National Library of Energy BETA

Sample records for geothermal power plants

  1. Okeanskaya Geothermal Power Plant | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Okeanskaya Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Okeanskaya Geothermal Power Plant General Information Name Okeanskaya Geothermal...

  2. GEOTHERMAL POWER GENERATION PLANT

    Energy.gov [DOE]

    Project objectives: Drilling a deep geothermal well on the Oregon Institute of Technology campus, Klamath Falls, OR. Constructing a geothermal power plant on the Oregon Institute of Technology campus.

  3. Nagqu Geothermal Power Plant | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Name Nagqu Geothermal Power Plant Facility Geothermal Power Plant Sector Geothermal energy Location Information Geothermal Resource Area Geothermal Region Plant Information...

  4. Eburru Geothermal Power Plant | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Eburru Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Eburru Geothermal Power Plant General Information Name Eburru Geothermal Power Plant...

  5. Ndunga Geothermal Power Plant | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Ndunga Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Ndunga Geothermal Power Plant General Information Name Ndunga Geothermal Power Plant...

  6. Irem Geothermal Power Plant | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Irem Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Irem Geothermal Power Plant General Information Name Irem Geothermal Power Plant Facility...

  7. Tuzla Geothermal Power Plant | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Tuzla Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Tuzla Geothermal Power Plant General Information Name Tuzla Geothermal Power Plant...

  8. Sibayak Geothermal Power Plant | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Sibayak Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Sibayak Geothermal Power Plant General Information Name Sibayak Geothermal Power Plant...

  9. Ulumbu Geothermal Power Plant | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Information Name Ulumbu Geothermal Power Plant Facility Geothermal Power Plant Sector Geothermal energy Location Information Address Kupang Location Indonesia Coordinates...

  10. Pauzhetskaya Geothermal Power Plant | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Pauzhetskaya Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Pauzhetskaya Geothermal Power Plant General Information Name Pauzhetskaya...

  11. Ngatamariki Geothermal Power Plant | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Name Ngatamariki Geothermal Power Plant Facility Geothermal Power Plant Sector Geothermal energy Location Information Address Mighty River Power Ngahere House 283...

  12. Lihir Geothermal Power Plant | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Lihir Geothermal Power Plant General Information Name Lihir Geothermal Power Plant Sector Geothermal energy Location Information Location Lihir Island, Papua New Guinea Coordinates...

  13. Geothermal Power Generation Plant

    SciTech Connect (OSTI)

    Boyd, Tonya

    2013-12-01

    Oregon Institute of Technology (OIT) drilled a deep geothermal well on campus (to 5,300 feet deep) which produced 196°F resource as part of the 2008 OIT Congressionally Directed Project. OIT will construct a geothermal power plant (estimated at 1.75 MWe gross output). The plant would provide 50 to 75 percent of the electricity demand on campus. Technical support for construction and operations will be provided by OIT’s Geo-Heat Center. The power plant will be housed adjacent to the existing heat exchange building on the south east corner of campus near the existing geothermal production wells used for heating campus. Cooling water will be supplied from the nearby cold water wells to a cooling tower or air cooling may be used, depending upon the type of plant selected. Using the flow obtained from the deep well, not only can energy be generated from the power plant, but the “waste” water will also be used to supplement space heating on campus. A pipeline will be construction from the well to the heat exchanger building, and then a discharge line will be construction around the east and north side of campus for anticipated use of the “waste” water by facilities in an adjacent sustainable energy park. An injection well will need to be drilled to handle the flow, as the campus existing injection wells are limited in capacity.

  14. Cibuni Geothermal Power Plant | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Hide Map Geothermal Resource Area Pengalengan Geothermal Area Geothermal Region West Java Plant Information Owner PLN Commercial Online Date 2014 Power Plant Data Type of Plant...

  15. Geothermal Risk Reduction via Geothermal/Solar Hybrid Power Plants...

    Office of Scientific and Technical Information (OSTI)

    Geothermal Risk Reduction via GeothermalSolar Hybrid Power Plants. Final Report Citation Details In-Document Search Title: Geothermal Risk Reduction via GeothermalSolar Hybrid ...

  16. Geothermal/Power Plant | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Plant < Geothermal(Redirected from Power Plant) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Planning Leasing Exploration Well Field Power Plant Grid...

  17. Hatchobaru Geothermal Power Plant | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Information Name Hatchobaru Geothermal Power Plant Facility Power Plant Sector Geothermal energy Location Information Location Oita, Japan Coordinates 33.106330525676,...

  18. Ogiri Geothermal Power Plant | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Information Name Ogiri Geothermal Power Plant Facility Power Plant Sector Geothermal energy Location Information Location Kagoshima, Japan Coordinates 31.954053520674,...

  19. Uenotai Geothermal Power Plant | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Information Name Uenotai Geothermal Power Plant Facility Power Plant Sector Geothermal energy Location Information Location Akita, Japan Coordinates 39.001204660867,...

  20. Yamagawa Geothermal Power Plant | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Information Name Yamagawa Geothermal Power Plant Facility Power Plant Sector Geothermal energy Location Information Location Kagoshima, Japan Coordinates 31.953944283105,...

  1. Onuma Geothermal Power Plant | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Information Name Onuma Geothermal Power Plant Facility Power Plant Sector Geothermal energy Location Information Location Akita, Japan Coordinates 39.981918665315,...

  2. Mori Geothermal Power Plant | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Information Name Mori Geothermal Power Plant Facility Power Plant Sector Geothermal energy Location Information Location Hokkaido, Japan Coordinates 42.132906551396,...

  3. Otake Geothermal Power Plant | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Information Name Otake Geothermal Power Plant Facility Power Plant Sector Geothermal energy Location Information Location Oita, Japan Coordinates 33.105767212548,...

  4. Sumikawa Geothermal Power Plant | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Information Name Sumikawa Geothermal Power Plant Facility Power Plant Sector Geothermal energy Location Information Location Akita, Japan Coordinates 39.938819458336,...

  5. Rotokawa Geothermal Power Plant | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Power Plant General Information Name Rotokawa Geothermal Power Plant Sector Geothermal energy Location Information Location 14km NE of Taupo, Waikato, New Zealand Coordinates...

  6. Geothermal Steam Power Plant | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Geothermal Steam Power Plant (Redirected from Dry Steam) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home General List of Dry Steam Plants List of Flash Steam Plants...

  7. Hachijojima Geothermal Energy Power Plant | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Hachijojima Geothermal Energy Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Hachijojima Geothermal Energy Power Plant General Information Name...

  8. Bjarnaflag Geothermal Power Plant | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Plant General Information Name Bjarnaflag Geothermal Power Plant Sector Geothermal energy Location Information Location Lake Myvatn, Iceland Coordinates 65.640833,...

  9. Bouillante 2 Geothermal Power Plant | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Plant General Information Name Bouillante 2 Geothermal Power Plant Sector Geothermal energy Location Information Geothermal Resource Area Bouillante Geothermal Area Geothermal...

  10. Bouillante 1 Geothermal Power Plant | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Plant General Information Name Bouillante 1 Geothermal Power Plant Sector Geothermal energy Location Information Geothermal Resource Area Bouillante Geothermal Area Geothermal...

  11. Dora-1 Geothermal Energy Power Plant | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Dora-1 Geothermal Energy Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Dora-1 Geothermal Energy Power Plant General Information Name Dora-1 Geothermal...

  12. Oserian 202 Geothermal Power Plant | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Oserian 202 Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Oserian 202 Geothermal Power Plant General Information Name Oserian 202 Geothermal...

  13. Geothermal/Power Plant | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    in Iceland. Geothermal Power Plants discussion Electricity Generation Converting the energy from a geothermal resource into electricity is achieved by producing steam from the...

  14. Kakkonda Geothermal Power Plant | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Arc Plant Information Facility Type Single Flash Owner Tohoku Hydropower,Geothermal Energy.CoTohoku Electric Power Commercial Online Date 1978 Power Plant Data Type of Plant...

  15. Kamojang Geothermal Power Plant | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Power Plant Facility Power Plant Sector Geothermal energy Location Information Location Java, Indonesia Coordinates -7.1386705960014, 107.78536749043 Loading map......

  16. Dieng Geothermal Power Plant | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Power Plant Facility Power Plant Sector Geothermal energy Location Information Location Java; Indonesia Coordinates -7.2227512797154, 110.01006889972 Loading map......

  17. Next Generation Geothermal Power Plants

    SciTech Connect (OSTI)

    Brugman, John; Hattar, Mai; Nichols, Kenneth; Esaki, Yuri

    1995-09-01

    A number of current and prospective power plant concepts were investigated to evaluate their potential to serve as the basis of the next generation geothermal power plant (NGGPP). The NGGPP has been envisaged as a power plant that would be more cost competitive (than current geothermal power plants) with fossil fuel power plants, would efficiently use resources and mitigate the risk of reservoir under-performance, and minimize or eliminate emission of pollutants and consumption of surface and ground water. Power plant concepts were analyzed using resource characteristics at ten different geothermal sites located in the western United States. Concepts were developed into viable power plant processes, capital costs were estimated and levelized busbar costs determined. Thus, the study results should be considered as useful indicators of the commercial viability of the various power plants concepts that were investigated. Broadly, the different power plant concepts that were analyzed in this study fall into the following categories: commercial binary and flash plants, advanced binary plants, advanced flash plants, flash/binary hybrid plants, and fossil/geothed hybrid plants. Commercial binary plants were evaluated using commercial isobutane as a working fluid; both air-cooling and water-cooling were considered. Advanced binary concepts included cycles using synchronous turbine-generators, cycles with metastable expansion, and cycles utilizing mixtures as working fluids. Dual flash steam plants were used as the model for the commercial flash cycle. The following advanced flash concepts were examined: dual flash with rotary separator turbine, dual flash with steam reheater, dual flash with hot water turbine, and subatmospheric flash. Both dual flash and binary cycles were combined with other cycles to develop a number of hybrid cycles: dual flash binary bottoming cycle, dual flash backpressure turbine binary cycle, dual flash gas turbine cycle, and binary gas turbine

  18. Proceedings of a Topical Meeting On Small Scale Geothermal Power Plants and Geothermal Power Plant Projects

    SciTech Connect (OSTI)

    1986-02-12

    These proceedings describe the workshop of the Topical Meeting on Small Scale Geothermal Power Plants and Geothermal Power Plant Projects. The projects covered include binary power plants, rotary separator, screw expander power plants, modular wellhead power plants, inflow turbines, and the EPRI hybrid power system. Active projects versus geothermal power projects were described. In addition, a simple approach to estimating effects of fluid deliverability on geothermal power cost is described starting on page 119. (DJE-2005)

  19. Neal Hot Springs Geothermal Power Plant | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Neal Hot Springs Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Neal Hot Springs Geothermal Power Plant General Information Name Neal Hot...

  20. Geothermal Power Generation Plant; 2010 Geothermal Technology Program Peer

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Review Report | Department of Energy Power Generation Plant; 2010 Geothermal Technology Program Peer Review Report Geothermal Power Generation Plant; 2010 Geothermal Technology Program Peer Review Report DOE 2010 Geothermal Technologies Program Peer Review adse_003_lund.pdf (189.07 KB) More Documents & Publications Feasibility of EGS Development at Bradys Hot Springs, Nevada Concept Testing and Development at the Raft River Geothermal Field, Idaho Detecting Fractures Using Technology

  1. Geothermal Steam Power Plant | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    1.95e-4 TW Single Flash 1997 Gunun-Salak Geothermal Area Sunda Volcanic Arc Hachijojima Geothermal Energy Power Plant Tokyo Electric Power 3.3 MW3,300 kW 3,300,000 W...

  2. Matsukawa Geothermal Power Plant | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Facility Type Dry Steam, Low Pressure Reaction Owner Tohoku HydropowerGeothermal Energy Co Number of Units 1 Commercial Online Date 1966 Power Plant Data Type of Plant...

  3. Germencik Geothermal Power Plant | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Facility Power Plant Sector Geothermal energy Location Information Location Aydin, Turkey Coordinates 37.878694084384, 27.608050344279 Loading map... "minzoom":false,"mapp...

  4. NEPA Process for Geothermal Power Plants in the Deschutes National...

    Open Energy Information (Open El) [EERE & EIA]

    Oregon Project Phase GeothermalExploration, GeothermalWell Field, GeothermalPower Plant Techniques Exploration Drilling, Exploratory Boreholes, Production Wells, Thermal...

  5. Takigami Geothermal Power Plant | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Hide Map Geothermal Resource Area Oita Geothermal Area Geothermal Region Ryuku Arc Plant Information Facility Type Single Flash Owner Idemitsu Oita Geothermal CoKyushu...

  6. Suginoi Hotel Geothermal Power Plant | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Name Suginoi Hotel Geothermal Power Plant Facility Power Plant Sector Geothermal energy Location Information Location Beppu, Japan Coordinates 33.283191762234,...

  7. Kuju Kanko Hotel Geothermal Power Plant | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Name Kuju Kanko Hotel Geothermal Power Plant Facility Power Plant Sector Geothermal energy Location Information Location Oita, Japan Coordinates 33.26066715087,...

  8. Yanaizu-Nishiyama Geothermal Power Plant | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Name Yanaizu-Nishiyama Geothermal Power Plant Facility Power Plant Sector Geothermal energy Location Information Location Yanaizu-city, Fukushima, Japan Coordinates...

  9. Kirishima Kokusai Hotel Geothermal Power Plant | Open Energy...

    Open Energy Information (Open El) [EERE & EIA]

    Kirishima Kokusai Hotel Geothermal Power Plant Facility Power Plant Sector Geothermal energy Location Information Location Kagoshima, Japan Coordinates 31.894281180261,...

  10. Dora-3 Geothermal Power Plant | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Binary Cycle Power Plant, ORC Owner Menderes Geothermal Developer Menderes Geothermal Energy Purchaser TEDAS Number of Units 2 Commercial Online Date 2013 Power Plant Data Type...

  11. How a Geothermal Power Plant Works (Simple) - Text Version |...

    Energy.gov (indexed) [DOE]

    Geothermal Power Plant Works. This animation is meant to convey in simple terms what happens in the operation of a geothermal power plant. Aspects such as exploration, resource...

  12. Salton Sea Power Plant Recognized as Most Innovative Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Salton Sea Power Plant Recognized as Most Innovative Geothermal Project Salton Sea Power Plant Recognized as Most Innovative Geothermal Project February 10, 2013 - 3:32pm Addthis ...

  13. Advanced Condenser Boosts Geothermal Power Plant Output (Fact...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Condensation of spent generator steam is a critical part of Advanced Condenser Boosts Geothermal Power Plant Output When power production at The Geysers geothermal power complex ...

  14. Oguni Town Geothermal Power Plant | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Keiyo Plant Engineering Co, Waita Geothermal Power Plant, Chuo Electric Power Co Energy Purchaser Toshiba Commercial Online Date 2014 Power Plant Data Type of Plant Number...

  15. Miravalles V Geothermal Power Plant | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    plant to be developed by Ormat International for Instituto Costaricense de Electricidad to supplement existing geothermal power plants at the Miravalles Geothermal Area....

  16. How a Geothermal Power Plant Works (Simple) | Department of Energy

    Energy Savers

    How a Geothermal Power Plant Works (Simple) Most power plants-whether fueled by coal, gas, ... Geothermal power plants have much in common with traditional power-generating stations. ...

  17. Denizli - Kizildere geothermal power-plant, Turkey

    SciTech Connect (OSTI)

    Ar, G.

    1985-01-01

    The first geothermal power-plant in Turkey, the Kizildere 20 MW geothermal power-plant, is being constructed near Denizli - Saraykoy by GIE, Italy. Start-up operations have already begun an it will be generating electricity by the beginning of 1984. The plant will supply part of the power demands of Southwestern Anatolia, especially in the city of Denizli. This power-plant will utilize the geothermal resources discovered by the MTA (Mineral Research Exploration Institute) near Kizildere - Saraykoy at the end of research conducted between 1968 and 1971. MTA has been conducting this research all over Turkey and recently a new geothermal system has bee found in Germencik - Aydin. In Kizildere there are 16 wells drilled by MTA. However six of them (KD 13, KD 15, KD 16, KD 6 and KD 7, KD 14, three as stand-by) will be utilized for electricity generation.

  18. Report on Hawaii Geothermal Power Plant Project

    SciTech Connect (OSTI)

    Not Available

    1983-06-01

    The report describes the design, construction, and operation of the Hawaii Geothermal Generator Project. This power plant, located in the Puna District on the island of Hawaii, produces three megawatts of electricity from the steam phase of a geothermal well. (ACR)

  19. Darajat Geothermal Power Plant | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    n":"","group":"","inlineLabel":"","visitedicon":"" Hide Map Geothermal Resource Area Java - Darajat Geothermal Area Geothermal Region Sunda Volcanic Arc Plant Information Owner...

  20. Monitoring Biological Activity at Geothermal Power Plants

    SciTech Connect (OSTI)

    Peter Pryfogle

    2005-09-01

    The economic impact of microbial growth in geothermal power plants has been estimated to be as high as $500,000 annually for a 100 MWe plant. Many methods are available to monitor biological activity at these facilities; however, very few plants have any on-line monitoring program in place. Metal coupon, selective culturing (MPN), total organic carbon (TOC), adenosine triphosphate (ATP), respirometry, phospholipid fatty acid (PLFA), and denaturing gradient gel electrophoresis (DGGE) characterizations have been conducted using water samples collected from geothermal plants located in California and Utah. In addition, the on-line performance of a commercial electrochemical monitor, the BIoGEORGE?, has been evaluated during extended deployments at geothermal facilities. This report provides a review of these techniques, presents data on their application from laboratory and field studies, and discusses their value in characterizing and monitoring biological activities at geothermal power plants.

  1. Geothermal Power Plants — Minimizing Solid Waste and Recovering Minerals

    Office of Energy Efficiency and Renewable Energy (EERE)

    Although many geothermal power plants generate no appreciable solid waste, the unique characteristics of some geothermal fluids require special attention to handle entrained solid byproducts.

  2. Construction Underway on First Geothermal Power Plant in New...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Construction Underway on First Geothermal Power Plant in New Mexico Construction Underway on First Geothermal Power Plant in New Mexico September 10, 2008 - 4:38pm Addthis Photo of ...

  3. Construction Underway on First Geothermal Power Plant in New...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Construction Underway on First Geothermal Power Plant in New Mexico Construction Underway on First Geothermal Power Plant in New Mexico September 10, 2008 - 4:38pm Addthis Photo of...

  4. Los Humeros IIA Geothermal Power Plant | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Power Plant Sector Geothermal energy Location Information Location Chignautla, Puebla, Mexico Coordinates 19.812422502461, -97.387825789629 Loading map......

  5. Los Humeros IIB Geothermal Power Plant | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Power Plant Sector Geothermal energy Location Information Location Chignautla, Puebla, Mexico Coordinates 19.812422502461, -97.387825789629 Loading map......

  6. Geothermal Power Plants — Meeting Water Quality and Conservation Standards

    Office of Energy Efficiency and Renewable Energy (EERE)

    U.S. geothermal power plants can easily meet federal, state, and local water quality and conservation standards.

  7. Don A. Cambell Geothermal Power Plant | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Geothermal Region Plant Information Facility Type Binary Owner Ormat Developer Ormat Energy Purchaser Ormat Commercial Online Date 2013 Power Plant Data Type of Plant Number...

  8. Geothermal Risk Reduction via Geothermal/Solar Hybrid Power Plants. Final

    Office of Scientific and Technical Information (OSTI)

    Report (Technical Report) | SciTech Connect Geothermal Risk Reduction via Geothermal/Solar Hybrid Power Plants. Final Report Citation Details In-Document Search Title: Geothermal Risk Reduction via Geothermal/Solar Hybrid Power Plants. Final Report There are numerous technical merits associated with a renewable geothermal-solar hybrid plant concept. The performance of air-cooled binary plants is lowest when ambient temperatures are high due to the decrease in air-cooled binary plant

  9. Gumuskoy Geothermal Power Plant | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Plant, ORC Sector Geothermal energy Location Information Location Ortaklar, Aydin, Turkey Coordinates 37.859153868187, 27.476995463949 Loading map... "minzoom":false,"mapp...

  10. Hybrid Cooling for Geothermal Power Plants: Final ARRA Project...

    Office of Scientific and Technical Information (OSTI)

    Country of Publication: United States Language: English Subject: 15 GEOTHERMAL ENERGY AIR-COOLED CONDENSERS; POWER PLANT COOLING; BINARY-CYCLE; FINNED-TUBE; HEAT TRANSFER; NEVADA; ...

  11. Dora-2 Geothermal Power Plant | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Facility Power Plant Sector Geothermal energy Location Information Address Aydin, Turkey Coordinates 37.85633410526, 28.088616374298 Loading map... "minzoom":false,"mappi...

  12. North Brawley Geothermal Power Plant Project Overview | Open...

    Open Energy Information (Open El) [EERE & EIA]

    2014 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for North Brawley Geothermal Power Plant Project Overview Citation PCL...

  13. Designing geothermal power plants to avoid reinventing the corrosion wheel

    SciTech Connect (OSTI)

    Conover, Marshall F.

    1982-10-08

    This paper addresses how designers can take into account, the necessary chemical and materials precautions that other geothermal power plants have learned. Current worldwide geothermal power plant capacity is presented as well as a comparison of steam composition from seven different geothermal resources throughout the world. The similarities of corrosion impacts to areas of the power plants are discussed and include the turbines, gas extraction system, heat rejection system, electrical/electronic systems, and structures. Materials problems and solutions in these corrosion impact areas are identified and discussed. A geothermal power plant design team organization is identified and the efficacy of a new corrosion/materials engineering position is proposed.

  14. Construction Underway on First Geothermal Power Plant in New Mexico

    Office of Energy Efficiency and Renewable Energy (EERE)

    New Mexico Governor Bill Richardson and Raser Technologies, Inc. announced in late August that construction has begun on the first commercial geothermal power plant in New Mexico.

  15. Biocorrosion in a geothermal power plant

    SciTech Connect (OSTI)

    Navarrette-Bedolla, M.; Ballesteros-Almanza, M.L.; Sanchez-Yanez, J.M.; Valdez-Salas, B.; Hernandez-Duque, G.

    1999-04-01

    Hyperthermophilic archaebacteria (Thermoproteus neutrophilus) promoting the corrosion of type 316 stainless steel (SS) (UNS S31600) in vapor ducts of the Tejamaniles geothermal electric power plant in Los Azufres, Michoacan, Mexico, were isolated from condensed steam. Metallographic analysis and scanning electron microscopy were performed to determine the morphology of microbiological attack on the SS. Electrochemical corrosion tests showed that the bacteria induced corrosion on type 316 SS preferentially at grain boundaries. Large amounts of elemental sulfur and carbon were detected where the bacterial culture was located.

  16. Equipment considerations for a binary cycle geothermal power plant

    SciTech Connect (OSTI)

    Thorleifson, W.C.; Ibe, A.P.

    1982-10-01

    The binary cycle geothermal power plant incorporates existing hydrocarbon handling technology proven in use by the petrochemical industry. Equipment sizing and hydrocarbon cycle control on the commercial plant scale, however, introduce some unknowns. This report discusses the various technical factors considered in the design, selection, and sizing of the major equipment for use in the Heber Binary Cycle Geothermal Demonstration Power Plant.

  17. Geothermal Power Plants — Minimizing Land Use and Impact

    Office of Energy Efficiency and Renewable Energy (EERE)

    For energy production and development, geothermal power plants don't use much land compared to coal and nuclear power plants. And the environmental impact upon the land they use is minimal.

  18. East Mesa Magmamax Power Process Geothermal Generating Plant, A Preliminary

    Office of Scientific and Technical Information (OSTI)

    Analysis (Conference) | SciTech Connect East Mesa Magmamax Power Process Geothermal Generating Plant, A Preliminary Analysis Citation Details In-Document Search Title: East Mesa Magmamax Power Process Geothermal Generating Plant, A Preliminary Analysis During recent months, Magma Power Company has been involved in the shakedown and startup of their 10 MW binary cycle power plant at East Mesa in the Imperial Valley of Southern California. This pilot plant has been designed specifically as an

  19. Deniz Geothermal Power Plant | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Plant Information Facility Type Binary Cycle Power Plant, ORC Owner MAREN Developer MAREN Energy Purchaser TEDAS Number of Units 1 Commercial Online Date 2012 Power Plant Data Type...

  20. Pailas Geothermal Power Plant | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Information Facility Type Binary Cycle Power Plant Owner Instituto Costarricense de Electricidad Number of Units 1 1 Commercial Online Date 2011 Power Plant Data Type of Plant...

  1. Next generation geothermal power plants. Draft final report

    SciTech Connect (OSTI)

    Brugman, John; Hattar, John; Nichols, Kenneth; Esaki, Yuri

    1994-12-01

    The goal of this project is to develop concepts for the next generation geothermal power plant(s) (NGGPP). This plant, compared to existing plants, will generate power for a lower levelized cost and will be more competitive with fossil fuel fired power plants. The NGGPP will utilize geothermal resources efficiently and will be equipped with contingencies to mitigate the risk of reservoir performance. The NGGPP design will attempt to minimize emission of pollutants and consumption of surface water and/or geothermal fluids for cooling service.

  2. Wayang Windu Geothermal Power Plant | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Geothermal Region Sunda Volcanic Arc Plant Information Facility Type Single Flash Owner Star Energy Ltd Number of Units 2 1 Commercial Online Date 2000 Power Plant Data Type of...

  3. Salton Sea Power Plant Recognized as Most Innovative Geothermal Project

    Energy.gov [DOE]

    The first power plant to be built in the Salton Sea area in 20 years was recognized in December by Power Engineering magazine as the most innovative geothermal project of the year.

