National Library of Energy BETA

Sample records for general plant project

  1. Y-12 Steam Plant Project Received National Recognition for Project...

    National Nuclear Security Administration (NNSA)

    Steam Plant Project Received National Recognition for Project Management Excellence March 23, 2011 Y-12 steam plant project receives national recognition for project management ...

  2. Waste Treatment Plant Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Plant Project Waste Treatment Plant Project Presentation from the 2015 DOE National Cleanup Workshop by Peggy McCullough, Project Manager-WTP, Bechtel National. Waste Treatment Plant Project (669.27 KB) More Documents & Publications Waste Treatment Plant and Tank Farm Program Managing Large Capital Projects EIS-0391: Draft Environmental Impact Statement

  3. Y-12 Steam Plant Project Received National Recognition for Project

    National Nuclear Security Administration (NNSA)

    Management Excellence | National Nuclear Security Administration | (NNSA) Steam Plant Project Received National Recognition for Project Management Excellence March 23, 2011 Y-12 steam plant project receives national recognition for project management excellence. Y-12's Steam Plant Life Extension Project (SPLE) has received the Secretary of Energy's Project Management Improvement Award. Microsoft Office document icon NR-03-28

  4. General Services Administration Photovoltaics Project in Sacramento...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Document describes a request for proposal issued for the General Services Administration photovoltaic (PV) project. Download the document. (572.19 KB) More Documents & Publications ...

  5. Commercial low-Btu coal-gasification plant. Feasibility study: General Refractories Company, Florence, Kentucky. Volume I. Project summary. [Wellman-Galusha

    SciTech Connect

    1981-11-01

    In response to a 1980 Department of Energy solicitation, the General Refractories Company submitted a Proposal for a feasibility study of a low Btu gasification facility for its Florence, KY plant. The proposed facility would substitute low Btu gas from a fixed bed gasifier for natural gas now used in the manufacture of insulation board. The Proposal from General Refractories was prompted by a concern over the rising costs of natural gas, and the anticipation of a severe increase in fuel costs resulting from deregulation. The proposed feasibility study is defined. The intent is to provide General Refractories with the basis upon which to determine the feasibility of incorporating such a facility in Florence. To perform the work, a Grant for which was awarded by the DOE, General Refractories selected Dravo Engineers and Contractors based upon their qualifications in the field of coal conversion, and the fact that Dravo has acquired the rights to the Wellman-Galusha technology. The LBG prices for the five-gasifier case are encouraging. Given the various natural gas forecasts available, there seems to be a reasonable possibility that the five-gasifier LBG prices will break even with natural gas prices somewhere between 1984 and 1989. General Refractories recognizes that there are many uncertainties in developing these natural gas forecasts, and if the present natural gas decontrol plan is not fully implemented some financial risks occur in undertaking the proposed gasification facility. Because of this, General Refractories has decided to wait for more substantiating evidence that natural gas prices will rise as is now being predicted.

  6. SES Calico Solar One Project Solar Power Plant | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Calico Solar One Project Solar Power Plant Jump to: navigation, search Name SES Calico Solar One Project Solar Power Plant Facility SES Calico Solar One Project Sector Solar...

  7. SES Solar Three Project Solar Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Three Project Solar Power Plant Jump to: navigation, search Name SES Solar Three Project Solar Power Plant Facility SES Solar Three Project Sector Solar Facility Type Photovoltaics...

  8. SES Solar Two Project Solar Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Two Project Solar Power Plant Jump to: navigation, search Name SES Solar Two Project Solar Power Plant Facility SES Solar Two Project Sector Solar Facility Type Concentrating Solar...

  9. Beacon Solar Energy Project Solar Power Plant | Open Energy Informatio...

    OpenEI (Open Energy Information) [EERE & EIA]

    Solar Energy Project Solar Power Plant Jump to: navigation, search Name Beacon Solar Energy Project Solar Power Plant Facility Beacon Solar Energy Project Sector Solar Facility...

  10. El Dorado Solar Project Solar Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Solar Project Solar Power Plant Jump to: navigation, search Name El Dorado Solar Project Solar Power Plant Facility El Dorado Solar Project Sector Solar Facility Type Photovoltaic...

  11. SCE Roof Project Solar Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    SCE Roof Project Solar Power Plant Jump to: navigation, search Name SCE Roof Project Solar Power Plant Facility SCE Roof Project Sector Solar Facility Type Photovoltaic Developer...

  12. Palmdale Project Solar Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Palmdale Project Solar Power Plant Jump to: navigation, search Name Palmdale Project Solar Power Plant Facility Palmdale Project Sector Solar Facility Type Hybrid Developer Inland...

  13. PIA - Energy Inspector General Project Tracking System (EIGPT) | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Inspector General Project Tracking System (EIGPT) PIA - Energy Inspector General Project Tracking System (EIGPT) PIA - Energy Inspector General Project Tracking System (EIGPT) PIA - Energy Inspector General Project Tracking System (EIGPT) (72.55 KB) More Documents & Publications PIA - FOIAXpress PIA - INL SECURITY INFORMATION MANAGEMENT SYSTEM BUSINESS ENCLAVE PIA - INL PeopleSoft - Human Resource System

  14. General Services Administration Photovoltaics Project in Sacramento, California

    Energy.gov [DOE]

    Document describes a request for proposal issued for the General Services Administration photovoltaic (PV) project.

  15. Project quality assurance plant: Sodium storage facility, project F-031

    SciTech Connect

    Shultz, J.W.; Shank, D.R.

    1994-11-01

    The Sodium Storage Facility Project Quality Assurance Plan delineates the quality assurance requirements for construction of a new facility, modifications to the sodium storage tanks, and tie-ins to the FFTF Plant. This plan provides direction for the types of verifications necessary to satisfy the functional requirements within the project scope and applicable regulatory requirements determined in the Project Functional Design Criteria (FDC), WHC-SD-FF-FDC-009.

  16. The Formation of Pioneer Plant Projects in Chemical Processing...

    Office of Environmental Management (EM)

    The Formation of Pioneer Plant Projects in Chemical Processing Firms The Formation of Pioneer Plant Projects in Chemical Processing Firms This report should provide DOE and the ...

  17. AVLIS Production Plant Project Management Plan

    SciTech Connect

    Not Available

    1984-11-15

    The AVLIS Production Plant is designated as a Major System Acquisition (in accordance with DOE Order 4240.IC) to deploy Atomic Vapor Laser Isotope Separation (AVLIS) technology at the Oak Ridge, Tennessee site, in support of the US Uranium Enrichment Program. The AVLIS Production Plant Project will deploy AVLIS technology by performing the design, construction, and startup of a production plant that will meet capacity production requirements of the Uranium Enrichment Program. The AVLIS Production Plant Project Management Plan has been developed to outline plans, baselines, and control systems to be employed in managing the AVLIS Production Plant Project and to define the roles and responsibilities of project participants. Participants will develop and maintain detailed procedures for implementing the management and control systems in agreement with this plan. This baseline document defines the system that measures work performed and costs incurred. This plan was developed by the AVLIS Production Plant Project staff of Martin Marietta Energy Systems, Inc. and Lawrence Livermore National Laboratory in accordance with applicable DOE directives, orders and notices. 38 figures, 19 tables.

  18. Report on Hawaii Geothermal Power Plant Project

    SciTech Connect

    Not Available

    1983-06-01

    The report describes the design, construction, and operation of the Hawaii Geothermal Generator Project. This power plant, located in the Puna District on the island of Hawaii, produces three megawatts of electricity from the steam phase of a geothermal well. (ACR)

  19. AVLIS production plant project schedule and milestones

    SciTech Connect

    Not Available

    1984-11-15

    An AVLIS Production Plant Deployment Schedule for the engineering, procurement, and construction for both the Initial Increment of Production and the fully Activated Plant, has been developed by the project team consisting of Lawrence Livermore National Laboratory, Martin Marietta Energy Systems, Inc. with architect-engineer support from Bechtel National, Inc., Stone and Webster Engineering Corporation, and Westinghouse Corporation. The initial deployment phase consists of six separators modules and the three laser power amplifier modules consistent with the FY84 reference design with a name plate capacity of 5 million separative work units/yr followed by a full plant activation to approximately 13 million separative work units/yr. The AVLIS Production Plant project team's strategy for deployment schedule analysis focused on three schedule options: engineering limited schedule; authorization limited schedule; and funding limited project schedule. The three deployment schedule options developed by AVLIS project team have been classified in ranges such as an optimistic, rapid/moderate, or moderate/pessimistic based on the probability of meeting the individual schedule option's major milestones or program objectives of enriching uranium by the AVLIS process in an effective cost and schedule manner. 47 figures, 7 tables.

  20. Deactivation Project Begins at Paducah Gaseous Diffusion Plant...

    Office of Environmental Management (EM)

    Begins at Paducah Gaseous Diffusion Plant Deactivation Project Begins at Paducah Gaseous Diffusion Plant October 21, 2014 - 5:00pm Addthis EM Paducah site lead Jennifer Woodard ...

  1. Project Profile: A Novel Storage Method for CSP Plants Allowing...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    A Novel Storage Method for CSP Plants Allowing Operation at High Temperature Project Profile: A Novel Storage Method for CSP Plants Allowing Operation at High Temperature CCNY logo ...

  2. MHK Projects/General Hampton Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    30.1019, -90.9562 Project Phase Phase 1 Project Installed Capacity (MW) 0 PermitLicense Buildout (MW) 46 Device Nameplate Capacity (MW) 40 kW Number of Devices Deployed 0...

  3. DOE - Office of Legacy Management -- Pinellas Plant General Electric...

    Office of Legacy Management (LM)

    Also see Pinellas, Florida, Site Documents Related to Pinellas Plant General Electric Co. ... Acre Site in Largo, Pinellas County, Florida Between: State of Florida Department of ...

  4. Proceedings of a Topical Meeting On Small Scale Geothermal Power Plants and Geothermal Power Plant Projects

    SciTech Connect

    1986-02-12

    These proceedings describe the workshop of the Topical Meeting on Small Scale Geothermal Power Plants and Geothermal Power Plant Projects. The projects covered include binary power plants, rotary separator, screw expander power plants, modular wellhead power plants, inflow turbines, and the EPRI hybrid power system. Active projects versus geothermal power projects were described. In addition, a simple approach to estimating effects of fluid deliverability on geothermal power cost is described starting on page 119. (DJE-2005)

  5. Follow-Up on the Management of the Plutonium Finishing Plant Project

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    on The Management of the Plutonium Finishing Plant Project OAS-M-14-11 September 2014 U.S. Department of Energy Office of Inspector General Office of Audits and Inspections Department of Energy Washington, DC 20585 September 18, 2014 MEMORANDUM FOR THE MANAGER, RICHLAND OPERATIONS OFFICE FROM: David Sedillo, Director Western Audits Division Office of Inspector General SUBJECT: INFORMATION: Audit Report on "Follow-Up on The Management of the Plutonium Finishing Plant Project" BACKGROUND

  6. MHK Projects/Angoon Tidal Energy Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Angoon Tidal Energy Plant < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":"R...

  7. MHK Projects/Housatonic Tidal Energy Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Housatonic Tidal Energy Plant < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3","type...

  8. MHK Projects/Cuttyhunk Tidal Energy Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Cuttyhunk Tidal Energy Plant < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  9. MHK Projects/Nantucket Tidal Energy Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Nantucket Tidal Energy Plant < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  10. MHK Projects/OWC Pico Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    OWC Pico Power Plant < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":"ROADMA...

  11. North Brawley Geothermal Power Plant Project Overview | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    2014 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for North Brawley Geothermal Power Plant Project Overview Citation PCL...

  12. Joint United States-Israel desalination project. General technology report

    SciTech Connect

    Reed, S.A.

    1984-09-01

    In mid-1975, the governments of the United States and Israel signed an agreement to jointly design, construct, and operate, during a period of approximately ten years, an advanced prototype of a multieffect low-temperature distillation plant to convert seawater to high-quality freshwater. The distillation plant was to be built at Ashdod, Israel, adjacent to an existing electrical generating plant which would supply both energy (steam and electricity) and Mediterranean Sea feed-water to the distillation plant. The project objectives were essentially achieved, although its scope was reduced. A 5-Mgd Intermediate Module (INTMO - later renamed Multi-effect Low-Temperature (MELT) Plant) was constructed and operated for over a year, coupled to a 50-MW steam turbine. Dual operation, most of the time in a load-following mode, proved to be stable, flexible, and reliable for both the power plant and the desalination plant. Over 2 x 10/sup 6/ m/sup 3/ of about 50 ppM total-dissolved-solids water was produced from Mediterranean seawater. A calculation, based on an optimized, multiple-unit desalination plant, coupled to a 550-MW, coal-fired, base-loaded power plant, indicates water costs in the order of 55 to 60 cents/m/sup 3/. A complete technology package is being furnished to each of the participating governments. The total expenditure for the project, from its inception in 1976 through March 31, 1984, when the operation for data collection and demonstration purposes was completed, was about $31 million.

  13. School science project 'demystifies' Portsmouth Gaseous Diffusion Plant

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Site | Department of Energy School science project 'demystifies' Portsmouth Gaseous Diffusion Plant Site School science project 'demystifies' Portsmouth Gaseous Diffusion Plant Site June 2, 2015 - 10:40am Addthis (Left) An example of a cover of a recent Student Summary of an Annual Site Environmental Report for the Portsmouth Gaseous Diffusion Plant Site. (Right) DOE Portsmouth Site Lead Joel Bradburne recently visited Western High School to recognize the students who participated in the

  14. Pantex Plant Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Sector Wind energy Facility Type Commercial Scale Wind Facility Status Under Construction Owner Pantex Developer Siemens Energy Purchaser Pantex Plant Location Amarillo TX...

  15. Salton Sea Power Plant Recognized as Most Innovative Geothermal Project

    Energy.gov [DOE]

    The first power plant to be built in the Salton Sea area in 20 years was recognized in December by Power Engineering magazine as the most innovative geothermal project of the year.

  16. Five-megawatt geothermal-power pilot-plant project

    SciTech Connect

    Not Available

    1980-08-29

    This is a report on the Raft River Geothermal-Power Pilot-Plant Project (Geothermal Plant), located near Malta, Idaho; the review took place between July 20 and July 27, 1979. The Geothermal Plant is part of the Department of Energy's (DOE) overall effort to help commercialize the operation of electric power plants using geothermal energy sources. Numerous reasons were found to commend management for its achievements on the project. Some of these are highlighted, including: (a) a well-qualified and professional management team; (b) effective cost control, performance, and project scheduling; and (c) an effective and efficient quality-assurance program. Problem areas delineated, along with recommendations for solution, include: (1) project planning; (2) facility design; (3) facility construction costs; (4) geothermal resource; (5) drilling program; (6) two facility construction safety hazards; and (7) health and safety program. Appendices include comments from the Assistant Secretary for Resource Applications, the Controller, and the Acting Deputy Director, Procurement and Contracts Management.

  17. Bagdad Plant Raymond J. Polinski 585 Silicon Drive General Manager

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Bagdad Plant Raymond J. Polinski 585 Silicon Drive General Manager Leechburg, PA 15656 Grain-Oriented Electrical Steel e-mail: Raymond.Polinski@ATImetals.com E. Below are Allegheny Technologies Incorporated's comments on certain issues in which the DOE sought comment. 17. DOE seeks comment on nanotechnology composites and their potential for use in distribution transformers. Soft magnetic and amorphous particles with excellent magnetic properties can be and are currently produced, but the

  18. Next Generation Nuclear Plant (NGNP) Prismatic HTGR Conceptual Design Project - Final Technical Report

    SciTech Connect

    Saurwein, John

    2011-07-15

    This report is the Final Technical Report for the Next Generation Nuclear Plant (NGNP) Prismatic HTGR Conceptual Design Project conducted by a team led by General Atomics under DOE Award DE-NE0000245. The primary overall objective of the project was to develop and document a conceptual design for the Steam Cycle Modular Helium Reactor (SC-MHR), which is the reactor concept proposed by General Atomics for the NGNP Demonstration Plant. The report summarizes the project activities over the entire funding period, compares the accomplishments with the goals and objectives of the project, and discusses the benefits of the work. The report provides complete listings of the products developed under the award and the key documents delivered to the DOE.

  19. EIS-0308: Southpoint Power Plant Project

    Office of Energy Efficiency and Renewable Energy (EERE)

    This EIS analyzes the U.S. Department of the Interior Bureau of Indian Affairs’ proposed lease of acreage on the Fort Mojave Indian Reservation in Mohave County, Arizona for development of a natural gas-fired 500 megawatt combined cycle power plant. DOE's Western Area Power Administration (WAPA) is a cooperating agency, and the plant would supply power to the WAPA grid. The proposed Southpoint power plant would require construction of an off-site substation and two 230 kV transmission lines in order to wheel power to WAPA’s distribution grid. An Environmental Assessment (EA) for the proposed substation and transmission line was prepared with the Department of the Interior Bureau of Land Management as lead agency and WAPA as a cooperating agency, and a Finding of No Significant Impact was approved on December 2, 1997.

  20. Small-Scale Geothermal Power Plant Field Verification Projects: Preprint

    SciTech Connect

    Kutscher, C.

    2001-07-03

    In the spring of 2000, the National Renewable Energy Laboratory issued a Request for Proposal for the construction of small-scale (300 kilowatt [kW] to 1 megawatt [MW]) geothermal power plants in the western United States. Five projects were selected for funding. Of these five, subcontracts have been completed for three, and preliminary design work is being conducted. The three projects currently under contract represent a variety of concepts and locations: a 1-MW evaporatively enhanced, air-cooled binary-cycle plant in Nevada; a 1-MW water-cooled Kalina-cycle plant in New Mexico; and a 750-kW low-temperature flash plant in Utah. All three also incorporate direct heating: onion dehydration, heating for a fish hatchery, and greenhouse heating, respectively. These projects are expected to begin operation between April 2002 and September 2003. In each case, detailed data on performance and costs will be taken over a 3-year period.

  1. EA-1137: Nonnuclear Consolidation Weapons Production Support Project for the Kansas City Plant, Kansas City, Missouri

    Energy.gov [DOE]

    Nonnuclear Consolidation Weapons Production Support Project for the Kansas City Plant, Kansas City, Missouri

  2. Independent Oversight Review, Waste Treatment and Immobilization Plant Project- October 2010

    Energy.gov [DOE]

    Review of Nuclear Safety Culture at the Hanford Site Waste Treatment and Immobilization Plant Project

  3. Ashtabula Environmental Management Project Main Extrusion Plant Demolition Project. Demolition of the Ashtabula Environmental Management Project's Main Extrusion Plant

    SciTech Connect

    Colborn, Kurt; Johnson, Kathryn K.

    2003-02-27

    Significant progress was made this year toward closure of the Department of Energy's Ashtabula Environmental Management Project (AEMP) with the demolition of the 9-building Main Extrusion Plant Complex. The 44,000 square foot building complex formerly housed uranium extrusion facilities and equipment. At the start of the project in October of 2001, the buildings still contained a RCRA Part B storage area, operating mixed waste treatment facilities, active waste shredding and compacting process areas, and a state EPA permitted HEPA ventilation system. This paper presents a discussion of the multidisciplinary effort to bring the building to a safe shutdown condition in just six months, including relocation of existing process areas, utility isolation, and preliminary decontamination. Also discussed is the demolition strategy in which portions of the facility remained active while demolition was proceeding in other areas. Other details of the technical approach to the demolition are also discussed, including innovative techniques for demolition, galbestos removal, contamination control, and waste minimization. These techniques contributed to the early completion of demolition in July of 2002, fully two months ahead of schedule and $1.5 million under budget.

  4. Los Alamos National Laboratory Steam Plant Project Kickoff Meeting |

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration | (NNSA) Kickoff Meeting ESPC KICK OFF MEET_ANDY 8_22_FINAL VERSION_2.pptx ESPC KICK OFF MEET_JOE 8_22_16_V2 (002).pptx Updated on 8/26/2016. Related Topics Acquisition & Project Management apm lanl Los alamos national laboratory Related News On Womens Equality Day, we celebrate NNSA's talented Women in STEM Los Alamos National Laboratory Steam Plant Project Reports and Analysis

  5. BACA Project: geothermal demonstration power plant. Final report

    SciTech Connect

    Not Available

    1982-12-01

    The various activities that have been conducted by Union in the Redondo Creek area while attempting to develop the resource for a 50 MW power plant are described. The results of the geologic work, drilling activities and reservoir studies are summarized. In addition, sections discussing the historical costs for Union's involvement with the project, production engineering (for anticipated surface equipment), and environmental work are included. Nineteen geothermal wells have been drilled in the Redondo Creek area of the Valles Caldera: a prominent geologic feature of the Jemez mountains consisting of Pliocene and Pleistocene age volcanics. The Redondo Creek area is within a complex longitudinal graben on the northwest flank of the resurgent structural dome of Redondo Peak and Redondo Border. The major graben faults, with associated fracturing, are geologically plausible candidates for permeable and productive zones in the reservoir. The distribution of such permeable zones is too erratic and the locations too imprecisely known to offer an attractive drilling target. Log analysis indicates there is a preferred mean fracture strike of N31W in the upper portion of Redondo Creek wells. This is approximately perpendicular to the major structure in the area, the northeast-striking Redondo Creek graben. The geothermal fluid found in the Redondo Creek reservoir is relatively benign with low brine concentrations and moderate H/sub 2/S concentrations. Geothermometer calculations indicate that the reservoir temperature generally lies between 500/sup 0/F and 600/sup 0/F, with near wellbore flashing occurring during the majority of the wells' production.

  6. Presentation of FP7 matter project: general overview

    SciTech Connect

    Lebarbe, T.; Marie, S.; Agostini, Pietro; Fazio, Concetta; Gavrilov, Serguei

    2012-07-01

    The 2010-2012 implementation plan of the European Sustainable Nuclear Industrial Initiative (ESNII), prepared in the frame of the Sustainable Nuclear Energy Technology Platform (SNETP), establishes a very tight time schedule for the start of construction of the European Gen IV prototypes; namely the construction of the LFR ETPP (European Technology Pilot Plant) MYRRHA will start in 2014 and that of the SFR Prototype ASTRID will start in 2017. The GEN IV reactors pose new challenges to the designers and scientists in terms of higher operating temperature, higher fuel burn-up, and in some cases more corrosive environment with respect to the present technologies and which impacts the materials performance. In this frame, the MATTER (Materials Testing and Rules) Project starts well targeted R and D activities to perform careful materials studies in GEN IV operational conditions and to find out criteria for the correct use of these materials in relevant reactor applications. Aim of the MATTER Project (that involved 27 partners and will end in 2015) is to complement the materials researches, in the frame of the European Energy Research Alliance (EERA) guidelines, with the implementation of pre-normative rules. The MATTER Project is divided in 3 technical Domains (called DM): DM1 - Development of test and evaluation guidelines for structural materials: to develop/establish best practice guidelines for testing and evaluation procedures, which are aimed to screen and characterize nuclear materials for innovative nuclear systems. DM2 - Pre-normative R and D for Codes and Standards: Pre-normative activities are performed, comprehensive of experiments, to revise and update the design rules (with an EU level consensus) in order to answer to some short term needs of the two projects ASTRID and MYRRHA with respect to the design and the construction of structural components. DM3 - Joint Program Scheme, implementation and Priorities: to optimise the effectiveness and efficiency of

  7. Bayer Polymers: Plant Identifies Numerous Projects Following Plant-Wide Energy-Efficient Assessment

    SciTech Connect

    2003-08-01

    The Bayer Corporation undertook a plant-wide energy efficiency assessment of its New Martinsville, West Virginia, plant in 2001. The objectives were to identify energy saving projects in the utilities area. The projects, when complete, will save the company the loss of an estimated 236,000 MMBtu ($1.16 million) annually in energy from burning and leaking fossil fuels. Certain other projects will save the company 6,300,000 kWh ($219,000) of electrical energy each year. All of the projects could be duplicated in other chemical manufacturing facilities and most of the projects could be duplicated in other industries utilizing steam, pumps, and/or compressed air.

  8. Virtual Museum Captures Ohio Plant History: Web-based Project Preserves

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Plant's Uranium Enrichment Legacy | Department of Energy Virtual Museum Captures Ohio Plant History: Web-based Project Preserves Plant's Uranium Enrichment Legacy Virtual Museum Captures Ohio Plant History: Web-based Project Preserves Plant's Uranium Enrichment Legacy May 21, 2012 - 12:00pm Addthis An online museum on the Portsmouth Gaseous Diffusion Plant went live earlier this year. An online museum on the Portsmouth Gaseous Diffusion Plant went live earlier this year. PIKETON, Ohio - Do

  9. Los Alamos National Laboratory Steam Plant Project | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | (NNSA) Major Contract Solicitation Los Alamos National Laboratory Steam Plant Project Welcome to the National Nuclear Security Administration's website for the Los Alamos National Laboratory Site (LANL) M&O Energy Performance Saving Contract Competition. LANL is a premier national security research institution, located 35 miles northwest of Santa Fe, New Mexico, on 36 square miles of Department of Energy-owned property. Its mission is to develop and apply

  10. Project Execution Plan for the River Protection Project Waste Treatment & Immobilization Plant

    SciTech Connect

    MELLINGER, G.B.

    2003-05-03

    The Waste Treatment and Immobilization Plant (WTP), Project W-530, is the cornerstone in the mission of the Hanford Site's cleanup of more than 50 million gallons of highly toxic, high-level radioactive waste contained in aging underground storage tanks.

  11. Results of the plant maintenance optimization (PMO) pilot-project at an ENEL Fossil Power Plant

    SciTech Connect

    Falco, F. de; Paratore, A.; Moscotti, L.

    1996-07-01

    ENEL S.p.A. operates about sixty fossil power plants in Italy for a total installed power of more than 37,000 MW. This paper describes the pilot-project to apply Reliability Centered Maintenance (RCM) methodology at the {open_quotes}La Casella{close_quotes} Fossil Power Plant (4 x 320 MW units, oil fired). The project was performed by an ENEL working group (Generation and R&D Divisions) with assistance from ERIN, Engineering and Research, Inc. The first phase of the project confirmed the application and validity of the streamlined RCM method called Plant Maintenance Optimization (PMO) on the Condensate and Feedwater Systems. The second phase evaluated the effectiveness of the PMO method as used to developed an optimized maintenance program for five systems - Vent & Drain and Chemical Reagents, Boiler Start-Up, Boiler Auxiliaries, Blowing Compressors, and Air & Flue Gas. The conclusions of the project are consistent with other successful streamlined RCM applications (1) The PMO method is valid and applicable to fossil power plants; (2) Streamlined RCM approaches allow significant reduction in the time spent to perform an RCM analysis, without sacrificing the quality of the results; (3) PMO is effective in defining an optimized maintenance program; (4) The maintenance program developed through the analysis can be easily updated when the criticality criteria and/or maintenance history change.

  12. Hanford Waste Vitrification Plant Project Waste Form Qualification Program Plan

    SciTech Connect

    Randklev, E.H.

    1993-06-01

    The US Department of Energy has created a waste acceptance process to help guide the overall program for the disposal of high-level nuclear waste in a federal repository. This Waste Form Qualification Program Plan describes the hierarchy of strategies used by the Hanford Waste Vitrification Plant Project to satisfy the waste form qualification obligations of that waste acceptance process. A description of the functional relationship of the participants contributing to completing this objective is provided. The major activities, products, providers, and associated scheduling for implementing the strategies also are presented.

  13. Sampling and Analysis Plan - Waste Treatment Plant Seismic Boreholes Project

    SciTech Connect

    Reidel, Steve P.

    2006-05-26

    This sampling and analysis plan (SAP) describes planned data collection activities for four entry boreholes through the sediment overlying the basalt, up to three new deep rotary boreholes through the basalt and sedimentary interbeds, and one corehole through the basalt and sedimentary interbeds at the Waste Treatment Plant (WTP) site. The SAP will be used in concert with the quality assurance plan for the project to guide the procedure development and data collection activities needed to support borehole drilling, geophysical measurements, and sampling. This SAP identifies the American Society of Testing Materials standards, Hanford Site procedures, and other guidance to be followed for data collection activities.

  14. MHK Projects/MORILD Demonstration Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Start Date 112004 Project City Kvalsundet Strait near Troms, NULL Project Country Norway Project Resource Click here Current Tidal Coordinates 69.8079, 18.6795 Project...

  15. Enterprise Assessments Review of the Hanford Site Waste Treatment and Immobilization Plant Project Engineering Processes – October 2015

    Office of Energy Efficiency and Renewable Energy (EERE)

    Review of Engineering Processes at the Hanford Site Waste Treatment and Immobilization Plant Project

  16. MHK Projects/BioSTREAM Pilot Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    1 Project Details SitingPlanning complete, permitting near complete, Site design and engineering near complete. Project on hold. Project Installed Capacity (MW) 0 Device...

  17. FEMP Best Practices and Lessons Learned for Federal Agency ESPC Projects: General Best Practices

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    2. GENERAL BEST PRACTICES 2.1 Teamwork is critical to ESPC success. 2.1.1 Designate a project champion who will, along with the agency Contracting Officer (CO), lead the agency team's efforts. The project champion should ensure that team members are trained and stakeholders and decision makers are educated about the project. A committed project champion is a key factor in the success of the project, paving the path forward and building agency support for the project. 2.1.2 Enlist the support of

  18. Next Generation Nuclear Plant Project Evaluation of Siting a HTGR Co-generation Plant on an Operating Commercial Nuclear Power Plant Site

    SciTech Connect

    L.E. Demick

    2011-10-01

    This paper summarizes an evaluation by the Idaho National Laboratory (INL) Next Generation Nuclear Plant (NGNP) Project of siting a High Temperature Gas-cooled Reactor (HTGR) plant on an existing nuclear plant site that is located in an area of significant industrial activity. This is a co-generation application in which the HTGR Plant will be supplying steam and electricity to one or more of the nearby industrial plants.

  19. Sampling and Analysis Plan Waste Treatment Plant Seismic Boreholes Project.

    SciTech Connect

    Brouns, Thomas M.

    2007-07-15

    This sampling and analysis plan (SAP) describes planned data collection activities for four entry boreholes through the sediment overlying the Saddle Mountains Basalt, up to three new deep rotary boreholes through the Saddle Mountains Basalt and sedimentary interbeds, and one corehole through the Saddle Mountains Basalt and sedimentary interbeds at the Waste Treatment Plant (WTP) site. The SAP will be used in concert with the quality assurance plan for the project to guide the procedure development and data collection activities needed to support borehole drilling, geophysical measurements, and sampling. This SAP identifies the American Society of Testing Materials standards, Hanford Site procedures, and other guidance to be followed for data collection activities. Revision 3 incorporates all interim change notices (ICN) that were issued to Revision 2 prior to completion of sampling and analysis activities for the WTP Seismic Boreholes Project. This revision also incorporates changes to the exact number of samples submitted for dynamic testing as directed by the U.S. Army Corps of Engineers. Revision 3 represents the final version of the SAP.

  20. MHK Projects/Coos County Offshore Wave Energy Power Plant | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Coos County Offshore Wave Energy Power Plant < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"goo...

  1. Voluntary Protection Program Onsite Review, Plutonium Finishing Plant Closure Project- May 2007

    Energy.gov [DOE]

    Evaluation to determine whether Plutonium Finishing Plant Closure Project is continuing to perform at a level deserving DOE-VPP Star recognition.

  2. Voluntary Protection Program Onsite Review, Waste Treatment Plant Construction Project- June 2010

    Energy.gov [DOE]

    Evaluation to determine whether Waste Treatment Plant Construction Project is continuing to perform at a level deserving DOE-VPP Star recognition.

  3. Project plan for the background soils project for the Paducah Gaseous Diffusion Plant, Paducah, Kentucky

    SciTech Connect

    1995-09-01

    The Background Soils Project for the Paducah Gaseous Diffusion Plant (BSPP) will determine the background concentration levels of selected naturally occurring metals, other inorganics, and radionuclides in soils from uncontaminated areas in proximity to the Paducah Gaseous Diffusion Plant (PGDP) in Paducah, Kentucky. The data will be used for comparison with characterization and compliance data for soils, with significant differences being indicative of contamination. All data collected as part of this project will be in addition to other background databases established for the PGDP. The BSPP will address the variability of surface and near-surface concentration levels with respect to (1) soil taxonomical types (series) and (2) soil sampling depths within a specific soil profile. The BSPP will also address the variability of concentration levels in deeper geologic formations by collecting samples of geologic materials. The BSPP will establish a database, with recommendations on how to use the data for contaminated site assessment, and provide data to estimate the potential human and health and ecological risk associated with background level concentrations of potentially hazardous constituents. BSPP data will be used or applied as follows.

  4. MHK Projects/bioWAVE Pilot Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Project Phase Phase 1 Project Details A 250kW pilot project is being developed at Port Fairy Victoria, Australia,which will be connected to the national power distribution...

  5. MHK Projects/Wiscasset Tidal Energy Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Organization Natural Currents Energy Services Project Technology *MHK TechnologiesRED HAWK Project Licensing Environmental Monitoring and Mitigation Efforts See Tethys <<...

  6. MHK Projects/Rockaway Tidal Energy Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Organization Natural Currents Energy Services Project Technology *MHK TechnologiesRED HAWK Project Licensing Environmental Monitoring and Mitigation Efforts See Tethys <<...

  7. A commercial project for private investments. Update of the 280 MW api Energia IGCC plant construction in central Italy.

    SciTech Connect

    Del Bravo, R.; Pinacci, P.; Trifilo, R.

    1998-07-01

    This paper has the aim to give a general overview of the api Energia IGCC project starting from the project background in 1992 and ending with the progress of construction. api Energia S.p.A., a joint VENTURE between api anonima petroli italiana S.p.A., Roma, Italy (51%), ABB Sae Sadelmi S.p.A., Milano, Italy (25%) and Texaco Development Corporation (24%), is building a 280 MW Integrated Gasification Combined Cycle plant in the api refinery at Falconara Marittima, on Italy' s Adriatic coast, using heavy oil residues. The plant is based on the modern concept of employing a highly efficient combined cycle power plant fed with a low heating value fuel gas produced by gasifying heavy refinery residues. This scheme provides consistent advantages in terms of efficiency and environmental impact over alternative applications of the refinery residues. The electric power produced will feed the national grid. The project has been financed using the ``project financing'' scheme: over 1,000 billion Lira, representing 75% of the overall capital requirement, have been provided by a pool of international banks. In November 1996 the project reached financial closure and immediately after the detailed design and procurement activities started. Engineering, Procurement and Construction activities, carried out by a Consortium of companies of the ABB group, are totally in line with the schedule. Commercial operation of the plant, is scheduled for November 1999.

  8. Environmental assessment for Mound Plant decontamination and decommissioning projects, Mound Plant, Miamisburg, Ohio

    SciTech Connect

    1995-05-01

    The U.S. Department of Energy (DOE) has prepared an Environmental Assessment (EA) for seven decontamination and decommissioning (D&D) projects at the Mound Plant in Miamisburg, Ohio, that have not been previously addressed in the Final Environmental Impact Statement for the Mound Facility (June 1979). Based on the information presented in the EA, the DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an Environmental Impact Statement (EIS) is not required and the Department is issuing this Finding of No Significant Impact (FONSI).

  9. Los Alamos National Laboratory Steam Plant Project Reports and...

    National Nuclear Security Administration (NNSA)

    Impact of New CHP Plant vs Local Boilers.docx Comparison of CO2 Emissions and Water Consumption.docx History of Alternatives and Decisions.docx LANL STEAM PLANT REPORT ...

  10. Paper Mill Pursues Five Projects Following Plant-Wide Assessment (Augusta Newsprint)

    SciTech Connect

    2003-06-01

    Augusta Newsprint undertook a plant-wide energy efficiency assessment of its Augusta, Georgia, plant in 2001. The assessment helped the company decide to implement five energy efficiency projects. Four of the five projects will save the company 11,000 MWh of electrical energy (about $369,000) each year. The remaining project will produce more than $300,000 annually, from sale of the byproduct turpentine. The largest annual savings, $881,000, will come from eliminating Kraft pulp by using better process control. All of the projects could be applied to other paper mills and most of the projects could be applied in other industries.

  11. Grand Opening for Project LIBERTY: Nation's First Plant to Use Corn Waste

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    as a Feedstock | Department of Energy Grand Opening for Project LIBERTY: Nation's First Plant to Use Corn Waste as a Feedstock Grand Opening for Project LIBERTY: Nation's First Plant to Use Corn Waste as a Feedstock August 28, 2014 - 12:33pm Addthis POET-DSM's Project LIBERTY in Emmetsburg, Iowa, will celebrate its grand opening September 3, 2014, becoming the first commercial-scale cellulosic ethanol plant to use corn waste as a feedstock. Developed through a joint venture between POET LLC

  12. Hybrid Cooling for Geothermal Power Plants: Final ARRA Project...

    Office of Scientific and Technical Information (OSTI)

    Country of Publication: United States Language: English Subject: 15 GEOTHERMAL ENERGY AIR-COOLED CONDENSERS; POWER PLANT COOLING; BINARY-CYCLE; FINNED-TUBE; HEAT TRANSFER; NEVADA; ...

  13. Los Alamos National Laboratory Steam Plant Project | National...

    National Nuclear Security Administration (NNSA)

    LANL also works on nuclear nonproliferation and border security, energy and ... the current central heating and power generating plant at LANL to improve efficiency. ...

  14. Los Alamos National Laboratory Steam Plant Project Reports and Analysis |

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration | (NNSA) Reports and Analysis 2.10_SMSI_LANL Steam Plant Analysis_Concepts_120313.pptx 2.10_SMSI-SteamPlant_100%Report_011714_Rev1.pdf Analysis of Alternatives LANL Utilities Division.pdf CHP vs DB Analysis.docx Comparison of Air Quality Permitting Impact of New CHP Plant vs Local Boilers.docx Comparison of CO2 Emissions and Water Consumption.docx History of Alternatives and Decisions.docx LANL STEAM PLANT REPORT FINAL 9-29 -Bechtel.pdf Parsons AOA

  15. MHK Projects/Pennamaquan Tidal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Phase Phase ? PermitLicense Buildout (MW) 21 Main Overseeing Organization Pennamaquan Tidal Power LLC Project Licensing FERC License Docket Number P-13884 Environmental...

  16. Method for assigning sites to projected generic nuclear power plants

    SciTech Connect

    Holter, G.M.; Purcell, W.L.; Shutz, M.E.; Young, J.R.

    1986-07-01

    Pacific Northwest Laboratory developed a method for forecasting potential locations and startup sequences of nuclear power plants that will be required in the future but have not yet been specifically identified by electric utilities. Use of the method results in numerical ratings for potential nuclear power plant sites located in each of the 10 federal energy regions. The rating for each potential site is obtained from numerical factors assigned to each of 5 primary siting characteristics: (1) cooling water availability, (2) site land area, (3) power transmission land area, (4) proximity to metropolitan areas, and (5) utility plans for the site. The sequence of plant startups in each federal energy region is obtained by use of the numerical ratings and the forecasts of generic nuclear power plant startups obtained from the EIA Middle Case electricity forecast. Sites are assigned to generic plants in chronological order according to startup date.

  17. EIS-0377: Big Stone II Power Plant and Transmission Project

    Energy.gov [DOE]

    A systems study was carried out to identify the most appropriate locations to interconnect the proposed Big Stone II power plant to the regional utility grid. The study also identified transmission...

  18. Los Alamos National Laboratory Steam Plant Project Usage Data...

    National Nuclear Security Administration (NNSA)

    ...eamOption2-HW-CapitalEst(No-LANL's)011714100% 131209XU50XURP-LANL-Dataw-CostAllocCHP121213 DOE Complex Experience with Central Plants Updated on 8262016. Related Topics ...

  19. Hybrid Cooling for Geothermal Power Plants: Final ARRA Project Report

    SciTech Connect

    Bharathan, D.

    2013-06-01

    Many binary-cycle geothermal plants use air as the heat rejection medium. Usually this is accomplished by using an air-cooled condenser (ACC) system to condense the vapor of the working fluid in the cycle. Many air-cooled plants suffer a loss of production capacity of up to 50% during times of high ambient temperatures. Use of limited amounts of water to supplement the performance of ACCs is investigated. Deluge cooling is found to be one of the least-cost options. Limiting the use of water in such an application to less than one thousand operating hours per year can boost plant output during critical high-demand periods while minimizing water use in binary-cycle geothermal power plants.

  20. Table 11b. Coal Prices to Electric Generating Plants, Projected vs. Actual

    Energy Information Administration (EIA) (indexed site)

    b. Coal Prices to Electric Generating Plants, Projected vs. Actual" "Projected Price in Nominal Dollars" " (nominal dollars per million Btu)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO

  1. Control room modernization at Finnish nuclear power plants - Two projects compared

    SciTech Connect

    Laarni, J.; Norros, L.

