pathways: Environmenta...

    Office of Scientific and Technical Information (OSTI)

    Researchers Collections: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Lawrence Berkeley National Laboratory, Energy Analysis Department, Electricity Market Studies

  1. Precipitation pathways for ferrihydrite formation in acidic solutions

    DOE PAGES [OSTI]

    Zhu, Mengqiang; Khalid, Syed; Frandsen, Cathrine; Wallace, Adam F.; Legg, Benjamin; Zhang, Hengzhong; Morup, Steen; Banfield, Jillian F.; Waychunas, Glenn A.

    2015-10-03

    In this study, iron oxides and oxyhydroxides form via Fe3+ hydrolysis and polymerization in many aqueous environments, but the pathway from Fe3+ monomers to oligomers and then to solid phase nuclei is unknown. In this work, using combined X-ray, UV–vis, and Mössbauer spectroscopic approaches, we were able to identify and quantify the long-time sought ferric speciation over time during ferric oxyhydroxide formation in partially-neutralized ferric nitrate solutions ([Fe3+] = 0.2 M, 1.8 < pH < 3). Results demonstrate that Fe exists mainly as Fe(H2O)63+, μ-oxo aquo dimers and ferrihydrite, and that with time, the μ-oxo dimer decreases while the othermore » two species increase in their concentrations. No larger Fe oligomers were detected. Given that the structure of the μ-oxo dimer is incompatible with those of all Fe oxides and oxyhydroxides, our results suggest that reconfiguration of the μ-oxo dimer structure occurs prior to further condensation leading up to the nucleation of ferrihydrite. The structural reconfiguration is likely the rate-limiting step involved in the nucleation process.« less

  2. Precipitation pathways for ferrihydrite formation in acidic solutions

    SciTech Connect

    Zhu, Mengqiang; Khalid, Syed; Frandsen, Cathrine; Wallace, Adam F.; Legg, Benjamin; Zhang, Hengzhong; Morup, Steen; Banfield, Jillian F.; Waychunas, Glenn A.

    2015-10-03

    In this study, iron oxides and oxyhydroxides form via Fe3+ hydrolysis and polymerization in many aqueous environments, but the pathway from Fe3+ monomers to oligomers and then to solid phase nuclei is unknown. In this work, using combined X-ray, UV–vis, and Mössbauer spectroscopic approaches, we were able to identify and quantify the long-time sought ferric speciation over time during ferric oxyhydroxide formation in partially-neutralized ferric nitrate solutions ([Fe3+] = 0.2 M, 1.8 < pH < 3). Results demonstrate that Fe exists mainly as Fe(H2O)63+, μ-oxo aquo dimers and ferrihydrite, and that with time, the μ-oxo dimer decreases while the other two species increase in their concentrations. No larger Fe oligomers were detected. Given that the structure of the μ-oxo dimer is incompatible with those of all Fe oxides and oxyhydroxides, our results suggest that reconfiguration of the μ-oxo dimer structure occurs prior to further condensation leading up to the nucleation of ferrihydrite. The structural reconfiguration is likely the rate-limiting step involved in the nucleation process.

  3. Molecular pathways for defect annihilation in directed self-assembly.

    SciTech Connect

    Hur, Su-Mi; Thapar, Vikram; Ramirez-Hernandez, Abelardo; Khaira, Gurdaman S.; Segal-Peretz, Tamar; Rincon-Delgadillo, Paulina A.; Li, Weihua; Muller, Marcus; Nealey, Paul F.; de Pablo, Juan J.

    2015-11-17

    Over the last few years, the directed self-assembly of block copolymers by surface patterns has transitioned from academic curiosity to viable contender for commercial fabrication of next-generation nanocircuits by lithography. Recently, it has become apparent that kinetics, and not only thermodynamics, plays a key role for the ability of a polymeric material to self-assemble into a perfect, defect-free ordered state. Perfection, in this context, implies not more than one defect, with characteristic dimensions on the order of 5 nm, over a sample area as large as 100 cm2. In this work, we identify the key pathways and the corresponding free-energy barriers for eliminating defects, and we demonstrate that an extraordinarily large thermodynamic driving force is not necessarily sufficient for their removal. By adopting a concerted computational and experimental approach, we explain the molecular origins of these barriers, how they depend on material characteristics, and we propose strategies designed to over-come them. The validity of our conclusions for industrially-relevant patterning processes is established by relying on instruments and assembly lines that are only available at state-of-the-art fabrication facilities and, through this confluence of fundamental and applied research, we are able to discern the evolution of morphology at the smallest relevant length scales - a handful of nanometers -, and present a view of defect annihilation in directed self-assembly at an unprecedented level of detail.

  4. Developing health-based pre-planning clearance goals for airport remediation following a chemical terrorist attack: Decision criteria for multipathway exposure routes

    SciTech Connect

    Watson, Annetta Paule; Dolislager, Frederick; Hall, Dr. Linda; Hauschild, Veronique; Raber, Ellen; Love, Dr. Adam

    2011-01-01

    In the event of a chemical terrorist attack on a transportation hub, post-event remediation and restoration activities necessary to attain unrestricted facility re-use and re-entry could require hours to multiple days. While timeframes are dependent on numerous variables, a primary controlling factor is the level of pre-planning and decision-making completed prior to chemical release. What follows is the second of a two-part analysis identifying key considerations, critical information and decision criteria to facilitate post-attack and post-decontamination consequence management activities. Decision criteria analysis presented here provides first-time, open-literature documentation of multi-pathway, health-based remediation exposure guidelines for selected toxic industrial compounds, chemical warfare agents, and agent degradation products for pre-planning application in anticipation of a chemical terrorist attack. Guideline values are provided for inhalation and direct ocular vapor exposure routes as well as percutaneous vapor, surface contact, and ingestion. Target populations include various employees as well as transit passengers. This work has been performed as a national case study conducted in partnership with the Los Angeles International Airport and The Bradley International Terminal. All recommended guidelines have been selected for consistency with airport scenario release parameters of a one-time, short-duration, finite airborne release from a single source followed by compound-specific decontamination.

  5. Geographically-Based Infrastructure Analysis for California

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Geographically-Based Infrastructure Analysis for California Joan Ogden Institute of Transportation Studies University of California, Davis Presented at the USDOE Hydrogen Transition Analysis Meeting Washington, DC August 9-10, 2006 Acknowledgments UC Davis Researchers: Michael Nicholas Dr. Marc Melaina Dr. Marshall Miller Dr. Chris Yang USDOE: Dr. Sig Gronich Research support: USDOE; H2 Pathways Program sponsors at UC Davis * Refueling station siting and sizing are key aspects of designing H2

  6. Extending the Shared Socioeconomic Pathways for sub-national impacts, adaptation, and vulnerability studies

    SciTech Connect

    Absar, Syeda Mariya; Preston, Benjamin L.

    2015-05-25

    The exploration of alternative socioeconomic futures is an important aspect of understanding the potential consequences of climate change. While socioeconomic scenarios are common and, at times essential, tools for the impact, adaptation and vulnerability and integrated assessment modeling research communities, their approaches to scenario development have historically been quite distinct. However, increasing convergence of impact, adaptation and vulnerability and integrated assessment modeling research in terms of scales of analysis suggests there may be value in the development of a common framework for socioeconomic scenarios. The Shared Socioeconomic Pathways represents an opportunity for the development of such a common framework. However, the scales at which these global storylines have been developed are largely incommensurate with the sub-national scales at which impact, adaptation and vulnerability, and increasingly integrated assessment modeling, studies are conducted. Our objective for this study was to develop sub-national and sectoral extensions of the global SSP storylines in order to identify future socioeconomic challenges for adaptation for the U.S. Southeast. A set of nested qualitative socioeconomic storyline elements, integrated storylines, and accompanying quantitative indicators were developed through an application of the Factor-Actor-Sector framework. Finally, in addition to revealing challenges and opportunities associated with the use of the SSPs as a basis for more refined scenario development, this study generated sub-national storyline elements and storylines that can subsequently be used to explore the implications of alternative subnational socioeconomic futures for the assessment of climate change impacts and adaptation.

  7. Waste-To-Energy Techno-Economic Analysis and Life-Cycle Analysis Presentation for BETO 2015 Project Peer Review

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Waste-To-Energy Techno-Economic Analysis and Life-Cycle Analysis March 24, 2015 Conversion Ling Tao†, Jeongwoo Han* †National Renewable Energy Laboratory *Argonne National Laboratory DOE Bioenergy Technologies Office (BETO) 2015 Project Peer Review 2 | Bioenergy Technologies Office Goal Statement * Conduct the techno-economic analysis (TEA) and life-cycle analysis (LCA) of Waste-To-Energy (WTE) pathways to evaluate their economic viability and environmental sustainability - Strategic

  8. Naphthazarin protects against glutamate-induced neuronal death via activation of the Nrf2/ARE pathway

    SciTech Connect

    Son, Tae Gen; Kawamoto, Elisa M.; Yu, Qian-Sheng; Greig, Nigel H.; Mattson, Mark P.; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD ; Camandola, Simonetta

    2013-04-19

    Highlights: Naphthazarin activates the Nrf2/ARE pathway. Naphthazarin induces Nrf2-driven genes in neurons and astrocytes. Naphthazarin protects neurons against excitotoxicity. -- Abstract: Nuclear factor E2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway is an important cellular stress response pathway involved in neuroprotection. We previously screened several natural phytochemicals and identified plumbagin as a novel activator of the Nrf2/ARE pathway that can protect neurons against ischemic injury. Here we extended our studies to natural and synthetic derivatives of plumbagin. We found that 5,8-dimethoxy-1,4-naphthoquinone (naphthazarin) is a potent activator of the Nrf2/ARE pathway, up-regulates the expression of Nrf2-driven genes in primary neuronal and glial cultures, and protects neurons against glutamate-induced excitotoxicity.

  9. Health Benefits of Particle Filtration

    SciTech Connect

    Fisk, William J.

