National Library of Energy BETA

Sample records for gas wells operated

  1. Drilling and operating oil, gas, and geothermal wells in an H/sub 2/S environment

    SciTech Connect

    Dosch, M.W.; Hodgson, S.F.

    1981-01-01

    The following subjects are covered: facts about hydrogen sulfides; drilling and operating oil, gas, and geothermal wells; detection devices and protective equipment; hazard levels and safety procedures; first aid; and H/sub 2/S in California oil, gas, and geothermal fields. (MHR)

  2. Demonstration of the enrichment of medium quality gas from gob wells through interactive well operating practices. Final report, June--December, 1995

    SciTech Connect

    Blackburn, S.T.; Sanders, R.G.; Boyer, C.M. II; Lasseter, E.L.; Stevenson, J.W.; Mills, R.A.

    1995-12-01

    Methane released to the atmosphere during coal mining operations is believed to contribute to global warming and represents a waste of a valuable energy resource. Commercial production of pipeline-quality gob well methane through wells drilled from the surface into the area above the gob can, if properly implemented, be the most effective means of reducing mine methane emissions. However, much of the gas produced from gob wells is vented because the quality of the gas is highly variable and is often below current natural gas pipeline specifications. Prior to the initiation of field-testing required to further understand the operational criteria for upgrading gob well gas, a preliminary evaluation and assessment was performed. An assessment of the methane gas in-place and producible methane resource at the Jim Walter Resources, Inc. No. 4 and No. 5 Mines established a potential 15-year supply of 60 billion cubic feet of mien methane from gob wells, satisfying the resource criteria for the test site. To understand the effect of operating conditions on gob gas quality, gob wells producing pipeline quality (i.e., < 96% hydrocarbons) gas at this site will be operated over a wide range of suction pressures. Parameters to be determined will include absolute methane quantity and methane concentration produced through the gob wells; working face, tailgate and bleeder entry methane levels in the mine; and the effect on the economics of production of gob wells at various levels of methane quality. Following this, a field demonstration will be initiated at a mine where commercial gob gas production has not been attempted. The guidelines established during the first phase of the project will be used to design the production program. The economic feasibility of various utilization options will also be tested based upon the information gathered during the first phase. 41 refs., 41 figs., 12 tabs.

  3. Virginia Natural Gas Number of Gas and Gas Condensate Wells ...

    Energy Information Administration (EIA) (indexed site)

    Gas and Gas Condensate Wells (Number of Elements) Virginia Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 ...

  4. Nevada Natural Gas Gross Withdrawals from Gas Wells (Million...

    Energy Information Administration (EIA) (indexed site)

    from Gas Wells (Million Cubic Feet) Nevada Natural Gas Gross Withdrawals from Gas Wells ... Natural Gas Gross Withdrawals from Gas Wells Nevada Natural Gas Gross Withdrawals and ...

  5. GAS INJECTION/WELL STIMULATION PROJECT

    SciTech Connect

    John K. Godwin

    2005-12-01

    Driver Production proposes to conduct a gas repressurization/well stimulation project on a six well, 80-acre portion of the Dutcher Sand of the East Edna Field, Okmulgee County, Oklahoma. The site has been location of previous successful flue gas injection demonstration but due to changing economic and sales conditions, finds new opportunities to use associated natural gas that is currently being vented to the atmosphere to repressurize the reservoir to produce additional oil. The established infrastructure and known geological conditions should allow quick startup and much lower operating costs than flue gas. Lessons learned from the previous project, the lessons learned form cyclical oil prices and from other operators in the area will be applied. Technology transfer of the lessons learned from both projects could be applied by other small independent operators.

  6. Maximize revenue from gas condensate wells

    SciTech Connect

    Hall, S.R.

    1988-07-01

    A computerized oil/gas modeling program called C.O.M.P. allows operators to select the economically optimum producing equipment for a given gas-condensate well-stream. This article, the first of two, discusses use of the model to analyze performance of six different production system on the same wellstream and at the same wellhead conditions. All producing equipment options are unattended wellhead facilities designed for high volume gas-condensate wells and are not gas plants. A second article to appear in September will discuss operating experience with one of the producing systems analyzed, integrated multi-stage separation with stabilization and compression (the HERO system), which was developed by U.S. Enertek, Inc. This equipment was chosen for the wellstream analyzed because of the potential revenue increase indicated by the model.

  7. Nevada Natural Gas Gross Withdrawals from Gas Wells (Million...

    Annual Energy Outlook

    Release Date: 05312016 Next Release Date: 06302016 Referring Pages: Natural Gas Gross Withdrawals from Gas Wells Nevada Natural Gas Gross Withdrawals and Production Natural Gas ...

  8. US--Federal Offshore Natural Gas Withdrawals from Gas Wells ...

    Energy Information Administration (EIA) (indexed site)

    Gas Wells (Million Cubic Feet) US--Federal Offshore Natural Gas Withdrawals from Gas Wells ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Offshore Gross ...

  9. Florida Natural Gas Number of Gas and Gas Condensate Wells (Number...

    Gasoline and Diesel Fuel Update

    Gas and Gas Condensate Wells (Number of Elements) Florida Natural Gas Number of Gas and ...2016 Referring Pages: Number of Producing Gas Wells (Summary) Florida Natural Gas Summary

  10. Texas--State Offshore Natural Gas Withdrawals from Gas Wells...

    Energy Information Administration (EIA) (indexed site)

    Gas Wells (Million Cubic Feet) Texas--State Offshore Natural Gas Withdrawals from Gas ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Offshore Gross ...

  11. Federal Offshore--Alabama Natural Gas Withdrawals from Gas Wells...

    Energy Information Administration (EIA) (indexed site)

    Gas Wells (Million Cubic Feet) Federal Offshore--Alabama Natural Gas Withdrawals from Gas ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Offshore Gross ...

  12. Alaska--State Offshore Natural Gas Withdrawals from Gas Wells...

    Energy Information Administration (EIA) (indexed site)

    Gas Wells (Million Cubic Feet) Alaska--State Offshore Natural Gas Withdrawals from Gas ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Offshore Gross ...

  13. Louisiana--State Offshore Natural Gas Withdrawals from Gas Wells...

    Energy Information Administration (EIA) (indexed site)

    Gas Wells (Million Cubic Feet) Louisiana--State Offshore Natural Gas Withdrawals from Gas ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Offshore Gross ...

  14. Federal Offshore--Texas Natural Gas Withdrawals from Gas Wells...

    Energy Information Administration (EIA) (indexed site)

    Gas Wells (Million Cubic Feet) Federal Offshore--Texas Natural Gas Withdrawals from Gas ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Offshore Gross ...

  15. Other States Natural Gas Gross Withdrawals from Gas Wells (Million...

    Energy Information Administration (EIA) (indexed site)

    Gas Wells (Million Cubic Feet) Other States Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 72,328 ...

  16. Illinois Natural Gas Withdrawals from Gas Wells (Million Cubic...

    Annual Energy Outlook

    Gas Wells (Million Cubic Feet) Illinois Natural Gas Withdrawals from Gas Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 40 37 39 38 37 36 35 ...

  17. Nevada Natural Gas Gross Withdrawals from Gas Wells (Million...

    Gasoline and Diesel Fuel Update

    from Gas Wells (Million Cubic Feet) Nevada Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 ...

  18. Kentucky Natural Gas Withdrawals from Gas Wells (Million Cubic...

    Energy Information Administration (EIA) (indexed site)

    Gas Wells (Million Cubic Feet) Kentucky Natural Gas Withdrawals from Gas Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 7,021 6,303 6,870 ...

  19. Missouri Natural Gas Withdrawals from Gas Wells (Million Cubic...

    Energy Information Administration (EIA) (indexed site)

    Withdrawals from Gas Wells (Million Cubic Feet) Missouri Natural Gas Withdrawals from Gas Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 1 ...

  20. Ohio Natural Gas Withdrawals from Gas Wells (Million Cubic Feet...

    Energy Information Administration (EIA) (indexed site)

    Gas Wells (Million Cubic Feet) Ohio Natural Gas Withdrawals from Gas Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 13,138 11,794 12,855 ...

  1. Montana Natural Gas Gross Withdrawals from Gas Wells (Million...

    Energy Information Administration (EIA) (indexed site)

    Gas Wells (Million Cubic Feet) Montana Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 4,561 3,826 4,106 ...

  2. Utah Natural Gas Gross Withdrawals from Gas Wells (Million Cubic...

    Energy Information Administration (EIA) (indexed site)

    Gas Wells (Million Cubic Feet) Utah Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 21,638 18,808 21,037 ...

  3. Louisiana Natural Gas Gross Withdrawals from Gas Wells (Million...

    Energy Information Administration (EIA) (indexed site)

    Gas Wells (Million Cubic Feet) Louisiana Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 425,704 369,500 ...

  4. Indiana Natural Gas Withdrawals from Gas Wells (Million Cubic...

    Energy Information Administration (EIA) (indexed site)

    Withdrawals from Gas Wells (Million Cubic Feet) Indiana Natural Gas Withdrawals from Gas Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 21 18 ...

  5. Michigan Natural Gas Gross Withdrawals from Gas Wells (Million...

    Energy Information Administration (EIA) (indexed site)

    Gas Wells (Million Cubic Feet) Michigan Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 9,579 8,593 ...

  6. Tennessee Natural Gas Withdrawals from Gas Wells (Million Cubic...

    Energy Information Administration (EIA) (indexed site)

    Gas Wells (Million Cubic Feet) Tennessee Natural Gas Withdrawals from Gas Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 ...

  7. Virginia Natural Gas Withdrawals from Gas Wells (Million Cubic...

    Energy Information Administration (EIA) (indexed site)

    Withdrawals from Gas Wells (Million Cubic Feet) Virginia Natural Gas Withdrawals from Gas Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 1,849 ...

  8. Maryland Natural Gas Withdrawals from Gas Wells (Million Cubic...

    Energy Information Administration (EIA) (indexed site)

    Withdrawals from Gas Wells (Million Cubic Feet) Maryland Natural Gas Withdrawals from Gas Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 5 ...

  9. Oregon Natural Gas Gross Withdrawals from Gas Wells (Million...

    Energy Information Administration (EIA) (indexed site)

    from Gas Wells (Million Cubic Feet) Oregon Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 246 244 232 ...

  10. Mississippi Natural Gas Gross Withdrawals from Gas Wells (Million...

    Energy Information Administration (EIA) (indexed site)

    Gas Wells (Million Cubic Feet) Mississippi Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 14,797 13,076 ...