    2006-07-01

    The modernization of automation systems and human-machine interfaces is a current issue at both of the two nuclear power plants (i.e., Fortum's Loviisa plant and TVO's Olkiluoto plant) in Finland. Since the plants have been launched in the 1970's or 1980's, technology is in part old-fashioned and needs to be renewed. At Olkiluoto upgrades of the turbine operator systems have already been conducted; at Loviisa the first phase of the modernization project has just started. Basically, there is a question of the complete digitalization of the information streams at the two plants, and transition from a conventional hard-wired or hybrid control room to a screen-based one. The new human-machine interfaces will comprise new technology, such as PC workstations, soft control, touch screens and large-screen overall displays. The modernization of human-system interfaces is carried out in a stepwise manner at both plants. At both plants the main driver has not been the need to renew the user interfaces of the control room, but the need to upgrade the automation systems. In part because of this, there is a lack of a systematic top-down approach in which different aspects of human factors (HF) engineering are considered in relationship to higher level goals. Our aim here is to give an overview description of the control room modernization projects at the two plants and provide a preliminary evaluation of their progress to date. The projects are also compared, for example, in terms of duration, scope and phasing, and who is responsible for the realization of the project. In addition, we also compare experiences from the Finnish projects to experiences from similar projects abroad. The main part of the data used in this study is based on designers' and project members' interviews. (authors)

  2. Waste Treatment & Immobilization Plant Project - Hanford Site

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Treatment Plant About Us About Hanford Cleanup Hanford History Hanford Site Wide Programs Contact Us 100 Area 118-K-1 Burial Ground 200 Area 222-S Laboratory 242-A Evaporator 300 Area 324 Building 325 Building 400 Area/Fast Flux Test Facility 618-10 and 618-11 Burial Grounds 700 Area B Plant B Reactor C Reactor Canister Storage Building and Interim Storage Area Canyon Facilities Cold Test Facility D and DR Reactors Effluent Treatment Facility Environmental Restoration Disposal Facility F Reactor

  3. Summary for the Next Generation Nuclear Plant Project in Review

    SciTech Connect

    L.E. Demick

    2010-08-01

    This paper reports on the major progress that the NGNP Project has made toward developing and commercializing the HTGR technology. Significant R&D progress has been made in addressing key technical issues for qualification of the HTGR fuel and graphite, codification of high temperature materials and verification and validation of design codes. Work is also progressing in heat transfer/transport design and testing and in development of the high temperature steam electrolysis hydrogen production process. A viable licensing strategy has been formulated in coordination with the NRC and DOE. White papers covering key licensing issues have been and will continue to be submitted and necessary discussions of these key issues have begun with the NRC. Continued government support is needed to complete the Project objectives as established in the 2005 Energy Policy Act.

  4. Summary for the Next Generation Nuclear Plant Project in Review

    SciTech Connect

    L.E. Demick

    2010-09-01

    This paper reports on the major progress that the NGNP Project has made toward developing and commercializing the HTGR technology. Significant R&D progress has been made in addressing key technical issues for qualification of the HTGR fuel and graphite, codification of high temperature materials and verification and validation of design codes. Work is also progressing in heat transfer/transport design and testing and in development of the high temperature steam electrolysis hydrogen production process. A viable licensing strategy has been formulated in coordination with the NRC and DOE. White papers covering key licensing issues have been and will continue to be submitted and necessary discussions of these key issues have begun with the NRC. Continued government support is needed to complete the Project objectives as established in the 2005 Energy Policy Act.

  5. Next Generation Nuclear Plant Project 2009 Status Report

    SciTech Connect

    Larry Demick; Jim Kinsey; Keith Perry; Dave Petti

    2010-05-01

    The mission of the NGNP Project is to broaden the environmental and economic benefits of nuclear energy technology to the United States and other economies by demonstrating its applicability to market sectors not served by light water reactors (LWRs). Those markets typically use fossil fuels to fulfill their energy needs, and high temperature gas-cooled reactors (HTGRs) like the NGNP can reduce this dependence and the resulting carbon footprint.

  6. Auxiliary feedwater system risk-based inspection guide for the South Texas Project nuclear power plant

    SciTech Connect

    Bumgardner, J.D.; Nickolaus, J.R.; Moffitt, N.E.; Gore, B.F.; Vo, T.V.

    1993-12-01

    In a study sponsored by the US Nuclear Regulatory Commission (NRC), Pacific Northwest Laboratory has developed and applied a methodology for deriving plant-specific risk-based inspection guidance for the auxiliary feedwater (AFW) system at pressurized water reactors that have not undergone probabilistic risk assessment (PRA). This methodology uses existing PRA results and plant operating experience information. Existing PRA-based inspection guidance information recently developed for the NRC for various plants was used to identify generic component failure modes. This information was then combined with plant-specific and industry-wide component information and failure data to identify failure modes and failure mechanisms for the AFW system at the selected plants. South Texas Project was selected as a plant for study. The product of this effort is a prioritized listing of AFW failures which have occurred at the plant and at other PWRs. This listing is intended for use by the NRC inspectors in preparation of inspection plans addressing AFW risk important components at the South Texas Project plant.

  7. Los Alamos National Laboratory Steam Plant Project Usage Data | National

    National Nuclear Security Administration (NNSA)

    Nuclear Security Administration | (NNSA) Usage Data 2 10_SMSI_SteamPlant_ThermalBasis of Analysis-Q1(011514) 2.10_SMSI_ApproxEst$Reconcile-Bechtel2009-SMSI-2013 2.10_SMSI_PipingAnnualR&R-Est_Rev122313 2.10_SMSI_Steam_CombinedEcon_011714_100%(Rev1) 2.10_SMSI_Steam_DistSystemOnlyEcon_011714_100% 2.10_SMSI_Steam_Option1-SteamCapitalEst(No-LANL$'s)_011714_100% 2.10_SMSI-Steam_Option2-HW-CapitalEst(No-LANL$'s)_011714_100% 131209XU50_XURP-LANL-Data_w-CostAlloc_CHP_121213 DOE Complex Experience

  8. Light oil yield improvement project at Granite City Division Coke/By-Product Plant

    SciTech Connect

    Holloran, R.A.

    1995-12-01

    Light oil removal from coke oven gas is a process that has long been proven and utilized throughout many North American Coke/By-Products Plants. The procedures, processes, and equipment requirements to maximize light oil recovery at the Granite City By-Products Plant will be discussed. The Light Oil Yield Improvement Project initially began in July, 1993 and was well into the final phase by February, 1994. Problem solving techniques, along with utilizing proven theoretical recovery standards were applied in this project. Process equipment improvements and implementation of Operator/Maintenance Standard Practices resulted in an average yield increase of 0.4 Gals./NTDC by the end of 1993.

  9. Tri-State Synfuels Project Review: Volume 12. Fluor project status. [Proposed Henderson, Kentucky coal to gasoline plant; engineering

    SciTech Connect

    Not Available

    1982-06-01

    The purpose of this report is to document and summarize activities associated with Fluor's efforts on the Tri-State Synfuels Project. The proposed facility was to be coal-to-transport fuels facility located in Henderson, Kentucky. Tri-State Synfuels Company was participating in the project as a partner of the US Department of Energy per terms of a Cooperative Agreement resulting from DOE's synfuel's program solicitation. Fluor's initial work plan called for preliminary engineering and procurement services to the point of commitment for construction for a Sasol Fischer-Tropsch plant. Work proceeded as planned until October 1981 when results of alternative coal-to-methanol studies revealed the economic disadvantage of the Synthol design for US markets. A number of alternative process studies followed to determine the best process configuration. In January 1982 Tri-State officially announced a change from Synthol to a Methanol to Gasoline (MTG) design basis. Further evaluation and cost estimates for the MTG facility eventually led to the conclusion that, given the depressed economic outlook for alternative fuels development, the project should be terminated. Official announcement of cancellation was made on April 13, 1982. At the time of project cancellation, Fluor had completed significant portions of the preliminary engineering effort. Included in this report are descriptions and summaries of Fluor's work during this project. In addition location of key project data and materials is identified and status reports for each operation are presented.

  10. Final Report for DOE Project: Climate Effects on Plant Range Distributions and Community Structure of Pacific Northwest Prairies

    SciTech Connect

    Bridgham, Scott D.; Johnson, Bart

    2013-09-26

    was negatively impacted by increased temperatures, but for species planted north of their current range, increased temperature was neutral. However, for surviving plants climate treatments and site-specific factors (e.g., nutrient availability) were the strongest predictors of plant growth and seed set. When recruitment and plant growth are considered together, increased temperatures are negative within a species current range but beyond this range they become positive. Germination was the most critical stage for plant response across all sites and climate treatments. Our results underscore the importance of including plant vital rates into models that are examining climate change effects on plant ranges. Warming altered plant community composition, decreased diversity, and increased total cover, with warmed northern communities over time becoming more like ambient communities further south. In particular, warming increased the cover of annual introduced species, suggesting that the observed biogeographic pattern of increasing invasion by this plant functional group in US West Coast prairies as one moves further south is at least in part due to climate. Our results suggest that with the projected increase in drought severity with climate change, Pacific Northwest prairies may face an increase of invasion by annuals, similar to what has been observed in California, resulting in novel species assemblages and shifts in functional composition, which in turn may alter ecosystem function. Warming generally increased nutrient availability and plant productivity across all sites. The seasonality of soil respiration responses to heating were strongly dependent on the Mediterranean climate gradient in the PNW, with heating responses being generally positive during periods of adequate soil moisture and becoming neutral to negative during periods of low soil moisture. The asynchrony between temperature and precipitation may make soils less sensitive to warming. Precipitation

  11. Action Memorandum for General Decommissioning Activities under the Idaho Cleanup Project

    SciTech Connect

    S. L. Reno

    2006-10-26

    This Action Memorandum documents the selected alternative to perform general decommissioning activities at the Idaho National Laboratory (INL) under the Idaho Cleanup Project (ICP). Preparation of this Action Memorandum has been performed in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended by the "Superfund Amendments and Reauthorization Act of 1986", and in accordance with the "National Oil and Hazardous Substances Pollution Contingency Plan". An engineering evaluation/cost analysis (EE/CA) was prepared and released for public comment and evaluated alternatives to accomplish the decommissioning of excess buildings and structures whose missions havve been completed.

  12. DOE Seeks Projects to Advance Carbon Dioxide Utilization from Coal-Fired Power Plants

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Department of Energy (DOE) has announced approximately $6.7 million in federal funding for cost-shared projects that will develop technologies that utilize carbon dioxide (CO2) from coal-fired power plants to produce useful products.

  13. Project Profile: The Sacramento Municipal Utility District Consumnes Power Plant Solar Augmentation Project

    Energy.gov [DOE]

    -- This project is inactive -- The Sacramento Municipal Utility District (SMUD), under the Concentrating Solar Power (CSP) Heat Integration for Baseload Renewable Energy Development (HIBRED) program, is demonstrating a hybrid CSP solar energy system that takes advantage of an existing electrical generator for its power block and transmission interconnection.

  14. SLUDGE TREATMENT PROJECT PHASE 1 SLUDGE STORAGE OPTIONS ASSESSMENT OF T PLANT VERSUS ALTERNATE STORAGE FACILITY

    SciTech Connect

    RUTHERFORD WW; GEUTHER WJ; STRANKMAN MR; CONRAD EA; RHOADARMER DD; BLACK DM; POTTMEYER JA

    2009-04-29

    The CH2M HILL Plateau Remediation Company (CHPRC) has recommended to the U.S. Department of Energy (DOE) a two phase approach for removal and storage (Phase 1) and treatment and packaging for offsite shipment (Phase 2) of the sludge currently stored within the 105-K West Basin. This two phased strategy enables early removal of sludge from the 105-K West Basin by 2015, allowing remediation of historical unplanned releases of waste and closure of the 100-K Area. In Phase 1, the sludge currently stored in the Engineered Containers and Settler Tanks within the 105-K West Basin will be transferred into sludge transport and storage containers (STSCs). The STSCs will be transported to an interim storage facility. In Phase 2, sludge will be processed (treated) to meet shipping and disposal requirements and the sludge will be packaged for final disposal at a geologic repository. The purpose of this study is to evaluate two alternatives for interim Phase 1 storage of K Basin sludge. The cost, schedule, and risks for sludge storage at a newly-constructed Alternate Storage Facility (ASF) are compared to those at T Plant, which has been used previously for sludge storage. Based on the results of the assessment, T Plant is recommended for Phase 1 interim storage of sludge. Key elements that support this recommendation are the following: (1) T Plant has a proven process for storing sludge; (2) T Plant storage can be implemented at a lower incremental cost than the ASF; and (3) T Plant storage has a more favorable schedule profile, which provides more float, than the ASF. Underpinning the recommendation of T Plant for sludge storage is the assumption that T Plant has a durable, extended mission independent of the K Basin sludge interim storage mission. If this assumption cannot be validated and the operating costs of T Plant are borne by the Sludge Treatment Project, the conclusions and recommendations of this study would change. The following decision-making strategy, which is

  15. 90 MW build/own/operate gas turbine combined cycle cogeneration project with sludge drying plant

    SciTech Connect

    Schroppe, J.T.

    1986-04-01

    This paper will discuss some of the unique aspects of a build/own/operate cogeneration project for an oil refinery in which Foster Wheeler is involved. The organization is constructing a 90 MW plant that will supply 55 MW and 160,000 lb/hr of 600 psi, 700F steam to the Tosco Corporation's 130,000 bd Avon Oil Refinery in Martinez, California. (The refinery is located about 45 miles northeast of San Francisco.) Surplus power production will be sold to the local utility, Pacific Gas and Electric Co. (PG and E). Many of the aspects of this project took on a different perspective, since the contractor would build, own and operate the plant.

  16. Comparative risk analysis for the Rocky Flats Plant Integrated Project Planning

    SciTech Connect

    Jones, M.E.; Shain, D.I.

    1994-12-31

    The Rocky Flats Plant is developing a comprehensive planning strategy that will support transition of the Rocky Flats Plant from a nuclear weapons production facility to site cleanup and final disposition. Final disposition of the Rocky Flats Plant materials and contaminants requires consideration of the interrelated nature of sitewide problems, such as material movement and disposition, facility and land use endstates, costs, relative risks to workers and the public, and waste disposition. Comparative Risk Analysis employs both incremental risk and cumulative risk evaluations to compare risk from postulated options or endstates. Comparative Risk Analysis is an analytical tool for the Rocky Flats Plant Integrated Project Planning which can assist a decision-maker in evaluating relative risks among proposed remedial options or future endstates. It addresses the cumulative risks imposed by the Rocky Flats Plant and provides risk information, both human health and ecological, to aid in reducing unnecessary resource and monetary expenditures. Currently, there is no approved methodology that aggregates various risk estimates. Along with academic and field expert review, the Comparative Risk Analysis methodology is being reviewed and refined. A Rocky Flats Plant Risk Assessment Focus Group was established. Stakeholder involvement in the development provides an opportunity to influence the information delivered to a decision-maker. This paper discusses development of the methodology.

  17. One System Integrated Project Team Progress in Coordinating Hanford Tank Farms and the Waste Treatment Plant

    SciTech Connect

    Skwarek, Raymond J.; Harp, Ben J.; Duncan, Garth M.

    2013-12-18

    The One System Integrated Project Team (IPT) was formed at the Hanford Site in late 2011 as a way to improve coordination and itegration between the Hanford Tank Waste Treatment and Immobilization Plant (WTP) and the Tank Operations Contractor (TOC) on interfaces between the two projects, and to eliminate duplication and exploit opportunities for synergy. The IPT is composed of jointly staffed groups that work on technical issues of mutal interest, front-end design and project definition, nuclear safety, plant engineering system integration, commissioning, planning and scheduling, and environmental, safety, health and quality (ESH&Q) areas. In the past year important progress has been made in a number of areas as the organization has matured and additional opportunities have been identified. Areas covered in this paper include: Support for development of the Office of Envirnmental Management (EM) framework document to progress the Office of River Protection's (ORP) River Protection Project (RPP) mission; Stewardship of the RPP flowsheet; Collaboration with Savannah River Site (SRS), Savannah River National Laboratory (SRNL), and Pacific Northwest National Laboratory (PNNL); Operations programs integration; and, Further development of the waste acceptance criteria.

  18. Data base on dose reduction research projects for nuclear power plants. Volume 5

    SciTech Connect

    Khan, T.A.; Yu, C.K.; Roecklein, A.K.

    1994-05-01

    This is the fifth volume in a series of reports that provide information on dose reduction research and health physics technology or nuclear power plants. The information is taken from two of several databases maintained by Brookhaven National Laboratory`s ALARA Center for the Nuclear Regulatory Commission. The research section of the report covers dose reduction projects that are in the experimental or developmental phase. It includes topics such as steam generator degradation, decontamination, robotics, improvements in reactor materials, and inspection techniques. The section on health physics technology discusses dose reduction efforts that are in place or in the process of being implemented at nuclear power plants. A total of 105 new or updated projects are described. All project abstracts from this report are available to nuclear industry professionals with access to a fax machine through the ACEFAX system or a computer with a modem and the proper communications software through the ACE system. Detailed descriptions of how to access all the databases electronically are in the appendices of the report.

  19. Plant Response and Environmental Data from the Oldfield Community Climate and Atmospheric Manipulation (OCCAM) Project

    DOE Data Explorer

    The Oldfield Community Climate and Atmospheric Manipulation (OCCAM) project is a joint effort of ORNL and the University of Tennessee to investigate community and ecosystem response to global change, specifically looking at the interactive effects of atmospheric carbon dioxide, surface temperatures, and soil moisture. The plants studied for their response to warming temperatures, elevated carbon dioxide, and altered water availability include C3 and C4 grasses, forbs, and legumes. These plants are typical of an old-field ecosystem that establishes itself on unused agricultural land. The results of the research focus on species abundance, production, phenology, and what is going on chemically below ground. Data are currently available from 2003 through July, 2008.

  20. Preliminary design requirements document for Project W-378, low-level waste vitrification plant

    SciTech Connect

    Swanson, L.M.

    1995-03-31

    The scope of this preliminary Design Requirements Document (DRD) is to identify and define the functions, with associated requirements, which must be performed to accomplish vitrification and disposal of the pretreated low-level waste (LLW) fraction of the Hanford Site tank waste. This document sets forth function requirements, performance requirements and design constraints necessary to begin conceptual design for the Low-Level Waste Vitrification Plant (LLWVP). System and physical interfaces between the LLWVP Project and the Tank Waste Remediation System (TWRS) are identified. The constraints, performance requirements, and transfer of information and data across a technical interface will be documented in an Interface Control Document. The design requirements provided in this document will be augmented by additional detailed design data to be documented by the project.

  1. Table 11a. Coal Prices to Electric Generating Plants, Projected vs. Actual

    Energy Information Administration (EIA) (indexed site)

    a. Coal Prices to Electric Generating Plants, Projected vs. Actual" "Projected Price in Constant Dollars" " (constant dollars per million Btu in ""dollar year"" specific to each AEO)" ,"AEO $ Year",1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",1992,1.4699,1.4799,1.53,1.57,1.58,1.57,1.61,1.63,1.68,1.69,1.7,1.72,1.7,1.76,1.79,1.81,1.88,1.92 "AEO

  2. Table 11a. Coal Prices to Electric Generating Plants, Projected vs. Actual

    Energy Information Administration (EIA) (indexed site)

    a. Coal Prices to Electric Generating Plants, Projected vs. Actual Projected Price in Constant Dollars (constant dollars per million Btu in "dollar year" specific to each AEO) AEO $ Year 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 1992 1.47 1.48 1.53 1.57 1.58 1.57 1.61 1.63 1.68 1.69 1.70 1.72 1.70 1.76 1.79 1.81 1.88 1.92 AEO 1995 1993 1.39 1.39 1.38 1.40 1.40 1.39 1.39 1.42 1.41 1.43 1.44 1.45 1.46 1.46 1.46 1.47

  3. Condensed listing of surface boreholes at the Waste Isolation Pilot Plant Project through 31 December 1995

    SciTech Connect

    Hill, L.R.; Aguilar, R.; Mercer, J.W.; Newman, G.

    1997-01-01

    This report contains a condensed listing of Waste Isolation Pilot Plant (WIPP) project surface boreholes drilled for the purpose of site selection and characterization through 31 December 1995. The US Department of Energy (DOE) sponsored the drilling activities, which were conducted primarily by Sandia National Laboratories. The listing provides physical attributes such as location (township, range, section, and state-plane coordinates), elevation, and total borehole depth, as well as the purpose for the borehole, drilling dates, and information about extracted cores. The report also presents the hole status (plugged, testing, monitoring, etc.) and includes salient findings and references. Maps with borehole locations and times-of-drilling charts are included.

  4. Advanced Grid-Friendly Controls Demonstration Project for Utility-Scale PV Power Plants

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Advanced Grid-Friendly Controls Demonstration Project for Utility-Scale PV Power Plants Vahan Gevorgian and Barbara O'Neill National Renewable Energy Laboratory Technical Report NREL/TP-5D00-65368 January 2016 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

  5. Prestigious Coal-Fired Project of the Year Award Goes to Plant Demonstrating Innovative DOE-Funded Technology

    Energy.gov [DOE]

    An innovative project demonstrating DryFining™ technology, a more cost-effective way to control coal-based power plant emissions while improving fuel quality, has been named the 2010 Coal-Fired Project of the Year by the editors of Power Engineering magazine.

  6. MHK Projects/General Sullivan and Little Bay BRI | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    TechnologiesGorlov Helical Turbine Project Licensing FERC License Docket Number P-13503 Environmental Monitoring and Mitigation Efforts See Tethys << Return to the MHK database...

  7. Research and Development Technology Development Roadmaps for the Next Generation Nuclear Plant Project

    SciTech Connect

    Ian McKirdy

    2011-07-01

    The U.S. Department of Energy (DOE) has selected the high temperature gas-cooled reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for process heat, hydrogen and electricity production. The reactor will be graphite moderated with helium as the primary coolant and may be either prismatic or pebble-bed. Although, final design features have not yet been determined. Research and Development (R&D) activities are proceeding on those known plant systems to mature the technology, codify the materials for specific applications, and demonstrate the component and system viability in NGNP relevant and integrated environments. Collectively these R&D activities serve to reduce the project risk and enhance the probability of on-budget, on-schedule completion and NRC licensing. As the design progresses, in more detail, toward final design and approval for construction, selected components, which have not been used in a similar application, in a relevant environment nor integrated with other components and systems, must be tested to demonstrate viability at reduced scales and simulations prior to full scale operation. This report and its R&D TDRMs present the path forward and its significance in assuring technical readiness to perform the desired function by: Choreographing the integration between design and R&D activities; and proving selected design components in relevant applications.

  8. Olkiluoto 1 and 2 - Plant efficiency improvement and lifetime extension-project (PELE) implemented during outages 2010 and 2011

    SciTech Connect

    Kosonen, M.; Hakola, M.

    2012-07-01

    Teollisuuden Voima Oyj (TVO) is a non-listed public company founded in 1969 to produce electricity for its stakeholders. TVO is the operator of the Olkiluoto nuclear power plant. TVO follows the principle of continuous improvement in the operation and maintenance of the Olkiluoto plant units. The PELE project (Plant Efficiency Improvement and Lifetime Extension), mainly completed during the annual outages in 2010 and 2011, and forms one part of the systematic development of Olkiluoto units. TVO maintains a long-term development program that aims at systematically modernizing the plant unit systems and equipment based on the latest technology. According to the program, the Olkiluoto 1 and Olkiluoto 2 plant units are constantly renovated with the intention of keeping them safe and reliable, The aim of the modernization projects is to improve the safety, reliability, and performance of the plant units. PELE project at Olkiluoto 1 was done in 2010 and at Olkiluoto 2 in 2011. The outage length of Olkiluoto 1 was 26 d 12 h 4 min and Olkiluoto 2 outage length was 28 d 23 h 46 min. (Normal service-outage is about 14 days including refueling and refueling-outage length is about seven days. See figure 1) The PELE project consisted of several single projects collected into one for coordinated project management. Some of the main projects were as follows: - Low pressure turbines: rotor, stator vane, casing and turbine instrumentation replacement. - Replacement of Condenser Cooling Water (later called seawater pumps) pumps - Replacement of inner isolation valves on the main steam lines. - Generator and the generator cooling system replacement. - Low voltage switchgear replacement. This project will continue during future outages. PELE was a success. 100 TVO employees and 1500 subcontractor employees participated in the project. The execution of the PELE projects went extremely well during the outages. The replacement of the low pressure turbines and seawater pumps improved the

  9. The start-up of the DIOS pilot plant (DIOS Project)

    SciTech Connect

    Sawada, Terutoshi

    1995-12-01

    The DIOS process has been successfully developed as an 8-year project commenced in April 1988. Based on the results of the element studies reported at the previous conference and at other meetings, the pilot plant, with a designed capacity of 500 t/d, was constructed and started up in october 1993. After the starting operation with the single smelting reduction furnace in the beginning of the first campaign, the pilot plant has been principally operated in integration, that is, with the smelting reduction furnace connected with the preheating and prereduction furnaces. So far five campaigns have been successfully conducted on schedule. The operation has been improved gradually and the designed performance has been achieved. New processes are targeted at the direct use of coal and iron ore fines to eliminate not only the problematic coke ovens but also pellet and sinter plants. The direct smelting reduction processes currently at the most advanced stage of development are the DIOS in Japan, the AISI in the USA and the HIsmelt in Australia.

  10. Energy Department Recognizes General Mills for Leadership and Innovation at Iowa Plant

    Energy.gov [DOE]

    As part of the Obama Administration's effort to cut climate-changing carbon emissions produced by the nation's buildings and manufacturing plants, today the U.S. Department of Energy (DOE)...

  11. The Ohio River Valley CO2 Storage Project AEP Mountaineer Plant, West Virginia Numerical Simulation and Risk Assessment Report

    SciTech Connect

    Neeraj Gupta

    2008-03-31

    A series of numerical simulations of carbon dioxide (CO{sub 2}) injection were conducted as part of a program to assess the potential for geologic sequestration in deep geologic reservoirs (the Rose Run and Copper Ridge formations), at the American Electric Power (AEP) Mountaineer Power Plant outside of New Haven, West Virginia. The simulations were executed using the H{sub 2}O-CO{sub 2}-NaCl operational mode of the Subsurface Transport Over Multiple Phases (STOMP) simulator (White and Oostrom, 2006). The objective of the Rose Run formation modeling was to predict CO{sub 2} injection rates using data from the core analysis conducted on the samples. A systematic screening procedure was applied to the Ohio River Valley CO{sub 2} storage site utilizing the Features, Elements, and Processes (FEP) database for geological storage of CO{sub 2} (Savage et al., 2004). The objective of the screening was to identify potential risk categories for the long-term geological storage of CO{sub 2} at the Mountaineer Power Plant in New Haven, West Virginia. Over 130 FEPs in seven main classes were assessed for the project based on site characterization information gathered in a geological background study, testing in a deep well drilled on the site, and general site conditions. In evaluating the database, it was apparent that many of the items were not applicable to the Mountaineer site based its geologic framework and environmental setting. Nine FEPs were identified for further consideration for the site. These FEPs generally fell into categories related to variations in subsurface geology, well completion materials, and the behavior of CO{sub 2} in the subsurface. Results from the screening were used to provide guidance on injection system design, developing a monitoring program, performing reservoir simulations, and other risk assessment efforts. Initial work indicates that the significant FEPs may be accounted for by focusing the storage program on these potential issues. The

  12. Office of Inspector General report on audit of shutdown and transition of the Mound Plant

    SciTech Connect

    1997-06-24

    With the end of the Cold War, the Department of Energy (Department) has greatly reduced the production of nuclear weapons and redirected the capabilities and focus of the weapons complex. As part of this redirection, the Mound Plant was transferred from a Defense Program site to an Environmental Management site with emphasis on accelerated cleanup and transition of facilities and personal property to the local community. This audit was initiated to determine if the shutdown and transition of the Mound Plant was progressing effectively and efficiently. The Department prepared a Nonnuclear Consolidation Plan (NCP) designed to reduce its costs of operation by closing and consolidating facilities. In contrast to the goal of the NCP, the Department plans to keep a portion of the Mound Plant open solely to perform work for other Federal agencies. Specifically, the Department has decided to continue assembling and testing isotopic heat sources and radioisotope thermoelectric generators (HS/RTG) at the Mound Plant despite the transfer or planned transfer of all other production operations.The Office of Nuclear Energy, Science and Technology decided to continue its HS/RTG operations at the Mound Plant without adequately considering the overall economic goals of the Department. As a result, the Department may not achieve the savings envisioned by the NCP. Also, the Department may incur between $4 million and $8.5 million more than necessary each year to continue its HS/RTG operations at the Mound Plant. Additionally, if the HS/RTG operations stay at the Mound Plant, the Department will spend more than $3 million to consolidate these operations into one location.

  13. Seismic safety margins research program. Phase I. Final report: plant/site selection and data collection (Project I)

    SciTech Connect

    Chuang, T. Y.

    1981-05-01

    Project I of Phase I of the Seismic Safety Margins Research Program (SSMRP) comprised two parts: the selection of a representative nuclear power plant/site for study in Phase I and the collection of data needed by the other SSMRP projects. Unit 1 of the Zion Nuclear Power Plant in Zion, Illinois, was selected for the SSMRP Phase I studies. The Zion plant and its site were found to be reasonably representative of operating and future plants with regard to its nuclear steam supply system; the type of containment structure (prestressed concrete); its electrical capacity (1100 MWe); its location (the Midwest); the peak seismic accelaration used for design (0.17g); and the properties of the underlying soil (the low-strain shear-wave velocity is 1650 ft/s in a 50- to 100-ft-thick layer of soil overlying sedimentary bedrock).

  14. Study on Evaluation of Project Management Data for Decommissioning of Uranium Refining and Conversion Plant - 12234

    SciTech Connect

    Usui, Hideo; Izumo, Sari; Tachibana, Mitsuo; Shibahara, Yuji; Morimoto, Yasuyuki; Tokuyasu, Takashi; Takahashi, Nobuo; Tanaka, Yoshio; Sugitsue, Noritake

    2012-07-01

    Some of nuclear facilities that would no longer be required have been decommissioned in JAEA (Japan Atomic Energy Agency). A lot of nuclear facilities have to be decommissioned in JAEA in near future. To implement decommissioning of nuclear facilities, it was important to make a rational decommissioning plan. Therefore, project management data evaluation system for dismantling activities (PRODIA code) has been developed, and will be useful for making a detailed decommissioning plan for an object facility. Dismantling of dry conversion facility in the uranium refining and conversion plant (URCP) at Ningyo-toge began in 2008. During dismantling activities, project management data such as manpower and amount of waste generation have been collected. Such collected project management data has been evaluated and used to establish a calculation formula to calculate manpower for dismantling equipment of chemical process and calculate manpower for using a green house (GH) which was a temporary structure for preventing the spread of contaminants during dismantling. In the calculation formula to calculate project management data related to dismantling of equipment, the relation of dismantling manpower to each piece of equipment was evaluated. Furthermore, the relation of dismantling manpower to each chemical process was evaluated. The results showed promise for evaluating dismantling manpower with respect to each chemical process. In the calculation formula to calculate project management data related to use of the GH, relations of GH installation manpower and removal manpower to GH footprint were evaluated. Furthermore, the calculation formula for secondary waste generation was established. In this study, project management data related to dismantling of equipment and use of the GH were evaluated and analyzed. The project management data, manpower for dismantling of equipment, manpower for installation and removal of GH, and secondary waste generation from GH were considered

  15. FORSITE, a multiple-project management system: overview and general description

    SciTech Connect

    Entingh, D.J.; Bernstein, A.J.; Gerstein, R.E.; Kenkeremath, L.D.; Gould, A.V.

    1982-10-01

    The Geothermal Site Development Forecasting System (FORSITE) is a computer-based multiproject monitoring, scheduling, and forecasting system. Its main purpose is to assist DOE geothermal program managers in monitoring the progress of multiple geothermal electric exploration and construction projects. The system actively combines conceptual project development schedules with site-specific status data to predict a time-phased sequence of development likely to occur at multiple specific geothermal sites. The forecasting capabilities of the model include estimation of industry costs and federal manpower requirements across sites on a year-by-year basis.

  16. Performance analysis and pilot plant test results for the Komorany fluidized bed retrofit project

    SciTech Connect

    Snow, G.C.

    1995-12-01

    Detailed heat and mass balance calculations and emission performance projections are presented for an atmospheric fluidized bed boiler bottom retrofit at the 927 MWt (steam output) Komorany power station and district heating plant in the Czech Republic. Each of the ten existing boilers are traveling grate stoker units firing a local, low-rank brown coal. This fuel, considered to be representative of much of the coal deposits in Central Europe, is characterized by an average gross calorific value of 10.5 MJ/kg (4,530 Btu/lb), an average dry basis ash content of 47 %, and a maximum dry basis sulfur content of 1.8 % (3.4 % on a dry, ash free basis). The same fuel supply, together with limestone supplied from the region will be utilized in the retrofit fluidized bed boilers. The primary objectives of this retrofit program are, (1) reduce emissions to a level at or below the new Czech Clean Air Act, and (2) restore plant capacity to the original specification. As a result of the AFBC retrofit and plant upgrade, the particulate matter emissions will be reduced by over 98 percent, SO{sub 2} emissions will be reduced by 88 percent, and NO{sub x} emissions will be reduced by 38 percent compared to the present grate-fired configuration. The decrease in SO{sub 2} emissions resulting from the fluidized bed retrofit was initially predicted based on fuel sulfur content, including the distribution among organic, pyritic, and sulfate forms; the ash alkalinity; and the estimated limestone calcium utilization efficiency. The methodology and the results of this prediction were confirmed and extended by pilot scale combustion trials at a 1.0 MWt (fuel input), variable configuration test facility in France.

  17. Quality assurance project plan for the radionuclide airborne emissions for the Plutonium Finishing Plant

    SciTech Connect

    Kristofzski, J.G.; Alison, D.

    1992-04-01

    The information provided in this document meets the quality assurance (QA) requirements for the National Emission Standards for Hazardous Air Pollutants'' (NESHAP) (EPA 1989a) radionuclide airborne emissions control program in accordance with the regulation's referenced stack monitoring method (i.e. Method 114) for the Plutonium Finishing Plant (PFP). At the Hanford Site, the operations personnel have primary responsibility for implementing the continuous radionuclide emission measurements in conformance with NESHAP. Continuous measurement is used to describe continuous sampling of the effluent stream withdrawn and subjected to radiochemical analysis, and monitoring of radionuclide particulate emissions for administrative control. This Quality Assurance Project Plan (QAPjP) fully describes these PFP- implemented activities and the associated QA program as required by the NESHAP. The information is provided in the format specified in QAMS/005, Interim Guidelines and Specifications for Preparing Quality Assurance Project Plans (EPA 1983a). This QAPjP describes the QA program for only those activities that are the responsibility of the PFP: operation, calibration, and maintenance of the sampling systems. The QA requirements for laboratory services, data compilation, and data reporting are beyond the scope of this QAPjP.

  18. Quality assurance project plan for the radionuclide airborne emissions for the Plutonium Finishing Plant

    SciTech Connect

    Kristofzski, J.G.; Alison, D.

    1992-04-01

    The information provided in this document meets the quality assurance (QA) requirements for the ``National Emission Standards for Hazardous Air Pollutants`` (NESHAP) (EPA 1989a) radionuclide airborne emissions control program in accordance with the regulation`s referenced stack monitoring method (i.e. Method 114) for the Plutonium Finishing Plant (PFP). At the Hanford Site, the operations personnel have primary responsibility for implementing the continuous radionuclide emission measurements in conformance with NESHAP. Continuous measurement is used to describe continuous sampling of the effluent stream withdrawn and subjected to radiochemical analysis, and monitoring of radionuclide particulate emissions for administrative control. This Quality Assurance Project Plan (QAPjP) fully describes these PFP- implemented activities and the associated QA program as required by the NESHAP. The information is provided in the format specified in QAMS/005, Interim Guidelines and Specifications for Preparing Quality Assurance Project Plans (EPA 1983a). This QAPjP describes the QA program for only those activities that are the responsibility of the PFP: operation, calibration, and maintenance of the sampling systems. The QA requirements for laboratory services, data compilation, and data reporting are beyond the scope of this QAPjP.

  19. Table 11b. Coal Prices to Electric Generating Plants, Projected vs. Actual

    Energy Information Administration (EIA) (indexed site)

    b. Coal Prices to Electric Generating Plants, Projected vs. Actual Projected Price in Nominal Dollars (nominal dollars per million Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 1.50 1.55 1.64 1.73 1.78 1.82 1.92 2.01 2.13 2.22 2.30 2.41 2.46 2.64 2.78 2.90 3.12 3.30 AEO 1995 1.42 1.46 1.49 1.55 1.59 1.62 1.67 1.76 1.80 1.89 1.97 2.05 2.13 2.21 2.28 2.38 2.50 AEO 1996 1.35 1.35 1.37 1.39 1.42 1.46 1.50 1.56 1.62 1.67 1.75

  20. Correlation of drillhole and shaft logs. Waste Isolation Pilot Plant (WIPP) project, southeastern New Mexico

    SciTech Connect

    Jarolimek, L.; Timmer, M.J.; Powers, D.W.

    1983-03-01

    This report on stratigraphic correlations from drillhole and shaft data along a generally north-south section across the potential extent of underground excavations of the Waste Isolation Pilot Plant (WIPP) facility was prepared as part of the Site Validation Field Program Plan. The results provide (1) input for the report entitled ''Results of Site Validation Experiments,'' (2) input for other WIPP-related investigations, including the Design Validation Program, and (3) a framework for further underground activities at WIPP. In general, this correlation study confirmed previous findings, including: relatively high consistency of thickness and lateral continuity of all beds within the Salado Formation, especially in the host rock interval; gentle, generally south and southeastward dips/slopes of the host rock interval strata; close correspondence between stratigraphic data obtained from the present underground excavations and data derived from the previous investigative drillholes and shafts; and depositional origin of the undulations on the top of Marker Bed (MB) 139 and relatively small variation in its thickness (1.2 to 4.1 feet).

  1. TVA coal-gasification commercial demonstration plant project. Volume 5. Plant based on Koppers-Totzek gasifier. Final report

    SciTech Connect

    Not Available

    1980-11-01

    This volume presents a technical description of a coal gasification plant, based on Koppers-Totzek gasifiers, producing a medium Btu fuel gas product. Foster Wheeler carried out a conceptual design and cost estimate of a nominal 20,000 TPSD plant based on TVA design criteria and information supplied by Krupp-Koppers concerning the Koppers-Totzek coal gasification process. Technical description of the design is given in this volume.

  2. General-purpose heat source project and space nuclear safety and fuels program. Progress reportt, January 1980

    SciTech Connect

    Maraman, W.J.

    1980-04-01

    This formal monthly report covers the studies related to the use of /sup 238/PuO/sub 2/ in radioisotopic power systems carried out for the Advanced Nuclear Systems and Projects Division of the Los Alamos Scientific Laboratory. The two programs involved are the general-purpose heat source development and space nuclear safety and fuels. Most of the studies discussed here are of a continuing nature. Results and conclusions described may change as the work continues. Published reference to the results cited in this report should not be made without the explicit permission of the person in charge of the work.

  3. Paducah Gaseous Diffusion Plant proposed pilot pump-and-treat project. Final report

    SciTech Connect

    Bodenstein, G.W.; Bonczek, R.R.; Early, T.O.; Huff, D.D.; Jones, K.S.; Nickelson, M.D.; Rightmire, C.T.

    1994-01-01

    On March 23, 1992, R.C. Sleeman of the Department of Energy, Oak Ridge Operations Office requested that a Groundwater Corrective Actions Team be assembled to evaluate the technical merit of and the need to implement a proposed groundwater pump-and-treat demonstration project for the Northwest contaminant plume at the Paducah Gaseous Diffusion Plant. In addition to other suggestions, the Team recommended that further characterization data be obtained for the plume. In the Fall of 1993 additional, temporary well points were installed so that groundwater samples from the shallow groundwater system and the Regional Gravel Aquifer (RGA) could be obtained to provide a three-dimensional view of groundwater contamination in the region of the plume. The results indicate that pure-phase DNAPL (trichloroethylene [TCE]) probably are present in the source area of the plume and extend in depth to the base of the RGA. Because the DNAPL likely will represent a source of a dissolved phase plume for decades it is essential that source containment take place. The Team recommends that although effective hydraulic containment can be achieved, other alternatives should be considered. For example, recent advances in emplacing low permeability barrier walls to depths of 100 to 150 ft make it possible to consider encirclement of the source of the Northwest plume.

  4. Considerations Associated with Reactor Technology Selection for the Next Generation Nuclear Plant Project

    SciTech Connect

    L.E. Demick

    2010-09-01

    At the inception of the Next Generation Nuclear Plant Project and during predecessor activities, alternative reactor technologies have been evaluated to determine the technology that best fulfills the functional and performance requirements of the targeted energy applications and market. Unlike the case of electric power generation where the reactor performance is primarily expressed in terms of economics, the targeted energy applications involve industrial applications that have specific needs in terms of acceptable heat transport fluids and the associated thermodynamic conditions. Hence, to be of interest to these industrial energy applications, the alternative reactor technologies are weighed in terms of the reactor coolant/heat transport fluid, achievable reactor outlet temperature, and practicality of operations to achieve the very high reliability demands associated with the petrochemical, petroleum, metals and related industries. These evaluations have concluded that the high temperature gas-cooled reactor (HTGR) can uniquely provide the required ranges of energy needs for these target applications, do so with promising economics, and can be commercialized with reasonable development risk in the time frames of current industry interest i.e., within the next 10-15 years.