    2013-10-01

    The evidence of health benefits of particle filtration in homes and commercial buildings is reviewed. Prior reviews of papers published before 2000 are summarized. The results of 16 more recent intervention studies are compiled and analyzed. Also, reviewed are four studies that modeled health benefits of using filtration to reduce indoor exposures to particles from outdoors. Prior reviews generally concluded that particle filtration is, at best, a source of small improvements in allergy and asthma health effects; however, many early studies had weak designs. A majority of recent intervention studies employed strong designs and more of these studies report statistically significant improvements in health symptoms or objective health outcomes, particularly for subjects with allergies or asthma. The percent age improvement in health outcomes is typically modest, for example, 7percent to 25percent. Delivery of filtered air to the breathing zone of sleeping allergic or asthmatic persons may be more consistently effective in improving health than room air filtration. Notable are two studies that report statistically significant improvements, with filtration, in markers that predict future adverse coronary events. From modeling, the largest potential benefits of indoor particle filtration may be reductions in morbidity and mortality from reducing indoor exposures to particles from outdoor air.

  10. Health and Safety Laws | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Health and Safety Laws Health and Safety Laws Health and safety laws require working conditions that do not pose a risk of serious harm: Occupational Safety and Health Act of 1970 Additional information can be obtained by visiting the following links: Office of Environment, Health, Safety & Security Office of Enterprise Assessments

  11. ‘N-of-1- pathways ’ unveils personal deregulated mechanisms from a single pair of RNA-Seq samples: Towards precision medicine

    DOE PAGES [OSTI]

    Gardeux, Vincent; Achour, Ikbel; Li, Jianrong; Maienschein-Cline, Mark; Li, Haiquan; Pesce, Lorenzo; Parinandi, Gurunadh; Bahroos, Neil; Winn, Robert; Garcia, Joe G. N.; et al

    2014-11-01

    Background: The emergence of precision medicine allowed the incorporation of individual molecular data into patient care. This research entails, DNA sequencing predicts somatic mutations in individual patients. However, these genetic features overlook dynamic epigenetic and phenotypic response to therapy. Meanwhile, accurate personal transcriptome interpretation remains an unmet challenge. Further, N-of-1 (single-subject) efficacy trials are increasingly pursued, but are underpowered for molecular marker discovery. Method: ‘N-of-1-pathways’ is a global framework relying on three principles: (i) the statistical universe is a single patient; (ii) significance is derived from geneset/biomodules powered by paired samples from the same patient; and (iii) similarity between genesets/biomodulesmore » assesses commonality and differences, within-study and cross-studies. Thus, patient gene-level profiles are transformed into deregulated pathways. From RNA-Seq of 55 lung adenocarcinoma patients, N-of-1-pathways predicts the deregulated pathways of each patient. Results: Cross-patient N-of-1-pathways obtains comparable results with conventional genesets enrichment analysis (GSEA) and differentially expressed gene (DEG) enrichment, validated in three external evaluations. Moreover, heatmap and star plots highlight both individual and shared mechanisms ranging from molecular to organ-systems levels (eg, DNA repair, signaling, immune response). Patients were ranked based on the similarity of their deregulated mechanisms to those of an independent gold standard, generating unsupervised clusters of diametric extreme survival phenotypes (p=0.03). Conclusions: The N-of-1-pathways framework provides a robust statistical and relevant biological interpretation of individual disease-free survival that is often overlooked in conventional cross-patient studies. It enables mechanism-level classifiers with smaller cohorts as well as N-of-1 studies.« less

  12. Screening of ovarian steroidogenic pathway in Ciona intestinalis and its modulation after tributyltin exposure

    SciTech Connect

    Cangialosi, Maria Vittoria; Puccia, Egidio; Mazzola, Antonio; Mansueto, Valentina; Arukwe, Augustine

    2010-05-15

    In this study, we have identified several ovarian steroids in Ciona with high similarity to vertebrate steroids and showed that cholesterol, corticosterone, dehydroepiandrosterone, estrone, estradiol-17beta, testosterone, pregnenolone, progesterone, have identical molecular spectra with vertebrate steroids. In addition, we have studied the effects of an endocrine disruptor (tributyltin: TBT) on these sex hormones and their precursors, ovarian morphology, and gene expression of some key enzymes in steroidogenic pathway in the ovary of Ciona. Ovarian specimens were cultured in vitro using different concentrations of TBT (10{sup -5}, 10{sup -4} and 10{sup -3} M). Ethanol was used as solvent control. Gene expression analysis was performed for adrenodoxin (ADREN) and adrenodoxin reductase (ADOX) (mediators of acute steroidogenesis) and 17beta-hydroxysteroid dehydrogenase (17beta-HSD). These transcripts were detected and measured by quantitative (real-time) polymerase chain reaction (qPCR). Sex steroids and their precursors were identified and quantified by a gas chromatography-mass spectroscopy (GC-MS) method. Exposure of Ciona ovaries to TBT produced modulations (either increased or decreased) of sterols and sex steroid levels, whereas no significant differences in ADREN, ADOX or 17beta-HSD mRNA expression patterns were observed. Histological analysis shows that TBT produced several modifications on Ciona ovarian morphology that includes irregular outline of nuclear membrane, less compacted cytoplasm, in addition to test and granulosa cells that were detached from the oocyte membrane. Given that the ascidians represent very simple experimental models for the study of endocrine disruption by environmental contaminants, our findings provide excellent models for multiple identification and quantification of sex steroid and their precursors in biological samples exposed to endocrine-disrupting chemicals and for direct extrapolation of such effects across taxonomic groups

  13. Molten Carbonate and Phosphoric Acid Stationary Fuel Cells: Overview and Gap Analysis

    SciTech Connect

    Remick, R.; Wheeler, D.

    2010-09-01

    This report describes the technical and cost gap analysis performed to identify pathways for reducing the costs of molten carbonate fuel cell (MCFC) and phosphoric acid fuel cell (PAFC) stationary fuel cell power plants.

  14. Molten Carbonate and Phosphoric Acid Stationary Fuel Cells: Overview and Gap Analysis

    Energy.gov [DOE]

    This report describes the technical and cost gap analysis performed to identify pathways for reducing the costs of molten carbonate fuel cell (MCFC) and phosphoric acid fuel cell (PAFC) stationary fuel cell power plants.

  15. Iron transformation pathways and redox micro-environments in seafloor sulfide-mineral deposits: Spatially resolved Fe XAS and δ57/54Fe observations

    DOE PAGES [OSTI]

    Toner, Brandy M.; Rouxel, Olivier J.; Santelli, Cara M.; Bach, Wolfgang; Edwards, Katrina J.

    2016-05-10

    Hydrothermal sulfide chimneys located along the global system of oceanic spreading centers are habitats for microbial life during active venting. Hydrothermally extinct, or inactive, sulfide deposits also host microbial communities at globally distributed sites. The main goal of this study is to describe Fe transformation pathways, through precipitation and oxidation-reduction (redox) reactions, and examine transformation products for signatures of biological activity using Fe mineralogy and stable isotope approaches. The study includes active and inactive sulfides from the East Pacific Rise 9°50'N vent field. First, the mineralogy of Fe(III)-bearing precipitates is investigated using microprobe X-ray absorption spectroscopy (μXAS) and X-ray diffractionmore » (μXRD). Second, laser-ablation (LA) and micro-drilling (MD) are used to obtain spatially-resolved Fe stable isotope analysis by multicollector-inductively coupled plasma-mass spectrometry (MC-ICP-MS). Eight Fe-bearing minerals representing three mineralogical classes are present in the samples: oxyhydroxides, secondary phyllosilicates, and sulfides. For Fe oxyhydroxides within chimney walls and layers of Si-rich material, enrichments in both heavy and light Fe isotopes relative to pyrite are observed, yielding a range of δ57Fe values up to 6‰. Overall, several pathways for Fe transformation are observed. Pathway 1 is characterized by precipitation of primary sulfide minerals from Fe(II)aq-rich fluids in zones of mixing between vent fluids and seawater. Pathway 2 is also consistent with zones of mixing but involves precipitation of sulfide minerals from Fe(II)aq generated by Fe(III) reduction. Pathway 3 is direct oxidation of Fe(II) aq from hydrothermal fluids to form Fe(III) precipitates. Finally, Pathway 4 involves oxidative alteration of pre-existing sulfide minerals to form Fe(III). The Fe mineralogy and isotope data do not support or refute a unique biological role in sulfide alteration. The

  16. Intrathymic radioresistant stem cells follow an IL-2/IL-2R pathway during thymic regeneration after sublethal irradiation

    SciTech Connect

    Zuniga-Pfluecker, J.C.K.; Kruisbeek, A.M. )

    1990-05-15

    Sublethally irradiated mice undergo thymic regeneration which follows a phenotypic pattern of events similar to that observed during normal fetal development. Thymic regeneration after irradiation is the product of a limited pool of intrathymic radioresistant stem cells undergoing simultaneous differentiation. We show that in this model of T cell development, thymic regeneration follows a pathway in which the IL-2R is transiently expressed on CD4-/CD8- cells. IL-2R expression occurred during the exponential growth period of thymic regeneration, and IL-2R blocking prevented this explosive growth. Flow cytometry analysis revealed that the IL-2R blockade affected primarily the development of the immature CD3-/CD4-/CD8- (triple negative) cells and their ability to generate CD3+/CD4+/CD8+ or CD3+/CD4+/CD8- and CD3+/CD4-/CD8+ thymocytes. Thus, our findings demonstrate that blocking of the IL-2R resulted in an arrest in proliferation and differentiation by intrathymic radioresistant stem cells, indicating that the IL-2/IL-2R pathway is necessary for the expansion of immature triple negative T cells.

