National Library of Energy BETA

Sample records for handled radiological surveys

  1. radiological. survey

    National Nuclear Security Administration (NNSA)

    7%2A en NNSA to Conduct Aerial Radiological Surveys Over San Francisco, Pacifica, Berkeley, And Oakland, CA Areas http:nnsa.energy.govmediaroompressreleasesamsca

  2. Handling and Packaging a Potentially Radiologically Contaminated...

    Office of Environmental Management (EM)

    Handling and Packaging a Potentially Radiologically Contaminated Patient Handling and Packaging a Potentially Radiologically Contaminated Patient The purpose of this procedure is...

  3. Handling and Packaging a Potentially Radiologically Contaminated Patient

    Energy.gov [DOE]

    The purpose of this procedure is to provide guidance to EMS care providers for properly handling and packaging potentially radiologically contaminated patients.

  4. radiological. survey | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    survey NNSA to Conduct Aerial Radiological Surveys Over San Francisco, Pacifica, Berkeley, And Oakland, CA Areas A U.S. Department of Energy National Nuclear Security...

  5. radiological survey | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    radiological survey San Francisco Bay Area Aerial Radiation Assessment Survey (SAN JOSE and SAN FRANCISCO, California) - A helicopter may be seen flying at low altitudes over portions of the San Francisco Bay Area from January 29 through February 6, 2016. The purpose of the flyovers is to measure naturally occurring background radiation. Officials from the National Nuclear... NNSA to Conduct Aerial Radiological Surveys Over Washington, D.C. and Baltimore, MD Areas WASHINGTON, D.C. AND BALTIMORE,

  6. Literature Survey of Crude Oil Properties Relevant to Handling...

    Office of Scientific and Technical Information (OSTI)

    Literature Survey of Crude Oil Properties Relevant to Handling and Fire Safety in Transport. Citation Details In-Document Search Title: Literature Survey of Crude Oil Properties ...

  7. Radiological Scoping Survey of the Scotia Depot, Scotia, NY

    SciTech Connect

    Bailey, E. N.

    2008-02-25

    The objectives of the radiological scoping survey were to collect adequate field data for use in evaluating the radiological condition of Scotia Depot land areas, warehouses, and support buildings.

  8. Autonomous mobile robot for radiologic surveys

    DOEpatents

    Dudar, Aed M.; Wagner, David G.; Teese, Gregory D.

    1994-01-01

    An apparatus for conducting radiologic surveys. The apparatus comprises in the main a robot capable of following a preprogrammed path through an area, a radiation monitor adapted to receive input from a radiation detector assembly, ultrasonic transducers for navigation and collision avoidance, and an on-board computer system including an integrator for interfacing the radiation monitor and the robot. Front and rear bumpers are attached to the robot by bumper mounts. The robot may be equipped with memory boards for the collection and storage of radiation survey information. The on-board computer system is connected to a remote host computer via a UHF radio link. The apparatus is powered by a rechargeable 24-volt DC battery, and is stored at a docking station when not in use and/or for recharging. A remote host computer contains a stored database defining paths between points in the area where the robot is to operate, including but not limited to the locations of walls, doors, stationary furniture and equipment, and sonic markers if used. When a program consisting of a series of paths is downloaded to the on-board computer system, the robot conducts a floor survey autonomously at any preselected rate. When the radiation monitor detects contamination, the robot resurveys the area at reduced speed and resumes its preprogrammed path if the contamination is not confirmed. If the contamination is confirmed, the robot stops and sounds an alarm.

  9. Autonomous mobile robot for radiologic surveys

    DOEpatents

    Dudar, A.M.; Wagner, D.G.; Teese, G.D.

    1994-06-28

    An apparatus is described for conducting radiologic surveys. The apparatus comprises in the main a robot capable of following a preprogrammed path through an area, a radiation monitor adapted to receive input from a radiation detector assembly, ultrasonic transducers for navigation and collision avoidance, and an on-board computer system including an integrator for interfacing the radiation monitor and the robot. Front and rear bumpers are attached to the robot by bumper mounts. The robot may be equipped with memory boards for the collection and storage of radiation survey information. The on-board computer system is connected to a remote host computer via a UHF radio link. The apparatus is powered by a rechargeable 24-volt DC battery, and is stored at a docking station when not in use and/or for recharging. A remote host computer contains a stored database defining paths between points in the area where the robot is to operate, including but not limited to the locations of walls, doors, stationary furniture and equipment, and sonic markers if used. When a program consisting of a series of paths is downloaded to the on-board computer system, the robot conducts a floor survey autonomously at any preselected rate. When the radiation monitor detects contamination, the robot resurveys the area at reduced speed and resumes its preprogrammed path if the contamination is not confirmed. If the contamination is confirmed, the robot stops and sounds an alarm. 5 figures.

  10. Radiological survey of San Diego Bay

    SciTech Connect

    Semler, M.O.; Blanchard, R.L.

    1989-06-01

    A radiological survey of three sites in San Diego Bay provided the basis for the following conclusions: 1. Small quantities of Co-60 (0.02-0.05 pCi/g) are present in the bottom sediments in some areas of the harbor at the Submarine Base. Most, if not all, of the Co-60 contamination present probably originated prior to the earlier 1967 survey that reported Co-60 levels as much as 300 times larger than those observed in this study. The highest Co-60 concentration measured is now less than one percent of the normal background radioactivity in harbor sediment samples. 2. No tritium or gamma-ray emitters, other than trace amounts of those occurring naturally, were detected in surface water from the dock areas or in nearby drinking water supplies. 3. Only radionuclides of natural origin and trace amounts of Cs-137 from fallout of previous nuclear weapons tests were detected in samples of kelp, algae, and fish taken from the harbor at the Submarine Base. 4. Gamma-ray surveys of the harbors near the docking areas and along shorelines and beaches near the shipyards failed to detect any exposure rates above background. 3 refs., 4 figs., 3 tabs.

  11. NNSA to Conduct Aerial Radiological Surveys Over San Francisco, Pacifica,

    National Nuclear Security Administration (NNSA)

    Berkeley, And Oakland, CA Areas | National Nuclear Security Administration | (NNSA) Conduct Aerial Radiological Surveys Over San Francisco, Pacifica, Berkeley, And Oakland, CA Areas August 27, 2015 A U.S. Department of Energy National Nuclear Security Administration (NNSA) helicopter may be seen flying at low altitudes around the California Bay Area from September 1 - 6, 2015. The purpose of the flyovers is to measure naturally occurring background radiation. A twin-engine Bell 412

  12. Northern Marshall Islands radiological survey: sampling and analysis summary

    SciTech Connect

    Robison, W.L.; Conrado, C.L.; Eagle, R.J.; Stuart, M.L.

    1981-07-23

    A radiological survey was conducted in the Northern Marshall Islands to document reamining external gamma exposures from nuclear tests conducted at Enewetak and Bikini Atolls. An additional program was later included to obtain terrestrial and marine samples for radiological dose assessment for current or potential atoll inhabitants. This report is the first of a series summarizing the results from the terrestrial and marine surveys. The sample collection and processing procedures and the general survey methodology are discussed; a summary of the collected samples and radionuclide analyses is presented. Over 5400 samples were collected from the 12 atolls and 2 islands and prepared for analysis including 3093 soil, 961 vegetation, 153 animal, 965 fish composite samples (average of 30 fish per sample), 101 clam, 50 lagoon water, 15 cistern water, 17 groundwater, and 85 lagoon sediment samples. A complete breakdown by sample type, atoll, and island is given here. The total number of analyses by radionuclide are 8840 for /sup 241/Am, 6569 for /sup 137/Cs, 4535 for /sup 239 +240/Pu, 4431 for /sup 90/Sr, 1146 for /sup 238/Pu, 269 for /sup 241/Pu, and 114 each for /sup 239/Pu and /sup 240/Pu. A complete breakdown by sample category, atoll or island, and radionuclide is also included.

  13. Literature Survey of Crude Oil Properties Relevant to Handling...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Relevant to Handling and Fire Safety in Transport - Sandia Energy Energy Search Icon ... Energy Storage Components and Systems Batteries Electric Drive Systems Hydrogen Materials ...

  14. Aerial radiological surveys of Steed Pond, Savannah River Site: Dates of surveys, 1984--1989

    SciTech Connect

    Fritzsche, A.E.; Jobst, J.E.

    1993-09-01

    From June 1984 to August 1985, three aerial radiological surveys were conducted over Steed Pond at the Savannah River Site in South Carolina. In addition, Steed Pond was included in larger-area surveys of the Savannah River Site in subsequent years. The surveys were conducted by the Remote Sensing Laboratory of EG&G Energy Measurements, Inc., Las Vegas, Nevada, for the US Department of Energy. Airborne measurements were obtained for both natural and man-made gamma radiation over Steed Pond and surrounding areas. The first survey was conducted when the pond was filled to normal capacity for the time of the year. On September 1, 1984, the Steed Pond dam spillway failed causing the pond to drain. The four subsequent surveys were conducted with the pond drained. The second survey and the third were conducted to study silt deposits exposed by the drop in water level after the spillway`s opening. Steed Pond data from the February 1987 and April 1989 Savannah River Site surveys have been included to bring this study up to date.

  15. Radiological re-survey results at 130 West Central Avenue, Maywood, New Jersey (MJ029)

    SciTech Connect

    Murray, M.E.; Johnson, C.A.

    1994-01-01

    Maywood Chemical Works (MCW) of Maywood, New Jersey, generated process wastes and residues associated with the production and refining of thorium and thorium compounds from 1916 to 1959. During the early years of operation, MCW stored wastes and residues in low-lying areas west of the processing facilities and consequently some of the residuals containing radioactive materials migrated offsite to the surrounding area. Subsequently, the U.S. Department of Energy (DOE), designated for remedial action the old MCW property and several vicinity properties. Additionally, in 1984, the property at 130 West Central Ave., Maywood, New Jersey and properties in its vicinity were included as a decontamination research and development project under the DOE Formerly Utilized Sites Remedial Action Program. In 1987 and 1988, at the request of DOE, ORNL conducted a radiological survey on this property. A second radiological survey by ORNL was conducted on this property in May, 1993 at the request of DOE after an ad hoc radiological survey, requested by a new property owner and conducted by Bechtel National, Inc. (BNI), identified some contamination not previously found by ORNL. The purpose of the survey was to determine if residuals from the old MCW were present on the property, and if so, if any radiological elements present were above guidelines. A certified civil survey was requisitioned by ORNL to determine actual property boundaries before beginning the radiological survey. The radiological re-survey included a surface gamma scan and the collection of a large number of soil samples for radionuclide analyses.

  16. Radiological survey report for the Weldon Spring Raffinate Pits site, Weldon Spring, Missouri

    SciTech Connect

    Not Available

    1984-08-01

    The Weldon Spring Site (WSS) is a US Department of Energy (DOE) surplus facility comprising the Raffinate Pits facility, the Quarry, and potentially contaminated vicinity properties. Radiological characterization of the WSS will be conducted in three phases: the Raffinate Pits facility, Quarry, and the vicinity properties. Bechtel National, Inc. (BNI) and its radiological support subcontractor, Eberline Instrument Corporation (EIC), conducted a radiological characterization survey of the Raffinate Pits during 1982 and 1983 in support of on-site construction work and a technical evaluation of site geology. The survey consisted of direct beta-gamma surface readings, near-surface gamma readings, exposure level measurements, and gamma-logs of boreholes. Soil samples were also collected from the surface, shallow boreholes, and trenches on the site. This report describes the radiological characterization of the Raffinate Pits facility, the procedures used to conduct the survey, the survey results, and their significance. 5 references, 9 figures, 8 tables.

  17. COT"IPREITENS IVE RADIOLOGICAL SURVEY OFF-SITE PROPERTY P NIAGARA...

    Office of Legacy Management (LM)

    COT"IPREITENS IVE RADIOLOGICAL SURVEY OFF-SITE PROPERTY P NIAGARA FALIS STORAGE SITE LEWISTON, NEW YORK Prepared for U.S. DePartment of EnergY as part of the Formerly Utilized ...

  18. Radiological survey of Johnston Atoll. Dates of survey: April-August 1980. Revision 1

    SciTech Connect

    Jaffe, R.J.; Tipton, W.J.

    1982-04-01

    A radiological survey was conducted over all land areas of Johnston Atoll between April and August 1980. The survey was performed to locate and quantify residual surface transuranic (i.e., plutonium and americium) contamination resulting from three THOR missile aborts which occurred during that portion of the 1962 atmospheric nuclear testing series conducted by the United States from Johnston Island. A high purity germanium planar detector was utilized to enhance the detection sensitivity for the 59.5 keV gamma ray from /sup 241/Am. Results are reported as equivalent surface concentration in units of nCi/m/sup 2/. Conversion factors are also included for several other assumed source distributions. Soil samples were obtained to determine plutonium-to-americium ratios. 7 references, 14 figures, 1 table.

  19. Radiological Survey Results for Areas A1 North, A5A, A6, and B2 at the Molycorp Washington Remediation Project, Washington, Pennsylvania

    SciTech Connect

    W.C. Adams

    2007-03-13

    Perform radiological surveys of the Molycorp Washington Remediation Project (MWRP) facility in Washington, Pennsylvania

  20. Radiological survey results at 1 Shady Lane, Lodi, New Jersey (LJ095)

    SciTech Connect

    Foley, R.D.; Johnson, C.A.

    1995-07-01

    The US Department of Energy (DOE) conducted remedial action at the Stepan property in Maywood, New Jersey and several vicinity properties in Lodi, New Jersey as part of the Formerly Utilized Sites Remedial Action Program (FUSRAP). These properties are in the vicinity of the DOE-owned Maywood Interim Storage Site (MISS), adjacent to the former Maywood Chemical Works facility. The property at One Shady Lane, Lodi, New Jersey was not one of these vicinity properties but was surveyed by DOE at the request of the owner. At the request of DOE, a team from Oak Ridge National Laboratory conducted a radiological survey at this property. The purpose of the survey, conducted in November 1994, was to confirm whether remedial actions were to be performed on the property in order to be in compliance with the identified Guidelines. The radiological survey included surface gamma scans and gamma readings at 1 meter, and the collection of soil samples for radionuclide analysis. Results of the survey demonstrated that all radiological measurements on the property at One Shady Lane, Lodi, New Jersey, were comparable to background levels in the area, and well within the limits prescribed by DOE radiological guidelines. Based on the results of the radiological survey data, this property does not meet guidelines for inclusion under FUSRAP.

  1. Limitations Influencing Interventional Radiology in Canada: Results of a National Survey by the Canadian Interventional Radiology Association (CIRA)

    SciTech Connect

    O'Brien, Jeremy; Baerlocher, Mark Otto Asch, Murray R.; Hayeems, Eran; Kachura, John R.; Collingwood, Peter

    2007-09-15

    Purpose. To describe the current state and limitations to interventional radiology (IR) in Canada through a large, national survey of Canadian interventional radiologists. Methods. An anonymous online survey was offered to members of the Canadian Interventional Radiology Association (CIRA). Only staff radiologists were invited to participate. Results. Seventy-five (75) responses were received from a total of 247, giving a response rate of 30%. Respondents were split approximately equally between academic centers (47%) and community practice (53%), and the majority of interventional radiologists worked in hospitals with either 200-500 (49%) or 500-1,000 (39%) beds. Procedures listed by respondents as most commonly performed in their practice included PICC line insertion (83%), angiography and stenting (65%), and percutaneous biopsy (37%). Procedures listed as not currently performed but which interventional radiologists believed would benefit their patient population included radiofrequency ablation (36%), carotid stenting (34%), and aortic stenting (21%); the majority of respondents noted that a lack of support from referring services was the main reason for not performing these procedures (56%). Impediments to increasing scope and volume of practice in Canadian IR were most commonly related to room or equipment shortage (35%), radiologist shortage (33%), and a lack of funding or administrative support (28%). Conclusion. Interventional radiology in Canada is limited by a number of factors including funding, manpower, and referral support. A concerted effort should be undertaken by individual interventional radiologists and IR organizations to increase training capacity, funding, remuneration, and public exposure to IR in order to help advance the subspecialty.

  2. ORNL/luSA-85/6 Health and Safety Research Division PRELIMINARY RADIOLOGICAL SURVEY OF TEE FORMER HAVENS PLANT

    Office of Legacy Management (LM)

    luSA-85/6 Health and Safety Research Division PRELIMINARY RADIOLOGICAL SURVEY OF TEE FORMER HAVENS PLANT OF TEE BRIDGEPORT BRASS COMPANY, BRIDGEPORT, CONNECTICUT May 1985 Work performed as part of the RADIOLOGICAL SURVEY ACCIVITIES PROGRAM OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee 37831 operated by MARTIN MARIETTA ENERGY SYSTEMS, INC. for the U. S. DEPARTMENT OF ENERGY under Contract No. DE-AC05-840R21400 \ .-l__--.-- -- PRELIMINARY RADIOLOGICAL SURVEY OF THE FORMER HAVENS PLAEJT OF THE

  3. RADIOLOGICAL SURVEY OF A PORTION OF PROPERTY OWNED BY MODERN...

    Office of Legacy Management (LM)

    for the DEPARTMENT OF ENERGY as part of the Formerly ... Figure Page 1 Plan view of Former AEC Storage Site Showing ... Survey Techniques A survey grid system (100-ft spacing) was ...

  4. Radiological survey results at 14 Cliff Street, Beverly, Massachusetts (VB011)

    SciTech Connect

    Foley, R.D.; Carrier, R.F.

    1992-08-01

    At the request of the US Department of Energy (DOE), a team from Oak Ridge National Laboratory conducted a radiological survey at 14 Cliff Street, Beverly, Massachusetts. The survey was performed in May 1991. The purpose of the survey was to determine if uranium dust from work performed under government contract at the former Ventron facility had migrated off-site to neighboring areas. The survey included a surface gamma scan and the collection of soil samples for radionuclide analyses. Results of the survey demonstrated no radionuclide concentrations or radiation measurements in excess of the DOE Formerly Utilized Sites Remedial Action Program guidelines.

  5. Radiological re-survey results at 146 West Central Avenue, Maywood, New Jersey (MJ034)

    SciTech Connect

    Murray, M.E.; Johnson, C.A.

    1994-05-01

    Maywood Chemical Works (MCW) of Maywood, New Jersey, generated process wastes and residues associated with the production and refining of thorium and thorium compounds from 1916 to 1959. During the early years of operation, MCW stored wastes and residues in low-lying areas west of the processing facilities and consequently some of the residuals containing radioactive materials migrated offsite to the surrounding area. Subsequently, the U.S. Department of Energy (DOE) designated for remedial action the old MCW property and several vicinity properties. Additionally, in 1984, the property at 146 West Central Ave., Maywood, New Jersey and properties in its vicinity were included as a decontamination research and development project under the DOE Formerly Utilized Sites Remedial Action Program. In 1987 and 1988, at the request of DOE, Oak Ridge National Laboratory (ORNL) conducted a radiological survey on this property. A report describing this survey was published in 1989. A second radiological survey by ORNL was conducted on this property in May 1993 at the request of DOE after an ad hoc radiological survey, requested by the property owner and conducted by Bechtel National, Inc. (BNI), identified some contamination not previously found by ORNL. The purpose of the second ORNL survey was to determine whether radioactive materials from the old MCW were present on the property, and if so, if radioactive materials present were above guidelines. A certified civil survey was requisitioned by ORNL to determine actual property boundaries before beginning the radiological re-survey. The re-survey included a surface gamma scan and the collection of a large number of soil samples for radionuclide analyses. Results of this survey demonstrated that although elevated residual thorium-232 contamination was present in a few isolated spots on the southern end of the backyard, it did not exceed DOE guidelines.

  6. Radiological Final Status Survey of the Hammond Depot, Hammond, Indiana

    SciTech Connect

    T.J. Vitkus

    2008-04-07

    ORISE conducted extensive scoping, characterization, and final status surveys of land areas and structures at the DNSC’s Hammond Depot located in Hammond, Indiana in multiple phases during 2005, 2006 and 2007.

  7. 2016 Annual Inspection and Radiological Survey Results for the Piqua, Ohio, Decommissioned Reactor Site

    Office of Legacy Management (LM)

    Radiological Survey Results for the Piqua, Ohio, Decommissioned Reactor Site July 2016 LMS/PIQ/S14427 This page intentionally left blank U.S. Department of Energy 2016 Annual Inspection - Piqua, OH, Decommissioned Reactor Site July 2016 Doc. No. S14427 Page i Contents Abbreviations .................................................................................................................................. ii Summary

  8. Results of the independent radiological verification survey at 112 Avenue E, Lodi, New Jersey (LJ082V)

    SciTech Connect

    Rodriguez, R.E.; Johnson, C.A.

    1996-09-01

    Thorium ores were processed by the Maywood Chemical Works until the property was sold to Stepan Chemical Company in 1959. Wastes were stored at what is now called the Maywood Interim Storage Site (MISS), owned by the U.S. Department of Energy (DOE). Because of the migration of residuals off site into the surrounding areas, the Stepan property and several vicinity properties were designated for remedial action under the 1984 Energy and Water Development Appropriations Act. The DOE conducted radiological surveys of these sites to evaluate current radiological conditions as part of the Formerly Utilized Sites Remedial Action Program (FUSRAP). In 1988, radiological surveys of some private residential properties on Avenue E in Lodi, New Jersey were conducted by members of an ORNL radiological survey team. Results of this survey indicated radiological contamination in excess of the DOE criteria for surface contamination at this vicinity property (112 Avenue E), and it was recommended for remediation. In the fall of 1995, a verification survey of this vicinity property was conducted by ORNL, the independent verification contractor for this effort, in conjunction with decontamination operations conducted under the supervision of Bechtel National Incorporated. The verification survey included complete surface gamma scans of the grounds and the collection of soil samples for radionuclide analysis. This report describes the radiological verification survey of this residential property. Based on the remedial action and verification survey data reported in this document, all radiological measurements fall below the limits prescribed by DOE radiological guidelines established for this site, and the property at 112 Avenue E, Lodi, New Jersey successfully meets the DOE radiological guidelines for unrestricted use.

  9. Results of the radiological survey at Two Mile Creek, Tonawanda, New York (TNY002)

    SciTech Connect

    Murray, M.E.; Rodriguez, R.E.; Uziel, M.S.

    1997-08-01

    At the request of the US Department of Energy (DOE), a team from Oak Ridge National Laboratory conducted a radiological survey at Two Mile Creek, Tonawanda, New York. The survey was performed in November 1991 and May 1996. The purpose of the survey was to determine if radioactive materials from work performed under government contract at the Linde Air Products Division of Union Carbide Corporation, Tonawanda, New York, had been transported into the creek. The survey included a surface gamma scan in accessible areas near the creek and the collection of soil, sediment, and core samples for radionuclide analyses. Survey results indicate that no significant material originating at the Linde plant is presently in the creek. Three of the 1991 soil sample locations on the creek bank and one near the lake contained slightly elevated concentrations of {sup 238}U with radionuclide distributions similar to that found in materials resulting from former processing activities at the Linde site.

  10. Results of the independent radiological verification survey at 113 Avenue E, Lodi, New Jersey (LJ081V)

    SciTech Connect

    Rodriguez, R.E.; Johnson, C.A.

    1996-09-01

    Thorium ores were processed by the Maywood Chemical Works until the property was sold to Stepan Chemical Company in 1959. Wastes were stored at what is now called the Maywood Interim Storage Site (MISS), owned by the U. S. Department of Energy (DOE). Because of the migration of residuals off site into the surrounding areas, the Stepan property and several vicinity properties were designated for remedial action under the 1984 Energy and Water Development Appropriations Act. The DOE conducted radiological surveys of these sites to evaluate current radiological conditions as part of the Formerly Utilized Sites Remedial Action Program (FUSRAP). In 1988, radiological surveys of some private residential properties on Avenue E in Lodi, New Jersey were conducted by members of an ORNL radiological survey team. Results of this survey indicated radiological contamination in excess of the DOE criteria for surface contamination at this vicinity property (113 Avenue E), and it was recommended for remediation. In the fall of 1995, a verification survey of this vicinity property was conducted by ORNL, the independent verification contractor for this effort, in conjunction with decontamination operations conducted under the supervision of Bechtel National Incorporated. The verification survey included complete surface gamma scans of the grounds and the collection of soil samples for radionuclide analysis. This report describes the radiological verification survey of this residential property.

  11. Results of the independent radiological verification survey at 108 Avenue E, Lodi, New Jersey (LJ084V)

    SciTech Connect

    Rodriguez, R.E.; Johnson, C.A.

    1996-09-01

    Thorium ores were processed by the Maywood Chemical Works until the property was sold to Stepan Chemical Company in 1959. Wastes were stored at what is now called the Maywood Interim Storage Site (MISS), owned by the US Department of Energy (DOE). Because of the migration of residuals off site into the surrounding areas, the Stepan property and several vicinity properties were designated for remedial action under the 1984 Energy and Water Development Appropriations Act. The DOE conducted radiological surveys of these sites to evaluate current radiological conditions as part of the Formerly Utilized Sites Remedial Action Program (FUSRAP). In 1988, radiological surveys of some private residential properties on Avenue E in Lodi, New Jersey were conducted by members of an ORNL radiological survey team. Results of this survey indicated radiological contamination in excess of the DOE criteria for surface contamination at this vicinity property (108 Avenue E), and it was recommended for remediation. In the fall of 1995, a verification survey of this vicinity property was conducted by ORNL, the independent verification contractor for this effort, in conjunction with decontamination operations conducted under the supervision of Bechtel National Incorporated. The verification survey included complete surface gamma scans of the grounds and the collection of soil samples for radionuclide analysis. This report describes the radiological verification survey of this residential property.

  12. Results of the radiological survey at State Route 17 Becker Avenue, Maywood, New Jersey (MJ033)

    SciTech Connect

    Foley, R.D.; Carrier, R.F.

    1990-03-01

    Maywood Chemical Works (MCW) of Maywood, New Jersey, generated process wastes and residues associated with the production and refining of thorium and thorium compounds from monazite ores from 1916 to 1956. At the request of the US Department of Energy (DOE), a group from Oak Ridge National Laboratory conducts investigative radiological surveys of properties in the vicinity of MCW to determine whether a property is contaminated with radioactive residues, principally {sup 232}Th, derived from the MCW site. The survey typically includes direct measurement of gamma radiation levels and soil sampling for radionuclide analyses. 5 refs., 2 figs., 3 tabs.

  13. Medical Examiner/Coroner on the Handling of a Body/Human Remains that are Potentially Radiologically Contaminated

    Energy.gov [DOE]

    The purpose of this Model Procedure is to identify precautions and provide guidance to Medical Examiners/Coroners on the handling of a body or human remains that are potentially contaminated with...

  14. An Aerial Radiological Survey of the Portsmouth Gaseous Diffusion Plant and Surrounding Area, Portsmouth, Ohio

    SciTech Connect

    Namdoo Moon

    2007-12-01

    An aerial radiological survey was conducted over the 16 square-mile (~41 square-kilometer) area surrounding the Portsmouth Gaseous Diffusion Plant. The survey was performed in August 2007 utilizing a large array of helicopter mounted sodium iodide detectors. The purpose of the survey was to update the previous radiological survey levels of the environment and surrounding areas of the plant. A search for a missing radium-226 source was also performed. Implied exposure rates, man-made activity, and excess bismuth-214 activity, as calculated from the aerial data are presented in the form of isopleth maps superimposed on imagery of the surveyed area. Ground level and implied aerial exposure rates for nine specific locations are compared. Detected radioisotopes and their associated gamma ray exposure rates were consistent with those expected from normal background emitters. At specific plant locations described in the report, man-made activity was consistent with the operational histories of the location. There was no spectral activity that would indicate the presence of the lost source.

  15. Results of the radiological survey of the Excelsior Steel Ball Company, Tonawanda, New York (TNY005)

    SciTech Connect

    McKenzie, S.P.; Brown, K.S.

    1998-07-01

    At the request of the US Department of Energy (DOE), a team from Oak Ridge National Laboratory conducted two radiological surveys of property belonging to the Excelsior Steel Ball Company, which is surrounded on three sides by the former site of the Linde Uranium Refinery, Tonawanda, New York. The surveys were performed in September 1997 and February 1998. The purpose of the first survey was to determine if radioactive residuals were present from previous activities at the former Linde site. The Linde Air Products Division of Union Carbide Corporation, Tonawanda, New York, had used radioactive materials at that location for work performed under government contract from 1942 through 1948. The purpose of the second survey was to collect additional biased samples from an area of the site where biased sample results showed slightly elevated levels of thorium-232.

  16. Results of the Radiological Survey of the Iowa Army Ammunition Plant, Middletown, Iowa

    SciTech Connect

    Murray, M.E.

    2001-07-17

    At the request of the U.S. Department of Energy (DOE), a team from Oak Ridge National Laboratory conducted an indoor radiological survey of property at the Iowa Army Ammunition Plant (IAAAP), Middletown, Iowa in June 2000. The purpose of the survey was to determine if radioactive residuals resulting from previous Atomic Energy Commission (AEC) activities were present inside selected Line 1 buildings at the IAAAP and conduct sampling in those areas of previous AEC operations that utilized radioactive components at some point during the manufacturing process, in order to evaluate any possible immediate health hazards and to collect sufficient information to determine the next type of survey. The AEC occupied portions of IAAAP from 1947 to 1975 to assemble nuclear weapons. The surveyed areas were identified through interviews with current and former IAAAP employees who had worked at the plant during AEC's tenure, and from AEC records.

  17. Results of the radiological survey at 205 Main Street, Lodi, New Jersey (LJ075)

    SciTech Connect

    Foley, R.D.; Carrier, R.F.; Floyd, L.M.; Crutcher, J.W.

    1989-08-01

    Maywood Chemical Works (MCW) of Maywood, New Jersey, generated process wastes and residues associated with the production and refining of thorium and thorium compounds from monazite ores from 1916 to 1956. MCW supplied rare earth metals and thorium compounds to the Atomic Energy Commission and various other government agencies from the late 1940s to the mid-1950s. Area residents used the sandlike waste from this thorium extraction process mixed with tea and cocoa leaves as mulch in their yards. Some of these contaminated wastes were also eroded from the site into Lodi Brook. At the request of the US Department of Energy (DOE), a group from Oak Ridge National Laboratory conducts investigative radiological surveys of properties in the vicinity of MCW to determine whether a property is contaminated with radioactive residues, principally /sup 232/Th, derived from the MCW site. The survey typically includes direct measurement of gamma radiation levels and soil sampling for radionuclide analyses. The survey of this site, 205 Main Street, Lodi, New Jersey (LJ075), was conducted during 1987 and 1988. Results of the survey indicated radioactivity in the range of normal background for the northern New Jersey area. Radiological assessments of soil samples from the site demonstrate no radionuclide concentrations in excess of DOE Formerly Utilized Sites Remedial Action Program criteria. 5 refs., 21 figs., 3 tabs.

  18. radiological survey

    National Nuclear Security Administration (NNSA)

    application of nuclear science. NNSA maintains and enhances the safety, security, reliability and performance of the U.S. nuclear weapons stockpile without nuclear testing;...

  19. A survey of films for use as dosimeters in interventional radiology

    SciTech Connect

    Fajardo, L.C.; Geise, R.A.; Ritenour, E.R.

    1995-04-01

    Analysis of radiation doses in interventional radiological procedures that can lead to deterministic radiation effects such as erythema and epilation would assist physicians in planning patient care after exposure and in reducing doses. Photographic films used to measure skin exposure in the past are too sensitive for the high doses involved in interventional procedures. Seventeen different types of films, many of which are generally available in hospitals, were surveyed to see if any would meet the demands of interventional radiology. Sensitometric curves obtained demonstrate that most films are inappropriate for high dose procedures. Using Kodak Fine Grain Positive and Deupont duplicating films and automatic processing, doses as high as 2.8 Gy could be measured with reasonable accuracy. Similar results can be obtained by manually processing Kodak XV-2 verification film at room temperature.

  20. Nevada Test Site Area 25, Radiological Survey and Cleanup Project, 1974-1983 (a revised final report). Revision 1

    SciTech Connect

    Miller, M.G.

    1984-12-01

    This report describes the radiological survey, decontamination and decommissioning (D and D) of the Nevada Test Site (NTS) Area 25 facilities and land areas incorporated in the Nuclear Rocket Development Station (NRDS). Buildings, facilities and support systems used after 1959 for nuclear reactor and engine testing were surveyed for the presence of radioactive contamination. The radiological survey portion of the project encompassed portable instrument surveys and removable contamination surveys (swipe) for beta plus gamma and alpha radioactive contamination of facilities, equipment and land areas. Soil sampling was also accomplished. The majority of Area 25 facilities and land areas have been returned to unrestricted use. Remaining radiologically contaminated areas are posted with warning signs and barricades. 9 references, 23 figures.

  1. Radiological Survey Results for the Niagara Mohawk Right-of-Way, Tonawanda, New York (TNY004)

    SciTech Connect

    McKenzie, S.P.; Uziel, M.S.

    1998-11-01

    At the request of the U.S. Department of Energy (DOE), a team from Oak Ridge National Laboratory conducted a radiological survey of a small portion of the Niagara Mohawk Power Corporation right-of-way in Tonawanda, New York. The purpose of the survey was to determine if radioactive residuals had migrated from or been redistributed onto the Niagara Mohawk right-of-way from the former Linde property to the west. The Linde Air Products Division of Union Carbide Corporation, Tonawanda New York, had used radioactive materials at that location for work performed under government contract from 1942 through 1948. The survey was performed in May 1996 in response to Formerly Utilized Sites Remedial Action Program (FUSRAP) requirements. These requirements dictate that the radiological status of certain vicinity properties shall be assessed and documented according to prescribed procedures prior to certification of the property for release for unrestricted use. Such release can only be granted if the property is found to be within current applicable authorized limits. The survey included a gamma scan of accessible areas and the collection and radionuclide analysis of soil samples from the portion of right-of-way located east of the former Linde plant site and north of the railway spur entrance gate. Results of the survey indicate that radioactive material probably originating from the Linde plant is located on the Niagara Mohawk right-of-way in the area surveyed. Surface gamma exposure rates were elevated above typical background levels. Four scattered surface soil samples exceeded DOE guideline values for {sup 238}U, and 8 of 13 surface soil samples exceeded DOE guideline values for {sup 226}Ra. The radionuclide distribution in these samples was similar to that found in materials resulting from former processing activities at the Linde site. It is recommended that the property be designated for remedial action by DOE.

  2. Radiological Survey Results for the R.P. Adams Company Property, Tonawanda, New York (TNY003)

    SciTech Connect

    Carrier, R.F.; McKenzie, S.P.; Uziel, M.S.

    1998-11-01

    At the request of the U.S. Department of Energy (DOE), a team horn Oak Ridge National Laboratory conducted a radiological survey of property belonging to the R P. Adarns Company, Inc., Tonawanda, New York. The survqy was performed in November 1995 and May and July 1996. The P-e of tie SUIWY was to determine if radioactive residuals had migrated, or been re&stribu@ from the former Linde property to the south onto the R P. Adams property. The Linde Air Products Division of Union Carbide Corporation, Toni~w~da, New York, had used radioactive materials at that location for work performed under government contract born 1942 through 1948. The survey was performed in response to Formerly Utilized Sites Remedial Action Program (FUSRAP) requirements. These requirements dictate that the radiological status of certain vicinity properties shall be assessed and docw.nented according to prescribed procedures prior to certification of the property for release for unrestricted use. Such release can only be granted if the property is found to be within current applicable authorized limits. The survey included a gamma scan of accessible areas in both the developed and the undeveloped portions of the property and the collection and radionuclide analysis of soil samples. A comparison of these data to the current DOE guidelines shows that all radionuclide concentrations and radioactivity levels found on the property are below the current guidelines. Therefore, this property should not be included in the FUSRAP program for remediation. xi

  3. Results of the radiological survey at the Granite City Steel facility, Granite City, Illinois

    SciTech Connect

    Swaja, R.E.; Cottrell, W.D.

    1990-07-01

    In the late 1950s and early 1960s, uranium ingots were x-rayed for the Atomic Energy Commission at the South Plant facility of the Granite City Steel Company, Granite City, Illinois. The x-ray equipment is still housed in a building on the southern end of the property. At the time of the survey, neither the equipment nor the building had been used for some time. It is the policy of the US Department of Energy (DOE) to verify that such sites are in compliance with current federal guidelines. Because documentation establishing the current radiological condition of the property is unavailable, a radiological survey was conducted by members of the Measurement Applications and Development Group of the Oak Ridge National Laboratory in March 1989. The survey included: measurement of gamma exposure rates both indoors and outdoors; collection and radionuclide analysis of soil and debris samples; and measurements to determine alpha and beta-gamma surface contamination. 3 refs., 12 figs., 3 tabs.

  4. An aerial radiological survey of the EG G Mound Applied Technologies and surrounding area, Miamisburg, Ohio

    SciTech Connect

    Not Available

    1992-11-01

    An aerial radiological survey was conducted over EG G Mound Applied Technologies, Miamisburg, Ohio, during the period of June 9--24, 1989. The purpose of the 41-square-kilometer (16-square-mile) survey was to document the terrestrial gamma environment of the plant and surrounding area. In addition, ground-based exposure rate measurements and soil samples were obtained to support the aerial data. An exposure rate contour map at 1 meter above ground level was.constructed from the gamma data and overlaid on an aerial photograph and map of the area. Exposure rates measured in the area typically ranged from 9 to 11 microroentgens per hour ([mu]R/h).

  5. Radiological surveys of properties in the Middlesex, New Jersey area. Final report

    SciTech Connect

    Leggett, R W; Haywood, F.F. Cottrell, W.D.

    1981-03-01

    Results of the radiological surveys conducted at three properties in the Middlesex, New Jersey area as well as one additional location downstream from the Middlesex Sampling Plant (Willow Lake), are presented. The survey revealed that the yard around the church rectory on Harris Avenue is contaminated with a /sup 226/Ra-bearing material, probably pitchblende ore from the former Middlesex Sampling Plant. The elevated /sup 226/Ra concentrations around and, to a lesser extent, underneath the rectory are leading to elevated /sup 222/Rn concentrations in air in the rectory and elevated alpha contamination levels (from radon daughters) on surfaces inside the rectory. External gamma radiation levels in the rectory yard are well above background levels, and beta-gamma dose rates at many points in the yard are above federal guidelines for the release of property for unrestricted use. The radiological survey of a parking lot at the Union Carbide plant in Bound Brook, New Jersey revealed that a nearly circular region of 50-ft diam in the lot showed above-background external gamma radiation levels. Two isolated spots within this region showed concentrations of uranium in soil above the licensable level stated in 10 CFR 40. Soil samples taken in the area of elevated gamma radiation levels generally showed nearly equal activities of /sup 226/Ra and /sup 238/U. The survey at the residences on William Street in Piscataway, revealed that the front yeard is generally contaminated from near the surface to a depth of 1.5 to 2.5 ft with /sup 226/Ra-bearing material, possibly pitchblende ore. The remainder of the yard shows scattered contaminaion. External gamma radiation levels inside the house are above the background level near some outside walls.

  6. Radiological survey results at the former Bridgeport Brass Company facility, Seymour, Connecticut

    SciTech Connect

    Foley, R.D.; Carrier, R.F.

    1993-06-01

    At the request of the US Department of Energy (DOE), a team from Oak Ridge National Laboratory conducted a radiological survey of the former Bridgeport Brass Company facility, Seymour, Connecticut. The survey was performed in May 1992. The purpose of the survey was to determine if the facility had become contaminated with residuals containing radioactive materials during the work performed in the Ruffert building under government contract in the 1960s. The survey included a gamma scanning over a circumscribed area around the building, and gamma and beta-gamma scanning over all indoor surfaces as well as the collection of soil and other samples for radionuclide analyses. Results of the survey demonstrated radionuclide concentrations in indoor and outdoor samples, and radiation measurements over floor and wall surfaces, in excess of the DOE Formerly Utilized Sites Remedial Action Program guidelines. Elevated uranium concentrations outdoors were limited to several small, isolated spots. Radiation measurements exceeded guidelines indoors over numerous spots and areas inside the building, mainly in Rooms 1--6 that had been used in the early government work.

  7. An aerial radiological survey of the Fernald Environmental Management Project and surrounding area, Fernald, Ohio

    SciTech Connect

    Phoenix, K.A.

    1997-04-01

    An aerial radiological survey was conducted from May 17--22, 1994, over a 36 square mile (93 square kilometer) area centered on the Fernald Environmental Management Project located in Fernald, Ohio. The purpose of the survey was to detect anomalous gamma radiation in the environment surrounding the plant. The survey was conducted at a nominal altitude of 150 feet (46 meters) with a line spacing of 250 feet (76 meters). A contour map of the terrestrial gamma exposure rate extrapolated to 1 meter (3.3 feet) above ground was prepared and overlaid on an aerial photograph of the area. Analysis of the data for man made sources showed five sites within the boundaries of the Fernald Environmental Management Project having elevated readings. The exposure rates outside the plant boundary were typical of naturally occurring background radiation. Soil samples and pressurized ion chamber measurements were obtained at four locations within the survey boundaries to supplement the aerial data. It was concluded that although the radionuclides identified in the high-exposure-rate areas are naturally occurring, the levels encountered are greatly enhanced due to industrial activities at the plant.

  8. Results of the radiological survey at 5 Hancock Street, Lodi, New Jersey (LJ029)

    SciTech Connect

    Cottrell, W.D.; Floyd, L.M.; Francis, M.W.; Mynatt, J.O.

    1989-09-01

    Maywood Chemical Works (MCW) of Maywood, New Jersey, generated process wastes and residues associated with the production and refining of thorium and thorium compounds from monazite ores from 1916 to 1956. MCW supplied rare earth metals and thorium compounds to the Atomic Energy Commission and various other government agencies from the late 1940s to the mid-1950s. Area residents used the sandlike waste from this thorium extraction process mixed with tea and cocoa leaves as mulch in their yards. Some of these contaminated wastes were also eroded from the site into Lodi Brook. At the request of the US Department of Energy (DOE), a group from Oak Ridge National Laboratory conducts investigative radiological surveys of properties in the vicinity of MCW to determine whether a property is contaminated with radioactive residues, principally {sup 232}Th, derived from the MCW site. The survey typically includes direct measurement of gamma radiation levels and soil sampling for radionuclide analyses. The survey of this site, 5 Hancock Street, Lodi, New Jersey (LJ029), was conducted during 1985 and 1986. Results of the survey demonstrated concentrations in excess of the DOE Formerly Utilized Sites Remedial Action Program criteria. The radionuclide distributions are typical of the type of the material originating from the MCW site. 5 refs., 6 figs., 3 tabs.

  9. Results of the radiological survey at 80 Industrial Road, Lodi, New Jersey (LJ061)

    SciTech Connect

    Foley, R.D.; Carrier, R.F.; Floyd, L.M.; Crutcher, J.W.

    1989-07-01

    Maywood Chemical Works (MCW) of Maywood, New Jersey, generated process wastes and residues associated with the production and refining of thorium and thorium compounds from monazite ores from 1916 to 1956. MCW supplied rare earth metals and thorium compounds to the Atomic Energy Commission and various other government agencies from the late 1940s to the mid-1950s. Area residents used the sandlike waste from this thorium extraction process mixed with tea and cocoa leaves as mulch in their yards. Some of these contaminated wastes were also eroded from the site into Lodi Brook. At the request of the US Department of Energy (DOE), a group from Oak Ridge National Laboratory conducts investigative radiological surveys of properties in the vicinity of MCW to determine whether a property is contaminated with radioactive residues, principally /sup 232/Th, derived from the MCW site. The survey typically includes direct measurement of gamma radiation levels and soil sampling for radionuclide analyses. The survey of this site, 80 Industrial Road, Lodi, New Jersey (LJ061), was conducted during 1985 and 1986. Results of the survey demonstrated radionuclide concentrations in excess of DOE remedial action criteria, primarily from the /sup 232/Th decay chain, with some contamination from /sup 226/Ra. The radionuclide distributions are typical of the type of material originating from the MCW site. 5 refs., 11 figs., 3 tabs.

  10. Results of the radiological survey at 48 Schlosser Drive, Rochelle Park, New Jersey (RJ005)

    SciTech Connect

    Foley, R.D.; Brown, K.S.

    1992-10-01

    Maywood Chemical Works (MCW) of Maywood, New Jersey, generated process wastes and residues associated with the production and refining of thorium and thorium compounds from monazite ores from 1916 to 1956.MCW supplied rare earth metals and thorium compounds to the Atomic Energy Commission and various other government agencies from the late 1940s to the mid-1950s. Area residents used the sandlike waste from thisthorium extraction process mixed with tea and cocoa leaves as mulch in their yards. Some of these contaminated wastes were also eroded from the site into Lodi Brook. At the request of the US Department of Energy(DOE), a group from Oak Ridge National Laboratory conducts investigative radiological surveys of properties in the vicinity of MCW to determine whether a property is contaminated with radioactive residues, principally [sup 232]Tb, derived from the MCW site. The survey typically includes direct measurement of gamma radiation levels and soil sampling for radionuclide analyses. The survey of this site, 48 Schlosser Drive, Rochelle Park, New Jersey (RJO05), was conducted on July 14, 1991. Results of the survey demonstrated no radionuclide concentrations in excess of the DOE Formerly Utilized Sites Remedial Action Program criteria. The radionuclide distributions were not significantly different from normal background levels in the northern New Jersey area.

  11. Results of the radiological survey at 37 Schlosser Drive, Rochelle Park, New Jersey (RJ002)

    SciTech Connect

    Foley, R.D.; Brown, K.S.