  11. Wyoming Natural Gas Gross Withdrawals from Gas Wells (Million...

    Energy Information Administration (EIA) (indexed site)

    Gas Wells (Million Cubic Feet) Wyoming Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 58,111 51,244 ...

  12. Colorado Natural Gas Gross Withdrawals from Gas Wells (Million...

    Energy Information Administration (EIA) (indexed site)

    Gas Wells (Million Cubic Feet) Colorado Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 15,390 18,697 ...

  13. Nebraska Natural Gas Withdrawals from Gas Wells (Million Cubic...

    Energy Information Administration (EIA) (indexed site)

    Gas Wells (Million Cubic Feet) Nebraska Natural Gas Withdrawals from Gas Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 9 10 11 6 9 8 10 9 8 ...

  14. New York Natural Gas Number of Gas and Gas Condensate Wells ...

    Energy Information Administration (EIA) (indexed site)

    Gas and Gas Condensate Wells (Number of Elements) New York Natural Gas Number of Gas and ... Number of Producing Gas Wells Number of Producing Gas Wells (Summary) New York Natural Gas ...

  15. Alabama--State Offshore Natural Gas Withdrawals from Gas Wells...

    Energy Information Administration (EIA) (indexed site)

    Withdrawals from Gas Wells (Million Cubic Feet) Alabama--State Offshore Natural Gas ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Offshore Gross ...

  16. Adaptive control system for gas producing wells

    SciTech Connect

    Fedor, Pashchenko; Sergey, Gulyaev; Alexander, Pashchenko

    2015-03-10

    Optimal adaptive automatic control system for gas producing wells cluster is proposed intended for solving the problem of stabilization of the output gas pressure in the cluster at conditions of changing gas flow rate and changing parameters of the wells themselves, providing the maximum high resource of hardware elements of automation.

  17. New Mexico Natural Gas Number of Gas and Gas Condensate Wells...

    Energy Information Administration (EIA) (indexed site)

    Gas and Gas Condensate Wells (Number of Elements) New Mexico Natural Gas Number of Gas and ... Number of Producing Gas Wells Number of Producing Gas Wells (Summary) New Mexico Natural ...

  18. North Dakota Natural Gas Number of Gas and Gas Condensate Wells...

    Energy Information Administration (EIA) (indexed site)

    Gas and Gas Condensate Wells (Number of Elements) North Dakota Natural Gas Number of Gas ... Number of Producing Gas Wells Number of Producing Gas Wells (Summary) North Dakota Natural ...

  19. Maximize revenue from gas condensate wells

    SciTech Connect

    Hall, S.R. )

    1988-09-01

    A computerized oil/gas modeling program called C.O.M.P. was used to analyze comparative recovery, losses and revenues from six different producing systems on a given wellstream as tested on initial completion. A multi-stage separation/stabilization/compression system (HERO system) manufactured by U.S. Enertek, Inc., was subsequently installed to produce the well, plus five other wells in the immediate area. This article compares theoretical gains forecast by the modeling program with actual gains recorded during later testing of the same well with a two-stage separation hookup and the multi-stage unit. The test using two-stage separation was run as a basis for comparison. Operating temperatures and pressures for each test are shown.

  20. Dewatering of coalbed methane wells with hydraulic gas pump

    SciTech Connect

    Amani, M.; Juvkam-Wold, H.C.

    1995-12-31

    The coalbed methane industry has become an important source of natural gas production. Proper dewatering of coalbed methane (CBM) wells is the key to efficient gas production from these reservoirs. This paper presents the Hydraulic Gas Pump as a new alternative dewatering system for CBM wells. The Hydraulic Gas Pump (HGP) concept offers several operational advantages for CBM wells. Gas interference does not affect its operation. It resists solids damage by eliminating the lift mechanism and reducing the number of moving parts. The HGP has a flexible production rate and is suitable for all production phases of CBM wells. It can also be designed as a wireline retrievable system. We conclude that the Hydraulic Gas Pump is a suitable dewatering system for coalbed methane wells.

  1. Consortium for Petroleum & Natural Gas Stripper Wells

    SciTech Connect

    Morrison, Joel

    2011-12-01

    The United States has more oil and gas wells than any other country. As of December 31, 2004, there were more than half a million producing oil wells in the United States. That is more than three times the combined total for the next three leaders: China, Canada, and Russia. The Stripper Well Consortium (SWC) is a partnership that includes domestic oil and gas producers, service and supply companies, trade associations, academia, the Department of Energy’s Strategic Center for Natural Gas and Oil (SCNGO) at the National Energy Technology Laboratory (NETL), and the New York State Energy Research and Development Authority (NYSERDA). The Consortium was established in 2000. This report serves as a final technical report for the SWC activities conducted over the May 1, 2004 to December 1, 2011 timeframe. During this timeframe, the SWC worked with 173 members in 29 states and three international countries, to focus on the development of new technologies to benefit the U.S. stripper well industry. SWC worked with NETL to develop a nationwide request-for-proposal (RFP) process to solicit proposals from the U.S. stripper well industry to develop and/or deploy new technologies that would assist small producers in improving the production performance of their stripper well operations. SWC conducted eight rounds of funding. A total of 132 proposals were received. The proposals were compiled and distributed to an industry-driven SWC executive council and program sponsors for review. Applicants were required to make a formal technical presentation to the SWC membership, executive council, and program sponsors. After reviewing the proposals and listening to the presentations, the executive council made their funding recommendations to program sponsors. A total of 64 projects were selected for funding, of which 59 were fully completed. Penn State then worked with grant awardees to issue a subcontract for their approved work. SWC organized and hosted a total of 14 meetings

  2. Horizontal well replaces hydraulic fracturing in North Sea gas well

    SciTech Connect

    Reynolds, D.A.; Seymour, K.P. )

    1991-11-25

    This paper reports on excessive water production from hydraulically fractured wells in a poor quality reservoir in the North SEa which prompted the drilling of a horizontal well. Gas production from the horizontal well reached six times that of the offset vertical wells, and no water production occurred. This horizontal well proved commercial the western section of the Anglia field. Horizontal drilling in the North SEa is as an effective technology to enhance hydrocarbon recovery from reservoirs that previously had proven uncommercial with other standard techniques. It is viable for the development of marginal reservoirs, particularly where conditions preclude stimulation from hydraulic fracturing.

  3. Florida Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Florida Natural Gas Number of Oil Wells (Number of ... Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Florida ...

  4. IMPROVED NATURAL GAS STORAGE WELL REMEDIATION

    SciTech Connect

    James C. Furness; Donald O. Johnson; Michael L. Wilkey; Lynn Furness; Keith Vanderlee; P. David Paulsen

    2001-12-01

    interrupted by sparkplug failure. The lifecycle for the plugs was less than 10 hours. An electrode feed system for delivering continuous power needs to be designed and developed. As a result, further work on the underwater plasma technology was terminated. It needs development of a new sparking system and a redesign of the pulsed power supply system to enable the unit to operate within a well diameter of less than three inches. Both of these needs were beyond the scope of the project. Meanwhile, the laboratory sonication unit was waterproofed and hardened, enabling the unit to be used as a field prototype, operating at temperatures to 350 F and depths of 15,000 feet. The field prototype was extensively tested at a field service company's test facility before taking it to the field site. The field test was run in August 2001 in a Nicor Gas storage field observation well at Pontiac, Illinois. Segmented bond logs, gamma ray neutron logs, water level measurements and water chemistry samples were obtained before and after the downhole demonstration. Fifteen tests were completed in the field. Results from the water chemistry analysis showed an increase in the range of calcium from 1755-1984 mg/l before testing to 3400-4028 mg/l after testing. For magnesium, the range increased from 285-296 mg/l to 461-480 mg/l. The change in pH from a range of 3.11-3.25 to 8.23-8.45 indicated a buffering of the acidic well water, probably due to the increased calcium available for buffering. The segmented bond logs showed no damage to the cement bond in the well and the gamma ray neutron log showed no increase in the amount of hydrocarbons present in the formation where the testing took place. Thus, the gas storage bubble in the aquifer was not compromised. A review of all the field test data collected documents the fact that the application of low-frequency sonication technology definitely removes scale from well pipe. Phase One of this project took sonication technology from the concept stage

  5. Utah Natural Gas Number of Gas and Gas Condensate Wells (Number...

    Energy Information Administration (EIA) (indexed site)

    Gas and Gas Condensate Wells (Number of Elements) Utah Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 ...

  6. Wyoming Natural Gas Number of Gas and Gas Condensate Wells (Number...

    Energy Information Administration (EIA) (indexed site)

    Gas and Gas Condensate Wells (Number of Elements) Wyoming Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 ...

  7. West Virginia Natural Gas Number of Gas and Gas Condensate Wells...

    Energy Information Administration (EIA) (indexed site)

    Gas and Gas Condensate Wells (Number of Elements) West Virginia Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 ...

  8. Bull heading to kill live gas wells

    SciTech Connect

    Oudeman, P.; Avest, D. ter; Grodal, E.O.; Asheim, H.A.; Meissner, R.J.H.

    1994-12-31

    To kill a live closed-in gas well by bull heading down the tubing, the selected pump rate should be high enough to ensure efficient displacement of the gas into the formation (i.e., to avoid the kill fluid bypassing the gas). On the other hand, the pressures that develop during bull heading at high rate must not exceed wellhead pressure rating, tubing or casing burst pressures or the formation breakdown gradient, since this will lead, at best, to a very inefficient kill job. Given these constraints, the optimum kill rate, requited hydraulic horsepower, density and type of kill fluids have to be selected. For this purpose a numerical simulator has been developed, which predicts the sequence of events during bull heading. Pressures and flow rates in the well during the kill job are calculated, taking to account slip between the gas and kill fluid, hydrostatic and friction pressure drop, wellbore gas compression and leak-off to the formation. Comparison with the results of a dedicated field test demonstrates that these parameters can be estimated accurately. Example calculations will be presented to show how the simulator can be used to identify an optimum kill scenario.