  17. Naringin prevents ovariectomy-induced osteoporosis and promotes osteoclasts apoptosis through the mitochondria-mediated apoptosis pathway

    SciTech Connect

    Li, Fengbo; Sun, Xiaolei; Ma, Jianxiong; Ma, Xinlong; Zhao, Bin; Zhang, Yang; Tian, Peng; Li, Yanjun; Han, Zhe

    2014-09-26

    Highlights: • Naringin possesses many pharmacological activities, promotes the proliferation of osteoblast. • Undecalcified histological obtain dynamic parameters of callus formation and remodeling. • Naringin regulate osteoclast apoptosis by mitochondrial pathway. - Abstract: Naringin, the primary active compound of the traditional Chinese medicine Rhizoma drynariae, possesses many pharmacological activities. The present study is an effort to explore the anti-osteoporosis potential of naringin in vivo and in vitro. In vivo, we used ovariectomized rats to clarify the mechanisms by which naringin anti-osteoporosis. In vitro, we used osteoclasts to investigate naringin promotes osteoclasts apoptosis. Naringin was effective at enhancing BMD, trabecular thickness, bone mineralization, and mechanical strength in a dose-dependent manner. The result of RT-PCR analysis revealed that naringin down-regulated the mRNA expression levels of BCL-2 and up-regulated BAX, caspase-3 and cytochrome C. In addition, naringin significantly reduced the bone resorption area in vitro. These findings suggest that naringin promotes the apoptosis of osteoclasts by regulating the activity of the mitochondrial apoptosis pathway and prevents OVX-induced osteoporosis in rats.

  18. Environment/Health/Safety (EHS)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Health Services HS Home Clinical Services Policies and Procedures Presentations Forms Contact Us AED Building 26 (510) 486-6266 Monday - Friday 7:00 am - 4:30 pm In case of...

  19. Health Care Buildings: Consumption Tables

    Energy Information Administration (EIA) (indexed site)

    Consumption Tables Sum of Major Fuel Consumption by Size and Type of Health Care Building Total (trillion Btu) per Building (million Btu) per Square Foot (thousand Btu) Dollars per...

  20. Industrial Hygienist/Health Physicist

    Energy.gov [DOE]

    A successful candidate in this position wil l serve as an Industrial Hygienist/Health Physicist in the Operations and Oversight Division, providing technical oversight of the Oak Ridge National...

  1. Global Warming and Human Health

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    American Geophysical Union Global Warming and Human Health WHEN: Jul 27, 2015 5:30 PM - ... Event Description The main reason we are concerned about human-induced climate change is ...

  2. Health and Safety Research Division progress report, July 1, 1984-September 30, 1985

    SciTech Connect

    Not Available

    1986-01-01

    This report summarizes progress made for the period July 1984 through September 1985. Sections describe research in health studies, dosimetry and biophysical transport, biological and radiation physics, chemical physics, and risk analysis. (ACR)

  3. Categorical Exclusion Determinations: Health, Safety, and Security |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Health, Safety, and Security Categorical Exclusion Determinations: Health, Safety, and Security Categorical Exclusion Determinations issued by Health, Safety, and Security. DOCUMENTS AVAILABLE FOR DOWNLOAD No downloads found for this office.

  4. Impacts of Climate Change on Tribal Health

    Energy.gov [DOE]

    Climate change, together with other natural and human-made health stressors, threatens our health and well-being in many ways. This webinar will provide an overview of climate-related health...

  5. ORISE: Applied health physics projects

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Applied health physics projects The Oak Ridge Institute for Science and Education (ORISE) provides applied health physics services to government agencies needing technical support for decommissioning projects. Whether the need is assistance with the development of technical basis documents or advice on how to identify, measure and assess the presence of radiological materials, ORISE can help determine the best course for an environmental cleanup project. Our key areas of expertise include fuel

  6. Browse by Discipline -- E-print Network Subject Pathways: Fossil...

    Office of Scientific and Technical Information (OSTI)

    Imoto) - Laboratory of DNA Information Analysis, Human Genome Center, University of Tokyo. ... A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Iowa Center for Gene Therapy

  7. Safety & Occupational Health Specialist | Department of Energy

    Energy Saver

    & Occupational Health Specialist Safety & Occupational Health Specialist Submitted by admin on Sat, 2015-10-17 00:14 Job Summary Organization Name Department Of Energy Agency...

  8. Memorandum, Health and Safety Training Reciprocity Program -...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Health and Safety Training Reciprocity Program - July 12, 2013 Memorandum, Health and Safety Training Reciprocity Program - July 12, 2013 July 12, 2013 The HSS reciprocity program ...

  9. ORISE: Resources for Worker Health Studies

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Resources Worker health studies reports, articles and books Worker Health Resources Resources produced by the Oak Ridge Institute for Science and Education (ORISE) consist of...

  10. SULI Intern: Plant Health | Argonne National Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Plant Health Share Listen to Argonne intern Michelle Michaels talk about how she studied trends in plant health to help farmers determine crop yield during the growing season. ...

  11. ORISE Resources: Consumer Health Resource Information Service...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Consumer Health Resource Information Service (CHRIS) guide The Consumer Health Resource Information Service (CHRIS) guide for faith-based organizations and communities was...

  12. Office of Worker Safety and Health Policy

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Office of Worker Safety and Health Policy establishes Departmental expectations for worker safety and health through the development of rules, directives and guidance.

  13. ORISE Health Communication and Training: Contact Us

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Contact Us Marcus Weseman Senior Associate Director; Health, Energy and Environment Work: 865.576.3420 health.communication@orau.org or technical.training@orau.org...

  14. National Institutes of Health: Mixed waste stream analysis

    SciTech Connect

    Kirner, N.P.; Faison, G.P.; Johnson, D.R.

    1994-08-01

    The Low-Level Radioactive Waste Policy Amendments Act of 1985 requires that the US Department of Energy (DOE) provide technical assistance to host States, compact regions, and unaffiliated States to fulfill their responsibilities under the Act. The National Low-Level Waste Management Program (NLLWMP) operated for DOE by EG&G Idaho, Inc. provides technical assistance in the development of new commercial low-level radioactive waste disposal capacity. The NLLWMP has been requested by the Appalachian Compact to help the biomedical community become better acquainted with its mixed waste streams, to help minimize the mixed waste streams generated by the biomedical community, and to provide applicable treatment technologies to those particular mixed waste streams. Mixed waste is waste that satisfies the definition of low-level radioactive waste (LLW) in the Low-Level Radioactive Waste Policy Act of 1980 (LLRWPA) and contains hazardous waste that either (a) is listed as a hazardous waste in Subpart D of 40 CFR 261, or (b) causes the LLW to exhibit any of the hazardous waste characteristics identified in 40 CFR 261. The purpose of this report is to clearly define and characterize the mixed waste streams generated by the biomedical community so that an identification can be made of the waste streams that can and cannot be minimized and treated by current options. An understanding of the processes and complexities of generation of mixed waste in the biomedical community may encourage more treatment and storage options to become available.

  15. Employee Job Task Analysis (EJTA) - HPMC Occupational Health...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    for? Results of your EJTA are used to schedule medical exams, return to work, fitness for duty, and applicable work restrictions. The EJTA satisfies requirements of the...

  16. Trace-element geochemistry of coal resource development related to environmental quality and health

    SciTech Connect

    Not Available

    1980-01-01

    This report assesses for decision makers and those involved in coal resource development the environmental and health impacts of trace-element effects arising from significant increases in the use of coal, unless unusual precautions are invoked. Increasing demands for energy and the pressing need for decreased dependence of the United States on imported oil require greater use of coal to meet the nation's energy needs during the next decade. If coal production and consumption are increased at a greatly accelerated rate, concern arises over the release, mobilization, transportation, distribution, and assimilation of certain trace elements, with possible adverse effects on the environment and human health. It is, therefore, important to understand their geochemical pathways from coal and rocks via air, water, and soil to plants, animals, and ultimately humans, and their relation to health and disease. To address this problem, the Panel on Trace Element Geochemistry of Coal Resource Development Related to Health (PECH) was established. Certain assumptions were made by the Panel to highlight the central issues of trace elements and health and to avoid unwarranted duplication of other studies. Based on the charge to the Panel and these assumptions, this report describes the amounts and distribution of trace elements related to the coal source; the various methods of coal extraction, preparation, transportation, and use; and the disposal or recycling of the remaining residues or wastes. The known or projected health effects are discussed at the end of each section.

  17. A New Collaborative Tool for Visually Understanding National Health Indicators

    SciTech Connect

    Xu, Songhua; Jewell, Brian C; Steed, Chad A; Schryver, Jack C

    2012-01-01

    The authors propose a new online collaborative tool for visually understanding national health indicators, which facilitates the full spectrum of investigation of indicators, from an overview of all the correlation coefficients between variables, to investigation of subsets of selected variables, and to individual data element analysis. this tool is publicly accessible at http://cda.ornl.gov/heat/heatmap.html. In this paper, they discuss the key issues regarding the interface design and implementation. They also illustrate how to use their interface for analyzing the health indicator dataset by showing some key system views. In the end, they introduce and discuss some ongoing research efforts extending this work.

  18. ORISE: REAC/TS redesignated as Pan American Health Organization...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    medical personnel, health physicists, first responders, emergency planners, public health professionals and occupational health professionals about radiation emergency medicine. ...

  19. Flash Vacuum Pyrolysis of Lignin Model Compounds: Reaction Pathways of Aromatic Methoxy Groups

    SciTech Connect

    Britt, P.F.; Buchanan, A.C., III; Martineau, D.R.

    1999-03-21

    Currently, there is interest in utilizing lignin, a major constituent of biomass, as a renewable source of chemicals and fuels. High yields of liquid products can be obtained from the flash or fast pyrolysis of biomass, but the reaction pathways that lead to product formation are not understood. To provide insight into the primary reaction pathways under process relevant conditions, we are investigating the flash vacuum pyrolysis (FVP) of lignin model compounds at 500 C. This presentation will focus on the FVP of {beta}-ether linkages containing aromatic methoxy groups and the reaction pathways of methoxy-substituted phenoxy radicals.

  20. Bioenergy Technologies Office R&D Pathways: Ex-Situ Catalytic Fast

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Pyrolysis | Department of Energy Ex-Situ Catalytic Fast Pyrolysis Bioenergy Technologies Office R&D Pathways: Ex-Situ Catalytic Fast Pyrolysis In ex-situ catalytic fast pyrolysis, biomass is heated with catalysts to create bio-oils, which are then used to produce biofuel blendstocks. Bioenergy Technologies Office R&D Pathways: Ex-Situ Catalytic Fast Pyrolysis (476.99 KB) More Documents & Publications Bioenergy Technologies Office R&D Pathways: In-Situ Catalytic Fast Pyrolysis

  1. Health assessment for Cedartown Municipal Landfill NPL Site, Cedartown, Polk County, Georgia, Region 4. CERCLIS No. GAD980495402. Preliminary report

    SciTech Connect

    Not Available

    1990-08-08

    In compliance with the Comprehensive Environmental Response, Compensation, and Liability Act and the Resource Conservation and Recovery Act, as amended, the Agency for Toxic Substances and Disease Registry (ATSDR) has prepared Health Assessment reports for sites currently on, or proposed for, the National Priorities List. In the report, the presence and nature of health hazards at this site are assessed, and the public health implications specific to this site are evaluated. The Health Assessment is based on such factors as the nature, concentration, toxicity, and extent of contamination at the site; the existence of potential pathways for the human exposure; the size and nature of the community likely to be exposed; and any other information available.

