National Library of Energy BETA

Sample records for geothermal resource analysis

  1. Analysis of Low-Temperature Utilization of Geothermal Resources (Technical

    Office of Scientific and Technical Information (OSTI)

    Report) | SciTech Connect Technical Report: Analysis of Low-Temperature Utilization of Geothermal Resources Citation Details In-Document Search Title: Analysis of Low-Temperature Utilization of Geothermal Resources Full realization of the potential of what might be considered "low-grade" geothermal resources will require that we examine many more uses for the heat than traditional electricity generation. To demonstrate that geothermal energy truly has the potential to be a national

  2. Analysis of Low-Temperature Utilization of Geothermal Resources

    Energy.gov [DOE]

    Project objectives: Techno-economic analysis of the potential of low-temperature (90-150°C) geothermal sources. Perform process optimizations and economic analyses of processes that can utilize low-temperature geothermal fluids. Develop a regionalized model of the utilization of low-temperature geothermal resources.

  3. Analysis of Low-Temperature Utilization of Geothermal Resources

    SciTech Connect (OSTI)

    Anderson, Brian

    2015-06-30

    Full realization of the potential of what might be considered “low-grade” geothermal resources will require that we examine many more uses for the heat than traditional electricity generation. To demonstrate that geothermal energy truly has the potential to be a national energy source we will be designing, assessing, and evaluating innovative uses for geothermal-produced water such as hybrid biomass-geothermal cogeneration of electricity and district heating and efficiency improvements to the use of cellulosic biomass in addition to utilization of geothermal in district heating for community redevelopment projects. The objectives of this project were: 1) to perform a techno-economic analysis of the integration and utilization potential of low-temperature geothermal sources. Innovative uses of low-enthalpy geothermal water were designed and examined for their ability to offset fossil fuels and decrease CO2 emissions. 2) To perform process optimizations and economic analyses of processes that can utilize low-temperature geothermal fluids. These processes included electricity generation using biomass and district heating systems. 3) To scale up and generalize the results of three case study locations to develop a regionalized model of the utilization of low-temperature geothermal resources. A national-level, GIS-based, low-temperature geothermal resource supply model was developed and used to develop a series of national supply curves. We performed an in-depth analysis of the low-temperature geothermal resources that dominate the eastern half of the United States. The final products of this study include 17 publications, an updated version of the cost estimation software GEOPHIRES, and direct-use supply curves for low-temperature utilization of geothermal resources. The supply curves for direct use geothermal include utilization from known hydrothermal, undiscovered hydrothermal, and near-hydrothermal EGS resources and presented these results at the Stanford

  4. Analysis Of Geothermal Resources In Northern Switzerland | Open...

    Open Energy Information (Open El) [EERE & EIA]

    resources in Northern Switzerland. In order to elaborate a Swiss geothermal resource atlas, a procedure has been elaborated that accounts for geological structures, temperature...

  5. Analysis of Low-Temperature Utilization of Geothermal Resources...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Project objectives: Techno-economic analysis of the potential of low-temperature (90-150C) geothermal sources. Perform process optimizations and economic analyses of processes ...

  6. Geothermal Resource Analysis and Structure of Basin and Range...

    Open Energy Information (Open El) [EERE & EIA]

    Analysis and Structure of Basin and Range Systems, Especially Dixie Valley Geothermal Field, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Report:...

  7. Analysis of Low-Temperature Utilization of Geothermal Resources...

    Office of Scientific and Technical Information (OSTI)

    innovative uses for geothermal-produced water such as hybrid biomass-geothermal ... Innovative uses of low-enthalpy geothermal water were designed and examined for their ...

  8. Geothermal Resource Analysis And Structure Of Basin And Range...

    Open Energy Information (Open El) [EERE & EIA]

    And Structure Of Basin And Range Systems, Especially Dixie Valley Geothermal Field, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geothermal...

  9. National forecast for geothermal resource exploration and development with techniques for policy analysis and resource assessment

    SciTech Connect (OSTI)

    Cassel, T.A.V.; Shimamoto, G.T.; Amundsen, C.B.; Blair, P.D.; Finan, W.F.; Smith, M.R.; Edeistein, R.H.

    1982-03-31

    The backgrund, structure and use of modern forecasting methods for estimating the future development of geothermal energy in the United States are documented. The forecasting instrument may be divided into two sequential submodels. The first predicts the timing and quality of future geothermal resource discoveries from an underlying resource base. This resource base represents an expansion of the widely-publicized USGS Circular 790. The second submodel forecasts the rate and extent of utilization of geothermal resource discoveries. It is based on the joint investment behavior of resource developers and potential users as statistically determined from extensive industry interviews. It is concluded that geothermal resource development, especially for electric power development, will play an increasingly significant role in meeting US energy demands over the next 2 decades. Depending on the extent of R and D achievements in related areas of geosciences and technology, expected geothermal power development will reach between 7700 and 17300 Mwe by the year 2000. This represents between 8 and 18% of the expected electric energy demand (GWh) in western and northwestern states.

  10. Geothermal Resources Assessment in Hawaii

    SciTech Connect (OSTI)

    Thomas, D.M.

    1984-10-01

    The Hawaii Geothermal Resources Assessment Program was initiated in 1978. The preliminary phase of this effort identified 20 Potential Geothermal Resource Areas (PGRA's) using available geological, geochemical and geophysical data. The second phase of the Assessment Program undertook a series of field studies, utilizing a variety of geothermal exploration techniques, in an effort to confirm the presence of thermal anomalies in the identified PGRA's and, if confirmed, to more completely characterize them. A total of 15 PGRA's on four of the five major islands in the Hawaiian chain were subject to at least a preliminary field analysis. The remaining five were not considered to have sufficient resource potential to warrant study under the personnel and budget constraints of the program. The island of Kauai was not studied during the current phase of investigation. Geothermal field studies were not considered to be warranted due to the absence of significant geochemical or geophysical indications of a geothermal resource. The great age of volcanism on this island would further suggest that should a thermal resource be present, it would be of low temperature. The geothermal field studies conducted on Oahu focused on the caldera complexes of the two volcanic systems which form the island: Waianae volcano and Koolau volcano. The results of these studies and the interpreted probability for a resource are presented.

  11. Analysis of Low-Temperature Utilization of Geothermal Resources

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... and district heating system at Cornell University A system for cellulosic biomass gasification and utilization at Iowa State University A geothermal system (direct-use ...

  12. Analysis of Low-Temperature Utilization of Geothermal Resources...

    Open Energy Information (Open El) [EERE & EIA]

    low-enthalpy geothermal water will be designed and examined for their ability to offset fossil fuels and decrease CO2 emissions. - Perform process optimizations and economic...

  13. National Geothermal Resource Assessment and Classification

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    National Geothermal Resource Assessment and Classification Colin F. Williams US Geological Survey Data Systems and Analysis (Resource Assessment) April 24, 2013 This presentation does not contain any proprietary confidential, or otherwise restricted information. 2 | US DOE Geothermal Office eere.energy.gov Relevance/Impact of Research * Overall Summary - Major Project Goals * Develop new Geothermal Resource Classification standards * Expand Resource Assessment scope across all 50 states

  14. Geothermal Resources Council Annual Meeting

    Energy.gov [DOE]

    Reno, Nevada The 2015 Geothermal Resources Council (GRC) Annual Meeting and the Geothermal Energy Association (GEA) Geothermal Energy Expo will be held in Reno, Nevada, on September 20–23. As the world’s largest annual geothermal conference and expo, this year’s event will bring together leaders in the geothermal industry; showcase the latest in geothermal research, exploration, development, and utilization; and feature workshops on important industry topics and field trips to nearby geothermal sites. Register today to reserve your spot.

  15. Geothermal resources of Montana

    SciTech Connect (OSTI)

    Metesh, J.

    1994-06-01

    The Montana Bureau of Mines and Geology has updated its inventory of low and moderate temperature resources for the state and has assisted the Oregon Institute of Technology - GeoHeat Center and the University of Utah Research Institute in prioritizing and collocating important geothermal resource areas. The database compiled for this assessment contains information on location, flow, water chemistry, and estimated reservoir temperatures for 267 geothermal well and springs in Montana. For this assessment, the minimum temperature for low-temperature resource is defined as 10{degree} C above the mean annual air temperature at the surface. The maximum temperature for a moderate-temperature resource is defined as greater than 50{degree} C. Approximately 12% of the wells and springs in the database have temperatures above 50{degree} C, 17% are between 30{degree} and 50{degree} C, 29% are between 20{degree} and 30{degree}C, and 42% are between 10{degree} and 20{degree} C. Low and moderate temperature wells and springs can be found in nearly all areas of Montana, but most are in the western third of the state. Information sources for the current database include the MBMG Ground Water Information Center, the USGS statewide database, the USGS GEOTHERM database, and new information collected as part of this program. Five areas of Montana were identified for consideration in future investigations of geothermal development. The areas identified are those near Bozeman, Ennis, Butte, Boulder, and Camas Prairie. These areas were chosen based on the potential of the resource and its proximity to population centers.

  16. Geothermal Resources and Transmission Planning | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Resources and Transmission Planning Geothermal Resources and Transmission Planning This project addresses transmission-related barriers to utility-scale deployment of geothermal electric generation technologies. analysis_hurlbut_geothermal_resources.pdf (488.27 KB) More Documents & Publications Novel Energy Conversion Equipment for Low Temperature Geothermal Resources Innovative Exploration Techniques for Geothermal Assessment at Jemez Pueblo, New Mexico Baseline System Costs for 50.0 MW

  17. NREL: Learning - Student Resources on Geothermal Energy

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Geothermal Energy The following resources can provide you with more information on geothermal energy. Geothermal Technologies Program U.S. Department of Energy's Office of Energy...

  18. National Geothermal Resource Assessment and Classification |...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    National Geothermal Resource Assessment and Classification track 2: hydrothermal | geothermal 2015 peer review National Geothermal Data System Architecture Design, Testing and ...

  19. Updating the Classification of Geothermal Resources

    Energy.gov [DOE]

    USGS is working with DOE, the geothermal industry, and academic partners to develop a new geothermal resource classification system.

  20. Updating the Classification of Geothermal Resources- Presentation

    Office of Energy Efficiency and Renewable Energy (EERE)

    USGS is working with DOE, the geothermal industry, and academic partners to develop a new geothermal resource classification system.

  1. National Geothermal Resource Assessment and Classification | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Resource Assessment and Classification National Geothermal Resource Assessment and Classification This work will enable lower risk/cost deployment of conventional and EGS geothermal power. USGS is also supporting GTP input to DOE National Energy Modeling by providing resource assessment data by geothermal region as input to GTP supply curves. analysis_williams_resource_assessment.pdf (661.92 KB) More Documents & Publications National Geothermal Resource Assessment and

  2. Geothermal Resources Council's ...

    Office of Scientific and Technical Information (OSTI)

    Enhanced Geothermal Systems (EGS) applications recommend lifting 300C geothermal water ... Therefore artificial lift techniques must be employed to return the high temperature water ...

  3. Detachment Faulting & Geothermal Resources - Pearl Hot Spring...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Detachment Faulting & Geothermal Resources - Pearl Hot Spring, NV Finding Large Aperture Fractures in Geothermal Resource Areas Using a Three-Component Long-Offset Surface Seismic ...

  4. Geothermal Energy Production from Low Temperature Resources,...

    Open Energy Information (Open El) [EERE & EIA]

    Geothermal Energy Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and Geopressured Resources Jump to: navigation, search Geothermal ARRA Funded...

  5. Idaho Geothermal Resources Webpage | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Resources Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Idaho Geothermal Resources Webpage Abstract Overview of Idaho's Geothermal Program....

  6. Geothermal, the 'undervalued' renewable resource, sees surging...

    Energy Savers

    Geothermal, the 'undervalued' renewable resource, sees surging interest Geothermal, the 'undervalued' renewable resource, sees surging interest May 21, 2009 - 10:38am Addthis ...

  7. Geothermal Resource Classification | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Resource Classification Geothermal Resource Classification Geothermal Resource Classification.PDF (869.18 KB) More Documents & Publications Water Use in the Development and Operations of Geothermal Power Plants Water Use in the Development and Operations of Geothermal Power Plants Water Use in the Development and Operation of Geothermal Power Plants

  8. Geothermal Resource Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Renewable Energy » Geothermal » Geothermal Resource Basics Geothermal Resource Basics August 14, 2013 - 1:58pm Addthis Although geothermal heat pumps can be used almost anywhere, most direct-use and electrical production facilities in the United States are located in the west, where the geothermal resource base is concentrated. Current drilling technology limits the development of geothermal resources to relatively shallow water- or steam-filled reservoirs, most of which are found in the

  9. Energy Department Announces $3 Million to Identify New Geothermal Resources

    Energy.gov [DOE]

    The U.S. Department of Energy today announced $3 million to spur geothermal energy development using play fairway analysis. This technique identifies prospective geothermal resources in areas with...

  10. NREL: Dynamic Maps, GIS Data, and Analysis Tools - Geothermal Prospector

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Geothermal Prospector Start exploring U.S. geothermal resources with an easy-to-use map by selecting data layers that are NGDS compatible. Bookmark and Share Geothermal Prospector The Geothermal Prospector mapping tool provides an excellent data resource for visual exploration of geothermal resources using the tools and datasets required to produce and disseminate both exploration gap analysis and Enhanced Geothermal System (EGS) planning and analysis. In 2010, NREL developed Geothermal

  11. Geothermal Resources Council | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Resources Council Address: P.O. Box 1350 Place: Davis, California Zip: 95617-1350 Sector: Geothermal energy, Renewable Energy, Services Product: Global Geothermal Community...

  12. NREL: Geothermal Technologies - Data and Resources

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Data and Resources The following data and resources include geothermal resource maps, models and tools, and photos used and produced by NREL. These resources are available for geothermal researchers and others interested in the viability and development of geothermal energy. Resource Maps NREL develops resource and characterization maps to help industry, policymakers, and researchers evaluate the number, location, and possibilities for geothermal resources throughout the United States. View

  13. State Geothermal Resource Assessment and Data Collection Efforts

    Office of Energy Efficiency and Renewable Energy (EERE)

    HawaiiNational Geothermal Data System Aids in Discovering Hawaii's Geothermal Resource (November 20, 2012)

  14. Finding Large Aperture Fractures in Geothermal Resource Areas Using A

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Three-Component Long-Offset Surface Seismic Survey, PSInSAR, and Kinematic Analysis | Department of Energy Finding Large Aperture Fractures in Geothermal Resource Areas Using A Three-Component Long-Offset Surface Seismic Survey, PSInSAR, and Kinematic Analysis Finding Large Aperture Fractures in Geothermal Resource Areas Using A Three-Component Long-Offset Surface Seismic Survey, PSInSAR, and Kinematic Analysis Fining Large Aperture Fractures in Geothermal Resource Areas Using A

  15. Finding Large Aperture Fractures in Geothermal Resource Areas...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ...-Offset Surface Seismic Survey, PSInSAR, and Kinematic Analysis Finding Large Aperture Fractures in Geothermal Resource Areas Using A Three-Component Long-Offset Surface Seismic ...

  16. Geothermal Exploration Best Practices: A Guide to Resource Data...

    Open Energy Information (Open El) [EERE & EIA]

    Best Practices: A Guide to Resource Data Collection, Analysis and Presentation for Geothermal Projects Jump to: navigation, search OpenEI Reference LibraryAdd to library Report:...

  17. Geothermal resources assessment in Hawaii. Final report

    SciTech Connect (OSTI)

    Thomas, D.M.

    1984-02-21

    The Hawaii Geothermal Resources Assessment Program was initiated in 1978. The preliminary phase of this effort identified 20 Potential Geothermal Resource Areas (PGRA's) using available geological, geochemical and geophysical data. The second phase of the Assessment Program undertook a series of field studies, utilizing a variety of geothermal exploration techniques, in an effort to confirm the presence of thermal anomalies in the identified PGRA's and, if confirmed, to more completely characterize them. A total of 15 PGRA's on four of the five major islands in the Hawaiian chain were subject to at least a preliminary field analysis. The remaining five were not considered to have sufficient resource potential to warrant study under the personnel and budget constraints of the program.

  18. Sustainable Energy Resources for Consumers (SERC) -Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    This presentation, aimed at Sustainable Energy Resources for Consumers (SERC) grantees, ... DOE Webinar Residential Geothermal Heat Pump Retrofits (Presentation) Sustainable ...

  19. Finding Large Aperture Fractures in Geothermal Resource Areas Using A Three-Component Long-Offset Surface Seismic Survey, PSInSAR, and Kinematic Analysis

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    FINDING LARGE APERTURE FRACTURES IN GEOTHERMAL RESOURCE AREAS USING A THREE-COMPONENT LONG- OFFSET SURFACE SEISMIC SURVEY, PSInSAR, AND KINEMATIC ANALYSIS Principal Investigator : William Teplow, US Geothermal, Inc. Presenter: Ian Warren, US Geothermal, Inc. INNOVATIVE EXPLORATION TECHNIQUES Project Officer: Ava Coy / Erik Swanton Total Project Funding: $3.77 Million April 2013 This presentation does not contain any proprietary confidential, or otherwise restricted information. 2 | US DOE

  20. Recovery Act:Direct Confirmation of Commercial Geothermal Resources in Colorado Using Remoter Sensing and On-Site Exploration, Testing and Analysis

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Recovery Act: Direct Confirmation of Commercial Geothermal Resources in Colorado using Remote Sensing and On- Site Exploration, Testing and Analysis F. Lee Robinson - PI Flint Geothermal LLC Track #1 April 23, 2013 This presentation does not contain any proprietary confidential, or otherwise restricted information. Insert photo of your choice Do not include any proprietary or confidential information. Your presentation is public and will be posted to the DOE Geothermal Technologies Program

  1. Geothermal br Resource br Area Geothermal br Resource br Area...

    Open Energy Information (Open El) [EERE & EIA]

    Aluto Langano Geothermal Area Aluto Langano Geothermal Area East African Rift System Ethiopian Rift Valley Major Normal Fault Basalt MW K Amatitlan Geothermal Area Amatitlan...

  2. Recovery Act:Direct Confirmation of Commercial Geothermal Resources in Colorado Using Remoter Sensing and On-Site Exploration, Testing and Analysis

    Energy.gov [DOE]

    Recovery Act:Direct Confirmation of Commercial Geothermal Resources in Colorado Using Remoter Sensing and On-Site Exploration, Testing and Analysis presentation at the April 2013 peer review meeting held in Denver, Colorado.

  3. NREL: Energy Analysis - Geothermal Technology Analysis

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Geothermal Technology Analysis The Department of Energy's (DOE) Geothermal Energy Program focuses in three areas: energy systems research and testing (working to enhance conversion of geothermal energy into heat and electricity) led by NREL; drilling technologies research (for both hardware and diagnostic tools) led by Sandia National Laboratories; and geoscience and supporting technologies research (exploration and resource management) led by the Idaho National Engineering and Environmental

  4. Video Resources on Geothermal Technologies

    Energy.gov [DOE]

    Geothermal video offerings at the Department of Energy include simple interactive illustrations of geothermal power technologies and interviews on initiatives in the Geothermal Technologies Office.

  5. Energy Department Announces $3 Million to Identify New Geothermal Resources

    Energy.gov [DOE]

    The U.S. Department of Energy today announced $3 million to spur geothermal energy development using play fairway analysis. This technique identifies prospective geothermal resources in areas with no obvious surface expression by mapping the most favorable intersections of heat, permeability, and fluid. While commonly used in oil and gas exploration, play fairway analysis is not yet widely used in the geothermal industry. By improving success rates for exploration drilling, this data-mapping tool could help attract investment in geothermal energy projects and significantly lower the costs of geothermal energy.

  6. Water Efficient Energy Production for Geothermal Resources | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Efficient Energy Production for Geothermal Resources Water Efficient Energy Production for Geothermal Resources Water Efficient Energy Production for Geothermal Resources.PDF (4.19 MB) More Documents & Publications Water Efficient Energy Production for Geothermal Resources Water Use in the Development and Operations of Geothermal Power Plants Water Use in the Development and Operations of Geothermal Power Plants

  7. Category:Geothermal Resource Areas | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Geothermal Resource Areas Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Geothermal Areas page? For detailed information on...

  8. Geothermal resource evaluation of the Yuma area

    SciTech Connect (OSTI)

    Poluianov, E.W.; Mancini, F.P.

    1985-11-29

    This report presents an evaluation of the geothermal potential of the Yuma, Arizona area. A description of the study area and the Salton Trough area is followed by a geothermal analysis of the area, a discussion of the economics of geothermal exploration and exploitation, and recommendations for further testing. It was concluded economic considerations do not favor geothermal development at this time. (ACR)

  9. NREL: Renewable Resource Data Center - Geothermal Resource Information

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Geothermal Resource Information Geothermal Prospector Start exploring U.S. geothermal resources with an easy-to-use map by selecting data layers that are NGDS compatible. Photo of the Hot Springs Lodge and Pool. The Hot Springs Lodge and Pool in Glenwood Springs, Colorado, uses a geothermal heat exchanger system with its hot surface spring to provide space heating, domestic hot water, and snow melting. The Renewable Resource Data Center (RReDC) offers a collection of data and tools to assist

  10. California PRC Section 6903, Definitions for Geothermal Resources...

    Open Energy Information (Open El) [EERE & EIA]

    Resources Act, as provided by the California Department of Conservation, Division of Oil, Gas, and Geothermal Resources: "For the purposes of this chapter, 'geothermal resources'...

  11. Assessment of Inferred Geothermal Resource: Longavi Project,...

    Open Energy Information (Open El) [EERE & EIA]

    Chile Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Assessment of Inferred Geothermal Resource: Longavi Project, Chile Organization Hot Rock...

  12. Geothermal Energy Resource Investigations, Chocolate Mountains...

    Open Energy Information (Open El) [EERE & EIA]

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Geothermal Energy Resource Investigations, Chocolate Mountains Aerial Gunnery Range,...

  13. Geothermal Resource Exploration And Definition | Open Energy...

    Open Energy Information (Open El) [EERE & EIA]

    Definition Jump to: navigation, search OpenEI Reference LibraryAdd to library Book: Geothermal Resource Exploration And Definition Abstract No abstract prepared. Authors Jay S....

  14. Geothermal resistivity resource evaluation survey Waunita Hot...

    Open Energy Information (Open El) [EERE & EIA]

    resistivity resource evaluation survey Waunita Hot Springs project, Gunnison County, Colorado Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geothermal...

  15. National Geothermal Resource Assessment and Classification |...

    Energy.gov (indexed) [DOE]

    will enable lower riskcost deployment of conventional and EGS geothermal power. USGS is also supporting GTP input to DOE National Energy Modeling by providing resource assessment...

  16. Geothermal Resources Of California Sedimentary Basins | Open...

    Open Energy Information (Open El) [EERE & EIA]

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Geothermal Resources Of California Sedimentary Basins Abstract The 2004 Department of Energy...

  17. Detachment Faulting and Geothermal Resources - An Innovative...

    Open Energy Information (Open El) [EERE & EIA]

    Resources - An Innovative Integrated Geological and Geophysical Investigation in Fish Lake Valley, Nevada Geothermal Project Jump to: navigation, search Last modified on...

  18. Ethiopian geothermal resources and their characteristics

    SciTech Connect (OSTI)

    Gebregziabher, Z.

    1997-12-31

    Ethiopia is considered to be one of the favored countries with respect to high geothermal energy potential. If there is the possibility of exploiting the geothermal resource for direct use and electric energy generation, it can play an important role for the development of the country. Geothermal exploration in Ethiopia dates back to 1969. The country is currently using hydro and thermal plants as electric energy source. The proven geothermal fields, Langano and Tendaho may provide access for the utilization of the geothermal energy for electricity generation in the future. A geothermal power plant with a capacity of about 7 Mwe is expected to be on operation at Aluto Langano in the year 1998. In this paper the geothermal resources and the development problems in Ethiopia are discussed briefly.

  19. Finding Large Aperture Fractures in Geothermal Resource Areas...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Long-Offset Surface Seismic Survey, PSInSAR, and Kinematic Analysis Finding Large Aperture Fractures in Geothermal Resource Areas Using A Three-Component Long-Offset Surface ...

  20. Life Cycle Water Consumption and Water Resource Assessment for Utility-Scale Geothermal Systems: An In-Depth Analysis of Historical and Forthcoming EGS Projects

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Schroeder, Jenna N.

    2013-08-31

    This report is the third in a series of reports sponsored by the U.S. Department of Energy Geothermal Technologies Program in which a range of water-related issues surrounding geothermal power production are evaluated. The first report made an initial attempt at quantifying the life cycle fresh water requirements of geothermal power-generating systems and explored operational and environmental concerns related to the geochemical composition of geothermal fluids. The initial analysis of life cycle fresh water consumption of geothermal power-generating systems identified that operational water requirements consumed the vast majority of water across the life cycle. However, it relied upon limited operational water consumption data and did not account for belowground operational losses for enhanced geothermal systems (EGSs). A second report presented an initial assessment of fresh water demand for future growth in utility-scale geothermal power generation. The current analysis builds upon this work to improve life cycle fresh water consumption estimates and incorporates regional water availability into the resource assessment to improve the identification of areas where future growth in geothermal electricity generation may encounter water challenges.

  1. Life Cycle Water Consumption and Water Resource Assessment for Utility-Scale Geothermal Systems: An In-Depth Analysis of Historical and Forthcoming EGS Projects

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Schroeder, Jenna N.

    This report is the third in a series of reports sponsored by the U.S. Department of Energy Geothermal Technologies Program in which a range of water-related issues surrounding geothermal power production are evaluated. The first report made an initial attempt at quantifying the life cycle fresh water requirements of geothermal power-generating systems and explored operational and environmental concerns related to the geochemical composition of geothermal fluids. The initial analysis of life cycle fresh water consumption of geothermal power-generating systems identified that operational water requirements consumed the vast majority of water across the life cycle. However, it relied upon limited operational water consumption data and did not account for belowground operational losses for enhanced geothermal systems (EGSs). A second report presented an initial assessment of fresh water demand for future growth in utility-scale geothermal power generation. The current analysis builds upon this work to improve life cycle fresh water consumption estimates and incorporates regional water availability into the resource assessment to improve the identification of areas where future growth in geothermal electricity generation may encounter water challenges.

  2. DOE - Geothermal Energy Resources Map - Tribal | Open Energy...

    Open Energy Information (Open El) [EERE & EIA]

    Geothermal Energy Resources Map - Tribal Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: DOE - Geothermal Energy Resources Map - Tribal Abstract This...

  3. Geothermal Resources Council Annual Meeting - Doug Hollett Presentatio...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Geothermal Resources Council Annual Meeting - Doug Hollett Presentation, October 2011 Keynote presentation by Doug Hollett at the Geothermal Resources Council 35th Annual Meeting ...

  4. Expanding Geothermal Resource Utilization in Nevada through Directed...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Expanding Geothermal Resource Utilization in Nevada through Directed Research and Public Outreach Expanding Geothermal Resource Utilization in Nevada through Directed Research and ...

  5. Pinpointing America's Geothermal Resources with Open Source Data...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Pinpointing America's Geothermal Resources with Open Source Data January 7, 2013 - 4:04pm Addthis When it comes to harnessing America's vast geothermal energy resources, knowing ...

  6. Geothermal Resources Assessment In Hawaii | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Geothermal Resources Assessment In Hawaii Abstract The Hawaii Geothermal Resources Assessment...

  7. A Review of Geothermal Resource Estimation Methodology | Open...

    Open Energy Information (Open El) [EERE & EIA]

    Geothermal Resource Estimation Methodology Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: A Review of Geothermal Resource Estimation...

  8. MCA 77-4-100 Geothermal Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    MCA 77-4-100 Geothermal ResourcesLegal Abstract Montana statute governing the administration of geothermal resources on state lands Published NA Year Signed or Took Effect...

  9. Title 41 Alaska Statutes Section 06.060 Geothermal Resources...

    Open Energy Information (Open El) [EERE & EIA]

    06.060 Geothermal Resources DefinitionsLegal Abstract This statutory section sets forth the definitions that govern the statutory chapter for geothermal resources. Published...

  10. Advanced 3D Geophysical Imaging Technologies for Geothermal Resource...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    3D Geophysical Imaging Technologies for Geothermal Resource Characterization Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization Advanced 3D ...