    1992-10-01

    Maywood Chemical Works (MCW) of Maywood, New Jersey, generated process wastes and residues associated with the production and refining of thorium and thorium compounds from monazite ores from 1916 to 1956. MCW supplied rare earth metals and thorium compounds to the Atomic Energy Commission and various other government agencies from the late 1940s to the mid-1950s. Area residents used the sandlike waste from this thorium extraction process mixed with tea and cocoa leaves as mulch in their yards. Some of these contaminated wastes were also eroded from the site into Lodi Brook. At the request of the US Department of Energy (DOE), a group from Oak Ridge National Laboratory conducts investigative radiological surveys of properties in the vicinity of MCW to determine whether a property is contaminated with radioactive residues, principally {sup 232}Th derived from the MCW site. The survey typically includes direct measurement of gamma radiation levels and soil sampling for radionuclide analyses. The survey of this site, 37 Schlosser Drive, Rochelle Park, New Jersey (RJ002), was conducted on July 14, 1991. Results of the survey demonstrated no radionuclide concentrations in excess of the DOE Formerly Utilized Sites Remedial Action Program criteria. The radionuclide distributions were not significantly different from normal background levels in the northern New Jersey area.

  12. Results of the radiological survey at 28 Long Valley Road, Lodi, New Jersey (LJ047)

    SciTech Connect

    Cottrell, W.D.; Floyd, L.M.; Francis, M.W.; Mynatt, J.O.

    1989-10-01

    Maywood Chemical Works (MCW) of Maywood, New Jersey, generated process wastes and residues associated with the production and refining of thorium and thorium compounds from monazite ores from 1916 to 1956. MCW supplied rare earth metals and thorium compounds to the Atomic Energy Commission and various other government agencies from the late 1940s to the mid-1950s. Area residents used the sandlike waste from this thorium extraction process mixed with tea and cocoa leaves as mulch in their yards. Some of these contaminated wastes were also eroded from the site into Lodi Brook. At the request of the US Department of Energy (DOE), a group from Oak Ridge National Laboratory conducts investigative radiological surveys of properties in the vicinity of MCW to determine whether a property is contaminated with radioactive residues, principally {sup 232}Th, derived from the MCW site. The survey typically includes direct measurement of gamma radiation levels and soil sampling for radionuclide analyses. The survey of this site, 28 Long Valley Road, Lodi, New Jersey (LJ047), was conducted during 1985, 1986, 1987. Some radionuclide measurements were greater than typical background levels in the northern New Jersey area. However, results of the Survey demonstrated no radionuclide concentrations in excess of the DOE Formerly Utilized Sites Remedial Action Program criteria. 5 refs., 8 figs., 3 tabs.

  13. Results of the radiological survey at 27 Schlosser Drive, Rochelle Park, New Jersey (RJ004)

    SciTech Connect

    Foley, R.D.; Brown, K.S.

    1992-10-01

    Maywood Chemical Works (MCW) of Maywood, New Jersey, generated process wastes and residues associated with the production and refining of thorium and thorium compounds from monazite ores from 1916 to 1956. MCW supplied rare earth metals and thorium compounds to the Atomic Energy Commission and various other government agencies from the late 1940s to the mid-1950s. Area residents used the sandlike waste from this thorium extraction process mixed with tea and cocoa leaves as mulch in their yards. Some of these contaminated wastes were also eroded from the site into Lodi Brook. At the request of the US Department of Energy (DOE), a group from Oak Ridge National Laboratory conducts investigative radiological surveys of properties in the vicinity of MCW to determine whether a property is contaminated with radioactive residues, principally [sup 232]Tb, derived from the MCW site. The survey typically includes direct measurement of gamma radiation levels and soil sampling for radionuclide analyses. The survey of this site, 27 Schlosser Drive, Rochelle Park, New Jersey (RJ004), was conducted on July 14, 1991. Results of the survey demonstrated no radionuclide concentrations in excess of the DOE Formerly Utilized Sites Remedial Action Program criteria. The radionuclide distributions were not significantly different from normal background levels in the northern New Jersey area.

  14. Results of the radiological survey at 30 Long Valley Road, Lodi, New Jersey (LJ045)

    SciTech Connect

    Cottrell, W.D.; Floyd, L.M.; Francis, M.W.; Mynatt, J.O.

    1989-11-01

    Maywood Chemical Works (MCW) of Maywood, New Jersey, generated process wastes and residues associated with the production and refining of thorium and thorium compounds from monazite ores from 1916 to 1956. MCW supplied rare earth metals and thorium compounds to the Atomic Energy Commission and various other government agencies from the late 1940s to the mid-1950s. Area residents used the sandlike waste from this thorium extraction process mixed with tea and cocoa leaves as mulch in their yards. Some of these contaminated wastes were also eroded from the site into Lodi Brook. At the request of the US Department of Energy (DOE), a group from Oak Ridge National Laboratory conducts investigative radiological surveys of properties in the vicinity of MCW to determine whether a property is contaminated with radioactive residues, principally {sup 232}Th, derived from the MCW site. The survey typically includes direct measurement of gamma radiation levels and soil sampling for radionuclide analyses. The survey of this site, 30 Long Valley Road, Lodi, New Jersey (LJ045), was conducted during 1985, 1986, and 1987. Some radionuclide measurements were greater than typical background levels in the northern New Jersey area. However, results of the survey demonstrated no radionuclide concentrations in excess of the DOE Formerly Utilized Sites Remedial Action Program criteria. 5 refs., 10 figs., 3 tabs.

  15. Results of the radiological survey at 31 Schlosser Drive, Rochelle Park, New Jersey (RJ003)

    SciTech Connect

    Foley, R.D.; Brown, K.S.

    1992-10-01

    Maywood Chemical Works (MCW) of Maywood, New Jersey, generated process wastes and residues associated with the production and refining of thorium and thorium compounds from monazite ores from 1916 to 1956. MCW supplied rare earth metals and thorium compounds to the Atomic Energy Commission and various other government agencies from the late 1940s to the mid-1950s. Area residents used the sandlike waste from this thorium extraction process mixed with tea and cocoa leaves as mulch in their yards. Some of these contaminated wastes were also eroded from the site into Lodi Brook. At the request of the US Department of Energy (DOE), a group from Oak Ridge National Laboratory conducts investigative radiological surveys of properties in the vicinity of MCW to determine whether a property is contaminated with radioactive residues, principally [sup 232]Tb, derived from the MCW site. The survey typically includes direct measurement of gamma radiation levels and soil sampling for radionuclide analyses. The survey of this site, 31 Schlosser Drive, Rochelle Park, New Jersey (RJ003), was conducted on July 14, 1991. Results of the survey demonstrated no radionuclide concentrations in excess of the DOE Formerly Utilized Sites Remedial Action Program criteria. The radionuclide distributions were not significantly different from normal background levels in the northern New Jersey area.

  16. Results of the radiological survey at 27 Schlosser Drive, Rochelle Park, New Jersey (RJ004)

    SciTech Connect

    Foley, R.D.; Brown, K.S.

    1992-10-01

    Maywood Chemical Works (MCW) of Maywood, New Jersey, generated process wastes and residues associated with the production and refining of thorium and thorium compounds from monazite ores from 1916 to 1956. MCW supplied rare earth metals and thorium compounds to the Atomic Energy Commission and various other government agencies from the late 1940s to the mid-1950s. Area residents used the sandlike waste from this thorium extraction process mixed with tea and cocoa leaves as mulch in their yards. Some of these contaminated wastes were also eroded from the site into Lodi Brook. At the request of the US Department of Energy (DOE), a group from Oak Ridge National Laboratory conducts investigative radiological surveys of properties in the vicinity of MCW to determine whether a property is contaminated with radioactive residues, principally {sup 232}Tb, derived from the MCW site. The survey typically includes direct measurement of gamma radiation levels and soil sampling for radionuclide analyses. The survey of this site, 27 Schlosser Drive, Rochelle Park, New Jersey (RJ004), was conducted on July 14, 1991. Results of the survey demonstrated no radionuclide concentrations in excess of the DOE Formerly Utilized Sites Remedial Action Program criteria. The radionuclide distributions were not significantly different from normal background levels in the northern New Jersey area.

  17. Results of the radiological survey at 90 C Avenue, Lodi, New Jersey (LJ079)

    SciTech Connect

    Foley, R.D.; Floyd, L.M.

    1989-06-01

    Maywood Chemical Works (MCW) of Maywood, New Jersey, generated process wastes and residues associated with the production and refining of thorium and thorium compounds from monazite ores from 1916 to 1956. MCW supplied rare earth metals and thorium compounds to the Atomic Energy Commission and various other government agencies from the late 1940s to the mid-1950s. Area residents used the sandlike waste from this thorium extraction process mixed with tea and cocoa leaves as mulch in their yards. Some of these contaminated wastes were also eroded from the site into Lodi Brook. At the request of the US Department of Energy (DOE), a group from Oak Ridge National Laboratory conducted an investigative radiological survey during 1988 at 90 C Avenue, Lodi, New Jersey (LJ079), one of the properties in the vicinity of the MCW site. The survey included a gamma radiation scan of the surface and at one meter above the surface, as well as radionuclide sampling of surface and subsurface soil. The survey objective was to determine whether this site was contaminated with radioactive residues derived from MCW, principally /sup 232/Th. Results of the survey demonstrated radionuclide concentrations in excess of DOE remedial action criteria, primarily from the /sup 232/Th decay chain, with some contamination from /sup 226/Ra. The radionuclide distributions are typical of the type of material originating from the MCW site. 5 refs., 3 figs., 3 tabs.

  18. Results of the radiological survey at 112 Avenue E, Lodi, New Jersey (LJ082)

    SciTech Connect

    Foley, R.D.; Floyd, L.M.

    1989-06-01

    Maywood Chemical Works (MCW) of Maywood, New Jersey, generated process wastes and residues associated with the production and refining of thorium and thorium compounds from monazite ores from 1916 to 1956. MCW supplied rare earth metals and thorium compounds to the Atomic Energy Commission and various other government agencies from the late 1940s to the mid-1950s. Area residents used the sandlike waste from this thorium extraction process mixed with tea and cocoa leaves as mulch in their yards. Some of these contaminated wastes were also eroded from the site into Lodi Brook. At the request of the US Department of Energy (DOE), a group from Oak Ridge National Laboratory conducts investigative radiological surveys of properties in the vicinity of MCW to determine whether a property is contaminated with radioactive residue, principally /sup 232/Th, derived from the MCW site. The survey typically includes direct measurement of gamma radiation levels and soil sampling for radionuclide analyses. The survey of this site, 112 Avenue E, Lodi, New Jersey (LJ082), was conducted during 1988. Results of the survey demonstrated radionuclide concentrations in excess of the DOE Formerly Utilized Sites Remedial Action Program criteria. The radionuclide distributions are typical of the type of material originating from the MCW site. 2 figs., 3 tabs.

  19. Review of radiological surveys of the General Services Administration's Raritan Depot in Edison, New Jersey

    SciTech Connect

    Herzenberg, C.L.; Winter, R.C.

    1986-10-01

    This report reviews two recent radiological surveys of the General Services Administration (GSA) Raritan Depot in Edison, New Jersey, that were conducted after somewhat elevated levels of radiation were detected within a depot building. The first survey indicated gamma radiation levels were higher than natural background levels in some buildings and identified the probable source of the radiation as gypsum-like building tiles that contained natural uranium-chain radionuclides at a level 20 times higher than other materials. Elevated levels of radon and radon decay products also were detected in some buildings. A follow-on survey was conducted to confirm the January measurements and to measure radiation levels at other locations: additional buildings at the depot, buildings on the Middlesex County College campus, and a possible outdoor disposal site. EPA measurements established that ceiling material is the primary source of the radiation. Radioisotope analysis of the ceiling tile material from buildings with elevated radiation levels showed the presence of radium-226 at levels of approximately 25 picocuries per gram (pCi/g); this material would thus have to be treated as hazardous waste, should it be removed. This report critiques the methodology and results of the two surveys and recommends further action.

  20. Results of the radiological survey at 77 Sinninger Street, Maywood, New Jersey (MJ052)

    SciTech Connect

    Foley, R.D.; Brown, K.S.

    1993-06-01

    Maywood Chemical Works (MCW) of Maywood, New Jersey, generated process wastes and residues associated with the production and refining of thorium and thorium compounds from monazite ores from 1916 to 1956. MCW supplied rare earth metals and thorium compounds to the Atomic Energy Commission and various other government agencies from the late 1940s to the mid-1950s. Area residents used the sandlike waste from this thorium extraction process mixed with tea and cocoa leaves as mulch in their yards. Some of these contaminated wastes were also eroded from the site into Lodi Brook. At the request of the US Department of Energy (DOE), a group from Oak Ridge National Laboratory conducts investigative radiological surveys of properties in the vicinity of MCW to determine whether a property is contaminated with radioactive residues, principally {sup 232}Th, derived from the MCW site. The survey typically includes direct measurement of gamma radiation levels and soil sampling for radionuclide analyses. The survey of this site, 77 Sinninger Street, Maywood, New Jersey (MJ052), was conducted on December 17, 1992. Results of the survey demonstrated no radionuclide concentrations in excess of the DOE Formerly Utilized Sites Remedial Action Program criteria. The radionuclide distributions were not significantly different from normal background levels in the northern New Jersey area.

  1. Results of the radiological survey at 48 Schlosser Drive, Rochelle Park, New Jersey (RJ005)

    SciTech Connect

    Foley, R.D.; Brown, K.S.

    1992-10-01

    Maywood Chemical Works (MCW) of Maywood, New Jersey, generated process wastes and residues associated with the production and refining of thorium and thorium compounds from monazite ores from 1916 to 1956.MCW supplied rare earth metals and thorium compounds to the Atomic Energy Commission and various other government agencies from the late 1940s to the mid-1950s. Area residents used the sandlike waste from thisthorium extraction process mixed with tea and cocoa leaves as mulch in their yards. Some of these contaminated wastes were also eroded from the site into Lodi Brook. At the request of the US Department of Energy(DOE), a group from Oak Ridge National Laboratory conducts investigative radiological surveys of properties in the vicinity of MCW to determine whether a property is contaminated with radioactive residues, principally {sup 232}Tb, derived from the MCW site. The survey typically includes direct measurement of gamma radiation levels and soil sampling for radionuclide analyses. The survey of this site, 48 Schlosser Drive, Rochelle Park, New Jersey (RJO05), was conducted on July 14, 1991. Results of the survey demonstrated no radionuclide concentrations in excess of the DOE Formerly Utilized Sites Remedial Action Program criteria. The radionuclide distributions were not significantly different from normal background levels in the northern New Jersey area.

  2. Results of the radiological survey at 37 Schlosser Drive, Rochelle Park, New Jersey (RJ002)

    SciTech Connect

    Foley, R.D.; Brown, K.S.

    1992-10-01

    Maywood Chemical Works (MCW) of Maywood, New Jersey, generated process wastes and residues associated with the production and refining of thorium and thorium compounds from monazite ores from 1916 to 1956. MCW supplied rare earth metals and thorium compounds to the Atomic Energy Commission and various other government agencies from the late 1940s to the mid-1950s. Area residents used the sandlike waste from this thorium extraction process mixed with tea and cocoa leaves as mulch in their yards. Some of these contaminated wastes were also eroded from the site into Lodi Brook. At the request of the US Department of Energy (DOE), a group from Oak Ridge National Laboratory conducts investigative radiological surveys of properties in the vicinity of MCW to determine whether a property is contaminated with radioactive residues, principally [sup 232]Th derived from the MCW site. The survey typically includes direct measurement of gamma radiation levels and soil sampling for radionuclide analyses. The survey of this site, 37 Schlosser Drive, Rochelle Park, New Jersey (RJ002), was conducted on July 14, 1991. Results of the survey demonstrated no radionuclide concentrations in excess of the DOE Formerly Utilized Sites Remedial Action Program criteria. The radionuclide distributions were not significantly different from normal background levels in the northern New Jersey area.

  3. Results of the radiological survey at 31 Schlosser Drive, Rochelle Park, New Jersey (RJ003)

    SciTech Connect

    Foley, R.D.; Brown, K.S.

    1992-10-01

    Maywood Chemical Works (MCW) of Maywood, New Jersey, generated process wastes and residues associated with the production and refining of thorium and thorium compounds from monazite ores from 1916 to 1956. MCW supplied rare earth metals and thorium compounds to the Atomic Energy Commission and various other government agencies from the late 1940s to the mid-1950s. Area residents used the sandlike waste from this thorium extraction process mixed with tea and cocoa leaves as mulch in their yards. Some of these contaminated wastes were also eroded from the site into Lodi Brook. At the request of the US Department of Energy (DOE), a group from Oak Ridge National Laboratory conducts investigative radiological surveys of properties in the vicinity of MCW to determine whether a property is contaminated with radioactive residues, principally {sup 232}Tb, derived from the MCW site. The survey typically includes direct measurement of gamma radiation levels and soil sampling for radionuclide analyses. The survey of this site, 31 Schlosser Drive, Rochelle Park, New Jersey (RJ003), was conducted on July 14, 1991. Results of the survey demonstrated no radionuclide concentrations in excess of the DOE Formerly Utilized Sites Remedial Action Program criteria. The radionuclide distributions were not significantly different from normal background levels in the northern New Jersey area.

  4. Results of the radiological survey at 113 Avenue E, Lodi, New Jersey (LJ081)

    SciTech Connect

    Foley, R.D.; Floyd, L.M.

    1989-06-01

    Maywood Chemical Works (MCW) of Maywood, New Jersey, generated process wastes and residues associated with the production and refining of thorium and thorium compounds from monazite ores from 1916 to 1956. MCW supplied rare earth metals and thorium compounds to the Atomic Energy Commission and various other government agencies from the late 1940s to the mid-1950s. Area residents used the sandlike waste from this thorium extraction process mixed with tea and cocoa leaves as mulch in their yards. Some of these contaminated wastes were also eroded from the site into Lodi Brook. At the request of the US Department of Energy (DOE), a group from Oak Ridge National Laboratory conducts investigative radiological surveys of properties in the vicinity of MCW to determine whether a property is contaminated with radioactive residues, principally /sup 232/Th, derived from the MCW site. The survey typically includes direct measurement of gamma radiation levels and soil sampling for radionuclide analyses. The survey of this site, 113 Avenue E, Lodi, New Jersey (LJ081), was conducted during 1988. Results of the survey demonstrated radionuclide concentrations in excess of the DOE Formerly Utilized Sites Remedial Action Program criteria. The radionuclide distributions are typical of the type of material originating from the MCW site. 5 refs, 2 figs., 3 tabs.

  5. Results of the radiological survey at 62 Trudy Drive, Lodi, New Jersey (LJ080)

    SciTech Connect

    Foley, R.D.; Floyd, L.M.

    1989-06-01

    Maywood Chemical Works (MCW) of Maywood, New Jersey, generated process wastes and residues associated with the production and refining of thorium and thorium compounds from monazite ores from 1916 to 1956. MCW supplied rare earth metals and thorium compounds to the Atomic Energy Commission and various other government agencies from the late 1940s to the mid-1950s. Area residents used the sandlike waste from this thorium extraction process mixed with tea and cocoa leaves as mulch in their yards. Some of these contaminated wastes were also eroded from the site into Lodi Brook. At the request of the US Department of Energy (DOE), a group from Oak Ridge National Laboratory conducts investigative radiological surveys of properties in the vicinity of MCW to determine whether a property is contaminated with radioactive residues, principally /sup 232/Th, derived from the MCW site. The survey typically includes direct measurement of gamma radiation levels and soil sampling for radionuclide analyses. The survey of this site, 62 Trudy Drive, Lodi, New Jersey (LJ080), was conducted during 1988. Results of the survey demonstrated radionuclide concentrations in excess of the DOE Formerly Utilized Sites Remedial Action Program criteria. The radionuclide distributions are typical of the type of material originating from the MCW site. 5 refs., 5 figs., 3 tabs.

  6. Results of the radiological survey at 133 Maywood Avenue, Maywood, New Jersey (MJ025)

    SciTech Connect

    Foley, R.D.; Carrier, R.F.; Floyd, L.M.; Crutcher, J.W. )

    1989-10-01

    Maywood Chemical Works (MCW) of Maywood, New Jersey, generated process wastes and residues associated with the production and refining of thorium and thorium compounds from monazite ores from 1916 to 1956. MCW supplied rare earth metals and thorium compounds to the Atomic Energy Commission and various other government agencies from the late 1940s to the mid-1950s. Area residents used the sandlike waste from this thorium extraction process mixed with tea and cocoa leaves as mulch in their yards. Some of these contaminated wastes were also eroded from the site into Lodi Brook. At the request of the US Department of Energy (DOE), a group from Oak Ridge National Laboratory conducts investigative radiological surveys of properties in the vicinity of MCW to determine whether a property is contaminated with radioactive residues, principally {sup 232}Th, derived from the MCW site. The survey typically includes direct measurement of gamma radiation levels and soil sampling for radionuclide analyses. The survey of this site, 133 Maywood Avenue, Maywood, New Jersey (MJ025), was conducted during 1987. The survey results demonstrate that all radionuclide concentrations and measurements conform to DOE remedial action criteria. All values are at or below typical background values found in northern New Jersey. 5 refs., 2 figs., 3 tabs.

  7. Results of the radiological survey at 108 Avenue E, Lodi, New Jersey (LJ084)

    SciTech Connect

    Foley, R.D.; Floyd, L.M.

    1989-06-01

    Maywood Chemical Works (MCW) of Maywood, New Jersey, generated process wastes and residues associated with the production and refining of thorium and thorium compounds from monazite ores from 1916 to 1956. MCW supplied rare earth metals and thorium compounds to the Atomic Energy Commission and various other government agencies from the late 1940s to the mid-1950s. Area residents used the sandlike waste from this thorium extraction process mixed with tea and cocoa leaves as mulch in their yards. Some of these contaminated wastes were also eroded from the site into Lodi Brook. At the request of the US Department of Energy (DOE), a group from Oak Ridge National Laboratory conducts investigative radiological surveys of properties in the vicinity of MCW to determine whether a property is contaminated with radioactive residues, principally /sup 232/Th, derived from the MCW site. The survey typically includes direct measurement of gamma radiation levels and soil sampling for radionuclide analyses. The survey of this site, 108 Avenue E, Lodi, New Jersey (LJ084), was conducted during 1988. Results of the survey demonstrated radionuclide concentrations in excess of the DOE Formerly Utilized Sites Remedial Action Program criteria. The radionuclide distributions are typical of the type of material originating from the MCW site. 5 refs., 2 figs., 2 tabs.

  8. Results of the radiological survey at 9 Hancock Street, Lodi, New Jersey (LJ028)

    SciTech Connect

    Cottrell, W.D.; Floyd, L.M.; Francis, M.W.; Mynatt, J.O.

    1989-09-01

    Maywood Chemical Works (MCW) of Maywood, New Jersey, generated process wastes and residues associated with the production and refining of thorium and thorium compounds from monazite ores from 1916 to 1956. MCW supplied rare earth metals and thorium compounds to the Atomic Energy Commission and various other government agencies from the late 1940s to the mid-1950s. Area residents used the sandlike waste from this thorium extraction process mixed with tea and cocoa leaves as mulch in their yards. Some of these contaminated wastes were also eroded from the site into Lodi Brook. At the request of the US Department of Energy (DOE), a group from Oak Ridge National Laboratory conducts investigative radiological surveys of properties in the vicinity of MCW to determine whether a property is contaminated with radioactive residues, principally {sup 232}Th, derived from the MCW site. The survey typically includes direct measurement of gamma radiation levels and soil sampling for radionuclide analyses. The survey of this site, 9 Hancock Street, Lodi, New Jersey (LJ028), was conducted during 1985 and 1986. Some radionuclide measurements were greater than typical background levels in the northern New Jersey area. However, results of the survey demonstrated no radionuclide concentrations in excess of the DOE Formerly Utilized Sites Remedial Action Program criteria. 5 refs., 6 figs., 3 tabs.

  9. Results of the radiological survey at 7 Redstone Lane, Lodi, New Jersey (LJ044)

    SciTech Connect

    Cottrell, W.D.; Floyd, L.M.; Francis, M.W.; Mynatt, J.O.

    1989-10-01

    Maywood Chemical Works (MCW) of Maywood, New Jersey, generated process wastes and residues associated with the production and refining of thorium and thorium compounds from monazite ores from 1916 to 1956. MCW supplied rare earth metals and thorium compounds to the Atomic Energy Commission and various other government agencies from the late 1940s to the mid-1950s. Area residents used the sandlike waste from this thorium extraction process mixed with tea and cocoa leaves as mulch in their yards. Some of these contaminated wastes were also eroded from the site into Lodi Brook. At the request of the US Department of Energy (DOE), a group from Oak Ridge National Laboratory conducts investigative radiological surveys of properties in the vicinity of MCW to determine whether a property is contaminated with radioactive residues, principally {sup 232}Th, derived from the MCW site. The survey typically includes direct measurement of gamma radiation levels and soil sampling for radionuclides analyses. The survey of this site, 7 Redstone Lane, Lodi, New Jersey (LJ044), was conducted during 1985 and 1986. Some radionuclide measurements were greater than typical background levels in the northern New Jersey area. However, results of the survey demonstrated no radionuclide concentrations in excess of the DOE Formerly Utilized Sites Remedial Action Program criteria. 5 refs., 4 figs., 3 tabs.

  10. Results of the radiological survey at 79 Avenue B, Lodi, New Jersey (LJ091)

    SciTech Connect

    Foley, R.D.; Floyd, L.M.

    1989-06-01

    Maywood Chemical Works (MCW) of Maywood, New Jersey, generated process wastes and residues associated with the production and refining of thorium and thorium compounds from monazite ores from 1916 to 1956. MCW supplied rare earth metals and thorium compounds to the Atomic Energy Commission and various other government agencies from the late 1940s to the mid-1950s. Area residents used the sandlike waste from this thorium extraction process mixed with tea and cocoa leaves as mulch in their yards. Some of these contaminated wastes were also eroded from the site into Lodi Brook. At the request of the US Department of Energy (DOE), a group from Oak Ridge National Laboratory conducts investigative radiological surveys of properties in the vicinity of MCW to determine whether a property is contaminated with radioactive residues, principally /sup 232/Th, derived from the MCW site. The survey typically includes direct measurement of gamma radiation levels and soil sampling for radionuclide analyses. The survey of this site, 79 Avenue B, Lodi, New Jersey (LJ091), was conducted during 1988. Results of the survey demonstrated radionuclide concentrations in excess of the DOE Formerly Utilized Sites Remedial Action Program criteria. The radionuclide distributions are typical of the type of material originating from the MCW site. 5 refs., 2 figs., 2 tabs.

  11. Results of the radiological survey at 32 Long Valley Road, Lodi, New Jersey (LJ046)

    SciTech Connect

    Cottrell, W.D.; Floyd, L.M.; Francis, M.W.; Mynatt, J.O.

    1989-10-01

    Maywood Chemical Works (MCW) of Maywood, New Jersey, generated process wastes and residues associated with the production and refining of thorium and thorium compounds from monazite ores from 1916 to 1956. MCW supplied rare earth metals and thorium compounds to the Atomic Energy Commission and various other government agencies from the late 1940s to the mid-1950s. Area residents used the sandlike waste from this thorium extraction process mixed with tea and cocoa leaves as mulch in their yards. Some of these contaminated wastes were also eroded from the site into Lodi Brook. At the request of the US Department of Energy (DOE), a group from Oak Ridge National Laboratory conducts investigative radiological surveys of properties in the vicinity of MCW to determine whether a property is contaminated with radioactive residues, principally {sup 232}Th, derived from the MCW site. The survey typically includes direct measurement of gamma radiation levels and soil sampling for radionuclide analyses. The survey of this site, 32 Long Valley Road, Lodi, New Jersey (LJ046), was conducted during 1985, 1986, and 1987. Some radionuclide measurements were greater than typical background levels in the northern New Jersey area. However, results of the survey demonstrated no radionuclide concentrations in excess of the DOE Formerly Utilized Sites Remedial Action Program criteria. 5 refs., 6 figs., 3 tabs.

  12. Results of the radiological survey at 14 Long Valley Road, Lodi, New Jersey (LJ070)

    SciTech Connect

    Foley, R.D.; Carrier, R.F.

    1989-12-01

    Maywood Chemical Works (MCW) of Maywood, New Jersey, generated process wastes and residues associated with the production and refining of thorium and thorium compounds from monazite ores from 1916 to 1956. MCW supplied rare earth metals and thorium compounds to the Atomic Energy Commission and various other government agencies from the late 1940s to the mid-1950s. At the request of the US Department of Energy (DOE), a group from Oak Ridge National Laboratory conducts investigative radiological surveys of properties in the vicinity of MCW to determine whether a property is contaminated with radioactive residues, principally {sup 232}Th, derived from the MCW site. The survey typically includes direct measurement of gamma radiation levels and soil sampling for radionuclide analyses. The survey of this site, 14 Long Valley Road, Lodi New Jersey (LJ070), was conducted during 1987. Survey measurements indicate that the property contained radioactive contamination primarily from the {sup 232}Th decay chain. The radionuclide distributions are typical of the type of material originating from processing operations at the MCW. 5 refs., 5 figs., 3 tabs.

  13. Results of the radiological survey at 7 Hancock Street, Lodi, New Jersey (LJ027)

    SciTech Connect

    Cottrell, W.D.; Floyd, L.M.; Francis, M.W.; Mynatt, J.O.

    1989-09-01

    Maywood Chemical Works (MCW) of Maywood, New Jersey, generated process wastes and residues associated with the production and refining of thorium and thorium compounds from monazite ores from 1916 to 1956. MCW supplied rare earth metals and thorium compounds to the Atomic Energy Commission and various other government agencies from the late 1940s to the mid-1950s. Area residents used the sandlike waste from this thorium extraction process mixed with tea and cocoa leaves as mulch in their yards. Some of these contaminated wastes were also eroded from the site into Lodi Brook. AT the request of the US Department of Energy (DOE), a group from Oak Ridge National Laboratory conducts investigative radiological surveys of properties in the vicinity of MCW to determine whether a property is contaminated with radioactive residues, principally {sup 232}Th, derived from the MCW site. The survey typically includes direct measurement of gamma radiation levels and soil sampling for radionuclide analyses. The survey of this site, 7 Hancock Street, Lodi, New Jersey (LJ027), was conducted during 1985 and 1986. Results of the survey demonstrated radionuclide concentrations in excess of the DOE Formerly Utilized Sites Remedial Action Program criteria. The radionuclide distributions are typical of the type of material originating from the MCW site. 5 refs., 5 figs., 3 tabs.

  14. Final report of the radiological release survey of Building 11 at the Grand Junction Office Facility

    SciTech Connect

    Johnson, R.K.; Corle, S.G.

    1997-09-01

    The U.S. Department of Energy (DOE) Grand Junction Office (GJO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore concentrates and mill tailings during vanadium refining activities of the Manhattan Engineer District, and during sampling, assaying, pilot milling, storage, and brokerage activities conducted for the U.S. Atomic Energy Commission`s domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJO Remedial Action Project (GJORAP) to clean up and restore the facility lands, improvements, and underlying aquifer. WASTREN-Grand Junction is the site contractor for the facility and the remedial action contractor for GJORAP. Building 11 and the underlying soil were found not to be radiologically contaminated; therefore, the building can be released for unrestricted use. Placards have been placed at the building entrances indicating the completion of the radiological release survey and prohibiting the introduction of any radioactive materials within the building without written approvals from the GJO Facilities Operations Manager. This document was prepared in response to a DOE-GJO request for an individual final release report for each GJO building.

  15. Final report of the radiological release survey of Building 19 at the Grand Junction Office Facility

    SciTech Connect

    Johnson, R.K.; Corle, S.G.

    1997-09-01

    The U.S. Department of Energy (DOE) Grand Junction Office (GJO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore concentrates and mill tailings during vanadium refining activities of the Manhattan Engineer District, and during sampling, assaying, pilot milling, storage, and brokerage activities conducted for the U.S. Atomic Energy Commission`s domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJO Remedial Action Project (GJORAP) to clean up and restore the facility lands, improvements, and underlying aquifer. WASTREN-Grand Junction is the site contractor for the facility and the remedial action contractor for GJORAP. Building 19 and the underlying soil were found not to be radiologically contaminated; therefore, the building can be released for unrestricted use. Placards have been placed at the building entrances indicating the completion of the radiological release survey and prohibiting the introduction of any radioactive materials within the building without written approvals from the GJO Facilities Operations Manager. This document was prepared in response to a DOE-GJO request for an individual final release report for each GJO building.

  16. Final report of the radiological release survey of Building 54 at the Grand Junction Office Facility

    SciTech Connect

    Johnson, R.K.; Corle, S.G.

    1997-09-01

    The U.S. Department of Energy (DOE) Grand Junction Office (GJO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore concentrates and mill tailings during vanadium refining activities of the Manhattan Engineer District, and during sampling, assaying, pilot milling, storage, and brokerage activities conducted for the U.S. Atomic Energy Commission`s domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJO Remedial Action Project (GJORAP) to clean up and restore the facility lands, improvements, and underlying aquifer. WASTREN-Grand Junction is the site contractor for the facility and the remedial action contractor for GJORAP. Building 54 and the underlying soil were found not to be radiologically contaminated, and can be released for unrestricted use. Placards have been placed at the building entrances indicating the completion of the radiological release survey and prohibiting the introduction of any radioactive materials within the building without written approvals from the GJO Facilities Operations Manager. This document was prepared in response to a DOE-GJO request for an individual release report for each GJO building.

  17. Final report of the radiological release survey of Building 29 at the Grand Junction Office Facility

    SciTech Connect

    Johnson, R.K.; Corle, S.G.

    1997-09-01

    The U.S. Department of Energy (DOE) Grand Junction Office (GJO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore concentrates and mill tailing during vanadium refining activities of the Manhattan Engineer District, and during sampling, assaying, pilot milling, storage, and brokerage activities conducted for the U.S. Atomic Energy Commission`s domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJO Remedial Action Project (GJORAP) to clean up and restore the facility lands, improvements, and underlying aquifer. WASTREN-Grand Junction is the site contractor for the facility and the remedial action contractor for GJORAP. Building 29 and the underlying soil were found not to be radiologically contaminated; therefore, the building can be released for unrestricted use. Placards have been placed at the building entrances indicating the completion of the radiological release survey and prohibiting the introduction of any radioactive materials within the building without written approvals from the GJO Facilities Operations Manager. This document was prepared in response to a DOE-GJO request for an individual final release report for each GJO building.

  18. Results of the independent radiological verification survey at the former Bridgeport Brass Company Facility, Seymour, Connecticut (SSC001)

    SciTech Connect

    Foley, R.D.; Rice, D.E.; Allred, J.F.; Brown, K.S.

    1995-03-01

    At the request of the USDOE, a team from ORNL conducted an independent radiological verification survey at the former Bridgeport Brass Company Facility, Seymour, Connecticut, from September 1992 to March 1993. Purpose of the survey was to determine whether residual levels of radioactivity inside the Ruffert Building and selected adjacent areas were rmediated to levels below DOE guidelines for FUSRAP sites. The property was contaminated with radioactive residues of {sup 238}U from uranium processing experiments conducted by Reactive Metals, Inc., from 1962 to 1964 for the Atomic Energy Commission. A previous radiological survey did not characterize the entire floor space because equipment which could not be moved at the time made it inaccessible for radiological surveys. During the remediation process, additional areas of elevated radioactivity were discovered under stationary equipment, which required additional remediation and further verification. Results of the independent radiological verification survey confirm that, with the exception of the drain system inside the building, residual uranium contamination has been remediated to levels below DOE guidelines for unrestricted release of property at FUSRAP sites inside and outside the Ruffert Building. However, certain sections of the drain system retain uranium contamination above DOE surface guideline levels. These sections of pipe are addressed in separate, referenced documentation.

  19. Radiological survey of the inactive uranium-mill tailings at Rifle, Colorado

    SciTech Connect

    Haywood, F.F.; Jacobs, D.J.; Ellis, B.S.; Hubbard, H.M. Jr.; Shinpaugh, W.H.

    1980-06-01

    Results of radiological surveys of two inactive uranium-mill sites near Rifle, Colorado, in May 1976 are presented. These sites are referred to as Old Rifle and New Rifle. The calculated /sup 226/Ra inventory of the latter site is much higher than at the older mill location. Data on above-ground measurements of gamma exposure rates, surface and near-surface concentration of /sup 226/Ra in soil and sediment samples, concentration of /sup 226/Ra in water, calculated subsurface distribution of /sup 226/Ra, and particulate radionuclide concentrations in air samples are given. The data serve to define the extent of contamination in the vicinity of the mill sites and their immediate surrounding areas with tailings particles. Results of these measurements were utilized as technical input for an engineering assessment of these two sites.

  20. Radiological survey of the inactive uranium-mill tailings at Durango, Colorado

    SciTech Connect

    Haywood, F.F.; Perdue, P.T.; Shinpaugh, W.H.; Ellis, B.S.; Chou, K.D.

    1980-03-01

    Results of a radiological survey of the inactive uranium-mill site at Durango, Colorado, conducted in April 1976, in cooperation with a team from Ford, Bacon and Davis Utah Inc., are presented together with descriptions of the instruments and techniques used to obtain the data. Direct above-ground gamma measurements and analysis of surface soil and sediment samples indicate movement of tailings from the piles toward Lightner Creek on the north and the Animas River on the east side of the piles. The concentration of /sup 226/Ra in the former raffinate pond area is only slightly above the background level. Two structures in Durango were found to contain high concentrations of airborne radon daughters, where tailings are known to have been utilized in construction. Near-background concentrations of radon daughters were found in a well-ventilated building close to the tailings.

  1. Radiological survey of the inactive uranium-mill tailings at Maybell, Colorado

    SciTech Connect

    Haywood, F.F.; Perdue, P.T.; Ellis, B.S.

    1980-03-01

    Results of a radiological survey of the inactive uranium-mill tailings near Maybell, Colorado are presented. Measurements of external gamma exposure rate at 1 m above the tailings ranged 16 to 340 ..mu..R/hr with an average value of 65 ..mu..R/hr. Radionuclide analysis of offsite soil and sediment samples, as well as above-ground gamma exposure rate measurements defined the spread of contamination around the tailings pile. This spread is greatest toward the east, in the direction of surface water runoff. Calculated concentrations of /sup 226/Ra in all of the holes drilled in the tailngs, based on gamma monitoring data, showed maximum concentrations in the range 100 to 800 pCi/g.

  2. Results of the radiological survey at 83 Belle Avenue, Maywood, New Jersey (MJ047)

    SciTech Connect

    Foley, R.D.; Floyd, L.M.

    1989-11-01

    Maywood Chemical Works (MCW) of Maywood, New Jersey, generated process wastes and residues associated with the production and refining of thorium and thorium compounds from monazite ores from 1916 to 1956. MCW supplied rare earth metals and thorium compounds to the Atomic Energy Commission and various other government agencies from the late 1940s to the mid-1950s. Area residents used the sandlike waste from this thorium extraction process mixed with tea and cocoa leaves as mulch in their yards. Some of these contaminated wastes were also eroded from the site into Lodi Brook. At the request of the US Department of Energy (DOE), a group from Oak Ridge National Laboratory conducts investigative radiological surveys of properties in the vicinity of MCW to determine whether a property is contaminated with radioactive residues, principally {sup 232}Th, derived from the MCW site. The survey typically includes direct measurement of gamma radiation levels and soil sampling for radionuclide analyses. The survey of this site, 83 Belle Avenue, Maywood, New Jersey (MJ047), was conducted during 1988. 5 refs., 2 figs., 3 tabs.

  3. Results of the radiological survey at 15 John Street, Lodi, New Jersey (LJ087)

    SciTech Connect

    Foley, R.D.; Floyd, L.M.

    1989-12-01

    Maywood Chemical Works (MCW) of Maywood, New Jersey, generated process wastes and residues associated with the production and refining of thorium and thorium compounds from monazite ores from 1916 to 1956. MCW supplied rare earth metals and thorium compounds to the Atomic Energy Commission and various other government agencies from the late 1940s to the mid-1950s. Area residents used the sandlike waste from this thorium extraction process mixed with tea and cocoa leaves as mulch in their yards. Some of these contaminated wastes were also eroded from the site into Lodi Brook. At the request of the US Department of Energy (DOE), a group from Oak Ridge National Laboratory conducts investigative radiological surveys of properties in the vicinity of MCW to determine whether a property is contaminated with radioactive residues, principally {sup 232}Th, derived from the MCW site. The survey typically includes direct measurement of gamma radiation levels and soil sampling for radionuclide analyses. The survey of this site, 15 John Street, Lodi, New Jersey (LJ087), was conducted during 1988. 5 refs., 3 figs., 3 tabs.

  4. Results of the radiological survey at 48 Long Valley Road, Lodi, New Jersey (LJ085)

    SciTech Connect

    Foley, R.D.; Floyd, L.M.

    1989-11-01

    Maywood Chemical Works (MCW) of Maywood, New Jersey, generated process wastes and residues associated with the production and refining of thorium and thorium compounds from monazite ores from 1916 to 1956. MCW supplied rare earth metals and thorium compounds to the Atomic Energy Commission and various other government agencies from the late 1940s to the mid-1950s. Area residents used the sandlike waste from this thorium extraction process mixed with tea and cocoa leaves as mulch in their yards. Some of these contaminated wastes were also eroded from the site into Lodi Brook. At the request of the US Department of Energy (DOE), a group from Oak Ridge National Laboratory conducts investigative radiological surveys of properties in the vicinity of MCW to determine whether a property is contaminated with radioactive residues, principally {sup 232}Th, derived from the MCW site. The survey typically includes direct measurement of gamma radiation levels and soil sampling for radionuclide analyses. The survey of this site, 48 Long Valley Road, Lodi, New Jersey (LJ085), was conducted during 1988. 5 refs., 6 figs., 3 tabs.

  5. Results of the radiological survey at 104 Avenue E, Lodi, New Jersey (LJ086)

    SciTech Connect

    Foley, R.D.; Floyd, L.M.

    1989-12-01

    Maywood Chemical Works (MCW) of Maywood, New Jersey, generated process wastes and residues associated with the production and refining of thorium and thorium compounds from monazite ores from 1916 to 1956. MCW supplied rare earth metals and thorium compounds to the Atomic Energy Commission and various other government agencies from the late 1940s to the mid-1950s. Area residents used the sandlike waste from this thorium extraction process mixed with tea and cocoa leaves as mulch in their yards. Some of these contaminated wastes were also eroded from the site into Lodi Brook. At the request of the US Department of Energy (DOE), a group from Oak Ridge National Laboratory conducts investigative radiological surveys of properties in the vicinity of MCW to determine whether a property is contaminated with radioactive residues, principally {sup 232}Th, derived from the MCW site. The survey typically includes direct measurement of gamma radiation levels and soil sampling for radionuclide analyses. The survey of this site, 104 Avenue E, Lodi, New Jersey (LJ086), was conducted during 1988. 5 refs., 2 figs., 3 tabs.

  6. Results of the radiological survey at 137 Maywood Avenue, Maywood, New Jersey (MJ026)

    SciTech Connect

    Foley, R.D.; Carrier, R.F.

    1989-12-01

    Maywood Chemical Works (MCW) of Maywood, New Jersey, generated process wastes and residues associated with the production and refining of thorium and thorium compounds from monazite ores from 1916 to 1956. MCW supplied rare earth metals and thorium compounds to the Atomic Energy Commission and various other government agencies from the late 1940s to the mid-1950s. Area residents used the sandlike waste from this thorium extraction process mixed with tea and cocoa leaves as mulch in their yards. Some of these contaminated wastes were also eroded from the site into Lodi Brook. At the request of the US Department of Energy (DOE), a group from Oak Ridge National Laboratory conducts investigative radiological surveys of properties in the vicinity of MCW to determine whether a property is contaminated with radioactive residues, principally {sup 232}Th, derived from the MCW site. The survey typically includes direct measurement of gamma radiation levels and soil sampling for radionuclide analyses. The survey of this site, 137 Maywood Avenue, Maywood, New Jersey (MJ026), was conducted during 1987. 6 refs., 2 figs., 3 tabs.

  7. Results of the radiological survey at 17 John Street, Lodi, New Jersey

    SciTech Connect

    Foley, R.D.; Floyd, L.M.

    1989-12-01

    Maywood Chemical Works (MCW) of Maywood, New Jersey, generated process wastes and residues associated with the production and refining of thorium and thorium compounds from monazite ores from 1916 to 1956. MCW supplied rare earth metals and thorium compounds to the Atomic Energy Commission and various other government agencies from the late 1940s to the mid-1950s. Area residents used the sandlike waste from this thorium extraction process mixed with tea and cocoa leaves as mulch in their yards. Some of these contaminated wastes were also eroded from the site into Lodi Brook. At the request of the US Department of Energy (DOE), a group from Oak Ridge National Laboratory conducts investigative radiological surveys of properties in the vicinity of MCW to determine whether a property is contaminated with radioactive residues, principally {sup 232}Th, derived from the MCW site. The survey typically includes direct measurement of gamma radiation levels and soil sampling for radionuclide analyses. The survey of this site, 17 John Street, Lodi, New Jersey (LJ088), was conducted during 1988. 5 refs., 2 figs., 3 tabs.

  8. Results of the radiological survey at 21 West Central Avenue, Maywood, New Jersey (MJ046)

    SciTech Connect

    Foley, R.D.; Floyd, L.M.

    1989-11-01

    Maywood Chemical Works (MCW) of Maywood, New Jersey, generated process wastes and residues associated with the production and refining of thorium and thorium compounds from monazite ores from 1916 to 1956. MCW supplied rare earth metals and thorium compounds to the Atomic Energy Commission and various other government agencies from the late 1940s to the mid-1950s. Area residents used the sandlike waste from this thorium extraction process mixed with tea and cocoa leaves as mulch in their yards. Some of these contaminated wastes were also eroded from the site into Lodi Brook. At the request of the US Department of Energy (DOE), a group from Oak Ridge National Laboratory conducts investigative radiological surveys of properties in the vicinity of MCW to determine whether a property is contaminated with radioactive residues, principally {sup 232}Th, derived from the MCW site. The survey typically includes direct measurement of gamma radiation levels and soil sampling for radionuclide analyses. The survey of this site, 21 West Central Avenue, Maywood, New Jersey (MJ046), was conducted during 1988. 5 refs., 2 figs., 3 tabs.