  2. Radiation Impact of Very Low Level Radioactive Steel Reused in Building Industry with Emphasis on External Exposure Pathway - 12569

    SciTech Connect

    Panik, Michal; Hrncir, Tomas; Necas, Vladimir

    2012-07-01

    Considerable quantities of various materials are accumulated during the decommissioning process of nuclear installations. Some of arising materials are activated or contaminated. However, many of them continue to have an economic value and exist in a form that can be recycled or reused for special purposes. Furthermore much of the material generated during decommissioning process will contain only small amounts of radionuclides. For these materials there exist environmental and economic incentives to maximize the use of the concept of clearance from further regulatory control. This impact analysis is devoted to mentioned incentives. The aim is to conditionally clear maximum amount of the scrap steel and consequently recycle and reuse it in form of reinforcing components in tunnel and bridge building scenarios. Recent calculations relevant for external exposure pathway indicate that concept of conditional clearance represent a feasible option for the management of radioactive materials. Even in chosen specific industrial applications it is possible to justify new, approximately one order of magnitude higher, clearance levels. However analysis of other possible exposure pathways relevant for particular scenario of reuse of conditionally cleared materials has to be performed in order to confirm indications from partially obtained results. Basically, the concept of conditional clearance can bring two basic benefits. Firstly it is saving of considerable funds, which would be otherwise used for treatment, conditioning and disposal of materials at appropriate radioactive waste repository. Moreover materials with intrinsic value (particularly metals) can be recycled and reused in industrial applications instead of investing resources on mining and production process in order to obtain new, 'fresh' materials. (authors)

  3. Energy Systems and Population Health

    SciTech Connect

    Ezzati, Majid; Bailis, Rob; Kammen, Daniel M.; Holloway, Tracey; Price, Lynn; Cifuentes, Luis A.; Barnes, Brendon; Chaurey, Akanksha; Dhanapala, Kiran N.

    2004-04-12

    It is well-documented that energy and energy systems have a central role in social and economic development and human welfare at all scales, from household and community to regional and national (41). Among its various welfare effects, energy is closely linked with people s health. Some of the effects of energy on health and welfare are direct. With abundant energy, more food or more frequent meals can be prepared; food can be refrigerated, increasing the types of food items that are consumed and reducing food contamination; water pumps can provide more water and eliminate the need for water storage leading to contamination or increased exposure to disease vectors such as mosquitoes or snails; water can be disinfected by boiling or using other technologies such as radiation. Other effects of energy on public health are mediated through more proximal determinants of health and disease. Abundant energy can lead to increased irrigation, agricultural productivity, and access to food and nutrition; access to energy can also increase small-scale income generation such as processing of agricultural commodities (e.g., producing refined oil from oil seeds, roasting coffee, drying and preserving fruits and meats) and production of crafts; ability to control lighting and heating allows education or economic activities to be shielded from daily or seasonal environmental constraints such as light, temperature, rainfall, or wind; time and other economic resources spent on collecting and/or transporting fuels can be used for other household needs if access to energy is facilitated; energy availability for transportation increases access to health and education facilities and allow increased economic activity by facilitating the transportation of goods and services to and from markets; energy for telecommunication technology (radio, television, telephone, or internet) provides increased access to information useful for health, education, or economic purposes; provision of energy

  4. Modeling & Analysis

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Facilities, Modeling, Modeling, Modeling & Analysis, Modeling & Analysis, Renewable Energy, Research & Capabilities, Wind Energy, Wind News Virtual LIDAR Model Helps Researchers ...

  5. Advanced Sensors and Controls for Building Applications: Market Assessment and Potential R&D Pathways

    SciTech Connect

    Brambley, M. R.; Haves, P.; McDonald, S. C.; Torcellini, P.; Hansen, D.; Holmberg, D. R.; Roth, K. W.

    2005-04-01

    This document provides a market assessment of existing building sensors and controls and presents a range of technology pathways (R&D options) for pursuing advanced sensors and building control strategies.

  6. Predicting Chemical Pathways for Li-O2 Batteries - Joint Center...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    March 6, 2014, Research Highlights Predicting Chemical Pathways for Li-O2 Batteries ... figure) and (LiO2)6 (red curve, upper figure) to Li2O2 using quantum chemical theory. ...

  7. Pathways to a Low Carbon Economy: The Business Response to Climate...

    OpenEI (Open Energy Information) [EERE & EIA]

    to a Low Carbon Economy: The Business Response to Climate Change Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Pathways to a Low Carbon Economy: The Business Response...

  8. Los Alamos among new DOE projects to create new technology pathways...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    July New DOE projects for low-cost fusion energy development Los Alamos among new DOE projects to create new technology pathways for low-cost fusion energy development Three of ...

  9. Dehydration pathways of 1-propanol on HZSM-5 in the presence...

    Office of Scientific and Technical Information (OSTI)

    presence and absence of water Citation Details In-Document Search Title: Dehydration pathways of 1-propanol on HZSM-5 in the presence and absence of water The Brnsted ...

  10. Interdisciplinary: Chemical Engineer/ Mechanical Engineer/Materials Engineer (Pathways Recent Graduate Program)

    Energy.gov [DOE]

    There are two vacancies that may be filled at either Albany, OR; Pittsburgh, PA or Morgantown, WV. This is a Recent Graduate position in the Pathways Program. The program duration is one year and...

  11. Technological cost-reduction pathways for attenuator wave energy converters in the marine hydrokinetic environment.

    SciTech Connect

    Bull, Diana L; Ochs, Margaret Ellen

    2013-09-01

    This report considers and prioritizes the primary potential technical costreduction pathways for offshore wave activated body attenuators designed for ocean resources. This report focuses on technical research and development costreduction pathways related to the device technology rather than environmental monitoring or permitting opportunities. Three sources of information were used to understand current cost drivers and develop a prioritized list of potential costreduction pathways: a literature review of technical work related to attenuators, a reference device compiled from literature sources, and a webinar with each of three industry device developers. Data from these information sources were aggregated and prioritized with respect to the potential impact on the lifetime levelized cost of energy, the potential for progress, the potential for success, and the confidence in success. Results indicate the five most promising costreduction pathways include advanced controls, an optimized structural design, improved power conversion, planned maintenance scheduling, and an optimized device profile.

  12. BETO Announces Notice of Intent (NOI) to Develop Pathways to Biofuels and

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Bioproducts | Department of Energy Announces Notice of Intent (NOI) to Develop Pathways to Biofuels and Bioproducts BETO Announces Notice of Intent (NOI) to Develop Pathways to Biofuels and Bioproducts December 22, 2015 - 2:38am Addthis The Energy Department announces its intent to issue, on behalf of the Bioenergy Technologies Office (BETO), a funding opportunity announcement (FOA) entitled "MEGA-BIO: Bioproducts to Enable Biofuels." This FOA supports BETO's goal of meeting its

  13. Hydrogen Pathways: Cost, Well-to-Wheels Energy Use, and Emissions for the

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Current Technology Status of Seven Hydrogen Production, Delivery, and Distribution Scenarios | Department of Energy Pathways: Cost, Well-to-Wheels Energy Use, and Emissions for the Current Technology Status of Seven Hydrogen Production, Delivery, and Distribution Scenarios Hydrogen Pathways: Cost, Well-to-Wheels Energy Use, and Emissions for the Current Technology Status of Seven Hydrogen Production, Delivery, and Distribution Scenarios This document reports the levelized cost in 2005 U.S.

  14. Method of forming electrical pathways in indium-tin-oxide coatings

    DOEpatents

    Haynes, Tony E.

    1996-01-01

    An electrical device includes a substrate having an ITO coating thereon, a portion of which is conductive and defines at least one electrical pathway, and the balance of the ITO being insulative. The device is made by the following general steps: a. providing a substrate having a conductive ITO coating on at least one surface thereof; b. rendering a preselected portion of the coating of conductive ITO insulative, leaving the remaining portion of conductive ITO as at least one electrical pathway.

  15. Method of forming electrical pathways in indium-tin-oxide coatings

    DOEpatents

    Haynes, Tony E.

    1997-01-01

    An electrical device includes a substrate having an ITO coating thereon, a portion of which is conductive and defines at least one electrical pathway, and the balance of the ITO being insulative. The device is made by the following general steps: a. providing a substrate having a conductive ITO coating on at least one surface thereof; b. rendering a preselected portion of the coating of conductive ITO insulative, leaving the remaining portion of conductive ITO as at least one electrical pathway.

  16. Method of forming electrical pathways in indium-tin-oxide coatings

    DOEpatents

    Haynes, T.E.

    1997-03-04

    An electrical device includes a substrate having an ITO coating thereon, a portion of which is conductive and defines at least one electrical pathway, the balance of the ITO being insulative. The device is made by the following general steps: (a) providing a substrate having a conductive ITO coating on at least one surface thereof; (b) rendering a preselected portion of the coating of conductive ITO insulative, leaving the remaining portion of conductive ITO as at least one electrical pathway. 8 figs.

  17. Method of forming electrical pathways in indium-tin-oxide coatings

    DOEpatents

    Haynes, T.E.

    1996-12-03

    An electrical device includes a substrate having an ITO coating thereon, a portion of which is conductive and defines at least one electrical pathway, and the balance of the ITO being insulative. The device is made by the following general steps: a. providing a substrate having a conductive ITO coating on at least one surface thereof; b. rendering a preselected portion of the coating of conductive ITO insulative, leaving the remaining portion of conductive ITO as at least one electrical pathway. 8 figs.