  11. Resource assessment for geothermal direct use applications

    SciTech Connect (OSTI)

    Beer, C.; Hederman, W.F. Jr.; Dolenc, M.R.; Allman, D.W.

    1984-04-01

    This report discusses the topic geothermal resource assessment and its importance to laymen and investors for finding geothermal resources for direct-use applications. These are applications where the heat from lower-temperature geothermal fluids, 120 to 200/sup 0/F, are used directly rather than for generating electricity. The temperatures required for various applications are listed and the various types of geothermal resources are described. Sources of existing resource data are indicated, and the types and suitability of tests to develop more data are described. Potential development problems are indicated and guidance is given on how to decrease technical and financial risk and how to use technical consultants effectively. The objectives of this report are to provide: (1) an introduction low-temperature geothermal resource assessment; (2) experience from a series of recent direct-use projects; and (3) references to additional information.

  12. Water Efficient Energy Production for Geothermal Resources | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Water Efficient Energy Production for Geothermal Resources Water Efficient Energy Production for Geothermal Resources Primer FINAL.PDF (4.19 MB) More Documents & Publications Water Efficient Energy Production for Geothermal Resources Water Use in the Development and Operations of Geothermal Power Plants Water Use in the Development and Operations of Geothermal Power Plants

  13. Taxation of geothermal energy resources

    SciTech Connect (OSTI)

    Muscelli, L.W.

    1984-01-01

    This article contains a comprehensive discussion of the current federal income tax treatment of geothermal energy projects. Particular attention is given to the post-1977 amendments to the federal tax laws which have affected geothermal energy taxation. The author also discusses the current tax issues in the geothermal energy area.

  14. Human Resources in Geothermal Development

    SciTech Connect (OSTI)

    Fridleifsson, I.B.

    1995-01-01

    Some 80 countries are potentially interested in geothermal energy development, and about 50 have quantifiable geothermal utilization at present. Electricity is produced from geothermal in 21 countries (total 38 TWh/a) and direct application is recorded in 35 countries (34 TWh/a). Geothermal electricity production is equally common in industrialized and developing countries, but plays a more important role in the developing countries. Apart from China, direct use is mainly in the industrialized countries and Central and East Europe. There is a surplus of trained geothermal manpower in many industrialized countries. Most of the developing countries as well as Central and East Europe countries still lack trained manpower. The Philippines (PNOC) have demonstrated how a nation can build up a strong geothermal workforce in an exemplary way. Data from Iceland shows how the geothermal manpower needs of a country gradually change from the exploration and field development to monitoring and operations.

  15. ORS 522 - Geothermal Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    522 - Geothermal ResourcesLegal Published NA Year Signed or Took Effect 2013 Legal Citation ORS 522 (2013) DOI Not Provided Check for DOI availability: http:crossref.org...

  16. Geothermal resources of Colorado | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    OpenEI Reference LibraryAdd to library Report: Geothermal resources of Colorado Author R.H. Pearl Published Colorado Geological Survey Special Publication, 1972 DOI Not Provided...

  17. National Geothermal Resource Assessment and Classification | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Resource Assessment and Classification National Geothermal Resource Assessment and Classification National Geothermal Resource Assessment and Classification presentation at the April 2013 peer review meeting held in Denver, Colorado. gs_resource_assessment_peer2013.pdf (2.37 MB) More Documents & Publications National Geothermal Resource Assessment and Classification track 2: hydrothermal | geothermal 2015 peer review National Geothermal Data System Architecture Design, Testing and

  18. Geothermal Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    the information needed to allow users to determine locations that are favorable to geothermal energy development. This was in response to the recommendation by the...

  19. Electric Power Generation from Low-Temperature Geothermal Resources...

    Open Energy Information (Open El) [EERE & EIA]

    1 Recovery Act: Geothermal Technologies Program Project Type Topic 2 Geothermal Energy Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and...

  20. Cal. Prc. Code Sections 3700 to 3776 - Geothermal Resources ...

    Open Energy Information (Open El) [EERE & EIA]

    to library Legal Document- StatuteStatute: Cal. Prc. Code Sections 3700 to 3776 - Geothermal ResourcesLegal Abstract This California statute governs the use of geothermal...

  1. Epithermal Gold Mineralization and a Geothermal Resource at Blue...

    Open Energy Information (Open El) [EERE & EIA]

    s typically associated with active geothermal system are not present. Authors Andrew J. Parr and Timothy J. Percival Published Journal Geothermal Resources Council...

  2. Geothermal Resource Development Needs in New Mexico | Open Energy...

    Open Energy Information (Open El) [EERE & EIA]

    to library Report: Geothermal Resource Development Needs in New Mexico Author D.J. Fleischman Published Geothermal Energy Association, 2006 DOI Not Provided Check for DOI...

  3. Advances In Geothermal Resource Exploration Circa 2007 | Open...

    Open Energy Information (Open El) [EERE & EIA]

    that will indicate the presence of geothermal resources before drilling. Advances in computer technology have propelled geothermal exploration forward, but can only go so far. New...

  4. Geothermal Play Fairway Analysis | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Analysis Geothermal Play Fairway Analysis pfw-webinar.pptx (1.75 MB) More Documents & Publications Geothermal Play Fairway Analysis LOW TEMPERATURE GEOTHERMAL MINERAL RECOVERY PROGRAM LOW TEMPERATURE GEOTHERMAL MINERAL RECOVERY PROGRAM 02/11/2014

  5. Life Cycle Water Consumption and Water Resource Assessment for Utility-Scale Geothermal Systems: An In-Depth Analysis of Historical and Forthcoming EGS Projects

    SciTech Connect (OSTI)

    Clark, Corrie E.; Harto, Christopher B.; Schroeder, Jenna N.; Martino, Louis E.; Horner, Robert M.

    2013-11-05

    This report is the third in a series of reports sponsored by the U.S. Department of Energy Geothermal Technologies Program in which a range of water-related issues surrounding geothermal power production are evaluated. The first report made an initial attempt at quantifying the life cycle fresh water requirements of geothermal power-generating systems and explored operational and environmental concerns related to the geochemical composition of geothermal fluids. The initial analysis of life cycle fresh water consumption of geothermal power-generating systems identified that operational water requirements consumed the vast majority of water across the life cycle. However, it relied upon limited operational water consumption data and did not account for belowground operational losses for enhanced geothermal systems (EGSs). A second report presented an initial assessment of fresh water demand for future growth in utility-scale geothermal power generation. The current analysis builds upon this work to improve life cycle fresh water consumption estimates and incorporates regional water availability into the resource assessment to improve the identification of areas where future growth in geothermal electricity generation may encounter water challenges. This report is divided into nine chapters. Chapter 1 gives the background of the project and its purpose, which is to assess the water consumption of geothermal technologies and identify areas where water availability may present a challenge to utility-scale geothermal development. Water consumption refers to the water that is withdrawn from a resource such as a river, lake, or nongeothermal aquifer that is not returned to that resource. The geothermal electricity generation technologies evaluated in this study include conventional hydrothermal flash and binary systems, as well as EGSs that rely on engineering a productive reservoir where heat exists, but where water availability or permeability may be limited. Chapter 2

  6. Water Resource Assessment of Geothermal Resources and Water Use in Geopressured Geothermal Systems

    SciTech Connect (OSTI)

    Clark, C. E.; Harto, C. B.; Troppe, W. A.

    2011-09-01

    This technical report from Argonne National Laboratory presents an assessment of fresh water demand for future growth in utility-scale geothermal power generation and an analysis of fresh water use in low-temperature geopressured geothermal power generation systems.

  7. Life-cycle Analysis of Geothermal Technologies; 2010 Geothermal Technology

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Program Peer Review Report | Department of Energy cycle Analysis of Geothermal Technologies; 2010 Geothermal Technology Program Peer Review Report Life-cycle Analysis of Geothermal Technologies; 2010 Geothermal Technology Program Peer Review Report DOE 2010 Geothermal Technologies Program Peer Review adse_005_wang.pdf (192.84 KB) More Documents & Publications Detecting Fractures Using Technology at High Temperatures and Depths - Geothermal Ultrasonic Fracture Imager (GUFI); 2010

  8. Interactive Map Shows Geothermal Resources

    Energy.gov [DOE]

    The free interactive online map posted recently by the Oregon Department of Geology and Mineral Industries is part of a U.S. Department of Energy project to expand the knowledge of geothermal energy potential nationwide.

  9. Assessment of Geothermal Data Resources and Requirements

    SciTech Connect (OSTI)

    none,

    2008-09-01

    This paper is a review of Geothermal Technologies Program activities and archives related to data collection and analysis. It includes an assessment of the current state of geothermal data, future program and stakeholder data needs, existence of and access to critical data, and high-level direction and prioritization of next steps to meet the Program’s data needs.

  10. Finding Large Aperture Fractures in Geothermal Resource Areas Using A

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Three-Component Long-Offset Surface Seismic Survey, PSInSAR, and Kinematic Analysis | Department of Energy A Three-Component Long-Offset Surface Seismic Survey, PSInSAR, and Kinematic Analysis Finding Large Aperture Fractures in Geothermal Resource Areas Using A Three-Component Long-Offset Surface Seismic Survey, PSInSAR, and Kinematic Analysis Fining Large Aperture Fractures in Geothermal Resource Areas Using A Three-Component Long-Offset Surface Seismic Survey, PSInSAR, and Kinematic

  11. Geothermal -- The Energy Under Our Feet: Geothermal Resource Estimates for the United States

    SciTech Connect (OSTI)

    Green, B. D.; Nix, R. G.

    2006-11-01

    On May 16, 2006, the National Renewable Energy Laboratory (NREL) in Golden, Colorado hosted a geothermal resources workshop with experts from the geothermal community. The purpose of the workshop was to re-examine domestic geothermal resource estimates. The participating experts were organized into five working groups based on their primary area of expertise in the following types of geothermal resource or application: (1) Hydrothermal, (2) Deep Geothermal Systems, (3) Direct Use, (4) Geothermal Heat Pumps (GHPs), and (5) Co-Produced and Geopressured. The workshop found that the domestic geothermal resource is very large, with significant benefits.

  12. Expanding Geothermal Resource Utilization in Nevada through Directed

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Research and Public Outreach | Department of Energy Expanding Geothermal Resource Utilization in Nevada through Directed Research and Public Outreach Expanding Geothermal Resource Utilization in Nevada through Directed Research and Public Outreach This project entails finding and assessing geothermal systems to: Increase geothermal development through research and outreach; Reduce risk in drill target selection, thus reducing project development costs; and Recent research includes

  13. Low-Temperature Geothermal Resources, Geothermal Technologies Program (GTP) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-05-01

    This document highlights the applications of low-temperature geothermal resources and the potential for future uses as well as current Geothermal Technologies Program-funded projects related to low-temperature resources.

  14. Geothermal and heavy-oil resources in Texas (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    Geothermal and heavy-oil resources in Texas Citation Details In-Document Search Title: Geothermal and heavy-oil resources in Texas You are accessing a document from the ...

  15. CRS 37-90.5 Geothermal Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    7-90.5 Geothermal Resources Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: CRS 37-90.5 Geothermal ResourcesLegal Abstract...

  16. Geothermal Energy Production with Co-produced and Geopressured Resources (Fact Sheet), Geothermal Technologies Program (GTP)

    Energy.gov [DOE]

    This fact sheet provides an overview of geothermal energy production using co-produced and geopressured resources.

  17. California Division of Oil, Gas, and Geothermal Resources | Open...

    Open Energy Information (Open El) [EERE & EIA]

    reservoirs. Division requirements encourage wise development of California's oil, gas, and geothermal resources while protecting the environment.2 References "CDOGGR...

  18. Hot-dry-rock geothermal resource 1980

    SciTech Connect (OSTI)

    Heiken, G.; Goff, F.; Cremer, G.

    1982-04-01

    The work performed on hot dry rock (HDR) geothermal resource evaluation, site characterization, and geophysical exploration techniques is summarized. The work was done by region (Far West, Pacific Northwest, Southwest, Rocky Mountain States, Midcontinent, and Eastern) and limited to the conterminous US.

  19. Pinpointing America's Geothermal Resources with Open Source Data |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Pinpointing America's Geothermal Resources with Open Source Data Pinpointing America's Geothermal Resources with Open Source Data January 7, 2013 - 4:04pm Addthis When it comes to harnessing America's vast geothermal energy resources, knowing where to look is half the battle. Geothermal energy-the heat contained within the earth-represents a growing part of the country's clean energy mix. Still, for continued growth of this industry, gaining easy access to reliable,

  20. Novel Energy Conversion Equipment for Low Temperature Geothermal Resources

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    | Department of Energy Energy Conversion Equipment for Low Temperature Geothermal Resources Novel Energy Conversion Equipment for Low Temperature Geothermal Resources Project objective: Develop equipment that generates electricity from low temperature geothermal resources at a cost at least 20% below that of the currently available technology. low_kohler_energy_conversion.pdf (218.32 KB) More Documents & Publications Novel Energy Conversion Equipment for Low Temperatures Geothermal

  1. Geothermal Resources Council Annual Meeting - Doug Hollett Presentation,

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    October 2011 | Department of Energy Resources Council Annual Meeting - Doug Hollett Presentation, October 2011 Geothermal Resources Council Annual Meeting - Doug Hollett Presentation, October 2011 Keynote presentation by Doug Hollett at the Geothermal Resources Council 35th Annual Meeting on October 24, 2011 in San Diego, California. grc_keynote_hollett_10-24-2011.pdf (1.09 MB) More Documents & Publications Stanford Geothermal Workshop 2012 Annual Meeting Geothermal Technologies Program

  2. California Public Resources Code Division 3, Chapter 4 - Geothermal...

    Open Energy Information (Open El) [EERE & EIA]

    Public Resources Code Division 3, Chapter 4 - Geothermal Resources Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: California...

  3. Texas TNRC 141.003, Definitions for Geothermal Resources | Open...

    Open Energy Information (Open El) [EERE & EIA]

    ResourcesLegal Abstract Definitions for Geothermal Resources effective September 1, 1977, last amended 1979. Published NA Year Signed or Took Effect 1979 Legal Citation Not...

  4. Seismic Methods For Resource Exploration In Enhanced Geothermal...

    Open Energy Information (Open El) [EERE & EIA]

    Methods For Resource Exploration In Enhanced Geothermal Systems Jump to: navigation, search OpenEI Reference LibraryAdd to library Book: Seismic Methods For Resource Exploration In...

  5. Geothermal Water Use: Life Cycle Water Consumption, Water Resource Assessment, and Water Policy Framework

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Schroeder, Jenna N.

    2014-06-10

    This report examines life cycle water consumption for various geothermal technologies to better understand factors that affect water consumption across the life cycle (e.g., power plant cooling, belowground fluid losses) and to assess the potential water challenges that future geothermal power generation projects may face. Previous reports in this series quantified the life cycle freshwater requirements of geothermal power-generating systems, explored operational and environmental concerns related to the geochemical composition of geothermal fluids, and assessed future water demand by geothermal power plants according to growth projections for the industry. This report seeks to extend those analyses by including EGS flash, both as part of the life cycle analysis and water resource assessment. A regional water resource assessment based upon the life cycle results is also presented. Finally, the legal framework of water with respect to geothermal resources in the states with active geothermal development is also analyzed.

  6. Geothermal Water Use: Life Cycle Water Consumption, Water Resource Assessment, and Water Policy Framework

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Schroeder, Jenna N.

    This report examines life cycle water consumption for various geothermal technologies to better understand factors that affect water consumption across the life cycle (e.g., power plant cooling, belowground fluid losses) and to assess the potential water challenges that future geothermal power generation projects may face. Previous reports in this series quantified the life cycle freshwater requirements of geothermal power-generating systems, explored operational and environmental concerns related to the geochemical composition of geothermal fluids, and assessed future water demand by geothermal power plants according to growth projections for the industry. This report seeks to extend those analyses by including EGS flash, both as part of the life cycle analysis and water resource assessment. A regional water resource assessment based upon the life cycle results is also presented. Finally, the legal framework of water with respect to geothermal resources in the states with active geothermal development is also analyzed.

  7. Strategic Planning, Analysis, and Geothermal Informatics Subprogram...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Strategic Planning, Analysis, and Geothermal Informatics Subprogram Overview Strategic Planning, Analysis, and Geothermal Informatics Subprogram Overview This is an overview of ...

  8. Analysis of Geothermal Reservoir Stimulation Using Geomechanics...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Analysis of Geothermal Reservoir Stimulation Using Geomechanics-based Stochastic Analysis of Injection-induced Seismicity; 2010 Geothermal Technology Program Peer Review Report ...

  9. Purchase and Installation of a Geothermal Power Plant to Generate Electricity Using Geothermal Water Resources

    Office of Energy Efficiency and Renewable Energy (EERE)

    Project objectives: Demonstrate technical and financial feasibility of the use of an existing low-temperature geothermal resource for combined heat and power; and Maintain and enhance existing geothermal district heating operation.

  10. 2014 Low-Temperature and Coproduced Geothermal Resources Fact Sheet

    SciTech Connect (OSTI)

    Tim Reinhardt, Program Manager

    2014-09-01

    As a growing sector of geothermal energy development, the Low-Temperature Program supports innovative technologies that enable electricity production and cascaded uses from geothermal resources below 300° Fahrenheit.

  11. Overview of Resources for Geothermal Absorption Cooling for Buildings

    SciTech Connect (OSTI)

    Liu, Xiaobing; Gluesenkamp, Kyle R; Mehdizadeh Momen, Ayyoub

    2015-06-01

    This report summarizes the results of a literature review in three areas: available low-temperature/coproduced geothermal resources in the United States, energy use for space conditioning in commercial buildings, and state of the art of geothermal absorption cooling.

  12. TNRC, Title 5, Chapter 141 Geothermal Resources | Open Energy...

    Open Energy Information (Open El) [EERE & EIA]

    5, Chapter 141 Geothermal Resources Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: TNRC, Title 5, Chapter 141 Geothermal...

  13. Northern Nevada Geothermal Exploration Strategy Analysis | Open...

    Open Energy Information (Open El) [EERE & EIA]

    Nevada Geothermal Exploration Strategy Analysis Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Northern Nevada Geothermal Exploration Strategy...

  14. Strategic Planning, Analysis, and Geothermal Informatics Subprogram...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Strategic Planning Analysis and Geothermal Informatics Subprogram Overview May 18, 2010 Geothermal Technologies Program Peer Review Crystal City, VA Energy Efficiency & Renewable ...

  15. NREL: Dynamic Maps, GIS Data, and Analysis Tools - Geothermal Maps

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Geothermal Prospector Start exploring U.S. geothermal resources with an easy-to-use map by selecting dataset layers that are NGDS compatible. Bookmark and Share Geothermal Maps These maps show existing and developing geothermal power plants, geothermal resource potential estimates, and other information related to geothermal power. They are updated as information becomes available, but may not represent all available geothermal data. Resource Potential The geothermal resource potential map (JPG

  16. IDAPA 37.03.04 Drilling For Geothermal Resources Rules | Open...

    Open Energy Information (Open El) [EERE & EIA]

    Rules for drilling Geothermal Resources released by the State of Idaho Department of Water Resources Geothermal Resource Program in Boise, Idaho. Published NA Year Signed or...

  17. Low-temperature geothermal resources of Washington

    SciTech Connect (OSTI)

    Schuster, J.E.; Bloomquist, R.G.

    1994-06-01

    This report presents information on the location, physical characteristics, and water chemistry of low-temperature geothermal resources in Washington. The database includes 941 thermal (>20C or 68F) wells, 34 thermal springs, lakes, and fumaroles, and 238 chemical analyses. Most thermal springs occur in the Cascade Range, and many are associated with stratovolcanoes. In contrast, 97 percent of thermal wells are located in the Columbia Basin of southeastern Washington. Some 83.5 percent are located in Adams, Benton, Franklin, Grant, Walla Walla, and Yakima Counties. Yakima County, with 259 thermal wells, has the most. Thermal wells do not seem to owe their origin to local sources of heat, such as cooling magma in the Earth`s upper crust, but to moderate to deep circulation of ground water in extensive aquifers of the Columbia River Basalt Group and interflow sedimentary deposits, under the influence of a moderately elevated (41C/km) average geothermal gradient.

  18. Advanced 3D Geophysical Imaging Technologies for Geothermal Resource

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Characterization | Department of Energy 3D Geophysical Imaging Technologies for Geothermal Resource Characterization Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization presentation at the April 2013 peer review meeting held in Denver, Colorado. geophysical_imaging_peer2013.pdf (1.61 MB) More Documents & Publications Advanced 3D Geophysical Imaging Technologies for

  19. 3D Mt Resistivity Imaging For Geothermal Resource Assessment...

    Open Energy Information (Open El) [EERE & EIA]

    Mt Resistivity Imaging For Geothermal Resource Assessment And Environmental Mitigation At The Glass Mountain Kgra, California Jump to: navigation, search OpenEI Reference...

  20. Recovery Act:Direct Confirmation of Commercial Geothermal Resources...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Confirm heat flow potential with on-site surveys to drill deep resource wells Pilgrim Hot Springs, Alaska El Paso County Geothermal Project: Innovative Research Technologies ...

  1. Novel Energy Conversion Equipment for Low Temperatures Geothermal Resources

    Energy.gov [DOE]

    Novel Energy Conversion Equipment for Low Temperatures Geothermal Resources presentation at the April 2013 peer review meeting held in Denver, Colorado.

  2. Geothermal Energy Resources of Northwest New Mexico | Open Energy...

    Open Energy Information (Open El) [EERE & EIA]

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Geothermal Energy Resources of Northwest New Mexico Abstract EDITORS NOTE: The material in...

  3. Geothermal Energy Resource Assessment of Parts of Alaska | Open...

    Open Energy Information (Open El) [EERE & EIA]

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Geothermal Energy Resource Assessment of Parts of Alaska Abstract Under the sponsorship of...

  4. Drilling for Geothermal Resources Rules - Idaho | Open Energy...

    Open Energy Information (Open El) [EERE & EIA]

    - Idaho Jump to: navigation, search OpenEI Reference LibraryAdd to library Reference: Drilling for Geothermal Resources Rules - Idaho Published Publisher Not Provided, Date Not...

  5. Assessment of the petroleum, coal, and geothermal resources of...

    Office of Scientific and Technical Information (OSTI)

    coal, and geothermal resources of the economic community of West African states (ECOWAS) region Citation Details In-Document Search Title: Assessment of the petroleum, coal, and ...

  6. Geothermal Resources of Rifts- a Comparison of the Rio Grande...

    Open Energy Information (Open El) [EERE & EIA]

    tectonic and magmatic histories, however, and these differences are reflected in the nature of their geothermal resources. The Salton Trough is a well developed and successful...

  7. Geothermal resources of the Laramie, Hanna, and Shirley Basins, Wyoming

    SciTech Connect (OSTI)

    Hinckley, B.S.; Heasler, H.P.

    1984-01-01

    A general discussion of how geothermal resources occur; a discussion of the temperatures, distribution, and possible applications of geothermal resources in Wyoming and a general description of the State's thermal setting; and a discussion of the methods used in assessing the geothermal resources are presented. The discussion of the geothermal resources of the Laramie, Hanna, and Shirley Basins includes material on heat flow and conductive gradients, stratigraphy and hydrology, structure and water movement, measured temperatures and gradients, areas of anomalous gradient (including discussion of the warm spring systems at Alcova and Saratoga), temperatures of the Cloverly Formation, and summary and conclusions. 23 references, 9 figures, 5 tables. (MHR)

  8. Power Production from a Moderate-Temperature Geothermal Resource...

    Open Energy Information (Open El) [EERE & EIA]

    Paper: Power Production from a Moderate-Temperature Geothermal Resource Authors Joost J. Brasz, Bruce P. Biederman and Gwen Holdmann Conference GRC annual meeting; Reno,...

  9. Assessment of Geothermal Resources of the United States - 1978...

    Open Energy Information (Open El) [EERE & EIA]

    Report: Assessment of Geothermal Resources of the United States - 1978 Author Leroy J. Patrick Muffler Published U.S. Geological Survey, 1979 Report Number Circular 790 DOI...

  10. Geothermal Resources Development in Tibet, China | Open Energy...

    Open Energy Information (Open El) [EERE & EIA]

    navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: Geothermal Resources Development in Tibet, China Abstract Tibet is located in the eastern...

  11. Geothermal Resources in Latin America & the Caribbean | Open...

    Open Energy Information (Open El) [EERE & EIA]

    & the Caribbean Jump to: navigation, search OpenEI Reference LibraryAdd to library Personal Communication: Geothermal Resources in Latin America & the Caribbean Authors Liz...

  12. NMOCD - Form G-103 - Sundry Notices & Reports on Geothermal Resource...

    Open Energy Information (Open El) [EERE & EIA]

    LibraryAdd to library Legal Document- Permit ApplicationPermit Application: NMOCD - Form G-103 - Sundry Notices & Reports on Geothermal Resource WellsLegal Published NA Year...

  13. Title 30 USC 1001 Geothermal Resources Definitions | Open Energy...

    Open Energy Information (Open El) [EERE & EIA]

    DefinitionsLegal Abstract Section 1001 - Definitions under Title 30: Mineral Lands and Mining, Chapter 23: Geothermal Resources of the United States Code, last amended August 8,...

  14. National Geothermal Resource Assessment and Classification

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of the National Geothermal Data System. The results of this work will enable lower riskcost deployment of conventional and EGS geothermal power. USGS is also supporting GTP...

  15. 2014 Geothermal Resources Council Annual Meeting

    Energy.gov [DOE]

    The Annual Meeting attracts geothermal industry stakeholders worldwide and provides opportunity to participate in presentations on geothermal research, exploration, development, and utilization.

  16. Outstanding Issues For New Geothermal Resource Assessments |...

    Open Energy Information (Open El) [EERE & EIA]

    : GRC; p. () Related Geothermal Exploration Activities Activities (1) Geothermal Literature Review At General Us Region (Williams & Reed, 2005) Areas (1) General Us Region...

  17. Novel Energy Conversion Equipment for Low Temperatures Geothermal Resources

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Technologies Program 2013 Peer Review Novel Energy Conversion Equipment for Low Temperature Geothermal Resources April 22, 2013 This presentation does not contain any proprietary 1 | US DOE Geothermal Program confidential, or otherwise restricted information. Public Service of Colorado Ponnequin Wind Farm Jay Kohler Frank Baumgardt Johnson Controls, Inc. Geothermal Energy Production from Low Temperature Resources eere.energy.gov Overview Timeline: This project was awarded on April 30, 2010.

  18. Geothermal, the 'undervalued' renewable resource, sees surging interest |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Geothermal, the 'undervalued' renewable resource, sees surging interest Geothermal, the 'undervalued' renewable resource, sees surging interest May 21, 2009 - 10:38am Addthis Nearly 200 million acres of public lands, mostly in the West, could become prime generators of emissions-free electricity by extracting steam heat from the earth's core to drive electric turbines. Yet despite a $400 million stimulus bill allocation to spur geothermal energy production in the United

  19. Estimate of Geothermal Energy Resource in Major U.S. Sedimentary...

    Office of Scientific and Technical Information (OSTI)

    Estimate of Geothermal Energy Resource in Major U.S. Sedimentary Basins (Presentation) Citation Details In-Document Search Title: Estimate of Geothermal Energy Resource in Major ...

  20. Market study for direct utilization of geothermal resources by selected sectors of economy

    SciTech Connect (OSTI)

    Not Available

    1980-08-01

    A comprehensive analysis is presented of industrial markets potential for direct use of geothermal energy by a total of six industry sectors: food and kindred products; tobacco manufactures; textile mill products; lumber and wood products (except furniture); chemicals and allied products; and leather and leather products. A brief statement is presented regarding sectors of the economy and major manufacturing processes which can readily utilize direct geothermal energy. Previous studies on plant location determinants are summarized and appropriate empirical data provided on plant locations. Location determinants and potential for direct use of geothermal resources are presented. The data was gathered through interviews with 30 senior executives in the six sectors of economy selected for study. Probable locations of plants in geothermal resource areas and recommendations for geothermal resource marketing are presented. Appendix A presents factors which impact on industry location decisions. Appendix B presents industry executives interviewed during the course of this study. (MHR)

  1. Core Analysis At Flint Geothermal Area (DOE GTP) | Open Energy...

    Open Energy Information (Open El) [EERE & EIA]

    Flint Geothermal Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Core Analysis At Flint Geothermal Area (DOE GTP) Exploration...