  9. Results of the radiological survey at 110 E Hunter Avenue, Maywood, New Jersey (MJ022)

    SciTech Connect

    Foley, R.D.; Carrier, R.F.; Floyd, L.M.; Crutcher, J.W. )

    1989-09-01

    Maywood Chemical Works (MCW) of Maywood, New Jersey, generated process wastes and residues associated with the production and refining of thorium and thorium compounds from monazite ores from 1916 to 1956. MCW supplied rare earth metals and thorium compounds to the Atomic Energy Commission and various other government agencies from the late 1940s to the mid-1950s. Area residents used the sandlike waste from this thorium extraction process mixed with tea and cocoa leaves as mulch in their yards. Some of these contaminated wastes also eroded from the site into Lodi Brook. At the request of the US Department of Energy (DOE), a group from Oak Ridge National Laboratory conducts investigative radiological surveys of properties in the vicinity of MCW to determine whether a property is contaminated with radioactive residues, principally {sup 232}Th, derived from the MCW site. The survey typically includes direct measurement of gamma radiation levels and soil sampling for radionuclide analyses. The survey of this site, 110 E. Hunter Avenue, Maywood, New Jersey (MJ022), was conducted during 1987. Following the removal of a small chunk of material showing elevated gamma exposure rates, all radionuclide concentrations and measurements conformed to DOE remedial action criteria. The slightly elevated radionuclide concentrations found in other soil samples were the result of naturally enhances radioactivity characteristic of some environmental materials such as coal ash and were unrelated to operations at the MCW site. The survey data demonstrate that the property requires no further action on the part of DOE. 4 refs., 2 figs., 3 tabs.

  10. RADIOLOGICAL SURVEY STATION DEVELOPMENT FOR THE PIT DISASSEMBLY AND CONVERSION PROJECT

    SciTech Connect

    Dalmaso, M.; Gibbs, K.; Gregory, D.

    2011-05-22

    The Savannah River National Laboratory (SRNL) has developed prototype equipment to demonstrate remote surveying of Inner and Outer DOE Standard 3013 containers for fixed and transferable contamination in accordance with DOE Standard 3013 and 10 CFR 835 Appendix B. When fully developed the equipment will be part of a larger suite of equipment used to package material in accordance with DOE Standard 3013 at the Pit Disassembly and Conversion Project slated for installation at the Savannah River Site. The prototype system consists of a small six-axis industrial robot with an end effector consisting of a force sensor, vacuum gripper and a three fingered pneumatic gripper. The work cell also contains two alpha survey instruments, swipes, swipe dispenser, and other ancillary equipment. An external controller interfaces with the robot controller, survey instruments and other ancillary equipment to control the overall process. SRNL is developing automated equipment for the Pit Disassembly and Conversion (PDC) Project that is slated for the Savannah River Site (SRS). The equipment being developed is automated packaging equipment for packaging plutonium bearing materials in accordance with DOE-STD-3013-2004. The subject of this paper is the development of a prototype Radiological Survey Station (RSS). Other automated equipment being developed for the PDC includes the Bagless transfer System, Outer Can Welder, Gantry Robot System (GRS) and Leak Test Station. The purpose of the RSS is to perform a frisk and swipe of the DOE Standard 3013 Container (either inner can or outer can) to check for fixed and transferable contamination. This is required to verify that the contamination levels are within the limits specified in DOE-STD-3013-2004 and 10 CFR 835, Appendix D. The surface contamination limit for the 3013 Outer Can (OC) is 500 dpm/100 cm2 (total) and 20 dpm/100 cm2 (transferable). This paper will concentrate on the RSS developments for the 3013 OC but the system for the

  11. Results of the independent radiological verification survey of the lower Sheffield Brook floodplain, Wayne, New Jersey

    SciTech Connect

    Yalcintas, M.G.; Carrier, R.F.

    1989-05-01

    Prior to 1971, the W.R. Grace Company processed and stored radioactive materials at Wayne, New Jersey, under license to the Atomic Energy Commission. Decontamination of structures and storage of waste materials on the property at the Wayne Interim Storage Site (WISS) took place in 1974. Surveys by the State of New Jersey Department of Environmental Protection and by Oak Ridge Associated Universities for the NRC in 1982 indicated that properties adjacent to the WISS contained surface contamination by radioactive residuals in amounts exceeding those acceptable under US Department of Energy (DOE) remedial action guidelines. At the request of DOE, remedial actions have been conducted by Bechtel National, Inc., to remove radioactive residuals from properties adjacent to the site. It is the policy of DOE to assign an independent verification contractor to ensure the effectiveness of remedial actions performed within the Formerly Utilized Sites Remedial Action Program. This report describes the methods and results of those studies that were conducted by the Measurement Applications and Development Group of the Oak Ridge National Laboratory for the lower Sheffield Brook floodplain west of the WISS. Based upon post-remedial action and verification survey data, it was concluded that residual soil concentrations and gamma levels following excavation and backfilling of the area are within the limits prescribed by DOE radiological guidelines. 12 refs., 6 figs., 8 tabs.

  12. An aerial radiological survey of the West Valley Demonstration Project and surrounding area, West Valley, New York

    SciTech Connect

    Berry, H.A.

    1991-09-01

    An aerial radiological survey of the West Valley Demonstration Project and the surrounding area was conducted from mid-August through early September 1984 by EG G Energy Measurements, Inc. for the United States Department of Energy. The radiological survey was part of the United States Department of Energy Comprehensive Integrated Remote Sensing (CIRS) program, which provides state-of-the-art remote sensing to support the needs of the various DOE facilities. The survey consisted of airborne measurements of both natural and man-made gamma radiation emanating from the terrestrial surface. These measurements allowed an estimate of the distribution of isotopic concentrations in the area surrounding the project site. Results are reported as isopleths superimposed on aerial photographs of the area. Gamma ray energy spectra are also presented for the net man-made radionuclides. 8 refs., 16 figs., 9 tabs.

  13. Results of the radiological verification survey of the partial remediation at 90 Avenue C, Lodi, New Jersey (LJ079V)

    SciTech Connect

    Foley, R.D.; Johnson, C.A.

    1994-02-01

    The property at 90 Avenue C, Lodi, New Jersey is one of the vicinity properties of the former Maywood Chemical Works, Maywood, New Jersey designated for remedial action by the US Department of Energy (DOE). In July 1991, Bechtel National, Inc. performed a partial remedial action on this property. At the request of DOE, a team from Oak Ridge National Laboratory conducted an independent radiological verification survey in July, 1991 at this site. The purpose of the verification survey was to ensure the effectiveness of remedial actions performed within FUSRAP and to confirm the site`s compliance with DOE guidelines. The radiological survey included surface gamma scans indoors and outdoors, ground-level beta-gamma measurements, and systematic and biased soil and material sampling. Results of the verification survey demonstrated that all radiological measurements on the portions of the property that had been remediated were within DOE guidelines. However, there still remains a portion of the property to be remediated that is not covered by this verification survey.

  14. Results of the radiological survey at 146 W. Central Avenue, Maywood, New Jersey (MJ034)

    SciTech Connect

    Foley, R.D.; Carrier, R.F.

    1989-11-01

    Maywood Chemical Works (MCW) of Maywood, New Jersey, generated process wastes and residues associated with the production and reining of thorium and thorium compounds from monazite ores from 1916 to 1956. MCW supplied rare earth metals and thorium compounds to the Atomic Energy Commission and various other government agencies from the late 1940s to the mid-1950s. Area residents used the sandlike waste from this thorium extraction process mixed with tea and cocoa leaves as mulch in their yards. Some of these contaminated wastes were also eroded from the site into Lodi Brook. At the request of the US Department of Energy (DOE), a group from OaK Ridge National Laboratory conducts investigative radiological surveys of properties in the vicinity of MCW to determine whether a property is contaminated with radioactive residues, principally {sup 232}Th, derived from the MCW site. These surveys typically include direct measurement of gamma radiation levels and soil sampling for radionuclide analyses. The survey of this site, a private property at 146 West Central Avenue, Maywood, New Jersey (MJ034), was conducted during 1987 and 1988. While some measurements at this property were greater than background levels typically encountered in the New jersey area, no radiation levels nor radionuclide concentrations exceeded the guidelines established by the DOE for the Maywood, New Jersey, area remedial action plan. However, because of the proximity of the railroad property, which will be remediated, and the DOE's ALARA (As Low As Reasonably Achievable) policy, concurrent removal of the slightly elevated soil layers at 146 W. Central Avenue may be justified. 6 refs., 6 figs., 3 tabs.

  15. Radiological survey report for the former Middlesex Sampling Plant, Middlesex, New Jersey

    SciTech Connect

    Not Available

    1985-03-01

    The former Middlesex Sampling Plant (MSP), Middlesex, New Jersey is currently owned by the United States Department of Energy (DOE). It was used from 1943 to 1967 as a sampling and storage facility for uranium and thorium concentrates. During the course of operations, the buildings and grounds at the site became contaminated. In 1980, DOE initiated a multiphase remedial action project to clean up the site and several vicinity properties onto which contamination from the plant had migrated. Material from these properties was consolidated in a storage pile at the MSP during Phases I and II of the project. A decision by DOE regarding the final disposition of the site will be made once the results of an engineering evaluation of disposition alternatives and of other studies required by the National Environmental Policy Act are available. This report describes the current radiological status of the MSP site as determined by a characterization survey performed to obtain information necessary for the development of the Phase III engineering design. The grounds and the four buildings on-site were surveyed; uranium-238 and radium-226 concentrations exceeded DOE remedial action guidelines. Approximately 69,000 m/sup 3/ (91,000 yd/sup 3/) of material must be removed for the site to comply with guidelines. This total comprises the following approximate volumes: 13,000 m/sup 3/ (17,000 yd/sup 3/) of asphalt/gravel and soil from the grounds, 3650 m/sup 3/ (4775 yd/sup 3/) from demolition of the Boiler House and Process Building, and 52,000 m/sup 3/ (69,000 yd/sup 3/) of contaminated material that is or will be stored on-site. In addition, parts of the Garage and Administration Building must be decontaminated. 14 refs., 11 figs., 6 tabs.

  16. Results of the radiological survey at the ALCOA Research Laboratory, 600 Freeport Road, New Kensington, Pennsylvania (ANK001)

    SciTech Connect

    Foley, R.D.; Brown, K.S.

    1992-10-01

    At the request of the US Department of Energy (DOE), a team from Oak Ridge National Laboratory conducted a radiological survey at the ALCOA Research Laboratory, 600 Freeport Road, New Kensington, Pennsylvania. The survey was performed on November 12, 1991. The purpose of the survey was to determine whether the property was contaminated with radioactive residues, principally [sup 238]U, as a result of work done for the Manhattan Engineer District in 1944. The survey included measurement of direct alpha and beta-gamma levels in the northeast comer of the basement of Building 29, and the collection of a debris sample from a floor drain for radionuclide analysis. The survey area was used for experimental canning of uranium slugs prior to production activities at the former New Kensington Works nearby.

  17. A comparison of four aerial radiological surveys of Par Pond and the surrounding area, Savannah River Site, Aiken, South Carolina. Dates of surveys: 1989--1992

    SciTech Connect

    Feimster, E.L.

    1993-09-01

    A series of gamma radiation surveys was conducted over Par Pond at the Savannah River Site (SRS) in August 1993, October 1991, and August 1992 as part of an effort to monitor the radiological changes around Par Pond as its water level was lowered. The results of an April 1989 survey, which was about one-half the area of those surveys listed above, were used as baseline data for the comparison. Gamma energy spectrum analysis revealed that the only man-made gamma ray emitter detected during the four surveys in the Par Pond area was cesium-137. The comparisons revealed that: (1) significant change in the radiological environment occurred along the Par Pond shoreline as the water levels were lowered, (2) the activity in Lower Three Runs Creek varied slightly as the level/flow rate changed during the pumping process, (3) minor changes occurred in areas adjacent to the Par Pond, and (4) little or no change occurred between surveys in the spatial distribution or kind of sources detected. All changes were directly related to the moisture variations (Par Pond water lowering, rainfall, waterway flow rates) between the survey periods. The distribution, kind, and activity of sources detected beyond the pond bed were consistent between surveys. 60 figs., 14 tabs.

  18. Radiological Survey Tool Set for ArcGIS 8.3 and ArcPad 6.0

    SciTech Connect

    ROGER, COTTRELL

    2004-11-30

    The Radiological Control Operations (RCO) group at the Savannah River Site (SRS) is tasked with conducting routine surveys for the detection of radiological contaminants in the environment. The Radiological Survey Tool Set (RSTS) was developed by the Environmental & Geographic Information Systems (EGIS) group of SRS to assist RCO personnel in this survey process. The tool set consists of two major components. The first component is a custom extension for ArcGIS 8.3 that allows the user to interactively create a sampling plan prior to entering the field. Additionally, the extension allows the user to upload field-collected data to the GIS with post-processing functionality. The second component is a custom ArcPad 6.0 applet. This applet provides the user with navigational capabilities to a selected origin point with the help of Global Positioning Systems (GPS) technology, and the recording of the sample data results into a hand-held field computer via ArcPad 6.0 software.

  19. Survey and conceptual flow sheets for coal conversion plant handling-preparation and ash/slag removal operations

    SciTech Connect

    Zapp, F.C.; Thomas, O.W.; Silverman, M.D.; Dyslin, D.A.; Holmes, J.M.

    1980-03-01

    This study was undertaken at the request of the Fossil Fuel Processing Division of the Department of Energy. The report includes a compilation of conceptual flow sheets, including major equipment lists, and the results of an availability survey of potential suppliers of equipment associated with the coal and ash/slag operations that will be required by future large coal conversion plant complexes. Conversion plant flow sheet operations and related equipment requirements were based on two representative bituminous coals - Pittsburgh and Kentucky No. 9 - and on nine coal conversion processes. It appears that almost all coal handling and preparation and ash/slag removal equipment covered by this survey, with the exception of some coal comminution equipment, either is on hand or can readily be fabricated to meet coal conversion plant capacity requirements of up to 50,000 short tons per day. Equipment capable of handling even larger capacities can be developed. This approach appears to be unjustified, however, because in many cases a reasonable or optimum number of trains of equipment must be considered when designing a conversion plant complex. The actual number of trains of equipment selected will be influenced by the total requied capacity of the complex, the minimum on-line capacity that can be tolerated in case of equipment failure, reliability of specific equipment types, and the number of reactors and related feed injection stations needed for the specific conversion process.

  20. Material handling systems for use in glovebox lines: A survey of Department of Energy facility experience

    SciTech Connect

    Teese, G.D.; Randall, W.J.

    1992-12-31

    The Nuclear Weapons Complex Reconfiguration Study has recommended that a new manufacturing facility be constructed to replace the Rocky Flats Plant. In the new facility, use of an automated material handling system for movement of components would reduce both the cost and radiation exposure associated with production and maintenance operations. Contamination control would be improved between process steps through the use of airlocks and portals. Part damage associated with improper transport would be reduced, and accountability would be increased. In-process workpieces could be stored in a secure vault, awaiting a request for parts at a production station. However, all of these desirable features rely on the proper implementation of an automated material handling system. The Department of Energy Weapons Production Complex has experience with a variety of methods for transporting discrete parts in glovebox lines. The authors visited several sites to evaluate the existing technologies for their suitability for the application of plutonium manufacturing. Technologies reviewed were Linear motors, belt conveyors, roller conveyors, accumulating roller conveyors, pneumatic transport, and cart systems. The sites visited were The Idaho National Engineering laboratory, the Hanford Site, and the Rocky Flats Plant. Linear motors appear to be the most promising technology observed for the movement of discrete parts, and further investigation is recommended.

  1. Material handling systems for use in glovebox lines: A survey of Department of Energy facility experience

    SciTech Connect

    Teese, G.D.; Randall, W.J.

    1992-01-01

    The Nuclear Weapons Complex Reconfiguration Study has recommended that a new manufacturing facility be constructed to replace the Rocky Flats Plant. In the new facility, use of an automated material handling system for movement of components would reduce both the cost and radiation exposure associated with production and maintenance operations. Contamination control would be improved between process steps through the use of airlocks and portals. Part damage associated with improper transport would be reduced, and accountability would be increased. In-process workpieces could be stored in a secure vault, awaiting a request for parts at a production station. However, all of these desirable features rely on the proper implementation of an automated material handling system. The Department of Energy Weapons Production Complex has experience with a variety of methods for transporting discrete parts in glovebox lines. The authors visited several sites to evaluate the existing technologies for their suitability for the application of plutonium manufacturing. Technologies reviewed were Linear motors, belt conveyors, roller conveyors, accumulating roller conveyors, pneumatic transport, and cart systems. The sites visited were The Idaho National Engineering laboratory, the Hanford Site, and the Rocky Flats Plant. Linear motors appear to be the most promising technology observed for the movement of discrete parts, and further investigation is recommended.

  2. Nearest Neighbor Averaging and its Effect on the Critical Level and Minimum Detectable Concentration for Scanning Radiological Survey Instruments that Perform Facility Release Surveys.

    SciTech Connect

    Fournier, Sean Donovan; Beall, Patrick S; Miller, Mark L.

    2014-08-01

    Through the SNL New Mexico Small Business Assistance (NMSBA) program, several Sandia engineers worked with the Environmental Restoration Group (ERG) Inc. to verify and validate a novel algorithm used to determine the scanning Critical Level (L c ) and Minimum Detectable Concentration (MDC) (or Minimum Detectable Areal Activity) for the 102F scanning system. Through the use of Monte Carlo statistical simulations the algorithm mathematically demonstrates accuracy in determining the L c and MDC when a nearest-neighbor averaging (NNA) technique was used. To empirically validate this approach, SNL prepared several spiked sources and ran a test with the ERG 102F instrument on a bare concrete floor known to have no radiological contamination other than background naturally occurring radioactive material (NORM). The tests conclude that the NNA technique increases the sensitivity (decreases the L c and MDC) for high-density data maps that are obtained by scanning radiological survey instruments.

  3. Results of the radiological survey at the former Chapman Valve Manufacturing Company, Indian Orchard, Massachusetts (CIO001)

    SciTech Connect

    Foley, R.D.; Uziel, M.S.

    1992-07-01

    Radiological survey was conducted at Building 23 (Department No. 40) at the former Chapman Valve Manufacturing Company, Indian Orchard, Massachusetts. The survey was performed in August 1991. The purpose of the survey was to determine whether the property was contaminated with radioactive residues, principally {sup 238}U, as a result of work done for the Atomic Energy Commission (AEC) during the 1940s. The survey included a gamma scan, a beta-gamma scan, and measurement of alpha activity; measurement of direct and removable alpha and beta-gamma levels; and the collection of soil, dust, debris, and smear samples for radionuclide analyses. Survey emphasis was on interior floors, walls, and overhead beams. Radionuclide analysis of soil, dust, and debris, and analysis of smear samples indicate that residual {sup 238}U attributable to former AEC-supported operations is present at this site. Elevated levels of radioactivity were particularly evident on the floors and walls in the western part of the central area of the building (grid blocks Al through A6). Concentrations of {sup 238}U in dust samples collected from overhead beams exceeded DOE guidelines in grid blocks Al through A14 and remained elevated in grid blocks A15 through A19. Dust on a movable overhead crane in grid block A23 was well above the guideline, probably because the crane had at some time been located further west. Some contamination was evident in grid blocks B1 through B5, but clutter and debris in this area prevented a thorough survey.

  4. Literature Survey of Crude Oil Properties Relevant to Handling and Fire Safety in Transport.

    SciTech Connect

    Lord, David; Luketa, Anay; Wocken, Chad; Schlasner, Steve; Aulich, Ted; Allen, Ray; Rudeen, David Keith

    2015-03-01

    Several fiery rail accidents in 2013-2015 in the U.S. and Canada carrying crude oil produced from the Bakken region of North Dakota have raised questions at many levels on the safety of transporting this, and other types of crude oil, by rail. Sandia National Laboratories was commissioned by the U.S. Department of Energy to investigate the material properties of crude oils, and in particular the so-called "tight oils" like Bakken that comprise the majority of crude oil rail shipments in the U.S. at the current time. The current report is a literature survey of public sources of information on crude oil properties that have some bearing on the likelihood or severity of combustion events that may occur around spills associated with rail transport. The report also contains background information including a review of the notional "tight oil" field operating environment, as well a basic description of crude oils and potential combustion events in rail transport. This page intentionally blank

  5. Informed Consent for Interventional Radiology Procedures: A Survey Detailing Current European Practice

    SciTech Connect

    O'Dwyer, H.M.; Lyon, S.M.; Fotheringham, T.; Lee, M.J.

    2003-09-15

    Purpose: Official recommendations for obtaining informed consent for interventional radiology procedures are that the patient gives their consent to the operator more than 24 hr prior to the procedure. This has significant implications for interventional radiology practice. The purpose of this study was to identify the proportion of European interventional radiologists who conform to these guidelines. Methods: A questionnaire was designed consisting of 12 questions on current working practice and opinions regarding informed consent. These questions related to where, when and by whom consent was obtained from the patient. Questions also related to the use of formal consent forms and written patient information leaflets. Respondents were asked whether they felt patients received adequate explanation regarding indications for intervention,the procedure, alternative treatment options and complications. The questionnaire was distributed to 786 European interventional radiologists who were members of interventional societies. The anonymous replies were then entered into a database and analyzed. Results: Two hundred and fifty-four (32.3%) questionnaires were returned. Institutions were classified as academic (56.7%),non-academic (40.5%) or private (2.8%). Depending on the procedure,in a significant proportion of patients consent was obtained in the outpatient department (22%), on the ward (65%) and in the radiology day case ward (25%), but in over half (56%) of patients consent or re-consent was obtained in the interventional suite. Fifty percent of respondents indicated that they obtain consent more than 24 hr before some procedures, in 42.9% consent is obtained on the morning of the procedure and 48.8% indicated that in some patients consent is obtained immediately before the procedure. We found that junior medical staff obtained consent in 58% of cases. Eighty-two percent of respondents do not use specific consent forms and 61% have patient information leaflets. The

  6. Results of the radiological survey at the National Community Bank, 113 Essex Street, Maywood, New Jersey (MJ021)

    SciTech Connect

    Foley, R.D.; Cottrell, W.D.; Floyd, L.M.

    1989-09-01

    Maywood Chemical Works (MCW) of Maywood, New Jersey, generated process wastes and residues associated with the production and refining of thorium and thorium compounds from monazite ores from 1916 to 1956. MCW supplied rare earth metals and thorium compounds to the Atomic Energy Commission and various other government agencies from the late 1940s to the mid-1950s. Area residents used the sandlike waste from this thorium extraction process mixed with tea and cocoa leaves as mulch in their yards. Some of these contaminated wastes were also eroded from the site into Lodi Brook. At the request of the US Department of Energy (DOE), a group from Oak Ridge National Laboratory conducts investigative radiological surveys of properties in the vicinity of MCW to determine whether a property is contaminated with radioactive residues, principally {sup 232}Th, derived from the MCW site. The survey typically includes direct measurement of gamma radiation levels and soil sampling for radionuclide analyses. The survey of this site, the National Community Bank, 113 Essex Street, Maywood, New Jersey (MJ021), was conducted during 1986. Results of the survey demonstrated radionuclide concentrations in excess of the DOE Formerly Utilized Sites Remedial Action Program criteria. The radionuclide distributions are typical of the type of material originating from the MCW site. 5 refs., 2 figs., 3 tabs.

  7. Results of the radiological survey at Interstate 80, North Right of Way at Lodi Brook, Lodi, New Jersey (LJ077)

    SciTech Connect

    Foley, R.D.; Floyd, L.M.

    1989-06-01

    Maywood Chemical Works (MCW) of Maywood, New Jersey, generated process wastes and residues associated with the production and refining of thorium and thorium compounds from monazite ores from 1916 to 1956. MCW supplied rare earth metals and thorium compounds to the Atomic Energy Commission and various other government agencies from the late 1940s to the mid-1950s. Area residents used the sandlike waste from this thorium extraction process mixed with tea and cocoa leaves as mulch in their yards. Some of these contaminated wastes were also eroded from the site into Lodi Brook. At the request of the US Department of Energy (DOE), a group from Oak Ridge National Laboratory conducts investigative radiological surveys of properties in the vicinity of MCW to determine whether a property is contaminated with radioactive residues, principally /sup 232/Th, derived from the MCW site. The survey typically includes direct measurement of gamma radiation levels and oil sampling for radionuclide analyses. The survey of this site, on the North Right of Way of Interstate 80 at Lodi Brook, Lodi, New Jersey (LJ077), was conducted during 1988. Results of the survey demonstrated radionuclide concentrations in excess of the DOE Formerly Utilized Sites Remedial Action Program criteria. The radionuclide distributions are typical of the type of material originating from the MCW site. 5 refs., 3 figs., 3 tabs.

  8. Final report of the radiological release survey of Building 30B at the Grand Junction Office Facility

    SciTech Connect

    Krauland, P.A.; Corle, S.G.

    1997-09-01

    The U.S. Department of Energy (DOE) Grand Junction Office (GJO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore concentrates and mill tailings during vanadium refining activities of the Manhattan Engineer District, and during sampling, assaying, pilot milling, storage, and brokerage activities conducted for the U.S. Atomic Energy Commission`s domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJO Remedial Action Project (GJORAP) to clean up and restore the facility lands, improvements, and underlying aquifer. WASTREN-Grand Junction is the site contractor for the facility and the remedial action contractor for GJORAP. Building 30B and the underlying soil were found not to be radiologically contaminated; therefore, the building can be released for unrestricted use. Placards have been placed at the building entrances indicating the completion of the radiological release survey and prohibiting the introduction of any radioactive materials within the building without written approvals from the GJO Facilities Operations Manager. This document was prepared in response to a DOE-GJO request for an individual final release report for each GJO building.

  9. An Aerial Radiological survey of the Alvin W. Vogtle Nuclear Plant and surrounding area, Waynesboro, Georgia: Date of survey: August--September 1988

    SciTech Connect

    Not Available

    1990-09-01

    An Aerial Radiological Survey was conducted during the period of August 24 to September 14, 1988 over an area of approximately 310 square kilometers (120 square miles) surrounding the Alvin W. Vogtle Nuclear Plant. The Vogtle Nuclear Plant is located near Augusta, Georgia, along the Savannah River and adjacent to the Savannah River Site (SRS). Several anomalous areas were identified in the portion of the survey extending into the SRS perimeter. The dominant isotopes found in these areas were cesium-137 and cobalt-60. All of these man-made anomalies identified by the aerial measurements were attributed to SRS processing. For the remainder of the survey area, the inferred radiation exposure rates generally varied from 6 to 10 microroentgens per hour ({mu}R/h), which was found to be due to naturally occurring uranium, thorium, and radioactive potassium gamma emitters. The reported exposure rate values included an estimated cosmic ray contribution of 3.6 {mu}R/h. Soils samples and pressurized ion chamber measurements were obtained at three locations within the survey boundaries to support the aerial data. The exposure rate values obtained from these groundbased measurements were in agreement with the corresponding inferred aerial values. 6 refs., 13 figs., 4 tabs.

  10. Radiological survey of the Mare Island Naval Shipyard, Alameda Naval Air Station, and Hunters Point Shipyard

    SciTech Connect

    Semler, M.O.; Blanchard, R.L. . Eastern Environmental Radiation Facility)

    1989-06-01

    Since 1963, the Eastern Environmental Radiation Facility (EERF), US Environmental Protection Agency (USEPA), in cooperation with the US Naval Sea Systems Command (NAVSEA) has surveyed facilities serving nuclear-powered warships on the Atlantic and Pacific coasts and the Gulf of Mexico. These surveys assess whether the operation of nuclear-powered warships, during construction, maintenance, overhaul, or refueling, have created elevated levels of radioactivity. The surveys emphasize sampling those areas and pathways that could expose the public. In 1984, NAVSEA requested that EPA survey all active facilities serving nuclear-powered warships over the next three years. This report contains the results of surveys conducted at Naval facilities located at Mare Island, Alameda, and Hunters Point in the San Francisco region. The locations of these facilities are shown. 3 refs., 4 figs., 3 tabs.

  11. Results of the radiological survey at Sumitomo Machinery Corporation of America, 7 Malcolm Avenue, Teterboro, New Jersey (TJ001)

    SciTech Connect

    Foley, R.D.; Floyd, L.M.

    1989-02-01

    A radiological survey of the commercial property at 7 Malcolm Avenue, Teterboro, New Jersey, was conducted on November 12--20, 1986. Samples of the soil surface were taken for further analyses during this time. Conversations with property owners revealed that originally this site was part of a single property of approximately 107 acres owned entirely by the Bendix Aerospace Corporation. During this period of total property ownership, Bendix was licensed by the Nuclear Regulatory Commission to use thorium in on-site Navy/Bendix process. Around 1976, the property was subdivided into three parcels, and one parcel of about 7 acres was purchased by Sumitomo Corporation. 5 refs., 3 figs., 5 tabs.

  12. Results of the radiological survey at Greg's Auto Emporium, 60 State Highway 46, Lodi, New Jersey (LJ089)

    SciTech Connect

    Foley, R.D.; Floyd, L.M.

    1989-11-01

    Maywood Chemical Works (MCW) of Maywood, New Jersey, generated process wastes and residues associated with the production and refining of thorium and thorium compounds from monazite ores from 1916 to 1956. MCW supplied rare earth metals and thorium compounds to the Atomic Energy Commission and various other government agencies from the late 1940s to the mid-1950s. Area residents used the sandlike waste from this thorium extraction process mixed with tea and cocoa leaves as mulch in their yards. Some of these contaminated wastes were also eroded from the site into Lodi Brook. At the request of the US Department of Energy (DOE), a group from Oak Ridge National Laboratory conducts investigative radiological surveys of properties in the vicinity of MCW to determine whether a property is contaminated with radioactive residues, principally {sup 232}Th, derived from the MCW site. The survey typically includes direct measurement of gamma radiation levels and soil sampling for radionuclide analyses. The survey of this site, Greg's Auto Emporium, 60 State Highway 46, Lodi, New Jersey (LJ089), was conducted during 1988. 5 refs., 3 figs., 3 tabs.

  13. Radiological survey of Latty Avenue in the vicinity of the former Cotter site, Hazelwood/Berkeley, Missouri (LM001)

    SciTech Connect

    Cottrell, W.D.; Carrier, R.F.

    1987-05-01

    A radiological survey was conducted over a proposed construction corridor in the vicinity of the former Cotter site at 9200 Latty Avenue. The survey included gamma exposure rates at the ground surface and at 1 m above the surface throughout the site, sampling of surface soil, sampling of subsurface soil from auger holes, gamma logging of auger holes, and sampling of subsurface water. The results of the survey demonstrated some degree of radioactive contamination in all areas of the construction corridor, extending north and south in some regions onto adjacent private properties. Redistribution of the contamination by flooding, surface runoff, and road and utility line activities was evident. The pattern of contamination ranged from widespread to isolated spots and was found to occur from near the surface to depths of approx.1.8 m. The most highly contaminated region was noted on both sides of Latty Avenue adjacent to the former Cotter site. Concentrations of /sup 230/Th in soil from that region were as high as 16,000 pCi/g.

  14. Gamma radiological surveys of the Oak Ridge Reservation, Paducah Gaseous Diffusion Plant, and Portsmouth Gaseous Diffusion Plant, 1990-1993, and overview of data processing and analysis by the Environmental Restoration Remote Sensing Program, Fiscal Year 1995

    SciTech Connect

    Smyre, J.L.; Moll, B.W.; King, A.L.

    1996-06-01

    Three gamma radiological surveys have been conducted under auspices of the ER Remote Sensing Program: (1) Oak Ridge Reservation (ORR) (1992), (2) Clinch River (1992), and (3) Portsmouth Gaseous Diffusion Plant (PORTS) (1993). In addition, the Remote Sensing Program has acquired the results of earlier surveys at Paducah Gaseous Diffusion Plant (PGDP) (1990) and PORTS (1990). These radiological surveys provide data for characterization and long-term monitoring of U.S. Department of Energy (DOE) contamination areas since many of the radioactive materials processed or handled on the ORR, PGDP, and PORTS are direct gamma radiation emitters or have gamma emitting daughter radionuclides. High resolution airborne gamma radiation surveys require a helicopter outfitted with one or two detector pods, a computer-based data acquisition system, and an accurate navigational positioning system for relating collected data to ground location. Sensors measure the ground-level gamma energy spectrum in the 38 to 3,026 KeV range. Analysis can provide gamma emission strength in counts per second for either gross or total man-made gamma emissions. Gross count gamma radiation includes natural background radiation from terrestrial sources (radionuclides present in small amounts in the earth`s soil and bedrock), from radon gas, and from cosmic rays from outer space as well as radiation from man-made radionuclides. Man-made count gamma data include only the portion of the gross count that can be directly attributed to gamma rays from man-made radionuclides. Interpretation of the gamma energy spectra can make possible the determination of which specific radioisotopes contribute to the observed man-made gamma radiation, either as direct or as indirect (i.e., daughter) gamma energy from specific radionuclides (e.g., cesium-137, cobalt-60, uranium-238).

  15. Results of the Independent Radiological Verification Survey of the B Ditch at DuPont Chambers Works, Deepwater, New Jersey (DNJ001V)

    SciTech Connect

    Johnson, C.A.; Murray, M.E.

    1998-12-01

    This report documents the results of a radiological verification survey conducted at the Chambers Works of the E. I. DuPont Company in Deepwater, New Jersey by a team from the Oak Ridge National Laboratory (ORNL) in response to the Department of Energy's (DOE) Environmental Restoration Program requirements. The survey was to confirm that radioactive residuals previously identified in a portion of a central drainage ditch (the B Ditch) had been remediated to bring that portion of the property into compliance with current U.S. Department of Energy guidelines. The survey was conducted in the spring of 1997 in conjunction with DuPont's remediation and stabilization of the B Ditch to remove elevated levels of 2,4-dinitrotoluene and organic lead compounds. Portions of this ditch were located in an area where former Manhattan Engineering District of the Atomic Energy Commission work was conducted, and an independent verification survey was taken to ensure that this area had been remediated to radionuclide concentrations and activity levels below the applicable guideline limits. The survey included directly measured radiation levels and soil analysis to determine concentrations of uranium, and to compare these data to applicable guidelines. The results of the independent verification survey on this property demonstrate that the remediated and surveyed section of the B Ditch at the DuPont Chambers Works, Deepwater, New Jersey, successfully meets remedial action objectives, and radiological measurements in that portion of the property fall below the limits prescribed by radiological guidelines established for this site.

  16. Formerly utilized MED/AEC sites remedial action program post-remedial-action radiological survey of Kent Chemical Laboratory, the University of Chicago, Chicago, IL

    SciTech Connect

    Wynveen, R.A.; Smith, W.H.; Sholeen, C.M.; Justus, A.L.; Flynn, K.F.

    1983-05-01

    A comprehensive radiological assessment of Kent Laboratory was conducted during September 1977, by the ANL Radiological Survey Group to determine if any radioactive contamination remained. The results of the assessment indicated the need for remedial action. Since 1977, the University has decontaminated this laboratory building, and in May 1983, the Department of Energy requested the ANL Radiological Survey Group to conduct a post-remedial-action survey. All the contaminated areas identified during the 1977 assessment were rechecked. Contamination remained in six of the rooms. Further decontamination of these areas was conducted by university personnel, and as a result, these areas are now free of contamination. However, a contaminated clay pipe in the attic remained. The clay pipe has since been removed and disposed of as solid radioactive waste. During the post-remedial-action survey, six soil samples were collected from excavation trenches dug in Rooms 1 and 2 as part of the University's remedial action efforts. Also, four sludge samples were taken from below the manhole covers in the basement of Kent Chemical Laboratory to assess the radiological condition of the sewer system. A radiological assessment of the sewer system had not been accomplished during the 1977 survey as per program direction. Radiochemical (fluorometric) and gamma-spectral analyses indicated that eight out of ten soil and sludge samples contained levels of radioactivity above expected background concentrations. The soil has since been further excavated. The building is now free of radioactive contamination in excess of background levels; however, the sewers do contain radioactive materials above background levels since contamination was found at appropriate access points. 6 references, 16 figures, 7 tables.

  17. Results of the radiological survey at Route 17(S) and Becker Avenue, Rochelle Park, New Jersey (RJ001)

    SciTech Connect

    Foley, R.D.; Carrier, R.F.

    1989-11-01

    Maywood Chemical Works (MCW) of Maywood, New Jersey, generated process wastes and residues associated with the production and refining of thorium and thorium compounds from monazite ores from 1916 to 1956. MCW supplied rare earth metals and thorium compounds to the Atomic Energy Commission and various other government agencies from the late 1940s to the mid-1950s. Area residents used the sandlike waste from this thorium extraction process mixed with tea and cocoa leaves as mulch in their yards. Some of these contaminated wastes were also eroded from the site into Lodi Brook. At the request of the US Department of Energy (DOE), a group from Oak Ridge National Laboratory conducts investigative radiological surveys of properties in the vicinity of MCW to determine whether a property is contaminated with radioactive residues, principally {sup 232}Th, derived from the MCW site. The surveys typically include direct measurement of gamma radiation levels and soil sampling for radionuclide analyses. The survey of this commercial property at Route 17(S) and Becker Avenue, Rochelle Park, New Jersey (RJ001), was conducted in 1986. Measurements taken at the commercial property located at Route 17(S) and Becker Avenue indicate slightly elevated gamma exposure rates in three areas of the parking lot. Although results of analysis of the asphalt disclosed radionuclide concentrations in excess of the applicable criterion, their presence is due to naturally radioactive substances in asphalt patching materials and is not associated with material from the MCW site. Therefore, it is recommended that this site be eliminated from consideration for inclusion in the DOE remedial action program. 5 refs., 2 figs., 3 tabs.

  18. DRAFT - Design of Radiological Survey and Sampling to Support Title Transfer or Lease of Property on the Department of Energy Oak Ridge Reservation

    SciTech Connect

    Cusick L.T.

    2002-09-25

    The U.S. Department of Energy (DOE) owns, operates, and manages the buildings and land areas on the Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee. As land and buildings are declared excess or underutilized, it is the intent of DOE to either transfer the title of or lease suitable property to the Community Reuse Organization of East Tennessee (CROET) or other entities for public use. It is DOE's responsibility, in coordination with the U.S. Environmental Protection Agency (EPA), Region 4, and the Tennessee Department of Environment and Conservation (TDEC), to ensure that the land, facilities, and personal property that are to have the title transferred or are to be leased are suitable for public use. Release of personal property must also meet site requirements and be approved by the DOE contractor responsible for site radiological control. The terms title transfer and lease in this document have unique meanings. Title transfer will result in release of ownership without any restriction or further control by DOE. Under lease conditions, the government retains ownership of the property along with the responsibility to oversee property utilization. This includes involvement in the lessee's health, safety, and radiological control plans and conduct of site inspections. It may also entail lease restrictions, such as limiting access to certain areas or prohibiting digging, drilling, or disturbing material under surface coatings. Survey and sampling requirements are generally more rigorous for title transfer than for lease. Because of the accelerated clean up process, there is an increasing emphasis on title transfers of facilities and land. The purpose of this document is to describe the radiological survey and sampling protocols that are being used for assessing the radiological conditions and characteristics of building and land areas on the Oak Ridge Reservation that contain space potentially available for title transfer or lease. After necessary surveys and

  19. Formerly utilized MED/AEC sites remedial action program. Radiological survey of the Harshaw Chemical Company, Cleveland, Ohio

    SciTech Connect

    Wynveen, R.A.; Smith, W.H.; Sholeen, C.M.; Justus, A.L.; Flynn, K.F.

    1984-04-01

    During the MED/AEC era, the Harshaw Chemical Company processed large quantities of normal uranium to produce both oxide and fluoride compounds. This work was done under contract to MED and its successor, AEC. Records indicated that at the time the AEC contract was terminated, the facility was decontaminated by Harshaw and released from AEC control in 1960. However, a search of AEC records indicated that documentation was insufficient to determine whether the decontamination work was adequate by current guidelines. Hence, a radiological assessment of the site ws initiated in 1976. The entire grounds and all buildings were surveyed using surface survey instruments to detect surface contamination and radiation detectors to determine general radiation levels. Extensive surface contamination was found throughout the site. While the major contamination was found in Plant C, significant levels of contamination also were found in 16 other buildings and at 32 exterior locations. The contaminating material seemed to be normal uranium exclusively. Air samples were taken at numerous indoor locations throughout the site, but no elevated levels of radon were detected. This was as expected since normal uranium has been separated from radium and hence radon levels are very low. Several soil samples were taken from around the site. Analyses of these samples indicated extensive soil contamination, as well as suspected contamination of the river bed in the vicinity of the plant outfall. Scheduled subsurface investigation of the site, as well as of the river bed and sewer system, have not been conducted. Levels of contamination at this site are significantly above guidelines for release of the site for unrestricted use. 57 figures, 7 tables.

  20. Results of the radiological survey at the ALCOA Research Laboratory, 600 Freeport Road, New Kensington, Pennsylvania (ANK001). Environmental Restoration and Waste Management Non-Defense Programs

    SciTech Connect

    Foley, R.D.; Brown, K.S.

    1992-10-01

    At the request of the US Department of Energy (DOE), a team from Oak Ridge National Laboratory conducted a radiological survey at the ALCOA Research Laboratory, 600 Freeport Road, New Kensington, Pennsylvania. The survey was performed on November 12, 1991. The purpose of the survey was to determine whether the property was contaminated with radioactive residues, principally {sup 238}U, as a result of work done for the Manhattan Engineer District in 1944. The survey included measurement of direct alpha and beta-gamma levels in the northeast comer of the basement of Building 29, and the collection of a debris sample from a floor drain for radionuclide analysis. The survey area was used for experimental canning of uranium slugs prior to production activities at the former New Kensington Works nearby.

  1. Formerly utilized MED/AEC sites Remedial Action Program. Radiological survey of the Albany Metallurgical Research Center, United States Bureau of Mines, Albany, Oregon

    SciTech Connect

    Wynveen, R.A.; Smith, W.H.; Sholeen, C.M.; Justus, A.L.; Flynn, K.F.

    1983-06-01

    During the periods 1954 to 1956 and 1960 to 1971, the Albany Metallurgical Research Center (AMRC) was engaged in metallurgical operations that included melting, machining, welding, and alloying of thorium. In addition, research on alloys of uranium and thorium started in 1955 and continued until suspended in 1978. Records indicated that at the time the original AEC contract was terminated, buildings and surrounding areas were decontaminated to the general guidelines provided by the AEC. Those guidelines were not as specific as current guidelines, and detailed records of the final decontamination were not documented. Because of that, radiological assessemnt of this site was initiated in June 1978. During June and July 1978, a radiological survey of the grounds and the buildings was completed. Certain buildings were designated as areas where no survey was necessary; however, it was decided by the ANL survey team to at least perform floor surveys in those buildings. Significant levels of contamination, both loose and fixed, were found in 10 of the 33 buildings surveyed. In addition, about 60 contaminated areas, including 17 with loose contamination, were found outside the buildings. Surveys of the sanitary sewers, the Albany sewage treatment plant and the Ohling Farm showed no significant contamination. Significant levels of contamination were found in the septic system behind Buildings 12 and 17. Air samples taken throughout the site revealed no radon concentrations in excess of the limits proposed by the US Surgeon General (10 CFR 712).

  2. Radiological Assessment Survey of the Vance road Facility Source Vault Building Materials, Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee

    SciTech Connect

    J. R. Morton

    2000-09-01

    From the 1950s, the Vance Road laboratory was the site of extensive nuclear medical research and involved the used of numerous radionuclides. These nuclides were stored in a source vault stored on the first floor of the facility. Nuclear medical research is no longer conducted in this facility, and the source vault was remediated in preparation for converting the area to office space and general use. The Environmental Survey and Site Assessment Program (ESSAP) of ORISE performed a radiological assessment survey of the source vault and its associated miscellaneous building materials and laboratory equipment in preparation for the conversion to general use space.

  3. An aerial radiological survey of the Tonopah Test Range including Clean Slate 1,2,3, Roller Coaster, decontamination area, Cactus Springs Ranch target areas. Central Nevada

    SciTech Connect

    Proctor, A.E.; Hendricks, T.J.

    1995-08-01

    An aerial radiological survey was conducted of major sections of the Tonopah Test Range (TTR) in central Nevada from August through October 1993. The survey consisted of aerial measurements of both natural and man-made gamma radiation emanating from the terrestrial surface. The initial purpose of the survey was to locate depleted uranium (detecting {sup 238}U) from projectiles which had impacted on the TTR. The examination of areas near Cactus Springs Ranch (located near the western boundary of the TTR) and an animal burial area near the Double Track site were secondary objectives. When more widespread than expected {sup 241}Am contamination was found around the Clean Slates sites, the survey was expanded to cover the area surrounding the Clean Slates and also the Double Track site. Results are reported as radiation isopleths superimposed on aerial photographs of the area.

  4. A Radiological Survey Approach to Use Prior to Decommissioning: Results from a Technology Scanning and Assessment Project Focused on the Chornobyl NPP

    SciTech Connect

    Milchikov, A.; Hund, G.; Davidko, M.

    1999-10-20

    The primary objectives of this project are to learn how to plan and execute the Technology Scanning and Assessment (TSA) approach by conducting a project and to be able to provide the approach as a capability to the Chernobyl Nuclear Power Plant (ChNPP) and potentially elsewhere. A secondary objective is to learn specifics about decommissioning and in particular about radiological surveying to be performed prior to decommissioning to help ChNPP decision makers. TSA is a multi-faceted capability that monitors and analyzes scientific, technical, regulatory, and business factors and trends for decision makers and company leaders. It is a management tool where information is systematically gathered, analyzed, and used in business planning and decision making. It helps managers by organizing the flow of critical information and provides managers with information they can act upon. The focus of this TSA project is on radiological surveying with the target being ChNPP's Unit 1. This reactor was stopped on November 30, 1996. At this time, Ukraine failed to have a regulatory basis to provide guidelines for nuclear site decommissioning. This situation has not changed as of today. A number of documents have been prepared to become a basis for a combined study of the ChNPP Unit 1 from the engineering and radiological perspectives. The results of such a study are expected to be used when a detailed decommissioning plan is created.