  18. Shape-memory transformations of NiTi: Minimum-energy pathways between

    Office of Scientific and Technical Information (OSTI)

    austenite, martensites, and kinetically limited intermediate states (Journal Article) | DOE PAGES Shape-memory transformations of NiTi: Minimum-energy pathways between austenite, martensites, and kinetically limited intermediate states Title: Shape-memory transformations of NiTi: Minimum-energy pathways between austenite, martensites, and kinetically limited intermediate states NiTi is the most used shape-memory alloy, nonetheless, a lack of understanding remains regarding the associated

  19. Bioenergy Technologies Office R&D Pathways: Fast Pyrolysis and

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Hydroprocessing | Department of Energy Fast Pyrolysis and Hydroprocessing Bioenergy Technologies Office R&D Pathways: Fast Pyrolysis and Hydroprocessing In fast pyrolysis and hydrotreating, biomass is rapidly heated in a fluidized bed to create bio-oils, which can then be used to create hydrocarbon biofuel blendstocks. Bioenergy Technologies Office R&D Pathways: Fast Pyrolysis and Hydroprocessing (471.51 KB) More Documents & Publications Bioenergy Technologies Office R&D

  20. Building a Global Low-Carbon Technology Pathway | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    a Global Low-Carbon Technology Pathway Building a Global Low-Carbon Technology Pathway December 8, 2014 - 3:10pm Addthis Because of climate change, more frequent and intense weather events -- like this hurricane over the Atlantic Ocean, viewed from a satellite -- are becoming more common. Finding ways to reduce global emissions could help. Because of climate change, more frequent and intense weather events -- like this hurricane over the Atlantic Ocean, viewed from a satellite -- are becoming

  1. Shape-memory transformations of NiTi: Minimum-energy pathways between

    Office of Scientific and Technical Information (OSTI)

    austenite, martensites, and kinetically limited intermediate states (Journal Article) | DOE PAGES Shape-memory transformations of NiTi: Minimum-energy pathways between austenite, martensites, and kinetically limited intermediate states Title: Shape-memory transformations of NiTi: Minimum-energy pathways between austenite, martensites, and kinetically limited intermediate states NiTi is the most used shape-memory alloy, nonetheless, a lack of understanding remains regarding the associated

  2. Effect of cation ordering on oxygen vacancy diffusion pathways in double

    Office of Scientific and Technical Information (OSTI)

    perovskites (Journal Article) | DOE PAGES Effect of cation ordering on oxygen vacancy diffusion pathways in double perovskites Title: Effect of cation ordering on oxygen vacancy diffusion pathways in double perovskites Perovskite structured oxides (ABO3) are attractive for a number of technological applications, including as superionics because of the high oxygen conductivities they exhibit. Double perovskites (AA'BB'O6) provide even more flexibility for tailoring properties. Using

  3. Science Alliance Reveals STEM Pathways to the Future | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Science Alliance Reveals STEM Pathways to the Future Science Alliance Reveals STEM Pathways to the Future October 26, 2015 - 12:54pm Addthis Students try their hands at arranging items in glove boxes during the Sixth Annual Science Alliance at the DOE Portsmouth Site in Piketon, Ohio. The three-day event included several contests for hundreds of attendees while providing an immersive learning experience. Students try their hands at arranging items in glove boxes during the Sixth Annual Science

  4. Augmented Fish Health Monitoring, 1987-1988 Annual Report.

    SciTech Connect

    Warren, James W.

    1988-08-01

    Augmented Fish Health Monitoring Contract DE-AI79-87BP35585 was implemented on July 20, 1987. First year highlights included remodeling of the Olympia (WA) Fish Health Center to provide laboratory space for histopathological support services to participating state agencies, acquisition of gas monitoring equipment for hatchery water systems, expanded disease detection work for bacterial kidney disease and erythrocytic inclusion body syndrome in fish stocks at 13 Columbia River Basin National Fish Hatcheries and advancements in computerized case history data storage and analysis. This report summarizes the health status of fish reared at Service facilities in the Columbia River basin, briefly describes work being done to meet contract requirements for fish disease surveillance at those hatcheries and provides a summary of case history data for calendar years 1984, 1985, 1986 and 1987. 1 ref.

  5. Building international genomics collaboration for global health security

    SciTech Connect

    Cui, Helen H.; Erkkila, Tracy; Chain, Patrick S. G.; Vuyisich, Momchilo

    2015-12-07

    Genome science and technologies are transforming life sciences globally in many ways and becoming a highly desirable area for international collaboration to strengthen global health. The Genome Science Program at the Los Alamos National Laboratory is leveraging a long history of expertise in genomics research to assist multiple partner nations in advancing their genomics and bioinformatics capabilities. The capability development objectives focus on providing a molecular genomics-based scientific approach for pathogen detection, characterization, and biosurveillance applications. The general approaches include introduction of basic principles in genomics technologies, training on laboratory methodologies and bioinformatic analysis of resulting data, procurement, and installation of next-generation sequencing instruments, establishing bioinformatics software capabilities, and exploring collaborative applications of the genomics capabilities in public health. Genome centers have been established with public health and research institutions in the Republic of Georgia, Kingdom of Jordan, Uganda, and Gabon; broader collaborations in genomics applications have also been developed with research institutions in many other countries.

  6. Track 4: Employee Health and Wellness

    Energy.gov [DOE]

    ISM Workshop Presentations Knoxville Convention Center, Knoxville, TN August 2009 Track 4: Employee Health and Wellness

  7. Oxygen transport pathways in Ruddlesden–Popper structured oxides revealed via in situ neutron diffraction

    DOE PAGES [OSTI]

    Tomkiewicz, Alex C.; Tamimi, Mazin; Huq, Ashfia; McIntosh, Steven

    2015-09-21

    Ruddlesden-Popper structured oxides, general form An+1BnO3n+1, consist of n-layers of the perovskite structure stacked in between rock-salt layers, and have potential application in solid oxide electrochemical cells and ion transport membrane reactors. Three materials with constant Co/Fe ratio, LaSrCo0.5Fe0.5O4-δ (n = 1), La0.3Sr2.7CoFeO7-δ (n = 2), and LaSr3Co1.5Fe1.5O10-δ (n = 3) were synthesized and studied via in situ neutron powder diffraction between 765 K and 1070 K at a pO2 of 10-1 atm. Then, the structures were fit to a tetragonal I4/mmm space group, and were found to have increased total oxygen vacancy concentration in the order La0.3Sr2.7CoFeO7-δ > LaSr3Co1.5Fe1.5O10-δmore » > LaSrCo0.5Fe0.5O4-δ, following the trend predicted for charge compensation upon increasing Sr2+/La3+ ratio. The oxygen vacancies within the material were almost exclusively located within the perovskite layers for all of the crystal structures with only minimal vacancy formation in the rock-salt layer. Finally, analysis of the concentration of these vacancies at each distinct crystallographic site and the anisotropic atomic displacement parameters for the oxygen sites reveals potential preferred oxygen transport pathways through the perovskite layers.« less

  8. Decomposition Pathway of Ammonia Borane on the Surface of nano-BN

    SciTech Connect

    Neiner, Doinita; Luedtke, Avery T.; Karkamkar, Abhijeet J.; Shaw, Wendy J.; Wang, Julia; Browning, Nigel; Autrey, Thomas; Kauzlarich, Susan M.

    2010-08-19

    Ammonia borane (AB) is under significant investigation as a possible hydrogen storage material. While many chemical additives have been demonstrated to have a significant positive effect on hydrogen release from ammonia borane, many provide additional complications in the regeneration cycle. Mechanically alloyed hexagonal BN (nano-BN) has been shown to facilitate the release of hydrogen from AB at lower temperature, with minimal induction time, less exothermically, and inert nano-BN may be easily removed during any regeneration of the spent AB. The samples were prepared by mechanically alloying AB with nano-BN. Raman spectroscopy indicates that the AB:nano-BN samples are physical mixtures of AB and h-BN. The release of hydrogen from AB:nano-BN mixtures as well as the decomposition products were characterized by 11B magic angle spinning (MAS) solid state NMR, TGA/DSC/MS with 15N labeled AB, and solution 11B NMR spectroscopy. The 11B MAS solid state NMR spectrum shows that diammonate of diborane (DADB) is present in the mechanically alloyed mixture, which drastically shortens the induction period for hydrogen release from AB. Analysis of the TGA/DSC/MS spectra using 15N labeled AB shows that all the borazine (BZ) produced in the reaction comes from AB and that increasing nano-BN surface area results in increased amounts of BZ. However, under high temperature, 150?C, isothermal conditions, the amount of BZ released was the same as for neat AB. High resolution transmission electron microscopy (HRTEM), selected area diffraction (SAD), and electron energy loss spectroscopy (EELS) of the initial and final nano-BN additive provide evidence for crystallinity loss but not significant chemical changes. The higher concentration of BZ observed for low temperature dehydrogenation of AB:nano-BN mixtures versus neat AB is attributed to a surface interaction that favors the formation of precursors which ultimately result in BZ. This pathway can be avoided through isothermal heating

  9. Targeting ceramide metabolic pathway induces apoptosis in human breast cancer cell lines

    SciTech Connect

    Vethakanraj, Helen Shiphrah; Babu, Thabraz Ahmed; Sudarsanan, Ganesh Babu; Duraisamy, Prabhu Kumar; Ashok Kumar, Sekar

    2015-08-28

    The sphingolipid ceramide is a pro apoptotic molecule of ceramide metabolic pathway and is hydrolyzed to proliferative metabolite, sphingosine 1 phosphate by the action of acid ceramidase. Being upregulated in the tumors of breast, acid ceramidase acts as a potential target for breast cancer therapy. We aimed at targeting this enzyme with a small molecule acid ceramidase inhibitor, Ceranib 2 in human breast cancer cell lines MCF 7 and MDA MB 231. Ceranib 2 effectively inhibited the growth of both the cell lines in dose and time dependant manner. Morphological apoptotic hallmarks such as chromatin condensation, fragmented chromatin were observed in AO/EtBr staining. Moreover, ladder pattern of fragmented DNA observed in DNA gel electrophoresis proved the apoptotic activity of Ceranib 2 in breast cancer cell lines. The apoptotic events were associated with significant increase in the expression of pro-apoptotic genes (Bad, Bax and Bid) and down regulation of anti-apoptotic gene (Bcl 2). Interestingly, increase in sub G1 population of cell cycle phase analysis and elevated Annexin V positive cells after Ceranib 2 treatment substantiated its apoptotic activity in MCF 7 and MDA MB 231 cell lines. Thus, we report Ceranib 2 as a potent therapeutic agent against both ER{sup +} and ER{sup −} breast cancer cell lines. - Highlights: • Acid Ceramidase inhibitor, Ceranib 2 induced apoptosis in Breast cancer cell lines (MCF 7 and MDA MB 231 cell lines). • Apoptosis is mediated by DNA fragmentation and cell cycle arrest. • Ceranib 2 upregulated the expression of pro-apoptotic genes and down regulated anti-apoptotic gene expression. • More potent compared to the standard drug Tamoxifen.