  2. Cuttings Analysis At Flint Geothermal Area (DOE GTP) | Open Energy...

    Open Energy Information (Open El) [EERE & EIA]

    Flint Geothermal Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Cuttings Analysis At Flint Geothermal Area (DOE GTP) Exploration...

  3. Cuttings Analysis At Mccoy Geothermal Area (DOE GTP) | Open Energy...

    Open Energy Information (Open El) [EERE & EIA]

    Mccoy Geothermal Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Cuttings Analysis At Mccoy Geothermal Area (DOE GTP) Exploration...

  4. Fluid Inclusion Analysis At Geysers Geothermal Area (1990) |...

    Open Energy Information (Open El) [EERE & EIA]

    Geothermal Area (1990) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Fluid Inclusion Analysis At Geysers Geothermal Area (1990) Exploration...

  5. Fluid Inclusion Analysis At Chena Geothermal Area (Kolker, 2008...

    Open Energy Information (Open El) [EERE & EIA]

    Chena Geothermal Area (Kolker, 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Fluid Inclusion Analysis At Chena Geothermal Area (Kolker,...

  6. Fluid Inclusion Analysis At Salton Sea Geothermal Area (1990...

    Open Energy Information (Open El) [EERE & EIA]

    Salton Sea Geothermal Area (1990) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Fluid Inclusion Analysis At Salton Sea Geothermal Area (1990)...

  7. Fluid Inclusion Analysis At Valles Caldera Geothermal Region...

    Open Energy Information (Open El) [EERE & EIA]

    Geothermal Region (1990) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Fluid Inclusion Analysis At Valles Caldera Geothermal Region (1990)...

  8. Isotopic Analysis- Fluid At Rose Valley Geothermal Area (1990...

    Open Energy Information (Open El) [EERE & EIA]

    Rose Valley Geothermal Area (1990) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Rose Valley Geothermal Area (1990)...

  9. Fluid Inclusion Analysis At Raft River Geothermal Area (2011...

    Open Energy Information (Open El) [EERE & EIA]

    Raft River Geothermal Area (2011) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Fluid Inclusion Analysis At Raft River Geothermal Area (2011)...

  10. Cuttings Analysis At Raft River Geothermal Area (1976) | Open...

    Open Energy Information (Open El) [EERE & EIA]

    Raft River Geothermal Area (1976) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Cuttings Analysis At Raft River Geothermal Area (1976)...

  11. Petrography Analysis At Raft River Geothermal Area (1980) | Open...

    Open Energy Information (Open El) [EERE & EIA]

    Raft River Geothermal Area (1980) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Petrography Analysis At Raft River Geothermal Area (1980)...

  12. Core Analysis At Raft River Geothermal Area (1979) | Open Energy...

    Open Energy Information (Open El) [EERE & EIA]

    Raft River Geothermal Area (1979) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Core Analysis At Raft River Geothermal Area (1979) Exploration...

  13. Compound and Elemental Analysis At Raft River Geothermal Area...

    Open Energy Information (Open El) [EERE & EIA]

    Raft River Geothermal Area (1981) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Raft River Geothermal Area...

  14. Nevada low-temperaure geothermal resource assessment: 1994. Final report

    SciTech Connect (OSTI)

    Garside, L.J.

    1994-12-31

    Data compilation for the low-temperature program is being done by State Teams in two western states. Final products of the study include: a geothermal database, in hardcopy and as digital data (diskette) listing information on all known low- and moderate- temperature springs and wells in Nevada; a 1:1,000,000-scale map displaying these geothermal localities, and a bibliography of references on Nevada geothermal resources.

  15. West Texas geothermal resource assessment. Part II. Preliminary utilization assessment of the Trans-Pecos geothermal resource. Final report

    SciTech Connect (OSTI)

    Gilliland, M.W.; Fenner, L.B.

    1980-01-01

    The utilization potential of geothermal resources in Trans-Pecos, Texas was assessed. The potential for both direct use and electric power generation were examined. As with the resource assessment work, the focus was on the Hueco Tanks area in northeastern El Paso County and the Presidio Bolson area in Presidio County. Suitable users of the Hueco Tanks and Presidio Bolson resource areas were identified by matching postulated temperature characteristics of the geothermal resource to the need characteristics of existing users in each resource area. The amount of geothermal energy required and the amount of fossil fuel that geothermal energy would replace were calculated for each of the users identified as suitable. Current data indicate that temperatures in the Hueco Tanks resource area are not high enough for electric power generation, but in at least part of the Presidio Bolson resource area, they may be high enough for electric power generation.

  16. Isotopic Analysis- Rock At Coso Geothermal Area (1984) | Open...

    Open Energy Information (Open El) [EERE & EIA]

    Home Exploration Activity: Isotopic Analysis- Rock At Coso Geothermal Area (1984) Exploration Activity Details Location Coso Geothermal Area Exploration Technique...

  17. Core Analysis At Raft River Geothermal Area (1981) | Open Energy...

    Open Energy Information (Open El) [EERE & EIA]

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Core Analysis At Raft River Geothermal Area (1981) Exploration Activity Details Location Raft River...

  18. Core Analysis At Raft River Geothermal Area (1976) | Open Energy...

    Open Energy Information (Open El) [EERE & EIA]

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Core Analysis At Raft River Geothermal Area (1976) Exploration Activity Details Location Raft River...

  19. Cuttings Analysis At Coso Geothermal Area (1977) | Open Energy...

    Open Energy Information (Open El) [EERE & EIA]

    ENERGYGeothermal Home Exploration Activity: Cuttings Analysis At Coso Geothermal Area (1977) Exploration Activity Details Location Coso Geothermal Area Exploration Technique...

  20. Our Evolving Knowledge Of Nevada's Geothermal Resource Potential...

    Open Energy Information (Open El) [EERE & EIA]

    of portable, efficient systems of measuring shallow ground temperatures, 2) structural analysis of the controls of existing geothermal systems and development of conceptual...

  1. Analysis of Geothermal Reservoir Stimulation using Geomechanics...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Geomechanics-Based Stochastic Analysis of Injection-Induced Seismicity Analysis of Geothermal Reservoir Stimulation using Geomechanics-Based Stochastic Analysis of ...

  2. Enhanced Geothermal Systems (EGS) R&D Program: US Geothermal Resources Review and Needs Assessment

    SciTech Connect (OSTI)

    Entingh, Dan; McLarty, Lynn

    2000-11-30

    The purpose of this report is to lay the groundwork for an emerging process to assess U.S. geothermal resources that might be suitable for development as Enhanced Geothermal Systems (EGS). Interviews of leading geothermists indicate that doing that will be intertwined with updating assessments of U.S. higher-quality hydrothermal resources and reviewing methods for discovering ''hidden'' hydrothermal and EGS resources. The report reviews the history and status of assessment of high-temperature geothermal resources in the United States. Hydrothermal, Enhanced, and Hot Dry Rock resources are addressed. Geopressured geothermal resources are not. There are three main uses of geothermal resource assessments: (1) They inform industry and other interest parties of reasonable estimates of the amounts and likely locations of known and prospective geothermal resources. This provides a basis for private-sector decisions whether or not to enter the geothermal energy business at all, and for where to look for useful resources. (2) They inform government agencies (Federal, State, local) of the same kinds of information. This can inform strategic decisions, such as whether to continue to invest in creating and stimulating a geothermal industry--e.g., through research or financial incentives. And it informs certain agencies, e.g., Department of Interior, about what kinds of tactical operations might be required to support such activities as exploration and leasing. (3) They help the experts who are performing the assessment(s) to clarify their procedures and data, and in turn, provide the other two kinds of users with a more accurate interpretation of what the resulting estimates mean. The process of conducting this assessment brings a spotlight to bear on what has been accomplished in the domain of detecting and understanding reservoirs, in the period since the last major assessment was conducted.

  3. NRS Chapter 534A - Geothermal Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    534A - Geothermal ResourcesLegal Published NA Year Signed or Took Effect 2014 Legal Citation NRS Chapter 534A DOI Not Provided Check for DOI availability: http:crossref.org...

  4. Assessment of Moderate- and High-Temperature Geothermal Resources...

    Open Energy Information (Open El) [EERE & EIA]

    States Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Assessment of Moderate- and High-Temperature Geothermal Resources of the United States Abstract...

  5. Assessment of the petroleum, coal, and geothermal resources of...

    Office of Scientific and Technical Information (OSTI)

    the petroleum, coal, and geothermal resources of the economic community of West African states (ECOWAS) region Mattick, R.E. (comp.) 02 PETROLEUM; 01 COAL, LIGNITE, AND PEAT; 15...

  6. NAC 534A - Geothermal Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: NAC 534A - Geothermal ResourcesLegal Abstract These outline the regulations applicable to...

  7. NAC 534A Geothermal Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: NAC 534A Geothermal ResourcesLegal Abstract Nevada Administrative Code 534A for the...

  8. Geothermal-Energy Resources And Their Use In Yugoslavia | Open...

    Open Energy Information (Open El) [EERE & EIA]

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Geothermal-Energy Resources And Their Use In Yugoslavia Abstract Yugoslavia has a 30-year...

  9. Direct Confirmation of Commercial Geothermal Resources in Colorado...

    Open Energy Information (Open El) [EERE & EIA]

    Cost Share 2,932,500.00 Total Project Cost 7,710,734.00 Principal Investigator(s) F. Lee Robinson, Manager, Flint Geothermal, LLC Targets Milestones The heat resources to be...

  10. Montana MCA 77-4-102, Geothermal Resource Definitions | Open...

    Open Energy Information (Open El) [EERE & EIA]

    search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Montana MCA 77-4-102, Geothermal Resource DefinitionsLegal Abstract Definitions for...

  11. NMOCD - Form G-105 - Geothermal Resources Well Log | Open Energy...

    Open Energy Information (Open El) [EERE & EIA]

    Jump to: navigation, search OpenEI Reference LibraryAdd to library General: NMOCD - Form G-105 - Geothermal Resources Well Log Author State of New Mexico Energy and Minerals...

  12. NMOCD - Form G-106 - Geothermal Resources Well Summary Report...

    Open Energy Information (Open El) [EERE & EIA]

    Jump to: navigation, search OpenEI Reference LibraryAdd to library General: NMOCD - Form G-106 - Geothermal Resources Well Summary Report Author State of New Mexico Energy and...

  13. NMOCD - Form G-107 - Geothermal Resources Well History | Open...

    Open Energy Information (Open El) [EERE & EIA]

    Jump to: navigation, search OpenEI Reference LibraryAdd to library General: NMOCD - Form G-107 - Geothermal Resources Well History Author State of New Mexico Energy and Minerals...

  14. NMOCD - Form G-102 - Geothermal Resources Well Location and Acreage...

    Open Energy Information (Open El) [EERE & EIA]

    Jump to: navigation, search OpenEI Reference LibraryAdd to library General: NMOCD - Form G-102 - Geothermal Resources Well Location and Acreage Dedication Plat Author State of New...

  15. Ethiopian Geothermal Resources and Their Characteristics | Open...

    Open Energy Information (Open El) [EERE & EIA]

    exploration in Ethiopia dates back to 1969. The country is currently using hydro and thermal plants as electric energy source. The proven geothermal fields, Langano and...

  16. Updating the Classification of Geothermal Resources - Presentation...

    Open Energy Information (Open El) [EERE & EIA]

    - Presentation Abstract Abstract unavailable. Authors Colin F. Williams and Marshall J. Reed and Arlene F. Anderson Conference Thirty-Sixth Workshop on Geothermal Reservoir...

  17. Detachment Faulting & Geothermal Resources - Pearl Hot Spring, NV |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Detachment Faulting & Geothermal Resources - Pearl Hot Spring, NV presentation at the April 2013 peer review meeting held in Denver, Colorado. pearl_hot_springs_peer2013.pdf (1.5 MB) More Documents & Publications Detachment Faulting & Geothermal Resources - Pearl Hot Spring, NV Crump Geyser: High Precision Geophysics & Detailed Structural Exploration & Slim Well Drilling Conducting a 3D Converted Shear Wave Project to Reduce Exploration Risk at

  18. Low Temperature Geothermal Resource Assessment for Membrane Distillation

    Office of Scientific and Technical Information (OSTI)

    Desalination in the United States: Preprint (Conference) | SciTech Connect Low Temperature Geothermal Resource Assessment for Membrane Distillation Desalination in the United States: Preprint Citation Details In-Document Search Title: Low Temperature Geothermal Resource Assessment for Membrane Distillation Desalination in the United States: Preprint Substantial drought and declines in potable groundwater in the United States over the last decade has increased the demand for fresh water.

  19. The Preston Geothermal Resources; Renewed Interest in a Known Geothermal Resource Area

    SciTech Connect (OSTI)

    Wood, Thomas R.; Worthing, Wade; Cannon, Cody; Palmer, Carl; Neupane, Ghanashyam; McLing, Travis L; Mattson, Earl; Dobson, Patric; Conrad, Mark

    2015-01-01

    The Preston Geothermal prospect is located in northern Cache Valley approximately 8 kilometers north of the city of Preston, in southeast Idaho. The Cache Valley is a structural graben of the northern portion of the Basin and Range Province, just south of the border with the Eastern Snake River Plain (ESRP). This is a known geothermal resource area (KGRA) that was evaluated in the 1970's by the State of Idaho Department of Water Resources (IDWR) and by exploratory wells drilled by Sunedco Energy Development. The resource is poorly defined but current interpretations suggest that it is associated with the Cache Valley structural graben. Thermal waters moving upward along steeply dipping northwest trending basin and range faults emanate in numerous hot springs in the area. Springs reach temperatures as hot as 84 C. Traditional geothermometry models estimated reservoir temperatures of approximately 125 C in the 1970s study. In January of 2014, interest was renewed in the areas when a water well drilled to 79 m (260 ft) yielded a bottom hole temperature of 104 C (217 F). The well was sampled in June of 2014 to investigate the chemical composition of the water for modeling geothermometry reservoir temperature. Traditional magnesium corrected Na-K-Ca geothermometry estimates this new well to be tapping water from a thermal reservoir of 227 C (440 F). Even without the application of improved predictive methods, the results indicate much higher temperatures present at much shallower depths than previously thought. This new data provides strong support for further investigation and sampling of wells and springs in the Northern Cache Valley, proposed for the summer of 2015. The results of the water will be analyzed utilizing a new multicomponent equilibrium geothermometry (MEG) tool called Reservoir Temperature Estimate (RTEst) to obtain an improved estimate of the reservoir temperature. The new data suggest that other KGRAs and overlooked areas may need to be

  20. Gulf Coast geopressured-geothermal program summary report compilation. Volume 3: Applied and direct uses, resource feasibility, economics

    SciTech Connect (OSTI)

    John, C.J.; Maciasz, G.; Harder, B.J.

    1998-06-01

    The US Department of Energy established a geopressured-geothermal energy program in the mid 1970`s as one response to America`s need to develop alternate energy resources in view of the increasing dependence on imported fossil fuel energy. This program continued for 17 years and approximately two hundred million dollars were expended for various types of research and well testing to thoroughly investigate this alternative energy source. This volume describes the following studies: Geopressured-geothermal hybrid cycle power plant: design, testing, and operation summary; Feasibility of hydraulic energy recovery from geopressured-geothermal resources: economic analysis of the Pelton turbine; Brine production as an exploration tool for water drive gas reservoirs; Study of supercritical Rankine cycles; Application of the geopressured-geothermal resource to pyrolytic conversion or decomposition/detoxification processes; Conclusions on wet air oxidation, pyrolytic conversion, decomposition/detoxification process; Co-location of medium to heavy oil reservoirs with geopressured-geothermal resources and the feasibility of oil recovery using geopressured-geothermal fluids; Economic analysis; Application of geopressured-geothermal resources to direct uses; Industrial consortium for the utilization of the geopressured-geothermal resource; Power generation; Industrial desalination, gas use and sales, pollutant removal, thermal EOR, sulfur frasching, oil and natural gas pipelining, coal desulfurization and preparation, lumber and concrete products kilning; Agriculture and aquaculture applications; Paper and cane sugar industries; Chemical processing; Environmental considerations for geopressured-geothermal development. 27 figs., 25 tabs.

  1. Geothermal resource area 11, Clark County area development plan

    SciTech Connect (OSTI)

    Pugsley, M.

    1981-01-01

    Geothermal Resource Area 11 includes all of the land in Clark County, Nevada. Within this area are nine geothermal anomalies: Moapa Area, Las Vegas Valley, Black Canyon, Virgin River Narrows, Roger's Springs, Indian Springs, White Rock Springs, Brown's Spring, and Ash Creek Spring. All of the geothermal resources in Clark County have relatively low temperatures. The highest recorded temperature is 145{sup 0}F at Black Canyon. The temperatures of the other resources range from 70 to 90{sup 0}F. Because of the low temperature of the resources and, for the most part, the distance of the resources from any population base, the potential for the development of the resources are considered to be somewhat limited.

  2. NREL: Dynamic Maps, GIS Data, and Analysis Tools - Geothermal...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Geothermal Prospector Start exploring U.S. geothermal resources with an easy-to-use map by selecting dataset layers that are NGDS compatible. Bookmark and Share Geothermal Data...

  3. Final Scientific - Technical Report, Geothermal Resource Exploration...

    Open Energy Information (Open El) [EERE & EIA]

    lower part of this sedimentary section is sand-rich, suggesting good potential for a sediment-hosted geothermal reservoir in porous sands, similar to other fields in the region...

  4. Geothermal resource assessment of the Yucca Mountain Area, Nye County, Nevada. Final report

    SciTech Connect (OSTI)

    Flynn, T.; Buchanan, P.; Trexler, D.; Shevenell, L., Garside, L.

    1995-12-01

    An assessment of the geothermal resources within a fifty-mile radius of the Yucca Mountain Project area was conducted to determine the potential for commercial development. The assessment includes collection, evaluation, and quantification of existing geological, geochemical, hydrological, and geophysical data within the Yucca Mountain area as they pertain to geothermal phenomena. Selected geologic, geochemical, and geophysical data were reduced to a set of common-scale digital maps using Geographic Information Systems (GIS) for systematic analysis and evaluation. Available data from the Yucca Mountain area were compared to similar data from developed and undeveloped geothermal areas in other parts of the Great Basin to assess the resource potential for future geothermal development at Yucca Mountain. This information will be used in the Yucca Mountain Site Characterization Project to determine the potential suitability of the site as a permanent underground repository for high-level nuclear waste.

  5. Finding Large Aperture Fractures in Geothermal Resource Areas Using a

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Three-Component Long-Offset Surface Seismic Survey | Department of Energy a Three-Component Long-Offset Surface Seismic Survey Finding Large Aperture Fractures in Geothermal Resource Areas Using a Three-Component Long-Offset Surface Seismic Survey DOE Geothermal Peer Review 2010 - Presentation. Project summary: Drilling into large aperture open fractures (LAFs) typically yield production wells with high productivity and low pressure drawdown. Developing geophysical and geologic techniques

  6. California low-temperature geothermal resources update: 1993

    SciTech Connect (OSTI)

    Youngs, L.G.

    1994-12-31

    The US Department of Energy -- Geothermal Division (DOE/GD) recently sponsored the Low-Temperature Geothermal Resources and Technology Transfer Program to bring the inventory of the nation`s low- and moderate-temperature geothermal resources up to date and to encourage development of the resources. The Oregon Institute of Technology, Geo-Heat Center (OIT/GHC) and the University of Utah Research Institute (UURI) established subcontracts and coordinated the project with the state resource teams from the western states that participated in the program. The California Department of Conservation, Division of Mines and Geology (DMG) entered into contract numbered 1092--023(R) with the OIT/GHC to provide the California data for the program. This report is submitted in fulfillment of that contract.

  7. Finding Large Aperture Fractures in Geothermal Resource Areas Using a Three-Component Long-Offset Surface Seismic Survey, PSInSAR and Kinematic Structural Analysis

    SciTech Connect (OSTI)

    Teplow, William J.; Warren, Ian

    2015-08-12

    The DOE cost-share program applied innovative and cutting edge seismic surveying and processing, permanent scatter interferometry-synthetic aperture radar (PSInSAR) and structural kinematics to the exploration problem of locating and mapping largeaperture fractures (LAFs) for the purpose of targeting geothermal production wells. The San Emidio geothermal resource area, which is under lease to USG, contains production wells that have encountered and currently produce from LAFs in the southern half of the resource area (Figure 2). The USG lease block, incorporating the northern extension of the San Emidio geothermal resource, extends 3 miles north of the operating wellfield. The northern lease block was known to contain shallow thermal waters but was previously unexplored by deep drilling. Results of the Phase 1 exploration program are described in detail in the Phase 1 Final Report (Teplow et al., 2011). The DOE cost shared program was completed as planned on September 30, 2014. This report summarizes results from all of Phase 1 and 2 activities.

  8. Doubling Geothermal Generation Capacity by 2020: A Strategic Analysis |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Doubling Geothermal Generation Capacity by 2020: A Strategic Analysis Doubling Geothermal Generation Capacity by 2020: A Strategic Analysis NREL Doubling Geothermal Capacity.pdf (890.69 KB) More Documents & Publications Geothermal Exploration Policy Mechanisms track 1: systems analysis | geothermal 2015 peer review Offshore Wind Jobs and Economic Development Impacts in the United States: Four Regional Scenarios

  9. Geothermal Resource Reporting Metric (GRRM) Developed for the U.S. Department of Energy's Geothermal Technologies Office

    SciTech Connect (OSTI)

    Young, Katherine R.; Wall, Anna M.; Dobson, Patrick F.

    2015-09-02

    This paper reviews a methodology being developed for reporting geothermal resources and project progress. The goal is to provide the U.S. Department of Energy's (DOE) Geothermal Technologies Office (GTO) with a consistent and comprehensible means of evaluating the impacts of its funding programs. This framework will allow the GTO to assess the effectiveness of research, development, and deployment (RD&D) funding, prioritize funding requests, and demonstrate the value of RD&D programs to the U.S. Congress and the public. Standards and reporting codes used in other countries and energy sectors provide guidance to develop the relevant geothermal methodology, but industry feedback and our analysis suggest that the existing models have drawbacks that should be addressed. In order to formulate a comprehensive metric for use by the GTO, we analyzed existing resource assessments and reporting methodologies for the geothermal, mining, and oil and gas industries, and sought input from industry, investors, academia, national labs, and other government agencies. Using this background research as a guide, we describe a methodology for evaluating and reporting on GTO funding according to resource grade (geological, technical and socio-economic) and project progress. This methodology would allow GTO to target funding, measure impact by monitoring the progression of projects, or assess geological potential of targeted areas for development.

  10. NREL: Geothermal Technologies - Capabilities

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Capabilities The NREL geothermal team leverages its capabilities in several different areas to enhance the visibility of geothermal technologies. These areas include low-temperature resources; enhanced geothermal systems; strategic planning, analysis, and modeling; and project assessment. Low-Temperature Geothermal Resources NREL works to develop and deploy innovative new technologies that will help the geothermal community achieve widespread adoption of under-utilized low-temperature resources

  11. Isotopic Analysis At Fenton Hill Hdr Geothermal Area (Goff, Et...

    Open Energy Information (Open El) [EERE & EIA]

    Isotopic Analysis At Fenton Hill Hdr Geothermal Area (Goff, Et Al., 1981) Redirect page Jump to: navigation, search REDIRECT Isotopic Analysis- Fluid At Fenton Hill Hdr Geothermal...

  12. Geothermal resource area 9: Nye County. Area development plan

    SciTech Connect (OSTI)

    Pugsley, M.

    1981-01-01

    Geothermal Resource area 9 encompasses all of Nye County, Nevada. Within this area there are many different known geothermal sites ranging in temperature from 70/sup 0/ to over 265/sup 0/ F. Fifteen of the more major sites have been selected for evaluation in this Area Development Plan. Various potential uses of the energy found at each of the resource sites discussed in this Area Development Plan were determined after evaluating the area's physical characteristics, land ownership and land use patterns, existing population and projected growth rates, and transportation facilities, and comparing those with the site specific resource characteristics. The uses considered were divided into five main categories: electrical generation, space heating, recreation, industrial process heat, and agriculture. Within two of these categories certain subdivisions were considered separately. The findings about each of the 15 geothermal sites considered in this Area Development Plan are summarized.

  13. Pinpointing America's Geothermal Resources with Open Source Data

    Energy.gov [DOE]

    National Geothermal Data System addresses barriers to geothermal deployment by aggregating millions of geoscience datapoints and legacy geothermal research into a nationwide system that serves the geothermal community.

  14. Geothermal Development and Resource Management in the Yakima Valley : A Guidebook for Local Governments.

    SciTech Connect (OSTI)

    Creager, Kurt

    1984-03-01

    The guidebook defines the barriers to geothermal energy development at all levels of government and proposes ways to overcome these various barriers. In recognition that wholesale development of the region's geothermal resources could create a series of environmental problems and possible conflicts between groundwater users, resource management options are identified as possible ways to ensure the quality and quantity of the resource for future generations. It is important for local governments to get beyond the discussion of the merits of geothermal energy and take positive actions to develop or to encourage the development of the resource. To this end, several sources of technical and financial assistance are described. These sources of assistance can enable local governments and others to take action should they choose to do so. Even though the Yakima Valley is the setting for the analysis of local issues that could hamper geothermal development, this guidebook could be used by any locale with geothermal energy resources. The guidebook is not a scientific manual, but rather a policy document written especially for local government staff and officials who do not have technical backgrounds in geology or hydrology.

  15. Geobotanical Remote Sensing Applied to Targeting New Geothermal Resource

    Office of Scientific and Technical Information (OSTI)

    Locations in the U.S. Basin and Range with a Focus on Dixie Meadows, NV (Journal Article) | SciTech Connect Journal Article: Geobotanical Remote Sensing Applied to Targeting New Geothermal Resource Locations in the U.S. Basin and Range with a Focus on Dixie Meadows, NV Citation Details In-Document Search Title: Geobotanical Remote Sensing Applied to Targeting New Geothermal Resource Locations in the U.S. Basin and Range with a Focus on Dixie Meadows, NV This paper presents an overview of the

  16. File:03UTAStateGeothermalResourceLeasing.pdf | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    UTAStateGeothermalResourceLeasing.pdf Jump to: navigation, search File File history File usage Metadata File:03UTAStateGeothermalResourceLeasing.pdf Size of this preview: 463 ...

  17. File:03MTAStateGeothermalResourceLease.pdf | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    3MTAStateGeothermalResourceLease.pdf Jump to: navigation, search File File history File usage Metadata File:03MTAStateGeothermalResourceLease.pdf Size of this preview: 463 599...

  18. C.R.S. 37-90.5-105 Geothermal Resources Access | Open Energy...

    Open Energy Information (Open El) [EERE & EIA]

    5 Geothermal Resources Access Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: C.R.S. 37-90.5-105 Geothermal Resources AccessLegal...

  19. UC 73-22 Utah Geothermal Resource Conservation Act | Open Energy...

    Open Energy Information (Open El) [EERE & EIA]

    Utah Geothermal Resource Conservation Act Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: UC 73-22 Utah Geothermal Resource...

  20. UC 73-22 - Utah Geothermal Resource Conservation Act | Open Energy...

    Open Energy Information (Open El) [EERE & EIA]

    - Utah Geothermal Resource Conservation Act Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: UC 73-22 - Utah Geothermal Resource...

  1. Use of a Geothermal-Solar Hybrid Power Plant to Mitigate Declines in Geothermal Resource Productivity

    SciTech Connect (OSTI)

    Dan Wendt; Greg Mines

    2014-09-01

    Many, if not all, geothermal resources are subject to decreasing productivity manifested in the form of decreasing brine temperature, flow rate, or both during the life span of the associated power generation project. The impacts of resource productivity decline on power plant performance can be significant; a reduction in heat input to a power plant not only decreases the thermal energy available for conversion to electrical power, but also adversely impacts the power plant conversion efficiency. The reduction in power generation is directly correlated to a reduction in revenues from power sales. Further, projects with Power Purchase Agreement (PPA) contracts in place may be subject to significant economic penalties if power generation falls below the default level specified. A potential solution to restoring the performance of a power plant operating from a declining productivity geothermal resource involves the use of solar thermal energy to restore the thermal input to the geothermal power plant. There are numerous technical merits associated with a renewable geothermal-solar hybrid plant in which the two heat sources share a common power block. The geo-solar hybrid plant could provide a better match to typical electrical power demand profiles than a stand-alone geothermal plant. The hybrid plant could also eliminate the stand-alone concentrated solar power plant thermal storage requirement for operation during times of low or no solar insolation. This paper identifies hybrid plant configurations and economic conditions for which solar thermal retrofit of a geothermal power plant could improve project economics. The net present value of the concentrated solar thermal retrofit of an air-cooled binary geothermal plant is presented as functions of both solar collector array cost and electricity sales price.