  5. ORNL-5680 Radiological Surveys

    Office of Legacy Management (LM)

    ... This conclusion is based on measurements of 226Ra in ... water sediment samples represents only that percentage of the activity (normally between 50 and 100%) available by hot ...

  6. Formerly utilized MED/AEC sites remedial action program. Radiological survey of the Middlesex Municipal Landfill, Middlesex, New Jersey. Final report

    SciTech Connect

    Leggett, R W; Cottrell, W D; Goldsmith, W A; Christian, D J; Haywood, F F; Wagner, E B; Crawford, D J; Doane, R W; Shinpaugh, W H

    1980-04-01

    A radiological survey was conducted at the Middlesex Municipal Landfill in Middlesex, New Jersey. In 1948, dirt contaminated with pitchblende ores was brought to this site from a former ore sampling plant in Middlesex. This survey was conducted in order to characterize the present radiological condition of the site and to determine the extent to which contamination is being transported from the site by natural means such as by drainage. The survey included measurement of (1) radionuclide concentrations in surface and subsurface soil on the site; (2) radionuclide concentrations in surface and subsurface water on the site and in Bound Brook; (3) beta-gamma dose rates and external gamma radiation levels on and near the site; and (4) the rate of /sup 222/Rn emanation from the soil on the site. It was found that most of the contamination on the site is in the top 14 ft of soil; however, there is little contamination of surface soil on the site. Average radon emanation rates, average external gamma radiation levels, and average beta-gamma dose rates on the site do not appear to be significantly higher than background levels. Furthermore, radionuclide concentrations in water taken from Bound Brook near the site were far below guide values stated in federal guidelines.

  7. Formerly utilized MED/AEC sites remedial action program. Radiological survey of the former Watertown arsenal property, Site 34 and Site 41, Watertown, Massachusetts

    SciTech Connect

    Wynveen, R.A.; Smith, W.H.; Sholeen, C.M.; Justus, A.L.; Flynn, K.F.

    1983-10-01

    During the MED/AEC era, work involving radioactive materials was conducted at various sites within the arsenal complex. Building 34 housed a uranium machine shop, and a portion of Building 41 contained a foundry that was used for uranium work. Information provided by site personnel indicated that only depleted uranium was used in these buildings. Results of radiological analyses of contaminated material found at these sites indicated depleted uranium with uranium-236. Both buildings have been razed. The remnants still in place consist of the concrete floor slabs, access drives, and underground utility service trenches. This area is currently under the control of the Watertown Redevelopment Authority of Watertown, Massachusetts. During the period from June 25 through July 1, 1981, the Argonne National Laboratory (ANL), Occupational Health and Safety Division (OHS) Radiological Survey Group (RSG), conducted a radiological survey of Building Sites 34 and 41 at the direction of the US Department of Energy. Significant levels of contamination were found at 33 locations on the pad of Site 34 and in 5 out of 15 soild corings from the perimeter of the pad. No contamination was found on the pad of Site 41; however, two-thirds of this pad was covered with soil up to 4 ft thick. One of the 14 soil corings taken adjacent to the pad of Site 41 had elevated levels of uranium. Levels of contamination in excess of criteria, as identified in ANSI 13.12 and NRC Guidelines, were found at this site. The analyses of the samples from the sewer access points also revealed uranium and radium-226 anomalies. Therefore, according to NRC guidelines dated July 1982, it must be concluded that they are contaminated.

  8. Results of the Independent Radiological Verification Survey of Remediation at Building 31, Former Linde Uranium Refinery, Tonawanda, New York (LI001V)

    SciTech Connect

    McKenzie, S.P.; Uziel, M.S.

    1998-11-01

    As part of the Formerly Utilized Sites Remedial Action Progmq a team from Oak Ridge National Laboratory (ORNL) conducted a radiological veriihtion survey of Building 31 at the former Linde Uranium Refinery, Tonawau& New York. The purpose of the survey was to ver@ that remedial action completed by the project management contractor had reduced contamination levels to within authorized limits. Prior to remediatioq tied radioactive material was prevalent throughout the building and in some of the ductwork Decontaminadon consisted of removing surfhce contamination from floors, baseboards, and overhead areas; removing some air ducts; and vacuuming dust. Building 31 at the former Linde site in TonawandA New Yorlq was thoroughly investigated inside and outside for radionuclide residues. The verification team discovered previously undetected contaminadon beneath the concrete pad on the first floor and underneath floor tiles on the second floor. All suspect floor tiles were removed and any contamination beneath them cleaned to below guideline levels. The verification team also discovered elevated radiation levels associated with overhead air lines that led to the eventual removal of the entire air lige and a complete investigation of the history of all process piping in the building. Final verification surveys showed that residual surface beta-gamma activity levels were slightly elevated in some places but below U.S. Department of Energy applicable guidelines for protection against radiation (Table 1). Similarly, removable radioactive contamination was also below applicable guidelines. Exposure rates within the building were at typical background levels, and no consistently elevated indoor radon concentrations were measured. However, radionuclide analysis of subsurface soil from beneath the concrete floor on the ground level showed concentrations of `*U and'% that exceeded applicable guidelines. At the time of this survey, there was no measured exposure pathway for this

  9. Radiological Control

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    2009-06-16

    The Department of Energy (DOE) has developed this Standard to assist line managers in meeting their responsibilities for implementing occupational radiological control programs.

  10. Radiological Control

    Energy.gov [DOE] (indexed site)

    ... of Radiological Conditions ......of this Standard to the extent appropriate to facility ... the underlying reasons or causes for the success or failure ...

  11. Formerly utilized MED/AEC sites remedial action program: radiological survey of the former Virginia-Carolina Chemical Corporation Uranium Recovery Pilot Plant, Nichols, Florida. Final report

    SciTech Connect

    Haywood, F F; Doane, R W; Goldsmith, W A; Shinpaugh, W H; Crawford, D J; Fox, W F; Leggett, R W; Stone, D R

    1980-01-01

    The results of a radiological survey conducted at the site of a former uranium recovery pilot plant operated by the Virginia-Carolina Chemical Corporation is presented. All that remains of this operation is a concrete pad situated within the boundary of a phosphate products plant now operated by Conserv, Inc., at the Nichols, Florida site. The survey included measurements designed to characterize the residual radioactivity in the vicinity of this pilot plant and to compare the quantities with federal guidelines for the release of decontaminated property for unrestricted use. The results of this survey indicate that only small quantities of radioactivity exist above normal background levels for that area. Some soil contamination was found in the vicinity of a concrete pad on which the pilot plant stood. Much of this contamination was due to /sup 226/Ra and /sup 238/U. Some beta-gamma dose rates in excess of applicable guidelines were observed in this same area. External gamma-ray exposure rates at 1 m above the ground range from 20 to 100 ..mu..R/hr. None of the direct measurements of alpha contamination were above guideline levels.

  12. Radiological Control

    National Nuclear Security Administration (NNSA)

    RADIOLOGICAL CONTROL U.S. Department of Energy SAFT Washington, D.C. 20585 DISTRIBUTION ... DOE-STD-1098-2008 ii This document is available on the Department of Energy Technical ...

  13. Medical Examiner/Coroner on the Handling of a Body/Human Remains...

    Office of Environmental Management (EM)

    Medical ExaminerCoroner on the Handling of a BodyHuman Remains that are Potentially Radiologically Contaminated Medical ExaminerCoroner on the Handling of a BodyHuman Remains ...

  14. Formerly utilized MED/AEC sites Remedial Action Program. Radiological survey of the former Watertown Arsenal property GSA site Watertown, Massachusetts

    SciTech Connect

    Wynveen, R.A.; Smith, W.H.; Sholeen, C.M.; Justus, A.L.; Flynn, K.F.

    1983-10-01

    The complete radiological survey of all the buildings located on the GSA site revealed no contamination. However, significant contamination was found on the site grounds. A total of approximately 6 m/sup 2/ of surface area exhibited elevated radiation levels. The area of contamination is centered around Section I (the burn area) and spreads out from this point. The contamination includes the subsurface, descending to the water table at the 6-ft level in some places. The contamination is primarily reprocessed depleted uranium. The ambient radiation level in the vicinity of the contamination as measured with a pressurized ionization chamber is significantly above background levels (up to 18 ..mu..R/h). As expected, no significant levels of radon contamination were found in any of the air samples. These levels of contamination of exceed the criteria as defined in ANSI 13.12 and the NRC Guidelines. The ambient radiation levels (up to 18 ..mu..R/h) are not in excess of criteria as defined in Appendix 6.

  15. Formerly utilized MED/AEC sites remedial action program. Radiological survey of Chemicals Group, Olin Corporation (formerly Blockson Chemical Company) Joliet, Illinois March 27-November 28, 1978

    SciTech Connect

    Wynveen, R.A.; Smith, W.H.; Mayes, C.B.; Justus, A.L.

    1983-05-01

    A comprehensive radiological survey was conducted at Building 55 of the Chemicals Group, Olin Corporation, Joliet, Illinois. The survey included measurements of alpha and beta-gamma contamination, both fixed and removable; beta-gamma exposure readings at contact and at 1 m (3 ft) above the floor or ground level; estimates of radon-daughter concentrations in the air as airborne contaminants; and determinations of concentrations of /sup 137/Cs, the /sup 232/Th decay chain, the /sup 226/Ra decay chain, and uranium in the soil on the site. Thirty-three spots or localized areas and three larger general areas within Building 55 exceeded the allowable limits as given in the Draft ANSI Standard N13.12 for uranium, and the general roof area exceeded the acceptable limits for radium-226. Additionally, two spots or localized areas on the roof substantially exceeded those limits. In 15 instances, the contamination was found to be removable from surfaces and readily available for transfer to other locations. Concentrations of radon daughters in the air of the building, as measured by grab-sampling techniques, were below the limit of 0.01 WL above background as given in the Surgeon General's Guidelines. Analyses of ten soil samples from the site indicated significantly elevated concentrations of uranium and radium at two sampling locations near Building 55. Based on a hypothetical exposure scenario, the maximum potential dose equivalent to an individual for external penetrating radiation resulting from exposure to radioactivity at this site was calculated to be 340 mrem per year. The internal radiation 50-year dose commitments from potential inhalation/ingestion of radioactive material were calculated to be 8300 mrem to the lung, 120 mrem to the bone, 26 mrem to the kidney, and 250 mrem whole body. Few individuals are expected to acquire such doses or dose commitments annually.

  16. Formerly utilized MED/AEC sites remedial-action program. Radiological survey of Kent Chemical Laboratory, The University of Chicago, Chicago, Illinois, September 7-13, 1977

    SciTech Connect

    Wynveen, R.A.; Smith, W.H.; Mayes, C.B.; Justus, A.L.

    1982-05-01

    A comprehensive radiological survey was conducted at the Kent Chemical Laboratory at the University of Chicago, Chicago, Illinois. General radiochemistry and/or physics research was performed at this facility during the MED/AEC era in the 1940s. The building is now used as laboratories, offices, and classrooms. The survey was undertaken to determine the location and quantities of any radioactive materials remaining from the MED/AEC operations. Nineteen spots of contamination possibly resulting from MED/AEC occupancy in 12 rooms exceeded the allowable limits for /sup 226/Ra and /sup 239/Pu as given in the ANSI Standard N13.12. Under current use conditions, the potential for radiation exposure to occupants of this building from these sources of contamination is remote. Concentrations of radon daughters in the air of the building were below the limit of 0.01 Working Level above background as given in the Surgeon General's Guidelines. Concentrations of radionuclides in soil samples from near the laboratory were essentially at background levels. The maximum potential dose for external penetrating radiation resulting from exposure to the radioactivity remaining from MED/AEC operations was calculated to be 500 mrem a year, which is equal to the 500 mrem standard for an individual in an uncontrolled area. In order to reduce the potential for radiation exposure, remedial measures such as stabilization of the contamination in place would be applicable as a short-term measure. In order to reduce the risk in the event that building modifications take place in the future, health physics procedures and coverage are recommended. The long-term solution would involve decontamination by removal of the radioactive residues from the 12 rooms or areas where contamination possibly resulting from MED/AEC activities was detected.

  17. Formerly utilized MED/AEC sites remedial action program. Radiological survey of Eckhart Hall, the University of Chicago, Chicago, Illinois, September 14, 1976-March 22, 1977

    SciTech Connect

    Wynveen, R.A.; Smith, W.H.; Boggs Mayes, C.; Justus, A.L.

    1982-05-01

    A comprehensive radiological survey was conducted at the Eckhart Hall at the University of Chicago, Chicago, Illinois. General radiochemistry and/or physics research was performed at this facility during the MED/AEC era in the 1940s. The building is now used as laboratories, offices, and classrooms. Survey measurements included alpha and beta-gamma contamination determinations, both fixed and removable; beta-gamma exposure readings at contact and at 1 m (3 ft); estimates of radon-daughter concentrations in the air; and determination of concentrations of /sup 137/Cs, the /sup 232/Th decay chain, the /sup 226/Ra decay chain, and uranium in the soil on the site. Thirteen spots of contamination were found to be fixed to or under existing surfaces and not readily available for transfer to other locations. Under current use conditions, the potential for radiation exposure to occupants of this building from these sources of contamination is remote. Concentrations of radon daughters in the air of the building were less than the limit of 0.01 Working Level (WL) above background. No long-lived radionuclides were detected in any air sample. Concentrations of radionuclides in soil samples collected around the facility indicated background levels. The presumed maximum potential internal radiation 50-year dose commitments from inhalation/ingestion of contamination remaining from MED/AEC activities were calculated to be less than 25% of the appropriate annual standards for an individual in an uncontrolled area. Remedial measures such as stabilization of the contamination in place would be applicable as a short-term measure. In order to reduce the risk in the event that building modifications take place in the future, health physics procedures and coverage are recommended. The long-term solution would involve decontamination by removal of the radioactive residues.

  18. Formerly utilized MED/AEC sites remedial-action program. Radiological survey of Ryerson Physical Laboratory, The University of Chicago, Chicago, Illinois, September 11-25, 1976

    SciTech Connect

    Wynveen, R.A.; Smith, W.H.; Mayes, C.B.; Justus, A.L.

    1982-05-01

    A comprehensive radiological survey was conducted at the Ryerson Physical Laboratory at the University of Chicago, Chicago, Illinois. General radiochemistry and/or physics research was performed at this facility during the MED/AEC era in the 1940s. The building is now used as laboratories, offices, and classrooms. The survey was undertaken to determine the location and quantities of any radioactive materials remaining from the MED/AEC activities. Forty spots of contamination in 26 rooms possibly resulting from MED/AEC occupancy exceeded the allowable limits as given in ANSI Standard N13.12 for Group 1 nuclides. The potential for radiation exposure to occupants of this building from these sources of contamination is remote under current use conditions. Concentrations of radon daughters in the air of the building were less than the limit of 0.01 WL above background as given in the Surgeon General's Guidelines. Concentrations of radionuclides in soil samples collected around the facility indicated background levels. The presumed maximum potential dose for external penetrating radiation resulting from exposure to the radioactivity remaining from MED/AEC operations was calculated to be 140 mrem a year, which is 30% of the 500-mrem standard for an individual in an uncontrolled area. In order to reduce the potential for radiation exposure, remedial measures such as stabilization of the contamination in place would be applicable as a short-term measure. In order to reduce the risk in the event that building modifications take place in the future, health physics procedures and coverage are recommended. The long-term solution would involve decontamination by removal of the radioactive residues from the 26 rooms or areas where contamination possibly resulting from MED/AEC activities was detected.

  19. In-Situ Radiological Surveys to Address Nuclear Criticality Safety Requirements During Remediation Activities at the Shallow Land Disposal Area, Armstrong County, Pennsylvania - 12268

    SciTech Connect

    Norris, Phillip; Mihalo, Mark; Eberlin, John; Lambert, Mike; Matthews, Brian

    2012-07-01

    Cabrera Services Inc. (CABRERA) is the remedial contractor for the Shallow Land Disposal Area (SLDA) Site in Armstrong County Pennsylvania, a United States (US) Army Corps of Engineers - Buffalo District (USACE) contract. The remediation is being completed under the USACE's Formerly Utilized Sites Remedial Action Program (FUSRAP) which was established to identify, investigate, and clean up or control sites previously used by the Atomic Energy Commission (AEC) and its predecessor, the Manhattan Engineer District (MED). As part of the management of the FUSRAP, the USACE is overseeing investigation and remediation of radiological contamination at the SLDA Site in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), 42 US Code (USC), Section 9601 et. seq, as amended and, the National Oil and Hazardous Substance Pollution Contingency Plan (NCP), Title 40 of the Code of Federal Regulations (CFR) Section 300.430(f) (2). The objective of this project is to clean up radioactive waste at SLDA. The radioactive waste contains special nuclear material (SNM), primarily U-235, in 10 burial trenches, Cabrera duties include processing, packaging and transporting the waste to an offsite disposal facility in accordance with the selected remedial alternative as defined in the Final Record of Decision (USACE, 2007). Of particular importance during the remediation is the need to address nuclear criticality safety (NCS) controls for the safe exhumation and management of waste containing fissile materials. The partnership between Cabrera Services, Inc. and Measutronics Corporation led to the development of a valuable survey tool and operating procedure that are essential components of the SLDA Criticality Safety and Material Control and Accountability programs. Using proven existing technologies in the design and manufacture of the Mobile Survey Cart, the continued deployment of the Cart will allow for an efficient and reliable methodology to

  20. Formerly utilized MED/AEC sites remedial action program: radiological survey of the Building Site 421, United States, Watertown Arsenel, Watertown, MA. Final report

    SciTech Connect

    1980-02-01

    This report contains the results of surveys of the current radiological condition of the Building Site 421, United States Arsenal Watertown, Watertown, Massachusetts. Findings of this survey indicate there are four spots involving an area of less than 6000 cm/sup 2/ of identifiable low-level residual radioactivity on the concrete pad which is all that remains of Building Site 421. The largest spot is approximately 5000 cm/sup 2/. The other three spots are 100 cm/sup 2/ or less. The beta-gamma readings at these spots are 8.4 x 10/sup 2/ dis/min-100 cm/sup 2/, 2.2 x 10/sup 5/ dis/min-100 cm/sup 2/, 2.2 x 10/sup 5/ dis/min-100 cm/sup 2/ and 8.5 x 10/sup 4/ dis/min-100 cm/sup 2/. No alpha contamination was found at these locations. Gamma spectral analysis of a chip of contaminated concrete from one of the spots indicates that the contaminant is natural uranium. This contamination is fixed in the concrete and does not present an internal or external exposure hazard under present conditions. A hypothetical hazard analysis under a conservative set of assumed conditions indicates minimal internal hazard. The highest End Window contact reading was 0.09 mR/h. None of the other three spots indicated an elevated direct reading with the End Window Detector. Radon daughter concentrations were determined at three locations on the Building 421 pad. These were 0.00013 WL, 0.00011 WL and 0.00009 WL. According to the Surgeon General's Guidelines found in 10 CFR 712, radon daughter concentrations below 0.03 WL do not require remedial action in structures other than private dwellings and schools. Soil samples taken about the site indicate no elevated levels above the natural background levels in the soil. A gamma spectral analysis of a water sample obtained from the storm sewer line near the Building 421 pad indicates no elevated radioactivity in the sample. It was therefore felt that no contamination is present in this sewer.

  1. I COMPREHENSIVE RADIOLOGICAL SURVEY I

    Office of Legacy Management (LM)

    ... Atomic Power Laboratory (KAPL) in Schenectady, New York. Receipt of additional wastes was ... surface soil, and micrometeorological conditions (e.g. surface wind speed and direction). ...

  2. For S Radiological

    Office of Legacy Management (LM)

    ? . -. .- * -* (\/If.r.-5- .* , d- For S Radiological ' mer Bridgepo pecial Metals Adrian, Survey of the Irt Brass Company Extrusion Plant, Michigan / /f?t' . ( F. F. Haywood H. W. Dickson W. D. Cottrell W. H. Shinpaugh _ : I., _-. .I ( ._ rc/ DOE/EV-0005128 ORNL-57 13 / J. E. Burden 0. R. Stone R. W. Doane W. A. Goldsmith 4 , Printed in the United States of America. Available from National Technical Information Service U.S. Department of Commerce 5285 Port Royal Road, Springfield, Virginia

  3. Supplemental Radiological Survey Plan for the Lease of the Rooms Associated with C107 of Building K-1006 at the East Tennessee Technology Park, Oak Ridge, Tennessee

    SciTech Connect

    Blevins M.F.

    2010-09-01

    In 1998, a portion of Bldg. K-1006 was leased to the Community Reuse Organization of East Tennessee (CROET) as part of the reindustrialization efforts at the East Tennessee Technology Park (ETTP). The facility was subleased and is being used as an analytical laboratory. The 1998 lease did not include rooms C107, C107-A, C107-B, C107-C, and C107-D. The lease of these rooms is now desired. These rooms comprise the area to be surveyed. The building was constructed as a laboratory facility to support the gaseous diffusion uranium enrichment process. It also contains offices and administrative spaces for laboratory personnel. After the gaseous diffusion process was shut down in the mid-1980s, the building was used to provide research and development support to ETTP environmental, safety, and health programs; the Toxic Substances Control Act Incinerator; the Central Neutralization Facility; and other multi-site waste treatment activities. It also served as the chemistry laboratory for the Environmental Technology Technical Services Organization. The activities currently conducted in Bldg. K-1006 utilize a variety of analytical techniques. Some of the major techniques being employed are X-ray analysis, electron microanalysis, and spectrochemical analysis. In 1998, a portion of Bldg. K-1006 was leased to CROET as part of the reindustrialization efforts at ETTP. The facility was subleased and is being used as an analytical laboratory. The 1998 lease did not include Rooms C107, C107-A, C107-B, C107-C, and C107-D. Some demolition of furniture and decontamination activities has taken place for Rooms C 107 and C 107-B since the last radiological survey of those rooms. In March 2009, a final remedial action (RA) was performed for the Bldg. K-1006 north basement sump. The Bldg. K-1006 north basement sump is a nominal 30-in.-diameter, 36-in.-deep concrete structure in the north corner of room C107B. The building receives groundwater in-leakage that is periodically pumped to the

  4. Radiological Control Technician Training

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... of candidates for Radiological Control Technician (RCT) and for RCT Supervisor. ... OEBs as indicated in DOE's Radiological Control Standard (RCS) and the RCT Training ...

  5. Estimating radiological background using imaging spectroscopy

    SciTech Connect

    Bernacki, Bruce E.; Schweppe, John E.; Stave, Sean C.; Jordan, David V.; Kulisek, Jonathan A.; Stewart, Trevor N.; Seifert, Carolyn E.

    2014-06-13

    Optical imaging spectroscopy is investigated as a method to estimate radiological background by spectral identification of soils, sediments, rocks, minerals and building materials derived from natural materials and assigning tabulated radiological emission values to these materials. Radiological airborne surveys are undertaken by local, state and federal agencies to identify the presence of radiological materials out of regulatory compliance. Detection performance in such surveys is determined by (among other factors) the uncertainty in the radiation background; increased knowledge of the expected radiation background will improve the ability to detect low-activity radiological materials. Radiological background due to naturally occurring radiological materials (NORM) can be estimated by reference to previous survey results, use of global 40K, 238U, and 232Th (KUT) values, reference to existing USGS radiation background maps, or by a moving average of the data as it is acquired. Each of these methods has its drawbacks: previous survey results may not include recent changes, the global average provides only a zero-order estimate, the USGS background radiation map resolutions are coarse and are accurate only to 1 km – 25 km sampling intervals depending on locale, and a moving average may essentially low pass filter the data to obscure small changes in radiation counts. Imaging spectroscopy from airborne or spaceborne platforms can offer higher resolution identification of materials and background, as well as provide imaging context information. AVIRIS hyperspectral image data is analyzed using commercial exploitation software to determine the usefulness of imaging spectroscopy to identify qualitative radiological background emissions when compared to airborne radiological survey data.

  6. ORISE: Characterization surveys

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    objective characterization surveys to define the extent of radiological contamination at sites scheduled for decontamination and decommissioning (D&D). A fundamental...

  7. DOE handbook: Tritium handling and safe storage

    SciTech Connect

    1999-03-01

    The DOE Handbook was developed as an educational supplement and reference for operations and maintenance personnel. Most of the tritium publications are written from a radiological protection perspective. This handbook provides more extensive guidance and advice on the null range of tritium operations. This handbook can be used by personnel involved in the full range of tritium handling from receipt to ultimate disposal. Compliance issues are addressed at each stage of handling. This handbook can also be used as a reference for those individuals involved in real time determination of bounding doses resulting from inadvertent tritium releases. This handbook provides useful information for establishing processes and procedures for the receipt, storage, assay, handling, packaging, and shipping of tritium and tritiated wastes. It includes discussions and advice on compliance-based issues and adds insight to those areas that currently possess unclear DOE guidance.

  8. Radiological Control Manual

    SciTech Connect

    Not Available

    1993-04-01

    This manual has been prepared by Lawrence Berkeley Laboratory to provide guidance for site-specific additions, supplements, and clarifications to the DOE Radiological Control Manual. The guidance provided in this manual is based on the requirements given in Title 10 Code of Federal Regulations Part 835, Radiation Protection for Occupational Workers, DOE Order 5480.11, Radiation Protection for Occupational Workers, and the DOE Radiological Control Manual. The topics covered are (1) excellence in radiological control, (2) radiological standards, (3) conduct of radiological work, (4) radioactive materials, (5) radiological health support operations, (6) training and qualification, and (7) radiological records.

  9. PRE-HOSPITAL PRACTICES FOR HANDLING A RADIOLOGICALLY CONTAMINATED...

    Office of Environmental Management (EM)

    DISCLAIMER DISCLAIMER DISCLAIMER DISCLAIMER DISCLAIMER Viewing this video and completing ... Meeting that goal is beyond the scope of this video and requires either additional ...

  10. Pre-Hospital Practices for Handling a Radiologically Contaminated...

    Office of Environmental Management (EM)

    Guide is to provide instructors with an overview of the key points covered in the video. ... The Student Handout should be distributed to students after the video is shown and the ...

  11. Verification Survey of the Building 4059 Site (Phase B); Post Historical Site Assessment Sites, Block 1; and Radioactive Materials Handling Facility HOldup Pond (Site 4614), Santa Susana Field Laboratory, The Boeing Company, Ventura County, California

    SciTech Connect

    T.J. Vitkus

    2008-06-06

    Confirm that the final radiological conditions were accurately and adequately described in the FSS documentation, relative to the established release criteria.

  12. Microsoft Word - Berger Radiological Conditions.doc

    Office of Legacy Management (LM)

    Dec. 2, 2009 1 Summary of Information Regarding Radiological Conditions of NFSS Vicinity Properties J. D. Berger, CHP DeNuke Contracting Services, Inc. Oak Ridge, TN The following is a summary of the information obtained from reviews of radiological survey reports, prepared by ORAU in support of the DOE Formerly Utilized Sites Remedial Action Program. These reports were obtained for review from the IVEA Program at ORAU/ORISE. A list of the reports, reviewed for this summary, is included at the

  13. Radiological/Nuclear Applications

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Radiological/Nuclear Applications Radiological/Nuclear Applications Radiological sensors in action, solutions for you. Radiological and Nuclear Capabilities-for Collaboration View our capability sheets: get details of what we do. Boron 10 Neutron Detector New Neutron Detector Materials How we deploy innovation radiiological-nuclear bubble In the mid-1990s, Los Alamos scientists were developing proton radiography techniques for a variety of applications and decided to try using muons instead of

  14. Radiological Technician Training

    Energy.gov [DOE] (indexed site)

    Part 2 of 9 Radiological Control Technician Training Technician Qualification Standard ... . . . . . . . . 1 Phase I: RCT Academics Training . . . . . . . . . . . . . . . . . . . . ...

  15. Radiological Control Technician Training

    Energy Saver

    Part 8 of 9 Radiological Control Technician Training Oral Examination Boards Phase III ... Training of Oral Board Members ......

  16. Surveys

    Energy.gov [DOE]

    Surveys can be a useful way to gauge the opinions of your readers and learn more about your website's audiences, but you'll often need approval from the Office of Management and Budget (OMB) to run...

  17. Puck Handling Glovebox

    SciTech Connect

    Fiscus, J.B.

    2001-01-29

    This paper discusses development and testing of the robots and specialized automation involved in handling green pucks from the cold press through placing sintered pucks on the transfer trays.

  18. Guidance on the Use of Hand-Held Survey Meters for radiological Triage: Time-Dependent Detector Count Rates Corresponding to 50, 250, and 500 mSv Effective Dose for Adult Males and Adult Females

    SciTech Connect

    Bolch, W.E.; Hurtado, J.L.; Lee, C.; Manger, Ryan P; Hertel, Nolan; Burgett, E.; Dickerson, W.

    2012-01-01

    In June 2006, the Radiation Studies Branch of the Centers for Disease Control and Prevention held a workshop to explore rapid methods of facilitating radiological triage of large numbers of potentially contaminated individuals following detonation of a radiological dispersal device. Two options were discussed. The first was the use of traditional gamma cameras in nuclear medicine departments operated as makeshift wholebody counters. Guidance on this approach is currently available from the CDC. This approach would be feasible if a manageable number of individuals were involved, transportation to the relevant hospitals was quickly provided, and the medical staff at each facility had been previously trained in this non-traditional use of their radiopharmaceutical imaging devices. If, however, substantially larger numbers of individuals (100 s to 1,000 s) needed radiological screening, other options must be given to first responders, first receivers, and health physicists providing medical management. In this study, the second option of the workshop was investigated by the use of commercially available portable survey meters (either NaI or GM based) for assessing potential ranges of effective dose (G50, 50Y250, 250Y500, and 9500 mSv). Two hybrid computational phantoms were used to model an adult male and an adult female subject internally contaminated with 241Am, 60Cs, 137Cs, 131I, or 192Ir following an acute inhalation or ingestion intake. As a function of time following the exposure, the net count rates corresponding to committed effective doses of 50, 250, and 500 mSv were estimated via Monte Carlo radiation transport simulation for each of four different detector types, positions, and screening distances. Measured net count rates can be compared to these values, and an assignment of one of four possible effective dose ranges could be made. The method implicitly assumes that all external contamination has been removed prior to screening and that the measurements be

  19. Formerly utilized MED/AEC sites remedial action program. Radiological survey of Universal Cyclopes, Inc. , Titusville, Plant (formerly Vulcan Crucible Steel Company, Aliquippa, Pennsylvania, May 2-8, 1978

    SciTech Connect

    Wynveen, R.A.; Smith, W.H.; Mundis, R.L.; Mayes, C.B.

    1982-05-01

    A radiological survey was conducted at the Universal Cyclops, Inc. Titusville Plant (formerly Vulcan Crucible Steel Company), in Aliquippa, Pennsylvania, to determine the location and quantities of any radioactive materials remaining on the site as a result of MED/AEC activities in the late 1940s. This facility was used for rolling uranium billets during the MED/AEC era. The survey included measurements of alpha and beta-gamma contamination, both fixed and removable; beta-gamma exposure readings at contact and at 1 m (3 ft) above the floor or ground level; and measurements of the concentrations of radon daughters in air and concentrations of /sup 137/Cs, the /sup 232/Th decay chain, the /sup 226/Ra decay chain, and uranium in the soil on the site. Fourteen spots of contamination exceeded the allowable limits for natural uranium. Under current use conditions, the potential for radiation exposure of occupants of the building from these sources of contamination is remote. Concentrations of radon daughters were below the 0.01 WL limit. Calculated radon concentrations based on the radon-daughter determinations ranged from 0.11 to 0.27 pCi/l. The concentration guide for /sup 222/Rn in uncontrolled areas is 3 pCi/l. Analysis of soil samples from the site indicated elevated concentrations of uranium (15.1 +- 0.7 to 109.0 +- 5.5 pCi/g) at one sampling location near the building. There currently are no regulatory limits for uranium concentration in soil, but, a proposed guide value is pCi/g. After evaluation of results of the survey, it was concluded that although some areas of the Universal Cyclops facility are contaminated, these areas do not pose a significant risk to the present occupants of the building. Nonetheless, in a few cases the contamination does exceed accepted guidelines. Remedial measures are indicated to bring the contaminated areas within the guidelines.

  20. Radiological Assistance Program

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    1992-04-10

    To establish Department of Energy (DOE) policy, procedures, authorities, and responsibilities for its Radiological Assistance Program. Canceled by DOE O 153.1.

  1. Office of Radiological Security

    National Nuclear Security Administration (NNSA)

    of physical security of radiological materials;

  2. Provision of mobile and man-portable radiation detection equipment;
  3. Regional cooperation on safeguards...

  4. Radiological Control Technician Training

    Energy.gov [DOE] (indexed site)

    ... addresses the training requirements of 10 CFR 835.103 for Radiological Control Technicians, it must be supplemented with facility specific information to achieve full compliance. ...

  5. Radiological Control Technician Training

    Energy.gov [DOE] (indexed site)

    7of 9 Radiological Control Technician Training Practical Training Phase II Coordinated and Conducted for the Office of Health, Safety and Security U.S. Department of Energy ...

  6. Radiological Control Technician Training

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    HANDBOOK RADIOLOGICAL CONTROL TECHNICIAN TRAINING U.S. Department of Energy AREA TRNG ... an implementation process for core training as recommended in chapter 14 to ...

  7. Radiological Control Technician Training

    Energy.gov [DOE] (indexed site)

    Radiological Control Technician Training Facility Practical Training Attachment Phase IV Coordinated and Conducted for the Office of Health, Safety and Security U.S. Department of ...

  8. Radiological Survey of Contaminated Installations of Research Reactor before Dismantling in High Dose Conditions with Complex for Remote Measurements of Radioactivity - 12069

    SciTech Connect

    Danilovich, Alexey; Ivanov, Oleg; Lemus, Alexey; Smirnov, Sergey; Stepanov, Vyacheslav; Volkovich, Anatoly

    2012-07-01

    Decontamination and decommissioning of the research reactors MR (Testing Reactor) and RFT (Reactor of Physics and Technology) has recently been initiated in the National Research Center (NRC) 'Kurchatov institute', Moscow. These research reactors have a long history and many installations - nine loop facilities for experiments with different kinds of fuel. When decommissioning nuclear facilities it is necessary to measure the distribution of radioactive contamination in the rooms and at the equipment at high levels of background radiation. At 'Kurchatov Institute' some special remote control measuring systems were developed and they are applied during dismantling of the reactors MR and RFT. For a survey of high-level objects a radiometric system mounted on the robotic Brokk vehicle is used. This system has two (4? and collimated) dose meters and a high resolution video camera. Maximum measured dose rate for this system is ?8.5 Sv/h. To determine the composition of contaminants, a portable spectrometric system is used. It is a remotely controlled, collimated detector for scanning the distribution of radioactive contamination. To obtain a detailed distribution of contamination a remote-controlled gamma camera is applied. For work at highly contaminated premises with non-uniform background radiation, another camera is equipped with rotating coded mask (coded aperture imaging). As a result, a new system of instruments for remote radioactivity measurements with wide range of sensitivity and angular resolution was developed. The experience and results of measurements in different areas of the reactor and at its loop installations, with emphasis on the radioactive survey of highly-contaminated samples, are presented. These activities are conducted under the Federal Program for Nuclear and Radiation Safety of Russia. Adaptation of complex remote measurements of radioactivity and survey of contaminated installations of research reactor before dismantling in high dose

  9. Formerly utilized MED/AEC sites remedial action program. Radiological survey of the West Stands, New Chemistry Lab and Annex, and Ricketts Laboratory, the University of Chicago, Chicago, Illinois, August 31-September 2, 1977

    SciTech Connect

    Wynveen, R.A.; Smith, W.H.; Mayes, C.B.; Justus, A.L.

    1982-05-01

    A radiological survey was conducted at the former locations of the West Stands, the New Chemistry Lab and Annex, and Ricketts Laboratory at the University of Chicago, Chicago, Illinois. General radiochemistry and/or physics research for the MED/AEC program was performed at these sites during the 1940s. The buildings have since been razed. The survey was undertaken to determine the presence of any radionuclides remaining from the MED/AEC operations that could have been spilled or released from the former structures. Environmental soil samples (corings) were collected from the areas where the West Stands, New Chemistry Lab and Annex, and Ricketts Laboratory once stood. The soil corings were taken at what appeared to be undisturbed locations near the sites of the three former facilities. Analyses of the soil corings included determination of the concentrations of /sup 137/Cs, the /sup 232/Th decay chain, the /sup 226/Ra decay chain, and uranium in the soil. The levels of uranium and the /sup 226/Ra decay chain found in the samples indicated that no concentrations above natural background levels were present. Slightly elevated levels of /sup 60/Co were found in soil taken from the top 5 cm of the ground at two sampling sites, but this activity was presumed to have been traceable to induced activity from contaminated stainless steel that had been stored in the area during operations not related to MED/AEC activities. No increased radiation dose attributable to exposure to residual radioactivity from MED/AEC activities is expected.

  10. Formerly utilized MED/AEC sites remedial action program. Radiological survey of The George Herbert Jones Chemical Laboratory, The University of Chicago, Chicago, Illinois, June 13-17, 1977

    SciTech Connect

    Wynveen, R.A.; Smith, W.H.; Mayes, C.B.; Justus, A.L.

    1982-05-01

    A comprehensive radiological survey was conducted at George Herbert Jones Chemical Laboratory at the University of Chicago, Chicago, Illinois. Radiochemistry for the MED/AEC project was performed in this building in the 1940s. The building is now used as laboratories, offices, and classrooms. The survey was undertaken to determine the location and quantities of any radioactive materials remaining from the MED/AEC operations. Forty-three spots of contamination possibly resulting from MED/AEC occupancy in 17 rooms exceeded the allowable limits as given in the ANSI Standard N13.12. Under current use conditions, the potential for radiation exposure to occupants of this building from these sources of contamination is remote. Concentrations of radon daughters in the air of the building, as measured with grab-sampling techniques, were below the limit of 0.01 WL above background as given in the Surgeon General's Guidelines. No long-lived radionuclides were detected in any air sample. Concentrations of radionuclides in soil samples from near the laboratory generally indicated background levels. In order to reduce the potential for radiation exposure, remedial measures such as stabilization of the contamination in place would be applicable as a short-term measure. In order to reduce the risk in the event that building modifications take place in the future, health physics procedures and coverage are recommended. The long-term solution would involve decontamination by removal of the radioactive residues from the 17 rooms or areas where contamination possibly resulting from MED/AEC activities was detected.

  11. Radiological Laboratory, Utility, Office Building LEED Strategy & Achievement

    SciTech Connect

    Seguin, Nicole R.

    2012-07-18

    Missions that the Radiological Laboratory, utility, Office Building (RLUOB) supports are: (1) Nuclear Materials Handling, Processing, and Fabrication; (2) Stockpile Management; (3) Materials and Manufacturing Technologies; (4) Nonproliferation Programs; (5) Waste Management Activities - Environmental Programs; and (6) Materials Disposition. The key capabilities are actinide analytical chemistry and material characterization.

  12. ORISE: Radiological program assessment services

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ORISE focuses its radiological audit and assessment services in these key areas: Nondestructive assay (NDA) Radiological control programs Environmental monitoring programs ...

  13. Radiological Training for Tritium Facilities

    Energy Saver

    Change Notice No. 2 May 2007 DOE HANDBOOK RADIOLOGICAL TRAINING FOR TRITIUM FACILITIES ... Change Notice 2. Radiological Safety Training for Tritium Facilities ...

  14. Solid waste handling

    SciTech Connect

    Parazin, R.J.

    1995-05-31

    This study presents estimates of the solid radioactive waste quantities that will be generated in the Separations, Low-Level Waste Vitrification and High-Level Waste Vitrification facilities, collectively called the Tank Waste Remediation System Treatment Complex, over the life of these facilities. This study then considers previous estimates from other 200 Area generators and compares alternative methods of handling (segregation, packaging, assaying, shipping, etc.).

  15. Uranium hexafluoride handling. Proceedings

    SciTech Connect

    Not Available

    1991-12-31

    The United States Department of Energy, Oak Ridge Field Office, and Martin Marietta Energy Systems, Inc., are co-sponsoring this Second International Conference on Uranium Hexafluoride Handling. The conference is offered as a forum for the exchange of information and concepts regarding the technical and regulatory issues and the safety aspects which relate to the handling of uranium hexafluoride. Through the papers presented here, we attempt not only to share technological advances and lessons learned, but also to demonstrate that we are concerned about the health and safety of our workers and the public, and are good stewards of the environment in which we all work and live. These proceedings are a compilation of the work of many experts in that phase of world-wide industry which comprises the nuclear fuel cycle. Their experience spans the entire range over which uranium hexafluoride is involved in the fuel cycle, from the production of UF{sub 6} from the naturally-occurring oxide to its re-conversion to oxide for reactor fuels. The papers furnish insights into the chemical, physical, and nuclear properties of uranium hexafluoride as they influence its transport, storage, and the design and operation of plant-scale facilities for production, processing, and conversion to oxide. The papers demonstrate, in an industry often cited for its excellent safety record, continuing efforts to further improve safety in all areas of handling uranium hexafluoride. Selected papers were processed separately for inclusion in the Energy Science and Technology Database.

  16. Puck Handling Glovebox

    SciTech Connect

    Fiscus, J.B.

    2001-01-03

    The Plutonium Immobilization Project (PIP) is a joint venture between the Savannah River Site (SRS) and Lawrence Livermore National Laboratory (LLNL). This project will disposition excess weapons grade plutonium in a solid ceramic form. The plutonium, in oxide powder form, will be mixed with uranium oxide powder, ceramic precursors and binders. The combined powder mixture will be milled and possibly granulated; this processed powder will then be dispensed to a (dual action) cold press where it will be formed into green (unsintered) compacts. The compact will have the shape of a puck measuring approximately 3 1/2'' in diameter and 1 3/8'' thick. The green puck, once ejected from the press die, will be picked up by a robot and transferred into the Puck Handling Glovebox. Here the green puck will be inspected and then palletized onto furnace trays. The loaded furnace trays will be stacked/assembled and transported to the furnace where sintering operations will be performed. Finally the sintered pucks will be off loaded, inspected and transferred onto Transfer Trays which will carry the pucks from the Puck Handling Glovebox downstream to subsequent Bagless Transfer Can (BTC) operations. Due to contamination potential and high radiation rates, all Puck Handling Glovebox operations will be performed remotely using robots and specialized automation.

  17. Confirmatory Survey Report for the Quehanna Decommissioning Project, Karthaus, PA

    SciTech Connect

    W. C. Adams

    2007-10-30

    The survey activities consisted of visual inspections and radiological surveys including beta and gamma surface scans and surface beta activity measurements.

  18. Formerly utilized MED/AEC sites remedial action program. Radiological survey of the National Guard Armory at Washington Park, 52nd Street and Cottage Grove Avenue, Chicago, Illinois, September 19, 1977-October 11, 1978

    SciTech Connect

    Wynveen, R.A.; Smith, W.H.; Mayes, C.B.; Justus, A.L.

    1983-01-01

    A comprehensive radiological survey was conducted at the Illinois National Guard Armory at Washington Park in Chicago. This facility, used for uranium processing during the MED/AEC era, is now used as offices, classrooms, and storage and garage areas. Forty-two spots of contaminaton in nine rooms or areas exceeded the allowable limits for uranium as given in the ANSI Standard N13.12. In most instances, the contamination was found to be removable and available for transfer to other locations. However, under current use conditions, the potential for radiation exposure to occupants of this building from these sources of contamination is small. Concentrations of radon daughters in the air in the building, as measured by grab-sampling techniques, were less than the limit of 0.01 WL above background as given in the Surgeon General's Guidelines in 10 CFR 712. No long-lived radionuclides were detected in any air sample. Concentrations of radionuclides in soil samples collected around the facility indicated essentially background levels. The presumed maximum 50-year dose commitments from potential inhalation/ingestion of residual contamination were calculated to be 2.5 mrem to the lung, 0.51 mrem to the bone, 0.12 mrem to the kidney, and 0.031 mrem wholebody; each of these is less than 0.5% of the appropriate standards for an individual in an uncontrolled area. In order to rduce the potential for radiation exposure, remedial measures such as stabilization of the contamination in place would be applicable as a short-term measure. In order to reduce the risk in the event that building modifications take place in the future, health physics procedures and coverage are recommended. The long-term solution would involve dcontamination by removal of the radioactive residues from the 11 rooms or areas in the facility.

  19. Formerly utilized MED/AEC sites remedial action progam. Radiological survey of the Albany Metallurgical Research Center, United States Bureau of Mines, Biomass Facility and the Back Forty Area, Albany, Oregon

    SciTech Connect

    Wynveen, R.A.; Smith, W.H.; Sholeen, C.M.; Justus, A.L.; Flynn, K.F.

    1983-06-01

    This report contains survey results identifying the current radiological condition of two areas located at the site of the United States Bureau of Mines' Albany Metallurgical Research Center in Albany, Oregon. These areas are designed as the BioMass Facility and the Back Forty. The BioMass Facility was a pilot plant for the production of oil from wood waste; it consists of five structures on a two-acre site. The Back Forty is a vacant area of about 14 acres south of the BioMass Facility. Both areas were reportedly used as dump sites for the Bureau of Mines operations. No contamination was found to be associated with the structures, equipment, or material in the BioMass Facility; however, four relatively small areas of contamination were found in the exterior grounds. The maximum radiation level measured was 0.7 mR/h at 1 cm. A relatively large area (approx. 0.8 acre) in the Back Forty area exhibited anomalous radiation levels. Radiation levels as high as 100 ..mu..R/h were measured at 3 ft above ground. This area was reportedly used as a dump site for Bureau of Mines activities. The structures, equipment, and material associated with the BioMass Facility can be released for unrestricted use. However, because of the subsurface contamination found in both the BioMass and the Back Forty areas, some restrictions should be incorporated into any planned useage for this site. Some discussion regarding these hazards are included in the text of this report.

