National Library of Energy BETA

Sample records for gas-fired power plant

  1. The NuGas{sup TM} Concept - Combining a Nuclear Power Plant with a Gas-Fired Plant

    SciTech Connect

    Willson, Paul; Smith, Alistair

    2007-07-01

    Nuclear power plants produce low carbon emissions and stable, low cost electricity. Combined cycle gas-fired power plants are cheap and quick to build and have very flexible operation. If you could combine these two technologies, you could have an ideal base-load power plant. (authors)

  2. An economic feasibility analysis of distributed electric power generation based upon the natural gas-fired fuel cell: a model of a central utility plant.

    SciTech Connect

    Not Available

    1993-06-30

    This central utilities plant model details the major elements of a central utilities plant for several classes of users. The model enables the analyst to select optional, cost effective, plant features that are appropriate to a fuel cell application. These features permit the future plant owner to exploit all of the energy produced by the fuel cell, thereby reducing the total cost of ownership. The model further affords the analyst an opportunity to identify avoided costs of the fuel cell-based power plant. This definition establishes the performance and capacity information, appropriate to the class of user, to support the capital cost model and the feasibility analysis. It is detailed only to the depth required to identify the major elements of a fuel cell-based system. The model permits the choice of system features that would be suitable for a large condominium complex or a residential institution such as a hotel, boarding school or prison. The user may also select large office buildings that are characterized by 12 to 16 hours per day of operation or industrial users with a steady demand for thermal and electrical energy around the clock.

  3. Gas-fired chiller-heaters as a central plant alternative for small office buildings

    SciTech Connect

    Thies, R.M.; Bahnfleth, W.

    1998-01-01

    Gas absorption chillers-heaters have been applied successfully in large projects where use of multiple chillers is feasible. Large facilities typically have a substantial base cooling load. If the base load is greater than 30% of the minimum capacity of the smallest chiller, chiller-heaters alone can be used as the building central plant. However, this study shows that a small office building presents part-load design difficulties that tend to favor the use of other technologies. The engineer can overcome these application problems by a variety of means, as has been illustrated. Manufacturers, too, are addressing the problems associated with low-load operation of direct-fired chiller heaters. A new generation of chiller-heaters that can unload down to 10% of design load will soon be available. If these new machines are capital-cost-competitive and perform up to expectations, the routine application of chiller-heaters in small commercial buildings may be just around the corner.

  4. Economic feasibility analysis of distributed electric power generation based upon the natural gas-fired fuel cell. Final report

    SciTech Connect

    Not Available

    1994-03-01

    The final report provides a summary of results of the Cost of Ownership Model and the circumstances under which a distributed fuel cell is economically viable. The analysis is based on a series of micro computer models estimate the capital and operations cost of a fuel cell central utility plant configuration. Using a survey of thermal and electrical demand profiles, the study defines a series of energy user classes. The energy user class demand requirements are entered into the central utility plant model to define the required size the fuel cell capacity and all supporting equipment. The central plant model includes provisions that enables the analyst to select optional plant features that are most appropriate to a fuel cell application, and that are cost effective. The model permits the choice of system features that would be suitable for a large condominium complex or a residential institution such as a hotel, boarding school or prison. Other applications are also practical; however, such applications have a higher relative demand for thermal energy, a characteristic that is well-suited to a fuel cell application with its free source of hot water or steam. The analysis combines the capital and operation from the preceding models into a Cost of Ownership Model to compute the plant capital and operating costs as a function of capacity and principal features and compares these estimates to the estimated operating cost of the same central plant configuration without a fuel cell.

  5. A model of the Capital Cost of a natural gas-fired fuel cell based Central Utilities Plant

    SciTech Connect

    Not Available

    1993-06-30

    This model defines the methods used to estimate the cost associated with acquisition and installation of capital equipment of the fuel cell systems defined by the central utility plant model. The capital cost model estimates the cost of acquiring and installing the fuel cell unit, and all auxiliary equipment such as a boiler, air conditioning, hot water storage, and pumps. The model provides a means to adjust initial cost estimates to consider learning associated with the projected level of production and installation of fuel cell systems. The capital cost estimate is an input to the cost of ownership analysis where it is combined with operating cost and revenue model estimates.

  6. EIS-0308: Southpoint Power Plant Project

    Office of Energy Efficiency and Renewable Energy (EERE)

    This EIS analyzes the U.S. Department of the Interior Bureau of Indian Affairs’ proposed lease of acreage on the Fort Mojave Indian Reservation in Mohave County, Arizona for development of a natural gas-fired 500 megawatt combined cycle power plant. DOE's Western Area Power Administration (WAPA) is a cooperating agency, and the plant would supply power to the WAPA grid. The proposed Southpoint power plant would require construction of an off-site substation and two 230 kV transmission lines in order to wheel power to WAPA’s distribution grid. An Environmental Assessment (EA) for the proposed substation and transmission line was prepared with the Department of the Interior Bureau of Land Management as lead agency and WAPA as a cooperating agency, and a Finding of No Significant Impact was approved on December 2, 1997.

  7. Residential Gas-Fired Adsorption HPWH | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Residential Gas-Fired Adsorption HPWH Gas-fired adsorption heat pump water heater prototype. Image credit: Oak Ridge National Laboratory. Gas-fired adsorption heat pump water ...

  8. An economic feasibility analysis of distributed electric power generation based upon the Natural Gas-Fired Fuel Cell: a model of the operations cost.

    SciTech Connect

    Not Available

    1993-06-30

    This model description establishes the revenues, expenses incentives and avoided costs of Operation of a Natural Gas-Fired Fuel Cell-Based. Fuel is the major element of the cost of operation of a natural gas-fired fuel cell. Forecasts of the change in the price of this commodity a re an important consideration in the ownership of an energy conversion system. Differences between forecasts, the interests of the forecaster or geographical areas can all have significant effects on imputed fuel costs. There is less effect on judgments made on the feasibility of an energy conversion system since changes in fuel price can affect the cost of operation of the alternatives to the fuel cell in a similar fashion. The forecasts used in this model are only intended to provide the potential owner or operator with the means to examine alternate future scenarios. The operations model computes operating costs of a system suitable for a large condominium complex or a residential institution such as a hotel, boarding school or prison. The user may also select large office buildings that are characterized by 12 to 16 hours per day of operation or industrial users with a steady demand for thermal and electrical energy around the clock.

  9. Apples with apples: accounting for fuel price risk in comparisons of gas-fired and renewable generation

    SciTech Connect

    Bolinger, Mark; Wiser, Ryan

    2003-12-18

    For better or worse, natural gas has become the fuel of choice for new power plants being built across the United States. According to the US Energy Information Administration (EIA), natural gas combined-cycle and combustion turbine power plants accounted for 96% of the total generating capacity added in the US between 1999 and 2002--138 GW out of a total of 144 GW. Looking ahead, the EIA expects that gas-fired technology will account for 61% of the 355 GW new generating capacity projected to come on-line in the US up to 2025, increasing the nationwide market share of gas-fired generation from 18% in 2002 to 22% in 2025. While the data are specific to the US, natural gas-fired generation is making similar advances in other countries as well. Regardless of the explanation for (or interpretation of) the empirical findings, however, the basic implications remain the same: one should not blindly rely on gas price forecasts when comparing fixed-price renewable with variable-price gas-fired generation contracts. If there is a cost to hedging, gas price forecasts do not capture and account for it. Alternatively, if the forecasts are at risk of being biased or out of tune with the market, then one certainly would not want to use them as the basis for resource comparisons or investment decisions if a more certain source of data (forwards) existed. Accordingly, assuming that long-term price stability is valued, the most appropriate way to compare the levelized cost of these resources in both cases would be to use forward natural gas price data--i.e. prices that can be locked in to create price certainty--as opposed to uncertain natural gas price forecasts. This article suggests that had utilities and analysts in the US done so over the sample period from November 2000 to November 2003, they would have found gas-fired generation to be at least 0.3-0.6 cents/kWh more expensive (on a levelized cost basis) than otherwise thought. With some renewable resources, in particular wind

  10. Stirling engines for gas fired micro-cogen and cooling

    SciTech Connect

    Lane, N.W.; Beale, W.T.

    1996-12-31

    This paper describes the design and performance of free-piston Stirling engine-alternators particularly suited for use as natural gas fired micro-cogen and cooling devices. Stirling based cogen systems offer significant potential advantages over internal combustion engines in efficiency, to maintain higher efficiencies at lower power levels than than combustion engines significantly expands the potential for micro-cogen. System cost reduction and electric prices higher than the U.S. national average will have a far greater effect on commercial success than any further increase in Stirling engine efficiency. There exist niche markets where Stirling engine efficiency. There exist niche markets where Stirling based cogen systems are competitive. Machines of this design are being considered for production in the near future as gas-fired units for combined heat and power in sufficiently large quantities to assure competitive prices for the final unit.

  11. concentrating solar power plant

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    power plant - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy ...

  12. Power Plant Cycling Costs

    SciTech Connect

    Kumar, N.; Besuner, P.; Lefton, S.; Agan, D.; Hilleman, D.

    2012-07-01

    This report provides a detailed review of the most up to date data available on power plant cycling costs. The primary objective of this report is to increase awareness of power plant cycling cost, the use of these costs in renewable integration studies and to stimulate debate between policymakers, system dispatchers, plant personnel and power utilities.

  13. Virginia Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal ... Electric & Power Co" "2 Plants 4 Reactors","3,501","26,572",100.0 "Note: ...

  14. Minnesota Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    Minnesota nuclear power plants, summer capacity and net generation, 2010" "Plant name... States Power Co - Minnesota" "2 Plants 3 Reactors","1,594","13,478",100.0

  15. NUCLEAR POWER PLANT

    DOEpatents

    Carter, J.C.; Armstrong, R.H.; Janicke, M.J.

    1963-05-14

    A nuclear power plant for use in an airless environment or other environment in which cooling is difficult is described. The power plant includes a boiling mercury reactor, a mercury--vapor turbine in direct cycle therewith, and a radiator for condensing mercury vapor. (AEC)

  16. GEOTHERMAL POWER GENERATION PLANT

    Energy.gov [DOE]

    Project objectives: Drilling a deep geothermal well on the Oregon Institute of Technology campus, Klamath Falls, OR. Constructing a geothermal power plant on the Oregon Institute of Technology campus.

  17. Quiz: Know Your Power Plants

    Energy.gov [DOE]

    Think you know where coal, solar and other power plants are located around the country? Test your knowledge with our power plants quiz!

  18. Gas-Fired Distributed Energy Resource Technology Characterizations

    SciTech Connect

    Goldstein, L.; Hedman, B.; Knowles, D.; Freedman, S. I.; Woods, R.; Schweizer, T.

    2003-11-01

    The U. S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) is directing substantial programs in the development and encouragement of new energy technologies. Among them are renewable energy and distributed energy resource technologies. As part of its ongoing effort to document the status and potential of these technologies, DOE EERE directed the National Renewable Energy Laboratory to lead an effort to develop and publish Distributed Energy Technology Characterizations (TCs) that would provide both the department and energy community with a consistent and objective set of cost and performance data in prospective electric-power generation applications in the United States. Toward that goal, DOE/EERE - joined by the Electric Power Research Institute (EPRI) - published the Renewable Energy Technology Characterizations in December 1997.As a follow-up, DOE EERE - joined by the Gas Research Institute - is now publishing this document, Gas-Fired Distributed Energy Resource Technology Characterizations.

  19. Michigan Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal ... Nuclear Palisades LLC" "3 Plants 4 Reactors","3,947","29,625",100.0 "Note: ...

  20. NREL: Energy Analysis - Natural Gas-Fired Generation Results...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Harmonization for conventional and unconventional (primarily shale gas) natural gas-fired ... lifecycle GHG emissions for conventional and unconventional natural gas technologies. ...

  1. Laboratory Evaluation of Gas-Fired Tankless and Storage Water...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Laboratory Evaluation of Gas-Fired Tankless and Storage Water Heater Approaches to Combination Water and Space Heating Citation Details In-Document Search Title: ...

  2. Georgia Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal ...,302","19,610",58.5,"Georgia Power Co" "2 Plants 4 Reactors","4,061","33,512",100.0 "Note: ...

  3. Alabama Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal ...,734","13,170",34.7,"Alabama Power Co" "2 Plants 5 Reactors","5,043","37,941",100.0 "Note: ...

  4. Geothermal Power Generation Plant

    SciTech Connect

    Boyd, Tonya

    2013-12-01

    Oregon Institute of Technology (OIT) drilled a deep geothermal well on campus (to 5,300 feet deep) which produced 196°F resource as part of the 2008 OIT Congressionally Directed Project. OIT will construct a geothermal power plant (estimated at 1.75 MWe gross output). The plant would provide 50 to 75 percent of the electricity demand on campus. Technical support for construction and operations will be provided by OIT’s Geo-Heat Center. The power plant will be housed adjacent to the existing heat exchange building on the south east corner of campus near the existing geothermal production wells used for heating campus. Cooling water will be supplied from the nearby cold water wells to a cooling tower or air cooling may be used, depending upon the type of plant selected. Using the flow obtained from the deep well, not only can energy be generated from the power plant, but the “waste” water will also be used to supplement space heating on campus. A pipeline will be construction from the well to the heat exchanger building, and then a discharge line will be construction around the east and north side of campus for anticipated use of the “waste” water by facilities in an adjacent sustainable energy park. An injection well will need to be drilled to handle the flow, as the campus existing injection wells are limited in capacity.

  5. Deming Solar Plant Solar Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Deming Solar Plant Solar Power Plant Jump to: navigation, search Name Deming Solar Plant Solar Power Plant Facility Deming Solar Plant Sector Solar Facility Type Photovoltaic...

  6. Prescott Airport Solar Plant Solar Power Plant | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Prescott Airport Solar Plant Solar Power Plant Jump to: navigation, search Name Prescott Airport Solar Plant Solar Power Plant Facility Prescott Airport Solar Plant Sector Solar...

  7. Solana Generating Plant Solar Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Solana Generating Plant Solar Power Plant Jump to: navigation, search Name Solana Generating Plant Solar Power Plant Facility Solana Generating Plant Sector Solar Facility Type...

  8. California Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    California nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State ...

  9. Pennsylvania Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    Pennsylvania nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State ...

  10. Connecticut Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    Connecticut nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State ...

  11. Maryland Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Calvert Cliffs Nuclear Power Plant ...

  12. Ohio Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    Ohio nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net ...

  13. Pennsylvania Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net ...

  14. Power Plant Cycling Costs

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Power Plant Cycling Costs April 2012 N. Kumar, P. Besuner, S. Lefton, D. Agan, and D. Hilleman Intertek APTECH Sunnyvale, California NREL Technical Monitor: Debra Lew Subcontract Report NREL/SR-5500-55433 July 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov

  15. NEUTRONIC REACTOR POWER PLANT

    DOEpatents

    Metcalf, H.E.

    1962-12-25

    This patent relates to a nuclear reactor power plant incorporating an air-cooled, beryllium oxide-moderated, pebble bed reactor. According to the invention means are provided for circulating a flow of air through tubes in the reactor to a turbine and for directing a sidestream of the circu1ating air through the pebble bed to remove fission products therefrom as well as assist in cooling the reactor. (AEC)

  16. Power plant emissions reduction

    SciTech Connect

    Anand, Ashok Kumar; Nagarjuna Reddy, Thirumala Reddy

    2015-10-20

    A system for improved emissions performance of a power plant generally includes an exhaust gas recirculation system having an exhaust gas compressor disposed downstream from the combustor, a condensation collection system at least partially disposed upstream from the exhaust gas compressor, and a mixing chamber in fluid communication with the exhaust gas compressor and the condensation collection system, where the mixing chamber is in fluid communication with the combustor.

  17. Tennessee Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    Tennessee nuclear power plants, summer capacity and net generation, 2010" "Plant name...23","9,738",35.1,"Tennessee Valley Authority" "2 Plants 3 Reactors","3,401","27,739",100.0

  18. Wisconsin Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    Wisconsin nuclear power plants, summer capacity and net generation, 2010" "Plant name..."8,291",62.4,"NextEra Energy Point Beach LLC" "2 Plants 3 Reactors","1,584","13,281",100.0

  19. Louisiana Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    Louisiana nuclear power plants, summer capacity and net generation, 2010" "Plant Name..."1,168","10,276",55.1,"Entergy Louisiana Inc" "2 Plants 2 Reactors","2,142","18,639",100.0

  20. Illinois Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    Illinois nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal ... 2","1,774","14,796",15.4,"Exelon Nuclear" "6 Plants 11 Reactors","11,441","96,190",100.0

  1. Eburru Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Eburru Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Eburru Geothermal Power Plant General Information Name Eburru Geothermal Power Plant...

  2. Ndunga Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Ndunga Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Ndunga Geothermal Power Plant General Information Name Ndunga Geothermal Power Plant...

  3. Irem Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Irem Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Irem Geothermal Power Plant General Information Name Irem Geothermal Power Plant Facility...

  4. Tuzla Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Tuzla Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Tuzla Geothermal Power Plant General Information Name Tuzla Geothermal Power Plant...

  5. Sibayak Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Sibayak Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Sibayak Geothermal Power Plant General Information Name Sibayak Geothermal Power Plant...

  6. Development of Virtual Power Plants | The Ames Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Development of Virtual Power Plants

  7. ATOMIC POWER PLANT

    DOEpatents

    Daniels, F.

    1957-11-01

    This patent relates to neutronic reactor power plants and discloses a design of a reactor utilizing a mixture of discrete units of a fissionable material, such as uranium carbide, a neutron moderator material, such as graphite, to carry out the chain reaction. A liquid metal, such as bismuth, is used as the coolant and is placed in the reactor chamber with the fissionable and moderator material so that it is boiled by the heat of the reaction, the boiling liquid and vapors passing up through the interstices between the discrete units. The vapor and flue gases coming off the top of the chamber are passed through heat exchangers, to produce steam, for example, and thence through condensers, the condensed coolant being returned to the chamber by gravity and the non- condensible gases being carried off through a stack at the top of the structure.

  8. Power Plant Replacement Study

    SciTech Connect

    Reed, Gary

    2010-09-30

    This report represents the final report for the Eastern Illinois University power plant replacement study. It contains all related documentation from consideration of possible solutions to the final recommended option. Included are the economic justifications associated with the chosen solution along with application for environmental permitting for the selected project for construction. This final report will summarize the results of execution of an EPC (energy performance contract) investment grade audit (IGA) which lead to an energy services agreement (ESA). The project includes scope of work to design and install energy conservation measures which are guaranteed by the contractor to be self-funding over its twenty year contract duration. The cost recovery is derived from systems performance improvements leading to energy savings. The prime focus of this EPC effort is to provide a replacement solution for Eastern Illinois Universitys aging and failing circa 1925 central steam production plant. Twenty-three ECMs were considered viable whose net impact will provide sufficient savings to successfully support the overall project objectives.

  9. Power Plant Replacement Study

    SciTech Connect

    Reed, Gary

    2010-09-30

    This report represents the final report for the Eastern Illinois University power plant replacement study. It contains all related documentation from consideration of possible solutions to the final recommended option. Included are the economic justifications associated with the chosen solution along with application for environmental permitting for the selected project for construction. This final report will summarize the results of execution of an EPC (energy performance contract) investment grade audit (IGA) which lead to an energy services agreement (ESA). The project includes scope of work to design and install energy conservation measures which are guaranteed by the contractor to be self-funding over its twenty year contract duration. The cost recovery is derived from systems performance improvements leading to energy savings. The prime focus of this EPC effort is to provide a replacement solution for Eastern Illinois University’s aging and failing circa 1925 central steam production plant. Twenty-three ECMs were considered viable whose net impact will provide sufficient savings to successfully support the overall project objectives.

  10. Power Plant Replacement Study

    SciTech Connect

    Reed, Gary

    2010-09-30

    This report represents the final report for the Eastern Illinois University power plant replacement study. It contains all related documentation from consideration of possible solutions to the final recommended option. Included are the economic justifications associated with the chosen solution along with application for environmental permitting for the selected project for construction. This final report will summarize the results of execution of an EPC (energy performance contract) investment grade audit (IGA) which lead to an energy services agreement (ESA). The project includes scope of work to design and install energy conservation measures which are guaranteed by the contractor to be self‐funding over its twenty year contract duration. The cost recovery is derived from systems performance improvements leading to energy savings. The prime focus of this EPC effort is to provide a replacement solution for Eastern Illinois University’s aging and failing circa 1925 central steam production plant. Twenty‐three ECMs were considered viable whose net impact will provide sufficient savings to successfully support the overall project objectives.

  11. Power Plant Replacement Study

    SciTech Connect

    Reed, Gary

    2010-09-30

    This report represents the final report for the Eastern Illinois University power plant replacement study. It contains all related documentation from consideration of possible solutions to the final recommended option. Included are the economic justifications associated with the chosen solution along with application for environmental permitting for the selected project for construction. This final report will summarize the results of execution of an EPC (energy performance contract) investment grade audit (IGA) which lead to an energy services agreement (ESA). The project includes scope of work to design and install energy conservation measures which are guaranteed by the contractor to be self-funding over its twenty year contract duration. The cost recovery is derived from systems performance improvements leading to energy savings. The prime focus of this EPC effort is to provide a replacement solution for Eastern Illinois University's aging and failing circa 1925 central steam production plant. Twenty-three ECMs were considered viable whose net impact will provide sufficient savings to successfully support the overall project objectives.

  12. Ulumbu Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Information Name Ulumbu Geothermal Power Plant Facility Geothermal Power Plant Sector Geothermal energy Location Information Address Kupang Location Indonesia Coordinates...

  13. Okeanskaya Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Okeanskaya Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Okeanskaya Geothermal Power Plant General Information Name Okeanskaya Geothermal...

  14. Pauzhetskaya Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Pauzhetskaya Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Pauzhetskaya Geothermal Power Plant General Information Name Pauzhetskaya...

  15. Power Plant Modeling and Simulation

    ScienceCinema

    None

    2016-07-12

    The National Energy Technology Laboratory's Office of Research and Development provides open source tools and expetise for modeling and simulating power plants and carbon sequestration technologies.

  16. Power Plant Modeling and Simulation

    SciTech Connect

    2008-07-21

    The National Energy Technology Laboratory's Office of Research and Development provides open source tools and expetise for modeling and simulating power plants and carbon sequestration technologies.

  17. Owners of nuclear power plants

    SciTech Connect

    Not Available

    1982-11-01

    The list indicates percentage ownership of commercial nuclear power plants by utility companies as of September 1, 1982. The list includes all plants licensed to operate, under construction, docketed for NRC safety and environmental reviews, or under NRC antitrust review. Part I lists plants alphabetically with their associated applicants and percentage ownership. Part II lists applicants alphabetically with their associated plants and percentage ownership. Part I also indicates which plants have received operating licenses.

  18. Deniz Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Plant Information Facility Type Binary Cycle Power Plant, ORC Owner MAREN Developer MAREN Energy Purchaser TEDAS Number of Units 1 Commercial Online Date 2012 Power Plant Data Type...

  19. Kakkonda Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Arc Plant Information Facility Type Single Flash Owner Tohoku Hydropower,Geothermal Energy.CoTohoku Electric Power Commercial Online Date 1978 Power Plant Data Type of Plant...

  20. Nagqu Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Name Nagqu Geothermal Power Plant Facility Geothermal Power Plant Sector Geothermal energy Location Information Geothermal Resource Area Geothermal Region Plant Information...

  1. Geothermal/Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Plant < Geothermal(Redirected from Power Plant) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Planning Leasing Exploration Well Field Power Plant Grid...

  2. Pailas Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Information Facility Type Binary Cycle Power Plant Owner Instituto Costarricense de Electricidad Number of Units 1 1 Commercial Online Date 2011 Power Plant Data Type of Plant...

  3. Owners of nuclear power plants

    SciTech Connect

    Wood, R.S.

    1991-07-01

    This report indicates percentage ownership of commercial nuclear power plants by utility companies. The report includes all plants operating, under construction, docketed for NRC safety and environmental reviews, or under NRC antitrust review, but does not include those plants announced but not yet under review or those plants formally cancelled. Part 1 of the report lists plants alphabetically with their associated applicants or licensees and percentage ownership. Part 2 lists applicants or licensees alphabetically with their associated plants and percentage ownership. Part 1 also indicates which plants have received operating licenses (OLS).

  4. Ngatamariki Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Name Ngatamariki Geothermal Power Plant Facility Geothermal Power Plant Sector Geothermal energy Location Information Address Mighty River Power Ngahere House 283...

  5. Mohave Solar Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Solar Power Plant Jump to: navigation, search Name Mohave Solar Power Plant Facility Mojave Solar Sector Solar Facility Type Concentrating Solar Power Facility Status Under...

  6. Next Generation Geothermal Power Plants

    SciTech Connect

    Brugman, John; Hattar, Mai; Nichols, Kenneth; Esaki, Yuri

    1995-09-01

    A number of current and prospective power plant concepts were investigated to evaluate their potential to serve as the basis of the next generation geothermal power plant (NGGPP). The NGGPP has been envisaged as a power plant that would be more cost competitive (than current geothermal power plants) with fossil fuel power plants, would efficiently use resources and mitigate the risk of reservoir under-performance, and minimize or eliminate emission of pollutants and consumption of surface and ground water. Power plant concepts were analyzed using resource characteristics at ten different geothermal sites located in the western United States. Concepts were developed into viable power plant processes, capital costs were estimated and levelized busbar costs determined. Thus, the study results should be considered as useful indicators of the commercial viability of the various power plants concepts that were investigated. Broadly, the different power plant concepts that were analyzed in this study fall into the following categories: commercial binary and flash plants, advanced binary plants, advanced flash plants, flash/binary hybrid plants, and fossil/geothed hybrid plants. Commercial binary plants were evaluated using commercial isobutane as a working fluid; both air-cooling and water-cooling were considered. Advanced binary concepts included cycles using synchronous turbine-generators, cycles with metastable expansion, and cycles utilizing mixtures as working fluids. Dual flash steam plants were used as the model for the commercial flash cycle. The following advanced flash concepts were examined: dual flash with rotary separator turbine, dual flash with steam reheater, dual flash with hot water turbine, and subatmospheric flash. Both dual flash and binary cycles were combined with other cycles to develop a number of hybrid cycles: dual flash binary bottoming cycle, dual flash backpressure turbine binary cycle, dual flash gas turbine cycle, and binary gas turbine

  7. Nebraska Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    Nebraska nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Cooper Unit 1",767,"6,793",61.4,"Nebraska Public Power District" "Fort Calhoun Unit 1",478,"4,261",38.6,"Omaha Public Power District" "2 Plants 2

  8. Georgia Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Edwin I Hatch Unit 1, Unit 2","1,759","13,902",41.5,"Georgia Power Co" "Vogtle Unit 1, Unit 2","2,302","19,610",58.5,"Georgia Power Co" "2 Plants 4

  9. Maryland Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Calvert Cliffs Nuclear Power Plant Unit 1, Unit 2","1,705","13,994",100.0,"Calvert Cliffs Nuclear PP Inc" "1 Plant 2 Reactors","1,705","13,994",100.0 "Note: Totals

  10. Owners of nuclear power plants

    SciTech Connect

    Hudson, C.R.; White, V.S.

    1996-11-01

    Commercial nuclear power plants in this country can be owned by a number of separate entities, each with varying ownership proportions. Each of these owners may, in turn, have a parent/subsidiary relationship to other companies. In addition, the operator of the plant may be a different entity as well. This report provides a compilation on the owners/operators for all commercial power reactors in the United States. While the utility industry is currently experiencing changes in organizational structure which may affect nuclear plant ownership, the data in this report is current as of July 1996. The report is divided into sections representing different aspects of nuclear plant ownership.

  11. Owners of Nuclear Power Plants

    SciTech Connect

    Reid, R.L.

    2000-01-12

    Commercial nuclear power plants in this country can be owned by a number of separate entities, each with varying ownership proportions. Each of these owners may, in turn, have a parent/subsidiary relationship to other companies. In addition, the operator of the plant may be a different entity as well. This report provides a compilation on the owners/operators for all commercial power reactors in the United States. While the utility industry is currently experiencing changes in organizational structure which may affect nuclear plant ownership, the data in this report is current as of November 1999. The report is divided into sections representing different aspects of nuclear plant ownership.

  12. Evaluation of a superheater enhanced geothermal steam power plant in the Geysers area. Final report

    SciTech Connect

    Janes, J.

    1984-06-01

    This study was conducted to determine the attainable generation increase and to evaluate the economic merits of superheating the steam that could be used in future geothermal steam power plants in the Geyser-Calistoga Known Geothermal Resource Area (KGRA). It was determined that using a direct gas-fired superheater offers no economic advantages over the existing geothermal power plants. If the geothermal steam is heated to 900/sup 0/F by using the exhaust energy from a gas turbine of currently available performance, the net reference plant output would increase from 65 MW to 159 MW (net). Such hybrid plants are cost effective under certain conditions identified in this document. The power output from the residual Geyser area steam resource, now equivalent to 1437 MW, would be more than doubled by employing in the future gas turbine enhancement. The fossil fuel consumed in these plants would be used more efficiently than in any other fossil-fueled power plant in California. Due to an increase in evaporative losses in the cooling towers, the viability of the superheating concept is contingent on development of some of the water resources in the Geysers-Calistoga area to provide the necessary makeup water.

  13. Fossil-fuel power plants and power generation: Economic analysis. (Latest citations from the NTIS data base). Published Search

    SciTech Connect

    Not Available

    1992-06-01

    The bibliography contains citations concerning economic analyses and evaluations of utility and industrial fossil-fuel power generation. Coal-fired, oil-fired, and natural gas-fired electric power generating systems are discussed. Specific technologies, experiences, and locations are also considered. (Contains 250 citations and includes a subject term index and title list.)

  14. Fossil-fuel power plants and power generation: Economic analysis. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect

    1995-10-01

    The bibliography contains citations concerning economic analyses and evaluations of utility and industrial fossil-fuel power generation. Coal-fired, oil-fired, and natural gas-fired electric power generating systems are discussed. Specific technologies, experiences, and locations are also considered. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  15. Fossil-fuel power plants and power generation: Economic analysis. (Latest citations from the NTIS Bibliographic database). Published Search

    SciTech Connect

    Not Available

    1993-12-01

    The bibliography contains citations concerning economic analyses and evaluations of utility and industrial fossil-fuel power generation. Coal-fired, oil-fired, and natural gas-fired electric power generating systems are discussed. Specific technologies, experiences, and locations are also considered. (Contains 250 citations and includes a subject term index and title list.)