  5. Chiyoda Thoroughbred CT-121 clean coal project at Georgia Power`s Plant Yates

    SciTech Connect

    Burford, D.P.

    1997-12-31

    The Chiyoda Thoroughbred CT-121 flue gas desulfurization (FGD) process at Georgia Power`s Plant Yates completed a two year demonstration of its capabilities in late 1994 under both high- and low-particulate loading conditions. This $43 million demonstration was co-funded by Southern Company, the Electric Power Research Institute and the DOE under the auspices of the US Department of Energy`s Round II Innovative Clean Coal Technology (ICCT) program. The focus of the Yates Project was to demonstrate several cost-saving modifications to Chiyoda`s already efficient CT-121 process. These modifications included: the extensive use of fiberglass reinforced plastics (FRP) in the construction of the scrubber vessel and other associated vessels, the elimination of flue gas reheat through the use of an FRP wet chimney, and reliable operation without a spare absorber module. This paper focuses on the testing results from the last trimester of the second phase of testing (high-ash loading). Specifically, operation under elevated ash loading conditions, the effects of low- and high-sulfur coal, air toxics verification testing results and unexpected improvements in byproduct gypsum quality are discussed.

  6. Evaluation of five waste-minimization technologies at the General Dynamics Pomona Division Plant

    SciTech Connect

    Apel, M.L.; Brown, L.M.

    1992-01-01

    Five technology areas encompassing eight waste reduction technologies at the General Dynamics Pomona Division (Southern California) were technically and economically evaluated under the California/EPA Waste Reduction Innovative Technology Evaluation (WRITE) Program. Evaluations were made through site visits and follow-up discussions with General Dynamics staff and equipment suppliers. The technologies and the type of waste reduction represented included (1) computerized printed circuit board plating process (process substitution), (2) sulfuric acid anodizing system (process substitution), (3) robotic paint facility operations - (a) proportional paint mixing (process substitution), (b) water-based solvent replacement (process substitution), (c) electrostatic paint sprays (process substitution), (d) solvent stills (recycling), (4) bead-blast paint stripper (process substitution), and (5) Freon recovery stills (recycling). Overall, there was a decrease in hazardous waste generation and an increase in productivity or reuse of recycled materials. In most cases, the technologies could be easily transferred to other industries except for the computerized circuit board and some processes within the robotic paint operation due to prohibitive costs.

  7. Project Management Plan for the Idaho National Engineering Laboratory Waste Isolation Pilot Plant Experimental Test Program

    SciTech Connect

    Connolly, M.J.; Sayer, D.L.

    1993-11-01

    EG&G Idaho, Inc. and Argonne National Laboratory-West (ANL-W) are participating in the Idaho National Engineering Laboratory`s (INEL`s) Waste Isolation Pilot Plant (WIPP) Experimental Test Program (WETP). The purpose of the INEL WET is to provide chemical, physical, and radiochemical data on transuranic (TRU) waste to be stored at WIPP. The waste characterization data collected will be used to support the WIPP Performance Assessment (PA), development of the disposal No-Migration Variance Petition (NMVP), and to support the WIPP disposal decision. The PA is an analysis required by the Code of Federal Regulations (CFR), Title 40, Part 191 (40 CFR 191), which identifies the processes and events that may affect the disposal system (WIPP) and examines the effects of those processes and events on the performance of WIPP. A NMVP is required for the WIPP by 40 CFR 268 in order to dispose of land disposal restriction (LDR) mixed TRU waste in WIPP. It is anticipated that the detailed Resource Conservation and Recovery Act (RCRA) waste characterization data of all INEL retrievably-stored TRU waste to be stored in WIPP will be required for the NMVP. Waste characterization requirements for PA and RCRA may not necessarily be identical. Waste characterization requirements for the PA will be defined by Sandia National Laboratories. The requirements for RCRA are defined in 40 CFR 268, WIPP RCRA Part B Application Waste Analysis Plan (WAP), and WIPP Waste Characterization Program Plan (WWCP). This Project Management Plan (PMP) addresses only the characterization of the contact handled (CH) TRU waste at the INEL. This document will address all work in which EG&G Idaho is responsible concerning the INEL WETP. Even though EG&G Idaho has no responsibility for the work that ANL-W is performing, EG&G Idaho will keep a current status and provide a project coordination effort with ANL-W to ensure that the INEL, as a whole, is effectively and efficiently completing the requirements for WETP.

  8. NERI Final Project Report: On-Line Intelligent Self-Diagnostic Monitoring System for Next Generation Nuclear Power Plants

    SciTech Connect

    Bond, Leonard J.; Jarrell, Donald B.; Koehler, Theresa M.; Meador, Richard J.; Sisk, Daniel R.; Hatley, Darrel D.; Watkins, Kenneth S.; Chai, Jangbom; Kim, Wooshik

    2003-06-20

    This project provides a proof-of-principle technology demonstration for SDMS, where a distributed suite of sensors is integrated with active components and passive structures of types expected to be encountered in next generation nuclear power reactor and plant systems. The project employs state-of-the-art operational sensors, advanced stressor-based instrumentation, distributed computing, RF data network modules and signal processing to improve the monitoring and assessment of the power reactor system and gives data that is used to provide prognostics capabilities.

  9. Otec power plant for the Marshall Islands. Feasibility study phase 2. Project implementation. Final report. Export trade information

    SciTech Connect

    1996-03-25

    This report presents the results of phase 2 of a study which was conducted to assess the economic and design feasibility of a 5-10 MW OTEC power plant to be installed at Majuro, Marshall Islands. The document is divided into (1) Introduction; (2) Executive Summary; (3) Study Highlights, Conclusions, and Recommendations; (4) Phase 2 - Project Implementation Goals; (5) Study Task 1.0 - Project Planning; (6) Study Task 2.0 - Conceptual Design/Risk Reduction; (7) Preliminary Oceanographic and Site Survey; (8) List of References; (9) List of Appendices.

  10. Project Profile: Heat Transfer and Latent Heat Storage in Inorganic Molten Salts for CSP Plants

    Energy.gov [DOE]

    Terrafore, under the Thermal Storage FOA, is developing an economically feasible thermal energy storage (TES) system based on phase change materials (PCMs), for CSP plants.

  11. General volume sizing strategy for thermal storage system using phase change material for concentrated solar thermal power plant

    DOE PAGES [OSTI]

    Xu, Ben; Li, Peiwen; Chan, Cholik; Tumilowicz, Eric

    2014-12-18

    With an auxiliary large capacity thermal storage using phase change material (PCM), Concentrated Solar Power (CSP) is a promising technology for high efficiency solar energy utilization. In a thermal storage system, a dual-media thermal storage tank is typically adopted in industry for the purpose of reducing the use of the heat transfer fluid (HTF) which is usually expensive. While the sensible heat storage system (SHSS) has been well studied, a dual-media latent heat storage system (LHSS) still needs more attention and study. The volume sizing of the thermal storage tank, considering daily cyclic operations, is of particular significance. In thismore » paper, a general volume sizing strategy for LHSS is proposed, based on an enthalpy-based 1D transient model. One example was presented to demonstrate how to apply this strategy to obtain an actual storage tank volume. With this volume, a LHSS can supply heat to a thermal power plant with the HTF at temperatures above a cutoff point during a desired 6 hours of operation. This general volume sizing strategy is believed to be of particular interest for the solar thermal power industry.« less

  12. General volume sizing strategy for thermal storage system using phase change material for concentrated solar thermal power plant

    SciTech Connect

    Xu, Ben; Li, Peiwen; Chan, Cholik; Tumilowicz, Eric

    2014-12-18

    With an auxiliary large capacity thermal storage using phase change material (PCM), Concentrated Solar Power (CSP) is a promising technology for high efficiency solar energy utilization. In a thermal storage system, a dual-media thermal storage tank is typically adopted in industry for the purpose of reducing the use of the heat transfer fluid (HTF) which is usually expensive. While the sensible heat storage system (SHSS) has been well studied, a dual-media latent heat storage system (LHSS) still needs more attention and study. The volume sizing of the thermal storage tank, considering daily cyclic operations, is of particular significance. In this paper, a general volume sizing strategy for LHSS is proposed, based on an enthalpy-based 1D transient model. One example was presented to demonstrate how to apply this strategy to obtain an actual storage tank volume. With this volume, a LHSS can supply heat to a thermal power plant with the HTF at temperatures above a cutoff point during a desired 6 hours of operation. This general volume sizing strategy is believed to be of particular interest for the solar thermal power industry.

  13. CHALLENGES AND OPPORTUNITIES--INTEGRATED LIFE-CYCLE OPTIMIZATION INITIATIVES FOR THE HANFORD RIVER PROTECTION PROJECT--WASTE TREATMENT PLANT

    SciTech Connect

    Auclair, K. D.

    2002-02-25

    This paper describes the ongoing integrated life-cycle optimization efforts to achieve both design flexibility and design stability for activities associated with the Waste Treatment Plant at Hanford. Design flexibility is required to support the Department of Energy Office of River Protection Balance of Mission objectives, and design stability to meet the Waste Treatment Plant construction and commissioning requirements in order to produce first glass in 2007. The Waste Treatment Plant is a large complex project that is driven by both technology and contractual requirements. It is also part of a larger overall mission, as a component of the River Protection Project, which is driven by programmatic requirements and regulatory, legal, and fiscal constraints. These issues are further complicated by the fact that both of the major contractors involved have a different contract type with DOE, and neither has a contract with the other. This combination of technical and programmatic drivers, constraints, and requirements will continue to provide challenges and opportunities for improvement and optimization. The Bechtel National, Inc. team is under contract to engineer, procure, construct, commission and test the Waste Treatment Plant on or ahead of schedule, at or under cost, and with a throughput capacity equal to or better than specified. The Department of Energy is tasked with the long term mission of waste retrieval, treatment, and disposal. While each mission is a compliment and inextricably linked to one another, they are also at opposite ends of the spectrum, in terms of expectations of one another. These mission requirements, that are seemingly in opposition to one another, pose the single largest challenge and opportunity for optimization: one of balance. While it is recognized that design maturation and optimization are the normal responsibility of any engineering firm responsible for any given project, the aspects of integrating requirements and the management

  14. Chemistry, scale, and performance of the Hawaii geothermal project-A plant

    SciTech Connect

    Baughman, E.C.; Uemura, R.T.

    1985-12-01

    The objective of this study was to determine the effects of scale, corrosion, and erosion of the geothermal resource on HGP-A Geothermal Wellhead Power Plant. Analysis of the fluid chemistry was made to interpret the cause of corrosion and scale deposition in the brine and steam systems. It was found that metal sulfide scale formation occurred in the steam system and silica type scale formation in the brine system. The rate of scale deposition was strongly influenced by the chemical conditions in those systems. Although scale and corrosion did occur in the plant piping systems and equipment, they did not appreciably affect the performance of the plant. The results of this study will make the utilities more aware of the effects of geothermal fluid chemistry on scale deposition and corrosion which may increase plant efficiency and reduce maintenance of future plants. 7 refs., 67 figs., 13 tabs.

  15. General Engineer (Project Manager)

    Energy.gov [DOE]

    (See Frequently Asked Questions for more information). Where would I be working? Western Area Power Administration Desert Southwest Region Engineering and Construction (G5600) 615 S. 43rd Avenue...

  16. Next Generation Nuclear Plant Project Technology Development Roadmaps: The Technical Path Forward

    SciTech Connect

    John Collins

    2009-01-01

    This document presents the Next Generation Nuclear Plant (NGNP) Systems, Subsystems, and Components, establishes a baseline for the current technology readiness status, and provides a path forward to achieve increasing levels of technical maturity.

  17. EA-1137: Nonnuclear Consolidation Weapons Production Support Project for the Kansas City Plant Kansas City, Missouri

    Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposal to renovate an existing building at the U.S. Department of Energy Kansas City Plant to accommodate equipment, security and environmental...

  18. Project Profile: Encapsulated Phase Change Material in Thermal Storage for Baseload CSP Plants

    Energy.gov [DOE]

    Terrafore, under the Baseload CSP FOA, is developing novel encapsulated phase change materials (PCM) for use in thermal storage applications to significantly reduce the LCOE for baseload CSP plants.

  19. Energy Department Highlights Nissans Better Plants Challenge Showcase Project in Tennessee

    Energy.gov [DOE]

    As part of the Obama Administrations commitment to lowering energy bills for U.S. businesses, the Energy Department recognized Nissans participation in the Better Buildings, Better Plants Challenge.

  20. Six Utah plants help fuel rise in geothermal projects | Department of

    Energy.gov [DOE] (indexed site)

    Energy Geothermal power projects are developing quickly across the country, with Utah playing a role. A report released Thursday by the Geothermal Energy Association shows that the number of new geothermal projects under way in the United States grew 20 percent since January. "These new projects will result in the infusion of roughly $15 billion in capital investment in the Western states and create 7,000 permanent jobs and more than 25,000 person-years of construction and manufacturing

  1. Sour gas plant remediation technology research and demonstration project, Task 7.53. Topical report, January--December 1993

    SciTech Connect

    Stepan, D.J.; Kuehnel, V.; Schmit, C.R.

    1994-02-01

    Recognizing the potential impacts of sour gas plant operations on the subsurface environment, the Canadian Association of Petroleum Producers (CAPP) and Environment Canada initiated a multiphase study focusing on research related to the development and demonstration of remedial technologies for soil and groundwater contamination at these facilities. Research performed under this project was designed to supplement and be coordinated with research activities being conducted at an operational sour gas plant located in Rocky Mountain House, Alberta, Canada. These research tasks included hydrogeological site characterization, subsurface contaminant characterization, ex situ treatment of groundwater, and subsurface remediation of residual contamination in the unsaturated zone. Ex situ treatment of groundwater included evaluations of air stripping, steam stripping, advanced oxidation, and biological treatment, as well as the development of an artificial freeze crystallization process. Soil vapor extraction was evaluated as a technique to address residual contamination in the unsaturated zone.

  2. Bear Creek Valley Floodplain Hot Spot Removal Action Project Plan, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect

    NONE

    1998-01-01

    The Bear Creek Valley Floodplain Hot Spot Removal Action Project Plan, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee (Y/ER-301) was prepared (1) to safely, cost-effectively, and efficiently evaluate the environmental impact of solid material in the two debris areas in the context of industrial land uses (as defined in the Bear Creek Valley Feasibility Study) to support the Engineering Evaluation/Cost Assessment and (2) to evaluate, define, and implement the actions to mitigate these impacts. This work was performed under Work Breakdown Structure 1.x.01.20.01.08.

  3. Summary Report of Geophysical Logging For The Seismic Boreholes Project at the Hanford Site Waste Treatment Plant.

    SciTech Connect

    Gardner, Martin G.; Price, Randall K.

    2007-02-01

    During the period of June through October 2006, three deep boreholes and one corehole were drilled beneath the site of the Waste Treatment Plant (WTP) at the U.S. Department of Energy (DOE) Hanford Site near Richland, Washington. The boreholes were drilled to provide information on ground-motion attenuation in the basalt and interbedded sediments underlying the WTP site. This report describes the geophysical logging of the deep boreholes that was conducted in support of the Seismic Boreholes Project, defined below. The detailed drilling and geological descriptions of the boreholes and seismic data collected and analysis of that data are reported elsewhere.

  4. Projecting changes in annual hydropower generation using regional runoff data: An assessment of the United States federal hydropower plants

    SciTech Connect

    Kao, Shih -Chieh; Sale, Michael J.; Ashfaq, Moetasim; Uria Martinez, Rocio; Kaiser, Dale Patrick; Wei, Yaxing; Diffenbaugh, Noah S.

    2014-12-18

    Federal hydropower plants account for approximately half of installed US conventional hydropower capacity, and are an important part of the national renewable energy portfolio. Utilizing the strong linear relationship between the US Geological Survey WaterWatch runoff and annual hydropower generation, a runoff-based assessment approach is introduced in this study to project changes in annual and regional hydropower generation in multiple power marketing areas. Future climate scenarios are developed with a series of global and regional climate models, and the model output is bias-corrected to be consistent with observed data for the recent past. Using this approach, the median decrease in annual generation at federal projects is projected to be less than –2 TWh, with an estimated ensemble uncertainty of ±9 TWh. Although these estimates are similar to the recently observed variability in annual hydropower generation, and may therefore appear to be manageable, significantly seasonal runoff changes are projected and it may pose significant challenges in water systems with higher limits on reservoir storage and operational flexibility. Lastly, future assessments will be improved by incorporating next-generation climate models, by closer examination of extreme events and longer-term change, and by addressing the interactions among hydropower and other water uses.

  5. Projecting changes in annual hydropower generation using regional runoff data: An assessment of the United States federal hydropower plants

    DOE PAGES [OSTI]

    Kao, Shih -Chieh; Sale, Michael J.; Ashfaq, Moetasim; Uria Martinez, Rocio; Kaiser, Dale Patrick; Wei, Yaxing; Diffenbaugh, Noah S.

    2014-12-18

    Federal hydropower plants account for approximately half of installed US conventional hydropower capacity, and are an important part of the national renewable energy portfolio. Utilizing the strong linear relationship between the US Geological Survey WaterWatch runoff and annual hydropower generation, a runoff-based assessment approach is introduced in this study to project changes in annual and regional hydropower generation in multiple power marketing areas. Future climate scenarios are developed with a series of global and regional climate models, and the model output is bias-corrected to be consistent with observed data for the recent past. Using this approach, the median decrease inmore » annual generation at federal projects is projected to be less than –2 TWh, with an estimated ensemble uncertainty of ±9 TWh. Although these estimates are similar to the recently observed variability in annual hydropower generation, and may therefore appear to be manageable, significantly seasonal runoff changes are projected and it may pose significant challenges in water systems with higher limits on reservoir storage and operational flexibility. Lastly, future assessments will be improved by incorporating next-generation climate models, by closer examination of extreme events and longer-term change, and by addressing the interactions among hydropower and other water uses.« less

  6. Projecting changes in annual hydropower generation using regional runoff data: an assessment of the United States federal hydropower plants

    SciTech Connect

    Kao, Shih-Chieh; Sale, Michael J; Ashfaq, Moetasim; Uria Martinez, Rocio; Kaiser, Dale Patrick; Wei, Yaxing; Diffenbaugh, Noah

    2015-01-01

    Federal hydropower plants account for approximately half of installed US conventional hydropower capacity, and are an important part of the national renewable energy portfolio. Utilizing the strong linear relationship between the US Geological Survey WaterWatch runoff and annual hydropower generation, a runoff-based assessment approach is introduced in this study to project changes in annual and regional hydropower generation in multiple power marketing areas. Future climate scenarios are developed with a series of global and regional climate models, and the model output is bias-corrected to be consistent with observed data for the recent past. Using this approach, the median decrease in annual generation at federal projects is projected to be less than 2 TWh, with an estimated ensemble uncertainty of 9 TWh. Although these estimates are similar to the recently observed variability in annual hydropower generation, and may therefore appear to be manageable, significantly seasonal runoff changes are projected and it may pose significant challenges in water systems with higher limits on reservoir storage and operational flexibility. Future assessments will be improved by incorporating next-generation climate models, by closer examination of extreme events and longer-term change, and by addressing the interactions among hydropower and other water uses.

  7. Comparative risk analysis for the Rocky Flats Plant integrated project planning

    SciTech Connect

    Jones, M.E.; Shain, D.I.

    1994-12-31

    The Rocky Flats Plant is developing, with active stakeholder participation, a comprehensive planning strategy that will support transition of the Rocky Flats Plant from a nuclear weapons production facility to site cleanup and final disposition. Final disposition of the Rocky Flats Plant materials and contaminants requires consideration of the interrelated nature of sitewide problems, such as material movement and disposition, facility and land use endstates, costs, relative risks to workers and the public, and waste disposition. Comparative risk analysis employs both incremental risk and cumulative risk evaluations to compare risks from postulated options or end states. These postulated options or end states can be various remedial alternatives, or future endstate uses of federal land.

  8. Comparative risk analysis for the Rocky Flats Plant integrated project planning

    SciTech Connect

    Jones, M.E.; Shain, D.I.

    1994-05-01

    The Rocky Flats Plant is developing, with active stakeholder a comprehensive planning strategy that will support transition of the Rocky Flats Plant from a nuclear weapons production facility to site cleanup and final disposition. Final disposition of the Rocky Flats Plant materials and contaminants requires consideration of the interrelated nature of sitewide problems, such as material movement and disposition, facility and land use endstates, costs relative risks to workers and the public, and waste disposition. Comparative Risk Analysis employs both incremental risk and cumulative risk evaluations to compare risks from postulated options or endstates. These postulated options or endstates can be various remedial alternatives, or future endstate uses of federal agency land. Currently, there does not exist any approved methodology that aggregates various incremental risk estimates. Comparative Risk Analysis has been developed to aggregate various incremental risk estimates to develop a site cumulative risk estimate. This paper discusses development of the Comparative Risk Analysis methodology, stakeholder participation and lessons learned from these challenges.

  9. Mahreb power-plant-project assessment of TOR for feasibility study. Export trade information

    SciTech Connect

    Schmidt, A.D.; Ahimaz, F.J.

    1992-01-01

    The study endorses the proposed terms of reference for the feasibility study of the Mahreb Power Generation Project in Yemen. It is a reasonable and practical approach to meet the immediate need for additional power in the country. The outline for the feasibility study also seeks a long term solution for an economic and technically sound power generating system to meet future power needs. U.S. firms have been competitive in international tenders for supplying the type of services and equipment needed for the Mahreb Power Project. Because it is a gas turbine power generation project and the opportunities it offers US equipment manufacturers and contractors, the study recommends that the U.S. Trade and Development Program (TDP) fund the feasibility study.

  10. Hanford Workers Achieve Success in Difficult Glove Box Project at Plutonium Finishing Plant

    Energy.gov [DOE]

    RICHLAND, Wash. – EM’s Richland Operations Office and contractor CH2M HILL Plateau Remediation Company (CH2M HILL) recently finished safely separating three glove boxes for removal from Hanford’s Plutonium Finishing Plant (PFP) after months of planning and preparation.

  11. Validation of criticality safety calculational methods for U-AVLIS plant project

    SciTech Connect

    Lewis, K.D.

    1993-07-14

    The objectives of the Uranium Atomic Vapor Laser isotope Separation (U-AVLIS) are to develop, demonstrate, and deploy a laser-based process to enrich natural uranium in the U-235 isotope to levels useful as fuel in commercial light-water power reactors. Current U-AVLIS production plant criteria call for uranium product enriched in {sup 235}U up to 5 wt%. Development of the U-AVLIS technology is in an advanced stage, and demonstration of the integrated enrichment process is currently in progress using plant-scale equipment in the Uranium Demonstration System (UDS) at Lawrence Livermore National Laboratory. In this paper several existing experimental data which are applicable to the critical systems of importance to the safe design of the U-AVLIS plant are identified. These were used to benchmark a configuration-controlled, work station based version of one state-of-the-art computer code employed by the U-AVLIS program in UDS equipment design, and in U-AVLIS plant conceptual design NCS analyses.

  12. EA-1993: Proposed High Explosive Science & Engineering Project, Pantex Plant, Amarillo, Texas

    Office of Energy Efficiency and Renewable Energy (EERE)

    The proposed action would be to design, construct, and operate a High Explosive Science and Engineering (HE S&E) facility that would support NNSA’s mission at the Pantex Plant. The HE S&E facility would serve as the scientific and engineering hub supporting all High Explosive Center of Excellence activities and technology development activities at Pantex.

  13. Borehole Summary Report for Core Hole C4998 Waste Treatment Plant Seismic Boreholes Project

    SciTech Connect

    Barnett, D. BRENT; Garcia, Benjamin J.

    2006-12-15

    Seismic borehole C4998 was cored through the upper portion of the Columbia River Basalt Group and Ellensburg Formation to provide detailed lithologic information and intact rock samples that represent the geology at the Waste Treatment Plant. This report describes the drilling of borehole C4998 and documents the geologic data collected during the drilling of the cored portion of the borehole.

  14. Real Time Demonstration Project XRF Performance Evaluation Report for Paducah Gaseous Diffusion Plant AOC 492

    SciTech Connect

    Johnson, Robert L

    2008-04-03

    This activity was undertaken to demonstrate the applicability of market-available XRF instruments to quantify metal concentrations relative to background and risk-based action and no action levels in Paducah Gaseous Diffusion Plant (PGDP) soils. As such, the analysis below demonstrates the capabilities of the instruments relative to soil characterization applications at the PGDP.

  15. Project Profile: Modular and Scalable Baseload Molten Salt Plant Conceptual Design and Feasibility

    Energy.gov [DOE]

    eSolar, under the Baseload CSP FOA, is designing a 100-MW, 75% capacity factor, molten salt power tower plant, based around a molten salt receiver and heliostat field module with a nominal thermal rating of 50 MWth. They are taking a modular approach, which can be scaled through replication of the receiver/field module to meet output and capacity factor requirements.

  16. Project W-340 long reach arm retrieval system balance of plant instrumentation workshop engineering study

    SciTech Connect

    Schneider, T.C.

    1994-01-01

    This engineering study documents the results of a workshop held to resolve Issue No. 26 generated at a Arm Based Retrieval Functional Analysis Value Engineering Session. The issue deals with the scope of the Balance of Plant Instrumentation needs for the LRARS.

  17. General Motors LLC Final Project Report: Improving Energy Efficiency by Developing Components for Distributed Cooling and Heating Based on Thermal Comfort Modeling

    SciTech Connect

    Bozeman, Jeffrey; Chen, Kuo-Huey

    2014-12-09

    On November 3, 2009, General Motors (GM) accepted U.S. Department of Energy (DOE) Cooperative Agreement award number DE-EE0000014 from the National Energy Technology Laboratory (NETL). GM was selected to execute a three-year cost shared research and development project on Solid State Energy Conversion for Vehicular Heating, Ventilation & Air Conditioning (HVAC) and for Waste Heat Recovery.

  18. Effect of short-term material balances on the projected uranium measurement uncertainties for the gas centrifuge enrichment plant

    SciTech Connect

    Younkin, J.M.; Rushton, J.E.

    1980-02-05

    A program is under way to design an effective International Atomic Energy Agency (IAEA) safeguards system that could be applied to the Portsmouth Gas Centrifuge Enrichment Plant (GCEP). This system would integrate nuclear material accountability with containment and surveillance. Uncertainties in material balances due to errors in the measurements of the declared uranium streams have been projected on a yearly basis for GCEP under such a system in a previous study. Because of the large uranium flows, the projected balance uncertainties were, in some cases, greater than the IAEA goal quantity of 75 kg of U-235 contained in low-enriched uranium. Therefore, it was decided to investigate the benefits of material balance periods of less than a year in order to improve the sensitivity and timeliness of the nuclear material accountability system. An analysis has been made of projected uranium measurement uncertainties for various short-term material balance periods. To simplify this analysis, only a material balance around the process area is considered and only the major UF/sub 6/ stream measurements are included. That is, storage areas are not considered and uranium waste streams are ignored. It is also assumed that variations in the cascade inventory are negligible compared to other terms in the balance so that the results obtained in this study are independent of the absolute cascade inventory. This study is intended to provide information that will serve as the basis for the future design of a dynamic materials accounting component of the IAEA safeguards system for GCEP.

  19. Projecting

    Energy Information Administration (EIA) (indexed site)

    Projecting the scale of the pipeline network for CO2-EOR and its implications for CCS infrastructure development Matthew Tanner Office of Petroleum, Gas, & Biofuels Analysis U.S. Energy Information Administration October 25, 2010 This paper is released to encourage discussion and critical comment. The analysis and conclusions ex- pressed here are those of the author and not necessarily those of the U.S. Energy Information Administration. Author: Matthew Tanner, matthew.tanner@eia.gov

  20. SOLERAS - Solar Energy Water Desalination Project: Martin Marietta Corporation. Pilot plant final report

    SciTech Connect

    Not Available

    1985-01-01

    This report documents the technical effort of Martin Marietta Corporation, in association with Black and Veatch International as a subcontractor for the trade studies performed to design a Solar Desalination Pilot Plant is documented. The final system configuration utilizes existing technology to convert seawater to potable water. This technology includes the collection of solar energy, storage of this energy in a fluid heat transfer medium, generation of steam and electricity from this stored energy, utilization of low pressure turbine exhaust steam as a source of energy to distill salt water, and also generation of potable water through the use of a reverse osmosis unit.

  1. NEW - DOE P 481.1, DOE's Policy Regarding Laboratories, Plants and Sites Engaging in Strategic Partnership Projects with Other Federal Agencies, Independent Organizations, and the Private Sector

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    The purpose of this Policy is to set the context in which DOE and its laboratories, plants, and sites should pursue Strategic Partnership Projects (SSP) with other Federal government agencies, state and local institutions, universities, foreign entities and/or private companies. The Policy is applicable to the DOE laboratories, plants, and sites, and to the DOE programs that own them and facilitate their work.

  2. DOE's Policy Regarding Laboratories, Plants and Sites Engaging in Strategic Partnership Projects with Other Federal Agencies, Independent Organizations, and the Private Sector

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    2014-12-17

    The purpose of this Policy is to set the context in which DOE and its laboratories, plants, and sites should pursue Strategic Partnership Projects (SPP) with other Federal government agencies, state and local institutions, universities, foreign entities and/or private companies. The Policy is applicable to the DOE laboratories, plants, and sites, and to the DOE programs that own them and facilitate their work. Does not cancel/supersede other directives.

  3. Lawrence Livermore National Laboratory Pre-project Rare Plant and Wildlife Surveys For the Pit 7 Drainage Diversion and Groundwater Extraction and Treatment Facility

    SciTech Connect

    Paterson, L; Woollett, J

    2007-07-17

    In January 2007, the Department of Energy (DOE) released the final Environmental Assessment for the Proposed Environmental Remediation at the Lawrence Livermore National Laboratory (LLNL) Site 300 Pit 7 Complex. At the same time, the Department of Toxic Substances Control (DTSC) released the final Negative Declaration and Initial Study covering the Pit 7 remediation. No substantial adverse effect on wildlife species of concern was anticipated from the project. However, it was proposed that wildlife surveys should be conducted prior to construction because species locations and breeding areas could potentially change by the time construction activities began. Although no known populations of rare or endangered/threatened plant species were known to occur within the project impact area at the time these documents were released, rare plants listed by the California Native Plant Society had been observed in the vicinity. As such, both DOE and DTSC proposed that plant surveys would be undertaken at the appropriate time of year to determine if rare plants would be impacted by project construction. This document provides the results of wildlife and rare plant surveys taken prior to the start of construction at the Pit 7 Complex.

  4. A COMPLETE HISTORY OF THE HIGH-LEVEL WASTE PLANT AT THE WEST VALLEY DEMONSTRATION PROJECT

    SciTech Connect

    Petkus, Lawrence L.; Paul, James; Valenti, Paul J.; Houston, Helene; May, Joseph

    2003-02-27

    The West Valley Demonstration Project (WVDP) vitrification melter was shut down in September 2002 after being used to vitrify High Level Waste (HLW) and process system residuals for six years. Processing of the HLW occurred from June 1996 through November 2001, followed by a program to flush the remaining HLW through to the melter. Glass removal and shutdown followed. The facility and process equipment is currently in a standby mode awaiting deactivation. During HLW processing operations, nearly 24 million curies of radioactive material were vitrified into 275 canisters of HLW glass. At least 99.7% of the curies in the HLW tanks at the WVDP were vitrified using the melter. Each canister of HLW holds approximately 2000 kilograms of glass with an average contact dose rate of over 2600 rem per hour. After vitrification processing ended, two more cans were filled using the Evacuated Canister Process to empty the melter at shutdown. This history briefly summarizes the initial stages of process development and earlier WVDP experience in the design and operation of the vitrification systems, followed by a more detailed discussion of equipment availability and failure rates during six years of operation. Lessons learned operating a system that continued to function beyond design expectations also are highlighted.

  5. General Engineers

    Energy Information Administration (EIA) (indexed site)

    General Engineers The U.S. Energy Information Administration (EIA) within the Department of Energy has forged a world-class information program that stresses quality, teamwork, and employee growth. In support of our program, we offer a variety of profes- sional positions, including the General Engineer, whose work is associated with analytical studies and evaluation projects pertaining to the operations of the energy industry. Responsibilities: General Engineers perform or participate in one or

  6. One System Integrated Project Team: Retrieval and Delivery of Hanford Tank Wastes for Vitrification in the Waste Treatment Plant - 13234

    SciTech Connect

    Harp, Benton J.; Kacich, Richard M.; Skwarek, Raymond J.

    2013-07-01

    The One System Integrated Project Team (IPT) was formed in late 2011 as a way for improving the efficiency of delivery and treatment of highly radioactive waste stored in underground tanks at the U.S. Department of Energy's (DOE's) 586-square-mile Hanford Site in southeastern Washington State. The purpose of the One System IPT is to improve coordination and integration between the Hanford's Waste Treatment Plant (WTP) contractor and the Tank Operations Contractor (TOC). The vision statement is: One System is a WTP and TOC safety-conscious team that, through integrated management and implementation of risk-informed decision and mission-based solutions, will enable the earliest start of safe and efficient treatment of Hanford's tank waste, to protect the Columbia River, environment and public. The IPT is a formal collaboration between Bechtel National, Inc. (BNI), which manages design and construction of the WTP for the U.S. Department of Energy's Office of River Protection (DOEORP), and Washington River Protection Solutions (WRPS), which manages the TOC for ORP. More than fifty-six (56) million gallons of highly radioactive liquid waste are stored in one hundred seventy-seven (177) aging, underground tanks. Most of Hanford's waste tanks - one hundred forty-nine (149) of them - are of an old single-shell tank (SST) design built between 1944 and 1964. More than sixty (60) of these tanks have leaked in the past, releasing an estimated one million gallons of waste into the soil and threatening the nearby Columbia River. There are another twenty-eight (28) new double-shelled tanks (DSTs), built from 1968 to 1986, that provide greater protection to the environment. In 1989, DOE, the U.S. Environmental Protection Agency (EPA), and the Washington State Department of Ecology (Ecology) signed a landmark agreement that required Hanford to comply with federal and state environmental standards. It also paved the way for agreements that set deadlines for retrieving the tank

  7. One System Integrated Project Team: Retrieval And Delivery Of The Hanford Tank Wastes For Vitrification In The Waste Treatment Plant

    SciTech Connect

    Harp, Benton J.; Kacich, Richard M.; Skwarek, Raymond J.

    2012-12-20

    The One System Integrated Project Team (IPT) was formed in late 2011 as a way for improving the efficiency of delivery and treatment of highly radioactive waste stored in underground tanks at the U.S. Department of Energy's (DOE's) 586-square-mile Hanford Site in southeastern Washington State. The purpose of the One System IPT is to improve coordination and integration between the Hanford's Waste Treatment Plant (WTP) contractor and the Tank Operations Contractor (TOC). The vision statement is: One System is a WTP and TOC safety conscious team that, through integrated management and implementation of risk-informed decision and mission-based solutions, will enable the earliest start of safe and efficient treatment of Hanford's tank waste, to protect the Columbia River, environment and public. The IPT is a formal collaboration between Bechtel National, Inc. (BNI), which manages design and construction of the WTP for the U.S. Department of Energy's Office of River Protection (DOEORP), and Washington River Protection Solutions (WRPS), which manages the TOC for ORP. More than fifty-six (56) million gallons of highly radioactive liquid waste are stored in one hundred seventy-seven (177) aging, underground tanks. Most of Hanford's waste tanks - one hundred forty-nine (149) of them - are of an old single-shell tank (SST) design built between 1944 and 1964. More than sixty (60) of these tanks have leaked in the past, releasing an estimated one million gallons of waste into the soil and threatening the nearby Columbia River. There are another twenty-eight (28) new double-shelled tanks (DSTs), built from 1968 to 1986, that provide greater protection to the environment. In 1989, DOE, the U.S. Environmental Protection Agency (EPA), and the Washington State Department of Ecology (Ecology) signed a landmark agreement that required Hanford to comply with federal and state environmental standards. It also paved the way for agreements that set deadlines for retrieving the tank

  8. A study of toxic emissions from a coal-fired power plant utilizing an ESP while demonstrating the ICCT CT-121 FGD Project. Final report

    SciTech Connect

    Not Available

    1994-06-16

    The US Department of Energy is performing comprehensive assessments of toxic emissions from eight selected coal-fired electric utility units. This program responds to the Clean Air Act Amendments of 1990, which require the US Environmental Protection Agency (EPA) to evaluate emissions of hazardous air pollutants (HAPs) from electric utility power plants for Potential health risks. The resulting data will be furnished to EPA utility power plants and health risk determinations. The assessment of emissions involves the collection and analysis of samples from the major input, process, and output streams of each of the eight power plants for selected hazardous Pollutants identified in Title III of the Clean Air Act. Additional goals are to determine the removal efficiencies of pollution control subsystems for these selected pollutants and the Concentrations associated with the particulate fraction of the flue gas stream as a function of particle size. Material balances are being performed for selected pollutants around the entire power plant and several subsystems to identify the fate of hazardous substances in each utility system. Radian Corporation was selected to perform a toxics assessment at a plant demonstrating an Innovative Clean Coal Technology (ICCT) Project. The site selected is Plant Yates Unit No. 1 of Georgia Power Company, which includes a Chiyoda Thoroughbred-121 demonstration project.

  9. Electric power generation expansion and integration, Micronesia (Yap, Kosrae, Pohnpei, Chuuk) power plants project. Export trade information

    SciTech Connect

    Not Available

    1990-12-01

    The State of Yap in the Federated States of Micronesia is now entirely dependent on oil for electric power generation. The present high costs and limited capacity for electric power generation are major disincentives to the economic development of Yap. Preliminary proposals from two U.S. companies regarding waste-to-energy plants might furnish electricity to Yap below present costs. Yap and its sister state of Kosrae have agreed to jointly seek a grant from the U.S. Trade and Development Program (TDP) to cover three areas: An assessment of projected power generating requirements; A review of generating alternatives with emphasis on waste to energy generation; and An environmental analysis of the waste to energy alternatives. The government in Yap has two objectives: reduce the amount of money spent for diesel fuel now and in the future and make sufficient electricity available at a reasonable price to attract development for the economy of Yap. Officials on both Pohnpei and Kosrae echoed these objectives.

  10. Management and integration of engineering and construction activities: Lessons learned from the AP1000{sup R} nuclear power plant China project

    SciTech Connect

    McCullough, M. C.; Ebeling-Koning, D.; Evans, M. C.

    2012-07-01

    The lessons learned during the early phase of design engineering and construction activities for the AP1000 China Project can be applied to any project involving multiple disciplines and multiple organizations. Implementation of a first-of-a-kind design to directly support construction activities utilizing resources assigned to design development and design delivery creates challenges with prioritization of activities, successful closure of issues, and communication between site organizations and the home office. To ensure successful implementation, teams were assigned and developed to directly support construction activities including prioritization of activities, site communication and ensuring closure of site emergent issues. By developing these teams, the organization is better suited to meet the demands of the construction schedule while continuing with design evolution of a standard plant and engineering delivery for multiple projects. For a successful project, proper resource utilization and prioritization are key for overcoming obstacles and ensuring success of the engineering organization. (authors)

  11. American Recovery and Reinvestment Act (ARRA) FEMP Technical Assistance US General Serices Administration - Project 193, John W. Bricker Federal Building, Columbus, OH

    SciTech Connect

    Arends, J.; Sandusky, William F.

    2010-05-31

    This report documents the findings from an onsite audit of the John W. Bricker Federal building located in Columbus, Ohio. The Federal landlord for this building is the General Services Administration (GSA). The focus of the audit was to identify various no-cost or low-cost energy efficiency opportunities that, once implemented, would either reduce electrical and gas consumption or increase the operational efficiency of the building. This audit also provided an opportunity to identify potential capital cost projects that should be considered in the future to acquire additional energy (electric and gas) and water savings to further increase the operational efficiency of the building.

  12. American Recovery and Reinvestment Act ( ARRA) FEMP Technical Assistance, U.S. General Services Administration - Project 194 U.S. Custom Cargo Inspection Facility, Detroit, MI

    SciTech Connect

    Arends, J.; Sandusky, William F.

    2010-05-31

    This report documents the findings of an on-site audit of the U.S. Customs Cargo Inspection Facility (CIF) in Detroit, Michigan. The federal landlord for this building is the General Services Administration (GSA). The focus of the audit was to identify various no-cost or low-cost energy-efficiency opportunities that, once implemented, would reduce electrical and gas consumption and increase the operational efficiency of the building. This audit also provided an opportunity to identify potential capital cost projects that should be considered in the future to acquire additional energy (electric and gas) and water savings to further increase the operational efficiency of the building.