  4. Pamukoren Geothermal Power Plant | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Facility Type Binary Cycle Power Plant, ORC Owner CELIKLER Developer MTA-CELIKLER Energy Purchaser TEDAS Number of Units 1 Commercial Online Date 2013 Power Plant Data Type...

  5. Wairakei Geothermal Power Plant | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Taupo Volcanic Zone Plant Information Facility Type Binary, Wet Steam Owner Contact Energy Number of Units 12 1 Commercial Online Date 1958 Power Plant Data Type of Plant...

  6. Niigata Geothermal Power Plant | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Japanese Archipelago Plant Information Facility Type Binary Owner Wasabi Developer Wasabi Energy Purchaser EcoGen Commercial Online Date 2012 Power Plant Data Type of Plant Number...

  7. Five-megawatt geothermal-power pilot-plant project

    SciTech Connect (OSTI)

    Not Available

    1980-08-29

    This is a report on the Raft River Geothermal-Power Pilot-Plant Project (Geothermal Plant), located near Malta, Idaho; the review took place between July 20 and July 27, 1979. The Geothermal Plant is part of the Department of Energy's (DOE) overall effort to help commercialize the operation of electric power plants using geothermal energy sources. Numerous reasons were found to commend management for its achievements on the project. Some of these are highlighted, including: (a) a well-qualified and professional management team; (b) effective cost control, performance, and project scheduling; and (c) an effective and efficient quality-assurance program. Problem areas delineated, along with recommendations for solution, include: (1) project planning; (2) facility design; (3) facility construction costs; (4) geothermal resource; (5) drilling program; (6) two facility construction safety hazards; and (7) health and safety program. Appendices include comments from the Assistant Secretary for Resource Applications, the Controller, and the Acting Deputy Director, Procurement and Contracts Management.

  8. The 125 MW Upper Mahiao geothermal power plant

    SciTech Connect (OSTI)

    Forte, N.

    1996-12-31

    The 125 MW Upper Mahiao power plant, the first geothermal power project to be financed under a Build-Own-Operate-and-Transfer (BOOT) arrangement in the Philippines, expected to complete its start-up testing in August of this year. This plant uses Ormat`s environmentally benign technology and is both the largest geothermal steam/binary combined cycle plant as well as the largest geothermal power plant utilizing air cooled condensers. The Ormat designed and constructed plant was developed under a fast track program, with some two years from the April 1994 contract signing through design, engineering, construction and startup. The plant is owned and operated by a subsidiary of CalEnergy Co., Inc. and supplies power to PNOC-Energy Development Corporation for the National Power Corporation (Napocor) national power grid in the Philippines.

  9. Kemaliye Geothermal Power Plant | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    "","icon":"","group":"","inlineLabel":"","visitedicon":"" Hide Map Location Manisa, Turkey County Alasehir Geothermal Area Alasehir Geothermal Area Geothermal Region Aegean-West...

  10. Alasehir Geothermal Power Plant | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    "","icon":"","group":"","inlineLabel":"","visitedicon":"" Hide Map Location Manisa, Turkey County Alasehir Geothermal Area Alasehir Geothermal Area Geothermal Region Aegean-West...

  11. Geothermal Power Plants — Meeting Clean Air Standards

    Energy.gov [DOE]

    Geothermal power plants can meet the most stringent clean air standards. They emit little carbon dioxide, very low amounts of sulfur dioxide, and no nitrogen oxides. See Charts 1, 2, and 3 below.

  12. Designing geothermal power plants to avoid reinventing the corrosion wheel

    SciTech Connect (OSTI)

    Conover, M.F.

    1983-03-01

    This paper addresses how designers can take into account the necessary chemical and materials precautions that other geothermal power plant operators and engineers have learned. Current worldwide geothermal power plant capacity is presented as well as a comparison of steam composition from seven different geothermal resources throughout the world. The similarities of corrosion impacts to areas of the power plants are discussed and include the turbines; gas extraction system; heat and rejection system; electrical/electronic systems; and structures. Materials problems and solutions in these corrosion impact areas are identified and discussed. A geothermal power plant design team organization is identified and the efficacy of a new corrosion/materials engineering position is proposed.

  13. NREL/PG&E Condensation System Increases Geothermal Power Plant...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    NRELPG&E Condensation System Increases Geothermal Power Plant Efficiency For more information contact: Howard Brown 303-275-3682 or Kerry Masson 303-275-4083 Golden, Colo., June ...

  14. Zunil Geothermal Power Plant | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Volcanic Arc Chain Plant Information Facility Type Binary Cycle Power Plant Owner Ormat Energy Purchaser Instituto Nacional de Electrificacion Number of Units 7 Commercial Online...

  15. Momotombo Geothermal Power Plant | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Plant Information Facility Type Double Flash, Binary Owner Empresa Nicaraguense de Electricidad (ENEL) Number of Units 3 1 Commercial Online Date 1983 Power Plant Data Type of...

  16. Nevada manufacturer installing geothermal power plant | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Nevada manufacturer installing geothermal power plant Nevada manufacturer installing geothermal power plant August 26, 2010 - 4:45pm Addthis Chemetall extracts lithium carbonate, a powder, from brine, a salty solution from within the earth. | Photo courtesy Chemetall Chemetall extracts lithium carbonate, a powder, from brine, a salty solution from within the earth. | Photo courtesy Chemetall Joshua DeLung Chemetall supplies materials for lithium-ion batteries for electric vehicles

  17. Contaminant abatement process for geothermal power plant effluents

    SciTech Connect (OSTI)

    Johnson, H.F.

    1990-11-06

    This patent describes a process for abatement of contaminants in effluents discharged from a geothermal power plant. It comprises: condensing on a surface condensing means, geothermal power plant effluents to separate a condensate comprising an aqueous solution containing dissolved contaminants from a noncondensable gas fraction containing contaminants: processing the noncondensable gas fraction in a primary contaminant abatement system for removal of the contaminants from the noncondensable gas fraction; diverting a reinjection fraction of the condensate for reinjection to a geothermal well; and processing at least a fraction of the remaining portion of the condensate in a secondary contaminant abatement system for removal of the dissolved contaminants from the condensate.

  18. Use of a Geothermal-Solar Hybrid Power Plant to Mitigate Declines in Geothermal Resource Productivity

    SciTech Connect (OSTI)

    Dan Wendt; Greg Mines

    2014-09-01

    Many, if not all, geothermal resources are subject to decreasing productivity manifested in the form of decreasing brine temperature, flow rate, or both during the life span of the associated power generation project. The impacts of resource productivity decline on power plant performance can be significant; a reduction in heat input to a power plant not only decreases the thermal energy available for conversion to electrical power, but also adversely impacts the power plant conversion efficiency. The reduction in power generation is directly correlated to a reduction in revenues from power sales. Further, projects with Power Purchase Agreement (PPA) contracts in place may be subject to significant economic penalties if power generation falls below the default level specified. A potential solution to restoring the performance of a power plant operating from a declining productivity geothermal resource involves the use of solar thermal energy to restore the thermal input to the geothermal power plant. There are numerous technical merits associated with a renewable geothermal-solar hybrid plant in which the two heat sources share a common power block. The geo-solar hybrid plant could provide a better match to typical electrical power demand profiles than a stand-alone geothermal plant. The hybrid plant could also eliminate the stand-alone concentrated solar power plant thermal storage requirement for operation during times of low or no solar insolation. This paper identifies hybrid plant configurations and economic conditions for which solar thermal retrofit of a geothermal power plant could improve project economics. The net present value of the concentrated solar thermal retrofit of an air-cooled binary geothermal plant is presented as functions of both solar collector array cost and electricity sales price.

  19. Operating experience of double-flash geothermal power plant (Hatchobaru)

    SciTech Connect (OSTI)

    Yoshida, K.; Tanaka, K.; Kusunoki, K.

    1983-09-01

    Hatchobaru No. 1 Unit (55 MW) was completed in 1977 as the world's first double-flash type geothermal power plant and has been operating satisfactorily since that time. The operating record of the Hatchobaru Power Plant and group of wells, including recent findings are described.

  20. Geothermal Risk Reduction via Geothermal/Solar Hybrid Power Plants. Final Report

    SciTech Connect (OSTI)

    Wendt, Daniel; Mines, Greg; Turchi, Craig; Zhu, Guangdong

    2015-11-01

    There are numerous technical merits associated with a renewable geothermal-solar hybrid plant concept. The performance of air-cooled binary plants is lowest when ambient temperatures are high due to the decrease in air-cooled binary plant performance that occurs when the working fluid condensing temperature, and consequently the turbine exhaust pressure, increases. Electrical power demand is generally at peak levels during periods of elevated ambient temperature and it is therefore especially important to utilities to be able to provide electrical power during these periods. The time periods in which air-cooled binary geothermal power plant performance is lowest generally correspond to periods of high solar insolation. Use of solar heat to increase air-cooled geothermal power plant performance during these periods can improve the correlation between power plant output and utility load curves. While solar energy is a renewable energy source with long term performance that can be accurately characterized, on shorter time scales of hours or days it can be highly intermittent. Concentrating solar power (CSP), aka solar-thermal, plants often incorporate thermal energy storage to ensure continued operation during cloud events or after sunset. Hybridization with a geothermal power plant can eliminate the need for thermal storage due to the constant availability of geothermal heat. In addition to the elimination of the requirement for solar thermal storage, the ability of a geothermal/solar-thermal hybrid plant to share a common power block can reduce capital costs relative to separate, stand-alone geothermal and solar-thermal power plant installations. The common occurrence of long-term geothermal resource productivity decline provides additional motivation to consider the use of hybrid power plants in geothermal power production. Geothermal resource productivity decline is a source of significant risk in geothermal power generation. Many, if not all, geothermal resources

  1. Geothermal energy as a source of electricity. A worldwide survey of the design and operation of geothermal power plants

    SciTech Connect (OSTI)

    DiPippo, R.

    1980-01-01

    An overview of geothermal power generation is presented. A survey of geothermal power plants is given for the following countries: China, El Salvador, Iceland, Italy, Japan, Mexico, New Zealand, Philippines, Turkey, USSR, and USA. A survey of countries planning geothermal power plants is included. (MHR)

  2. Conceptual design of first geothermal power plant in Ethiopia

    SciTech Connect (OSTI)

    Mills, T.D.; Melaku, M.; Betemariam, G.

    1996-12-31

    The Aluto-Langano Geothermal Pilot Plant will be the first geothermal power plant in Ethiopia. Its purpose is to utilize existing wells, drilled about a decade ago, to generate additional electricity for the power system and to prove the capability of the Aluto-Langano field to support expansion to 30 MWe. This paper discusses the evaluation of possible production wells, in combination with three power cycle options, leading to selection of a preferred development concept. Despite the small size of the pilot plant, the high elevation of the site, and the very high gas content of the field, a condensing unit was selected. Particular design features proposed for the steamfield and power plant are explained, including those that reflect the pilot plant nature of the project.

  3. Fossil superheating in geothermal steam power plants (Technical...

    Office of Scientific and Technical Information (OSTI)

    fossil and geothermal plants for a wide range of operating conditions, and deserve consideration whenever fossil and geothermal energy resources are found in reasonable proximity. ...

  4. Berln Geothermal Power Plant | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Sector Geothermal energy Location Information Location Montanita Joy, Usulutan, El Salvador Coordinates 13.525, -88.5089 Loading map... "minzoom":false,"mappingservice":"go...

  5. Purchase and Installation of a Geothermal Power Plant to Generate...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    feasibility of the use of an existing low-temperature geothermal resource for combined heat and power; and Maintain and enhance existing geothermal district heating operation. ...

  6. Water Use in the Development and Operations of Geothermal Power Plants |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Water Use in the Development and Operations of Geothermal Power Plants Water Use in the Development and Operations of Geothermal Power Plants This report summarizes what is currently known about the life cycle water requirements of geothermal electric power-generating systems and the water quality of geothermal waters. It is part of a larger effort to compare the life cycle impacts of large-scale geothermal electricity generation with other power generation technologies.

  7. Process Control System of the Mutnovskaya Geothermal Power Plant

    SciTech Connect (OSTI)

    Idzon, O. M.; Ivanov, V. V.; Ilyushin, V. V.; Nikol'skii, A. I.

    2004-01-15

    The experience of creating software and algorithms for automatic process control at the Mutnovskaya geothermal power plant (GTPP) on the basis of the Teleperm ME automation system is presented. The heat cycle and special features of the heat flow diagram of the power plant are briefly described. The engineering solutions used, the structure of the system, and the principles of process control at the Mutnovskaya GTPP are considered. Special attention is devoted to the turbine regulator that consists of several regulating units because of the great number of problems solved by control valves; each regulating unit solves control problems depending on the mode of operation of the power generating set.

  8. Hybrid Cooling for Geothermal Power Plants: Final ARRA Project Report

    SciTech Connect (OSTI)

    Bharathan, D.

    2013-06-01

    Many binary-cycle geothermal plants use air as the heat rejection medium. Usually this is accomplished by using an air-cooled condenser (ACC) system to condense the vapor of the working fluid in the cycle. Many air-cooled plants suffer a loss of production capacity of up to 50% during times of high ambient temperatures. Use of limited amounts of water to supplement the performance of ACCs is investigated. Deluge cooling is found to be one of the least-cost options. Limiting the use of water in such an application to less than one thousand operating hours per year can boost plant output during critical high-demand periods while minimizing water use in binary-cycle geothermal power plants.

  9. Greenhouse Gas emissions from California Geothermal Power Plants

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sullivan, John

    The information given in this file represents GHG emissions and corresponding emission rates for California flash and dry steam geothermal power plants. This stage of the life cycle is the fuel use component of the fuel cycle and arises during plant operation. Despite that no fossil fuels are being consumed during operation of these plants, GHG emissions nevertheless arise from GHGs present in the geofluids and dry steam that get released to the atmosphere upon passing through the system. Data for the years of 2008 to 2012 are analyzed.

  10. Greenhouse Gas emissions from California Geothermal Power Plants

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sullivan, John

    2014-03-14

    The information given in this file represents GHG emissions and corresponding emission rates for California flash and dry steam geothermal power plants. This stage of the life cycle is the fuel use component of the fuel cycle and arises during plant operation. Despite that no fossil fuels are being consumed during operation of these plants, GHG emissions nevertheless arise from GHGs present in the geofluids and dry steam that get released to the atmosphere upon passing through the system. Data for the years of 2008 to 2012 are analyzed.

  11. How a Geothermal Power Plant Works (Simple) | Department of Energy

    Energy.gov (indexed) [DOE]

    Heat from the Earth, or geothermal - Geo (Earth) + thermal (heat) - energy is accessed by drilling water or steam wells in a process similar to drilling for oil. Geothermal power ...

  12. Amatitlan Geothermal Power Plant | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Volcanic Arc Chain Plant Information Facility Type Back Pressure Steam, Binary Owner Empresa de Generacion de Energia Electrica del INDE Developer Ormat Energy Purchaser...

  13. California Geothermal Power Plant to Help Meet High Lithium Demand

    Energy.gov [DOE]

    Ever wonder how we get the materials for the advanced batteries that power our cell phones, laptops, and even some electric vehicles? The U.S. Department of Energy's Geothermal Technologies Program (GTP) is working with California's Simbol Materials to develop technologies that extract battery materials like lithium, manganese, and zinc from geothermal brines produced during the geothermal production process.

  14. East Mesa Magmamax Power Process Geothermal Generating Plant...

    Office of Scientific and Technical Information (OSTI)

    of geothermal resources would be of the hydrothermal, or pressurized hot water type. ... WELLS; HEAT EXCHANGERS; HOT SPRINGS; HOT WATER; IMPERIAL VALLEY; MAGMA; PILOT PLANTS; ...

  15. Worldwide Geothermal Power Plants: Status as of June 1980

    SciTech Connect (OSTI)

    DiPippo, Ronald

    1980-12-01

    There are 100 geothermal power units now in operation throughout 12 countries, with a total installed capacity of just over 2110 MW. The average unit thus is rated at 21.1 MW. Newer units may be broadly classified as follows: (a) wellhead units of less than 5 MW; (b) small plants of about 10 MW; (c) medium plants of 30-35 MW; (d) large plants of about 55 MW; and (e) complexes typically consisting of several 55 MW units in a large geothermal field. There is a trend toward turbine units of the double-flow type with a 55 MW rating, used either alone or in a tandem-compound arrangement giving 110 MW in a single power house. This is particularly evident at The Geysers field in California. Double-flash units (separated-steam followed by a surface flash) are suited to high quality reservoirs having high temperature, high steam fractions at the wellhead, and low scaling potential. Single-flash units (separated steam) may be called for where scaling by the spent brine is a potential problem for the liquid disposal system. Binary plants are being used for some very low temperature reservoirs, particularly in the People's Republic of China, albeit in extremely small units. A large-scale pilot plant of the binary type is being planned for the Imperial Valley of California.

  16. Small-Scale Geothermal Power Plant Field Verification Projects: Preprint

    SciTech Connect (OSTI)

    Kutscher, C.

    2001-07-03

    In the spring of 2000, the National Renewable Energy Laboratory issued a Request for Proposal for the construction of small-scale (300 kilowatt [kW] to 1 megawatt [MW]) geothermal power plants in the western United States. Five projects were selected for funding. Of these five, subcontracts have been completed for three, and preliminary design work is being conducted. The three projects currently under contract represent a variety of concepts and locations: a 1-MW evaporatively enhanced, air-cooled binary-cycle plant in Nevada; a 1-MW water-cooled Kalina-cycle plant in New Mexico; and a 750-kW low-temperature flash plant in Utah. All three also incorporate direct heating: onion dehydration, heating for a fish hatchery, and greenhouse heating, respectively. These projects are expected to begin operation between April 2002 and September 2003. In each case, detailed data on performance and costs will be taken over a 3-year period.

  17. EA-1849-S1: Phase II Facility- Ormat Tuscarora Geothermal Power Plant in Tuscarora, NV

    Office of Energy Efficiency and Renewable Energy (EERE)

    This Supplemental Environmental Assessment (SEA) will evaluate the potential impacts of the Phase II Facility of the Ormat Tuscarora Geothermal Power Plant.

  18. Occidental Geothermal, Inc. , Oxy Geothermal Power Plant No. 1: draft environmental impact report

    SciTech Connect (OSTI)

    Not Available

    1981-08-01

    The following aspects of the proposed geothermal power plant are discussed: the project description; the environment in the vicinity of project as it exists before the project begins, from both a local and regional perspective; the adverse consequences of the project, any significant environmental effects which cannot be avoided, and any mitigation measures to minimize significant effects; the potential feasible alternatives to the proposed project; the significant unavoidable, irreversible, and long-term environmental impacts; and the growth inducing impacts. (MHR)

  19. Cove Fort Geothermal Power Plant | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Plant Information Facility Type Binary Owner Enel Green Power Developer Enel Green Power Energy Purchaser Ormat Commercial Online Date 2013 Power Plant Data Type of Plant Number...

  20. Purchase and Installation of a Geothermal Power Plant to Generate Electricity Using Geothermal Water Resources

    Office of Energy Efficiency and Renewable Energy (EERE)

    Project objectives: Demonstrate technical and financial feasibility of the use of an existing low-temperature geothermal resource for combined heat and power; and Maintain and enhance existing geothermal district heating operation.

  1. Reduction of operations and maintenance costs at geothermal power plants

    SciTech Connect (OSTI)

    Bruton, C.J.; Stevens, C.G.; Rard, J.A.; Kasameyer, P.W.

    1997-12-31

    To reduce chemical costs at geothermal power plants, we are investigating: (a) improved chemical processes associated with H{sub 2}S abatement techniques, and (b) the use of cross dispersive infrared spectrometry to monitor accurately, reliably, and continuously H{sub 2}S emissions from cooling towers. The latter is a new type of infrared optical technology developed by LLNL for non-proliferation verification. Initial work is focused at The Geysers in cooperation with Pacific Gas and Electric. Methods for deploying the spectrometer on-site at The Geysers are being developed. Chemical analysis of solutions involved in H{sub 2}S abatement technologies is continuing to isolate the chemical forms of sulfur produced.

  2. BACA Project: geothermal demonstration power plant. Final report

    SciTech Connect (OSTI)

    Not Available

    1982-12-01

    The various activities that have been conducted by Union in the Redondo Creek area while attempting to develop the resource for a 50 MW power plant are described. The results of the geologic work, drilling activities and reservoir studies are summarized. In addition, sections discussing the historical costs for Union's involvement with the project, production engineering (for anticipated surface equipment), and environmental work are included. Nineteen geothermal wells have been drilled in the Redondo Creek area of the Valles Caldera: a prominent geologic feature of the Jemez mountains consisting of Pliocene and Pleistocene age volcanics. The Redondo Creek area is within a complex longitudinal graben on the northwest flank of the resurgent structural dome of Redondo Peak and Redondo Border. The major graben faults, with associated fracturing, are geologically plausible candidates for permeable and productive zones in the reservoir. The distribution of such permeable zones is too erratic and the locations too imprecisely known to offer an attractive drilling target. Log analysis indicates there is a preferred mean fracture strike of N31W in the upper portion of Redondo Creek wells. This is approximately perpendicular to the major structure in the area, the northeast-striking Redondo Creek graben. The geothermal fluid found in the Redondo Creek reservoir is relatively benign with low brine concentrations and moderate H/sub 2/S concentrations. Geothermometer calculations indicate that the reservoir temperature generally lies between 500/sup 0/F and 600/sup 0/F, with near wellbore flashing occurring during the majority of the wells' production.

  3. Cooling tower fill fouling control in a geothermal power plant

    SciTech Connect (OSTI)

    Yu, F.P.; Ginn, L.D.; McCoy, W.F.; Castanieto, H.

    1998-12-31

    Since its first introduction to the market in the 1970s, cooling tower film fill technology has significantly increased thermal performance and reduced the size of cooling towers. However, the narrow spaces between film fill sheets make them susceptible to fouling. Without proper chemical treatment, deposits can accumulate within the film fill resulting in reduced tower efficiency, increased fouling and plugging of the fill. These phenomena could eventually lead to collapse of the tower structure, This paper describes a new approach to remedy the high efficiency film fill fouling problem in a geothermal power plant. The plant has a long history of fill fouling problems due to a very complex make-up water chemistry and desert-related environmental conditions. In recent years, various biocide and biodispersant treatments have significantly improved fouling control by slowing down tower fill deposition rates. However, no program has been successful in reducing fill weights, especially during the summer months. Within six weeks after starting a new control program, the average weight of the tower fill deposits dropped 22% and thermal performance of the cooling tower increased 20%. The treatment resulted in significant improvements in cooling tower operation and power production efficiency.

  4. Documentation of the status of international geothermal power plants and a list by country of selected geothermally active governmental and private sector entities

    SciTech Connect (OSTI)

    Not Available

    1992-10-01

    This report includes the printouts from the International Geothermal Power Plant Data Base and the Geothermally Active Entity Data Base. Also included are the explanation of the abbreviations used in the power plant data base, maps of geothermal installations by country, and data base questionnaires and mailing lists.

  5. Tailored Working Fluids for Enhanced Binary Geothermal Power...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Tailored Working Fluids for Enhanced Binary Geothermal Power Plants Tailored Working Fluids for Enhanced Binary Geothermal Power Plants DOE Geothermal Program Peer Review 2010 - ...

  6. Tailored Working Fluids for Enhanced Binary Geothermal Power Plants

    SciTech Connect (OSTI)

    Mahmoud, Ahmad

    2013-01-29

    United Technologies Research Center (UTRC), in collaboration with the Georgia Institute of Technology and the National Institute of Standards and Technology will evaluate and develop fundamental and component level models, conduct experiments and generate data to support the use of mixed or enhanced working fluids for geothermal power generation applications.

  7. Environmental auditing of the Kamojang Geothermal Power Plant - Indonesia

    SciTech Connect (OSTI)

    Radja, V.T.; SulasdI, D.

    1996-12-31

    Environmental Auditing of the Kamojang Geothermal Power Station is based on a monitoring programme which focuses on those potential adverse environmental impacts identified in the Environmental Impact Analysis. Information gained from environmental monitoring with regard to the environmental quality shows that an adverse impact do not occur.

  8. Los Humeros III Geothermal Power Plant | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    icon":"","group":"","inlineLabel":"","visitedicon":"" Hide Map Location Chignautla, Puebla, Mexico County Puebla, Mexico Geothermal Area Los Humeros Geothermal Area Geothermal...

  9. Turkerler Alasehir Geothermal Power Plant | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    "","icon":"","group":"","inlineLabel":"","visitedicon":"" Hide Map Location Manisa, Turkey County Alasehir Geothermal Area Alasehir Geothermal Area Geothermal Region Aegean-West...

  10. Allen, C.A. 15 GEOTHERMAL ENERGY; 20 FOSSIL-FUELED POWER PLANTS...

    Office of Scientific and Technical Information (OSTI)

    Liquid-fluidized-bed heat exchanger flow distribution models Cole, L.T.; Allen, C.A. 15 GEOTHERMAL ENERGY; 20 FOSSIL-FUELED POWER PLANTS; FLUIDIZED BED HEAT EXCHANGERS; DESIGN;...

  11. North Brawley Geothermal Power Plant | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Zone Plant Information Facility Type Binary Cycle Power Plant Owner Ormat Developer Ormat Energy Purchaser Southern California Edison Number of Units 5 Commercial Online Date 2010...

  12. Kizildere II Geothermal Power Plant | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Information Facility Type Double Flash, Binary Owner Zorlu Enerji Developer Zorlu Enerji Energy Purchaser TEDAS Commercial Online Date 2013 Power Plant Data Type of Plant Number...

  13. Los Azufres II Geothermal Power Plant | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Transmexican Volcanic Belt Plant Information Facility Type Single Flash Developer Alstom Energy Purchaser Comisin Federal de Electricidad Commercial Online Date 2003 Power Plant...