  16. Fossil-fuel power plants and power generation: Economic analysis. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect

    Not Available

    1994-12-01

    The bibliography contains citations concerning economic analyses and evaluations of utility and industrial fossil-fuel power generation. Coal-fired, oil-fired, and natural gas-fired electric power generating systems are discussed. Specific technologies, experiences, and locations are also considered. (Contains 250 citations and includes a subject term index and title list.)

  17. Fossil-fuel power plants and power generation: Economic analysis. (Latest citations from the NTIS Bibliographic database). Published Search

    SciTech Connect

    1993-09-01

    The bibliography contains citations concerning economic analyses and evaluations of utility and industrial fossil-fuel power generation. Coal-fired, oil-fired, and natural gas-fired electric power generating systems are discussed. Specific technologies, experiences, and locations are also considered. (Contains 250 citations and includes a subject term index and title list.)

  18. Fossil-fuel power plants and power generation: Economic analysis. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect

    1997-02-01

    The bibliography contains citations concerning economic analyses and evaluations of utility and industrial fossil-fuel power generation. Coal-fired, oil-fired, and natural gas-fired electric power generating systems are discussed. Specific technologies, experiences, and locations are also considered. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  19. Massachusetts Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    Power Station Unit 1",685,"5,918",100.0,"Entergy Nuclear Generation Co" "1 Plant 1 Reactor",685,"5,918",100.0 "Note: Totals may not equal sum of components due to independent ...

  20. Residential Gas-Fired Adsorption Heat Pump Water Heater | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Gas-Fired Adsorption Heat Pump Water Heater Residential Gas-Fired Adsorption Heat Pump Water Heater Gas-fired adsorption heat pump water heater prototype. Image credit: Oak Ridge National Laboratory. Gas-fired adsorption heat pump water heater prototype. Image credit: Oak Ridge National Laboratory. Lead Performer: Oak Ridge National Laboratory - Oak Ridge, TN DOE Funding: $310,000 Project Term: October 1, 2013 - September 30, 2016 Funding Type: Annual Operating Plan (AOP) PROJECT

  1. Dynamic Simulation Nuclear Power Plants

    Energy Science and Technology Software Center

    1992-03-03

    DSNP (Dynamic Simulator for Nuclear Power-Plants) is a system of programs and data files by which a nuclear power plant, or part thereof, can be simulated. The acronym DSNP is used interchangeably for the DSNP language, the DSNP libraries, the DSNP precompiler, and the DSNP document generator. The DSNP language is a special-purpose, block-oriented, digital-simulation language developed to facilitate the preparation of dynamic simulations of a large variety of nuclear power plants. It is amore » user-oriented language that permits the user to prepare simulation programs directly from power plant block diagrams and flow charts by recognizing the symbolic DSNP statements for the appropriate physical components and listing these statements in a logical sequence according to the flow of physical properties in the simulated power plant. Physical components of nuclear power plants are represented by functional blocks, or modules. Many of the more complex components are represented by several modules. The nuclear reactor, for example, has a kinetic module, a power distribution module, a feedback module, a thermodynamic module, a hydraulic module, and a radioactive heat decay module. These modules are stored in DSNP libraries in the form of a DSNP subroutine or function, a block of statements, a macro, or a combination of the above. Basic functional blocks such as integrators, pipes, function generators, connectors, and many auxiliary functions representing properties of materials used in nuclear power plants are also available. The DSNP precompiler analyzes the DSNP simulation program, performs the appropriate translations, inserts the requested modules from the library, links these modules together, searches necessary data files, and produces a simulation program in FORTRAN.« less

  2. Massachusetts Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Pilgrim Nuclear Power Station Unit 1",685,"5,918",100.0,"Entergy Nuclear Generation Co" "1 Plant 1 Reactor",685,"5,918",100.0 "Note: Totals may not equal sum of components due to

  3. Hatchobaru Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Information Name Hatchobaru Geothermal Power Plant Facility Power Plant Sector Geothermal energy Location Information Location Oita, Japan Coordinates 33.106330525676,...

  4. Ogiri Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Information Name Ogiri Geothermal Power Plant Facility Power Plant Sector Geothermal energy Location Information Location Kagoshima, Japan Coordinates 31.954053520674,...

  5. Uenotai Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Information Name Uenotai Geothermal Power Plant Facility Power Plant Sector Geothermal energy Location Information Location Akita, Japan Coordinates 39.001204660867,...

  6. Yamagawa Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Information Name Yamagawa Geothermal Power Plant Facility Power Plant Sector Geothermal energy Location Information Location Kagoshima, Japan Coordinates 31.953944283105,...

  7. Onuma Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Information Name Onuma Geothermal Power Plant Facility Power Plant Sector Geothermal energy Location Information Location Akita, Japan Coordinates 39.981918665315,...

  8. Mori Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Information Name Mori Geothermal Power Plant Facility Power Plant Sector Geothermal energy Location Information Location Hokkaido, Japan Coordinates 42.132906551396,...

  9. Otake Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Information Name Otake Geothermal Power Plant Facility Power Plant Sector Geothermal energy Location Information Location Oita, Japan Coordinates 33.105767212548,...

  10. Sumikawa Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Information Name Sumikawa Geothermal Power Plant Facility Power Plant Sector Geothermal energy Location Information Location Akita, Japan Coordinates 39.938819458336,...

  11. Kamojang Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Power Plant Facility Power Plant Sector Geothermal energy Location Information Location Java, Indonesia Coordinates -7.1386705960014, 107.78536749043 Loading map......

  12. Dieng Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Power Plant Facility Power Plant Sector Geothermal energy Location Information Location Java; Indonesia Coordinates -7.2227512797154, 110.01006889972 Loading map......

  13. Lihir Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Lihir Geothermal Power Plant General Information Name Lihir Geothermal Power Plant Sector Geothermal energy Location Information Location Lihir Island, Papua New Guinea Coordinates...

  14. Pamukoren Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Facility Type Binary Cycle Power Plant, ORC Owner CELIKLER Developer MTA-CELIKLER Energy Purchaser TEDAS Number of Units 1 Commercial Online Date 2013 Power Plant Data Type...

  15. Rotokawa Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Power Plant General Information Name Rotokawa Geothermal Power Plant Sector Geothermal energy Location Information Location 14km NE of Taupo, Waikato, New Zealand Coordinates...

  16. Minnesota Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    Minnesota nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Monticello Unit 1",554,"4,695",34.8,"Northern States Power Co - Minnesota" "Prairie Island Unit 1, Unit 2","1,040","8,783",65.2,"Northern States Power Co -

  17. Virginia Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "North Anna Unit 1, Unit 2","1,863","13,399",50.4,"Virginia Electric & Power Co" "Surry Unit 1, Unit 2","1,638","13,172",49.6,"Virginia Electric & Power

  18. Cibuni Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Hide Map Geothermal Resource Area Pengalengan Geothermal Area Geothermal Region West Java Plant Information Owner PLN Commercial Online Date 2014 Power Plant Data Type of Plant...

  19. Wairakei Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Taupo Volcanic Zone Plant Information Facility Type Binary, Wet Steam Owner Contact Energy Number of Units 12 1 Commercial Online Date 1958 Power Plant Data Type of Plant...

  20. Niigata Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Japanese Archipelago Plant Information Facility Type Binary Owner Wasabi Developer Wasabi Energy Purchaser EcoGen Commercial Online Date 2012 Power Plant Data Type of Plant Number...

  1. Geothermal Steam Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Geothermal Steam Power Plant (Redirected from Dry Steam) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home General List of Dry Steam Plants List of Flash Steam Plants...

  2. Researching power plant water recovery

    SciTech Connect

    2008-04-01

    A range of projects supported by NETl under the Innovations for Existing Plant Program are investigating modifications to power plant cooling systems for reducing water loss, and recovering water from the flue gas and the cooling tower. This paper discusses two technologies showing particular promise condense water that is typically lost to evaporation, SPX technologies' Air2Air{sup trademark} condenses water from a cooling tower, while Lehigh University's process condenses water and acid in flue gas. 3 figs.

  3. State power plant productivity programs

    SciTech Connect

    Not Available

    1981-02-01

    The findings of a working group formed to review the status of efforts by utilities and utility regulators to increase the availability and reliability of generating units are presented. Representatives from nine state regulatory agencies, NRRI, and DOE, participated on the Working Group. The Federal government has been working cooperatively with utilities, utility organizations, and with regulators to encourage and facilitate improvements in power plant productivity. Cooperative projects undertaken with regulatory and energy commissions in California, Illinois, New York, Ohio, Texas, North Carolina and Mighigan are described. Following initiation of these cooperative projects, DOE funded a survey to determine which states were explicitly addressing power plant productivity through the regulatory process. The Working Group was formed following completion of this survey. The Working Group emphasized the need for those power plant productivity improvements which are cost effective. The cost effectiveness of proposed availability improvement projects should be determined within the context of opportunities for operating and capital improvements available to an entire utility. The Working Group also identified the need for: allowing for plant designs that have a higher construction cost, but are also more reliable; allowing for recovery and reducing recovery lags for productivity-related capital expenditures; identifying and reducing disincentives in the regulatory process; ascertaining that utilities have sufficient money available to undertake timely maintenance; and support of EPRI and NERC to develop a relevant and accurate national data base. The DOE views these as extremely important aspects of any regulatory program to improve power plant productivity.

  4. Michigan Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Donald C Cook Unit 1, Unit 2","2,069","15,646",52.8,"Indiana Michigan Power Co" "Fermi Unit 2","1,085","7,738",26.1,"Detroit Edison Co" "Palisades Unit

  5. Alabama Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Browns Ferry Unit 1, Unit 2, Unit 3","3,309","24,771",65.3,"Tennessee Valley Authority" "Joseph M Farley Unit 1, Unit 2","1,734","13,170",34.7,"Alabama Power

  6. Florida Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    Florida nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Crystal River Unit 3",860,0,"--","Progress Energy Florida Inc" "St Lucie Unit 1, Unit 2","1,678","12,630",52.8,"Florida Power & Light Co" "Turkey Point

  7. Louisiana Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    Louisiana nuclear power plants, summer capacity and net generation, 2010" "Plant Name/Total Reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (Pprcent)","Owner" "River Bend Unit 1",974,"8,363",44.9,"Entergy Gulf States - LA LLC" "Waterford 3 Unit 3","1,168","10,276",55.1,"Entergy Louisiana Inc" "2 Plants 2

  8. Mississippi Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    Mississippi nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Grand Gulf Unit 1","1,251","9,643",100.0,"System Energy Resources, Inc" "1 Plant 1 Reactor","1,251","9,643",100.0

  9. Missouri Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Callaway Unit 1","1,190","8,996",100.0,"Union Electric Co" "1 Plant 1 Reactor","1,190","8,996",100.0 "Note: Totals may not equal sum of components due to

  10. Arizona Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Palo Verde Unit 1, Unit 2, Unit 3","3,937","31,200",100.0,"Arizona Public Service Co" "1 Plant 3 Reactors","3,937","31,200",100.0 "Note: Totals may not equal sum of

  11. Arkansas Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Arkansas Nuclear One Unit 1, Unit 2","1,835","15,023",100.0,"Entergy Arkansas Inc" "1 Plant 2 Reactors","1,835","15,023",100.0

  12. Tennessee Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    Tennessee nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Sequoyah Unit 1, Unit 2","2,278","18,001",64.9,"Tennessee Valley Authority" "Watts Bar Nuclear Plant Unit 1","1,123","9,738",35.1,"Tennessee Valley

  13. Vermont Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Vermont Yankee Unit 1",620,"4,782",100.0,"Entergy Nuclear Vermont Yankee" "1 Plant 1 Reactor",620,"4,782",100.0

  14. Washington Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    Washington nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Columbia Generating Station Unit 2","1,097","9,241",100.0,"Energy Northwest" "1 Plant 1 Reactor","1,097","9,241",100.0

  15. Wisconsin Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    Wisconsin nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Kewaunee Unit 1",566,"4,990",37.6,"Dominion Energy Kewaunee Inc." "Point Beach Nuclear Plant Unit 1, Unit 2","1,018","8,291",62.4,"NextEra Energy Point Beach

  16. Connecticut Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    Connecticut nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Millstone Unit 2, Unit 3","2,103","16,750",100.0,"Dominion Nuclear Conn Inc" "1 Plant 2 Reactors","2,103","16,750",100.0

  17. Iowa Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    Iowa nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Duane Arnold Energy Center Unit 1",601,"4,451",100.0,"NextEra Energy Duane Arnold LLC" "1 Plant 1 Reactor",601,"4,451",100.0

  18. Kansas Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    Kansas nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Wolf Creek Generating Station Unit 1","1,160","9,556",100.0,"Wolf Creek Nuclear Optg Corp" "1 Plant 1 Reactor","1,160","9,556",100.0

  19. New York Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    Mile Point Nuclear Sta LLC" "R E Ginna Nuclear Power Plant Unit 1",581,"4,948",11.8,"R.E. Ginna Nuclear Power Plant, LLC" "4 Plants 6 Reactors","5,271","41,870",100.0 ...

  20. Westinghouse ICF power plant study

    SciTech Connect

    Sucov, E. W.

    1980-10-01

    In this study, two different electric power plants for the production of about 1000 MWe which were based on a CO/sub 2/ laser driver and on a heavy ion driver have been developed and analyzed. The purposes of this study were: (1) to examine in a self consistent way the technological and institutional problems that need to be confronted and solved in order to produce commercially competitive electricity in the 2020 time frame from an inertial fusion reactor, and (2) to compare, on a common basis, the consequences of using two different drivers to initiate the DT fuel pellet explosions. Analytic descriptions of size/performance/cost relationships for each of the subsystems comprising the power plant have been combined into an overall computer code which models the entire plant. This overall model has been used to conduct trade studies which examine the consequences of varying critical design values around the reference point.

  1. Binary Cycle Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    binary-cycle power plants in the future will be binary-cycle plants1 Enel's Salts Wells Geothermal Plant in Nevada: This plant is a binary system that is rated at 13 MW...

  2. Proceedings of a Topical Meeting On Small Scale Geothermal Power Plants and Geothermal Power Plant Projects

    SciTech Connect

    1986-02-12

    These proceedings describe the workshop of the Topical Meeting on Small Scale Geothermal Power Plants and Geothermal Power Plant Projects. The projects covered include binary power plants, rotary separator, screw expander power plants, modular wellhead power plants, inflow turbines, and the EPRI hybrid power system. Active projects versus geothermal power projects were described. In addition, a simple approach to estimating effects of fluid deliverability on geothermal power cost is described starting on page 119. (DJE-2005)

  3. Oguni Town Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Keiyo Plant Engineering Co, Waita Geothermal Power Plant, Chuo Electric Power Co Energy Purchaser Toshiba Commercial Online Date 2014 Power Plant Data Type of Plant Number...

  4. California Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    California nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Diablo Canyon Unit 1, Unit 2","2,240","18,430",57.2,"Pacific Gas & Electric Co" "San Onofre Nuclear Generating Station Unit 2, Unit

  5. Texas Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Comanche Peak Unit 1, Unit 2","2,406","20,208",48.9,"Luminant Generation Company LLC" "South Texas Project Unit 1, Unit 2","2,560","21,127",51.1,"STP Nuclear

  6. Illinois Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    Illinois nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Braidwood Generation Station Unit 1, Unit 2","2,330","19,200",20.0,"Exelon Nuclear" "Byron Generating Station Unit 1, Unit 2","2,300","19,856",20.6,"Exelon

  7. South Carolina Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    South Carolina nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State ...

  8. CERTIFICATION DOCKET WESTINGHOUSE ATOMIC POWER DEVELOPMENT PLANT

    Office of Legacy Management (LM)

    WESTINGHOUSE ATOMIC POWER DEVELOPMENT PLANT EAST PITTSBURGH PLANT FOREST HILLS PITTSBURGH, PENNSYLVANIA Department of Energy Office of Nuclear Energy Office of Terminal Waste ...

  9. Matsukawa Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Facility Type Dry Steam, Low Pressure Reaction Owner Tohoku HydropowerGeothermal Energy Co Number of Units 1 Commercial Online Date 1966 Power Plant Data Type of Plant...

  10. Zunil Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Volcanic Arc Chain Plant Information Facility Type Binary Cycle Power Plant Owner Ormat Energy Purchaser Instituto Nacional de Electrificacion Number of Units 7 Commercial Online...

  11. Bjarnaflag Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Plant General Information Name Bjarnaflag Geothermal Power Plant Sector Geothermal energy Location Information Location Lake Myvatn, Iceland Coordinates 65.640833,...

  12. Momotombo Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Plant Information Facility Type Double Flash, Binary Owner Empresa Nicaraguense de Electricidad (ENEL) Number of Units 3 1 Commercial Online Date 1983 Power Plant Data Type of...

  13. North Carolina Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    Carolina nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear ...

  14. New York Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net ...

  15. Wave-operated power plant

    SciTech Connect

    Ghesquiere, H.

    1980-08-12

    This wave-operated power plant comprises a perforated caisson breakwater in which propellers, or turbines, are mounted in the perforations or openings and drives hydraulic pumps connected thereto, which in turn drives a hydraulic motor coupled to an electric generator. One-way flap valves are mounted in the openings. Some of said flap valves allow the rushing waves to enter the caisson, while the other flap valves allow the water to flow out of the caisson.

  16. Energeticals power plant engineering | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    generation in the field of solid Biomass, deep and shallow geothermal energy and water power. References: energeticals power plant engineering1 This article is a stub....

  17. Gas Fired Test System For Stirling Engines. (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Citation Details In-Document Search Title: Gas Fired Test System For Stirling Engines. ... Security Administration (NNSA) Country of Publication: United States Language: English

  18. New Jersey Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal ...,332","18,731",57.2,"PSEG Nuclear LLC" "3 Plants 4 Reactors","4,108","32,771",100.0 "Note: ...

  19. North Carolina Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    Carolina nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal ...0","18,850",46.3,"Duke Energy Carolinas, LLC" "3 Plants 5 Reactors","4,958","40,740",100.0

  20. Electric power plant capital costs

    SciTech Connect

    Dodero, G.; Castellie, D.; Coffetti, M.

    1998-07-01

    Due to the increase of technology options, it is becoming day by day more important to have an overview of electric power plants capital costs so to take the right decisions in the preliminary stages of the project choices. From 1970 through the 1980's and 1990's, the capital costs of traditional steam power plants increased steadily, due in part to the addition of more advanced, and more costly, pollution control equipment. On the other hand the availability of ample natural gas, the scaling up of gas turbine machinery and the appearance on the market of new technologies (PFB, IGCC, fuel cells, etc.) are offering new opportunities to the traditional utilities and to the new players including the independent power producers, developers and private operators. The costs indicated will be referred to the two main world markets, that is, the Western countries and Asian area. These costs are obviously for preliminary studies and project assessment. To minimize the cost/benefit ratio, the design activities of the architect-engineer consultant have a very important role. Impact of manufacturing area on main component costs and on erection works: The three main factors, which influence machinery price are: local labor cost, license or research cost and raw material cost. An additional impact on plant cost on local basis are the raw material cost for erection, erection manpower, their skill and components available/manufactured in the erection area. Local taxation and custom duties must also be considered. Labor costs in Eastern Germany are still much lower than in the West Germany, but they are not indicated in the survey. Portuguese and Greek workers have the lowest labor costs.

  1. Sauder Power Plant Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Sauder Power Plant Biomass Facility Jump to: navigation, search Name Sauder Power Plant Biomass Facility Facility Sauder Power Plant Sector Biomass Location Fulton County, Ohio...

  2. Cove Fort Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Plant Information Facility Type Binary Owner Enel Green Power Developer Enel Green Power Energy Purchaser Ormat Commercial Online Date 2013 Power Plant Data Type of Plant Number...

  3. American Canyon Power Plant Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Canyon Power Plant Biomass Facility Jump to: navigation, search Name American Canyon Power Plant Biomass Facility Facility American Canyon Power Plant Sector Biomass Facility Type...

  4. DEVELOPMENT OF FINE PARTICULATE EMISSION FACTORS AND SPECIATION PROFILES FOR OIL AND GAS FIRED COMBUSTION SYSTEMS

    SciTech Connect

    Glenn England; Oliver Chang; Stephanie Wien

    2002-02-14

    This report provides results from the second year of this three-year project to develop dilution measurement technology for characterizing PM2.5 (particles with aerodynamic diameter smaller than 2.5 micrometers) and precursor emissions from stationary combustion sources used in oil, gas and power generation operation. Detailed emission rate and chemical speciation tests results for a gas turbine, a process heater, and a commercial oil/gas fired boiler are presented. Tests were performed using a research dilution sampling apparatus and traditional EPA methods. A series of pilot tests were conducted to identify the constraints to reduce the size of current research dilution sampler for future stack emission tests. Based on the test results, a bench prototype compact dilution sampler developed and characterized in GE EER in August 2002.

  5. Sabotage at Nuclear Power Plants

    SciTech Connect

    Purvis, James W.

    1999-07-21

    Recently there has been a noted worldwide increase in violent actions including attempted sabotage at nuclear power plants. Several organizations, such as the International Atomic Energy Agency and the US Nuclear Regulatory Commission, have guidelines, recommendations, and formal threat- and risk-assessment processes for the protection of nuclear assets. Other examples are the former Defense Special Weapons Agency, which used a risk-assessment model to evaluate force-protection security requirements for terrorist incidents at DOD military bases. The US DOE uses a graded approach to protect its assets based on risk and vulnerability assessments. The Federal Aviation Administration and Federal Bureau of Investigation conduct joint threat and vulnerability assessments on high-risk US airports. Several private companies under contract to government agencies use formal risk-assessment models and methods to identify security requirements. The purpose of this paper is to survey these methods and present an overview of all potential types of sabotage at nuclear power plants. The paper discusses emerging threats and current methods of choice for sabotage--especially vehicle bombs and chemical attacks. Potential consequences of sabotage acts, including economic and political; not just those that may result in unacceptable radiological exposure to the public, are also discussed. Applicability of risk-assessment methods and mitigation techniques are also presented.

  6. Efficiency combined cycle power plant

    SciTech Connect

    Pavel, J.; Meyers, G.A.; Baldwin, T.S.

    1990-06-12

    This patent describes a method of operating a combined cycle power plant. It comprises: flowing exhaust gas from a combustion turbine through a heat recovery steam generator (HRSG); flowing feed water through an economizer section of the HRSG at a flow rate and providing heated feed water; flowing a first portion of the heated feed water through an evaporator section of the HRSG and producing saturated steam at a production rate, the flow rate of the feed water through the economizer section being greater than required to sustain the production rate of steam in the evaporator section; flowing fuel for the turbine through a heat exchanger; and, flowing a second portion of the heated feed water provided by the economizer section through the heat exchanger then to an inlet of the economizer section, thereby heating the fuel flowing through the heat exchanger.

  7. Hachijojima Geothermal Energy Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Hachijojima Geothermal Energy Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Hachijojima Geothermal Energy Power Plant General Information Name...

  8. Stateline Solar Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Name Stateline Solar Power Plant Facility Stateline Sector Solar Facility Type Photovoltaic Developer First Solar Location San Bernardino County, California Coordinates...

  9. Blythe Solar Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    search Name Blythe Solar Power Plant Facility Blythe Sector Solar Facility Type Photovoltaic Developer First Solar Location Blythe, California Coordinates 33.6172329,...

  10. Geothermal/Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    in Iceland. Geothermal Power Plants discussion Electricity Generation Converting the energy from a geothermal resource into electricity is achieved by producing steam from the...

  11. Tracking New Coal-Fired Power Plants

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    January 8, 2010 National Energy Technology Laboratory Office of Systems Analyses and Planning Erik Shuster 2 Tracking New Coal-Fired Power Plants This report is intended to...

  12. Germencik Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Facility Power Plant Sector Geothermal energy Location Information Location Aydin, Turkey Coordinates 37.878694084384, 27.608050344279 Loading map... "minzoom":false,"mapp...

  13. Brawley Power Plant Abandoned | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Article: Brawley Power Plant Abandoned Abstract NA Authors California Division of Oil, Gas and and Geothermal Resources Published Journal Geothermal Hot Line, 1985 DOI Not...

  14. Wave Power Plant Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Inc Jump to: navigation, search Name: Wave Power Plant Inc Address: 2563 Granite Park Dr Place: Lincoln Zip: 95648 Region: United States Sector: Marine and Hydrokinetic Phone...

  15. Geothermal Steam Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    1.95e-4 TW Single Flash 1997 Gunun-Salak Geothermal Area Sunda Volcanic Arc Hachijojima Geothermal Energy Power Plant Tokyo Electric Power 3.3 MW3,300 kW 3,300,000 W...

  16. Methodology for Scaling Fusion Power Plant Availability

    SciTech Connect

    Lester M. Waganer

    2011-01-04

    Normally in the U.S. fusion power plant conceptual design studies, the development of the plant availability and the plant capital and operating costs makes the implicit assumption that the plant is a 10th of a kind fusion power plant. This is in keeping with the DOE guidelines published in the 1970s, the PNL report1, "Fusion Reactor Design Studies - Standard Accounts for Cost Estimates. This assumption specifically defines the level of the industry and technology maturity and eliminates the need to define the necessary research and development efforts and costs to construct a one of a kind or the first of a kind power plant. It also assumes all the "teething" problems have been solved and the plant can operate in the manner intended. The plant availability analysis assumes all maintenance actions have been refined and optimized by the operation of the prior nine or so plants. The actions are defined to be as quick and efficient as possible. This study will present a methodology to enable estimation of the availability of the one of a kind (one OAK) plant or first of a kind (1st OAK) plant. To clarify, one of the OAK facilities might be the pilot plant or the demo plant that is prototypical of the next generation power plant, but it is not a full-scale fusion power plant with all fully validated "mature" subsystems. The first OAK facility is truly the first commercial plant of a common design that represents the next generation plant design. However, its subsystems, maintenance equipment and procedures will continue to be refined to achieve the goals for the 10th OAK power plant.

  17. TS Power Plant, Eureka County, Nevada

    SciTech Connect

    Peltier, R.

    2008-10-15

    Not all coal-fired power plants are constructed by investor-owned utilities or independent power producers selling to wholesale markets. When Newmont Mining Corp. recognised that local power supplies were inadequate and too expensive to meet long-term electricity needs for its major gold- and copper-mining operations in northern Nevada, it built its own generation. What is more, Newmont's privately owned 200-MW net coal-fired plant features power plant technologies that will surely become industry standards. Newmont's investment in power and technology is also golden: the capital cost will be paid back in about eight years. 4 figs.

  18. DIRECT FUEL CELL/TURBINE POWER PLANT

    SciTech Connect

    Hossein Ghezel-Ayagh

    2003-05-27

    The subMW hybrid DFC/T power plant facility was upgraded with a Capstone C60 microturbine and a state-of-the-art full size fuel cell stack. The integration of the larger microturbine extended the capability of the hybrid power plant to operate at high power ratings with a single gas turbine without the need for supplementary air. The objectives of this phase of subMW hybrid power plant tests are to support the development of process and control and to provide the insight for the design of the packaged subMW hybrid demonstration units. The development of the ultra high efficiency multi-MW power plants was focused on the design of 40 MW power plants with efficiencies approaching 75% (LHV of natural gas). The design efforts included thermodynamic cycle analysis of key gas turbine parameters such as compression ratio.

  19. Techno-economic analysis of using corn stover to supply heat and power to a corn ethanol plant - Part 2: Cost of heat and power generation systems

    SciTech Connect

    Mani, Sudhagar; Sokhansanj, Shahabaddine; Togore, Sam; Turhollow Jr, Anthony F

    2010-03-01

    This paper presents a techno-economic analysis of corn stover fired process heating (PH) and the combined heat and power (CHP) generation systems for a typical corn ethanol plant (ethanol production capacity of 170 dam3). Discounted cash flow method was used to estimate both the capital and operating costs of each system and compared with the existing natural gas fired heating system. Environmental impact assessment of using corn stover, coal and natural gas in the heat and/or power generation systems was also evaluated. Coal fired process heating (PH) system had the lowest annual operating cost due to the low fuel cost, but had the highest environmental and human toxicity impacts. The proposed combined heat and power (CHP) generation system required about 137 Gg of corn stover to generate 9.5 MW of electricity and 52.3 MW of process heat with an overall CHP efficiency of 83.3%. Stover fired CHP system would generate an annual savings of 3.6 M$ with an payback period of 6 y. Economics of the coal fired CHP system was very attractive compared to the stover fired CHP system due to lower fuel cost. But the greenhouse gas emissions per Mg of fuel for the coal fired CHP system was 32 times higher than that of stover fired CHP system. Corn stover fired heat and power generation system for a corn ethanol plant can improve the net energy balance and add environmental benefits to the corn to ethanol biorefinery.

  20. Lessons learned from existing biomass power plants

    SciTech Connect

    Wiltsee, G.

    2000-02-24

    This report includes summary information on 20 biomass power plants, which represent some of the leaders in the industry. In each category an effort is made to identify plants that illustrate particular points. The project experiences described capture some important lessons learned that lead in the direction of an improved biomass power industry.

  1. Arkansas Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation ...,"1,835","15,023",100.0,"Entergy Arkansas Inc" "1 Plant 2 Reactors","1,835","15,023",100.0

  2. Nevada Solar One Solar Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Solar One Solar Power Plant Jump to: navigation, search Name Nevada Solar One Solar Power Plant Facility Nevada Solar One Sector Solar Facility Type Concentrating Solar Power...

  3. Solar Millenium Palen Solar Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Palen Solar Power Plant Jump to: navigation, search Name Solar Millenium Palen Solar Power Plant Facility Solar Millenium Palen Sector Solar Facility Type Concentrating Solar Power...

  4. Mojave Solar Park Solar Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Solar Park Solar Power Plant Jump to: navigation, search Name Mojave Solar Park Solar Power Plant Facility Mojave Solar Park Sector Solar Facility Type Concentrating Solar Power...

  5. Harmonics in a Wind Power Plant: Preprint

    SciTech Connect

    Preciado, V.; Madrigal, M.; Muljadi, E.; Gevorgian, V.