  2. Geothermal Play Fairway Analysis

    Energy.gov [DOE]

    The concept of play fairway analysis was developed in the petroleum industry in response to a need to rapidly and accurately identify new areas that have the greatest potential for adding significant new reserves to a company’s portfolio and ‘Sell’ the need to invest in further exploration of those areas to company management and/or investors.

  3. Geothermal Energy Production with Co-produced and Geopressured Resources (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-07-01

    This fact sheet provides an overview of geothermal energy production using co-produced and geopressured resources.

  4. Water Efficient Energy Production for Geothermal Resources

    SciTech Connect (OSTI)

    GTO

    2015-06-01

    Water consumption in geothermal energy development occurs at several stages along the life cycle of the plant, during construction of the wells, piping, and plant; during hydroshearing and testing of the reservoir (for EGS); and during operation of the plant. These stages are highlighted in the illustration above. For more information about actual water use during these stages, please see the back of this sheet..

  5. Sustainable Energy Resources for Consumers (SERC) -Geothermal...

    Energy Savers

    Transcript of a presentation, aimed at Sustainable Energy Resources for Consumers (SERC) ... More Documents & Publications Sustainable Energy Resources for Consumers (SERC) - Solar ...

  6. Petrography Analysis At Roosevelt Hot Springs Geothermal Area...

    Open Energy Information (Open El) [EERE & EIA]

    Roosevelt Hot Springs Geothermal Area (Petersen, 1975) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Petrography Analysis At Roosevelt Hot...

  7. Fluid Inclusion Analysis At Coso Geothermal Area (2002) | Open...

    Open Energy Information (Open El) [EERE & EIA]

    2) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Fluid Inclusion Analysis At Coso Geothermal Area (2002) Exploration Activity Details Location...

  8. Fluid Inclusion Analysis At Coso Geothermal Area (1990) | Open...

    Open Energy Information (Open El) [EERE & EIA]

    0) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Fluid Inclusion Analysis At Coso Geothermal Area (1990) Exploration Activity Details Location...

  9. Fluid Inclusion Analysis At Valles Caldera - Redondo Geothermal...

    Open Energy Information (Open El) [EERE & EIA]

    Redondo Geothermal Area (Sasada, 1988) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Fluid Inclusion Analysis At Valles Caldera - Redondo...

  10. New Applications Of Geothermal Gas Analysis To Exploration |...

    Open Energy Information (Open El) [EERE & EIA]

    Applications Of Geothermal Gas Analysis To Exploration Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: New Applications Of Geothermal Gas...

  11. Isotopic Analysis At Valles Caldera - Redondo Geothermal Area...

    Open Energy Information (Open El) [EERE & EIA]

    Exploration Activity: Isotopic Analysis At Valles Caldera - Redondo Geothermal Area (Phillips, 2004) Exploration Activity Details Location Valles Caldera - Redondo Geothermal Area...

  12. Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Geothermal...

    Open Energy Information (Open El) [EERE & EIA]

    Phillips, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Geothermal Area...

  13. Isotopic Analysis-Fluid At Raft River Geothermal Area (1982)...

    Open Energy Information (Open El) [EERE & EIA]

    GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis-Fluid At Raft River Geothermal Area (1982) Exploration Activity Details Location Raft River...

  14. Earth Tidal Analysis At Raft River Geothermal Area (1984) | Open...

    Open Energy Information (Open El) [EERE & EIA]

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Earth Tidal Analysis At Raft River Geothermal Area (1984) Exploration Activity Details Location Raft River...

  15. Isotopic Analysis-Fluid At Raft River Geothermal Area (1977)...

    Open Energy Information (Open El) [EERE & EIA]

    GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis-Fluid At Raft River Geothermal Area (1977) Exploration Activity Details Location Raft River...

  16. Earth Tidal Analysis At Raft River Geothermal Area (1982) | Open...

    Open Energy Information (Open El) [EERE & EIA]

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Earth Tidal Analysis At Raft River Geothermal Area (1982) Exploration Activity Details Location Raft River...

  17. Earth Tidal Analysis At Raft River Geothermal Area (1980) | Open...

    Open Energy Information (Open El) [EERE & EIA]

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Earth Tidal Analysis At Raft River Geothermal Area (1980) Exploration Activity Details Location Raft River...

  18. Isotopic Analysis- Fluid At Long Valley Caldera Geothermal Area...

    Open Energy Information (Open El) [EERE & EIA]

    Long Valley Caldera Geothermal Area (Taylor & Gerlach, 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Long...

  19. Isotopic Analysis At Long Valley Caldera Geothermal Area (Smith...

    Open Energy Information (Open El) [EERE & EIA]

    Smith & Suemnicht, 1991) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis At Long Valley Caldera Geothermal Area (Smith &...

  20. Compound and Elemental Analysis At Lightning Dock Geothermal...

    Open Energy Information (Open El) [EERE & EIA]

    Area (Dellechaie, 1977) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Lightning Dock Geothermal Area...

  1. Isotopic Analysis At Valles Caldera - Redondo Geothermal Area...

    Open Energy Information (Open El) [EERE & EIA]

    Goff, Et Al., 1982) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis At Valles Caldera - Redondo Geothermal Area (Goff, Et Al.,...

  2. Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Geothermal...

    Open Energy Information (Open El) [EERE & EIA]

    WoldeGabriel & Goff, 1992) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Geothermal...

  3. Compound and Elemental Analysis At Fenton Hill HDR Geothermal...

    Open Energy Information (Open El) [EERE & EIA]

    Goff & Janik, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Fenton Hill HDR Geothermal Area (Goff &...

  4. Compound and Elemental Analysis At Valles Caldera - Redondo Geothermal...

    Open Energy Information (Open El) [EERE & EIA]

    Compound and Elemental Analysis At Valles Caldera - Redondo Geothermal Area (Goff, Et Al., 1982) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

  5. Isotopic Analysis At Long Valley Caldera Geothermal Area (Evans...

    Open Energy Information (Open El) [EERE & EIA]

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis At Long Valley Caldera Geothermal Area (Evans, Et Al., 2002) Exploration Activity Details...

  6. Compound and Elemental Analysis At Long Valley Caldera Geothermal...

    Open Energy Information (Open El) [EERE & EIA]

    Compound and Elemental Analysis At Long Valley Caldera Geothermal Area (Evans, Et Al., 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

  7. Geothermal resources of the Southern Powder River Basin, Wyoming

    SciTech Connect (OSTI)

    Heasler, H.P.; Buelow, K.L.; Hinckley, B.S.

    1985-06-13

    This report describes the geothermal resources of the Southern Powder River Basin. The report contains a discussion of the hydrology as it relates to the movement of heated water, a description and interpretation of the thermal regime, and four maps: a generalized geological map, a structure contour map, a thermal gradient contour map, and a ground water temperature map. 10 figs. (ACR)

  8. Hawaii Energy Resource Overviews. Volume 4. Impact of geothermal resource development in Hawaii (including air and water quality)

    SciTech Connect (OSTI)

    Siegel, S.M.; Siegel, B.Z.

    1980-06-01

    The environmental consequences of natural processes in a volcanic-fumerolic region and of geothermal resource development are presented. These include acute ecological effects, toxic gas emissions during non-eruptive periods, the HGP-A geothermal well as a site-specific model, and the geothermal resources potential of Hawaii. (MHR)

  9. NREL: Geothermal Technologies - Projects

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Projects The NREL geothermal team is involved in various projects to help accelerate the development and deployment of clean, renewable geothermal technologies, including low-temperature resources; enhanced geothermal systems; strategic planning, analysis, and modeling; and project assessment. Low-Temperature Geothermal Resources NREL supports the U.S. Department of Energy's (DOE) Geothermal Technologies Office (GTO) through various collaborations that evaluate the levelized cost of electricity

  10. Title 20 AAC 25.705-.740 Geothermal Resources | Open Energy Informatio...

    Open Energy Information (Open El) [EERE & EIA]

    ResourcesLegal Abstract Title 20 of the Alaska Administrative Code Chapter 25, Alaska Oil and Gas Conservation Commission Article 7, Geothermal Resources, Sections 705-740....

  11. Geothermal Energy | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Geothermal Energy (Redirected from Geothermal) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Overview Technologies Resources Market Data Geothermal Topics Data...

  12. Geothermal industry employment: Survey results & analysis

    SciTech Connect (OSTI)

    Not Available

    2005-09-01

    The Geothermal Energy Association (GEA) is ofteh asked about the socioeconomic and employment impact of the industry. Since available literature dealing with employment involved in the geothermal sector appeared relatively outdated, unduly focused on certain activities of the industry (e.g. operation and maintenance of geothermal power plants) or poorly reliable, GEA, in consultation with the DOE, decided to conduct a new employment survey to provide better answers to these questions. The main objective of this survey is to assess and characterize the current workforce involved in geothermal activities in the US. Several initiatives have therefore been undertaken to reach as many organizations involved in geothermal activities as possible and assess their current workforce. The first section of this document describes the methodology used to contact the companies involved in the geothermal sector. The second section presents the survey results and analyzes them. This analysis includes two major parts. The first part analyzes the survey responses, presents employment numbers that were captured and describes the major characteristics of the industry that have been identified. The second part of the analysis estimates the number of workers involved in companies that are active in the geothermal business but did not respond to the survey or could not be reached. Preliminary conclusions and the study limits and restrictions are then presented. The third section addresses the potential employment impact related to manufacturing and construction of new geothermal power facilities. Indirect and induced economic impacts related with such investment are also investigated.

  13. Geothermal Analysis | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Measuring the Costs and Economic, Social, and Environmental Benefits of Nationwide Geothermal Heat Pump Deployment And The Potential Employment, Energy, and Environmental...

  14. Analysis of Geothermal Reservoir Stimulation Using Geomechanics-based

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Stochastic Analysis of Injection-induced Seismicity; 2010 Geothermal Technology Program Peer Review Report | Department of Energy Using Geomechanics-based Stochastic Analysis of Injection-induced Seismicity; 2010 Geothermal Technology Program Peer Review Report Analysis of Geothermal Reservoir Stimulation Using Geomechanics-based Stochastic Analysis of Injection-induced Seismicity; 2010 Geothermal Technology Program Peer Review Report DOE 2010 Geothermal Technologies Program Peer Review

  15. MCA 77-4-104 - Nature of Geothermal Resources | Open Energy Informatio...

    Open Energy Information (Open El) [EERE & EIA]

    4 - Nature of Geothermal Resources Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: MCA 77-4-104 - Nature of Geothermal...

  16. Funding Opportunity Announcement Webinar: Technology Advancement for Rapid Development of Geothermal Resources (DE-FOA-0000522)

    Energy.gov [DOE]

    The U.S. Department of Energy's (DOE) Geothermal Technologies Program (the Program) presented a webinar on Thursday, June 23, about its newly released funding opportunity announcement (FOA), Geothermal Technology Advancement for Rapid Development of Resources in the United States.

  17. Doubling Geothermal Generation Capacity by 2020. A Strategic Analysis

    SciTech Connect (OSTI)

    Wall, Anna; Young, Katherine

    2016-01-01

    This report identifies the potential of U.S. geothermal resource and the current market to add an additional 3 GW of geothermal by 2020, in order to meet the goal set forth in the Climate Action Plan.

  18. Characterization Of Geothermal Resources Using New Geophysical...

    Open Energy Information (Open El) [EERE & EIA]

    in the preparation of the final report submitted to Amp Resources Authors Jerry Montgomery, Roger L. Bowers and Val Kofoed Published GRC, 2005 DOI Not Provided Check for DOI...

  19. Preliminary Technical Risk Analysis for the Geothermal Technologies Program

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    | Department of Energy Technical Risk Analysis for the Geothermal Technologies Program Preliminary Technical Risk Analysis for the Geothermal Technologies Program This report explains the goals, methods, and results of a probabilistic analysis of technical risk for a portfolio of R&D projects in the DOE Geothermal Technologies Program. 41156.pdf (1.37 MB) More Documents & Publications U.S. DOE Geothermal Electricity Technology Evaluation Model (GETEM) Webinar Presentation Geothermal

  20. Reconnaissance geothermal resource assessment of 40 sites in California

    SciTech Connect (OSTI)

    Leivas, E.; Martin, R.C.; Higgins, C.T.; Bezore, S.P.

    1981-01-01

    Results are set forth for a continuing reconnaissance-level assessment of promising geothermal sites scattered through California. The studies involve acquisition of new data based upon field observations, compilation of data from published and unpublished sources, and evaluation of the data to identify areas suitable for more intensive area-specific studies. Forty sites were chosen for reporting on the basis of their relative potential for development as a significant resource. The name and location of each site is given, and after a brief synopsis, the geothermal features, chemistry, geology, and history of the site are reported. Three sites are recommended for more detailed study on the basis of potential for use by a large number of consumers, large volume of water, and the likelihood that the resource underlies a large area. (LEW)

  1. Geothermal resources of the Washakie and Great Divide basins, Wyoming

    SciTech Connect (OSTI)

    Heasler, H.P.; Buelow, K.L.

    1985-01-01

    The geothermal resources of the Great Divide and Washakie Basins of southern Wyoming are described. Oil well bottomhole temperatures, thermal logs of wells, and heat flow data were interpreted within a framework of geologic and hydrologic constraints. It was concluded large areas in Wyoming are underlain by water hotter than 120{sup 0}F. Isolated areas with high temperature gradients exist within each basin. 68 refs., 8 figs., 7 tabs. (ACR)

  2. Geothermal Play Fairway Analysis (Video) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Analysis (Video) Geothermal Play Fairway Analysis (Video) pfw-webinar-recording.wmv (37.43 MB) More Documents & Publications Asset Score API Webinar June 14, 2013 Geothermal Play Fairway Analysis distance_webinar_2013_03_05.wmv

  3. Geothermal Energy | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Geothermal Energy Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Overview Technologies Resources Market Data Geothermal Topics Data Resources Financing Permitting &...

  4. Nuova Sasso Geothermal Power Station | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    General Information Name Nuova Sasso Geothermal Power Station Sector Geothermal energy Location Information Geothermal Resource Area Larderello Geothermal Area Geothermal...

  5. Geothermal

    Office of Scientific and Technical Information (OSTI)

    Geothermal Geothermal Legacy Collection Search the Geothermal Legacy Collection Search For Terms: Find + Advanced Search Advanced Search All Fields: Title: Full Text: ...

  6. Geothermal power development in Hawaii. Volume I. Review and analysis

    SciTech Connect (OSTI)

    Not Available

    1982-06-01

    The history of geothermal exploration in Hawaii is reviewed briefly. The nature and occurrences of geothermal resources are presented island by island. An overview of geothermal markets is presented. Other topies covered are: potential markets of the identified geothermal areas, well drilling technology, hydrothermal fluid transport, overland and submarine electrical transmission, community aspects of geothermal development, legal and policy issues associated with mineral and land ownership, logistics and infrastructure, legislation and permitting, land use controls, Regulation 8, Public Utilities Commission, political climate and environment, state plans, county plans, geothermal development risks, and business planning guidelines.

  7. An Estimate of Shallow, Low-Temperature Geothermal Resources of the United

    Office of Scientific and Technical Information (OSTI)

    States: Preprint (Conference) | SciTech Connect An Estimate of Shallow, Low-Temperature Geothermal Resources of the United States: Preprint Citation Details In-Document Search Title: An Estimate of Shallow, Low-Temperature Geothermal Resources of the United States: Preprint Low-temperature geothermal resources in the United States potentially hold an enormous quantity of thermal energy, useful for direct use in residential, commercial and industrial applications such as space and water

  8. Advancements in 3D Structural Analysis of Geothermal Systems

    SciTech Connect (OSTI)

    Siler, Drew L; Faulds, James E; Mayhew, Brett; McNamara, David

    2013-06-23

    Robust geothermal activity in the Great Basin, USA is a product of both anomalously high regional heat flow and active fault-controlled extension. Elevated permeability associated with some fault systems provides pathways for circulation of geothermal fluids. Constraining the local-scale 3D geometry of these structures and their roles as fluid flow conduits is crucial in order to mitigate both the costs and risks of geothermal exploration and to identify blind (no surface expression) geothermal resources. Ongoing studies have indicated that much of the robust geothermal activity in the Great Basin is associated with high density faulting at structurally complex fault intersection/interaction areas, such as accommodation/transfer zones between discrete fault systems, step-overs or relay ramps in fault systems, intersection zones between faults with different strikes or different senses of slip, and horse-tailing fault terminations. These conceptualized models are crucial for locating and characterizing geothermal systems in a regional context. At the local scale, however, pinpointing drilling targets and characterizing resource potential within known or probable geothermal areas requires precise 3D characterization of the system. Employing a variety of surface and subsurface data sets, we have conducted detailed 3D geologic analyses of two Great Basin geothermal systems. Using EarthVision (Dynamic Graphics Inc., Alameda, CA) we constructed 3D geologic models of both the actively producing Brady’s geothermal system and a ‘greenfield’ geothermal prospect at Astor Pass, NV. These 3D models allow spatial comparison of disparate data sets in 3D and are the basis for quantitative structural analyses that can aid geothermal resource assessment and be used to pinpoint discrete drilling targets. The relatively abundant data set at Brady’s, ~80 km NE of Reno, NV, includes 24 wells with lithologies interpreted from careful analysis of cuttings and core, a 1

  9. BLM/DOI - Notice of Intent to Conduct Geothermal Resource Exploration...

    Open Energy Information (Open El) [EERE & EIA]

    DOI - Notice of Intent to Conduct Geothermal Resource Exploration Operations < BLM Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: BLMDOI - Notice of...

  10. Systems for Electrical Power from Coproduced and Low Temperature Geothermal Resources

    Energy.gov [DOE]

    Presentation about Systems for Electrical Power from Coproduced and Low Temperature Geothermal Resources includes background, results and discussion, future plans and conclusion.

  11. Novel Coupled Thermochronometric and Geochemical Investigation of Blind Geothermal Resources in Fault-Controlled Dilational Corners

    Energy.gov [DOE]

    Novel Coupled Thermochronometric and Geochemical Investigation of Blind Geothermal Resources in Fault-Controlled Dilational Corners presentation at the April 2013 peer review meeting held in Denver, Colorado.

  12. Bibliography of the geological and geophysical aspects of hot dry rock geothermal resources

    SciTech Connect (OSTI)

    Heiken, G.; Sayer, S.

    1980-02-01

    This is the first issue of an annual compilation of references that are useful to the exploration, understanding and development of the hot dry rock geothermal resource.

  13. Life-Cycle Analysis Results of Geothermal Systems in Comparison...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Life-Cycle Analysis Results of Geothermal Systems in Comparison to Other Power Systems Life-Cycle Analysis Results of Geothermal Systems in Comparison to Other Power Systems A ...

  14. Geological and geophysical analysis of Coso Geothermal Exploration...

    Open Energy Information (Open El) [EERE & EIA]

    controlled and that the drillhole itself was strongly influenced by structural zones. Water chemistry indicates that this geothermal resource is a hot-water rather than a...

  15. Compound and Elemental Analysis At Lightning Dock Geothermal...

    Open Energy Information (Open El) [EERE & EIA]

    Usefulness useful DOE-funding Unknown Exploration Basis Part of the Geothermal Resource Evaluation and Definition (GRED) Program administered by DOE-AAO under Cooperative...

  16. Isotopic Analysis- Fluid At Lightning Dock Geothermal Area (Witcher...

    Open Energy Information (Open El) [EERE & EIA]

    Usefulness useful DOE-funding Unknown Exploration Basis Part of the Geothermal Resource Evaluation and Definition (GRED) Program administered by DOE-AAO under Cooperative...

  17. Geothermal Reconnaissance From Quantitative Analysis Of Thermal...

    Open Energy Information (Open El) [EERE & EIA]

    Geothermal Exploration Activities Activities (1) Thermal And-Or Near Infrared At Raft River Geothermal Area (1974-1976) Areas (1) Raft River Geothermal Area Regions (0)...

  18. Geothermal Prospector: Supporting Geothermal Analysis Through Spatial Data Visualization and Querying Tools

    SciTech Connect (OSTI)

    Getman, Daniel; Anderson, Arlene; Augustine, Chad

    2015-09-02

    Determining opportunities for geothermal energy can involve a significant investment in data collection and analysis. Analysts within a variety of industry and research domains collect and use these data; however, determining the existence and availability of data needed for a specific analysis activity can be challenging and represents one of the initial barriers to geothermal development [2]. This paper describes the motivating factors involved in designing and building the Geothermal Prospector application, how it can be used to reduce risks and costs related to geothermal exploration, and where it fits within the larger collection of tools that is the National Geothermal Data System (NGDS) [5].

  19. The United Nations' Approach To Geothermal Resource Assessment...

    Open Energy Information (Open El) [EERE & EIA]

    of United Nations' assisted geothermal projects has been on demonstrating the feasibility of producing geothermal fluids, the potential capacity of individual fields has...

  20. Pinpointing America's Geothermal Resources with Open Source Data...

    Energy Savers

    The National Geothermal Data System is helping researchers and industry developers cultivate geothermal technology applications in energy and direct-use through an open source data ...

  1. NREL: Geothermal Technologies - Publications

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Publications NREL's geothermal team develops publications, including technical reports and conference papers, about geothermal resource assessments, market and policy analysis, and geothermal research and development (R&D) activities. In addition to the selected documents available below, you can find resources on the U.S. Department of Energy (DOE) Geothermal Technologies Office website or search the NREL Publications Database. Learn more about how research at NREL is accelerating

  2. Geothermal Play Fairway Analysis | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Play Fairway Analysis Geothermal Play Fairway Analysis January 24, 2014 - 2:59pm Addthis Funding: $3,000,000-$4,000,000 for Phase 1; $3,000,000-$5,000,000 for Phase 2; $3,000,000-$5,000,000 for Phase 3; (All subject to the availability of appropriated funds.) Open Date: 01/24/2014 Close Date: 04/11/2014 Selection Announcement: 2014-07-31 Funding Organization: Department of Energy Geothermal Technologies Office Funding Number: DE-FOA-0000841 Summary: DOE is seeking applications to address the

  3. Novel Coupled Thermochronometric and Geochemical Investigation of Blind Geothermal Resources in Fault-Controlled Dilational Corners

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Novel Coupled Thermochronometric and Geochemical Investigation of Blind Geothermal Resources in Fault-Controlled Dilational Corners Dr. Daniel Stockli (PI) University of Texas at Austin Jackson School of Geosciences April 23, 2013 This presentation does not contain any proprietary confidential, or otherwise restricted information. 2 | US DOE Geothermal Program eere.energy.gov Novel Coupled Thermochronometric and Geochemical Investigation of Blind Geothermal Resources in Fault- Controlled

  4. Tables of co-located geothermal-resource sites and BLM Wilderness Study Areas

    SciTech Connect (OSTI)

    Foley, D.; Dorscher, M.

    1982-11-01

    Matched pairs of known geothermal wells and springs with BLM proposed Wilderness Study Areas (WSAs) were identified by inspection of WSA and Geothermal resource maps for the states of Arizona, California, Colorado, Idaho, Montana, Nevada, New Mexico, Oregon, Utah, Washington and Wyoming. A total of 3952 matches, for geothermal sites within 25 miles of a WSA, were identified. Of these, only 71 (1.8%) of the geothermal sites are within one mile of a WSA, and only an additional 100 (2.5%) are within one to three miles. Approximately three-fourths of the matches are at distances greater than ten miles. Only 12 of the geothermal sites within one mile of a WSA have surface temperatures reported above 50/sup 0/C. It thus appears that the geothermal potential of WSAs overall is minimal, but that evaluation of geothermal resources should be considered in more detail for some areas prior to their designation as Wilderness.

  5. Reconnaissance of geothermal resources of Los Angeles County, California

    SciTech Connect (OSTI)

    Higgins, C.T.

    1981-01-01

    Thermal waters produced from large oil fields are currently the most important geothermal resources in Los Angeles County. Otherwise, the County does not appear to have any large, near-surface geothermal resources. The oil fields produce thermal water because of both the moderate depths of production and normal to above-normal geothermal gradients. Gradients are about 3.0-3.5/sup 0/C/100 meters in the Ventura Basin and range from that up to about 5.5-6.0/sup 0/C/100 meters in the Los Angeles Basin. The hottest fields in the County are west of the Newport-Inglewood Structural Zone. The Los Angeles Basin has substantially more potential for uses of heat from oil fields than does the Ventura Basin because of its large fields and dense urban development. Produced fluid temperatures there range from ambient air to boiling, but most are in the 100-150/sup 0/F range. Daily water production ranges from only a few barrels at some fields to over a million barrels at Wilmington Oil Field; nearly all fields produce less than 50,000 barrels/day. Water salinity generally ranges from about 15,000-35,000 mg/liter NaCl. Fields with the most promise as sources of heat for outside applications are Wilmington, Torrance, Venice Beach, and Lawndale. The centralized treatment facilities are the most favorable sites for extraction of heat within the oil fields. Because of the poor water quality heat exchangers will likely be required rather than direct circulation of the field water to users. The best sites for applications are commercial-industrial areas and possibly institutional structures occupied by large numbers of people.

  6. DOE 2009 Geothermal Risk Analysis: Methodology and Results (Presentation)

    SciTech Connect (OSTI)

    Young, K. R.; Augustine, C.; Anderson, A.

    2010-02-01

    This presentation summarizes the methodology and results for a probabilistic risk analysis of research, development, and demonstration work-primarily for enhanced geothermal systems (EGS)-sponsored by the U.S. Department of Energy Geothermal Technologies Program.

  7. Geothermal Resources of New Mexico - A Survey of Work to Date...

    Open Energy Information (Open El) [EERE & EIA]

    library Report: Geothermal Resources of New Mexico - A Survey of Work to Date Authors W.J. Stone and N.H. Mizell Published New Mexico Bureau of Mines & Mineral Resources, 1977...

  8. Preliminary Technical Risk Analysis for the Geothermal Technologies Program

    SciTech Connect (OSTI)

    2009-01-18

    This report explains the goals, methods, and results of a probabilistic analysis of technical risk for a portfolio of R&D projects in the DOE Geothermal Technologies Program (The Program). The analysis is a task by Princeton Energy Resources International, LLC, in support of the National Renewable Energy Laboratory on behalf of the Program. The main challenge in the analysis lies in translating R&D results to a quantitative reflection of technical risk for a key Program metric: levelized cost of energy (LCOE).

  9. Geothermal resource assessment of the Animas Valley, Colorado. Resource Series 17

    SciTech Connect (OSTI)

    McCarthy, K.P.; Zacharakis, T.G.; Ringrose, C.D.

    1982-01-01

    The Colorado Geological Survey, has been engaged in assessing the nature and extent of Colorado's geothermal resources. The program has included geologic and hydrogeologic reconnaissance, and geophysical and geochemical surveys. In the Animas Valley, in southwestern Colorado, two groups of thermal springs exist: Pinkerton Springs to the north, and Tripp-Trimble-Stratten Springs about 5 miles (8.1 Km) south of Pinkerton. The geothermal resources of the Animas Valley were studied. Due to terrain problems in the narrow valley, a soil mercury survey was conducted only at Tripp-Trimble Stratten, while an electrical D.C. resistivity survey was limited to the vicinity of Pinkerton. Although higher mercury values tended to be near a previously mapped fault, the small extent of the survey ruled out conclusive results. Consistent low resistivity zones interpreted from the geophysical data were mapped as faults near Pinkerton, and compared well with aerial photo work and spring locations. This new information was added to reconnaissance geology and hydrogeology to provide several clues regarding the geothermal potential of the valley. Hydrothermal minerals found in faults in the study area are very similar to ore mined in a very young mountain range, nearby. Groundwater would not need to circulate very deeply along faults to attain the estimated subsurface temperatures present in the valley. The water chemistry of each area is unique. Although previously incompletely manned, faulting in the area is extensive. The geothermal resources in the Animas Valley are fault controlled. Pinkerton and Tripp-Trimble-Stratten are probably not directly connected systems, but may have the same source at distance. Recharge to the geothermal system comes from the needle and La Plata Mountains, and the latter may also be a heat source. Movement of the thermal water is probably primarily horizontal, via the Leadville Limestone aquifer.