  14. Compound hybrid geothermal-fossil power plants: thermodynamic...

    Office of Scientific and Technical Information (OSTI)

    SUPERHEATING; THERMODYNAMICS; WELL TEMPERATURE; WELLHEADS; WESTERN REGION; HEATING; HYDROGEN COMPOUNDS; NORTH AMERICA; OXYGEN COMPOUNDS; POWER PLANTS; RESERVOIR TEMPERATURE;...

  15. Ngawha Geothermal Power Station | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Geothermal Region Plant Information Facility Type Binary Cycle Power Plant Owner Top Energy Number of Units 3 1 Commercial Online Date 1998 Power Plant Data Type of Plant...

  16. The Chena Hot Springs 400kw Geothermal Power Plant: Experience...

    Open Energy Information (Open El) [EERE & EIA]

    Low efficiency requiresincreased power plant equipment size (turbine, condenser,pump and boiler) that can ordinarily become cost prohibitive.One of the main goals for the...

  17. City of Klamath Falls, Oregon Geothermal Power Plant Feasibility Study

    SciTech Connect (OSTI)

    Brian Brown, PE; Stephen Anderson, PE, Bety Riley

    2011-07-31

    The purpose of the Klamath Falls project is to demonstrate the effectiveness of a combined thermal distribution system and power generation facility. The city of Klamath Falls operates a geothermal district heating system which would appear to be an attractive opportunity to install a power generation system. Since the two wells have operated reliably and consistently over many years, no new sources or resource exploration would be necessary. It appears that it will cost more to construct, operate, maintain and amortize a proposed geothermal facility than the long?term value of the power it would produce. The success of a future project will be determined by whether utility power production costs will remain low and whether costs of construction, operations, or financing may be reduced. There are areas that it would be possible to reduce construction cost. More detailed design could enable the city to obtain more precise quotes for components and construction, resulting in reduction in contingency projections. The current level of the contingency for uncertainty of costs is between $200,000 and $300,000. Another key issue with this project appears to be operation cost. While it is expected that only minimal routine monitoring and operating expenses will occur, the cost of water supply and waste water disposal represents nearly one quarter of the value of the power. If the cost of water alone could be reduced, the project could become viable. In addition, the projected cost of insurance may be lower than estimated under a city?wide policy. No provisions have been made for utilization of federal tax incentives. If a transaction with a third-party owner/taxpayer were to be negotiated, perhaps the net cost of ownership could be reduced. It is recommended that these options be investigated to determine if the costs and benefits could be brought together. The project has good potential, but like many alternative energy projects today, they only work economically if the

  18. Evaluation of a superheater enhanced geothermal steam power plant in the Geysers area. Final report

    SciTech Connect (OSTI)

    Janes, J.

    1984-06-01

    This study was conducted to determine the attainable generation increase and to evaluate the economic merits of superheating the steam that could be used in future geothermal steam power plants in the Geyser-Calistoga Known Geothermal Resource Area (KGRA). It was determined that using a direct gas-fired superheater offers no economic advantages over the existing geothermal power plants. If the geothermal steam is heated to 900/sup 0/F by using the exhaust energy from a gas turbine of currently available performance, the net reference plant output would increase from 65 MW to 159 MW (net). Such hybrid plants are cost effective under certain conditions identified in this document. The power output from the residual Geyser area steam resource, now equivalent to 1437 MW, would be more than doubled by employing in the future gas turbine enhancement. The fossil fuel consumed in these plants would be used more efficiently than in any other fossil-fueled power plant in California. Due to an increase in evaporative losses in the cooling towers, the viability of the superheating concept is contingent on development of some of the water resources in the Geysers-Calistoga area to provide the necessary makeup water.

  19. California Geothermal Power Plant to Help Meet High Lithium Demand...

    Energy.gov (indexed) [DOE]

    phones, laptops, and even some electric vehicles? The U.S. Department of Energy's Geothermal Technologies Program (GTP) is working with California's Simbol Materials to develop...

  20. Tailored Working Fluids for Enhanced Binary Geothermal Power Plants

    Office of Energy Efficiency and Renewable Energy (EERE)

    DOE Geothermal Program Peer Review 2010 - Presentation. Project Objective: To improve the utilization of available energy in geothermal resources and increase the energy conversion efficiency of systems employed by a) tailoring the subcritical and/or supercritical glide of enhanced working fluids to best match thermal resources, and b) identifying appropriate thermal system and component designs for the down-selected working fluids.

  1. Geothermal Plant Capacity Factors

    SciTech Connect (OSTI)

    Greg Mines; Jay Nathwani; Christopher Richard; Hillary Hanson; Rachel Wood

    2015-01-01

    The capacity factors recently provided by the Energy Information Administration (EIA) indicated this plant performance metric had declined for geothermal power plants since 2008. Though capacity factor is a term commonly used by geothermal stakeholders to express the ability of a plant to produce power, it is a term frequently misunderstood and in some instances incorrectly used. In this paper we discuss how this capacity factor is defined and utilized by the EIA, including discussion on the information that the EIA requests from operations in their 923 and 860 forms that are submitted both monthly and annually by geothermal operators. A discussion is also provided regarding the entities utilizing the information in the EIA reports, and how those entities can misinterpret the data being supplied by the operators. The intent of the paper is to inform the facility operators as the importance of the accuracy of the data that they provide, and the implications of not providing the correct information.

  2. Water Use in the Development and Operations of Geothermal Power...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Water Use in the Development and Operations of Geothermal Power Plants Water Use in the Development and Operations of Geothermal Power Plants This report summarizes what is...

  3. Water Use in the Development and Operations of Geothermal Power...

    Energy Savers

    Water Use in the Development and Operations of Geothermal Power Plants Water Use in the Development and Operations of Geothermal Power Plants This report summarizes what is ...

  4. Water Use in the Development and Operation of Geothermal Power...

    Energy Savers

    Operation of Geothermal Power Plants Water Use in the Development and Operation of Geothermal Power Plants This report summarizes what is currently known about the life cycle water ...

  5. Water use in the development and operation of geothermal power plants.

    SciTech Connect (OSTI)

    Clark, C. E.; Harto, C. B.; Sullivan, J. L.; Wang, M. Q.

    2010-09-17

    Geothermal energy is increasingly recognized for its potential to reduce carbon emissions and U.S. dependence on foreign oil. Energy and environmental analyses are critical to developing a robust set of geothermal energy technologies. This report summarizes what is currently known about the life cycle water requirements of geothermal electric power-generating systems and the water quality of geothermal waters. It is part of a larger effort to compare the life cycle impacts of large-scale geothermal electricity generation with other power generation technologies. The results of the life cycle analysis are summarized in a companion report, Life Cycle Analysis Results of Geothermal Systems in Comparison to Other Power Systems. This report is divided into six chapters. Chapter 1 gives the background of the project and its purpose, which is to inform power plant design and operations. Chapter 2 summarizes the geothermal electricity generation technologies evaluated in this study, which include conventional hydrothermal flash and binary systems, as well as enhanced geothermal systems (EGS) that rely on engineering a productive reservoir where heat exists but water availability or permeability may be limited. Chapter 3 describes the methods and approach to this work and identifies the four power plant scenarios evaluated: a 20-MW EGS plant, a 50-MW EGS plant, a 10-MW binary plant, and a 50-MW flash plant. The two EGS scenarios include hydraulic stimulation activities within the construction stage of the life cycle and assume binary power generation during operations. The EGS and binary scenarios are assumed to be air-cooled power plants, whereas the flash plant is assumed to rely on evaporative cooling. The well field and power plant design for the scenario were based on simulations using DOE's Geothermal Economic Technology Evaluation Model (GETEM). Chapter 4 presents the water requirements for the power plant life cycle for the scenarios evaluated. Geology, reservoir

  6. Resource Evaluation and Development Plans for a 120 MW Geothermal Power Plant on Milos Island, Greece

    SciTech Connect (OSTI)

    Economides, M.J.; Ehlig-Economides, C.A.; Speliotis, G.; Vrouzi, F.

    1983-12-15

    Five deep wells have been drilled on the Island of Milos, Greece, identifying a high-temperature, high-enthalpy geothermal reservoir. The thermodynamic properties of the fluid, and the estimated porosity and presumed thickness of the formation suggest a fluid and heat storage capacity that could support a 60 MWe power plant for 85 years or a 120 MWe for half that time. The existing five wells can deliver 180 t/h of steam at 10 bar abs pressure, capable of generating a maximum electric power output of slightly less than 20 MWe. This paper describes the geology, the drilling and the well testing results pertaining to the five wells, and discusses the reservoir potential for a 60 MWe geothermal power plant.

  7. Retrofitting a geothermal power plant to optimize performance: A case study

    SciTech Connect (OSTI)

    Kanoglu, M.; Cengel, Y.A.

    1999-07-01

    Performance evaluation of a 12.8 MW single-flash design geothermal power plant in Northern Nevada is conducted using actual plant operating data, and potential improvement sites are identified. The unused geothermal brine reinjected back to the ground is determined to represent about 50% of the energy and 40% of the exergy available in the reservoir. The first and second law efficiencies of the plant are determined to be 6% and 22%, respectively. Optimizing the existing single-flash system is shown to increase the net power output by up to 4%. Some well-known geothermal power generation technologies including double-glass, binary, and, combined flash/binary designs as alternative to the existing system are evaluated and their optimum operating conditions are determined. It is found that a double-flash design, a binary design, and a combined flash/binary design can increase the net power output by up to 31%, 35%, and 54%, respectively, at optimum operating conditions. An economic comparison of these designs appears to favor the combined flash/binary design, followed by the double-glass design.

  8. EIS-0049: Geothermal Demonstration Program 50-MW Power Plant-Baca Ranch, Sandoval and Rio Arriba Counties, New Mexico

    Energy.gov [DOE]

    The U.S. Department of Energy (DOE) developed this EIS to evaluate the environmental impacts of joint funding by DOE and commercial partners of a 50-megawatt demonstration geothermal power plant at the Baca Location in Sandoval County, New Mexico, including construction of the geothermal well field and transmission line.

  9. Sacramento Municipal Utility District Geothermal Power Plant, SMUDGEO No. 1. Final report

    SciTech Connect (OSTI)

    Not Available

    1981-02-01

    The proposed construction of 72-MW geothermal power plant is discussed. The following aspects are covered: the project as proposed by the utility; the environmental setting; the adverse consequences of the project, any significant environmental effects which cannot be avoided, and any mitigation measures to minimize significant effects; the potential feasible alternatives to the proposed project; the significant unavoidable, irreversible, and long-term environmental impacts; and the Growth Inducing Impacts. (MHR)

  10. Water Use in the Development and Operations of Geothermal Power Plants

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report summarizes what is currently known about the life cycle water requirements of geothermal electric power-generating systems and the water quality of geothermal waters. It is part of a larger effort to compare the life cycle impacts of large-scale geothermal electricity generation with other power generation technologies.

  11. Water Use in the Development and Operation of Geothermal Power Plants

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report summarizes what is currently known about the life cycle water requirements of geothermal electric power-generating systems and the water quality of geothermal waters. It is part of a larger effort to compare the life cycle impacts of large-scale geothermal electricity generation with other power generation technologies.

  12. Miravalles II Geothermal Power Plant | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Chain Plant Information Facility Type Single Flash Owner Instituto Costaricense de Electricidad Developer West Japan Engineering, Marubeni, Ansaldo Number of Units 1 1...

  13. Miravalles III Geothermal Power Plant | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Chain Plant Information Facility Type Single Flash Owner Instituto Costaricense de Electricidad Developer Geoenergia de Guanacaste, Limitada Number of Units 1 Commercial Online...

  14. Purchase and Installation of a Geothermal Power Plant to Generate...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    CW-1 CW-2 Heat Exchanger Building 8" Supply Pipeline 4" - 6"- 8" Distribution System 4" - ... production * Oregon DEQ: Injection permit modification for power production * FERC ...

  15. RAPID/Geothermal/Power Plant | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    transmission, delivery, or furnishing of light, power, heat, cold, water, gar, or oil. However, the definition of public utility does not include any user, owner, or...

  16. Olkaria III Geothermal Power Plant | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Type Single Flash Owner Ormat Technologies, Inc. Developer Ormat Technologies, Inc. Energy Purchaser Kenya Power and Lighting Company Limited Commercial Online Date 2014...

  17. California Geothermal Power Plant to Help Meet High Lithium Demand...

    Office of Environmental Management (EM)

    Ever wonder how we get the materials for the advanced batteries that power our cell ... to manufacture its high concentration photovoltaic (HCPV) solar modules and is expected ...

  18. Verkhne-Mutnovskaya Geothermal Power Plant | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Region Kuril-Kamchatka Arc Plant Information Facility Type Single Flash Owner Experimental-Industrial Verkhne-Mutnovskaya GeoPP Number of Units 3 Commercial Online Date 1998...

  19. Comparative analysis of alternative means for removing noncondensable gases from flashed-steam geothermal power plants

    SciTech Connect (OSTI)

    Vorum, M.; Fitzler, E.

    2000-06-20

    This is a final report on a screening study to compare six methods of removing noncondensable gases from direct-use geothermal steam power plants. This report defines the study methodologies and compares the performance and economics of selected gas-removal systems. Recommendations are presented for follow-up investigations and implementation of some of the technologies discussed. The specific gas-removal methods include five vacuum system configurations using the conventional approach of evacuating gas/vapor mixtures from the power plant condenser system and a system for physical separation of steam and gases upstream of the power turbine. The study focused on flashed-steam applications, but the results apply equally well to flashed-steam and dry-steam geothermal power plant configurations. Two gas-removal options appear to offer profitable economic potential. The hybrid vacuum system configurations and the reboiler process yield positive net present value results over wide-ranging gas concentrations. The hybrid options look favorable for both low-temperature and high-temperature resource applications. The reboiler looks profitable for low-temperature resource applications for gas levels above about 20,000 parts per million by volume. A vacuum system configuration using a three-stage turbocompressor battery may be profitable for low-temperature resources, but results show that the hybrid system is more profitable. The biphase eductor alternative cannot be recommended for commercialization at this time.

  20. Enel Green Power- Innovative Geothermal Power for Nevada | Open...

    Open Energy Information (Open El) [EERE & EIA]

    Geothermal Power for Nevada Abstract Two binary geothermal power plants inaugurated today with a total capacity of 65 MW: They will generate enough energy to meet the needs of...

  1. Multi-scale evaporator architectures for geothermal binary power plants

    SciTech Connect (OSTI)

    Sabau, Adrian S; Nejad, Ali; Klett, James William; Bejan, Adrian

    2016-01-01

    In this paper, novel geometries of heat exchanger architectures are proposed for evaporators that are used in Organic Rankine Cycles. A multi-scale heat exchanger concept was developed by employing successive plenums at several length-scale levels. Flow passages contain features at both macro-scale and micro-scale, which are designed from Constructal Theory principles. Aside from pumping power and overall thermal resistance, several factors were considered in order to fully assess the performance of the new heat exchangers, such as weight of metal structures, surface area per unit volume, and total footprint. Component simulations based on laminar flow correlations for supercritical R134a were used to obtain performance indicators.

  2. Alternative Geothermal Power Production Scenarios

    SciTech Connect (OSTI)

    Sullivan, John

    2014-03-14

    The information given in this file pertains to Argonne LCAs of the plant cycle stage for a set of ten new geothermal scenario pairs, each comprised of a reference and improved case. These analyses were conducted to compare environmental performances among the scenarios and cases. The types of plants evaluated are hydrothermal binary and flash and Enhanced Geothermal Systems (EGS) binary and flash plants. Each scenario pair was developed by the LCOE group using GETEM as a way to identify plant operational and resource combinations that could reduce geothermal power plant LCOE values. Based on the specified plant and well field characteristics (plant type, capacity, capacity factor and lifetime, and well numbers and depths) for each case of each pair, Argonne generated a corresponding set of material to power ratios (MPRs) and greenhouse gas and fossil energy ratios.

  3. Alternative Geothermal Power Production Scenarios

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sullivan, John

    The information given in this file pertains to Argonne LCAs of the plant cycle stage for a set of ten new geothermal scenario pairs, each comprised of a reference and improved case. These analyses were conducted to compare environmental performances among the scenarios and cases. The types of plants evaluated are hydrothermal binary and flash and Enhanced Geothermal Systems (EGS) binary and flash plants. Each scenario pair was developed by the LCOE group using GETEM as a way to identify plant operational and resource combinations that could reduce geothermal power plant LCOE values. Based on the specified plant and well field characteristics (plant type, capacity, capacity factor and lifetime, and well numbers and depths) for each case of each pair, Argonne generated a corresponding set of material to power ratios (MPRs) and greenhouse gas and fossil energy ratios.

  4. Investigations of supercritical CO2 Rankine cycles for geothermal power plants

    SciTech Connect (OSTI)

    Sabau, Adrian S; Yin, Hebi; Qualls, A L; McFarlane, Joanna

    2011-01-01

    Supercritical CO2 Rankine cycles are investigated for geothermal power plants. The system of equations that describe the thermodynamic cycle is solved using a Newton-Rhapson method. This approach allows a high computational efficiency of the model when thermophysical properties of the working fluid depend strongly on the temperature and pressure. Numerical simulation results are presented for different cycle configurations in order to assess the influences of heat source temperature, waste heat rejection temperatures and internal heat exchanger design on cycle efficiency. The results show that thermodynamic cycle efficiencies above 10% can be attained with the supercritical brayton cycle while lower efficiencies can be attained with the transcritical CO2 Rankine cycle.

  5. Assessment of Evaporative Cooling Enhancement Methods for Air-Cooled Geothermal Power Plants: Preprint

    SciTech Connect (OSTI)

    Kutscher, C.; Costenaro, D.

    2002-08-01

    Many binary-cycle geothermal power plants are air cooled because insufficient water is available to provide year-round water cooling. The performance of air-cooled geothermal plants is highly dependent on the dry bulb temperature of the air (much more so than fossil fuel plants that operate at higher boiler temperatures), and plant electric output can drop by 50% or more on hot summer days, compared to winter performance. This problem of reduced summer performance is exacerbated by the fact that electricity has a higher value in the summer. This paper describes a spreadsheet model that was developed to assess the cost and performance of four methods for using supplemental evaporative cooling to boost summer performance: (1) pre-cooling with spray nozzles, (2) pre-cooling with Munters media, (3) a hybrid combination of nozzles and Munters media, and (4) direct deluge cooling of the air-cooled condenser tubes. Although all four options show significant benefit, deluge cooling has the potential to be the most economic. However, issues of scaling and corrosion would need to be addressed.

  6. Advanced Condenser Boosts Geothermal Power Plant Output (Fact Sheet), The Spectrum of Clean Energy Innovation

    SciTech Connect (OSTI)

    Not Available

    2010-12-01

    When power production at The Geysers geothermal power complex began to falter, the National Renewable Energy Laboratory (NREL) stepped in, developing advanced condensing technology that dramatically boosted production efficiency - and making a major contribution to the effective use of geothermal power. NREL developed advanced direct-contact condenser (ADCC) technology to condense spent steam more effectively, improving power production efficiency in Unit 11 by 5%.

  7. Interim Report: Air-Cooled Condensers for Next Generation Geothermal Power Plants Improved Binary Cycle Performance

    SciTech Connect (OSTI)

    Daniel S. Wendt; Greg L. Mines

    2010-09-01

    As geothermal resources that are more expensive to develop are utilized for power generation, there will be increased incentive to use more efficient power plants. This is expected to be the case with Enhanced Geothermal System (EGS) resources. These resources will likely require wells drilled to depths greater than encountered with hydrothermal resources, and will have the added costs for stimulation to create the subsurface reservoir. It is postulated that plants generating power from these resources will likely utilize the binary cycle technology where heat is rejected sensibly to the ambient. The consumptive use of a portion of the produced geothermal fluid for evaporative heat rejection in the conventional flash-steam conversion cycle is likely to preclude its use with EGS resources. This will be especially true in those areas where there is a high demand for finite supplies of water. Though they have no consumptive use of water, using air-cooling systems for heat rejection has disadvantages. These systems have higher capital costs, reduced power output (heat is rejected at the higher dry-bulb temperature), increased parasitics (fan power), and greater variability in power generation on both a diurnal and annual basis (larger variation in the dry-bulb temperature). This is an interim report for the task ‘Air-Cooled Condensers in Next- Generation Conversion Systems’. The work performed was specifically aimed at a plant that uses commercially available binary cycle technologies with an EGS resource. Concepts were evaluated that have the potential to increase performance, lower cost, or mitigate the adverse effects of off-design operation. The impact on both cost and performance were determined for the concepts considered, and the scenarios identified where a particular concept is best suited. Most, but not all, of the concepts evaluated are associated with the rejection of heat. This report specifically addresses three of the concepts evaluated: the use of

  8. Thermodynamic evaluation of a single-flash geothermal power plant in Nevada

    SciTech Connect (OSTI)

    Kanoglu, M.; Cengel, Y.A.; Turner, R.H.

    1996-12-31

    First and second law analysis of a 12.5 MW single-flash design geothermal power plant in Nevada is performed using actual plant data, and alternatives are investigated to improve its performance. Exergy destruction throughout the plant is quantified and illustrated using an exergy cascade. The major source of exergy destruction is reinjection of brine after its separation from the steam. It accounts for 48.5% of total exergy destruction. The first and the second law efficiencies of the plant are calculated to be 5.7% and 21.6%, respectively, based on the exergy of the geofluid at downwell. These values seem to be very low. The analysis of alternative designs are based on the exergy analysis. Among the alternatives investigated, a double-flash design would increase the net power output by 4.5 MW (or 36%), depending on the secondary flash pressure chosen. The combined single-flash/binary design would increase the net power output by about 5.0 MW depending on the working fluid chosen.

  9. The geothermal power organization

    SciTech Connect (OSTI)

    Scholl, K.L.

    1997-12-31

    The Geothermal Power Organization is an industry-led advisory group organized to advance the state-of-the-art in geothermal energy conversion technologies. Its goal is to generate electricity from geothermal fluids in the most cost-effective, safe, and environmentally benign manner possible. The group achieves this goal by determining the Member`s interest in potential solutions to technological problems, advising the research and development community of the needs of the geothermal energy conversion industry, and communicating research and development results among its Members. With the creation and adoption of a new charter, the Geothermal Power Organization will now assist the industry in pursuing cost-shared research and development projects with the DOE`s Office of Geothermal Technologies.

  10. Rancia Geothermal Power Station | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Station General Information Name Rancia Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area...

  11. Sesta Geothermal Power Station | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Station General Information Name Sesta Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  12. Farinello Geothermal Power Station | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Station General Information Name Farinello Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  13. Pianacce Geothermal Power Station | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Station General Information Name Pianacce Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area...

  14. Nuova Sasso Geothermal Power Station | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    General Information Name Nuova Sasso Geothermal Power Station Sector Geothermal energy Location Information Geothermal Resource Area Larderello Geothermal Area Geothermal...

  15. Scale Resistant Heat Exchanger for Low Temperature Geothermal Binary Cycle Power Plant

    SciTech Connect (OSTI)

    Hays, Lance G.

    2014-11-18

    Phase 1 of the investigation of improvements to low temperature geothermal power systems was completed. The improvements considered were reduction of scaling in heat exchangers and a hermetic turbine generator (eliminating seals, seal system, gearbox, and lube oil system). A scaling test system with several experiments was designed and operated at Coso geothermal resource with brine having a high scaling potential. Several methods were investigated at the brine temperature of 235 ºF. One method, circulation of abradable balls through the brine passages, was found to substantially reduce scale deposits. The test heat exchanger was operated with brine outlet temperatures as low as 125 ºF, which enables increased heat input available to power conversion systems. For advanced low temperature cycles, such as the Variable Phase Cycle (VPC) or Kalina Cycle, the lower brine temperature will result in a 20-30% increase in power production from low temperature resources. A preliminary design of an abradable ball system (ABS) was done for the heat exchanger of the 1 megawatt VPC system at Coso resource. The ABS will be installed and demonstrated in Phase 2 of this project, increasing the power production above that possible with the present 175 ºF brine outlet limit. A hermetic turbine generator (TGH) was designed and manufacturing drawings produced. This unit will use the working fluid (R134a) to lubricate the bearings and cool the generator. The 200 kW turbine directly drives the generator, eliminating a gearbox and lube oil system. Elimination of external seals eliminates the potential of leakage of the refrigerant or hydrocarbon working fluids, resulting in environmental improvement. A similar design has been demonstrated by Energent in an ORC waste heat recovery system. The existing VPC power plant at Coso was modified to enable the “piggyback” demonstration of the TGH. The existing heat exchanger, pumps, and condenser will be operated to provide the required

  16. Mixtures of SF6 CO2 as working fluids for geothermal power plants

    SciTech Connect (OSTI)

    Yin, Hebi; Sabau, Adrian S; Conklin, Jim; McFarlane, Joanna; Qualls, A L

    2013-01-01

    In this paper, supercritical/transcritical thermodynamic cycles using mixtures of SF6 CO2 as working fluids were investigated for geothermal power plants. The system of equations that described the thermodynamic cycle was solved using a Newton-Raphson method. This approach allows a high computational efficiency even when thermophysical properties of the working fluid depend strongly on the temperature and pressure. The thermophysical properties of the mixtures were obtained from National Institute of Standards and Technology (NIST) REFPROP software and constituent cubic equations. The local heat transfer coefficients in the heat exchangers were calculated based on the local properties of the working fluid, geothermal brine, and cooling water. The heat exchanger areas required were calculated. Numerical simulation results presented for different cycle configurations were used to assess the effects of the SF6 fraction in CO2, brine temperature, and recuperator size on the cycle thermal efficiency, and size of heat exchangers for the evaporator and condenser. Optimal thermodynamic cycle efficiencies were calculated to be approximately 13 and 15% mole content of SF6 in a CO2- SF6 mixture for a Brayton cycle and a Rankine cycle, respectively.