  13. & Immobilization Plant Project

    Office of Environmental Management (EM)

    Wind Events Wind Events Below is an industry calendar with meetings, conferences, and webinars of interest to the wind energy technology communities. AWEA Wind Energy Fall Symposium 2016 November 15, 2016 8:00AM CST to November 17, 2016 5:00PM CST AWEA Wind Energy Fall Symposium 2016 November 15, 2016 8:00AM MST to November 17, 2016 5:00PM MST Wind Wildlife Research Meeting XI November 29, 2016 8:00AM MST to December 2, 2016 5:00PM MST Tribal Renewable Energy Webinar: Energy and Economic Success

  14. Shippingport Station Decommissioning Project. Final project report

    SciTech Connect

    McKernan, M.L.

    1989-12-22

    The Shippingport Atomic Power Station was located on the Ohio River in Shippingport Borough (Beaver County), Pennsylvania, USA. The US Atomic Energy Commission (AEC) constructed the plant in the mid-1950s on a seven and half acre parcel of land leased from Duquesne Light Company (DLC). The purposes were to demonstrate and to develop Pressurized Water Recovery technology and to generate electricity. DLC operated the Shippingport plant under supervision of (the successor to AEC) the Department of Energy (DOE)-Naval Reactors (NR) until operations were terminated on October 1, 1982. NR concluded end-of-life testing and defueling in 1984 and transferred the Station`s responsibility to DOE Richland Operations Office (RL), Surplus Facility Management Program Office (SFMPO5) on September 5, 1984. SFMPO subsequently established the Shippingport Station Decommissioning Project and selected General Electric (GE) as the Decommissioning Operations Contractor. This report is intended to provide an overview of the Shippingport Station Decommissioning Project.

  15. Quality assurance project plan for the Chestnut Ridge Fly Ash Pond Stabilization Project at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect

    1996-07-01

    The Chestnut Ridge Fly Ash Pond Stabilization (CRFAPS) Project will stabilize a 19-m-high (62-ft-high) earthen embankment across Upper McCoy Branch situated along the southern slope of Chestnut Ridge. This task will be accomplished by raising the crest of the embankment, reinforcing the face of the embankment, removing trees from the face and top of the embankment, and repairing the emergency spillway. The primary responsibilities of the team members are: Lockheed Martin Energy Systems, Inc., (Energy Systems) will be responsible for project integration, technical support, Title 3 field support, environmental oversight, and quality assurance (QA) oversight of the project; Foster Wheeler Environmental Corporation (FWENC) will be responsible for design and home office Title 3 support; MK-Ferguson of Oak Ridge Company (MK-F) will be responsible for health and safety, construction, and procurement of construction materials. Each of the team members has a QA program approved by the US Department of Energy (DOE) Oak Ridge Operations. This project-specific QA project plan (QAPP), which is applicable to all project activities, identifies and integrates the specific QA requirements from the participant`s QA programs that are necessary for this project.

  16. Geothermal power plant R and D: an analysis of cost-performance tradeoffs and the Heber Binary-Cycle Demonstration Project

    SciTech Connect

    Cassel, T.A.V.; Amundsen, C.B.; Blair, P.D.

    1983-06-30

    A study of advancements in power plant designs for use at geothermal resources in the low to moderate (300 to 400F) temperature range is reported. In 3 case studies, the benefits of R and D to achieve these advancements are evaluated in terms of expected increases in installed geothermal generating capacity over the next 2 decades. A parametric sensitivity study is discussed which analyzes differential power development for combinations of power plant efficiency and capitol cost. Affordable tradeoffs between plant performance and capital costs are illustrated. The independent review and analysis of the expected costs of construction, operation and maintenance of the Heber Binary Cycle Geothermal Power Demonstration Plant are described. Included in this assessment is an analysis of each of the major cost components of the project, including (1) construction cost, (2) well field development costs, (3) fluid purchase costs, and (4) well field and power plant operation and maintenance costs. The total cost of power generated from the Heber Plant (in terms of mills per kWh) is then compared to the cost of power from alternative fossil-fueled base load units. Also evaluated are the provisions of both: (a) the Cooperative Agreement between the federal government and San Diego Gas and Electric (SDG and E); and (b) the Geothermal Heat Sales Contract with Union Oil Company.

  17. The EB factory project. I. A fast, neural-net-based, general purpose light curve classifier optimized for eclipsing binaries

    SciTech Connect

    Paegert, Martin; Stassun, Keivan G.; Burger, Dan M.

    2014-08-01

    We describe a new neural-net-based light curve classifier and provide it with documentation as a ready-to-use tool for the community. While optimized for identification and classification of eclipsing binary stars, the classifier is general purpose, and has been developed for speed in the context of upcoming massive surveys such as the Large Synoptic Survey Telescope. A challenge for classifiers in the context of neural-net training and massive data sets is to minimize the number of parameters required to describe each light curve. We show that a simple and fast geometric representation that encodes the overall light curve shape, together with a chi-square parameter to capture higher-order morphology information results in efficient yet robust light curve classification, especially for eclipsing binaries. Testing the classifier on the ASAS light curve database, we achieve a retrieval rate of 98% and a false-positive rate of 2% for eclipsing binaries. We achieve similarly high retrieval rates for most other periodic variable-star classes, including RR Lyrae, Mira, and delta Scuti. However, the classifier currently has difficulty discriminating between different sub-classes of eclipsing binaries, and suffers a relatively low (∼60%) retrieval rate for multi-mode delta Cepheid stars. We find that it is imperative to train the classifier's neural network with exemplars that include the full range of light curve quality to which the classifier will be expected to perform; the classifier performs well on noisy light curves only when trained with noisy exemplars. The classifier source code, ancillary programs, a trained neural net, and a guide for use, are provided.

  18. Submission of Notice of Termination of Coverage Under the National Pollutant Discharge Elimination System General Permit No. CAS000002 for WDID No. 201C349114, Lawrence Livermore National Laboratory Ignition Facility Construction Project

    SciTech Connect

    Brunckhorst, K

    2009-04-21

    This is the completed Notice of Termination of Coverage under the General Permit for Storm Water Discharges Associated with Construction Activity. Construction activities at the National Ignition Facility Construction Project at Lawrence Livermore National Laboratory are now complete. The Notice of Termination includes photographs of the completed construction project and a vicinity map.

  19. Shippingport Station Decommissioning Project

    SciTech Connect

    McKernan, M.L.

    1989-12-22

    The Shippingport Atomic Power Station was located on the Ohio River in Shippingport Borough (Beaver County), Pennsylvania, USA. The US Atomic Energy Commission (AEC) constructed the plant in the mid-1950s on a seven and half acre parcel of land leased from Duquesne Light Company (DLC). The purposes were to demonstrate and to develop Pressurized Water Recovery technology and to generate electricity. DLC operated the Shippingport plant under supervision of (the successor to AEC) the Department of Energy (DOE)-Naval Reactors (NR) until operations were terminated on October 1, 1982. NR concluded end-of-life testing and defueling in 1984 and transferred the Station's responsibility to DOE Richland Operations Office (RL), Surplus Facility Management Program Office (SFMPO5) on September 5, 1984. SFMPO subsequently established the Shippingport Station Decommissioning Project and selected General Electric (GE) as the Decommissioning Operations Contractor. This report is intended to provide an overview of the Shippingport Station Decommissioning Project.

  20. EIS-0400: Granby Pumping Plant Switchyard-Windy Gap Substation Transmission Line Rebuild Project, Grand County, CO

    Energy.gov [DOE]

    Western Area Power Administration prepared an EIS, with the U.S. Forest Service, Bureau of Land Management, and Grand County (Colorado) as cooperating agencies, to evaluate the potential environmental impacts of rebuilding a 12-mile, 69 kV electric transmission line in Grand County. The proposed project would rebuild the single-circuit line as a double-circuit transmission line and add a second power transformer. Western identified potentially significant impacts while preparing an EA for this proposal (DOE/EA-1520) and prepared an EIS instead of completing the EA. Further information about the project is available on the project website.

  1. School science project 'demystifies' Portsmouth Gaseous Diffusion...

    Office of Environmental Management (EM)

    School science project 'demystifies' Portsmouth Gaseous Diffusion Plant Site School science project 'demystifies' Portsmouth Gaseous Diffusion Plant Site June 2, 2015 - 10:40am ...

  2. INL Wind Farm Project Description Document

    SciTech Connect

    Gary Siefert

    2009-07-01

    The INL Wind Farm project proposes to install a 20 MW to 40 MW wind farm on government property, consisting of approximately ten to twenty full-sized (80-meter hub height) towers with 2 MW turbines, and access roads. This includes identifying the optimal turbine locations, building access roads, and pouring the tower foundations in preparation for turbine installation. The project successfully identified a location on INL lands with commercially viable wind resources (i.e., greater than 11 mph sustained winds) for a 20 to 40 MW wind farm. Additionally, the proposed Wind Farm was evaluated against other General Plant Projects, General Purpose Capital Equipment projects, and Line Item Construction Projects at the INL to show the relative importance of the proposed Wind Farm project.

  3. Breckinridge Project, initial effort

    SciTech Connect

    None, None

    1982-09-01

    Report III, Volume 1 contains those specifications numbered A through J, as follows: General Specifications (A); Specifications for Pressure Vessels (C); Specifications for Tanks (D); Specifications for Exchangers (E); Specifications for Fired Heaters (F); Specifications for Pumps and Drivers (G); and Specifications for Instrumentation (J). The standard specifications of Bechtel Petroleum Incorporated have been amended as necessary to reflect the specific requirements of the Breckinridge Project, and the more stringent specifications of Ashland Synthetic Fuels, Inc. These standard specifications are available to the Initial Effort (Phase Zero) work performed by all contractors and subcontractors. Report III, Volume 1 also contains the unique specifications prepared for Plants 8, 15, and 27. These specifications will be substantially reviewed during Phase I of the project, and modified as necessary for use during the engineering, procurement, and construction of this project.

  4. Enterprise Assessments Review of the Hanford Site Waste Treatment and Immobilization Plant Project Engineering Processes … October 2015

    Office of Environmental Management (EM)

    Office of Enterprise Assessments Review of the Hanford Site Waste Treatment and Immobilization Plant Construction Quality June 2015 Office of Nuclear Safety and Environmental Assessments Office of Environment, Safety and Health Assessments Office of Enterprise Assessments U.S. Department of Energy i Table of Contents Acronyms ...................................................................................................................................................... ii Executive Summary

  5. High Level Waste Tank Farm Replacement Project for the Idaho Chemical Processing Plant at the Idaho National Engineering Laboratory. Environmental Assessment

    SciTech Connect

    Not Available

    1993-06-01

    The Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0831, for the construction and operation of the High-Level Waste Tank Farm Replacement (HLWTFR) Project for the Idaho Chemical Processing Plant located at the Idaho National Engineering Laboratory (INEL). The HLWTFR Project as originally proposed by the DOE and as analyzed in this EA included: (1) replacement of five high-level liquid waste storage tanks with four new tanks and (2) the upgrading of existing tank relief piping and high-level liquid waste transfer systems. As a result of the April 1992 decision to discontinue the reprocessing of spent nuclear fuel at INEL, DOE believes that it is unlikely that the tank replacement aspect of the project will be needed in the near term. Therefore, DOE is not proposing to proceed with the replacement of the tanks as described in this-EA. The DOE`s instant decision involves only the proposed upgrades aspect of the project described in this EA. The upgrades are needed to comply with Resource Conservation and Recovery Act, the Idaho Hazardous Waste Management Act requirements, and the Department`s obligations pursuant to the Federal Facilities Compliance Agreement and Consent Order among the Environmental Protection Agency, DOE, and the State of Idaho. The environmental impacts of the proposed upgrades are adequately covered and are bounded by the analysis in this EA. If DOE later proposes to proceed with the tank replacement aspect of the project as described in the EA or as modified, it will undertake appropriate further review pursuant to the National Environmental Policy Act.

  6. Manhattan Project: Maps

    Office of Scientific and Technical Information (OSTI)

    Scroll down to view thumbnails of each map. Leslie Groves looks at a map of Japan. Manhattan Project: General Manhattan Project Facilities Places map "Signature Facilities of the ...

  7. Investigation of an integrated switchgrass gasification/fuel cell power plant. Final report for Phase 1 of the Chariton Valley Biomass Power Project

    SciTech Connect

    Brown, R.C.; Smeenk, J.; Steinfeld, G.

    1998-09-30

    The Chariton Valley Biomass Power Project, sponsored by the US Department of Energy Biomass Power Program, has the goal of converting switchgrass grown on marginal farmland in southern Iowa into electric power. Two energy conversion options are under evaluation: co-firing switchgrass with coal in an existing utility boiler and gasification of switchgrass for use in a carbonate fuel cell. This paper describes the second option under investigation. The gasification study includes both experimental testing in a pilot-scale gasifier and computer simulation of carbonate fuel cell performance when operated on gas derived from switchgrass. Options for comprehensive system integration between a carbonate fuel cell and the gasification system are being evaluated. Use of waste heat from the carbonate fuel cell to maximize overall integrated plant efficiency is being examined. Existing fuel cell power plant design elements will be used, as appropriate, in the integration of the gasifier and fuel cell power plant to minimize cost complexity and risk. The gasification experiments are being performed by Iowa State University and the fuel cell evaluations are being performed by Energy Research Corporation.

  8. Tri-State Synfuels Project Review: Volume 8. Commercial status of licensed process units. [Proposed Henderson, Kentucky coal to gasoline plant; licensed commercial processes

    SciTech Connect

    Not Available

    1982-06-01

    This document demonstrates the commercial status of the process units to be used in the Tri-State Synfuels Project at Henderson, Kentucky. The basic design philosophy as established in October, 1979, was to use the commercial SASOL II/III plants as a basis. This was changed in January 1982 to a plant configuration to produce gasoline via a methanol and methanol to gasoline process. To accomplish this change the Synthol, Oil workup and Chemical Workup Units were eliminated and replaced by Methanol Synthesis and Methanol to Gasoline Units. Certain other changes to optimize the Lurgi liquids processing eliminated the Tar Distillation and Naphtha Hydrotreater Units which were replaced by the Partial Oxidation Unit. The coals to be gasified are moderately caking which necessitates the installation of stirring mechanism in the Lurgi Dry Bottom gasifier. This work is in the demonstration phase. Process licenses either have been obtained or must be obtained for a number of processes to be used in the plant. The commercial nature of these processes is discussed in detail in the tabbed sections of this document. In many cases there is a list of commercial installations at which the licensed equipment is used.

  9. Niland development project geothermal loan guaranty: 49-MW (net) power plant and geothermal well field development, Imperial County, California: Environmental assessment

    SciTech Connect

    Not Available

    1984-10-01

    The proposed federal action addressed by this environmental assessment is the authorization of disbursements under a loan guaranteed by the US Department of Energy for the Niland Geothermal Energy Program. The disbursements will partially finance the development of a geothermal well field in the Imperial Valley of California to supply a 25-MW(e) (net) power plant. Phase I of the project is the production of 25 MW(e) (net) of power; the full rate of 49 MW (net) would be achieved during Phase II. The project is located on approximately 1600 acres (648 ha) near the city of Niland in Imperial County, California. Well field development includes the initial drilling of 8 production wells for Phase I, 8 production wells for Phase II, and the possible need for as many as 16 replacement wells over the anticipated 30-year life of the facility. Activities associated with the power plant in addition to operation are excavation and construction of the facility and associated systems (such as cooling towers). Significant environmental impacts, as defined in Council on Environmental Quality regulation 40 CFR Part 1508.27, are not expected to occur as a result of this project. Minor impacts could include the following: local degradation of ambient air quality due to particulate and/or hydrogen sulfide emissions, temporarily increased ambient noise levels due to drilling and construction activities, and increased traffic. Impacts could be significant in the event of a major spill of geothermal fluid, which could contaminate groundwater and surface waters and alter or eliminate nearby habitat. Careful land use planning and engineering design, implementation of mitigation measures for pollution control, and design and implementation of an environmental monitoring program that can provide an early indication of potential problems should ensure that impacts, except for certain accidents, will be minimized.

  10. Acceptance test procedure bldg. 271-U remote monitoring of project W-059 B-Plant canyon exhaust system

    SciTech Connect

    MCDANIEL, K.S.

    1999-09-01

    The test procedure provides for verifying indications and alarms The test procedure provides for verifying indications and alarms associated with the B Plant Canyon Ventilation System as they are being displayed on a remote monitoring workstation located in building 271-U. The system application software was installed by PLCS Plus under contract from B&W Hanford Company. The application software was installed on an existing operator workstation in building 271U which is owned and operated by Bechtel Hanford Inc.

  11. MHK Projects/TWEC Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Project Phase Phase 1 Project Details Based on a 2003 ENI, SEV and Wavegen feasibility study of a wave power plant installation in the Faroe Islands ('Feasibility study...

  12. T Plant, Chemical Separation Building | Department of Energy

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Manhattan Project Signature Facilities T Plant, Chemical Separation Building T Plant, Chemical Separation Building Photos of T-plant's construction and T-Plant's Chemical ...

  13. Characterizing toxic emissions from a coal-fired power plant demonstrating the AFGD ICCT Project and a plant utilizing a dry scrubber/baghouse system: Bailly Station Units 7 and 8 and AFGD ICCT Project. Final report. Final report

    SciTech Connect

    Dismukes, E.B.

    1994-10-20

    This report describes results of assessment of the risk of emissions of hazardous air pollutants at one of the electric power stations, Bailly Station, which is also the site of a Clean Coal Technology project demonstrating the Pure Air Advanced Flue Gas Desulfurization process (wet limestone). This station represents the configuration of no NO{sub x} reduction, particulate control with electrostatic precipitators, and SO{sub 2} control with a wet scrubber. The test was conducted September 3--6, 1993. Sixteen trace metals were determined along with 5 major metals. Other inorganic substances and organic compounds were also determined.

  14. Preliminary performance assessment for the Waste Isolation Pilot Plant, December 1992. Volume 3, Model parameters: Sandia WIPP Project

    SciTech Connect

    Not Available

    1992-12-29

    This volume documents model parameters chosen as of July 1992 that were used by the Performance Assessment Department of Sandia National Laboratories in its 1992 preliminary performance assessment of the Waste Isolation Pilot Plant (WIPP). Ranges and distributions for about 300 modeling parameters in the current secondary data base are presented in tables for the geologic and engineered barriers, global materials (e.g., fluid properties), and agents that act upon the WIPP disposal system such as climate variability and human-intrusion boreholes. The 49 parameters sampled in the 1992 Preliminary Performance Assessment are given special emphasis with tables and graphics that provide insight and sources of data for each parameter.

  15. SC Johnson Waxdale Plant

    SciTech Connect

    2010-01-01

    This is a combined heat and power (CHP) project profile on a 6.4 MW CHP application at SC Johnson Waxdale Plant in Racine, Wisconsin.

  16. Okeanskaya Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Okeanskaya Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Okeanskaya Geothermal Power Plant General Information Name Okeanskaya Geothermal...

  17. Pauzhetskaya Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Pauzhetskaya Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Pauzhetskaya Geothermal Power Plant General Information Name Pauzhetskaya...

  18. Nucla CFB Demonstration Project

    SciTech Connect

    Not Available

    1990-12-01

    This report documents Colorado-Ute Electric Association's Nucla Circulating Atmospheric Fluidized-Bed Combustion (AFBC) demonstration project. It describes the plant equipment and system design for the first US utility-size circulating AFBC boiler and its support systems. Included are equipment and system descriptions, design/background information and appendices with an equipment list and selected information plus process flow and instrumentation drawings. The purpose of this report is to share the information gathered during the Nucla circulating AFBC demonstration project and present it so that the general public can evaluate the technical feasibility and cost effectiveness of replacing pulverized or stoker-fired boiler units with circulating fluidized-bed boiler units. (VC)

  19. Geothermal Steam Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Geothermal Steam Power Plant (Redirected from Dry Steam) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home General List of Dry Steam Plants List of Flash Steam Plants...

  20. Eburru Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Eburru Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Eburru Geothermal Power Plant General Information Name Eburru Geothermal Power Plant...

  1. Ndunga Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Ndunga Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Ndunga Geothermal Power Plant General Information Name Ndunga Geothermal Power Plant...

  2. Irem Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Irem Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Irem Geothermal Power Plant General Information Name Irem Geothermal Power Plant Facility...

  3. Tuzla Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Tuzla Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Tuzla Geothermal Power Plant General Information Name Tuzla Geothermal Power Plant...

  4. Sibayak Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Sibayak Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Sibayak Geothermal Power Plant General Information Name Sibayak Geothermal Power Plant...

  5. Healthcare Energy: Spotlight on Chiller Plants | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Chiller Plants Healthcare Energy: Spotlight on Chiller Plants The Building Technologies Office conducted a healthcare energy end-use monitoring project in partnership with two hospitals. See below for a few highlights from monitoring chiller plant energy. Image of a chiller plant. Chiller Energy Annual site energy use intensities (EUIs) for chiller energy were estimated to be 27.7 kBtu/ft2-yr for the the Massachusetts General Hospital (MGH) Gray Building and 26.8 kBtu/ft2-yr for the State

  6. Safety Improvements, Project Progress at Hanford Site's Plutonium...

    Office of Environmental Management (EM)

    Safety Improvements, Project Progress at Hanford Site's Plutonium Finishing Plant Safety Improvements, Project Progress at Hanford Site's Plutonium Finishing Plant May 16, 2016 - ...

  7. Salton Sea Power Plant Recognized as Most Innovative Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Salton Sea Power Plant Recognized as Most Innovative Geothermal Project Salton Sea Power Plant Recognized as Most Innovative Geothermal Project February 10, 2013 - 3:32pm Addthis ...

  8. Lake Charles CCS Project

    SciTech Connect

    Leib, Thomas; Cole, Dan

    2015-06-30

    In late September 2014 development of the Lake Charles Clean Energy (LCCE) Plant was abandoned resulting in termination of Lake Charles Carbon Capture and Sequestration (CCS) Project which was a subset the LCCE Plant. As a result, the project was only funded through Phase 2A (Design) and did not enter Phase 2B (Construction) or Phase 2C (Operations). This report was prepared relying on information prepared and provided by engineering companies which were engaged by Leucadia Energy, LLC to prepare or review Front End Engineering and Design (FEED) for the Lake Charles Clean Energy Project, which includes the Carbon Capture and Sequestration (CCS) Project in Lake Charles, Louisiana. The Lake Charles Carbon Capture and Sequestration (CCS) Project was to be a large-scale industrial CCS project intended to demonstrate advanced technologies that capture and sequester carbon dioxide (CO2) emissions from industrial sources into underground formations. The Scope of work was divided into two discrete sections; 1) Capture and Compression prepared by the Recipient Leucadia Energy, LLC, and 2) Transport and Sequestration prepared by sub-Recipient Denbury Onshore, LLC. Capture and Compression-The Lake Charles CCS Project Final Technical Report describes the systems and equipment that would be necessary to capture CO2 generated in a large industrial gasification process and sequester the CO2 into underground formations. The purpose of each system is defined along with a description of its equipment and operation. Criteria for selection of major equipment are provided and ancillary utilities necessary for safe and reliable operation in compliance with environmental regulations are described. Construction considerations are described including a general arrangement of the CCS process units within the overall gasification project. A cost estimate is provided, delineated by system area with cost breakdown showing equipment, piping and materials

  9. Yacyreta hydroelectric project contract signed

    SciTech Connect

    Not Available

    1987-09-01

    On June 26, 1987 the $270 million contract for the supply of 20 large hydraulic turbines for the Yacyreta Hydroelectric Project was signed by the Entidad Binacional Yacyreta, (a binational agency created by the governments of Argentina and Paraguay for the development of Yacyreta), and by Voith Hydro, Inc., of York, Pennsylvania, and Canadian General Electric of Montreal, Canada. Under the terms of the contract, 9 turbine units will be supplied by Voith Hydro, Inc. from its York, Pennsylvania plant, 4 units by Canadian General Electric of Montreal, and 7 units by Metanac, a consortium of Argentine manufacturers, who will utilize technology and technical assistance from Voith and CGE. The Yacyreta Project is being built on the Parana River on the border between Argentina and Paraguay. Construction at the site commenced in late 1983. Voith's portion of this contrast represents approximately $130 million dollars worth of business for its York, Pennsylvania facility.

  10. WIPP Project Records Management Handbook

    SciTech Connect

    Not Available

    1991-01-01

    The Waste Isolation Pilot Plant (WIPP) Records Management Handbook provides the WIPP Project Records Management personnel with a tool to use to fulfill the requirements of the WIPP Records Program and direct their actions in the important area of records management. The handbook describes the various project areas involved in records management, and how they function. The handbook provides the requirements for Record Coordinators and Master Record Center (MRC) personnel to follow in the normal course of file management, records scheduling, records turnover, records disposition, and records retrieval. More importantly, the handbook provides a single reference which encompasses the procedures set fourth in DOE Order 1324.2A, Records Disposition'' ASME NQA-1, Quality Assurance Program Requirements for Nuclear Facilities'' and DOE-AL 5700.6B, General Operations Quality Assurance.'' These documents dictate how an efficient system of records management will be achieved on the WIPP Project.

  11. Project Development and Finance | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Development and Finance Project Development and Finance Below are general resources for Tribes on energy project development and finance. Find additional resources on project ...

  12. DEMO Project Goals | National Nuclear Security Administration...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    DEMO Project Goals The goals of this demonstration project are to Improve hiring by ... The demonstration project will modify the General Schedule (GS) classification and pay ...

  13. General Information

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    information General Information JLF Contacts Request a Tour

  14. Concentrating Solar Power Projects by Project Name | Concentrating Solar

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Power | NREL Project Name In this section, you can select a concentrating solar power (CSP) project from the alphabetical listing of project names below. You can then review a profile covering project basics, participating organizations, and power plant configuration data for the solar field, power block, and thermal energy storage. Abhijeet Solar Project ACME Solar Tower Agua Prieta II Airlight Energy Ait-Baha Pilot Plant Alba Nova 1 Andasol-1 (AS-1) Andasol-2 (AS-2) Andasol-3 (AS-3)

  15. Furong Hydropower Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Furong Hydropower Plant Jump to: navigation, search Name: Furong Hydropower Plant Place: Shaanxi Province, China Zip: 725400 Sector: Hydro Product: China-based small hydro project...

  16. The New World of Human Genetics: A dialogue between Practitioners & the General Public on Ethical, Legal & Social Implications of the Human Genome Project

    SciTech Connect

    Schofield, Amy

    2014-12-08

    The history and reasons for launching the Human Genome project and the current uses of genetic human material; Identifying and discussing the major issues stemming directly from genetic research and therapy-including genetic discrimination, medical/ person privacy, allocation of government resources and individual finances, and the effect on the way in which we perceive the value of human life; Discussing the sometimes hidden ethical, social and legislative implications of genetic research and therapy such as informed consent, screening and preservation of genetic materials, efficacy of medical procedures, the role of the government, and equal access to medical coverage.

  17. General Building Spa | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Spa Jump to: navigation, search Name: General Building Spa Place: Polverigi - Ancona, Italy Zip: 60020 Product: Ancona based developer of PV projects. References: General Building...

  18. Property:ProjectType | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    (previous 25) (next 25) A Akutan Geothermal Project + Hydrothermal Systems + Alasehir Geothermal Power Plant + GeothermalExploration + Alligator Geothermal Geothermal Project...

  19. Annual radiological environmental operating report: Browns Ferry Nuclear Plant, 1992. Operations Services/Technical Programs

    SciTech Connect

    Not Available

    1993-04-01

    This report describes the environmental radiological monitoring program conducted by TVA in the vicinity of Browns Ferry Nuclear Plant (BFN) in 1992. The program includes the collection of samples from the environment and the determination of the concentrations of radioactive materials in the samples. Samples are taken from stations in the general area of the plant and from areas not influenced by plant operations. Station locations are selected after careful consideration of the weather patterns and projected radiation doses to the various areas around the plant. Material sampled includes air, water, milk, foods, vegetation, soil, fish, sediment, and direct radiation levels. Results from stations near the plant are compared with concentrations from control stations and with preoperational measurements to determine potential impacts of plant operations. Small amounts of Co-60 and Cs-134 were found in sediment samples downstream from the plant. This activity in stream sediment would result in no measurable increase over background in the dose to the general public.

  20. American Recovery and Reinvestment Act (ARRA) FEMP Technical Assistance U.S. General Services Administration – Project 195 John Seiberling Federal Office Building and U.S. Courthouse, Akron, Ohio

    SciTech Connect

    Arends, J.; Sandusky, William F.

    2010-05-28

    This report documents the findings from an onsite audit of the John Seiberling Federal building located in Akron, Ohio. The Federal landlord for this building is the General Services Administration (GSA). The focus of the audit was to identify various no-cost or low-cost energy efficiency opportunities that, once implemented, would reduce in either electrical and gas consumption and increase the operational efficiency of the building. This audit also provided an opportunity to identify potential capital cost projects that should be considered in the to acquire additional energy (electric and gas) and water savings to further increase the operational efficiency of the building.

  1. PROJECT TASK STATEMENT

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Arizona State University 4 (PVRD) PROJECT PROFILE: Arizona State University 4 (PVRD) Project Name: Plant and Module Designs for Uniform and Reduced Operating Temperature Funding Opportunity: PVRD SunShot Subprogram: Photovoltaics Location: Tempe, AZ SunShot Award Amount: $899,316 Awardee Cost Share: $100,000 Project Investigator: Govindasamy Tamizhmani This project intends to identify and evaluate thermally conductive and radiative but electrically insulating backsheets, which can be used by the

  2. Department of Energy refurbish power supply/distribution system: Phase 2, Y-12 Plant, Oak Ridge. Project status report No. 40, December 1--31, 1994

    SciTech Connect

    1994-12-31

    A status report on the refurbishing of the power supply and distribution system for the Y-12 Plant is presented. A milestone schedule is included.

  3. Type B Accident Investigation of the July 12, 2007, Forklift and Pedestrian Accident at the Paducah Gaseous Diffusion Plant, Portsmouth/Paducah Project Office

    Energy.gov [DOE]

    On July 12, 2007, an employee at the Paducah Gaseous Diffusion Plant (PGDP) was walking alone during her scheduled lunch period.

  4. Columbia Boulevard Wastewater Treatment Plant

    SciTech Connect

    2005-08-01

    This is a combined heat and power (CHP) project profile on 320 kW fuel cell and microturbine power plants at Columbia Boulevard Wastewater Treatment Plant in Portland, Oregon.

  5. Recovery Act: Federspiel Controls (now Vigilent) and State of California Department of General Services Data Center Energy Efficient Cooling Control Demonstration. Final technical project report

    SciTech Connect

    Federspiel, Clifford; Evers, Myah

    2011-09-30

    Eight State of California data centers were equipped with an intelligent energy management system to evaluate the effectiveness, energy savings, dollar savings and benefits that arise when powerful artificial intelligence-based technology measures, monitors and actively controls cooling operations. Control software, wireless sensors and mesh networks were used at all sites. Most sites used variable frequency drives as well. The system dynamically adjusts temperature and airflow on the fly by analyzing real-time demands, thermal behavior and historical data collected on site. Taking into account the chaotic interrelationships of hundreds to thousands of variables in a data center, the system optimizes the temperature distribution across a facility while also intelligently balancing loads, outputs, and airflow. The overall project will provide a reduction in energy consumption of more than 2.3 million kWh each year, which translates to $240,000 saved and a reduction of 1.58 million pounds of carbon emissions. Across all sites, the cooling energy consumption was reduced by 41%. The average reduction in energy savings across all the sites that use VFDs is higher at 58%. Before this case study, all eight data centers ran the cooling fans at 100% capacity all of the time. Because of the new technology, cooling fans run at the optimum fan speed maintaining stable air equilibrium while also expending the least amount of electricity. With lower fan speeds, the life of the capital investment made on cooling equipment improves, and the cooling capacity of the data center increases. This case study depicts a rare technological feat: The same process and technology worked cost effectively in eight very different environments. The results show that savings were achieved in centers with diverse specifications for the sizes, ages and types of cooling equipment. The percentage of cooling energy reduction ranged from 19% to 78% while keeping temperatures substantially within the

  6. ORP Projects & Facilities - Hanford Site

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Facilities Office of River Protection About ORP ORP Projects & Facilities Tank Farms Waste Treatment & Immobilization Plant 222-S Laboratory 242-A Evaporator Newsroom Contracts &...

  7. Research Projects | The Ames Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Research Projects Analysis of Gas Turbine Thermal Performances Development of Virtual Power Plants High Density Sensor Network Development Virtual Advanced Power Training ...

  8. Plant Phenotype Characterization System

    SciTech Connect

    Daniel W McDonald; Ronald B Michaels

    2005-09-09

    This report is the final scientific report for the DOE Inventions and Innovations Project: Plant Phenotype Characterization System, DE-FG36-04GO14334. The period of performance was September 30, 2004 through July 15, 2005. The project objective is to demonstrate the viability of a new scientific instrument concept for the study of plant root systems. The root systems of plants are thought to be important in plant yield and thus important to DOE goals in renewable energy sources. The scientific study and understanding of plant root systems is hampered by the difficulty in observing root activity and the inadequacy of existing root study instrumentation options. We have demonstrated a high throughput, non-invasive, high resolution technique for visualizing plant root systems in-situ. Our approach is based upon low-energy x-ray radiography and the use of containers and substrates (artificial soil) which are virtually transparent to x-rays. The system allows us to germinate and grow plant specimens in our containers and substrates and to generate x-ray images of the developing root system over time. The same plant can be imaged at different times in its development. The system can be used for root studies in plant physiology, plant morphology, plant breeding, plant functional genomics and plant genotype screening.

  9. Hachijojima Geothermal Energy Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Hachijojima Geothermal Energy Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Hachijojima Geothermal Energy Power Plant General Information Name...

  10. GEOTHERMAL POWER GENERATION PLANT

    Energy.gov [DOE]

    Project objectives: Drilling a deep geothermal well on the Oregon Institute of Technology campus, Klamath Falls, OR. Constructing a geothermal power plant on the Oregon Institute of Technology campus.

  11. Property:ProjectTechnology | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Ocean +, MHK TechnologiesKensington + MHK ProjectsBW2 Tidal + MHK TechnologiesRED HAWK + MHK ProjectsBioSTREAM Pilot Plant + MHK TechnologiesbioSTREAM + MHK Projects...

  12. Project proposals on the creation of Russian-American joint enterprise for investigation, development and manufacture of power plants on the basis of solid oxide fuel cells

    SciTech Connect

    Smotrov, N.V.; Kleschev, Yu.N.

    1996-04-01

    This paper describes a proposal for a joint Russian-American enterprise for performing scientific investigations, development, and manufacture of fuel cell power plants on the basis of the solid oxide fuel cell. RASOFCo. Russian-American Solid Oxide Fuel Cells Company. RASOFCo will provide the series output of the electrochemical generator (ECG) of 1kW power, then of 5kW and 10kW as well as the development and the output of 10kW power plant with the subsequent output of a power plant of greater power. An ECG based on solid oxide fuel cells uses methane as a fuel. Predicted technical characteristics, market analysis, assessment of potential demands for power plants of low power for Tyumentransgas, participants of the joint enterprise and their founding contributions, strategy for manufacture and financing, and management of RASOFCo are discussed.

  13. Research Laboratories General Motors Corporation General Motors Technical Center

    Office of Legacy Management (LM)

    . MI. 1-q Research Laboratories General Motors Corporation General Motors Technical Center Warren, Michigan 48090 January 21, 1977 Occupational Health Standards Branch Office of Standards Development U. S. Nuclear Requlatory Commission Washington, D.C. 20555 Attention: Mr. Robert E. Alexander, Chief Dear Mr. Alexander: In 1974, General Motors Corporation acquired a manufacturing plant in Adrian, Michigan. On October 21, 1976, General Motors announced that work would begin immediately to prepare

  14. General Presentation Template

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Steve Pfaff August 8, 2013 Safety Culture Improvement: Past, Present, and Future PAST  DNFSB Recommendation 2011-1, June 9, 2011, Safety Culture at the Waste Treatment and Immobilization Plant  "The investigative record demonstrates that both the DOE and contractor project management behaviors reinforce a subculture at WTP that deters the timely reporting, acknowledgement, and ultimate resolution of technical safety concerns." 2 PAST  HSS Assessment of Nuclear Safety Culture

  15. Sundance Energy Project Final Environmental Impact Statement

    SciTech Connect

    N /A

    2001-06-29

    Sundance Energy LLC (Sundance) has applied to the Western Area Power Administration (Western) to interconnect a planned generator facility to Western's transmission system in the vicinity of Coolidge, Arizona. Western's proposed action is to enter into an interconnection and construction agreement with Sundance for the requested interconnection. The proposed interconnection would integrate the power generated by the Sundance Energy Project (Project) into the regional transmission grid and would allow Sundance to supply its power to the competitive electric wholesale market. The proposed Project would be built on private lands southwest of Coolidge. The proposed Project would be a ''peaking power plant project'' which means it would provide energy when it is needed during peak demand periods in the region. The proposed Project would also be a ''merchant plant'' which means it is not owned by a utility and there is currently no long-term commitment or obligation by any utility to purchase the energy generated by the power plant. Western, as a major transmission system owner, must generally provide access to its transmission system when requested by an eligible organization per existing policies, regulations and laws. The proposed Project would consist of the construction and operation of a generating facility; construction of a 14-mile pipeline to supply natural gas to the proposed Facility; a new 230-kV bay at an existing substation; a new double-circuit 230-kV transmission line; a new single-circuit 230-kV transmission line; an upgrade of a 115-kV line to 230-kV specifications; and an upgrade of an existing substation. Three alternatives would consist of different locations of the 230-kV transmission lines and would not involve upgrading the 115-kV line or the existing substation. The environmentally preferred alternative is Alternative 3, the power line routing that is furthest west.

  16. Management of Selected Advanced Research Projects Agency-Energy Projects

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Advanced Research Projects Agency-Energy Projects OAS-M-14-08 August 2014 U.S. Department of Energy Office of Inspector General Office of Audits and Inspections Department of Energy Washington, DC 20585 August 6, 2014 MEMORANDUM FOR THE ACTING DIRECTOR FOR ADVANCED RESEARCH PROJECTS AGENCY-ENERGY FROM: George W. Collard Assistant Inspector General for Audits Office of Inspector General SUBJECT: INFORMATION: Audit Report on "Management of Selected Advanced Research Projects Agency-Energy

  17. Lihir Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Lihir Geothermal Power Plant General Information Name Lihir Geothermal Power Plant Sector Geothermal energy Location Information Location Lihir Island, Papua New Guinea Coordinates...

  18. Rotokawa Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Power Plant General Information Name Rotokawa Geothermal Power Plant Sector Geothermal energy Location Information Location 14km NE of Taupo, Waikato, New Zealand Coordinates...

  19. Bjarnaflag Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Plant General Information Name Bjarnaflag Geothermal Power Plant Sector Geothermal energy Location Information Location Lake Myvatn, Iceland Coordinates 65.640833,...

  20. Energy Department Recognizes General Mills for Leadership and...

    Office of Environmental Management (EM)

    the nation's buildings and manufacturing plants, today the U.S. Department of Energy ... Through the Energy Department's Better Plants Challenge, General Mills has committed to 20 ...

  1. Coal handling, five years after PLC conversion, Centerior Energy, Avon Lake Generating Plant

    SciTech Connect

    Olix, G.J.; Vollweiler, F.D.

    1997-09-01

    From 1969 until 1991, Coal conveyors, splitters, and trippers at Avon Lake had been controlled by a General Electric static logic system. During the 1991 scheduled shutdown of the plant`s largest unit (640 MWatt Unit 9), the controls were replaced with a programmable logic controller (PLC) system. The conversion went smoothly, and the system has performed flawlessly. This paper will describe the overall project as well as the control system itself.

  2. Great Plains Coal Gasification Project:

    SciTech Connect

    Not Available

    1988-01-29

    This progress report on the Great Plains Coal Gasification Project discusses Lignite coal, natural gas, and by-products production as well as gas quality. A tabulation of raw material, product and energy consumption is provided for plant operations. Capital improvement projects and plant maintenance activities are detailed and summaries are provided for environmental, safety, medical, quality assurance, and qualtiy control activities.

  3. NRC review of Electric Power Research Institute`s advanced light water reactor utility requirements document. Passive plant designs, chapters 2-13, project number 669

    SciTech Connect

    Not Available

    1994-08-01

    The Electric Power Research Institute (EPRI) is preparing a compendium of technical requirements, referred to as the {open_quotes}Advanced Light Water Reactor [ALWR] Utility Requirements Document{close_quotes}, that is acceptable to the design of an ALWR power plant. When completed, this document is intended to be a comprehensive statement of utility requirements for the design, construction, and performance of an ALWR power plant for the 1990s and beyond. The Requirements Document consists of three volumes. Volume I, {open_quotes}ALWR Policy and Summary of Top-Tier Requirements{close_quotes}, is a management-level synopsis of the Requirements Document, including the design objectives and philosophy, the overall physical configuration and features of a future nuclear plant design, and the steps necessary to take the proposed ALWR design criteria beyond the conceptual design state to a completed, functioning power plant. Volume II consists of 13 chapters and contains utility design requirements for an evolutionary nuclear power plant [approximately 1350 megawatts-electric (MWe)]. Volume III contains utility design requirements for nuclear plants for which passive features will be used in their designs (approximately 600 MWe). In April 1992, the staff of the Office of Nuclear Reactor Regulation, U.S. Nuclear Regulatory Commission, issued Volume 1 and Volume 2 (Parts 1 and 2) of its safety evaluation report (SER) to document the results of its review of Volumes 1 and 2 of the Requirements Document. Volume 1, {open_quotes}NRC Review of Electric Power Research Institute`s Advanced Light Water Reactor Utility Requirements Document - Program Summary{close_quotes}, provided a discussion of the overall purpose and scope of the Requirements Document, the background of the staff`s review, the review approach used by the staff, and a summary of the policy and technical issues raised by the staff during its review.