    2015-04-02

    Wind power generation has been growing at a very fast pace for the past decade, and its influence and impact on the electric power grid is significant. As in a conventional power plant, a wind power plant (WPP) must ensure that the quality of the power being delivered to the grid is excellent. At the same time, the wind turbine should be able to operate immune to small disturbances coming from the grid. Harmonics are one of the more common power quality issues presented by large WPPs because of the high switching frequency of the power converters and the possible nonlinear behavior from electric machines (generator, transformer, reactors) within a power plant. This paper presents a summary of the most important issues related to harmonics in WPPs and discusses practical experiences with actual Type 1 and Type 3 wind turbines in two WPPs.

  6. Demonstration of 5MW PAFC power plant

    SciTech Connect

    Usami, Yutaka; Takae, Toshio

    1996-12-31

    Phosphoric Acid Fuel Cell Technology Research Association, established in May 1991 by Japanese 10 electric power and 4 gas companies, started a new project in 1991 FY, with the object of PAFC realization and aiming the development of 5MW- class PAFC. power plant for urban energy center and 1 MW- class power plant for onsite use. This project is carried out as 6 years plan jointly with New Energy and Industrial Technology Development Organization. The targets of the project are to evaluate and resolve the development task, such as a high reliability, compactness and cost reduction throughout the engineering, manufacturing and field testing of PAFC power plants. PAC tests and power generating test operations of 5MW plant were completed in 1994. Conducting the 2 years continuous operations and studies since 1995, the plant operational performance, system control characteristics, waste heat recovery and environmental advantage will be demonstrated.

  7. DIRECT FUEL/CELL/TURBINE POWER PLANT

    SciTech Connect

    Hossein Ghezel-Ayagh

    2004-05-01

    This report includes the progress in development of Direct FuelCell/Turbine{reg_sign} (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. FCE successfully completed testing of the pre-alpha DFC/T hybrid power plant. This power plant was constructed by integration of a 250kW fuel cell stack and a microturbine. The tests of the cascaded fuel cell concept for achieving high fuel utilizations were completed. The tests demonstrated that the concept results in higher power plant efficiency. Also, the preliminary design of a 40 MW power plant including the key equipment layout and the site plan was completed.

  8. Life extension system for fossil power plants

    SciTech Connect

    Isreb, M.

    1996-11-01

    A general, multi-disciplinary life extension system for new and existing power plants has been absent in the literature. The present paper presents a general, multi-disciplinary life extension system for new and existing fossil power plants. The paper formulates the optimization problem framework for plants` components. The paper discusses the framework of the iterative process, objective functions, plant components, life extension constraints, new life or remnant life parameters and optimization techniques. Other system attributes discussed in the paper include: design invariant parameters, relationships between plant components and objective functions and a strategy for system sizing and simulation.

  9. How a Geothermal Power Plant Works (Simple) | Department of Energy

    Energy Saver

    How a Geothermal Power Plant Works (Simple) Most power plants-whether fueled by coal, gas, ... Geothermal power plants have much in common with traditional power-generating stations. ...

  10. Saguargo Solar Power Plant Solar Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Type Concentrating Solar Power Facility Status In Service Developer Solargenix Location Red Rock, Arizona Coordinates 32.54795, -111.292887 Show Map Loading map......

  11. Direct FuelCell/Turbine Power Plant

    SciTech Connect

    Hossein Ghezel-Ayagh

    2004-11-19

    This report includes the progress in development of Direct Fuel Cell/Turbine. (DFC/T.) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. FCE successfully completed testing of the pre-alpha sub-MW DFC/T power plant. This power plant was constructed by integration of a 250kW fuel cell stack and a microturbine. Following these proof-of-concept tests, a stand-alone test of the microturbine verified the turbine power output expectations at an elevated (representative of the packaged unit condition) turbine inlet temperature. Preliminary design of the packaged sub-MW alpha DFC/T unit has been completed and procurement activity has been initiated. The preliminary design of a 40 MW power plant including the key equipment layout and the site plan was completed. A preliminary cost estimate for the 40 MW DFC/T plant has also been prepared. The tests of the cascaded fuel cell concept for achieving high fuel utilizations were completed. The tests demonstrated that the concept results in higher power plant efficiency. Alternate stack flow geometries for increased power output/fuel utilization capabilities are also being evaluated.

  12. DIRECT FUEL CELL/TURBINE POWER PLANT

    SciTech Connect

    Hossein Ghezel-Ayagh

    2004-11-01

    This report includes the progress in development of Direct FuelCell/Turbine{reg_sign} (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. The operation of sub-MW hybrid Direct FuelCell/Turbine power plant test facility with a Capstone C60 microturbine was initiated in March 2003. The inclusion of the C60 microturbine extended the range of operation of the hybrid power plant to higher current densities (higher power) than achieved in previous tests using a 30kW microturbine. The design of multi-MW DFC/T hybrid systems, approaching 75% efficiency on natural gas, was initiated. A new concept was developed based on clusters of One-MW fuel cell modules as the building blocks. System analyses were performed, including systems for near-term deployment and power plants with long-term ultra high efficiency objectives. Preliminary assessment of the fuel cell cluster concept, including power plant layout for a 14MW power plant, was performed.

  13. Washington Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    of State nuclear net generation (percent)","Owner" "Columbia Generating Station Unit 2","1,097","9,241",100.0,"Energy Northwest" "1 Plant 1 Reactor","1,097","9,241",100.0

  14. Mississippi Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    mwh)","Share of State nuclear net generation (percent)","Owner" "Grand Gulf Unit 1","1,251","9,643",100.0,"System Energy Resources, Inc" "1 Plant 1 Reactor","1,251","9,643",100.0

  15. Missouri Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    "Callaway Unit 1","1,190","8,996",100.0,"Union Electric Co" "1 Plant 1 Reactor","1,190","8,996",100.0 "Note: Totals may not equal sum of components due to ...

  16. Kansas Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    nuclear net generation (percent)","Owner" "Wolf Creek Generating Station Unit 1","1,160","9,556",100.0,"Wolf Creek Nuclear Optg Corp" "1 Plant 1 Reactor","1,160","9,556",100.0

  17. Vermont Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    mwh)","Share of State nuclear net generation (percent)","Owner" "Vermont Yankee Unit 1",620,"4,782",100.0,"Entergy Nuclear Vermont Yankee" "1 Plant 1 Reactor",620,"4,782",100.0

  18. Iowa Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    of State nuclear net generation (percent)","Owner" "Duane Arnold Energy Center Unit 1",601,"4,451",100.0,"NextEra Energy Duane Arnold LLC" "1 Plant 1 Reactor",601,"4,451",100.0

  19. Ohio Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    "Davis Besse Unit 1",894,"5,185",32.8,"FirstEnergy Nuclear Operating Company" "Perry Unit 1","1,240","10,620",67.2,"FirstEnergy Nuclear Operating Company" "2 Plants 2 ...

  20. Arizona Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Palo Verde Unit 1, Unit 2, Unit 3","3,937","31,200",100.0,"Arizona Public Service Co" "1 Plant 3 ...

  1. Texas Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    Unit 1, Unit 2","2,406","20,208",48.9,"Luminant Generation Company LLC" "South Texas Project Unit 1, Unit 2","2,560","21,127",51.1,"STP Nuclear Operating Co" "2 Plants 4 ...

  2. Power Plant and Industrial Fuel Use Act

    Office of Energy Efficiency and Renewable Energy (EERE)

    Self-certification of power plants in acordance with Title II of the Powerplant and Industrial Fuel Use Act of 1978 (FUA), as amended (42 U.S.C. 8301 et seq.).

  3. Denizli - Kizildere geothermal power-plant, Turkey

    SciTech Connect

    Ar, G.

    1985-01-01

    The first geothermal power-plant in Turkey, the Kizildere 20 MW geothermal power-plant, is being constructed near Denizli - Saraykoy by GIE, Italy. Start-up operations have already begun an it will be generating electricity by the beginning of 1984. The plant will supply part of the power demands of Southwestern Anatolia, especially in the city of Denizli. This power-plant will utilize the geothermal resources discovered by the MTA (Mineral Research Exploration Institute) near Kizildere - Saraykoy at the end of research conducted between 1968 and 1971. MTA has been conducting this research all over Turkey and recently a new geothermal system has bee found in Germencik - Aydin. In Kizildere there are 16 wells drilled by MTA. However six of them (KD 13, KD 15, KD 16, KD 6 and KD 7, KD 14, three as stand-by) will be utilized for electricity generation.

  4. Thermoelectric Power Plant Water Needs and Carbon

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... 1 (Shallow) Site, San Juan Power Plant 1 ... Water Treatment, and Electricity Cost Scenarios 1 ... (e.g., 10,000 grams of salt per 1,000,000 grams of ...

  5. Nebraska Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Cooper Unit 1",767,"6,793",61.4,"Nebraska Public Power District" "Fort Calhoun Unit ...

  6. Quiz: Know Your Power Plant | Department of Energy

    Office of Environmental Management (EM)

    Quiz: Know Your Power Plant Know Your Power Plants This quiz will test your knowledge of electricity generation in the U.S. Each map shows existing U.S. power plants for a specific ...

  7. Expanding the potential for saline formations : modeling carbon dioxide storage, water extraction and treatment for power plant cooling.

    SciTech Connect

    Not Available

    2011-04-01

    The National Water, Energy and Carbon Sequestration simulation model (WECSsim) is being developed to address the question, 'Where in the current and future U.S. fossil fuel based electricity generation fleet are there opportunities to couple CO{sub 2} storage and extracted water use, and what are the economic and water demand-related impacts of these systems compared to traditional power systems?' The WECSsim collaborative team initially applied this framework to a test case region in the San Juan Basin, New Mexico. Recently, the model has been expanded to incorporate the lower 48 states of the U.S. Significant effort has been spent characterizing locations throughout the U.S. where CO{sub 2} might be stored in saline formations including substantial data collection and analysis efforts to supplement the incomplete brine data offered in the NatCarb database. WECSsim calculates costs associated with CO{sub 2} capture and storage (CCS) for the power plant to saline formation combinations including parasitic energy costs of CO{sub 2} capture, CO{sub 2} pipelines, water treatment options, and the net benefit of water treatment for power plant cooling. Currently, the model can identify the least-cost deep saline formation CO{sub 2} storage option for any current or proposed coal or natural gas-fired power plant in the lower 48 states. Initial results suggest that additional, cumulative water withdrawals resulting from national scale CCS may range from 676 million gallons per day (MGD) to 30,155 MGD depending on the makeup power and cooling technologies being utilized. These demands represent 0.20% to 8.7% of the U.S. total fresh water withdrawals in the year 2000, respectively. These regional and ultimately nation-wide, bottom-up scenarios coupling power plants and saline formations throughout the U.S. can be used to support state or national energy development plans and strategies.

  8. OUT Success Stories: Solar Trough Power Plants

    DOE R&D Accomplishments

    Jones, J.

    2000-08-01

    The Solar Electric Generating System (SEGS) plants use parabolic-trough solar collectors to capture the sun's energy and convert it to heat. The SEGS plants range in capacity from 13.8 to 80 MW, and they were constructed to meet Southern California Edison Company's periods of peak power demand.

  9. Blast furnace gas fired boiler for Eregli Iron and Steel Works (Erdemir), Turkey

    SciTech Connect

    Green, J.; Strickland, A.; Kimsesiz, E.; Temucin, I.

    1996-11-01

    Eregli Demir ve Celik Fabriklari T.A.S. (Eregli Iron and Steel Works Inc.), known as Erdemir, is a modern integrated iron and steel works on the Black Sea coast of Turkey, producing flat steel plate. Facilities include two blast furnaces, coke ovens, and hot and cold rolling mills, with a full supporting infrastructure. Four oil- and gas-fired steam boilers provide steam for electric power generation, and to drive steam turbine driven fans for Blast Furnace process air. Two of these boilers (Babcock and Wilcox Type FH) were first put into operation in 1965, and still reliably produce 100 tons/hour of steam at a pressure of 44 bar and a temperature of 410 C. In 1989 Erdemir initiated a Capacity Increase and Modernization Project to increase the steel production capability from two million to three million tons annually. This project also incorporates technology to improve the product quality. Its goals include a reduction in energy expenses to improve Erdemir`s competitiveness. The project`s scheduled completion is in late 1995. The by-product gases of the blast furnaces, coke ovens, and basic oxygen furnaces represent a considerable share of the consumed energy in an integrated iron and steel works. Efficient use of these fuels is an important factor in improving the overall efficiency of the operation.

  10. Suginoi Hotel Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Name Suginoi Hotel Geothermal Power Plant Facility Power Plant Sector Geothermal energy Location Information Location Beppu, Japan Coordinates 33.283191762234,...

  11. Kuju Kanko Hotel Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Name Kuju Kanko Hotel Geothermal Power Plant Facility Power Plant Sector Geothermal energy Location Information Location Oita, Japan Coordinates 33.26066715087,...

  12. Yanaizu-Nishiyama Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Name Yanaizu-Nishiyama Geothermal Power Plant Facility Power Plant Sector Geothermal energy Location Information Location Yanaizu-city, Fukushima, Japan Coordinates...

  13. Kirishima Kokusai Hotel Geothermal Power Plant | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Kirishima Kokusai Hotel Geothermal Power Plant Facility Power Plant Sector Geothermal energy Location Information Location Kagoshima, Japan Coordinates 31.894281180261,...

  14. EPA Presentation: Reducing Pollution from Power Plants, October...

    Energy Saver

    EPA Presentation: Reducing Pollution from Power Plants, October 29, 2010 EPA Presentation: Reducing Pollution from Power Plants, October 29, 2010 Presentation to the Electricity ...

  15. Victorville 2 Solar Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Victorville 2 Solar Power Plant Jump to: navigation, search Name Victorville 2 Solar Power Plant Facility Victorville 2 Sector Solar Facility Type Hybrid Developer Inland Energy...

  16. Zhangbei Guotou Wind Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Zhangbei Guotou Wind Power Plant Jump to: navigation, search Name: Zhangbei Guotou Wind Power Plant Place: Beijing Municipality, China Zip: 100037 Sector: Wind energy Product: A...

  17. MHK Technologies/Sihwa tidal barrage power plant | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Sihwa tidal barrage power plant < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Sihwa tidal barrage power plant.jpg Technology Profile...

  18. MHK Technologies/Uldolmok Pilot Tidal Current Power Plant | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Uldolmok Pilot Tidal Current Power Plant < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Uldolmok Pilot Tidal Current Power Plant.jpg...

  19. NREL Calculates Emissions and Costs of Power Plant Cycling Necessary...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    "Grid operators have always cycled power plants to accommodate fluctuations in electricity demand as well as abrupt outages at conventional power plants, and grid operators use the ...

  20. Marsh Road Power Plant Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    to: navigation, search Name Marsh Road Power Plant Biomass Facility Facility Marsh Road Power Plant Sector Biomass Facility Type Landfill Gas Location San Mateo County,...

  1. Dora-1 Geothermal Energy Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Dora-1 Geothermal Energy Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Dora-1 Geothermal Energy Power Plant General Information Name Dora-1 Geothermal...

  2. NUCLEAR POWER REACTORS AND ASSOCIATED PLANTS; 05 NUCLEAR FUELS...

    Office of Scientific and Technical Information (OSTI)

    Title list of documents made publicly available, January 1-31, 1998 NONE 21 NUCLEAR POWER REACTORS AND ASSOCIATED PLANTS; 05 NUCLEAR FUELS; BIBLIOGRAPHIES; NUCLEAR POWER PLANTS;...

  3. Neal Hot Springs Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Neal Hot Springs Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Neal Hot Springs Geothermal Power Plant General Information Name Neal Hot...

  4. National Bio Energy Gongzhuling Biomass Power Plant | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Gongzhuling Biomass Power Plant Jump to: navigation, search Name: National Bio Energy Gongzhuling Biomass Power Plant Place: China Product: A subsidiary company of National Bio...

  5. Solar Millenium Ridgecrest Solar Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Ridgecrest Solar Power Plant Jump to: navigation, search Name Solar Millenium Ridgecrest Solar Power Plant Facility Solar Millenium Ridgecrest Sector Solar Facility Type...

  6. SES Calico Solar One Project Solar Power Plant | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Calico Solar One Project Solar Power Plant Jump to: navigation, search Name SES Calico Solar One Project Solar Power Plant Facility SES Calico Solar One Project Sector Solar...

  7. SES Solar Three Project Solar Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Three Project Solar Power Plant Jump to: navigation, search Name SES Solar Three Project Solar Power Plant Facility SES Solar Three Project Sector Solar Facility Type Photovoltaics...

  8. SES Solar Two Project Solar Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Two Project Solar Power Plant Jump to: navigation, search Name SES Solar Two Project Solar Power Plant Facility SES Solar Two Project Sector Solar Facility Type Concentrating Solar...

  9. Zhaidong Hydro Power Plant in Benxi County | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Zhaidong Hydro Power Plant in Benxi County Jump to: navigation, search Name: Zhaidong Hydro Power Plant in Benxi County Place: Benxi City, Liaoning Province, China Zip: 117100...

  10. System Definition and Analysis: Power Plant Design and Layout...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    System Definition and Analysis: Power Plant Design and Layout Citation Details In-Document Search Title: System Definition and Analysis: Power Plant Design and Layout You are ...

  11. Carrizo Energy Solar Farm Solar Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Carrizo Energy Solar Farm Solar Power Plant Jump to: navigation, search Name Carrizo Energy Solar Farm Solar Power Plant Facility Carrizo Energy Solar Farm Sector Solar Facility...

  12. Dora-3 Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Binary Cycle Power Plant, ORC Owner Menderes Geothermal Developer Menderes Geothermal Energy Purchaser TEDAS Number of Units 2 Commercial Online Date 2013 Power Plant Data Type...

  13. Stillwater Hybrid Geo-Solar Power Plant Optimization Analyses...

    Office of Scientific and Technical Information (OSTI)

    Stillwater Hybrid Geo-Solar Power Plant Optimization Analyses Citation Details In-Document Search Title: Stillwater Hybrid Geo-Solar Power Plant Optimization Analyses The ...

  14. Gansu Zhongyuan Water Conservancy and Hydro Power Plant Development...

    OpenEI (Open Energy Information) [EERE & EIA]

    Water Conservancy and Hydro Power Plant Development Co Ltd Jump to: navigation, search Name: Gansu Zhongyuan Water Conservancy and Hydro Power Plant Development Co. Ltd. Place:...

  15. Floating Power Plant A S FPP | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Power Plant A S FPP Jump to: navigation, search Name: Floating Power Plant AS (FPP) Address: Stenholtsvej 27 Place: Fredensborg, Denmark Zip: DK-3480 Region: Denmark Sector: Wind...

  16. Space Coast Next Generation Solar Energy Center Solar Power Plant...

    OpenEI (Open Energy Information) [EERE & EIA]

    Coast Next Generation Solar Energy Center Solar Power Plant Jump to: navigation, search Name Space Coast Next Generation Solar Energy Center Solar Power Plant Facility Space Coast...

  17. Tonopah Airport Solar Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Tonopah Airport Solar Power Plant Jump to: navigation, search Name Tonopah Airport Solar Power Plant Facility Tonopah Airport Solar Sector Solar Facility Type Concentrating Solar...

  18. Martin Next Generation Solar Energy Center Solar Power Plant...

    OpenEI (Open Energy Information) [EERE & EIA]

    Next Generation Solar Energy Center Solar Power Plant Jump to: navigation, search Name Martin Next Generation Solar Energy Center Solar Power Plant Facility Martin Next Generation...

  19. Beacon Solar Energy Project Solar Power Plant | Open Energy Informatio...

    OpenEI (Open Energy Information) [EERE & EIA]

    Solar Energy Project Solar Power Plant Jump to: navigation, search Name Beacon Solar Energy Project Solar Power Plant Facility Beacon Solar Energy Project Sector Solar Facility...

  20. Combined Heat and Power (CHP) Plant fact sheet | Argonne National...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Combined Heat and Power (CHP) Plant fact sheet Argonne National Laboratory's Combined Heat and Power (CHP) plant, expected to be operational in June 2016, will provide electricity...

  1. How a Geothermal Power Plant Works (Simple) - Text Version |...

    Energy.gov [DOE] (indexed site)

    Geothermal Power Plant Works. This animation is meant to convey in simple terms what happens in the operation of a geothermal power plant. Aspects such as exploration, resource...

  2. Mapping suitability areas for concentrated solar power plants...

    Office of Scientific and Technical Information (OSTI)

    Mapping suitability areas for concentrated solar power plants using remote sensing data Title: Mapping suitability areas for concentrated solar power plants using remote sensing data ...

  3. Blundell 2 Power Plant Details | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Power Plant Details Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Blundell 2 Power Plant Details Author Geothermal Energy Association Published...

  4. Salton Sea Power Plant Recognized as Most Innovative Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Salton Sea Power Plant Recognized as Most Innovative Geothermal Project Salton Sea Power Plant Recognized as Most Innovative Geothermal Project February 10, 2013 - 3:32pm Addthis ...

  5. Axisymmetric Tandem Mirror Magnetic Fusion Energy Power Plant...

    Office of Scientific and Technical Information (OSTI)

    Magnetic Fusion Energy Power Plant with Thick Liquid-Walls Citation Details In-Document Search Title: Axisymmetric Tandem Mirror Magnetic Fusion Energy Power Plant with Thick ...

  6. El Dorado Solar Project Solar Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Solar Project Solar Power Plant Jump to: navigation, search Name El Dorado Solar Project Solar Power Plant Facility El Dorado Solar Project Sector Solar Facility Type Photovoltaic...

  7. Oserian 202 Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Oserian 202 Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Oserian 202 Geothermal Power Plant General Information Name Oserian 202 Geothermal...

  8. Aluto-Langano Geotermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Aluto-Langano Geotermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Aluto-Langano Geotermal Power Plant General Information Name Aluto-Langano...

  9. Gengma County Tiechang River Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Gengma County Tiechang River Power Plant Jump to: navigation, search Name: Gengma County Tiechang River Power Plant Place: Lincang City, Yunnan Province, China Zip: 666100 Sector:...

  10. Zijin County East River Fengguang Likou Power Plant Development...

    OpenEI (Open Energy Information) [EERE & EIA]

    Zijin County East River Fengguang Likou Power Plant Development Co Ltd Jump to: navigation, search Name: Zijin County East River Fengguang Likou Power Plant Development Co.Ltd...

  11. Dongjiang Fengguang Likou Power Plant Development Co Ltd | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Fengguang Likou Power Plant Development Co Ltd Jump to: navigation, search Name: Dongjiang Fengguang Likou Power Plant Development Co., Ltd. Place: Heyuan, Guangdong Province,...

  12. Power plant emissions verified remotely at Four Corners sites

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Power plant emissions verified remotely Power plant ... The study is the first to show that space-based techniques can ... deployed ground-based solar spectrometers and point ...

  13. SCE Roof Project Solar Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    SCE Roof Project Solar Power Plant Jump to: navigation, search Name SCE Roof Project Solar Power Plant Facility SCE Roof Project Sector Solar Facility Type Photovoltaic Developer...

  14. Starwood Solar I Solar Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Starwood Solar I Solar Power Plant Jump to: navigation, search Name Starwood Solar I Solar Power Plant Facility Starwood Solar I Sector Solar Facility Type Concentrating Solar...

  15. Atlantic City Convention Center Solar Power Plant | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Convention Center Solar Power Plant Jump to: navigation, search Name Atlantic City Convention Center Solar Power Plant Facility Atlantic City Convention Center Sector Solar...

  16. Palmdale Project Solar Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Palmdale Project Solar Power Plant Jump to: navigation, search Name Palmdale Project Solar Power Plant Facility Palmdale Project Sector Solar Facility Type Hybrid Developer Inland...

  17. Economic analysis of operating alternatives for the South Vandenberg Power Plant at Vandenberg Air Force Base, California

    SciTech Connect

    Daellenbach, K.K.; Dagle, J.E.; Reilly, R.W.; Shankle, S.A.

    1993-02-01

    Vandenberg Air Force Base (VAFB), located approximately 50 miles northwest of Santa Barbara, California, commissioned the Pacific Northwest Laboratory to conduct an economic analysis of operating alternatives of the South Vandenberg Power Plant (SVPP). Recent concern over SVPP operating and environmental costs prompted VAFB personnel to consider other means to support the Missile Operation Support Requirement (MOSR). The natural gas-fired SVPP was originally designed to support the Space Transportation System launch activities. With cancellation of this mission, the SVPP has been used to provide primary and backup electric power to support MOSR activities for the Space Launch Complexes. This document provides economic analysis in support of VAFB decisions about future operation of the SVPP. This analysis complied with the life-cycle cost (LCC) analytical approach detailed in 10 CFR 436, which is used in support of all Federal energy decisions. Many of the SVPP operational and environmental cost estimates were provided by VAFB staff, with additional information from vendors and engineering contractors. The LCC analysis consisted of three primary operating strategies, each with a level of service equal to or better than the current status-quo operation. These scenarios are: Status-quo operation where the SVPP provides both primary and backup MOSR power; Purchased utility power providing primary MOSR support with backup power provided by an Uninterruptible Power Supply (UPS) system. The SVPP would be used to provide power for long-duration power outages; Purchased utility power provides primary MOSR support with backup power provided by a UPS system. A new set of dedicated generators would provide backup power for long-duration power outages.

  18. DIRECT FUEL CELL/TURBINE POWER PLANT

    SciTech Connect

    Hossein Ghezel-Ayagh

    2003-05-22

    Project activities were focused on the design and construction the sub-scale hybrid Direct Fuel Cell/turbine (DFC/T{reg_sign}) power plant and modification of a Capstone Simple Cycle Model 330 microturbine. The power plant design work included preparation of system flow sheet and performing computer simulations based on conservation of mass and energy. The results of the simulation analyses were utilized to prepare data sheets and specifications for balance-of-plant equipment. Process flow diagram (PFD) and piping and instrumentation diagrams (P&ID) were also completed. The steady state simulation results were used to develop design information for modifying the control functions, and for sizing the heat exchangers required for recuperating the waste heat from the power plant. Line and valve sizes for the interconnecting pipes between the microturbine and the heat recuperators were also identified.

  19. Method for operating a heating power plant and heating power plant for carrying out the method

    SciTech Connect

    Bernauer, O.; Buchner, H.

    1982-05-18

    A heating power plant and a process for operating the power plant with the power plant containing a thermal power installation for producing mechanical motive energy for driving an energy supply device as well as waste heat which may be utlized for heating purposes in the power plant. The thermal power installation may be shut down or operated at slight partial loads during periods of low energy needs with hydrogen being introduced into a metal hydride storage device which is capable of absorbing hydrogen. At times of higher energy need the thermal power installation is kept in operation under greater load conditions and hydrogen is removed from a metal hydride storage device which is capable of releasing such hydrogen. The release enthalpy required for releasing the hydrogen is provided by waste heat from the thermal power installation or by ambient air.

  20. Monitoring Biological Activity at Geothermal Power Plants

    SciTech Connect

    Peter Pryfogle

    2005-09-01

    The economic impact of microbial growth in geothermal power plants has been estimated to be as high as $500,000 annually for a 100 MWe plant. Many methods are available to monitor biological activity at these facilities; however, very few plants have any on-line monitoring program in place. Metal coupon, selective culturing (MPN), total organic carbon (TOC), adenosine triphosphate (ATP), respirometry, phospholipid fatty acid (PLFA), and denaturing gradient gel electrophoresis (DGGE) characterizations have been conducted using water samples collected from geothermal plants located in California and Utah. In addition, the on-line performance of a commercial electrochemical monitor, the BIoGEORGE?, has been evaluated during extended deployments at geothermal facilities. This report provides a review of these techniques, presents data on their application from laboratory and field studies, and discusses their value in characterizing and monitoring biological activities at geothermal power plants.

  1. Don A. Cambell Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Geothermal Region Plant Information Facility Type Binary Owner Ormat Developer Ormat Energy Purchaser Ormat Commercial Online Date 2013 Power Plant Data Type of Plant Number...

  2. Direct FuelCell/Turbine Power Plant

    SciTech Connect

    Hossein Ghezel-Ayagh

    2008-09-30

    This report summarizes the progress made in development of Direct FuelCell/Turbine (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T system employs an indirectly heated Turbine Generator to supplement fuel cell generated power. The concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, minimal emissions, reduced carbon dioxide release to the environment, simplicity in design, direct reforming internal to the fuel cell, and potential cost competitiveness with existing combined cycle power plants. Proof-of-concept tests using a sub-MW-class DFC/T power plant at FuelCell Energy's (FCE) Danbury facility were conducted to validate the feasibility of the concept and to measure its potential for electric power production. A 400 kW-class power plant test facility was designed and retrofitted to conduct the tests. The initial series of tests involved integration of a full-size (250 kW) Direct FuelCell stack with a 30 kW Capstone microturbine. The operational aspects of the hybrid system in relation to the integration of the microturbine with the fuel cell, process flow and thermal balances, and control strategies for power cycling of the system, were investigated. A subsequent series of tests included operation of the sub-MW Direct FuelCell/Turbine power plant with a Capstone C60 microturbine. The C60 microturbine extended the range of operation of the hybrid power plant to higher current densities (higher power) than achieved in initial tests using the 30kW microturbine. The proof-of-concept test results confirmed the stability and controllability of operating a fullsize (250 kW) fuel cell stack in combination with a microturbine. Thermal management of the system was confirmed and power plant operation, using the microturbine as the only source of fresh air supply to the

  3. Nuclear Security for Floating Nuclear Power Plants

    SciTech Connect

    Skiba, James M.; Scherer, Carolynn P.

    2015-10-13

    Recently there has been a lot of interest in small modular reactors. A specific type of these small modular reactors (SMR,) are marine based power plants called floating nuclear power plants (FNPP). These FNPPs are typically built by countries with extensive knowledge of nuclear energy, such as Russia, France, China and the US. These FNPPs are built in one country and then sent to countries in need of power and/or seawater desalination. Fifteen countries have expressed interest in acquiring such power stations. Some designs for such power stations are briefly summarized. Several different avenues for cooperation in FNPP technology are proposed, including IAEA nuclear security (i.e. safeguards), multilateral or bilateral agreements, and working with Russian design that incorporates nuclear safeguards for IAEA inspections in non-nuclear weapons states

  4. Linear Fresnel Power Plant Illustration

    Energy.gov [DOE]

    With this concentrating solar power (CSP) graphic, flat or slightly curved mirrors mounted on trackers on the ground are configured to reflect sunlight onto a receiver tube fixed in space above these mirrors. A small parabolic mirror is sometimes added atop the receiver to further focus the sunlight. Linear CSP collectors capture the sun's energy with large mirrors that reflect and focus the sunlight onto a linear receiver tube. The receiver contains a fluid that is heated by the sunlight and then used to create superheated steam that spins a turbine that drives a generator to produce electricity.