  20. Solid handling valve

    DOEpatents

    Williams, William R.

    1979-01-01

    The present invention is directed to a solids handling valve for use in combination with lock hoppers utilized for conveying pulverized coal to a coal gasifier. The valve comprises a fluid-actuated flow control piston disposed within a housing and provided with a tapered primary seal having a recessed seat on the housing and a radially expandable fluid-actuated secondary seal. The valve seals are highly resistive to corrosion, erosion and abrasion by the solids, liquids, and gases associated with the gasification process so as to minimize valve failure.

  21. Sectional device handling tool

    DOEpatents

    Candee, Clark B.

    1988-07-12

    Apparatus for remotely handling a device in an irradiated underwater environment includes a plurality of tubular sections interconnected end-to-end to form a handling structure, the bottom section being adapted for connection to the device. A support section is connected to the top tubular section and is adapted to be suspended from an overhead crane. Each section is flanged at its opposite ends. Axially retractable bolts in each bottom flange are threadedly engageable with holes in the top flange of an adjacent section, each bolt being biased to its retracted position and retained in place on the bottom flange. Guide pins on each top flange cooperate with mating holes on adjacent bottom flanges to guide movement of the parts to the proper interconnection orientation. Each section carries two hydraulic line segments provided with quick-connect/disconnect fittings at their opposite ends for connection to the segments of adjacent tubular sections upon interconnection thereof to form control lines which are connectable to the device and to an associated control console.

  22. Automatic Estimation of the Radiological Inventory for the Dismantling of Nuclear Facilities

    SciTech Connect

    Garcia-Bermejo, R.; Felipe, A.; Gutierrez, S.; Salas, E.; Martin, N.

    2008-01-15

    The estimation of the radiological inventory of Nuclear Facilities to be dismantled is a process that included information related with the physical inventory of all the plant and radiological survey. Estimation of the radiological inventory for all the components and civil structure of the plant could be obtained with mathematical models with statistical approach. A computer application has been developed in order to obtain the radiological inventory in an automatic way. Results: A computer application that is able to estimate the radiological inventory from the radiological measurements or the characterization program has been developed. In this computer applications has been included the statistical functions needed for the estimation of the central tendency and variability, e.g. mean, median, variance, confidence intervals, variance coefficients, etc. This computer application is a necessary tool in order to be able to estimate the radiological inventory of a nuclear facility and it is a powerful tool for decision taken in future sampling surveys.

  1. Bulk material handling system

    DOEpatents

    Kleysteuber, William K.; Mayercheck, William D.

    1979-01-01

    This disclosure relates to a bulk material handling system particularly adapted for underground mining and includes a monorail supported overhead and carrying a plurality of conveyors each having input and output end portions with the output end portion of a first of the conveyors positioned above an input end portion of a second of the conveyors, a device for imparting motion to the conveyors to move the material from the input end portions toward the output end portions thereof, a device for supporting at least one of the input and output end portions of the first and second conveyors from the monorail, and the supporting device including a plurality of trolleys rollingly supported by the monorail whereby the conveyors can be readily moved therealong.

  2. WIPP Radiological Release Report Phase 1

    Office of Environmental Management (EM)

    Phase 1 Radiological Release Event at the Waste Isolation Pilot Plant on February 14, 2014 April 2014 Radiological Release Event at the Waste Isolation Pilot Plant Radiological ...

  3. WIPP Radiological Relase Report Phase 2

    Office of Environmental Management (EM)

    Phase 2 Radiological Release Event at the Waste Isolation Pilot Plant, February 14, 2014 April 2015 Radiological Release Event at the Waste Isolation Pilot Plant Radiological Release ...

  4. Radiological worker training

    SciTech Connect

    1998-10-01

    This Handbook describes an implementation process for core training as recommended in Implementation Guide G441.12, Radiation Safety Training, and as outlined in the DOE Radiological Control Standard (RCS). The Handbook is meant to assist those individuals within the Department of Energy, Managing and Operating contractors, and Managing and Integrating contractors identified as having responsibility for implementing core training recommended by the RCS. This training is intended for radiological workers to assist in meeting their job-specific training requirements of 10 CFR 835. While this Handbook addresses many requirements of 10 CFR 835 Subpart J, it must be supplemented with facility-specific information to achieve full compliance.

  5. Unvented Drum Handling Plan

    SciTech Connect

    MCDONALD, K.M.

    2000-08-01

    This drum-handling plan proposes a method to deal with unvented transuranic drums encountered during retrieval of drums. Finding unvented drums during retrieval activities was expected, as identified in the Transuranic (TRU) Phase I Retrieval Plan (HNF-4781). However, significant numbers of unvented drums were not expected until excavation of buried drums began. This plan represents accelerated planning for management of unvented drums. A plan is proposed that manages unvented drums differently based on three categories. The first category of drums is any that visually appear to be pressurized. These will be vented immediately, using either the Hanford Fire Department Hazardous Materials (Haz. Mat.) team, if such are encountered before the facilities' capabilities are established, or using internal capabilities, once established. To date, no drums have been retrieved that showed signs of pressurization. The second category consists of drums that contain a minimal amount of Pu isotopes. This minimal amount is typically less than 1 gram of Pu, but may be waste-stream dependent. Drums in this category are assayed to determine if they are low-level waste (LLW). LLW drums are typically disposed of without venting. Any unvented drums that assay as TRU will be staged for a future venting campaign, using appropriate safety precautions in their handling. The third category of drums is those for which records show larger amounts of Pu isotopes (typically greater than or equal to 1 gram of Pu). These are assumed to be TRU and are not assayed at this point, but are staged for a future venting campaign. Any of these drums that do not have a visible venting device will be staged awaiting venting, and will be managed under appropriate controls, including covering the drums to protect from direct solar exposure, minimizing of container movement, and placement of a barrier to restrict vehicle access. There are a number of equipment options available to perform the venting. The

  6. 324 Building Baseline Radiological Characterization

    SciTech Connect

    R.J. Reeder, J.C. Cooper

    2010-06-24

    This report documents the analysis of radiological data collected as part of the characterization study performed in 1998. The study was performed to create a baseline of the radiological conditions in the 324 Building.

  7. REMOTE HANDLING ARRANGEMENTS

    DOEpatents

    Ginns, D.W.

    1958-04-01

    A means for handling remotely a sample pellet to be irradiated in a nuclear reactor is proposed. It is comprised essentially of an inlet tube extending through the outer shield of the reactor and being inclined so that its outer end is at a higher elevation than its inner end, an outlet tube extending through the outer shield being inclined so that its inner end is at a higher elevation than its outer end, the inner ends of these two tubes being interconnected, and a straight tube extending through the outer shield and into the reactor core between the inlet and outlet tubes and passing through the juncture of said inner ends. A rod-like member is rotatably and slidely operated within the central straight tube and has a receptacle on its inner end for receiving a sample pellet from the inlet tube. The rod member is operated to pick up a sample pellet from the inlet tube, carry the sample pellet into the irradiating position within the core, and return to the receiving position where it is rotated to dump the irradiated pellet into the outlet tube by which it is conveyed by gravity to the outside of the reactor. Stop members are provided in the inlet tube, and electrical operating devices are provided to control the sequence of the operation automatically.

  8. Radiological Control Technician Training

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    9 of 9 Radiological Control Technician Training Facility Practical Training Attachment Phase IV Coordinated and Conducted for the Office of Health, Safety and Security U.S. Department of Energy DOE-HDBK-1122-2009 This page intentionally left blank ii DOE-HDBK-1122-2009 Table of Contents Page Introduction................................................................................................................................1 Facility Job Performance Measures

  9. Radiological Technician Training

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    DOE-HDBK-1122-2009 Part 2 of 9 Radiological Control Technician Training Technician Qualification Standard Coordinated and Conducted for the Office of Health, Safety and Security U.S. Department of Energy DOE-HDBK-1122-2009 This page intentionally left blank. ii DOE-HDBK-1122-2009 Table of Contents Page Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 Purpose of Qualification Standard . . . . . . . . . . . . . . . . .

  10. NNSA Conducts International Radiological Response Training in...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    NNSA Conducts International Radiological Response Training in Vienna August 01, 2013 ... Radiological Assistance Program Training for Emergency Response Advanced ...

  11. Nevada National Security Site Radiological Control Manual

    SciTech Connect

    Radiological Control Managers’ Council

    2012-03-26

    low-level radioactive waste and the handling of radioactive sources. Remediation of contaminated land areas may also result in radiological exposures.

  12. General Employee Radiological Training

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    _______ Change Notice 1 June 2009 DOE HANDBOOK GENERAL EMPLOYEE RADIOLOGICAL TRAINING U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Not Measurement Sensitive This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ Change 1 DOE-HDBK-1131-2007 Original Change Part 2 page 5 The average annual radiation dose to a

  13. General Employee Radiological Training

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    DOE HANDBOOK GENERAL EMPLOYEE RADIOLOGICAL TRAINING U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Not Measurement Sensitive This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ DOE-HDBK-1131-2007 iii Foreword This Handbook describes an implementation process for core training as recommended in chapter 14,

  14. General Employee Radiological Training

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Not Measurement Sensitive DOE-HDBK-1131-2007 December 2007_______ Change Notice 1 Reaffirmed 2013 DOE HANDBOOK GENERAL EMPLOYEE RADIOLOGICAL TRAINING U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ Change 1 DOE-HDBK-1131-2007 Original Change Part 2 page 5 The

  15. Contact-Handled and Remote-Handled Transuranic Waste Packaging

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    2011-08-09

    Provides specific instructions for packaging and/or repackaging contact-handled transuranic (CH-TRU) and remote-handled transuranic (RH-TRU) waste in a manner consistent with DOE O 435.1, Radioactive Waste Management, DOE M 435.1-1 Chg 1, Radioactive Waste Management Manual, CH-TRU and RH-TRU waste transportation requirements, and Waste Isolation Pilot Plant (WIPP) programmatic requirements. Does not cancel/supersede other directives.

  16. HAND TRUCK FOR HANDLING EQUIPMENT

    DOEpatents

    King, D.W.

    1959-02-24

    A truck is described for the handling of large and relatively heavy pieces of equipment and particularly for the handling of ion source units for use in calutrons. The truck includes a chassis and a frame pivoted to the chassis so as to be operable to swing in the manner of a boom. The frame has spaced members so arranged that the device to be handled can be suspended between or passed between these spaced members and also rotated with respect to the frame when the device is secured to the spaced members.

  17. Ergonomic material-handling device

    DOEpatents

    Barsnick, Lance E.; Zalk, David M.; Perry, Catherine M.; Biggs, Terry; Tageson, Robert E.

    2004-08-24

    A hand-held ergonomic material-handling device capable of moving heavy objects, such as large waste containers and other large objects requiring mechanical assistance. The ergonomic material-handling device can be used with neutral postures of the back, shoulders, wrists and knees, thereby reducing potential injury to the user. The device involves two key features: 1) gives the user the ability to adjust the height of the handles of the device to ergonomically fit the needs of the user's back, wrists and shoulders; and 2) has a rounded handlebar shape, as well as the size and configuration of the handles which keep the user's wrists in a neutral posture during manipulation of the device.

  18. Tritium handling in vacuum systems

    SciTech Connect

    Gill, J.T. [Monsanto Research Corp., Miamisburg, OH (United States). Mound Facility; Coffin, D.O. [Los Alamos National Lab., NM (United States)

    1986-10-01

    This report provides a course in Tritium handling in vacuum systems. Topics presented are: Properties of Tritium; Tritium compatibility of materials; Tritium-compatible vacuum equipment; and Tritium waste treatment.

  19. Accident Investigation Report- Radiological Release

    Office of Energy Efficiency and Renewable Energy (EERE)

    On February 14, 2014, an airborne radiological release occurred at the Department of Energy Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico. Because access to the underground was restricted following the event, the investigation was broken into two phases. The Phase 1 report focused on how the radiological material was released into the atmosphere and Phase 2, performed once limited access to the underground was re‐established, focused on the source of the released radiological material.

  20. Smart Radiological Dosimeter

    DOEpatents

    Kosslow, William J.; Bandzuch, Gregory S.

    2004-07-20

    A radiation dosimeter providing an indication of the dose of radiation to which the radiation sensor has been exposed. The dosimeter contains features enabling the monitoring and evaluating of radiological risks so that a user can concentrate on the task at hand. The dosimeter provides an audible alarm indication that a predetermined time period has elapsed, an audible alarm indication reminding the user to check the dosimeter indication periodically, an audible alarm indicating that a predetermined accumulated dose has been prematurely reached, and an audible alarm indication prior or to reaching the 3/4 scale point.

  1. Radiological Security Partnership | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) Programs / Nonproliferation / Global Material Security / Radiological Security Radiological Security Partnership Radiological Security Partnership Secure Your Business, Your Community, and Your Country. Sign Up Today for Services Provided by the Radiological Security Partnership. RSP Logo Initiative of the Global Material Security Program Formerly the Global Threat Reduction Initiative RSP Registration RSP More Info Learn More Radiological Security Partnership

  2. DISPOSAL CONTAINER HANDLING SYSTEM DESCRIPTION DOCUMENT

    SciTech Connect

    E. F. Loros

    2000-06-30

    The Disposal Container Handling System receives and prepares new disposal containers (DCs) and transfers them to the Assembly Transfer System (ATS) or Canister Transfer System (CTS) for loading. The system receives the loaded DCs from ATS or CTS and welds the lids. When the welds are accepted the DCs are termed waste packages (WPs). The system may stage the WP for later transfer or transfer the WP directly to the Waste Emplacement/Retrieval System. The system can also transfer DCs/WPs to/from the Waste Package Remediation System. The Disposal Container Handling System begins with new DC preparation, which includes installing collars, tilting the DC upright, and outfitting the container for the specific fuel it is to receive. DCs and their lids are staged in the receipt area for transfer to the needed location. When called for, a DC is put on a cart and sent through an airlock into a hot cell. From this point on, all processes are done remotely. The DC transfer operation moves the DC to the ATS or CTS for loading and then receives the DC for welding. The DC welding operation receives loaded DCs directly from the waste handling lines or from interim lag storage for welding of the lids. The welding operation includes mounting the DC on a turntable, removing lid seals, and installing and welding the inner and outer lids. After the weld process and non-destructive examination are successfully completed, the WP is either staged or transferred to a tilting station. At the tilting station, the WP is tilted horizontally onto a cart and the collars removed. The cart is taken through an air lock where the WP is lifted, surveyed, decontaminated if required, and then moved into the Waste Emplacement/Retrieval System. DCs that do not meet the welding non-destructive examination criteria are transferred to the Waste Package Remediation System for weld preparation or removal of the lids. The Disposal Container Handling System is contained within the Waste Handling Building System

  3. Property:TwitterHandle | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    to: navigation, search Property Name TwitterHandle Property Type Text Description A Twitter handle in @Whatever format (not the full url) Pages using the property...

  4. HEALTH AND SAFETY RESEARCH DIVISION REPORT OF INCLUSION SURVEY...

    Office of Legacy Management (LM)

    An inclusion radiological survey of location CA00401 was conducted on Sep- tember 27, 1985 by Oak Ridge National Laboratory. This property, located at Mayer Street, is classified ...

  5. Radiological Worker Computer Based Training

    Energy Science and Technology Software Center

    2003-02-06

    Argonne National Laboratory has developed an interactive computer based training (CBT) version of the standardized DOE Radiological Worker training program. This CD-ROM based program utilizes graphics, animation, photographs, sound and video to train users in ten topical areas: radiological fundamentals, biological effects, dose limits, ALARA, personnel monitoring, controls and postings, emergency response, contamination controls, high radiation areas, and lessons learned.

  6. Method and apparatus for in-cell vacuuming of radiologically contaminated materials

    DOEpatents

    Spadaro, Peter R.; Smith, Jay E.; Speer, Elmer L.; Cecconi, Arnold L.

    1987-01-01

    A vacuum air flow operated cyclone separator arrangement for collecting, handling and packaging loose contaminated material in accordance with acceptable radiological and criticality control requirements. The vacuum air flow system includes a specially designed fail-safe prefilter installed upstream of the vacuum air flow power supply. The fail-safe prefilter provides in-cell vacuum system flow visualization and automatically reduces or shuts off the vacuum air flow in the event of an upstream prefilter failure. The system is effective for collecting and handling highly contaminated radiological waste in the form of dust, dirt, fuel element fines, metal chips and similar loose material in accordance with radiological and criticality control requirements for disposal by means of shipment and burial.

  7. Nuclear Radiological Threat Task Force Established | National...

    National Nuclear Security Administration (NNSA)

    Nuclear Radiological Threat Task Force Established Washington, DC NNSA's Administrator Linton Brooks announces the establishment of the Nuclear Radiological Threat Reduction Task ...

  8. ORISE Resources: Radiological and Nuclear Terrorism: Medical...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    to mass casualties that may involve radiological injuries. The interactive, two-hour training, titled Radiological and Nuclear Terrorism: Medical Response to Mass Casualties...

  9. PIA - Radiological Work Permit | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    PIA - Radiological Work Permit PDF icon PIA - Radiological Work Permit More Documents & Publications PIA - Bonneville Power Adminstration Ethics Helpline Occupational Medical ...

  10. radiological consquence management | National Nuclear Security...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Apply for Our Jobs Our Jobs Working at NNSA Blog Home radiological consquence management radiological consquence management Fukushima: Five Years Later After the March 11, 2011, ...

  11. radiological response | National Nuclear Security Administration

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Apply for Our Jobs Our Jobs Working at NNSA Blog Home radiological response radiological response Fukushima: Five Years Later After the March 11, 2011, Japan earthquake, tsunami, ...

  12. Standardized radiological dose evaluations

    SciTech Connect

    Peterson, V.L.; Stahlnecker, E.

    1996-05-01

    Following the end of the Cold War, the mission of Rocky Flats Environmental Technology Site changed from production of nuclear weapons to cleanup. Authorization baseis documents for the facilities, primarily the Final Safety Analysis Reports, are being replaced with new ones in which accident scenarios are sorted into coarse bins of consequence and frequency, similar to the approach of DOE-STD-3011-94. Because this binning does not require high precision, a standardized approach for radiological dose evaluations is taken for all the facilities at the site. This is done through a standard calculation ``template`` for use by all safety analysts preparing the new documents. This report describes this template and its use.

  13. Specialty Vehicles and Material Handling Equipment

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Industrial Power Efficient Simple Clean Today Industrial Power Efficient Simple Clean Today Specialty Vehicles and Material Handling Equipment Specialty Vehicles and Material Handling Equipment Specialty Vehicles and Material Handling Equipment Specialty Vehicles and Material Handling Equipment Matching Federal Government Energy Needs with Energy Efficient F Matching Federal Government Energy Needs with Energy Efficient F Matching Federal Government Energy Needs with Energy Efficient F Matching

  14. Portable vacuum object handling device

    DOEpatents

    Anderson, Gordon H.

    1983-08-09

    The disclosure relates to a portable device adapted to handle objects which are not to be touched by hand. A piston and bore wall form a vacuum chamber communicating with an adaptor sealably engageable with an object to be lifted. The piston is manually moved and set to establish vacuum. A valve is manually actuatable to apply the vacuum to lift the object.

  15. Non-contact handling device

    DOEpatents

    Reece, Mark; Knorovsky, Gerald A.; MacCallum, Danny O.

    2007-05-15

    A pressurized fluid handling nozzle has a body with a first end and a second end, a fluid conduit and a recess at the second end. The first end is configured for connection to a pressurized fluid source. The fluid conduit has an inlet at the first end and an outlet at the recess. The nozzle uses the Bernoulli effect for lifting a part.

  16. RADRELAY RADIOLOGICAL DATA LINK DEVICE

    SciTech Connect

    Harpring, L; Frank Heckendorn, F

    2007-11-06

    The RadRelay effort developed small, field appropriate, portable prototype devices that allow radiological spectra to be downloaded from field radiological detectors, like the identiFINDER-U, and transmitted to land based experts. This communications capability was designed for the U. S. Coast Guard (USCG) but is also applicable to the Customs and Border Protection (CBP) personnel working in remote locations. USCG Level II personnel currently use the identiFINDER-U Hand-Held Radioisotope ID Devices (HHRIID) to detect radiological materials during specific boarding operations. These devices will detect not only radiological emissions but will also evaluate those emissions against a table of known radiological spectra. The RadRelay has been developed to significantly improve the functionality of HHRIID, by providing the capability to download radiological spectra and then transmit them using satellite or cell phone technology. This remote wireless data transfer reduces the current lengthy delay often encountered between the shipboard detection of unknown radiological material and the evaluation of that data by technical and command personnel. That delay is reduced from hours to minutes and allows the field located personnel to remain on station during the inspection and evaluation process.

  17. Arrival condition of spent fuel after storage, handling, and transportation

    SciTech Connect

    Bailey, W.J.; Pankaskie, P.J.; Langstaff, D.C.; Gilbert, E.R.; Rising, K.H.; Schreiber, R.E.

    1982-11-01

    This report presents the results of a study conducted to determine the probable arrival condition of spent light-water reactor (LWR) fuel after handling and interim storage in spent fuel storage pools and subsequent handling and accident-free transport operations under normal or slightly abnormal conditions. The objective of this study was to provide information on the expected condition of spent LWR fuel upon arrival at interim storage or fuel reprocessing facilities or at disposal facilities if the fuel is declared a waste. Results of a literature survey and data evaluation effort are discussed. Preliminary threshold limits for storing, handling, and transporting unconsolidated spent LWR fuel are presented. The difficulty in trying to anticipate the amount of corrosion products (crud) that may be on spent fuel in future shipments is also discussed, and potential areas for future work are listed. 95 references, 3 figures, 17 tables.

  18. Portable vacuum object handling device

    DOEpatents

    Anderson, G.H.

    1983-08-09

    The disclosure relates to a portable device adapted to handle objects which are not to be touched by hand. A piston and bore wall form a vacuum chamber communicating with an adaptor sealably engageable with an object to be lifted. The piston is manually moved and set to establish vacuum. A valve is manually actuatable to apply the vacuum to lift the object. 1 fig.

  19. Estimate Radiological Dose for Animals

    Energy Science and Technology Software Center

    1997-12-18

    Estimate Radiological dose for animals in ecological environment using open literature values for parameters such as body weight, plant and soil ingestion rate, rad. halflife, absorbed energy, biological halflife, gamma energy per decay, soil-to-plant transfer factor, ...etc

  20. Radiological Training for Tritium Facilities

    Energy Saver

    ... by Title 10 Code of Federal Regulations Occupational Radiation Protection, (10 CFR 835) Subpart J and as outlined in the DOE standard DOE-STD-1098-99, Radiological Control (RCS). ...

  1. Radiological cleanup of Enewetak Atoll

    SciTech Connect

    Not Available

    1981-01-01

    For 8 years, from 1972 until 1980, the United States planned and carried out the radiological cleanup, rehabilitation, and resettlement of Enewetak Atoll in the Marshall Islands. This documentary records, from the perspective of DOD, the background, decisions, actions, and results of this major national and international effort. The documentary is designed: First, to provide a historical document which records with accuracy this major event in the history of Enewetak Atoll, the Marshall Islands, the Trust Territory of the Pacific Islands, Micronesia, the Pacific Basin, and the United States. Second, to provide a definitive record of the radiological contamination of the Atoll. Third, to provide a detailed record of the radiological exposure of the cleanup forces themselves. Fourth, to provide a useful guide for subsequent radiological cleanup efforts elsewhere.

  2. Radiological Control Manual. Revision 0, January 1993

    SciTech Connect

    Not Available

    1993-04-01

    This manual has been prepared by Lawrence Berkeley Laboratory to provide guidance for site-specific additions, supplements, and clarifications to the DOE Radiological Control Manual. The guidance provided in this manual is based on the requirements given in Title 10 Code of Federal Regulations Part 835, Radiation Protection for Occupational Workers, DOE Order 5480.11, Radiation Protection for Occupational Workers, and the DOE Radiological Control Manual. The topics covered are (1) excellence in radiological control, (2) radiological standards, (3) conduct of radiological work, (4) radioactive materials, (5) radiological health support operations, (6) training and qualification, and (7) radiological records.

  3. Radiological Monitoring Continues at WIPP

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Radiological Monitoring Continues at WIPP CARLSBAD, N.M., February 19, 2014 - Radiological control personnel continue to collect surface and underground monitoring samples at the U.S. Department of Energy's (DOE) Waste Isolation Pilot Plant (WIPP) after an underground air monitor detected airborne radiation around 11:30 p.m. (MT) on February 14. Recent laboratory analyses by Carlsbad Environmental Monitoring and Research Center (CEMRC) found some trace amounts of americium and plutonium from a

  4. Radiological training for tritium facilities

    SciTech Connect

    1996-12-01

    This program management guide describes a recommended implementation standard for core training as outlined in the DOE Radiological Control Manual (RCM). The standard is to assist those individuals, both within DOE and Managing and Operating contractors, identified as having responsibility for implementing the core training recommended by the RCM. This training may also be given to radiological workers using tritium to assist in meeting their job specific training requirements of 10 CFR 835.

  5. ORISE: Radiological program assessment services

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Radiological program assessment services Minimizing the risk of human exposure to hazardous levels of radioactive materials requires designing a comprehensive safety program that ensures appropriate measures are taken to protect workers and the public. As a U.S. Department of Energy (DOE) institute, the Oak Ridge Institute for Science and Education (ORISE) understands the importance of having an effective safety program in place to assure stakeholders and regulators that your radiological

  6. Radiological Protection for DOE Activities

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    1995-09-29

    Establishes radiological protection program requirements that, combined with 10 CFR 835 and its associated implementation guidance, form the basis for a comprehensive program for protection of individuals from the hazards of ionizing radiation in controlled areas. Extended by DOE N 441.3. Cancels DOE 5480.11, DOE 5480.15, DOE N 5400.13, DOE N 5480.11; please note: the DOE radiological control manual (DOE/EH-0256T)

  7. Principles on Radiological Characterization of the Unit 1 at Ignalina NPP for Decommissioning Purposes

    SciTech Connect

    Poskas, P.; Zujus, R.; Drumstas, G.; Poskas, R.; Simonis, V.

    2008-07-01

    There is only one nuclear power plant in Lithuania - Ignalina NPP (INPP). The INPP operated two similar units with installed capacity of 1500 MW(each). They were commissioned in 12/1983 and 08/1987, and the original design lifetime was projected out to 2010 and 2015 respectively. But the first Unit of Ignalina NPP was shutdown December 31, 2004, and second Unit will be closed down before 2010 taking into consideration substantial long-term financial assistance from the EU, G7 and other states as well as international institutions. Implementation of dismantling activities requires detailed knowledge of the radiological situation at the Unit 1. General Programme of Radiological Survey for Ignalina NPP Unit 1 based on NUREG-1575 was prepared in 2005- 2006 by Consortium led by Lithuanian Energy Institute and approved by Regulatory Bodies. It includes such main steps as historical site assessment, scoping, characterization, remedial actions/decontamination support surveys and final status surveys. General Programme of Radiological Survey defines content and principles of the surveys, and preliminary survey considerations, including identification of the contaminants, establishment of the free release levels, principles on areas classification depending on contamination potential, identification of the final survey units, criteria for selection survey instrumentation, techniques and methods etc. So, in the paper information on these principles and the content of the different stages in General Programme of Radiological Survey is presented. (authors)

  8. Formerly utilized MED/AEC sites remedial action program. Geohydrological and radiological survey of the Albany Research Center, United States Bureau of Mines, Albany, Oregon, July 1983. Supplement 1

    SciTech Connect

    Wynveen, R.A.; Smith, W.H.; Sholeen, C.M.; Justus, A.L.; Flynn, K.F.; Tsai, S.Y.

    1984-06-01

    The purpose of this report is to present details of follow-up investigations of certain conditions revealed by the results of the initial survey - specifically the potential for contamination of groundwater and for lateral subsurface migration of radioactive waste from contaminated areas on the Albany Research Center site. 9 references, 12 figures, 7 tables.

  9. DOE - Office of Legacy Management -- Oxnard Facility - 002

    Office of Legacy Management (LM)

    Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: This facility was used to produce...

  10. DOE - Office of Legacy Management -- Energy Technology Engineering...

    Office of Legacy Management (LM)

    Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site ... laboratory that tested components and systems for liquid metal cooled nuclear reactors. ...

  11. DOE - Office of Legacy Management -- WNI Split Rock Site - 043

    Office of Legacy Management (LM)

    Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: The Western Nuclear, Inc. (WNI) Split Rock site is a Uranium Mill ...

  12. DOE standard: Radiological control

    SciTech Connect

    Not Available

    1999-07-01

    The Department of Energy (DOE) has developed this Standard to assist line managers in meeting their responsibilities for implementing occupational radiological control programs. DOE has established regulatory requirements for occupational radiation protection in Title 10 of the Code of Federal Regulations, Part 835 (10 CFR 835), ``Occupational Radiation Protection``. Failure to comply with these requirements may lead to appropriate enforcement actions as authorized under the Price Anderson Act Amendments (PAAA). While this Standard does not establish requirements, it does restate, paraphrase, or cite many (but not all) of the requirements of 10 CFR 835 and related documents (e.g., occupational safety and health, hazardous materials transportation, and environmental protection standards). Because of the wide range of activities undertaken by DOE and the varying requirements affecting these activities, DOE does not believe that it would be practical or useful to identify and reproduce the entire range of health and safety requirements in this Standard and therefore has not done so. In all cases, DOE cautions the user to review any underlying regulatory and contractual requirements and the primary guidance documents in their original context to ensure that the site program is adequate to ensure continuing compliance with the applicable requirements. To assist its operating entities in achieving and maintaining compliance with the requirements of 10 CFR 835, DOE has established its primary regulatory guidance in the DOE G 441.1 series of Guides. This Standard supplements the DOE G 441.1 series of Guides and serves as a secondary source of guidance for achieving compliance with 10 CFR 835.

  13. MONTHLY RADIATION SURVEY TECHNICAL BASIS

    SciTech Connect

    BROWN, R.L.

    2003-06-13

    This document details the technical basis, analysis, and justification for rescheduling radiation surveys in occupied radiation areas within Tank Farm Facilities from a weekly to a monthly frequency. The purpose of this document is to provide the technical basis, analysis, and justification for seeking a technical equivalency determination (TED) to TFRCM Article 552.1.b. The scope of this document limited to radiation surveys in occupied areas, no equivalency is being sought for high radiation area boundary surveys, radiological buffer area surveys, active ventilations surveys, or work coverage surveys.

  14. Literature Survey of Crude Oil Properties Relevant to Handling...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... As the first step in the investigative process, this initial ... data pertaining to the chemical and physical properties ... agreement among the studies reviewed that the methods ...

  15. Radiological control manual. Revision 1

    SciTech Connect

    Kloepping, R.

    1996-05-01

    This Lawrence Berkeley National Laboratory Radiological Control Manual (LBNL RCM) has been prepared to provide guidance for site-specific additions, supplements and interpretation of the DOE Radiological Control Manual. The guidance provided in this manual is one methodology to implement the requirements given in Title 10 Code of Federal Regulations Part 835 (10 CFR 835) and the DOE Radiological Control Manual. Information given in this manual is also intended to provide demonstration of compliance to specific requirements in 10 CFR 835. The LBNL RCM (Publication 3113) and LBNL Health and Safety Manual Publication-3000 form the technical basis for the LBNL RPP and will be revised as necessary to ensure that current requirements from Rules and Orders are represented. The LBNL RCM will form the standard for excellence in the implementation of the LBNL RPP.

  16. Transfer Area Mechanical Handling Calculation

    SciTech Connect

    B. Dianda

    2004-06-23

    This calculation is intended to support the License Application (LA) submittal of December 2004, in accordance with the directive given by DOE correspondence received on the 27th of January 2004 entitled: ''Authorization for Bechtel SAX Company L.L. C. to Include a Bare Fuel Handling Facility and Increased Aging Capacity in the License Application, Contract Number DE-AC28-01R W12101'' (Arthur, W.J., I11 2004). This correspondence was appended by further Correspondence received on the 19th of February 2004 entitled: ''Technical Direction to Bechtel SAIC Company L.L. C. for Surface Facility Improvements, Contract Number DE-AC28-OIRW12101; TDL No. 04-024'' (BSC 2004a). These documents give the authorization for a Fuel Handling Facility to be included in the baseline. The purpose of this calculation is to establish preliminary bounding equipment envelopes and weights for the Fuel Handling Facility (FHF) transfer areas equipment. This calculation provides preliminary information only to support development of facility layouts and preliminary load calculations. The limitations of this preliminary calculation lie within the assumptions of section 5 , as this calculation is part of an evolutionary design process. It is intended that this calculation is superseded as the design advances to reflect information necessary to support License Application. The design choices outlined within this calculation represent a demonstration of feasibility and may or may not be included in the completed design. This calculation provides preliminary weight, dimensional envelope, and equipment position in building for the purposes of defining interface variables. This calculation identifies and sizes major equipment and assemblies that dictate overall equipment dimensions and facility interfaces. Sizing of components is based on the selection of commercially available products, where applicable. This is not a specific recommendation for the future use of these components or their related

  17. CANISTER HANDLING FACILITY DESCRIPTION DOCUMENT

    SciTech Connect

    J.F. Beesley

    2005-04-21

    The purpose of this facility description document (FDD) is to establish requirements and associated bases that drive the design of the Canister Handling Facility (CHF), which will allow the design effort to proceed to license application. This FDD will be revised at strategic points as the design matures. This FDD identifies the requirements and describes the facility design, as it currently exists, with emphasis on attributes of the design provided to meet the requirements. This FDD is an engineering tool for design control; accordingly, the primary audience and users are design engineers. This FDD is part of an iterative design process. It leads the design process with regard to the flowdown of upper tier requirements onto the facility. Knowledge of these requirements is essential in performing the design process. The FDD follows the design with regard to the description of the facility. The description provided in this FDD reflects the current results of the design process.

  18. Hydrogen Fuel for Material Handling

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    p Hydrogen Fuel for Hydrogen Fuel for Material Handling Tom Joseph © Air Products & Chemicals, Inc., 2009 7201 Hamilton Blvd Allentown PA 18195 7201 Hamilton Blvd., Allentown PA 18195 Fuel Cell Packs for MHE Form Fit and Function Battery Replacement Form, Fit and Function Battery Replacement © Air Products & Chemicals, Inc., 2009 Courtesy of Ballard Power Systems 31.1 x 13.2 x 31.6 LWH MHE Classes and Pack size 4kW 9kW 14kW 4kW 9kW 14kW CLASS 1 Forklift 32 x 38.6 x 22.7" LWH CLASS

  19. EA-1900: Radiological Work and Storage Building at the Knolls Atomic Power Laboratory Kesselring Site, West Milton, New York

    Energy.gov [DOE]

    The Naval Nuclear Propulsion Program (NNPP) intent to prepare an Environmental Assessment for a radiological work and storage building at the Knolls Atomic Power Laboratory (Kesselring Site in West Milton, New York. A new facility is needed to streamline radioactive material handling and storage operations, permit demolition of aging facilities, and accommodate efficient maintenance of existing nuclear reactors.

  20. Pre-MARSSIM Surveys in a MARSSIM World: Demonstrating How Pre-MARSSIM

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Radiological Data Demonstrate Protectiveness at Formerly Utilized Sites Remedial Action Program Sites | Department of Energy Pre-MARSSIM Surveys in a MARSSIM World: Demonstrating How Pre-MARSSIM Radiological Data Demonstrate Protectiveness at Formerly Utilized Sites Remedial Action Program Sites Pre-MARSSIM Surveys in a MARSSIM World: Demonstrating How Pre-MARSSIM Radiological Data Demonstrate Protectiveness at Formerly Utilized Sites Remedial Action Program Sites Pre-MARSSIM Surveys in a

  1. Early Markets: Fuel Cells for Material Handling Equipment | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Material Handling Equipment Early Markets: Fuel Cells for Material Handling Equipment This fact sheet describes the use of hydrogen fuel cells to power material handling equipment ...

  2. Operating Experience Level 3, Losing Control: Material Handling...

    Energy Saver

    Losing Control: Material Handling Dangers Operating Experience Level 3, Losing Control: Material Handling Dangers October 23, 2014 OE-3 2014-05: Losing Control: Material Handling...

  3. Experiences with decontaminating tritium-handling apparatus

    SciTech Connect

    Maienschein, J.L.; Garcia, F.; Garza, R.G.; Kanna, R.L.; Mayhugh, S.R.; Taylor, D.T.

    1991-07-01

    Tritium-handling apparatus has been decontaminated as part of the shutdown of the LLNL Tritium Facility. Two stainless-steel gloveboxes that had been used to process lithium deuteride-tritide (LiDT) salt were decontaminated using the Portable Cleanup System so that they could be flushed with room air through the facility ventilation system. Further surface decontamination was performed by scrubbing the interior with paper towels and ethyl alcohol or Swish{trademark}. The surface contamination, as shown by swipe surveys, was reduced from 4{times}10{sup 4}--10{sup 6} disintegrations per minute (dpm)/cm{sup 2} to 2{times}10{sup 2}--4{times}10{sup 4} dpm/cm{sup 2}. Details on the decontamination operation are provided. A series of metal (palladium and vanadium) hydride storage beds have been drained of tritium and flushed with deuterium in order to remove as much tritium as possible. The bed draining and flushing procedure is described, and a calculational method is presented which allows estimation of the tritium remaining in a bed after it has been drained and flushed. Data on specific bed draining and flushing are given.

  4. 327 Building liquid waste handling options modification project plan

    SciTech Connect

    Ham, J.E.

    1998-03-28

    This report evaluates the modification options for handling radiological liquid waste (RLW) generated during decontamination and cleanout of the 327 Building. The overall objective of the 327 Facility Stabilization Project is to establish a passively safe and environmentally secure configuration of the 327 Facility. The issue of handling of RLW from the 327 Facility (assuming the 34O Facility is not available to accept the RLW) has been conceptually examined in at least two earlier engineering studies (Parsons 1997a and Hobart l997). Each study identified a similar preferred alternative that included modifying the 327 Facility RLWS handling systems to provide a truck load-out station, either within the confines of the facility or exterior to the facility. The alternatives also maximized the use of existing piping, tanks, instrumentation, controls and other features to minimize costs and physical changes. An issue discussed in each study involved the anticipated volume of the RLW stream. Estimates ranged between 113,550 and 387,500 liters in the earlier studies. During the development of the 324/327 Building Stabilization/Deactivation Project Management Plan, the lower estimate of approximately 113,550 liters was confirmed and has been adopted as the baseline for the 327 Facility RLW stream. The goal of this engineering study is to reevaluate the existing preferred alternative and select a new preferred alternative, if appropriate. Based on the new or confirmed preferred alternative, this study will also provide a conceptual design and cost estimate for required modifications to the 327 Facility to allow removal of RLWS and treatment of the RLW generated during deactivation.

  5. WIPP Radiological Relase Report Phase 2

    Office of Environmental Management (EM)

    Department of Energy Office of Environmental Management Accident Investigation Report Phase 2 Radiological Release Event at the Waste Isolation Pilot Plant, February 14, 2014 April 2015 Radiological Release Event at the Waste Isolation Pilot Plant Radiological Release Event at the Waste Isolation Pilot Plant Disclaimer On February 14, 2014, an airborne radiological release occurred at the Department of Energy Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico. On March 4, 2014, an

  6. Operational Guidelines/Radiological Emergency Response

    Energy.gov [DOE]

    Operational Guidelines/Radiological Emergency Response. Provides information and resources concerning the development of Operational Guidelines as part of planning guidance for protection and recovery following Radiological Dispersal Device (RDD) and/or Improvised Nuclear Device (IND) incidents. Operational Guidelines Technical (OGT) Manual, 2009 RESRAD-RDD Complementing Software to OGT Manual EPA Protective Action Guidelines (2013), Interim Final Federal Radiological Monitoring and Assessment Center (FRMAC) Federal Radiological Preparedness Coordinating Committee (FRPCC)

  7. Radiological Assistance Program | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    | (NNSA) Radiological Assistance Program RAP Logo NNSA's Radiological Assistance Program (RAP) is the nation's premier first-response resource in assessing an emergency situation and advising decision-makers on further steps to take to evaluate and minimize the hazards of a radiological incident. RAP provides resources (trained personnel and equipment) to evaluate, assess, advise, isotopically identify, search for, and assist in the mitigation of actual or perceived nuclear or radiological

  8. Nuclear & Radiological Material Removal | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    & Radiological Material Removal | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation...

  9. International Data on Radiological Sources

    SciTech Connect

    Martha Finck; Margaret Goldberg

    2010-07-01

    ABSTRACT The mission of radiological dispersal device (RDD) nuclear forensics is to identify the provenance of nuclear and radiological materials used in RDDs and to aid law enforcement in tracking nuclear materials and routes. The application of databases to radiological forensics is to match RDD source material to a source model in the database, provide guidance regarding a possible second device, and aid the FBI by providing a short list of manufacturers and distributors, and ultimately to the last legal owner of the source. The Argonne/Idaho National Laboratory RDD attribution database is a powerful technical tool in radiological forensics. The database (1267 unique vendors) includes all sealed sources and a device registered in the U.S., is complemented by data from the IAEA Catalogue, and is supported by rigorous in-lab characterization of selected sealed sources regarding physical form, radiochemical composition, and age-dating profiles. Close working relationships with global partners in the commercial sealed sources industry provide invaluable technical information and expertise in the development of signature profiles. These profiles are critical to the down-selection of potential candidates in either pre- or post- event RDD attribution. The down-selection process includes a match between an interdicted (or detonated) source and a model in the database linked to one or more manufacturers and distributors.

  10. Departmental Radiological Emergency Response Assets

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    2007-06-27

    The order establishes requirements and responsibilities for the DOE/NNSA national radiological emergency response assets and capabilities and Nuclear Emergency Support Team assets. Supersedes DOE O 5530.1A, DOE O 5530.2, DOE O 5530.3, DOE O 5530.4, and DOE O 5530.5.

  11. radiological | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    radiological NNSA program strengthens national security from afar The Nuclear Smuggling Detection and Deterrence (NSDD) program is a key component of NNSA's core mission to reduce nuclear threats. The program, part of NNSA's Office of Defense Nuclear Nonproliferation, provides partners tools and training to deter, detect, and investigate smuggling of

  12. Radiological Security Partnership Information | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) About / Our Programs / Nonproliferation / Global Material Security / Radiological Security / Radiological Security Partnership Radiological Security Partnership Information Radioactive sources play an important role in a number of commercial, medical, and research facilities. The benefits of these sources must be balanced with proper security. The Department of Energy's (DOE) National Nuclear Security Administration (NNSA) is working with the Nuclear Regulatory

  13. TEPP Training - Modular Emergency Response Radiological Transportation

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Training (MERRTT) | Department of Energy Training - Modular Emergency Response Radiological Transportation Training (MERRTT) TEPP Training - Modular Emergency Response Radiological Transportation Training (MERRTT) Once the jurisdiction has completed an evaluation of their plans and procedures, they will need to address any gaps in training. To assist, TEPP has developed the Modular Emergency Response Radiological Transportation Training (MERRTT) program. MERRTT provides fundamental knowledge

  14. Model Recovery Procedure for Response to a Radiological Transportation...

    Office of Environmental Management (EM)

    for Response to a Radiological Transportation Incident Model Recovery Procedure for Response to a Radiological Transportation Incident This Transportation Emergency...

  15. REM Handling Procedures | The Ames Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    REM Handling Procedures Below are recommended handling procedures for the Rare Earth Metals. Keep in mind that these procedures are intended for very high purity metals, and alternative procedures may exist or be better suited to your facilities' capabilities. Please consult with your safety officer(s) before employing any of these procedures. The procedures are grouped by element: La, Ce, Pr & Nd Sc, Y, Gd, Tb, Dy, Ho, Er, Tm and Lu Sm & Yb Eu RECOMMENDED HANDLING PROCEDURES FOR: La,

  16. Apparatus for remotely handling components

    DOEpatents

    Szkrybalo, Gregory A.; Griffin, Donald L.

    1994-01-01

    The inventive apparatus for remotely handling bar-like components which define a longitudinal direction includes a gripper mechanism for gripping the component including first and second gripper members longitudinally fixedly spaced from each other and oriented parallel to each other in planes transverse to the longitudinal direction. Each gripper member includes a jaw having at least one V-groove with opposing surfaces intersecting at a base and extending radially relative to the longitudinal direction for receiving the component in an open end between the opposing surfaces. The V-grooves on the jaw plate of the first and second gripper members are aligned in the longitudinal direction to support the component in the first and second gripper members. A jaw is rotatably mounted on and a part of each of the first and second gripper members for selectively assuming a retracted mode in which the open end of the V-groove is unobstructed and active mode in which the jaw spans the open end of the V-groove in the first and second gripper members. The jaw has a locking surface for contacting the component in the active mode to secure the component between the locking surface of the jaw and the opposing surfaces of the V-groove. The locking surface has a plurality of stepped portions, each defining a progressively decreasing radial distance between the base of the V-groove and the stepped portion opposing the base to accommodate varying sizes of components.

  17. Mobile autonomous robotic apparatus for radiologic characterization

    DOEpatents

    Dudar, Aed M.; Ward, Clyde R.; Jones, Joel D.; Mallet, William R.; Harpring, Larry J.; Collins, Montenius X.; Anderson, Erin K.