  4. Microwave solidification project overview

    SciTech Connect

    Sprenger, G.

    1993-01-01

    The Rocky Flats Plant Microwave Solidification Project has application potential to the Mixed Waste Treatment Project and the The Mixed Waste Integrated Program. The technical areas being addressed include (1) waste destruction and stabilization; (2) final waste form; and (3) front-end waste handling and feed preparation. This document covers need for such a program; technology description; significance; regulatory requirements; and accomplishments to date. A list of significant reports published under this project is included.

  5. EARLY ENTRANCE COPRODUCTION PLANT

    SciTech Connect

    David Storm; Govanon Nongbri; Steve Decanio; Ming He; Lalit Shah; Charles Schrader; Earl Berry; Peter Ricci; Belma Demirel; Charles Benham; Mark Bohn

    2004-01-12

    The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which uses petroleum coke to produce at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using ChevronTexaco's proprietary gasification technology. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The partners in this project are Texaco Energy Systems LLC or TES (a subsidiary of ChevronTexaco), General Electric (GE), Praxair, and Kellogg Brown & Root (KBR) in addition to the U.S. Department of Energy (DOE). TES is providing gasification technology and Fischer-Tropsch (F-T) technology developed by Rentech, Inc., GE is providing combustion turbine technology, Praxair is providing air separation technology, and KBR is providing engineering. During Phase I, a design basis for the Fischer-Tropsch Synthesis section was developed based on limited experience with the specified feed gas and operating conditions. The objective of this Task in Phase II RD&T work was to confirm the performance of the F-T reactor at the set design conditions. Although much of the research, development, and testing work were done by TES outside of this project, several important

  6. Integrated Projects - Non-DOE Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Technology Validation » Integrated Projects » Integrated Projects - Non-DOE Projects Integrated Projects - Non-DOE Projects In addition to the integrated technology validation projects sponsored by DOE, universities, along with state and local government entities throughout the world are partnering with industry to demonstrate integrated hydrogen and fuel cell technologies in real-world applications. GM/DOW Chemical Partnership The first General Motors fuel cell trailer is in place at the Dow

  7. Sampling and analysis plan for the Bear Creek Valley Boneyard/Burnyard Accelerated Action Project, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect

    NONE

    1998-03-01

    In the Bear Creek Valley Watershed Remedial Investigation, the Boneyard/Burnyard was identified as the source of the largest releases of uranium into groundwater and surface water in Bear Creek Valley. The proposed action for remediation of this site is selective excavation and removal of source material and capping of the remainder of the site. The schedule for this action has been accelerated so that this is the first remedial action planned to be implemented in the Bear Creek Valley Record of Decision. Additional data needs to support design of the remedial action were identified at a data quality objectives meeting held for this project. Sampling at the Boneyard/Burnyard will be conducted through the use of a phased approach. Initial or primary samples will be used to make in-the-field decisions about where to locate follow-up or secondary samples. On the basis of the results of surface water, soil, and groundwater analysis, up to six test pits will be dug. The test pits will be used to provide detailed descriptions of source materials and bulk samples. This document sets forth the requirements and procedures to protect the personnel involved in this project. This document also contains the health and safety plan, quality assurance project plan, waste management plan, data management plan, implementation plan, and best management practices plan for this project as appendices.

  8. DFCI Gene Index Project: Interactive Data Maps for Plant, Animal, Protist, and Fungi Organisims from the Dana-Farber Cancer Institute

    DOE Data Explorer

    Funding for the Dana-Farber Cancer Institute (DFCI) Gene Index Project ended and the database was taken down in July of 2014. However, this record links you to the "tombstone" page where you will find FTP addresses for the software tools and the data created.

  9. Tidd PFBC demonstration project

    SciTech Connect

    Marrocco, M.

    1997-12-31

    The Tidd project was one of the first joint government-industry ventures to be approved by the US Department of Energy (DOE) in its Clean Coal Technology Program. In March 1987, DOE signed an agreement with the Ohio Power Company, a subsidiary of American Electric Power, to refurbish the then-idle Tidd plant on the banks of the Ohio River with advanced pressurized fluidized bed technology. Testing ended after 49 months of operation, 100 individual tests, and the generation of more than 500,000 megawatt-hours of electricity. The demonstration plant has met its objectives. The project showed that more than 95 percent of sulfur dioxide pollutants could be removed inside the advanced boiler using the advanced combustion technology, giving future power plants an attractive alternative to expensive, add-on scrubber technology. In addition to its sulfur removal effectiveness, the plant`s sustained periods of steady-state operation boosted its availability significantly above design projections, heightening confidence that pressurized fluidized bed technology will be a reliable, baseload technology for future power plants. The technology also controlled the release of nitrogen oxides to levels well below the allowable limits set by federal air quality standards. It also produced a dry waste product that is much easier to handle than wastes from conventional power plants and will likely have commercial value when produced by future power plants.

  10. EA-1849: Ormat Nevada Geothermal Projects in Northern NV | Department...

    Energy.gov [DOE] (indexed site)

    August 22, 2011 EA-1849: Final Environmental Assessment Tuscarora Geothermal Power Plant, ... Ormat Nevada Northern Nevada Geothermal Power Plant Projects: Loan Guarantee for ORMAT ...

  11. Work plan for support to Upper East Fork Poplar Creek east end VOC plumes well installation project at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect

    1998-03-01

    Under the Resource Conservation and Recovery Act of 1976 guidelines and requirements from the Tennessee Department of Environment and Conservation (TDEC), the Y-12 Plant initiated investigation and monitoring of various sites within its boundaries in the mid-1980s. The entire Oak Ridge Reservation (ORR) was placed on the National Priorities List of the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) sites in November 1989. Following CERCLA guidelines, sites within the ORR require a remedial investigation (RI) to define the nature and extent of contamination, evaluate the risks to public health and the environment, and determine the goals for a feasibility study (FS) or an engineering evaluation/cost analysis (EE/CA) of potential remedial actions. Data from monitoring wells at the east end of the Y-12 Plant have identified an area of groundwater contamination dominated by the volatile organic compound (VOC) carbon tetrachloride; other VOCs include chloroform, tetrachloroethene, and trichloroethene.

  12. General Engineer

    Energy.gov [DOE]

    This position is located in Office of Standard Contract Management, within the Office of the General Counsel (GC). The purpose of the position is to conduct technical and engineering reviews of the...

  13. DOE Science Showcase - Energy Plants of the Future | OSTI, US...

    Office of Scientific and Technical Information (OSTI)

    Energy Plants of the Future Advanced Integrated Gasification Combined Cycle Power Plants ... DOE-Sponsored IGCC Project in Texas Takes Important Step Forward, Fossil Energy Techline ...

  14. About Projects

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    DOE Projects MicroBooNE Project Web Pages The Project Pages hold information and links for the collaboration and its Project Managers, and also hold links to project Director's and ...

  15. Bagdad Plant

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Bagdad Plant 585 Silicon Drive Leechburg, P A 15656 * ATI Allegheny "'I Ludlum e-mail: Raymond.Polinski@ATImetals.com Mr. James Raba U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Building Technologies Program 1000 Independence Avenue SW Washington, DC 205585-0121 Raymond J. Polinski General Manager Grain-Oriented Electrical Steel RE: Distribution Transformers Rulemaking Docket Number EE-2010-STD-0048 RIN 1904-AC04 Submitted 4-10-12 via email Mr. Raba, I was

  16. Environmental Assessment and Finding of No Significant Impact: Wastewater Treatment Capability Upgrade, Project NO. 96-D-122 Pantex Plant Amarillo, Texas

    SciTech Connect

    N /A

    1999-05-27

    This Environmental Assessment (EA) addresses the U.S. Department of Energy (DOE) proposed action regarding an upgrade of the Pantex Plant Wastewater Treatment Facility (WWTF). Potential environmental consequences associated with the proposed action and alternative actions are provided. DOE proposes to design, build, and operate a new WWTF, consistent with the requirements of Title 30 of the Texas Administrative Code (TAC), Chapter 317, ''Design Criteria for Sewage Systems,'' capable of supporting current and future wastewater treatment requirements of the Plant. Wastewater treatment at Pantex must provide sufficient operational flexibility to meet Pantex Plant's anticipated future needs, including potential Plant mission changes, alternative effluent uses, and wastewater discharge permit requirements. Treated wastewater effluent and non-regulated water maybe used for irrigation on DOE-owned agricultural land. Five factors support the need for DOE action: (1) The current WWTF operation has the potential for inconsistent permit compliance. (2) The existing WWTF lies completely within the 100-year floodplain. (3) The Pantex Plant mission has the potential to change, requiring infrastructure changes to the facility. (4) The life expectancy of the existing facility would be nearing its end by the time a new facility is constructed. (5) The treated wastewater effluent and non-regulated water would have a beneficial agricultural use through irrigation. Evaluation during the internal scoping led to the conclusion that the following factors are present and of concern at the proposed action site on Pantex Plant: (1) Periodic wastewater effluent permit exceedances; (2) Wetlands protection and floodplain management; (3) Capability of the existing facility to meet anticipated future needs of Pantex (4) Existing facility design life; and (5) Use of treated wastewater effluent and non-regulated water for irrigation. Evaluation during the internal scoping led to the conclusion

  17. Next Generation Nuclear Plant Project Technology Development Roadmaps: The Technical Path Forward for 750–800°C Reactor Outlet Temperature

    SciTech Connect

    John Collins

    2009-08-01

    This document presents the NGNP Critical PASSCs and defines their technical maturation path through Technology Development Roadmaps (TDRMs) and their associated Technology Readiness Levels (TRLs). As the critical PASSCs advance through increasing levels of technical maturity, project risk is reduced and the likelihood of within-budget and on-schedule completion is enhanced. The current supplier-generated TRLs and TDRMs for a 750–800°C reactor outlet temperature (ROT) specific to each supplier are collected in Appendix A.

  18. Geothermal Outreach and Project Financing

    SciTech Connect

    Elizabeth Battocletti

    2006-04-06

    The ?Geothermal Outreach and Project Financing? project substantially added to the understanding of geothermal resources, technology, and small business development by both the general public as well as those in the geothermal community.

  19. Projects of the year

    SciTech Connect

    Hansen, T.

    2007-01-15

    The Peabody Hotel, Orlando, Florida was the site of Power Engineering magazine's 2006 Projects of the Year Awards Banquet, which kicked-off the Power-Gen International conference and exhibition. The Best Coal-fired Project was awarded to Tri-State Generation and Transmission Association Inc., owner of Springenville Unit 3. This is a 400 MW pulverized coal plant in Springeville, AZ, sited with two existing coal-fired units. Designed to fire Powder River Basin coal, it has low NOx burners and selective catalytic reduction for NOx control, dry flue gas desulfurization for SO{sub 2} control and a pulse jet baghouse for particulate control. It has a seven-stage feedwater heater and condensers to ensure maximum performance. Progress Energy-Carolinas' Asheville Power Station FGD and SCR Project was awarded the 2006 coal-fired Project Honorable Mention. This plant in Skyland, NC was required to significantly reduce NOx emissions. When completed, the improvements will reduce NOx by 93% compared to 1996 levels and SO{sub 2} by 93% compared to 2001 levels. Awards for best gas-fired, nuclear, and renewable/sustainable energy projects are recorded. The Sasyadko Coal-Mine Methane Cogeneration Plant near Donezk, Ukraine, was given the 2006 Honorable Mention for Best Renewable/Sustainable Energy Project. In November 2004, Ukraine was among 14 nations to launch the Methane to Markets partnership. The award-winning plant is fuelled by methane released during coal extraction. It generates 42 MW of power. 4 photos.

  20. Tampa Electric Company Polk Power Station IGCC Project -- Project status

    SciTech Connect

    Berry, T.E.

    1998-12-31

    The Tampa Electric Company Polk Power Station is a nominal 25 MW (net) Integrated Gasification Combined Cycle (IGCC) power plant located southeast of Tampa in Polk County, Florida. This project is being partially funded under the Department of Energy`s Clean Coal Technology Program pursuant to a Round III award. The Polk Power Station uses oxygen-blown, entrained-flow coal gasification technology licensed from Texaco Development Corporation in conjunction with a General Electric combined cycle with an advanced combustion turbine. This IGCC configuration demonstrates significant reductions of SO{sub 2} and NOx emissions when compared to existing and future conventional coal-fired power plants. The Polk Power Station achieved ``first fire`` of the gasification system on schedule in mid-July, 1996. It was placed into commercial operation on September 30, 1996. Since that time, significant advances have occurred in the operation of the entire IGCC train. The presentation features an up-to-the-minute update of actual performance parameters achieved by the Polk Power Station. These parameters include overall capacity, heat rate, and availability. Tests of four alternate feedstocks were conducted, and the resulting performance is compared to that achieved on their base coal. This paper also provides an update of the general operating experiences and shutdown causes of the gasification facility throughout 1997. Finally, the future plans for improving the reliability and efficiency of the Unit will be addressed, as well as plans for future additional alternate fuel test burns.

  1. Probability of pipe fracture in the primary coolant loop of a PWR plant. Volume 1. Summary, Load Combination Program. Project I final report

    SciTech Connect

    Lu, S.; Streit, R.D.; Chou, C.K.

    1981-06-01

    This report summarizes work performed to establish a technical basis for the NRC to use in reassessing its requirement that earthquake and large loss-of-coolant accident (LOCA) loads be combined in the design of nuclear power plants. A systematic probabilistic approach is used to treat the random nature of earthquake and transient loading and to estimate the probability of large LOCAs that are directly and indirectly induced by earthquakes. A large LOCA is defined in this report as a double-ended guillotine break of the primary reactor coolant loop piping (the hot leg, cold leg, and crossover) of a pressurized water reactor (PWR). Unit 1 of the Zion Nuclear Power Plant, a four-loop PWR, is the demonstration plant used in this study. To estimate the probability of a large LOCA directly induced by earthquakes, only fatigue crack growth resulting from the combined effects of thermal, pressure, seismic, and other cyclic loads is considered. Fatigue crack growth is simulated by a deterministic fracture mechanics model with stochastic inputs of initial crack size distribution, material properties, stress histories, and leak detection probability. Results of the simulation indicate that the probability of a double-ended guillotine break, either with or without earthquake, is very small (on the order of 10/sup -12/). The probability of a leak was found to be several orders of magnitude greater than that of a large LOCA, complete pipe rupture. A limited investigation involving engineering judgment of a double-ended guillotine break indirectly induced by an earthquake is also reported.

  2. WABASH RIVER COAL GASIFICATION REPOWERING PROJECT

    SciTech Connect

    Unknown

    2000-09-01

    The close of 1999 marked the completion of the Demonstration Period of the Wabash River Coal Gasification Repowering Project. This Final Report summarizes the engineering and construction phases and details the learning experiences from the first four years of commercial operation that made up the Demonstration Period under Department of Energy (DOE) Cooperative Agreement DE-FC21-92MC29310. This 262 MWe project is a joint venture of Global Energy Inc. (Global acquired Destec Energy's gasification assets from Dynegy in 1999) and PSI Energy, a part of Cinergy Corp. The Joint Venture was formed to participate in the Department of Energy's Clean Coal Technology (CCT) program and to demonstrate coal gasification repowering of an existing generating unit impacted by the Clean Air Act Amendments. The participants jointly developed, separately designed, constructed, own, and are now operating an integrated coal gasification combined-cycle power plant, using Global Energy's E-Gas{trademark} technology (E-Gas{trademark} is the name given to the former Destec technology developed by Dow, Destec, and Dynegy). The E-Gas{trademark} process is integrated with a new General Electric 7FA combustion turbine generator and a heat recovery steam generator in the repowering of a 1950's-vintage Westinghouse steam turbine generator using some pre-existing coal handling facilities, interconnections, and other auxiliaries. The gasification facility utilizes local high sulfur coals (up to 5.9% sulfur) and produces synthetic gas (syngas), sulfur and slag by-products. The Project has the distinction of being the largest single train coal gasification combined-cycle plant in the Western Hemisphere and is the cleanest coal-fired plant of any type in the world. The Project was the first of the CCT integrated gasification combined-cycle (IGCC) projects to achieve commercial operation.

  3. GENERAL ASSIGNMENT

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    GENERAL ASSIGNMENT KNOW ALL MEN BY THESE PRESENTS, that ___________________________________, a corporation organized and existing under the laws of the State of ________________________, with its principal place of business at ___________________________________, ___________________________________ has been engaged in performing work under Award Number DE-__________________________with the UNITED STATES OF AMERICA (hereinafter called the "Government"), represented by the UNITED STATES

  4. Energy Department Announces New Projects to Help Protect Wildlife...

    Energy Saver

    Projects to Help Protect Wildlife at Wind Energy Plants Energy Department Announces New Projects to Help Protect Wildlife at Wind Energy Plants April 14, 2015 - 1:08pm Addthis The ...

  5. Better Plants Pre-In-Plant Training Webinars | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Better Plants Pre-In-Plant Training Webinars Better Plants Pre-In-Plant Training Webinars Better Plants pre-In-Plant Training webinars on reducing energy in a variety of systems. Compressed Air, March 3, 2015: Frank Moskowitz (Draw Professional Services) Steam, January 7, 2015: Riyaz Papar (Hudston Technologies) Project Implementation and Replication, November 22, 2013: Fred Schoeneborn (FCS Consulting) More Documents & Publications Pre-In-Plant Training Webinar (Compressed Air):

  6. Industrial heat pump demonstration project

    SciTech Connect

    Not Available

    1988-09-01

    This booklet describes an industrial heat pump demonstration project conducted at a plant in Norwich, New York. The project required retrofitting an open-cycle heat pump to a single-effect, recirculating-type evaporator. The heat pump design uses an electrically driven centrifugal compressor to recover the latent heat of the water vapor generated by the evaporator. The compressed vapor is returned to the process, where it displaces the use of boiler steam. The goal was to reduce costs associated with operating the evaporator, which is used for reduction the water content of whey (a liquid by-product from cheese production). The retrofit equipment has now completed more than one year of successful operation. Heat pump coefficient of performance has been measured and is in the range of 14 to 18 under varying process conditions. Generalization of project results indicates that the demonstrated technology achieved attractive economics over a wide range of energy price assumptions, especially when the heat pump is applied to larger processes. 5 refs., 17 figs.

  7. Waste Treatment And Immobilization Plant U. S. Department Of Energy Office Of River Protection Submerged Bed Scrubber Condensate Disposition Project - Abstract # 13460

    SciTech Connect

    Yanochko, Ronald M; Corcoran, Connie

    2012-11-15

    The Hanford Waste Treatment and Immobilization Plant (WTP) will generate an off-gas treatment system secondary liquid waste stream [submerged bed scrubber (SBS) condensate], which is currently planned for recycle back to the WTP Low Activity Waste (LAW) melter. This SBS condensate waste stream is high in Tc-99, which is not efficiently captured in the vitrified glass matrix. A pre-conceptual engineering study was prepared in fiscal year 2012 to evaluate alternate flow paths for melter off-gas secondary liquid waste generated by the WTP LAW facility. This study evaluated alternatives for direct off-site disposal of this SBS without pre-treatment, which mitigates potential issues associated with recycling.

  8. The Microbiome Project: Probiotics | Argonne National Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    The Microbiome Project: Probiotics Share Topic Environment Biology Environmental biology Metagenomics Browse By - Any - General Argonne Information Energy -Energy efficiency ...

  9. Independent Oversight Assessment, Portsmouth/Paducah Project Office- May 2012

    Energy.gov [DOE]

    Assessment of the Portsmouth/Paducah Project Office Conduct of Operations Oversight of the Depleted Uranium Hexafluoride Conversion Plants

  10. Battleground Energy Recovery Project

    SciTech Connect

    Daniel Bullock

    2011-12-31

    In October 2009, the project partners began a 36-month effort to develop an innovative, commercial-scale demonstration project incorporating state-of-the-art waste heat recovery technology at Clean Harbors, Inc., a large hazardous waste incinerator site located in Deer Park, Texas. With financial support provided by the U.S. Department of Energy, the Battleground Energy Recovery Project was launched to advance waste heat recovery solutions into the hazardous waste incineration market, an area that has seen little adoption of heat recovery in the United States. The goal of the project was to accelerate the use of energy-efficient, waste heat recovery technology as an alternative means to produce steam for industrial processes. The project had three main engineering and business objectives: Prove Feasibility of Waste Heat Recovery Technology at a Hazardous Waste Incinerator Complex; Provide Low-cost Steam to a Major Polypropylene Plant Using Waste Heat; and ? Create a Showcase Waste Heat Recovery Demonstration Project.

  11. EARLY ENTRANCE COPRODUCTION PLANT

    SciTech Connect

    Fred D. Brent; Lalit Shah; Earl Berry; Charles H. Schrader; John Anderson; Ming He; James F. Stevens; Centha A. Davis; Michael Henley; Jerome Mayer; Harry Tsang; Jimell Erwin; Jennifer Adams; Michael Tillman; Chris Taylor; Marjan J. Roos; Robert F. Earhart

    2004-01-27

    The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which uses petroleum coke to produce at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using ChevronTexaco's proprietary gasification technology. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The partners in this project are Texaco Energy Systems LLC or TES (a subsidiary of ChevronTexaco), General Electric (GE), Praxair, and Kellogg Brown & Root (KBR) in addition to the U.S. Department of Energy (DOE). TES is providing gasification technology and Fischer-Tropsch (F-T) technology developed by Rentech, GE is providing combustion turbine technology, Praxair is providing air separation technology, and KBR is providing engineering. Each of the EECP subsystems was assessed for technical risks and barriers. A plan was developed to mitigate the identified risks (Phase II RD&T Plan, October 2000). The potential technical and economic risks to the EECP from Task 2.5 can be mitigated by demonstrating that the end-use products derived from the upgrading of the F-T synthesis total liquid product can meet or exceed current specifications for the manufacture

  12. ARM - Biomass Burning Observation Project (BBOP)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    March 2013 BNL BBOP Website Contacts Larry Kleinman, Lead Scientist Arthur Sedlacek Biomass Burning Observation Project (BBOP) Biomass Burning Plants, trees, grass, brush, and...

  13. PROJECT PROFILE: Brayton Energy | Department of Energy

    Energy.gov [DOE] (indexed site)

    The Brayton Energy project will integrate a solar power plant's absorber, energy storage system, and ... element, making the system ideal for modular implementation and growth. ...

  14. Waste Treatment and Immobilization Plant U. S. Department of Energy Office of River Protection Submerged Bed Scrubber Condensate Disposition Project - 13460

    SciTech Connect

    Yanochko, Ronald M. [Washington River Protection Solutions, P.O. Box 850, Richland, Washington 99352 (United States)] [Washington River Protection Solutions, P.O. Box 850, Richland, Washington 99352 (United States); Corcoran, Connie [AEM Consulting, LLC, 1201 Jadwin Avenue, Richland, Washington 99352 (United States)] [AEM Consulting, LLC, 1201 Jadwin Avenue, Richland, Washington 99352 (United States)

    2013-07-01

    The Hanford Waste Treatment and Immobilization Plant (WTP) will generate an off-gas treatment system secondary liquid waste stream [submerged bed scrubber (SBS) condensate], which is currently planned for recycle back to the WTP Low Activity Waste (LAW) melter. This SBS condensate waste stream is high in Tc-99, which is not efficiently captured in the vitrified glass matrix [1]. A pre-conceptual engineering study was prepared in fiscal year 2012 to evaluate alternate flow paths for melter off-gas secondary liquid waste generated by the WTP LAW facility [2]. This study evaluated alternatives for direct off-site disposal of this SBS without pre-treatment, which mitigates potential issues associated with recycling. This study [2] concluded that SBS direct disposal is a viable option to the WTP baseline. The results show: - Off-site transportation and disposal of the SBS condensate is achievable and cost effective. - Reduction of approximately 4,325 vitrified WTP Low Activity Waste canisters could be realized. - Positive WTP operational impacts; minimal WTP construction impacts are realized. - Reduction of mass flow from the LAW Facility to the Pretreatment Facility by 66%. - Improved Double Shell Tank (DST) space management is a benefit. (authors)

  15. Aquifer Characteristics Data Report for the Weldon Spring Site chemical plant/raffinate pits and vicinity properties for the Weldon Spring Site Remedial Action Project, Weldon Spring, Missouri

    SciTech Connect

    Not Available

    1990-11-01

    This report describes the procedures and methods used, and presents the results of physical testing performed, to characterize the hydraulic properties of the shallow Mississippian-Devonian aquifer beneath the Weldon Spring chemical plant, raffinate pits, and vicinity properties. The aquifer of concern is composed of saturated rocks of the Burlington-Keokuk Limestone which constitutes the upper portion of the Mississippian-Devonian aquifer. This aquifer is a heterogeneous anisotropic medium which can be described in terms of diffuse Darcian flow overlain by high porosity discrete flow zones and conduits. Average hydraulic conductivity for all wells tested is 9.6E-02 meters/day (3.1E-01 feet/day). High hydraulic conductivity values are representative of discrete flow in the fractured and weathered zones in the upper Burlington-Keokuk Limestone. They indicate heterogeneities within the Mississippian-Devonian aquifer. Aquifer heterogeneity in the horizontal plane is believed to be randomly distributed and is a function of fracture spacing, solution voids, and preglacial weathering phenomena. Relatively high hydraulic conductivities in deeper portions of the aquifer are though to be due to the presence of widely spaced fractures. 44 refs., 27 figs., 9 tabs.

  16. Probability of pipe fracture in the primary coolant loop of a PWR Plant. Volume 7. System failure probability analysis. Load Combination Program Project I final report

    SciTech Connect

    George, L.; Mensing, R.

    1981-06-01

    This volume describes the computational methodology used to estimate the probability of a simultaneous occurrence of an earthquake and a primary coolant loop pipe fracture caused directly by an earthquake for a pressurized water reactor. Point estimates of this probability, based on a simulation experiment, and the probabilities of related events are included. Simulation is used to estimate weld fracture probabilities conditional on a crack initially existing and an earthquake of specified intensity occurring at a specified time in the life of the plant. These estimates are combined with probabilities associated with the occurrence of an earthquake and the existence of a crack to obtain an estimate of the probability of simultaneous earthquake and pipe fracture for the entire primary coolant loop piping system. A point estimate of probability, as outlined in this volume, does not fully take into consideration all of the uncertainties associated with an analysis of this type. Uncertainty analysis, confidence interval estimates, and sensitivity measures better reflect potential uncertainties. These topics are discussed. Finally, a discussion of the use of a risk-based, rather than a probability-based, decision criterion for deciding whether to decouple is included. 13 refs., 7 figs., 6 tabs.

  17. New Nissan Paint Plant Achieves 30% Energy Savings

    Energy.gov [DOE]

    The new paint plant, which is Nissan North America’s showcase project under the Better Plants Challenge, is expected to be about 30% more efficient than the plant it is replacing.

  18. Indonesia project underway

    SciTech Connect

    Not Available

    1988-12-01

    Unocal Corporation has given the Indonesian Government notice of intent to proceed with a geothermal project to provide steam for a 110 megawatt electrical generating plant. The company has drilled 11 wells, and has confirmed reserves for more than 230 megawatts of generating capacity. Indonesia's state electric company, PLN, will build the power plant. Ansaldo, an Italian company, will supply equipment and manage the construction. With the notice of intent to proceed, Unocal Geothermal of Indonesia, Ltd. will begin drilling additional wells and build the field facilities necessary to provide steam to the power plant.

  19. FRIB Cryogenic Plant Status

    SciTech Connect

    Dixon, Kelly D.; Ganni, Venkatarao; Knudsen, Peter N.; Casagranda, Fabio

    2015-12-01

    After practical changes were approved to the initial conceptual design of the cryogenic system for MSU FRIB and an agreement was made with JLab in 2012 to lead the design effort of the cryogenic plant, many activities are in place leading toward a cool-down of the linacs prior to 2018. This is mostly due to using similar equipment used at CHLII for the 12 GeV upgrade at JLab and an aggressive schedule maintained by the MSU Conventional Facilities department. Reported here is an updated status of the cryogenic plant, including the equipment procurement status, plant layout, facility equipment and project schedule.

  20. Fuel Cell Demonstration Project - 200 kW - Phosphoric Acid Fuel Cell Power Plant Located at the National Transportation Research Center: FINAL REPORT

    SciTech Connect

    Berry, JB

    2005-05-06

    Oak Ridge National Laboratory (ORNL) researches and develops distributed generation technology for the Department of Energy, Energy Efficiency and Renewable Energy Distributed Energy Program. This report describes installation and operation of one such distributed generation system, a United Technology Corporation fuel cell located at the National Transportation Research Center in Knoxville, Tennessee. Data collected from June 2003 to June of 2004, provides valuable insight regarding fuel cell-grid compatibility and the cost-benefit of the fuel cell operation. The NTRC fuel cell included a high-heat recovery option so that use of thermal energy improves project economics and improves system efficiency to 59% year round. During the year the fuel cell supplied a total of 834MWh to the NTRC and provided 300MBtu of hot water. Installation of the NTRC fuel cell was funded by the Distributed Energy Program with partial funding from the Department of Defense's Climate Change Fuel Cell Buy Down Program, administered by the National Energy Technology Laboratory. On-going operational expenses are funded by ORNL's utility budget and are paid from operational cost savings. Technical information and the benefit-cost of the fuel cell are both evaluated in this report and sister reports.

  1. Managing Large Capital Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Managing Large Capital Projects Managing Large Capital Projects Presentation from the 2015 DOE National Cleanup Workshop by Ken Picha, Deputy Assistant Secretary for Tank Waste and Nuclear Material, Office of Environmental Management. Managing Large Capital Projects (1.29 MB) More Documents & Publications Waste Treatment Plant Project Construction of Salt Waste Processing Facility (SWPF) 2013 Congressional Nuclear Cleanup Caucus Briefings

  2. Plant Operational Status - Pantex Plant

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Plant Operational Status Plant Operational Status Page Content Shift 1 - Day The Pantex Plant is open for normal Day Shift operations. Plant personnel are to report as assigned. Personnel may call 477-3000, Option 1 for additional details. Shift 2 - Swing The Pantex Plant is open for normal Swing Shift operations. Plant personnel are to report as assigned. Personnel may call 477-3000, Option 1 for additional details. Shift 3 - Grave The Pantex Plant is open for normal Graveyard Shift operations.

  3. PROJECT MANGEMENT PLAN EXAMPLES Prepare Project Support Plans and

    Office of Environmental Management (EM)

    Communication and Stakeholder Involvement Plan Examples Example 49 10.0 COMMUNICATIONS AND PUBLIC INVOLVEMENT The transition of B Plant is a critical element in Hanford's mission of environmental management. The B Plant Transition Project Management Team have made a commitment to open communications throughout transition because effective communications and public involvement are critical success factors for the project. Communications must be living and dynamic, responding to accomplishments

  4. Texas Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    Unit 1, Unit 2","2,406","20,208",48.9,"Luminant Generation Company LLC" "South Texas Project Unit 1, Unit 2","2,560","21,127",51.1,"STP Nuclear Operating Co" "2 Plants 4 ...

  5. DIGITAL ARCHITECTURE PROJECT PLAN

    SciTech Connect

    Thomas, Ken

    2014-09-01

    The objective of this project is to develop an industry consensus document on how to scope and implement the underlying information technology infrastructure that is needed to support a vast array of real-time digital technologies to improve NPP work efficiency, to reduce human error, to increase production reliability and to enhance nuclear safety. A consensus approach is needed because: • There is currently a wide disparity in nuclear utility perspectives and positions on what is prudent and regulatory-compliant for introducing certain digital technologies into the plant environment. For example, there is a variety of implementation policies throughout the industry concerning electromagnetic compatibility (EMC), cyber security, wireless communication coverage, mobile devices for workers, mobile technology in the control room, and so forth. • There is a need to effectively share among the nuclear operating companies the early experience with these technologies and other forms of lessons-learned. There is also the opportunity to take advantage of international experience with these technologies. • There is a need to provide the industry with a sense of what other companies are implementing, so that each respective company can factor this into their own development plans and position themselves to take advantage of new work methods as they are validated by the initial implementing companies. In the nuclear power industry, once a better work practice has been proven, there is a general expectation that the rest of the industry will adopt it. However, the long-lead time of information technology infrastructure could prove to be a delaying factor. A secondary objective of this effort is to provide a general understanding of the incremental investment that would be required to support the targeted digital technologies, in terms of an incremental investment over current infrastructure. This will be required for business cases to support the adoption of these new

  6. Tank Waste Remediation System Projects Document Control Plan

    SciTech Connect

    Slater, G.D.; Halverson, T.G.

    1994-09-30

    The purpose of this Tank Waste Remediation System Projects Document Control Plan is to provide requirements and responsibilities for document control for the Hanford Waste Vitrification Plant (HWVP) Project and the Initial Pretreatment Module (IPM) Project.

  7. Hanford Waste Vitrification Plant technical manual

    SciTech Connect

    Larson, D.E.; Watrous, R.A.; Kruger, O.L.

    1996-03-01

    A key element of the Hanford waste management strategy is the construction of a new facility, the Hanford Waste Vitrification Plant (HWVP), to vitrify existing and future liquid high-level waste produced by defense activities at the Hanford Site. The HWVP mission is to vitrify pretreated waste in borosilicate glass, cast the glass into stainless steel canisters, and store the canisters at the Hanford Site until they are shipped to a federal geological repository. The HWVP Technical Manual (Manual) documents the technical bases of the current HWVP process and provides a physical description of the related equipment and the plant. The immediate purpose of the document is to provide the technical bases for preparation of project baseline documents that will be used to direct the Title 1 and Title 2 design by the A/E, Fluor. The content of the Manual is organized in the following manner. Chapter 1.0 contains the background and context within which the HWVP was designed. Chapter 2.0 describes the site, plant, equipment and supporting services and provides the context for application of the process information in the Manual. Chapter 3.0 provides plant feed and product requirements, which are primary process bases for plant operation. Chapter 4.0 summarizes the technology for each plant process. Chapter 5.0 describes the engineering principles for designing major types of HWVP equipment. Chapter 6.0 describes the general safety aspects of the plant and process to assist in safe and prudent facility operation. Chapter 7.0 includes a description of the waste form qualification program and data. Chapter 8.0 indicates the current status of quality assurance requirements for the Manual. The Appendices provide data that are too extensive to be placed in the main text, such as extensive tables and sets of figures. The Manual is a revision of the 1987 version.

  8. PROJECT INFORMATION

    Office of Scientific and Technical Information (OSTI)

    at a municipal wastewater treatment plant (WWTP); To develop a business case or ... released from the process tank during transfers; leading to complaints from plant staff. ...

  9. MO-G-17A-07: Improved Image Quality in Brain F-18 FDG PET Using Penalized-Likelihood Image Reconstruction Via a Generalized Preconditioned Alternating Projection Algorithm: The First Patient Results

    SciTech Connect

    Schmidtlein, CR; Beattie, B; Humm, J; Li, S; Wu, Z; Xu, Y; Zhang, J; Shen, L; Vogelsang, L; Feiglin, D; Krol, A

    2014-06-15

    Purpose: To investigate the performance of a new penalized-likelihood PET image reconstruction algorithm using the 1{sub 1}-norm total-variation (TV) sum of the 1st through 4th-order gradients as the penalty. Simulated and brain patient data sets were analyzed. Methods: This work represents an extension of the preconditioned alternating projection algorithm (PAPA) for emission-computed tomography. In this new generalized algorithm (GPAPA), the penalty term is expanded to allow multiple components, in this case the sum of the 1st to 4th order gradients, to reduce artificial piece-wise constant regions (“staircase” artifacts typical for TV) seen in PAPA images penalized with only the 1st order gradient. Simulated data were used to test for “staircase” artifacts and to optimize the penalty hyper-parameter in the root-mean-squared error (RMSE) sense. Patient FDG brain scans were acquired on a GE D690 PET/CT (370 MBq at 1-hour post-injection for 10 minutes) in time-of-flight mode and in all cases were reconstructed using resolution recovery projectors. GPAPA images were compared PAPA and RMSE-optimally filtered OSEM (fully converged) in simulations and to clinical OSEM reconstructions (3 iterations, 32 subsets) with 2.6 mm XYGaussian and standard 3-point axial smoothing post-filters. Results: The results from the simulated data show a significant reduction in the 'staircase' artifact for GPAPA compared to PAPA and lower RMSE (up to 35%) compared to optimally filtered OSEM. A simple power-law relationship between the RMSE-optimal hyper-parameters and the noise equivalent counts (NEC) per voxel is revealed. Qualitatively, the patient images appear much sharper and with less noise than standard clinical images. The convergence rate is similar to OSEM. Conclusions: GPAPA reconstructions using the 1{sub 1}-norm total-variation sum of the 1st through 4th-order gradients as the penalty show great promise for the improvement of image quality over that currently achieved

  10. General Motors sidestream separator

    SciTech Connect

    Tessier, R.J.

    1981-01-01

    On February 15, 1980, the United States Environmental Protection Agency, acting pursuant to Paragraph 113(D) (4) of the Clean Air Act, issued to General Motors an innovative technology order covering fifteen coal-fired spreader-stoker boilers located at six General Motors plants in Ohio. The purpose and effect of this order was to permit General Motors time to develop a new, innovative technique for controlling particulate emissions from the specified boilers before compliance with the federally approved Ohio particulate control regulation was required. This new technology was christened, The Sidestream Separator, by General Motors. It provides a highly cost effective means of reducing particulate emissions below levels currently obtainable with conventionally used high efficiency mechanical collectors. These improvements could prove to be of substantial benefit to many industrial facilities with spreader-stoker coal-fired boilers that cannot be brought into compliance with applicble air pollution regulations except by application of far more expensive and unwieldly electrostatic precipitators (ESP's) or fabric filters (baghouses).

  11. Dora-1 Geothermal Energy Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Dora-1 Geothermal Energy Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Dora-1 Geothermal Energy Power Plant General Information Name Dora-1 Geothermal...

  12. Neal Hot Springs Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Neal Hot Springs Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Neal Hot Springs Geothermal Power Plant General Information Name Neal Hot...

  13. Bouillante 2 Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Plant General Information Name Bouillante 2 Geothermal Power Plant Sector Geothermal energy Location Information Geothermal Resource Area Bouillante Geothermal Area Geothermal...

  14. Bouillante 1 Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Plant General Information Name Bouillante 1 Geothermal Power Plant Sector Geothermal energy Location Information Geothermal Resource Area Bouillante Geothermal Area Geothermal...

  15. Oserian 202 Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Oserian 202 Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Oserian 202 Geothermal Power Plant General Information Name Oserian 202 Geothermal...

  16. Aluto-Langano Geotermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Aluto-Langano Geotermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Aluto-Langano Geotermal Power Plant General Information Name Aluto-Langano...

  17. Coal Air Turbine ``CAT`` program invention 604. Eighth quarter project report and final for the project, August--September 1996

    SciTech Connect

    Foster-Pegg, R.W.

    1996-09-30

    The primary objective of this ``CAT`` project is to complete a conceptual design of this unique new combination of existing technology with cost estimates to show that the ``CAT`` system offers the economic incentive with low technical risk for a plant to be built which will demonstrate its viability. The technologies involved in the components of a ``CAT`` plant are proven, and the integration of the components into a complete plant is the only new developmental activity involved. Industry and the Federal General Services Administration (GSA), require the demonstration of a ``commercial plant`` before the viability of a new concept is accepted. To satisfy this requirement the construction of a plant of commercially viable size in excess of 15 MW if cogeneration and above 30 MW if all power, is proposed. This plant will produce economical power and heat for the owner. The plant will operate for a full commercial life and continue as an operating demonstration of the viability of the technology, gathering long term life and maintenance data, all adding to the credibility of the concept.