  10. Geothermal

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    utilization of geothermal energy. This focus in geothermal related drilling research is the search for practical ... Online Abstracts and Reports Water Power Personnel Natural Gas ...

  11. Final report. Geothermal Energy Program: Information dissemination, public outreach, and technical analysis activities. April 1, 1999 to December 31, 2001. USDOE Grant No. DE-FG01-99-EE35098

    SciTech Connect (OSTI)

    Lund, John W.

    2002-03-22

    This is the final report of the accomplishments of the geothermal energy program: information dissemination, public outreach, and technical analysis activities by the project team consisting of the Geo-Heat Center, Geothermal Resources Council, Geothermal Education Office, Geothermal Energy Association, and the Washington State University Energy Program.

  12. Integrating CO₂ storage with geothermal resources for dispatchable renewable electricity

    SciTech Connect (OSTI)

    Buscheck, Thomas A.; Bielicki, Jeffrey M.; Chen, Mingjie; Sun, Yunwei; Hao, Yue; Edmunds, Thomas A.; Saar, Martin O.; Randolph, Jimmy B.

    2014-12-31

    We present an approach that uses the huge fluid and thermal storage capacity of the subsurface, together with geologic CO₂ storage, to harvest, store, and dispatch energy from subsurface (geothermal) and surface (solar, nuclear, fossil) thermal resources, as well as energy from electrical grids. Captured CO₂ is injected into saline aquifers to store pressure, generate artesian flow of brine, and provide an additional working fluid for efficient heat extraction and power conversion. Concentric rings of injection and production wells are used to create a hydraulic divide to store pressure, CO₂, and thermal energy. Such storage can take excess power from the grid and excess/waste thermal energy, and dispatch that energy when it is demanded, enabling increased penetration of variable renewables. Stored CO₂ functions as a cushion gas to provide enormous pressure-storage capacity and displaces large quantities of brine, which can be desalinated and/or treated for a variety of beneficial uses.

  13. Integrating CO₂ storage with geothermal resources for dispatchable renewable electricity

    DOE PAGES-Beta [OSTI]

    Buscheck, Thomas A.; Bielicki, Jeffrey M.; Chen, Mingjie; Sun, Yunwei; Hao, Yue; Edmunds, Thomas A.; Saar, Martin O.; Randolph, Jimmy B.

    2014-12-31

    We present an approach that uses the huge fluid and thermal storage capacity of the subsurface, together with geologic CO₂ storage, to harvest, store, and dispatch energy from subsurface (geothermal) and surface (solar, nuclear, fossil) thermal resources, as well as energy from electrical grids. Captured CO₂ is injected into saline aquifers to store pressure, generate artesian flow of brine, and provide an additional working fluid for efficient heat extraction and power conversion. Concentric rings of injection and production wells are used to create a hydraulic divide to store pressure, CO₂, and thermal energy. Such storage can take excess power frommore » the grid and excess/waste thermal energy, and dispatch that energy when it is demanded, enabling increased penetration of variable renewables. Stored CO₂ functions as a cushion gas to provide enormous pressure-storage capacity and displaces large quantities of brine, which can be desalinated and/or treated for a variety of beneficial uses.« less

  14. Systems for Electrical Power from Coproduced and Low Temperature Geothermal Resources

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Systems for Electrical Power from Systems for Electrical Power from Coproduced and Low Temperature Geothermal Resources Timothy Reinhardt, Lyle A. Johnson and Neil Popovich Thirty Thirty-Sixth Workshop on Geothermal Reservoir Engineering Sixth Workshop on Geothermal Reservoir Engineering Stanford University Stanford, CA Jan ar 31 Febr ar 2 2011 January 31 - February 2, 2011 Energy Efficiency & Renewable Energy eere.energy.gov Outline * * Background Background * Results and Discussion *

  15. Assessment of Geothermal Resources for Electric Generation in the Pacific Northwest, Draft Issue Paper for the Northwest Power Planning Council

    SciTech Connect (OSTI)

    Geyer, John D.; Kellerman, L.M.; Bloomquist, R.G.

    1989-09-26

    This document reviews the geothermal history, technology, costs, and Pacific Northwest potentials. The report discusses geothermal generation, geothermal resources in the Pacific Northwest, cost and operating characteristics of geothermal power plants, environmental effects of geothermal generation, and prospects for development in the Pacific Northwest. This report was prepared expressly for use by the Northwest Power Planning Council. The report contains numerous references at the end of the document. [DJE-2005

  16. Estimate of Geothermal Energy Resource in Major U.S. Sedimentary Basins (Presentation), NREL (National Renewable Energy Laboratory)

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ESTIMATE OF GEOTHERMAL ENERGY RESOURCE IN MAJOR U.S. SEDIMENTARY BASINS Colleen Porro and Chad Augustine April 24, 2012 National Renewable Energy Lab, Golden, CO NREL/PR-6A20-55017 NATIONAL RENEWABLE ENERGY LABORATORY Sedimentary Basin Geothermal WHAT IS SEDIMENTARY BASIN GEOTHERMAL? 2 Geothermal Energy from Sedimentary Rock - Using hot" geothermal fluids (>100 o C) produced from sedimentary basins to generate electricity - Advantages: * Reservoirs are porous, permeable, and well

  17. Accelerated Geothermal Resource Development in the Great Basin Through Enhanced Public Awareness and Outreach to Shareholders.

    SciTech Connect (OSTI)

    Taranik, James V.; Oppliger, Gary; Sawatsky, Don

    2002-04-10

    The Great Basin Center for Geothermal Energy conducted work encompassing two main tasks. We (1) produced a web-based, stakeholder geothermal information system for Nevada geothermal data relevant to assessing and developing geothermal resources, and (2) we held informational stakeholder workshops (both as part of GeoPowering the West Initiative). The objective of this grant was to conduct workshops and fund database and web development activities. This grant funds salaries for web and database developers and part of the administrative assistant who helps to coordinate and organize workshops, and maintain selected databases.

  18. Nagqu Geothermal Power Plant | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Name Nagqu Geothermal Power Plant Facility Geothermal Power Plant Sector Geothermal energy Location Information Geothermal Resource Area Geothermal Region Plant Information...

  19. A Resource Assessment Of Geothermal Energy Resources For Converting Deep Gas Wells In Carbonate Strata Into Geothermal Extraction Wells: A Permian Basin Evaluation

    SciTech Connect (OSTI)

    Erdlac, Richard J., Jr.

    2006-10-12

    Previously conducted preliminary investigations within the deep Delaware and Val Verde sub-basins of the Permian Basin complex documented bottom hole temperatures from oil and gas wells that reach the 120-180C temperature range, and occasionally beyond. With large abundances of subsurface brine water, and known porosity and permeability, the deep carbonate strata of the region possess a good potential for future geothermal power development. This work was designed as a 3-year project to investigate a new, undeveloped geographic region for establishing geothermal energy production focused on electric power generation. Identifying optimum geologic and geographic sites for converting depleted deep gas wells and fields within a carbonate environment into geothermal energy extraction wells was part of the project goals. The importance of this work was to affect the three factors limiting the expansion of geothermal development: distribution, field size and accompanying resource availability, and cost. Historically, power production from geothermal energy has been relegated to shallow heat plumes near active volcanic or geyser activity, or in areas where volcanic rocks still retain heat from their formation. Thus geothermal development is spatially variable and site specific. Additionally, existing geothermal fields are only a few 10’s of square km in size, controlled by the extent of the heat plume and the availability of water for heat movement. This plume radiates heat both vertically as well as laterally into the enclosing country rock. Heat withdrawal at too rapid a rate eventually results in a decrease in electrical power generation as the thermal energy is “mined”. The depletion rate of subsurface heat directly controls the lifetime of geothermal energy production. Finally, the cost of developing deep (greater than 4 km) reservoirs of geothermal energy is perceived as being too costly to justify corporate investment. Thus further development opportunities

  20. Structural Analysis of the Desert Peak-Brady Geothermal Fields...

    Open Energy Information (Open El) [EERE & EIA]

    Structures and Geothermal Reservoirs in the Humboldt Structural Zone Citation James E. Faulds,Larry J. Garside,Gary L. Oppliger. 2003. Structural Analysis of the Desert...

  1. Core Analysis At International Geothermal Area, Indonesia (Boitnott...

    Open Energy Information (Open El) [EERE & EIA]

    Location International Geothermal Area Indonesia Exploration Technique Core Analysis Activity Date Usefulness not indicated DOE-funding Unknown References Greg N. Boitnott...

  2. Core Analysis At Coso Geothermal Area (1980) | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Exploration Activity Details Location Coso Geothermal Area Exploration Technique Core Analysis Activity Date 1980 Usefulness not indicated DOE-funding Unknown Exploration Basis...

  3. Cuttings Analysis At Coso Geothermal Area (1980) | Open Energy...

    Open Energy Information (Open El) [EERE & EIA]

    Exploration Activity Details Location Coso Geothermal Area Exploration Technique Cuttings Analysis Activity Date 1980 Usefulness not indicated DOE-funding Unknown Exploration Basis...

  4. Isotopic Analysis- Fluid At Coso Geothermal Area (1990) | Open...

    Open Energy Information (Open El) [EERE & EIA]

    Exploration Activity Details Location Coso Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date 1990 Usefulness not indicated DOE-funding Unknown...

  5. Isotopic Analysis- Fluid At Indian Valley Hot Springs Geothermal...

    Open Energy Information (Open El) [EERE & EIA]

    Details Location Indian Valley Hot Springs Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date 1990 Usefulness not indicated DOE-funding Unknown...

  6. Isotopic Analysis- Fluid At Sierra Valley Geothermal Area (1990...

    Open Energy Information (Open El) [EERE & EIA]

    Activity Details Location Sierra Valley Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date 1990 Usefulness not indicated DOE-funding Unknown...

  7. Isotopic Analysis- Fluid At Coso Geothermal Area (1982) | Open...

    Open Energy Information (Open El) [EERE & EIA]

    Details Location Coso Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date 1982 Usefulness not indicated DOE-funding Unknown Exploration Basis...

  8. Compound and Elemental Analysis At International Geothermal Area...

    Open Energy Information (Open El) [EERE & EIA]

    Geothermal Area Indonesia Exploration Technique Compound and Elemental Analysis Activity Date Usefulness not indicated DOE-funding Unknown Notes Improving Exploration Models of...

  9. Strategic Planning, Analysis, and Geothermal Informatics Subprogram Overview

    Energy.gov [DOE]

    This is an overview of GTP's Strategic Planning, Analysis, and Geothermal Informatics subprogram, given at the GTP Program Peer Review on May 18, 2010.

  10. Isotopic Analysis- Fluid At Roosevelt Hot Springs Geothermal...

    Open Energy Information (Open El) [EERE & EIA]

    Unknown Exploration Basis Faulder 1991 Conceptual Geological Model compilation and literature review of the Roosevelt Hot Springs Geothermal Area. Notes Stable isotope analysis...

  11. IDAPA 37.03.04.045 - Abandonment of Geothermal Resource Wells...

    Open Energy Information (Open El) [EERE & EIA]

    .045 - Abandonment of Geothermal Resource Wells Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: IDAPA 37.03.04.045 -...

  12. HAR 13-183 Rules on Leasing and Drilling of Geothermal Resources...

    Open Energy Information (Open El) [EERE & EIA]

    HAR 13-183 Rules on Leasing and Drilling of Geothermal Resources Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: HAR 13-183...

  13. Getting into hot water: the law of geothermal resources in Colorado...

    Open Energy Information (Open El) [EERE & EIA]

    Getting into hot water: the law of geothermal resources in Colorado Jump to: navigation, search OpenEI Reference LibraryAdd to library Periodical: Getting into hot water: the law...

  14. C.R.S. 37-90.5-103 Geothermal Resources Definitions | Open Energy...

    Open Energy Information (Open El) [EERE & EIA]

    OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: C.R.S. 37-90.5-103 Geothermal Resources DefinitionsLegal Abstract Colorado statute that defines terms...

  15. New Mexico HB 201 (2012) An Act Relating to Geothermal Resources...

    Open Energy Information (Open El) [EERE & EIA]

    search OpenEI Reference LibraryAdd to library Legal Document- BillBill: New Mexico HB 201 (2012) An Act Relating to Geothermal Resources; Providing for ground water to...

  16. I.C. 47-1605 - Geothermal Resources - Leases--Rental and Royalty...

    Open Energy Information (Open El) [EERE & EIA]

    search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: I.C. 47-1605 - Geothermal Resources - Leases--Rental and RoyaltyLegal Abstract This code...

  17. Advanced 3D Geophysical Imaging Technologies for Geothermal Resource...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    & MT data - Krafla volcano, Iceland * Producing Geothermal field * First Iceland Deep Drilling Project (IDDP) well * Use existing MEQ and MT datasets - Coso Hot Springs, USA * ...

  18. Indicators Of Low-Temperature Geothermal Resources In Northern...

    Open Energy Information (Open El) [EERE & EIA]

    attractive thermal energy prospects on the Atlantic Coastal Plain. Authors Douglas L. Smith and William T. Dees Published Journal Journal of Volcanology and Geothermal Research,...

  19. Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization

    Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. This project aims to develop improved geophysical imaging method for characterizing subsurface structure, identify fluid locations, and characterize fractures.

  20. Geothermal Resource-Reservoir Investigations Based On Heat Flow...

    Open Energy Information (Open El) [EERE & EIA]

    to establish basic qualitative relationships between structure, heat input, and permeability distribution, and the resulting geothermal system. A series of steady state,...

  1. Our Evolving Knowledge Of Nevada'S Geothermal Resource Potential...

    Open Energy Information (Open El) [EERE & EIA]

    systems at Bonham Ranch, and Rhodes and Teels Marshes, NV. Collaboration with the gold mining industry has led to the announcement of two new significant geothermal...

  2. Pinpointing America's Geothermal Resources with Open Source Data...

    Energy.gov (indexed) [DOE]

    Geothermal energy -- the heat contained within the earth -- represents a growing part of ... The system provides updates on the latest industry statistics -- from information on ...

  3. Finding Large Aperture Fractures in Geothermal Resource Areas...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    DOE Geothermal Peer Review 2010 - Presentation. Project summary: Drilling into large aperture open fractures (LAFs) typically yield production wells with high productivity and ...

  4. Geothermal Energy | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Geothermal Energy (Redirected from Geothermal power) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Overview Technologies Resources Market Data Geothermal Topics Data...

  5. Evaluation and Ranking of Geothermal Resources for Electrical Generation or Electrical Offset in Idaho, Montana, Oregon and Washington. Volume I.

    SciTech Connect (OSTI)

    Bloomquist, R. Gordon

    1985-06-01

    The objective was to consolidate and evaluate all geologic, environmental, and legal and institutional information in existing records and files, and to apply a uniform methodology to the evaluation and ranking of sites to allow the making of creditable forecasts of the supply of geothermal energy which could be available in the region over a 20 year planning horizon. A total of 1265 potential geothermal resource sites were identified from existing literature. Site selection was based upon the presence of thermal and mineral springs or wells and/or areas of recent volcanic activity and high heat flow. 250 sites were selected for detailed analysis. A methodology to rank the sites by energy potential, degree of developability, and cost of energy was developed. Resource developability was ranked by a method based on a weighted variable evaluation of resource favorability. Sites were ranked using an integration of values determined through the cost and developability analysis. 75 figs., 63 tabs.

  6. Geothermal energy and the land resource: conflicts and constraints in The Geysers-Calistoga KGRA

    SciTech Connect (OSTI)

    O'Banion, K.; Hall, C.

    1980-07-14

    This study of potential land-related impacts of geothermal power development in The Geysers region focuses on Lake County because it has most of the undeveloped resource and the least regulatory capability. First, the land resource is characterized in terms of its ecological, hydrological, agricultural, and recreational value; intrinsic natural hazards; and the adequacy of roads and utility systems. Based on those factors, the potential land-use conflicts and constraints that geothermal development may encounter in the region are identified and the availability and relative suitability of land for such development is determined. A brief review of laws and powers germane to geothermal land-use regulation is included.

  7. The Impact of Taxation on the Development of Geothermal Resources

    SciTech Connect (OSTI)

    Gaffen, Michael; Baker, James

    1992-09-01

    This contractor report reviews past and current tax mechanisms for the development and operation of geothermal power facilities. A 50 MW binary plant is featured as the case study. The report demonstrates that tax credits with windows of availability of greater than one year are essential to allow enough time for siting and design of geothermal power systems. (DJE 2005)

  8. Detachment Faulting & Geothermal Resources- Pearl Hot Spring, NV

    Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. Project objective: Integration of new thermochronometric, structural and geological analyses, reflection and refraction seismic surveys and existing geophysical data into a 3-D Earth Model to elucidate the tectonic and 4-D thermal evolution of southern Clayton Valley and the Weepah Hills (Pearl Hot Spring geothermal play).

  9. Preliminary Technical Risk Analysis for the Geothermal Technologies Program

    SciTech Connect (OSTI)

    McVeigh, J.; Cohen, J.; Vorum, M.; Porro, G.; Nix, G.

    2007-03-01

    This report explains the goals, methods, and results of a probabilistic analysis of technical risk for a portfolio of R&D projects in the DOE Geothermal Technologies Program ('the Program'). The analysis is a task by Princeton Energy Resources International, LLC (PERI), in support of the National Renewable Energy Laboratory (NREL) on behalf of the Program. The main challenge in the analysis lies in translating R&D results to a quantitative reflection of technical risk for a key Program metric: levelized cost of energy (LCOE). This requires both computational development (i.e., creating a spreadsheet-based analysis tool) and a synthesis of judgments by a panel of researchers and experts of the expected results of the Program's R&D.

  10. Geothermal energy in the western United States and Hawaii: Resources and projected electricity generation supplies. [Contains glossary and address list of geothermal project developers and owners

    SciTech Connect (OSTI)

    Not Available

    1991-09-01

    Geothermal energy comes from the internal heat of the Earth, and has been continuously exploited for the production of electricity in the United States since 1960. Currently, geothermal power is one of the ready-to-use baseload electricity generating technologies that is competing in the western United States with fossil fuel, nuclear and hydroelectric generation technologies to provide utilities and their customers with a reliable and economic source of electric power. Furthermore, the development of domestic geothermal resources, as an alternative to fossil fuel combustion technologies, has a number of associated environmental benefits. This report serves two functions. First, it provides a description of geothermal technology and a progress report on the commercial status of geothermal electric power generation. Second, it addresses the question of how much electricity might be competitively produced from the geothermal resource base. 19 figs., 15 tabs.

  11. Geothermal-resource assessment of Ranger Warm Spring, Colorado. Resources Series 24

    SciTech Connect (OSTI)

    Zacharakis, T.G.; Pearl, R.H.; Ringrose, C.D.

    1983-01-01

    In 1977 a program was initiated to delineate the geological features controlling the occurrence of geothermal resources in Colorado. This program consisted of literature search, reconnaissance geologic and hydrogeologic mapping and geophysical and geochemical surveys. During 1980 and 1981 geothermal resource assessment efforts were conducted in the Cement Creek Valley south of Crested Butte. In this valley are two warm springs, Cement Creek and Ranger, about 4 mi (6.4 km) apart. The temperature of both springs is 77 to 79/sup 0/F (25 to 26/sup 0/C) and the discharge ranges from 60 to 195 gallons per minute. Due to access problems no work was conducted in the Cement Creek Warm Springs area. At Ranger Warm Springs electrical resistivity and soil mercury surveys were conducted. The warm springs are located in the Elk Mountains of west central Colorado. The bedrock of the area consists of sedimentary rocks ranging in age from Precambrian to Recent. Several faults with displacements of up to 3000 ft (194 m) are found in the area. One of these faults passes close to the Ranger Warm Springs. The electrical resistivity survey indicated that the waters of Ranger Warm Springs are moving up along a buried fault which parallels Cement Creek.

  12. Unalaska geothermal exploration project. Electrical power generation analysis. Final report

    SciTech Connect (OSTI)

    Not Available

    1984-04-01

    The objective of this study was to determine the most cost-effective power cycle for utilizing the Makushin Volcano geothermal resource to generate electricity for the towns of Unalaska and Dutch Harbor. It is anticipated that the geothermal power plant would be intertied with a planned conventional power plant consisting of four 2.5 MW diesel-generators whose commercial operation is due to begin in 1987. Upon its completion in late 1988, the geothermal power plant would primarily fulfill base-load electrical power demand while the diesel-generators would provide peak-load electrical power and emergency power at times when the geothermal power plant would be partially or completely unavailable. This study compares the technical, environmental, and economic adequacy of five state-of-the-art geothermal power conversion processes. Options considered are single- and double-flash steam cycles, binary cycle, hybrid cycle, and total flow cycle.

  13. Idaho Geothermal Commercialization Program. Idaho geothermal handbook

    SciTech Connect (OSTI)

    Hammer, G.D.; Esposito, L.; Montgomery, M.

    1980-03-01

    The following topics are covered: geothermal resources in Idaho, market assessment, community needs assessment, geothermal leasing procedures for private lands, Idaho state geothermal leasing procedures - state lands, federal geothermal leasing procedures - federal lands, environmental and regulatory processes, local government regulations, geothermal exploration, geothermal drilling, government funding, private funding, state and federal government assistance programs, and geothermal legislation. (MHR)

  14. Life-Cycle Analysis of Geothermal Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Cycle Analysis of Geothermal Technologies Life-Cycle Analysis of Geothermal Technologies The results and tools from this project will help GTP and stakeholders determine and communicate GT energy and GHG benefits and water impacts. The life-cycle analysis (LCA) approach is taken to address these effects. analysis_wang_lifecycle_analysis.pdf (878.83 KB) More Documents & Publications AAPG Low-Temperature Webinar GREET Development and Applications for Life-Cycle Analysis of Vehicle/Fuel Systems

  15. A Code for Geothermal Resources and Reserves Reporting | Open...

    Open Energy Information (Open El) [EERE & EIA]

    over two years will be covered in a companion paper by Lawless et al. Authors A. F. Williams, J. V. Lawless, M. A. Ward, F. L. Holgate and A. Larking Conference World Geothermal...

  16. A Method for Estimating Undiscovered Geothermal Resources in...

    Open Energy Information (Open El) [EERE & EIA]

    areas based on the presence of drill-holes, wells, and depth to the water table. The "density of occurrence" (number of geothermal systems per km2) is calculated, taking into...

  17. Toward The Development Of Occurrence Models For Geothermal Resources...

    Open Energy Information (Open El) [EERE & EIA]

    in existing fields and grass-roots geothermal exploration Authors A. E. Sabin, J. D. Walker, J. Unruh and F. C. Monastero Published GRC, 2004 DOI Not Provided Check for...

  18. Geothermal Resources Exploration And Assessment Around The Cove...

    Open Energy Information (Open El) [EERE & EIA]

    Exploration And Assessment Around The Cove Fort-Sulphurdale Geothermal Field In Utah By Multiple Geophysical Imaging Jump to: navigation, search OpenEI Reference LibraryAdd to...

  19. Finding Large Aperture Fractures in Geothermal Resource Areas...

    Open Energy Information (Open El) [EERE & EIA]

    depth (600-4000 feet) geothermal systems. This project is designed to test the methodology on known occurrences of LAF's and then apply the technology to expand an existing...

  20. Geothermal

    Office of Scientific and Technical Information (OSTI)

    Geothermal Geothermal Legacy Collection Search the Geothermal Legacy Collection Search For Terms: Find + Advanced Search × Advanced Search All Fields: Title: Full Text: Bibliographic Data: Creator / Author: Name Name ORCID Search Authors Subject: Identifier Numbers: Research Org: Sponsoring Org: Publication Date: to Update Date: to Sort: Relevance (highest to lowest) Publication Date (newest first) Publication Date (oldest first) Legacy/Non-Legacy: All Legacy Non-Legacy Close Clear All Find

  1. Geothermal

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Geothermal Louise Vickery, General Manager, Renewable Futures at the Australian Renewable Energy Agency (ARENA). Permalink Gallery Australian Renewable-Energy Official Visits ...

  2. 2009 Geothermal, Co-Production, and GSHP Supply Curves | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy 2009 Geothermal, Co-Production, and GSHP Supply Curves 2009 Geothermal, Co-Production, and GSHP Supply Curves Project objective: Generate supply/deployment curve input for geothermal technologies for use in market penetration models. analysis_augustine_supply_curves.pdf (861.72 KB) More Documents & Publications SMU Geothermal Conference 2011 - Geothermal Technologies Program track 1: systems analysis | geothermal 2015 peer review National Geothermal Resource Assessment and

  3. Resource Analysis | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Systems Analysis » Analysis Methodologies » Resource Analysis Resource Analysis Resource Analysis determines the quantity and location of resources needed to produce hydrogen. Additionally, resource analysis quantifies the cost of the resources, as a function of the amount that can be available for hydrogen production. While often associated with renewable resources, resource analysis is also suitable for fossil resources and existing production facilities. Geographic Information Systems (GIS)

  4. Simulation analysis of the unconfined aquifer, Raft River Geothermal...

    Open Energy Information (Open El) [EERE & EIA]

    analysis of the unconfined aquifer, Raft River Geothermal Area, Idaho-Utah Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Simulation analysis of the...

  5. Life-Cycle Analysis Results of Geothermal Systems in Comparison...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Life-Cycle Analysis Results of Geothermal Systems in Comparison to Other Power Systems A life-cycle energy and greenhouse gas emissions analysis has been conducted with Argonne ...

  6. Rancia Geothermal Power Station | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Station General Information Name Rancia Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area...

  7. Sesta Geothermal Power Station | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Station General Information Name Sesta Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  8. Farinello Geothermal Power Station | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Station General Information Name Farinello Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  9. Pianacce Geothermal Power Station | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Station General Information Name Pianacce Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area...

  10. Geothermal resource base of the world: a revision of the Electric Power Research Institute's estimate

    SciTech Connect (OSTI)

    Aldrich, M.J.; Laughlin, A.W.; Gambill, D.T.

    1981-04-01

    Review of the Electric Power Research Institute's (EPRI) method for calculating the geothermal resource base of a country shows that modifications are needed for several of the assumptions used in the calculation. These modifications include: (1) separating geothermal belts into volcanic types with a geothermal gradient of 50{sup 0}C/km and complex types in which 80% of the area has a temperature gradient of 30{sup 0}C/km and 20% has a gradient of 45{sup 0}C/km, (2) using the actual mean annual temperature of a country rather than an assumed 15{sup 0}C average ambient temperature, and (3) making separate calculations for the resource stored in water/brine and that stored in rock. Comparison of this method (Revised EPRI) for calculating a geothermal resource base with other resource base estimates made from a heat flow map of Europe indicates that the technique yields reasonable values. The calculated geothermal resource bases, stored in water and rock to a depth of 5 km, for each country in the world are given. Approximately five times as much energy is stored in rock as is stored in water.

  11. Assessment of the geothermal resources of Illinois based on existing geologic data

    SciTech Connect (OSTI)

    Vaught, T.L.

    1980-12-01

    Geothermal resources are not known to exist in Illinois. However, from the data presented on heat flow, thermal gradients, depth to basement, seismic activity, and low-conductivity sediments, inferences are drawn about the possible presence of resources in the state. (MHR)

  12. Geothermal Energy Basics | NREL

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    You are here Home » Information Resources » Geothermal Basics Geothermal Basics Geothermal heat is most prevalent in the western United States, where the heat resource can sometimes be spotted from the earth's surface. Geothermal heat is most prevalent in the western United States, where the heat resource can sometimes be spotted from the earth's surface. Geothermal energy-geo (earth) + thermal (heat)-is heat energy from the earth. What is a geothermal resource? Geothermal resources are

  13. Core Analysis At International Geothermal Area, Philippines ...

    Open Energy Information (Open El) [EERE & EIA]

    Philippines. References Patrick Laney (2005) Federal Geothermal Research Program Update - Fiscal Year 2004 Additional References Retrieved from "http:en.openei.orgw...

  14. Cuttings Analysis At International Geothermal Area, Philippines...

    Open Energy Information (Open El) [EERE & EIA]

    Philippines. References Patrick Laney (2005) Federal Geothermal Research Program Update - Fiscal Year 2004 Additional References Retrieved from "http:en.openei.orgw...