  10. Extending the Shared Socioeconomic Pathways for sub-national impacts, adaptation, and vulnerability studies

    DOE PAGES [OSTI]

    Absar, Syeda Mariya; Preston, Benjamin L.

    2015-05-25

    The exploration of alternative socioeconomic futures is an important aspect of understanding the potential consequences of climate change. While socioeconomic scenarios are common and, at times essential, tools for the impact, adaptation and vulnerability and integrated assessment modeling research communities, their approaches to scenario development have historically been quite distinct. However, increasing convergence of impact, adaptation and vulnerability and integrated assessment modeling research in terms of scales of analysis suggests there may be value in the development of a common framework for socioeconomic scenarios. The Shared Socioeconomic Pathways represents an opportunity for the development of such a common framework. However,more » the scales at which these global storylines have been developed are largely incommensurate with the sub-national scales at which impact, adaptation and vulnerability, and increasingly integrated assessment modeling, studies are conducted. Our objective for this study was to develop sub-national and sectoral extensions of the global SSP storylines in order to identify future socioeconomic challenges for adaptation for the U.S. Southeast. A set of nested qualitative socioeconomic storyline elements, integrated storylines, and accompanying quantitative indicators were developed through an application of the Factor-Actor-Sector framework. Finally, in addition to revealing challenges and opportunities associated with the use of the SSPs as a basis for more refined scenario development, this study generated sub-national storyline elements and storylines that can subsequently be used to explore the implications of alternative subnational socioeconomic futures for the assessment of climate change impacts and adaptation.« less

  11. Environmental, safety, and health engineering

    SciTech Connect

    Woodside, G.; Kocurek, D.

    1997-12-31

    A complete guide to environmental, safety, and health engineering, including an overview of EPA and OSHA regulations; principles of environmental engineering, including pollution prevention, waste and wastewater treatment and disposal, environmental statistics, air emissions and abatement engineering, and hazardous waste storage and containment; principles of safety engineering, including safety management, equipment safety, fire and life safety, process and system safety, confined space safety, and construction safety; and principles of industrial hygiene/occupational health engineering including chemical hazard assessment, personal protective equipment, industrial ventilation, ionizing and nonionizing radiation, noise, and ergonomics.

  12. Nanocrystalline Si pathway induced unipolar resistive switching behavior from annealed Si-rich SiN{sub x}/SiN{sub y} multilayers

    SciTech Connect

    Jiang, Xiaofan; Ma, Zhongyuan Yang, Huafeng; Yu, Jie; Wang, Wen; Zhang, Wenping; Li, Wei; Xu, Jun; Xu, Ling; Chen, Kunji; Huang, Xinfan; Feng, Duan

    2014-09-28

    Adding a resistive switching functionality to a silicon microelectronic chip is a new challenge in materials research. Here, we demonstrate that unipolar and electrode-independent resistive switching effects can be realized in the annealed Si-rich SiN{sub x}/SiN{sub y} multilayers with high on/off ratio of 10{sup 9}. High resolution transmission electron microscopy reveals that for the high resistance state broken pathways composed of discrete nanocrystalline silicon (nc-Si) exist in the Si nitride multilayers. While for the low resistance state the discrete nc-Si regions is connected, forming continuous nc-Si pathways. Based on the analysis of the temperature dependent I-V characteristics and HRTEM photos, we found that the break-and-bridge evolution of nc-Si pathway is the origin of resistive switching memory behavior. Our findings provide insights into the mechanism of the resistive switching behavior in nc-Si films, opening a way for it to be utilized as a material in Si-based memories.

  13. Benzo[a]pyrene affects Jurkat T cells in the activated state via the antioxidant response element dependent Nrf2 pathway leading to decreased IL-2 secretion and redirecting glutamine metabolism

    SciTech Connect

    Murugaiyan, Jayaseelan; Rockstroh, Maxie; Wagner, Juliane; Baumann, Sven; Schorsch, Katrin; Trump, Saskia; Lehmann, Irina; Bergen, Martin von; Tomm, Janina M.

    2013-06-15

    There is a clear evidence that environmental pollutants, such as benzo[a]pyrene (B[a]P), can have detrimental effects on the immune system, whereas the underlying mechanisms still remain elusive. Jurkat T cells share many properties with native T lymphocytes and therefore are an appropriate model to analyze the effects of environmental pollutants on T cells and their activation. Since environmental compounds frequently occur at low, not acute toxic concentrations, we analyzed the effects of two subtoxic concentrations, 50 nM and 5 μM, on non- and activated cells. B[a]P interferes directly with the stimulation process as proven by an altered IL-2 secretion. Furthermore, B[a]P exposure results in significant proteomic changes as shown by DIGE analysis. Pathway analysis revealed an involvement of the AhR independent Nrf2 pathway in the altered processes observed in unstimulated and stimulated cells. A participation of the Nrf2 pathway in the change of IL-2 secretion was confirmed by exposing cells to the Nrf2 activator tBHQ. tBHQ and 5 μM B[a]P caused similar alterations of IL-2 secretion and glutamine/glutamate metabolism. Moreover, the proteome changes in unstimulated cells point towards a modified regulation of the cytoskeleton and cellular stress response, which was proven by western blotting. Additionally, there is a strong evidence for alterations in metabolic pathways caused by B[a]P exposure in stimulated cells. Especially the glutamine/glutamate metabolism was indicated by proteome pathway analysis and validated by metabolite measurements. The detrimental effects were slightly enhanced in stimulated cells, suggesting that stimulated cells are more vulnerable to the environmental pollutant model compound B[a]P. - Highlights: • B[a]P affects the proteome of Jurkat T cells also at low concentrations. • Exposure to B[a]P (50 nM, 5 μM) did not change Jurkat T cell viability. • Both B[a]P concentrations altered the IL-2 secretion of stimulated cells.

  14. Environment, Safety and Health Reporting

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    2011-06-27

    The order addresses DOE/NNSA receiving timely, accurate information about events that have affected or could adversely affect the health, safety and security of the public or workers, the environment, the operations of DOE facilities, or the credibility of the Department. Admin Chg 1, dated 11-28-12, Supersedes DOE O 231.1B.

  15. Facilitating communities in designing and using their own community health impact assessment tool

    SciTech Connect

    Cameron, Colleen; Ghosh, Sebanti; Eaton, Susan L.

    2011-07-15

    Reducing health inequities and improving the health of communities require an informed public that is aware of the social determinants of health and how policies and programs have an impact on the health of their communities. People Assessing Their Health (PATH) is a process that uses community-driven health impact assessment to build the capacity of people to become active participants in the decisions that affect the well-being of their community. The PATH process is both a health promotion and a community development approach that builds people's ability to bring critical analysis to a situation and to engage in effective social action to bring about desired change. Because it increases analytical skills and provides communities with their own unique tool to assess the potential impact of projects, programs or policies on the health and well-being of their community it is an empowering process. PATH was originally used in three communities in northeastern Nova Scotia, Canada in 1996 when the Canadian health care system was being restructured to a more decentralized system. Since then it has been used in other communities in Nova Scotia and India. This paper will describe the PATH process and the use of the community health impact assessment as well as the methodology used in the PATH process. The lessons learned from PATH's experiences of building capacity among the community in Canada and India will be presented.

  16. Augmented Fish Health Monitoring; Volume II of II, Completion Report.

    SciTech Connect

    Michak, Patty

    1991-12-01

    The Bonneville Power Administration (BPA) initiated the Augmented Fish Health Monitoring project in 1986. This project was a five year interagency project involving fish rearing agencies in the Columbia Basin. Participating agencies included: Washington Department of Fisheries (WDF), Oregon Department of Fish and Wildlife, Idaho Department of Fish and Game, and the US Fish and Wildlife Service (USFWS). This is the final data report for the Augmented Fish Health Monitoring project. Data collected and sampling results for 1990 and 1991 are presented within this report. An evaluation of this project can be found in Augmented Fish Health Monitoring, Volume 1, Completion Report.'' May, 1991. Pathogen detection methods remained the same from methods described in Augmented Fish Health Monitoring, Annual Report 1989,'' May, 1990. From January 1, 1990 to June 30, 1991 fish health monitoring sampling was conducted. In 1990 21 returning adult stocks were sampled. Juvenile pre-release exams were completed on 20 yearling releases, and 13 sub-yearling releases in 1990. In 1991 17 yearling releases and 11 sub-yearling releases were examined. Midterm sampling was completed on 19 stocks in 1990. Organosomatic analysis was performed at release on index station stocks; Cowlitz spring and fall chinook, Lewis river early coho and Lyons Ferry fall chinook.