  18. EARLY ENTRANCE COPRODUCTION PLANT

    SciTech Connect

    Randy Roberts

    2003-04-25

    The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which produces at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using petroleum coke and ChevronTexaco's proprietary gasification technology. The objective of Phase I was to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The partners in this project are Texaco Energy Systems LLC. (a subsidiary of ChevronTexaco), General Electric (GE), Praxair, and Kellogg Brown & Root (KBR) in addition to the U.S. Department of Energy (DOE). ChevronTexaco is providing gasification technology and Fischer-Tropsch technology developed by Rentech, GE is providing combustion turbine technology, Praxair is providing air separation technology and KBR is providing engineering. Each of the EECP subsystems were assessed for technical risks and barriers. A plan was identified to mitigate the identified risks (Phase II RD&T Plan, October 2000). The RD&T Plan identified F-T reactor scale-up as a potential technical risk. The objective of Task 2.3 was to confirm engineering models that allow scale-up to commercial slurry phase bubble column (SPBC) reactors operating in the churn-turbulent flow regime. In

  19. Waste Treatment & Immobilization Plant - Hanford Site

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Waste Treatment & Immobilization Plant Office of River Protection About ORP ORP Projects & Facilities Tank Farms Waste Treatment & Immobilization Plant 242-A Evaporator 222-S Laboratory Newsroom Contracts & Procurements Contact ORP Waste Treatment & Immobilization Plant Email Email Page | Print Print Page | Text Increase Font Size Decrease Font Size Waste Treatment Plant Overview Waste Treatment and Immobilization Plant Background Information The Hanford Site, located in

  20. Research Projects

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    LaboratoryNational Security Education Center Menu NSEC Educational Programs Los Alamos Dynamics Summer School Science of Signatures Advanced Studies Institute Judicial Science School SHM Data Sets and Software Research Projects Current Projects Past Projects Publications NSEC » Engineering Institute » Research Projects » Joint Los Alamos National Laboratory/UCSD research projects Past Research Projects Previous collaborations between Los Alamos National Laboratory and the University of

  1. Research Projects

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Current Research Projects Joint Los Alamos National LaboratoryUCSD Research Projects Collaborations between Los Alamos National Laboratory and the University of California at San...

  2. Project Accounts

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Project Accounts Project Accounts A redirector page has been set up without anywhere to redirect to. Last edited: 2016-04-29 11:34:50

  3. Project Financing

    Office of Environmental Management (EM)

    evaluate a Federal Energy Efficiency Project across three broad risk categories: - Contract Risk - Project Risk - Participant Risk * Ultimately, pricing and terms are set by ...

  4. Project Gnome

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Project Gnome Double Beta Decay Dark Matter Biology Repository Science Renewable Energy The first underground physics experiment near Carlsbad was Project Gnome, December 10, 1961 ...

  5. Historical Information H.1 General

    Office of Legacy Management (LM)

    1 . . General Book 1 Effects Evaluation- for Project Rulison, June 1969 DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. . . . . . . . . . . - ,--- ..-... . . . 0 . , . , ~ , . . . . . . . . . . . . . . ... . . I . . . . . . . . . . . . . . . . . . . L . < - ....:.-. . . . . . . . . . . . . . . . . . - , , - . d - i , . .. * :=.:. 5 . . .:. : - . . . . . . : -.. .. ' . . - - .- - : . 7 : P . f l

  6. Project Controls

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    1997-03-28

    Project controls are systems used to plan, schedule, budget, and measure the performance of a project/program. The cost estimation package is one of the documents that is used to establish the baseline for project controls. This chapter gives a brief description of project controls and the role the cost estimation package plays.

  7. Seneca Compressed Air Energy Storage (CAES) Project

    SciTech Connect

    None, None

    2012-11-30

    of the designs would perform acceptably. Their general scope of work included development of detailed project construction schedules, capital cost and cash flow estimates for both CAES cycles, and development of detailed operational data, including fuel and compression energy requirements, to support dispatch modeling for the CAES cycles. The Dispatch Modeling Consultant selected for this project was Customized Energy Solutions (CES). Their general scope of work included development of wholesale electric and gas market price forecasts and development of a dispatch model specific to CAES technologies. Parsons Brinkerhoff Energy Storage Services (PBESS) was retained to develop an air storage cavern and well system design for the CAES project. Their general scope of work included development of a cavern design, solution mining plan, and air production well design, cost, and schedule estimates for the project. Detailed Front End Engineering Design (FEED) during Phase 1 of the project determined that CAES plant capital equipment costs were much greater than the $125.6- million originally estimated by EPRI for the project. The initial air storage cavern Design Basis was increased from a single five million cubic foot capacity cavern to three, five million cubic foot caverns with associated air production wells and piping. The result of this change in storage cavern Design Basis increased project capital costs significantly. In addition, the development time required to complete the three cavern system was estimated at approximately six years. This meant that the CAES plant would initially go into service with only one third of the required storage capacity and would not achieve full capability until after approximately five years of commercial operation. The market price forecasting and dispatch modeling completed by CES indicated that the CAES technologies would operate at only 10 to 20% capacity factors and the resulting overall project economics were not favorable for

  8. Project Information

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Project Information Slider award map The REE Program funds projects focused on developing economically feasible and environmentally benign technologies for recovering REEs from coal and/or coal by-products. Project Information The listed projects represent the current REE program portfolio. Agreement Number Project Title Performer Name FWP-RIC REE FY2016-2020 Rare Earth Elements (REE) from Coal and Coal By-Products National Energy Technology Laboratory FE0027167 High Yield and Economical

  9. EARLY ENTRANCE COPRODUCTION PLANT

    SciTech Connect

    John H. Anderson; Charles Benham; Earl R. Berry; Ming He; Charles H. Schrader; Lalit S. Shah; O.O. Omatete; T.D. Burchell

    2004-01-12

    The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which uses petroleum coke to produce at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using ChevronTexaco's proprietary gasification technology. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The partners in this project are Texaco Energy Systems LLC or TES (a subsidiary of ChevronTexaco), General Electric (GE), Praxair, and Kellogg Brown & Root (KBR) in addition to the U.S. Department of Energy (DOE). TES is providing gasification technology and Fischer-Tropsch (F-T) technology developed by Rentech, GE is providing combustion turbine technology, Praxair is providing air separation technology, and KBR is providing engineering. During Phase I the team identified several potential methods to reduce or minimize the environmental impact of the proposed EECP. The EECP Project Team identified F-T catalyst disposal, beneficial gasifier slag usage (other than landfill), and carbon dioxide recovery for the gas turbine exhaust for study under this task. Successfully completing the Task 2.10 RD&T provides additional opportunities for the EECP to meet the

  10. Project Title: Plant Lab Capabilities Project (4512) Program...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    exercises and simulation DB 1.3 - Routine maintenance and custodial services DB I ,4 - Air conditioning installation for existing equipment DB 1.5 - Cooling water system...

  11. Hydrogen Energy California Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Hydrogen Energy California Project Hydrogen Energy California Project Rendition of HECA Polygen Power Plant with fertilizer production facility. Rendition of HECA Polygen Power Plant with fertilizer production facility. HYDROGEN ENERGY CALIFORNIA CCS PROJECT (HECA CCS) On November 6, 2009, DOE announced the signing of a Cooperative Agreement with Hydrogen Energy California, LLC (HECA) under the Clean Coal Power Initiative (CCPI) Round 3 program. With additional funding provided under the

  12. U Plant - Hanford Site

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    About Us Projects & Facilities U Plant About Us About Hanford Cleanup Hanford History Hanford Site Wide Programs Contact Us 100 Area 118-K-1 Burial Ground 200 Area 222-S Laboratory 242-A Evaporator 300 Area 324 Building 325 Building 400 Area/Fast Flux Test Facility 618-10 and 618-11 Burial Grounds 700 Area B Plant B Reactor C Reactor Canister Storage Building and Interim Storage Area Canyon Facilities Cold Test Facility D and DR Reactors Effluent Treatment Facility Environmental Restoration

  13. Coal air turbine ``CAT`` program, invention 604. Fifth quarter project report, October--December 1995

    SciTech Connect

    Foster-Pegg, R.W.

    1995-12-31

    The primary objective of this ``CAT`` (Coal Air Turbine) project is to complete a conceptual design of this unique new combination of existing technology with cost estimates to show that the CAT system offers the economic incentive with low technical risk for a plant to be built which will demonstrate its viability. The technologies involved in the components of a CAT plant are proven, and the integration of the components into a complete plant is the only new developmental activity involved. Industry and the Federal General Services Administration (GSA), require the demonstration of a commercial plant before the viability of a new concept is accepted. To satisfy this requirement the construction of a plant of commercially viable size in excess of 15 MW if cogeneration and above 30 MW if all power, is proposed. This plant will produce economical power and heat for the owner. The plant will operate for a full commercial life and continue as an operating demonstration of the viability of the technology, gathering long term life and maintenance data, all adding to the credibility of the concept. The major components of CAT plants are an air turbine, a heater of compressed air, a coal combustion system, means to recover waste heat and a steam turbine when appropriate. The plant burns raw coal in a fluid bed at atmospheric pressure. The air turbine operates on clean compressed air heated inside tubes immersed in the fluid bed. Progress during the fifth quarter is described.

  14. South Ukraine NPP: Safety improvements through Plant Computer upgrade

    SciTech Connect

    Brenman, O.; Chernyshov, M. A.; Denning, R. S.; Kolesov, S. A.; Balakan, H. H.; Bilyk, B. I.; Kuznetsov, V. I.; Trosman, G.

    2006-07-01

    This paper summarizes some results of the Plant Computer upgrade at the Units 2 and 3 of South Ukraine Nuclear Power Plant (NPP). A Plant Computer, which is also called the Computer Information System (CIS), is one of the key safety-related systems at VVER-1000 nuclear plants. The main function of the CIS is information support for the plant operators during normal and emergency operational modes. Before this upgrade, South Ukraine NPP operated out-of-date and obsolete systems. This upgrade project wax founded by the U.S. DOE in the framework of the International Nuclear Safety Program (INSP). The most efficient way to improve the quality and reliability of information provided to the plant operator is to upgrade the Human-System Interface (HSI), which is the Upper Level (UL) CIS. The upgrade of the CIS data-acquisition system (DAS), which is the Lower Level (LL) CIS, would have less effect on the unit safety. Generally speaking, the lifetime of the LL CIS is much higher than one of the UL CIS. Unlike Plant Computers at the Western-designed plants, the functionality of the WER-1000 CISs includes a control function (Centralized Protection Testing) and a number of the plant equipment monitoring functions, for example, Protection and Interlock Monitoring and Turbo-Generator Temperature Monitoring. The new system is consistent with a historical migration of the format by which information is presented to the operator away from the traditional graphic displays, for example, Piping and Instrument Diagrams (P and ID's), toward Integral Data displays. The cognitive approach to information presentation is currently limited by some licensing issues, but is adapted to a greater degree with each new system. The paper provides some lessons learned on the management of the international team. (authors)

  15. The SONATRACH jumbo LPG plant

    SciTech Connect

    Ahmed Khodja, A.; Bennaceur, A.

    1988-01-01

    The authors aim is to give to the 17 TH world gas conference a general idea on SONATRACH LPG PLANT which is located in the ARZEW area. They develop this communication as follows: general presentation of LPG plant: During the communication, the author's will give the assistance all the information concerning the contractions the erection's date and the LPG PLANT process, start-up of the plant: In this chapter, the authors's will describe the start-up condition, the performance test result, the flexibility test result and the total mechanical achievement of the plant; operation by SONATRACH: After the success that obtained during the mechanical achievement and performance test, the contractor handed over the plant to SONATRACH.

  16. Breckinridge Project, initial effort

    SciTech Connect

    1982-01-01

    The project cogeneration plant supplies electric power, process steam and treated boiler feedwater for use by the project plants. The plant consists of multiple turbine generators and steam generators connected to a common main steam header. The major plant systems which are required to produce steam, electrical power and treated feedwater are discussed individually. The systems are: steam, steam generator, steam generator fuel, condensate and feedwater deaeration, condensate and blowdown collection, cooling water, boiler feedwater treatment, coal handling, ash handling (fly ash and bottom ash), electrical, and control system. The plant description is based on the Phase Zero design basis established for Plant 31 in July of 1980 and the steam/condensate balance as presented on Drawing 31-E-B-1. Updating of steam requirements as more refined process information becomes available has generated some changes in the steam balance. Boiler operation with these updated requirements is reflected on Drawing 31-D-B-1A. The major impact of updating has been that less 600 psig steam generated within the process units requires more extraction steam from the turbine generators to close the 600 psig steam balance. Since the 900 psig steam generation from the boilers was fixed at 1,200,000 lb/hr, the additional extraction steam required to close the 600 psig steam balance decreased the quantity of electrical power available from the turbine generators. In the next phase of engineering work, the production of 600 psig steam will be augmented by increasing convection bank steam generation in the Plant 3 fired heaters by 140,000 to 150,000 lb/hr. This modification will allow full rated power generation from the turbine generators.

  17. Healthcare Energy: Massachusetts General Hospital Gray Building

    Energy.gov [DOE]

    The Building Technologies Office conducted a healthcare energy end-use monitoring project in partnership with two hospitals. This page contains highlights from monitoring at the Gray Building at Massachusetts General Hospital.

  18. Final Report for project titled "New fluoroionomer electrolytes with high conductivity and low SO2 crossover for use in electrolyzers being developed for hydrogen production from nuclear power plants"

    SciTech Connect

    Dennis W. Smith; Stephen Creager

    2012-09-13

    Thermochemical water splitting cycles, using the heat of nuclear power plants, offer an alternate highly efficient route for the production of hydrogen. Among the many possible thermochemical cycles for the hydrogen production, the sulfur-based cycles lead the competition in overall energy efficiency. A variant on sulfur-based thermochemical cycles is the Hybrid Sulfur (HyS) Process, which uses a sulfur dioxide depolarized electrolyzer (SDE) to produce hydrogen. The Savannah River National Laboratory (SRNL) selected the fuel cell MEA design concept for the SDE in the HyS process since the MEA concept provides a much smaller cell footprint than conventional parallel plate technology. The electrolyzer oxidizes sulfur dioxide to form sulfuric acid at the anode and reduces protons to form hydrogen at the cathode. The overall electrochemical cell reaction consists of the production of H{sub 2}SO{sub 4} and H{sub 2}. There is a significant need to provide the membrane materials that exhibit reduced sulfur dioxide transport characteristics without sacrificing other important properties such as high ionic conductivity and excellent chemical stability in highly concentrated sulfuric acid solutions saturated with sulfur dioxide. As an alternative membrane, sulfonated Perfluorocyclobutyl aromatic ether polymer (sPFCB) were expected to posses low SO2 permeability due to their stiff backbones as well as high proton conductivity, improved mechanical properties. The major accomplishments of this project were the synthesis, characterizations, and optimizations of suitable electrolyzers for good SDE performance and higher chemical stability against sulfuric acid. SDE performance results of developed sPFCB polyelectrolytes have shown that these membranes exhibit good chemical stability against H{sub 2}SO{sub 4}.

  19. [Tampa Electric Company IGCC project]. Final public design report; Technical progress report

    SciTech Connect

    1996-07-01

    This final Public Design Report (PDR) provides completed design information about Tampa Electric Company`s Polk Power Station Unit No. 1, which will demonstrate in a commercial 250 MW unit the operating parameters and benefits of the integration of oxygen-blown, entrained-flow coal gasification with advanced combined cycle technology. Pending development of technically and commercially viable sorbent for the Hot Gas Cleanup System, the HGCU also is demonstrated. The report is organized under the following sections: design basis description; plant descriptions; plant systems; project costs and schedule; heat and material balances; general arrangement drawings; equipment list; and miscellaneous drawings.

  20. Line Projects

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Grand Coulee Transmission Line Replacement Project Hooper Springs McNary-John Day Montana-to-Washington Transmission System Upgrade Project - M2W Olympia-Grand Coulee No. 1...

  1. Puerto Rico`s EcoElectrica LNG/power project marks a project financing first

    SciTech Connect

    Lammers, R.; Taylor, S.

    1998-02-23

    On Dec. 15, 1997, Enron International and Kenetech Energy Services achieved financial close on the $670 million EcoElectrica liquefied natural gas terminal and cogeneration project proposed for Puerto Rico. The project involves construction of a liquefied natural gas terminal, cogeneration plant, and desalination unit on the southern coast of Puerto Rico, in the Penuelas/Guayanilla area. EcoElectrica will include a 500-mw, combined-cycle cogeneration power plant fueled mainly by LNG imported from the 400 MMcfd Atlantic LNG project on the island of Trinidad. Achieving financial close on a project of this size is always a time-consuming matter and one with a number of challenges. These challenges were increased by the unique nature of both the project and its financing--no project financing had ever before been completed that combined an LNG terminal and power plant. The paper discusses the project, financing details and challenges, key investment considerations, and integrated project prospects.

  2. Project Benefits

    Energy.gov [DOE]

    Benefits of the Guidelines for Home Energy Professionals project including reducing energy upgrade costs for consumers, employers, and program administrators.

  3. Hydropower Projects

    Energy.gov [DOE]

    This report covers the Wind and Water Power Technologies Office's hydropower project funding from fiscal years 2008 to 2014.

  4. EARLY ENTRANCE COPRODUCTION PLANT

    SciTech Connect

    John Anderson; Mark Anselmo; Earl Berry; Mark Bohn; Ming He; Charles H. Schrader; Lalit Shah; Donald Todd; Robert Schavey

    2004-01-12

    The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which uses petroleum coke to produce at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using ChevronTexaco's proprietary gasification technology. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to its detailed design, construction, and operation. The partners in this project are Texaco Energy Systems LLC (TES) (a subsidiary of ChevronTexaco), General Electric (GE), Praxair, and Kellogg Brown & Root (KBR). The work was under cooperative agreements with the U.S. Department of Energy (DOE). TES is providing the gasification technology and the Fischer-Tropsch (F-T) technology developed by Rentech Inc., GE is providing the combustion turbine technology, Praxair is providing the air separation technology, and KBR is providing overall engineering. Each of the EECP's subsystems was assessed for technical risks and barriers in Phase I. A plan was identified to mitigate the identified risks (Phase II RD&T Plan, October 2000). The RD&T Plan identified catalyst/wax separation as a potential technical and economic risk. To mitigate risks to the proposed EECP concept, Phase II RD&T included tests for

  5. EARLY ENTRANCE COPRODUCTION PLANT

    SciTech Connect

    Abdalla H. Ali; Raj Kamarthi; John H. Anderson; Earl R. Berry; Charles H. Schrader; Lalit S. Shah

    2003-04-16

    The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which produces at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using ChevronTexaco's proprietary gasification technology. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The partners in this project are TES (a subsidiary of ChevronTexaco), General Electric (GE), Praxair, and Kellogg Brown & Root (KBR) in addition to the U.S. Department of Energy (DOE). TES is providing gasification technology and Fischer-Tropsch (F-T) technology developed by Rentech, GE is providing combustion turbine technology, Praxair is providing air separation technology, and KBR is providing engineering. During Phase I the team identified the integration of the water produced in the F-T synthesis section with the gasification section as an area of potential synergy. By utilizing the F-T water in the petroleum coke slurry for the gasifier, the EECP can eliminate a potential waste stream and reduce capital costs. There is a low technical risk for this synergy, however, the economic risk, particularly in regards to the water, can be high. The economic costs include the costs

  6. EARLY ENTRANCE COPRODUCTION PLANT

    SciTech Connect

    John Anderson; Mark Anselmo; Earl Berry; Mark Bohn; Roko Bujas; Ming He; Ken Kwik; Charles H. Schrader; Lalit Shah; Dennis Slater; Donald Todd; Don Wall

    2003-08-21

    The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which uses petroleum coke to produce at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using ChevronTexaco's proprietary gasification technology. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The partners in this project are Texaco Energy Systems LLC (TES), a subsidiary of ChevronTexaco, General Electric (GE), Praxair, and Kellogg Brown & Root (KBR) in addition to the U.S. Department of Energy (DOE). TES is providing gasification technology and Fischer-Tropsch (F-T) technology developed by Rentech, Inc. GE is providing combustion turbine technology, Praxair is providing air separation technology, and KBR is providing engineering. Each of the EECP subsystems were assessed for technical risks and barriers. A plan was identified to mitigate the identified risks (Phase II RD&T Plan, October 2000). The RD&T Plan identified catalyst/wax separation as a potential technical and economic risk. To mitigate risks to the proposed EECP, Phase II RD&T included tests of an alternative (to Rentech's Dynamic Settler) primary catalyst/wax separation device and

  7. Manhattan Project: Sources and Notes

    Office of Scientific and Technical Information (OSTI)

    this web site. For a discussion of the most important works on the Manhattan Project, see the "Suggested Readings." For a general discussion of the use of sources in this web site, ...

  8. Construction Begins on DOE-Sponsored Carbon-Capture Project at...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Construction Begins on DOE-Sponsored Carbon-Capture Project at Kentucky Power Plant Construction Begins on DOE-Sponsored Carbon-Capture Project at Kentucky Power Plant July 21, ...

  9. A = 5 General Tables

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    5 General Tables The General Table for 5H is subdivided into the following categories: Cluster Model Hypernuclei Model Calculations Photodisintegration Pions The General Table for...

  10. Frontiers in Advanced Storage Technologies (FAST) project

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Storage R&D Frontiers in Advanced Storage Technologies (FAST) project Working with vendors to develop new functionality in storage technologies generally not yet available to ...

  11. CLEAR LAKE BASIN 2000 PROJECT

    SciTech Connect

    LAKE COUNTY SANITATION DISTRICT

    2003-03-31

    The following is a final report for the Clear Lake Basin 2000 project. All of the major project construction work was complete and this phase generally included final details and testing. Most of the work was electrical. Erosion control activities were underway to prepare for the rainy season. System testing including pump stations, electrical and computer control systems was conducted. Most of the project focus from November onward was completing punch list items.

  12. Mesaba next-generation IGCC plant

    SciTech Connect

    2006-01-01

    Through a US Department of Energy (DOE) cooperative agreement awarded in June 2006, MEP-I LLC plans to demonstrate a next generation integrated gasification-combined cycle (IGCC) electric power generating plant, the Mesaba Energy Project. The 606-MWe plant (the first of two similarly sized plants envisioned by project sponsors) will feature next-generation ConocoPhillips E-Gas{trademark} technology first tested on the DOE-funded Wabash River Coal Gasification Repowering project. Mesaba will benefit from recommendations of an industry panel applying the Value Improving Practices process to Wabash cost and performance results. The project will be twice the size of Wabash, while demonstrating better efficient, reliability and pollutant control. The $2.16 billion project ($36 million federal cost share) will be located in the Iron Range region north of Duluth, Minnesota. Mesaba is one of four projects selected under Round II of the Clean Coal Power Initiative. 1 fig.

  13. Advanced system demonstration for utilization of biomass as an energy source. Volume I. Scope and design criteria and project summary

    SciTech Connect

    1980-10-01

    The information in this document is the result of an intensive engineering effort to demonstrate the feasibility of biomass-fueled boilers in cogeneration applications. This design package is based upon a specific site in the State of Maine. However, the design is generic in nature and could serve as a model for other biomass conversion facilities located anywhere biomass is abundant. The project's purpose and summary information are presented: the plant, its concept of operation; and other overall information are described. The capital cost estimate for the plant, and the basis upon which it was obtained are given; a schedule of key milestones and activities required to construct the plant and put it into operation is presented; and the general findings in areas that affect the viability of the project are discussed. The technical design, biomass study, environmental impact, commercialization, and economic factors are addressed. Each major plant area and the equipment and facilities that each includes are discussed in depth. Some overall plant requirements, including noise control, reliability, maintainability, and safety, are detailed. The results of each study relating to alternatives considered for optimizing plant operation parameters and specific system process schemes are briefly presented. All economic factors that affect the feasibility and viability of the biomass project are defined and evaluated.

  14. Advanced Seismic Data Analysis Program- The "Hot Pot" Project

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Seismic Data Analysis Program - The "Hot Pot" Project Principal Investigator : Frank ... (2) * Innovative aspects Seismic data processing generally follows procedure ...

  15. Pantex signing ceremony kicks off wind farm project | National...

    National Nuclear Security Administration (NNSA)

    U.S. Congressman Mac Thornberry joined local dignitaries and other visitors at the Pantex Plant Thursday to make their mark on an important wind project at the Plant. The visitors ...

  16. MHK Projects/Figueira da Foz Portugal | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    a commercial power project site in Figueira de Foz, Portugal to build a 100 MW offshore wave energy plant. Initially, a 2 MW demonstration plant is planned followed by the...

  17. Cogeneration project slated for construction

    SciTech Connect

    Not Available

    1993-09-13

    Destec Energy Inc. plans to begin construction of a 212-Mw gas-fired cogeneration plant in Polk County, Fla., late this year. The Houston-based firm will perform engineering and constructionmanagement services for the $150-million, combined-cycle project, but will call for proposals for construction services later this year, says project manager Bob Taylor. The plant north of Tampa, is scheduled to go on line in early 1995. All its electrical output will be sold to Florida Power Co. under a 30-year contract and process steam will go to the host, US Agrichemical Co., a large phosphate producer and fertilizer manufacturer.

  18. Researching power plant water recovery

    SciTech Connect

    2008-04-01

    A range of projects supported by NETl under the Innovations for Existing Plant Program are investigating modifications to power plant cooling systems for reducing water loss, and recovering water from the flue gas and the cooling tower. This paper discusses two technologies showing particular promise condense water that is typically lost to evaporation, SPX technologies' Air2Air{sup trademark} condenses water from a cooling tower, while Lehigh University's process condenses water and acid in flue gas. 3 figs.

  19. 8C General Tables

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    C General Tables The General Table for 8C is subdivided into the following categories: Reviews Other Theoretical Work

  20. 6Be General Tables

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    6Be General Table The General Table for 6Be is subdivided into the following categories: Cluster Model Model Calculations...

  1. Tampa Electric Company, Polk Power Station IGCC Project: Project Status

    SciTech Connect

    Berry, T.E.; Shelnut, C.A.; McDaniel, J.E.

    1999-07-01

    Over the last ten years, Tampa Electric Company (TEC) has taken the Polk Power Station from a concept to a reality. The Tampa Electric Company Polk Power Station is a nominal 250 MW (net) Integrated Gasification Combined Cycle (IGCC) power plant located to the southeast of Tampa, Florida in Polk County, Florida. This project is being partially funded under the Department of Energy Clean Coal Technology Program pursuant to a Round III award. The Polk Power Station achieved first fire of the gasification system on schedule in mid-July, 1996. It was placed in commercial operation on September 30, 1996. Since start-up in July, 1996, significant advances have occurred in the design and operation of the entire IGCC train. This presentation will feature an up-to-the-minute update of actual performance parameters achieved by the Polk Power Station. These parameters include overall capacity, heat rate, and availability. Several different coal feedstocks have been tested and the resulting performance will be compared to that achieved on the base coal. This paper also provides an update of the general operating experiences and shutdown causes of the gasification facility. Finally, the future plans for improving the reliability and efficiency of the Unit will be addressed, as well as plans for future additional alternate fuel test burns.

  2. The Mississippi CCS Project

    SciTech Connect

    Doug Cathro

    2010-09-30

    The Mississippi CCS Project is a proposed large-scale industrial carbon capture and sequestration (CCS) project which would have demonstrated advanced technologies to capture and sequester carbon dioxide (CO{sub 2}) emissions from industrial sources into underground formations. Specifically, the Mississippi CCS Project was to accelerate commercialization of large-scale CO{sub 2} storage from industrial sources by leveraging synergy between a proposed petcoke to Substitute Natural Gas (SNG) plant that is selected for a Federal Loan Guarantee and would be the largest integrated anthropogenic CO{sub 2} capture, transport, and monitored sequestration program in the U.S. Gulf Coast Region. The Mississippi CCS Project was to promote the expansion of enhanced oil recovery (EOR) in the Mississippi, Alabama and Louisiana region which would supply greater energy security through increased domestic energy production. The capture, compression, pipeline, injection, and monitoring infrastructure would have continued to sequester CO{sub 2} for many years after the completion of the term of the DOE agreement. The objectives of this project were expected to be fulfilled through two distinct phases. The overall objective of Phase 1 was to develop a fully definitive project basis for a competitive Renewal Application process to proceed into Phase 2 - Design, Construction and Operations. Phase 1 included the studies that establish the engineering design basis for the capture, compression and transportation of CO{sub 2} from the MG SNG Project, and the criteria and specifications for a monitoring, verification and accounting (MVA) plan at the Soso oil field in Mississippi. The overall objective of Phase 2, was to execute design, construction and operations of three capital projects: the CO{sub 2} capture and compression equipment, the Mississippi CO{sub 2} Pipeline to Denbury's Free State Pipeline, and an MVA system at the Soso oil field.

  3. Project Tour

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Project Tour Project Tour See NMSSUP from the ground NMSSUP Phase II Construction Project Tour Transportation Transportation to the tour will be provided from Hilton Santa Fe Buffalo Thunder to Los Alamos National Laboratory, Technical Area 55. After the tour, transportation will be provided back to Hilton Santa Fe Buffalo Thunder. What to wear Wear comfortable pants and leather shoes (flat, comfortable, closed-toe; no tennis shoes or high heels). Schedule There will be a one-hour, no-host lunch

  4. PROJECT INFORMATION

    Office of Scientific and Technical Information (OSTI)

    PROJECT INFORMATION DOE award number: DE EE0000621 Name of recipient: San Francisco Public Utilities Commission Project title: San Francisco Biofuel Program Name of project: Brown Grease to Biodiesel Demonstration Director/principal investigator: Domenec Jolis Consortium/teaming members: Environmental Protection Agency (EPA) California Energy Commission (CEC) URS Corporation EXECUTIVE SUMMARY Municipal wastewater treatment facilities have typically been limited to the role of accepting

  5. Research Projects

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    structure whose behavior is fundamentally nonlinear. Thus, the students assigned to this project will develop control techniques that will allow an electrodynamic shake table to...

  6. Custom Projects

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy Management Small Industrial Lighting Compressed Air ESUE Motors Federal Agriculture Custom Projects No two industrial customers are alike; each has its own unique...

  7. project management

    National Nuclear Security Administration (NNSA)

    %2A en Project Management and Systems Support http:nnsa.energy.govaboutusouroperationsapmprojectmanagementandsystemssupport

  8. project management

    National Nuclear Security Administration (NNSA)

    3%2A en Project Management and Systems Support http:www.nnsa.energy.govaboutusouroperationsapmprojectmanagementandsystemssupport

  9. Project Complete

    Energy.gov [DOE]

    DOE has published its Record of Decision announcing and explaining DOE’s chosen project alternative and describing any commitments for mitigating potential environmental impacts. The NEPA process...

  10. Research Projects

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Past Research Projects Composite-to-Steel Joint Integrity Monitoring and Assessment Collaboration between Los Alamos National Laboratory and the University of California at San ...

  11. Project Construction

    Office of Energy Efficiency and Renewable Energy (EERE)

    Integrating renewable energy into Federal new construction or major renovations requires effective structuring of the construction team and project schedule. This overview discusses key construction team considerations for renewable energy as well as timing and expectations for the construction phase. The project construction phase begins after a project is completely designed and the construction documents (100%) have been issued. Construction team skills and experience with renewable energy technologies are crucial during construction, as is how the integration of renewable energy affects the project construction schedule.

  12. J.R. Simplot: Burner Upgrade Project Improves Performance and...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    J.R. Simplot: Burner Upgrade Project Improves Performance and Saves Energy at a Large Food Processing Plant J.R. Simplot: Burner Upgrade Project Improves Performance and Saves ...

  13. DOE-Sponsored Project Begins Demonstrating CCUS Technology in...

    Energy.gov [DOE] (indexed site)

    ... Regional Partner Announces Plans for Carbon Storage Project Using CO2 Captured from Coal-Fired Power Plant Alabama Project Testing Potential for Combining CO2 Storage with Enhanced ...

  14. Life extension system for fossil power plants

    SciTech Connect

    Isreb, M.

    1996-11-01

    A general, multi-disciplinary life extension system for new and existing power plants has been absent in the literature. The present paper presents a general, multi-disciplinary life extension system for new and existing fossil power plants. The paper formulates the optimization problem framework for plants` components. The paper discusses the framework of the iterative process, objective functions, plant components, life extension constraints, new life or remnant life parameters and optimization techniques. Other system attributes discussed in the paper include: design invariant parameters, relationships between plant components and objective functions and a strategy for system sizing and simulation.

  15. Jordan-World Bank Climate Projects | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    The first component of the project is development of a promotional wind Independent Power Producer (IPP) power plant. This component involve the following sub-components: (a)...

  16. DOE Selects 16 Transformational Carbon Capture Technologies Projects...

    Office of Environmental Management (EM)

    ... CO2 capture with conversion of the resulting algal biomass to fuels and bioplastics. ... Capture Technologies for Coal-Based Gasification Plants DOE Selects Projects To Enhance ...

  17. DOE Selects Projects to Develop Pre-Combustion Carbon Capture...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    projects that will develop pre-combustion carbon capture technologies that can reduce CO2 emissions in future coal-based integrated gasification combined cycle (IGCC) power plants. ...

  18. Concentrating Solar Power Projects - Nevada Solar One | Concentrating...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Nevada Solar One This page provides information on Nevada Solar One, a concentrating solar power (CSP) project, with data organized by background, participants, and power plant ...

  19. Midwest Independent Transmission System Operator Smart Grid Project...

    OpenEI (Open Energy Information) [EERE & EIA]

    to optimize the dispatch and operation of power plants while improving the reliability of the bulk transmission system. This project deploys phasor measurement units...

  20. FY 2014 Projects for Improving the Design, Construction, and...

    Energy Saver

    Institute (Des Plaines, Ill.) - Simultaneous Waste Heat and Water Recovery from Power Plant Flue Gases for Advanced Energy Systems. The project team will further develop an...

  1. Geothermal Power Generation Plant

    SciTech Connect

    Boyd, Tonya

    2013-12-01

    Oregon Institute of Technology (OIT) drilled a deep geothermal well on campus (to 5,300 feet deep) which produced 196°F resource as part of the 2008 OIT Congressionally Directed Project. OIT will construct a geothermal power plant (estimated at 1.75 MWe gross output). The plant would provide 50 to 75 percent of the electricity demand on campus. Technical support for construction and operations will be provided by OIT’s Geo-Heat Center. The power plant will be housed adjacent to the existing heat exchange building on the south east corner of campus near the existing geothermal production wells used for heating campus. Cooling water will be supplied from the nearby cold water wells to a cooling tower or air cooling may be used, depending upon the type of plant selected. Using the flow obtained from the deep well, not only can energy be generated from the power plant, but the “waste” water will also be used to supplement space heating on campus. A pipeline will be construction from the well to the heat exchanger building, and then a discharge line will be construction around the east and north side of campus for anticipated use of the “waste” water by facilities in an adjacent sustainable energy park. An injection well will need to be drilled to handle the flow, as the campus existing injection wells are limited in capacity.

  2. NEPA Process for Geothermal Power Plants in the Deschutes National...

    OpenEI (Open Energy Information) [EERE & EIA]

    Oregon Project Phase GeothermalExploration, GeothermalWell Field, GeothermalPower Plant Techniques Exploration Drilling, Exploratory Boreholes, Production Wells, Thermal...

  3. EM Makes Progress Preparing Old Enrichment Plants for Demolition...

    Energy Saver

    gaseous diffusion plants during a panel session at the annual Waste Management Conference. ... equipment to analyze and characterize samples from the project for metals concentration. ...

  4. Saradambika Power Plant Pvt Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Andhra Pradesh, India Zip: 500082 Sector: Biomass Product: Hyderabad-based developer of biomass power project. References: Saradambika Power Plant Pvt. Ltd1 This article is a...

  5. Malavi Power Plant Ltd MPPL pltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Ltd. (MPPL pltd) Place: Bangalore, India Zip: 560 001 Sector: Biomass Product: Biomassbiogas project developer and plant operator. Coordinates: 12.97092, 77.60482 Show Map...

  6. Energy At Work: Plant Expansion Creates Job Opportunities in...

    Energy.gov [DOE] (indexed site)

    DuPont's newly expanded solar manufacturing plant in Circleville, Ohio, produces thin film materials to strengthen the durability of solar panels. To support the expansion project, ...

  7. EERE Success Story-California: Geothermal Plant to Help Meet...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Bridging the Gap: Helping Small Businesses With Big Ideas Develop New Industries California Geothermal Power Plant to Help Meet High Lithium Demand Project Overview Positive Impact ...

  8. Waste-to-Energy Cogeneration Project, Centennial Park

    SciTech Connect

    Johnson, Clay; Mandon, Jim; DeGiulio, Thomas; Baker, Ryan

    2014-04-29

    The Waste-to-Energy Cogeneration Project at Centennial Park has allowed methane from the closed Centennial landfill to export excess power into the the local utility’s electric grid for resale. This project is part of a greater brownfield reclamation project to the benefit of the residents of Munster and the general public. Installation of a gas-to-electric generator and waste-heat conversion unit take methane byproduct and convert it into electricity at the rate of about 103,500 Mwh/year for resale to the local utility. The sale of the electricity will be used to reduce operating budgets by covering the expenses for streetlights and utility bills. The benefits of such a project are not simply financial. Munster’s Waste-to Energy Cogeneration Project at Centennial Park will reduce the community’s carbon footprint in an amount equivalent to removing 1,100 cars from our roads, conserving enough electricity to power 720 homes, planting 1,200 acres of trees, or recycling 2,000 tons of waste instead of sending it to a landfill.

  9. Simulated coal gas MCFC power plant system verification. Final report

    SciTech Connect

    1998-07-30

    The objective of the main project is to identify the current developmental status of MCFC systems and address those technical issues that need to be resolved to move the technology from its current status to the demonstration stage in the shortest possible time. The specific objectives are separated into five major tasks as follows: Stack research; Power plant development; Test facilities development; Manufacturing facilities development; and Commercialization. This Final Report discusses the M-C power Corporation effort which is part of a general program for the development of commercial MCFC systems. This final report covers the entire subject of the Unocal 250-cell stack. Certain project activities have been funded by organizations other than DOE and are included in this report to provide a comprehensive overview of the work accomplished.

  10. Students Enhance Skills on Paducah DOE Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Students Enhance Skills on Paducah DOE Project Students Enhance Skills on Paducah DOE Project July 8, 2016 - 3:28pm Addthis Marshall County High School AP Physics students toured the Paducah Gaseous Diffusion Plant Site in Western Kentucky as part of an environmental report project with DOE. (Photo by Steve Christmas, Fluor Paducah Deactivation Project) Marshall County High School AP Physics students toured the Paducah Gaseous Diffusion Plant Site in Western Kentucky as part of an environmental

  11. The Geysers pipeline project

    SciTech Connect

    Dellinger, M.; Allen, E.

    1997-01-01

    A unique public/private partnership of local, state, federal and corporate stakeholders are constructing the world`s first wastewater-to-electricity system at The Geysers. A rare example of a genuinely {open_quotes}sustainable{close_quotes} energy system, three Lake County communities will recycle their treated wastewater effluent through the southeast portion of the The Geysers steamfield to produce approximately 625,000 MWh annually from six existing geothermal power plants. In effect, the communities` effluent will produce enough power to indefinitely sustain their electric needs, along with enough extra power for thousands of other California consumers. Because of the project`s unique sponsorship, function and environmental impacts, its implementation has required: (1) preparation of a consolidated state environmental impact report (EIR) and federal environmental impact statement (EIS), and seven related environmental agreements and management plans; (2) acquisition of 25 local, state, and federal permits; (3) negotiation of six federal and state financial assistance agreements; (4) negotiation of six participant agreements on construction, operation and financing of the project, and (5) acquisition of 163 easements from private land owners for pipeline construction access and ongoing maintenance. The project`s success in efficiently and economically completing these requirements is a model for geothermal innovation and partnering throughout the Pacific Rim and elsewhere internationally.

  12. Radiation Embrittlement Archive Project

    SciTech Connect

    Klasky, Hilda B; Bass, Bennett Richard; Williams, Paul T; Phillips, Rick; Erickson, Marjorie A; Kirk, Mark T; Stevens, Gary L

    2013-01-01

    The Radiation Embrittlement Archive Project (REAP), which is being conducted by the Probabilistic Integrity Safety Assessment (PISA) Program at Oak Ridge National Laboratory under funding from the U.S. Nuclear Regulatory Commission s (NRC) Office of Nuclear Regulatory Research, aims to provide an archival source of information about the effect of neutron radiation on the properties of reactor pressure vessel (RPV) steels. Specifically, this project is an effort to create an Internet-accessible RPV steel embrittlement database. The project s website, https://reap.ornl.gov, provides information in two forms: (1) a document archive with surveillance capsule(s) reports and related technical reports, in PDF format, for the 104 commercial nuclear power plants (NPPs) in the United States, with similar reports from other countries; and (2) a relational database archive with detailed information extracted from the reports. The REAP project focuses on data collected from surveillance capsule programs for light-water moderated, nuclear power reactor vessels operated in the United States, including data on Charpy V-notch energy testing results, tensile properties, composition, exposure temperatures, neutron flux (rate of irradiation damage), and fluence, (Fast Neutron Fluence a cumulative measure of irradiation for E>1 MeV). Additionally, REAP contains data from surveillance programs conducted in other countries. REAP is presently being extended to focus on embrittlement data analysis, as well. This paper summarizes the current status of the REAP database and highlights opportunities to access the data and to participate in the project.

  13. The NOXSO clean coal project

    SciTech Connect

    Black, J.B.; Woods, M.C.; Friedrich, J.J.; Browning, J.P.