    1999-01-01

    A mobile robotic system that conducts radiological surveys to map alpha, beta, and gamma radiation on surfaces in relatively level open areas or areas containing obstacles such as stored containers or hallways, equipment, walls and support columns. The invention incorporates improved radiation monitoring methods using multiple scintillation detectors, the use of laser scanners for maneuvering in open areas, ultrasound pulse generators and receptors for collision avoidance in limited space areas or hallways, methods to trigger visible alarms when radiation is detected, and methods to transmit location data for real-time reporting and mapping of radiation locations on computer monitors at a host station. A multitude of high performance scintillation detectors detect radiation while the on-board system controls the direction and speed of the robot due to pre-programmed paths. The operators may revise the preselected movements of the robotic system by ethernet communications to remonitor areas of radiation or to avoid walls, columns, equipment, or containers. The robotic system is capable of floor survey speeds of from 1/2-inch per second up to about 30 inches per second, while the on-board processor collects, stores, and transmits information for real-time mapping of radiation intensity and the locations of the radiation for real-time display on computer monitors at a central command console.

  18. Mobile autonomous robotic apparatus for radiologic characterization

    DOEpatents

    Dudar, A.M.; Ward, C.R.; Jones, J.D.; Mallet, W.R.; Harpring, L.J.; Collins, M.X.; Anderson, E.K.

    1999-08-10

    A mobile robotic system is described that conducts radiological surveys to map alpha, beta, and gamma radiation on surfaces in relatively level open areas or areas containing obstacles such as stored containers or hallways, equipment, walls and support columns. The invention incorporates improved radiation monitoring methods using multiple scintillation detectors, the use of laser scanners for maneuvering in open areas, ultrasound pulse generators and receptors for collision avoidance in limited space areas or hallways, methods to trigger visible alarms when radiation is detected, and methods to transmit location data for real-time reporting and mapping of radiation locations on computer monitors at a host station. A multitude of high performance scintillation detectors detect radiation while the on-board system controls the direction and speed of the robot due to pre-programmed paths. The operators may revise the preselected movements of the robotic system by ethernet communications to remonitor areas of radiation or to avoid walls, columns, equipment, or containers. The robotic system is capable of floor survey speeds of from 1/2-inch per second up to about 30 inches per second, while the on-board processor collects, stores, and transmits information for real-time mapping of radiation intensity and the locations of the radiation for real-time display on computer monitors at a central command console. 4 figs.

  19. Radiological characterization of a vitrification facility for decommissioning

    SciTech Connect

    Asou, M. [CEA/DEN/VALRHO/UMODD, 30207 Bagnols-sur-Ceze Cedex (France); Le Goaller, C. [CEA/DEN/VALRHO/DDCO, 30207 Bagnols-sur-Ceze Cedex (France); Martin, F. [AREVA NC DAP/MOP (France)

    2007-07-01

    Cleanup operations in the Marcoule Vitrification Facility (AVM) will start in 2007. This plant includes 20 highly irradiating storage tanks for high-level liquid waste before vitrification. The objective of the cleanup phase is to significantly decrease the amount of highly radioactive waste resulting from dismantling. A comprehensive radiological survey of the plant was initiated in 2000. Most of the tanks were characterized using advanced technologies: gamma imaging, CdZnTe gamma spectroscopy, dose rate measurements and 3D calculations codes. At the same time, inspections were conducted to develop 3D geometrical models of the tanks. The techniques used and the main results obtained are described as well as lessons learned from these operations. The rinsing program was defined in 2006. Decontamination operations are expected to begin in 2007, and radiological surveys will be followed up to monitor the efficiency of the decontamination process. Specific rinsing of all tanks and equipment will be carried out from 2007 to 2009. Concentrated liquid solutions will be vitrified between 2008 and 2010; the decommissioning of AVM will be delayed until the end of 2010. This strategy aims at producing less than 5% 'B' type (long-lived intermediate-level) waste from the decommissioning operations, as well as reducing the dose rate and risks by simplified remote dismantling. The paper reviews the main options selected for decontamination, as well as the radiological characterization strategy. Some cost-related aspects will also be analyzed. (authors)

  20. Understanding Mechanisms of Radiological Contamination

    SciTech Connect

    Rick Demmer; John Drake; Ryan James, PhD

    2014-03-01

    Over the last 50 years, the study of radiological contamination and decontamination has expanded significantly. This paper addresses the mechanisms of radiological contamination that have been reported and then discusses which methods have recently been used during performance testing of several different decontamination technologies. About twenty years ago the Idaho Nuclear Technology Engineering Center (INTEC) at the INL began a search for decontamination processes which could minimize secondary waste. In order to test the effectiveness of these decontamination technologies, a new simulated contamination, termed SIMCON, was developed. SIMCON was designed to replicate the types of contamination found on stainless steel, spent fuel processing equipment. Ten years later, the INL began research into methods for simulating urban contamination resulting from a radiological dispersal device (RDD). This work was sponsored by the Defense Advanced Research Projects Agency (DARPA) and included the initial development an aqueous application of contaminant to substrate. Since 2007, research sponsored by the US Environmental Protection Agency (EPA) has advanced that effort and led to the development of a contamination method that simulates particulate fallout from an Improvised Nuclear Device (IND). The IND method diverges from previous efforts to create tenacious contamination by simulating a reproducible “loose” contamination. Examining these different types of contamination (and subsequent decontamination processes), which have included several different radionuclides and substrates, sheds light on contamination processes that occur throughout the nuclear industry and in the urban environment.

  1. How to deal with radiologically contaminated vegetation

    SciTech Connect

    Wilde, E.W.; Murphy, C.E.; Lamar, R.T.; Larson, M.J.

    1996-12-31

    This report describes the findings from a literature review conducted as part of a Department of Energy, Office of Technology Development Biomass Remediation Task. The principal objective of this project is to develop a process or group of processes to treat radiologically contaminated vegetation in a manner that minimizes handling, processing, and treatment costs. Contaminated, woody vegetation growing on waste sites at SRS poses a problem to waste site closure technologies that are being considered for these sites. It is feared that large sections of woody vegetation (logs) can not be buried in waste sites where isolation of waste is accomplished by capping the site. Logs or large piles of woody debris have the potential of decaying and leaving voids under the cap. This could lead to cap failure and entrance of water into the waste. Large solid objects could also interfere with treatments like in situ mixing of soil with grout or other materials to encapsulate the contaminated sediments and soils in the waste sites. Optimal disposal of the wood includes considerations of volume reduction, treatment of the radioactive residue resulting from volume reduction, or confinement without volume reduction. Volume reduction consists primarily of removing the carbon, oxygen, and hydrogen in the wood, leaving an ash that would contain most of the contamination. The only contaminant that would be released by volume reduction would by small amounts of the radioactive isotope of hydrogen, tritium. The following sections will describe the waste sites at SRS which contain contaminated vegetation and are potential candidates for the technology developed under this proposal. The description will provide a context for the magnitude of the problem and the logistics of the alternative solutions that are evaluated later in the review. 76 refs.

  2. How the NWC handles software as product

    SciTech Connect

    Vinson, D.

    1997-11-01

    This tutorial provides a hands-on view of how the Nuclear Weapons Complex project should be handling (or planning to handle) software as a product in response to Engineering Procedure 401099. The SQAS has published the document SQAS96-002, Guidelines for NWC Processes for Handling Software Product, that will be the basis for the tutorial. The primary scope of the tutorial is on software products that result from weapons and weapons-related projects, although the information presented is applicable to many software projects. Processes that involve the exchange, review, or evaluation of software product between or among NWC sites, DOE, and external customers will be described.

  3. WIPP Radiological Release Report Phase 1

    Office of Environmental Management (EM)

    U.S. Department of Energy Office of Environmental Management Accident Investigation Report Phase 1 Radiological Release Event at the Waste Isolation Pilot Plant on February 14, 2014 April 2014 Radiological Release Event at the Waste Isolation Pilot Plant Radiological Release Event at the Waste Isolation Pilot Plant Disclaimer Phase 1 of this accident investigation report is an independent product of the Accident Investigation Board appointed by Matthew Moury, Deputy Assistant Secretary, Safety,

  4. Nuclear / Radiological Advisory Team | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) / Radiological Advisory Team NRAT Logo NNSA's Nuclear / Radiological Advisory Team (NRAT) provides an emergency response capability for on-scene scientific and technical advice for both domestic and international nuclear or radiological incidents. It is led by a Senior Energy Official who runs the NNSA field operation and who coordinates NNSA follow-on assets as needed. The NRAT is composed of scientists and technicians who can provide advice or conduct limited

  5. Radiological Triage | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    Radiological Triage Triage Logo NNSA's Triage is a non-deployable, secure, on-line capability that provides remote support to emergency responders in the event of a nuclear or radiological emergency. Triage has on-call scientists available 24 hours a day to analyze site-specific data and confirm radioisotope identification in the event of a radiological incident. The data is transmitted through the Triage website or provided over the telephone. Triage is an integrated system that is comprised of

  6. Radiological Security | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    Global Material Security Radiological Security The program collaborates with domestic and international partners to address the threat of illicit use of high-priority radiological materials in the United States and abroad. The Radiological Security program accomplishes its mission by removing and disposing of excess or orphaned radioactive sources; promoting the replacement of radioactive sources with non-isotopic technologies, where feasible; and increasing security where high-priority

  7. Nation's Radiological Assistance Program teams practice emergency...

    National Nuclear Security Administration (NNSA)

    Home Blog Nation's Radiological Assistance Program teams practice emergency response ... of Department of Energy (DOE)National Nuclear Security Administration (NNSA) nuclear ...

  8. Cardiovascular and Interventional Radiological Society of Europe...

    Office of Scientific and Technical Information (OSTI)

    Cardiovascular and Interventional Radiological Society of Europe Guidelines on Endovascular Treatment in Aortoiliac Arterial Disease Citation Details In-Document Search Title: ...

  9. Radiological Control Programs for Special Tritium Compounds

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    APPROVAL OF CHANGE NOTICE 1 TO DEPARTMENT OF ENERGY (DOE) SUBJECT. HANDBOOK 1184-2004, RADIOLOGICAL CONTROL PROGRAMS FOR SPECIAL TRITIUM COMPOUNDS TO: Dennis Kubicki, EH-24 ...

  10. DOE Issues WIPP Radiological Release Investigation Report

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Management (EM) released the initial accident investigation report related to the ... After the entry teams determine the source of the radiological event, the accident ...

  11. Radiological Assistance Program Flight Planning Tool

    SciTech Connect

    2011-12-19

    The Radiological Assitance Program (RAP) is the National Nuclear Security Administration's (NNSA) first responder to radiological emergencies. RAP's mission is to identify and minimize radiological hazards, as well as provide radiological emergency response and technical advice to decision makers. One tool commonly used is aerial radiation detection equipment. During a response getting this equipment in the right place quickly is critical. The RAP Flight Planning Tool (a ArcGIS 10 Desktop addin) helps minimize this response time and provides specific customizable flight path information to the flight staff including maps, coordinates, and azimuths.

  12. Operating Experience Level 3: Radiologically Contaminated Respirators...

    Energy Saver

    Experience Level 3 provides information on a safety concern related to radiological contamination of launderedreconditioned respirators and parts that have been certified as...

  13. Radiological Contamination Control Training for Laboratory Research

    Energy Saver

    researchers. Course Description: This course illustrates and reinforces the skills and knowledge needed to assist personnel with radiological controls for laboratory research...

  14. Radiological Control - DOE Directives, Delegations, and Requirements

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    98-2008, Change Notice 1, Radiological Control by Diane Johnson The Department of Energy (DOE) has developed this Standard to assist line managers in meeting their responsibilities...

  15. Nuclear / Radiological Advisory Team | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    Nuclear Radiological Advisory Team (NRAT) provides an emergency response capability for on-scene scientific and technical advice for both domestic and international nuclear or ...

  16. Radiological Assistance Program Flight Planning Tool

    Energy Science and Technology Software Center

    2011-12-19

    The Radiological Assitance Program (RAP) is the National Nuclear Security Administration's (NNSA) first responder to radiological emergencies. RAP's mission is to identify and minimize radiological hazards, as well as provide radiological emergency response and technical advice to decision makers. One tool commonly used is aerial radiation detection equipment. During a response getting this equipment in the right place quickly is critical. The RAP Flight Planning Tool (a ArcGIS 10 Desktop addin) helps minimize this responsemore » time and provides specific customizable flight path information to the flight staff including maps, coordinates, and azimuths.« less

  17. Memorandum, Reporting of Radiological Sealed Sources Transactions...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    The requirements for reporting transactions involving radiological sealed sources are identified in Department of Energy (DOE) Notice (N) 234.1, Reporting of Radioactive Sealed ...

  18. NV/YMP radiological control manual, Revision 2

    SciTech Connect

    Gile, A.L.

    1996-11-01

    The Nevada Test Site (NTS) and the adjacent Yucca Mountain Project (YMP) are located in Nye County, Nevada. The NTS has been the primary location for testing nuclear explosives in the continental US since 1951. Current activities include operating low-level radioactive and mixed waste disposal facilities for US defense-generated waste, assembly/disassembly of special experiments, surface cleanup and site characterization of contaminated land areas, and non-nuclear test operations such as controlled spills of hazardous materials at the hazardous Materials (HAZMAT) Spill Center (HSC). Currently, the major potential for occupational radiation exposure is associated with the burial of low-level nuclear waste and the handling of radioactive sources. Planned future remediation of contaminated land areas may also result in radiological exposures. The NV/YMP Radiological Control Manual, Revision 2, represents DOE-accepted guidelines and best practices for implementing Nevada Test Site and Yucca Mountain Project Radiation Protection Programs in accordance with the requirements of Title 10 Code of Federal Regulations Part 835, Occupational Radiation Protection. These programs provide protection for approximately 3,000 employees and visitors annually and include coverage for the on-site activities for both personnel and the environment. The personnel protection effort includes a DOE Laboratory Accreditation Program accredited dosimetry and personnel bioassay programs including in-vivo counting, routine workplace air sampling, personnel monitoring, and programmatic and job-specific As Low as Reasonably Achievable considerations.

  19. Final Report - Independent Confirmatory Survey Summary and Results for the Hematite Decommissioning Project

    SciTech Connect

    E.N. Bailey

    2009-03-18

    The objectives of the confirmatory surveys were to provide independent contractor field data reviews and to generate independent radiological data for use by the NRC in evaluating the adequacy and accuracy of the licensee’s procedures and survey results.

  20. 2004 Biodiesel Handling and Use Guidelines (Revised)

    SciTech Connect

    Not Available

    2004-11-01

    This document is a guide for those who blend, distribute, and use biodiesel and biodiesel blends. It is intended to fleets and individual users, blenders, distributors, and those involved in related activities understand procedures for handling and using biodiesel.

  1. Storage/Handling | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Storage/Handling Storage/Handling Records Management Procedures for Storage, Transfer & Retrieval of Records from the Washington National Records Center (WNRC) or Legacy Management Business Center RETIREMENT OF RECORDS: 1. The Program Office originates the Records Transmittal and Receipt Form SF-135 (PDF, 107KB), and sends it to IM-23 at doerm@hq.doe.gov for approval. 2. IM-23 reviews the SF-135 for completeness/correctness and coordinates with the originating office by email if more

  2. I RADIOLOGICAL SCOPING SURVEY OF FO,RMER MONSANTO' FACILITIES

    Office of Legacy Management (LM)

    responsibility for the production of polonium in support of the development of an ... and were lim ited to trace quantities of polonium fop the analysis of environmental m o n ...

  3. Radiological Survey Data for 38 Grove Avenue, Rochelle Park,...

    Office of Legacy Management (LM)

    E a s t m a n , 0 R A. llhltrnan, NE-24 Aeros pace ATG. SYMBOL NEzE4 . - . 4 . W . rNrfif,LcstG F.e.lg DATE RTG. SYMBOT tNtTTALSSlG, N E - 7 3 ( 4 ) N E - 2 4 R F DOE F ...

  4. RADIOLOGICAL SURVEY AT 5823/5849 NORTH RAVENSWOOD AVEXJE CHICAGO...

    Office of Legacy Management (LM)

    The subcontract number 7401-37-93, was to furnish the necessary personnel, facilities and equipment required to produce special tools, dies, fixtures, etc., from materials ...

  5. RADIOLOGICAL SURVEY OF THE GUN FORGING MACHINE BUILDING ITHACA...

    Office of Legacy Management (LM)

    ... these manuals were developed to meet the requirements of DOE Order I 5700.6C and ASMB NQA-1 for Quality Assurance and contain measures to assess processes during their performance. ...

  6. NNSA to Conduct Aerial Radiological Surveys Over Washington,...

    National Nuclear Security Administration (NNSA)

    Washington, D.C. and Baltimore, MD Areas | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing...

  7. ENERGY MEASUREMENTS GROUP EG&G SURVEY REPORT

    Office of Legacy Management (LM)

    ENERGY MEASUREMENTS GROUP EG&G SURVEY REPORT NRC-81 13 , NOVEMBER 1981 llti * Knb THE REMOTE SENSING lA6ORAORV OF THE UNITED STATES DEPARTMENT OF ENERGY AN AERIAL RADIOLOGICAL ...

  8. Sandia National Laboratories Releases Literature Survey of Crude Oil

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Properties Relevant to Handling and Fire Safety in Transport | Department of Energy Sandia National Laboratories Releases Literature Survey of Crude Oil Properties Relevant to Handling and Fire Safety in Transport Sandia National Laboratories Releases Literature Survey of Crude Oil Properties Relevant to Handling and Fire Safety in Transport March 24, 2015 - 3:30pm Addthis Paula Gant Paula Gant Principal Deputy Assistant Secretary The United States is in the midst of an energy renaissance,

  9. Federal Radiological Monitoring and Assessment Center

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    1992-12-02

    To establish Department of Energy (DOE) policy, procedures, authorities, and requirements for the establishment of a Federal Radiological Monitoring and Assessment Center (FRMAC), as set forth in the Federal Radiological Emergency Response Plan (FRERP). This directive does not cancel another directive. Canceled by DOE O 153.1.

  10. Memorandum, Reporting of Radiological Sealed Sources Transactions

    Energy.gov [DOE]

    The requirements for reporting transactions involving radiological sealed sources are identified in Department of Energy (DOE) Notice (N) 234.1, Reporting of Radioactive Sealed Sources. The data reported in accordance with DOE N 234.1 are maintained in the DOE Radiological Source Registry and Tracking (RSRT) database by the Office of Information Management, within the Office of Environment, Health, Safety and Security.

  11. Radiological Triage | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Radiological Triage NNSA stays prepared with world-class response units September is National Preparedness Month, but for the Department of Energy (DOE) and NNSA, preparedness is a priority every month of the year. NNSA can respond to an emergency at any DOE facility, and it is also the nation's premier technical resource for response to nuclear or radiological

  12. INL@Work Radiological Search & Response Training

    SciTech Connect

    Turnage, Jennifer

    2010-01-01

    Dealing with radiological hazards is just part of the job for many INL scientists and engineers. Dodging bullets isn't. But some Department of Defense personnel may have to do both. INL employee Jennifer Turnage helps train soldiers in the art of detecting radiological and nuclear material. For more information about INL's research projects, visit http://www.facebook.com/idahonationallaboratory.

  13. INL@Work Radiological Search & Response Training

    ScienceCinema

    Turnage, Jennifer

    2016-07-12

    Dealing with radiological hazards is just part of the job for many INL scientists and engineers. Dodging bullets isn't. But some Department of Defense personnel may have to do both. INL employee Jennifer Turnage helps train soldiers in the art of detecting radiological and nuclear material. For more information about INL's research projects, visit http://www.facebook.com/idahonationallaboratory.

  14. Nevada Test Site Radiological Control Manual

    SciTech Connect

    Radiological Control Managers' Council - Nevada Test Site

    2009-10-01

    This document supersedes DOE/NV/11718--079, “NV/YMP Radiological Control Manual,” Revision 5 issued in November 2004. Brief Description of Revision: A complete revision to reflect the recent changes in compliance requirements with 10 CFR 835, and for use as a reference document for Tenant Organization Radiological Protection Programs.

  15. ETA-HITP07 - Road Course Handling Test

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    7 Revision 0 Effective November 1, 2004 Road Course Handling Test Prepared by Electric ... Appendix A - Hydrogen Internal Combustion Vehicle Road Course Handling Test Data Sheet 6 ...

  16. Biodiesel Handling and Use Guide | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Handling and Use Guide Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Biodiesel Handling and Use Guide AgencyCompany Organization: National Renewable Energy...

  17. Hydrogen Fuel for Material Handling | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    for Material Handling Hydrogen Fuel for Material Handling Presented by Tom Joseph at the National Hydrogen Assocation Conference and Hydrogen Expo PDF icon josephinfrastructurefo...

  18. Central Characterization Program (CCP) Contact-Handled (CH) TRU...

    Office of Environmental Management (EM)

    Contact-Handled (CH) TRU Waste Certification and Waste Information SystemWaste Data System (WWISWDS) Data Entry Central Characterization Program (CCP) Contact-Handled (CH) TRU...

  19. V-217: Microsoft Windows NAT Driver ICMP Packet Handling Denial...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    7: Microsoft Windows NAT Driver ICMP Packet Handling Denial of Service Vulnerability V-217: Microsoft Windows NAT Driver ICMP Packet Handling Denial of Service Vulnerability August...

  20. Spectrum Sciences Decision and Data Handling Issues | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Spectrum Sciences Decision and Data Handling Issues Spectrum Sciences Decision and Data Handling Issues PDF icon spectrum sciences softwarebreaches.pdf PDF icon Park ...

  1. MODARIA: Modelling and Data for Radiological Impact Assessment...

    Office of Environmental Management (EM)

    MODARIA: Modelling and Data for Radiological Impact Assessment Context and Overview MODARIA: Modelling and Data for Radiological Impact Assessment Context and Overview Presentation...

  2. Model Annex for Preparedness and Response to Radiological Transportati...

    Office of Environmental Management (EM)

    Annex for Preparedness and Response to Radiological Transportation Incidents Model Annex for Preparedness and Response to Radiological Transportation Incidents This part should...

  3. Office of Radiological Security | Y-12 National Security Complex

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Office of Radiological ... Office of Radiological Security Read more about Y-12's contributions of the Global Threat Reduction Initiative to secure the world's most vulnerable...

  4. DOE - Office of Legacy Management -- U S Naval Radiological Defense...

    Office of Legacy Management (LM)

    Naval Radiological Defense Laboratory - CA 0-06 FUSRAP Considered Sites Site: U. S. NAVAL RADIOLOGICAL DEFENSE LABORATORY (CA.0-06) Eliminated from consideration under FUSRAP - ...

  5. Hawaii Department of Health Indoor and Radiological Health Branch...

    OpenEI (Open Energy Information) [EERE & EIA]

    Indoor and Radiological Health Branch Jump to: navigation, search Name: Hawaii Department of Health Indoor and Radiological Health Branch From Open Energy Information Address: 591...

  6. Nuclear and Radiological Field Training Center | Y-12 National...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... Nuclear and Radiological Field Training Center A site used for nuclear research in Oak ... and Radiological Field Training Center - the only facility of its kind in the world. ...

  7. DOE-HDBK-1122-99; Radiological Technician Training

    Energy Saver

    ... Causes of radiological incidents and emergencies could be ... material, weather conditions, non-radiological ... area to characterize the extent of contamination. * ...

  8. Los Alamos National Security Corrective Action Plan - Radiological...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Partnership (NWP) Corrective Action Plan - Truck Fire and Radiological Release Phase I Carlsbad Field Office (CBFO) Corrective Action Plan - Truck Fire and Radiological Release

  9. Robotic Surveying

    SciTech Connect

    Suzy Cantor-McKinney; Michael Kruzic

    2007-03-01

    ZAPATA ENGINEERING challenged our engineers and scientists, which included robotics expertise from Carnegie Mellon University, to design a solution to meet our client's requirements for rapid digital geophysical and radiological data collection of a munitions test range with no down-range personnel. A prime concern of the project was to minimize exposure of personnel to unexploded ordnance and radiation. The field season was limited by extreme heat, cold and snow. Geographical Information System (GIS) tools were used throughout this project to accurately define the limits of mapped areas, build a common mapping platform from various client products, track production progress, allocate resources and relate subsurface geophysical information to geographical features for use in rapidly reacquiring targets for investigation. We were hopeful that our platform could meet the proposed 35 acres per day, towing both a geophysical package and a radiological monitoring trailer. We held our breath and crossed our fingers as the autonomous Speedrower began to crawl across the playa lakebed. We met our proposed production rate, and we averaged just less than 50 acres per 12-hour day using the autonomous platform with a path tracking error of less than +/- 4 inches. Our project team mapped over 1,800 acres in an 8-week (4 days per week) timeframe. The expertise of our partner, Carnegie Mellon University, was recently demonstrated when their two autonomous vehicle entries finished second and third at the 2005 Defense Advanced Research Projects Agency (DARPA) Grand Challenge. 'The Grand Challenge program was established to help foster the development of autonomous vehicle technology that will some day help save the lives of Americans who are protecting our country on the battlefield', said DARPA Grand Challenge Program Manager, Ron Kurjanowicz. Our autonomous remote-controlled vehicle (ARCV) was a modified New Holland 2550 Speedrower retrofitted to allow the machine

  10. Automated system for handling tritiated mixed waste

    SciTech Connect

    Dennison, D.K.; Merrill, R.D.; Reitz, T.C.

    1995-03-01

    Lawrence Livermore National Laboratory (LLNL) is developing a semi system for handling, characterizing, processing, sorting, and repackaging hazardous wastes containing tritium. The system combines an IBM-developed gantry robot with a special glove box enclosure designed to protect operators and minimize the potential release of tritium to the atmosphere. All hazardous waste handling and processing will be performed remotely, using the robot in a teleoperational mode for one-of-a-kind functions and in an autonomous mode for repetitive operations. Initially, this system will be used in conjunction with a portable gas system designed to capture any gaseous-phase tritium released into the glove box. This paper presents the objectives of this development program, provides background related to LLNL`s robotics and waste handling program, describes the major system components, outlines system operation, and discusses current status and plans.

  11. DOE Hydrogen Storage Technical Performance Targets for Material Handling Equipment

    Energy.gov [DOE]

    This table summarizes hydrogen storage technical performance targets for material handling equipment.

  12. Nuclear Radiological Threat Task Force Established | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | (NNSA) Radiological Threat Task Force Established Nuclear Radiological Threat Task Force Established Washington, DC NNSA's Administrator Linton Brooks announces the establishment of the Nuclear Radiological Threat Reduction Task Force (NRTRTF) to combat the threats posed by radiological dispersion devices or "dirty bombs."

  13. Radiological characterization of the Kellex site. Publication No. 45020. [Metal fabrication; pilot plant to demonstrate units for gaseous diffusion

    SciTech Connect

    Hutchinson, S.W.

    1981-03-01

    A radiological characterization has been conducted at the former Kellex Corporation site in Jersey City, New Jersey. Although several prior surveys and a remedial action were conducted, there was still a need for more information about the radiological condition of the site. A grid was established on the site and the surface was surveyed by a mobile in situ detection system. Trenches were systematically dug in an attempt to find subsurface areas of contamination. Material from the trenches was surveyed by the in situ measurement system and trench sidewalls were soil sampled and surveyed using portable dose rate and count rate instrumentation. Results of the survey indicated that radioactivity levels on the site were at or near background. Small amounts of contaminated material were found but not enough to exceed the guideline specified.

  14. Apparatus for safeguarding a radiological source

    SciTech Connect

    Bzorgi, Fariborz M

    2014-10-07

    A tamper detector is provided for safeguarding a radiological source that is moved into and out of a storage location through an access porthole for storage and use. The radiological source is presumed to have an associated shipping container approved by the U.S. Nuclear Regulatory Commission for transporting the radiological source. The tamper detector typically includes a network of sealed tubing that spans at least a portion of the access porthole. There is an opening in the network of sealed tubing that is large enough for passage therethrough of the radiological source and small enough to prevent passage therethrough of the associated shipping cask. Generally a gas source connector is provided for establishing a gas pressure in the network of sealed tubing, and a pressure drop sensor is provided for detecting a drop in the gas pressure below a preset value.

  15. DOE Issues WIPP Radiological Release Investigation Report

    Energy.gov [DOE]

    Today, the Department of Energy’s Office of Environmental Management (EM) released the initial accident investigation report related to the Feb. 14 radiological release at the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico.

  16. Radiological safety training for uranium facilities

    SciTech Connect

    1998-02-01

    This handbook contains recommended training materials consistent with DOE standardized core radiological training material. These materials consist of a program management guide, instructor`s guide, student guide, and overhead transparencies.

  17. Radiological Safety Analysis Code System.

    Energy Science and Technology Software Center

    2009-12-22

    Version 03 RSAC-6.2 can be used to model complex accidents and radiological consequences to individuals from the release of radionuclides to the atmosphere. A user can generate a fission product inventory; decay and ingrow the inventory during transport through processes, facilities, and the environment; model the downwind dispersion of the activity; and calculate doses to downwind individuals. Doses are calculated through the inhalation, immersion, ground surface and ingestion pathways. New to RSAC-6.2 are the abilitiesmore » to calculate inhalation from release to a room, inhalation from resuspension of activities, and a new model for dry deposition. Doses can now be calculated as close as 10 meters from the release point. RSAC-6.2 has been subjected to extensive independent verification and validation for use in performing safety-related dose calculations to support safety analysis reports. WinRP 2.0, a windows based overlay to RSAC-6.2, assists users in creating and running RSAC-6.2 input files. RSAC-6, Rev. 6.2 (03/11/02) corrects an earlier issue with RSAC-6, compiled with F77L-EM/32 Fortran 77 Version 5.10, which would not allow the executable to run with XP or VISTA Windows operating systems. Because this version is still in use at some facilities, it is being released through RSICC in addition to the new RSAC 7 (CCC-761).« less

  18. Contained radiological analytical chemistry module

    DOEpatents

    Barney, David M.

    1989-01-01

    A system which provides analytical determination of a plurality of water chemistry parameters with respect to water samples subject to radiological contamination. The system includes a water sample analyzer disposed within a containment and comprising a sampling section for providing predetermined volumes of samples for analysis; a flow control section for controlling the flow through the system; and a gas analysis section for analyzing samples provided by the sampling system. The sampling section includes a controllable multiple port valve for, in one position, metering out sample of a predetermined volume and for, in a second position, delivering the material sample for analysis. The flow control section includes a regulator valve for reducing the pressure in a portion of the system to provide a low pressure region, and measurement devices located in the low pressure region for measuring sample parameters such as pH and conductivity, at low pressure. The gas analysis section which is of independent utility provides for isolating a small water sample and extracting the dissolved gases therefrom into a small expansion volume wherein the gas pressure and thermoconductivity of the extracted gas are measured.

  19. Contained radiological analytical chemistry module

    DOEpatents

    Barney, David M.

    1990-01-01

    A system which provides analytical determination of a plurality of water chemistry parameters with respect to water samples subject to radiological contamination. The system includes a water sample analyzer disposed within a containment and comprising a sampling section for providing predetermined volumes of samples for analysis; a flow control section for controlling the flow through the system; and a gas analysis section for analyzing samples provided by the sampling system. The sampling section includes a controllable multiple port valve for, in one position, metering out sample of a predetermined volume and for, in a second position, delivering the material sample for analysis. The flow control section includes a regulator valve for reducing the pressure in a portion of the system to provide a low pressure region, and measurement devices located in the low pressure region for measuring sample parameters such as pH and conductivity, at low pressure. The gas analysis section which is of independent utility provides for isolating a small water sample and extracting the dissolved gases therefrom into a small expansion volume wherein the gas pressure and thermoconductivity of the extracted gas are measured.

  20. Flashback: Rapid scanning for radiological threats

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Flashback: Rapid scanning for radiological threats Flashback: Rapid scanning for radiological threats The ability to identify distinct material density enables the Multi-Mode Passive Detection System (MMPDS)to quickly detect unshielded to heavily shielded nuclear threats, as well as gamma rays, with near-zero false alarms. November 1, 2015 Decision Science Decision Science Decision Sciences' Multi-Mode Passive Detection System: Rapid scanning forradiological threats Click on headline to go to

  1. Environmental Management Headquarters Corrective Action Plan - Radiological

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Release Phase I | Department of Energy I Environmental Management Headquarters Corrective Action Plan - Radiological Release Phase I The purpose of this Corrective Action Plan (CAP) is to specify U.S. Department of Energy (DOE) actions for addressing Office of Environmental Management (EM) Headquarters (HQ) issues identified in the Accident Investigation Report for the Phase 1: Radiological Release Event at the Waste Isolation Pilot Plant (WIPP) on February 14, 2014. The report identified 31

  2. Environmental Management Headquarters Corrective Action Plan - Radiological

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Release Phase II | Department of Energy II Environmental Management Headquarters Corrective Action Plan - Radiological Release Phase II The purpose of this Corrective Action Plan (CAP) is to specify U.S. Department of Energy (DOE) actions for addressing Office of Environmental Management (EM) Headquarters (HQ) issues identified in the Accident Investigation Report for the Phase 2: Radiological Release Event at the Waste Isolation Pilot Plant (WIPP) on February 14, 2014. The report identified

  3. radiological protection | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    protection NNSA Receives Excellence Award for Radiological Security Enhancements in Hawaii HONOLULU - At an official event this week, the City and County of Honolulu presented the Department of Energy's (DOE) National Nuclear Security Administration (NNSA) with the Homeland Security Excellence Award for DOE/NNSA's Office of Radiological Security's (ORS) efforts... Dedication of Radioactive Source Storage Facilities in Tajikistan (Dushanbe, Tajikistan) - On May 11, the United States' Embassy of

  4. Los Alamos responds to radiological incident

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Los Alamos responds to radiological incident Los Alamos responds to radiological incident Multiple tests indicate no health risks to public or employees. August 27, 2012 Aerial view of the Los Alamos Neutron Science Center (LANSCE). Aerial view of the Los Alamos Neutron Science Center (LANSCE). The contamination poses no danger to the public. The Laboratory is investigating the inadvertent spread of Technetium 99 by employees and contractors at the Lujan Neutron Scattering Center August 27,

  5. radiological detection | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    radiological detection Meet a Machine: RPMs keep watch 24/7 to strengthen global nuclear security Ensuring that nuclear materials are not being illicitly moved is part of NNSA's core mission to reduce nuclear and radiological threats. However, since traditional security tools - such as metal detectors, X-ray scanners, and sniffer dogs - cannot measure radiation, frontline... NNSA program strengthens national security from afar The Nuclear Smuggling Detection and Deterrence (NSDD) program is a

  6. Los Alamos National Security Corrective Action Plan - Radiological Release

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Phase II | Department of Energy Security Corrective Action Plan - Radiological Release Phase II Los Alamos National Security Corrective Action Plan - Radiological Release Phase II Los Alamos National Security Corrective Action Plan - Radiological Release Phase II Los Alamos National Security Corrective Action Plan - Radiological Release Phase II (7.59 MB) More Documents & Publications Environmental Management Los Alamos Field Office Corrective Action Plan - Radiological Release Phase II

  7. Waste handling activities in glovebox dismantling facility

    SciTech Connect

    Kitamura, Akihiro; Okada, Takashi; Kashiro, Kashio; Yoshino, Masanori; Hirano, Hiroshi

    2007-07-01

    The Glovebox Dismantling Facility is a facility to decontaminate and size-reduce after-service gloveboxes in the Plutonium Fuel Production Facility, Nuclear Fuel Cycle Engineering Laboratories, Japan Atomic Energy Agency. The wastes generated from these dismantling activities are simultaneously handled and packaged into drums in a bag-out manner. For future waste treatment and disposal, these wastes are separated into material categories. In this paper, we present the basic steps and analyzed data for the waste handling activities. The data were collected from dismantling activities for three gloveboxes (Grinding Pellet Glovebox, Visual Inspection Glovebox, Outer-diameter Screening Glovebox) conducted from 2001-2004. We also describe both current and near-future improvements. (authors)

  8. Improving Memory Error Handling Using Linux

    SciTech Connect

    Carlton, Michael Andrew; Blanchard, Sean P.; Debardeleben, Nathan A.

    2014-07-25

    As supercomputers continue to get faster and more powerful in the future, they will also have more nodes. If nothing is done, then the amount of memory in supercomputer clusters will soon grow large enough that memory failures will be unmanageable to deal with by manually replacing memory DIMMs. "Improving Memory Error Handling Using Linux" is a process oriented method to solve this problem by using the Linux kernel to disable (offline) faulty memory pages containing bad addresses, preventing them from being used again by a process. The process of offlining memory pages simplifies error handling and results in reducing both hardware and manpower costs required to run Los Alamos National Laboratory (LANL) clusters. This process will be necessary for the future of supercomputing to allow the development of exascale computers. It will not be feasible without memory error handling to manually replace the number of DIMMs that will fail daily on a machine consisting of 32-128 petabytes of memory. Testing reveals the process of offlining memory pages works and is relatively simple to use. As more and more testing is conducted, the entire process will be automated within the high-performance computing (HPC) monitoring software, Zenoss, at LANL.

  9. Vestibule and Cask Preparation Mechanical Handling Calculation

    SciTech Connect

    N. Ambre

    2004-05-26

    The scope of this document is to develop the size, operational envelopes, and major requirements of the equipment to be used in the vestibule, cask preparation area, and the crane maintenance area of the Fuel Handling Facility. This calculation is intended to support the License Application (LA) submittal of December 2004, in accordance with the directive given by DOE correspondence received on the 27th of January 2004 entitled: ''Authorization for Bechtel SAIC Company L.L.C. to Include a Bare Fuel Handling Facility and Increased Aging Capacity in the License Application, Contract Number DE-AC28-01R W12101'' (Ref. 167124). This correspondence was appended by further correspondence received on the 19th of February 2004 entitled: ''Technical Direction to Bechtel SAIC Company L.L. C. for Surface Facility Improvements, Contract Number DE-AC28-01R W12101; TDL No. 04-024'' (Ref. 16875 1). These documents give the authorization for a Fuel Handling Facility to be included in the baseline. The limitations of this preliminary calculation lie within the assumptions of section 5 , as this calculation is part of an evolutionary design process.

  10. DOE - Office of Legacy Management -- International Rare Metals...

    Office of Legacy Management (LM)

    1987 NY.38-4 Site Operations: Manufactured and distributed radium and polonium products. ... Radioactive Materials Handled: Radium, Polonium NY.38-5 Radiological Survey(s): Yes ...

  11. DOE - Office of Legacy Management -- Crucible Steel Co of America...

    Office of Legacy Management (LM)

    and Development; Small amount of Thorium forged and rolled; Large amounts of ... Primary Radioactive Materials Handled: Thorium NY.34-1 Radiological Survey(s): None ...

  12. DOE - Office of Legacy Management -- Pfaltz and Bauer Inc - Richfield...

    Office of Legacy Management (LM)

    Operations: Commercial supplier of thorium nitrate for manufacture of gas lantern mantles. ... Primary Radioactive Materials Handled: Thorium nitrate NJ.28-1 Radiological Survey(s): ...

  13. DOE - Office of Legacy Management -- U S Bureau of Mines - PA...

    Office of Legacy Management (LM)

    Site Operations: Conducted studied on explosiveness of Uranium, Thorium and Beryllium. ... Materials Handled: Uranium and Thorium PA.36-2 Radiological Survey(s): Yes - ...

  14. DOE - Office of Legacy Management -- C G Sargent and Sons - MA...

    Office of Legacy Management (LM)

    Site Operations: Conducted extruder and drying tests with thorium in the late 1960s. ... Primary Radioactive Materials Handled: Thorium MA.17-3 Radiological Survey(s): Yes - ...

  15. DOE - Office of Legacy Management -- Wolff-Alport and Co - NY...

    Office of Legacy Management (LM)

    Operations: Commercial operation -- sold thorium residues to the AEC, which in turn ... Primary Radioactive Materials Handled: Thorium NY.30-2 Radiological Survey(s): No Site ...

  16. DOE - Office of Legacy Management -- Heyden Chemical Corp - NJ...

    Office of Legacy Management (LM)

    AEC was interested in their process for keeping thorium oxide in suspension. No indication ... Primary Radioactive Materials Handled: Thorium Oxide NJ.19-2 Radiological Survey(s): ...

  17. DOE - Office of Legacy Management -- Kerr McGee - 028

    Office of Legacy Management (LM)

    Handled: Radiological Survey(s): Site Status: The Kerr McGee plant in Guthrie Oklahoma processed unirradiated uranium scrap for the Atomic Energy Commission, recovering ...

  18. CANISTER HANDLING FACILITY CRITICALITY SAFETY CALCULATIONS

    SciTech Connect

    C.E. Sanders

    2005-04-07

    This design calculation revises and updates the previous criticality evaluation for the canister handling, transfer and staging operations to be performed in the Canister Handling Facility (CHF) documented in BSC [Bechtel SAIC Company] 2004 [DIRS 167614]. The purpose of the calculation is to demonstrate that the handling operations of canisters performed in the CHF meet the nuclear criticality safety design criteria specified in the ''Project Design Criteria (PDC) Document'' (BSC 2004 [DIRS 171599], Section 4.9.2.2), the nuclear facility safety requirement in ''Project Requirements Document'' (Canori and Leitner 2003 [DIRS 166275], p. 4-206), the functional/operational nuclear safety requirement in the ''Project Functional and Operational Requirements'' document (Curry 2004 [DIRS 170557], p. 75), and the functional nuclear criticality safety requirements described in the ''Canister Handling Facility Description Document'' (BSC 2004 [DIRS 168992], Sections 3.1.1.3.4.13 and 3.2.3). Specific scope of work contained in this activity consists of updating the Category 1 and 2 event sequence evaluations as identified in the ''Categorization of Event Sequences for License Application'' (BSC 2004 [DIRS 167268], Section 7). The CHF is limited in throughput capacity to handling sealed U.S. Department of Energy (DOE) spent nuclear fuel (SNF) and high-level radioactive waste (HLW) canisters, defense high-level radioactive waste (DHLW), naval canisters, multicanister overpacks (MCOs), vertical dual-purpose canisters (DPCs), and multipurpose canisters (MPCs) (if and when they become available) (BSC 2004 [DIRS 168992], p. 1-1). It should be noted that the design and safety analyses of the naval canisters are the responsibility of the U.S. Department of the Navy (Naval Nuclear Propulsion Program) and will not be included in this document. In addition, this calculation is valid for the current design of the CHF and may not reflect the ongoing design evolution of the facility

  19. Contact-Handled Transuranic Waste Authorized Methods for Payload...

    Office of Environmental Management (EM)

    This document was used to determine facts and conditions during the Department of Energy Accident Investigation Board's investigation into the radiological release event at the ...

  20. Federal Radiological Monitoring and Assessment Center Overview of FRMAC Operations

    SciTech Connect

    1998-03-01

    In the event of a major radiological emergency, 17 federal agencies with various statutory responsibilities have agreed to coordinate their efforts at the emergency scene under the umbrella of the Federal Radiological Emergency Response Plan. This cooperative effort will ensure that all federal radiological assistance fully supports their efforts to protect the public. the mandated federal cooperation ensures that each agency can obtain the data critical to its specific responsibilities. This Overview of Federal Radiological Monitoring and Assessment Center (FRMAC) describes the FRMAC response activities to a major radiological emergency. It also describes the federal assets and subsequent operational activities which provide federal radiological monitoring and assessment of the off-site areas.

  1. Process Knowledge Summary Report for Materials and Fuels Complex Contact-Handled Transuranic Debris Waste

    SciTech Connect

    R. P. Grant; P. J. Crane; S. Butler; M. A. Henry

    2010-02-01

    This Process Knowledge Summary Report summarizes the information collected to satisfy the transportation and waste acceptance requirements for the transfer of transuranic (TRU) waste between the Materials and Fuels Complex (MFC) and the Advanced Mixed Waste Treatment Project (AMWTP). The information collected includes documentation that addresses the requirements for AMWTP and the applicable portion of their Resource Conservation and Recovery Act permits for receipt and treatment of TRU debris waste in AMWTP. This report has been prepared for contact-handled TRU debris waste generated by the Idaho National Laboratory at MFC. The TRU debris waste will be shipped to AMWTP for purposes of supercompaction. This Process Knowledge Summary Report includes information regarding, but not limited to, the generation process, the physical form, radiological characteristics, and chemical contaminants of the TRU debris waste, prohibited items, and packaging configuration. This report, along with the referenced supporting documents, will create a defensible and auditable record for waste originating from MFC.

  2. Interventional Radiology of Male Varicocele: Current Status

    SciTech Connect

    Iaccarino, Vittorio Venetucci, Pietro

    2012-12-15

    Varicocele is a fairly common condition in male individuals. Although a minor disease, it may cause infertility and testicular pain. Consequently, it has high health and social impact. Here we review the current status of interventional radiology of male varicocele. We describe the radiological anatomy of gonadal veins and the clinical aspects of male varicocele, particularly the physical examination, which includes a new clinical and ultrasound Doppler maneuver. The surgical and radiological treatment options are also described with the focus on retrograde and antegrade sclerotherapy, together with our long experience with these procedures. Last, we compare the outcomes, recurrence and persistence rates, complications, procedure time and cost-effectiveness of each method. It clearly emerges from this analysis that there is a need for randomized multicentre trials designed to compare the various surgical and percutaneous techniques, all of which are aimed at occlusion of the anterior pampiniform plexus.

  3. Routine Radiological Environmental Monitoring Plan. Volume 1

    SciTech Connect

    Bechtel Nevada

    1999-12-31

    The U.S. Department of Energy manages the Nevada Test Site in a manner that meets evolving DOE Missions and responds to the concerns of affected and interested individuals and agencies. This Routine Radiological Monitoring Plan addressess complicance with DOE Orders 5400.1 and 5400.5 and other drivers requiring routine effluent monitoring and environmental surveillance on the Nevada Test Site. This monitoring plan, prepared in 1998, addresses the activities conducted onsite NTS under the Final Environmental Impact Statement and Record of Decision. This radiological monitoring plan, prepared on behalf of the Nevada Test Site Landlord, brings together sitewide environmental surveillance; site-specific effluent monitoring; and operational monitoring conducted by various missions, programs, and projects on the NTS. The plan provides an approach to identifying and conducting routine radiological monitoring at the NTS, based on integrated technical, scientific, and regulatory complicance data needs.

  4. Emergency Response Planning for Radiological Releases

    SciTech Connect

    Biwer, B.M.; LePoire, D.J.; Lazaro, M.A.; Allison, T.; Kamboj, S.; Chen, S.Y.