  17. Conversion of 4-Hydroxybutyrate to Acetyl Coenzyme A and Its Anapleurosis in the Metallosphaera sedula 3-Hydroxypropionate/4-Hydroxybutyrate Carbon Fixation Pathway

    SciTech Connect

    Hawkins, AB; Adams, MWW; Kelly, RM

    2014-03-25

    The extremely thermoacidophilic archaeon Metallosphaera sedula (optimum growth temperature, 73 degrees C, pH 2.0) grows chemolithoautotrophically on metal sulfides or molecular hydrogen by employing the 3-hydroxypropionate/4-hydroxybutyrate (3HP/4HB) carbon fixation cycle. This cycle adds two CO2 molecules to acetyl coenzyme A (acetyl-CoA) to generate 4HB, which is then rearranged and cleaved to form two acetyl-CoA molecules. Previous metabolic flux analysis showed that two-thirds of central carbon precursor molecules are derived from succinyl-CoA, which is oxidized to malate and oxaloacetate. The remaining one-third is apparently derived from acetyl-CoA. As such, the steps beyond succinyl-CoA are essential for completing the carbon fixation cycle and for anapleurosis of acetyl-CoA. Here, the final four enzymes of the 3HP/4HB cycle, 4-hydroxybutyrate-CoA ligase (AMP forming) (Msed_0406), 4-hydroxybutyryl-CoA dehydratase (Msed_1321), crotonyl-CoA hydratase/(S)-3-hydroxybutyryl-CoA dehydrogenase (Msed_0399), and acetoacetyl-CoA beta-ketothiolase (Msed_0656), were produced recombinantly in Escherichia coli, combined in vitro, and shown to convert 4HB to acetyl-CoA. Metabolic pathways connecting CO2 fixation and central metabolism were examined using a gas-intensive bioreactor system in which M. sedula was grown under autotrophic (CO2-limited) and heterotrophic conditions. Transcriptomic analysis revealed the importance of the 3HP/4HB pathway in supplying acetyl-CoA to anabolic pathways generating intermediates in M. sedula metabolism. The results indicated that flux between the succinate and acetyl-CoA branches in the 3HP/4HB pathway is governed by 4-hydroxybutyrate-CoA ligase, possibly regulated posttranslationally by the protein acetyltransferase (Pat)/Sir2-dependent system. Taken together, this work confirms the final four steps of the 3HP/4HB pathway, thereby providing the framework for examining connections between CO2 fixation and central metabolism in M. sedula.

  18. ORISE: Worker Health Studies - Beryllium Associated Worker Registry (BAWR)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Oak Ridge Institute for Science Education Beryllium Associated Worker Registry (BAWR) The Oak Ridge Institute for Science and Education (ORISE) maintains the Beryllium Associated Worker Registry (BAWR) for the U.S. Department of Energy's (DOE) Office of Health, Safety and Security (HSS). ORISE collects data from 25 reporting DOE sites on nearly 20,000 workers, assisting DOE in the analysis of these data focusing on predictive indicators and risk management. Reports are also provided to the

  19. Power electronics reliability analysis.

    SciTech Connect

    Smith, Mark A.; Atcitty, Stanley

    2009-12-01

    This report provides the DOE and industry with a general process for analyzing power electronics reliability. The analysis can help with understanding the main causes of failures, downtime, and cost and how to reduce them. One approach is to collect field maintenance data and use it directly to calculate reliability metrics related to each cause. Another approach is to model the functional structure of the equipment using a fault tree to derive system reliability from component reliability. Analysis of a fictitious device demonstrates the latter process. Optimization can use the resulting baseline model to decide how to improve reliability and/or lower costs. It is recommended that both electric utilities and equipment manufacturers make provisions to collect and share data in order to lay the groundwork for improving reliability into the future. Reliability analysis helps guide reliability improvements in hardware and software technology including condition monitoring and prognostics and health management.

  20. Hedgehog pathway regulators influence cervical cancer cell proliferation, survival and migration

    SciTech Connect

    Samarzija, Ivana; Beard, Peter

    2012-08-17

    Highlights: Black-Right-Pointing-Pointer Unknown cellular mutations complement papillomavirus-induced carcinogenesis. Black-Right-Pointing-Pointer Hedgehog pathway components are expressed by cervical cancer cells. Black-Right-Pointing-Pointer Hedgehog pathway activators and inhibitors regulate cervical cancer cell biology. Black-Right-Pointing-Pointer Cell immortalization by papillomavirus and activation of Hedgehog are independent. -- Abstract: Human papillomavirus (HPV) infection is considered to be a primary hit that causes cervical cancer. However, infection with this agent, although needed, is not sufficient for a cancer to develop. Additional cellular changes are required to complement the action of HPV, but the precise nature of these changes is not clear. Here, we studied the function of the Hedgehog (Hh) signaling pathway in cervical cancer. The Hh pathway can have a role in a number of cancers, including those of liver, lung and digestive tract. We found that components of the Hh pathway are expressed in several cervical cancer cell lines, indicating that there could exists an autocrine Hh signaling loop in these cells. Inhibition of Hh signaling reduces proliferation and survival of the cervical cancer cells and induces their apoptosis as seen by the up-regulation of the pro-apoptotic protein cleaved caspase 3. Our results indicate that Hh signaling is not induced directly by HPV-encoded proteins but rather that Hh-activating mutations are selected in cells initially immortalized by HPV. Sonic Hedgehog (Shh) ligand induces proliferation and promotes migration of the cervical cancer cells studied. Together, these results indicate pro-survival and protective roles of an activated Hh signaling pathway in cervical cancer-derived cells, and suggest that inhibition of this pathway may be a therapeutic option in fighting cervical cancer.

  1. Spatially resolved estimation of ozone-related mortality in the United States under two representative concentration pathways (RCPs) and their uncertainty

    DOE PAGES [OSTI]

    Kim, Young-Min; Zhou, Ying; Gao, Yang; Fu, Joshua S.; Johnson, Brent A.; Huang, Cheng; Liu, Yang

    2014-11-16

    We report that the spatial pattern of the uncertainty in air pollution-related health impacts due to climate change has rarely been studied due to the lack of high-resolution model simulations, especially under the Representative Concentration Pathways (RCPs), the latest greenhouse gas emission pathways. We estimated future tropospheric ozone (O3) and related excess mortality and evaluated the associated uncertainties in the continental United States under RCPs. Based on dynamically downscaled climate model simulations, we calculated changes in O3 level at 12 km resolution between the future (2057 and 2059) and base years (2001–2004) under a low-to-medium emission scenario (RCP4.5) and amore » fossil fuel intensive emission scenario (RCP8.5). We then estimated the excess mortality attributable to changes in O3. Finally, we analyzed the sensitivity of the excess mortality estimates to the input variables and the uncertainty in the excess mortality estimation using Monte Carlo simulations. O3-related premature deaths in the continental U.S. were estimated to be 1312 deaths/year under RCP8.5 (95 % confidence interval (CI): 427 to 2198) and ₋2118 deaths/year under RCP4.5 (95 % CI: ₋3021 to ₋1216), when allowing for climate change and emissions reduction. The uncertainty of O3-related excess mortality estimates was mainly caused by RCP emissions pathways. Finally, excess mortality estimates attributable to the combined effect of climate and emission changes on O3 as well as the associated uncertainties vary substantially in space and so do the most influential input variables. Spatially resolved data is crucial to develop effective community level mitigation and adaptation policy.« less

  2. Health and Safety Research Division progress report for the period October 1, 1991--March 31, 1993

    SciTech Connect

    Berven, B.A.

    1993-09-01

    This is a progress report from the Health and Safety Research Division of Oak Ridge National Laboratory. Information is presented in the following sections: Assessment Technology, Biological and Radiation Physics, Chemical Physics, Biomedical and Environmental Information Analysis, Risk Analysis, Center for Risk Management, Associate Laboratories for Excellence in Radiation Technology (ALERT), and Contributions to National and Lead Laboratory Programs and Assignments--Environmental Restoration.

  3. Systems analysis-independent analysis and verification

    SciTech Connect

    Badin, J.S.; DiPietro, J.P.

    1995-09-01

    The DOE Hydrogen Program is supporting research, development, and demonstration activities to overcome the barriers to the integration of hydrogen into the Nation`s energy infrastructure. Much work is required to gain acceptance of hydrogen energy system concepts and to develop them for implementation. A systems analysis database has been created that includes a formal documentation of technology characterization profiles and cost and performance information. Through a systematic and quantitative approach, system developers can understand and address important issues and thereby assure effective and timely commercial implementation. This project builds upon and expands the previously developed and tested pathway model and provides the basis for a consistent and objective analysis of all hydrogen energy concepts considered by the DOE Hydrogen Program Manager. This project can greatly accelerate the development of a system by minimizing the risk of costly design evolutions, and by stimulating discussions, feedback, and coordination of key players and allows them to assess the analysis, evaluate the trade-offs, and to address any emerging problem areas. Specific analytical studies will result in the validation of the competitive feasibility of the proposed system and identify system development needs. Systems that are investigated include hydrogen bromine electrolysis, municipal solid waste gasification, electro-farming (biomass gasifier and PEM fuel cell), wind/hydrogen hybrid system for remote sites, home electrolysis and alternate infrastructure options, renewable-based electrolysis to fuel PEM fuel cell vehicle fleet, and geothermal energy used to produce hydrogen. These systems are compared to conventional and benchmark technologies. Interim results and findings are presented. Independent analyses emphasize quality, integrity, objectivity, a long-term perspective, corporate memory, and the merging of technical, economic, operational, and programmatic expertise.

  4. Ethane oxidative dehydrogenation pathways on vanadium oxide catalysts

    SciTech Connect

    Argyle, Morris; Chen, Kaidong; Bell, Alexis T.; Iglesia, Enrique

    2001-12-10

    Kinetic and isotopic tracer and exchange measurements were used to determine the identity and reversibility of elementary steps involved in ethane oxidative dehydrogenation (ODH) on VOx/Al2O3 and VOx/ZrO2. C2H6-C2D6-O2 and C2H6-D2O-O2 react to form alkenes and COx without concurrent formation of C2H6-xDx orC2H4-xDx isotopomers, suggesting that C-H bond cleavage in ethane and ethene is an irreversible and kinetically relevant step in ODH and combustion reactions. Primary ethane ODH reactions show normal kinetic isotopic effects (kC-H/kC-D) 2.4; similar values were measured for ethane and ethene combustion(1.9 and 2.8, respectively). 16O2-18O2-C2H6 reactions on supported V16Ox domains led to the initial appearance of 16O from the lattice in H2O, CO, and CO2, consistent with the involvement of lattice oxygen in C-H bond activation steps. Isotopic contents are similar in H2O, CO, and CO2, suggesting that ODH and combustion reactions use similar lattice oxygen sites. No 16O-18O isotopomer s were detected during reactions of 16O2-18O2-C2H6 mixtures, as expected if dissociative O2 chemisorption steps were irreversible. The alkyl species formed in these steps desorb irreversibly as ethene and the resulting O-H groups recombine to form H2O and reduced V centers in reversible desorption steps. These reduced V centers reoxidize by irreversible dissociative chemisorption of O2. A pseudo-steady state analysis of these elementary steps together with these reversibility assumptions led to a rate expression that accurately describes the observed inhibition of ODH rates by water and the measured kinetic dependence of ODH rates on C2H6 and O2 pressures. This kinetic analysis suggests that surface oxygen, OH groups, and oxygen vacancies are the most abundant reactive intermediates during ethane ODH on active VOx domains.