    1997-12-31

    The NOXSO Clean Coal Project will consist of designing, constructing, and operating a commercial-scale flue-gas cleanup system utilizing the NOXSO Process. The process is a waste-free, dry, post-combustion flue-gas treatment technology which uses a regenerable sorbent to simultaneously adsorb sulfur dioxide (SO{sub 2}) and nitrogen oxides (NO{sub x}) from flue gas from coal-fired boilers. The NOXSO plant will be constructed at Alcoa Generating Corporation`s (AGC) Warrick Power Plant near Evansville, Indiana and will treat all the flue gas from the 150-MW Unit 2 boiler. The NOXSO plant is being designed to remove 98% of the SO{sub 2} and 75% of the NO{sub x} when the boiler is fired with 3.4 weight percent sulfur, southern-Indiana coal. The NOXSO plant by-product will be elemental sulfur. The elemental sulfur will be shipped to Olin Corporation`s Charleston, Tennessee facility for additional processing. As part of the project, a liquid SO{sub 2} plant has been constructed at this facility to convert the sulfur into liquid SO{sub 2}. The project utilizes a unique burn-in-oxygen process in which the elemental sulfur is oxidized to SO{sub 2} in a stream of compressed oxygen. The SO{sub 2} vapor will then be cooled and condensed. The burn-in-oxygen process is simpler and more environmentally friendly than conventional technologies. The liquid SO{sub 2} plant produces 99.99% pure SO{sub 2} for use at Olin`s facilities. The $82.8 million project is co-funded by the US Department of Energy (DOE) under Round III of the Clean Coal Technology program. The DOE manages the project through the Pittsburgh Energy Technology Center (PETC).

  14. Awarded projects

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    projects Awarded projects 2016 Allocation Awards This page lists the allocation awards for NERSC for the 2016 allocation year (Jan 12, 2016 through Jan 09, 2017). Read More » Previous Year Awards Last edited: 2016-04-29 11:35:1

  15. Container evaluation for microwave solidification project

    SciTech Connect

    Smith, J.A.

    1994-08-01

    This document discusses the development and testing of a suitable waste container and packaging arrangement to be used with the Microwave Solidification System (MSS) and Bagless Posting System (BPS). The project involves the Rocky Flats Plant.

  16. Solar Project Solutions | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Solutions Place: California Sector: Solar Product: US-based JV to build solar-power plants in California. References: Solar Project Solutions1 This article is a stub. You can...

  17. Energy Department Selects Projects to Demonstrate Feasibility...

    Energy.gov [DOE] (indexed site)

    completed a pre-feasibility study for a pilot project in Tianjin that will use CO2 captured from the GreenGen facility - China's first integrated gasification combined cycle plant. ...

  18. Coyote Springs Cogeneration Project, Morrow County, Oregon: Draft Environmental Impact Statement.

    SciTech Connect

    United States. Bonneville Power Administration.

    1994-01-01

    BPA is considering whether to transfer (wheel) electrical power from a proposed privately-owned, combustion-turbine electrical generation plant in Oregon. The plant would be fired by natural gas and would use combined-cycle technology to generate up to 440 average megawatts (aMW) of energy. The plant would be developed, owned, and operated by Portland General Electric Company (PGE). The project would be built in eastern Oregon, just east of the City of Boardman in Morrow County. The proposed plant would be built on a site within the Port of Morrow Industrial Park. The proposed use for the site is consistent with the County land use plan. Building the transmission line needed to interconnect the power plant to BPA`s transmission system would require a variance from Morrow County. BPA would transfer power from the plant to its McNary-Slatt 500-kV transmission line. PGE would pay BPA for wheeling services. Key environmental concerns identified in the scoping process and evaluated in the draft Environmental Impact Statement (DEIS) include these potential impacts: (1) air quality impacts, such as emissions and their contributions to the {open_quotes}greenhouse{close_quotes} effect; (2) health and safety impacts, such as effects of electric and magnetic fields, (3) noise impacts, (4) farmland impacts, (5) water vapor impacts to transportation, (6) economic development and employment impacts, (7) visual impacts, (8) consistency with local comprehensive plans, and (9) water quality and supply impacts, such as the amount of wastewater discharged, and the source and amount of water required to operate the plant. These and other issues are discussed in the DEIS. The proposed project includes features designed to reduce environmental impacts. Based on studies completed for the DEIS, adverse environmental impacts associated with the proposed project were identified, and no evidence emerged to suggest that the proposed action is controversial.

  19. Dynamic Models for Wind Turbines and Wind Power Plants

    SciTech Connect

    Singh, M.; Santoso, S.

    2011-10-01

    The primary objective of this report was to develop universal manufacturer-independent wind turbine and wind power plant models that can be shared, used, and improved without any restrictions by project developers, manufacturers, and engineers. Manufacturer-specific models of wind turbines are favored for use in wind power interconnection studies. While they are detailed and accurate, their usages are limited to the terms of the non-disclosure agreement, thus stifling model sharing. The primary objective of the work proposed is to develop universal manufacturer-independent wind power plant models that can be shared, used, and improved without any restrictions by project developers, manufacturers, and engineers. Each of these models includes representations of general turbine aerodynamics, the mechanical drive-train, and the electrical characteristics of the generator and converter, as well as the control systems typically used. To determine how realistic model performance is, the performance of one of the models (doubly-fed induction generator model) has been validated using real-world wind power plant data. This work also documents selected applications of these models.

  20. Ecological compensation: From general guidance and expertise to specific proposals for road developments

    SciTech Connect

    Villarroya, Ana; Puig, Jordi

    2014-02-15

    The main scientific bibliography addressing the rationale behind ecological compensation is reviewed in order to examine general guidelines. This contains interesting general guidance on how to implement compensation, and provides the basis for future developments in compensation practice. On this basis, we propose a further step in compensation practice, advancing compensation proposals or rules for specific kinds of projects and contexts, focusing on road projects in the Spanish Environmental Impact Assessment (EIA). Three main residual impacts of roads are identified which usually remain uncompensated for: the loss of natural and semi-natural land use, the increase in emissions resulting from any new road, and the fragmentation, severance or barrier effect on the landscape and its wildlife. To counteract these, four proposals, or “rules”, are advanced: conservation of natural and semi-natural land use area, conservation of dominant plant species physiognomy, compensation for emissions, and the rule of positive defragmentation. -- Highlights: • Ecological compensation theory does not specify guidelines for types of projects. • EIA practitioners lack valuable specific guidance on how to implement compensation. • Specific guidance for road project ecological compensation is proposed. • Compensation proposals should have in mind present-day compensation practice level. • Specific ways to compensate for habitat loss, emissions, and fragmentation are shown.

  1. Demonstration of 5MW PAFC power plant

    SciTech Connect

    Usami, Yutaka; Takae, Toshio

    1996-12-31

    Phosphoric Acid Fuel Cell Technology Research Association, established in May 1991 by Japanese 10 electric power and 4 gas companies, started a new project in 1991 FY, with the object of PAFC realization and aiming the development of 5MW- class PAFC. power plant for urban energy center and 1 MW- class power plant for onsite use. This project is carried out as 6 years plan jointly with New Energy and Industrial Technology Development Organization. The targets of the project are to evaluate and resolve the development task, such as a high reliability, compactness and cost reduction throughout the engineering, manufacturing and field testing of PAFC power plants. PAC tests and power generating test operations of 5MW plant were completed in 1994. Conducting the 2 years continuous operations and studies since 1995, the plant operational performance, system control characteristics, waste heat recovery and environmental advantage will be demonstrated.

  2. CE IGCC Repowering plant sulfuric acid plant. Topical report, June 1993

    SciTech Connect

    Chester, A.M.

    1993-12-01

    A goal of the CE IGCC Repowering project is to demonstrate a hot gas clean-up system (HGCU), for the removal of sulfur from the product gas stream exiting the gasifier island. Combustion Engineering, Inc. (ABB CE) intends to use a HGCU developed by General Electric Environmental Services (GEESI). The original design of this system called for the installation of the HGCU, with a conventional cold gas clean-up system included as a full-load operational back-up. Each of these systems removes sulfur compounds and converts them into an acid off-gas. This report deals with the investigation of equipment to treat this off-gas, recovering these sulfur compounds as elemental sulfur, sulfuric acid or some other form. ABB CE contracted ABB Lummus Crest Inc. (ABB LCI) to perform an engineering evaluation to compare several such process options. This study concluded that the installation of a sulfuric acid plant represented the best option from both a technical and economic point of view. Based on this evaluation, ABB CE specified that a sulfuric acid plant be installed to remove sulfur from off-gas exiling the gas clean-up system. ABB LCI prepared a request for quotation (RFQ) for the construction of a sulfuric acid production plant. Monsanto Enviro-Chem Inc. presented the only proposal, and was eventually selected as the EPC contractor for this system.

  3. Power plant emissions reduction

    SciTech Connect

    Anand, Ashok Kumar; Nagarjuna Reddy, Thirumala Reddy

    2015-10-20

    A system for improved emissions performance of a power plant generally includes an exhaust gas recirculation system having an exhaust gas compressor disposed downstream from the combustor, a condensation collection system at least partially disposed upstream from the exhaust gas compressor, and a mixing chamber in fluid communication with the exhaust gas compressor and the condensation collection system, where the mixing chamber is in fluid communication with the combustor.

  4. Power Plant Replacement Study

    SciTech Connect

    Reed, Gary

    2010-09-30

    This report represents the final report for the Eastern Illinois University power plant replacement study. It contains all related documentation from consideration of possible solutions to the final recommended option. Included are the economic justifications associated with the chosen solution along with application for environmental permitting for the selected project for construction. This final report will summarize the results of execution of an EPC (energy performance contract) investment grade audit (IGA) which lead to an energy services agreement (ESA). The project includes scope of work to design and install energy conservation measures which are guaranteed by the contractor to be self-funding over its twenty year contract duration. The cost recovery is derived from systems performance improvements leading to energy savings. The prime focus of this EPC effort is to provide a replacement solution for Eastern Illinois Universitys aging and failing circa 1925 central steam production plant. Twenty-three ECMs were considered viable whose net impact will provide sufficient savings to successfully support the overall project objectives.

  5. Power Plant Replacement Study

    SciTech Connect

    Reed, Gary

    2010-09-30

    This report represents the final report for the Eastern Illinois University power plant replacement study. It contains all related documentation from consideration of possible solutions to the final recommended option. Included are the economic justifications associated with the chosen solution along with application for environmental permitting for the selected project for construction. This final report will summarize the results of execution of an EPC (energy performance contract) investment grade audit (IGA) which lead to an energy services agreement (ESA). The project includes scope of work to design and install energy conservation measures which are guaranteed by the contractor to be self-funding over its twenty year contract duration. The cost recovery is derived from systems performance improvements leading to energy savings. The prime focus of this EPC effort is to provide a replacement solution for Eastern Illinois University’s aging and failing circa 1925 central steam production plant. Twenty-three ECMs were considered viable whose net impact will provide sufficient savings to successfully support the overall project objectives.

  6. Power Plant Replacement Study

    SciTech Connect

    Reed, Gary

    2010-09-30

    This report represents the final report for the Eastern Illinois University power plant replacement study. It contains all related documentation from consideration of possible solutions to the final recommended option. Included are the economic justifications associated with the chosen solution along with application for environmental permitting for the selected project for construction. This final report will summarize the results of execution of an EPC (energy performance contract) investment grade audit (IGA) which lead to an energy services agreement (ESA). The project includes scope of work to design and install energy conservation measures which are guaranteed by the contractor to be self‐funding over its twenty year contract duration. The cost recovery is derived from systems performance improvements leading to energy savings. The prime focus of this EPC effort is to provide a replacement solution for Eastern Illinois University’s aging and failing circa 1925 central steam production plant. Twenty‐three ECMs were considered viable whose net impact will provide sufficient savings to successfully support the overall project objectives.

  7. Power Plant Replacement Study

    SciTech Connect

    Reed, Gary

    2010-09-30

    This report represents the final report for the Eastern Illinois University power plant replacement study. It contains all related documentation from consideration of possible solutions to the final recommended option. Included are the economic justifications associated with the chosen solution along with application for environmental permitting for the selected project for construction. This final report will summarize the results of execution of an EPC (energy performance contract) investment grade audit (IGA) which lead to an energy services agreement (ESA). The project includes scope of work to design and install energy conservation measures which are guaranteed by the contractor to be self-funding over its twenty year contract duration. The cost recovery is derived from systems performance improvements leading to energy savings. The prime focus of this EPC effort is to provide a replacement solution for Eastern Illinois University's aging and failing circa 1925 central steam production plant. Twenty-three ECMs were considered viable whose net impact will provide sufficient savings to successfully support the overall project objectives.

  8. EARLY ENTRANCE COPRODUCTION PLANT

    SciTech Connect

    Abdalla H. Ali; John H. Anderson; Earl R. Berry; Charles H. Schrader; Lalit S. Shah

    2003-04-16

    The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which produces at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using ChevronTexaco's proprietary gasification technology. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The partners in this project are TES (a subsidiary of ChevronTexaco), General Electric (GE), Praxair, and Kellogg Brown & Root (KBR) in addition to the U.S. Department of Energy (DOE). TES is providing gasification technology and Fischer-Tropsch (F-T) technology developed by Rentech, GE is providing combustion turbine technology, Praxair is providing air separation technology, and KBR is providing engineering. Each of the EECP subsystems were assessed for technical risks and barriers. A plan was identified to mitigate the identified risks (Phase II RD&T Plan, October 2000). The RD&T Plan identified petroleum coke characteristics as a potential technical risk. The composition of petroleum coke varies from one refinery to another. Petroleum coke characteristics are a function of the crude oil slate available at the refinery and the coker operating parameters. The specific

  9. Iodine-131 releases from the Hanford Site, 1944--1947. Volume 2, Data: Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Heeb, C.M.

    1993-03-01

    Detailed results of the Hanford Environmental Dose Reconstruction project (HEDR) iodine-131 release reconstruction are presented in this volume. Included are daily data on B, D, and F Plant, reactor operations from the P-Department Daily Reports (General Electric Company 1947). Tables of B and T Plant material processed from the three principal sources on separations plant operations: The Jaech report (Jaech undated), the 200 Area Report (Acken and Bird 1945; Bird and Donihee 1945), and the Metal History Reports (General Electric Company 1946). A transcription of the Jaech report is also provided because it is computer-generated and is not readily readable in its original format. The iodine-131 release data are from the STRM model. Cut-by-cut release estimates are provided, along with daily, monthly, and yearly summations. These summations are based on the hourly release estimates. The hourly data are contained in a 28 megabyte electronic file. Interested individuals may request a copy.

  10. EARLY ENTRANCE COPRODUCTION PLANT

    SciTech Connect

    Fred D. Brent; Lalit Shah; Earl Berry; Charles H. Schrader; John Anderson; J. Erwin; Matthew G. Banks; Terry L. Ullman

    2004-01-12

    The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which uses petroleum coke to produce at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using ChevronTexaco's proprietary gasification technology. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The partners in this project are Texaco Energy Systems LLC or TES (a subsidiary of ChevronTexaco), General Electric (GE), Praxair, and Kellogg Brown & Root (KBR) in addition to the U.S. Department of Energy (DOE). TES is providing gasification technology and Fischer-Tropsch (F-T) technology developed by Rentech, GE is providing combustion turbine technology, Praxair is providing air separation technology, and KBR is providing engineering. Each of the EECP subsystems was assessed for technical risks and barriers. A plan was developed to mitigate the identified risks (Phase II RD&T Plan, October 2000). Phase II RD&T Task 2.6 identified as potential technical risks to the EECP the fuel/engine performance and emissions of the F-T diesel fuel products. Hydrotreating the neat F-T diesel product reduces potentially reactive olefins, oxygenates, and acids levels

  11. EARLY ENTRANCE COPRODUCTION PLANT

    SciTech Connect

    John Anderson; Charles Schrader

    2004-01-26

    In 1999, the U. S. Department of Energy (DOE) awarded a Cooperative Agreement to Texaco Energy Systems Inc. to provide a preliminary engineering design of an Early Entrance Coproduction Plant (EECP). Since the award, continuous and diligent work has been undertaken to achieve the design of an economical facility that makes strides toward attaining the goal of DOE's Vision 21 Program. The objective of the EECP is to convert coal and/or petroleum coke to power while coproducing transportation fuels, chemicals, and useful utilities such as steam. This objective is being pursued in a three-phase effort through the partnership of the DOE with prime contractor Texaco Energy Systems, LLC. (TES), the successor to Texaco Energy Systems, Inc. The key subcontractors to TES include General Electric (GE), Praxair, and Kellogg Brown and Root. ChevronTexaco provided gasification technology and Rentech Inc.'s Fischer-Tropsch (F-T) technology that has been developed for non-natural gas sources. GE provided gas turbine technology for the combustion of low energy content gas. Praxair provided air separation technology and KBR provided engineering to integrate the facility. A conceptual design was completed in Phase I and the report was accepted by the DOE in May 2001. The Phase I work identified risks and critical research, development, and testing that would improve the probability of technical success of the EECP. The objective of Phase II was to mitigate the risks by executing research, development, and testing. Results from the Phase II work are the subject of this report. As the work of Phase II concluded, it became evident that sufficient, but not necessarily complete, technical information and data would be available to begin Phase III - Preliminary Engineering Design. Work in Phase II requires additional technical development work to correctly apply technology at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental

  12. Supercritical plants to come online in 2009

    SciTech Connect

    Spring, N.

    2009-07-15

    A trio of coal-fired power plants using supercritical technology set to enter service this year. These are: We Energies is Elm Road Generating Station in Wisconsin, a two-unit, 1,230 MW supercritical plant that will burn bituminous coal; a 750 MW supercritical coal-fired power plant at the Comanche Generating Station in Pueblo, Colo., the third unit at the site; and Luminant's Oak Grove plant in Texas which will consist of two supercritical, lignite-fueled power generation units. When complete, the plant will deliver about 1,6000 MW. Some details are given on each of these projects. 2 photos.

  13. Finance and supply management project execution plan

    SciTech Connect

    BENNION, S.I.

    1999-02-10

    As a subproject of the HANDI 2000 project, the Finance and Supply Management system is intended to serve FDH and Project Hanford major subcontractor with financial processes including general ledger, project costing, budgeting, and accounts payable, and supply management process including purchasing, inventory and contracts management. Currently these functions are performed with numerous legacy information systems and suboptimized processes.

  14. State power plant productivity programs

    SciTech Connect

    Not Available

    1981-02-01

    The findings of a working group formed to review the status of efforts by utilities and utility regulators to increase the availability and reliability of generating units are presented. Representatives from nine state regulatory agencies, NRRI, and DOE, participated on the Working Group. The Federal government has been working cooperatively with utilities, utility organizations, and with regulators to encourage and facilitate improvements in power plant productivity. Cooperative projects undertaken with regulatory and energy commissions in California, Illinois, New York, Ohio, Texas, North Carolina and Mighigan are described. Following initiation of these cooperative projects, DOE funded a survey to determine which states were explicitly addressing power plant productivity through the regulatory process. The Working Group was formed following completion of this survey. The Working Group emphasized the need for those power plant productivity improvements which are cost effective. The cost effectiveness of proposed availability improvement projects should be determined within the context of opportunities for operating and capital improvements available to an entire utility. The Working Group also identified the need for: allowing for plant designs that have a higher construction cost, but are also more reliable; allowing for recovery and reducing recovery lags for productivity-related capital expenditures; identifying and reducing disincentives in the regulatory process; ascertaining that utilities have sufficient money available to undertake timely maintenance; and support of EPRI and NERC to develop a relevant and accurate national data base. The DOE views these as extremely important aspects of any regulatory program to improve power plant productivity.

  15. 7He General Tables

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    He General Table The General Table for 7He is subdivided into the following categories: Experimental Theoretical Model Calculations Hypernuclei and Mesons Pions

  16. 9He General Tables

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    He General Table The General Table for 9He is subdivided into the following categories: Shell Model Other Model Calculations Theoretical

  17. General | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    General Jump to: navigation, search Informacin y Documentos Herramientas y Modelos <> Estadsticas de Energas Renovables Volver Pgina principal General banner.jpg Retrieved...

  18. 5H General Tables

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    H General Table The General Table for 5H is subdivided into the following categories: Cluster Model Hypernuclei Model Calculations Photodisintegration Pions...

  19. 10He General Tables

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    General Table The General Table for 10He is subdivided into the following categories: Theoretical Shell Model Cluster Model Other Models Special States Electromagnetic Transitions...

  20. Master plan: Guntersville Reservoir Aquatic Plant Management. Executive summary

    SciTech Connect

    Not Available

    1992-12-31

    In 1989, Congress provided funding to start a five-year comprehensive project to manage aquatic plants in Guntersville Reservoir, to be jointly implemented by the US Army Corps of Engineers (Corps) and Tennessee Valley Authority (TVA). TVA serves as the overall project coordinator and is the lead agency for this project. Known as the Joint Agency Guntersville Project (JAGP), the project will test and demonstrate innovative management technologies, and incorporate the most effective technologies into a comprehensive aquatic plant management plan for Guntersville Reservoir. The JAGP is intended to serve as a National Demonstration Project for aquatic plant management. As part of this JAGP, the Master Plan for Aquatic Plant Management for the Guntersville Reservoir Project, Alabama-Tennessee is authorized by Corps Contract Number DACW62-90-C-0067.

  1. USDOE Innovative Clean Coal Technology Demonstration Project: Passamaquoddy Technology Recovery Scrubber{trademark}. Final report: Volume 1

    SciTech Connect

    Not Available

    1994-02-01

    This Final Report provides available design, operational, and maintenance information, and marketing plans, on the Passamaquoddy Technology Recovery Scrubber{trademark} demonstration Project at the Dragon Products company`s cement plant at Thomaston, Maine. In addition, data on pollutant removal efficiencies and system economics are reviewed. The Recovery Scrubber was developed to simultaneously address the emission of acid gas pollutants and the disposal of alkaline solid waste at a cement plant. The process, however, has general application to other combustion processes including waste or fossil fuel fired boilers. Selected chemistry of the exhaust gas, (before and after treatment by the Recovery Scrubber), selected chemistry of the cement plant kiln baghouse dust catch (before and after treatment by the Recovery Scrubber), and Dragon cement plant economics are presented. current marketing efforts and potential markets for the Recovery Scrubber in several industries are discussed.

  2. Project 1027697

    Office of Scientific and Technical Information (OSTI)

    William Apel and Frank Roberto at) the Biotechnology Department at the INEEL. Each part of this project is funded under a different contract with the Science Division of the US ...

  3. RENOTER Project

    Energy.gov [DOE]

    Overview of French project on thermoelectric waste heat recovery for cars and trucks with focus on cheap, available, efficient, and sustainable TE materials, as well as efficient material integration and production process.

  4. EGS Projects

    Energy.gov [DOE]

    EGS projects span research, development, and demonstration. Unlike traditional hydrothermal systems, EGS capture heat from areas that traditional geothermal energy cannot—where fluid and/or...

  5. Lessons learned from existing biomass power plants

    SciTech Connect

    Wiltsee, G.

    2000-02-24

    This report includes summary information on 20 biomass power plants, which represent some of the leaders in the industry. In each category an effort is made to identify plants that illustrate particular points. The project experiences described capture some important lessons learned that lead in the direction of an improved biomass power industry.

  6. Jennings Demonstration PLant

    SciTech Connect

    Russ Heissner

    2010-08-31

    Verenium operated a demonstration plant with a capacity to produce 1.4 million gallons of cellulosic ethanol from agricultural resiues for about two years. During this time, the plant was able to evaluate the technical issues in producing ethanol from three different cellulosic feedstocks, sugar cane bagasse, energy cane, and sorghum. The project was intended to develop a better understanding of the operating parameters that would inform a commercial sized operation. Issues related to feedstock variability, use of hydrolytic enzymes, and the viability of fermentative organisms were evaluated. Considerable success was achieved with pretreatment processes and use of enzymes but challenges were encountered with feedstock variability and fermentation systems. Limited amounts of cellulosic ethanol were produced.

  7. Grace adds hydroprocessing plant

    SciTech Connect

    Fattah, H.

    1997-01-01

    W.R. Grace`s Davison Refining Catalysts Division will build a 20-million lbs/year hydroprocessing catalysts plant at Lake Charles, LA. The plant, planned for startup in early 1998, is part of the company`s ongoing effort to increase capacity to take advantage of significant growth in the hydroprocessing markets. The move {open_quotes}signifies a major step in our long-term commitment to the market,{close_quotes} says Robert Bullard, v.p./hydroprocessing catalysts. Davison also has an expansion scheduled for startup in February at its hydroprocessing catalysts plant at Curtis Bay, MD that will raise capacity there to 30 million lbs/year. The Lake Charles plant and the expansion total $40 million in investment, Grace says. Catalyst Consultants (Spring House, PA) expects growth of hydroprocessing demand to outstrip capacity, which is projected to grow 2.5%-3.5%/year. Demand is largely being fueled by tough environmental requirements on the sulfur content of gasoline, as well as by increased use of heavy, sour crude oil.

  8. Research Projects

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Research Projects » Past Research Projects Composite-to-Steel Joint Integrity Monitoring and Assessment Collaboration between Los Alamos National Laboratory and the University of California at San Diego (UCSD) Jacobs School of Engineering Contact Institute Director Charles Farrar (505) 663-5330 Email UCSD EI Director Michael Todd (858) 534-5951 Professional Staff Assistant Ellie Vigil (505) 667-2818 Email Administrative Assistant Rebecca Duran (505) 665-8899 Email UCSD Faculty and Graduate

  9. Research Projects

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Research Projects Joint Los Alamos National Laboratory/UCSD Research Projects Collaborations between Los Alamos National Laboratory and the University of California at San Diego (UCSD) Jacobs School of Engineering Contact Institute Director Charles Farrar (505) 663-5330 Email UCSD EI Director Michael Todd (858) 534-5951 Professional Staff Assistant Jutta Kayser (505) 663-5649 Email Administrative Assistant Stacy Baker (505) 663-5233 Email "Since 2003, LANL has funded numerous collaborative

  10. Healy Clean Coal Project

    SciTech Connect

    1997-12-31

    The Healy Clean Coal Project, selected by the U.S. Department of Energy under Round 111 of the Clean Coal Technology Program, has been constructed and is currently in the Phase 111 Demonstration Testing. The project is owned and financed by the Alaska Industrial Development and Export Authority (AIDEA), and is cofunded by the U.S. Department of Energy. Construction was 100% completed in mid-November of 1997, with coal firing trials starting in early 1998. Demonstration testing and reporting of the results will take place in 1998, followed by commercial operation of the facility. The emission levels of nitrogen oxides (NOx), sulfur dioxide (S02), and particulate from this 50-megawatt plant are expected to be significantly lower than current standards.

  11. Puget Sound Tidal Energy In-Water Testing and Development Project Final Technical Report

    SciTech Connect

    Craig W. Collar

    2012-11-16

    Tidal energy represents potential for the generation of renewable, emission free, environmentally benign, and cost effective energy from tidal flows. A successful tidal energy demonstration project in Puget Sound, Washington may enable significant commercial development resulting in important benefits for the northwest region and the nation. This project promoted the United States Department of Energy’s Wind and Hydropower Technologies Program’s goals of advancing the commercial viability, cost-competitiveness, and market acceptance of marine hydrokinetic systems. The objective of the Puget Sound Tidal Energy Demonstration Project is to conduct in-water testing and evaluation of tidal energy technology as a first step toward potential construction of a commercial-scale tidal energy power plant. The specific goal of the project phase covered by this award was to conduct all activities necessary to complete engineering design and obtain construction approvals for a pilot demonstration plant in the Admiralty Inlet region of the Puget Sound. Public Utility District No. 1 of Snohomish County (The District) accomplished the objectives of this award through four tasks: Detailed Admiralty Inlet Site Studies, Plant Design and Construction Planning, Environmental and Regulatory Activities, and Management and Reporting. Pre-Installation studies completed under this award provided invaluable data used for site selection, environmental evaluation and permitting, plant design, and construction planning. However, these data gathering efforts are not only important to the Admiralty Inlet pilot project. Lessons learned, in particular environmental data gathering methods, can be applied to future tidal energy projects in the United States and other parts of the world. The District collaborated extensively with project stakeholders to complete the tasks for this award. This included Federal, State, and local government agencies, tribal governments, environmental

  12. Wabash River Coal Gasification Repowering Project

    SciTech Connect

    Amick, P.; Mann, G.J.; Cook, J.J.; Fisackerly, R.; Spears, R.C.

    1992-01-01

    The Destec gasification process features an oxygen-blown, two stage entrained flow gasifier. PSI will procure coal for the Project consistent with the design specification ranges of Destec's coal gasification facility. Destec's plant will be designed to accept coal with a maximum sulfur content of 5.9% (dry basis) and a minimum energy content of 13,5000 BTU/pound (moisture and ash free basis). PSI and Destec will test at least two other coals for significant periods during the demonstration period. In the Destec process, coal is ground with water to form a slurry. It is then pumped into a gasification vessel where oxygen is added to form a hot raw gas through partial combustion. Most of the noncarbon material in the coal melts and flows out the bottom of the vessel forming slag -- a black, glassy, non-leaching, sand-like material. Particulates, sulfur and other impurities are removed from the gas before combustion to make it acceptable fuel for the gas turbine. The synthetic fuel gas (syngas) is piped to a General Electric MS 7001F high temperature combustion turbine generator. A heat recovery steam generator recovers gas turbine exhaust heat to produce high pressure steam. This steam and the steam generated in the gasification process supply an existing steam turbine-generator. The plant will be designed to outperform air emission standards established by the Clean Air Act Amendments for the year 2000.

  13. Wabash River Coal Gasification Repowering Project

    SciTech Connect

    Amick, P.; Mann, G.J.; Cook, J.J.; Fisackerly, R.; Spears, R.C.

    1992-11-01

    The Destec gasification process features an oxygen-blown, two stage entrained flow gasifier. PSI will procure coal for the Project consistent with the design specification ranges of Destec`s coal gasification facility. Destec`s plant will be designed to accept coal with a maximum sulfur content of 5.9% (dry basis) and a minimum energy content of 13,5000 BTU/pound (moisture and ash free basis). PSI and Destec will test at least two other coals for significant periods during the demonstration period. In the Destec process, coal is ground with water to form a slurry. It is then pumped into a gasification vessel where oxygen is added to form a hot raw gas through partial combustion. Most of the noncarbon material in the coal melts and flows out the bottom of the vessel forming slag -- a black, glassy, non-leaching, sand-like material. Particulates, sulfur and other impurities are removed from the gas before combustion to make it acceptable fuel for the gas turbine. The synthetic fuel gas (syngas) is piped to a General Electric MS 7001F high temperature combustion turbine generator. A heat recovery steam generator recovers gas turbine exhaust heat to produce high pressure steam. This steam and the steam generated in the gasification process supply an existing steam turbine-generator. The plant will be designed to outperform air emission standards established by the Clean Air Act Amendments for the year 2000.

  14. (SSS)Project Dashboard.xls

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Date: 10/27/2016 Program Contractor Project Number Project Title Original Project Budget Project Budget Monthly Overall Assessment 1 EM Bechtel National Inc. 01-D-416 Waste Treatment and Immobilization Plant (WTP) 5,781,000,000 $ 12,263,000,000 $ R 2 EM Parsons Government Services Inc. 05-D-405 Salt Waste Processing Facility (SWPF) 900,000,000 $ 2,322,000,000 $ G 3 EM CH2M Hill Plateau Remediation Company 15-D-401 KW Basin Sludge Removal Project 311,000,000 $ 311,000,000 $ G 4 EM Savannah River

  15. September 2016 Project Dashboard.xls

    Energy Saver

    Date: 09/26/2016 Program Contractor Project Number Project Title Original Project Budget Project Budget Monthly Overall Assessment 1 EM Bechtel National Inc. 01-D-416 Waste Treatment and Immobilization Plant (WTP) 5,781,000,000 $ 12,263,000,000 $ R 2 EM Parsons Government Services Inc. 05-D-405 Salt Waste Processing Facility (SWPF) 900,000,000 $ 2,322,000,000 $ G 3 EM CH2M Hill Plateau Remediation Company 15-D-401 KW Basin Sludge Removal Project 311,000,000 $ 311,000,000 $ G 4 EM Savannah River

  16. EIS-0470: Cape Wind Energy Project, Nantucket Sound, Offshore of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Massachusetts | Department of Energy 0: Cape Wind Energy Project, Nantucket Sound, Offshore of Massachusetts EIS-0470: Cape Wind Energy Project, Nantucket Sound, Offshore of Massachusetts June 25, 2014 EIS-0470: Cape Wind Energy Project, Final General Conformity Determination Cape Wind Energy Project, Final General Conformity Determination, June 23, 2014 December 21, 2012 EIS-0470: Final Environmental Impact Statement Cape Wind Energy Project, Nantucket Sound, MA December 31, 2012 EIS-0470:

  17. EARLY ENTRANCE COPRODUCTION PLANT

    SciTech Connect

    Charles Benham; Mark Bohn; John Anderson; Earl Berry; Fred Brent; Ming He; Randy Roberts; Lalit Shah; Marjan Roos

    2003-09-15

    The 1999 U. S. Department of Energy (DOE) award to Texaco Energy Systems Inc. (presently Texaco Energy Systems LLC, a subsidiary of ChevronTexaco) was made to provide a Preliminary Engineering Design of an Early Entrance Coproduction Plant (EECP). Since the award presentation, work has been undertaken to achieve an economical concept design that makes strides toward the DOE Vision 21 goal. The objective of the EECP is to convert coal and/or petroleum coke to electric power plus transportation fuels, chemicals and useful utilities such as steam. The use of petroleum coke was added as a fuel to reduce the cost of feedstock and also to increase the probability of commercial implementation of the EECP concept. This objective has been pursued in a three phase effort through the partnership of the DOE with prime contractor Texaco Energy Systems LLC and subcontractors General Electric (GE), Praxair, and Kellogg Brown and Root (KBR). ChevronTexaco is providing gasification technology and Rentech's Fischer-Tropsch technology that has been developed for non-natural gas feed sources. GE is providing gas turbine technology for the combustion of low energy content gas. Praxair is providing air separation technology, and KBR is providing engineering to integrate the facility. The objective of Phase I was to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. Phase I Preliminary Concept Report was completed in 2000. The Phase I Preliminary Concept Report was prepared based on making

  18. Phase I: the pipeline-gas demonstration plant. Demonstration plant engineering and design. Volume 17. Plant section 2500 - Plant and Instrument Air

    SciTech Connect

    1981-05-01

    Contract No. EF-77-C-01-2542 between Conoco Inc. and the US Department of Energy provides for the design, construction, and operation of a demonstration plant capable of processing bituminous caking coals into clean pipeline quality gas. The project is currently in the design phase (Phase I). This phase is scheduled to be completed in June 1981. One of the major efforts of Phase I is the process and project engineering design of the Demonstration Plant. The design has been completed and is being reported in 24 volumes. This is Volume 17 which reports the design of Plant Section 2500 - Plant and Instrument Air. The plant and instrument air system is designed to provide dry, compressed air for a multitude of uses in plant operations and maintenance. A single centrifugal air compressor provides the total plant and instrument air requirements. An air drying system reduces the dew point of the plant and instrument air. Plant Section 2500 is designed to provide air at 100/sup 0/F and 100 psig. Both plant and instrument air are dried to a -40/sup 0/F dew point. Normal plant and instrument air requirements total 1430 standard cubic feet per minute.

  19. EARLY ENTRANCE COPRODUCTION PLANT

    SciTech Connect

    Mushtaq Ahmed; John H. Anderson; Charles Benham; Earl R. Berry; Fred Brent; Belma Demirel; Ming He; Troy Raybold; Manuel E. Quintana; Lalit S. Shah; Kenneth A. Yackly

    2003-06-09

    The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which produces at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals. The objective is to have these products produced by technologies capable of using synthesis gas derived from coal and/or other carbonaceous feedstocks. The objectives of Phase I were to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan for implementation in Phase II; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology that produces high-value products, particularly those that are critical to our domestic fuel and power requirements. The project will resolve critical knowledge and technology gaps on the integration of gasification and downstream processing to coproduce some combination of power, fuels, and chemicals from coal and/or other carbonaceous feedstocks. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation.

  20. EARLY ENTRANCE COPRODUCTION PLANT

    SciTech Connect

    Mushtaq Ahmed; John H. Anderson; Earl R. Berry; Fred Brent; Ming He; Jimmy O. Ong; Mike K. Porter; Randy Roberts; Charles H. Schrader; Lalit S. Shah; Kenneth A. Yackly

    2002-11-22

    The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which produces at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals. The objective is to have these products produced by technologies capable of using synthesis gas derived from coal and/or other carbonaceous feedstocks. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan for implementation in Phase II; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology that produces high-value products, particularly those that are critical to our domestic fuel and power requirements. The project will resolve critical knowledge and technology gaps on the integration of gasification and downstream processing to coproduce some combination of power, fuels, and chemicals from coal and/or other carbonaceous feedstocks. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation.

  1. 2020 Vision Project Summary

    SciTech Connect

    Gordon, K.W.; Scott, K.P.

    2000-11-01

    Since the 2020 Vision project began in 1996, students from participating schools have completed and submitted a variety of scenarios describing potential world and regional conditions in the year 2020 and their possible effect on US national security. This report summarizes the students' views and describes trends observed over the course of the 2020 Vision project's five years. It also highlights the main organizational features of the project. An analysis of thematic trends among the scenarios showed interesting shifts in students' thinking, particularly in their views of computer technology, US relations with China, and globalization. In 1996, most students perceived computer technology as highly beneficial to society, but as the year 2000 approached, this technology was viewed with fear and suspicion, even personified as a malicious, uncontrollable being. Yet, after New Year's passed with little disruption, students generally again perceived computer technology as beneficial. Also in 1996, students tended to see US relations with China as potentially positive, with economic interaction proving favorable to both countries. By 2000, this view had transformed into a perception of China emerging as the US' main rival and ''enemy'' in the global geopolitical realm. Regarding globalization, students in the first two years of the project tended to perceive world events as dependent on US action. However, by the end of the project, they saw the US as having little control over world events and therefore, we Americans would need to cooperate and compromise with other nations in order to maintain our own well-being.

  2. DOE Project Scorecards

    Energy.gov [DOE]

    DOE Project Scorecards DOE project scorecards summarize capital asset project performance compared to the current approved baseline. 

  3. DOE Project Scorecards

    Energy.gov [DOE]

    DOE Project Scorecards DOEproject scorecards summarize capital asset project performance compared to the current approved baseline.

  4. Developing Government Renewable Energy Projects

    SciTech Connect

    Kurt S. Myers; Thomas L. Baldwin; Jason W. Bush; Jake P. Gentle

    2012-07-01

    The US Army Corps of Engineers has retained Idaho National Laboratory (INL) to conduct a study of past INL experiences and complete a report that identifies the processes that are needed for the development of renewable energy projects on government properties. The INL has always maintained expertise in power systems and applied engineering and INL’s renewable energy experiences date back to the 1980’s when our engineers began performing US Air Force wind energy feasibility studies and development projects. Over the last 20+ years of working with Department of Defense and other government agencies to study, design, and build government renewable projects, INL has experienced the do’s and don’ts for being successful with a project. These compiled guidelines for government renewable energy projects could include wind, hydro, geothermal, solar, biomass, or a variety of hybrid systems; however, for the purpose of narrowing the focus of this report, wind projects are the main topic discussed throughout this report. It is our thought that a lot of what is discussed could be applied, possibly with some modifications, to other areas of renewable energy. It is also important to note that individual projects (regardless the type) vary to some degree depending on location, size, and need but in general these concepts and directions can be carried over to the majority of government renewable energy projects. This report focuses on the initial development that needs to occur for any project to be a successful government renewable energy project.

  5. The Open PV Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    The Open PV Project The Open PV Project The Open PV Project is a collaborative effort between government, industry, and the public that is compiling a comprehensive database of photovoltaic (PV) installation data for the United States. Data for the project is voluntarily contributed from a variety of sources including utilities, installers, and the general public. The data collected is actively maintained by the contributors and are always changing to provide an evolving, up-to-date snapshot of

  6. PROJECT PROFILE: Boston University | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    PROJECT PROFILE: Boston University PROJECT PROFILE: Boston University Funding Opportunity: CSP: APOLLO SunShot Subprogram: CSP Location: Boston, MA Amount Awarded: $1,150,000 Awardee Cost Share: $390,864 Boston University Logo.png The Boston University project under CSP: Apollo will use laboratory-scale electrodynamic-screen self-cleaning solar technology with heliostat mirrors and parabolic troughs in large scale solar plants. The objective is to reduce both the need to clean mirrors with water

  7. Project LIBERTY Biorefinery Starts Cellulosic Ethanol Production |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Project LIBERTY Biorefinery Starts Cellulosic Ethanol Production Project LIBERTY Biorefinery Starts Cellulosic Ethanol Production September 3, 2014 - 12:05pm Addthis News Media Contact 202-586-4940 WASHINGTON - Project LIBERTY, the nation's first commercial-scale cellulosic ethanol plant to use corn waste as a feedstock, announced the start of production today. Once operating at full, commercial-scale, the biorefinery in Emmetsburg, Iowa will produce 25 million gallons

  8. DOE Technology Validation Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Stationary/Distributed Generation Projects » DOE Technology Validation Projects DOE Technology Validation Projects Stationary fuel cells can be used for backup power, power for remote locations, stand-alone power plants for towns and cities, distributed generation for buildings, and co-generation of heat and power. The Fuel Cell Technologies Office has a number of demonstrations underway to develop and evaluate the performance of fuel cells for stationary applications. The status of DOE's

  9. Project Specific Quality Assurance Plan (QAPP)

    SciTech Connect

    Huston, J.J.