  9. Natural Gas Wells Near Project Rulison

    Office of Legacy Management (LM)

    for Natural Gas Wells Near Project Rulison Second Quarter 2013 U.S. Department of Energy Office of Legacy Management Grand Junction, Colorado Date Sampled: April 3, 2013 Background: Project Rulison was the second underground nuclear test under the Plowshare Program to stimulate natural-gas recovery from deep, low-permeability formations. On September 10, 1969, a 40-kiloton-yield nuclear device was detonated 8,426 feet (1.6 miles) below the ground surface in the Williams Fork Formation, at what

  10. Hydrate Control for Gas Storage Operations

    SciTech Connect

    Jeffrey Savidge

    2008-10-31

    The overall objective of this project was to identify low cost hydrate control options to help mitigate and solve hydrate problems that occur in moderate and high pressure natural gas storage field operations. The study includes data on a number of flow configurations, fluids and control options that are common in natural gas storage field flow lines. The final phase of this work brings together data and experience from the hydrate flow test facility and multiple field and operator sources. It includes a compilation of basic information on operating conditions as well as candidate field separation options. Lastly the work is integrated with the work with the initial work to provide a comprehensive view of gas storage field hydrate control for field operations and storage field personnel.

  11. Controls for offshore high pressure corrosive gas wells

    SciTech Connect

    Bailliet, R.M.

    1982-01-01

    In September 1981, Shell Oil Company began production from its first high-pressure corrosive gas well in the Gulf of Mexico. The extreme pressures and corrosive nature of the gas required the installation of a 20,000 psi low alloy steel christmas tree, equipped with 12 hydraulically operated safety and control valves. This study describes the instrumentation and control system developed to operate this complex well. Similar wells have been produced on shore, but the limited space available on an offshore platform has required the development of new techniques for operating these wells. The instrumentation system described utilizes conventional pneumatics and hydraulics for control plus intrinsically-safe electronics for data acquisition. The use of intrinsically-safe field wiring provided maximum safety while avoiding the need for explosion-proof conduit and wiring methods in division one hazardous areas.

  12. Trip report for field visit to Fayetteville Shale gas wells.

    SciTech Connect

    Veil, J. A.; Environmental Science Division

    2007-09-30

    This report describes a visit to several gas well sites in the Fayetteville Shale on August 9, 2007. I met with George Sheffer, Desoto Field Manager for SEECO, Inc. (a large gas producer in Arkansas). We talked in his Conway, Arkansas, office for an hour and a half about the processes and technologies that SEECO uses. We then drove into the field to some of SEECO's properties to see first-hand what the well sites looked like. In 2006, the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) made several funding awards under a program called Low Impact Natural Gas and Oil (LINGO). One of the projects that received an award is 'Probabilistic Risk-Based Decision Support for Oil and Gas Exploration and Production Facilities in Sensitive Ecosystems'. The University of Arkansas at Fayetteville has the lead on the project, and Argonne National Laboratory is a partner. The goal of the project is to develop a Web-based decision support tool that will be used by mid- and small-sized oil and gas companies as well as environmental regulators and other stakeholders to proactively minimize adverse ecosystem impacts associated with the recovery of gas reserves in sensitive areas. The project focuses on a large new natural gas field called the Fayetteville Shale. Part of the project involves learning how the natural gas operators do business in the area and the technologies they employ. The field trip on August 9 provided an opportunity to do that.

  13. Federal Offshore California Natural Gas Withdrawals from Gas Wells (Million

    Energy Information Administration (EIA) (indexed site)

    Cubic Feet) Gas Wells (Million Cubic Feet) Federal Offshore California Natural Gas Withdrawals from Gas Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0 0 0 1980's 0 0 0 3,986 18,920 31,227 27,279 23,425 17,931 12,246 1990's 15,640 16,464 13,947 10,618 11,064 7,874 5,508 4,260 3,966 2,775 2000's 7,323 3,913 3,080 1,731 850 684 2,094 2,137 1,601 1,206 2010's 1,757 1,560 14,559 14,296 7,007 3,105 - = No Data Reported; -- = Not

  14. US--State Offshore Natural Gas Withdrawals from Gas Wells (Million...

    Energy Information Administration (EIA) (indexed site)

    Gas Wells (Million Cubic Feet) US--State Offshore Natural Gas Withdrawals from Gas Wells ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Offshore Gross ...

  15. Serviceability of coiled tubing for sour oil and gas wells

    SciTech Connect

    Cayard, M.S.; Kane, R.D.

    1996-08-01

    Coiled tubing is an extremely useful tool in many well logging and workover applications in oil and gas production operations. Several important concerns regarding its use include the need for improved guidelines for the assessment of mechanical integrity, fatigue damage, and the effects of hydrogen sulfide in sour oil and gas production environments. This paper provides information regarding the use of coiled tubing in sour environments with particular emphasis on sulfide stress cracking, hydrogen induced cracking and stress-oriented hydrogen induced cracking and how they work synergistically with cyclic cold working of the steel tubing.

  16. Nevada Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Gas and Gas Condensate Wells (Number of Elements) Nevada Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 5 5 4 4 2000's 4 4 4 4 4 4 4 4 0 0 2010's 0 0 0 0 1 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Producing Gas

  17. Table 6.4 Natural Gas Gross Withdrawals and Natural Gas Well Productivity, 1960-2011

    Energy Information Administration (EIA) (indexed site)

    Natural Gas Gross Withdrawals and Natural Gas Well Productivity, 1960-2011 Year Natural Gas Gross Withdrawals From Crude Oil, Natural Gas, Coalbed, and Shale Gas Wells Natural Gas Well Productivity Texas 1 Louisiana 1 Oklahoma Other States 1 Federal Gulf of Mexico 2 Total Onshore Offshore Total Gross With- drawals From Natural Gas Wells 3 Producing Wells 4 Average Productivity Federal State Total Million Cubic Feet Million Cubic Feet Million Cubic Feet Number Cubic Feet per Well 1960 6,964,900

  18. Type IV COPV Cold Gas Operation Challenges

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Type IV COPV Cold Gas Operation Challenges DAVID W. GOTTHOLD November 30, 2015 1 Pacific Northwest National Laboratory Cold Gas Motivation and Challenges November 30, 2015 2 200 K H 2 Lower pressure Higher density H 2 CGO ~25% CF savings Cost Savings from reduced CF use Cold gas operation allows for reduced pressures for the same volume for significant CF and cost reductions. Materials properties change significantly at cold gas temperatures and must be studied. Example: HDPE DBT ~ 200 K Higher

  19. Kentucky Natural Gas Gross Withdrawals from Coalbed Wells (Million...

    Energy Information Administration (EIA) (indexed site)

    Coalbed Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ... Natural Gas Gross Withdrawals from Coalbed Wells Kentucky Natural Gas Gross Withdrawals ...

  20. Maryland Natural Gas Gross Withdrawals from Coalbed Wells (Million...

    Energy Information Administration (EIA) (indexed site)

    Coalbed Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ... Natural Gas Gross Withdrawals from Coalbed Wells Maryland Natural Gas Gross Withdrawals ...

  1. Indiana Natural Gas Withdrawals from Oil Wells (Million Cubic...

    Energy Information Administration (EIA) (indexed site)

    Withdrawals from Oil Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep ... Referring Pages: Natural Gas Gross Withdrawals from Oil Wells Indiana Natural Gas Gross ...

  2. Nebraska Natural Gas Gross Withdrawals from Coalbed Wells (Million...

    Energy Information Administration (EIA) (indexed site)

    Coalbed Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ... Natural Gas Gross Withdrawals from Coalbed Wells Nebraska Natural Gas Gross Withdrawals ...

  3. New York Natural Gas Gross Withdrawals from Coalbed Wells (Million...

    Energy Information Administration (EIA) (indexed site)

    Coalbed Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ... Natural Gas Gross Withdrawals from Coalbed Wells New York Natural Gas Gross Withdrawals ...

  4. Missouri Natural Gas Gross Withdrawals from Oil Wells (Million...

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 ... Referring Pages: Natural Gas Gross Withdrawals from Oil Wells Missouri Natural Gas Gross ...

  5. Inspecting coiled tubing for well operations

    SciTech Connect

    Gard, M.F.; Pasternack, E.S.; Smith, L.J.

    1992-02-18

    This patent describes improvement in a coiled tubing system for insertion of a substantially continuous bendable length of metal tubing into and withdrawal from a wellbore, the system including a tubing injection unit disposed for injecting the length of tubing into the well bore and storage means for dispensing the length of tubing and receiving the length of tubing from the injection unit. The improvement includes: tubing inspection apparatus for substantially continuously inspecting the wall section of the tubing to detect cracks and structural defects which may lead to tubing failure, the apparatus comprising: a source of electromagnetic radiation mounted in proximity to the tubing between the injection unit and a wellhead into which the tubing is injected; a radiation detector unit for receiving signals from the source which have been projected through the wall of the tubing; means for receiving signals form the detector unit for monitoring the structural integrity o the wall of the tubing during one of injecting and withdrawing the tubing with respect to the wellhead; and housing means supported for rotation about a longitudinal axis of the tubing.

  6. ,"Underground Natural Gas Storage - All Operators"

    Energy Information Administration (EIA) (indexed site)

    All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Underground Natural Gas ...

  7. Tennessee Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Gas and Gas Condensate Wells (Number of Elements) Tennessee Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 700 1990's 690 650 600 505 460 420 2000's 380 350 400 430 280 400 330 305 285 310 2010's 230 1,027 1,027 1,089 NA NA - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next

  8. South Dakota Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Gas and Gas Condensate Wells (Number of Elements) South Dakota Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 53 1990's 54 54 38 47 55 56 61 60 59 60 2000's 71 68 69 61 61 69 69 71 71 89 2010's 102 155 159 133 128 124 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next

  9. Maryland Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Gas and Gas Condensate Wells (Number of Elements) Maryland Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 8 1990's 7 7 9 7 7 7 8 8 8 8 2000's 7 7 5 7 7 7 7 7 7 7 2010's 7 7 7 7 5 7 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages:

  10. Missouri Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Gas and Gas Condensate Wells (Number of Elements) Missouri Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 4 1990's 8 6 5 8 12 15 24 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 19 15 7 6 NA - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring

  11. Nebraska Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Gas and Gas Condensate Wells (Number of Elements) Nebraska Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 15 1990's 11 12 22 59 87 87 88 91 95 96 2000's 98 96 106 109 111 114 114 186 322 285 2010's 276 307 299 246 109 140 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next

  12. Oregon Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Gas and Gas Condensate Wells (Number of Elements) Oregon Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 18 1990's 19 16 16 18 19 17 18 17 15 19 2000's 17 20 18 15 15 15 14 18 21 24 2010's 26 28 24 24 12 14 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date:

  13. Alaska Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Gas and Gas Condensate Wells (Number of Elements) Alaska Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 108 1990's 111 110 112 113 104 100 102 141 148 99 2000's 152 170 165 195 224 227 231 239 261 261 2010's 269 274 281 300 338 329 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  14. Arizona Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Gas and Gas Condensate Wells (Number of Elements) Arizona Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3 1990's 5 6 6 6 6 7 7 8 8 8 2000's 9 8 7 9 6 6 7 7 6 6 2010's 5 5 4 3 6 6 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages:

  15. Illinois Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Gas and Gas Condensate Wells (Number of Elements) Illinois Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 241 1990's 356 373 382 385 390 372 370 372 185 300 2000's 280 300 225 240 251 316 316 43 45 51 2010's 50 40 40 34 36 35 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016

  16. Zero Discharge Water Management for Horizontal Shale Gas Well Development

    SciTech Connect

    Paul Ziemkiewicz; Jennifer Hause; Raymond Lovett; David Locke Harry Johnson; Doug Patchen

    2012-03-31

    Hydraulic fracturing technology (fracking), coupled with horizontal drilling, has facilitated exploitation of huge natural gas (gas) reserves in the Devonian-age Marcellus Shale Formation (Marcellus) of the Appalachian Basin. The most-efficient technique for stimulating Marcellus gas production involves hydraulic fracturing (injection of a water-based fluid and sand mixture) along a horizontal well bore to create a series of hydraulic fractures in the Marcellus. The hydraulic fractures free the shale-trapped gas, allowing it to flow to the well bore where it is conveyed to pipelines for transport and distribution. The hydraulic fracturing process has two significant effects on the local environment. First, water withdrawals from local sources compete with the water requirements of ecosystems, domestic and recreational users, and/or agricultural and industrial uses. Second, when the injection phase is over, 10 to 30% of the injected water returns to the surface. This water consists of flowback, which occurs between the completion of fracturing and gas production, and produced water, which occurs during gas production. Collectively referred to as returned frac water (RFW), it is highly saline with varying amounts of organic contamination. It can be disposed of, either by injection into an approved underground injection well, or treated to remove contaminants so that the water meets the requirements of either surface release or recycle use. Depending on the characteristics of the RFW and the availability of satisfactory disposal alternatives, disposal can impose serious costs to the operator. In any case, large quantities of water must be transported to and from well locations, contributing to wear and tear on local roadways that were not designed to handle the heavy loads and increased traffic. The search for a way to mitigate the situation and improve the overall efficiency of shale gas production suggested a treatment method that would allow RFW to be used as make

  17. Horizontal underbalanced drilling of gas wells with coiled tubing

    SciTech Connect

    Cox, R.J.; Li, J.; Lupick, G.S.

    1999-03-01

    Coiled tubing drilling technology is gaining popularity and momentum as a significant and reliable method of drilling horizontal underbalanced wells. It is quickly moving into new frontiers. To this point, most efforts in the Western Canadian Basin have been focused towards sweet oil reservoirs in the 900--1300 m true vertical depth (TVD) range, however there is an ever-increasing interest in deeper and gas-producing formations. Significant design challenges on both conventional and coiled tubing drilling operations are imposed when attempting to drill these formations underbalanced. Coiled tubing is an ideal technology for underbalanced drilling due to its absence of drillstring connections resulting in continuous underbalanced capabilities. This also makes it suitable for sour well drilling and live well intervention without the risk of surface releases of reservoir gas. Through the use of pressure deployment procedures it is possible to complete the drilling operation without need to kill the well, thereby maintaining underbalanced conditions right through to the production phase. The use of coiled tubing also provides a means for continuous wireline communication with downhole steering, logging and pressure recording devices.

  18. US--Federal Offshore Natural Gas Withdrawals from Oil Wells ...

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Million Cubic Feet) US--Federal Offshore Natural Gas Withdrawals from Oil Wells ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Offshore Gross ...

  19. Operational testing of geopressure geothermal wells on the Gulf Coast

    SciTech Connect

    Goldsberry, F.L.

    1983-01-01

    A combined-cycle electric-power and pipeline-gas production process is proposed for the exploitation of the geopressured geothermal resource. It allows the operator to shift a portion of the production between the electric grid and the gas pipeline markets. On-site equipment and operating labor requirements are minimized. Thermal efficiencies are based upon sound application of thermodynamic principles and are competitive with large-scale plant operations. The economics presented are based upon 1983 avoided power costs and NGPA Section 102 gas prices.

  20. The oil and gas joint operating agreement

    SciTech Connect

    Not Available

    1990-01-01

    This book covers the following topics: introduction to the AAPL model form operating agreement; property provisions of the operating agreement; Article 6---the drilling and development article; duties and obligations revisited---who bear what risk of loss; operator's liens; accounting procedure joint operations; insurance; taking gas in kind absent a balancing agreement; RMMLF Form 5 Gas Balancing Agreement; tax partnerships for nontax professionals; alternative agreement forms.

  1. Using coiled tubing in HP/HT corrosive gas wells

    SciTech Connect

    1997-06-01

    High-yield-strength (100,000 psi) coiled tubing (CT) material has allowed for CT intervention in Mobile Bay Norphlet completions. These wells are approximately 22,000-ft-vertical-depth, high-pressure, hydrogen sulfide (H{sub 2}S) gas wells. Operations performed on the Norphlet wells include a scale cleanout to approximately 22,000 ft, a hydrochloric acid (HCl) job at 415 F, and buildup removal from a safety valve. The scale cleanout was performed first with a spiral wash tool. The well was killed with 10-lbm/gal sodium bromide (NaBr) brine; the same brine was used for cleanout fluid. Cost savings of 60% were realized. A HCl matrix acid job at 415 F was performed next, followed by a scale cleanout across the downhole safety valve. The safety valve was cleared of debris in 1 operational day. Estimated cost of the CT operation was 5 to 10% less than that of a rig workover. The 100,000-psi-yield Ct material used for the Mobile Bay operations does not comply with the (NACE) Standard MR-0175. But on the basis of extensive laboratory testing by the CT manufacturer, the decision was made that the material would pass a modified test performed with decreased H{sub 2}S levels. A maximum level of 400 ppm H{sub 2}S was determined as the safe working limit. Because the maximum H{sub 2}S content in the wells described later was 120 ppm, the risk of sulfide-stress cracking (SSC) was considered acceptably low. Elevated bottomhole temperatures (BHT`s) increase the corrosion rate of metals exposed to corrosives. Extensive laboratory testing of corrosion inhibitors allowed for design of a matrix-acidizing treatment to remove near-wellbore damage caused by lost zinc bromide (ZnBr) completion brine.

  2. Tennessee Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Tennessee Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 52 75 NA NA NA - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Tennessee Natural Gas Summ

  3. Alaska--State Offshore Natural Gas Withdrawals from Oil Wells...

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Million Cubic Feet) Alaska--State Offshore Natural Gas Withdrawals from Oil ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Offshore Gross ...

  4. Federal Offshore--Alabama Natural Gas Withdrawals from Oil Wells...

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Million Cubic Feet) Federal Offshore--Alabama Natural Gas Withdrawals from Oil ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Offshore Gross ...

  5. Texas--State Offshore Natural Gas Withdrawals from Oil Wells...

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Million Cubic Feet) Texas--State Offshore Natural Gas Withdrawals from Oil ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Offshore Gross ...

  6. Louisiana--State Offshore Natural Gas Withdrawals from Oil Wells...

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Million Cubic Feet) Louisiana--State Offshore Natural Gas Withdrawals from Oil ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Offshore Gross ...

  7. Federal Offshore--Texas Natural Gas Withdrawals from Oil Wells...

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Million Cubic Feet) Federal Offshore--Texas Natural Gas Withdrawals from Oil ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Offshore Gross ...

  8. Michigan Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Michigan Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 510 514 537 584 532 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Michigan Natural Gas Summary

  9. Mississippi Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Mississippi Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 561 618 581 540 501 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Mississippi Natural Gas

  10. Missouri Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Missouri Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 1 1 1 1 NA - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Missouri Natural Gas Summary

  11. Montana Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Montana Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 1,956 2,147 2,268 2,377 2,277 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Montana Natural Gas

  12. Nebraska Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Nebraska Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 84 73 54 51 51 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Nebraska Natural Gas Summar

  13. Nevada Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Nevada Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 4 4 4 4 4 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Nevada Natural Gas Summary

  14. Ohio Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Ohio Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 6,775 6,745 7,038 7,257 5,941 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Ohio Natural Gas

  15. Alabama Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Alabama Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 346 367 402 436 414 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Alabama Natural Gas Sum

  16. Alaska Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Alaska Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 2,040 1,981 2,006 2,042 2,096 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Alaska Natural Gas

  17. Arizona Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Arizona Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 1 1 1 0 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Arizona Natural Gas Summary

  18. Arkansas Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Arkansas Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 165 174 218 233 240 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Arkansas Natural Gas

  19. Utah Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Utah Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 3,119 3,520 3,946 4,249 3,966 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Utah Natural Gas

  20. Virginia Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Virginia Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 2 1 1 2 2 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Virginia Natural Gas Summary

  1. Wyoming Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Wyoming Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 4,430 4,563 4,391 4,538 4,603 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Wyoming Natural Gas

  2. Kentucky Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Kentucky Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 317 358 340 NA NA - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Kentucky Natural Gas Su

  3. Texas Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Gas and Gas Condensate Wells (Number of Elements) Texas Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 48,609 1990's 50,867 47,615 46,298 47,101 48,654 54,635 53,816 56,747 58,736 58,712 2000's 60,577 63,704 65,779 68,572 72,237 74,827 74,265 76,436 87,556 93,507 2010's 95,014 139,368 140,087 140,964 142,292 142,368 - = No Data Reported; -- = Not Applicable; NA = Not

  4. U.S. Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Gas and Gas Condensate Wells (Number of Elements) U.S. Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 262,483 1990's 269,790 276,987 276,014 282,152 291,773 298,541 301,811 310,971 316,929 302,421 2000's 341,678 373,304 387,772 393,327 406,147 425,887 440,516 452,945 476,652 493,100 2010's 487,627 574,593 577,916 572,742 565,951 555,364 - = No Data Reported; -- = Not

  5. Pennsylvania Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Gas and Gas Condensate Wells (Number of Elements) Pennsylvania Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 30,000 1990's 30,300 31,000 31,000 31,100 31,150 31,025 31,792 32,692 21,576 23,822 2000's 36,000 40,100 40,830 42,437 44,227 46,654 49,750 52,700 55,631 57,356 2010's 44,500 61,815 62,922 61,838 67,621 68,536 - = No Data Reported; -- = Not Applicable; NA = Not