  17. Water Use in the Development and Operations of Geothermal Power...

    Energy Savers

    Power Plants Water Use in the Development and Operations of Geothermal Power Plants This report summarizes what is currently known about the life cycle water requirements of ...

  18. Final Environmental Assessment and Finding of No Significant Impact: Small-Scale Geothermal Power Plant and Direct-Use Geothermal Application at AmeriCulture Inc., Cotton City, NM

    SciTech Connect (OSTI)

    N /A

    2002-08-27

    The U.S. Department of Energy (DOE) conducted an Environmental Assessment (EA) of the Small-Scale Power Plant and Direct-Use Application at AmeriCulture, Inc. to evaluate potential impacts of construction and operations that would be funded in part by DOE. Small geothermal power plants have the potential for widespread application, but achieving cost-effectiveness in small plant sizes presents a number of challenges. To address these challenges, DOE is supporting the small-scale field verification projects to (1) determine and validate the economics, performance, and operational characteristics of small-scale geothermal electric power plants in different regions. and (2) determine their ability to provide distributed power in order to facilitate their increased use in the western United States. Through the Geothermal Energy Program, DOE is considering providing financial assistance to Exergy, Inc., of Hayward, California, for the development and field verification of a small-scale, approximately 1 megawatt (MVV), geothermal power plant. The proposed power plant would be located upstream of an existing geothermally-heated fish hatchery owned by AmeriCulture, Inc., of Cotton City, NM. DOE is also considering partially funding AmeriCulture, Inc., for a direct-use geothermal application using fluid discharged from the proposed power plant to heat water for the hatchery. The EA addresses the construction and operation of the small-scale, geothermal power plant and the direct use of geothermal fluid exhausted from the geothermal power plant as a heating source for the hatchery. Two system concepts were investigated. The preferred concept involves cascading the spent geothermal fluid from the proposed geothermal power plant to various thermal processes used for fish production. In the second concept, the proposed power plant would not be built, and the fluid from the existing geothermal well would be used for all direct-use operations associated with the project. DOE

  19. High-potential Working Fluids for Next Generation Binary Cycle Geothermal Power Plants

    SciTech Connect (OSTI)

    Zia, Jalal; Sevincer, Edip; Chen, Huijuan; Hardy, Ajilli; Wickersham, Paul; Kalra, Chiranjeev; Laursen, Anna Lis; Vandeputte, Thomas

    2013-06-29

    A thermo-economic model has been built and validated for prediction of project economics of Enhanced Geothermal Projects. The thermo-economic model calculates and iteratively optimizes the LCOE (levelized cost of electricity) for a prospective EGS (Enhanced Geothermal) site. It takes into account the local subsurface temperature gradient, the cost of drilling and reservoir creation, stimulation and power plant configuration. It calculates and optimizes the power plant configuration vs. well depth. Thus outputs from the model include optimal well depth and power plant configuration for the lowest LCOE. The main focus of this final report was to experimentally validate the thermodynamic properties that formed the basis of the thermo-economic model built in Phase 2, and thus build confidence that the predictions of the model could be used reliably for process downselection and preliminary design at a given set of geothermal (and/or waste heat) boundary conditions. The fluid and cycle downselected was based on a new proprietary fluid from a vendor in a supercritical ORC cycle at a resource condition of 200�C inlet temperature. The team devised and executed a series of experiments to prove the suitability of the new fluid in realistic ORC cycle conditions. Furthermore, the team performed a preliminary design study for a MW-scale turbo expander that would be used for a supercritical ORC cycle with this new fluid. The following summarizes the main findings in the investigative campaign that was undertaken: 1. Chemical compatibility of the new fluid with common seal/gasket/Oring materials was found to be problematic. Neoprene, Viton, and silicone materials were found to be incompatible, suffering chemical decomposition, swelling and/or compression set issues. Of the materials tested, only TEFLON was found to be compatible under actual ORC temperature and pressure conditions. 2. Thermal stability of the new fluid at 200�C and 40 bar was found to be acceptable after 399

  20. Interior Department to Open 190 Million Acres to Geothermal Power...

    Office of Environmental Management (EM)

    ... plant, the first commercial geothermal power plant built in Utah in more than two decades. ... Utah is also slated to host a new 100-megawatt geothermal powerplant, to be located on ...

  1. Salavatli Geothermal Area | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Form" above to add content History and Infrastructure Operating Power Plants: 3 Dora-1 Geothermal Energy Power Plant Dora-2 Geothermal Power Plant Dora-3 Geothermal Power Plant...

  2. Hybrid wood-geothermal power plant, Wendel-Amedee KGRA, Lassen County, California. Identification of environmental issues, second phase

    SciTech Connect (OSTI)

    Not Available

    1981-08-14

    GeoProducts Corporation and the California Department of Water Resources have jointly proposed to develop a 55 MWe power plant in Lassen County, California. The proposed power plant is unique in that it will utilize geothermal heat and wood fuel to generate electrical power, the first attempt to utilize these resources together on a commercial scale. This report identifies requirements for new environmental information that must be generated for permit applications and for preparation of environmental documents required by CEOA and NEPA; presents a schedule for generating new environmental data, for preparing and submitting permit applications, and for obtaining permits; presents a budget for permitting, licensing and environmental assessments as required by applicable laws, regulations and procedures; and investigates the step needed to qualify for a Small Power Plant Exemption by the State Energy Commission.

  3. Geothermal Basics | Department of Energy

    Energy Savers

    Geothermal energy videos and animations: Energy 101: Geothermal Energy How a Geothermal Power Plant Works How an Enhanced Geothermal System Works The Geothermal Technologies Office ...

  4. Brawley Power Plant Abandoned | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Article: Brawley Power Plant Abandoned Abstract NA Authors California Division of Oil, Gas and and Geothermal Resources Published Journal Geothermal Hot Line, 1985 DOI Not...

  5. Niland development project geothermal loan guaranty: 49-MW (net) power plant and geothermal well field development, Imperial County, California: Environmental assessment

    SciTech Connect (OSTI)

    Not Available

    1984-10-01

    The proposed federal action addressed by this environmental assessment is the authorization of disbursements under a loan guaranteed by the US Department of Energy for the Niland Geothermal Energy Program. The disbursements will partially finance the development of a geothermal well field in the Imperial Valley of California to supply a 25-MW(e) (net) power plant. Phase I of the project is the production of 25 MW(e) (net) of power; the full rate of 49 MW (net) would be achieved during Phase II. The project is located on approximately 1600 acres (648 ha) near the city of Niland in Imperial County, California. Well field development includes the initial drilling of 8 production wells for Phase I, 8 production wells for Phase II, and the possible need for as many as 16 replacement wells over the anticipated 30-year life of the facility. Activities associated with the power plant in addition to operation are excavation and construction of the facility and associated systems (such as cooling towers). Significant environmental impacts, as defined in Council on Environmental Quality regulation 40 CFR Part 1508.27, are not expected to occur as a result of this project. Minor impacts could include the following: local degradation of ambient air quality due to particulate and/or hydrogen sulfide emissions, temporarily increased ambient noise levels due to drilling and construction activities, and increased traffic. Impacts could be significant in the event of a major spill of geothermal fluid, which could contaminate groundwater and surface waters and alter or eliminate nearby habitat. Careful land use planning and engineering design, implementation of mitigation measures for pollution control, and design and implementation of an environmental monitoring program that can provide an early indication of potential problems should ensure that impacts, except for certain accidents, will be minimized.

  6. Nesjavellir Geothermal Power Station | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    General Information Name Nesjavellir Geothermal Power Station Sector Geothermal energy Location Information Location Thingvellir, Iceland Coordinates 64.108164743246,...

  7. COMPOUND H Y B R I D GEOTHERMAL-FOSSIL POWER PLANTS BY Ronald...

    Office of Scientific and Technical Information (OSTI)

    ... the energy resources and the power plant is addressed, and an analysis given for a ... rf 1.0, and the improvement in F say, a plant with rf 0 . 0 . fuel resource is the ...

  8. Geothermal Heat Flow and Existing Geothermal Plants | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Geothermal Heat Flow and Existing Geothermal Plants Geothermal Heat Flow and Existing Geothermal Plants Geothermal Heat Flow and Existing Plants With plants in development. Click on the numbers to see the sites. CLOSE About the Points About the Data What is Heat Flow? Heat Flow (mW/m^2) 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 150 250 View All Maps Addthis

  9. Valle Secolo Geothermal Power Station | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Station General Information Name Valle Secolo Geothermal Power Station Sector Geothermal energy Location Information Geothermal Resource Area Larderello Geothermal Area Geothermal...

  10. Raft River binary-cycle geothermal pilot power plant final report

    SciTech Connect (OSTI)

    Bliem, C.J.; Walrath, L.F.

    1983-04-01

    The design and performance of a 5-MW(e) binary-cycle pilot power plant that used a moderate-temperature hydrothermal resource, with isobutane as a working fluid, are examined. Operating problems experienced and solutions found are discussed and recommendations are made for improvements to future power plant designs. The plant and individual systems are analyzed for design specification versus actual performance figures.

  11. Geothermal power plant R and D: an analysis of cost-performance tradeoffs and the Heber Binary-Cycle Demonstration Project

    SciTech Connect (OSTI)

    Cassel, T.A.V.; Amundsen, C.B.; Blair, P.D.

    1983-06-30

    A study of advancements in power plant designs for use at geothermal resources in the low to moderate (300 to 400F) temperature range is reported. In 3 case studies, the benefits of R and D to achieve these advancements are evaluated in terms of expected increases in installed geothermal generating capacity over the next 2 decades. A parametric sensitivity study is discussed which analyzes differential power development for combinations of power plant efficiency and capitol cost. Affordable tradeoffs between plant performance and capital costs are illustrated. The independent review and analysis of the expected costs of construction, operation and maintenance of the Heber Binary Cycle Geothermal Power Demonstration Plant are described. Included in this assessment is an analysis of each of the major cost components of the project, including (1) construction cost, (2) well field development costs, (3) fluid purchase costs, and (4) well field and power plant operation and maintenance costs. The total cost of power generated from the Heber Plant (in terms of mills per kWh) is then compared to the cost of power from alternative fossil-fueled base load units. Also evaluated are the provisions of both: (a) the Cooperative Agreement between the federal government and San Diego Gas and Electric (SDG and E); and (b) the Geothermal Heat Sales Contract with Union Oil Company.

  12. EERE Success Story-California: Geothermal Plant to Help Meet...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Bridging the Gap: Helping Small Businesses With Big Ideas Develop New Industries California Geothermal Power Plant to Help Meet High Lithium Demand Project Overview Positive Impact ...

  13. High Power Laser Innovation Sparks Geothermal Power Potential...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    High Power Laser Innovation Sparks Geothermal Power Potential High Power Laser Innovation Sparks Geothermal Power Potential May 29, 2015 - 11:02am Addthis The Energy Department's ...

  14. Operation and Performance of a Biphase Turbine Power Plant at the Cerro Prieto Geothermal Field (Final Report)

    SciTech Connect (OSTI)

    Hays, Lance G.

    2000-09-01

    A full scale, wellhead Biphase turbine was manufactured and installed with the balance of plant at Well 103 of the Cerro Prieto geothermal resource in Baja, California. The Biphase turbine was first synchronized with the electrical grid of Comision Federal de Electricidad on August 20, 1997. The Biphase power plant was operated from that time until May 23, 2000, a period of 2 years and 9 months. A total of 77,549 kWh were delivered to the grid. The power plant was subsequently placed in a standby condition pending replacement of the rotor with a newly designed, higher power rotor and replacement of the bearings and seals. The maximum measured power output of the Biphase turbine, 808 kWe at 640 psig wellhead pressure, agreed closely with the predicted output, 840 kWe. When combined with the backpressure steam turbine the total output power from that flow would be increased by 40% above the power derived only from the flow by the present flash steam plant. The design relations used to predict performance and design the turbine were verified by these tests. The performance and durability of the Biphase turbine support the conclusion of the Economics and Application Report previously published, (Appendix A). The newly designed rotor (the Dual Pressure Rotor) was analyzed for the above power condition. The Dual Pressure Rotor would increase the power output to 2064 kWe by incorporating two pressure letdown stages in the Biphase rotor, eliminating the requirement for a backpressure steam turbine. The power plant availability was low due to deposition of solids from the well on the Biphase rotor and balance of plant problems. A great deal of plant down time resulted from the requirement to develop methods to handle the solids and from testing the apparatus in the Biphase turbine. Finally an online, washing method using the high pressure two-phase flow was developed which completely eliminated the solids problem. The availability of the Biphase turbine itself was 100

  15. 400kW Geothermal Power Plant at Chena Hot Springs, Alaska | Open...

    Open Energy Information (Open El) [EERE & EIA]

    the cost of powerfrom 30 per kWhr to 5 per kWhr, with further reductions expected once loans to fundproject infrastructure are repaid. Maintenance cost for the power plant is...

  16. Water Use in the Development and Operations of Geothermal Power Plants

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    1 3.4.2 Power Plant: Construction ............................................................................. 12 3.5 Operations ................................................................................................................. 13 3.5.1 Makeup Water ............................................................................................... 14 3.5.2 Cooling Water ............................................................................................... 14 3.6 Water

  17. Geothermal Power of America | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Power of America Jump to: navigation, search Name: Geothermal Power of America Place: Los Angeles, California Sector: Geothermal energy Product: A Nevada-based company focusing on...

  18. Fang Geothermal Power Station | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Power Station General Information Name Fang Geothermal Power Station Sector Geothermal energy Location Information Coordinates 19.961842432467, 99.107366035005 Loading map......

  19. Unalaska geothermal exploration project. Electrical power generation analysis. Final report

    SciTech Connect (OSTI)

    Not Available

    1984-04-01

    The objective of this study was to determine the most cost-effective power cycle for utilizing the Makushin Volcano geothermal resource to generate electricity for the towns of Unalaska and Dutch Harbor. It is anticipated that the geothermal power plant would be intertied with a planned conventional power plant consisting of four 2.5 MW diesel-generators whose commercial operation is due to begin in 1987. Upon its completion in late 1988, the geothermal power plant would primarily fulfill base-load electrical power demand while the diesel-generators would provide peak-load electrical power and emergency power at times when the geothermal power plant would be partially or completely unavailable. This study compares the technical, environmental, and economic adequacy of five state-of-the-art geothermal power conversion processes. Options considered are single- and double-flash steam cycles, binary cycle, hybrid cycle, and total flow cycle.

  20. Effects of vaporizer and evaporative condenser pinch points on geofluid effectiveness and cost of electricity for geothermal binary power plants

    SciTech Connect (OSTI)

    Demuth, O.J.

    1984-01-01

    A brief study was conducted in support of the DOE/DGHT Heat Cycle Research Program to investigate the influences of minimum approach temperature differences occurring in supercritical-heater/vaporizer and evaporative-condenser heat rejection systems on geothermal-electric binary power plant performance and cost of electricity. For the systems investigated optimum pinch points for minimizing cost of electricity were estimated to range from 5 to 7/sup 0/F (3 to 4/sup 0/C) for the heater vaporizer. The minimum approach of condensing temperature to wet-bulb temperature for evaporative condensers was estimated to be about 15/sup 0/F (8/sup 0/C) in order to achieve the highest plant net geofluid effectiveness, and approximately 30/sup 0/F (17/sup 0/C) to attain the minimum cost of electricity.

  1. Means of improving the operating efficiency of air condensers at the Verkhne-Mutnovskaya Geothermal Power Plant in Kamchatka

    SciTech Connect (OSTI)

    Parshin, B. E.; Muratov, P. V.; Pashkevich, R. I.

    2007-07-15

    Operation of the Verkhne-Mutnovskaya Geothermal Power Plant (VMGPP) has revealed ineffective summer-time performance of air condensers (AC), which is caused by an insufficient heat reserve. Four alternate schemes are examined for improvement of the operational efficiency of the AC: replacement of the four-by five-tier heat-exchange modules; installation of high-output fans; a combination of the first two schemes; and, installation of additional sections in each power-generating set. Based on thermodynamic analysis that we have adapted for conditions at the VMGPP, it is established that the last alternate scheme is optimal, andwill have a payback period of six years, and a heat reserve of more than 40%, a figure approaching requirements now in force.

  2. Ambient H sub 2 S monitoring in the vicinity of Hawaii's first geothermal power plant

    SciTech Connect (OSTI)

    Morrow, J.W. ); Thomas, D.M. ); Burkard, H.D. )

    1988-01-01

    In December, 1975, work began on Hawaii's first successful geothermal well in the East Rift Zone of Kilauea Volcano on the Island of Hawaii (Figure 1). By July, 1976, the well, named Hawaii Geothermal Project - A (HGP-A), was complete to a depth of almost 2 km and had encountered a volcanically driven hydrothermal system having a temperature in excess of 358{degrees} C and a fluid chemistry composed of a mixture of seawater, meteoric water, and volcanic volatiles. The principal chemical constituents of the fluid are listed in Table I. Note the relatively high H{sub 2}S concentration which ranged 900 - 1,000 ppmw. During the early testing of the well, the superheated geothermal fluid was allowed to flash at normal atmospheric pressure with steam and noncondensable gases being released unabated into the atmosphere. The high H{sub 2}S and noise (120 dBA) levels and the close proximity of the Leilani Estates residential subdivision were cause for concern and efforts were thus made to mitigate these impacts. Certain elements of the initial test protocol required that the well be allowed to flow freely and unabated. During these periods public notice and prewarning were the most feasible means of mitigation. At other times, the mixed fluid is separated into steam and brine phases with the steam phase being treated with NaOH and then released through a rock muffler. The brine phase is released through a separate muffling system. Chemical treatment of the stream with NaOH converts the H{sub 2}S into a soluble sulfide salt through the following reaction: H{sub 2}S(g) + NaOH {r arrow} NaHS(s) + H{sub 2}O. This paper discusses early flow testing revealed that the well was able to produce a steady flow of approximately 50,000 kg per hour of steam and water at a pressure of 1200 kPA and thus appeared suitable for power generation.

  3. Innovative Design of New Geothermal Generating Plants

    SciTech Connect (OSTI)

    Bloomquist, R. Gordon; Geyer, John D.; Sifford, B. Alexander III

    1989-07-01

    This very significant and useful report assessed state-of-the-art geothermal technologies. The findings presented in this report are the result of site visits and interviews with plant owners and operators, representatives of major financial institutions, utilities involved with geothermal power purchases and/or wheeling. Information so obtained was supported by literature research and data supplied by engineering firms who have been involved with designing and/or construction of a majority of the plants visited. The interviews were conducted by representatives of the Bonneville Power Administration, the Washington State Energy Office, and the Oregon Department of Energy during the period 1986-1989. [DJE-2005

  4. N.R. 20 FOSSIL-FUELED POWER PLANTS; 21 SPECIFIC NUCLEAR REACTORS...

    Office of Scientific and Technical Information (OSTI)

    20 FOSSIL-FUELED POWER PLANTS; 21 SPECIFIC NUCLEAR REACTORS AND ASSOCIATED PLANTS; 14 SOLAR ENERGY; 15 GEOTHERMAL ENERGY; GEOTHERMAL POWER PLANTS; COMPUTERIZED SIMULATION; HEAT...

  5. Nevada Geothermal Area | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Nevada Geothermal Area Nevada Geothermal Area The extensive Steamboat Springs geothermal area contains three geothermal power-generating plants. The plants provide approximately 30% of the total Nevada geothermal power output. Photo of Nevada power plant

  6. Nuova Molinetto Geothermal Power Station | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    General Information Name Nuova Molinetto Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  7. Monteverdi 1 Geothermal Power Station | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    General Information Name Monteverdi 1 Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  8. Nuova Radicondoli Geothermal Power Station | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    General Information Name Nuova Radicondoli Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area...

  9. Nuova Castelnuovo Geothermal Power Station | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    General Information Name Nuova Castelnuovo Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  10. Monteverdi 2 Geothermal Power Station | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    General Information Name Monteverdi 2 Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  11. Nuova Gabbro Geothermal Power Station | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    General Information Name Nuova Gabbro Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  12. Rancia 2 Geothermal Power Station | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Station General Information Name Rancia 2 Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area...

  13. Nuova Serrazzano Geothermal Power Station | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    General Information Name Nuova Serrazzano Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  14. Nuova Monterotondo Geothermal Power Station | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    General Information Name Nuova Monterotondo Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  15. Travale 4 Geothermal Power Station | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Station General Information Name Travale 4 Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area...

  16. San Martino Geothermal Power Station | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    General Information Name San Martino Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  17. EA-1849-S1: Phase II Facility - Ormat Tuscarora Geothermal Power...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    849-S1: Phase II Facility - Ormat Tuscarora Geothermal Power Plant in Tuscarora, NV EA-1849-S1: Phase II Facility - Ormat Tuscarora Geothermal Power Plant in Tuscarora, NV Summary ...

  18. Guide to Geothermal Power Finance Released

    Energy.gov [DOE]

    The National Renewable Energy Laboratory, funded by the U.S. Department of Energy’s Geothermal Technologies Program, today released the Guidebook to Geothermal Power Finance.

  19. Ohaaki Geothermal Power Station | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Station General Information Name Ohaaki Geothermal Power Station Sector Geothermal energy Location Information Location 20km NE of Taupo, Waikato, New Zealand Coordinates...

  20. Mokai Geothermal Power Station | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Station General Information Name Mokai Geothermal Power Station Sector Geothermal energy Location Information Location Waikato, New Zealand Coordinates -38.530556,...

  1. Hellisheidi Geothermal Power Station | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    General Information Name Hellisheidi Geothermal Power Station Sector Geothermal energy Location Information Location Hengill, Iceland Coordinates 64.037222, -21.400833...

  2. Larderello Geothermal Power Station | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Station General Information Name Larderello Geothermal Power Station Sector Geothermal energy Location Information Location Larderello, Pisa, Italy Coordinates 43.236, 10.8672...

  3. Krafla Geothermal Power Station | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Station General Information Name Krafla Geothermal Power Station Sector Geothermal energy Location Information Location Krafla Volcanoe, Iceland Coordinates 65.703861,...

  4. Reykjanes Geothermal Power Station | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Station General Information Name Reykjanes Geothermal Power Station Sector Geothermal energy Location Information Location Reykjanes, Iceland Coordinates 63.826389, -22.681944...

  5. Svartsengi Geothermal Power Station | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Station General Information Name Svartsengi Geothermal Power Station Sector Geothermal energy Location Information Location Reykjanes Peninsula, Iceland Coordinates 63.878611,...

  6. Kawerau Geothermal Power Station | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Station General Information Name Kawerau Geothermal Power Station Sector Geothermal energy Location Information Location Bay of Plenty Region, New Zealand Coordinates...

  7. Cost Contributors to Geothermal Power Production (Conference...

    Office of Scientific and Technical Information (OSTI)

    has developed the tool Geothermal Electricity Technologies Evaluation Model (GETEM) to assess the levelized cost of electricity (LCOE) of power produced from geothermal resources. ...

  8. Map of Geothermal Facilities/Data | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    TW 1 1988 Don A. Cambell Geothermal Power Plant Binary Ormat Ormat Ormat 2013 Dora-1 Geothermal Energy Power Plant Binary Cycle Power Plant, ORC Menderes Geothermal Menderes...

  9. Installed Geothermal Capacity/Data | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    TW 1 1988 Don A. Cambell Geothermal Power Plant Binary Ormat Ormat Ormat 2013 Dora-1 Geothermal Energy Power Plant Binary Cycle Power Plant, ORC Menderes Geothermal Menderes...

  10. Hybrid Cooling Systems for Low-Temperature Geothermal Power Production

    SciTech Connect (OSTI)

    Ashwood, A.; Bharathan, D.

    2011-03-01

    This paper describes the identification and evaluation of methods by which the net power output of an air-cooled geothermal power plant can be enhanced during hot ambient conditions with a minimal amount of water use.

  11. Energeticals power plant engineering | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    generation in the field of solid Biomass, deep and shallow geothermal energy and water power. References: energeticals power plant engineering1 This article is a stub....

  12. Low-Temperature, Coproduced, and Geopressured Geothermal Power...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Low-Temperature, Coproduced, and Geopressured Geothermal Power Low-Temperature, Coproduced, and Geopressured Geothermal Power The Geothermal Technology Program (GTP) ...

  13. NREL: Geothermal Technologies - News Release Archives

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Condenser Boosts Geothermal Power Plant Output The first geothermal Innovation Spectrum case study tells the story of The Geysers geothermal power plant in California and how ...

  14. Geothermal power development: 1984 overview and update

    SciTech Connect (OSTI)

    DiPippo, R.

    1984-10-01

    The status of geothermal power plants as of mid-1984 is given. There are 15 countries with active plants, and France (Guadeloupe) is expected to join the roster in the near future. The total number of operating units (defined as individual turbo-generator sets) is 145; the total installed capacity is somewhat less than 3770 MW. If plans for additional plants are met, the total could jump by more than 200 MW over the next two years. Recent growth is presented and the worldwide installed capacity is traced. A graphic portrayal of the growth pattern is presented. The countries that will be most responsible for sustaining this growth are the US, the Philippines, Mexico, and Indonesia. Other countries that will contribute significantly include Italy, Japan, Kenya, Nicaragua, and Turkey. The following countries do not now have any geothermal plants but may bring some online by 1990: Guatemala, Costa Rica, Greece, St. Lucia, Thailand, and Ethiopia.

  15. Removal of boron from wastewater of geothermal power plant by selective ion-exchange resins. 2. Column sorption--elution studies

    SciTech Connect (OSTI)

    Badruk, M.; Kabay, N.; Demircioglu, M.; Mordogan, H.; Ipekoglu, U.