  5. Efficiency improvement of thermal coal power plants

    SciTech Connect

    Hourfar, D.

    1996-12-31

    The discussion concerning an increase of the natural greenhouse effect by anthropogenic changes in the composition of the atmosphere has increased over the past years. The greenhouse effect has become an issue of worldwide debate. Carbon dioxide is the most serious emission of the greenhouse gases. Fossil-fired power plants have in the recent past been responsible for almost 30 % of the total CO{sub 2} emissions in Germany. Against this background the paper will describe the present development of CO{sub 2} emissions from power stations and present actual and future opportunities for CO{sub 2} reduction. The significance attached to hard coal as one of today`s prime sources of energy with the largest reserves worldwide, and, consequently, its importance for use in power generation, is certain to increase in the years to come. The further development of conventional power plant technology, therefore, is vital, and must be carried out on the basis of proven operational experience. The main incentive behind the development work completed so far has been, and continues to be, the achievement of cost reductions and environmental benefits in the generation of electricity by increasing plant efficiency, and this means that, in both the short and the long term, power plants with improved conventional technology will be used for environmentally acceptable coal-fired power generation.

  6. DIRECT FUEL CELL/TURBINE POWER PLANT

    SciTech Connect

    Hossein Ghezel-Ayagh

    2003-05-23

    In this reporting period, a milestone was achieved by commencement of testing and operation of the sub-scale hybrid direct fuel cell/turbine (DFC/T{reg_sign}) power plant. The operation was initiated subsequent to the completion of the construction of the balance-of-plant (BOP) and implementation of process and control tests of the BOP for the subscale DFC/T hybrid system. The construction efforts consisted of finishing the power plant insulation and completion of the plant instrumentation including the wiring and tubing required for process measurement and control. The preparation work also included the development of procedures for facility shake down, conditioning and load testing of the fuel cell, integration of the microturbine, and fuel cell/gas turbine load tests. At conclusion of the construction, the process and control (PAC) tests of BOP, including the microturbine, were initiated.

  7. Advanced Condenser Boosts Geothermal Power Plant Output (Fact...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Condensation of spent generator steam is a critical part of Advanced Condenser Boosts Geothermal Power Plant Output When power production at The Geysers geothermal power complex ...

  8. Residential Gas-fired Cost-effective Triple-state Sorption Heat Pump |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Residential Gas-fired Cost-effective Triple-state Sorption Heat Pump Residential Gas-fired Cost-effective Triple-state Sorption Heat Pump Lead Performer: Oak Ridge National Lab-Oak Ridge, TN Partner(s): ClimateWell-Stockholm, Sweden; Rheem-Atlanta, GA DOE Total Funding: $2,000,000 Cost Share: $230,000 Project Term: 2016-2019 Funding Type: Building Energy Efficiency Frontiers and Innovations Technologies (BENEFIT) - 2016 (DE-FOA-0001383) PROJECT OBJECTIVE Oak Ridge

  9. Slim Holes for Small Power Plants

    SciTech Connect

    Finger, John T.

    1999-08-06

    Geothermal research study at Sandia National Laboratories has conducted a program in slimhole drilling research since 1992. Although our original interest focused on slim holes as an exploration method, it has also become apparent that they have substantial potential for driving small-scale, off-grid power plants. This paper summarizes Sandia's slim-hole research program, describes technology used in a ''typical'' slimhole drilling project, presents an evaluation of using slim holes for small power plants, and lists some of the research topics that deserve further investigation.

  10. Syngas treating options for IGCC power plants

    SciTech Connect

    Wen, H.; Mohammad-zadeh, Y.

    1996-12-31

    Increased environmental awareness, lower cost of gas turbine based combined cycle power plants, and advances in gasification processes have made the integrated gasification combined cycle (IGCC) a viable technology to convert solid fuel to useful energy. The raw solid fuel derived synthesis gas (syngas) contains contaminants that should be removed before combustion in a gas turbine. Therefore, an important process in a gasification based plant is the cleaning of syngas. This paper provides information about various syngas treating technologies and describes their optimal selections for power generation or cogeneration of steam for industrial applications.

  11. New Hampshire Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (nw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Seabrook Unit 1","1,247","10,910",100.0,"NextEra Energy Seabrook LLC" "1 Plant 1 Reactor","1,247","10,910",100.0 "Note: Totals may not equal sum of components due

  12. DEVELOPMENT OF FINE PARTICULATE EMISSION FACTORS AND SPECIATION PROFILES FOR OIL AND GAS-FIRED COMBUSTION SYSTEMS

    SciTech Connect

    Glenn C. England; Stephanie Wien; Mingchih O. Chang

    2002-08-01

    This report provides results from the first year of this three-year project to develop dilution measurement technology for characterizing PM2.5 (particles with aerodynamic diameter smaller than 2.5 micrometers) and precursor emissions from stationary combustion sources used in oil, gas and power generation operations. Detailed emission rate and chemical speciation test results for a refinery gas-fired process heater and plans for cogeneration gas turbine tests and pilot-scale tests are presented. Tests were performed using a research dilution sampling apparatus and traditional EPA methods to compare PM2.5 mass and chemical speciation. Test plans are presented for a gas turbine facility that will be tested in the fourth quarter of 2002. A preliminary approach for pilot-scale tests is presented that will help define design constraints for a new dilution sampler design that is smaller, lighter, and less costly to use.

  13. Report on Hawaii Geothermal Power Plant Project

    SciTech Connect

    Not Available

    1983-06-01

    The report describes the design, construction, and operation of the Hawaii Geothermal Generator Project. This power plant, located in the Puna District on the island of Hawaii, produces three megawatts of electricity from the steam phase of a geothermal well. (ACR)

  14. Combined cycle power plant incorporating coal gasification

    DOEpatents

    Liljedahl, Gregory N.; Moffat, Bruce K.

    1981-01-01

    A combined cycle power plant incorporating a coal gasifier as the energy source. The gases leaving the coal gasifier pass through a liquid couplant heat exchanger before being used to drive a gas turbine. The exhaust gases of the gas turbine are used to generate both high pressure and low pressure steam for driving a steam turbine, before being exhausted to the atmosphere.

  15. The commercialization of magnetohydrodynamic electric power plants

    SciTech Connect

    Weinstein, R.E.

    1993-12-31

    The successful development of Magnetohydrodynamics (MHD) will provide an ultra clean, highly efficient alternative to other methods of coal-fired electric Power generation. A development path that could bring coal-fired MHD electric power plants to competitive commercial status is described in this paper. The paper discusses the scale-ups, the timing, and technical hurdles that face this technology as it progresses from its present status of small-scale demonstrations and begins its competition for electric utility acceptance. Coal-fired MHD power has at least four major markets: (1) New utility generation. (2) Utility retrofit/repowering applications. (3) New independent power production (IPP). (4) Large industrial cogeneration application. Of these, the largest market for MHD is expected to be the new electric utility/IPP generation market, those new units required to supply growth in power demand and to replace retired capacity. This market sector is the focus of this discussion. This paper describes the commercial pressures and inertias that motivate the entry of any new technology into the generation supply market. It then shows a development path that could bring coal-fired MHD electric power plants to competitive commercial status in the electric power industry.

  16. Wind Power Plant Voltage Stability Evaluation: Preprint

    SciTech Connect

    Muljadi, E.; Zhang, Y. C.

    2014-09-01

    Voltage stability refers to the ability of a power system to maintain steady voltages at all buses in the system after being subjected to a disturbance from a given initial operating condition. Voltage stability depends on a power system's ability to maintain and/or restore equilibrium between load demand and supply. Instability that may result occurs in the form of a progressive fall or rise of voltages of some buses. Possible outcomes of voltage instability are the loss of load in an area or tripped transmission lines and other elements by their protective systems, which may lead to cascading outages. The loss of synchronism of some generators may result from these outages or from operating conditions that violate a synchronous generator's field current limit, or in the case of variable speed wind turbine generator, the current limits of power switches. This paper investigates the impact of wind power plants on power system voltage stability by using synchrophasor measurements.

  17. Owners of nuclear power plants: Percentage ownership of commercial nuclear power plants by utility companies

    SciTech Connect

    Wood, R.S.

    1987-08-01

    The following list indicates percentage ownership of commercial nuclear power plants by utility companies as of June 1, 1987. The list includes all plants licensed to operate, under construction, docked for NRC safety and environmental reviews, or under NRC antitrust review. It does not include those plants announced but not yet under review or those plants formally canceled. In many cases, ownership may be in the process of changing as a result of altered financial conditions, changed power needs, and other reasons. However, this list reflects only those ownership percentages of which the NRC has been formally notified. Part I lists plants alphabetically with their associated applicants/licensees and percentage ownership. Part II lists applicants/licensees alphabetically with their associated plants and percentage ownership. Part I also indicates which plants have received operating licenses (OL's). Footnotes for both parts appear at the end of this document.

  18. Research and development of a high efficiency gas-fired water heater. Volume 2. Task reports

    SciTech Connect

    Vasilakis, A.D.; Pearson, J.F.; Gerstmann, J.

    1980-01-01

    Design and development of a cost-effective high efficiency gas-fired water heater to attain a service efficiency of 70% (including the effect of exfiltration) and a service efficiency of 78% (excluding exfiltration) for a 75 GPD draw at a 90/sup 0/F temperature rise, with a stored water to conditioned air temperature difference of 80/sup 0/F, are described in detail. Based on concept evaluation, a non-powered natural draft water heater was chosen as the most cost-effective design to develop. The projected installed cost is $374 compared to $200 for a conventional unit. When the project water heater is compared to a conventional unit, it has a payback of 3.7 years and life cycle savings of $350 to the consumer. A prototype water heater was designed, constructed, and tested. When operated with sealed combustion, the unit has a service efficiency of 66.4% (including the effect of exfiltration) below a burner input of 32,000 Btu/h. In the open combustion configuration, the unit operated at a measured efficiency of 66.4% Btu/h (excluding exfiltration). This compares with a service efficiency of 51.3% for a conventional water heater and 61% for a conventional high efficiency unit capable of meeting ASHRAE 90-75. Operational tests showed the unit performed well with no evidence of stacking or hot spots. It met or exceeded all capacity or usage tests specified in the program test plan and met all emission goals. Future work will concentrate on designing, building, and testing pre-production units. It is anticipated that both sealed combustion and open draft models will be pursued.

  19. New era for fossil power plant simulators

    SciTech Connect

    Hoffman, S.

    1995-09-01

    At a time when the utility industry is focusing on products and services that can enhance competitiveness, affordable fossil plant simulators are a welcome technology. In just a few years, these simulators have progressed from being an expensive tool that few utilities could afford to being a technology that many utilities feel they can`t do without. Offering a variety of benefits in the areas of fossil plant training and engineering, today`s simulators are flexible, effective, and much less expensive than their counterparts in the 1980s. A vigorous EPRI development and demonstration effort has advanced simulators beyond operator issues to a new era of application, ranging from the training of engineers to the design and testing of power plant technologies. And the technologies that have resulted from simulator development and enhancement will have beneficial uses beyond plant simulation. 8 figs.

  20. DIRECT FUELCELL/TURBINE POWER PLANT

    SciTech Connect

    Hossein Shezel-Ayagh

    2005-05-01

    This report summarizes the progress made in development of Direct FuelCell/Turbine{reg_sign} (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. Detailed design of the packaged sub-MW alpha DFC/T unit has been completed for mechanical and piping layouts and for structural drawings. Procurement activities continued with delivery of major equipment items. Fabrication of the packaged sub-MW alpha DFC/T unit has been initiated. Details of the process control philosophy were defined and control software programming was initiated.

  1. New Jersey Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Oyster Creek Unit 1",615,"4,601",14.0,"Exelon Nuclear" "PSEG Hope Creek Generating Station Unit 1","1,161","9,439",28.8,"PSEG Nuclear LLC" "PSEG Salem Generating

  2. South Carolina Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    South Carolina nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Catawba Unit 1, Unit 2","2,258","18,964",36.5,"Duke Energy Carolinas, LLC" "H B Robinson Unit 2",724,"3,594",6.9,"Progress Energy Carolinas Inc"

  3. Guangnan Shangshilong Power Plant Company | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Yunnan Province, China Zip: 663300 Sector: Hydro Product: Yunnan-based developer of small hydro plants. References: Guangnan Shangshilong Power Plant Company1 This article is a...

  4. North Brawley Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Zone Plant Information Facility Type Binary Cycle Power Plant Owner Ormat Developer Ormat Energy Purchaser Southern California Edison Number of Units 5 Commercial Online Date 2010...

  5. Bouillante 2 Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Plant General Information Name Bouillante 2 Geothermal Power Plant Sector Geothermal energy Location Information Geothermal Resource Area Bouillante Geothermal Area Geothermal...

  6. Kizildere II Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Information Facility Type Double Flash, Binary Owner Zorlu Enerji Developer Zorlu Enerji Energy Purchaser TEDAS Commercial Online Date 2013 Power Plant Data Type of Plant Number...

  7. Los Azufres II Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Transmexican Volcanic Belt Plant Information Facility Type Single Flash Developer Alstom Energy Purchaser Comisin Federal de Electricidad Commercial Online Date 2003 Power Plant...

  8. Bouillante 1 Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Plant General Information Name Bouillante 1 Geothermal Power Plant Sector Geothermal energy Location Information Geothermal Resource Area Bouillante Geothermal Area Geothermal...

  9. Miravalles V Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    plant to be developed by Ormat International for Instituto Costaricense de Electricidad to supplement existing geothermal power plants at the Miravalles Geothermal Area....

  10. Capacity Value of Concentrating Solar Power Plants

    SciTech Connect

    Madaeni, S. H.; Sioshansi, R.; Denholm, P.

    2011-06-01

    This study estimates the capacity value of a concentrating solar power (CSP) plant at a variety of locations within the western United States. This is done by optimizing the operation of the CSP plant and by using the effective load carrying capability (ELCC) metric, which is a standard reliability-based capacity value estimation technique. Although the ELCC metric is the most accurate estimation technique, we show that a simpler capacity-factor-based approximation method can closely estimate the ELCC value. Without storage, the capacity value of CSP plants varies widely depending on the year and solar multiple. The average capacity value of plants evaluated ranged from 45%?90% with a solar multiple range of 1.0-1.5. When introducing thermal energy storage (TES), the capacity value of the CSP plant is more difficult to estimate since one must account for energy in storage. We apply a capacity-factor-based technique under two different market settings: an energy-only market and an energy and capacity market. Our results show that adding TES to a CSP plant can increase its capacity value significantly at all of the locations. Adding a single hour of TES significantly increases the capacity value above the no-TES case, and with four hours of storage or more, the average capacity value at all locations exceeds 90%.

  11. Coal gasification power plant and process

    DOEpatents

    Woodmansee, Donald E.

    1979-01-01

    In an integrated coal gasification power plant, a humidifier is provided for transferring as vapor, from the aqueous blowdown liquid into relatively dry air, both (I) at least a portion of the water contained in the aqueous liquid and (II) at least a portion of the volatile hydrocarbons therein. The resulting humidified air is advantageously employed as at least a portion of the hot air and water vapor included in the blast gas supplied via a boost compressor to the gasifier.

  12. Advanced Power Plant Development and Analysis Methodologies

    SciTech Connect

    A.D. Rao; G.S. Samuelsen; F.L. Robson; B. Washom; S.G. Berenyi

    2006-06-30

    Under the sponsorship of the U.S. Department of Energy/National Energy Technology Laboratory, a multi-disciplinary team led by the Advanced Power and Energy Program of the University of California at Irvine is defining the system engineering issues associated with the integration of key components and subsystems into advanced power plant systems with goals of achieving high efficiency and minimized environmental impact while using fossil fuels. These power plant concepts include 'Zero Emission' power plants and the 'FutureGen' H2 co-production facilities. The study is broken down into three phases. Phase 1 of this study consisted of utilizing advanced technologies that are expected to be available in the 'Vision 21' time frame such as mega scale fuel cell based hybrids. Phase 2 includes current state-of-the-art technologies and those expected to be deployed in the nearer term such as advanced gas turbines and high temperature membranes for separating gas species and advanced gasifier concepts. Phase 3 includes identification of gas turbine based cycles and engine configurations suitable to coal-based gasification applications and the conceptualization of the balance of plant technology, heat integration, and the bottoming cycle for analysis in a future study. Also included in Phase 3 is the task of acquiring/providing turbo-machinery in order to gather turbo-charger performance data that may be used to verify simulation models as well as establishing system design constraints. The results of these various investigations will serve as a guide for the U. S. Department of Energy in identifying the research areas and technologies that warrant further support.

  13. Advanced Power Plant Development and Analyses Methodologies

    SciTech Connect

    G.S. Samuelsen; A.D. Rao

    2006-02-06

    Under the sponsorship of the U.S. Department of Energy/National Energy Technology Laboratory, a multi-disciplinary team led by the Advanced Power and Energy Program of the University of California at Irvine is defining the system engineering issues associated with the integration of key components and subsystems into advanced power plant systems with goals of achieving high efficiency and minimized environmental impact while using fossil fuels. These power plant concepts include ''Zero Emission'' power plants and the ''FutureGen'' H{sub 2} co-production facilities. The study is broken down into three phases. Phase 1 of this study consisted of utilizing advanced technologies that are expected to be available in the ''Vision 21'' time frame such as mega scale fuel cell based hybrids. Phase 2 includes current state-of-the-art technologies and those expected to be deployed in the nearer term such as advanced gas turbines and high temperature membranes for separating gas species and advanced gasifier concepts. Phase 3 includes identification of gas turbine based cycles and engine configurations suitable to coal-based gasification applications and the conceptualization of the balance of plant technology, heat integration, and the bottoming cycle for analysis in a future study. Also included in Phase 3 is the task of acquiring/providing turbo-machinery in order to gather turbo-charger performance data that may be used to verify simulation models as well as establishing system design constraints. The results of these various investigations will serve as a guide for the U. S. Department of Energy in identifying the research areas and technologies that warrant further support.

  14. Capacity Value of Concentrating Solar Power Plants

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Capacity Value of Concentrating Solar Power Plants Seyed Hossein Madaeni and Ramteen Sioshansi Ohio State University Paul Denholm National Renewable Energy Laboratory Technical Report NREL/TP-6A20-51253 June 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract

  15. Fatigue monitoring in Nuclear Power Plants

    SciTech Connect

    Ware, A.G.; Shah, V.N.

    1995-04-01

    This paper summarizes fatigue monitoring methods and surveys their application in the nuclear power industry. The paper is based on a review of the technical literature. Two main reasons for fatigue monitoring are more frequent occurrence of some transients than that assumed in the fatigue design analysis and the discovery of stressors that were not included in the fatigue design analysis but may cause significant fatigue damage at some locations. One fatigue monitoring method involves use of plant operating data and procedures to update the fatigue usage. Another method involves monitoring of plant operating parameters using existing, or if needed, supplementary plant instrumentation for online computation of fatigue usage. Use of fatigue monitoring has better defined the operational transients. Most operational transients have been found less severe and fewer in numbers than anticipated in the design fatigue analysis. Use of fatigue monitoring has assisted in quantifying newly discovered stressors and has helped in detecting the presence of thermal stratification of unsuspected locations.

  16. Running dry at the power plant

    SciTech Connect

    Barker, B.

    2007-07-01

    In the future, competition for water will require electricity generators in the United States to address conservation of fresh water. There are a number of avenues to consider. One is to use dry-cooling and dry-scrubbing technologies. Another is to find innovative ways to recycle water within the power plant itself. A third is to find and use alternative sources of water, including wastewater supplies from municipalities, agricultural runoff, blackish groundwater, or seawater. Dry technologies are usually more capital intensive and typically exact a penalty in terms of plant performance, which in turn raises the cost of power generation. On the other hand, if the cost of water increases in response to greater demand, the cost differences between dry and wet technologies will be reduced. EPRI has a substantial R & D programme evaluating new water-conserving power plant technologies, improving dry and hybrid cooling technologies, reducing water losses in cooling towers, using degraded water sources and developing resource assessment and management decision support tools. 5 refs., 10 figs.

  17. Agua Caliente Solar Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Caliente Solar Power Plant Facility Agua Caliente Solar Sector Solar Facility Type Photovoltaic Developer NextLight Renewable Power Location Yuma County, Arizona Coordinates...

  18. High Plains Ranch Solar Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Ranch Solar Power Plant Facility High Plains Ranch Sector Solar Facility Type Photovoltaic Developer Sun Power Location Carizzo Plain, California Coordinates 35.1913858,...

  19. Golden Hills Solar Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Hills Solar Power Plant Facility Golden Hills Solar Sector Solar Facility Type Photovoltaic Developer PowerWorks Location Alameda County, California Coordinates 37.6016892,...

  20. Saradambika Power Plant Pvt Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Andhra Pradesh, India Zip: 500082 Sector: Biomass Product: Hyderabad-based developer of biomass power project. References: Saradambika Power Plant Pvt. Ltd1 This article is a...

  1. DOE Announces Loan Guarantee Applications for Nuclear Power Plant...

    Energy.gov [DOE] (indexed site)

    I applications from 17 electric power companies for federal loan guarantees to support the construction of 14 nuclear power plants in response to its June 30, 2008 solicitation. ...

  2. Microsoft PowerPoint - RIMA_McCourt_21Apr2014.Providence.pptx

    Energy.gov [DOE] (indexed site)

    Executive Director RI Manufacturers Association Power Prices Highly Correlated to Gas Prices Gas fired generation is a significant portion of the generation mix for New...

  3. Map of Solar Power Plants/Data | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Map of Solar Power PlantsData < Map of Solar Power Plants Jump to: navigation, search Download a CSV file of the table below: CSV FacilityType Owner Developer EnergyPurchaser...

  4. Mammoth Pacific II Power Plant Details | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Power Plant Details Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Mammoth Pacific II Power Plant Details Abstract Additional information: The Mammoth...

  5. Power Plant and Industrial Fuel Use Act | Department of Energy

    Office of Environmental Management (EM)

    Power Plant and Industrial Fuel Use Act Power Plant and Industrial Fuel Use Act Self Certifications Title II of the Powerplant and Industrial Fuel Use Act of 1978 (FUA), as amended ...

  6. AV Solar Ranch I Solar Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    AV Solar Ranch I Solar Power Plant Jump to: navigation, search Name AV Solar Ranch I Solar Power Plant Facility AV Solar Ranch I Sector Solar Facility Type Photovoltaic Developer...

  7. Geothermal Power Plants — Minimizing Land Use and Impact

    Office of Energy Efficiency and Renewable Energy (EERE)

    For energy production and development, geothermal power plants don't use much land compared to coal and nuclear power plants. And the environmental impact upon the land they use is minimal.

  8. Construction Underway on First Geothermal Power Plant in New...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Construction Underway on First Geothermal Power Plant in New Mexico Construction Underway on First Geothermal Power Plant in New Mexico September 10, 2008 - 4:38pm Addthis Photo of ...

  9. Construction Underway on First Geothermal Power Plant in New...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Construction Underway on First Geothermal Power Plant in New Mexico Construction Underway on First Geothermal Power Plant in New Mexico September 10, 2008 - 4:38pm Addthis Photo of...

  10. Controlling wet abrasion in power plants

    SciTech Connect

    Schumacher, W.J.

    1997-09-01

    Maintenance departments in many industries are continually battling the daily fires that run costs up and productivity down. Many plants have equipment that must operate under wet sliding conditions which can lead to accelerated wear of the equipment. Electric power generating plants, for example, have ongoing maintenance concerns for piping, chutes, hoppers, heat exchangers, and valves. Pulp and paper plants have heavy maintenance on: plate screens, conical bottoms of blow tanks, chutes, and augers. Coal handling equipment is often subjected to wet sliding conditions. Utility and coal prep plants can have serious flow problems if an improper structural or wear material is selected. Vibrating screens, chutes, surge bin feeders, conical distributors, screw conveyors, and cyclones are some of the components that must resist the ravages of corrosion and wear. This paper will address many of the issues that affect the life of plant components under wet sliding conditions. Environmental effects and material effects will be examined. Since the material of construction is most times the easier to change, the paper will concentrate on this subject. Such factors as: hardness, surface roughness, corrodent, and material of construction will be explored. Both controlled laboratory studies and real world service evaluations will be presented.

  11. Sunset Reservoir Solar Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Reservoir Solar Power Plant Facility Sunset Reservoir Sector Solar Facility Type Photovoltaic Developer Recurrent Energy Location San Francisco, California Coordinates...

  12. Power plant emissions verified remotely at Four Corners sites

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Power plant emissions verified remotely Power plant emissions verified remotely at Four Corners sites The study is the first to show that space-based techniques can successfully verify international regulations on fossil energy emissions. May 19, 2014 The Four Corners coal-fired power plant, near Farmington, N.M. is a major source of pollutants, with measurements confirmed by Los Alamos National Laboratory researchers. The Four Corners coal-fired power plant, near Farmington, N.M. is a major

  13. Compound hybrid geothermal-fossil power plants: thermodynamic...

    Office of Scientific and Technical Information (OSTI)

    SUPERHEATING; THERMODYNAMICS; WELL TEMPERATURE; WELLHEADS; WESTERN REGION; HEATING; HYDROGEN COMPOUNDS; NORTH AMERICA; OXYGEN COMPOUNDS; POWER PLANTS; RESERVOIR TEMPERATURE;...

  14. Los Humeros IIA Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Power Plant Sector Geothermal energy Location Information Location Chignautla, Puebla, Mexico Coordinates 19.812422502461, -97.387825789629 Loading map......

  15. Los Humeros IIB Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Power Plant Sector Geothermal energy Location Information Location Chignautla, Puebla, Mexico Coordinates 19.812422502461, -97.387825789629 Loading map......

  16. Radiological Assessment of effects from Fukushima Daiichi Nuclear Power Plant

    Energy.gov [DOE]

    NNSA presentation on Radiological Assessment of effects from Fukushima Daiichi Nuclear Power Plant from May 13, 2011

  17. East Mesa Magmamax Power Process Geothermal Generating Plant, A Preliminary

    Office of Scientific and Technical Information (OSTI)

    Analysis (Conference) | SciTech Connect East Mesa Magmamax Power Process Geothermal Generating Plant, A Preliminary Analysis Citation Details In-Document Search Title: East Mesa Magmamax Power Process Geothermal Generating Plant, A Preliminary Analysis During recent months, Magma Power Company has been involved in the shakedown and startup of their 10 MW binary cycle power plant at East Mesa in the Imperial Valley of Southern California. This pilot plant has been designed specifically as an

  18. Geothermal Power Plants — Meeting Water Quality and Conservation Standards

    Office of Energy Efficiency and Renewable Energy (EERE)

    U.S. geothermal power plants can easily meet federal, state, and local water quality and conservation standards.

  19. Hybrid Wet/Dry Cooling for Power Plants (Presentation)

    SciTech Connect

    Kutscher, C.; Buys, A.; Gladden, C.

    2006-02-01

    This presentation includes an overview of cooling options, an analysis of evaporative enhancement of air-cooled geothermal power plants, field measurements at a geothermal plant, a preliminary analysis of trough plant, and improvements to air-cooled condensers.

  20. Choosing an uninterruptible power supply for a hydro plant

    SciTech Connect

    Clemen, D.M.

    1994-06-01

    Uninterruptible power systems maintain electric power to the plant computer and other essential equipment in hydropower plants when the main power supplies fail. Project owners and engineers can ensure they obtain a reliable system by carefully analyzing plant needs and writing precise specifications.

  1. Selection of natural Gas Fired Advanced Turbine Systems (GFATS) program - Task 3. Topical report

    SciTech Connect

    1994-06-01

    Research continued on natural gas-fired turbines.The objective of Task 3 was to perform initial trade studies and select one engine system (Gas-Fired Advanced Turbine System [GFATS]) that the contractor could demonstrate, at full scale, in the 1998 to 2000 time frame. This report describes the results of the selection process. This task, including Allison internal management reviews of the selected system, has been completed. Allison`s approach to ATS is to offer an engine family that is based on the newest T406 high technology engine. This selection was based on a number of parameters including return on investment (ROI), internal rate of return (IRR) market size and potential sales into that market. This base engine family continues a history at Allison of converting flight engine products to industrial use.

  2. Progress and prospects for phosphoric acid fuel cell power plants

    SciTech Connect

    Bonville, L.J.; Scheffler, G.W.; Smith, M.J.

    1996-12-31

    International Fuel Cells (IFC) has developed the fuel cell power plant as a new, on-site power generation source. IFC`s commercial fuel cell product is the 200-kW PC25{trademark} power plant. To date over 100 PC25 units have been manufactured. Fleet operating time is in excess of one million hours. Individual units of the initial power plant model, the PC25 A, have operated for more than 30,000 hours. The first model {open_quotes}C{close_quotes} power plant has over 10,000 hours of operation. The manufacturing, application and operation of this power plant fleet has established a firm base for design and technology development in terms of a clear understanding of the requirements for power plant reliability and durability. This fleet provides the benchmark against which power plant improvements must be measured.

  3. Development of an Energy Efficient High temperature Natural Gas Fired Furnace

    SciTech Connect

    Dr. Mark G. Stevens; Dr. H. Kenneth Staffin; DOE Project Officer - Keith Bennett

    2005-02-28

    The design concept is designated the ''Porous Wall Radiation Barrier'' heating mantle. In this design, combustion gas flows through a porous wall surrounding the retort, transferring its heat to the porous wall, which then radiates heat energy to the retort. Experiments demonstrate that heat transfer rates of 1.8-2.4 times conventional gas fired mantles are achievable in the temperature range of 1600-2350 degrees fahrenheit.