  6. Louisiana Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Gas and Gas Condensate Wells (Number of Elements) Louisiana Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 16,309 1990's 16,889 15,271 13,512 15,569 12,958 14,169 15,295 14,958 18,399 16,717 2000's 15,700 16,350 17,100 16,939 20,734 18,838 17,459 18,145 19,213 18,860 2010's 19,137 19,318 19,345 18,802 18,660 18,382 - = No Data Reported; -- = Not Applicable; NA = Not

  7. Michigan Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Gas and Gas Condensate Wells (Number of Elements) Michigan Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,207 1990's 1,438 2,620 3,257 5,500 6,000 5,258 5,826 6,825 7,000 6,750 2000's 7,068 7,425 7,700 8,600 8,500 8,900 9,200 9,712 9,995 10,600 2010's 10,100 10,480 10,381 10,322 10,246 9,929 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  8. Mississippi Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Gas and Gas Condensate Wells (Number of Elements) Mississippi Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 543 1990's 585 629 507 620 583 535 568 560 527 560 2000's 997 1,143 979 427 1,536 1,676 1,836 2,315 2,343 2,320 2010's 1,979 1,703 1,666 1,632 1,594 1,560 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  9. Montana Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Gas and Gas Condensate Wells (Number of Elements) Montana Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,700 1990's 2,607 2,802 2,890 3,075 2,940 2,918 2,990 3,071 3,423 3,634 2000's 3,321 4,331 4,544 4,539 4,971 5,751 6,578 6,925 7,095 7,031 2010's 6,059 6,615 6,366 5,870 5,682 5,655 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  10. Ohio Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Gas and Gas Condensate Wells (Number of Elements) Ohio Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 34,450 1990's 34,586 34,760 34,784 34,782 34,731 34,520 34,380 34,238 34,098 33,982 2000's 33,897 33,917 34,593 33,828 33,828 33,735 33,945 34,416 34,416 34,963 2010's 34,931 31,966 31,647 30,804 31,060 26,599 - = No Data Reported; -- = Not Applicable; NA = Not Available; W

  11. Oklahoma Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Gas and Gas Condensate Wells (Number of Elements) Oklahoma Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 27,443 1990's 24,547 28,216 28,902 29,118 29,121 29,733 29,733 29,734 30,101 21,790 2000's 21,507 32,672 33,279 34,334 35,612 36,704 38,060 38,364 41,921 43,600 2010's 44,000 51,712 51,472 50,606 50,044 49,852 - = No Data Reported; -- = Not Applicable; NA = Not

  12. Alabama Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Gas and Gas Condensate Wells (Number of Elements) Alabama Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,701 1990's 2,362 3,392 3,350 3,514 3,565 3,526 4,105 4,156 4,171 4,204 2000's 4,359 4,597 4,803 5,157 5,526 5,523 6,227 6,591 6,860 6,913 2010's 7,026 6,243 6,203 6,174 6,117 6,044 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  13. Arkansas Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Gas and Gas Condensate Wells (Number of Elements) Arkansas Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,830 1990's 2,952 2,780 3,500 3,500 3,500 3,988 4,020 3,700 3,900 3,650 2000's 4,000 4,825 6,755 7,606 3,460 3,462 3,814 4,773 5,592 6,314 2010's 7,397 8,428 9,012 9,324 9,778 9,965 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  14. California Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Gas and Gas Condensate Wells (Number of Elements) California Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,214 1990's 1,162 1,377 1,126 1,092 1,261 997 978 930 847 1,152 2000's 1,169 1,244 1,232 1,249 1,272 1,356 1,451 1,540 1,645 1,643 2010's 1,580 4,240 4,356 4,183 4,211 4,209 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  15. Colorado Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Gas and Gas Condensate Wells (Number of Elements) Colorado Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 5,125 1990's 5,741 5,562 5,912 6,372 7,056 7,017 8,251 12,433 13,838 13,838 2000's 22,442 22,117 23,554 18,774 16,718 22,691 20,568 22,949 25,716 27,021 2010's 28,813 43,792 46,141 46,883 46,876 46,322 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  16. Indiana Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Gas and Gas Condensate Wells (Number of Elements) Indiana Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,310 1990's 1,307 1,334 1,333 1,336 1,348 1,347 1,367 1,458 1,479 1,498 2000's 1,502 1,533 1,545 2,291 2,386 2,321 2,336 2,350 525 563 2010's 620 914 819 921 895 899 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  17. Kansas Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Gas and Gas Condensate Wells (Number of Elements) Kansas Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 13,935 1990's 16,980 17,948 18,400 19,472 19,365 22,020 21,388 21,500 21,000 17,568 2000's 15,206 15,357 16,957 17,387 18,120 18,946 19,713 19,713 17,862 21,243 2010's 22,145 25,362 25,013 24,802 24,840 24,451 - = No Data Reported; -- = Not Applicable; NA = Not Available;

  18. Kentucky Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Gas and Gas Condensate Wells (Number of Elements) Kentucky Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 11,248 1990's 11,713 12,169 12,483 12,836 13,036 13,311 13,501 13,825 14,381 14,750 2000's 13,487 14,370 14,367 12,900 13,920 14,175 15,892 16,563 16,290 17,152 2010's 17,670 12,708 13,179 14,557 NA NA - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  19. Maryland Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Maryland Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Maryland Natural Gas Summary

  20. Oregon Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oregon Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Oregon Natural Gas Summary

  1. Oil/gas separator for installation at burning wells

    DOEpatents

    Alonso, Carol T.; Bender, Donald A.; Bowman, Barry R.; Burnham, Alan K.; Chesnut, Dwayne A.; Comfort, III, William J.; Guymon, Lloyd G.; Henning, Carl D.; Pedersen, Knud B.; Sefcik, Joseph A.; Smith, Joseph A.; Strauch, Mark S.

    1993-01-01

    An oil/gas separator is disclosed that can be utilized to return the burning wells in Kuwait to production. Advantageously, a crane is used to install the separator at a safe distance from the well. The gas from the well is burned off at the site, and the oil is immediately pumped into Kuwait's oil gathering system. Diverters inside the separator prevent the oil jet coming out of the well from reaching the top vents where the gas is burned. The oil falls back down, and is pumped from an annular oil catcher at the bottom of the separator, or from the concrete cellar surrounding the well.

  2. Oil/gas separator for installation at burning wells

    DOEpatents

    Alonso, C.T.; Bender, D.A.; Bowman, B.R.; Burnham, A.K.; Chesnut, D.A.; Comfort, W.J. III; Guymon, L.G.; Henning, C.D.; Pedersen, K.B.; Sefcik, J.A.; Smith, J.A.; Strauch, M.S.

    1993-03-09

    An oil/gas separator is disclosed that can be utilized to return the burning wells in Kuwait to production. Advantageously, a crane is used to install the separator at a safe distance from the well. The gas from the well is burned off at the site, and the oil is immediately pumped into Kuwait's oil gathering system. Diverters inside the separator prevent the oil jet coming out of the well from reaching the top vents where the gas is burned. The oil falls back down, and is pumped from an annular oil catcher at the bottom of the separator, or from the concrete cellar surrounding the well.

  3. Other States Natural Gas Gross Withdrawals from Coalbed Wells...

    Energy Information Administration (EIA) (indexed site)

    Coalbed Wells (Million Cubic Feet) Other States Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 0 0 ...

  4. Missouri Natural Gas Gross Withdrawals from Oil Wells (Million...

    Gasoline and Diesel Fuel Update

    from Oil Wells (Million Cubic Feet) Missouri Natural Gas Gross Withdrawals from Oil Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 ...

  5. Indiana Natural Gas Withdrawals from Oil Wells (Million Cubic...

    Gasoline and Diesel Fuel Update

    Oil Wells (Million Cubic Feet) Indiana Natural Gas Withdrawals from Oil Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 ...

  6. Other States Natural Gas Gross Withdrawals from Oil Wells (Million...

    Annual Energy Outlook

    Oil Wells (Million Cubic Feet) Other States Natural Gas Gross Withdrawals from Oil Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 3,459 3,117 ...

  7. Illinois Natural Gas Withdrawals from Oil Wells (Million Cubic...

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Million Cubic Feet) Illinois Natural Gas Withdrawals from Oil Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 1 1 1 1 1 1 2 1 1 1 1...

  8. Operating a fuel cell using landfill gas

    SciTech Connect

    Trippel, C.E.; Preston, J.L. Jr.; Trocciola, J.; Spiegel, R.

    1996-12-31

    An ONSI PC25{trademark}, 200 kW (nominal capacity) phosphoric acid fuel cell operating on landfill gas is installed at the Town of Groton Flanders Road landfill in Groton, Connecticut. This joint project by the Connecticut Light & Power Company (CL&P) which is an operating company of Northeast Utilities, the Town of Groton, International Fuel Cells (IFC), and the US EPA is intended to demonstrate the viability of installing, operating and maintaining a fuel cell operating on landfill gas at a landfill site. The goals of the project are to evaluate the fuel cell and gas pretreatment unit operation, test modifications to simplify the GPU design and demonstrate reliability of the entire system.

  9. Texas Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Texas Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 85,030 94,203 96,949 104,205 105,159 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Texas Natural

  10. Pennsylvania Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Pennsylvania Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 7,046 7,627 7,164 8,481 7,557 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Pennsylvania

  11. Louisiana Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Louisiana Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 5,201 5,057 5,078 5,285 4,968 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Louisiana Natural

  12. Oklahoma Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Oklahoma Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 6,723 7,360 8,744 7,105 8,368 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Oklahoma Natural

  13. California Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) California Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 25,958 26,061 26,542 26,835 27,075 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) California

  14. Colorado Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Colorado Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 5,963 6,456 6,799 7,771 7,733 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Colorado Natural

  15. Indiana Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's NA NA NA NA NA - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Indiana Natural Gas Summary

  16. Kansas Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Kansas Natural Gas Summary

  17. New Jersey Natural Gas Underground Storage Injections All Operators...

    Energy Information Administration (EIA) (indexed site)

    Underground Storage Injections All Operators (Million Cubic Feet) New Jersey Natural Gas ... Injections of Natural Gas into Underground Storage - All Operators New Jersey Underground ...

  18. Oil and Gas Well Drilling | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Drilling Jump to: navigation, search OpenEI Reference LibraryAdd to library General: Oil and Gas Well Drilling Author Jeff Tester Published NA, 2011 DOI Not Provided Check for...

  19. NMOSE Artesian Well Plan of Operations | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Well Plan of OperationsLegal Published NA Year Signed or Took Effect 2011 Legal Citation Not provided DOI Not Provided Check for DOI availability: http:crossref.org...