    1999-11-01

    Column sorption-elution studies for boron removal were performed using N-glucamine-type chelating ion-exchange resins Diaion CRB 02 Purolite S 108. The breakthrough curves were obtained as a function of resin type and feed flow rate. Boron was effectively removed from the wastewater of Kizildere. Turkey, geothermal power plant by passing it through the resins Diaion CRB 02 and Purolite S 108 at a space velocity of 25 bed volumes per hour. The boron on the resins was quantitatively eluted with 0.25 M H{sub 2}SO{sub 4} solution. The resin Diaion CRB 02 was used to study the recycle use of resin for boron removal from the wastewater of Kizildere geothermal power plant. The capacity of Diaion CRB 02 remained constant after three sorption-elution-washing-regeneration cycles.

  16. Nevada's Beowawe Geothermal Plant Begins Generating Clean Energy

    Energy.gov [DOE]

    U.S. Energy Secretary Steven Chu issued the following statement today on the unveiling of the Beowawe Geothermal Plant in Eastern Nevada. This is the first geothermal project funded under the American Recovery and Reinvestment Act to start generating power.

  17. Binary Cycle Power Plant | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    binary-cycle power plants in the future will be binary-cycle plants1 Enel's Salts Wells Geothermal Plant in Nevada: This plant is a binary system that is rated at 13 MW...

  18. Development and Implementation of a Condition Based Maintenance Program for Geothermal Power Plants

    SciTech Connect (OSTI)

    Steve Miller; Jim Eddy; Murray Grande; Shawn Bratt; Manuchehr Shirmohamadi

    2002-01-30

    This report describes the development of the RCM team, identifying plant assets and developing an asset hierarchy, the development of sample Failure Mode Effects Analysis (FMEAs), identifying and prioritizing plant systems and components for RCM analysis, and identifying RCM/CBM software/hardware vendors. It also includes the Failure Mode Effects Analysis (FMEA) for all Class I Systems, Maintenance Task Assignments, use of Conditioned Based Maintenance (CBM) Tools and Displays of the RCM software System Development to date.

  19. Electrical Power Generation Using Geothermal Fluid Co-produced...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Gas; 2010 Geothermal Technology Program Peer Review Report Electrical Power Generation Using Geothermal Fluid Co-produced from Oil & Gas; 2010 Geothermal Technology Program Peer ...

  20. Carboli 2 Geothermal Power Station | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Station General Information Name Carboli 2 Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  1. Cornia 2 Geothermal Power Station | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Station General Information Name Cornia 2 Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  2. Carboli 1 Geothermal Power Station | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Station General Information Name Carboli 1 Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  3. Bagnore 3 Geothermal Power Station | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Station General Information Name Bagnore 3 Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Mount Amiata...

  4. Selva 1 Geothermal Power Station | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Station General Information Name Selva 1 Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  5. Lagoni Rossi 3 Geothermal Power Station | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    General Information Name Lagoni Rossi 3 Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  6. Piancastagnaio 5 Geothermal Power Station | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    General Information Name Piancastagnaio 5 Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Mount Amiata...

  7. Piancastagnaio 3 Geothermal Power Station | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    General Information Name Piancastagnaio 3 Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Mount Amiata...

  8. Le Prata Geothermal Power Station | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Station General Information Name Le Prata Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  9. La Leccia Geothermal Power Station | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Station General Information Name La Leccia Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  10. Piancastagnaio 2 Geothermal Power Station | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    General Information Name Piancastagnaio 2 Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Mount Amiata...

  11. Nuova Lago Geothermal Power Station | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Station General Information Name Nuova Lago Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  12. Piancastagnaio 4 Geothermal Power Station | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    General Information Name Piancastagnaio 4 Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Mount Amiata...

  13. Hybrid Wet/Dry Cooling for Power Plants (Presentation)

    SciTech Connect (OSTI)

    Kutscher, C.; Buys, A.; Gladden, C.

    2006-02-01

    This presentation includes an overview of cooling options, an analysis of evaporative enhancement of air-cooled geothermal power plants, field measurements at a geothermal plant, a preliminary analysis of trough plant, and improvements to air-cooled condensers.

  14. Blundell 2 Power Plant Details | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Power Plant Details Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Blundell 2 Power Plant Details Author Geothermal Energy Association Published...

  15. Aluto-Langano Geotermal Power Plant | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Aluto-Langano Geotermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Aluto-Langano Geotermal Power Plant General Information Name Aluto-Langano...

  16. List of Geothermal Facilities | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Calpine Birdsville Geothermal Power Station Birdsville, Queensland, Australia Ergon Energy Bjarnaflag Geothermal Power Plant Lake Myvatn, Iceland Reykjavk Energy Blumau...

  17. Cost Contributors to Geothermal Power Production

    SciTech Connect (OSTI)

    Nathwani, Jay; Mines, Greg

    2011-07-01

    The US Department of Energy Geothermal Technologies Office (DOE-GTO) has developed the tool Geothermal Electricity Technologies Evaluation Model (GETEM) to assess the levelized cost of electricity (LCOE) of power produced from geothermal resources. Recently modifications to GETEM allow the DOE-GTO to better assess how different factors impact the generation costs, including initial project risk, time required to complete a development, and development size. The model characterizes the costs associated with project risk by including the costs to evaluate and drill those sites that are considered but not developed for commercial power generation, as well as to assign higher costs to finance those activities having more risk. This paper discusses how the important parameters impact the magnitude project costs for different project scenarios. The cost distributions presented include capital cost recovery for the exploration, confirmation, well field completion and power plant construction, as well as the operation and maintenance (O&M) costs. The paper will present these cost distributions for both EGS and hydrothermal resources.

  18. The status and future of geothermal power

    SciTech Connect (OSTI)

    Kutscher, Charles F.

    2000-08-01

    Geothermal electricity production in the United States began in 1960. Today there are over 20 plants in the western United States providing a total of about 2,200 MW of clean and reliable electricity. Currently identified resources could provide over 20,000 MW of power in the U.S., and undiscovered resources might provide 5 times that amount. In the 1990s industry growth slowed due to the loss of market incentives and competition from natural gas. However, increased interest in clean energy sources, ongoing technological improvements, and renewed opportunities abroad hold promise for a resurgence in the industry. This review paper covers the status of the technology, the issues faced, and the latest research. While the focus is on geothermal in the U.S., a brief description of the large international market is included.

  19. Power Plays: Geothermal Energy in Oil and Gas Fields | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Power Plays: Geothermal Energy in Oil and Gas Fields Power Plays: Geothermal Energy in Oil and Gas Fields Power Plays: Geothermal Energy in Oil and Gas Fields April 25, 2016 9:00AM ...

  20. NMAC 19.14 Geothermal Power | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    19.14 Geothermal PowerLegal Abstract These rules outline requirements for development of geothermal power resources within New Mexico. Published NA Year Signed or Took Effect...

  1. Geothermal

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    utilization of geothermal energy. This focus in geothermal related drilling research is the search for practical ... Online Abstracts and Reports Water Power Personnel Natural Gas ...

  2. DOE Awards $20 Million to Develop Geothermal Power Technologies |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Awards $20 Million to Develop Geothermal Power Technologies DOE Awards $20 Million to Develop Geothermal Power Technologies September 22, 2010 - 10:48am Addthis Power of geothermal power units. DOE announced on September 15 its selection of seven projects to research, develop, and demonstrate cutting-edge geothermal energy technologies involving low-temperature fluids, geothermal fluids recovered from oil and gas wells, and highly pressurized geothermal fluids. Today's

  3. High Power Laser Innovation Sparks Geothermal Power Potential

    Energy.gov [DOE]

    The Energy Department is backing a new patented technology that uses high power lasers to maximize heat recovery for geothermal energy production.

  4. Newberry Caldera Geothermal Area | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Energy 1 July 1992 USFS BLM GeothermalExploration GeothermalWell Field GeothermalPower Plant Exploration Drilling Exploratory Boreholes Production Wells Thermal Gradient Holes...

  5. Cascades Geothermal Region | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Cascades Geothermal Region (Redirected from Cascades) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Cascades Geothermal Region Details Areas (2) Power Plants (0)...

  6. Tuscarora Geothermal Facility | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Information Name Tuscarora Geothermal Facility Facility Geothermal Power Plant Sector Geothermal energy Location Information Coordinates 38.8871315, -77.0030762 Loading...

  7. Patua Geothermal Facility | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    General Information Name Patua Geothermal Facility Facility Geothermal Power Plant Sector Geothermal energy Location Information Coordinates 39.5128511, -119.8066361 Loading...

  8. Germany Geothermal Region | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Germany Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Germany Geothermal Region Details Areas (1) Power Plants (0) Projects (0) Techniques (0)...

  9. Thailand Geothermal Region | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Thailand Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Thailand Geothermal Region Details Areas (1) Power Plants (1) Projects (0) Techniques (0)...

  10. Geothermal/Leasing | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    GeothermalLeasing < Geothermal(Redirected from Leasing) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Planning Leasing Exploration Well Field Power Plant...

  11. Indonesia Geothermal Region | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Indonesia Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Indonesia Geothermal Region Details Areas (5) Power Plants (4) Projects (0) Techniques (0)...

  12. Geothermal/Grid Connection | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    GeothermalGrid Connection < Geothermal Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Planning Leasing Exploration Well Field Power Plant Grid Connection...

  13. Philippines Geothermal Region | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Philippines Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Philippines Geothermal Region Details Areas (1) Power Plants (0) Projects (0) Techniques...

  14. Austria Geothermal Region | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    GEOTHERMAL ENERGYGeothermal Home Austria Geothermal Region Details Areas (0) Power Plants (0) Projects (0) Techniques (0) References Geothermal Region Data Area USGS Resource...

  15. Australia Geothermal Region | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    GEOTHERMAL ENERGYGeothermal Home Australia Geothermal Region Details Areas (0) Power Plants (0) Projects (0) Techniques (0) References Geothermal Region Data Area USGS Resource...

  16. Outside a Geothermal Region | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    GEOTHERMAL ENERGYGeothermal Home Outside a Geothermal Region Details Areas (1) Power Plants (1) Projects (0) Techniques (0) This is a category for geothermal areas added that do...

  17. New Zealand Geothermal Region | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    GEOTHERMAL ENERGYGeothermal Home New Zealand Geothermal Region Details Areas (2) Power Plants (2) Projects (0) Techniques (0) References Geothermal Region Data Area USGS Resource...

  18. Russia Geothermal Region | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    GEOTHERMAL ENERGYGeothermal Home Russia Geothermal Region Details Areas (0) Power Plants (0) Projects (0) Techniques (0) References Geothermal Region Data Area USGS Resource...

  19. Iceland Geothermal Region | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    GEOTHERMAL ENERGYGeothermal Home Iceland Geothermal Region Details Areas (0) Power Plants (0) Projects (0) Techniques (0) References Geothermal Region Data Area USGS Resource...

  20. China Geothermal Region | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home China Geothermal Region Details Areas (0) Power Plants (0) Projects (0) Techniques (0) References...

  1. Mexico Geothermal Region | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Mexico Geothermal Region Details Areas (0) Power Plants (0) Projects (0) Techniques (0) References...

  2. Turkey Geothermal Region | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Turkey Geothermal Region Details Areas (0) Power Plants (0) Projects (0) Techniques (0) References...

  3. Assessment of Geothermal Resources for Electric Generation in the Pacific Northwest, Draft Issue Paper for the Northwest Power Planning Council

    SciTech Connect (OSTI)

    Geyer, John D.; Kellerman, L.M.; Bloomquist, R.G.

    1989-09-26

    This document reviews the geothermal history, technology, costs, and Pacific Northwest potentials. The report discusses geothermal generation, geothermal resources in the Pacific Northwest, cost and operating characteristics of geothermal power plants, environmental effects of geothermal generation, and prospects for development in the Pacific Northwest. This report was prepared expressly for use by the Northwest Power Planning Council. The report contains numerous references at the end of the document. [DJE-2005

  4. Chapter 4: Advancing Clean Electric Power Technologies | Geothermal...

    Energy.gov (indexed) [DOE]

    Assessments Introduction Geothermal power taps into earth's internal heat as an energy source. While geothermal currently constitutes less than 1% of total U.S....

  5. Chena Hot Springs Resort - Electric Power Generation Using Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Generation Using Geothermal Fluid Coproduced from Oil andor Gas Wells Chena Hot Springs Resort - Electric Power Generation Using Geothermal Fluid Coproduced from Oil andor Gas ...

  6. Cerro Prieto Geothermal Power Station | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    General Information Name Cerro Prieto Geothermal Power Station Sector Geothermal energy Location Information Coordinates 32.4194445584, -115.30637090094 Loading map......

  7. Removal of boron from wastewater of geothermal power plant by selective ion-exchange resins. 1: Batch sorption-elution studies

    SciTech Connect (OSTI)

    Badruk, M.; Kabay, N.; Demircioglu, M.; Mordogan, H.; Ipekoglu, U.

    1999-09-01

    Boron removal was studied using N-glucamine-type resins Diaion CRB 02 and Purolite S 108. The resin Diaion CRB 02 exhibited a higher sorption capacity for boron removal from 0.01 M H{sub 3}BO{sub 3} solution than did Purolite S 108. The presence of calcium, sodium, and chloride ions did not make a large interference on boron removal by both Diaion CRB 02 and Purolite S 108 resins. The sorption behavior of these two chelating resins obeyed the Langmuir isotherm model. Kinetic tests were performed to find the mass transfer mechanism of the sorption process of boron by Diaion CRB 02 resin. Five kinetic models were applied to fit the kinetic data obtained by using glucamine type-resin Diaion CRB 02. The results showed that the rate-determining step is particle diffusion for boron removal by Diaion CRB 02. The quantitative stripping of boron from both chelating resins was obtained with either 0.05 M H{sub 2}SO{sub 4} or 0.1 M HCl solutions. Boron in wastewater of the Kizildere geothermal field was effectively removed by both Diaion CRB 02 and Purolite S 108 resins. Preliminary column tests showed that Diaion CRB 02 is a potential resin for column removal of boron from wastewater of a geothermal power plant.

  8. NANA Regional Corporation Geothermal Assessment Project

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... A preliminary economic analysis for a geothermal power plant serving Buckland concluded ... financial analysis of a 400- kW geothermal power plant at Granite Mountain Hot Springs, ...

  9. Small geothermal electric systems for remote powering

    SciTech Connect (OSTI)

    Entingh, Daniel J.; Easwaran, Eyob.; McLarty, Lynn

    1994-08-08

    This report describes conditions and costs at which quite small (100 to 1,000 kilowatt) geothermal systems could be used for off-grid powering at remote locations. This is a first step in a larger process of determining locations and conditions at which markets for such systems could be developed. The results suggest that small geothermal systems offer substantial economic and environmental advantages for powering off-grid towns and villages. Geothermal power is most likely to be economic if the system size is 300 kW or greater, down to reservoir temperatures of 100{degree}C. For system sizes smaller than 300 kW, the economics can be favorable if the reservoir temperature is about 120{degree}C or above. Important markets include sites remote from grids in many developing and developed countries. Estimates of geothermal resources in many developing countries are shown.

  10. Improving Vortex Generators to Enhance the Performance of Air-Cooled Condensers in a Geothermal Power Plant

    SciTech Connect (OSTI)

    Manohar S. Sohal

    2005-09-01

    This report summarizes work at the Idaho National Laboratory to develop strategies to enhance air-side heat transfer in geothermal air-cooled condensers such that it should not significantly increase pressure drop and parasitic fan pumping power. The work was sponsored by the U.S. Department of Energy, NEDO (New Energy and Industrial Technology Development Organization) of Japan, Yokohama National University, and the Indian Institute of Technology, Kanpur, India. A combined experimental and numerical investigation was performed to investigate heat transfer enhancement techniques that may be applicable to largescale air-cooled condensers such as those used in geothermal power applications. A transient heat transfer visualization and measurement technique was employed in order to obtain detailed distributions of local heat transfer coefficients on model fin surfaces. Pressure drop measurements were obtained for a variety of tube and winglet configurations using a single-channel flow apparatus that included four tube rows in a staggered array. Heat transfer and pressure drop measurements were also acquired in a separate multiple-tube row apparatus in the Single Blow Test Facility. In addition, a numerical modeling technique was developed to predict local and average heat transfer for these low-Reynolds number flows, with and without winglets. Representative experimental and numerical results were obtained that reveal quantitative details of local finsurface heat transfer in the vicinity of a circular tube with a single delta winglet pair downstream of the cylinder. Heat transfer and pressure-drop results were obtained for flow Reynolds numbers based on channel height and mean flow velocity ranging from 700 to 6500. The winglets were of triangular (delta) shape with a 1:2 or 1:3 height/length aspect ratio and a height equal to 90% of the channel height. Overall mean fin-surface heat transfer results indicate a significant level of heat transfer enhancement (in terms of

  11. Installed Geothermal Capacity | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Map of Geothermal Power Plants List of Geothermal Power Plants Throughout the world geothermal energy is looked at as a potential source of renewable base-load power. As of...

  12. California: Geothermal Plant to Help Meet High Lithium Demand...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Geothermal Plant to Help Meet High Lithium Demand California: Geothermal Plant to Help Meet High Lithium Demand May 21, 2013 - 5:54pm Addthis Through funding provided by the...

  13. Birdsville Geothermal Power Station | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Artesian Basin Plant Information Facility Type Binary Cycle Power Plant, ORC Owner Ergon Energy Number of Units 1 Commercial Online Date 1992 Power Plant Data Type of Plant Number...

  14. Property:AvgTempGeoFluidIntoPlant | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    North Brawley Geothermal Power Plant + 520 + O Ormesa IH Geothermal Facility + 296 + R Raft River Geothermal Facility + 270 + Reykjanes Geothermal Power Station + 590 + Retrieved...

  15. Kenya geothermal private power project: A prefeasibility study

    SciTech Connect (OSTI)

    Not Available

    1992-10-01

    Twenty-eight geothermal areas in Kenya were evaluated and prioritized for development. The prioritization was based on the potential size, resource temperature, level of exploration risk, location, and exploration/development costs for each geothermal area. Suswa, Eburru and Arus are found to offer the best short-term prospects for successful private power development. It was found that cost per kill developed are significantly lower for the larger (50MW) than for smaller-sized (10 or 20 NW) projects. In addition to plant size, the cost per kill developed is seen to be a function of resource temperature, generation mode (binary or flash cycle) and transmission distance.

  16. DOE and Partners Demonstrate Mobile Geothermal Power System at 2009 Geothermal Energy Expo

    Energy.gov [DOE]

    The U.S. Department of Energy's (DOE) Geothermal Technologies Office (GTO), along with Pratt & Whitney Power Systems, and Chena Power LLC demonstrated the PureCycle® mobile geothermal power generation unit at the 2009 Geothermal Energy Expo in Reno, Nevada.

  17. Yangbajain Geothrmal Power Plant | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. Retrieved from "http:en.openei.orgw...

  18. Geothermal/Land Use Planning | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    GeothermalLand Use Planning < Geothermal Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Planning Leasing Exploration Well Field Power Plant Grid Connection...

  19. Northwest Basin and Range Geothermal Region | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Basin and Range Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Northwest Basin and Range Geothermal Region Details Areas (51) Power Plants (10)...

  20. National Geothermal Data System Demo 01-28-14

    Energy.gov (indexed) [DOE]

    Reservoir Geologic Units Geothermal Area Geothermal Metadata Compilation Geothermal Power Plant Facility Gravity Stations Heat Flow Heat Pump Facility Hydraulic Properties ...

  1. Geothermal Resource Classification | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Resource Classification Geothermal Resource Classification Geothermal Resource Classification.PDF (869.18 KB) More Documents & Publications Water Use in the Development and Operations of Geothermal Power Plants Water Use in the Development and Operations of Geothermal Power Plants Water Use in the Development and Operation of Geothermal Power Plants

  2. A History or Geothermal Energy Research and Development in the...

    Office of Environmental Management (EM)

    Water Use in the Development and Operations of Geothermal Power Plants Water Use in the Development and Operations of Geothermal Power Plants Air-Cooled Condensers for Next ...

  3. EA-1849: Ormat Nevada Geothermal Projects in Northern NV | Department...

    Energy.gov (indexed) [DOE]

    August 22, 2011 EA-1849: Final Environmental Assessment Tuscarora Geothermal Power Plant, ... Ormat Nevada Northern Nevada Geothermal Power Plant Projects: Loan Guarantee for ORMAT ...

  4. Energy Department Develops Regulatory Roadmap to Spur Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    timeline as one of the biggest barriers to increasing geothermal power plant development. ... and leasing plans, to drilling exploratory wells, to developing a geothermal power plant. ...

  5. A Revolutionary Hybrid Thermodynamic Cycle for Bianary Geothermal Power |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy A Revolutionary Hybrid Thermodynamic Cycle for Bianary Geothermal Power A Revolutionary Hybrid Thermodynamic Cycle for Bianary Geothermal Power A Revolutionary Hybrid Thermodynamic Cycle for Bianary Geothermal Power presentation at the April 2013 peer review meeting held in Denver, Colorado. hybrid_therm_cycle_peer2013.pdf (571.03 KB) More Documents & Publications Working Fluids and Their Effect on Geothermal Turbines Tailored Working Fluids for Enhanced Binary

  6. Los Azufres Geothermal Plant | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Volcanic Belt Plant Information Facility Type Single Flash, Binary, Back Pressure Energy Purchaser Comisin Federal de Electricidad Commercial Online Date 1982 Power Plant...

  7. DOE Awards $20 Million to Develop Geothermal Power Technologies...

    Office of Environmental Management (EM)

    The three remaining projects seek to tap unconventional sources of geothermal energy. In one case, ElectraTherm, Inc. will aim to draw power from the hot geothermal fluids that oil ...

  8. GeoPowering the West: Hawaii; Why Geothermal?

    SciTech Connect (OSTI)

    Not Available

    2004-04-01

    This fact sheets provides a summary of geothermal potential, issues, and current development in Hawaii. This fact sheet was developed as part of DOE's GeoPowering the West initiative, part of the Geothermal Technologies Program.

  9. Power Plays- Geothermal Energy in Oil & Gas Fields

    Office of Energy Efficiency and Renewable Energy (EERE)

    Register today for the SMU Power Plays Workshop and Conference at Southern Methodist University, May 18-20, 2015. The Energy Department accelerates geothermal energy development by investing in transformative technologies that accelerate geothermal development.

  10. SImbol Materials Lithium Extraction Operating Data From Elmore and Featherstone Geothermal Plants

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Stephen Harrison

    2015-07-08

    The data provided in this upload is summary data from its Demonstration Plant operation at the geothermal power production plants in the Imperial Valley. The data provided is averaged data for the Elmore Plant and the Featherstone Plant. Included is both temperature and analytical data (ICP_OES). Provide is the feed to the Simbol Process, post brine treatment and post lithium extraction.

  11. SImbol Materials Lithium Extraction Operating Data From Elmore and Featherstone Geothermal Plants

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Stephen Harrison

    The data provided in this upload is summary data from its Demonstration Plant operation at the geothermal power production plants in the Imperial Valley. The data provided is averaged data for the Elmore Plant and the Featherstone Plant. Included is both temperature and analytical data (ICP_OES). Provide is the feed to the Simbol Process, post brine treatment and post lithium extraction.

  12. Studies of geothermal power and process heat applications in St. Lucia and Guatemala

    SciTech Connect (OSTI)

    Altseimer, J.H.; Edeskuty, F.J.

    1986-01-01

    Many countries have the potential to use geothermal energy for both power production and process heat applications. Two Los Alamos programs have studied the most effective use of geothermal energy in St. Lucia and Guatemala. The general objectives are (1) to reduce oil imports; (2) develop employment opportunities; and (3) make products more competitive. The initial St. Lucia studies emphasized power generation but a number of applications for the power plant's residual heat were also found and costs and systems have been determined. The costs of geothermal heat compare favorably with heat from other sources such as oil. In Guatemala, the development of the nation's first geothermal field is well advanced. Process heat applications and their coordination with power generation plants are being studied at Los Alamos. Guatemala has at least two fields that appear suitable for power and heat production. These fields are close to urban centers and to many potential heat applications.

  13. Geothermal Electric Plant Planned in N.M.

    Energy.gov [DOE]

    Publicly traded Raser Technologies Inc. of Provo, Utah, said Wednesday that it is planning to build New Mexico's first commercial geothermal electric generation plant.

  14. Water Efficient Energy Production for Geothermal Resources | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Efficient Energy Production for Geothermal Resources Water Efficient Energy Production for Geothermal Resources Water Efficient Energy Production for Geothermal Resources.PDF (4.19 MB) More Documents & Publications Water Efficient Energy Production for Geothermal Resources Water Use in the Development and Operations of Geothermal Power Plants Water Use in the Development and Operations of Geothermal Power Plants

  15. Life-cycle analysis results of geothermal systems in comparison to other power systems.

    SciTech Connect (OSTI)

    Sullivan, J. L.; Clark, C. E.; Han, J.; Wang, M.; Energy Systems

    2010-10-11

    A life-cycle energy and greenhouse gas emissions analysis has been conducted with Argonne National Laboratory's expanded Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model for geothermal power-generating technologies, including enhanced geothermal, hydrothermal flash, and hydrothermal binary technologies. As a basis of comparison, a similar analysis has been conducted for other power-generating systems, including coal, natural gas combined cycle, nuclear, hydroelectric, wind, photovoltaic, and biomass by expanding the GREET model to include power plant construction for these latter systems with literature data. In this way, the GREET model has been expanded to include plant construction, as well as the usual fuel production and consumption stages of power plant life cycles. For the plant construction phase, on a per-megawatt (MW) output basis, conventional power plants in general are found to require less steel and concrete than renewable power systems. With the exception of the concrete requirements for gravity dam hydroelectric, enhanced geothermal and hydrothermal binary used more of these materials per MW than other renewable power-generation systems. Energy and greenhouse gas (GHG) ratios for the infrastructure and other life-cycle stages have also been developed in this study per kilowatt-hour (kWh) of electricity output by taking into account both plant capacity and plant lifetime. Generally, energy burdens per energy output associated with plant infrastructure are higher for renewable systems than conventional ones. GHG emissions per kWh of electricity output for plant construction follow a similar trend. Although some of the renewable systems have GHG emissions during plant operation, they are much smaller than those emitted by fossil fuel thermoelectric systems. Binary geothermal systems have virtually insignificant GHG emissions compared to fossil systems. Taking into account plant construction and operation, the GREET

  16. Electrical Power Generation Using Geothermal Fluid Co-produced...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Gas Electrical Power Generation Using Geothermal Fluid Co-produced from Oil & Gas Project objectives: To validate and realize the potential for the production of low temperature ...