  15. Cuttings Analysis At International Geothermal Area, Indonesia...

    Open Energy Information (Open El) [EERE & EIA]

    Philippines. References Patrick Laney (2005) Federal Geothermal Research Program Update - Fiscal Year 2004 Additional References Retrieved from "http:en.openei.orgw...

  16. Environmental overview for the development of geothermal resources in the State of New Mexico. Final report

    SciTech Connect (OSTI)

    Bryant, M.; Starkey, A.H.; Dick-Peddie, W.A.

    1980-06-01

    A brief overview of the present day geothermal applications for hydrothermal electrical generation and direct heat use and their environmental implications is provided. Technologies and environmental impacts are considered at all points on the pathway of development resource exploration; well field, plant and transmission line construction; and plant operation. The technologies for electrical generation-direct, dry steam conversion; separated steam conversion; single-flash conversion, separated-steam/single-flash conversion and binary cycle conversion and the technologies for direct heat use - direct use of geothermal waters, surface heat exhanger, down-the hole heat exchanger and heat pump are described. A summary of the geothermal technologies planned or in operation within New Mexico geothermal areas is provided. A review of regulations that affect geothermal development and its related environmental impact in New Mexico is presented. The regulatory pathway, both state and federal, of geothermal exploration after the securing of appropriate leases, development, and construction and implementation of a geothermal facility are described. Six categories (Geophysical, Water, Air, Noise, Biota and Socioeconomics) were selected for environmental assessment. The data available is described.

  17. Papers Presented - Geothermal Resources Council 1980 Annual Meeting

    SciTech Connect (OSTI)

    1980-10-01

    This report contains preprints of papers pertaining to geothermal energy development in the Eastern United States written by members of the Center for Metropolitan Planning and Research (Metro Center) and by the Applied Physics Laboratory (APL) both of The Johns Hopkins University.

  18. Valle Secolo Geothermal Power Station | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Station General Information Name Valle Secolo Geothermal Power Station Sector Geothermal energy Location Information Geothermal Resource Area Larderello Geothermal Area Geothermal...

  19. Bouillante 2 Geothermal Power Plant | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Plant General Information Name Bouillante 2 Geothermal Power Plant Sector Geothermal energy Location Information Geothermal Resource Area Bouillante Geothermal Area Geothermal...

  20. Bouillante 1 Geothermal Power Plant | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Plant General Information Name Bouillante 1 Geothermal Power Plant Sector Geothermal energy Location Information Geothermal Resource Area Bouillante Geothermal Area Geothermal...

  1. Geothermal guidebook

    SciTech Connect (OSTI)

    Not Available

    1981-06-01

    The guidebook contains an overview, a description of the geothermal resource, statutes and regulations, and legislative policy concerns. (MHR)

  2. Preliminary Technical Risk Analysis for the Geothermal Technologies...

    Energy.gov (indexed) [DOE]

    This report explains the goals, methods, and results of a probabilistic analysis of technical risk for a portfolio of R&D projects in the DOE Geothermal Technologies Program. ...

  3. American Recovery and Reinvestment Act (ARRA) FEMP Technical Assistance for Geothermal Resource Evaluation Projects

    SciTech Connect (OSTI)

    Robert P. Breckenridge; Thomas R. Wood; Joel Renner

    2010-09-01

    The purpose of this document is to report on the evaluation of geothermal resource potential on and around three different United States (U. S.) Air Force Bases (AFBs): Nellis AFB and Air Force Range (AFR) in the State of Nevada (see maps 1 and 5), Holloman AFB in the State of New Mexico (see map 2), and Mountain Home AFB in the State of Idaho (see map 3). All three sites are located in semi-arid parts of the western U. S. The U. S. Air Force, through its Air Combat Command (ACC) located at Langley AFB in the State of Virginia, asked the Federal Energy Management Program (FEMP) for technical assistance to conduct technical and feasibility evaluations for the potential to identify viable geothermal resources on or around three different AFBs. Idaho National Laboratory (INL) is supporting FEMP in providing technical assistance to a number of different Federal Agencies. For this report, the three different AFBs are considered one project because they all deal with potential geothermal resource evaluations. The three AFBs will be evaluated primarily for their opportunity to develop a geothermal resource of high enough quality grade (i.e., temperature, productivity, depth, etc.) to consider the possibility for generation of electricity through a power plant. Secondarily, if the resource for the three AFBs is found to be not sufficient enough for electricity generation, then they will be described in enough detail to allow the base energy managers to evaluate if the resource is suitable for direct heating or cooling. Site visits and meetings by INL personnel with the staff at each AFB were held in late FY-2009 and FY-2010. This report provides a technical evaluation of the opportunities and challenges for developing geothermal resources on and around the AFBs. An extensive amount of literature and geographic information was evaluated as a part of this assessment. Resource potential maps were developed for each of the AFBs.

  4. Expanding Geothermal Resource Utilization through Directed Research, Education, and Public Outreach

    SciTech Connect (OSTI)

    Calvin, Wendy

    2015-06-29

    The Great Basin Center for Geothermal Energy (GBCGE or the Center) was established at the University of Nevada, Reno (UNR) in May 2000 to promote research and utilization of geothermal resources. The Center received funding through this grant to promote increased geothermal development in the Great Basin, with most of the funding used for peerreviewed research. Funding to the Center and work under the contract were initiated in March 2002, with supplemental funding in subsequent years. The Center monitored the research projects that were competitively awarded in a series of proposal calls between 2002 and 2007. Peer-reviewed research promoted identification and utilization of geothermal resources in Nevada. Projects used geology, geochemistry, geophysics, remote sensing, and the synthesis of multi-disciplinary information to produce new models of geothermal systems in the Western U.S. and worldwide. Funds were also used to support graduate student research and training. Part of the grant was used to support public outreach activities, including webpages, online maps and data resources, and informational workshops for stakeholders.

  5. Takigami Geothermal Power Plant | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Hide Map Geothermal Resource Area Oita Geothermal Area Geothermal Region Ryuku Arc Plant Information Facility Type Single Flash Owner Idemitsu Oita Geothermal CoKyushu...

  6. Lahendong Geothermal Area | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  7. Mindanao Geothermal Area | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  8. Mount Amiata Geothermal Area | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  9. Amatitlan Geothermal Area | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  10. Mori Geothermal Area | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  11. Fukushima Geothermal Area | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  12. Rotokawa Geothermal Area | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  13. Pauzhetskaya Geothermal Area | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  14. Miyagi Geothermal Area | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  15. Kagoshima Geothermal Area | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  16. Tiwi / Albay Geothermal Area | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  17. Ogiri Geothermal Area | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  18. Ngawha Geothermal Area | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  19. Bouillante Geothermal Area | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  20. Leyte Geothermal Area | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  1. Svartsengi Geothermal Area | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  2. South Negros Geothermal Area | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  3. Recoverable Resource Estimate of Identified Onshore Geopressured Geothermal Energy in Texas and Louisiana (Presentation)

    SciTech Connect (OSTI)

    Esposito, A.; Augustine, C.

    2012-04-01

    Geopressured geothermal reservoirs are characterized by high temperatures and high pressures with correspondingly large quantities of dissolved methane. Due to these characteristics, the reservoirs provide two sources of energy: chemical energy from the recovered methane, and thermal energy from the recovered fluid at temperatures high enough to operate a binary power plant for electricity production. Formations with the greatest potential for recoverable energy are located in the gulf coastal region of Texas and Louisiana where significantly overpressured and hot formations are abundant. This study estimates the total recoverable onshore geopressured geothermal resource for identified sites in Texas and Louisiana. In this study a geopressured geothermal resource is defined as a brine reservoir with fluid temperature greater than 212 degrees F and a pressure gradient greater than 0.7 psi/ft.

  4. Analysis of Geothermal Reservoir Stimulation using Geomechanics-Based Stochastic Analysis of Injection-Induced Seismicity

    Energy.gov [DOE]

    Analysis of Geothermal Reservoir Stimulation using Geomechanics-Based Stochastic Analysis of Injection-Induced Seismicity presentation at the April 2013 peer review meeting held in Denver, Colorado.

  5. GeothermEx Inc | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    spectrum of resource-related issues -- from exploration and drilling through analysis, project management, financial modeling and operational support. References "GeothermEx...

  6. Demonstration of a Variable Phase Turbine Power System for Low Temperature Geothermal Resources

    SciTech Connect (OSTI)

    Hays, Lance G

    2014-07-07

    A variable phase turbine assembly will be designed and manufactured having a turbine, operable with transcritical, two-phase or vapor flow, and a generator – on the same shaft supported by process lubricated bearings. The assembly will be hermetically sealed and the generator cooled by the refrigerant. A compact plate-fin heat exchanger or tube and shell heat exchanger will be used to transfer heat from the geothermal fluid to the refrigerant. The demonstration turbine will be operated separately with two-phase flow and with vapor flow to demonstrate performance and applicability to the entire range of low temperature geothermal resources. The vapor leaving the turbine is condensed in a plate-fin refrigerant condenser. The heat exchanger, variable phase turbine assembly and condenser are all mounted on single skids to enable factory assembly and checkout and minimize installation costs. The system will be demonstrated using low temperature (237F) well flow from an existing large geothermal field. The net power generated, 1 megawatt, will be fed into the existing power system at the demonstration site. The system will demonstrate reliable generation of inexpensive power from low temperature resources. The system will be designed for mass manufacturing and factory assembly and should cost less than $1,200/kWe installed, when manufactured in large quantities. The estimated cost of power for 300F resources is predicted to be less than 5 cents/kWh. This should enable a substantial increase in power generated from low temperature geothermal resources.

  7. Feasibility analysis of geothermal district heating for Lakeview, Oregon

    SciTech Connect (OSTI)

    Not Available

    1980-12-23

    An analysis of the geothermal resource at Lakeview, Oregon, indicates that a substantial resource exists in the area capable of supporting extensive residential, commercial and industrial heat loads. Good resource productivity is expected with water temperatures of 200{degrees}F at depths of 600 to 3000 feet in the immediate vicinity of the town. Preliminary district heating system designs were developed for a Base Case serving 1170 homes, 119 commercial and municipal buildings, and a new alcohol fuel production facility; a second design was prepared for a downtown Mini-district case with 50 commercial users and the alcohol plant. Capital and operating costs were determined for both cases. Initial development of the Lakeview system has involved conducting user surveys, well tests, determinations of institutional requirements, system designs, and project feasibility analyses. A preferred approach for development will be to establish the downtown Mini-district and, as experience and acceptance are obtained, to expand the system to other areas of town. Projected energy costs for the Mini-district are $10.30 per million Btu while those for the larger Base Case design are $8.20 per million Btu. These costs are competitive with costs for existing sources of energy in the Lakeview area.

  8. Using Geothermal Play Types as an Analogue for Estimating Potential Resource Size

    SciTech Connect (OSTI)

    Terry, Rachel; Young, Katherine

    2015-09-02

    Blind geothermal systems are becoming increasingly common as more geothermal fields are developed. Geothermal development is known to have high risk in the early stages of a project development because reservoir characteristics are relatively unknown until wells are drilled. Play types (or occurrence models) categorize potential geothermal fields into groups based on geologic characteristics. To aid in lowering exploration risk, these groups' reservoir characteristics can be used as analogues in new site exploration. The play type schemes used in this paper were Moeck and Beardsmore play types (Moeck et al. 2014) and Brophy occurrence models (Brophy et al. 2011). Operating geothermal fields throughout the world were classified based on their associated play type, and then reservoir characteristics data were catalogued. The distributions of these characteristics were plotted in histograms to develop probability density functions for each individual characteristic. The probability density functions can be used as input analogues in Monte Carlo estimations of resource potential for similar play types in early exploration phases. A spreadsheet model was created to estimate resource potential in undeveloped fields. The user can choose to input their own values for each reservoir characteristic or choose to use the probability distribution functions provided from the selected play type. This paper also addresses the United States Geological Survey's 1978 and 2008 assessment of geothermal resources by comparing their estimated values to reported values from post-site development. Information from the collected data was used in the comparison for thirty developed sites in the United States. No significant trends or suggestions for methodologies could be made by the comparison.

  9. Comprehensive Evaluation of the Geothermal Resource Potential within the Pyramid Lake Paiute Reservation Phase III Report

    SciTech Connect (OSTI)

    Noel, Donna

    2013-12-01

    This project integrated state-of-the-art exploration technologies with a geologic framework and reservoir modeling to ultimately determine the efficacy of future geothermal production within the PLPT reservation. The information gained during this study should help the PLPT to make informed decisions regarding construction of a geothermal power plant. Additional benefits included the transfer of new technologies and geothermal data to the geothermal industry and it created and/or preserved nearly three dozen jobs accordance with the American Recovery and Reinvestment Act of 2009. A variety of tasks were conducted to achieve the above stated objectives. The following are the tasks completed within the project: 1. Permitting 2. Shallow temperature survey 3. Seismic data collection and analysis 4. Fracture stress analysis 5. Phase I reporting Permitting 7. Shallow temperature survey 8. Seismic data collection and analysis 9. Fracture stress analysis 10. Phase I reporting 11. Drilling two new wells 12. Borehole geophysics 13. Phase II reporting 14. Well testing and geochemical analysis 15. Three-dimensional geologic model 16. Three-dimensional reservoir analysis 17. Reservation wide geothermal potential analysis 18. Phase III reporting Phase I consisted of tasks 1 – 5, Phase II tasks 6 – 8, and Phase III tasks 9 – 13. This report details the results of Phase III tasks. Reports are available for Phase I, and II as separate documents.

  10. Preliminary Assessment of Geothermal Resource Potential at the UTTR

    SciTech Connect (OSTI)

    Richard P. Smith, PhD., PG; Robert P. Breckenridge, PhD.; Thomas R. Wood, PhD.

    2011-06-01

    The purpose of this report is to summarize the current state of geologic knowledge concerning potential high-temperature geothermal development on the lands controlled by Hill Air Force Base (HAFB) at the Utah Testing and Training Range (UTTR) and the lands encompassed by the Dugway Proving Grounds (Dugway). This report is based on currently available published and publically available information. Most of the information presented here is purely geologic in nature. Therefore, the logistical issues (such as military exclusion areas, proximity to electrical infrastructure, and access) are additional considerations that are being addressed in a separate report that will be issued to HAFB by the SES corporation.

  11. Evaluation of the St. Lucia geothermal resource: macroeconomic models

    SciTech Connect (OSTI)

    Burris, A.E.; Trocki, L.K.; Yeamans, M.K.; Kolstad, C.D.

    1984-08-01

    A macroeconometric model describing the St. Lucian economy was developed using 1970 to 1982 economic data. Results of macroeconometric forecasts for the period 1983 through 1985 show an increase in gross domestic product (GDP) for 1983 and 1984 with a decline in 1985. The rate of population growth is expected to exceed GDP growth so that a small decline in per capita GDP will occur. We forecast that garment exports will increase, providing needed employment and foreign exchange. To obtain a longer-term but more general outlook on St. Lucia's economy, and to evaluate the benefit of geothermal energy development, we applied a nonlinear programming model. The model maximizes discounted cumulative consumption.

  12. Electricity Generation from Geothermal Resources on the Fort Peck Reservation in Northeast Montana

    SciTech Connect (OSTI)

    Carlson, Garry J.; Birkby, Jeff

    2015-05-12

    Tribal lands owned by Assiniboine and Sioux Tribes on the Fort Peck Indian Reservation, located in Northeastern Montana, overlie large volumes of deep, hot, saline water. Our study area included all the Fort Peck Reservation occupying roughly 1,456 sq miles. The geothermal water present in the Fort Peck Reservation is located in the western part of the Williston Basin in the Madison Group complex ranging in depths of 5500 to 7500 feet. Although no surface hot springs exist on the Reservation, water temperatures within oil wells that intercept these geothermal resources in the Madison Formation range from 150 to 278 degrees F.

  13. Geothermal Electricity Technology Evaluation Model (GETEM) Development |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Development Geothermal Electricity Technology Evaluation Model (GETEM) Development Project objective: Provide a tool for estimating the performance and contributions of all phases of a geothermal project to power generation costs. analysis_mines_getem_development.pdf (545.29 KB) More Documents & Publications 2009 Geothermal, Co-Production, and GSHP Supply Curves Systems Engineering Analysis of Low-Temperature Utilization of Geothermal Resources

  14. The Role of Cost Shared R&D in the Development of Geothermal Resources

    SciTech Connect (OSTI)

    1995-03-16

    This U.S. Department of Energy Geothermal Program Review starts with two interesting pieces on industries outlook about market conditions. Dr. Allan Jelacics introductory talk includes the statistics on the impacts of the Industry Coupled Drilling Program (late-1970's) on geothermal power projects in Nevada and Utah (about 140 MWe of power stimulated). Most of the papers in these Proceedings are in a technical report format, with results. Sessions included: Exploration, The Geysers, Reservoir Engineering, Drilling, Energy Conversion (including demonstration of a BiPhase Turbine Separator), Energy Partnerships (including the Lake County effluent pipeline to The Geysers), and Technology Transfer (Biochemical processing of brines, modeling of chemistry, HDR, the OIT low-temperature assessment of collocation of resources with population, and geothermal heat pumps). There were no industry reviews at this meeting.

  15. Hawaii Energy Resource Overviews. Volume II. Impact of geothermal development on the geology and hydrology of the Hawaiian Islands

    SciTech Connect (OSTI)

    Feldman, C.; Siegel, B.Z.

    1980-06-01

    The following topics are discussed: the geological setting of the Hawaiian Islands, regional geology of the major islands, geohydrology of the Hawaiian Islands, Hawaiis' geothermal resources, and potential geological/hydrological problems associated with geothermal development. Souces of information on the geology of Hawaii are presented. (MHR)

  16. Evaluation and targeting of geothermal energy resources in the southeastern United States. Final report, May 1, 1976-June 30, 1982

    SciTech Connect (OSTI)

    Costain, J.K.; Glover, L. III

    1982-01-01

    The objectives of the geothermal program have been to develop and apply geological and geophysical targeting procedures for the discovery of low-temperature geothermal resources related to heat-producing granite. Separate abstracts have been prepared for individual papers comprising the report. (ACR)

  17. Geothermal Workforce Education Development and Retention | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Workforce Education Development and Retention Geothermal Workforce Education Development and Retention Formation of a National Geothermal Institute to develop the human resources that will be needed to transform and grow the U.S. energy infrastructure to achieve the utilization of Americas vast geothermal resource base. analysis_scott_workforce_education.pdf (490.59 KB) More Documents & Publications Expanding Geothermal Resource Utilization in Nevada through Directed Research

  18. Analysis of how changed federal regulations and economic incentives affect financing of geothermal projects

    SciTech Connect (OSTI)

    Meyers, D.; Wiseman, E.; Bennett, V.

    1980-11-04

    The effects of various financial incentives on potential developers of geothermal electric energy are studied and the impact of timing of plant construction costs on geothermal electricity costs is assessed. The effect of the geothermal loan guarantee program on decisions by investor-owned utilities to build geothermal electric power plants was examined. The usefulness of additional investment tax credits was studied as a method for encouraging utilities to invest in geothermal energy. The independent firms which specialize in geothermal resource development are described. The role of municipal and cooperative utilities in geothermal resource development was assessed in detail. Busbar capital costs were calculated for geothermal energy under a variety of ownerships with several assumptions about financial incentives. (MHR)

  19. Environmental impact of geopressure - geothermal cogeneration facility on wetland resources and socioeconomic characteristics in Louisiana Gulf Coast region. Final report, October 10, 1983-September 31, 1984

    SciTech Connect (OSTI)

    Smalley, A.M.; Saleh, F.M.S.; Fontenot, M.

    1984-08-01

    Baseline data relevant to air quality are presented. The following are also included: geology and resource assessment, design well prospects in southwestern Louisiana, water quality monitoring, chemical analysis subsidence, microseismicity, geopressure-geothermal subsidence modeling, models of compaction and subsidence, sampling handling and preparation, brine chemistry, wetland resources, socioeconomic characteristics, impacts on wetlands, salinity, toxic metals, non-metal toxicants, temperature, subsidence, and socioeconomic impacts. (MHR)

  20. The feasibility of applying geopressured-geothermal resources to direct uses

    SciTech Connect (OSTI)

    Lunis, B.C.; Negus-de Wys, J.; Plum, M.M. ); Lienau, P.J. . Geo-Heat Center); Spencer, F.J. ); Nitschke, G.F. )

    1991-09-01

    This study concludes that direct use technologies, especially desalinated water production, can contribute significantly to the value added process and the overall economic viability in developing a geopressured resource. Although agriculture and aquaculture applications are marginal projects when they are the only use of a geopressured well, the small margin of profitability can contribute to improving the overall economics of the direct use development. The added complexity from a technical and management aspect may add to the overall risk and unpredictability of the project. Six combination of direct uses received economic evaluation that resulted in 15% discounted payback periods ranging from 4 to over 10 years. Many other combinations are possible depending on the resource and market variables. Selection of appropriate technologies and sizes of applications will be established by the developer that engages in geopressured resource utilization. Currently, many areas of the country where geopressured resources are located also have surplus electrical capacity and generation, thus power utilities have been selling power for less than 2 cents per kWH, well below a reasonable breakeven value for geopressured produced electricity. However, when the energy demand of the integrated geopressured facility is large enough to install power generation equipment, operating expenses can be reduced by not paying the 10 to 12 cents per kWH utility rate. The study includes an analysis of a geothermal turbine unit installed with a desalination and an agriculture/aquaculture facility, taking advantage of the cascading energy values. Results suggest that this scenario becomes profitable only where the market price for electricity exceeds five cents per kWH.

  1. Coyote Canyon Geothermal Project | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Geothermal Resource Area Geothermal Region Geothermal Project Profile Developer Terra-Gen Project Type Hydrothermal GEA Development Phase Phase IV - Resource Production and...

  2. Nuova Molinetto Geothermal Power Station | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    General Information Name Nuova Molinetto Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  3. Monteverdi 1 Geothermal Power Station | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    General Information Name Monteverdi 1 Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  4. Nuova Radicondoli Geothermal Power Station | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    General Information Name Nuova Radicondoli Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area...

  5. Nuova Castelnuovo Geothermal Power Station | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    General Information Name Nuova Castelnuovo Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  6. Monteverdi 2 Geothermal Power Station | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    General Information Name Monteverdi 2 Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  7. Nuova Gabbro Geothermal Power Station | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    General Information Name Nuova Gabbro Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  8. Rancia 2 Geothermal Power Station | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Station General Information Name Rancia 2 Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area...

  9. Nuova Serrazzano Geothermal Power Station | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    General Information Name Nuova Serrazzano Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  10. Nuova Monterotondo Geothermal Power Station | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    General Information Name Nuova Monterotondo Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  11. Travale 4 Geothermal Power Station | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Station General Information Name Travale 4 Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area...

  12. San Martino Geothermal Power Station | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    General Information Name San Martino Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  13. Geothermal FAQs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Basics » Geothermal FAQs Geothermal FAQs Read our frequently asked questions and their answers to learn more about the use of geothermal energy. What are the benefits of using geothermal energy? Why is geothermal energy a renewable resource? Where is geothermal energy available? What are the environmental impacts of using geothermal energy? What is the visual impact of geothermal technologies? Is it possible to deplete geothermal reservoirs? How much does geothermal energy cost per

  14. Geothermal Technology Advancement for Rapid Development of Resources in the U.S. Webinar, 6-23-2011

    Energy.gov [DOE]

    Transcript and presentation slides for Funding Opportunity Announcement webinar, DE-FOA-0000522: Geothermal Technology Advancement for Rapid Development of Resources in the U.S., on 6-23-2011.

  15. Geothermal resource assessment of Canon City, Colorado Area

    SciTech Connect (OSTI)

    Zacharakis, Ted G.; Pearl, Richard Howard

    1982-01-01

    In 1979 a program was initiated to fully define the geothermal conditions of an area east of Canon City, bounded by the mountains on the north and west, the Arkansas River on the south and Colorado Highway 115 on the east. Within this area are a number of thermal springs and wells in two distinct groups. The eastern group consists of 5 thermal artesian wells located within one mile of Colorado Highway 115 from Penrose on the north to the Arkansas river on the south. The western group, located in and adjacent to Canon City, consists of one thermal spring on the south bank of the Arkansas River on the west side of Canon City, a thermal well in the northeast corner of Canon City, another well along the banks of Four Mile Creek east of Canon City and a well north of Canon City on Four Mile Creek. All the thermal waters in the Canon City Embayment, of which the study area is part of, are found in the study area. The thermal waters unlike the cold ground waters of the Canon City Embayment, are a calcium-bicarbonate type and range in temperature from 79 F (26 C) to a high of 108 F (42 C). The total combined surface discharge o fall the thermal water in the study area is in excess of 532 acre feet (A.F.) per year.

  16. Geothermal resources of the Upper San Luis and Arkansas valleys...

    Open Energy Information (Open El) [EERE & EIA]

    resources of the Upper San Luis and Arkansas valleys, Colorado Authors R.H. Pearl and J.K. Barrett Editors Epis, R.C. & Weimer and R.I. Published Colorado School of Mines:...

  17. Geothermal Energy and FORGE Program Current Outlook

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Geothermal Technologies Office Current Outlook Courtesy Ben Phillips Geothermal Resource Council Annual Meeting September 2015 2 Energy Efficiency & Renewable Energy eere.energy.gov GTO Major Initiatives EGS HRC SALT Accelerate EGS * Build upon R&D and demonstration project successes * EGS Integrated R&D FOA * Frontier Observatory for Research in Geothermal Energy (FORGE) FOA kicked off New Geothermal Opportunities * Play Fairway Analysis * Pathway to next-step drilling validation

  18. Life-Cycle Analysis Results of Geothermal Systems in Comparison to Other

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Power Systems | Department of Energy Life-Cycle Analysis Results of Geothermal Systems in Comparison to Other Power Systems Life-Cycle Analysis Results of Geothermal Systems in Comparison to Other Power Systems A life-cycle energy and greenhouse gas emissions analysis has been conducted with Argonne National Laboratory's GREET model for geothermal power-generating technologies, including enhanced geothermal, hydrothermal flash, and hydrothermal binary technologies.

  19. Life-Cycle Analysis Results of Geothermal Systems in Comparison to Other

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Power Systems | Department of Energy Life-Cycle Analysis Results of Geothermal Systems in Comparison to Other Power Systems Life-Cycle Analysis Results of Geothermal Systems in Comparison to Other Power Systems A life-cycle energy and greenhouse gas emissions analysis has been conducted with Argonne National Laboratory's GREET model for geothermal power-generating technologies, including enhanced geothermal, hydrothermal flash, and hydrothermal binary technologies.

  20. Appalachian Basin Play Fairway Analysis: Thermal Quality Analysis in Low-Temperature Geothermal Play Fairway Analysis (GPFA-AB

    SciTech Connect (OSTI)

    Teresa E. Jordan

    2015-11-15

    This collection of files are part of a larger dataset uploaded in support of Low Temperature Geothermal Play Fairway Analysis for the Appalachian Basin (GPFA-AB, DOE Project DE-EE0006726). Phase 1 of the GPFA-AB project identified potential Geothermal Play Fairways within the Appalachian basin of Pennsylvania, West Virginia and New York. This was accomplished through analysis of 4 key criteria or ‘risks’: thermal quality, natural reservoir productivity, risk of seismicity, and heat utilization. Each of these analyses represent a distinct project task, with the fifth task encompassing combination of the 4 risks factors. Supporting data for all five tasks has been uploaded into the Geothermal Data Repository node of the National Geothermal Data System (NGDS). This submission comprises the data for Thermal Quality Analysis (project task 1) and includes all of the necessary shapefiles, rasters, datasets, code, and references to code repositories that were used to create the thermal resource and risk factor maps as part of the GPFA-AB project. The identified Geothermal Play Fairways are also provided with the larger dataset. Figures (.png) are provided as examples of the shapefiles and rasters. The regional standardized 1 square km grid used in the project is also provided as points (cell centers), polygons, and as a raster. Two ArcGIS toolboxes are available: 1) RegionalGridModels.tbx for creating resource and risk factor maps on the standardized grid, and 2) ThermalRiskFactorModels.tbx for use in making the thermal resource maps and cross sections. These toolboxes contain “item description” documentation for each model within the toolbox, and for the toolbox itself. This submission also contains three R scripts: 1) AddNewSeisFields.R to add seismic risk data to attribute tables of seismic risk, 2) StratifiedKrigingInterpolation.R for the interpolations used in the thermal resource analysis, and 3) LeaveOneOutCrossValidation.R for the cross validations used in

  1. Utilization of geothermal energy for agribusiness development in southwestern New Mexico. Technical completion report, July 19, 1978-May 30, 1980

    SciTech Connect (OSTI)

    Landsford, R.R.; Abernathy, G.H.; Gollehon, N.R.