  20. Midcontinent well operators learn advantages of coiled-tubing techniques

    SciTech Connect

    Lyle, D.

    1995-07-01

    From well cleanup to velocity strings to squeeze jobs, more Midcontinent operators are adding coiled-tubing methods to their oilfield techniques. The advantages of these techniques are discussed.

  1. Thermodynamic behavior of gas in storage cavities and production wells

    SciTech Connect

    Hugout, B.

    1982-01-01

    A computer model predicts the performance of gas storage in salt cavities in terms of the volume of cavity that is available for the gas and the pressure and temperature within the cavity and at all points of the production well. The model combines a simplified estimate of volume (derived from studies of rock mechanics) with two thermodynamic models - one for the cavity, the other for the well. Designed specifically for single-phase flow, the model produces values that agree well with measured data.

  2. Laser Oil and Gas Well Drilling Demonstration Videos

    DOE Data Explorer

    ANL's Laser Applications Laboratory and collaborators are examining the feasibility of adapting high-power laser technology to drilling for gas and oil. The initial phase is designed to establish a scientific basis for developing a commercial laser drilling system and determine the level of gas industry interest in pursuing future research. Using lasers to bore a hole offers an entirely new approach to mechanical drilling. The novel drilling system would transfer light energy from lasers on the surface, down a borehole by a fiber optic bundle, to a series of lenses that would direct the laser light to the rock face. Researchers believe that state-of-the-art lasers have the potential to penetrate rock many times faster than conventional boring technologies - a huge benefit in reducing the high costs of operating a drill rig. Because the laser head does not contact the rock, there is no need to stop drilling to replace a mechanical bit. Moreover, researchers believe that lasers have the ability to melt the rock in a way that creates a ceramic sheath in the wellbore, eliminating the expense of buying and setting steel well casing. A laser system could also contain a variety of downhole sensors, including visual imaging systems that could communicate with the surface through the fiber optic cabling. Earlier studies have been promising, but there is still much to learn. One of the primary objectives of the new study will be to obtain much more precise measurements of the energy requirements needed to transmit light from surface lasers down a borehole with enough power to bore through rocks as much as 20,000 feet or more below the surface. Another objective will be to determine if sending the laser light in sharp pulses, rather than as a continuous stream, could further increase the rate of rock penetration. A third aspect will be to determine if lasers can be used in the presence of drilling fluids. In most wells, thick fluids called "drilling muds" are injected into

  3. Onsite-generated nitrogen for oil and gas well drilling

    SciTech Connect

    1995-08-01

    New equipment that can generate gaseous nitrogen at the well site has been used successfully in a variety of oil and gas well drilling applications in the US and Canada, affording the many benefits of drilling with gas or air, while also eliminating the danger of downhole fires, and/or providing significant savings over delivered liquid nitrogen. The technology involves the use of a hollow fiber membrane polymer incorporated into a skid-mounted nitrogen production unit (NPU) designed for use in oilfield conditions. Generon Systems, Inc., a wholly owned subsidiary of The Dow Chemical Co., fabricates the membrane fiber and other equipment for the NPUs. The equipment is exclusively marketed for Generon, for oil and gas applications, by Energy Technology Services Corp., of Englewood, Colorado. This paper reviews this equipment and its application to horizontal drilling. It also reviews the safety advantage of nitrogen in lost circulation zones.

  4. Missouri Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    Gasoline and Diesel Fuel Update

    NA NA NA 9 3 1 1967-2015 From Gas Wells NA NA NA 8 3 1 1967-2015 From Oil Wells NA NA NA 1 * 0 2007-2015 From Shale Gas Wells NA NA NA 0 0 0 2007-2015 From Coalbed Wells NA NA NA 0 0 0 2007-2015 Repressuring NA NA NA 0 0 0 2007-2015 Vented and Flared NA NA NA 0 0 0 2007-2015 Nonhydrocarbon Gases Removed NA NA NA 0 0 0 2007-2015 Marketed Production NA NA NA 9 3 1 1967-2015 Dry Production NA NA NA 9 3 Feet)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 0 0 0 0 0 0 0 0 0 0 0 0

  5. Montana Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    Gasoline and Diesel Fuel Update

    93,266 79,506 66,954 63,242 59,160 57,421 1967-2015 From Gas Wells 51,117 37,937 27,518 19,831 17,015 13,571 1967-2015 From Oil Wells 19,292 21,777 20,085 23,152 22,757 23,065 1967-2015 From Shale Gas Wells 12,937 13,101 15,619 18,636 18,910 20,428 2007-2015 From Coalbed Wells 9,920 6,691 3,731 1,623 478 357 2002-2015 Repressuring 5 4 0 0 NA 0 1967-2015 Vented and Flared 5,722 4,878 0 0 NA 0 1967-2015 Nonhydrocarbon Gases Removed NA NA 0 0 NA 0 1996-2015 Marketed Production 87,539 74,624 66,954

  6. Nebraska Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    Gasoline and Diesel Fuel Update

    2,255 1,980 1,328 1,032 417 477 1967-2015 From Gas Wells 2,092 1,854 1,317 1,027 353 399 1967-2015 From Oil Wells 163 126 11 5 63 78 1967-2015 From Shale Gas Wells 0 0 0 0 0 0 2007-2015 From Coalbed Wells 0 0 0 0 0 0 2006-2015 Repressuring 0 0 0 0 0 0 1967-2015 Vented and Flared 24 21 0 0 NA 0 1967-2015 Nonhydrocarbon Gases Removed 0 0 0 0 NA 0 2006-2015 Marketed Production 2,231 1,959 1,328 1,032 417 477 1967-2015 Dry Production 2,231 1,959 1,328 1,032 417 477 Feet)

    Year Jan Feb Mar Apr

  7. Nevada Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    Gasoline and Diesel Fuel Update

    4 3 4 3 3 3 1991-2015 From Gas Wells 0 0 0 0 * 1 2006-2015 From Oil Wells 4 3 4 3 3 3 1991-2015 From Shale Gas Wells 0 0 0 0 0 0 2007-2015 From Coalbed Wells 0 0 0 0 0 0 2006-2015 Repressuring 0 0 0 0 0 0 2006-2015 Vented and Flared 0 0 0 0 0 0 1991-2015 Nonhydrocarbon Gases Removed 0 0 0 0 0 0 2006-2015 Marketed Production 4 3 4 3 3 3 1991-2015 Dry Production 4 3 4 3 3 3 1991 Feet)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0

  8. Oklahoma Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    Gasoline and Diesel Fuel Update

    827,328 1,888,870 2,023,461 1,993,754 2,331,086 2,499,599 1967-2015 From Gas Wells 1,140,111 1,281,794 1,394,859 1,210,315 1,402,378 1,573,880 1967-2015 From Oil Wells 210,492 104,703 53,720 71,515 136,270 130,482 1967-2015 From Shale Gas Wells 406,143 449,167 503,329 663,507 746,686 759,519 2007-2015 From Coalbed Wells 70,581 53,206 71,553 48,417 45,751 35,719 2002-2015 Repressuring 0 0 0 0 0 0 1967-2015 Vented and Flared 0 0 0 0 0 0 1967-2015 Nonhydrocarbon Gases Removed 0 0 0 0 0 0 1996-2015

  9. Oregon Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    Gasoline and Diesel Fuel Update

    407 1,344 770 770 1,142 848 1979-2015 From Gas Wells 1,407 1,344 770 770 1,142 848 1979-2015 From Oil Wells 0 0 0 0 0 0 1996-2015 From Shale Gas Wells 0 0 0 0 0 0 2007-2015 From Coalbed Wells 0 0 0 0 0 0 2002-2015 Repressuring 0 0 0 0 0 0 1994-2015 Vented and Flared 0 0 0 0 0 0 1996-2015 Nonhydrocarbon Gases Removed 0 0 0 0 0 0 1994-2015 Marketed Production 1,407 1,344 770 770 1,142 848 1979-2015 Dry Production 1,407 1,344 770 770 1,142 848 Feet)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep

  10. Pennsylvania Natural Gas Gross Withdrawals from Coalbed Wells (Million

    Gasoline and Diesel Fuel Update

    572,902 1,310,592 2,256,696 3,259,042 4,257,693 4,812,983 1967-2015 From Gas Wells 173,450 242,305 210,609 207,872 217,702 293,325 1967-2015 From Oil Wells 0 0 3,456 2,987 3,527 2,629 1967-2015 From Shale Gas Wells 399,452 1,068,288 2,042,632 3,048,182 4,036,463 4,517,028 2007-2015 From Coalbed Wells 0 0 0 0 0 0 2006-2015 Repressuring 0 0 0 0 0 0 1967-2015 Vented and Flared 0 0 0 0 0 0 1967-2015 Nonhydrocarbon Gases Removed 0 0 0 0 0 0 1997-2015 Marketed Production 572,902 1,310,592 2,256,696

  11. South Dakota Natural Gas Gross Withdrawals from Coalbed Wells (Million

    Gasoline and Diesel Fuel Update

    12,540 12,449 15,085 16,205 15,305 14,531 1967-2015 From Gas Wells 1,300 933 14,396 15,693 15,006 14,196 1967-2015 From Oil Wells 11,240 11,516 689 512 299 335 1967-2015 From Shale Gas Wells 0 0 0 0 0 0 2007-2015 From Coalbed Wells 0 0 0 0 0 0 2006-2015 Repressuring 0 0 0 0 NA 0 1967-2015 Vented and Flared 2,136 2,120 0 0 NA 0 1967-2015 Nonhydrocarbon Gases Removed 8,543 8,480 0 0 NA 0 1997-2015 Marketed Production 1,862 1,848 15,085 16,205 15,305 14,531 1970-2015 Dry Production 1,862 1,848

  12. Virginia Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    Gasoline and Diesel Fuel Update

    147,255 151,094 146,405 139,382 133,661 127,584 1967-2015 From Gas Wells 23,086 20,375 21,802 26,815 10,143 10,679 1967-2015 From Oil Wells 0 0 9 9 12 8 2006-2015 From Shale Gas Wells 16,433 18,501 17,212 13,016 12,309 11,059 2007-2015 From Coalbed Wells 107,736 112,219 107,383 99,542 111,197 105,838 2006-2015 Repressuring 0 0 0 0 0 0 2003-2015 Vented and Flared NA NA 0 0 NA 0 1967-2015 Nonhydrocarbon Gases Removed 0 0 0 0 0 0 1997-2015 Marketed Production 147,255 151,094 146,405 139,382 133,661