    2006-07-01

    The emergency management planning tool RISK-RDD was developed to aid emergency response planners and decision makers at all levels of government to better understand and prepare for potential problems related to a radiological release, especially those in urban areas. Radioactive release scenarios were studied by using the RISK-RDD radiological emergency management program. The scenarios were selected to investigate the key aspects of radiological risk management not always considered in emergency planning as a whole. These aspects include the evaluation of both aerosolized and non-aerosolized components of an atmospheric release, methods of release, acute and chronic human health risks, and the concomitant economic impacts as a function of the risk-based cleanup level. (authors)

  5. Radiological Assessment for the Vance Road Facility Source Vault, Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee

    SciTech Connect

    J. R. Morton

    2000-09-01

    From the 1950s, the Vance Road laboratories had been used for a broad range of nuclear medicine research involving numerous radionuclides. These radionuclides were stored in the a source vault located on the first floor of the facility. The Environmental Survey and Site Assessment Program (ESSAP) of ORISE performed a radiological assessment survey of the source vault after it had been remediated and in preparation for converting the area to office space.

  6. Innovative methods for corn stover collecting, handling, storing and transporting

    SciTech Connect

    Atchison, J. E.; Hettenhaus, J. R.

    2004-04-01

    Investigation of innovative methods for collecting, handling, storing, and transporting corn stover for potential use for production of cellulosic ethanol.

  7. APPARATUS FOR HANDLING MIXTURES OF SOLID MATERIALS

    DOEpatents

    Hubbell, J.P.

    1959-08-25

    An apparatus is described for handling either a mixture of finely subdivided materials or a single material requiring a compacting action thereon preparatory to a chemical reducing process carried out in a crucible container. The apparatus is designed to deposit a mixture of dust-forming solid materials in a container while confining the materials against escape into the surrounding atmosphere. A movable filling tube, having a compacting member, is connected to the container and to a covered hopper receiving the mixture of materials. The filling tube is capable of reciprocating in the container and their relative positions are dependent upon the pressure established upon the material by the compacting member.

  8. System for handling and storing radioactive waste

    DOEpatents

    Anderson, J.K.; Lindemann, P.E.

    1982-07-19

    A system and method are claimed for handling and storing spent reactor fuel and other solid radioactive waste, including canisters to contain the elements of solid waste, storage racks to hold a plurality of such canisters, storage bays to store these racks in isolation by means of shielded doors in the bays. This system also includes means for remotely positioning the racks in the bays and an access tunnel within which the remotely operated means is located to position a rack in a selected bay. The modular type of these bays will facilitate the construction of additional bays and access tunnel extension.

  9. System for handling and storing radioactive waste

    DOEpatents

    Anderson, John K.; Lindemann, Paul E.

    1984-01-01

    A system and method for handling and storing spent reactor fuel and other solid radioactive waste, including canisters to contain the elements of solid waste, storage racks to hold a plurality of such canisters, storage bays to store these racks in isolation by means of shielded doors in the bays. This system also includes means for remotely positioning the racks in the bays and an access tunnel within which the remotely operated means is located to position a rack in a selected bay. The modular type of these bays will facilitate the construction of additional bays and access tunnel extension.

  10. TSD-DOSE: A radiological dose assessment model for treatment, storage, and disposal facilities

    SciTech Connect

    Pfingston, M.; Arnish, J.; LePoire, D.; Chen, S.-Y.

    1998-10-14

    Past practices at US Department of Energy (DOE) field facilities resulted in the presence of trace amounts of radioactive materials in some hazardous chemical wastes shipped from these facilities. In May 1991, the DOE Office of Waste Operations issued a nationwide moratorium on shipping all hazardous waste until procedures could be established to ensure that only nonradioactive hazardous waste would be shipped from DOE facilities to commercial treatment, storage, and disposal (TSD) facilities. To aid in assessing the potential impacts of shipments of mixed radioactive and chemically hazardous wastes, a radiological assessment computer model (or code) was developed on the basis of detailed assessments of potential radiological exposures and doses for eight commercial hazardous waste TSD facilities. The model, called TSD-DOSE, is designed to incorporate waste-specific and site-specific data to estimate potential radiological doses to on-site workers and the off-site public from waste-handling operations at a TSD facility. The code is intended to provide both DOE and commercial TSD facilities with a rapid and cost-effective method for assessing potential human radiation exposures from the processing of chemical wastes contaminated with trace amounts of radionuclides.

  11. The year book of diagnostic radiology 1981

    SciTech Connect

    Whitehouse, W.M.; Adams, D.F.; Bookstein, J.J.; Gabrielsen, T.O.; Holt, J.F.; Martel, W.; Silver, T.M.; Thornbury, J.R.

    1981-01-01

    The 1981 edition of the Year Book of Diagnostic Radiology fulfills the standards of excellence established by previous volumes in this series. The abstracts were carefully chosen, are concise, and are well illustrated. The book is recommended for all practicing radiologists: for the resident it is a good source from which to select articles to be carefully studied, and as review source before board examinations; for the subspecialist it provides a means to maintain contact with all areas of diagnostic radiology; and for the general radiologist, it is a convenient and reliable guide to new developments in the specialty.

  12. Performance Assessment for the Idaho National Laboratory Remote-Handled Low-Level Waste Disposal Facility

    SciTech Connect

    Annette L. Schafer; A. Jeffrey Sondrup; Arthur S. Rood

    2012-05-01

    This performance assessment for the Remote-Handled Low-Level Radioactive Waste Disposal Facility at the Idaho National Laboratory documents the projected radiological dose impacts associated with the disposal of low-level radioactive waste at the facility. This assessment evaluates compliance with the applicable radiological criteria of the U.S. Department of Energy and the U.S. Environmental Protection Agency for protection of the public and the environment. The calculations involve modeling transport of radionuclides from buried waste to surface soil and subsurface media, and eventually to members of the public via air, groundwater, and food chain pathways. Projections of doses are calculated for both offsite receptors and individuals who inadvertently intrude into the waste after site closure. The results of the calculations are used to evaluate the future performance of the low-level radioactive waste disposal facility and to provide input for establishment of waste acceptance criteria. In addition, one-factor-at-a-time, Monte Carlo, and rank correlation analyses are included for sensitivity and uncertainty analysis. The comparison of the performance assessment results to the applicable performance objectives provides reasonable expectation that the performance objectives will be met

  13. DOE-HDBK-1122-99; Radiological Control Technician Training

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ALARA Instructor's Guide 1.10-1 Course Title: Radiological Control Technician Module ... Energy, DOE-STD-1098-99, "Radiological Control Standard" 3. 10 CFR Part 835 (1998), ...

  14. DOE-HDBK-1122-99; Radiological Control Technician Training

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    R. L.; PNL; Richland, Wa. 3. DOE-STD-1098-99, "Radiological Control Standard." 4. 10 CFR Part 835 (1998) "Occupational Radiation Protection" 5. "The Health Physics and Radiological ...

  15. Underwater well installations and handling string joint therefor

    SciTech Connect

    Lawson, J.E.

    1982-07-20

    Underwater well apparatus in which the handling string for manipulating a handling tool to, E.G., orient and land a multiple string tubing hanger includes a power portion in the form of a single metal piece having a plain cylindrical outer surface to be presented to the blowout protectors, so that orientation of the handling string relative to the protectors is not necessary, and also having through passages for communicating with the tubing strings, and coupling means for attaching the handling tool to the handling string.

  16. Radiological Assessment of effects from Fukushima Daiichi Nuclear Power Plant

    Energy.gov [DOE]

    NNSA presentation on Radiological Assessment of effects from Fukushima Daiichi Nuclear Power Plant from May 13, 2011

  17. Office of Radiological Security | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Radiological Security NNSA Receives Excellence Award for Radiological Security Enhancements in Hawaii HONOLULU - At an official event this week, the City and County of Honolulu presented the Department of Energy's (DOE) National Nuclear Security Administration (NNSA) with the Homeland Security Excellence Award for DOE/NNSA's Office of Radiological Security's (ORS) efforts... NNSA Provides Tajikistan Specialized Vehicles to Transport Radiological Materials NNSA Program Manager Nick Cavellero,

  18. Radiological Security Program | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Radiological Security Program Armenia Secures Dangerous Radioactive Sources in Cooperation with NNSA The Department of Energy's National Nuclear Security Administration (NNSA) joined the Republic of Armenia today to announce the safe and secure removal of three unused radioactive sources from two locations in Yerevan, Armenia. The successful completion of the radioactive source recovery campaign

  19. Radiological/biological/aerosol removal system

    DOEpatents

    Haslam, Jeffery J

    2015-03-17

    An air filter replacement system for existing buildings, vehicles, arenas, and other enclosed airspaces includes a replacement air filter for replacing a standard air filter. The replacement air filter has dimensions and air flow specifications that allow it to replace the standard air filter. The replacement air filter includes a filter material that removes radiological or biological or aerosol particles.

  20. Development of radiological concentrations and unit liter doses for TWRS FSAR radiological consequence calculations

    SciTech Connect

    Cowley, W.L.

    1996-04-25

    The analysis described in this report develops the Unit Liter Doses for use in the TWRS FSAR. The Unit Liter Doses provide a practical way to calculate conservative radiological consequences for a variety of potential accidents for the tank farms.

  1. Independent Verification Survey Report for the Operable Unit-1 Miamisburg Closure Project, Miamisburg, OH

    SciTech Connect

    Weaver, P.

    2008-03-17

    The objectives of the independent verification survey were to confirm that remedial actions have been effective in meeting established release criteria and that documentation accurately and adequately describes the current radiological and chemical conditions of the MCP site.

  2. Confirmatory Survey for the Partial Site Release at the ABB Inc. CE Winsor Site, Windsor, CT

    SciTech Connect

    W.C. Adams

    2008-06-27

    The objectives of the confirmatory surveys were to confirm that remedial actions had been effective in meeting established release criteria and that documentation accurately and adequately describes the final radiological conditions of the PSR Impacted Areas.

  3. EOSO ENERGY MEASUREMENTS GROUP THE REMOT SENSIN EG&G SURVEY REPORT...

    Office of Legacy Management (LM)

    Oe. 1-G lZLq n EOSO ENERGY MEASUREMENTS GROUP THE REMOT SENSIN EG&G SURVEY REPORT LABORATO EP-F-002 Of THE UNITED STATES DECEMBER 1981 DEPARTMENT OF ENERGY AN AERIAL RADIOLOGICAL ...

  4. ENERGY MEASUREMENTS GROUP EG&G SURVEY REPORT NE-F-003

    Office of Legacy Management (LM)

    * * nEGc.G ENERGY MEASUREMENTS GROUP EG&G SURVEY REPORT NE-F-003 FEBRUARY 1983 THE REMOTE SENSING LABORATORY OF THE UNITED STATES DEPARTMENT OF ENERGY AN AERIAL RADIOLOGICAL ...

  5. Safety Design Strategy for the Remote Handled Low-Level Waste Disposal Project

    SciTech Connect

    Boyd D. Chirstensen

    2015-03-01

    In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3A, “Program and Project Management for the Acquisition of Capital Assets,” safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3A and DOE Order 420.1C, “Facility Safety,” and the expectations of DOE-STD-1189-2008, “Integration of Safety into the Design Process,” provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Remote-Handled Low-Level Waste Disposal Project.

  6. Safety Design Strategy for the Remote Handled Low-Level Waste Disposal Project

    SciTech Connect

    Gary Mecham

    2010-05-01

    In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3A, “Program and Project Management for the Acquisition of Capital Assets,” safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3A and DOE Order 420.1B, “Facility Safety,” and the expectations of DOE-STD-1189-2008, “Integration of Safety into the Design Process,” provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Remote-Handled Low-Level Waste Disposal Project.

  7. Safety Design Strategy for the Remote Handled Low-Level Waste Disposal Project

    SciTech Connect

    Gary Mecham

    2010-10-01

    In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3A, “Program and Project Management for the Acquisition of Capital Assets,” safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3A and DOE Order 420.1B, “Facility Safety,” and the expectations of DOE-STD-1189-2008, “Integration of Safety into the Design Process,” provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Remote-Handled Low-Level Waste Disposal Project.

  8. Safety Design Strategy for the Remote Handled Low-Level Waste Disposal Project

    SciTech Connect

    Boyd D. Chirstensen

    2012-04-01

    In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3A, “Program and Project Management for the Acquisition of Capital Assets,” safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3A and DOE Order 420.1B, “Facility Safety,” and the expectations of DOE-STD-1189-2008, “Integration of Safety into the Design Process,” provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Remote-Handled Low-Level Waste Disposal Project.

  9. Safety Design Strategy for the Remote Handled Low-Level Waste Disposal Project

    SciTech Connect

    Boyd D. Chirstensen

    2012-08-01

    In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3A, “Program and Project Management for the Acquisition of Capital Assets,” safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3A and DOE Order 420.1B, “Facility Safety,” and the expectations of DOE-STD-1189-2008, “Integration of Safety into the Design Process,” provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Remote-Handled Low-Level Waste Disposal Project.

  10. Safety Design Strategy for the Remote Handled Low-Level Waste Disposal Project

    SciTech Connect

    Gary Mecham

    2009-10-01

    In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3A, “Program and Project Management for the Acquisition of Capital Assets,” safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3A and DOE Order 420.1B, “Facility Safety,” and the expectations of DOE-STD-1189-2008, “Integration of Safety into the Design Process,” provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Remote-Handled Low-Level Waste Disposal Project.

  11. Primer on tritium safe handling practices

    SciTech Connect

    Not Available

    1994-12-01

    This Primer is designed for use by operations and maintenance personnel to improve their knowledge of tritium safe handling practices. It is applicable to many job classifications and can be used as a reference for classroom work or for self-study. It is presented in general terms for use throughout the DOE Complex. After reading it, one should be able to: describe methods of measuring airborne tritium concentration; list types of protective clothing effective against tritium uptake from surface and airborne contamination; name two methods of reducing the body dose after a tritium uptake; describe the most common method for determining amount of tritium uptake in the body; describe steps to take following an accidental release of airborne tritium; describe the damage to metals that results from absorption of tritium; explain how washing hands or showering in cold water helps reduce tritium uptake; and describe how tritium exchanges with normal hydrogen in water and hydrocarbons.

  12. Error handling strategies in multiphase inverse modeling

    SciTech Connect

    Finsterle, S.; Zhang, Y.

    2010-12-01

    Parameter estimation by inverse modeling involves the repeated evaluation of a function of residuals. These residuals represent both errors in the model and errors in the data. In practical applications of inverse modeling of multiphase flow and transport, the error structure of the final residuals often significantly deviates from the statistical assumptions that underlie standard maximum likelihood estimation using the least-squares method. Large random or systematic errors are likely to lead to convergence problems, biased parameter estimates, misleading uncertainty measures, or poor predictive capabilities of the calibrated model. The multiphase inverse modeling code iTOUGH2 supports strategies that identify and mitigate the impact of systematic or non-normal error structures. We discuss these approaches and provide an overview of the error handling features implemented in iTOUGH2.

  13. Fuel handling system for a nuclear reactor

    DOEpatents

    Saiveau, James G.; Kann, William J.; Burelbach, James P.

    1986-01-01

    A pool type nuclear fission reactor has a core, with a plurality of core elements and a redan which confines coolant as a hot pool at a first end of the core separated from a cold pool at a second end of the core by the redan. A fuel handling system for use with such reactors comprises a core element storage basket located outside of the redan in the cold pool. An access passage is formed in the redan with a gate for opening and closing the passage to maintain the temperature differential between the hot pool and the cold pool. A mechanism is provided for opening and closing the gate. A lifting arm is also provided for manipulating the fuel core elements through the access passage between the storage basket and the core when the redan gate is open.

  14. Method and system rapid piece handling

    DOEpatents

    Spletzer, Barry L.

    1996-01-01

    The advent of high-speed fabric cutters has made necessary the development of automated techniques for the collection and sorting of garment pieces into collated piles of pieces ready for assembly. The present invention enables a new method for such handling and sorting of garment parts, and to apparatus capable of carrying out this new method. The common thread is the application of computer-controlled shuttling bins, capable of picking up a desired piece of fabric and dropping it in collated order for assembly. Such apparatus with appropriate computer control relieves the bottleneck now presented by the sorting and collation procedure, thus greatly increasing the overall rate at which garments can be assembled.

  15. Experiences with decontaminating tritium-handling apparatus

    SciTech Connect

    Maienschein, J.L.; Garcia, F.; Garza, R.G.; Kanna, R.L.; Mayhugh, S.R.; Taylor, D.T. )

    1992-03-01

    Tritium-handling apparatus has been decontaminated as part of the downsizing of the LLNL Tritium Facility. Two stainless-steel glove boxes that had been used to process lithium deuteride-tritide (LiDT) slat were decontaminated using the Portable Cleanup System so that they could be flushed with room air through the facility ventilation system. In this paper the details on the decontamination operation are provided. A series of metal (palladium and vanadium) hydride storage beds have been drained of tritium and flushed with deuterium, in order to remove as much tritium as possible. The bed draining and flushing procedure is described, and a calculational method is presented which allows estimation of the tritium remaining in a bed after it has been drained and flushed. Data on specific bed draining and flushing are given.

  16. Overview on Hydrate Coring, Handling and Analysis

    SciTech Connect

    Jon Burger; Deepak Gupta; Patrick Jacobs; John Shillinglaw

    2003-06-30

    Gas hydrates are crystalline, ice-like compounds of gas and water molecules that are formed under certain thermodynamic conditions. Hydrate deposits occur naturally within ocean sediments just below the sea floor at temperatures and pressures existing below about 500 meters water depth. Gas hydrate is also stable in conjunction with the permafrost in the Arctic. Most marine gas hydrate is formed of microbially generated gas. It binds huge amounts of methane into the sediments. Worldwide, gas hydrate is estimated to hold about 1016 kg of organic carbon in the form of methane (Kvenvolden et al., 1993). Gas hydrate is one of the fossil fuel resources that is yet untapped, but may play a major role in meeting the energy challenge of this century. In June 2002, Westport Technology Center was requested by the Department of Energy (DOE) to prepare a ''Best Practices Manual on Gas Hydrate Coring, Handling and Analysis'' under Award No. DE-FC26-02NT41327. The scope of the task was specifically targeted for coring sediments with hydrates in Alaska, the Gulf of Mexico (GOM) and from the present Ocean Drilling Program (ODP) drillship. The specific subjects under this scope were defined in 3 stages as follows: Stage 1: Collect information on coring sediments with hydrates, core handling, core preservation, sample transportation, analysis of the core, and long term preservation. Stage 2: Provide copies of the first draft to a list of experts and stakeholders designated by DOE. Stage 3: Produce a second draft of the manual with benefit of input from external review for delivery. The manual provides an overview of existing information available in the published literature and reports on coring, analysis, preservation and transport of gas hydrates for laboratory analysis as of June 2003. The manual was delivered as draft version 3 to the DOE Project Manager for distribution in July 2003. This Final Report is provided for records purposes.

  17. Remote-handled transuranic waste study

    SciTech Connect

    1995-10-01

    The Waste Isolation Pilot Plant (WIPP) was developed by the US Department of Energy (DOE) as a research and development facility to demonstrate the safe disposal of transuranic (TRU) radioactive wastes generated from the Nation`s defense activities. The WIPP disposal inventory will include up to 250,000 cubic feet of TRU wastes classified as remote handled (RH). The remaining inventory will include contact-handled (CH) TRU wastes, which characteristically have less specific activity (radioactivity per unit volume) than the RH-TRU wastes. The WIPP Land Withdrawal Act (LWA), Public Law 102-579, requires a study of the effect of RH-TRU waste on long-term performance. This RH-TRU Waste Study has been conducted to satisfy the requirements defined by the LWA and is considered by the DOE to be a prudent exercise in the compliance certification process of the WIPP repository. The objectives of this study include: conducting an evaluation of the impacts of RH-TRU wastes on the performance assessment (PA) of the repository to determine the effects of Rh-TRU waste as a part of the total WIPP disposal inventory; and conducting a comparison of CH-TRU and RH-TRU wastes to assess the differences and similarities for such issues as gas generation, flammability and explosiveness, solubility, and brine and geochemical interactions. This study was conducted using the data, models, computer codes, and information generated in support of long-term compliance programs, including the WIPP PA. The study is limited in scope to post-closure repository performance and includes an analysis of the issues associated with RH-TRU wastes subsequent to emplacement of these wastes at WIPP in consideration of the current baseline design. 41 refs.

  18. Paint for detection of radiological or chemical agents

    DOEpatents

    Farmer, Joseph C.; Brunk, James L.; Day, Sumner Daniel

    2010-08-24

    A paint that warns of radiological or chemical substances comprising a paint operatively connected to the surface, an indicator material carried by the paint that provides an indication of the radiological or chemical substances, and a thermo-activation material carried by the paint. In one embodiment, a method of warning of radiological or chemical substances comprising the steps of painting a surface with an indicator material, and monitoring the surface for indications of the radiological or chemical substances. In another embodiment, a paint is operatively connected to a vehicle and an indicator material is carried by the paint that provides an indication of the radiological or chemical substances.

  19. Real Time Quantitative Radiological Monitoring Equipment for Environmental Assessment

    SciTech Connect

    John R. Giles; Lyle G. Roybal; Michael V. Carpenter

    2006-03-01

    The Idaho National Laboratory (INL) has developed a suite of systems that rapidly scan, analyze, and characterize radiological contamination in soil. These systems have been successfully deployed at several Department of Energy (DOE) laboratories and Cold War Legacy closure sites. Traditionally, these systems have been used during the characterization and remediation of radiologically contaminated soils and surfaces; however, subsequent to the terrorist attacks of September 11, 2001, the applications of these systems have expanded to include homeland security operations for first response, continuing assessment and verification of cleanup activities in the event of the detonation of a radiological dispersal device. The core system components are a detector, a spectral analyzer, and a global positioning system (GPS). The system is computer controlled by menu-driven, user-friendly custom software designed for a technician-level operator. A wide variety of detectors have been used including several configurations of sodium iodide (NaI) and high-purity germanium (HPGe) detectors, and a large area proportional counter designed for the detection of x-rays from actinides such as Am-241 and Pu-238. Systems have been deployed from several platforms including a small all-terrain vehicle (ATV), hand-pushed carts, a backpack mounted unit, and an excavator mounted unit used where personnel safety considerations are paramount. The INL has advanced this concept, and expanded the system functionality to create an integrated, field-deployed analytical system through the use of tailored analysis and operations software. Customized, site specific software is assembled from a supporting toolbox of algorithms that streamline the data acquisition, analysis and reporting process. These algorithms include region specific spectral stripping, automated energy calibration, background subtraction, activity calculations based on measured detector efficiencies, and on-line data quality checks

  20. Remote-Handled Transuranic Content Codes

    SciTech Connect

    Washington TRU Solutions

    2006-12-01

    The Remote-Handled Transuranic (RH-TRU) Content Codes (RH-TRUCON) document describes the inventory of RH-TRU waste within the transportation parameters specified by the Remote-Handled Transuranic Waste Authorized Methods for Payload Control (RH-TRAMPAC).1 The RH-TRAMPAC defines the allowable payload for the RH-TRU 72-B. This document is a catalog of RH-TRU 72-B authorized contents by site. A content code is defined by the following components: A two-letter site abbreviation that designates the physical location of the generated/stored waste (e.g., ID for Idaho National Laboratory [INL]). The site-specific letter designations for each of the sites are provided in Table 1. A three-digit code that designates the physical and chemical form of the waste (e.g., content code 317 denotes TRU Metal Waste). For RH-TRU waste to be transported in the RH-TRU 72-B, the first number of this three-digit code is 3. The second and third numbers of the three-digit code describe the physical and chemical form of the waste. Table 2 provides a brief description of each generic code. Content codes are further defined as subcodes by an alpha trailer after the three-digit code to allow segregation of wastes that differ in one or more parameter(s). For example, the alpha trailers of the subcodes ID 322A and ID 322B may be used to differentiate between waste packaging configurations. As detailed in the RH-TRAMPAC, compliance with flammable gas limits may be demonstrated through the evaluation of compliance with either a decay heat limit or flammable gas generation rate (FGGR) limit per container specified in approved content codes. As applicable, if a container meets the watt*year criteria specified by the RH-TRAMPAC, the decay heat limits based on the dose-dependent G value may be used as specified in an approved content code. If a site implements the administrative controls outlined in the RH-TRAMPAC and Appendix 2.4 of the RH-TRU Payload Appendices, the decay heat or FGGR limits

  1. NV/YMP RADIOLOGICAL CONTROL MANUAL

    SciTech Connect

    U.S. DEPARTMENT OF ENERGY, NATIONAL NUCLEAR SECURITY ADMINISTRATION NEVADA SITE OFFICE; BECHTEL NEVADA

    2004-11-01

    This manual contains the radiological control requirements to be used for all radiological activities conducted by programs under the purview of the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) and the Yucca Mountain Office of Repository Development (YMORD). Compliance with these requirements will ensure compliance with Title 10 Code of Federal Regulations Part 835 (10 CFR 835), Occupational Radiation Protection. Programs covered by this manual are located at the Nevada Test Site (NTS); Nellis Air Force Base and North Las Vegas, Nevada; Santa Barbara and Pleasanton, California; and at Andrews Air Force Base, Maryland. In addition, field work by NNSA/NSO at other locations is also covered by this manual.

  2. LM Records Handling System (LMRHS01) - Electronic Records Keeping System,

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Office of Legacy Management, | Department of Energy System (LMRHS01) - Electronic Records Keeping System, Office of Legacy Management, LM Records Handling System (LMRHS01) - Electronic Records Keeping System, Office of Legacy Management, LM Records Handling System (LMRHS01) - Electronic Records Keeping System, Office of Legacy Management, LM Records Handling System (LMRHS01) - Electronic Records Keeping System, Office of Legacy Management, (472.43 KB) More Documents & Publications LM

  3. LM Records Handling System (LMRHS01) - Energy Employees Occupational

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Illness Compensation Program Act, Office of Legacy Management | Department of Energy Energy Employees Occupational Illness Compensation Program Act, Office of Legacy Management LM Records Handling System (LMRHS01) - Energy Employees Occupational Illness Compensation Program Act, Office of Legacy Management LM Records Handling System (LMRHS01) - Energy Employees Occupational Illness Compensation Program Act, Office of Legacy Management LM Records Handling System (LMRHS01) - Energy Employees

  4. LM Records Handling System (LMRHS01) - Rocky Flats Environmental Records

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Database, Office of Legacy Management | Department of Energy Rocky Flats Environmental Records Database, Office of Legacy Management LM Records Handling System (LMRHS01) - Rocky Flats Environmental Records Database, Office of Legacy Management LM Records Handling System (LMRHS01) - Rocky Flats Environmental Records Database, Office of Legacy Management LM Records Handling System (LMRHS01) - Rocky Flats Environmental Records Database, Office of Legacy Management (470.9 KB) More Documents

  5. Webinar: Analysis Using Fuel Cell Material Handling Equipment for Shaving

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Peak Building Energy | Department of Energy Analysis Using Fuel Cell Material Handling Equipment for Shaving Peak Building Energy Webinar: Analysis Using Fuel Cell Material Handling Equipment for Shaving Peak Building Energy Access the recording and download the presentation slides from the Fuel Cell Technologies Office webinar "Analysis Using Fuel Cell Material Handling Equipment (MHE) for Shaving Peak Building Energy" held on August 11, 2015. Analysis Using Fuel Cell MHE for

  6. DOE Technical Targets for Hydrogen Storage Systems for Material Handling

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Equipment | Department of Energy Material Handling Equipment DOE Technical Targets for Hydrogen Storage Systems for Material Handling Equipment This table summarizes hydrogen storage technical performance targets for material handling equipment. These targets were developed with input to DOE through extensive communications with various stakeholders, industry developers, and end users, including through a 2012 request for information and workshops, as well as additional national lab

  7. Fixation of Radiological Contamination; International Collaborative Development

    SciTech Connect

    Rick Demmer

    2013-03-01

    A cooperative international project was conducted by the Idaho National Laboratory (INL) and the United Kingdoms National Nuclear Laboratory (NNL) to integrate a capture coating with a high performance atomizing process. The initial results were promising, and lead to further trials. The somewhat longer testing and optimization process has resulted in a product that could be demonstrated in the field to reduce airborne radiological dust and contamination.

  8. Widget:TwitterHandleValidate | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    common copy + paste errors, and alerting the user if the format is not a valid Twitter handle. Parameters include: fieldname - the field to validate (optional, default:...

  9. WIPP Receives First Remote-Handled Waste Shipment From Sandia...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    For immediate release WIPP Receives First Remote-Handled Waste Shipment From Sandia Labs ... (RH-TRU) waste shipments from Sandia National Laboratories (SNL) in Albuquerque. ...

  10. ETA-HTP07 - Road Course Handling Test

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    7 Revision 0 Effective May 1, 2004 Road Course Handling Test Prepared by Electric ... Appendices Appendix A - Hybrid Electric Vehicle Road Course Test Data Sheet 9 Appendix B - ...

  11. Biodiesel Handling and Use Guide: Fourth Edition (Revised)

    SciTech Connect

    Not Available

    2009-01-01

    Intended for those who blend, distribute, and use biodiesel and its blends, this guide contains procedures for handling and using these fuels.

  12. LM Records Handling System (LMRHS01) - Rocky Flats Environmental...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Rocky Flats Environmental Records Database, Office of Legacy Management LM Records Handling System (LMRHS01) - Rocky Flats Environmental Records Database, Office of Legacy ...

  13. Handbook for Handling, Storing, and Dispensing E85

    SciTech Connect

    Not Available

    2002-04-01

    A guidebook that contains information about EPAct alternative fuels regulations for fleets, flexible fuel vehicles, E85 properties and specifications, and E85 handling and storage guidelines.

  14. Handbook for Handling, Storing, and Dispensing E85

    SciTech Connect

    Not Available

    2008-04-01

    Guidebook contains information about EPAct alternative fuels regulations for fleets, flexible fuel vehicles, E85 properties and specifications, and E85 handling and storage guidelines.

  15. Uranium hexafluoride: A manual of good handling practices. Revision...

    Office of Scientific and Technical Information (OSTI)

    and its predecessor agencies in sharing with the nuclear industry their experience in the area of uranium hexafluoride (UFsub 6) shipping containers and handling procedures. ...

  16. Crude Oil Properties Relevant to Handling and Fire Safety in...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... Twitter Google + Vimeo Newsletter Signup SlideShare Crude Oil Properties Relevant to ... Capabilities, Transportation EnergyCrude Oil Properties Relevant to Handling and Fire ...

  17. Handbook for Handling, Storing, and Dispensing E85 and Other...

    Alternative Fuels and Advanced Vehicles Data Center

    ... Solubility in Water Ethanol is extremely hydroscopic (i.e., attracts water). Water should be removed to the extent possible from fuel ethanol handling, storage, and distribution ...

  18. GIS Symbology for FRMAC/CMHT Radiological/Nuclear Products

    SciTech Connect

    Walker, H; Aluzzi, F; Foster, K; Pobanz, B; Sher, B

    2008-10-06

    This document is intended to codify, to the extent currently possible, the representation of map products produced for and by the Federal Radiological Monitoring and Assessment Center (FRMAC) and the Consequence Management Home Team (CHMT), particularly those that include model products from the National Atmospheric Release Advisory Capability (NARAC). This is to facilitate consistency between GIS products produced by different members of these teams, which should ease the task of interpreting these products by both team members and those outside the team who may need to use these products during a response. The aspects of symbology being considered are primarily isopleths levels (breakpoints) and colors used to plot NARAC modeled dose or deposition fields on mpas, although some comments will be made about the handling of legend and supporting textual information. Other aspects of symbolizing such products (e.g., transparency) are being left to the individual team members to allow them to adapt to particular organizational needs or requirements that develop during a particular a response or exercise. This document has been written in coordination with the creation of training material in Baskett, et al., 2008. It is not intended as an aid to NARAC product interpretation but to facilitate the work of GIS specialists who deal with these products in map design and in the development of supporting scripts and software that partially or completely automate the integration of NARAC model products with other GIS data. This work was completed as part of the NA-42 Technical Integration Project on GIS Automated Data Processing and Map Production in FY 2008. Other efforts that are part of this work include (a) updating the NARAC shapefile product representation to facilitate the automation work proceed at RSL as part of the same TI effort and (b) to ensure that the NARAC shapefile construct includes all of the necessary legend and other textual data to interpret dispersion

  19. Enewetak radiological support project. Final report

    SciTech Connect

    Friesen, B.

    1982-09-01

    From 1972 through 1980, the Department of Energy acted in an advisory role to the Defense Nuclear Agency during planning for and execution of the cleanup of Enewetak Atoll. The Nevada Operations Office of the Department of Energy was responsible for the radiological characterization of the atoll and for certification of radiological condition of each island upon completion of the project. In-situ measurements of gamma rays emitted by americium-241 were utilized along with wet chemistry separation of plutonium from soil samples to identify and delineate surface areas requiring removal of soil. Military forces removed over 100,000 cubic yards of soil from the surface of five islands and deposited this material in a crater remaining from the nuclear testing period. Subsurface soil was excavated and removed from several locations where measurements indicated the presence of radionuclides above predetermined criteria. The methodologies of data acquisition, analysis and interpretation are described and detailed results are provided in text, figures and microfiche. The final radiological condition of each of 43 islets is reported.

  20. Bag-out material handling system

    DOEpatents

    Brak, Stephen B.

    1985-01-01

    A bagging device for transferring material from a first chamber through an opening in a wall to a second chamber includes an outer housing communicating with the opening and having proximal and distal ends relative to the wall. An inner housing having proximal and distal ends corresponding to those of the outer housing is mounted in a concentrically spaced, sealed manner with respect to the distal end of the outer housing. The inner and outer housings and mounting means therebetween define an annular chamber, closed at its distal end and open at its proximal end, in which a pliable tube is slidably positioned in sealed engagement with the housings. The pliable tube includes a sealed end positioned adjacent the proximal end of the inner housing so as to maintain isolation between the first and second chambers. Displacement of the material to be bagged from the first chamber along the inner housing so as to contact the sealed portion of the pliable bag allows the material to be positioned within the pliable bag in the second chamber. The bag is then sealed and severed between where the material is positioned therein and the wall in providing a sealed container for handling the material. The pliable tube when substantially depleted slides onto a narrow portion of the inner housing to allow a new pliable tube to be positioned over the old pliable tube. Remnants of the old pliable tube are then discharged into the new pliable tube with the bagging and removal of additional material.

  1. Bag-out material handling system

    DOEpatents

    Brak, Stephen B.; Milek, Henry F.

    1984-01-01

    A bagging device for transferring material from a first chamber through an pening in a wall to a second chamber includes an outer housing communicating with the opening and having proximal and distal ends relative to the wall. An inner housing having proximal and distal ends corresponding to those of the outer housing is mounted in a concentrically spaced, sealed manner with respect to the distal end of the outer housing. The inner and outer housings and mounting means therebetween define an annular chamber, closed at its distal end and open at its proximal end, in which a pliable tube is slidably positioned in sealed engagement with the housings. The pliable tube includes a sealed end positioned adjacent the proximal end of the inner housing so as to maintain isolation between the first and second chambers. Displacement of the material to be bagged from the first chamber along the inner housing so as to contact the sealed portion of the pliable bag allows the material to be positioned within the pliable bag in the second chamber. The bag is then sealed and severed between where the material is positioned therein and the wall in providing a sealed container for handling the material. The pliable tube when substantially depleted slides onto a narrow portion of the inner housing to allow a new pliable tube to be positioned over the old pliable tube. Remnants of the old pliable tube are then discharged into the new pliable tube with the bagging and removal of additional material.

  2. WASTE HANDLING BUILDING FIRE PROTECTION SYSTEM DESCRIPTION DOCUMENT

    SciTech Connect

    J. D. Bigbee

    2000-06-21

    The Waste Handling Building Fire Protection System provides the capability to detect, control, and extinguish fires and/or mitigate explosions throughout the Waste Handling Building (WHB). Fire protection includes appropriate water-based and non-water-based suppression, as appropriate, and includes the distribution and delivery systems for the fire suppression agents. The Waste Handling Building Fire Protection System includes fire or explosion detection panel(s) controlling various detectors, system actuation, annunciators, equipment controls, and signal outputs. The system interfaces with the Waste Handling Building System for mounting of fire protection equipment and components, location of fire suppression equipment, suppression agent runoff, and locating fire rated barriers. The system interfaces with the Waste Handling Building System for adequate drainage and removal capabilities of liquid runoff resulting from fire protection discharges. The system interfaces with the Waste Handling Building Electrical Distribution System for power to operate, and with the Site Fire Protection System for fire protection water supply to automatic sprinklers, standpipes, and hose stations. The system interfaces with the Site Fire Protection System for fire signal transmission outside the WHB as needed to respond to a fire emergency, and with the Waste Handling Building Ventilation System to detect smoke and fire in specific areas, to protect building high-efficiency particulate air (HEPA) filters, and to control portions of the Waste Handling Building Ventilation System for smoke management and manual override capability. The system interfaces with the Monitored Geologic Repository (MGR) Operations Monitoring and Control System for annunciation, and condition status.

  3. Apparatus and method for handling magnetic particles in a fluid

    DOEpatents

    Holman, David A.; Grate, Jay W.; Bruckner-Lea, Cynthia J.

    2000-01-01

    The present invention is an apparatus and method for handling magnetic particles suspended in a fluid, relying upon the known features of a magnetic flux conductor that is permeable thereby permitting the magnetic particles and fluid to flow therethrough; and a controllable magnetic field for the handling. The present invention is an improvement wherein the magnetic flux conductor is a monolithic porous foam.

  4. Operating Experience Level 3, Losing Control: Material Handling Dangers

    Energy.gov [DOE]

    This Operating Experience Level 3 (OE-3) document provides information about the dangers inherent in material handling and the role hazard analysis, work planning, and walkdowns can play in preventing injuries during heavy equipment moves. More than 200 material handling events reported to the Occurrence Reporting and Processing System (ORPS) from January 1, 2010, through August 31, 2014.

  5. Results of radiological measurements taken in the Niagara Falls, New York, area (NF002)

    SciTech Connect

    Williams, J.K.; Berven, B.A.

    1986-11-01

    The results of a radiological survey of 100 elevated gamma radiation anomalies in the Niagara Falls, New York, area are presented. These radiation anomalies were identified by a mobile gamma scanning survey during the period October 3-16, 1984, and were recommended for an onsite survey to determine if the elevated levels of radiation may be related to the transportation of radioactive waste material to the Lake Ontario Ordnance Works for storage. In this survey, radiological measurements included outdoor gamma exposure rates at 1 m above the surface; outdoor gamma exposure rates at the surface, range of gamma exposure rates during scan; and uranium, radium, and thorium concentrations in biased surface soil samples. The results show 38 anomalies (35 located along Pletcher Road and 3 associated with other unreleated locations) were found to exceed Formerly Utilized Sites Remedial Action Program (FUSRAP) remedial action guidelines and were recommended for formal characterization surveys. (Since the time of this survey, remedial actions have been conducted on the 38 anomalies identified as exceeding FUSRAP guidelines, and the radioactive material above guidelines has been removed.) The remaining 62 anomalies are associated with asphalt driveways and parking lots, which used a phosphate slag material (previously identified as cyclowollastonite, synthetic CaSiO/sub 3/). This rocky-slag waste material was used for bedding under asphalt surfaces and in general gravel applications. Most of the contaminated soil and rock samples collected at the latter anomalies had approximately equal concentrations of /sup 226/Ra and /sup 238/U and, therefore, are not related to materials connected with the Niagara Falls Storage Site (NFSS), including material that was transported to the NFSS. 13 refs., 7 figs., 14 tabs.

  6. FINAL REPORT FOR INDEPENDENT CONFIRMATORY SURVEY SUMMARY AND RESULTS FOR THE HEMATITE DECOMMISSIONING PROJECT, FESTUS, MISSOURI

    SciTech Connect

    Bailey, Erika N.; Lee, Jason D.

    2012-09-21

    ORAU conducted confirmatory surveys of the Hematite site during the period of June 12 through June 13, 2012. The survey activities included in-process inspections, document review, walkover surveys, sampling activities, and laboratory analysis of split samples. WEC was forthcoming with information relating to practices, procedures, and surface scan results. Scans performed by the WEC technician were extremely thorough and methodical. The WEC and ORAU technicians identified the same areas of elevated activity with comparable detector responses. WEC sampling of re-use soils, waste soils, sediments, and groundwater were conducted under ORAU observation. The sampling efforts observed by ORAU were performed in accordance with site-specific procedures and in a manner sufficient to provide quality supporting data. Three observations were made during groundwater sampling activities. First, the water level indicator was re-used without submitting rinse blank. Second, bubbles created during tubing extraction could indicate the presence of volatilized organic compounds. Third, samplers did not use a photo ionization detector prior to sample collection to indicate the presence of volatile organic vapors. Results of split samples indicated a high level of comparability between the WEC and ORAU/ORISE radiological laboratories. Analytical practices and procedures appear to be sufficient in providing quality radiochemical data. All concentrations from the Soil Re-Use Area and sediment samples are below Uniform radionuclide-specific derived concentration guideline level (DCGL{sub W}) limits; thus, comparisons to the less conservative stratified geometry were not required. Results were compared to individual DCGLs and using the sum of fractions approach. Both composite soil samples collected from the Waste Handling Area (Bins 1 and 4) were well below the prescribed USEI waste acceptance criteria.

  7. CONFIRMATORY SURVEY REPORT FOR THE SECTION 4 AREA AT THE RIO ALGOM AMBROSIA LAKE FACILITY NEW MEXICO

    SciTech Connect

    W.C. Adams

    2010-02-12

    The objectives of the confirmatory survey were to verify that remedial actions were effective in meeting established release criteria and that documentation accurately and adequately described the final radiological conditions of the RAM Ambrosia Lake, Section 4 Areas.

  8. Environmental/Radiological Assistance Directory (ERAD) | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Environmental/Radiological Assistance Directory (ERAD) Environmental/Radiological Assistance Directory (ERAD) The Environmental Radiological Assistance Directory or ERAD, developed by AU-22, serves as an assistance tool to the DOE complex for protection of the public and environment from radiation. The ERAD is a combination webinar/conference call, designed to provide DOE and its contractors a forum to share information, lessons-learned, best practices, emerging trends, compliance

  9. 2012 Environmental/Radiological Assistance Directory (ERAD) Presentations |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Environmental/Radiological Assistance Directory (ERAD) Presentations 2012 Environmental/Radiological Assistance Directory (ERAD) Presentations 2012 Environmental/Radiological Assistance Directory (ERAD) Presentations November 2012; Environmental Measurements in an Emergency: This is not a Drill!; Stephen V. Musolino; Brookhaven National Laboratory (2.44 MB) November 2012; Brookhaven Graphite Research Reactor (BGRR) D&D Presentation for the DOE ERAD Working Group;

  10. Federal Radiological Monitoring and Assessment Center | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | (NNSA) Federal Radiological Monitoring and Assessment Center The Federal Radiological Monitoring and Assessment Center (FRMAC) is a federal asset available on request by the Department of Homeland Security (DHS) and state and local agencies to respond to a nuclear or radiological incident. The FRMAC is an interagency organization with representation from the NNSA, the Department of Defense (DOD), the Environmental Protection Agency (EPA), the Department of Health

  11. GTRI: Removing Vulnerable Civilian Nuclear and Radiological Material |

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration | (NNSA) GTRI: Removing Vulnerable Civilian Nuclear and Radiological Material May 29, 2014 GTRI's Remove Program works around the world to remove excess nuclear and radiological materials that could be used for a nuclear weapon or radiological dispersal device (RDD), or "dirty bomb". Mission In 2004 NNSA established the Global Threat Reduction Initiative (GTRI) in the Office of Defense Nuclear Nonproliferation to, as quickly as possible,

  12. Nuclear and Radiological Field Training Center | Y-12 National Security

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Complex ... Nuclear and Radiological Field Training Center A site used for nuclear research in Oak Ridge, Tennessee during the Manhattan Project is now the Y-12 National Security Complex's Nuclear and Radiological Field Training Center - the only facility of its kind in the world. The Center provides world-class nuclear and radiological training in a safe, secure, realistic environment using expert instruction and personnel to serve as observers/evaluators for customer training. For military

  13. Surface Contamination Guidelines/Radiological Clearance of Property |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Surface Contamination Guidelines/Radiological Clearance of Property Surface Contamination Guidelines/Radiological Clearance of Property Authorized limits govern the control and clearance of personal and real property. They are radionuclide concentrations or activity levels approved by DOE to permit the clearance of property from DOE radiological control for either restricted or unrestricted use, consistent with DOE's radiation protection framework and standards for the

  14. FUEL HANDLING FACILITY CRITICALITY SAFETY CALCULATIONS

    SciTech Connect

    C.E. Sanders

    2005-06-30

    The purpose of this design calculation is to perform a criticality evaluation of the Fuel Handling Facility (FHF) and the operations and processes performed therein. The current intent of the FHF is to receive transportation casks whose contents will be unloaded and transferred to waste packages (WP) or MGR Specific Casks (MSC) in the fuel transfer bays. Further, the WPs will also be prepared in the FHF for transfer to the sub-surface facility (for disposal). The MSCs will be transferred to the Aging Facility for storage. The criticality evaluation of the FHF features the following: (I) Consider the types of waste to be received in the FHF as specified below: (1) Uncanistered commercial spent nuclear fuel (CSNF); (2) Canistered CSNF (with the exception of horizontal dual-purpose canister (DPC) and/or multi-purpose canisters (MPCs)); (3) Navy canistered SNF (long and short); (4) Department of Energy (DOE) canistered high-level waste (HLW); and (5) DOE canistered SNF (with the exception of MCOs). (II) Evaluate the criticality analyses previously performed for the existing Nuclear Regulatory Commission (NRC)-certified transportation casks (under 10 CFR 71) to be received in the FHF to ensure that these analyses address all FHF conditions including normal operations, and Category 1 and 2 event sequences. (III) Evaluate FHF criticality conditions resulting from various Category 1 and 2 event sequences. Note that there are currently no Category 1 and 2 event sequences identified for FHF. Consequently, potential hazards from a criticality point of view will be considered as identified in the ''Internal Hazards Analysis for License Application'' document (BSC 2004c, Section 6.6.4). (IV) Assess effects of potential moderator intrusion into the fuel transfer bay for defense in depth. The SNF/HLW waste transfer activity (i.e., assembly and canister transfer) that is being carried out in the FHF has been classified as safety category in the ''Q-list'' (BSC 2003, p. A-6

  15. Radiological Weapons: How Great Is The Danger?

    SciTech Connect

    Moore, G M

    2003-06-01

    One of the underlying purposes of this paper is to provoke thinking about the interplay between the regulation of radioactive materials and the risk of their use in an radiological weapon (RW). Also considered in this paper are the types of RWs that a terrorist might use, the nature of the threat and danger posed by the various types of RWs, the essential elements that must be considered in responding to the terrorist use of an RW, and what steps may need to be taken a priori to minimize the consequences of the inevitable use of an RW. Because radiological dispersal devices (RDDs) have been the focus of so much recent concern and because RDDs are arguably the most likely of RWs to be used by a terrorist group, a major focus of this paper will be on RDDs. Radiological weapons are going to be used by some individual or group, if not this year then next year, or at some time in the foreseeable future. A policy of focusing resources solely on prevention of their use would leave any government open to significant economic disruption when the inevitable use occurs. Preplanning can limit the injuries, property damage, and economic losses that might result from the use of an RW. Moreover, a combination of efforts to prevent and to minimize the impact of RWs may significantly discourage potential users. The dangers from RWs can be dealt with while society continues to enjoy the benefits of nuclear technology that were promised under Atoms for Peace. However, some restructuring of our use of radioactive materials is necessary to ensure that the current and future uses of radioactive materials outweigh the potential disruption caused by misuse of the materials in RWs.