  17. A Flashing Binary Combined Cycle For Geothermal Power Generation...

    Open Energy Information (Open El) [EERE & EIA]

    Flashing Binary Combined Cycle For Geothermal Power Generation Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: A Flashing Binary Combined Cycle...

  18. Power Production from a Moderate-Temperature Geothermal Resource...

    Open Energy Information (Open El) [EERE & EIA]

    Paper: Power Production from a Moderate-Temperature Geothermal Resource Authors Joost J. Brasz, Bruce P. Biederman and Gwen Holdmann Conference GRC annual meeting; Reno,...

  19. Guidebook to Geothermal Power Finance | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    LAUNCH TOOL Name: Guidebook to Geothermal Power Finance AgencyCompany Organization: J. Pater Salmon, J. Meurice, N. Wobus, F. Stern, and M. Duaime Partner: National Renewable...

  20. Hellisheidi Geothermal Power Station - South Iceland | Open Energy...

    Open Energy Information (Open El) [EERE & EIA]

    - South Iceland Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Hellisheidi Geothermal Power Station - South Iceland Published...

  1. Annual US Geothermal Power Production and Development Report...

    Open Energy Information (Open El) [EERE & EIA]

    and Development Report Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Annual US Geothermal Power Production and Development Report Abstract To increase...

  2. 20 MW Maibarara Geothermal Power Project Starts Commercial Operations...

    Open Energy Information (Open El) [EERE & EIA]

    02092014 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for 20 MW Maibarara Geothermal Power Project Starts Commercial Operations...

  3. GRC Workshop: The Power of the National Geothermal Data System

    Office of Energy Efficiency and Renewable Energy (EERE)

    Drilling Down: How Legacy and New Research Data Can Advance Geothermal DevelopmentThe Power of the National Geothermal Data System (NGDS) A workshop at the Geothermal Resources Council Annual Meeting in Las Vegas, Nevada Abstract: The National Geothermal Data System's (NGDS) launch in 2014 will provide open access to millions of datasets, sharing technical geothermal-relevant data across the geosciences to propel geothermal development and production forward. By aggregating findings from the Energy Department's RD&D projects and consistent, reliable geological and geothermal information from all 50 states, this free, interactive tool can shorten project development timelines and facilitate scientific discovery and best practices. Stop by our workshop for an overview of how your company can benefit from implementing, and participating in this open-source based, distributed network. To register for the GRC Annual Meeting, visit the GRC Annual Meeting and GEA Geothermal Energy Expo event website.

  4. Award-winning research takes a fresh look at Geothermal Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Geothermal power plant operators could help balance this variability and reduce ... number of hours during the year, geothermal power plant operators could capture ...

  5. Geothermal Electricity Production Basics | NREL

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Electricity Production Basics Geothermal power plants use steam produced from reservoirs of hot water found a few miles or more below the Earth's surface to produce electricity. The steam rotates a turbine that activates a generator, which produces electricity. There are three types of geothermal power plants: dry steam, flash steam, and binary cycle. Photo of a geothermal power plant. This geothermal power plant generates electricity for the Imperial Valley in California. Dry Steam Dry steam

  6. Geothermal/Grid Connection | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Transmission Lines How a Geothermal Power Plant Works (Simple) Western Renewable Energy Zones (WREZ) Reports Geothermal Regulations and Permitting for Transmission Siting...

  7. Property:GeothermalRegion | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Power Plant + Upper Austrian Molasse Basin + Alum Geothermal Area + Walker-Lane Transition Zone + Alum Geothermal Project + Walker-Lane Transition Zone + Aluto-Langano...

  8. Geothermal/Water Use | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Water Use < Geothermal(Redirected from Water Use) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Planning Leasing Exploration Well Field Power Plant Grid...

  9. Geothermal/Water Use | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Water Use < Geothermal Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Planning Leasing Exploration Well Field Power Plant Grid Connection Environment Water...

  10. Geothermal/Well Field | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Well Field < Geothermal Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Planning Leasing Exploration Well Field Power Plant Grid Connection Environment Water...

  11. Geothermal/Exploration | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Exploration < Geothermal(Redirected from Exploration) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Planning Leasing Exploration Well Field Power Plant Grid...

  12. Western States Geothermal Company | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Company Place: Sparks, Nevada Zip: 89432-2627 Sector: Geothermal energy Product: Geothermal power plant developer and operator. Acquired by Ormat in 2001. Coordinates:...

  13. {open_quotes}Full steam ahead{close_quotes} (a historical review of geothermal power development in the Philippines)

    SciTech Connect (OSTI)

    Gazo, F.M.

    1997-12-31

    The Philippine geothermal energy development is now considered in a state of maturity. After more than 20 years of geothermal experience, the total geothermal installed capacity in the Philippines reached 1,455 MW (1996) or about 12% of the total installed power plant capacity. This also enabled the Philippines to become the second largest producer of geothermal energy in the world. The country`s track record in harnessing geothermal energy is considered a revelation, as it continues with its vision of {open_quotes}full steam ahead{close_quotes}, originally conceived when commercial geothermal operation started in 1973. It is thus proper and timely to refer to historical highlights and experiences in geothermal energy development for planning and implementation of the country`s geothermal energy program.

  14. BLM Approves Salt Wells Geothermal Plant in Churchill County...

    Open Energy Information (Open El) [EERE & EIA]

    Plant in Churchill County Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: BLM Approves Salt Wells Geothermal Plant in Churchill County Abstract...

  15. NMAC 19.14.1 Geothermal Power General Provisions | Open Energy...

    Open Energy Information (Open El) [EERE & EIA]

    Geothermal Power General ProvisionsLegal Abstract These regulations outline the procedures for dealing with geothermal power issues in New Mexico. These rules are designed to...

  16. National Geothermal Student Competition; 2010 Geothermal Technology Program

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Peer Review Report | Department of Energy Student Competition; 2010 Geothermal Technology Program Peer Review Report National Geothermal Student Competition; 2010 Geothermal Technology Program Peer Review Report DOE 2010 Geothermal Technologies Program Peer Review adse_002_visser.pdf (242 KB) More Documents & Publications Geothermal Power Generation Plant; 2010 Geothermal Technology Program Peer Review Report Concept Testing and Development at the Raft River Geothermal Field, Idaho

  17. Reservoir environment of the Onuma geothermal power plant, northeast Japan, estimated by forward analysis of long-term artificial-tracer concentration change, using single-box-model simulator

    SciTech Connect (OSTI)

    Shigeno, Hiroshi; Takahashi, Masaaki; Tetsuro, Noda

    1993-01-28

    A single-box-model numerical simulator for personal computer analysis was developed in order to estimate macroscopic parameter values for exploited geothermal reservoirs and essential fluids coming from the depth. The simulator was designed to compute history data concerning total production and reinjection fluids at geothermal power plants from the assumed parameter values, based on conservation laws for water mass, heat energy and masses of conservative chemical constituents of geothermal fluids. Using two kinds of forward analysis techniques, i.e. the cast-net and pursuit methods, programs containing the simulator can semiautomatically select the optimum combination of the unknown parameter values by minimizing the differences between the simulated and measured history data for specific enthalpy and chemical compositions of the production fluids. The forward analysis programs were applied to the history data from the Onuma geothermal power plant (production capacity, 10MWe) where waste hot water reinjection, chemical monitoring and artificial tracer tests have been conducted since 1970, almost the beginning of the geothermal exploitation. Using the history data, enthalpy and iodine concentrations of the total production fluids with the amounts of KI tracer injected as spikes, the macroscopic parameter values for the exploited reservoir and the essential hot water from the depth were uniquely determined as follows: mass of the hot water convecting in the exploited reservoir (M0), 3.23x109kg; recycling fraction of the reinjected waste hot water to the reservoir (R), 0.74; specific enthalpy of the essential water from the depth (H1), 385kcalkg; iodine concentration of the water (I1), 0.086mg/kg with chlorine concentration (C1), 259mg/kg. These results support the conceptual model that the exploited Onuma reservoir mainly in the Tertiary volcanics is supplied with the neutral Na-Cl type hot water of abnormally high B/CI mole ratio of around 1.0 by a large

  18. New geothermal heat extraction process to deliver clean power generation

    ScienceCinema (OSTI)

    Pete McGrail

    2012-12-31

    A new method for capturing significantly more heat from low-temperature geothermal resources holds promise for generating virtually pollution-free electrical energy. Scientists at the Department of Energys Pacific Northwest National Laboratory will determine if their innovative approach can safely and economically extract and convert heat from vast untapped geothermal resources. The goal is to enable power generation from low-temperature geothermal resources at an economical cost. In addition to being a clean energy source without any greenhouse gas emissions, geothermal is also a steady and dependable source of power.

  19. BLM Fact Sheet- Vulcan Power Company Salt Wells Geothermal Energy...

    Open Energy Information (Open El) [EERE & EIA]

    Vulcan Power Company Salt Wells Geothermal Energy Project Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: BLM Fact Sheet- Vulcan Power Company Salt Wells...

  20. Social Acceptance of Geothermal Power Generation in Japan | Open...

    Open Energy Information (Open El) [EERE & EIA]

    Power Generation in Japan Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Social Acceptance of Geothermal Power Generation in Japan Abstract In...

  1. Geothermal Power - the Future is Now | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Power - the Future is Now Geothermal Power - the Future is Now September 25, 2012 - 1:11pm Addthis The United States Department of Energy is breaking the sound barrier, delivering...

  2. Terra-Gen Power and TAS Celebrate Innovative Binary Geothermal...

    Open Energy Information (Open El) [EERE & EIA]

    Terra-Gen Power and TAS Celebrate Innovative Binary Geothermal Technology Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Terra-Gen Power and TAS...

  3. concentrating solar power plant

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    power plant - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy ...

  4. Chena Hot Springs Resort - Electric Power Generation Using Geothermal Fluid Coproduced from Oil and/or Gas Wells

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Using Geothermal Fluid Coproduced from Oil and/or Gas Wells PI - Bernie Karl Chena Hot Springs Resort Track 1 Project Officer: Eric Hass Total Project Funding: $724,000 April 22, 2013 This presentation does not contain any proprietary confidential, or otherwise restricted information. 2 | US DOE Geothermal Office eere.energy.gov Relevance/Impact of Research Project Objectives * Design, build, and operate low temperature, mobile, geothermal power plant capable of co-producing off oil/gas wells *

  5. Chemistry, scale, and performance of the Hawaii geothermal project-A plant

    SciTech Connect (OSTI)

    Baughman, E.C.; Uemura, R.T.

    1985-12-01

    The objective of this study was to determine the effects of scale, corrosion, and erosion of the geothermal resource on HGP-A Geothermal Wellhead Power Plant. Analysis of the fluid chemistry was made to interpret the cause of corrosion and scale deposition in the brine and steam systems. It was found that metal sulfide scale formation occurred in the steam system and silica type scale formation in the brine system. The rate of scale deposition was strongly influenced by the chemical conditions in those systems. Although scale and corrosion did occur in the plant piping systems and equipment, they did not appreciably affect the performance of the plant. The results of this study will make the utilities more aware of the effects of geothermal fluid chemistry on scale deposition and corrosion which may increase plant efficiency and reduce maintenance of future plants. 7 refs., 67 figs., 13 tabs.

  6. Honey Lake Geothermal Area | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Honey Lake Geothermal Area Honey Lake Geothermal Area The Honey Lake geothermal area is located in Lassen County, California and Washoe County, Nevada. There are three geothermal projects actively producing electrical power. They are located at Wendel, Wineagle, and Amedee. Photo of Amedee Geothermal Venture power plant in Amadee, CA

  7. Power Plant Cycling Costs

    SciTech Connect (OSTI)

    Kumar, N.; Besuner, P.; Lefton, S.; Agan, D.; Hilleman, D.

    2012-07-01

    This report provides a detailed review of the most up to date data available on power plant cycling costs. The primary objective of this report is to increase awareness of power plant cycling cost, the use of these costs in renewable integration studies and to stimulate debate between policymakers, system dispatchers, plant personnel and power utilities.

  8. Potential power sources for high-temperature geothermal applications

    SciTech Connect (OSTI)

    Guidotti, R.A.; Dobranich, D

    1996-05-01

    The thermal response under geothermal-borehole conditions of a conventional thermal battery was evaluated for various designs by numerical simulations using a finite-element thermal model. This technology, which is based on molten salts, may be suitable as a power source for geothermal borehole applications for data logging. Several promising candidate electrolytes were identified for further study.

  9. Water Efficient Energy Production for Geothermal Resources | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Water Efficient Energy Production for Geothermal Resources Water Efficient Energy Production for Geothermal Resources Primer FINAL.PDF (4.19 MB) More Documents & Publications Water Efficient Energy Production for Geothermal Resources Water Use in the Development and Operations of Geothermal Power Plants Water Use in the Development and Operations of Geothermal Power Plants

  10. Geothermal Power and Interconnection: The Economics of Getting to Market

    SciTech Connect (OSTI)

    Hurlbut, David

    2012-04-23

    This report provides a baseline description of the transmission issues affecting geothermal technologies. It is intended for geothermal experts in either the private or public sector who are less familiar with how the electricity system operates beyond the geothermal plant. The report begins with a comprehensive overview of the grid, how it is planned, how it is used, and how it is paid for. The report then overlays onto this "big picture" three types of geothermal technologies: conventional hydrothermal systems; emerging technologies such as enhanced engineered geothermal systems (EGS) and geopressured geothermal; and geothermal co-production with existing oil and gas wells. Each category of geothermal technology has its own set of interconnection issues, and these are examined separately for each. The report draws conclusions about each technology’s market affinities as defined by factors related to transmission and distribution infrastructure. It finishes with an assessment of selected markets with known geothermal potential, identifying those that offer the best prospects for near-term commercial development and for demonstration projects.

  11. NMAC 19.14.54 Geothermal Power Sundry Notices and Reports on...

    Open Energy Information (Open El) [EERE & EIA]

    4 Geothermal Power Sundry Notices and Reports on Geothermal Well (Form G-103) Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document-...

  12. NREL: Dynamic Maps, GIS Data, and Analysis Tools - Geothermal Maps

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Geothermal Prospector Start exploring U.S. geothermal resources with an easy-to-use map by selecting dataset layers that are NGDS compatible. Bookmark and Share Geothermal Maps These maps show existing and developing geothermal power plants, geothermal resource potential estimates, and other information related to geothermal power. They are updated as information becomes available, but may not represent all available geothermal data. Resource Potential The geothermal resource potential map (JPG

  13. Map of Geothermal Facilities | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    r.png","group":"","inlineLabel":"","visitedicon":"","text":"GeothermalEnergyPowerPlant" title"Dora-1 Geothermal Energy Power Plant">Dora-1...

  14. Terra-Gen Powers Coso Geothermal Facility Obtains Critical Federal...

    Open Energy Information (Open El) [EERE & EIA]

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Terra-Gen Powers Coso Geothermal Facility Obtains Critical Federal Permit to Increase Its...

  15. Utah Geothermal Area | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Utah Geothermal Area Utah Geothermal Area Utah has two geothermal electric plants: the 23-megawatt Roosevelt Hot Springs facility near Milford run by Utah Power and CalEnergy Corp., and the Utah Municipal Power Association's Cove Fort Station, which is located north of Beaver, Utah. Photo of the Bud L. Bonnett Geothermal Plant in Cove Fort Sulphurdale, UT

  16. Geothermal Power/Oil & Gas Coproduction Opportunity

    SciTech Connect (OSTI)

    DOE

    2012-02-01

    Coproduced geothermal resources can deliver near-term energy savings, diminish greenhouse gas emissions, extend the economic life of oil and gas fields, and profitably utilize oil and gas field infrastructure. This two-pager provides an overview of geothermal coproduced resources.

  17. Brady Power Partners | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Power Partners Jump to: navigation, search Name: Brady Power Partners Place: Fernley, Nevada Zip: 89408 Sector: Geothermal energy Product: Geothermal power plant owner, operator...

  18. Vulcan Power Company | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Vulcan Power Company Jump to: navigation, search Name: Vulcan Power Company Place: Bend, Oregon Zip: 97702 Sector: Geothermal energy Product: Oregon-based geothermal power plant...

  19. Papua New Guinea Geothermal Region | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    ENERGYGeothermal Home Papua New Guinea Geothermal Region Details Areas (1) Power Plants (1) Projects (0) Techniques (0) References Geothermal Region Data Area USGS Resource...

  20. East African Rift Geothermal Region | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    ENERGYGeothermal Home East African Rift Geothermal Region Details Areas (0) Power Plants (0) Projects (0) Techniques (0) References Geothermal Region Data Country(ies)...

  1. Development Wells At Long Valley Caldera Geothermal Area (Holt...

    Open Energy Information (Open El) [EERE & EIA]

    the world's first air-cooled binary cycle geothermal power plant.4 References Ben Holt, Richard G. Campbell (1984) Mammoth Geothermal Project Environmental Science Associates...

  2. A History or Geothermal Energy Research and Development in the...

    Energy.gov (indexed) [DOE]

    Energy Conversion 1976 - 2006 A History of Geothermal Energy Research and Development in the United States Cover Photo Credits The Geysers Geothermal Power Plant, Sonoma County, ...

  3. Enhanced Geothermal System (EGS) Fact Sheet | Department of Energy

    Office of Environmental Management (EM)

    System (EGS) Fact Sheet Integrated EGS R&D FOA Selections Calpine Staff Run Tests at The Geysers Geothermal Power Plant in California Enhanced Geothermal System (EGS) Infographic

  4. Life-cycle analysis results for geothermal systems in comparison to other power systems: Part II.

    SciTech Connect (OSTI)

    Sullivan, J.L.; Clark, C.E.; Yuan, L.; Han, J.; Wang, M.

    2012-02-08

    A study has been conducted on the material demand and life-cycle energy and emissions performance of power-generating technologies in addition to those reported in Part I of this series. The additional technologies included concentrated solar power, integrated gasification combined cycle, and a fossil/renewable (termed hybrid) geothermal technology, more specifically, co-produced gas and electric power plants from geo-pressured gas and electric (GPGE) sites. For the latter, two cases were considered: gas and electricity export and electricity-only export. Also modeled were cement, steel and diesel fuel requirements for drilling geothermal wells as a function of well depth. The impact of the construction activities in the building of plants was also estimated. The results of this study are consistent with previously reported trends found in Part I of this series. Among all the technologies considered, fossil combustion-based power plants have the lowest material demand for their construction and composition. On the other hand, conventional fossil-based power technologies have the highest greenhouse gas (GHG) emissions, followed by the hybrid and then two of the renewable power systems, namely hydrothermal flash power and biomass-based combustion power. GHG emissions from U.S. geothermal flash plants were also discussed, estimates provided, and data needs identified. Of the GPGE scenarios modeled, the all-electric scenario had the highest GHG emissions. Similar trends were found for other combustion emissions.

  5. Preliminary reliability and availability analysis of the Heber geothermal binary demonstration plant. Final report

    SciTech Connect (OSTI)

    Himpler, H.; White, J.; Witt, J.

    1981-10-01

    An assessment is presented of the reliability and availability of the Heber Geothermal Binary Demonstration Plant on the basis of preliminary design information. It also identifies and ranks components of the plant in order of their criticality to system operation and their contribution to system unavailability. The sensitivity of the various components to uncertainties of data and the potential for reliability growth are also examined. The assessment results were obtained through the adaptation and application of an existing reliability and availability methodology to the Heber plant design. These preliminary assessments were made to assist (1) in evaluating design alternatives for the plant and (2) in demonstrating that the closed-loop, multiple-fluid, binary cycle geothermal concept is competitive with the more conventional flashed steam cycle technology. The Heber Geothermal Binary Demonstration Plant Project is a cooperative effort directed toward accelerating geothermal development for power generation and establishing the binary cycle technology as a proven alternative to the flashed steam cycle for moderate temperature hydrothermal resources. The binary power plant would have a capacity of 45 MW/sub e/ net and would derive its energy from the low salinity (14,000 ppM), moderate temperature (360/sup 0/F, 182/sup 0/C) fluid from the Heber reservoir in southern California.

  6. New River Geothermal Exploration (Ram Power Inc.)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Miller, Clay

    The New River Geothermal Exploration (DOE Award No. EE0002843) is located approximately 25km south of the Salton Sea, near town of Brawley in Imperial County and approximately 150km east of San Diego, California. A total of 182 MT Logger sites were completed covering the two separate Mesquite and New River grids. The data was collected over a frequency range of 320Hz to 0.001Hz with variable site spacing. A number of different inversion algorithms in 1D, 2D and 3D were used to produce resistivity-depth profiles and maps of subsurface resistivity variations over the survey area. For 2D inversions, a total of eighteen lines were constructed in east-west and north-south orientations crossing the entire survey area. For MT 3D inversion, the New River property was divided in two sub-grids, Mesquite and New River areas. The report comprises of two parts. For the first part, inversions and geophysical interpretation results are presented with some recommendations of the potential targets for future follow up on the property. The second part of the report describes logistics of the survey, survey parameters, methodology and the survey results (data) in digital documents. The report reviews a Spartan MT survey carried out by Quantec Geoscience Limited over the New River Project in California, USA on behalf of Ram Power Inc. Data was acquired over a period of 29 days from 2010/06/26 to 2010/07/24.

  7. New River Geothermal Exploration (Ram Power Inc.)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Miller, Clay

    2013-11-15

    The New River Geothermal Exploration (DOE Award No. EE0002843) is located approximately 25km south of the Salton Sea, near town of Brawley in Imperial County and approximately 150km east of San Diego, California. A total of 182 MT Logger sites were completed covering the two separate Mesquite and New River grids. The data was collected over a frequency range of 320Hz to 0.001Hz with variable site spacing. A number of different inversion algorithms in 1D, 2D and 3D were used to produce resistivity-depth profiles and maps of subsurface resistivity variations over the survey area. For 2D inversions, a total of eighteen lines were constructed in east-west and north-south orientations crossing the entire survey area. For MT 3D inversion, the New River property was divided in two sub-grids, Mesquite and New River areas. The report comprises of two parts. For the first part, inversions and geophysical interpretation results are presented with some recommendations of the potential targets for future follow up on the property. The second part of the report describes logistics of the survey, survey parameters, methodology and the survey results (data) in digital documents. The report reviews a Spartan MT survey carried out by Quantec Geoscience Limited over the New River Project in California, USA on behalf of Ram Power Inc. Data was acquired over a period of 29 days from 2010/06/26 to 2010/07/24.

  8. Casa Diablo Geothermal Area | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Casa Diablo Geothermal Area Casa Diablo Geothermal Area The Mammoth-Pacific geothermal power plants at Casa Diablo on the eastern front of the Sierra Nevada Range generate enough power for approximately 40,000 homes. The power is sold to Southern California Edison under long-term contracts. Photo of the Casa Diablo Geothermal area.

  9. development Not Available 15 GEOTHERMAL ENERGY; TONGONAN GEOTHERMAL...

    Office of Scientific and Technical Information (OSTI)

    field Leyte, Philippines. Report on exploration and development Not Available 15 GEOTHERMAL ENERGY; TONGONAN GEOTHERMAL FIELD; GEOTHERMAL EXPLORATION; GEOTHERMAL POWER...

  10. Virginia Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) (indexed site)

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal ... Electric & Power Co" "2 Plants 4 Reactors","3,501","26,572",100.0 "Note: ...

  11. Minnesota Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) (indexed site)

    Minnesota nuclear power plants, summer capacity and net generation, 2010" "Plant name... States Power Co - Minnesota" "2 Plants 3 Reactors","1,594","13,478",100.0

  12. NUCLEAR POWER PLANT

    DOE Patents [OSTI]

    Carter, J.C.; Armstrong, R.H.; Janicke, M.J.

    1963-05-14

    A nuclear power plant for use in an airless environment or other environment in which cooling is difficult is described. The power plant includes a boiling mercury reactor, a mercury--vapor turbine in direct cycle therewith, and a radiator for condensing mercury vapor. (AEC)

  13. Chapter 4: Advancing Clean Electric Power Technologies | Geothermal Power Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Geothermal Power Chapter 4: Technology Assessments Introduction Geothermal power taps into earth's internal heat as an energy source. While geothermal currently constitutes less than 1% of total U.S. electricity generation, 1 it is regionally much more significant in the western United States. Vast amounts of heat are contained in the interior of the earth from the slow decay of radioactive elements and the heat remaining from earth's formation. This heat flows to the surface at low rates

  14. Power Plays: Geothermal Energy In Oil and Gas Fields | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Power Plays: Geothermal Energy In Oil and Gas Fields Power Plays: Geothermal Energy In Oil and Gas Fields The SMU Geothermal Lab is hosting their 7th international energy conference and workshop Power Plays: Geothermal Energy in Oil and Gas Fields May 18-20, 2015 on the SMU Campus in Dallas, Texas. The two-day conference brings together leaders from the geothermal, oil and gas communities along with experts in finance, law, technology, and government agencies to discuss generating electricity

  15. Geothermal Energy | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Energy (Redirected from Geothermal Power) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Geothermal Energy RSF GeothermalPowerStation.jpg Geothermal energy...