  13. West Virginia Natural Gas Gross Withdrawals from Coalbed Wells (Million

    Gasoline and Diesel Fuel Update

    265,174 394,125 539,860 741,853 1,067,114 1,318,822 1967-2015 From Gas Wells 151,401 167,113 193,537 167,118 185,005 174,090 1967-2015 From Oil Wells 0 0 1,477 2,660 1,687 2,018 1967-2015 From Shale Gas Wells 113,773 227,012 344,847 572,076 880,422 1,142,714 2007-2015 From Coalbed Wells 0 0 0 0 0 0 2006-2015 Repressuring 0 0 0 0 NA 0 1967-2015 Vented and Flared 0 0 0 0 NA 0 2006-2015 Nonhydrocarbon Gases Removed 0 0 0 0 NA 0 2006-2015 Marketed Production 265,174 394,125 539,860 741,853 1,067,114

  14. California Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    Gasoline and Diesel Fuel Update

    319,891 279,130 246,822 252,310 238,988 231,060 1967-2015 From Gas Wells 73,017 63,902 91,904 88,203 60,936 57,031 1967-2015 From Oil Wells 151,369 120,880 67,065 69,839 70,475 66,065 1967-2015 From Shale Gas Wells 95,505 94,349 87,854 94,268 107,577 107,964 2007-2015 From Coalbed Wells 0 0 0 0 0 0 2002-2015 Repressuring 27,240 23,905 0 0 NA 0 1967-2015 Vented and Flared 2,790 2,424 0 0 NA 0 1967-2015 Nonhydrocarbon Gases Removed 3,019 2,624 0 0 NA 0 1980-2015 Marketed Production 286,841 250,177

  15. Colorado Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    Gasoline and Diesel Fuel Update

    ,589,664 1,649,306 1,709,376 1,604,860 1,643,487 1,704,836 1967-2015 From Gas Wells 526,077 563,750 1,036,572 801,749 728,978 761,886 1967-2015 From Oil Wells 338,565 359,537 67,466 106,784 178,657 236,009 1967-2015 From Shale Gas Wells 195,131 211,488 228,796 247,046 315,469 308,642 2007-2015 From Coalbed Wells 529,891 514,531 376,543 449,281 420,383 398,298 2002-2015 Repressuring 10,043 10,439 0 0 NA 0 1967-2015 Vented and Flared 1,242 1,291 0 0 NA 0 1967-2015 Nonhydrocarbon Gases Removed 0 0

  16. Florida Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    Gasoline and Diesel Fuel Update

    3,938 17,129 18,681 18,011 3,178 5,790 1971-2015 From Gas Wells 0 0 17,182 16,459 43 69 1996-2015 From Oil Wells 13,938 17,129 1,500 1,551 3,135 5,720 1971-2015 From Shale Gas Wells 0 0 0 0 0 0 2007-2015 From Coalbed Wells 0 0 0 0 0 0 2002-2015 Repressuring 0 0 17,909 17,718 2,682 5,291 1976-2015 Vented and Flared 0 0 0 0 NA 0 1971-2015 Nonhydrocarbon Gases Removed 1,529 2,004 0 0 NA 0 1980-2015 Marketed Production 12,409 15,125 773 292 496 499 1967-2015 Dry Production 12,409 15,125 773 292 263

  17. Kansas Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    Gasoline and Diesel Fuel Update

    325,591 309,952 296,299 292,467 286,480 285,236 1967-2015 From Gas Wells 247,651 236,834 264,610 264,223 261,093 261,877 1967-2015 From Oil Wells 39,071 37,194 0 0 0 0 1967-2015 From Shale Gas Wells 0 0 0 0 0 0 2007-2015 From Coalbed Wells 38,869 35,924 31,689 28,244 25,387 23,359 2002-2015 Repressuring 548 521 0 0 NA 0 1967-2015 Vented and Flared 323 307 0 0 NA 0 1967-2015 Nonhydrocarbon Gases Removed 0 0 0 0 0 0 2002-2015 Marketed Production 324,720 309,124 296,299 292,467 286,480 285,236

  18. Kentucky Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    Gasoline and Diesel Fuel Update

    135,330 124,243 106,122 94,665 93,091 85,775 1967-2015 From Gas Wells 133,521 122,578 106,122 94,665 93,091 85,775 1967-2015 From Oil Wells 1,809 1,665 0 0 0 0 1967-2015 From Shale Gas Wells 0 0 0 0 0 0 2007-2015 From Coalbed Wells 0 0 0 0 0 0 2006-2015 Repressuring 0 0 0 0 NA 0 2006-2015 Vented and Flared 0 0 0 0 NA 0 1967-2015 Nonhydrocarbon Gases Removed 0 0 0 0 NA 0 2006-2015 Marketed Production 135,330 124,243 106,122 94,665 93,091 85,775 1967-2015 Dry Production 130,754 119,559 99,551

  19. Maryland Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    Gasoline and Diesel Fuel Update

    43 34 44 32 20 27 1967-2015 From Gas Wells 43 34 44 32 20 27 1967-2015 From Oil Wells 0 0 0 0 0 0 2006-2015 From Shale Gas Wells 0 0 0 0 0 0 2007-2015 From Coalbed Wells 0 0 0 0 0 0 2006-2015 Repressuring 0 0 0 0 0 0 2006-2015 Vented and Flared 0 0 0 0 0 0 2006-2015 Nonhydrocarbon Gases Removed 0 0 0 0 0 0 2006-2015 Marketed Production 43 34 44 32 20 27 1967-2015 Dry Production 43 34 44 32 20 27 Feet)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0

  20. Michigan Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    Gasoline and Diesel Fuel Update

    136,782 143,826 129,333 123,622 115,065 107,634 1967-2015 From Gas Wells 7,345 18,470 17,041 17,502 14,139 12,329 1967-2015 From Oil Wells 9,453 11,620 4,470 4,912 5,560 4,796 1967-2015 From Shale Gas Wells 119,984 113,736 107,822 101,208 95,366 90,509 2007-2015 From Coalbed Wells 0 0 0 0 0 0 2002-2015 Repressuring 2,340 2,340 0 0 NA 0 1967-2015 Vented and Flared 3,324 3,324 0 0 NA 0 1967-2015 Nonhydrocarbon Gases Removed 0 0 0 0 0 0 1996-2015 Marketed Production 131,118 138,162 129,333 123,622

  1. Program calculates economic limit for oil and gas wells

    SciTech Connect

    Juran, K.P.

    1986-10-01

    A program written for the HP-41 CV/CX computer may be used to make a quick evaluation of when an oil or gas well's production rate will cease to be economical. The article lists data necessary for performing the calculation, equations used and the programs's steps. In addition, user instructions and three sample problems are included.

  2. Geothermal Well Stimulated Using High Energy Gas Fracturing

    SciTech Connect

    Chu, T.Y.; Jacobson, R.D.; Warpinski, N.; Mohaupt, Henry

    1987-01-20

    This paper reports the result of an experimental study of the High Energy Gas Fracturing (HEGF) technique for geothermal well stimulation. These experiments demonstrated that multiple fractures could be created to link a water-filled borehole with other fractures. The resulting fracture network and fracture interconnections were characterized by flow tests as well as mine back. Commercial oil field fracturing tools were used successfully in these experiments. 5 refs., 2 tabs., 5 figs.

  3. Monitoring Results Natural Gas Wells Near Project Rulison

    Office of Legacy Management (LM)

    Natural Gas Wells Near Project Rulison Third Quarter 2013 U.S. Department of Energy Office of Legacy Management Grand Junction, Colorado Date Sampled: June 12, 2013 Background: Project Rulison was the second Plowshare Program test to stimulate natural-gas recovery from deep and low permeability formations. On September 10, 1969, a 40-kiloton-yield nuclear device was detonated 8,426 feet (1.6 miles) below the ground surface in the Williams Fork Formation at what is now the Rulison, Colorado,

  4. ,"Minnesota Underground Natural Gas Storage - All Operators"

    Energy Information Administration (EIA) (indexed site)

    ...282016 11:29:41 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Minnesota Natural Gas in ...

  5. ,"Michigan Underground Natural Gas Storage - All Operators"

    Energy Information Administration (EIA) (indexed site)

    ...282016 11:29:40 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Michigan Natural Gas in ...

  6. ,"Louisiana Underground Natural Gas Storage - All Operators"

    Energy Information Administration (EIA) (indexed site)

    ...282016 11:29:38 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Louisiana Natural Gas in ...

  7. ,"Oklahoma Underground Natural Gas Storage - All Operators"

    Energy Information Administration (EIA) (indexed site)

    ...282016 11:29:50 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Oklahoma Natural Gas in ...

  8. ,"Tennessee Underground Natural Gas Storage - All Operators"

    Energy Information Administration (EIA) (indexed site)

    ...282016 11:29:54 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Tennessee Natural Gas in ...

  9. ,"Alaska Underground Natural Gas Storage - All Operators"

    Energy Information Administration (EIA) (indexed site)

    ...282016 11:29:26 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Alaska Natural Gas in ...

  10. ,"Missouri Underground Natural Gas Storage - All Operators"

    Energy Information Administration (EIA) (indexed site)

    ...282016 11:29:43 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Missouri Natural Gas in ...

  11. ,"Arkansas Underground Natural Gas Storage - All Operators"

    Energy Information Administration (EIA) (indexed site)

    ...282016 11:29:28 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Arkansas Natural Gas in ...

  12. ,"Maryland Underground Natural Gas Storage - All Operators"

    Energy Information Administration (EIA) (indexed site)

    ...282016 11:29:40 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Maryland Natural Gas in ...

  13. ,"Ohio Underground Natural Gas Storage - All Operators"

    Energy Information Administration (EIA) (indexed site)

    ...282016 11:29:49 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Ohio Natural Gas in ...

  14. ,"Illinois Underground Natural Gas Storage - All Operators"

    Energy Information Administration (EIA) (indexed site)

    ...282016 11:29:34 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Illinois Natural Gas in ...

  15. ,"Nebraska Underground Natural Gas Storage - All Operators"

    Energy Information Administration (EIA) (indexed site)

    ...282016 11:29:46 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Nebraska Natural Gas in ...

  16. ,"Wyoming Underground Natural Gas Storage - All Operators"

    Energy Information Administration (EIA) (indexed site)

    ...282016 11:30:00 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Wyoming Natural Gas in ...