  16. Radiological Source Term Estimates for the February 14, 2014...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    This document corresponds to Appendix D: Modeling Integrated Summary Report of the Technical Assessment Team Report. Radiological Source Term Estimates for the February 14, 2014 ...

  17. DOE-HDBK-1122-99; Radiological Control Technician Training

    Energy.gov [DOE] (indexed site)

    7 Interaction of Radiation with Matter Instructor's Guide 1.07-1 Course Title: Radiological Control Technician Module Title: Interaction of Radiation with Matter Module Number: ...

  18. NNSA Nuclear/Radiological Incident Response | National Nuclear...

    National Nuclear Security Administration (NNSA)

    NNSA NuclearRadiological Incident Response December 01, 2008 The National Nuclear Security Administration (NNSA) has over 60 years of nuclear weapons experience in responding to ...

  19. Fifth Anniversary of Radiological Alarm Response Training for...

    National Nuclear Security Administration (NNSA)

    Fifth Anniversary of Radiological Alarm Response Training for Local Law Enforcement and ... program for local law enforcement and other critical first responders around the country. ...

  20. ORISE: Radiological Terrorism Toolkit | How ORISE is Making a...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Education (ORISE) distributed more than 400 radiological terrorism toolkits filled with key resources, such as training guidelines, clinical directives, details about radioactive...

  1. An Assessment Of The External Radiological Impact In Areas Of...

    OpenEI (Open Energy Information) [EERE & EIA]

    Assessment Of The External Radiological Impact In Areas Of Greece With Elevated Natural Radioactivity Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal...

  2. 2013 Environmental/Radiological Assistance Directory (ERAD) Presentati...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Radiological Assistance Directory (ERAD) meetings PDF icon Nov 2013 Derived Intervention and Response Levels for Tritium Oxide at the Savannah River Site; Tim Janik,...

  3. The Readiness of the Department's Federal Radiological Monitoring...

    Energy.gov [DOE] (indexed site)

    However, we did identify issues with aging equipment and potential reliability issues that could adversely impact the timeliness of FRMAC's response to radiological emergencies. ...

  4. DOE-HDBK-1131-98; General Employee Radiological Training

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... DOE-HDBK-1131-98 iii Course Developers Christine Liner Savannah River Site (Development ... Radiological Controls, Monitoring (Dosimetry), Emergency Procedures, ALARA Program, ...

  5. NNSA, Philippine Nuclear Research Institute to Prevent Radiological...

    National Nuclear Security Administration (NNSA)

    to our shared efforts to prevent nuclear and radiological terrorism and the proliferation of nuclear weapons," said NNSA Deputy Administrator for Defense Nuclear ...

  6. Trending and root cause analysis of TWRS radiological problem reports

    SciTech Connect

    Brown, R.L.

    1997-07-31

    This document provides a uniform method for trending and performing root cause analysis for radiological problem reports at Tank Waste Remediation System (TWRS).

  7. Hospital Triage in First Hours After Nuclear or Radiological...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Hospital Triage in the First 24 Hours after a Nuclear or Radiological Disaster Medical professionals with the Radiation Emergency Assistance CenterTraining Site (REACTS) at the...

  8. Radiological Release Event at the Waste Isolation Pilot Plant...

    Energy.gov [DOE] (indexed site)

    radiological release occurred at the Department of Energy Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico. Because access to the underground was restricted following...

  9. NNSA Receives Excellence Award for Radiological Security Enhancements...

    National Nuclear Security Administration (NNSA)

    ... nuclear propulsion; and responds to nuclear and radiological emergencies in the U.S. and abroad. Visit http:nnsa.energy.gov for more information. ...

  10. DOE-HDBK-1122-99; Radiological Control Technician Training

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... to enable the rescuer to avoid becoming contaminated. has facial contamination?" b. ... the nature of the injuries, the radiological conditions, the location of the injured, etc. ...

  11. DOE-HDBK-1122-99; Radiological Control Technician Training

    Energy.gov [DOE] (indexed site)

    PNL; Richland, Wa. 3. DOE-STD-1098-99, "DOE Radiological Control Standard". 4. 10 CFR Part 835 (1998) "Occupational Radiation Protection". 5. "The Health Physics and ...

  12. DOE-HDBK-1122-99; Radiological Control Technician Training

    Energy Saver

    "DOE Radiological Control Standard" (reference TSP project number SAFT- 0039). 4. 10 CFR Part 835 (1998) "Occupational Radiation Protection" Instructional Aids: 1. Overheads 2. ...

  13. DOE-HDBK-1122-99; Radiological Control Technician Training

    Energy Saver

    ... Accordingly, DOE shall ensure radiological measurements, analyses, worker monitoring results and estimates of public exposures are accurate and appropriately made. 10 CFR 835 ...

  14. DOE-HDBK-1122-99; Radiological Control Technician Training

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    L 2.10.13 State the requirements for removing or releasing materials from any radiological area. References: 1. 10 CFR 835, "Occupational Radiation Protection" (1998) 2. ...

  15. Fifth Anniversary of Radiological Alarm Response Training for...

    National Nuclear Security Administration (NNSA)

    Fifth Anniversary of Radiological Alarm Response Training for Local Law Enforcement and ... Administration's (NNSA) Alarm Response Training (ART) program for local law enforcement ...

  16. NNSA Nuclear/Radiological Incident Response | National Nuclear...

    National Nuclear Security Administration (NNSA)

    December 01, 2008 The National Nuclear Security Administration (NNSA) has over 60 years of nuclear weapons experience in responding to nuclear and radiological accidents and ...

  17. NNSA Nuclear/Radiological Incident Response | National Nuclear...

    National Nuclear Security Administration (NNSA)

    January 01, 2009 The National Nuclear Security Administration (NNSA) has more than 60 years of nuclear weapons experience in responding to nuclear and radiological accidents and ...

  18. DOE-HDBK-1122-99; Radiological Control Technician Training

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Communication Systems Instructor's Guide 2.02-1 Course Title: Radiological Control Technician Module Title: Communication Systems Module Number: 2.02 Objectives: 2.02.01 Explain ...

  19. The New Radiological and Environmental Sciences Laboratory (RESL...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    None File Format: Microsoft Windows WMV File Size: 19 Kb Video of Radiological and Environmental Sciences Laboratory (RESL) Editorial Date December 7, 2011 By Danielle Miller...

  20. Radiological Control Programs for Special Tritium Compounds

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    84-2004 SEPTEMBER 2004 CHANGE NOTICE NO. 1 Date June 2006 DOE HANDBOOK RADIOLOGICAL CONTROL PROGRAMS FOR SPECIAL TRITIUM COMPOUNDS U.S. Department of Energy AREA OCSH Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE ii Table of Changes Page Change 67 (near bottom) In row 1, column 2 of the table titled "dosimetric properties" 6 mrem was changed to 6 x 10 -2 mrem Available on the Department of Energy

  1. Radiological Dose Calculations for Fusion Facilities

    SciTech Connect

    Michael L. Abbott; Lee C. Cadwallader; David A. Petti

    2003-04-01

    This report summarizes the results and rationale for radiological dose calculations for the maximally exposed individual during fusion accident conditions. Early doses per unit activity (Sieverts per TeraBecquerel) are given for 535 magnetic fusion isotopes of interest for several release scenarios. These data can be used for accident assessment calculations to determine if the accident consequences exceed Nuclear Regulatory Commission and Department of Energy evaluation guides. A generalized yearly dose estimate for routine releases, based on 1 Terabecquerel unit releases per radionuclide, has also been performed using averaged site parameters and assumed populations. These routine release data are useful for assessing designs against US Environmental Protection Agency yearly release limits.

  2. Progress Continues on Mitigation of Radiological Contamination

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    August 13, 2015 Progress Continues on Mitigation of Radiological Contamination This week, WIPP personnel will complete the installation of the brattice cloth and salt barrier on a 570-foot section of floor in the WIPP underground. The installation process includes rolling the brattice cloth out to cover the entire surface area of the floor and securing it to the ribs (walls) and in the center of the drift (access tunnel). Once the cloth is in place, it is covered with six to eight inches of

  3. Radiological Contamination Control Training for Laboratory Research

    Energy.gov [DOE] (indexed site)

    ... "Radiation Safety Surveys at Medical Institutions." NRC (1991), U.S. Nuclear Regulatory ... ANSI 13.12 (1999), "Surface Radioactivity Guides for Materials, Equipment, and Facilities ...

  4. Federal Radiological Monitoring and Assessment Center Monitoring Manual Volume 1, Operations

    SciTech Connect

    NSTec Aerial Measurement Systems

    2012-07-31

    The Monitoring division is primarily responsible for the coordination and direction of: Aerial measurements to delineate the footprint of radioactive contaminants that have been released into the environment. Monitoring of radiation levels in the environment; Sampling to determine the extent of contaminant deposition in soil, water, air and on vegetation; Preliminary field analyses to quantify soil concentrations or depositions; and Environmental and personal dosimetry for FRMAC field personnel, during a Consequence Management Response Team (CMRT) and Federal Radiological Monitoring and Assessment Center (FRMAC) response. Monitoring and sampling techniques used during CM/FRMAC operations are specifically selected for use during radiological emergencies where large numbers of measurements and samples must be acquired, analyzed, and interpreted in the shortest amount of time possible. In addition, techniques and procedures are flexible so that they can be used during a variety of different scenarios; e.g., accidents involving releases from nuclear reactors, contamination by nuclear waste, nuclear weapon accidents, space vehicle reentries, or contamination from a radiological dispersal device. The Monitoring division also provides technicians to support specific Health and Safety Division activities including: The operation of the Hotline; FRMAC facility surveys; Assistance with Health and Safety at Check Points; and Assistance at population assembly areas which require support from the FRMAC. This volume covers deployment activities, initial FRMAC activities, development and implementation of the monitoring and assessment plan, the briefing of field teams, and the transfer of FRMAC to the EPA.

  5. Nuclear and Radiological Forensics and Attribution Overview

    SciTech Connect

    Smith, D K; Niemeyer, S

    2005-11-04

    The goal of the U.S. Department of Homeland Security (DHS) Nuclear and Radiological Forensics and Attribution Program is to develop the technical capability for the nation to rapidly, accurately, and credibly attribute the origins and pathways of interdicted or collected materials, intact nuclear devices, and radiological dispersal devices. A robust attribution capability contributes to threat assessment, prevention, and deterrence of nuclear terrorism; it also supports the Federal Bureau of Investigation (FBI) in its investigative mission to prevent and respond to nuclear terrorism. Development of the capability involves two major elements: (1) the ability to collect evidence and make forensic measurements, and (2) the ability to interpret the forensic data. The Program leverages the existing capability throughout the U.S. Department of Energy (DOE) national laboratory complex in a way that meets the requirements of the FBI and other government users. At the same time the capability is being developed, the Program also conducts investigations for a variety of sponsors using the current capability. The combination of operations and R&D in one program helps to ensure a strong linkage between the needs of the user community and the scientific development.

  6. Digital Surveying Directional Surveying Specialists | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Surveying Specialists Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Digital Surveying Directional Surveying Specialists Author Directional Surveying...

  7. SU-E-E-06: Teaching Medical Physics in a Radiology Museum

    SciTech Connect

    Bednarek, D; Rudin, S

    2014-06-01

    Purpose: To enhance the learning process in the teaching of medical physics by providing a venue to experience the historical equipment and devices of radiology. Methods: We have created a museum by assembling a large collection of equipment and artifacts related to radiology and medical physics. As part of a learning-in-context educational approach, classes for a survey course in medical physics are held in the museum so that students are able to visually and tangibly experience the implements of radiology, while related topics are discussed. The students learn how x-ray equipment and techniques evolved throughout the years and they learn to appreciate the differences and similarities between current x-ray technology and that of the early days. The collection contains items dating from the era of the discovery of x-rays up to recent times and includes gas x-ray tubes, hand-held fluoroscopes, generators, spark-gap kV meters, stereoscopes, glass-plate radiographs, a photofluorographic unit, wood-interspaced grid, flat-panel detector, linear-accelerator klystron, and brachytherapy radium applicators, as well as an extensive library containing some of the seminal literature of the field so that students can delve deeper into the technology. In addition to the classes, guided tours are provided for radiologic-technology, bioengineering, physics and medical students, as well as group and individual tours for the general public. Results: Student course assessments have consistently included positive expressions of their experience in the museum. Numerous students have volunteered to assist with display preparation and have learned by researching the content. Many individuals have been attracted on a walk-in basis and have expressed a deep curiosity in the technology, with positive feedback. Conclusion: The museum and its artifacts have been invaluable in stimulating interest in the history and technology of medical physics. Students and visitors alike obtain a deeper

  8. Nevada Test Site Radiological Control Manual. Revision 1

    SciTech Connect

    None, None

    2010-02-09

    This document supersedes DOE/NV/25946--801, “Nevada Test Site Radiological Control Manual,” Revision 0 issued in October 2009. Brief Description of Revision: A minor revision to correct oversights made during revision to incorporate the 10 CFR 835 Update; and for use as a reference document for Tenant Organization Radiological Protection Programs.

  9. FRMAC Interactions During a Radiological or Nuclear Event

    SciTech Connect

    Wong, C T

    2011-01-27

    During a radiological or nuclear event of national significance the Federal Radiological Emergency Monitoring and Assessment Center (FRMAC) assists federal, state, tribal, and local authorities by providing timely, high-quality predictions, measurements, analyses and assessments to promote efficient and effective emergency response for protection of the public and the environment from the consequences of such an event.

  10. Current Trends in Gamma Ray Detection for Radiological Emergency Response

    SciTech Connect

    Mukhopadhyay, S., Guss, P., Maurer, R.

    2011-08-18

    Passive and active detection of gamma rays from shielded radioactive materials, including special nuclear materials, is an important task for any radiological emergency response organization. This article reports on the current trends and status of gamma radiation detection objectives and measurement techniques as applied to nonproliferation and radiological emergencies.

  11. T-625: Opera Frameset Handling Memory Corruption Vulnerability

    Energy.gov [DOE]

    The vulnerability is caused due to an error when handling certain frameset constructs during page unloading and can be exploited to corrupt memory via a specially crafted web page.

  12. Draft Environmental Assessment on the Remote-handled Waste Disposition...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Draft Environmental Assessment on the Remote-handled Waste Disposition Project available for public review and comment The U.S. Department of Energy invites the public to review...

  13. Handling and characterization of glow-discharge polymer samples...

    Office of Scientific and Technical Information (OSTI)

    of glow-discharge polymer samples for the light gas gun Citation Details In-Document Search Title: Handling and characterization of glow-discharge polymer samples for the light ...

  14. Handling and characterization of glow-discharge polymer samples...

    Office of Scientific and Technical Information (OSTI)

    for the light gas gun Citation Details In-Document Search Title: Handling and characterization of glow-discharge polymer samples for the light gas gun Authors: Akin, M C ; ...

  15. ETA-UTP007 - Road Course Handling Test

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Appendices Appendix A - Electric Vehicle Road Course Handling Test Data Sheet 13 Appendix B - Vehicle Metrology Setup Sheet 18 Appendix C - Course Layout 19 Procedure ETA-UTP007 ...

  16. DOE Seeks Independent Evaluation of Remote-Handled Waste Program

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Seeks Independent Evaluation Of Remote-Handled Waste Program CARLSBAD, N.M., July 24, 2001 - An independent panel of scientific and engineering experts will convene July 30 in Carlsbad to evaluate U.S. Department of Energy (DOE) plans for managing remote-handled (RH) transuranic (TRU) waste at the Waste Isolation Pilot Plant (WIPP). DOE's Carlsbad Field Office has asked the American Society of Mechanical Engineers and the Institute for Regulatory Science to review its proposed RH-TRU waste

  17. Central Characterization Program (CCP) Contact-Handled (CH) TRU Waste

    Office of Environmental Management (EM)

    Certification and Waste Information System/Waste Data System (WWIS/WDS) Data Entry | Department of Energy Contact-Handled (CH) TRU Waste Certification and Waste Information System/Waste Data System (WWIS/WDS) Data Entry Central Characterization Program (CCP) Contact-Handled (CH) TRU Waste Certification and Waste Information System/Waste Data System (WWIS/WDS) Data Entry This document was used to determine facts and conditions during the Department of Energy Accident Investigation Board's

  18. Specialty Vehicles and Material Handling Equipment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Specialty Vehicles and Material Handling Equipment Specialty Vehicles and Material Handling Equipment This presentation by William Mitchell of Nuvera Fuel Cells was given at the Fuel Cell Meeting in April 2007. fuel_cell_mtng_mitchell.pdf (6.38 MB) More Documents & Publications WA_07_040_GRAFTECH_INTERNATIONAL_LTD_Waiver_of_Patent_Rights.pdf 2012 Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program 2015 Pathways to Commercial Success:

  19. Independent Confirmatory Survey Summary and Results for the Plum Brook Reactor Facility Sandusky OH

    SciTech Connect

    E.N. Bailey

    2008-05-06

    The objectives of the confirmatory survey activities were to provide independent contractor field data reviews and to generate independent radiological data for use by the Nuclear Regulatory Commission (NRC) in evaluating the adequacy and accuracy of the licensee’s procedures and final status survey (FSS) results.

  20. Confirmatory Survey of the Fuel Oil Tank Area - Humboldt Bay Power Plant, Eureka, California

    SciTech Connect

    ADAMS, WADE C

    2012-04-09

    During the period of February 14 to 15, 2012, ORISE performed radiological confirmatory survey activities for the former Fuel Oil Tank Area (FOTA) and additional radiological surveys of portions of the Humboldt Bay Power Plant site in Eureka, California. The radiological survey results demonstrate that residual surface soil contamination was not present significantly above background levels within the FOTA. Therefore, it is ORISE’s opinion that the radiological conditions for the FOTA surveyed by ORISE are commensurate with the site release criteria for final status surveys as specified in PG&E’s Characterization Survey Planning Worksheet. In addition, the confirmatory results indicated that the ORISE FOTA survey unit Cs-137 mean concentrations results compared favorably with the PG&E FOTA Cs-137 mean concentration results, as determined by ORISE from the PG&E characterization data. The interlaboratory comparison analyses of the three soil samples analyzed by PG&E’s onsite laboratory and the ORISE laboratory indicated good agreement for the sample results and provided confidence in the PG&E analytical procedures and final status survey soil sample data reporting.

  1. Monument Survey

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Photographs from the WIPP Permanent Marker Monument Survey John Hart & Associates, 2000 Photograph of the Gnome Marker located about 10 miles SW of the WIPP site For more...

  2. Survey Consumption

    Annual Energy Outlook

    purchase diaries from a subset of respondents composing a Household Transportation Panel and is reported separately. Residential Energy Consumption Survey: Consumption and...

  3. Uranium hexafluoride: A manual of good handling practices. Revision 7

    SciTech Connect

    1995-01-01

    The United States Enrichment Corporation (USEC) is continuing the policy of the US Department of Energy (DOE) and its predecessor agencies in sharing with the nuclear industry their experience in the area of uranium hexafluoride (UF{sub 6}) shipping containers and handling procedures. The USEC has reviewed Revision 6 or ORO-651 and is issuing this new edition to assure that the document includes the most recent information on UF{sub 6} handling procedures and reflects the policies of the USEC. This manual updates the material contained in earlier issues. It covers the essential aspects of UF{sub 6} handling, cylinder filling and emptying, general principles of weighing and sampling, shipping, and the use of protective overpacks. The physical and chemical properties of UF{sub 6} are also described. The procedures and systems described for safe handling of UF{sub 6} presented in this document have been developed and evaluated during more than 40 years of handling vast quantities of UF{sub 6}. With proper consideration for its nuclear properties, UF{sub 6} may be safely handled in essentially the same manner as any other corrosive and/or toxic chemical.

  4. WIPP Remote Handled Waste Facility: Performance Dry Run Operations

    SciTech Connect

    Burrington, T. P.; Britain, R. M.; Cassingham, S. T.

    2003-02-24

    The Remote Handled (RH) TRU Waste Handling Facility at the Waste Isolation Pilot Plant (WIPP) was recently upgraded and modified in preparation for handling and disposal of RH Transuranic (TRU) waste. This modification will allow processing of RH-TRU waste arriving at the WIPP site in two different types of shielded road casks, the RH-TRU 72B and the CNS 10-160B. Washington TRU Solutions (WTS), the WIPP Management and Operation Contractor (MOC), conducted a performance dry run (PDR), beginning August 19, 2002 and successfully completed it on August 24, 2002. The PDR demonstrated that the RHTRU waste handling system works as designed and demonstrated the handling process for each cask, including underground disposal. The purpose of the PDR was to develop and implement a plan that would define in general terms how the WIPP RH-TRU waste handling process would be conducted and evaluated. The PDR demonstrated WIPP operations and support activities required to dispose of RH-TRU waste in the WIPP underground.

  5. DOE-HDBK-1122-99 Radiological Control Technical Training, Oral...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... of candidates for Radiological Control Technician (RCT) and for RCT Supervisor. ... OEBs as indicated in DOE's Radiological Control Standard (RCS) and the RCT Training ...

  6. Radiological assessments for the National Ignition Facility

    SciTech Connect

    Hong, Kou-John; Lazaro, M.A.

    1996-08-01

    The potential radiological impacts of the National Ignition Facility (NIF), a proposed facility for fusion ignition and high energy density experiments, were assessed for five candidate sites to assist in site selection. The GENII computer program was used to model releases of radionuclides during normal NIF operations and a postulated accident and to calculate radiation doses to the public. Health risks were estimated by converting the estimated doses into health effects using a standard cancer fatality risk factor. The greatest calculated radiation dose was less than one thousandth of a percent of the dose received from natural background radiation; no cancer fatalities would be expected to occur in the public as the result of normal operations. The highest dose conservatively estimated to result from a postulated accident could lead to one in one million risk of cancer.

  7. Recovery from chemical, biological, and radiological incidents :

    SciTech Connect

    Franco, David Oliver; Yang, Lynn I.; Hammer, Ann E.

    2012-06-01

    To restore regional lifeline services and economic activity as quickly as possible after a chemical, biological or radiological incident, emergency planners and managers will need to prioritize critical infrastructure across many sectors for restoration. In parallel, state and local governments will need to identify and implement measures to promote reoccupation and economy recovery in the region. This document provides guidance on predisaster planning for two of the National Disaster Recovery Framework Recovery Support Functions: Infrastructure Systems and Economic Recovery. It identifies key considerations for infrastructure restoration, outlines a process for prioritizing critical infrastructure for restoration, and identifies critical considerations for promoting regional economic recovery following a widearea disaster. Its goal is to equip members of the emergency preparedness community to systematically prioritize critical infrastructure for restoration, and to develop effective economic recovery plans in preparation for a widearea CBR disaster.

  8. Potential radiological impacts of upper-bound operational accidents during proposed waste disposal alternatives for Hanford defense waste

    SciTech Connect

    Mishima, J.; Sutter, S.L.; Hawley, K.A.; Jenkins, C.E.; Napier, B.A.

    1986-02-01

    The Geologic Disposal Alternative, the In-Place Stabilization and Disposal Alternative, and the Reference Disposal Alternative are being evaluated for disposal of Hanford defense high-level, transuranic, and tank wastes. Environmental impacts associated with disposal of these wastes according to the alternatives listed above include potential doses to the downwind population from operation during the application of the handling and processing techniques comprising each disposal alternative. Scenarios for operational accident and abnormal operational events are postulated, on the basis of the currently available information, for the application of the techniques employed for each waste class for each disposal alternative. From these scenarios, an upper-bound airborne release of radioactive material was postulated for each waste class and disposal alternative. Potential downwind radiologic impacts were calculated from these upper-bound events. In all three alternatives, the single postulated event with the largest calculated radiologic impact for any waste class is an explosion of a mixture of ferri/ferro cyanide precipitates during the mechanical retrieval or microwave drying of the salt cake in single shell waste tanks. The anticipated downwind dose (70-year dose commitment) to the maximally exposed individual is 3 rem with a total population dose of 7000 man-rem. The same individual would receive 7 rem from natural background radiation during the same time period, and the same population would receive 3,000,000 man-rem. Radiological impacts to the public from all other postulated accidents would be less than that from this accident; furthermore, the radiological impacts resulting from this accident would be less than one-half that from the natural background radiation dose.

  9. LM Records Handling System-Freedom of Information/Privacy Act...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Freedom of InformationPrivacy Act, Office of Legacy management LM Records Handling System-Freedom of InformationPrivacy Act, Office of Legacy management LM Records Handling ...

  10. Remote-Handled Low Level Waste Disposal Project Alternatives Analysis

    SciTech Connect

    David Duncan

    2010-10-01

    This report identifies, evaluates, and compares alternatives for meeting the U.S. Department of Energy’s mission need for management of remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Each alternative identified in the Mission Need Statement for the Remote-Handled Low-Level Waste Treatment Project is described and evaluated for capability to fulfill the mission need. Alternatives that could meet the mission need are further evaluated and compared using criteria of cost, risk, complexity, stakeholder values, and regulatory compliance. The alternative for disposal of remote-handled low-level waste that has the highest confidence of meeting the mission need and represents best value to the government is to build a new disposal facility at the Idaho National Laboratory Site.

  11. Adaptively Reevaluated Bayesian Localization (ARBL): A Novel Technique for Radiological Source Localization

    SciTech Connect

    Miller, Erin A.; Robinson, Sean M.; Anderson, Kevin K.; McCall, Jonathon D.; Prinke, Amanda M.; Webster, Jennifer B.; Seifert, Carolyn E.

    2015-06-01

    Adaptively Reevaluated Bayesian Localization (ARBL): A Novel Technique for Radiological Source Localization

  12. Certification document for newly generated contact-handled transuranic waste

    SciTech Connect

    Box, W.D.; Setaro, J.

    1984-01-01

    The US Department of Energy has requested that all national laboratories handling defense waste develop and augment a program whereby all newly generated contact-handled transuranic (TRU) waste be contained, stored, and then shipped to the Waste Isolation Pilot Plant (WIPP) in accordance with the requirements set forth in WIPP-DOE-114. The program described in this report delineates how Oak Ridge National Laboratory intends to comply with these requirements and lists the procedures used by each generator to ensure that their TRU wastes are certifiable for shipment to WIPP.

  13. INTERNATIONAL COOPERATION ON RADIOLOGICAL THREAT REDUCTION PROGRAMS IN RUSSIA

    SciTech Connect

    Landers, Christopher C.; Tatyrek, Aaron P.

    2009-10-07

    Since its inception in 2004, the United States Department of Energy’s Global Threat Reduction Initiative (GTRI) has provided the Russian Federation with significant financial and technical assistance to secure its highly vulnerable and dangerous radiological material. The three program areas of this assistance are the removal of radioisotope thermoelectric generators (RTG), the physical protection of vulnerable in-use radiological material of concern, and the recovery of disused or abandoned radiological material of concern. Despite the many successes of the GTRI program in Russia, however, there is still a need for increased international cooperation in these efforts. Furthermore, concerns exist over how the Russian government will ensure that the security of its radiological materials provided through GTRI will be sustained. This paper addresses these issues and highlights the successes of GTRI efforts and ongoing activities.

  14. RESULTS OF RADIOLOGICAL MEASUREMENTS TAKEN NEAR JUNCTION OF HIGHWAY...

    Office of Legacy Management (LM)

    RESULTS OF RADIOLOGICAL MEASUREMENTS TAKEN NEAR JUNCTION OF HIGHWAY 3I AND MILITARY ROAD ... JI'NCTION OF UIGUIAY 31 ATiID ilILITART ROAD IN NIAGARA FALLS, NEW YOBT B. A. Berven D ...

  15. DOE-HDBK-1122-99; Radiological Control Technician Training

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    A. Self Introduction 1. Name 2. Phone number 3. Background 4. Emergency procedure review B. ... basic radiological control factors. 1. Physical condition of worker DOE-HDBK-1122-99 ...

  16. DOE-STD-1098-99; Radiological Control

    National Nuclear Security Administration (NNSA)

    RADIOLOGICAL CONTROL U.S. Department of Energy AREA SAFT Washington, D.C. 20585 ... Information Services, U.S. Department of Energy, (800) 473-4375, fax (301) 903-9823. ...

  17. Unified Resolve 2014: A Proof of Concept for Radiological Support...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    are presently referred to as "Radiological Operations Support Specialists (ROSS). The role of the ROSS cadre is envisioned to be an on-scene RN subject matter expert to Incident ...

  18. Radiological Source Terms for Tank Farms Safety Analysis

    SciTech Connect

    COWLEY, W.L.

    2000-06-27

    This document provides Unit Liter Dose factors, atmospheric dispersion coefficients, breathing rates and instructions for using and customizing these factors for use in calculating radiological doses for accident analyses in the Hanford Tank Farms.

  19. RADIOLOGICAL DATA FOR ALARA PLANNING PURPOSES Rev. 1 Contact

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    RADIOLOGICAL DATA FOR ALARA PLANNING PURPOSES Rev. 1 Contact 1 ft 3 ft 10 ft 25 ft 50 ft ... Inside of CaskLid Outside of Cask Lifting rig or any other support equipment Does the ...

  20. DOE-HDBK-1122-99; Radiological Control Technician Training

    Energy.gov [DOE] (indexed site)

    2. U.S. Department of Energy, DOE-STD-1098-99, "Radiological Control Standard" 3. 10 CFR Part 835 (1998), "Occupational Radiation Protection" 4. ICRP Publication 37 "Cost-Benefit ...

  1. DOE-HDBK-1122-99; Radiological Control Technician Training

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    and regulations for radiological control. 1.09.03 Identify the scope of the 10 CFR Part 835. References: 1. ANL-88-26 (1988) "Operational Health Physics Training"; Moe, ...

  2. DOE-HDBK-1122-99; Radiological Control Technical Training

    Energy Saver

    References: 1. 10 CFR 835 (1998), "Occupational Radiation Protection" 2. "Radiological Control Standard," DOE-STD-1098-99. DOE-HDBK-1122-99 Module 2.10 Access Control and Work Area ...

  3. DOE-HDBK-1122-99; Radiological Control Technician Training

    Office of Environmental Management (EM)

    Communication Systems Study Guide 2.02-1 Course Title: Radiological Control Technician Module Title: Communication Systems Module Number: 2.02 Objectives: 2.02.01 Explain the ...

  4. Antiplatelet and Anticoagulant Drugs in Interventional Radiology

    SciTech Connect

    Altenburg, Alexander; Haage, Patrick

    2012-02-15

    In treating peripheral arterial disease, a profound knowledge of antiplatelet and anticoagulative drug therapy is helpful to assure a positive clinical outcome and to anticipate and avoid complications. Side effects and drug interactions may have fatal consequences for the patient, so interventionalists should be aware of these risks and able to control them. Aspirin remains the first-line agent for antiplatelet monotherapy, with clopidogrel added where dual antiplatelet therapy is required. In case of suspected antiplatelet drug resistance, the dose of clopidogrel may be doubled; prasugrel or ticagrelor may be used alternatively. Glycoprotein IIb/IIIa inhibitors (abciximab or eptifibatide) may help in cases of hypercoagulability or acute embolic complications. Desmopressin, tranexamic acid, or platelet infusions may be used to decrease antiplatelet drug effects in case of bleeding. Intraprocedurally, anticoagulant therapy treatment with unfractionated heparin (UFH) still is the means of choice, although low molecular-weight heparins (LMWH) are suitable, particularly for postinterventional treatment. Adaption of LMWH dose is often required in renal insufficiency, which is frequently found in elderly patients. Protamine sulphate is an effective antagonist for UFH; however, this effect is less for LMWH. Newer antithrombotic drugs, such as direct thrombin inhibitors or factor X inhibitors, have limited importance in periprocedural treatment, with the exception of treating patients with heparin-induced thrombocytopenia (HIT). Nevertheless, knowing pharmacologic properties of the newer drugs facilitate correct bridging of patients treated with such drugs. This article provides a comprehensive overview of antiplatelet and anticoagulant drugs for use before, during, and after interventional radiological procedures.

  5. Radiological Control Technical Position, Regarding Use of Social Security

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Numbers in Dose Reports | Department of Energy Radiological Control Technical Position, Regarding Use of Social Security Numbers in Dose Reports Radiological Control Technical Position, Regarding Use of Social Security Numbers in Dose Reports August 12,2009 When Federal privacy laws were enacted, social security numbers were classified as PII (personally identifiable information). Since most sites used the social security number for identifying workers, it was necessary to give guidance to

  6. Portsmouth Training Exercise Helps Radiological Trainees Spot Mistakes

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Safely | Department of Energy Training Exercise Helps Radiological Trainees Spot Mistakes Safely Portsmouth Training Exercise Helps Radiological Trainees Spot Mistakes Safely February 11, 2016 - 12:10pm Addthis Connie Martin performs work inside the Error Lab while trainees observe her actions for mistakes. Connie Martin performs work inside the Error Lab while trainees observe her actions for mistakes. Lorrie Graham (left) talks with trainees in a classroom setting before observing the

  7. Radiological Source Registry and Tracking (RSRT) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Radiological Source Registry and Tracking (RSRT) Radiological Source Registry and Tracking (RSRT) Department of Energy (DOE) Notice N 234.1 Reporting of Radioactive Sealed Sources has been superseded by DOE Order O 231.1B Environment, Safety and Health Reporting. O 231.1B identifies the requirements for centralized inventory and transaction reporting for radioactive sealed sources. Each DOE site/facility operator that owns, possesses, uses or maintains in custody those accountable radioactive

  8. NNSA Receives Excellence Award for Radiological Security Enhancements in

    National Nuclear Security Administration (NNSA)

    Hawaii | National Nuclear Security Administration | (NNSA) Receives Excellence Award for Radiological Security Enhancements in Hawaii August 18, 2016 HONOLULU - At an official event this week, the City and County of Honolulu presented the Department of Energy's (DOE) National Nuclear Security Administration (NNSA) with the Homeland Security Excellence Award for DOE/NNSA's Office of Radiological Security's (ORS) efforts to enhance the security of radioactive materials in the State of Hawaii.

  9. Nuclear/Radiological Advisory Team | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration Nuclear/Radiological Advisory Team NNSA stays prepared with world-class response units September is National Preparedness Month, but for the Department of Energy (DOE) and NNSA, preparedness is a priority every month of the year. NNSA can respond to an emergency at any DOE facility, and it is also the nation's premier technical resource for response to nuclear or radiological

  10. Nation's Radiological Assistance Program teams practice emergency response

    National Nuclear Security Administration (NNSA)

    | National Nuclear Security Administration | (NNSA) Nation's Radiological Assistance Program teams practice emergency response Thursday, March 31, 2016 - 11:05am NNSA Blog Radiological Assistance Program (RAP) teams from around the country gathered in Albuquerque in late March as part of RAP Training for Emergency Response (RAPTER). This training consists of an intensive series of drills conducted four times a year to provide recertification for members of Department of Energy (DOE)/National

  11. A Checklist to Improve Patient Safety in Interventional Radiology

    SciTech Connect

    Koetser, Inge C. J.; Vries, Eefje N. de; Delden, Otto M. van; Smorenburg, Susanne M.; Boermeester, Marja A.; Lienden, Krijn P. van

    2013-04-15

    To develop a specific RADiological Patient Safety System (RADPASS) checklist for interventional radiology and to assess the effect of this checklist on health care processes of radiological interventions. On the basis of available literature and expert opinion, a prototype checklist was developed. The checklist was adapted on the basis of observation of daily practice in a tertiary referral centre and evaluation by users. To assess the effect of RADPASS, in a series of radiological interventions, all deviations from optimal care were registered before and after implementation of the checklist. In addition, the checklist and its use were evaluated by interviewing all users. The RADPASS checklist has two parts: A (Planning and Preparation) and B (Procedure). The latter part comprises checks just before starting a procedure (B1) and checks concerning the postprocedural care immediately after completion of the procedure (B2). Two cohorts of, respectively, 94 and 101 radiological interventions were observed; the mean percentage of deviations of the optimal process per intervention decreased from 24 % before implementation to 5 % after implementation (p < 0.001). Postponements and cancellations of interventions decreased from 10 % before implementation to 0 % after implementation. Most users agreed that the checklist was user-friendly and increased patient safety awareness and efficiency. The first validated patient safety checklist for interventional radiology was developed. The use of the RADPASS checklist reduced deviations from the optimal process by three quarters and was associated with less procedure postponements.

  12. Radiological Monitoring Equipment For Real-Time Quantification Of Area Contamination In Soils And Facility Decommissioning

    SciTech Connect

    M. V. Carpenter; Jay A. Roach; John R Giles; Lyle G. Roybal

    2005-09-01

    The environmental restoration industry offers several sys¬tems that perform scan-type characterization of radiologically contaminated areas. The Idaho National Laboratory (INL) has developed and deployed a suite of field systems that rapidly scan, characterize, and analyse radiological contamination in surface soils. The base system consists of a detector, such as sodium iodide (NaI) spectrometers, a global positioning system (GPS), and an integrated user-friendly computer interface. This mobile concept was initially developed to provide precertifica¬tion analyses of soils contaminated with uranium, thorium, and radium at the Fernald Closure Project, near Cincinnati, Ohio. INL has expanded the functionality of this basic system to create a suite of integrated field-deployable analytical systems. Using its engineering and radiation measurement expertise, aided by computer hardware and software support, INL has streamlined the data acquisition and analysis process to provide real-time information presented on wireless screens and in the form of coverage maps immediately available to field technicians. In addition, custom software offers a user-friendly interface with user-selectable alarm levels and automated data quality monitoring functions that validate the data. This system is deployed from various platforms, depending on the nature of the survey. The deployment platforms include a small all-terrain vehicle used to survey large, relatively flat areas, a hand-pushed unit for areas where manoeuvrability is important, an excavator-mounted system used to scan pits and trenches where personnel access is restricted, and backpack- mounted systems to survey rocky shoreline features and other physical settings that preclude vehicle-based deployment. Variants of the base system include sealed proportional counters for measuring actinides (i.e., plutonium-238 and americium-241) in building demolitions, soil areas, roadbeds, and process line routes at the Miamisburg

  13. Method of preparing and handling chopped plant materials

    DOEpatents

    Bransby, David I.

    2002-11-26

    The method improves efficiency of harvesting, storage, transport, and feeding of dry plant material to animals, and is a more efficient method for harvesting, handling and transporting dry plant material for industrial purposes, such as for production of bioenergy, and composite panels.

  14. Sampling device with a capped body and detachable handle

    DOEpatents

    Jezek, Gerd-Rainer

    2000-01-01

    The apparatus is a sampling device having a pad for sample collection, a body which supports the pad, a detachable handle connected to the body and a cap which encloses and retains the pad and body to protect the integrity of the sample.

  15. Tritium handling experience at Atomic Energy of Canada Limited

    SciTech Connect

    Suppiah, S.; McCrimmon, K.; Lalonde, S.; Ryland, D.; Boniface, H.; Muirhead, C.; Castillo, I.

    2015-03-15

    Canada has been a leader in tritium handling technologies as a result of the successful CANDU reactor technology used for power production. Over the last 50 to 60 years, capabilities have been established in tritium handling and tritium management in CANDU stations, tritium removal processes for heavy and light water, tritium measurement and monitoring, and understanding the effects of tritium on the environment. This paper outlines details of tritium-related work currently being carried out at Atomic Energy of Canada Limited (AECL). It concerns the CECE (Combined Electrolysis and Catalytic Exchange) process for detritiation, tritium-compatible electrolysers, tritium permeation studies, and tritium powered batteries. It is worth noting that AECL offers a Tritium Safe-Handling Course to national and international participants, the course is a mixture of classroom sessions and hands-on practical exercises. The expertise and facilities available at AECL is ready to address technological needs of nuclear fusion and next-generation nuclear fission reactors related to tritium handling and related issues.

  16. Handbook for Handling, Storing, and Dispensing E85

    SciTech Connect

    2002-04-01

    This guidebook contains information about EPAct alternative fuels regulations for fleets, FFVs, E85 properties and specifications, and E85 handling and storage guidelines. The information provided in this guidebook is based on proven practices developed by experienced fuel providers, fleet managers, and vehicle manufacturers, and describes how to successfully and safely use fuel ethanol, including E85, in vehicles.

  17. Structural acceptance criteria Remote Handling Building Tritium Extraction Facility

    SciTech Connect

    Mertz, G.

    1999-12-16

    This structural acceptance criteria contains the requirements for the structural analysis and design of the Remote Handling Building (RHB) in the Tritium Extraction Facility (TEF). The purpose of this acceptance criteria is to identify the specific criteria and methods that will ensure a structurally robust building that will safely perform its intended function and comply with the applicable Department of Energy (DOE) structural requirements.

  18. Plutonium Immobilization Process: Puck Handling Module Supervisory Control System

    SciTech Connect

    Smail, T.R.

    2001-01-29

    This paper discusses the Supervisory Control and Data Acquisition for green puck handling. Also discussed is the overall control scheme implemented by the supervisory computer, the individual inspections completed on the puck, and the checks and balances between the computer, tray loading system and robot.

  19. AP600 containment purge radiological analysis

    SciTech Connect

    O`Connor, M.; Schulz, J.; Tan, C.

    1995-02-01

    The AP600 Project is a passive pressurized water reactor power plant which is part of the Design Certification and First-of-a-Kind Engineering effort under the Advanced Light Water Reactor program. Included in this process is the design of the containment air filtration system which will be the subject of this paper. We will compare the practice used by previous plants with the AP600 approach to meet the goals of industry standards in sizing the containment air filtration system. The radiological aspects of design are of primary significance and will be the focus of this paper. The AP600 Project optimized the design to combine the functions of the high volumetric flow rate, low volumetric flow rate, and containment cleanup and other filtration systems into one multi-functional system. This achieves a more simplified, standardized, and lower cost design. Studies were performed to determine the possible concentrations of radioactive material in the containment atmosphere and the effectiveness of the purge system to keep concentrations within 10CFR20 limits and within offsite dose objectives. The concentrations were determined for various reactor coolant system leakage rates and containment purge modes of operation. The resultant concentrations were used to determine the containment accessibility during various stages of normal plant operation including refueling. The results of the parametric studies indicate that a dual train purge system with a capacity of 4,000 cfm per train is more than adequate to control the airborne radioactivity levels inside containment during normal plant operation and refueling, and satisfies the goals of ANSI/ANS-56.6-1986 and limits the amount of radioactive material released to the environment per ANSI/ANS 59.2-1985 to provide a safe environment for plant personnel and offsite residents.

  20. Lower bound of optimization in radiological protection system taking account of practical implementation of clearance

    SciTech Connect

    Hattori, Takatoshi

    2007-07-01

    The dose criterion used to derive clearance and exemption levels is of the order of 0.01 mSv/y based on the Basic Safety Standard (BSS) of the International Atomic Energy Agency (IAEA), the use of which has been agreed upon by many countries. It is important for human beings, who are facing the fact that global resources for risk reduction are limited, to carefully consider the practical implementation of radiological protection systems, particularly for low-radiation-dose regions. For example, in direct gamma ray monitoring, to achieve clearance level compliance, difficult issues on how the uncertainty (error) of gamma measurement should be handled and also how the uncertainty (scattering) of the estimation of non-gamma emitters should be treated in clearance must be resolved. To resolve these issues, a new probabilistic approach has been proposed to establish an appropriate safety factor for compliance with the clearance level in Japan. This approach is based on the fundamental concept that 0.1 mSv/y should be complied with the 97.5. percentile of the probability distribution for the uncertainties of both the measurement and estimation of non-gamma emitters. The International Commission on Radiological Protection, ICRP published a new concept of the representative person in Publication 101 Part I. The representative person is a hypothetical person exposed to a dose that is representative of those of highly exposed persons in a population. In a probabilistic dose assessment, the ICRP recommends that the representative person should be defined such that the probability of exposure occurrence is lower than about 5% that of a person randomly selected from the population receiving a high dose. From the new concept of the ICRP, it is reasonable to consider that the 95. percentile of the dose distribution for the representative person is theoretically always lower than the dose constraint. Using this established relationship, it can be concluded that the minimum dose