  5. Ethane oxidative dehydrogenation pathways on vanadium oxide catalysts

    SciTech Connect

    Argyle, Morris; Chen, Kaidong; Bell, Alexis T.; Iglesia, Enrique

    2001-12-10

    Kinetic and isotopic tracer and exchange measurements were used to determine the identity and reversibility of elementary steps involved in ethane oxidative dehydrogenation (ODH) on VOx/Al2O3 and VOx/ZrO2. C2H6-C2D6-O2 and C2H6-D2O-O2 react to form alkenes and COx without concurrent formation of C2H6-xDx orC2H4-xDx isotopomers, suggesting that C-H bond cleavage in ethane and ethene is an irreversible and kinetically relevant step in ODH and combustion reactions. Primary ethane ODH reactions show normal kinetic isotopic effects (kC-H/kC-D 2.4); similar values were measured for ethane and ethene combustion(1.9 and 2.8, respectively). 16O2-18O2-C2H6 reactions on supported V16Ox domains led to the initial appearance of 16O from the lattice in H2O, CO, and CO2, consistent with the involvement of lattice oxygen in C-H bond activation steps. Isotopic contents are similar in H2O, CO, and CO2, suggesting that ODH and combustion reactions use similar lattice oxygen sites. No 16O-18O isotopomer s were detected during reactions of 16O2-18O2-C2H6 mixtures, as expected if dissociative O2 chemisorption steps were irreversible. The alkyl species formed in these steps desorb irreversibly as ethene and the resulting O-H groups recombine to form H2O and reduced V centers in reversible desorption steps. These reduced V centers reoxidize by irreversible dissociative chemisorption of O2. A pseudo-steady state analysis of these elementary steps together with these reversibility assumptions led to a rate expression that accurately describes the observed inhibition of ODH rates by water and the measured kinetic dependence of ODH rates on C2H6 and O2 pressures. This kinetic analysis suggests that surface oxygen, OH groups, and oxygen vacancies are the most abundant reactive intermediates during ethane ODH on active VOx domains.

  6. Greenhouse gases in the corn-to-fuel ethanol pathway.

    SciTech Connect

    Wang, M. Q.

    1998-06-18

    Argonne National Laboratory (ANL) has applied its Greenhouse gas, Regulated Emissions and Energy in Transportation (GREET) full-fuel-cycle analysis model to examine greenhouse gas (GHG) emissions of corn-feedstock ethanol, given present and near-future production technology and practice. On the basis of updated information appropriate to corn farming and processing operations in the four principal corn- and ethanol-producing states (Illinois, Iowa, Minnesota, and Nebraska), the model was used to estimate energy requirements and GHG emissions of corn farming; the manufacture, transportation to farms, and field application of fertilizer and pesticide; transportation of harvested corn to ethanol plants; nitrous oxide emissions from cultivated cornfields; ethanol production in current average and future technology wet and dry mills; and operation of cars and light trucks using ethanol fuels. For all cases examined on the basis of mass emissions per travel mile, the corn-to-ethanol fuel cycle for Midwest-produced ethanol used in both E85 and E10 blends with gasoline outperforms conventional (current) and reformulated (future) gasoline with respect to energy use and GHG production. Also, GHG reductions (but not energy use) appear surprisingly sensitive to the value chosen for combined soil and leached N-fertilizer conversion to nitrous oxide. Co-product energy-use attribution remains the single key factor in estimating ethanol's relative benefits because this value can range from 0 to 50%, depending on the attribution method chosen.

  7. Health

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... - 122015 The international prize is awarded ... - 12615 In research reported in the journal Nature Genetics, two ... and applied mathematics; and instill ...

  8. Comprehensive sequence-flux mapping of a levoglucosan utilization pathway in E. coli

    DOE PAGES [OSTI]

    Klesmith, Justin R.; Bacik, John -Paul; Michalczyk, Ryszard; Whitehead, Timothy A.

    2015-09-14

    Synthetic metabolic pathways often suffer from low specific productivity, and new methods that quickly assess pathway functionality for many thousands of variants are urgently needed. Here we present an approach that enables the rapid and parallel determination of sequence effects on flux for complete gene-encoding sequences. We show that this method can be used to determine the effects of over 8000 single point mutants of a pyrolysis oil catabolic pathway implanted in Escherichia coli. Experimental sequence-function data sets predicted whether fitness-enhancing mutations to the enzyme levoglucosan kinase resulted from enhanced catalytic efficiency or enzyme stability. A structure of one designmore » incorporating 38 mutations elucidated the structural basis of high fitness mutations. One design incorporating 15 beneficial mutations supported a 15-fold improvement in growth rate and greater than 24-fold improvement in enzyme activity relative to the starting pathway. Lastly, this technique can be extended to improve a wide variety of designed pathways.« less

  9. Status Update on Action 1b: Analysis of WP&C Deficiencies Identified by the DNFSB

    Energy.gov [DOE]

    Slide Presentation by Stephen L. Domotor, Office of Analysis, Office of Health, Safety and Security. Office of Analysis, Office of Health, Safety and Security. Analysis of Integrated Safety Management at the Activity Level: Work Planning and Control-Final Report,, U.S. Department of Energy, August 1, 2013.

  10. Environment, Safety and Health Reporting

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    2011-06-27

    The order addresses DOE/NNSA receiving timely, accurate information about events that have affected or could adversely affect the health, safety and security of the public or workers, the environment, the operations of DOE facilities, or the credibility of the Department. Cancels DOE N 234.1. Supersedes DOE O 231.1A Chg 1, DOE M 231.1-1A Chg 2.

  11. Opportunities to change development pathways toward lower greenhouse gas emissions through energy efficiency

    SciTech Connect

    Alterra, Swart; Masanet, Eric; Lecocq, Franck; Najam, Adil; Schaeffer, Robert; Winkler, Harald; Sathaye, Jayant

    2008-07-04

    There is a multiplicity of development pathways in which low energy sector emissions are not necessarily associated with low economic growth. However, changes in development pathways can rarely be imposed from the top. On this basis, examples of energy efficiency opportunities to change development pathways toward lower emissions are presented in this paper. We review opportunities at the sectoral and macro level. The potential for action on nonclimate policies that influence energy use and emissions are presented. Examples are drawn from policies already adopted and implemented in the energy sector. The paper discusses relationships between energy efficiency policies and their synergies and tradeoffs with sustainable development and greenhouse gas emissions. It points to ways that energy efficiency could be mainstreamed into devel?opment choices.

  12. ORISE: Contact Us | Worker Health Studies

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Contact Us General Information Work: 865.576.3115 occ.health@orise.orau.gov Dr. Donna Cragle Director; Health, Energy and Environment Work: 865.576.3115 Donna.Cragle@orau.org Dr....

  13. Sixth Annual National Conference on Health Disparities

    Energy.gov [DOE]

    The Sixth Annual National Conference on Health Disparities, Reducing Health Disparities through Sustaining and Strengthening Healthy Communities, was held in Little Rock, Arkansas, November 28 through December 1, 2012.

  14. Environment, Safety, and Health Reporting Manual

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    1996-11-07

    This Manual provides detailed requirements to supplement DOE O 231.1, ENVIRONMENT, SAFETY AND HEALTH REPORTING, which establishes management objectives and requirements for reporting environment, safety and health information. Chg 1, 11-7-96.

  15. Environment Safety and Health Reporting Manual

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    1995-09-30

    This Manual provides detailed requirements to supplement DOE O 231.1, Environment, Safety and Health Reporting, which establishes management objectives and requirements for reporting environment, safety and health information. Does not cancel other directives.

  16. Worker Health & Safety | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Worker Health & Safety Worker Health & Safety July 14, 2016 Enforcement Letter, UT-Battelle, LLC Worker Safety and Health Enforcement Letter issued to UT-Battelle, LLC related to worker exposures to ozone July 13, 2016 Preliminary Notice of Violation, BWXT Conversion Services, LLC Worker Safety and Health Enforcement Preliminary Notice of Violation issued to BWXT Conversion Services, LLC for violations of 10 C.F.R. Part 851 relating to a potassium hydroxide injury event July 1, 2016

  17. Headquarters Occupational Health Clinics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Headquarters Occupational Health Clinics Headquarters Occupational Health Clinics The Department of Energy recognizes the importance of maintaining a healthy and fit Federal workforce. To that end, our occupational health care professionals at the Headquarters Occupational Health Clinics in Forrestal and Germantown provide the following services: Walk-in care. Assessment, nursing care and follow-up for minor illnesses and injuries on a walk-in basis. First-response. Emergency treatment to any

  18. ORISE: Consumer Health Resource Information Service (CHRIS) ...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    that disproportionately affect minorities, including: HIVAIDS Cardiovascular disease Diabetes Immunization Cancer Infant mortality ORISE provides health information training for...

  19. Russian Health Studies Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Russian Health Studies Program Russian Health Studies Program The Department of Energy's (DOE) Russian Health Studies Program assesses worker and public health risks from radiation exposure resulting from nuclear weapons production activities in the former Soviet Union. The program fills data gaps by conducting studies of workers and residents exposed to internal and external ionizing radiation and providing data from these studies to national and international standard-setting organizations

  20. Health Safety & Environmental Protection Committee

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Department of Energy Health Physics Records System (Dosimetry), Carlsbad Field Office Health Physics Records System (Dosimetry), Carlsbad Field Office Health Physics Records System (Dosimetry), Carlsbad Field Office Health Physics Records System (Dosimetry), Carlsbad Field Office (65.3 KB) More Documents & Publications PIA - WEB Unclassified Business Operations General Support System LM Records Handling System (LMRHS01) - Rocky Flats Environmental Records Database, Office of Legacy