    1994-11-01

    The Project QAPP`s describe the program and the planned actions which WHC will implement to demonstrate and ensure that the project meets the requirements of DOE Order 5700.6C. The Project involves retrieving the high-heat waste from Tank 241-C-106 to close the safety issue associate with the tank, demonstrate initial waste retrieval technology for a Single Shell Tank, and provide feed for the Hanford Waste Vitrification Plant.

  10. Generalized Cartan Calculus in general dimension

    DOE PAGES [OSTI]

    Wang, Yi -Nan

    2015-07-22

    We develop the generalized Cartan Calculus for the groups G = SL(2,R) × R+, SL(5,R) and SO(5,5). They are the underlying algebraic structures of d=9,7,6 exceptional field theory, respectively. These algebraic identities are needed for the "tensor hierarchy" structure in exceptional field theory. The validity of Poincar\\'e lemmas in this new differential geometry is also discussed. Lastly, we explore some possible extension of the generalized Cartan calculus beyond the exceptional series.

  11. Secretary Chu Announces Two New Projects to Reduce Emissions from Coal

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Plants | Department of Energy New Projects to Reduce Emissions from Coal Plants Secretary Chu Announces Two New Projects to Reduce Emissions from Coal Plants July 1, 2009 - 12:00am Addthis Washington, DC - U.S. Department of Energy Secretary Steven Chu announced today that projects by Basin Electric Power Cooperative and Hydrogen Energy International LLC have been selected for up to $408 million in funding from the American Recovery and Reinvestment Act. The two projects selected -- an

  12. Secretary Chu Announces Two New Projects to Reduce Emissions from Coal

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Plants | Department of Energy Two New Projects to Reduce Emissions from Coal Plants Secretary Chu Announces Two New Projects to Reduce Emissions from Coal Plants July 1, 2009 - 1:00pm Addthis Washington, DC - U.S. Department of Energy Secretary Steven Chu announced today that projects by Basin Electric Power Cooperative and Hydrogen Energy International LLC have been selected for up to $408 million in funding from the American Recovery and Reinvestment Act. The two projects selected -- an

  13. Mercury Emission Measurement at a CFB Plant

    SciTech Connect

    John Pavlish; Jeffrey Thompson; Lucinda Hamre

    2009-02-28

    In response to pending regulation to control mercury emissions in the United States and Canada, several projects have been conducted to perform accurate mass balances at pulverized coal (pc)-fired utilities. Part of the mercury mass balance always includes total gaseous mercury as well as a determination of the speciation of the mercury emissions and a concentration bound to the particulate matter. This information then becomes useful in applying mercury control strategies, since the elemental mercury has traditionally been difficult to control by most technologies. In this instance, oxidation technologies have proven most beneficial for increased capture. Despite many years of mercury measurement and control projects at pc-fired units, far less work has been done on circulating fluidized-bed (CFB) units, which are able to combust a variety of feedstocks, including cofiring coal with biomass. Indeed, these units have proven to be more problematic because it is very difficult to obtain a reliable mercury mass balance. These units tend to have very different temperature profiles than pc-fired utility boilers. The flexibility of CFB units also tends to be an issue when a mercury balance is determined, since the mercury inputs to the system come from the bed material and a variety of fuels, which can have quite variable chemistry, especially for mercury. In addition, as an integral part of the CFB operation, the system employs a feedback loop to circulate the bed material through the combustor and the solids collection system (the primary cyclone), thereby subjecting particulate-bound metals to higher temperatures again. Despite these issues, CFB boilers generally emit very little mercury and show good native capture. The Energy & Environmental Research Center is carrying out this project for Metso Power in order to characterize the fate of mercury across the unit at Rosebud Plant, an industrial user of CFB technology from Metso. Appropriate solids were collected, and

  14. Cloudnet Project

    SciTech Connect

    Hogan, Robin

    2008-01-15

    Cloudnet is a research project supported by the European Commission. This project aims to use data obtained quasi-continuously for the development and implementation of cloud remote sensing synergy algorithms. The use of active instruments (lidar and radar) results in detailed vertical profiles of important cloud parameters which cannot be derived from current satellite sensing techniques. A network of three already existing cloud remote sensing stations (CRS-stations) will be operated for a two year period, activities will be co-ordinated, data formats harmonised and analysis of the data performed to evaluate the representation of clouds in four major european weather forecast models.

  15. Cloudnet Project

    DOE Data Explorer

    Hogan, Robin

    Cloudnet is a research project supported by the European Commission. This project aims to use data obtained quasi-continuously for the development and implementation of cloud remote sensing synergy algorithms. The use of active instruments (lidar and radar) results in detailed vertical profiles of important cloud parameters which cannot be derived from current satellite sensing techniques. A network of three already existing cloud remote sensing stations (CRS-stations) will be operated for a two year period, activities will be co-ordinated, data formats harmonised and analysis of the data performed to evaluate the representation of clouds in four major european weather forecast models.

  16. Post Secondary Project Performance Benchmarks

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Post Secondary Project Performance Benchmarks (All ASHRAE Zones) continued > We define an ESCO as a company that provides energy efficiency-related and other value-added services and that employs performance contracting as a core part of its energy efficiency services business. 1 For projects with electricity savings, we assume site energy conversion (1 kWh = 3,412 Btu). We did not estimate avoided Btus from gallons of water conserved. In general, we followed the analytical approach

  17. Federal Government Project Performance Benchmarks

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Federal Government Project Performance Benchmarks (All ASHRAE Zones) We define an ESCO as a company that provides energy efficiency-related and other value-added services and that employs performance contracting as a core part of its energy efficiency services business. 1 For projects with electricity savings, we assume site energy conversion (1 kWh = 3,412 Btu). We did not estimate avoided Btus from gallons of water conserved. In general, we followed the analytical approach documented in Hopper

  18. Spent Nuclear Fuel project, project management plan

    SciTech Connect

    Fuquay, B.J.

    1995-10-25

    The Hanford Spent Nuclear Fuel Project has been established to safely store spent nuclear fuel at the Hanford Site. This Project Management Plan sets forth the management basis for the Spent Nuclear Fuel Project. The plan applies to all fabrication and construction projects, operation of the Spent Nuclear Fuel Project facilities, and necessary engineering and management functions within the scope of the project

  19. Breckinridge Project, initial effort

    SciTech Connect

    1982-01-01

    This report presents an overview of the Breckinridge Project and summarizes the results achieved during the development phase of the project performed under a Cooperative Agreement with the United States Department of Energy. The Breckinridge Project provides for the design, construction and operation of a 50,000 barrel per day coal liquefaction facility in Breckinridge County, Kentucky. The development of the basic technology used in the Breckinridge Project dates back to the late 1950's and the invention by Hydrocarbon Research, Inc., (HRI) of the ebullated-bed reactor and the H-OIL process. The H-COAL process is based on the H-OIL technology. This coal liquefaction process produces clean low-sulfur petroleum substitutes suitable for most types of hydrocarbon-based fuel and chemical uses regardless of the sulfur content of the coal. A large H-COAL Pilot Plant in operation at Catlettsburg, Kentucky, is converting 220 tons of coal per day into 600 barrels of distillate products by catalytic hydrogenation. The estimated capital cost of the commercial facility is $3.17 billion, and the associated out-of-pocket operating cost is $18 per barrel, both in January 1981 dollars. Financial analysis shows the project to be an attractive investment under certain leveraged conditions which are possible through the assistance of the Synthetic Fuels Corporation. Ashland Synthetic Fuels, Inc. is currently working with the Synthetic Fuels Corporation and potential partners to develop financing for the commercial venture. Critical permits are being obtained and an Environmental Impact Statement is being prepared pursuant to initiating site preparation in early 1983. Commercial operations are expected to start up in early 1988.

  20. Project Narrative

    SciTech Connect

    Driscoll, Mary C.

    2012-07-12

    The Project Narrative describes how the funds from the DOE grant were used to purchase equipment for the biology, chemistry, physics and mathematics departments. The Narrative also describes how the equipment is being used. There is also a list of the positive outcomes as a result of having the equipment that was purchased with the DOE grant.

  1. Mass Spectrometric Imaging of Plant Metabolites | The Ames Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Mass Spectrometric Imaging of Plant Metabolites FWP/Project Description: Project Leader(s): Basil Nikolau Principal Investigators: Robert Houk, Young-Jin Lee, Basil Nikolau We are developing mass spectrometric imaging techniques to map metabolite distributions within plant tissues, and eventually among individual plant cells. Such details will ultimately lead to a predictive understanding of the mechanisms that multicellular organisms use to regulate metabolic processes. By studying the

  2. EIS-0201: Coyote Springs Cogeneration Project, Morrow County, Oregon

    Energy.gov [DOE]

    This environmental impact statement analyzes the protential impacts of the Coyote Springs Cogeneration Project, a proposed natural gas-fired cogeneration power plant near Boardman, Oregon. The proposed power plant would be built on a 22-acre site in the Port of Morrow Industrial Park. The plant would have two combustion turbines that would generate 440 average megawatts of energy when completed.

  3. 8Be General Tables

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Be General Tables The General Table for 8Be is subdivided into the following categories: Reviews Ground State Properties Shell Model Cluster Model Other Models Photodisintegration Fission and Fusion Astrophysical b-decay Hypernuclei

  4. 8He General Tables

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    He General Tables The General Table for 8He is subdivided into the following categories: Reviews Ground-state Properties Shell Model Cluster Model Other Theoretical Work Elastic and Inelastic Scattering b-decay

  5. 9B General Tables

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    B General Table The General Table for 9B is subdivided into the following categories: Shell Model Cluster Model Theoretical Other Model Calculations Complex Reactions Beta-Decay Pions Light-ion and Neutron Induced Reactions Hypernuclei

  6. 9C General Tables

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    C General Table The General Table for 9C is subdivided into the following categories: Shell Model Cluster Model Other Models Theoretical Beta-Decay Light-ion and Neutron Induced Reactions Astrophysical

  7. Choosing an uninterruptible power supply for a hydro plant

    SciTech Connect

    Clemen, D.M.

    1994-06-01

    Uninterruptible power systems maintain electric power to the plant computer and other essential equipment in hydropower plants when the main power supplies fail. Project owners and engineers can ensure they obtain a reliable system by carefully analyzing plant needs and writing precise specifications.

  8. 2014 Awards for Project Management | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    4 Awards for Project Management 2014 Awards for Project Management Federal Project Director of the Year for 2014: Pepin Carolan (Office of Science) Secretary's Award of Excellence: Numi Off-axis electron neutrino (νe) Appearance (NOνA) Project (Office of Science) Secretary's Achievement Awards: Seismic Life-Safety, Modernization, and Replacement of General Purpose Buildings, Phase 2 Project (Office of Science) Security Improvements Project (The National Nuclear Security Administration) Energy

  9. 2014 QA Improvement Project Plan (August 2014).pdf

    Office of Environmental Management (EM)

    4 Awards for Project Management 2014 Awards for Project Management Federal Project Director of the Year for 2014: Pepin Carolan (Office of Science) Secretary's Award of Excellence: Numi Off-axis electron neutrino (νe) Appearance (NOνA) Project (Office of Science) Secretary's Achievement Awards: Seismic Life-Safety, Modernization, and Replacement of General Purpose Buildings, Phase 2 Project (Office of Science) Security Improvements Project (The National Nuclear Security Administration) Energy

  10. OFFICE OF INSPECTOR GENERAL

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    APP-005 Planning for and Measuring Office of Inspector General Results FY 2002 Annual Performance Report and FY 2003 Annual Performance Plan Office of Inspector General U.S. Department of Energy Inspector General's Message We are pleased to present the Office of Inspector General's (OIG) consolidated Fiscal Year 2002 Annual Performance Report and Fiscal Year 2003 Annual Performance Plan. This document evaluates our actual Fiscal Year (FY) 2002 performance and establishes the performance goals

  11. Applicant Location Requested DOE Funds Project Summary Feasibility Studies

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Requested DOE Funds Project Summary Feasibility Studies Confederated Salish and Kootenai Tribes Pablo, MT $850,000 This project will evaluate the technical and economic viability of a co-generation biomass fuel power plant. The plant would use fuels from tribal forest management activities to provide between 2.5 to 20 megawatts (MW) of electricity to heat tribal buildings or sell on the wholesale market. Standing Rock Sioux Tribe Fort Yates, ND $430,982 This project will perform a feasibility

  12. Generalized Cartan Calculus in general dimension

    SciTech Connect

    Wang, Yi -Nan

    2015-07-22

    We develop the generalized Cartan Calculus for the groups G = SL(2,R) × R+, SL(5,R) and SO(5,5). They are the underlying algebraic structures of d=9,7,6 exceptional field theory, respectively. These algebraic identities are needed for the "tensor hierarchy" structure in exceptional field theory. The validity of Poincar\\'e lemmas in this new differential geometry is also discussed. Lastly, we explore some possible extension of the generalized Cartan calculus beyond the exceptional series.

  13. Final Technical Report - Modernization of the Boulder Canyon Hydroelectric Project

    SciTech Connect

    Joe Taddeucci, P E

    2013-03-29

    techniques. Special efforts were directed toward documenting the (largely original) interior of the plant and installing new equipment without modifying the power plant exterior in order to preserve the historical significance of the facility. In addition, a significant portion of the historical equipment within the power plant was preserved in place. The modernization project began with DOE grant award on January 1, 2010, and the project was completed on December 31, 2012. In addition to city engineering and hydroelectric staff, major project participants included AECOM (design/engineering) Canyon Industries (turbine/generator manufacture), Gracon Corporation (general construction contractor), Exponential Engineering Company (electrical engineering) and URS Corporation (historical documentation), as well as numerous other subcontractors and consultants.

  14. A = 7 General Tables

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    7 General Tables The General Table for 7He is subdivided into the following categories: Experimental Theoretical Model Calculations Hypernuclei and Mesons Pions The General Table for 7Li is subdivided into the following categories: Reviews Ground State Properties Shell Model Cluster Model Other Theoretical Work Model Calculations Photodisintegration Polarization Fission and Fusion Elastic and Inelastic Scattering Projectile Fragmentation and Multifragmentation Astrophysical Hyperfine Structure

  15. FutureGen Project Report

    SciTech Connect

    Cabe, Jim; Elliott, Mike

    2010-09-30

    This report summarizes the comprehensive siting, permitting, engineering, design, and costing activities completed by the FutureGen Industrial Alliance, the Department of Energy, and associated supporting subcontractors to develop a first of a kind near zero emissions integrated gasification combined cycle power plant and carbon capture and storage project (IGCC-CCS). With the goal to design, build, and reliably operate the first IGCC-CCS facility, FutureGen would have been the lowest emitting pulverized coal power plant in the world, while providing a timely and relevant basis for coal combustion power plants deploying carbon capture in the future. The content of this report summarizes key findings and results of applicable project evaluations; modeling, design, and engineering assessments; cost estimate reports; and schedule and risk mitigation from initiation of the FutureGen project through final flow sheet analyses including capital and operating reports completed under DOE award DE-FE0000587. This project report necessarily builds upon previously completed siting, design, and development work executed under DOE award DE-FC26- 06NT4207 which included the siting process; environmental permitting, compliance, and mitigation under the National Environmental Policy Act; and development of conceptual and design basis documentation for the FutureGen plant. For completeness, the report includes as attachments the siting and design basis documents, as well as the source documentation for the following: • Site evaluation and selection process and environmental characterization • Underground Injection Control (UIC) Permit Application including well design and subsurface modeling • FutureGen IGCC-CCS Design Basis Document • Process evaluations and technology selection via Illinois Clean Coal Review Board Technical Report • Process flow diagrams and heat/material balance for slurry-fed gasifier configuration • Process flow diagrams and heat/material balance

  16. Texas Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Comanche Peak Unit 1, Unit 2","2,406","20,208",48.9,"Luminant Generation Company LLC" "South Texas Project Unit 1, Unit 2","2,560","21,127",51.1,"STP Nuclear

  17. Office of the Assistant General Counsel for General Law | Department...

    Energy Saver

    Services Environment and Compliance Office of the Assistant General Counsel for General Law Office of the Assistant General Counsel for General Law The Office of the ...

  18. MHK Projects/Manchac Point Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    el":"","visitedicon":"" Project Profile Project Start Date 112008 Project City St Gabriel, LA Project StateProvince Louisiana Project Country United States Project Resource...

  19. MHK Projects/Claiborne Island Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    el":"","visitedicon":"" Project Profile Project Start Date 112008 Project City St Gabriel, LA Project StateProvince Louisiana Project Country United States Project Resource...

  20. MHK Projects/Point Pleasant Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    el":"","visitedicon":"" Project Profile Project Start Date 112008 Project City St Gabriel, LA Project StateProvince Louisiana Project Country United States Project Resource...

  1. MHK Projects/College Point Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    bel":"","visitedicon":"" Project Profile Project Start Date 112008 Project City St James, LA Project StateProvince Louisiana Project Country United States Project Resource...

  2. Next Generation Geothermal Power Plants

    SciTech Connect

    Brugman, John; Hattar, Mai; Nichols, Kenneth; Esaki, Yuri

    1995-09-01

    A number of current and prospective power plant concepts were investigated to evaluate their potential to serve as the basis of the next generation geothermal power plant (NGGPP). The NGGPP has been envisaged as a power plant that would be more cost competitive (than current geothermal power plants) with fossil fuel power plants, would efficiently use resources and mitigate the risk of reservoir under-performance, and minimize or eliminate emission of pollutants and consumption of surface and ground water. Power plant concepts were analyzed using resource characteristics at ten different geothermal sites located in the western United States. Concepts were developed into viable power plant processes, capital costs were estimated and levelized busbar costs determined. Thus, the study results should be considered as useful indicators of the commercial viability of the various power plants concepts that were investigated. Broadly, the different power plant concepts that were analyzed in this study fall into the following categories: commercial binary and flash plants, advanced binary plants, advanced flash plants, flash/binary hybrid plants, and fossil/geothed hybrid plants. Commercial binary plants were evaluated using commercial isobutane as a working fluid; both air-cooling and water-cooling were considered. Advanced binary concepts included cycles using synchronous turbine-generators, cycles with metastable expansion, and cycles utilizing mixtures as working fluids. Dual flash steam plants were used as the model for the commercial flash cycle. The following advanced flash concepts were examined: dual flash with rotary separator turbine, dual flash with steam reheater, dual flash with hot water turbine, and subatmospheric flash. Both dual flash and binary cycles were combined with other cycles to develop a number of hybrid cycles: dual flash binary bottoming cycle, dual flash backpressure turbine binary cycle, dual flash gas turbine cycle, and binary gas turbine

  3. Next Generation Nuclear Plant Materials Research and Development Program Plan, Revision 4

    SciTech Connect

    G.O. Hayner; R.L. Bratton; R.E. Mizia; W.E. Windes; W.R. Corwin; T.D. Burchell; C.E. Duty; Y. Katoh; J.W. Klett; T.E. McGreevy; R.K. Nanstad; W. Ren; P.L. Rittenhouse; L.L. Snead; R.W. Swindeman; D.F. Wlson

    2007-09-01

    DOE has selected the High Temperature Gas-cooled Reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production. It will have an outlet gas temperature in the range of 950°C and a plant design service life of 60 years. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed reactor and use low-enriched uranium, TRISO-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Materials Research and Development (R&D) Program is responsible for performing R&D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. Some of the general and administrative aspects of the R&D Plan include: • Expand American Society of Mechanical Engineers (ASME) Codes and American Society for Testing and Materials (ASTM) Standards in support of the NGNP Materials R&D Program. • Define and develop inspection needs and the procedures for those inspections. • Support selected university materials related R&D activities that would be of direct benefit to the NGNP Project. • Support international materials related collaboration activities through the DOE sponsored Generation IV International Forum (GIF) Materials and Components (M&C) Project Management Board (PMB). • Support document review activities through the Materials Review Committee (MRC) or other suitable forum.

  4. Petra Nova - W.A. Parish Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Petra Nova - W.A. Parish Project Petra Nova - W.A. Parish Project The project will demonstrate Mitsubishi Heavy Industries' (MHI) CO2 capture technology at an existing coal-fired power plant. The project will demonstrate Mitsubishi Heavy Industries' (MHI) CO2 capture technology at an existing coal-fired power plant. PETRA NOVA CCS PROJECT On June 18, 2010, the U.S. Department of Energy (DOE) announced the signing of a Cooperative Agreement with NRG Energy Inc. (NRG) for the W.A. Parish

  5. LNG projects make progress in Oman and Yemen

    SciTech Connect

    1997-02-24

    Two LNG projects in the Middle East, one in Oman and the other in Yemen, are due on stream at the turn of the century--each the largest single project ever put together in its country. Officials described their projects at a yearend 1996 conference in Paris by Institut Francais du Petrole and Petrostrategies. The Oman project develops gas reserves, does gas processing, and transports the gas 360 km to a liquefaction plant to be built on the coast. The Yemen project involves a liquefaction plant and an export terminal.

  6. PROJECT PROFILE: General Electric - GE Global Research | Department...

    Energy Saver

    will develop an optimal compression system for a modular supercritical carbon dioxide (sCO2) power block operation in ... The density of carbon dioxide, and thus the flow, varies ...

  7. EA-1849: Ormat Nevada Geothermal Projects in Northern NV | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy 9: Ormat Nevada Geothermal Projects in Northern NV EA-1849: Ormat Nevada Geothermal Projects in Northern NV August 22, 2011 EA-1849: Final Environmental Assessment Tuscarora Geothermal Power Plant, Elko County, Nevada; Jersey Valley Geothermal Project, Pershing County, Nevada; and McGuiness Hills Geothermal Project, Lander County, Nevada August 22, 2011 EA-1849: Finding of No Significant Impact Ormat Nevada Northern Nevada Geothermal Power Plant Projects: Loan Guarantee for ORMAT

  8. Early Entrance Coproduction Plant

    SciTech Connect

    Mushtaq Ahmed; John H. Anderson; Earl R. Berry; Troy Raybold; Lalit S. Shah; Kenneth A. Yackly

    2004-01-26

    The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which uses petroleum coke to produce at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals. The objective is to have these products produced by technologies capable of using synthesis gas derived from coal and/or other carbonaceous feedstocks. The objectives of Phase I were to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan for implementation in Phase II; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology that produces high-value products, particularly those that are critical to our domestic fuel and power requirements. The work performed under Phase II will resolve critical knowledge and technology gaps on the integration of gasification and downstream processing to coproduce some combination of power, fuels, and chemicals from coal and/or other carbonaceous feedstocks. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation.

  9. Yakama Nation - Wapato Hydropower Project

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Yakama Nation Hydropower Project 1.4 Million Acres In South Central Washington State Yakama Nation Demographics: * Established by Treaty of 1855 * 10,190 Enrolled Members; Descendents of the 14 Tribes and Bands of the Yakama Nation * Governed by a 14 Member Tribal Council; 3 Member General Council Executive Board Tribal Utility Background Information * General Council membership resolution GC- 04-98, directed Tribal Council to research the opportunity of a tribal utility * Established tribal

  10. Geothermal Risk Reduction via Geothermal/Solar Hybrid Power Plants. Final Report

    SciTech Connect

    Wendt, Daniel; Mines, Greg; Turchi, Craig; Zhu, Guangdong

    2015-11-01

    There are numerous technical merits associated with a renewable geothermal-solar hybrid plant concept. The performance of air-cooled binary plants is lowest when ambient temperatures are high due to the decrease in air-cooled binary plant performance that occurs when the working fluid condensing temperature, and consequently the turbine exhaust pressure, increases. Electrical power demand is generally at peak levels during periods of elevated ambient temperature and it is therefore especially important to utilities to be able to provide electrical power during these periods. The time periods in which air-cooled binary geothermal power plant performance is lowest generally correspond to periods of high solar insolation. Use of solar heat to increase air-cooled geothermal power plant performance during these periods can improve the correlation between power plant output and utility load curves. While solar energy is a renewable energy source with long term performance that can be accurately characterized, on shorter time scales of hours or days it can be highly intermittent. Concentrating solar power (CSP), aka solar-thermal, plants often incorporate thermal energy storage to ensure continued operation during cloud events or after sunset. Hybridization with a geothermal power plant can eliminate the need for thermal storage due to the constant availability of geothermal heat. In addition to the elimination of the requirement for solar thermal storage, the ability of a geothermal/solar-thermal hybrid plant to share a common power block can reduce capital costs relative to separate, stand-alone geothermal and solar-thermal power plant installations. The common occurrence of long-term geothermal resource productivity decline provides additional motivation to consider the use of hybrid power plants in geothermal power production. Geothermal resource productivity decline is a source of significant risk in geothermal power generation. Many, if not all, geothermal resources

  11. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update

    7 U.S. Energy Information Administration | International Energy Outlook 2016 Projections of petroleum and other liquid fuels production in three cases Table G3. International other liquid fuels a production by region and country, Reference case, 2011-40 (million barrels per day, unless otherwise noted) Region/country History (estimates) Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OPEC b 3.7 3.8 4.3 4.6 4.8 5.2 5.6 1.3 Natural gas plant liquids 3.6 3.7

  12. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update

    3 U.S. Energy Information Administration | International Energy Outlook 2016 Projections of petroleum and other liquid fuels production in three cases Table G9. World other liquid fuels a production by region and country, Low Oil Price case, 2011-40 (million barrels per day, unless otherwise noted) Region/country History (estimates) Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OPEC b 3.7 3.8 4.3 4.5 4.5 4.9 4.8 0.8 Natural gas plant liquids 3.6 3.7 4.0

  13. DIGESTER GAS - FUEL CELL - PROJECT

    SciTech Connect

    Dr.-Eng. Dirk Adolph; Dipl.-Eng. Thomas Saure

    2002-03-01

    GEW has been operating the first fuel cell in Europe producing heat and electricity from digester gas in an environmentally friendly way. The first 9,000 hours in operation were successfully concluded in August 2001. The fuel cell powered by digester gas was one of the 25 registered ''Worldwide projects'' which NRW presented at the EXPO 2000. In addition to this, it is a key project of the NRW State Initiative on Future Energies. All of the activities planned for the first year of operation were successfully completed: installing and putting the plant into operation, the transition to permanent operation as well as extended monitoring till May 2001.

  14. Clean Coal Technology Programs: Completed Projects (Volume 2)

    SciTech Connect

    Assistant Secretary for Fossil Energy

    2003-12-01

    Annual report on the Clean Coal Technology Demonstration Program (CCTDP), Power Plant Improvement Initiative (PPII), and Clean Coal Power Initiative (CCPI). The report addresses the roles of the programs, implementation, funding and costs, project descriptions, legislative history, program history, environmental aspects, and project contacts. The project descriptions describe the technology and provides a brief summary of the demonstration results.

  15. Hydropower Projects

    SciTech Connect

    2015-04-02

    The Water Power Program helps industry harness this renewable, emissions-free resource to generate environmentally sustainable and cost-effective electricity. Through support for public, private, and nonprofit efforts, the Water Power Program promotes the development, demonstration, and deployment of advanced hydropower devices and pumped storage hydropower applications. These technologies help capture energy stored by diversionary structures, increase the efficiency of hydroelectric generation, and use excess grid energy to replenish storage reserves for use during periods of peak electricity demand. In addition, the Water Power Program works to assess the potential extractable energy from domestic water resources to assist industry and government in planning for our nation’s energy future. From FY 2008 to FY 2014, DOE’s Water Power Program announced awards totaling approximately $62.5 million to 33 projects focused on hydropower. Table 1 provides a brief description of these projects.

  16. Concord Municipal Light Plant- Commercial Energy Efficiency Rebate Program

    Energy.gov [DOE]

    Concord Municipal Light Plant (CMLP) offers rebates to commercial customers for installing energy efficient lighting. General lighting upgrades to facilities are eligible for a 50% rebate worth up...

  17. The Lake Charles CCS Project

    SciTech Connect

    Doug Cathro

    2010-06-30

    The Lake Charles CCS Project is a large-scale industrial carbon capture and sequestration (CCS) project which will demonstrate advanced technologies that capture and sequester carbon dioxide (CO{sub 2}) emissions from industrial sources into underground formations. Specifically the Lake Charles CCS Project will accelerate commercialization of large-scale CO{sub 2} storage from industrial sources by leveraging synergy between a proposed petroleum coke to chemicals plant (the LCC Gasification Project) and the largest integrated anthropogenic CO{sub 2} capture, transport, and monitored sequestration program in the U.S. Gulf Coast Region. The Lake Charles CCS Project will promote the expansion of EOR in Texas and Louisiana and supply greater energy security by expanding domestic energy supplies. The capture, compression, pipeline, injection, and monitoring infrastructure will continue to sequester CO{sub 2} for many years after the completion of the term of the DOE agreement. The objectives of this project are expected to be fulfilled by working through two distinct phases. The overall objective of Phase 1 was to develop a fully definitive project basis for a competitive Renewal Application process to proceed into Phase 2 - Design, Construction and Operations. Phase 1 includes the studies attached hereto that will establish: the engineering design basis for the capture, compression and transportation of CO{sub 2} from the LCC Gasification Project, and the criteria and specifications for a monitoring, verification and accounting (MVA) plan at the Hastings oil field in Texas. The overall objective of Phase 2, provided a successful competitive down-selection, is to execute design, construction and operations of three capital projects: (1) the CO{sub 2} capture and compression equipment, (2) a Connector Pipeline from the LLC Gasification Project to the Green Pipeline owned by Denbury and an affiliate of Denbury, and (3) a comprehensive MVA system at the Hastings oil field.

  18. PROJECT SUMMARY

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    PROJECT SUMMARY 1 TITLE Advancing Synchrophasor Applications and Training through Academic-Industry Collaborations 2 PRINCIPLE INVESTIGATORS University of Wyoming: Dongliang Duan (PI), John Pierre, Suresh Muknahallipatna (co-PIs) Colorado State University: Liuqing Yang, Louis L. Scharf (co-PIs) Montana Tech of the University of Montana: Daniel Trudnowski, Matthew Donnelly (co-PIs) 3 CONTACT INFORMATION Dongliang Duan Dept. 3295, 1000 E. University Ave. Laramie, WY 82070 Tel: (307)766-6541; Fax:

  19. MONTICELLO PROJECTS

    Office of Legacy Management (LM)

    FFA Quarterly Report: April 1-June 30, 2009 July 2009 Doc. No. S05572 Page 1 Monticello National Priorities List Sites Federal Facilities Agreement (FFA) Quarterly Report: April 1-June 30, 2009 This report summarizes project status and activities implemented April through June 2009, and provides a schedule of near-term activities for the Monticello Mill Tailings Site (MMTS) and the Monticello Vicinity Properties (MVP) sites. This report also includes disposal cell and Pond 4 leachate collection

  20. MONTICELLO PROJECTS

    Office of Legacy Management (LM)

    09 January 2010 Doc. No. S06172 Page 1 1.3 Peripheral Properties (Private and City-Owned) * No land use or supplemental standards compliance issues were observed or reported by LTSM on-site staff. Monticello National Priorities List Sites Federal Facilities Agreement (FFA) Quarterly Report: October 1-December 31, 2009 This report summarizes project status and activities implemented October through December 2009, and provides a schedule of near-term activities for the Monticello Mill Tailings

  1. MONTICELLO PROJECTS

    Office of Legacy Management (LM)

    1 July 2011 Doc. No. S07978 Page 1 Monticello, Utah, National Priorities List Sites Federal Facility Agreement (FFA) Quarterly Report: April 1-June 30, 2011 This report summarizes project status and activities implemented April through June 2011 and provides a schedule for near-term activities at the Monticello Vicinity Properties (MVP) site and the Monticello Mill Tailings Site (MMTS) located in and near Monticello, Utah. The MMTS and MVP were placed on the U.S. Environmental Protection Agency

  2. MONTICELLO PROJECTS

    Office of Legacy Management (LM)

    31, 2011 April 2011 Doc. No. S07666 Page 1 Monticello, Utah, National Priorities List Sites Federal Facility Agreement (FFA) Quarterly Report: January 1-March 31, 2011 This report summarizes project status and activities implemented January through March 2011 and provides a schedule for near-term activities at the Monticello Vicinity Properties (MVP) site and the Monticello Mill Tailings Site (MMTS) located in and near Monticello, Utah. The MMTS and MVP were placed on the U.S. Environmental

  3. Hallmark Project

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Hallmark Project Commercialization of the Secure SCADA Communications Protocol, a cryptographic security solution for device-to-device communication Increased connectivity and automation in the control systems that manage the nation's energy infrastructure have improved system functionality, but left systems more vulnerable to cyber attack. Intruders could severely disrupt control system operation by sending fabricated information or commands to control system devices. To ensure message

  4. Plant nitrogen regulatory P-PII genes

    DOEpatents

    Coruzzi, Gloria M.; Lam, Hon-Ming; Hsieh, Ming-Hsiun

    2001-01-01

    The present invention generally relates to plant nitrogen regulatory PII gene (hereinafter P-PII gene), a gene involved in regulating plant nitrogen metabolism. The invention provides P-PII nucleotide sequences, expression constructs comprising said nucleotide sequences, and host cells and plants having said constructs and, optionally expressing the P-PII gene from said constructs. The invention also provides substantially pure P-PII proteins. The P-PII nucleotide sequences and constructs of the

  5. Small-Scale Hydroelectric Power Demonstration Project

    SciTech Connect

    Gleeson, L.

    1991-12-01

    The US Department of Energy Field Office, Idaho, Small-Scale Hydroelectric Power Program was initiated in conjunction with the restoration of three power generating plants in Idaho Falls, Idaho, following damage caused by the Teton Dam failure on June 5, 1976. There were many parties interested in this project, including the state and environmental groups, with different concerns. This report was prepared by the developer and describes the design alternatives the applicant provided in an attempt to secure the Federal Energy Regulatory Commission license. Also included are correspondence between the related parties concerning the project, major design alternatives/project plan diagrams, the license, and energy and project economics.

  6. Major manufacturing and mining investment projects

    SciTech Connect

    Not Available

    1986-01-01

    This book lists manufacturing and mining investment projects with development costs of $5 million or more. Manufacturing projects are classified in accordance with the Australian Bureau of Statistics' Australian Standard Industrial Classification (ASIC) and mining projects by broad mineral categories. The book includes information on the nature of each project, its location and timing, the company of joint venture name, whether the investment is at a new site or at an existing site, the type of product, the value of the annual output, production, employment, past and future costs and the composition (structure and plant) of the investment.

  7. TUNL Nuclear Data Project

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy Levels of Light Nuclei, A = 3 - 20 Nuclear Data Evaluation Project Triangular Universities Nuclear Laboratory TUNL Nuclear Data Evaluation Home Page Information on mass chains and nuclides 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Group Info Publications HTML General Tables Level Diagrams Tables of EL's NSR Key# Retrieval ENSDF Excitation Functions Thermal N Capt. G.S. Decays TUNL Dissertations NuDat at BNL Useful Links Citation Examples Home Sitemap Directory Email Us Search WWW

  8. Coal air turbine {open_quotes}CAT{close_quotes} program, Invention 604. Third quarter project report, April 1995--June 1995

    SciTech Connect

    Foster-Pegg, R.W.

    1995-07-31

    The primary objective of this {open_quotes}CAT{close_quotes} project is to complete a conceptual design of this unique new combination of existing technology with cost estimates to show that the {open_quotes}CAT{close_quotes} system offers the economic incentive with low technical risk for a plant to be built which will demonstrate its viability. The technologies involved in the components of a {open_quotes}CAT{close_quotes} plant are proven, and the integration of the components into a complete plant is the only new development activity involved. Industry and the Federal General Services Administration (GSA), require the demonstration of a {open_quotes}commercial plant{close_quotes} before the viability of a new concept is accepted. To satisfy this requirement and construction of a plant of commercially viable size in excess of 15 MW if cogeneration and above 30 MW if all power, is proposed. This plant will produce economical power and heat for the owner. The plant will operate a full commercial life and continue as an operating demonstration of the viability of the technology, gathering long term life and maintenance data, all adding to the credibility of the concept.

  9. Deming Solar Plant Solar Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Deming Solar Plant Solar Power Plant Jump to: navigation, search Name Deming Solar Plant Solar Power Plant Facility Deming Solar Plant Sector Solar Facility Type Photovoltaic...

  10. Prescott Airport Solar Plant Solar Power Plant | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Prescott Airport Solar Plant Solar Power Plant Jump to: navigation, search Name Prescott Airport Solar Plant Solar Power Plant Facility Prescott Airport Solar Plant Sector Solar...

  11. Solana Generating Plant Solar Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Solana Generating Plant Solar Power Plant Jump to: navigation, search Name Solana Generating Plant Solar Power Plant Facility Solana Generating Plant Sector Solar Facility Type...

  12. Validation of smart sensor technologies for instrument calibration reduction in nuclear power plants

    SciTech Connect

    Hashemian, H M; Mitchell, D W; Petersen, K M; Shell, C S

    1993-01-01

    This report presents the preliminary results of a research and development project on the validation of new techniques for on-line testing of calibration drift of process instrumentation channels in nuclear power plants. These techniques generally involve a computer-based data acquisition and data analysis system to trend the output of a large number of instrument channels and identify the channels that have drifted out of tolerance. This helps limit the calibration effort to those channels which need the calibration, as opposed to the current nuclear industry practice of calibrating essentially all the safety-related instrument channels at every refueling outage.

  13. OpenSSO Project Patches

    Energy Science and Technology Software Center

    2009-06-08

    These are patches to Sun Microsystems open source OpenSSO project to fix various bugs and incorporate changes for Sandia and NNSA to use the product including fixes to improve OpenSSO's authentication and authorization abilities. These fixes will then by incorporated by Sun into their Sun Access Manager product, which is used by various DOE/NNSA plants and labs. Having Sun maintain these changes will relieve SNL and DOE from the cost of maintaining the changes themselves.

  14. Tribal Energy Project Staff | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Staff Tribal Energy Project Staff The following staff members support tribal energy projects funded by the U.S. Department of Energy's Tribal Energy Deployment Program. For general inquiries about grants and projects, please contact our help desk: 15013 Denver West Parkway Golden, CO 80401 720-356-1352 tribal@ee.doe.gov Project Manager Lizana_Pierce.jpg Lizana Pierce, DOE Program Manager U.S. Department of Energy Telephone: 720-356-1749 Contractor Support Jami_Alley.jpg Jami Alley, Project

  15. Better Plants

    Energy.gov [DOE]

    Leading manufacturers and industrial-scale energy-using organizations demonstrate their commitment to improving energy performance by signing a voluntary pledge to reduce their energy intensity by 25% over a ten year period. The U.S. Department of Energys Better Buildings, Better Plants Program is an important partnership which consists of approximately 150 industrial companies, representing about 2,300 facilities and close to 11% of the total U.S. manufacturing energy footprint as well as several water and wastewater treatment organizations.

  16. 10Li General Tables

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Li General Table The General Table for 10Li is subdivided into the following categories: Reviews Theoretical Ground State Properties Shell Model Cluster Model Other Models Special States Astrophysical Electromagnetic Transitions Hypernuclei Photodisintegration Light-Ion and Neutron Induced Reactions These General Tables correspond to the 2003 preliminary evaluation of ``Energy Levels of Light Nuclei, A = 10''. The prepublication version of A = 10 is available on this website in PDF format: A =

  17. Hanford ETR- Tank Waste Treatment and Immobilization Plant- Hanford Tank Waste Treatment and Immobilization Plant Technical Review- Estimate at Completion (Cost) Report

    Office of Energy Efficiency and Renewable Energy (EERE)

    This is a comprehensive review of the Hanford WTP estimate at completion - assessing the project scope, contract requirements, management execution plant, schedule, cost estimates, and risks.

  18. The Advanced Research Projects, OAS-RA-11-11

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Audit Report The Advanced Research Projects Agency - Energy OAS-RA-11-11 August 2011 Department of Energy Washington, DC 20585 August 22, 2011 MEMORANDUM FOR THE DIRECTOR, ADVANCED RESEARCH PROJECTS AGENCY - ENERGY FROM: George W. Collard Assistant Inspector General for Audits Office of Inspector General SUBJECT: INFORMATION: Audit Report on "The Advanced Research Projects Agency - Energy" BACKGROUND The Advanced Research Projects Agency - Energy (ARPA-E), an agency within the

  19. Loan Guarantee Recipient Awarded Top Renewable Plant | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Top Renewable Plant Loan Guarantee Recipient Awarded Top Renewable Plant December 16, 2015 - 10:00am Addthis Loan Guarantee Recipient Awarded Top Renewable Plant Mark A. McCall Mark A. McCall Executive Director of the Loan Programs Office The Department's Loan Programs Office (LPO) has provided financing for numerous award-winning clean energy projects. The latest is Desert Sunlight, a 550-megawatt (MW) photovoltaic (PV) solar power plant located in Riverside County, California, that was issued

  20. General Service LED Lamps

    SciTech Connect

    2012-04-01

    Solid-state lighting program technology fact sheet that compares general service incandescent lamps—i.e., light bulbs—to LED and CFL alternatives.