  4. Fuel Cell Power Plant Experience Naval Applications

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    clean Fuel Cell Power Plant Experience Naval Applications US Department of Energy/ Office of Naval Research Shipboard Fuel Cell Workshop Washington, DC March 29, 2011 FuelCell Energy, the FuelCell Energy logo, Direct FuelCell and "DFC" are all registered trademarks (®) of FuelCell Energy, Inc. *FuelCell Energy, Inc. *Renewable and Liquid Fuels Experience *HTPEM Fuel Cell Stack for Shipboard APU *Solid Oxide Experience and Applications DOE-ONR Workshop FuelCell Energy, the FuelCell

  5. Biocorrosion in a geothermal power plant

    SciTech Connect

    Navarrette-Bedolla, M.; Ballesteros-Almanza, M.L.; Sanchez-Yanez, J.M.; Valdez-Salas, B.; Hernandez-Duque, G.

    1999-04-01

    Hyperthermophilic archaebacteria (Thermoproteus neutrophilus) promoting the corrosion of type 316 stainless steel (SS) (UNS S31600) in vapor ducts of the Tejamaniles geothermal electric power plant in Los Azufres, Michoacan, Mexico, were isolated from condensed steam. Metallographic analysis and scanning electron microscopy were performed to determine the morphology of microbiological attack on the SS. Electrochemical corrosion tests showed that the bacteria induced corrosion on type 316 SS preferentially at grain boundaries. Large amounts of elemental sulfur and carbon were detected where the bacterial culture was located.

  6. Surveillance dosimetry of operating power plants

    SciTech Connect

    McElroy, W.N.; Davis, A.I.; Gold, R.

    1981-10-16

    The main focus of the research efforts presently underway is the LWR power reactor surveillance program in which metallurgical test specimens of the reactor PV and dosimetry sensors are placed in three or more surveillance capsules at or near the reactor PV inner wall. They are then irradiated in a temperature and neutron flux-spectrum environment as similar as possible to the PV itself for periods of about 1.5 to 15 effective full-power years (EFPY), with removal of the last capsule at a fluence corresponding to the 30- to 40-year plant end-of-life (EOL) fluence. Because the neutron flux level at the surveillance position is greater than at the vessel, the test is accelerated wit respect to the vessel exposure, allowing early assessment of EOL conditions.

  7. Relative Movements for Design of Commodities in Nuclear Power Plants

    Office of Energy Efficiency and Renewable Energy (EERE)

    Relative Movements for Design of Commodities in Nuclear Power Plants Javad Moslemian, Vice President, Nuclear Power Technologies, Sargent & Lundy LLC Nezar Abraham, Senior Associate II, Nuclear Power Technologies, Sargent & Lundy LLC

  8. Fuel Cell Power Plant Experience Naval Applications | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Plant Experience Naval Applications Fuel Cell Power Plant Experience Naval Applications Presented at the DOE-DOD Shipboard APU Workshop on March 29, 2011. apu2011_8_wolak.pdf (1.51 MB) More Documents & Publications Fuel Cell Power Plants Biofuel Case Study - Tulare, CA Fuel Cell Power Plants Renewable and Waste Fuels Co-production of Hydrogen and Electricity (A Developer's Perspective)

  9. World's Largest Concentrating Solar Power Plant Opens in California |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy World's Largest Concentrating Solar Power Plant Opens in California World's Largest Concentrating Solar Power Plant Opens in California February 19, 2014 - 12:00am Addthis Ivanpah, the world's largest concentrating solar plant, opened in California on February 13.Credit: BrightSource Energy The Ivanpah Solar Electric Generating System, the world's largest concentrating solar power (CSP) plant, officially opened on February 13. As the first commercial deployment of

  10. Guidance for Deployment of Mobile Technologies for Nuclear Power Plant

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Field Workers | Department of Energy Guidance for Deployment of Mobile Technologies for Nuclear Power Plant Field Workers Guidance for Deployment of Mobile Technologies for Nuclear Power Plant Field Workers This report is a guidance document prepared for the benefit of commercial nuclear power plants' (NPPs) supporting organizations and personnel who are considering or undertaking deployment of mobile technology for the purpose of improving human performance and plant status control (PSC)

  11. Impact of Wind Power Plants on Voltage and Transient Stability of Power Systems

    SciTech Connect

    Muljadi, E.; Nguyen, Tony B.; Pai, M. A.

    2008-09-30

    A standard three-machine, nine-bus wind power system is studied and augmented by a radially connected wind power plant that contains 22 wind turbine generators.

  12. DOE Announces Loan Guarantee Applications for Nuclear Power Plant

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Construction | Department of Energy Loan Guarantee Applications for Nuclear Power Plant Construction DOE Announces Loan Guarantee Applications for Nuclear Power Plant Construction October 2, 2008 - 3:43pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced it has received 19 Part I applications from 17 electric power companies for federal loan guarantees to support the construction of 14 nuclear power plants in response to its June 30, 2008 solicitation. The

  13. Mapping suitability areas for concentrated solar power plants using remote

    Office of Scientific and Technical Information (OSTI)

    sensing data (Journal Article) | DOE PAGES Mapping suitability areas for concentrated solar power plants using remote sensing data Title: Mapping suitability areas for concentrated solar power plants using remote sensing data The political push to increase power generation from renewable sources such as solar energy requires knowing the best places to site new solar power plants with respect to the applicable regulatory, operational, engineering, environmental, and socioeconomic criteria.

  14. Advanced turbine systems program conceptual design and product development task 5 -- market study of the gas fired ATS. Topical report

    SciTech Connect

    1995-05-01

    Solar Turbines Incorporated (Solar), in partnership with the Department of Energy, will develop a family of advanced gas turbine-based power systems (ATS) for widespread commercialization within the domestic and international industrial marketplace, and to the rapidly changing electric power generation industry. The objective of the jointly-funded Program is to introduce an ATS with high efficiency, and markedly reduced emissions levels, in high numbers as rapidly as possible following introduction. This Topical Report is submitted in response to the requirements outlined in Task 5 of the Department of Energy METC Contract on Advanced Combustion Systems, Contract No, DE AC21-93MC30246 (Contract), for a Market Study of the Gas Fired Advanced Turbine System. It presents a market study for the ATS proposed by Solar, and will examine both the economic and siting constraints of the ATS compared with competing systems in the various candidate markets. Also contained within this report is an examination and analysis of Solar`s ATS and its ability to compete in future utility and industrial markets, as well as factors affecting the marketability of the ATS.

  15. Ryazan power plant feasibility study. Volume 2. Export trade information

    SciTech Connect

    Not Available

    1994-07-01

    This study was funded by the U.S. Trade and Development Agency on behalf of the Ryazan Power Plant Joint Stock Company to assess the feasibility of rehabilitating the Ryazan Power Plant in Novomichurinsk, Russia. The scope of this study includes reviewing plant equipment and operations as well as making recommendations for upgrade to present day plant standards. The main emphasis of the report is on boiler analysis, but also includes all equipment from coal entering the plant to electrical power leaving the plant. This is the second of two volumes and is divided into the following sections: (C) Technical - Sections 6-18; (D) Commercial; (E) Socioeconomic Considerations; (F) Conclusions.

  16. Equipment considerations for a binary cycle geothermal power plant

    SciTech Connect

    Thorleifson, W.C.; Ibe, A.P.

    1982-10-01

    The binary cycle geothermal power plant incorporates existing hydrocarbon handling technology proven in use by the petrochemical industry. Equipment sizing and hydrocarbon cycle control on the commercial plant scale, however, introduce some unknowns. This report discusses the various technical factors considered in the design, selection, and sizing of the major equipment for use in the Heber Binary Cycle Geothermal Demonstration Power Plant.

  17. Bibliography of the Maryland Power Plant Research Program, fifteenth edition

    SciTech Connect

    McLean, R.I.

    1994-02-01

    The Power Plant Siting Act of 1971 established the Power Plant Research Program to insure that demands for electric power would be met in a timely manner at a reasonable cost while assuring that the associated environmental impact would be acceptable. The scope of the Program extends to estimating the impact of proposed new generating facilities, evaluating the acceptability of proposed tranmission line routes, assessing the impact of existing generation facilities, and investigating generic issues related to power plant site evaluation and associated environmental and land use considerations. The bibliography is a compilation of all the studies performed for and or by the Power Plant and Environmental Review Division since its inception.

  18. SUPERCRITICAL STEAM CYCLE FOR NUCLEAR POWER PLANT

    SciTech Connect

    Tsiklauri, Georgi V.; Talbert, Robert J.; Schmitt, Bruce E.; Filippov, Gennady A.; Bogojavlensky, Roald G.; Grishanin, Evgeny I.

    2005-07-01

    Revolutionary improvement of the nuclear plant safety and economy with light water reactors can be reached with the application of micro-fuel elements (MFE) directly cooled by a supercritical pressure light-water coolant-moderator. There are considerable advantages of the MFE as compared with the traditional fuel rods, such as: Using supercritical and superheated steam considerably increases the thermal efficiency of the Rankine cycle up to 44-45%. Strong negative coolant and void reactivity coefficients with a very short thermal delay time allow the reactor to shutdown quickly in the event of a reactivity or power excursion. Core melting and the creation of corium during severe accidents are impossible. The heat transfer surface area is larger by several orders of magnitude due to the small spherical dimensions of the MFE. The larger heat exchange surface significantly simplifies residual heat removal by natural convection and radiation from the core to a subsequent passive system of heat removal.

  19. Autonomous Control of Nuclear Power Plants

    SciTech Connect

    Basher, H.

    2003-10-20

    A nuclear reactor is a complex system that requires highly sophisticated controllers to ensure that desired performance and safety can be achieved and maintained during its operations. Higher-demanding operational requirements such as reliability, lower environmental impacts, and improved performance under adverse conditions in nuclear power plants, coupled with the complexity and uncertainty of the models, necessitate the use of an increased level of autonomy in the control methods. In the opinion of many researchers, the tasks involved during nuclear reactor design and operation (e.g., design optimization, transient diagnosis, and core reload optimization) involve important human cognition and decisions that may be more easily achieved with intelligent methods such as expert systems, fuzzy logic, neural networks, and genetic algorithms. Many experts in the field of control systems share the idea that a higher degree of autonomy in control of complex systems such as nuclear plants is more easily achievable through the integration of conventional control systems and the intelligent components. Researchers have investigated the feasibility of the integration of fuzzy logic, neural networks, genetic algorithms, and expert systems with the conventional control methods to achieve higher degrees of autonomy in different aspects of reactor operations such as reactor startup, shutdown in emergency situations, fault detection and diagnosis, nuclear reactor alarm processing and diagnosis, and reactor load-following operations, to name a few. With the advancement of new technologies and computing power, it is feasible to automate most of the nuclear reactor control and operation, which will result in increased safety and economical benefits. This study surveys current status, practices, and recent advances made towards developing autonomous control systems for nuclear reactors.

  20. Oscillation Damping: A Comparison of Wind and Photovoltaic Power Plant Capabilities: Preprint

    SciTech Connect

    Singh, M.; Allen, A.; Muljadi, E.; Gevorgian, V.

    2014-07-01

    This work compares and contrasts strategies for providing oscillation damping services from wind power plants and photovoltaic power plants.

  1. The 125 MW Upper Mahiao geothermal power plant

    SciTech Connect

    Forte, N.

    1996-12-31

    The 125 MW Upper Mahiao power plant, the first geothermal power project to be financed under a Build-Own-Operate-and-Transfer (BOOT) arrangement in the Philippines, expected to complete its start-up testing in August of this year. This plant uses Ormat`s environmentally benign technology and is both the largest geothermal steam/binary combined cycle plant as well as the largest geothermal power plant utilizing air cooled condensers. The Ormat designed and constructed plant was developed under a fast track program, with some two years from the April 1994 contract signing through design, engineering, construction and startup. The plant is owned and operated by a subsidiary of CalEnergy Co., Inc. and supplies power to PNOC-Energy Development Corporation for the National Power Corporation (Napocor) national power grid in the Philippines.

  2. Wayang Windu Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Geothermal Region Sunda Volcanic Arc Plant Information Facility Type Single Flash Owner Star Energy Ltd Number of Units 2 1 Commercial Online Date 2000 Power Plant Data Type of...

  3. Development of an Equivalent Wind Plant Power-Curve: Preprint

    SciTech Connect

    Wan, Y. H.; Ela, E.; Orwig, K.

    2010-06-01

    Development of an equivalent wind plant power-curve becomes highly desirable and useful in predicting plant output for a given wind forecast. Such a development is described and summarized in this paper.

  4. Lesson 7 - Waste from Nuclear Power Plants | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    7 - Waste from Nuclear Power Plants Lesson 7 - Waste from Nuclear Power Plants This lesson takes a look at the waste from electricity production at nuclear power plants. It considers the different types of waste generated, as well as how we deal with each type of waste. Specific topics covered include: Nuclear Waste Some radioactive Types of radioactive waste Low-level waste High-level waste Disposal and storage Low-level waste disposal Spent fuel storage Waste isolation Reprocessing

  5. How Coal Gasification Power Plants Work | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Science & Innovation » Clean Coal » Gasification » How Coal Gasification Power Plants Work How Coal Gasification Power Plants Work How Coal Gasification Power Plants Work The heart of a gasification-based system is the gasifier. A gasifier converts hydrocarbon feedstock into gaseous components by applying heat under pressure in the presence of steam. A gasifier differs from a combustor in that the amount of air or oxygen available inside the gasifier is carefully controlled so that only a

  6. Specialized Materials and Fluids and Power Plants | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Specialized Materials and Fluids and Power Plants Specialized Materials and Fluids and Power Plants Below are the project presentations and respective peer review results for Specialized Materials and Fluids and Power Plants. Evaluate Thermal Spray Coatings as a Pressure Seal, Joseph A. Henfling, Sandia National Laboratories Technologies for Extracting Valuable Metals and Compounds from Geothermal Fluids, Dr. Stephen Harrison, Simbol Mining Corp. Chemical Energy Carriers (CEC) for the

  7. DC power transmission from the Leningradskaya Nuclear Power Plant to Vyborg

    SciTech Connect

    Koshcheev, L. A.; Shul'ginov, N. G.

    2011-05-15

    DC power transmission from the Leningradskaya Nuclear Power Plant (LAES) to city of Vyborg is proposed. This will provide a comprehensive solution to several important problems in the development and control of the unified power system (EES) of Russia.

  8. Research and development of a high-efficiency gas-fired water heater. Phase II. Production prototype design and development

    SciTech Connect

    Vasilakis, A.D.; Gerstmann, J.

    1983-04-01

    The second phase of the development of a high-efficiency, gas-fired water heater is described. The objective of the Phase II effort was to develop a production prototype based on the Phase I prototype design that met the project goal of a 70% service efficiency. The Phase II project began with a manufacturing analysis of the Phase I prototype by AMTROL, the manufacturing subcontractor. This was followed by an endurance test of a prototype built by AMTROL to the Phase I design. This test consisted of accelerated usage, including operation with both soft and hard water. The remainder of the Phase II project was devoted to improving the manufacturability, serviceability and performance of the high-efficiency water heater. A large part of the Phase II effort was spent in improving the efficiency from 62.6% to 71.4%. During the Phase II portion of the project, two very significant achievements were attained. First, a premixed, natural draft, combustion system was developed that had a clean compact flame. Second, a battery-powered spark ignition system was developed with the potential for lasting the life of the water heater without battery replacement.

  9. Modern technical solutions of gas-fired heating devices of household and communal use and analysis of their testing

    SciTech Connect

    Bodzon, L.; Radwan, W.

    1995-12-31

    A review of technical solutions for gas-fired heating devices for household and communal use in Poland is presented. Based upon the analysis it is stated that the power output of Polish and foreign boilers ranges between 9 and 35 kW. The carbon monoxide content in flue gases reaches (on average) 0.005 vol.%, i.e., it is much lower than the maximum permissible level. Temperature of flue gases (excluding condensation boilers and those with air-tight combustion chamber) ranges between 150 and 200{degrees}C and their heating efficiency reaches 87-93%. The best parameters are given for condensation boilers, however they are still not widespread in Poland for the high cost of the equipment and assembling works. Among the heaters, the most safe are convection devices with closed combustion chamber; their efficiency is also the highest. Thus, it is concluded that a wide spectrum of high efficiency heating devices with good combustion parameters are available. The range of output is sufficient to meet household and communal requirement. They are however - predominantly - units manufactured abroad. It is difficult to formulate the program aimed at the improvement of the technique of heating devices made in Poland, and its implementation is uncertain because the production process is broken up into small handicraft workshops.

  10. Development and Validation of a Gas-Fired Residential Heat Pump Water Heater - Final Report

    SciTech Connect

    Michael Garrabrant; Roger Stout; Paul Glanville; Janice Fitzgerald; Chris Keinath

    2013-01-21

    For gas-fired residential water heating, the U.S. and Canada is predominantly supplied by minimum efficiency storage water heaters with Energy Factors (EF) in the range of 0.59 to 0.62. Higher efficiency and higher cost ($700 - $2,000) options serve about 15% of the market, but still have EFs below 1.0, ranging from 0.65 to 0.95. To develop a new class of water heating products that exceeds the traditional limit of thermal efficiency, the project team designed and demonstrated a packaged water heater driven by a gas-fired ammonia-water absorption heat pump. This gas-fired heat pump water heater can achieve EFs of 1.3 or higher, at a consumer cost of $2,000 or less. Led by Stone Mountain Technologies Inc. (SMTI), with support from A.O. Smith, the Gas Technology Institute (GTI), and Georgia Tech, the cross-functional team completed research and development tasks including cycle modeling, breadboard evaluation of two cycles and two heat exchanger classes, heat pump/storage tank integration, compact solution pump development, combustion system specification, and evaluation of packaged prototype GHPWHs. The heat pump system extracts low grade heat from the ambient air and produces high grade heat suitable for heating water in a storage tank for domestic use. Product features that include conventional installation practices, standard footprint and reasonable economic payback, position the technology to gain significant market penetration, resulting in a large reduction of energy use and greenhouse gas emissions from domestic hot water production.

  11. Steam-Electric Power-Plant-Cooling Handbook

    SciTech Connect

    Sonnichsen, J.C.; Carlson, H.A.; Charles, P.D.; Jacobson, L.D.; Tadlock, L.A.

    1982-02-01

    The Steam-Electric Power Plant Cooling Handbook provides summary data on steam-electric power plant capacity, generation and number of plants for each cooling means, by Electric Regions, Water Resource Regions and National Electric Reliability Council Areas. Water consumption by once-through cooling, cooling ponds and wet evaporative towers is discussed and a methodology for computation of water consumption is provided for a typical steam-electric plant which uses a wet evaporative tower or cooling pond for cooling.

  12. Next generation geothermal power plants. Draft final report

    SciTech Connect

    Brugman, John; Hattar, John; Nichols, Kenneth; Esaki, Yuri

    1994-12-01

    The goal of this project is to develop concepts for the next generation geothermal power plant(s) (NGGPP). This plant, compared to existing plants, will generate power for a lower levelized cost and will be more competitive with fossil fuel fired power plants. The NGGPP will utilize geothermal resources efficiently and will be equipped with contingencies to mitigate the risk of reservoir performance. The NGGPP design will attempt to minimize emission of pollutants and consumption of surface water and/or geothermal fluids for cooling service.

  13. CalRENEW-1 Solar Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Name CalRENEW-1 Solar Power Plant Facility CalRENEW-1 Sector Solar Facility Type Photovoltaic Developer Cleantech America Location Fresno County, California Coordinates...

  14. Emcore/SunPeak Solar Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Solar Power Plant Facility EmcoreSunPeak Sector Solar Facility Type Concentrating Photovoltaic Developer SunPeak Solar Location Albuquerque, New Mexico Coordinates 35.0844909,...

  15. Nellis AFB Solar Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Name Nellis AFB Solar Power Plant Facility Nellis AFB Sector Solar Facility Type Photovoltaic Developer Fotowatio Renewable Ventures Location Clark County, Nevada Coordinates...

  16. Cimarron I Solar Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Name Cimarron I Solar Power Plant Facility Cimarron I Sector Solar Facility Type Photovoltaic Developer First Solar Location Colfax County, New Mexico Coordinates 36.5799757,...

  17. Desert Sunlight Solar Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Sunlight Solar Power Plant Facility Desert Sunlight Sector Solar Facility Type Photovoltaic Developer First Solar Location Desert Center, California Coordinates 33.7541038,...

  18. NEPA Process for Geothermal Power Plants in the Deschutes National...

    OpenEI (Open Energy Information) [EERE & EIA]

    Oregon Project Phase GeothermalExploration, GeothermalWell Field, GeothermalPower Plant Techniques Exploration Drilling, Exploratory Boreholes, Production Wells, Thermal...

  19. Hybrid Cooling for Geothermal Power Plants: Final ARRA Project...

    Office of Scientific and Technical Information (OSTI)

    Country of Publication: United States Language: English Subject: 15 GEOTHERMAL ENERGY AIR-COOLED CONDENSERS; POWER PLANT COOLING; BINARY-CYCLE; FINNED-TUBE; HEAT TRANSFER; NEVADA; ...

  20. Secretary Chu Visits Vogtle Nuclear Power Plant | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Vogtle Nuclear Power Plant Secretary Chu Visits Vogtle Nuclear Power Plant February 15, 2012 - 3:54pm Addthis Secretary Chu traveled to Waynesboro, Georgia, to visit the Vogtle nuclear power plant, the site of what will be the first new nuclear reactors to be built in the United States in three decades. | Image credit: Southern Company. Secretary Chu traveled to Waynesboro, Georgia, to visit the Vogtle nuclear power plant, the site of what will be the first new nuclear reactors to be built in

  1. The ARIES Advanced and Conservative Tokamak Power Plant Study...

    Office of Scientific and Technical Information (OSTI)

    ARIES Advanced and Conservative Tokamak Power Plant Study Kessel, C. E Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Tillak, M. S Univ. of California, San...

  2. Dutch Company Powers Streetlights With Living Plants; Will Your...

    OpenEI (Open Energy Information) [EERE & EIA]

    Dutch Company Powers Streetlights With Living Plants; Will Your Cell Phone Be Next? Home > Groups > OpenEI Community Central Dc's picture Submitted by Dc(266) Contributor 16...

  3. NREL: TroughNet - Parabolic Trough Power Plant Market, Economic...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Market Overview The primary market for parabolic trough technology is large-scale bulk power. Because trough plants can be hybridized or can include thermal energy storage, they ...

  4. World's Largest Concentrating Solar Power Plant Opens in California...

    Energy.gov [DOE] (indexed site)

    The Ivanpah Solar Electric Generating System, the world's largest concentrating solar power (CSP) plant, officially opened on February 13. As the first commercial deployment of ...

  5. Loan Guarantee Recipient Awarded Power Plant of the Year | Department...

    Office of Environmental Management (EM)

    In February, I travelled with Secretary Moniz to southern California for the dedication of the Ivanpah Solar Electric Generating System, a concentrating solar power (CSP) plant ...

  6. Guadalupe Power Plant Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Database Retrieved from "http:en.openei.orgwindex.php?titleGuadalupePowerPlantBiomassFacility&oldid397533" Feedback Contact needs updating Image needs updating...

  7. Nove Power Plant Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    2006 Database Retrieved from "http:en.openei.orgwindex.php?titleNovePowerPlantBiomassFacility&oldid397862" Feedback Contact needs updating Image needs updating...

  8. Map of Solar Power Plants | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Map of Solar Power Plants Jump to: navigation, search Loading map... "format":"googlemaps3","type":"ROADMAP","types":"ROADMAP","SATELLITE","HYBRID","TERRAIN","limit":2500,"offse...

  9. Searchlight Solar I Solar Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    by expanding it. References http:www.lasvegassun.comnews2009jun11nv-energy-buy-power-searchlight-solar-plant Retrieved from "http:en.openei.orgw...

  10. MHK Projects/OWC Pico Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    OWC Pico Power Plant < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":"ROADMA...

  11. Dynamic Models for Wind Turbines and Wind Power Plants

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Dynamic Models for Wind Turbines and Wind Power Plants January 11, 2008 - May 31, 2011 Mohit Singh Surya Santoso (Principal Investigator) The University of Texas at Austin Austin, ...

  12. Axisymmetric Tandem Mirror Magnetic Fusion Energy Power Plant...

    Office of Scientific and Technical Information (OSTI)

    A fusion power plant is described that utilizes a new version of the tandem mirror device including spinning liquid walls. The magnetic configuration is evaluated with an ...

  13. The Chena Hot Springs 400kw Geothermal Power Plant: Experience...

    OpenEI (Open Energy Information) [EERE & EIA]

    Low efficiency requiresincreased power plant equipment size (turbine, condenser,pump and boiler) that can ordinarily become cost prohibitive.One of the main goals for the...

  14. The 2001 Power Plant Improvement Initiative | Department of Energy

    Office of Environmental Management (EM)

    The 2001 Power Plant Improvement Initiative When U.S. consumers were confronted in 1999 ... from previously appropriated funding for the 1986-93 Clean Coal Technology Program. ...

  15. New York Nuclear Profile - R E Ginna Nuclear Power Plant

    Energy Information Administration (EIA) (indexed site)

    R E Ginna Nuclear Power Plant" "Unit","Summer Capacity (MW)","Net Generation (Thousand MWh)","Summer Capacity Factor (Percent)","Type","Commercial Operation Date","License ...

  16. Parabolic Trough Solar Thermal Electric Power Plants (Fact Sheet)

    SciTech Connect

    Not Available

    2006-07-01

    This fact sheet provides an overview of the potential for parabolic trough solar thermal electric power plants, especially in the Southwestern U.S.

  17. Geothermal Risk Reduction via Geothermal/Solar Hybrid Power Plants...

    Office of Scientific and Technical Information (OSTI)

    Geothermal Risk Reduction via GeothermalSolar Hybrid Power Plants. Final Report Citation Details In-Document Search Title: Geothermal Risk Reduction via GeothermalSolar Hybrid ...

  18. Dora-2 Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Facility Power Plant Sector Geothermal energy Location Information Address Aydin, Turkey Coordinates 37.85633410526, 28.088616374298 Loading map... "minzoom":false,"mappi...

  19. Stowe Power Production Plant Biomass Facility | Open Energy Informatio...

    OpenEI (Open Energy Information) [EERE & EIA]

    Stowe Power Production Plant Sector Biomass Facility Type Landfill Gas Location Montgomery County, Pennsylvania Coordinates 40.2290075, -75.3878525 Show Map Loading map......

  20. North Brawley Geothermal Power Plant Project Overview | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    2014 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for North Brawley Geothermal Power Plant Project Overview Citation PCL...

  1. North Brawley Power Plant Asset Impairment Analysis | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    2012 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for North Brawley Power Plant Asset Impairment Analysis Citation Giza Singer...

  2. Designing geothermal power plants to avoid reinventing the corrosion wheel

    SciTech Connect

    Conover, Marshall F.

    1982-10-08

    This paper addresses how designers can take into account, the necessary chemical and materials precautions that other geothermal power plants have learned. Current worldwide geothermal power plant capacity is presented as well as a comparison of steam composition from seven different geothermal resources throughout the world. The similarities of corrosion impacts to areas of the power plants are discussed and include the turbines, gas extraction system, heat rejection system, electrical/electronic systems, and structures. Materials problems and solutions in these corrosion impact areas are identified and discussed. A geothermal power plant design team organization is identified and the efficacy of a new corrosion/materials engineering position is proposed.

  3. Construction Underway on First Geothermal Power Plant in New Mexico

    Office of Energy Efficiency and Renewable Energy (EERE)

    New Mexico Governor Bill Richardson and Raser Technologies, Inc. announced in late August that construction has begun on the first commercial geothermal power plant in New Mexico.

  4. Geothermal Power Plants — Minimizing Solid Waste and Recovering Minerals

    Office of Energy Efficiency and Renewable Energy (EERE)

    Although many geothermal power plants generate no appreciable solid waste, the unique characteristics of some geothermal fluids require special attention to handle entrained solid byproducts.

  5. RAPID/BulkTransmission/Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    RAPIDBulkTransmissionPower Plant < RAPID | BulkTransmission Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk...

  6. Salton Sea Power Plant Recognized as Most Innovative Geothermal Project

    Energy.gov [DOE]

    The first power plant to be built in the Salton Sea area in 20 years was recognized in December by Power Engineering magazine as the most innovative geothermal project of the year.

  7. EIS-0140: Ocean State Power Project, Tennessee Gas Pipeline Company

    Energy.gov [DOE]

    The Federal Energy Regulatory Commission prepared this statement to evaluate potential impacts of construction and operation of a new natural gas-fired, combined-cycle power plant which would be located on a 40.6-acre parcel in the town of Burrillville, Rhode Island, as well as construction of a 10-mile pipeline to transport process and cooling water to the plant from the Blackstone River and a 7.5-mile pipeline to deliver No. 2 fuel oil to the site for emergency use when natural gas may not be available. The Economic Regulatory Administration adopted the EIS on 7/15/1988.

  8. Inspection of Nuclear Power Plant Containment Structures

    SciTech Connect

    Graves, H.L.; Naus, D.J.; Norris, W.E.

    1998-12-01

    Safety-related nuclear power plant (NPP) structures are designed to withstand loadings from a number of low-probability external and interval events, such as earthquakes, tornadoes, and loss-of-coolant accidents. Loadings incurred during normal plant operation therefore generally are not significant enough to cause appreciable degradation. However, these structures are susceptible to aging by various processes depending on the operating environment and service conditions. The effects of these processes may accumulate within these structures over time to cause failure under design conditions, or lead to costly repair. In the late 1980s and early 1990s several occurrences of degradation of NPP structures were discovered at various facilities (e.g., corrosion of pressure boundary components, freeze- thaw damage of concrete, and larger than anticipated loss of prestressing force). Despite these degradation occurrences and a trend for an increasing rate of occurrence, in-service inspection of the safety-related structures continued to be performed in a somewhat cursory manner. Starting in 1991, the U.S. Nuclear Regulatory Commission (USNRC) published the first of several new requirements to help ensure that adequate in-service inspection of these structures is performed. Current regulatory in-service inspection requirements are reviewed and a summary of degradation experience presented. Nondestructive examination techniques commonly used to inspect the NPP steel and concrete structures to identify and quantify the amount of damage present are reviewed. Finally, areas where nondestructive evaluation techniques require development (i.e., inaccessible portions of the containment pressure boundary, and thick heavily reinforced concrete sections are discussed.