    1981-01-01

    An evaluation is presented of the direct heat utilization from geothermal resources for agribusiness uses in the Animas Valley, Southwestern New Mexico. The analysis includes an evaluation of the groundwater and geothermal resources in the Animas Valley, monitoring of an existing geothermal greenhouse, and evaluation of two potential agribusiness applications of geothermal waters (greenhouses and meat precooking).

  2. Industrial Consortium for the Utilization of the Geopressured-Geothermal Resource. Volume 1

    SciTech Connect (OSTI)

    Negus-deWys, J.

    1990-03-01

    The Geopressured-Geothermal Program, now in its fifteenth year, is entering the transition period to commercial use. The industry cost-shared proposals to the consortium, represented in the presentations included in these proceedings, attest to the interest developing in the industrial community in utilizing the geopressured-geothermal resource. Sixty-five participants attended these sessions, two-thirds of whom represented industry. The areas represented by cost-shared proposals include (1) thermal enhanced oil recovery, (2) direct process use of thermal energy, e.g., aquaculture and agriculture, (3) conversion of thermal energy to electricity, (4) environment related technologies, e.g., use of supercritical processes, and (5) operational proposals, e.g., a field manual for scale inhibitors. It is hoped that from this array of potential use projects, some will persist and be successful in proving the viability of using the geopressured-geothermal resource. Such industrial use of an alternative and relatively clean energy resource will benefit our nation and its people.

  3. Industrial Consortium for the Utilization of the Geopressured-Geothermal Resource. Volume 2

    SciTech Connect (OSTI)

    Negus-deWys, J.

    1990-03-01

    The Geopressured-Geothermal Program, now in its fifteenth year, is entering the transition period to commercial use. The industry cost-shared proposals to the consortium, represented in the presentations included in these proceedings, attest to the interest developing in the industrial community in utilizing the geopressured-geothermal resource. Sixty-five participants attended these sessions, two-thirds of whom represented industry. The areas represented by cost-shared proposals include (1) thermal enhanced oil recovery, (2) direct process use of thermal energy, e.g., aquaculture and agriculture, (3) conversion of thermal energy to electricity, (4) environment related technologies, e.g., use of supercritical processes, and (5) operational proposals, e.g., a field manual for scale inhibitors. It is hoped that from this array of potential use projects, some will persist and be successful in proving the viability of using the geopressured-geothermal resource. Such industrial use of an alternative and relatively clean energy resource will benefit our nation and its people.

  4. Washington Play Fairway Analysis Geothermal GIS Data

    SciTech Connect (OSTI)

    Corina Forson

    2015-12-15

    This file contains file geodatabases of the Mount St. Helens seismic zone (MSHSZ), Wind River valley (WRV) and Mount Baker (MB) geothermal play-fairway sites in the Washington Cascades. The geodatabases include input data (feature classes) and output rasters (generated from modeling and interpolation) from the geothermal play-fairway in Washington State, USA. These data were gathered and modeled to provide an estimate of the heat and permeability potential within the play-fairways based on: mapped volcanic vents, hot springs and fumaroles, geothermometry, intrusive rocks, temperature-gradient wells, slip tendency, dilation tendency, displacement, displacement gradient, max coulomb shear stress, sigma 3, maximum shear strain rate, and dilational strain rate at 200m and 3 km depth. In addition this file contains layer files for each of the output rasters. For details on the areas of interest please see the 'WA_State_Play_Fairway_Phase_1_Technical_Report' in the download package. This submission also includes a file with the geothermal favorability of the Washington Cascade Range based off of an earlier statewide assessment. Additionally, within this file there are the maximum shear and dilational strain rate rasters for all of Washington State.

  5. Analyses of mixed-hydrocarbon binary thermodynamic cycles for moderate-temperature geothermal resources

    SciTech Connect (OSTI)

    Demuth, O.J.

    1981-02-01

    A number of binary geothermal cycles utilizing mixed hydrocarbon working fluids were analyzed with the overall objective of finding a working fluid which can produce low-cost electrical energy using a moderately-low temperature geothermal resource. Both boiling and supercritical shell-and-tube cycles were considered. The performance of a dual-boiling isobutane cycle supplied by a 280/sup 0/F hydrothermal resource (corresponding to the 5 MW pilot plant at the Raft River site in Idaho) was selected as a reference. To investigate the effect of resource temperature on the choice of working fluid, several analyses were conducted for a 360/sup 0/F hydrothermal resource, which is representative of the Heber resource in California. The hydrocarbon working fluids analyzed included methane, ethane, propane, isobutane, isopentane, hexane, heptane, and mixtures of those pure hydrocarbons. For comparison, two fluorocarbon refrigerants were also analyzed. These fluorocarbons, R-115 and R-22, were suggested as resulting in high values of net plant geofluid effectiveness (watt-hr/lbm geofluid) at the two resource temperatures chosen for the study. Preliminary estimates of relative heat exchanger size (product of overall heat transfer coefficient times heater surface area) were made for a number of the better performing cycles.

  6. Final Scientific/Technical Report – DE-EE0002960 Recovery Act. Detachment faulting and Geothermal Resources - An Innovative Integrated Geological and Geophysical Investigation of Pearl Hot Spring, Nevada

    SciTech Connect (OSTI)

    Stockli, Daniel F.

    2015-11-30

    The Pearl Host Spring Geothermal Project funded by the DoE Geothermal Program was a joint academic (KU/UT & OU) and industry collaboration (Sierra and Ram Power) to investigate structural controls and the importance of low-angle normal faults on geothermal fluid flow through a multifaceted geological, geophysical, and geochemical investigation in west-central Nevada. The study clearly showed that the geothermal resources in Clayton Valley are controlled by the interplay between low-angle normal faults and active deformation related to the Walker Lane. The study not only identified potentially feasible blind geothermal resource plays in eastern Clayton Valley, but also provide a transportable template for exploration in the area of west-central Nevada and other regional and actively-deforming releasing fault bends. The study showed that deep-seated low-angle normal faults likely act as crustal scale permeability boundaries and could play an important role in geothermal circulation and funneling geothermal fluid into active fault zones. Not unique to this study, active deformation is viewed as an important gradient to rejuvenated fracture permeability aiding the long-term viability of blind geothermal resources. The technical approach for Phase I included the following components, (1) Structural and geological analysis of Pearl Hot Spring Resource, (2) (U-Th)/He thermochronometry and geothermometry, (3) detailed gravity data and modeling (plus some magnetic and resistivity), (4) Reflection and Refraction Seismic (Active Source), (5) Integration with existing and new geological/geophysical data, and (6) 3-D Earth Model, combining all data in an innovative approach combining classic work with new geochemical and geophysical methodology to detect blind geothermal resources in a cost-effective fashion.

  7. Hawaii Energy Resource Overviews. Volume 5. Social and economic impacts of geothermal development in Hawaii

    SciTech Connect (OSTI)

    Canon, P.

    1980-06-01

    The overview statement of the socio-economic effects of developing geothermal energy in the State of Hawaii is presented. The following functions are presented: (1) identification of key social and economic issues, (2) inventory of all available pertinent data, (3) analysis and assessment of available data, and (4) identification of what additional information is required for adequate assessment.

  8. New Mexico Geothermal Play Fairway Analysis from LANL

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Rick Kelley

    2015-10-27

    This submission contains geospatial (GIS) data on water table gradient and depth, subcrop gravity and magnetic, propsectivity, heat flow, physiographic, boron and BHT for the Southwest New Mexico Geothermal Play Fairway Analysis by LANL Earth & Environmental Sciences. GIS data is in ArcGIS map package format.

  9. Director, Geothermal Technologies Office

    Energy.gov [DOE]

    The mission of the Geothermal Technologies Office (GTO) is to accelerate the development and deployment of clean, domestic geothermal resources that will promote a stronger, more productive economy...

  10. Resource engineering and economic studies for direct application of geothermal energy. Draft final report

    SciTech Connect (OSTI)

    Not Available

    1981-12-01

    The feasibility of utilizing geothermal energy at a selected plant in New York State was studied. Existing oil and gas records suggests that geothermal fluid is available in the target area and based on this potential. Friendship Dairies, Inc., Friendship, NY, was selected as a potential user of geothermal energy. Currently natural gas and electricity are used as its primary energy sources. Six geothermal system configurations were analyzed based on replacement of gas or oil-fired systems for producing process heat. Each system was evaluated in terms of Internal Rate of Return on Investment (IRR), and simple payback. Six system configurations and two replaced fuels, representative of a range of situations found in the state, are analyzed. Based on the potential geothermal reserves at Friendship, each of the six system configurations are shown to be economically viable, compared to continued gas or oil-firing. The Computed IRR's are all far in excess of projected average interest rates for long term borrowings: approximately 15% for guarantee backed loans or as high as 20% for conventional financing. IRR is computed based on the total investment (equity plus debt) and cash flows before financing costs, i.e., before interest expense, but after the tax benefit of the interest deduction. The base case application for the Friendship analysis is case B/20 yr-gas which produces an IRR of 28.5% and payback of 3.4 years. Even better returns could be realized in the cases of oil-avoidance and where greater use of geothermal energy can be made as shown in the other cases considered.

  11. Surveys of arthropod and gastropod diversity in the geothermal resource subzones, Puna, Hawaii

    SciTech Connect (OSTI)

    Miller, S.E.; Burgett, J.; Bruegmann, M.

    1995-04-01

    The invertebrate surveys reported here were carried out as part of ecological studies funded by the Department of Energy in support of their environmental impact statement (EIS) for the Hawaii Geothermal Project. Currently, preparation of the EIS has been suspended, and all supporting information is being archived and made available to the public. The invertebrate surveys reported here assessed diversity and abundance of the arthropod and gastropod fauna in forested habitat and lava tubes in or near the three geothermal resource subzones. Recommendations for conservation of these organisms are given in this report. Surveys were conducted along three 100-m transect lines at each of the six forested locations. Malaise traps, baited pitfall traps, yellow pan traps, baited sponge lures, and visual examination of vegetation were used to assess invertebrate diversity along each transect line. Three of these locations were adjacent to roads, and three were adjacent to lava flows. Two of these lava-forest locations (Keauohana Forest Reserve and Pu`u O`o) were relatively remote from direct human impacts. The third location (Southeast Kula) was near a low-density residential area. Two lava tubes were surveyed. The forest over one of these tubes (Keokea tube) had recently been burned away. This tube was used to assess the effects of loss of forest habitat on the subterranean fauna. An undisturbed tube (Pahoa tube) was used as a control. Recommendations offered in this report direct geothermal development away from areas of high endemic diversity and abundance, and toward areas where natural Hawaiian biotic communities have already been greatly disturbed. These disturbed areas are mainly found in the lower half of the Kamaili (middle) geothermal subzone and throughout most of the Kapoho (lower) geothermal subzone. These recommendation may also generally apply to other development projects in the Puna District.

  12. Mak-Ban / Laguna Geothermal Area | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  13. Electricity Generation from Geothermal Resources on the Fort...

    Energy.gov (indexed) [DOE]

    - hottest water - is intercepted when drilling through to Bakken Dirt and Rock Madison Formation (water) Bakken Formation (oil) DATA ANALYSIS *760 bottom hole temperatures ...

  14. Reference book on geothermal direct use

    SciTech Connect (OSTI)

    Lienau, P.J.; Lund, J.W.; Rafferty, K.; Culver, G.

    1994-08-01

    This report presents the direct uses of geothermal energy in the United States. Topics discussed include: low-temperature geothermal energy resources; energy reserves; geothermal heat pumps; geothermal energy for residential buildings; and geothermal energy for industrial usage.

  15. Feasibility study: Application of the geopressured-geothermal resource to pyrolytic conversion or decomposition/detoxification processes

    SciTech Connect (OSTI)

    Propp, W.A.; Grey, A.E.; Negus-de Wys, J.; Plum, M.M.; Haefner, D.R.

    1991-09-01

    This study presents a preliminary evaluation of the technical and economic feasibility of selected conceptual processes for pyrolytic conversion of organic feedstocks or the decomposition/detoxification of hazardous wastes by coupling the process to the geopressured-geothermal resource. The report presents a detailed discussion of the resource and of each process selected for evaluation including the technical evaluation of each. A separate section presents the economic methodology used and the evaluation of the technically viable process. A final section presents conclusions and recommendations. Three separate processes were selected for evaluation. These are pyrolytic conversion of biomass to petroleum like fluids, wet air oxidation (WAO) at subcritical conditions for destruction of hazardous waste, and supercritical water oxidation (SCWO) also for the destruction of hazardous waste. The scientific feasibility of all three processes has been previously established by various bench-scale and pilot-scale studies. For a variety of reasons detailed in the report the SCWO process is the only one deemed to be technically feasible, although the effects of the high solids content of the geothermal brine need further study. This technology shows tremendous promise for contributing to solving the nation's energy and hazardous waste problems. However, the current economic analysis suggests that it is uneconomical at this time. 50 refs., 5 figs., 7 tabs.

  16. Potential effects of the Hawaii geothermal project on ground-water resources on the Island of Hawaii

    SciTech Connect (OSTI)

    Sorey, M.L.; Colvard, E.M.

    1994-07-01

    This report provides data and information on the quantity and quality of ground-water resources in and adjacent to proposed geothermal development areas on the Island of Hawaii Geothermal project for the development of as much as 500 MW of electric power from the geothermal system in the East Rift Zone of Kilauea Volcano. Data presented for about 31 wells and 8 springs describe the chemical, thermal, and hydraulic properties of the ground-water system in and adjacent to the East Rift Zone. On the basis of this information, potential effects of this geothermal development on drawdown of ground-water levels and contamination of ground-water resources are discussed. Significant differences in ground-water levels and in the salinity and temperature of ground water within the study area appear to be related to mixing of waters from different sources and varying degrees of ground-water impoundment by volcanic dikes. Near Pahoa and to the east, the ground-water system within the rift is highly transmissive and receives abundant recharge from precipitation; therefore, the relatively modest requirements for fresh water to support geothermal development in that part of the east rift zone would result in minimal effects on ground-water levels in and adjacent to the rift. To the southwest of Pahoa, dike impoundment reduces the transmissivity of the ground-water system to such an extent that wells might not be capable of supplying fresh water at rates sufficient to support geothermal operations. Water would have to be transported to such developments from supply systems located outside the rift or farther downrift. Contaminant migration resulting from well accidents could be rapid because of relatively high ground-water velocities in parts of the region. Hydrologic monitoring of observation wells needs to be continued throughout development of geothermal resources for the Hawaii Geothermal Project to enable the early detection of leakage and migration of geothermal fluids.

  17. Aeromagnetic Survey At Dixie Valley Geothermal Area (Grauch,...

    Open Energy Information (Open El) [EERE & EIA]

    Nevada David D. Blackwell, Kenneth W. Wisian, Maria C. Richards, Mark Leidig, Richard Smith, Jason McKenna (2003) Geothermal Resource Analysis and Structure of Basin and Range...

  18. Reflection Survey At Dixie Valley Geothermal Area (Blackwell...

    Open Energy Information (Open El) [EERE & EIA]

    David D. Blackwell, Kenneth W. Wisian, Maria C. Richards, Mark Leidig, Richard Smith, Jason McKenna (2003) Geothermal Resource Analysis and Structure of Basin and Range...

  19. Aerial Photography At Dixie Valley Geothermal Area (Blackwell...

    Open Energy Information (Open El) [EERE & EIA]

    David D. Blackwell, Kenneth W. Wisian, Maria C. Richards, Mark Leidig, Richard Smith, Jason McKenna (2003) Geothermal Resource Analysis and Structure of Basin and Range...

  20. Mountain Home Air Force Base, Idaho Geothermal Resource Assessment and Future Recommendations

    SciTech Connect (OSTI)

    Joseph C. Armstrong; Robert P. Breckenridge; Dennis L. Nielson; John W. Shervais; Thomas R. Wood

    2013-03-01

    The U.S. Air Force is facing a number of challenges as it moves into the future, one of the biggest being how to provide safe and secure energy to support base operations. A team of scientists and engineers met at Mountain Home Air Force Base in early 2011 near Boise, Idaho, to discuss the possibility of exploring for geothermal resources under the base. The team identified that there was a reasonable potential for geothermal resources based on data from an existing well. In addition, a regional gravity map helped identify several possible locations for drilling a new well. The team identified several possible sources of funding for this well—the most logical being to use U.S. Department of Energy funds to drill the upper half of the well and U.S. Air Force funds to drill the bottom half of the well. The well was designed as a slimhole well in accordance with State of Idaho Department of Water Resources rules and regulations. Drilling operations commenced at the Mountain Home site in July of 2011 and were completed in January of 2012. Temperatures increased gradually, especially below a depth of 2000 ft. Temperatures increased more rapidly below a depth of 5500 ft. The bottom of the well is at 5976 ft, where a temperature of about 140°C was recorded. The well flowed artesian from a depth below 5600 ft, until it was plugged off with drilling mud. Core samples were collected from the well and are being analyzed to help understand permeability at depth. Additional tests using a televiewer system will be run to evaluate orientation and directions at fractures, especially in the production zone. A final report on the well exploitation will be forthcoming later this year. The Air Force will use it to evaluate the geothermal resource potential for future private development options at Mountain Home Air Force Base. In conclusion, Recommendation for follow-up efforts include the following:

  1. Geothermal resources of the Green River Basin, Wyoming, including thermal data for the Wyoming portion of the Thrust Belt

    SciTech Connect (OSTI)

    Spencer, S.A.; Heasler, H.P.; Hinckley, B.S.

    1985-01-01

    The geothermal resources of the Green River basin were investigated. Oil-well bottom-hole temperatures, thermal logs of wells, and heat flow data have been interpreted within a framework of geologic and hydrologic constraints. Basic thermal data, which includes the background thermal gradient and the highest recorded temperature and corresponding depth is tabulated. It was concluded that large areas are underlain by water at temperatures greater than 120/sup 0/F. Although much of this water is too deep to be economically tapped solely for geothermal use, oil and gas wells presently provide access to this significant geothermal resource. Isolated areas with high temperature gradients exist. These areas - many revealed by hot springs - represent geothermal systems which might presently be developed economically. 34 refs., 11 figs., 8 tabs. (ACR)

  2. Amendment to Funding Opportunity Announcement, DE-FOA-0000522: Geothermal Technology Advancement for Rapid Development of Resources in the U.S.

    Energy.gov [DOE]

    Amendment No. 004 to Funding Opportunity Announcement, DE-FOA-0000522: Geothermal Technology Advancement for Rapid Development of Resources in the U.S.

  3. Session: Geopressured-Geothermal

    SciTech Connect (OSTI)

    Jelacic, Allan J.; Eaton, Ben A.; Shook, G. Michael; Birkinshaw, Kelly; Negus-de Wys, Jane

    1992-01-01

    This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of five presentations: ''Overview of Geopressured-Geothermal'' by Allan J. Jelacic; ''Geothermal Well Operations and Automation in a Competitive Market'' by Ben A. Eaton; ''Reservoir Modeling and Prediction at Pleasant Bayou Geopressured-Geothermal Reservoir'' by G. Michael Shook; ''Survey of California Geopressured-Geothermal'' by Kelly Birkinshaw; and ''Technology Transfer, Reaching the Market for Geopressured-Geothermal Resources'' by Jane Negus-de Wys.

  4. Geothermal tomorrow 2008

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    Contributors from the Geothermal Technologies Program and the geothermal community highlight the current status and activities of the Program and the development of the global resource of geothermal energy.

  5. Hawaii Geothermal Project annotated bibliography: Biological resources of the geothermal subzones, the transmission corridors and the Puna District, Island of Hawaii

    SciTech Connect (OSTI)

    Miller, S.E.; Burgett, J.M.

    1993-10-01

    Task 1 of the Hawaii Geothermal Project Interagency Agreement between the Fish and Wildlife Service and the Department of Energy-Oak Ridge National Laboratory (DOE) includes an annotated bibliography of published and unpublished documents that cover biological issues related to the lowland rain forest in Puna, adjacent areas, transmission corridors, and in the proposed Hawaii Geothermal Project (HGP). The 51 documents reviewed in this report cover the main body of biological information for these projects. The full table of contents and bibliography for each document is included along with two copies (as requested in the Interagency Agreement) of the biological sections of each document. The documents are reviewed in five main categories: (1) geothermal subzones (29 documents); (2) transmission cable routes (8 documents); (3) commercial satellite launching facility (Spaceport; 1 document); (4) manganese nodule processing facility (2 documents); (5) water resource development (1 document); and (6) ecosystem stability and introduced species (11 documents).

  6. Energy Department Announces $3 Million to Identify New Geothermal Resources

    Energy.gov [DOE]

    Play Fairway Analysis is a practice first developed in the O&G industry that uses regional and detailed geologic and geophysical data to build a detailed picture of a buried basin to identify the most likely candidate locations for drilling.

  7. Comprehensive Evaluation of the Geothermal Resource Potential within the Pyramid Lake Paiute Reservation

    Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. Project objective: to characterize the geothermal reservoir using novel technologies and integrating this information into a 3D geologic and reservoir model numerical model to determine the efficacy of future geothermal production.

  8. Geothermal Data Systems

    Energy.gov [DOE]

    The U.S. Department of Energy (DOE) Geothermal Technologies Office (GTO) has designed and tested a comprehensive, federated information system that will make geothermal data widely available. This new National Geothermal Data System (NGDS) will provide access to all types of geothermal data to enable geothermal analysis and widespread public use, thereby reducing the risk of geothermal energy development.

  9. Holtville, California: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Generation Facilities in Holtville, California GEM Resources II Geothermal Facility GEM Resources III Geothermal Facility Ormesa I Geothermal Facility Ormesa IE Geothermal...

  10. Geothermal resource assessment for the state of Texas: status of progress, November 1980. Final report

    SciTech Connect (OSTI)

    Woodruff, C.M. Jr.; Caran, S.C.; Gever, C.; Henry, C.D.; Macpherson, G.L.; McBride, M.W.

    1982-03-01

    Data pertaining to wells and thermal aquifers and data interpretation methods are presented. Findings from a program of field measurements of water temperatures (mainly in South-Central Texas) and an assessment of hydrologic properties of three Cretaceous aquifers (in North-Central Texas) are included. Landsat lineaments and their pertinance to the localization of low-temperature geothermal resources are emphasized. Lineament data were compared to structural and stratigraphic features along the Balcones/Ouachita trend in Central Texas to test for correlations. (MHR)

  11. track 1: systems analysis | geothermal 2015 peer review

    Energy.gov [DOE]

    Innovative geothermal tools and applications can help reduce the cost and risk of geothermal development through data models, regulatory streamlining, and strategic planning.

  12. Analysis Of Macroscopic Fractures In Granite In The Hdr Geothermal...

    Open Energy Information (Open El) [EERE & EIA]

    natural fractures at low pressures, and to create a geothermal reservoir. Authors Albert Genter and Herve Traineau Published Journal Journal of Volcanology and Geothermal...

  13. Fluid Inclusion Analysis At International Geothermal Area Mexico...

    Open Energy Information (Open El) [EERE & EIA]

    Notes Our examination of Cerro Prieto gas analyses indicates that the geothermal system structure is changing with time. Gas data routinely measured in most geothermal...

  14. Compound and Elemental Analysis At International Geothermal Area...

    Open Energy Information (Open El) [EERE & EIA]

    Notes Our examination of Cerro Prieto gas analyses indicates that the geothermal system structure is changing with time. Gas data routinely measured in most geothermal...

  15. Darajat Geothermal Power Plant | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    n":"","group":"","inlineLabel":"","visitedicon":"" Hide Map Geothermal Resource Area Java - Darajat Geothermal Area Geothermal Region Sunda Volcanic Arc Plant Information Owner...

  16. Cibuni Geothermal Power Plant | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Hide Map Geothermal Resource Area Pengalengan Geothermal Area Geothermal Region West Java Plant Information Owner PLN Commercial Online Date 2014 Power Plant Data Type of Plant...

  17. White Mountain Geothermal Project | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Location County Geothermal Area Geothermal Region Geothermal Project Profile Developer Eureka Green Systems Project Type Hydrothermal GEA Development Phase Phase II - Resource...

  18. Austria Geothermal Region | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    GEOTHERMAL ENERGYGeothermal Home Austria Geothermal Region Details Areas (0) Power Plants (0) Projects (0) Techniques (0) References Geothermal Region Data Area USGS Resource...

  19. Australia Geothermal Region | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    GEOTHERMAL ENERGYGeothermal Home Australia Geothermal Region Details Areas (0) Power Plants (0) Projects (0) Techniques (0) References Geothermal Region Data Area USGS Resource...

  20. New Zealand Geothermal Region | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    GEOTHERMAL ENERGYGeothermal Home New Zealand Geothermal Region Details Areas (2) Power Plants (2) Projects (0) Techniques (0) References Geothermal Region Data Area USGS Resource...

  1. Russia Geothermal Region | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    GEOTHERMAL ENERGYGeothermal Home Russia Geothermal Region Details Areas (0) Power Plants (0) Projects (0) Techniques (0) References Geothermal Region Data Area USGS Resource...

  2. Iceland Geothermal Region | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    GEOTHERMAL ENERGYGeothermal Home Iceland Geothermal Region Details Areas (0) Power Plants (0) Projects (0) Techniques (0) References Geothermal Region Data Area USGS Resource...

  3. Nevada/Geothermal | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Confirmation Silver Peak Geothermal Area Walker-Lane Transition Zone Geothermal Region Smith Creek Geothermal Project Ormat Phase I - Resource Procurement and Identification Smith...

  4. Ormesa I Geothermal Facility | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Hide Map Geothermal Resource Area East Mesa Geothermal Area Geothermal Region Gulf of California Rift Zone Plant Information Facility Type Binary Owner Ormat Number of...

  5. Newdale Geothermal Project | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Geothermal Area Geothermal Region Geothermal Project Profile Developer Standard Steam Trust Project Type Hydrothermal GEA Development Phase Phase I - Resource Procurement and...

  6. Mary's River Geothermal Project | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Geothermal Area Geothermal Region Geothermal Project Profile Developer Standard Steam Trust Project Type Hydrothermal GEA Development Phase Phase I - Resource Procurement and...

  7. Direct utilization of geothermal energy resources in food processing. Final report, May 17, 1978-May 31, 1982

    SciTech Connect (OSTI)

    Austin, J.C.

    1982-05-01

    In early 1978 financial assistance was granted for a project to utilize geothermal energy at Ore-Ida Foods, Inc.'s food processing plant in Ontario, Oregon. Specifically, the project included exploring, testing, and developing the potential geothermal resource; retrofitting the existing gas/oil-fired steam system; utilizing the geothermal resource for food processing, space heating, and hot potable water; and injecting the spent geothermal water back into a disposal well. Based on preliminary investigations which indicated the presence of a local geothermal resource, drilling began in August 1979. Although the anticipated resource temperature of 380/sup 0/F was reached at total well depth (10,054 feet), adequate flow to meet processing requirements could not be obtained. Subsequent well testing and stimulation techniques also failed to produce the necessary flow, and the project was eventually abandoned. However, throughout the duration of the project, all activities were carefully monitored and recorded to ensure the program's value for future evaluation. This report presents a culmination of data collected during the Ore-Ida project.

  8. Eburru Geothermal Area | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Reno, Nevada: Geothermal Resources Council. Benjamin Matek. Geo-energy Internet. Geothermal Energy Association. updated 20150428;cited 20150428. Available from:...

  9. Mutnovskaya Geothermal Area | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    References Geothermal Resources in Russia Benjamin Matek. Geo-energy Internet. Geothermal Energy Association. updated 20150428;cited 20150428. Available from:...

  10. Geothermal Resource/Reservoir Investigations Based on Heat Flow and Thermal Gradient Data for the United States

    SciTech Connect (OSTI)

    D. D. Blackwell; K. W. Wisian; M. C. Richards; J. L. Steele

    2000-04-01

    Several activities related to geothermal resources in the western United States are described in this report. A database of geothermal site-specific thermal gradient and heat flow results from individual exploration wells in the western US has been assembled. Extensive temperature gradient and heat flow exploration data from the active exploration of the 1970's and 1980's were collected, compiled, and synthesized, emphasizing previously unavailable company data. Examples of the use and applications of the database are described. The database and results are available on the world wide web. In this report numerical models are used to establish basic qualitative relationships between structure, heat input, and permeability distribution, and the resulting geothermal system. A series of steady state, two-dimensional numerical models evaluate the effect of permeability and structural variations on an idealized, generic Basin and Range geothermal system and the results are described.