  16. Specialized Materials and Fluids and Power Plants | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Specialized Materials and Fluids and Power Plants Specialized Materials and Fluids and Power Plants Below are the project presentations and respective peer review results for Specialized Materials and Fluids and Power Plants. Evaluate Thermal Spray Coatings as a Pressure Seal, Joseph A. Henfling, Sandia National Laboratories Technologies for Extracting Valuable Metals and Compounds from Geothermal Fluids, Dr. Stephen Harrison, Simbol Mining Corp. Chemical Energy Carriers (CEC) for the

  17. Electrical Power Generation Using Geothermal Fluid Co-produced from Oil &

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Gas; 2010 Geothermal Technology Program Peer Review Report | Department of Energy Gas; 2010 Geothermal Technology Program Peer Review Report Electrical Power Generation Using Geothermal Fluid Co-produced from Oil & Gas; 2010 Geothermal Technology Program Peer Review Report DOE 2010 Geothermal Technologies Program Peer Review lowtemp_012_karl.pdf (247.08 KB) More Documents & Publications GRED Drilling Award … GRED III Phase II; 2010 Geothermal Technology Program Peer Review Report

  18. The Power and Potential of Geothermal Energy | Department of...

    Office of Environmental Management (EM)

    which is equivalent to 16 large nuclear power plants or dozens of coal fired power plants. ... a 79 million loan guarantee for the Blue Mountain power plant in northeastern Nevada. ...

  19. Slim Holes for Small Power Plants

    SciTech Connect (OSTI)

    Finger, John T.

    1999-08-06

    Geothermal research study at Sandia National Laboratories has conducted a program in slimhole drilling research since 1992. Although our original interest focused on slim holes as an exploration method, it has also become apparent that they have substantial potential for driving small-scale, off-grid power plants. This paper summarizes Sandia's slim-hole research program, describes technology used in a ''typical'' slimhole drilling project, presents an evaluation of using slim holes for small power plants, and lists some of the research topics that deserve further investigation.

  20. Geothermal

    Office of Scientific and Technical Information (OSTI)

    Geothermal Geothermal Legacy Collection Search the Geothermal Legacy Collection Search For Terms: Find + Advanced Search Advanced Search All Fields: Title: Full Text: ...

  1. Kizildere I Geothermal Pwer Plant | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Plant Information Facility Type Triple Flash Cycle Owner Zorlu Enerji Developer MTA Energy Purchaser TEDAS Commercial Online Date 1984 Power Plant Data Type of Plant Number...

  2. Geothermal rotary separator turbine: wellhead power system tests at Milford, Utah

    SciTech Connect (OSTI)

    Hughes, E.E.

    1983-08-01

    Through development of a separator/expander engine EPRI is improving the efficiency of single flash geothermal power systems. Under cost-shared contracts with Biphase Energy Systems and Utah Power and Light Company (UP and L), a wellhead power generating system has been built and tested. The wellhead unit has been operated for 4000 hours at Roosevelt Hot Springs near Milford, Utah. Phillips Petroleum Company operates the geothermal field at this site. The rotary separator turbine (RST) is a separating expander that increases the resource utilization efficiency by extracting power upstream of a steam turbine in either a 1-stage or 2-stage flash power system. The first power output was achieved October 28, 1981, six weeks after arrival of the RST at the site. The RST system produced 3270 MWh(e) gross and 2770 MWh(e) net to the UP and L grid. Total equivalent power produced by the wellhead RST (actual power output of the RST plus the power obtainable from the steam flow out of the RST) is 15 to 20 percent above the power that would be produced by an optimum 1-stage direct flash plant operated on the same geothermal well.

  3. The Geysers Geothermal Area | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    The Geysers Geothermal Area The Geysers Geothermal Area The Geysers Geothermal area, north of San Francisco, California, is the world's largest dry-steam geothermal steam field. Power production at the Geysers reached peak production in 1987, at that time serving 1.8 million people. Photo of The Geysers power plant

  4. World geothermal power generation in the period 2001-2005 | Open...

    Open Energy Information (Open El) [EERE & EIA]

    geothermal power generation in the period 2001-2005 Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: World geothermal power generation in the...

  5. NMAC 19.14.21 Geothermal Power Drilling Permit | Open Energy...

    Open Energy Information (Open El) [EERE & EIA]

    1 Geothermal Power Drilling Permit Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: NMAC 19.14.21 Geothermal Power Drilling...

  6. Nevada: Geothermal Brine Brings Low-Cost Power with Big Potential...

    Office of Environmental Management (EM)

    Nevada: Geothermal Brine Brings Low-Cost Power with Big Potential Nevada: Geothermal Brine Brings Low-Cost Power with Big Potential August 21, 2013 - 12:00am Addthis Utilizing a 1...

  7. Green Energy Geotherm Power Fonds GmbH Co KG | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Geotherm Power Fonds GmbH Co KG Jump to: navigation, search Name: Green Energy Geotherm Power Fonds GmbH & Co. KG Place: Hannover, Lower Saxony, Germany Zip: 30559 Sector:...

  8. STATEMENT OF BRIAN D. FAIRBANK Nevada Geothermal Power Inc.'s...

    Open Energy Information (Open El) [EERE & EIA]

    to: navigation, search OpenEI Reference LibraryAdd to library General: STATEMENT OF BRIAN D. FAIRBANK Nevada Geothermal Power Inc.'s Blue Mountain Geothermal Power Facility Author...

  9. Vegetation component of geothermal EIS studies: Introduced plants, ecosystem stability, and geothermal development

    SciTech Connect (OSTI)

    1994-10-01

    This paper contributes new information about the impacts from introduced plant invasions on the native Hawaiian vegetation as consequences of land disturbance and geothermal development activities. In this regard, most geothermal development is expected to act as another recurring source of physical disturbance which favors the spread and maintenance of introduced organisms throughout the region. Where geothermal exploration and development activities extend beyond existing agricultural and residential development, they will become the initial or sole source of disturbance to the naturalized vegetation of the area. Kilauea has a unique ecosystem adapted to the dynamics of a volcanically active landscape. The characteristics of this ecosystem need to be realized in order to understand the major threats to the ecosystem and to evaluate the effects of and mitigation for geothermal development in Puna. The native Puna vegetation is well adapted to disturbances associated with volcanic eruption, but it is ill-adapted to compete with alien plant species in secondary disturbances produced by human activities. Introduced plant and animal species have become a major threat to the continued presence of the native biota in the Puna region of reference.

  10. This Hybrid Power Plant Combines 3 Clean Energy Sources in One

    Energy.gov [DOE]

    Engineers at Idaho National Lab and the National Renewable Energy Laboratory helped build the world’s first triple hybrid renewable energy plant. It combines geothermal power, solar panels and concentrating solar power into one reliable energy source.

  11. Quiz: Know Your Power Plants

    Energy.gov [DOE]

    Think you know where coal, solar and other power plants are located around the country? Test your knowledge with our power plants quiz!

  12. Working Fluids and Their Effect on Geothermal Turbines | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Working Fluids and Their Effect on Geothermal Turbines Working Fluids and Their Effect on Geothermal Turbines DOE Geothermal Program Peer Review 2010 - Presentation. Project objective: Identify new working fluids for binary geothermal plants. specialized_sabau_working_fluids.pdf (1.3 MB) More Documents & Publications Tailored Working Fluids for Enhanced Binary Geothermal Power Plants A Revolutionary Hybrid Thermodynamic Cycle for Bianary Geothermal Power track 1: Low Temp |

  13. Enhanced Geothermal System (EGS) Fact Sheet | Department of Energy

    Energy.gov (indexed) [DOE]

    Calpine Staff Run Tests at The Geysers Geothermal Power Plant in California Calpine Staff Run Tests at The Geysers Geothermal Power Plant in California The EGS fact sheet provides...

  14. The Geothermal Technologies Office Invests $18 Million for Innovative...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    The McGuiness Hills Geothermal Power Plant in Lander County, Nevada generates 30 MW and ... The McGuiness Hills Geothermal Power Plant in Lander County, Nevada generates 30 MW and ...

  15. Michigan Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) (indexed site)

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal ... Nuclear Palisades LLC" "3 Plants 4 Reactors","3,947","29,625",100.0 "Note: ...

  16. Soda Lake II Geothermal Facility | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    and Range Geothermal Region Plant Information Facility Type Binary Owner Constellation Energy, Harbert Power Number of Units 6.0 Commercial Online Date 1990 Power Plant Data...

  17. Thermoelectric Materials Development for Low Temperature Geothermal Power Generation

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Tim Hansen

    2016-01-29

    Data includes characterization results for novel thermoelectric materials developed specifically for power generation from low temperature geothermal brines. Materials characterization data includes material density, thickness, resistance, Seebeck coefficient. This research was carried out by Novus Energy Partners in Cooperation with Southern Research Institute for a Department of Energy Sponsored Project.

  18. Advanced Low Temperature Geothermal Power Cycles (The ENTIV Organic Project) Final Report

    SciTech Connect (OSTI)

    Mugerwa, Michael

    2015-11-18

    Feasibility study of advanced low temperature thermal power cycles for the Entiv Organic Project. Study evaluates amonia-water mixed working fluid energy conversion processes developed and licensed under Kalex in comparison with Kalina cycles. Both cycles are developed using low temperature thermal resource from the Lower Klamath Lake Geothermal Area. An economic feasibility evaluation was conducted for a pilot plant which was deemed unfeasible by the Project Sponsor (Entiv).

  19. Georgia Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) (indexed site)

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal ...,302","19,610",58.5,"Georgia Power Co" "2 Plants 4 Reactors","4,061","33,512",100.0 "Note: ...

  20. Alabama Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) (indexed site)

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal ...,734","13,170",34.7,"Alabama Power Co" "2 Plants 5 Reactors","5,043","37,941",100.0 "Note: ...

  1. Soda Lake Geothermal Area | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Facility Add a new Operating Power Plant Developing Power Projects: 1 East Soda Lake Geothermal Project ( MW, Phase I - Resource Procurement and Identification) Add a new...

  2. EERE Success Story-California: Geothermal Plant to Help Meet High Lithium

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Demand | Department of Energy Geothermal Plant to Help Meet High Lithium Demand EERE Success Story-California: Geothermal Plant to Help Meet High Lithium Demand May 21, 2013 - 5:54pm Addthis Through funding provided by the American Recovery and Reinvestment Act of 2009, EERE's Geothermal Technologies Office is working with California's Simbol Materials to develop technologies that extract battery materials like lithium, manganese, and zinc from geothermal brines. Simbol has the potential to

  3. Evaluation of irrigation management procedures for geothermal effluent

    SciTech Connect (OSTI)

    Brockway, C.E.; Robbins, C.W.; Robison, C.W.; Johnson, G.S.

    1984-06-01

    An investigation was conducted to determine the feasibility of geothermal power plant effluent disposal by surface irrigation and the resulting impact on the shallow aquifer. The study was conducted at the Raft River Experimental Geothermal Power Plant site near Malta, Idaho and at the Snake River Conservation Research Center with soils and effluent obtained from the geothermal power plant site.

  4. Geothermal Today - 2001

    SciTech Connect (OSTI)

    2001-08-01

    U.S. Department of Energy Geothermal Energy Program Highlights Partnering with Industry A New Power Source for Nevada Drilling Research Finding Geothermal Resources Small-Scale Geothermal Power Plants The Heat Beneath Your Feet R&D 100 Award Program in Review Milestones January 2000 The U.S. Department of Energy GeoPowering the West initiative was launched. February 2000 Grants totaling $4.8 million were awarded in six western states, primarily for development of reservoir exploration, character

  5. Deming Solar Plant Solar Power Plant | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Deming Solar Plant Solar Power Plant Jump to: navigation, search Name Deming Solar Plant Solar Power Plant Facility Deming Solar Plant Sector Solar Facility Type Photovoltaic...

  6. Prescott Airport Solar Plant Solar Power Plant | Open Energy...

    Open Energy Information (Open El) [EERE & EIA]

    Prescott Airport Solar Plant Solar Power Plant Jump to: navigation, search Name Prescott Airport Solar Plant Solar Power Plant Facility Prescott Airport Solar Plant Sector Solar...

  7. Solana Generating Plant Solar Power Plant | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Solana Generating Plant Solar Power Plant Jump to: navigation, search Name Solana Generating Plant Solar Power Plant Facility Solana Generating Plant Sector Solar Facility Type...

  8. Bellavista Geothermal Power Station | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Generation Delivered to Grid (MWh) Plant Parasitic Consumption (MWh) Well-Field Parasitic Consumption (MWh) Well Field Number of Production Wells (total) Number of Injection Wells...

  9. California Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) (indexed site)

    California nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State ...

  10. Pennsylvania Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) (indexed site)

    Pennsylvania nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State ...

  11. Connecticut Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) (indexed site)

    Connecticut nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State ...

  12. Maryland Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) (indexed site)

    "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Calvert Cliffs Nuclear Power Plant ...

  13. Ohio Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) (indexed site)

    Ohio nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net ...

  14. Pennsylvania Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) (indexed site)

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net ...

  15. Power Plant Cycling Costs

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Power Plant Cycling Costs April 2012 N. Kumar, P. Besuner, S. Lefton, D. Agan, and D. Hilleman Intertek APTECH Sunnyvale, California NREL Technical Monitor: Debra Lew Subcontract Report NREL/SR-5500-55433 July 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov

  16. NEUTRONIC REACTOR POWER PLANT

    DOE Patents [OSTI]

    Metcalf, H.E.

    1962-12-25

    This patent relates to a nuclear reactor power plant incorporating an air-cooled, beryllium oxide-moderated, pebble bed reactor. According to the invention means are provided for circulating a flow of air through tubes in the reactor to a turbine and for directing a sidestream of the circu1ating air through the pebble bed to remove fission products therefrom as well as assist in cooling the reactor. (AEC)

  17. Power plant emissions reduction

    SciTech Connect (OSTI)

    Anand, Ashok Kumar; Nagarjuna Reddy, Thirumala Reddy

    2015-10-20

    A system for improved emissions performance of a power plant generally includes an exhaust gas recirculation system having an exhaust gas compressor disposed downstream from the combustor, a condensation collection system at least partially disposed upstream from the exhaust gas compressor, and a mixing chamber in fluid communication with the exhaust gas compressor and the condensation collection system, where the mixing chamber is in fluid communication with the combustor.

  18. Use of Geothermal Energy for Electric Power Generation

    SciTech Connect (OSTI)

    Mashaw, John M.; Prichett, III, Wilson

    1980-10-23

    The National Rural Electric Cooperative Association and its 1,000 member systems are involved in the research, development and utilization of many different types of supplemental and alternative energy resources. We share a strong commitment to the wise and efficient use of this country's energy resources as the ultimate answer to our national prosperity and economic growth. WRECA is indebted to the United States Department of Energy for funding the NRECA/DOE Geothermal Workshop which was held in San Diego, California in October, 1980. We would also like to express our gratitude to each of the workshop speakers who gave of their time, talent and experience so that rural electric systems in the Western U. S. might gain a clearer understanding of the geothermal potential in their individual service areas. The participants were also presented with practical, expert opinion regarding the financial and technical considerations of using geothermal energy for electric power production. The organizers of this conference and all of those involved in planning this forum are hopeful that it will serve as an impetus toward the full utilization of geothermal energy as an important ingredient in a more energy self-sufficient nation. The ultimate consumer of the rural electric system, the member-owner, expects the kind of leadership that solves the energy problems of tomorrow by fully utilizing the resources at our disposal today.

  19. Hybrid Air-Cooled Condenser for Power Plants and other applications...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    The thermal efficiency of geothermal power plants is relatively low, e.g. in the range of 10 to 23 ... when extracting useful energy during the generation of electricity. ...

  20. Report on Preliminary Engineering Study for Installation of an Air Cooled Steam Condenser at Brawley Geothermal Plant, Unit No. 1

    SciTech Connect (OSTI)

    1982-03-01

    The Brawley Geothermal Project comprises a single 10 MW nominal geothermal steam turbine-generator unit which has been constructed and operated by the Southern California Edison Company (SCE). Geothermal steam for the unit is supplied through contract by Union Oil Company which requires the return of all condensate. Irrigation District (IID) purchases the electric power generated and provides irrigation water for cooling tower make-up to the plant for the first-five years of operation, commencing mid-1980. Because of the unavailability of irrigation water from IID in the future, SCE is investigating the application and installation of air cooled heat exchangers in conjunction with the existing wet (evaporative) cooling tower with make-up based on use of 180 gpm (nominal) of the geothermal condensate which may be made available by the steam supplier.

  1. Alternative ocean energy products and hybrid geothermal-OTEC /GEOTEC/ plants

    SciTech Connect (OSTI)

    Dugger, G.L.; Richards, D.

    1981-01-01

    Products other than electricity from OTEC power plants are explored. Noting that the highest temperature gradients with the least seasonal variability are situated in tropical waters, it is suggested that portable products, such as NH3, liquid H2, methanol, and liquid hydrocarbon fuels, in addition to metals refining, are the most attractive applications of OTEC power. Cost estimates are provided for each product based on an average annual temperature change of 23.9 C and a 325 MWe OTEC the eighth plant costs are projected at $1,280/kW. Slowly cruising platforms for OTEC systems will have higher annual average temperature gradients than moored plants, and seasonal variations will relegate the monetary value of some OTEC electricity to fuel avoidance costs, due to lower winter gradient differences. Geothermal OTEC plants' performance is examined and found to exceed the normal OTEC efficiency by 12%.

  2. Geothermal Today - 1999

    SciTech Connect (OSTI)

    2000-05-01

    U.S. Department of Energy 1999 Geothermal Energy Program Highlights The Hot Facts Getting into Hot Water Turning Waste water into Clean Energy Producing Even Cleaner Power Drilling Faster and Cheaper Program in Review 1999: The Year in Review JanuaryCal Energy announced sale of Coso geothermal power plants at China Lake, California, to Caithness Energy, for $277 million. U.S. Export-Import Bank completed a $50 million refinancing of the Leyte Geothermal Optimization Project in the Philippines. F

  3. Review and problem definition of water/rock reactions associated with injection of spent geothermal fluids from a geothermal plant into aquifers

    SciTech Connect (OSTI)

    Elders, W.A.

    1986-07-01

    Among the technical problems faced by the burgeoning geothermal industry is the disposal of spent fluids from power plants. Except in unusual circumstances the normal practice, especially in the USA, is to pump these spent fluids into injection wells to prevent contamination of surface waters, and possibly in some cases, to reduce pressure drawdown in the producing aquifers. This report is a survey of experience in geothermal injection, emphasizing geochemical problems, and a discussion of approaches to their possible mitigation. The extraction of enthalpy from geothermal fluid in power plants may cause solutions to be strongly supersaturated in various dissolved components such as silica, carbonates, sulfates, and sulfides. Injection of such supersaturated solutions into disposal wells has the potential to cause scaling in the well bores and plugging of the aquifers, leading to loss of injectivity. Various aspects of the geochemistry of geothermal brines and their potential for mineral formation are discussed, drawing upon a literature survey. Experience of brine treatment and handling, and the economics of mineral extraction are also addressed in this report. Finally suggestions are made on future needs for possible experimental, field and theoretical studies to avoid or control mineral scaling.

  4. Geothermal Development Job Types and Impacts

    Energy.gov [DOE]

    Development of geothermal power plants and direct-use applications creates a variety of jobs. And the resulting job creation and economic activity within the geothermal industry positively impacts...

  5. Tennessee Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) (indexed site)

    Tennessee nuclear power plants, summer capacity and net generation, 2010" "Plant name...23","9,738",35.1,"Tennessee Valley Authority" "2 Plants 3 Reactors","3,401","27,739",100.0

  6. Wisconsin Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) (indexed site)

    Wisconsin nuclear power plants, summer capacity and net generation, 2010" "Plant name..."8,291",62.4,"NextEra Energy Point Beach LLC" "2 Plants 3 Reactors","1,584","13,281",100.0

  7. Louisiana Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) (indexed site)

    Louisiana nuclear power plants, summer capacity and net generation, 2010" "Plant Name..."1,168","10,276",55.1,"Entergy Louisiana Inc" "2 Plants 2 Reactors","2,142","18,639",100.0

  8. Illinois Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) (indexed site)

    Illinois nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal ... 2","1,774","14,796",15.4,"Exelon Nuclear" "6 Plants 11 Reactors","11,441","96,190",100.0

  9. BLM and Forest Service Consider Large-Scale Geothermal Leasing...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    By 2015, the lands could potentially host 110 new geothermal plants producing 5,500 megawatts of power, and by 2025, an additional 132 geothermal plants could produce another 6,600 ...

  10. Raft River Geothermal Area Data Models - Conceptual, Logical and Fact Models

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Cuyler, David

    Conceptual and Logical Data Model for Geothermal Data Concerning Wells, Fields, Power Plants and Related Analyses at Raft River a. Logical Model for Geothermal Data Concerning Wells, Fields, Power Plants and Related Analyses, David Cuyler 2010 b. Fact Model for Geothermal Data Concerning Wells, Fields, Power Plants and Related Analyses, David Cuyler 2010 Derived from Tables, Figures and other Content in Reports from the Raft River Geothermal Project: "Technical Report on the Raft River Geothermal Resource, Cassia County, Idaho," GeothermEx, Inc., August 2002. "Results from the Short-Term Well Testing Program at the Raft River Geothermal Field, Cassia County, Idaho," GeothermEx, Inc., October 2004.

  11. Raft River Geothermal Area Data Models - Conceptual, Logical and Fact Models

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Cuyler, David

    2012-07-19

    Conceptual and Logical Data Model for Geothermal Data Concerning Wells, Fields, Power Plants and Related Analyses at Raft River a. Logical Model for Geothermal Data Concerning Wells, Fields, Power Plants and Related Analyses, David Cuyler 2010 b. Fact Model for Geothermal Data Concerning Wells, Fields, Power Plants and Related Analyses, David Cuyler 2010 Derived from Tables, Figures and other Content in Reports from the Raft River Geothermal Project: "Technical Report on the Raft River Geothermal Resource, Cassia County, Idaho," GeothermEx, Inc., August 2002. "Results from the Short-Term Well Testing Program at the Raft River Geothermal Field, Cassia County, Idaho," GeothermEx, Inc., October 2004.

  12. EA-1849: Ormat Nevada Geothermal Projects in Northern NV | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy 9: Ormat Nevada Geothermal Projects in Northern NV EA-1849: Ormat Nevada Geothermal Projects in Northern NV August 22, 2011 EA-1849: Final Environmental Assessment Tuscarora Geothermal Power Plant, Elko County, Nevada; Jersey Valley Geothermal Project, Pershing County, Nevada; and McGuiness Hills Geothermal Project, Lander County, Nevada August 22, 2011 EA-1849: Finding of No Significant Impact Ormat Nevada Northern Nevada Geothermal Power Plant Projects: Loan Guarantee for ORMAT

  13. Geothermal Power and Interconnection: The Economics of Getting to Market

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Geothermal Heat Pumps Geothermal Heat Pumps Two commercial 36-ton geothermal heat pumps being used at the College of Southern Idaho. The Geothermal Technologies Office focuses only on electricity generation. For additional information about geothermal heating and cooling and ground source heat pumps, please visit the U.S. Department of Energy (DOE)'s Buildings Technologies Office. The geothermal heat pump, also known as the ground source heat pump, is a highly efficient renewable energy

  14. More Than Half of New U.S. Energy in February Derived from Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Phase II commercial operation of Ormat's McGinnis Hills Geothermal Power Plant - which ... Phase II commercial operation of Ormat's McGinnis Hills Geothermal PowerPlant - which ...

  15. Electric Power Generation from Low-Temperature Geothermal Resources...

    Open Energy Information (Open El) [EERE & EIA]

    1 Recovery Act: Geothermal Technologies Program Project Type Topic 2 Geothermal Energy Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and...

  16. NREL: Wind Power Research - NREL's Geothermal Experts Present...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Charles Visser, geologist, NREL principal scientist, Geothermal Play Fairway Analysis of the Snake River Plain: Phase 1 and GIS Methodology for Geothermal Play Fairway Analysis: ...

  17. World Geothermal Power Generation 2001-2005 | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    dismantled. Author Ruggero Bertani Conference World Geothermal Congress; Antalya, Turkey; 20050424 Published World Geothermal Congress, 2005 DOI Not Provided Check for DOI...

  18. Systems for Electrical Power from Coproduced and Low Temperature Geothermal Resources

    Energy.gov [DOE]

    Presentation about Systems for Electrical Power from Coproduced and Low Temperature Geothermal Resources includes background, results and discussion, future plans and conclusion.

  19. Development of Virtual Power Plants | The Ames Laboratory

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Development of Virtual Power Plants

  20. Stillwater Hybrid Geo-Solar Power Plant Optimization Analyses

    SciTech Connect (OSTI)

    Wendt, Daniel S.; Mines, Gregory L.; Turchi, Craig S.; Zhu, Guangdong; Cohan, Sander; Angelini, Lorenzo; Bizzarri, Fabrizio; Consoli, Daniele; De Marzo, Alessio

    2015-09-02

    The Stillwater Power Plant is the first hybrid plant in the world able to bring together a medium-enthalpy geothermal unit with solar thermal and solar photovoltaic systems. Solar field and power plant models have been developed to predict the performance of the Stillwater geothermal / solar-thermal hybrid power plant. The models have been validated using operational data from the Stillwater plant. A preliminary effort to optimize performance of the Stillwater hybrid plant using optical characterization of the solar field has been completed. The Stillwater solar field optical characterization involved measurement of mirror reflectance, mirror slope error, and receiver position error. The measurements indicate that the solar field may generate 9% less energy than the design value if an appropriate tracking offset is not employed. A perfect tracking offset algorithm may be able to boost the solar field performance by about 15%. The validated Stillwater hybrid plant models were used to evaluate hybrid plant operating strategies including turbine IGV position optimization, ACC fan speed and turbine IGV position optimization, turbine inlet entropy control using optimization of multiple process variables, and mixed working fluid substitution. The hybrid plant models predict that each of these operating strategies could increase net power generation relative to the baseline Stillwater hybrid plant operations.