  9. Ways to Improve Russian Coal-Fired Power Plants

    SciTech Connect

    Tumanovskii, A. G. Olkhovsky, G. G.

    2015-07-15

    Coal is an important fuel for the electric power industry of Russia, especially in Ural and the eastern part of the country. It is fired in boilers of large (200 – 800 MW) condensing power units and in many cogeneration power plants with units rated at 50 – 180 MW. Many coal-fired power plants have been operated for more than 40 – 50 years. Though serviceable, their equipment is obsolete and does not comply with the current efficiency, environmental, staffing, and availability standards. It is urgent to retrofit and upgrade such power plants using advanced equipment, engineering and business ideas. Russian power-plant engineering companies have designed such advanced power units and their equipment such as boilers, turbines, auxiliaries, process and environmental control systems similar to those produced by the world’s leading manufacturers. Their performance and ways of implementation are discussed.

  10. N.R. 20 FOSSIL-FUELED POWER PLANTS; 21 SPECIFIC NUCLEAR REACTORS...

    Office of Scientific and Technical Information (OSTI)

    20 FOSSIL-FUELED POWER PLANTS; 21 SPECIFIC NUCLEAR REACTORS AND ASSOCIATED PLANTS; 14 SOLAR ENERGY; 15 GEOTHERMAL ENERGY; GEOTHERMAL POWER PLANTS; COMPUTERIZED SIMULATION; HEAT...

  11. Operating experience of double-flash geothermal power plant (Hatchobaru)

    SciTech Connect

    Yoshida, K.; Tanaka, K.; Kusunoki, K.

    1983-09-01

    Hatchobaru No. 1 Unit (55 MW) was completed in 1977 as the world's first double-flash type geothermal power plant and has been operating satisfactorily since that time. The operating record of the Hatchobaru Power Plant and group of wells, including recent findings are described.

  12. HIGH EFFICIENCY FOSSIL POWER PLANT (HEFPP) CONCEPTUALIZATION PROGRAM

    SciTech Connect

    J.L. Justice

    1999-03-25

    This study confirms the feasibility of a natural gas fueled, 20 MW M-C Power integrated pressurized molten carbonate fuel cell combined in a topping cycle with a gas turbine generator plant. The high efficiency fossil power plant (HEFPP) concept has a 70% efficiency on a LHV basis. The study confirms the HEFPP has a cost advantage on a cost of electricity basis over the gas turbine based combined cycle plants in the 20 MW size range. The study also identifies the areas of further development required for the fuel cell, gas turbine generator, cathode blower, inverter, and power module vessel. The HEFPP concept offers an environmentally friendly power plant with minuscule emission levels when compared with the combined cycle power plant.

  13. Analysis of pure electrical and cogeneration steam power plants

    SciTech Connect

    Albar, A.F.

    1982-01-01

    General Electric's method of steam turbine performance was used with pure electrical and with cogeneration power plants at various flow rates. Comparisons were made for two cases: (1) the same amount of heat is added to each boiler and the amount of electrical power generated is compared; and (2) when each plant should produce the same amount of electric power and the amount of heat added to each boiler is compared. Cogeneration is energetically more efficient than pure electrical plant. Correlations for the dependence of heat rate, power generated, heat added to throttle flow ratio were obtained from this work.

  14. Fuel Cell Power Plants Biofuel Case Study - Tulare, CA

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    clean Fuel Cell Power Plants Biofuel Case Study - Tulare, CA DOE-NREL Workshop Golden, CO June 11-13, 2012 FuelCell Energy, the FuelCell Energy logo, Direct FuelCell and "DFC" are all registered trademarks (®) of FuelCell Energy, Inc. Integrated Fuel Cell Company 2 Manufacture Sell (direct & via partners) Install Services 1.4 MW plant at a municipal building 2.4 MW plant owned by an Independent power producer 600 kW plant at a food processor 11.2 MW plant - largest fuel cell park

  15. Dynamic simulation of a direct carbonate fuel cell power plant

    SciTech Connect

    Ernest, J.B.; Ghezel-Ayagh, H.; Kush, A.K.

    1996-12-31

    Fuel Cell Engineering Corporation (FCE) is commercializing a 2.85 MW Direct carbonate Fuel Cell (DFC) power plant. The commercialization sequence has already progressed through construction and operation of the first commercial-scale DFC power plant on a U.S. electric utility, the 2 MW Santa Clara Demonstration Project (SCDP), and the completion of the early phases of a Commercial Plant design. A 400 kW fuel cell stack Test Facility is being built at Energy Research Corporation (ERC), FCE`s parent company, which will be capable of testing commercial-sized fuel cell stacks in an integrated plant configuration. Fluor Daniel, Inc. provided engineering, procurement, and construction services for SCDP and has jointly developed the Commercial Plant design with FCE, focusing on the balance-of-plant (BOP) equipment outside of the fuel cell modules. This paper provides a brief orientation to the dynamic simulation of a fuel cell power plant and the benefits offered.

  16. DOE Orders Mirant Power Plant to Operate Under Limited Circumstances |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Mirant Power Plant to Operate Under Limited Circumstances DOE Orders Mirant Power Plant to Operate Under Limited Circumstances December 20, 2005 - 11:44am Addthis DOE finds emergency; determines plant will help electric reliability WASHINGTON, D.C. - Secretary of Energy Samuel W. Bodman today issued an order requiring Mirant Corporation's Potomac River Generating Station in Alexandria, Virginia (Mirant) to immediately resume limited operation. The order will help provide

  17. Secretary Bodman Announces Federal Risk Insurance for Nuclear Power Plants

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    & Touts Robust Economy | Department of Energy Federal Risk Insurance for Nuclear Power Plants & Touts Robust Economy Secretary Bodman Announces Federal Risk Insurance for Nuclear Power Plants & Touts Robust Economy August 4, 2006 - 8:42am Addthis ATLANTA, GA - After touring Georgia Power and speaking to its employees, U.S. Department of Energy (DOE) Secretary Samuel W. Bodman today announced completion of the final rule that establishes the process for utility companies building

  18. Simulating solar power plant variability : a review of current methods.

    SciTech Connect

    Lave, Matthew; Ellis, Abraham; Stein, Joshua S.

    2013-06-01

    It is important to be able to accurately simulate the variability of solar PV power plants for grid integration studies. We aim to inform integration studies of the ease of implementation and application-specific accuracy of current PV power plant output simulation methods. This report reviews methods for producing simulated high-resolution (sub-hour or even sub-minute) PV power plant output profiles for variability studies and describes their implementation. Two steps are involved in the simulations: estimation of average irradiance over the footprint of a PV plant and conversion of average irradiance to plant power output. Six models are described for simulating plant-average irradiance based on inputs of ground-measured irradiance, satellite-derived irradiance, or proxy plant measurements. The steps for converting plant-average irradiance to plant power output are detailed to understand the contributions to plant variability. A forthcoming report will quantify the accuracy of each method using application-specific validation metrics.

  19. Power production from renewable resources in a gasification power system

    SciTech Connect

    Paisley, M.A.; Farris, G.; Bain, R.

    1996-12-31

    The US Department of Energy (DOE) has been a leader in the promotion and development of alternative fuel supplies based on renewable energy crops. One promising power generation technology is biomass gasification coupled with either a gas turbine in a combined cycle system or a fuel cell. The gasification of biomass can efficiently and economically produce a renewable source of a clean gaseous fuel suitable for use in these high efficiency power systems or as a substitute fuel in other combustion devices such as boilers, kilns, or other natural gas fired equipment. This paper discusses the development and commercialization of the Battelle high-throughput gasification process for gas turbine based power generation systems. Projected process economics for a gas turbine combined cycle plant are presented along with a description of integrated system operation coupling a 200kW gas turbine power generation system to a 10 ton per day gasifier, and current commercialization activities. 6 refs., 3 figs., 1 tab.

  20. Darajat Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    n":"","group":"","inlineLabel":"","visitedicon":"" Hide Map Geothermal Resource Area Java - Darajat Geothermal Area Geothermal Region Sunda Volcanic Arc Plant Information Owner...

  1. Takigami Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Hide Map Geothermal Resource Area Oita Geothermal Area Geothermal Region Ryuku Arc Plant Information Facility Type Single Flash Owner Idemitsu Oita Geothermal CoKyushu...

  2. Amatitlan Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Volcanic Arc Chain Plant Information Facility Type Back Pressure Steam, Binary Owner Empresa de Generacion de Energia Electrica del INDE Developer Ormat Energy Purchaser...

  3. Gumuskoy Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Plant, ORC Sector Geothermal energy Location Information Location Ortaklar, Aydin, Turkey Coordinates 37.859153868187, 27.476995463949 Loading map... "minzoom":false,"mapp...

  4. Method for assigning sites to projected generic nuclear power plants

    SciTech Connect

    Holter, G.M.; Purcell, W.L.; Shutz, M.E.; Young, J.R.

    1986-07-01

    Pacific Northwest Laboratory developed a method for forecasting potential locations and startup sequences of nuclear power plants that will be required in the future but have not yet been specifically identified by electric utilities. Use of the method results in numerical ratings for potential nuclear power plant sites located in each of the 10 federal energy regions. The rating for each potential site is obtained from numerical factors assigned to each of 5 primary siting characteristics: (1) cooling water availability, (2) site land area, (3) power transmission land area, (4) proximity to metropolitan areas, and (5) utility plans for the site. The sequence of plant startups in each federal energy region is obtained by use of the numerical ratings and the forecasts of generic nuclear power plant startups obtained from the EIA Middle Case electricity forecast. Sites are assigned to generic plants in chronological order according to startup date.

  5. Conceptual design of first geothermal power plant in Ethiopia

    SciTech Connect

    Mills, T.D.; Melaku, M.; Betemariam, G.

    1996-12-31

    The Aluto-Langano Geothermal Pilot Plant will be the first geothermal power plant in Ethiopia. Its purpose is to utilize existing wells, drilled about a decade ago, to generate additional electricity for the power system and to prove the capability of the Aluto-Langano field to support expansion to 30 MWe. This paper discusses the evaluation of possible production wells, in combination with three power cycle options, leading to selection of a preferred development concept. Despite the small size of the pilot plant, the high elevation of the site, and the very high gas content of the field, a condensing unit was selected. Particular design features proposed for the steamfield and power plant are explained, including those that reflect the pilot plant nature of the project.

  6. Ryazan power plant feasibility study. Volume 1. Export trade information

    SciTech Connect

    Not Available

    1994-07-01

    This study was funded by the U.S. Trade and Development Agency on behalf of the Ryazan Power Plant Joint Stock Company to assess the feasibility of rehabilitating the Ryazan Power Plant in Novomichurinsk, Russia. The scope of this study includes reviewing plant equipment and operations as well as making recommendations for upgrade to present day plant standards. The main emphasis of the report is on boiler analysis, but also includes all equipment from coal entering the plant to electrical power leaving the plant. This is the first of two volumes and is divided into the following sections: (A) Abstract; (B) Evaluation of Alternative Technologies; (C) Technical: Section 1- Coal Handling, Section 2- Feeders and Pulverizers, Section 3- Boiler, Section 4- Ash Handling, Section 5- Electrostatic Precipitator.

  7. Rehabilitation and life extension -- Vojany fossil power plant

    SciTech Connect

    Kudlovsk, J.

    1998-07-01

    The article briefly describes an example of two plants' unit's rehabilitation and reconstruction, which operate in the Slovak Republic power system. The goals to be achieved for these power plants: enable further operation of the power plants (EVO 1, EVO 2) as the significant electricity supply elements in the Eastern part of the Slovak Republic and at the same time as important power plants which are able to meet primary and secondary power output demands and frequency regulation demands; assure the EVO units compliance with the new environmental legislation valid in the Slovak Republic for air quality protection; trends of the expected emission and nominal emission amount is shown; upgrade the unit's obsolete control system for the boilers.

  8. Preconstruction of the Honey Lake Hybrid Power Plant

    SciTech Connect

    Not Available

    1988-04-30

    The work undertaken under this Contract is the prosecution of the preconstruction activities, including preliminary engineering design, well field development, completion of environmental review and prosecution of permits, and the economic and financial analysis of the facility. The proposed power plant is located in northeastern California in Lassen County, approximately 25 miles east of the town of Susanville. The power plant will use a combination of wood residue and geothermal fluids for power generation. The plant, when fully constructed, will generate a combined net output of approximately 33 megawatts which will be sold to Pacific Gas and Electric Company (PG E) under existing long-term power sales contracts. Transfer of electricity to the PG E grid will require construction of a 22-mile transmission line from the power plant to Susanville. 11 refs., 12 figs., 7 tabs.

  9. Stillwater Hybrid Geo-Solar Power Plant Optimization Analyses

    SciTech Connect

    Wendt, Daniel S.; Mines, Gregory L.; Turchi, Craig S.; Zhu, Guangdong; Cohan, Sander; Angelini, Lorenzo; Bizzarri, Fabrizio; Consoli, Daniele; De Marzo, Alessio

    2015-09-02

    The Stillwater Power Plant is the first hybrid plant in the world able to bring together a medium-enthalpy geothermal unit with solar thermal and solar photovoltaic systems. Solar field and power plant models have been developed to predict the performance of the Stillwater geothermal / solar-thermal hybrid power plant. The models have been validated using operational data from the Stillwater plant. A preliminary effort to optimize performance of the Stillwater hybrid plant using optical characterization of the solar field has been completed. The Stillwater solar field optical characterization involved measurement of mirror reflectance, mirror slope error, and receiver position error. The measurements indicate that the solar field may generate 9% less energy than the design value if an appropriate tracking offset is not employed. A perfect tracking offset algorithm may be able to boost the solar field performance by about 15%. The validated Stillwater hybrid plant models were used to evaluate hybrid plant operating strategies including turbine IGV position optimization, ACC fan speed and turbine IGV position optimization, turbine inlet entropy control using optimization of multiple process variables, and mixed working fluid substitution. The hybrid plant models predict that each of these operating strategies could increase net power generation relative to the baseline Stillwater hybrid plant operations.

  10. How Gas Turbine Power Plants Work | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    How Gas Turbine Power Plants Work How Gas Turbine Power Plants Work The combustion (gas) turbines being installed in many of today's natural-gas-fueled power plants are complex machines, but they basically involve three main sections: The compressor, which draws air into the engine, pressurizes it, and feeds it to the combustion chamber at speeds of hundreds of miles per hour. The combustion system, typically made up of a ring of fuel injectors that inject a steady stream of fuel into combustion

  11. Yangbajain Geothrmal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. Retrieved from "http:en.openei.orgw...

  12. Novel Dry Cooling Technology for Power Plants

    Energy.gov [DOE]

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

  13. New Hampshire Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    "Seabrook Unit 1","1,247","10,910",100.0,"NextEra Energy Seabrook LLC" "1 Plant 1 Reactor","1,247","10,910",100.0 "Note: Totals may not equal sum of components due to ...

  14. power plant | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    this new 550 MW PV Solar Plant in Southern California is the latest feather in DOE's cap. Read more about it on Breaking Energy or checkout the info page from the California...

  15. OpenEI Community - power plant

    OpenEI (Open Energy Information) [EERE & EIA]

    Desert Sunlight goes online http:en.openei.orgcommunityblogdesert-sunlight-goes-online

    Dedicated on Monday, this new 550 MW PV Solar Plant in Southern California is the...

  16. Water recovery using waste heat from coal fired power plants.

    SciTech Connect

    Webb, Stephen W.; Morrow, Charles W.; Altman, Susan Jeanne; Dwyer, Brian P.

    2011-01-01

    The potential to treat non-traditional water sources using power plant waste heat in conjunction with membrane distillation is assessed. Researchers and power plant designers continue to search for ways to use that waste heat from Rankine cycle power plants to recover water thereby reducing water net water consumption. Unfortunately, waste heat from a power plant is of poor quality. Membrane distillation (MD) systems may be a technology that can use the low temperature waste heat (<100 F) to treat water. By their nature, they operate at low temperature and usually low pressure. This study investigates the use of MD to recover water from typical power plants. It looks at recovery from three heat producing locations (boiler blow down, steam diverted from bleed streams, and the cooling water system) within a power plant, providing process sketches, heat and material balances and equipment sizing for recovery schemes using MD for each of these locations. It also provides insight into life cycle cost tradeoffs between power production and incremental capital costs.

  17. Ivanpah: World's Largest Concentrating Solar Power Plant

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Ivanpah Solar Energy Generating System has the capacity to generate 392 megawattsof clean electricity -- enough to power 94,400 average American homes. As the first commercial deployment of innovative power tower CSP technology in the United States, the Ivanpah project was the recipient of a $1.6 billion loan guarantee from the Department’s Loan Programs Office (LPO).

  18. Power plant cumulative environmental impact report. Final report

    SciTech Connect

    Not Available

    1982-02-01

    This report presents the results of studies conducted by the Power Plant Siting Program (PPSP) to determine the cumulative impact of power plants on Maryland's environment. Included in this report are: (1) current and projected power demands and consumption in Maryland; (2) current and planned power generation; (3) air impacts; (4) aquatic effects; (5) radiological effects; (6) social and economic considerations; (7) noise impacts; (8) groundwater effects; (9) solid waste management concerns; (10) transmission line impacts; and (11) descriptions of cooling towers in Maryland. Also contained is the 1982 Ten Year Plan of Maryland Electric Utilities.

  19. Solaren Space Solar Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Space Solar Power Plant Facility Solaren Space Solar Sector Solar Facility Type Photovoltaic Developer Solaren Corp Generating Capacity (MW) 200.0200 MW 200,000 kW 200,000,000...

  20. North Brawley Power Plant Placed in Service; Currently Generating...

    OpenEI (Open Energy Information) [EERE & EIA]

    Placed in Service; Currently Generating 17 MW; Additional Operations Update Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: North Brawley Power Plant...

  1. Diagnosis system to improve heat rate in fossil power plants

    SciTech Connect

    Arroyo-Figueroa, G.; Villavicencio R., A.

    1996-05-01

    Today fossil fuel power plants is showing a trend toward full automation. This increases the difficulty for human operators to follow in detail the progress of power plants, and also limit the contribution of human operators to diagnostic task. Therefore, automated and intelligent fault diagnostic systems have been intensively investigated. Despite several successful examples of diagnostic systems, often called expert systems, the development task of a diagnostic system still remains empiric and is unique for each system. This paper discusses the design of a Diagnostic System to improve Heat Rate for fossil fuel power plant. The approach is characterized as an fault tree diagnostic system. The prototype of this system has showed the benefits and the feasibility of using this system to diagnose equipment in power plants.

  2. EIS-0377: Big Stone II Power Plant and Transmission Project

    Energy.gov [DOE]

    A systems study was carried out to identify the most appropriate locations to interconnect the proposed Big Stone II power plant to the regional utility grid. The study also identified transmission...

  3. Permanent Magnet Synchronous Condenser for Wind Power Plant Grid...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    for Wind Power Plant Grid Connection Support Preprint P. Hsu San Jose State University E. Muljadi National Renewable Energy Laboratory To be presented at the IEEE 2015 9 th ...

  4. THE ARIES ADVANCED AND CONSERVATIVE TOKAMAK POWER PLANT STUDY

    Office of Scientific and Technical Information (OSTI)

    THE ARIES ADVANCED AND CONSERVATIVE TOKAMAK POWER PLANT STUDY C. E. KESSEL, a * M. S. TILLACK, b F. NAJMABADI, b F. M. POLI, a K. GHANTOUS, a N. GORELENKOV, a X. R. WANG, b D....

  5. Geothermal Power Plants — Meeting Clean Air Standards

    Energy.gov [DOE]

    Geothermal power plants can meet the most stringent clean air standards. They emit little carbon dioxide, very low amounts of sulfur dioxide, and no nitrogen oxides. See Charts 1, 2, and 3 below.

  6. Designing geothermal power plants to avoid reinventing the corrosion wheel

    SciTech Connect

    Conover, M.F.

    1983-03-01

    This paper addresses how designers can take into account the necessary chemical and materials precautions that other geothermal power plant operators and engineers have learned. Current worldwide geothermal power plant capacity is presented as well as a comparison of steam composition from seven different geothermal resources throughout the world. The similarities of corrosion impacts to areas of the power plants are discussed and include the turbines; gas extraction system; heat and rejection system; electrical/electronic systems; and structures. Materials problems and solutions in these corrosion impact areas are identified and discussed. A geothermal power plant design team organization is identified and the efficacy of a new corrosion/materials engineering position is proposed.

  7. NREL/PG&E Condensation System Increases Geothermal Power Plant...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    NRELPG&E Condensation System Increases Geothermal Power Plant Efficiency For more information contact: Howard Brown 303-275-3682 or Kerry Masson 303-275-4083 Golden, Colo., June ...

  8. Prediction of Technological Failures in Nuclear Power Plant Operation

    SciTech Connect

    Salnykov, A. A.

    2015-01-15

    A method for predicting operating technological failures in nuclear power plants which makes it possible to reduce the unloading of the generator unit during the onset and development of an anomalous engineering state of the equipment by detecting a change in state earlier and taking suitable measures. With the circulating water supply loop of a nuclear power plant as an example, scenarios and algorithms for predicting technological failures in the operation of equipment long before their actual occurrence are discussed.

  9. DOE Orders Mirant Power Plant to Operate Under Limited Circumstances |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Orders Mirant Power Plant to Operate Under Limited Circumstances DOE Orders Mirant Power Plant to Operate Under Limited Circumstances Docket No. EO-05-01. Order No. 202-05-3: Secretary of Energy Samuel W. Bodman today issued an order requiring Mirant Corporation's Potomac River Generating Station in Alexandria, Virginia (Mirant) to immediately resume limited operation. The order will help provide electric reliability for Washington, D.C., and will do so at the lowest

  10. Hybrid solar central receiver for combined cycle power plant

    DOEpatents

    Bharathan, Desikan; Bohn, Mark S.; Williams, Thomas A.

    1995-01-01

    A hybrid combined cycle power plant including a solar central receiver for receiving solar radiation and converting it to thermal energy. The power plant includes a molten salt heat transfer medium for transferring the thermal energy to an air heater. The air heater uses the thermal energy to preheat the air from the compressor of the gas cycle. The exhaust gases from the gas cycle are directed to a steam turbine for additional energy production.

  11. Hybrid solar central receiver for combined cycle power plant

    DOEpatents

    Bharathan, D.; Bohn, M.S.; Williams, T.A.

    1995-05-23

    A hybrid combined cycle power plant is described including a solar central receiver for receiving solar radiation and converting it to thermal energy. The power plant includes a molten salt heat transfer medium for transferring the thermal energy to an air heater. The air heater uses the thermal energy to preheat the air from the compressor of the gas cycle. The exhaust gases from the gas cycle are directed to a steam turbine for additional energy production. 1 figure.

  12. Nevada manufacturer installing geothermal power plant | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Nevada manufacturer installing geothermal power plant Nevada manufacturer installing geothermal power plant August 26, 2010 - 4:45pm Addthis Chemetall extracts lithium carbonate, a powder, from brine, a salty solution from within the earth. | Photo courtesy Chemetall Chemetall extracts lithium carbonate, a powder, from brine, a salty solution from within the earth. | Photo courtesy Chemetall Joshua DeLung Chemetall supplies materials for lithium-ion batteries for electric vehicles

  13. Unlocking Customer Value: The Virtual Power Plant | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Unlocking Customer Value: The Virtual Power Plant Unlocking Customer Value: The Virtual Power Plant The utility world has changed drastically in the last 10 years. New technologies like Smart Meters and fully functional Smart Grid concepts have made large inroads into the utility space and no one should want to be left behind. Utilities also face additional pressures from regulatory bodies who are continuing to encourage carbon reduction and greater customer flexibility. Utilities need to

  14. Geothermal Power Generation Plant; 2010 Geothermal Technology Program Peer

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Review Report | Department of Energy Power Generation Plant; 2010 Geothermal Technology Program Peer Review Report Geothermal Power Generation Plant; 2010 Geothermal Technology Program Peer Review Report DOE 2010 Geothermal Technologies Program Peer Review adse_003_lund.pdf (189.07 KB) More Documents & Publications Feasibility of EGS Development at Bradys Hot Springs, Nevada Concept Testing and Development at the Raft River Geothermal Field, Idaho Detecting Fractures Using Technology

  15. Methodology and application of surrogate plant PRA analysis to the Rancho Seco Power Plant: Final report

    SciTech Connect

    Gore, B.F.; Huenefeld, J.C.

    1987-07-01

    This report presents the development and the first application of generic probabilistic risk assessment (PRA) information for identifying systems and components important to public risk at nuclear power plants lacking plant-specific PRAs. A methodology is presented for using the results of PRAs for similar (surrogate) plants, along with plant-specific information about the plant of interest and the surrogate plants, to infer important failure modes for systems of the plant of interest. This methodology, and the rationale on which it is based, is presented in the context of its application to the Rancho Seco plant. The Rancho Seco plant has been analyzed using PRA information from two surrogate plants. This analysis has been used to guide development of considerable plant-specific information about Rancho Seco systems and components important to minimizing public risk, which is also presented herein.

  16. Harmonics in a Wind Power Plant: Preprint

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... At the same time, the wind turbine should be able to operate immune to small disturbances coming from the grid. Harmonics are one of the more common power quality issues presented ...

  17. The 2001 Power Plant Improvement Initiative

    Energy.gov [DOE]

    When U.S. consumers were confronted in 1999 and 2000 with blackouts and brownouts of electric power in major regions of the country, Congress responded by directing the Department of Energy to...

  18. Inertial Fusion Power Plant Concept of Operations and Maintenance

    SciTech Connect

    Anklam, T.; Knutson, B.; Dunne, A. M.; Kasper, J.; Sheehan, T.; Lang, D.; Roberts, V.; Mau, D.

    2015-01-15

    Parsons and LLNL scientists and engineers performed design and engineering work for power plant pre-conceptual designs based on the anticipated laser fusion demonstrations at the National Ignition Facility (NIF). Work included identifying concepts of operations and maintenance (O&M) and associated requirements relevant to fusion power plant systems analysis. A laser fusion power plant would incorporate a large process and power conversion facility with a laser system and fusion engine serving as the heat source, based in part on some of the systems and technologies advanced at NIF. Process operations would be similar in scope to those used in chemical, oil refinery, and nuclear waste processing facilities, while power conversion operations would be similar to those used in commercial thermal power plants. While some aspects of the tritium fuel cycle can be based on existing technologies, many aspects of a laser fusion power plant presents several important and unique O&M requirements that demand new solutions. For example, onsite recovery of tritium; unique remote material handling systems for use in areas with high radiation, radioactive materials, or high temperatures; a five-year fusion engine target chamber replacement cycle with other annual and multi-year cycles anticipated for major maintenance of other systems, structures, and components (SSC); and unique SSC for fusion target waste recycling streams. This paper describes fusion power plant O&M concepts and requirements, how O&M requirements could be met in design, and how basic organizational and planning issues can be addressed for a safe, reliable, economic, and feasible fusion power plant.

  19. Model Predictive Control of Integrated Gasification Combined Cycle Power Plants

    SciTech Connect

    B. Wayne Bequette; Priyadarshi Mahapatra

    2010-08-31

    The primary project objectives were to understand how the process design of an integrated gasification combined cycle (IGCC) power plant affects the dynamic operability and controllability of the process. Steady-state and dynamic simulation models were developed to predict the process behavior during typical transients that occur in plant operation. Advanced control strategies were developed to improve the ability of the process to follow changes in the power load demand, and to improve performance during transitions between power levels. Another objective of the proposed work was to educate graduate and undergraduate students in the application of process systems and control to coal technology. Educational materials were developed for use in engineering courses to further broaden this exposure to many students. ASPENTECH software was used to perform steady-state and dynamic simulations of an IGCC power plant. Linear systems analysis techniques were used to assess the steady-state and dynamic operability of the power plant under various plant operating conditions. Model predictive control (MPC) strategies were developed to improve the dynamic operation of the power plants. MATLAB and SIMULINK software were used for systems analysis and control system design, and the SIMULINK functionality in ASPEN DYNAMICS was used to test the control strategies on the simulated process. Project funds were used to support a Ph.D. student to receive education and training in coal technology and the application of modeling and simulation techniques.

  20. STARFIRE: a commercial tokamak fusion power plant study

    SciTech Connect

    Not Available

    1980-09-01

    This volume contains chapters on each of the following topics: (1) radioactivity, (2) heat transport and energy conversion, (3) tritium systems, (4) electrical storage and power supplies, (5) support structure, (6) cryogenics, (7) instrumentation and control, (8) maintenance and operation, (9) balance of plant design, (10) safety and environmental analysis, (11) economic analysis, and (12) plant construction.

  1. Low-Rank Coal Grinding Performance Versus Power Plant Performance

    SciTech Connect

    Rajive Ganguli; Sukumar Bandopadhyay

    2008-12-31

    The intent of this project was to demonstrate that Alaskan low-rank coal, which is high in volatile content, need not be ground as fine as bituminous coal (typically low in volatile content) for optimum combustion in power plants. The grind or particle size distribution (PSD), which is quantified by percentage of pulverized coal passing 74 microns (200 mesh), affects the pulverizer throughput in power plants. The finer the grind, the lower the throughput. For a power plant to maintain combustion levels, throughput needs to be high. The problem of particle size is compounded for Alaskan coal since it has a low Hardgrove grindability index (HGI); that is, it is difficult to grind. If the thesis of this project is demonstrated, then Alaskan coal need not be ground to the industry standard, thereby alleviating somewhat the low HGI issue (and, hopefully, furthering the salability of Alaskan coal). This project studied the relationship between PSD and power plant efficiency, emissions, and mill power consumption for low-rank high-volatile-content Alaskan coal. The emissions studied were CO, CO{sub 2}, NO{sub x}, SO{sub 2}, and Hg (only two tests). The tested PSD range was 42 to 81 percent passing 76 microns. Within the tested range, there was very little correlation between PSD and power plant efficiency, CO, NO{sub x}, and SO{sub 2}. Hg emissions were very low and, therefore, did not allow comparison between grind sizes. Mill power consumption was lower for coarser grinds.

  2. Wind Power Plant Prediction by Using Neural Networks: Preprint

    SciTech Connect

    Liu, Z.; Gao, W.; Wan, Y. H.; Muljadi, E.