  11. Alaska geothermal bibliography

    SciTech Connect (OSTI)

    Liss, S.A.; Motyka, R.J.; Nye, C.J.

    1987-05-01

    The Alaska geothermal bibliography lists all publications, through 1986, that discuss any facet of geothermal energy in Alaska. In addition, selected publications about geology, geophysics, hydrology, volcanology, etc., which discuss areas where geothermal resources are located are included, though the geothermal resource itself may not be mentioned. The bibliography contains 748 entries.

  12. The US Agency for International Development--Los Alamos National Laboratory--US Geological Survey Central American Geothermal Resources Program

    SciTech Connect (OSTI)

    Heiken, G.; Goff, S. ); Janik, K. . Branch of Igneous and Geothermal Processes)

    1992-01-01

    Interdisciplinary field teams for this energy assistance program consisted of staff from Los Alamos, the US Geological Survey, the country of the study, and consultants; this provided the wide range of expertise necessary for geothermal resource evaluation. The program was successful largely because of the field teams dedication to their goals of verifying new geothermal resources and of sharing exploration techniques with in-country collaborators. Training programs included the geochemical, geophysical, and geological techniques needed for geothermal exploration. However, the most important aspect was long-term field work with in-country collaborators. Four geothermal gradient coreholes were drilled, three in Honduras and one in Guatemala. One of the coreholes was co-financed with Honduras, and showed their commitment to the project. Three of the exploration holes encountered high-temperature fluids, which provided information on the nature and extent of the geothermal reservoirs at promising sites in both countries. A geothermal well logging system was built and is shared between four Central American countries. For the evaluation of geothermal fluids, a geochemistry laboratory was established in Tegucigalpa, Honduras; it is now self-sufficient, and is part of Honduras' energy program. Through the teaching process and by working with counterparts in the field, the team expanded its own experience with a wide variety of geothermal systems, an experience that will be beneficial in the future for both the US investigators and in-country collaborators. At the working-scientists level, new contacts were developed that may flourish and professional ties were strengthened between scientists from a variety of US agencies. Rather than competing for research and field budgets, they worked together toward a common goal.

  13. Geothermal Maps | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Maps Geothermal Maps The Geothermal Technologies Office (GTO) carries out R&D and demonstration efforts to deploy 12 GWe of clean geothermal energy by 2020 and expand geothermal into new U.S. regions. Locating and developing resources is an important part of that mission. GTO works with national laboratories to develop maps and data that identify renewable, geothermal resources, possible locations for implementation of various geothermal technologies, and actual and potential geothermal

  14. The Oregon Geothermal Planning Conference

    SciTech Connect (OSTI)

    1980-10-02

    Oregon's geothermal resources represent a large portion of the nation's total geothermal potential. The State's resources are substantial in size, widespread in location, and presently in various stages of discovery and utilization. The exploration for, and development of, geothermal is presently dependent upon a mixture of engineering, economic, environmental, and legal factors. In response to the State's significant geothermal energy potential, and the emerging impediments and incentives for its development, the State of Oregon has begun a planning program intended to accelerate the environmentally prudent utilization of geothermal, while conserving the resource's long-term productivity. The program, which is based upon preliminary work performed by the Oregon Institute of Technology's Geo-Heat Center, will be managed by the Oregon Department of Energy, with the assistance of the Departments of Economic Development, Geology and Mineral Industries, and Water Resources. Funding support for the program is being provided by the US Department of Energy. The first six-month phase of the program, beginning in July 1980, will include the following five primary tasks: (1) coordination of state and local agency projects and information, in order to keep geothermal personnel abreast of the rapidly expanding resource literature, resource discoveries, technological advances, and each agency's projects. (2) Analysis of resource commercialization impediments and recommendations of incentives for accelerating resource utilization. (3) Compilation and dissemination of Oregon geothermal information, in order to create public and potential user awareness, and to publicize technical assistance programs and financial incentives. (4) Resource planning assistance for local governments in order to create local expertise and action; including a statewide workshop for local officials, and the formulation of two specific community resource development plans. (5) Formulation and

  15. Rotation-Enabled 7-Degree of Freedom Seismometer for Geothermal Resource Development. Phase 1 Final Report

    SciTech Connect (OSTI)

    Pierson, Bob; Laughlin, Darren

    2013-10-29

    Under this Department of Energy (DOE) grant, A-Tech Corporation d.b.a. Applied Technology Associates (ATA), seeks to develop a seven-degree-of-freedom (7-DOF) seismic measurement tool for high-temperature geothermal applications. The Rotational-Enabled 7-DOF Seismometer includes a conventional tri-axial accelerometer, a conventional pressure sensor or hydrophone, and a tri-axial rotational sensor. The rotational sensing capability is novel, based upon ATA's innovative research in rotational sensing technologies. The geothermal industry requires tools for high-precision seismic monitoring of crack formation associated with Enhanced Geothermal System (EGS) stimulation activity. Currently, microseismic monitoring is conducted by deploying many seismic tools at different depth levels along a 'string' within drilled observation wells. Costs per string can be hundreds of thousands of dollars. Processing data from the spatial arrays of linear seismometers allows back-projection of seismic wave states. In contrast, a Rotational-Enabled 7-DOF Seismometer would simultaneously measure p-wave velocity, s-wave velocity, and incident seismic wave direction all from a single point measurement. In addition, the Rotational-Enabled 7-DOF Seismometer will, by its nature, separate p- and s-waves into different data streams, simplifying signal processing and facilitating analysis of seismic source signatures and geological characterization. By adding measurements of three additional degrees-of-freedom at each level and leveraging the information from this new seismic observable, it is likely that an equally accurate picture of subsurface seismic activity could be garnered with fewer levels per hole. The key cost savings would come from better siting of the well due to increased information content and a decrease in the number of confirmation wells drilled, also due to the increase in information per well. Improved seismic tools may also increase knowledge, understanding, and confidence

  16. CanGEA Fifth Annual Geothermal Conference Presentation - Mapping & Database

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Workshop | Department of Energy CanGEA Fifth Annual Geothermal Conference Presentation - Mapping & Database Workshop CanGEA Fifth Annual Geothermal Conference Presentation - Mapping & Database Workshop Mapping and database workshop presentation presented at the Canadian Geothermal Energy Association Fifth Annual Geothermal Conference on March 21, 2013 by Arlene Anderson, Physical Scientist Lead for Geothermal Data Provision, Resource Mapping and Energy and Water Life Cycle Analysis

  17. CanGEA Fifth Annual Geothermal Conference Presentation - Mapping & Database Workshop

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    (GTO) Arlene Anderson, Physical Scientist Lead for Geothermal Data Provision, Resource Mapping and Energy & Water Life Cycle Analysis http://www.eere.energy.gov/geothermal/ data_systems.html Enel Salt Wells - Courtesy of Enel Green Power - North America Canadian Geothermal Energy Association Fifth Annual Geothermal Conference, "Digging Deep" Mapping & Database Workshop March 21, 2013 Energy Efficiency & Renewable Energy eere.energy.gov National Geothermal Data System 2 U.S.

  18. Frequently Asked Questions | Geothermal

    Office of Scientific and Technical Information (OSTI)

    Frequently Asked Questions Frequently Asked Questions What is the Geothermal Legacy Collection? The Geothermal collection is available to the geothermal community and interested members of the public. They and others may use this site to stay better informed of developments in geothermal technology and to gain insights learned from studies in the field since the 1970s. By searching Geothermal, users can expect to find a wealth of geothermal citations and reports from various resources including

  19. About / FAQ | Geothermal

    Office of Scientific and Technical Information (OSTI)

    About About Geothermal The Geothermal Technologies Legacy Collection is available to the geothermal community and interested members of the public who may use this site and its search and knowledge tools to stay better informed of developments in geothermal technology and to gain insights learned from studies in the field since the 1970s. By searching the Geothermal Technologies Legacy Collection, users can expect to find a wealth of geothermal citations and reports from various resources

  20. Geopressured Geothermal Resource and Recoverable Energy Estimate for the Wilcox and Frio Formations, Texas (Presentation)

    SciTech Connect (OSTI)

    Esposito, A.; Augustine, C.

    2011-10-01

    An estimate of the total and recoverable geopressured geothermal resource of the fairways in the Wilcox and Frio formations is made using the current data available. The flow rate of water and methane for wells located in the geopressured geothermal fairways is simulated over a 20-year period utilizing the TOUGH2 Reservoir Simulator and research data. The model incorporates relative permeability, capillary pressure, rock compressibility, and leakage from the bounding shale layers. The simulations show that permeability, porosity, pressure, sandstone thickness, well spacing, and gas saturation in the sandstone have a significant impact on the percent of energy recovered. The results also predict lower average well production flow rates and a significantly higher production of natural gas relative to water than in previous studies done from 1975 to 1980. Previous studies underestimate the amount of methane produced with hot brine. Based on the work completed in this study, multiphase flow processes and reservoir boundary conditions greatly influence the total quantity of the fluid produced as well as the ratio of gas and water in the produced fluid.

  1. ADVANCES IN HYDROGEOCHEMICAL INDICATORS FOR THE DISCOVERY OF NEW GEOTHERMAL RESOURCES IN THE GREAT BASIN, USA

    SciTech Connect (OSTI)

    Simmons, Stuart F; Spycher, Nicolas; Sonnenthal, Eric; Dobson, Patrick

    2013-05-20

    This report summarizes the results of Phase I work for a go/no go decision on Phase II funding. In the first objective, we assessed the extent to which fluid-mineral equilibria controlled deep water compositions in geothermal systems across the Great Basin. Six systems were evaluated: Beowawe; Desert Peak; Dixie Valley; Mammoth; Raft River; Roosevelt. These represent a geographic spread of geothermal resources, in different geological settings and with a wide range of fluid compositions. The results were used for calibration/reformulation of chemical geothermometers that reflect the reservoir temperatures in producing reservoirs. In the second objective, we developed a reactive -transport model of the Desert Peak hydrothermal system to evaluate the processes that affect reservoir fluid geochemistry and its effect on solute geothermometry. This included testing geothermometry on “reacted” thermal water originating from different lithologies and from near-surface locations where the temperature is known from the simulation. The integrated multi-component geothermometer (GeoT, relying on computed mineral saturation indices) was tested against the model results and also on the systems studied in the first objective.

  2. Geothermal Basics

    Energy.gov [DOE]

    Geothermal energy is thermal energy generated and stored in the Earth. Geothermal energy can manifest on the surface of the Earth, or near the surface of the Earth, where humankind may harness it to serve our energy needs. Geothermal resources are reservoirs of hot water that exist at varying temperatures and depths below the Earth's surface. Wells can be drilled into these underground reservoirs to tap steam and very hot water that can be brought to the surface for a variety of uses.

  3. Geothermal resource assessment for the state of Texas: status of progress, November 1980. Final report. Appendices E through H

    SciTech Connect (OSTI)

    Woodruff, C.M. Jr.; Caran, S.C.; Gever, C.; Henry, C.D.; Macpherson, G.L.; McBride, M.W.

    1982-03-01

    These appendices include: a folio of maps showing lineaments perceived across the state; an index and critique of the Landsat images used in perceiving the lineaments; a selected bibliography on lineaments; and a discussion of area-specific assessments of geothermal resources near military bases in Bexar, Travis, and Val Verde Counties. (MHR)

  4. Geological, geochemical, and geophysical survey of the geothermal resources at Hot Springs Bay Valley, Akutan Island, Alaska

    SciTech Connect (OSTI)

    Motyka, R.J.; Wescott, E.M.; Turner, D.L.; Swanson, S.E.; Romick, J.D.; Moorman, M.A.; Poreda, R.J.; Witte, W.; Petzinger, B.; Allely, R.D.

    1985-01-01

    An extensive survey was conducted of the geothermal resource potential of Hot Springs Bay Valley on Akutan Island. A topographic base map was constructed, geologic mapping, geophysical and geochemical surveys were conducted, and the thermal waters and fumarolic gases were analyzed for major and minor element species and stable isotope composition. (ACR)

  5. Final Technical Resource Confirmation Testing at the Raft River Geothermal Project, Cassia County, Idaho

    SciTech Connect (OSTI)

    Glaspey, Douglas J.

    2008-01-30

    Incorporates the results of flow tests for geothermal production and injection wells in the Raft River geothermal field in southern Idaho. Interference testing was also accomplished across the wellfield.

  6. GEOTHERMAL A N D HEAVY-OIL RESOURCES I N TEXAS TOPICAL REPORT

    Office of Scientific and Technical Information (OSTI)

    ... test well and structure of T5 marker ...... 12 Location of geopressured-geothermal corridors and test wells ...

  7. Flora of the Mayacmas Mountains. [Listing of 679 species in the Geysers Geothermal Resource area

    SciTech Connect (OSTI)

    Neilson, J.A.

    1981-09-01

    This flora describes the plants that occur within the Mayacmas Mountain Range of northern California. It is the result of ten years of environmental assessment by the author in the Geysers Geothermal Resource area, located in the center of the Mayacmas Range. The flora includes notes on plant communities and ecology of the area, as well as habitat and collection data for most of the 679 species covered. Altogether 74 families, 299 genera and 679 species are included in the flora. The work is divided into eight subdivisions: trees; shrubs; ferns and fern allies; aquatic plants; tules, sedges, and rushes; lilies and related plants; dicot herbs; and grasses. Within each subdivision, family, genera and species are listed alphabetically. Keys are provided at the beginning of each subdivision. A unique combination of physical, environmental and geologic factors have resulted in a rich and diverse flora in the Mayacmas. Maps have been provided indicating known locations for species of rare or limited occurrence.

  8. Isotopic Analysis At Valles Caldera - Redondo Geothermal Area...

    Open Energy Information (Open El) [EERE & EIA]

    of 36Cl- as a tracer isotope in geothermal systems. References F.M. Phillips, Fraser E. Goff, Francois D. Vuataz, H.W. Bentley, H.E. Gove (1984) 36Cl as a tracer in geothermal...

  9. Compound and Elemental Analysis At Lightning Dock Geothermal...

    Open Energy Information (Open El) [EERE & EIA]

    useful DOE-funding Unknown Exploration Basis A study of the known resource area Notes chemical and isotope analysis was completed to understand the location of the reservoir...

  10. Geothermal direct-heat utilization assistance. Quarterly project progress report, April--June 1993

    SciTech Connect (OSTI)

    Lienau, P.

    1993-06-01

    Technical assistance was provided to 60 requests from 19 states. R&D progress is reported on: evaluation of lineshaft turbine pump problems, geothermal district heating marketing strategy, and greenhouse peaking analysis. Two presentations and one tour were conducted, and three technical papers were prepared. The Geothermal Progress Monitor reported: USGS Forum on Mineral Resources, Renewable Energy Tax Credits Not Working as Congress Intended, Geothermal Industry Tells House Panel, Newberry Pilot Project, and Low-Temperature Geothermal Resources in Nevada.

  11. Geothermal Technologies Newsletter

    Energy.gov [DOE]

    The U.S. Department of Energy's (DOE) Geothermal Technologies Newsletter features the latest information about its geothermal research and development efforts. The Geothermal Resources Council (GRC)— a tax-exempt, non-profit, geothermal educational association — publishes quarterly as an insert in its GRC Bulletin.

  12. Operations research and systems analysis of geopressured-geothermal energy in Louisiana. Final report for the period June 1, 1978-August 31, 1979

    SciTech Connect (OSTI)

    Johnson, A.E. Jr.

    1980-11-01

    The primary purpose was to provide a projection of the probable future contribution of the geopressured-geothermal energy resource in Louisiana to the overall energy requirements of the nation. A number of associated objectives were emphasized: namely, development of the tools and methodology for performing economic analyses, application of these tools to specific prospects about which adequate resource assessments have been made, identification of the impediments to resource development, and socio-economic analysis of the impact of development of the resource on these specific prospects. An overview of the geopressured-geothermal resource activities in Louisiana is provided first, followed by a detailed discussion and review of the achievements of this project. Finally the major conclusions and findings of this project with respect to commercial viability, impediments, and social and economic impact are presented, and recommendations are made for future systems analysis work.

  13. Geothermal Outreach and Project Financing

    SciTech Connect (OSTI)

    Elizabeth Battocletti

    2006-04-06

    The ?Geothermal Outreach and Project Financing? project substantially added to the understanding of geothermal resources, technology, and small business development by both the general public as well as those in the geothermal community.

  14. Parametric Analysis of the Factors Controlling the Costs of Sedimentary Geothermal Systems - Preliminary Results (Poster)

    SciTech Connect (OSTI)

    Augustine, C.

    2013-10-01

    Parametric analysis of the factors controlling the costs of sedimentary geothermal systems was carried out using a modified version of the Geothermal Electricity Technology Evaluation Model (GETEM). The sedimentary system modeled assumed production from and injection into a single sedimentary formation.

  15. Environmental Assessment Lakeview Geothermal Project

    SciTech Connect (OSTI)

    Treis, Tania

    2012-04-30

    The Town of Lakeview is proposing to construct and operate a geothermal direct use district heating system in Lakeview, Oregon. The proposed project would be in Lake County, Oregon, within the Lakeview Known Geothermal Resources Area (KGRA). The proposed project includes the following elements: Drilling, testing, and completion of a new production well and geothermal water injection well; construction and operation of a geothermal production fluid pipeline from the well pad to various Town buildings (i.e., local schools, hospital, and Lake County Industrial Park) and back to a geothermal water injection well. This EA describes the proposed project, the alternatives considered, and presents the environmental analysis pursuant to the National Environmental Policy Act. The project would not result in adverse effects to the environment with the implementation of environmental protection measures.

  16. Estimate of the Geothermal Energy Resource in the Major Sedimentary Basins in the United States (Presentation)

    SciTech Connect (OSTI)

    Esposito, A.; Porro, C.; Augustine, C.; Roberts, B.

    2012-09-01

    Because most sedimentary basins have been explored for oil and gas, well logs, temperatures at depth, and reservoir properties such as depth to basement and formation thickness are well known. The availability of this data reduces exploration risk and allows development of geologic exploration models for each basin. This study estimates the magnitude of recoverable geothermal energy from 15 major known U.S. sedimentary basins and ranks these basins relative to their potential. The total available thermal resource for each basin was estimated using the volumetric heat-in-place method originally proposed by (Muffler, 1979). A qualitative recovery factor was determined for each basin based on data on flow volume, hydrothermal recharge, and vertical and horizontal permeability. Total sedimentary thickness maps, stratigraphic columns, cross sections, and temperature gradient information was gathered for each basin from published articles, USGS reports, and state geological survey reports. When published data were insufficient, thermal gradients and reservoir properties were derived from oil and gas well logs obtained on oil and gas commission databases. Basin stratigraphy, structural history, and groundwater circulation patterns were studied in order to develop a model that estimates resource size, temperature distribution, and a probable quantitative recovery factor.

  17. Estimate of Geothermal Energy Resource in Major U.S. Sedimentary Basins (Presentation)

    SciTech Connect (OSTI)

    Porro, C.; Augustine, C.

    2012-04-01

    This study estimates the magnitude of geothermal energy from fifteen major known US sedimentary basins and ranks these basins relative to their potential. Because most sedimentary basins have been explored for oil and gas, well logs, temperatures at depth, and reservoir properties are known. This reduces exploration risk and allows development of geologic exploration models for each basin as well as a relative assessment of geologic risk elements for each play. The total available thermal resource for each basin was estimated using the volumetric heat-in-place method originally proposed by Muffler (USGS). Total sedimentary thickness maps, stratigraphic columns, cross sections, and temperature gradient Information were gathered for each basin from published articles, USGS reports, and state geological survey reports. When published data was insufficient, thermal gradients and reservoir properties were derived from oil and gas well logs obtained on oil and gas commission websites. Basin stratigraphy, structural history, and groundwater circulation patterns were studied in order to develop a model that estimates resource size and temperature distribution, and to qualitatively assess reservoir productivity.

  18. Geologic, geophysical, and geochemical aspects of site-specific studies of the geopressured-geothermal energy resource of southern Louisiana. Final report

    SciTech Connect (OSTI)

    Pilger, R.H. Jr.

    1985-01-01

    The report consists of four sections dealing with progress in evaluating geologic, geochemical, and geophysical aspects of geopressured-geothermal energy resources in Louisiana. Separate abstracts have been prepared for the individual sections. (ACR)

  19. Geothermal fracture stimulation technology. Volume IV. Proppant analysis at geothermal conditions

    SciTech Connect (OSTI)

    Not Available

    1981-01-01

    Crushing and degradation mechanisms of proppants are examined to characterize proppants and assess their usability in geothermal wells. Short-term tests can tell the physical strength of a proppant, but long-term tests are required to ascertain any interrelated chemical effects. Degradation of proppants is measured as a loss in permeability and can be correlated to temperature, time, and closure stress. Sand is a common proppant which is strongly affected by higher temperature and closure stress. Even at low stress levels, sand degrades in brine or hot water with long-term exposure. Most geothermal waters and their pH levels can also be detrimental to sand. There are some proppants with desirable properties at geothermal conditions. These are resistant to the crushing loads or closure stress in geothermal wells and will not react or dissolve in high temperature brines. While there are limits to these proppants, an unqualified list of possible geothermal proppants is given: aluminum oxide, garnet, resin-coated proppants, and sintered bauxite.

  20. References Burkhardt, H. E., Brook, C. A., Smith, F. W., (1980). "Selected Administrative, Land, and Resource Data for Known Geothermal

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    References Burkhardt, H. E., Brook, C. A., Smith, F. W., (1980). "Selected Administrative, Land, and Resource Data for Known Geothermal Resource Areas in Arizona, California, Idaho, Nevada, Oregon, and Washington." United States Department of the Interior Geologic Survey, Open-File Report 80-1290 Blackwell, D. D., Richards, M. C., Frone, Z. S., Batir, J. F., Williams, M. A., Ruzo, A. A., Dingwall, R. K., (2011). "SMU Geothermal Laboratory Heat Flow Map of the Conterminous United

  1. Isotopic Analysis- Fluid At Fenton Hill HDR Geothermal Area ...

    Open Energy Information (Open El) [EERE & EIA]

    (1981) Geology, Water Geochemistry And Geothermal Potential Of The Jemez Springs Area, Canon De San Diego, New Mexico Additional References Retrieved from "http:en.openei.orgw...

  2. Compound and Elemental Analysis At Fenton Hill HDR Geothermal...

    Open Energy Information (Open El) [EERE & EIA]

    (1981) Geology, Water Geochemistry And Geothermal Potential Of The Jemez Springs Area, Canon De San Diego, New Mexico Additional References Retrieved from "http:en.openei.orgw...

  3. Core Analysis At International Geothermal Area, Indonesia (Laney...

    Open Energy Information (Open El) [EERE & EIA]

    Philippines. References Patrick Laney (2005) Federal Geothermal Research Program Update - Fiscal Year 2004 Additional References Retrieved from "http:en.openei.orgw...

  4. Isotopic Analysis At Chena Geothermal Area (Holdmann, Et Al....

    Open Energy Information (Open El) [EERE & EIA]

    study to determine the natural recharge rate References Gwen Holdmann, Dick Benoit, David Blackwell (2006) Integrated Geoscience Investigation and Geothermal Exploration at...

  5. Isotopic Analysis- Gas At Dixie Valley Geothermal Area (Kennedy...

    Open Energy Information (Open El) [EERE & EIA]

    purpose of this research activity was to determine the fluid and heat source, Identify flow paths, and evaluate the possibility of a more extensive deep geothermal reservoir...

  6. Cuttings Analysis At Imperial Valley Geothermal Area (1976) ...

    Open Energy Information (Open El) [EERE & EIA]

    and overlying cap rock. References Pratt, H. R.; Simonson, E. R. (1 January 1976) Geotechnical studies of geothermal reservoirs Additional References Retrieved from "http:...

  7. Cuttings Analysis At Marysville Mountain Geothermal Area (1976...

    Open Energy Information (Open El) [EERE & EIA]

    and overlying cap rock. References Pratt, H. R.; Simonson, E. R. (1 January 1976) Geotechnical studies of geothermal reservoirs Additional References Retrieved from "http:...

  8. Cuttings Analysis At Jemez Mountain Geothermal Area (1976) |...

    Open Energy Information (Open El) [EERE & EIA]

    and overlying cap rock. References Pratt, H. R.; Simonson, E. R. (1 January 1976) Geotechnical studies of geothermal reservoirs Additional References Retrieved from "http:...

  9. Cuttings Analysis At Geysers Geothermal Area (1976) | Open Energy...

    Open Energy Information (Open El) [EERE & EIA]

    and overlying cap rock. References Pratt, H. R.; Simonson, E. R. (1 January 1976) Geotechnical studies of geothermal reservoirs Additional References Retrieved from "http:...

  10. Cuttings Analysis At Roosevelt Hot Springs Geothermal Area (1976...

    Open Energy Information (Open El) [EERE & EIA]

    and overlying cap rock. References Pratt, H. R.; Simonson, E. R. (1 January 1976) Geotechnical studies of geothermal reservoirs Additional References Retrieved from "http:...

  11. Cuttings Analysis At Bacca Ranch Geothermal Area (1976) | Open...

    Open Energy Information (Open El) [EERE & EIA]

    and overlying cap rock. References Pratt, H. R.; Simonson, E. R. (1 January 1976) Geotechnical studies of geothermal reservoirs Additional References Retrieved from "http:...

  12. Compound and Elemental Analysis At International Geothermal Area...

    Open Energy Information (Open El) [EERE & EIA]

    to explore. The results also continue to hold promise that such measurements may one day be a useful, routine tool for exploration for geothermal systems. However, additional...

  13. Isotopic Analysis- Fluid At Fenton Hill HDR Geothermal Area ...

    Open Energy Information (Open El) [EERE & EIA]

    Interactions in the Fenton Hill, New Mexico, Hot Dry Rock Geothermal Systems I. Fluid Mixing and Chemical Geothermometry Additional References Retrieved from "http:...

  14. Compound and Elemental Analysis At Fenton Hill HDR Geothermal...

    Open Energy Information (Open El) [EERE & EIA]

    Interactions in the Fenton Hill, New Mexico, Hot Dry Rock Geothermal Systems I. Fluid Mixing and Chemical Geothermometry Additional References Retrieved from "http:...

  15. Core Analysis At Coso Geothermal Area (1979) | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    useful DOE-funding Unknown Exploration Basis Compare microcracks between Coso and Raft River geothermal areas Notes Microcracks were observed in core samples from Coso. Both...

  16. Compound and Elemental Analysis At Valles Caldera - Redondo Geothermal...

    Open Energy Information (Open El) [EERE & EIA]

    to other geothermal systems hosted within sedimentary rocks, suggesting that organic carbon and nitrogen in Paleozoic and Miocene strata were depleted during 13 million years...

  17. Compound and Elemental Analysis At Fenton Hill HDR Geothermal...

    Open Energy Information (Open El) [EERE & EIA]

    to other geothermal systems hosted within sedimentary rocks, suggesting that organic carbon and nitrogen in Paleozoic and Miocene strata were depleted during 13 million years...

  18. Isotopic Analysis- Gas At Long Valley Caldera Geothermal Area...

    Open Energy Information (Open El) [EERE & EIA]

    Through 30 September Activity T. Winnett, Cathy J. Janik (1986) Isotopic Composition of Carbon in Fluids from the Long Valley Geothermal System, California, In- Proceedings of...

  19. Isotopic Analysis- Fluid At Fenton Hill HDR Geothermal Area ...

    Open Energy Information (Open El) [EERE & EIA]

    to other geothermal systems hosted within sedimentary rocks, suggesting that organic carbon and nitrogen in Paleozoic and Miocene strata were depleted during 13 million years...

  20. Compound and Elemental Analysis At Fenton Hill HDR Geothermal...

    Open Energy Information (Open El) [EERE & EIA]

    In Hot Dry Rock Geothermal Systems- Field Investigations Of In Situ Geochemical Behavior Additional References Retrieved from "http:en.openei.orgwindex.php?titleCompound...