  1. NREL Releases Report on Policy Options to Advance Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Applications Phase II commercial operation of Ormat's McGinnis Hills Geothermal Power Plant - which came online in February 2015 - doubled the plant's generating capacity ...

  2. Geothermal Technologies Office 2012 Peer Review Report

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    The photo on the cover page is of the Heber Geothermal power plant located seven miles south of El Centro, CA. Photo courtesy of Warren Gretz, NREL photographer Geothermal Technologies Office 2012 Peer Review Report April 2013 U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Geothermal Technologies Office 2012 Peer Review Meeting May 2012 Dr. Kate Baker Chair 2012 Geothermal Technologies Peer Review Panel Douglas Hollett Program Manager U.S. DOE Geothermal Technologies

  3. Ahuachapan Geothermal Power Plant | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Location Information Location Cordillera de Apaneca, Santa Rosa, Ahuachapn, El Salvador Coordinates 13.9202, -89.8174 Loading map... "minzoom":false,"mappingservice":"g...

  4. Maibarara Geothermal Power Plant | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    1 Avg. Annual Gross Operating Capacity(MW) Summer Peak Net Capacity (MW) Winter Peak Net Capacity (MW) Avg. Annual GenerationConsumption Gross Generation (MWh) 60 1...

  5. Sinem Geothermal Power Plant | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    (afday) Cooling Tower Water use (summer average) (afday) Cooling Tower Water use (winter average) (afday) Types of Water 350x500px This article is a stub. You can help...

  6. Mutnovskaya Geothermal Power Plant | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    processes (afday) Daily Operation Water Use (afday) Well Field Water Use (afday) Cooling Tower Water use (annual average) (afday) Cooling Tower Water use (summer average) (af...

  7. Mataloko Geothermal Power Plant | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    processes (afday) Daily Operation Water Use (afday) Well Field Water Use (afday) Cooling Tower Water use (annual average) (afday) Cooling Tower Water use (summer average) (af...

  8. Mendeleevskaya Geothermal Power Plant | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    processes (afday) Daily Operation Water Use (afday) Well Field Water Use (afday) Cooling Tower Water use (annual average) (afday) Cooling Tower Water use (summer average) (af...

  9. Next Generation Geothermal Power Plants (Technical Report) |...

    Office of Scientific and Technical Information (OSTI)

    minimize or eliminate emission of pollutants and consumption of surface and ground water. ... isobutane as a working fluid; both air-cooling and water-cooling were considered. ...

  10. Altheim Geothermal Power Plant | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    luster":false,"searchmarkers":"","locations":"text":"","title":"","link":null,"lat":48.250187763529,"lon":13.234451724784,"alt":0,"address":"","icon":"","group":"","inlineLabel":...

  11. ATOMIC POWER PLANT

    DOE Patents [OSTI]

    Daniels, F.

    1957-11-01

    This patent relates to neutronic reactor power plants and discloses a design of a reactor utilizing a mixture of discrete units of a fissionable material, such as uranium carbide, a neutron moderator material, such as graphite, to carry out the chain reaction. A liquid metal, such as bismuth, is used as the coolant and is placed in the reactor chamber with the fissionable and moderator material so that it is boiled by the heat of the reaction, the boiling liquid and vapors passing up through the interstices between the discrete units. The vapor and flue gases coming off the top of the chamber are passed through heat exchangers, to produce steam, for example, and thence through condensers, the condensed coolant being returned to the chamber by gravity and the non- condensible gases being carried off through a stack at the top of the structure.

  12. Hybrid Cooling Systems for Low-Temperature Geothermal Power Production

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Hybrid Cooling Systems for Low-Temperature Geothermal Power Production Andrea Ashwood and Desikan Bharathan Technical Report NREL/TP-5500-48765 March 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Hybrid Cooling Systems for

  13. Power Plant Replacement Study

    SciTech Connect (OSTI)

    Reed, Gary

    2010-09-30

    This report represents the final report for the Eastern Illinois University power plant replacement study. It contains all related documentation from consideration of possible solutions to the final recommended option. Included are the economic justifications associated with the chosen solution along with application for environmental permitting for the selected project for construction. This final report will summarize the results of execution of an EPC (energy performance contract) investment grade audit (IGA) which lead to an energy services agreement (ESA). The project includes scope of work to design and install energy conservation measures which are guaranteed by the contractor to be self-funding over its twenty year contract duration. The cost recovery is derived from systems performance improvements leading to energy savings. The prime focus of this EPC effort is to provide a replacement solution for Eastern Illinois Universitys aging and failing circa 1925 central steam production plant. Twenty-three ECMs were considered viable whose net impact will provide sufficient savings to successfully support the overall project objectives.

  14. Power Plant Replacement Study

    SciTech Connect (OSTI)

    Reed, Gary

    2010-09-30

    This report represents the final report for the Eastern Illinois University power plant replacement study. It contains all related documentation from consideration of possible solutions to the final recommended option. Included are the economic justifications associated with the chosen solution along with application for environmental permitting for the selected project for construction. This final report will summarize the results of execution of an EPC (energy performance contract) investment grade audit (IGA) which lead to an energy services agreement (ESA). The project includes scope of work to design and install energy conservation measures which are guaranteed by the contractor to be self-funding over its twenty year contract duration. The cost recovery is derived from systems performance improvements leading to energy savings. The prime focus of this EPC effort is to provide a replacement solution for Eastern Illinois University’s aging and failing circa 1925 central steam production plant. Twenty-three ECMs were considered viable whose net impact will provide sufficient savings to successfully support the overall project objectives.

  15. Power Plant Replacement Study

    SciTech Connect (OSTI)

    Reed, Gary

    2010-09-30

    This report represents the final report for the Eastern Illinois University power plant replacement study. It contains all related documentation from consideration of possible solutions to the final recommended option. Included are the economic justifications associated with the chosen solution along with application for environmental permitting for the selected project for construction. This final report will summarize the results of execution of an EPC (energy performance contract) investment grade audit (IGA) which lead to an energy services agreement (ESA). The project includes scope of work to design and install energy conservation measures which are guaranteed by the contractor to be self‐funding over its twenty year contract duration. The cost recovery is derived from systems performance improvements leading to energy savings. The prime focus of this EPC effort is to provide a replacement solution for Eastern Illinois University’s aging and failing circa 1925 central steam production plant. Twenty‐three ECMs were considered viable whose net impact will provide sufficient savings to successfully support the overall project objectives.

  16. Power Plant Replacement Study

    SciTech Connect (OSTI)

    Reed, Gary

    2010-09-30

    This report represents the final report for the Eastern Illinois University power plant replacement study. It contains all related documentation from consideration of possible solutions to the final recommended option. Included are the economic justifications associated with the chosen solution along with application for environmental permitting for the selected project for construction. This final report will summarize the results of execution of an EPC (energy performance contract) investment grade audit (IGA) which lead to an energy services agreement (ESA). The project includes scope of work to design and install energy conservation measures which are guaranteed by the contractor to be self-funding over its twenty year contract duration. The cost recovery is derived from systems performance improvements leading to energy savings. The prime focus of this EPC effort is to provide a replacement solution for Eastern Illinois University's aging and failing circa 1925 central steam production plant. Twenty-three ECMs were considered viable whose net impact will provide sufficient savings to successfully support the overall project objectives.

  17. Systems for Electrical Power from Coproduced and Low Temperature Geothermal Resources

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Systems for Electrical Power from Systems for Electrical Power from Coproduced and Low Temperature Geothermal Resources Timothy Reinhardt, Lyle A. Johnson and Neil Popovich Thirty Thirty-Sixth Workshop on Geothermal Reservoir Engineering Sixth Workshop on Geothermal Reservoir Engineering Stanford University Stanford, CA Jan ar 31 Febr ar 2 2011 January 31 - February 2, 2011 Energy Efficiency & Renewable Energy eere.energy.gov Outline * * Background Background * Results and Discussion *

  18. Southern Rockies Geothermal Region | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    ENERGYGeothermal Home Southern Rockies Geothermal Region Details Areas (1) Power Plants (0) Projects (0) Techniques (0) Assessment of Moderate- and High-Temperature...

  19. Northern Rockies Geothermal Region | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    ENERGYGeothermal Home Northern Rockies Geothermal Region Details Areas (0) Power Plants (0) Projects (0) Techniques (0) Map: Name Province is situated in northern Idaho...

  20. Sierra Nevada Geothermal Region | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    ENERGYGeothermal Home Sierra Nevada Geothermal Region Details Areas (0) Power Plants (0) Projects (0) Techniques (0) Map: Name California's Sierra Nevada is a...

  1. Imperial Valley Geothermal Area | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Resource Area in Southern California's Imperial Valley. The combined capacity at Imperial Valley is approximately 327 net megawatts. Photo of the Leathers geothermal power plant

  2. geothermal infographic 7.14.2014

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... The illustration below is based on the Blue Lagoon Spa in Reykjavik, Iceland. Pictured in the background is the Svartsengi Geothermal Power Plant. There are 2 different ways ...

  3. Geothermal Test Facility, California, Site Fact Sheet

    Office of Legacy Management (LM)

    The facility provided all the equipment, including a fully equipped laboratory for chemical and materials analyses, necessary to support major geothermal power plant- related ...

  4. Geothermal Energy | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Geothermal Energy (Redirected from Geothermal power) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Overview Technologies Resources Market Data Geothermal Topics Data...

  5. Geothermal Life Cycle Calculator

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sullivan, John

    2014-03-11

    This calculator is a handy tool for interested parties to estimate two key life cycle metrics, fossil energy consumption (Etot) and greenhouse gas emission (ghgtot) ratios, for geothermal electric power production. It is based solely on data developed by Argonne National Laboratory for DOEs Geothermal Technologies office. The calculator permits the user to explore the impact of a range of key geothermal power production parameters, including plant capacity, lifetime, capacity factor, geothermal technology, well numbers and depths, field exploration, and others on the two metrics just mentioned. Estimates of variations in the results are also available to the user.

  6. Geothermal Life Cycle Calculator

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sullivan, John

    2014-03-11

    This calculator is a handy tool for interested parties to estimate two key life cycle metrics, fossil energy consumption (Etot) and greenhouse gas emission (ghgtot) ratios, for geothermal electric power production. It is based solely on data developed by Argonne National Laboratory for DOE’s Geothermal Technologies office. The calculator permits the user to explore the impact of a range of key geothermal power production parameters, including plant capacity, lifetime, capacity factor, geothermal technology, well numbers and depths, field exploration, and others on the two metrics just mentioned. Estimates of variations in the results are also available to the user.

  7. Geothermal Life Cycle Calculator

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sullivan, John

    This calculator is a handy tool for interested parties to estimate two key life cycle metrics, fossil energy consumption (Etot) and greenhouse gas emission (ghgtot) ratios, for geothermal electric power production. It is based solely on data developed by Argonne National Laboratory for DOEs Geothermal Technologies office. The calculator permits the user to explore the impact of a range of key geothermal power production parameters, including plant capacity, lifetime, capacity factor, geothermal technology, well numbers and depths, field exploration, and others on the two metrics just mentioned. Estimates of variations in the results are also available to the user.

  8. Power Plant Modeling and Simulation

    ScienceCinema (OSTI)

    None

    2016-07-12

    The National Energy Technology Laboratory's Office of Research and Development provides open source tools and expetise for modeling and simulating power plants and carbon sequestration technologies.

  9. Power Plant Modeling and Simulation

    SciTech Connect (OSTI)

    2008-07-21

    The National Energy Technology Laboratory's Office of Research and Development provides open source tools and expetise for modeling and simulating power plants and carbon sequestration technologies.

  10. Stanford Geothermal Workshop

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    low-temperature, 3 MW geothermal power plant in the near future, funded with 2 million in GTO Recovery Act funds, matched by a 3M Oregon Department of Energy Business tax credit. ...

  11. Geothermal

    Office of Scientific and Technical Information (OSTI)

    Geothermal Geothermal Legacy Collection Search the Geothermal Legacy Collection Search For Terms: Find + Advanced Search × Advanced Search All Fields: Title: Full Text: Bibliographic Data: Creator / Author: Name Name ORCID Search Authors Subject: Identifier Numbers: Research Org: Sponsoring Org: Publication Date: to Update Date: to Sort: Relevance (highest to lowest) Publication Date (newest first) Publication Date (oldest first) Legacy/Non-Legacy: All Legacy Non-Legacy Close Clear All Find

  12. Geothermal Energy & Economic Development

    SciTech Connect (OSTI)

    2004-07-01

    Whether they are used to generate electricity or for direct-use applications, geothermal energy projects contribute to the economy of areas where they are located. Geothermal power plant operations are often a major source of tax revenue to local governments.

  13. Geothermal

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Geothermal Louise Vickery, General Manager, Renewable Futures at the Australian Renewable Energy Agency (ARENA). Permalink Gallery Australian Renewable-Energy Official Visits ...

  14. Preconstruction of the Honey Lake Hybrid Power Plant

    SciTech Connect (OSTI)

    Not Available

    1988-04-30

    The work undertaken under this Contract is the prosecution of the preconstruction activities, including preliminary engineering design, well field development, completion of environmental review and prosecution of permits, and the economic and financial analysis of the facility. The proposed power plant is located in northeastern California in Lassen County, approximately 25 miles east of the town of Susanville. The power plant will use a combination of wood residue and geothermal fluids for power generation. The plant, when fully constructed, will generate a combined net output of approximately 33 megawatts which will be sold to Pacific Gas and Electric Company (PG E) under existing long-term power sales contracts. Transfer of electricity to the PG E grid will require construction of a 22-mile transmission line from the power plant to Susanville. 11 refs., 12 figs., 7 tabs.

  15. Owners of nuclear power plants

    SciTech Connect (OSTI)

    Not Available

    1982-11-01

    The list indicates percentage ownership of commercial nuclear power plants by utility companies as of September 1, 1982. The list includes all plants licensed to operate, under construction, docketed for NRC safety and environmental reviews, or under NRC antitrust review. Part I lists plants alphabetically with their associated applicants and percentage ownership. Part II lists applicants alphabetically with their associated plants and percentage ownership. Part I also indicates which plants have received operating licenses.

  16. Geothermal power development in Hawaii. Volume I. Review and analysis

    SciTech Connect (OSTI)

    Not Available

    1982-06-01

    The history of geothermal exploration in Hawaii is reviewed briefly. The nature and occurrences of geothermal resources are presented island by island. An overview of geothermal markets is presented. Other topies covered are: potential markets of the identified geothermal areas, well drilling technology, hydrothermal fluid transport, overland and submarine electrical transmission, community aspects of geothermal development, legal and policy issues associated with mineral and land ownership, logistics and infrastructure, legislation and permitting, land use controls, Regulation 8, Public Utilities Commission, political climate and environment, state plans, county plans, geothermal development risks, and business planning guidelines.

  17. Energy Secretary Chu Applauds World's First All-Renewable Power Plant in

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Nevada | Department of Energy Secretary Chu Applauds World's First All-Renewable Power Plant in Nevada Energy Secretary Chu Applauds World's First All-Renewable Power Plant in Nevada May 3, 2012 - 3:00pm Addthis As part of the Obama Administration's all-out, all-of-the-above approach to American energy, the Energy Department today recognized the dedication of the world's first geothermal-solar power plant in Fallon, Nevada. The Stillwater geothermal project, which received $40 million in tax

  18. The Award-Winning Environmental Performance of Geothermal Power in California

    Energy.gov [DOE]

    For more than a decade now, three power companies and one community in California have received awards for their outstanding environmental performance from the use of geothermal power. Here's a...

  19. STATEMENT OF BRIAN D. FAIRBANK Nevada Geothermal Power Inc.'s...

    Open Energy Information (Open El) [EERE & EIA]

    Power Facility Jump to: navigation, search OpenEI Reference LibraryAdd to library Personal Communication: STATEMENT OF BRIAN D. FAIRBANK Nevada Geothermal Power Inc.'s Blue...

  20. Owners of nuclear power plants

    SciTech Connect (OSTI)

    Wood, R.S.

    1991-07-01

    This report indicates percentage ownership of commercial nuclear power plants by utility companies. The report includes all plants operating, under construction, docketed for NRC safety and environmental reviews, or under NRC antitrust review, but does not include those plants announced but not yet under review or those plants formally cancelled. Part 1 of the report lists plants alphabetically with their associated applicants or licensees and percentage ownership. Part 2 lists applicants or licensees alphabetically with their associated plants and percentage ownership. Part 1 also indicates which plants have received operating licenses (OLS).

  1. Mohave Solar Power Plant | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Solar Power Plant Jump to: navigation, search Name Mohave Solar Power Plant Facility Mojave Solar Sector Solar Facility Type Concentrating Solar Power Facility Status Under...

  2. Nevada's Beowawe Geothermal Plant Begins Generating Clean Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    existing plant's nameplate capacity of approximately 17.7 megawatts Developed by Terra-Gen Power and TAS Energy, the project was funded in part by a 2 million Recovery Act grant...

  3. Air-Cooled Condensers for Next Generation Power Plants | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Air-Cooled Condensers for Next Generation Power Plants Air-Cooled Condensers for Next Generation Power Plants Power plants presentation by Greg Mines at the 2013 Annual Peer Review in Colorado. aircooledcondensers_peerreview2013.pdf (1.56 MB) More Documents & Publications Hybrid and Advanced Air Cooling Advanced Heat/Mass Exchanger Technology for Geothermal and solar Renewable Energy Systems Air-cooled Condensers in Next-generation Conversion Systems

  4. Variable pressure supercritical Rankine cycle for integrated natural gas and power production from the geopressured geothermal resource

    SciTech Connect (OSTI)

    Goldsberry, F.L.

    1982-03-01

    A small-scale power plant cycle that utilizes both a variable pressure vaporizer (heater) and a floating pressure (and temperature) air-cooled condenser is described. Further, it defends this choice on the basis of classical thermodynamics and minimum capital cost by supporting these conclusions with actual comparative examples. The application suggested is for the geopressured geothermal resource. The arguments cited in this application apply to any process (petrochemical, nuclear, etc.) involving waste heat recovery.

  5. Geothermal Power and Interconnection: The Economics of Getting to Market

    SciTech Connect (OSTI)

    Hurlbut, D.

    2012-04-01

    This report provides a baseline description of the transmission issues affecting geothermal technologies. The report begins with a comprehensive overview of the grid, how it is planned, how it is used, and how it is paid for. The report then overlays onto this 'big picture' three types of geothermal technologies: conventional hydrothermal systems; emerging technologies such as enhanced engineered geothermal systems (EGS) and geopressured geothermal; and geothermal co-production with existing oil and gas wells. Each category of geothermal technology has its own set of interconnection issues, and these are examined separately for each. The report draws conclusions about each technology's market affinities as defined by factors related to transmission and distribution infrastructure. It finishes with an assessment of selected markets with known geothermal potential, identifying those that offer the best prospects for near-term commercial development and for demonstration projects.

  6. Neal Hot Springs Geothermal Area | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    three units was completed in July 2012.5 The power plant is owned and operated by U.S. Geothermal Inc., a renewable energy company focused on developing geothermal resources....

  7. Nebraska Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) (indexed site)

    Nebraska nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Cooper Unit 1",767,"6,793",61.4,"Nebraska Public Power District" "Fort Calhoun Unit 1",478,"4,261",38.6,"Omaha Public Power District" "2 Plants 2

  8. Georgia Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) (indexed site)

    nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Edwin I Hatch Unit 1, Unit 2","1,759","13,902",41.5,"Georgia Power Co" "Vogtle Unit 1, Unit 2","2,302","19,610",58.5,"Georgia Power Co" "2 Plants 4

  9. Maryland Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) (indexed site)

    nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Calvert Cliffs Nuclear Power Plant Unit 1, Unit 2","1,705","13,994",100.0,"Calvert Cliffs Nuclear PP Inc" "1 Plant 2 Reactors","1,705","13,994",100.0 "Note: Totals

  10. Owners of nuclear power plants

    SciTech Connect (OSTI)

    Hudson, C.R.; White, V.S.

    1996-11-01

    Commercial nuclear power plants in this country can be owned by a number of separate entities, each with varying ownership proportions. Each of these owners may, in turn, have a parent/subsidiary relationship to other companies. In addition, the operator of the plant may be a different entity as well. This report provides a compilation on the owners/operators for all commercial power reactors in the United States. While the utility industry is currently experiencing changes in organizational structure which may affect nuclear plant ownership, the data in this report is current as of July 1996. The report is divided into sections representing different aspects of nuclear plant ownership.

  11. Owners of Nuclear Power Plants

    SciTech Connect (OSTI)

    Reid, R.L.

    2000-01-12

    Commercial nuclear power plants in this country can be owned by a number of separate entities, each with varying ownership proportions. Each of these owners may, in turn, have a parent/subsidiary relationship to other companies. In addition, the operator of the plant may be a different entity as well. This report provides a compilation on the owners/operators for all commercial power reactors in the United States. While the utility industry is currently experiencing changes in organizational structure which may affect nuclear plant ownership, the data in this report is current as of November 1999. The report is divided into sections representing different aspects of nuclear plant ownership.

  12. Geothermal Energy Featured on NBC's Today Show

    Energy.gov [DOE]

    In Iceland, there are five major geothermal power plants which produce about 26% (2006) of the country's electricity. In addition, geothermal heating meets the heating and hot water requirements for around 87% of the nation's buildings. As part of its "Ends of the Earth" series, NBC's Today Show presented a feature on the use of geothermal energy in Iceland.

  13. Performance uprate of a geothermal steam turbine case study: Brady Power low pressure turbine

    SciTech Connect (OSTI)

    Miller, R.J. Jr.

    1997-12-31

    The output of a low pressure steam turbine operating in a geothermal power plant has been increased 10.9% by performing an efficiency uprate. The performance of the turbine was studied, resulting in a design for re-optimizing the steam path. New high-efficiency components were blended with existing turbine parts to achieve large output gains at minimum cost. Because the uprate was performed by a non-OEM, the analysis and manufacturing techniques were specifically tailored for the aftermarket. The work was completed on the spare turbine components, thereby allowing the plant to continue operation while the uprated parts were being manufactured. The predicted output gains were confirmed by field performance tests of the existing and uprated turbines.

  14. EA-1849: Department of Energy Loan Guarantee to Ormat Nevada, Inc. for a Geothermal Power Facility in Nevada

    Energy.gov [DOE]

    Ormat Nevada Inc. (ORMAT), through its subsidiaries, proposes to construct and operate three geothermal power production facilities and associated power transmission lines in northern Nevada. The...

  15. Geopressure geothermal energy conversion: the supercritical propane cycle for power generation

    SciTech Connect (OSTI)

    Goldsberry, F.L.; Bebout, D.G.; Bachman, A.L.

    1981-01-01

    The development of the geopressure geothermal unconventional gas resource has been the object of a drilling and reservoir testing program. One aspect of the assessment has been to look at the geothermal component of the energy base as a source of power generation. The basic production unit for the resource has been estimated to be a well capable of producing fluid at a rate of 15,000 to 40,000 BPD at temperatures of 240 to 360/sup 0/F (.0276 to .0736 M/sup 3//sec at 338 to 455/sup 0/K). The spacing of these wells will be approximately 2 to 4 km for effective reservoir drainage. This limits the generation capacity, per well from 700 to 3000 kW per site. It is assumed that interconnecting pipelines to carry brine from each well to a central location and then return it to salt water disposal wells will be impractical. Single well power plants with electrical gathering systems are considered to be the probable mode of development. The thermodynamic envelope within which the plant must operate is defined by the linear cooling curve of the brine and the ambient air temperature. The low resource temperature calls for a Rankine cycle. A supercritical propane cycle was selected. The only component of the thermal power system subject to uncertainty is the brine/propane heater. At the present time a scale/corrosion pilot plant is being operated on a number of geopressure test wells to determine inexpensive scale and corrosion inhibitors that may be used to reduce fouling of the exchanger tubes.

  16. Enhanced Geothermal System (EGS) Infographic | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Enhanced Geothermal System (EGS) Infographic Enhanced Geothermal System (EGS) Infographic Calpine Staff Run Tests at The Geysers Geothermal Power Plant in California Calpine Staff Run Tests at The Geysers Geothermal Power Plant in California The EGS infographic provides an overview of this burgeoning technology that could access an enormous, domestic, clean energy resource predicted at more than 100 GW in the United States alone, according to an MIT study. To take advantage of this vast

  17. Massachusetts Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) (indexed site)

    Power Station Unit 1",685,"5,918",100.0,"Entergy Nuclear Generation Co" "1 Plant 1 Reactor",685,"5,918",100.0 "Note: Totals may not equal sum of components due to independent ...

  18. Beowawe Hot Springs Geothermal Area | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    at the time.7 The plant is currently owned by Beowawe Power, LLC and operated by Terra-Gen Power. History and Infrastructure Operating Power Plants: 1 Beowawe Geothermal Facility...

  19. High-potential Working Fluids for Next Generation Binary Cycle Geothermal

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Power Plants | Department of Energy High-potential Working Fluids for Next Generation Binary Cycle Geothermal Power Plants High-potential Working Fluids for Next Generation Binary Cycle Geothermal Power Plants DOE Geothermal Peer Review 2010 - Presentation. Project objective: Find optimized working fluid/advanced cycle combination for EGS applications. specialized_klockow_working_fluids.pdf (486.55 KB) More Documents & Publications Tailored Working Fluids for Enhanced Binary Geothermal

  20. Low-Temperature, Coproduced, and Geopressured Geothermal Power

    Energy.gov [DOE]

    The Geothermal Technology Program (GTP) low-temperature subprogram aims to provide the global geothermal community with the means to achieve development and widespread deployment of economically viable, innovative, and scalable technologies—including those involving coproducts—that will capture a significant portion of the low-temperature geothermal resource base over the next two decades. To that end, GTP held a Technology Roadmapping Workshop on July 13-14, 2010 in Golden, Colorado.