    2012-08-01

    This paper introduces a method of short-term wind power prediction for a wind power plant by training neural networks based on historical data of wind speed and wind direction. The model proposed is shown to achieve a high accuracy with respect to the measured data.

  3. Advanced Turbine Systems Program conceptual design and product development. Task 3.0, Selection of natural gas-fired Advanced Turbine System

    SciTech Connect

    1994-12-01

    This report presents results of Task 3 of the Westinghouse ATS Phase II program. Objective of Task 3 was to analyze and evaluate different cycles for the natural gas-fired Advanced Turbine Systems in order to select one that would achieve all ATS program goals. About 50 cycles (5 main types) were evaluated on basis of plant efficiency, emissions, cost of electricity, reliability-availability-maintainability (RAM), and program schedule requirements. The advanced combined cycle was selected for the ATS plant; it will incorporate an advanced gas turbine engine as well as improvements in the bottoming cycle and generator. Cost and RAM analyses were carried out on 6 selected cycle configurations and compared to the baseline plant. Issues critical to the Advanced Combined Cycle are discussed; achievement of plant efficiency and cost of electricity goals will require higher firing temperatures and minimized cooling of hot end components, necessitating new aloys/materials/coatings. Studies will be required in combustion, aerodynamic design, cooling design, leakage control, etc.

  4. Systems Modeling for a Laser-Driven IFE Power Plant using Direct...

    Office of Scientific and Technical Information (OSTI)

    IFE Power Plant using Direct Conversion Citation Details In-Document Search Title: Systems Modeling for a Laser-Driven IFE Power Plant using Direct Conversion You ...

  5. Combined Heat and Power System Enables 100% Reliability at Leading...

    Energy Saver

    TECO installed a new high-efficiency natural gas-fired CHP system capable of producing 48 ... The CHP system can operate as a baseload system to serve 100% of the TECO plant peak ...

  6. State regulation and power plant productivity: background and recommendations

    SciTech Connect

    Not Available

    1980-09-01

    This report was prepared by representatives of several state regulatory agencies. It is a guide to some of the activities currently under way in state agencies to promote increased availability of electrical generating power plants. Standard measures of plant performance are defined and the nature of data bases that report such measures is discussed. It includes reviews of current state, federal, and industry programs to enhance power plant productivity and provides detailed outlines of programs in effect in California, Illinois, Michigan, New York, North Carolina, Ohio, and Texas. A number of actions are presented that could be adopted by state regulatory agencies, depending on local conditions. They include: develop a commission position or policy statement to encourage productivity improvements by utilities; coordinate state efforts with ongoing industry and government programs to improve the acquisition of power plant performance data and the maintenance of quality information systems; acquire the capability to perform independent analyses of power plant productivity; direct the establishment of productivity improvement programs, including explicit performance objectives for both existing and planned power plants, and a performance program; establish a program of incentives to motivate productivity improvement activities; and participate in ongoing efforts at all levels and initiate new actions to promote productivity improvements.

  7. Model-free adaptive control of advanced power plants

    SciTech Connect

    Cheng, George Shu-Xing; Mulkey, Steven L.; Wang, Qiang

    2015-08-18

    A novel 3-Input-3-Output (3.times.3) Model-Free Adaptive (MFA) controller with a set of artificial neural networks as part of the controller is introduced. A 3.times.3 MFA control system using the inventive 3.times.3 MFA controller is described to control key process variables including Power, Steam Throttle Pressure, and Steam Temperature of boiler-turbine-generator (BTG) units in conventional and advanced power plants. Those advanced power plants may comprise Once-Through Supercritical (OTSC) Boilers, Circulating Fluidized-Bed (CFB) Boilers, and Once-Through Supercritical Circulating Fluidized-Bed (OTSC CFB) Boilers.

  8. Process Control System of the Mutnovskaya Geothermal Power Plant

    SciTech Connect

    Idzon, O. M.; Ivanov, V. V.; Ilyushin, V. V.; Nikol'skii, A. I.

    2004-01-15

    The experience of creating software and algorithms for automatic process control at the Mutnovskaya geothermal power plant (GTPP) on the basis of the Teleperm ME automation system is presented. The heat cycle and special features of the heat flow diagram of the power plant are briefly described. The engineering solutions used, the structure of the system, and the principles of process control at the Mutnovskaya GTPP are considered. Special attention is devoted to the turbine regulator that consists of several regulating units because of the great number of problems solved by control valves; each regulating unit solves control problems depending on the mode of operation of the power generating set.

  9. Submerged passively-safe power plant

    DOEpatents

    Herring, J.S.

    1993-09-21

    The invention as presented consists of a submerged passively-safe power station including a pressurized water reactor capable of generating at least 600 MW of electricity, encased in a double hull vessel, and provides fresh water by using the spent thermal energy in a multistage flash desalination process. 8 figures.

  10. Submerged passively-safe power plant

    DOEpatents

    Herring, J. Stephen

    1993-01-01

    The invention as presented consists of a submerged passively-safe power station including a pressurized water reactor capable of generating at least 600 MW of electricity, encased in a double hull vessel, and provides fresh water by using the spent thermal energy in a multistage flash desalination process.

  11. Submerged passively-safe power plant

    SciTech Connect

    Herring, J.S.

    1991-12-31

    The invention as presented consists of a submerged passively-safe power station including a pressurized water reactor capable of generating at least 600 MW of electricity, encased in a double hull vessel, and provides fresh water by using the spent thermal energy in a multistage flash desalination process.

  12. Optimal design of a pilot OTEC power plant in Taiwan

    SciTech Connect

    Tseng, C.H.; Kao, K.Y. ); Yang, J.C. )

    1991-12-01

    In this paper, an optimal design concept has been utilized to find the best designs for a complex and large-scale ocean thermal energy conversion (OTEC) plant. THe OTEC power plant under this study is divided into three major subsystems consisting of power subsystem, seawater pipe subsystem, and containment subsystem. The design optimization model for the entire OTEC plant is integrated from these sub-systems under the considerations of their own various design criteria and constraints. The mathematical formulations of this optimization model for the entire OTEC plant are described. The design variables, objective function, and constraints for a pilot plant under the constraints of the feasible technologies at this stage in Taiwan have been carefully examined and selected.

  13. Dynamic interaction between an OTEC power plant and a power grid. Final report

    SciTech Connect

    Not Available

    1982-08-31

    The objectives of the research reported are: to identify and resolve potential technical problems that may arise from the incorporation of an OTEC power plant in the existing generation mix of Puerto Rico and to develop the tools and to identify the technical resources needed for dynamic analysis of island power systems to which OTEC power plants provide a substantial portion of the load demand. The issues addressed are system modelling and data gathering, network simplification, selection of OTEC plant site and power system, stability analysis, and economic dispatch when OTEC power plants contribute substantially to the island's load. The slow dynamics of the OTEC plant make it a reference for the rest of the power system during a transient, but this slowness is a drawback in terms of system recovery from fault-induced transients. It is found that simple dynamic models can, in most instances, describe the transient behavior of both the OTEC plant and the island's power system, but it was not possible to reduce the non-OTEC portion of the power system to a single generation point and a single load. (LEW)

  14. Investigation of valve failure problems in LWR power plants

    SciTech Connect

    1980-04-01

    An analysis of component failures from information in the computerized Nuclear Safety Information Center (NSIC) data bank shows that for both PWR and BWR plants the component category most responsible for approximately 19.3% of light water reactor (LWR) power plant shutdowns. This investigation by Burns and Roe, Inc. shows that the greatest cause of shutdowns in LWRs due to valve failures is leakage from valve stem packing. Both BWR plants and PWR plants have stem leakage problems (BWRs, 21% and PWRs, 34%).

  15. Electric power plant emissions and public health

    SciTech Connect

    O'Connor, A.B.; Roy, C.

    2008-02-15

    The generation of electric power is one important source of pollutants such as mercury, sulfur dioxide, nitrogen oxides, and fine particulate matter that can affect the respiratory, cardiovascular, and central nervous systems and cause pregnancy complications. But protecting people from environmental health hazards has become increasingly complex. Air pollutants are often invisible and travel many miles virtually undetected. Nurses can play a critical role in preventive strategies, as well as in the national debate on energy production and dependence on fossil fuels.

  16. Fossil power plant layup and reactivation

    SciTech Connect

    Tsou, J.L.

    1996-07-01

    In recent years, many utilities have developed excess generation capacity problems during period of low system load growth, particularly with new generation units coming on-line. System load studies may indicate that the situation is temporary and higher generation capacity will be needed in the near future. The objective of layup is to prevent component deterioration during the long shut down periods. This paper discusses equipment preservation practices in use in the industry and the advantages/disadvantages of various layup methods. Other issues related to plant layup and reactivation are also presented.

  17. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect

    R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

    2005-10-27

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). A limiting factor in this can be the materials of construction. The project goal is to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi). This goal seems achievable based on a preliminary assessment of material capabilities. The project is further intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of July 1 to September 30, 2005.

  18. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect

    R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

    2005-04-27

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). The project goal initially was to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi), although this goal for the main steam temperature had to be revised down to 732 C (1350 F), based on a preliminary assessment of material capabilities. The project is intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of July 1 to September 30, 2004.

  19. Boiler Materials for Ultrasupercritical Coal Power Plants

    SciTech Connect

    R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

    2006-01-31

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). A limiting factor in this can be the materials of construction. The project goal is to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi). This goal seems achievable based on a preliminary assessment of material capabilities. The project is further intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of October 1 to December 30, 2005.

  20. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect

    R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

    2004-10-30

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). The project goal initially was to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi), although this goal for the main steam temperature had to be revised down to 732 C (1350 F), based on a preliminary assessment of material capabilities. The project is intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of April to June 30, 2004.

  1. Regulatory guidance for lightning protection in nuclear power plants

    SciTech Connect

    Kisner, R. A.; Wilgen, J. B.; Ewing, P. D.; Korsah, K.; Antonescu, C. E.

    2006-07-01

    Oak Ridge National Laboratory (ORNL) was engaged by the U.S. Nuclear Regulatory Commission (NRC) Office of Nuclear Regulatory Research (RES) to develop the technical basis for regulatory guidance to address design and implementation practices for lightning protection systems in nuclear power plants (NPPs). Lightning protection is becoming increasingly important with the advent of digital and low-voltage analog systems in NPPs. These systems have the potential to be more vulnerable than older analog systems to the resulting power surges and electromagnetic interference (EMI) when lightning strikes facilities or power lines. This paper discusses the technical basis for guidance to licensees and applicants covered in Regulatory Guide (RG) 1.204, Guidelines for Lightning Protection of Nuclear Power Plants, issued August 2005. RG 1.204 describes guidance for practices that are acceptable to the NRC staff for protecting nuclear power structures and systems from direct lightning strikes and the resulting secondary effects. (authors)

  2. Regulatory Guidance for Lightning Protection in Nuclear Power Plants

    SciTech Connect

    Kisner, Roger A; Wilgen, John B; Ewing, Paul D; Korsah, Kofi; Antonescu, Christina E

    2006-01-01

    Abstract - Oak Ridge National Laboratory (ORNL) was engaged by the U.S. Nuclear Regulatory Commission (NRC) Office of Nuclear Regulatory Research (RES) to develop the technical basis for regulatory guidance to address design and implementation practices for lightning protection systems in nuclear power plants (NPPs). Lightning protection is becoming increasingly important with the advent of digital and low-voltage analog systems in NPPs. These systems have the potential to be more vulnerable than older analog systems to the resulting power surges and electromagnetic interference (EMI) when lightning strikes facilities or power lines. This paper discusses the technical basis for guidance to licensees and applicants covered in Regulatory Guide (RG) 1.204, Guidelines for Lightning Protection of Nuclear Power Plants, issued August 2005. RG 1.204 describes guidance for practices that are acceptable to the NRC staff for protecting nuclear power structures and systems from direct lightning strikes and the resulting secondary effects.

  3. Linear Concentrator Solar Power Plant Illustration

    Energy.gov [DOE]

    This graphic illustrates linear concentrating solar power (CSP) collectors that capture the sun's energy with large mirrors that reflect and focus the sunlight onto a linear receiver tube. The receiver contains a fluid that is heated by the sunlight and then used to create superheated steam that spins a turbine that drives a generator to produce electricity. Alternatively, steam can be generated directly in the solar field, eliminating the need for costly heat exchangers. In a parabolic trough system, the receiver tube is positioned along the focal line of each parabola-shaped reflector.

  4. Nuclear power plant safety related pump issues

    SciTech Connect

    Colaccino, J.

    1996-12-01

    This paper summarizes of a number of pump issues raised since the Third NRC/ASME Symposium on Valve and Pump Testing in 1994. General issues discussed include revision of NRC Inspection Procedure 73756, issuance of NRC Information Notice 95-08 on ultrasonic flow meter uncertainties, relief requests for tests that are determined by the licensee to be impractical, and items in the ASME OM-1995 Code, Subsection ISTB, for pumps. The paper also discusses current pump vibration issues encountered in relief requests and plant inspections - which include smooth running pumps, absolute vibration limits, and vertical centrifugal pump vibration measurement requirements. Two pump scope issues involving boiling water reactor waterlog and reactor core isolation cooling pumps are also discussed. Where appropriate, NRC guidance is discussed.

  5. The Year of Concentrating Solar Power: Five New Plants to Power America

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    with Clean Energy | Department of Energy The Year of Concentrating Solar Power: Five New Plants to Power America with Clean Energy The Year of Concentrating Solar Power: Five New Plants to Power America with Clean Energy June 5, 2014 - 11:31am Addthis The <a href="/node/801451">Ivanpah Solar Electric Generating System</a> in Ivanpah Dry Lake, California. | Photo by Gilles Mingasson, Getty Images for Bechtel. The Ivanpah Solar Electric Generating System in Ivanpah Dry

  6. Solutions for VOC and HAPS control on natural gas fired internal combustion engines

    SciTech Connect

    Marcus, J.Z.; Sleigh, S.; Cotherman, R.

    1996-12-31

    Natural gas fired stationary internal combustion engines (IC engines) emit volatile organic compounds (VOC) and hazardous air pollutants (HAP) as part of their normal operations. VOC and HAP emissions are coming under increased scrutiny with the advent of such Clean Air Act Amendments of 1990 regulations as Title I`s Reasonably Available Control Technology (RACT), Title III`s Maximum Achievable Control Technology (MACT) and Title V`s Operating Permit Program (Title V). In addition, many states are imposing more stringent emission limits on these sources. These emissions may also contribute to the reportable chemicals from the total facility under SARA Title III. Numerous facilities nationwide are interested in reducing these emissions in order to comply with current requirements, to opt out of requirements or to reduce reportable chemicals. This paper will examine the source of these emissions, and discuss combustion control technologies and system operating flexibility, end-of-pipe control technologies, and system tuning opportunities which have the potential to reduce VOC and HAP emissions from IC engines. Data will be presented on potential emission reduction efficiencies achievable using the various control options. 7 refs., 4 tabs.

  7. Innovative applications of technology for nuclear power plant productivity improvements

    SciTech Connect

    Naser, J. A.

    2012-07-01

    The nuclear power industry in several countries is concerned about the ability to maintain high plant performance levels due to aging and obsolescence, knowledge drain, fewer plant staff, and new requirements and commitments. Current plant operations are labor-intensive due to the vast number of operational and support activities required by commonly used technology in most plants. These concerns increase as plants extend their operating life. In addition, there is the goal to further improve performance while reducing human errors and increasingly focus on reducing operations and maintenance costs. New plants are expected to perform more productively than current plants. In order to achieve and increase high productivity, it is necessary to look at innovative applications of modern technologies and new concepts of operation. The Electric Power Research Inst. is exploring and demonstrating modern technologies that enable cost-effectively maintaining current performance levels and shifts to even higher performance levels, as well as provide tools for high performance in new plants. Several modern technologies being explored can provide multiple benefits for a wide range of applications. Examples of these technologies include simulation, visualization, automation, human cognitive engineering, and information and communications technologies. Some applications using modern technologies are described. (authors)

  8. Dynamic simulation models and performance of an OTEC power plant

    SciTech Connect

    Wormley, D.N.; Carmichael, D.A.; Umans, S.

    1983-08-01

    In this study, the aspects of plant performance which influence the potential for integration of an OTEC plant into a utility grid are considered. A set of simulation models have been developed for the evaluation of OTEC dynamic plant performance. A detailed nonlinear dynamic model has been forumlated which is useful for the assessment of component performance including heat exchangers, turbines, pumps and control systems. A reduced order linear model has been developed which is useful for studies of plant stability, control system development and transient performance of the plant connected to a utility grid. This model is particularly suitable for transient dynamic studies of an OTEC plant as a unit in a utility grid. A quasi-steady power availability model has also been developed which is useful to determine plant ouput power as a function of ocean thermal gradients so that the influence of daily and seasonal temperature variations may be easily computed. The study has found no fundamental technical barriers which would prohibit the interconnection of an OTEC plant into a utility grid. It has also shown that detailed consideration of turbine nozzle angle control is merited and such a control has the potential to provide superior performance in comparison to turbine bypass valve control.

  9. Gasification CFD Modeling for Advanced Power Plant Simulations

    SciTech Connect

    Zitney, S.E.; Guenther, C.P.

    2005-09-01

    In this paper we have described recent progress on developing CFD models for two commercial-scale gasifiers, including a two-stage, coal slurry-fed, oxygen-blown, pressurized, entrained-flow gasifier and a scaled-up design of the PSDF transport gasifier. Also highlighted was NETL’s Advanced Process Engineering Co-Simulator for coupling high-fidelity equipment models with process simulation for the design, analysis, and optimization of advanced power plants. Using APECS, we have coupled the entrained-flow gasifier CFD model into a coal-fired, gasification-based FutureGen power and hydrogen production plant. The results for the FutureGen co-simulation illustrate how the APECS technology can help engineers better understand and optimize gasifier fluid dynamics and related phenomena that impact overall power plant performance.

  10. Five-megawatt geothermal-power pilot-plant project

    SciTech Connect

    Not Available

    1980-08-29

    This is a report on the Raft River Geothermal-Power Pilot-Plant Project (Geothermal Plant), located near Malta, Idaho; the review took place between July 20 and July 27, 1979. The Geothermal Plant is part of the Department of Energy's (DOE) overall effort to help commercialize the operation of electric power plants using geothermal energy sources. Numerous reasons were found to commend management for its achievements on the project. Some of these are highlighted, including: (a) a well-qualified and professional management team; (b) effective cost control, performance, and project scheduling; and (c) an effective and efficient quality-assurance program. Problem areas delineated, along with recommendations for solution, include: (1) project planning; (2) facility design; (3) facility construction costs; (4) geothermal resource; (5) drilling program; (6) two facility construction safety hazards; and (7) health and safety program. Appendices include comments from the Assistant Secretary for Resource Applications, the Controller, and the Acting Deputy Director, Procurement and Contracts Management.

  11. Integration of ocean thermal energy conversion power plants with existing power systems

    SciTech Connect

    Arunasalam, N.

    1986-01-01

    The problem of integrating an Ocean Thermal Energy Conversion (OTEC) power plant with existing power systems is studied. A nonlinear model of an OTEC power system is developed. The dynamics of the large local induction motor load, and the coaxial cable connection to the mainland are included in the model. The effect of the motor load and the coaxial cable on the steady-state stability of the OTEC power plant is investigated using linearized analysis. The transient stability of the OTEC system is investigated through simulation. The contribution made by the motor load and the coaxial cable to the transient stability is studied. The occurrence of self excitation phenomena is analyzed using linear methods and simulation. The effects of wave and vessel motion on the electrical power output of the OTEC plant is investigated.

  12. Statement from Energy Secretary Ernest Moniz on Proposed New EPA Rules for Existing Power Plants

    Energy.gov [DOE]

    Energy Secretary Ernest Moniz's statement on the EPA's proposed new rules for existing power plants.

  13. Probabilistic Soil-Structure Interaction Analysis of Nuclear Power Plant Structures for Seismic Probabilistic Risk Assessment

    Energy.gov [DOE]

    Probabilistic Soil-Structure Interaction Analysis of Nuclear Power Plant Structures for Seismic Probabilistic Risk Assessment

  14. Fuel Cell Power Plants Renewable and Waste Fuels

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Cell Power Plants Fuel Cell Power Plants Renewable and Waste Fuels DOE-DOD Workshop Washington, DC. January 13, 2011 reliable, efficient, ultra-clean FuelCell Energy, Inc. * Premier developer of stationary fuel Premier developer of stationary fuel cell technology - founded in 1969 * Over 50 installations in North America, Europe, and Asia * Industrial, commercial, utility products products * 300 KW to 50 MW and beyond FuelCell Energy, the FuelCell Energy logo, Direct FuelCell and "DFC"

  15. Advanced thermometrics for fossil power plant process improvement

    SciTech Connect

    Shepard, R.L.; Weiss, J.M.; Holcomb, D.E.

    1996-04-30

    Improved temperature measurements in fossil power plants can reduce heat rate and uncertainties in power production efficiencies, extend the life of plant components, reduce maintenance costs, and lessen emissions. Conventional instruments for measurement of combustion temperatures, steam temperatures, and structural component temperatures can be improved by better specification, in situ calibration, signal processing, and performance monitoring. Innovative instruments can enhance, augment, or replace conventional instruments. Several critical temperatures can be accessed using new methods that were impossible with conventional instruments. Such instruments include high temperature resistance temperature detectors (RTDs), thermometric phosphors, inductive thermometry, and ultrasonic thermometry.

  16. Contaminant abatement process for geothermal power plant effluents

    SciTech Connect

    Johnson, H.F.

    1990-11-06

    This patent describes a process for abatement of contaminants in effluents discharged from a geothermal power plant. It comprises: condensing on a surface condensing means, geothermal power plant effluents to separate a condensate comprising an aqueous solution containing dissolved contaminants from a noncondensable gas fraction containing contaminants: processing the noncondensable gas fraction in a primary contaminant abatement system for removal of the contaminants from the noncondensable gas fraction; diverting a reinjection fraction of the condensate for reinjection to a geothermal well; and processing at least a fraction of the remaining portion of the condensate in a secondary contaminant abatement system for removal of the dissolved contaminants from the condensate.

  17. Analysis of nuclear power plant component failures

    SciTech Connect

    Not Available

    1984-01-01

    Items are shown that have caused 90% of the nuclear unit outages and/or deratings between 1971 and 1980 and the magnitude of the problem indicated by an estimate of power replacement cost when the units are out of service or derated. The funding EPRI has provided on these specific items for R and D and technology transfer in the past and the funding planned in the future (1982 to 1986) are shown. EPRI's R and D may help the utilities on only a small part of their nuclear unit outage problems. For example, refueling is the major cause for nuclear unit outages or deratings and the steam turbine is the second major cause for nuclear unit outages; however, these two items have been ranked fairly low on the EPRI priority list for R and D funding. Other items such as nuclear safety (NRC requirements), reactor general, reactor and safety valves and piping, and reactor fuel appear to be receiving more priority than is necessary as determined by analysis of nuclear unit outage causes.

  18. Safeguard Requirements for Fusion Power Plants

    SciTech Connect

    Robert J. Goldston and Alexander Glaser

    2012-08-10

    Nuclear proliferation risks from magnetic fusion energy associated with access to fissile materials can be divided into three main categories: 1) clandestine production of fissile material in an undeclared facility, 2) covert production and diversion of such material in a declared and safeguarded facility, and 3) use of a declared facility in a breakout scenario, in which a state openly produces fissile material in violation of international agreements. The degree of risk in each of these categories is assessed, taking into account both state and non-state actors, and it is found that safeguards are required for fusion energy to be highly attractive from a non-proliferation standpoint. Specific safeguard requirements and R&D needs are outlined for each category of risk, and the technical capability of the ITER experiment, under construction, to contribute to this R&D is noted. A preliminary analysis indicates a potential legal pathway for fusion power systems to be brought under the Treaty for the Non-Proliferation of Nuclear Weapons. "Vertical" proliferation risks associated with tritium and with the knowledge that can be gained from inertial fusion energy R&D are outlined.

  19. Aging management guideline for commercial nuclear power plants - heat exchangers

    SciTech Connect

    Booker, S.; Lehnert, D.; Daavettila, N.; Palop, E.

    1994-06-01

    This Aging Management Guideline (AMG) describes recommended methods for effective detection and mitigation of age-related degradation mechanisms in commercial nuclear power plant heat exchangers important to license renewal. The intent of this AMG is to assist plant maintenance and operations personnel in maximizing the safe, useful life of these components. It also supports the documentation of effective aging management programs required under the License Renewal Rule 10 CFR 54. This AMG is presented in a manner that allows personnel responsible for performance analysis and maintenance to compare their plant-specific aging mechanisms (expected or already experienced) and aging management program activities to the more generic results and recommendations presented herein.

  20. Greenhouse Gas emissions from California Geothermal Power Plants

    DOE Data Explorer

    Sullivan, John

    The information given in this file represents GHG emissions and corresponding emission rates for California flash and dry steam geothermal power plants. This stage of the life cycle is the fuel use component of the fuel cycle and arises during plant operation. Despite that no fossil fuels are being consumed during operation of these plants, GHG emissions nevertheless arise from GHGs present in the geofluids and dry steam that get released to the atmosphere upon passing through the system. Data for the years of 2008 to 2012 are analyzed.

  1. Greenhouse Gas emissions from California Geothermal Power Plants

    DOE Data Explorer

    Sullivan, John

    2014-03-14

    The information given in this file represents GHG emissions and corresponding emission rates for California flash and dry steam geothermal power plants. This stage of the life cycle is the fuel use component of the fuel cycle and arises during plant operation. Despite that no fossil fuels are being consumed during operation of these plants, GHG emissions nevertheless arise from GHGs present in the geofluids and dry steam that get released to the atmosphere upon passing through the system. Data for the years of 2008 to 2012 are analyzed.

  2. Methanol coproduction; Strategies for effective use of IGCC power plants

    SciTech Connect

    Weber, W.H. ); Mednick, R.L. ); Bradshaw, D.T. )

    1988-01-01

    Coproduction of methanol and electricity provides stategies for effective utilization of IGCC power plants over a wide range of capacity factors. The choice among the various configurations will depend upon the operating requirements of the particular utility system, such as the load duration curve and the desirability of using coal-derived fuel grade methanol on the other units being dispatched on the system. Methanol coproduction is an advantage for load variation, since methanol can be stored and the combined cycle portion of the plant is less expensive than the gasifier. The possibilities for integration of methanol coproduction into IGCC plants are discussed.

  3. Water vulnerabilities for existing coal-fired power plants.

    SciTech Connect

    Elcock, D.; Kuiper, J.; Environmental Science Division

    2010-08-19

    This report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) Existing Plants Research Program, which has an energy-water research effort that focuses on water use at power plants. This study complements the Existing Plants Research Program's overall research effort by evaluating water issues that could impact power plants. Water consumption by all users in the United States over the 2005-2030 time period is projected to increase by about 7% (from about 108 billion gallons per day [bgd] to about 115 bgd) (Elcock 2010). By contrast, water consumption by coal-fired power plants over this period is projected to increase by about 21% (from about 2.4 to about 2.9 bgd) (NETL 2009b). The high projected demand for water by power plants, which is expected to increase even further as carbon-capture equipment is installed, combined with decreasing freshwater supplies in many areas, suggests that certain coal-fired plants may be particularly vulnerable to potential water demand-supply conflicts. If not addressed, these conflicts could limit power generation and lead to power disruptions or increased consumer costs. The identification of existing coal-fired plants that are vulnerable to water demand and supply concerns, along with an analysis of information about their cooling systems and related characteristics, provides information to help focus future research and development (R&D) efforts to help ensure that coal-fired generation demands are met in a cost-effective manner that supports sustainable water use. This study identified coal-fired power plants that are considered vulnerable to water demand and supply issues by using a geographical information system (GIS) that facilitated the analysis of plant-specific data for more than 500 plants in the NETL's Coal Power Plant Database (CPPDB) (NETL 2007a) simultaneously with 18 indicators of water demand and supply. Two types of demand indicators were evaluated. The first type

  4. MOLTEN CARBONATE FUEL CELL POWER PLANT LOCATED AT TERMINAL ISLAND WASTEWATER TREATMENT PLANT

    SciTech Connect

    William W. Glauz

    2004-09-01

    The Los Angeles Department of Water and Power (LADWP) has developed one of the most recognized fuel cell demonstration programs in the United States. In addition to their high efficiencies and superior environmental performance, fuel cells and other generating technologies that can be located at or near the load, offers several electric utility benefits. Fuel cells can help further reduce costs by reducing peak electricity demand, thereby deferring or avoiding expenses for additional electric utility infrastructure. By locating generators near the load, higher reliability of service is possible and the losses that occur during delivery of electricity from remote generators are avoided. The potential to use renewable and locally available fuels, such as landfill or sewage treatment waste gases, provides another attractive outlook. In Los Angeles, there are also many oil producing areas where the gas by-product can be utilized. In June 2000, the LADWP contracted with FCE to install and commission the precommercial 250kW MCFC power plant. The plant was delivered, installed, and began power production at the JFB in August 2001. The plant underwent manufacturer's field trials up for 18 months and was replace with a commercial plant in January 2003. In January 2001, the LADWP contracted with FCE to provide two additional 250kW MCFC power plants. These commercial plants began operations during mid-2003. The locations of these plants are at the Terminal Island Sewage Treatment Plant at the Los Angeles Harbor (for eventual operation on digester gas) and at the LADWP Main Street Service Center east of downtown Los Angeles. All three carbonate fuel cell plants received partial funding through the Department of Defense's Climate Change Fuel Cell Buydown Program. This report covers the technical evaluation and benefit-cost evaluation of the Terminal Island 250kW MCFC power plant during its first year of operation from June 2003 to July 2004.

  5. Decentralised optimisation of cogeneration in virtual power plants

    SciTech Connect

    Wille-Haussmann, Bernhard; Erge, Thomas; Wittwer, Christof

    2010-04-15

    Within several projects we investigated grid structures and management strategies for active grids with high penetration of renewable energy resources and distributed generation (RES and DG). Those ''smart grids'' should be designed and managed by model based methods, which are elaborated within these projects. Cogeneration plants (CHP) can reduce the greenhouse gas emissions by locally producing heat and electricity. The integration of thermal storage devices is suitable to get more flexibility for the cogeneration operation. If several power plants are bound to centrally managed clusters, it is called ''virtual power plant''. To operate smart grids optimally, new optimisation and model reduction techniques are necessary to get rid with the complexity. There is a great potential for the optimised management of CHPs, which is not yet used. Due to the fact that electrical and thermal demands do not occur simultaneously, a thermally driven CHP cannot supply electrical peak loads when needed. With the usage of thermal storage systems it is possible to decouple electric and thermal production. We developed an optimisation method based on mixed integer linear programming (MILP) for the management of local heat supply systems with CHPs, heating boilers and thermal storages. The algorithm allows the production of thermal and electric energy with a maximal benefit. In addition to fuel and maintenance costs it is assumed that the produced electricity of the CHP is sold at dynamic prices. This developed optimisation algorithm was used for an existing local heat system with 5 CHP units of the same type. An analysis of the potential showed that about 10% increase in benefit is possible compared to a typical thermally driven CHP system under current German boundary conditions. The quality of the optimisation result depends on an accurate prognosis of the thermal load which is realised with an empiric formula fitted with measured data by a multiple regression method. The key

  6. US nuclear power plant operating cost and experience summaries

    SciTech Connect

    Kohn, W.E.; Reid, R.L.; White, V.S.

    1998-02-01

    NUREG/CR-6577, U.S. Nuclear Power Plant Operating Cost and Experience Summaries, has been prepared to provide historical operating cost and experience information on U.S. commercial nuclear power plants. Cost incurred after initial construction are characterized as annual production costs, representing fuel and plant operating and maintenance expenses, and capital expenditures related to facility additions/modifications which are included in the plant capital asset base. As discussed in the report, annual data for these two cost categories were obtained from publicly available reports and must be accepted as having different degrees of accuracy and completeness. Treatment of inconclusive and incomplete data is discussed. As an aid to understanding the fluctuations in the cost histories, operating summaries for each nuclear unit are provided. The intent of these summaries is to identify important operating events; refueling, major maintenance, and other significant outages; operating milestones; and significant licensing or enforcement actions. Information used in the summaries is condensed from annual operating reports submitted by the licensees, plant histories contained in Nuclear Power Experience, trade press articles, and the Nuclear Regulatory Commission (NRC) web site (www.nrc.gov).

  7. Understanding Inertial and Frequency Response of Wind Power Plants: Preprint

    SciTech Connect

    Muljadi, E.; Gevorgian, V.; Singh, M.; Santoso, S.

    2012-07-01

    The objective of this paper is to analyze and quantify the inertia and frequency responses of wind power plants with different wind turbine technologies (particularly those of fixed speed, variable slip with rotor-resistance controls, and variable speed with vector controls).

  8. Radioactive Effluents from Nuclear Power Plants Annual Report 2007

    SciTech Connect

    U.S. Nuclear Regulatory Commission, Office of Nuclear Reactor Regulation

    2010-12-10

    This report describes radioactive effluents from commercial nuclear power plants (NPPs) in the United States. This information was reported by the licensees for radioactive discharges that occurred in 2007. The report provides information relevant to the potential impact of NPPs on the environment and on public health.

  9. Radioactive Effluents from Nuclear Power Plants Annual Report 2008

    SciTech Connect

    U.S. Nuclear Regulatory Commission, Office of Nuclear Reactor Regulation

    2010-12-10

    This report describes radioactive effluents from commercial nuclear power plants (NPPs) in the United States. This information was reported by the licensees for radioactive discharges that occurred in 2008. The report provides information relevant to the potential impact of NPPs on the environment and on public health.

  10. Choosing Actuators for Automatic Control Systems of Thermal Power Plants

    SciTech Connect

    Gorbunov, A. I.; Serdyukov, O. V.

    2015-03-15

    Two types of actuators for automatic control systems of thermal power plants are analyzed: (i) pulse-controlled actuator and (ii) analog-controlled actuator with positioning function. The actuators are compared in terms of control circuit, control accuracy, reliability, and cost.

  11. Method of optimizing performance of Rankine cycle power plants

    DOEpatents

    Pope, William L.; Pines, Howard S.; Doyle, Padraic A.; Silvester, Lenard F.

    1982-01-01

    A method for efficiently operating a Rankine cycle power plant (10) to maximize fuel utilization efficiency or energy conversion efficiency or minimize costs by selecting a turbine (22) fluid inlet state which is substantially in the area adjacent and including the transposed critical temperature line (46).

  12. Report on aging of nuclear power plant reinforced concrete structures

    SciTech Connect

    Naus, D.J.; Oland, C.B.; Ellingwood, B.R.

    1996-03-01

    The Structural Aging Program provides the US Nuclear Regulatory Commission with potential structural safety issues and acceptance criteria for use in continued service assessments of nuclear power plant safety-related concrete structures. The program was organized under four task areas: Program Management, Materials Property Data Base, Structural Component Assessment/Repair Technology, and Quantitative Methodology for Continued Service Determinations. Under these tasks, over 90 papers and reports were prepared addressing pertinent aspects associated with aging management of nuclear power plant reinforced concrete structures. Contained in this report is a summary of program results in the form of information related to longevity of nuclear power plant reinforced concrete structures, a Structural Materials Information Center presenting data and information on the time variation of concrete materials under the influence of environmental stressors and aging factors, in-service inspection and condition assessments techniques, repair materials and methods, evaluation of nuclear power plant reinforced concrete structures, and a reliability-based methodology for current and future condition assessments. Recommendations for future activities are also provided. 308 refs., 61 figs., 50 tabs.

  13. Sabah barge-mounted power plant in service

    SciTech Connect

    Barker, T.

    1995-03-01

    The world`s largest barge-mounted simple-cycle power plant, constructed by the Sabah Shipyards in Malaysia, is now in service in the Philippines. Construction of similar barges from Westinghouse should begin shortly. This paper discusses in brief the projects in progress at present and prospects in the Asian market from the perspective of the manufacturers.

  14. Optimization of a Virtual Power Plant to Provide Frequency Support.

    SciTech Connect

    Neely, Jason C.; Johnson, Jay; Gonzalez, Sigifredo; Lave, Matthew Samuel; Delhotal, Jarod James

    2015-12-01

    Increasing the penetration of distributed renewable sources, including photovoltaic (PV) sources, poses technical challenges for grid management. The grid has been optimized over decades to rely upon large centralized power plants with well-established feedback controls, but now non-dispatchable, renewable sources are displacing these controllable generators. This one-year study was funded by the Department of Energy (DOE) SunShot program and is intended to better utilize those variable resources by providing electric utilities with the tools to implement frequency regulation and primary frequency reserves using aggregated renewable resources, known as a virtual power plant. The goal is to eventually enable the integration of 100s of Gigawatts into US power systems.

  15. Regression analysis of technical parameters affecting nuclear power plant performances

    SciTech Connect

    Ghazy, R.; Ricotti, M. E.; Trueco, P.

    2012-07-01

    Since the 80's many studies have been conducted in order to explicate good and bad performances of commercial nuclear power plants (NPPs), but yet no defined correlation has been found out to be totally representative of plant operational experience. In early works, data availability and the number of operating power stations were both limited; therefore, results showed that specific technical characteristics of NPPs were supposed to be the main causal factors for successful plant operation. Although these aspects keep on assuming a significant role, later studies and observations showed that other factors concerning management and organization of the plant could instead be predominant comparing utilities operational and economic results. Utility quality, in a word, can be used to summarize all the managerial and operational aspects that seem to be effective in determining plant performance. In this paper operational data of a consistent sample of commercial nuclear power stations, out of the total 433 operating NPPs, are analyzed, mainly focusing on the last decade operational experience. The sample consists of PWR and BWR technology, operated by utilities located in different countries, including U.S. (Japan)) (France)) (Germany)) and Finland. Multivariate regression is performed using Unit Capability Factor (UCF) as the dependent variable; this factor reflects indeed the effectiveness of plant programs and practices in maximizing the available electrical generation and consequently provides an overall indication of how well plants are operated and maintained. Aspects that may not be real causal factors but which can have a consistent impact on the UCF, as technology design, supplier, size and age, are included in the analysis as independent variables. (authors)

  16. Enhancement of NRC station blackout requirements for nuclear power plants

    SciTech Connect

    McConnell, M. W.

    2012-07-01

    The U.S. Nuclear Regulatory Commission (NRC) established a Near-Term Task Force (NTTF) in response to Commission direction to conduct a systematic and methodical review of NRC processes and regulations to determine whether the agency should make additional improvements to its regulatory system and to make recommendations to the Commission for its policy direction, in light of the accident at the Fukushima Dai-ichi Nuclear Power Plant. The NTTF's review resulted in a set of recommendations that took a balanced approach to defense-in-depth as applied to low-likelihood, high-consequence events such as prolonged station blackout (SBO) resulting from severe natural phenomena. Part 50, Section 63, of Title 10 of the Code of Federal Regulations (CFR), 'Loss of All Alternating Current Power,' currently requires that each nuclear power plant must be able to cool the reactor core and maintain containment integrity for a specified duration of an SBO. The SBO duration and mitigation strategy for each nuclear power plant is site specific and is based on the robustness of the local transmission system and the transmission system operator's capability to restore offsite power to the nuclear power plant. With regard to SBO, the NTTF recommended that the NRC strengthen SBO mitigation capability at all operating and new reactors for design-basis and beyond-design-basis external events. The NTTF also recommended strengthening emergency preparedness for prolonged SBO and multi-unit events. These recommendations, taken together, are intended to clarify and strengthen US nuclear reactor safety regarding protection against and mitigation of the consequences of natural disasters and emergency preparedness during SBO. The focus of this paper is on the existing SBO requirements and NRC initiatives to strengthen SBO capability at all operating and new reactors to address prolonged SBO stemming from design-basis and beyond-design-basis external events. The NRC initiatives are intended to

  17. Water Extraction from Coal-Fired Power Plant Flue Gas

    SciTech Connect

    Bruce C. Folkedahl; Greg F. Weber; Michael E. Collings

    2006-06-30

    The overall objective of this program was to develop a liquid disiccant-based flue gas dehydration process technology to reduce water consumption in coal-fired power plants. The specific objective of the program was to generate sufficient subscale test data and conceptual commercial power plant evaluations to assess process feasibility and merits for commercialization. Currently, coal-fired power plants require access to water sources outside the power plant for several aspects of their operation in addition to steam cycle condensation and process cooling needs. At the present time, there is no practiced method of extracting the usually abundant water found in the power plant stack gas. This project demonstrated the feasibility and merits of a liquid desiccant-based process that can efficiently and economically remove water vapor from the flue gas of fossil fuel-fired power plants to be recycled for in-plant use or exported for clean water conservation. After an extensive literature review, a survey of the available physical and chemical property information on desiccants in conjunction with a weighting scheme developed for this application, three desiccants were selected and tested in a bench-scale system at the Energy and Environmental Research Center (EERC). System performance at the bench scale aided in determining which desiccant was best suited for further evaluation. The results of the bench-scale tests along with further review of the available property data for each of the desiccants resulted in the selection of calcium chloride as the desiccant for testing at the pilot-scale level. Two weeks of testing utilizing natural gas in Test Series I and coal in Test Series II for production of flue gas was conducted with the liquid desiccant dehumidification system (LDDS) designed and built for this study. In general, it was found that the LDDS operated well and could be placed in an automode in which the process would operate with no operator intervention or

  18. Hybrid Cooling for Geothermal Power Plants: Final ARRA Project Report

    SciTech Connect

    Bharathan, D.

    2013-06-01

    Many binary-cycle geothermal plants use air as the heat rejection medium. Usually this is accomplished by using an air-cooled condenser (ACC) system to condense the vapor of the working fluid in the cycle. Many air-cooled plants suffer a loss of production capacity of up to 50% during times of high ambient temperatures. Use of limited amounts of water to supplement the performance of ACCs is investigated. Deluge cooling is found to be one of the least-cost options. Limiting the use of water in such an application to less than one thousand operating hours per year can boost plant output during critical high-demand periods while minimizing water use in binary-cycle geothermal power plants.

  19. Small-Scale Geothermal Power Plant Field Verification Projects: Preprint

    SciTech Connect

    Kutscher, C.

    2001-07-03

    In the spring of 2000, the National Renewable Energy Laboratory issued a Request for Proposal for the construction of small-scale (300 kilowatt [kW] to 1 megawatt [MW]) geothermal power plants in the western United States. Five projects were selected for funding. Of these five, subcontracts have been completed for three, and preliminary design work is being conducted. The three projects currently under contract represent a variety of concepts and locations: a 1-MW evaporatively enhanced, air-cooled binary-cycle plant in Nevada; a 1-MW water-cooled Kalina-cycle plant in New Mexico; and a 750-kW low-temperature flash plant in Utah. All three also incorporate direct heating: onion dehydration, heating for a fish hatchery, and greenhouse heating, respectively. These projects are expected to begin operation between April 2002 and September 2003. In each case, detailed data on performance and costs will be taken over a 3-year period.

  20. Performance assessment of OTEC power systems and thermal power plants. Final report. Volume I

    SciTech Connect

    Leidenfrost, W.; Liley, P.E.; McDonald, A.T.; Mudawwar, I.; Pearson, J.T.

    1985-05-01

    The focus of this report is on closed-cycle ocean thermal energy conversion (OTEC) power systems under research at Purdue University. The working operations of an OTEC power plant are briefly discussed. Methods of improving the performance of OTEC power systems are presented. Brief discussions on the methods of heat exchanger analysis and design are provided, as are the thermophysical properties of the working fluids and seawater. An interactive code capable of analyzing OTEC power system performance is included for use with an IBM personal computer.

  1. Impacts of TMDLs on coal-fired power plants.

    SciTech Connect

    Veil, J. A.; Environmental Science Division

    2010-04-30

    The Clean Water Act (CWA) includes as one of its goals restoration and maintenance of the chemical, physical, and biological integrity of the Nation's waters. The CWA established various programs to accomplish that goal. Among the programs is a requirement for states to establish water quality standards that will allow protection of the designated uses assigned to each water body. Once those standards are set, state agencies must sample the water bodies to determine if water quality requirements are being met. For those water bodies that are not achieving the desired water quality, the state agencies are expected to develop total maximum daily loads (TMDLs) that outline the maximum amount of each pollutant that can be discharged to the water body and still maintain acceptable water quality. The total load is then allocated to the existing point and nonpoint sources, with some allocation held in reserve as a margin of safety. Many states have already developed and implemented TMDLs for individual water bodies or regional areas. New and revised TMDLs are anticipated, however, as federal and state regulators continue their examination of water quality across the United States and the need for new or revised standards. This report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) Existing Plants Research Program, which has an energy-water research effort that focuses on water use at power plants. This study complements its overall research effort by evaluating water issues that could impact power plants. One of the program missions of the DOE's NETL is to develop innovative environmental control technologies that will enable full use of the Nation's vast coal reserves, while at the same time allowing the current fleet of coal-fired power plants to comply with existing and emerging environmental regulations. Some of the parameters for which TMDLs are being developed are components in discharges from coal-fired power

  2. Understanding the nature of nuclear power plant risk

    SciTech Connect

    Denning, R. S.

    2012-07-01

    This paper describes the evolution of understanding of severe accident consequences from the non-mechanistic assumptions of WASH-740 to WASH-1400, NUREG-1150, SOARCA and today in the interpretation of the consequences of the accident at Fukushima. As opposed to the general perception, the radiological human health consequences to members of the Japanese public from the Fukushima accident will be small despite meltdowns at three reactors and loss of containment integrity. In contrast, the radiation-related societal impacts present a substantial additional economic burden on top of the monumental task of economic recovery from the nonnuclear aspects of the earthquake and tsunami damage. The Fukushima accident provides additional evidence that we have mis-characterized the risk of nuclear power plant accidents to ourselves and to the public. The human health risks are extremely small even to people living next door to a nuclear power plant. The principal risk associated with a nuclear power plant accident involves societal impacts: relocation of people, loss of land use, loss of contaminated products, decontamination costs and the need for replacement power. Although two of the three probabilistic safety goals of the NRC address societal risk, the associated quantitative health objectives in reality only address individual human health risk. This paper describes the types of analysis that would address compliance with the societal goals. (authors)

  3. Dynamic Models for Wind Turbines and Wind Power Plants

    SciTech Connect

    Singh, M.; Santoso, S.

    2011-10-01

    The primary objective of this report was to develop universal manufacturer-independent wind turbine and wind power plant models that can be shared, used, and improved without any restrictions by project developers, manufacturers, and engineers. Manufacturer-specific models of wind turbines are favored for use in wind power interconnection studies. While they are detailed and accurate, their usages are limited to the terms of the non-disclosure agreement, thus stifling model sharing. The primary objective of the work proposed is to develop universal manufacturer-independent wind power plant models that can be shared, used, and improved without any restrictions by project developers, manufacturers, and engineers. Each of these models includes representations of general turbine aerodynamics, the mechanical drive-train, and the electrical characteristics of the generator and converter, as well as the control systems typically used. To determine how realistic model performance is, the performance of one of the models (doubly-fed induction generator model) has been validated using real-world wind power plant data. This work also documents selected applications of these models.

  4. Worldwide Geothermal Power Plants: Status as of June 1980

    SciTech Connect

    DiPippo, Ronald

    1980-12-01

    There are 100 geothermal power units now in operation throughout 12 countries, with a total installed capacity of just over 2110 MW. The average unit thus is rated at 21.1 MW. Newer units may be broadly classified as follows: (a) wellhead units of less than 5 MW; (b) small plants of about 10 MW; (c) medium plants of 30-35 MW; (d) large plants of about 55 MW; and (e) complexes typically consisting of several 55 MW units in a large geothermal field. There is a trend toward turbine units of the double-flow type with a 55 MW rating, used either alone or in a tandem-compound arrangement giving 110 MW in a single power house. This is particularly evident at The Geysers field in California. Double-flash units (separated-steam followed by a surface flash) are suited to high quality reservoirs having high temperature, high steam fractions at the wellhead, and low scaling potential. Single-flash units (separated steam) may be called for where scaling by the spent brine is a potential problem for the liquid disposal system. Binary plants are being used for some very low temperature reservoirs, particularly in the People's Republic of China, albeit in extremely small units. A large-scale pilot plant of the binary type is being planned for the Imperial Valley of California.

  5. LOCAL IMPACTS OF MERCURY EMISSIONS FROM COAL FIRED POWER PLANTS.

    SciTech Connect

    SULLIVAN, T.M.; BOWERMAN, B.; ADAMS, J.; MILIAN, L.; LIPFERT, F.; SUBRAMANIAM, S.; BLAKE, R.

    2005-09-21

    Mercury is a neurotoxin that accumulates in the food chain and is therefore a health concern. The primary human exposure pathway is through fish consumption. Coal-fired power plants emit mercury and there is uncertainty over whether this creates localized hot spots of mercury leading to substantially higher levels of mercury in water bodies and therefore higher exposure. To obtain direct evidence of local deposition patterns, soil and vegetations samples from around three U.S. coal-fired power plants were collected and analyzed for evidence of hot spots and for correlation with model predictions of deposition. At all three sites, there was no correlation between modeled mercury deposition and either soil concentrations or vegetation concentrations. It was estimated that less than 2% of the total mercury emissions from these plants deposited within 15 km of these plants. These small percentages of deposition are consistent with the literature review findings of only minor perturbations in environmental levels, as opposed to hot spots, near the plants. The major objective of the sampling studies was to determine if there was evidence for hot spots of mercury deposition around coal-fired power plants. From a public health perspective, such a hot spot must be large enough to insure that it did not occur by chance, and it must increase mercury concentrations to a level in which health effects are a concern in a water body large enough to support a population of subsistence fishers. The results of this study suggest that neither of these conditions has been met.

  6. U.S. Nuclear Power Plants: Continued Life or Replacement After 60? (released in AEO2010)

    Reports and Publications

    2010-01-01

    Nuclear power plants generate approximately 20% of U.S. electricity, and the plants in operation today are often seen as attractive assets in the current environment of uncertainty about future fossil fuel prices, high construction costs for new power plants (particularly nuclear plants), and the potential enactment of greenhouse gas regulations. Existing nuclear power plants have low fuel costs and relatively high power output. However, there is uncertainty about how long they will be allowed to continue operating.

  7. Advanced maintenance, inspection & repair technology for nuclear power plants

    SciTech Connect

    Hinton, B.M.

    1994-12-31

    Maintenance, inspection, and repair technology for nuclear power plants is outlined. The following topics are discussed: technology for reactor systems, reactor refueling bridge, fuel inspection system, fuel shuffling software, fuel reconstitution, CEA/RCCA/CRA inspection, vessel inspection capabilities, CRDM inspection and repair, reactor internals inspection and repair, stud tensioning system, stud/nut cleaning system, EDM machining technology, MI Cable systems, core exit T/C nozzle assemblies, technology for steam generators, genesis manipulator systems, ECT, UT penetrant inspections, steam generator repair and cleaning systems, technology for balance of plant, heat exchangers, piping and weld inspections, and turbogenerators.

  8. Cycle chemistry related issues in fossil power plants

    SciTech Connect

    James, K.L.; Chhatre, R.M.

    1994-12-31

    Maximizing the availability and useful life of a fossil power plant can be achieved by the reduction of corrosion. Poorly defined chemistry limits and inadequate response to cycle chemistry excursions have cost the utility industry billions of dollars in lost revenue and repair/replacement costs of damage equipment. The Cycle Chemistry related corrosion problems can be minimized by maintaining feed water, boiler water, and steam purity. Pacific Gas and Electric Company`s approach to reduce cycle chemistry related damage, as well as their participation in the Electric Power Research Institute`s Cycle Chemistry Improvement Program demonstration are reviewed in this paper.

  9. Utilization of Estonian oil shale at power plants

    SciTech Connect

    Ots, A.

    1996-12-31

    Estonian oil shale belongs to the carbonate class and is characterized as a solid fuel with very high mineral matter content (60--70% in dry mass), moderate moisture content (9--12%) and low heating value (LHV 8--10 MJ/kg). Estonian oil shale deposits lie in layers interlacing mineral stratas. The main constituent in mineral stratas is limestone. Organic matter is joined with sandy-clay minerals in shale layers. Estonian oil shale at power plants with total capacity of 3060 MW{sub e} is utilized in pulverized form. Oil shale utilization as fuel, with high calcium oxide and alkali metal content, at power plants is connected with intensive fouling, high temperature corrosion and wear of steam boiler`s heat transfer surfaces. Utilization of Estonian oil shale is also associated with ash residue use in national economy and as absorbent for flue gas desulfurization system.

  10. Improving the safety of LWR power plants. Final report

    SciTech Connect

    Not Available

    1980-04-01

    This report documents the results of the Study to identify current, potential research issues and efforts for improving the safety of Light Water Reactor (LWR) power plants. This final report describes the work accomplished, the results obtained, the problem areas, and the recommended solutions. Specifically, for each of the issues identified in this report for improving the safety of LWR power plants, a description is provided in detail of the safety significance, the current status (including information sources, status of technical knowledge, problem solution and current activities), and the suggestions for further research and development. Further, the issues are ranked for action into high, medium, and low priority with respect to primarily (a) improved safety (e.g. potential reduction in public risk and occupational exposure), and secondly (b) reduction in safety-related costs (improving or maintaining level of safety with simpler systems or in a more cost-effective manner).

  11. Integrated gas-fired space-heating/water-heating system with electric air conditioning. Final report. January 1983-December 1987

    SciTech Connect

    Demetri, E.P.; Gerstmann, J.

    1988-01-01

    A Triple-Integrated-Appliance (TIA) for space conditioning and water heating was successfully developed for the multifamily housing market as an economical gas alternative to all-electric systems. The gas-fired portion of the system provides high-efficiency condensing operation in both the space-heating and water-heating modes. The TIA was evaluated in a comprehensive field-test program conducted nationwide at sites representative of multifamily applications. The field-test results demonstrated that the performance goals were achieved under actual usage conditions. The final pre-production prototype configuration provides the design and performance characteristics necessary to compete in the multifamily market.

  12. Incidents at nuclear power plants caused by the human factor

    SciTech Connect

    Mashin, V. A.

    2012-09-15

    Psychological analysis of the causes of incorrect actions by personnel is discussed as presented in the report 'Methodological guidelines for analyzing the causes of incidents in the operation of nuclear power plants.' The types of incorrect actions and classification of the root causes of errors by personnel are analyzed. Recommendations are made for improvements in the psychological analysis of causes of incorrect actions by personnel.

  13. Maryland Nuclear Profile - Calvert Cliffs Nuclear Power Plant

    Energy Information Administration (EIA) (indexed site)

    Calvert Cliffs Nuclear Power Plant" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" 1,855,"6,755",90.2,"PWR","application/vnd.ms-excel","application/vnd.ms-excel"

  14. Improving the Energy Efficiency of Pumped-Storage Power Plants

    SciTech Connect

    Artyukh, S. F.; Galat, V. V.; Kuz’min, V. V.; Chervonenko, I. I.; Shakaryan, Yu. G.; Sokur, P. V.

    2015-01-15

    Possible ways to improve the energy efficiency of hydroelectric generating sets of pumped-storage power plants (PSPPs) are studied. The Kiev PSPP is used as an example to show how its generating sets can be upgraded. It is concluded based on studies conducted that synchronous motor-generators should be replaced with asynchronized motor-generators. The feasibility of changing over the turbine to variable-speed operation is shown.

  15. Reducing Peak Demand to Defer Power Plant Construction in Oklahoma

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Reducing Peak Demand to Defer Power Plant Construction in Oklahoma Located in the heart of "Tornado Alley," Oklahoma Gas & Electric Company's (OG&E) electric grid faces significant challenges from severe weather, hot summers, and about 2% annual load growth. To better control costs and manage electric reliability under these conditions, OG&E is pursuing demand response strategies made possible by implementation of smart grid technologies, tools, and techniques from

  16. Improved Solar Power Plant Efficiency: Low Cost Solar Irradiance Sensor -

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy Innovation Portal Solar Photovoltaic Solar Photovoltaic Industrial Technologies Industrial Technologies Electricity Transmission Electricity Transmission Find More Like This Return to Search Improved Solar Power Plant Efficiency: Low Cost Solar Irradiance Sensor University of Colorado Contact CU About This Technology Publications: PDF Document Publication CU3117D (Irradiance Sensor) Marketing Summary.pdf (149 KB) Technology Marketing Summary A University of Colorado research group led

  17. Aging management guideline for commercial nuclear power plants-pumps

    SciTech Connect

    Booker, S.; Katz, D.; Daavettila, N.; Lehnert, D.

    1994-03-01

    This Aging Management Guideline (AMG) describes recommended methods for effective detection and mitigation of age-related degradation mechanisms in BWR and PWR commercial nuclear power plant pumps important to license renewal. The intent of this AMG is to assist plant maintenance and operations personnel in maximizing the safe, useful life of these components. It also supports the documentation of effective aging management programs required under the License Renewal Rule 10 CFR Part 54. This AMG is presented in a manner that allows personnel responsible for performance analysis and maintenance to compare their plant-specific aging mechanisms (expected or already experienced) and aging management program activities to the more generic results and recommendations presented herein.

  18. Remote visual inspection for NDE in power plants

    SciTech Connect

    Samsonov, P. )

    1993-06-01

    Remote visual inspection equipment such as borescopes, and video scopes give power plant nondestructive examination (NDE) groups the necessary tools to establish superior corrective and preventive plant maintenance programs. These scopes allow the user to evaluate the condition of pipes, boilers, turbines, heat exchangers, and other critical machinery without costly and time-consuming disassembly. Overall plant efficiency is increased and the likelihood of catastrophic failure is reduced significantly. Insertion diameters vary from 0.6 mm to 20 mm and come in lengths of just a few inches to as long as 100 ft. (30 m). Ancillary equipment such as video and digital processors provides a permanent record of the inspection and uses sophisticated three-dimensional (3-D) measurement, trend analysis, documentation, and image manipulation.

  19. Medium Power Lead Alloy Fast Reactor Balance of Plant Options

    SciTech Connect

    Vaclav Dosta; Pavel Hejzlar; Neil E. Todreas; Jacopo Buongiorno

    2004-09-01

    Proper selection of the power conversion cycle is a very important step in the design of a nuclear reactor. Due to the higher core outlet temperature (~550°C) compared to that of light water reactors (~300°C), a wide portfolio of power cycles is available for the lead alloy fast reactor (LFR). Comparison of the following cycles for the LFR was performed: superheated steam (direct and indirect), supercritical steam, helium Brayton, and supercritical CO2 (S-CO2) recompression. Heat transfer from primary to secondary coolant was first analyzed and then the steam generators or heat exchangers were designed. The direct generation of steam in the lead alloy coolant was also evaluated. The resulting temperatures of the secondary fluids are in the range of 530-545°C, dictated by the fixed space available for the heat exchangers in the reactor vessel. For the direct steam generation situation, the temperature is 312°C. Optimization of each power cycle was carried out, yielding net plant efficiency of around 40% for the superheated steam cycle while the supercritical steam and S-CO2 cycles achieved net plant efficiency of 41%. The cycles were then compared based on their net plant efficiency and potential for low capital cost. The superheated steam cycle is a very good candidate cycle given its reasonably high net plant efficiency and ease of implementation based on the extensive knowledge and operating experience with this cycle. Although the supercritical steam cycle net plant efficiency is slightly better than that of the superheated steam cycle, its high complexity and high pressure result in higher capital cost, negatively affecting plant economics. The helium Brayton cycle achieves low net plant efficiency due to the low lead alloy core outlet temperature, and therefore, even though it is a simpler cycle than the steam cycles, its performance is mediocre in this application. The prime candidate, however, appears to be the S-CO2 recompression cycle, because it

  20. Steam Plant Replaces Outdated Coal-Fired System | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Steam Plant Replaces Outdated Coal-Fired System Steam Plant Replaces Outdated Coal-Fired System September 1, 2012 - 12:00pm Addthis A new natural gas-fired steam plant will replace an older coal-fired steam plant shown here. The new plant has the capacity to heat buildings at the Portsmouth site much more efficiently than the old coal-fired steam plant. A new natural gas-fired steam plant will replace an older coal-fired steam plant shown here. The new plant has the capacity to heat buildings at