  17. ,"Utah Underground Natural Gas Storage - All Operators"

    Energy Information Administration (EIA) (indexed site)

    ...282016 11:29:56 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Utah Natural Gas in ...

  18. ,"Kentucky Underground Natural Gas Storage - All Operators"

    Energy Information Administration (EIA) (indexed site)

    ...282016 11:29:37 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Kentucky Natural Gas in ...

  19. ,"Virginia Underground Natural Gas Storage - All Operators"

    Energy Information Administration (EIA) (indexed site)

    ...282016 11:29:57 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Virginia Natural Gas in ...

  20. ,"California Underground Natural Gas Storage - All Operators...

    Energy Information Administration (EIA) (indexed site)

    ...282016 11:29:29 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","California Natural Gas in ...

  1. ,"Mississippi Underground Natural Gas Storage - All Operators...

    Energy Information Administration (EIA) (indexed site)

    ...282016 11:29:44 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Mississippi Natural Gas in ...

  2. Wisconsin Natural Gas Underground Storage Injections All Operators...

    Gasoline and Diesel Fuel Update

    Injections All Operators (Million Cubic Feet) Wisconsin Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 ...

  3. Delaware Natural Gas Underground Storage Injections All Operators...

    Gasoline and Diesel Fuel Update

    Injections All Operators (Million Cubic Feet) Delaware Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 ...

  4. Connecticut Natural Gas Underground Storage Injections All Operators...

    Gasoline and Diesel Fuel Update

    Injections All Operators (Million Cubic Feet) Connecticut Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 ...

  5. Alaska Natural Gas Underground Storage Net Withdrawals All Operators...

    Gasoline and Diesel Fuel Update

    Net Withdrawals All Operators (Million Cubic Feet) Alaska Natural Gas Underground Storage Net Withdrawals All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ...

  6. Idaho Natural Gas Underground Storage Net Withdrawals All Operators...

    Gasoline and Diesel Fuel Update

    Net Withdrawals All Operators (Million Cubic Feet) Idaho Natural Gas Underground Storage Net Withdrawals All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ...

  7. Georgia Natural Gas Underground Storage Net Withdrawals All Operators...

    Energy Information Administration (EIA) (indexed site)

    Net Withdrawals All Operators (Million Cubic Feet) Georgia Natural Gas Underground Storage Net Withdrawals All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

  8. Transient aspects of unloading oil and gas wells with coiled tubing

    SciTech Connect

    Gu, H.

    1995-12-31

    Unloading oil and gas wells with coiled tubing (CT) conveyed nitrogen circulation is a transient process in which the original heavier fluid in a wellbore is displaced by nitrogen and lighter reservoir fluid. The transient aspects need to be considered when determining nitrogen volume and operation time for unloading a well. A computer wellbore simulator has been developed and used to study the transient effects. The simulator includes transient multiphase mass transport and takes into account the different fluids in the wellbore and from the reservoir. The simulator also includes the gas rise in the wellbore liquid below the CT and can be used for gas well unloading. The transient results of oil and gas well unloading are presented. The effects of CT size and depth, workover fluid, and nitrogen rate and volume on unloading are discussed. Unlike continuous gas lift, the total gas volume needed and the operation time in an unloading process can only be determined and optimized based on a transient analysis.

  9. Mississippi Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    Gasoline and Diesel Fuel Update

    401,660 443,351 452,915 59,272 54,446 58,207 1967-2015 From Gas Wells 387,026 429,829 404,457 47,385 43,020 44,868 1967-2015 From Oil Wells 8,714 8,159 43,421 7,256 7,136 9,220 1967-2015 From Shale Gas Wells 0 0 0 0 0 0 2007-2015 From Coalbed Wells 5,921 5,363 5,036 4,630 4,289 4,119 2002-2015 Repressuring 3,480 3,788 0 0 NA 0 1967-2015 Vented and Flared 8,685 9,593 0 0 NA 0 1967-2015 Nonhydrocarbon Gases Removed 315,775 348,482 389,072 0 NA 0 1980-2015 Marketed Production 73,721 81,487 63,843

  10. North Dakota Natural Gas Gross Withdrawals from Coalbed Wells (Million

    Gasoline and Diesel Fuel Update

    113,867 157,025 258,568 345,787 463,216 584,743 1967-2015 From Gas Wells 10,501 14,287 22,261 24,313 21,956 25,969 1967-2015 From Oil Wells 38,306 27,739 17,434 12,854 13,973 11,515 1967-2015 From Shale Gas Wells 65,060 114,998 218,873 308,620 427,287 547,258 2007-2015 From Coalbed Wells 0 0 0 0 0 0 2002-2015 Repressuring 0 0 0 0 NA 0 1981-2015 Vented and Flared 24,582 49,652 79,564 102,855 129,717 106,590 1967-2015 Nonhydrocarbon Gases Removed 7,448 10,271 6,762 7,221 7,008 6,650 1984-2015

  11. Tennessee Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    Gasoline and Diesel Fuel Update

    5,144 4,851 5,825 5,400 5,294 4,276 1967-2015 From Gas Wells 5,144 4,851 5,825 5,400 5,294 4,276 1967-2015 From Oil Wells 0 0 0 0 0 0 1967-2015 From Shale Gas Wells 0 0 0 0 0 0 2007-2015 From Coalbed Wells 0 0 0 0 0 0 2006-2015 Repressuring 0 0 0 0 0 0 1967-2015 Vented and Flared 0 0 0 0 0 0 1967-2015 Nonhydrocarbon Gases Removed 0 0 0 0 0 0 1997-2015 Marketed Production 5,144 4,851 5,825 5,400 5,294 4,276 1967-2015 Dry Production 4,638 4,335 5,324 4,912 4,912 3,937 Feet)

    Year Jan Feb Mar

  12. Wyoming Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    Gasoline and Diesel Fuel Update

    ,514,657 2,375,301 2,225,622 2,047,757 1,998,505 1,983,731 1967-2015 From Gas Wells 1,787,599 1,709,218 1,762,095 1,673,667 1,668,749 1,685,213 1967-2015 From Oil Wells 151,871 152,589 24,544 29,134 39,827 56,197 1967-2015 From Shale Gas Wells 5,519 4,755 9,252 16,175 25,783 31,186 2007-2015 From Coalbed Wells 569,667 508,739 429,731 328,780 264,146 211,134 2002-2015 Repressuring 2,810 5,747 6,630 2,124 5,293 10,640 1967-2015 Vented and Flared 42,101 57,711 45,429 34,622 27,220 7,883 1967-2015

  13. Indiana Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    Gasoline and Diesel Fuel Update

    6,802 9,075 8,814 7,938 6,616 7,250 1967-2015 From Gas Wells 6,802 9,075 8,814 7,938 6,616 7,250 1967-2015 From Oil Wells 0 0 0 0 0 0 1967-2015 From Shale Gas Wells 0 0 0 0 0 0 2007-2015 From Coalbed Wells 0 0 0 0 0 0 2006-2015 Repressuring 0 0 0 0 0 0 2003-2015 Vented and Flared 0 0 0 0 0 0 2003-2015 Nonhydrocarbon Gases Removed 0 0 0 0 0 0 1997-2015 Marketed Production 6,802 9,075 8,814 7,938 6,616 7,250 1967-2015 Dry Production 6,802 9,075 8,814 7,938 6,616 7,25 Feet)

    Year Jan Feb Mar

  14. Louisiana Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    Gasoline and Diesel Fuel Update

    2,218,283 3,040,523 2,955,437 2,366,943 1,968,618 1,784,797 1967-2015 From Gas Wells 911,967 883,712 775,506 780,623 720,416 619,242 1967-2015 From Oil Wells 63,638 68,505 49,380 51,948 50,722 44,748 1967-2015 From Shale Gas Wells 1,242,678 2,088,306 2,130,551 1,534,372 1,197,480 1,120,806 2007-2015 From Coalbed Wells 0 0 0 0 0 0 2002-2015 Repressuring 3,606 5,015 0 2,829 3,199 4,248 1967-2015 Vented and Flared 4,578 6,302 0 3,912 4,606 3,748 1967-2015 Nonhydrocarbon Gases Removed 0 0 0 0 0 0

  15. U.S. Nominal Cost per Natural Gas Well Drilled (Thousand Dollars per Well)

    Gasoline and Diesel Fuel Update

    Natural Gas Well Drilled (Thousand Dollars per Well) U.S. Nominal Cost per Natural Gas Well Drilled (Thousand Dollars per Well) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 102.7 94.7 97.1 92.4 104.8 101.9 133.8 141.0 148.5 154.3 1970's 160.7 166.6 157.8 155.3 189.2 262.0 270.4 313.5 374.2 443.1 1980's 536.4 698.6 864.3 608.1 489.8 508.7 522.9 380.4 460.3 457.8 1990's 471.3 506.6 426.1 521.2 535.1 629.7 616.0 728.6 815.6 798.4 2000's 756.9 896.5 991.9

  16. ,"Texas Underground Natural Gas Storage - All Operators"

    Energy Information Administration (EIA) (indexed site)

    ...010TX2","N5020TX2","N5070TX2","N5050TX2","N5060TX2" "Date","Texas Natural Gas Underground Storage Volume (MMcf)","Texas Natural Gas in Underground Storage (Base Gas) (MMcf)","Texas ...

  17. Modeling coiled-tubing velocity strings for gas wells

    SciTech Connect

    Martinez, J.; Martinez, A.

    1998-02-01

    Because of its ability to prolong well life, its relatively low expense, and the relative ease with which it is installed, coiled tubing has become a preferred remedial method of tubular completion for gas wells. Of course, the difficulty in procuring wireline-test data is a drawback to verifying the accuracy of the assumptions and predictions used for coiled-tubing selection. This increases the importance of the prediction-making process, and, as a result, places great emphasis on the modeling methods that are used. This paper focuses on the processes and methods for achieving sound multiphase-flow predictions by looking at the steps necessary to arrive at coiled-tubing selection. Furthermore, this paper examines the variables that serve as indicators of the viability of each tubing size, especially liquid holdup. This means that in addition to methodology, emphasis is placed on the use of a good wellbore model. The computer model discussed is in use industry wide.

  18. Federal Offshore California Natural Gas Withdrawals from Oil Wells (Million

    Energy Information Administration (EIA) (indexed site)

    Cubic Feet) Oil Wells (Million Cubic Feet) Federal Offshore California Natural Gas Withdrawals from Oil Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 5,417 5,166 5,431 1980's 5,900 12,763 17,751 20,182 27,443 33,331 31,799 31,380 31,236 38,545 1990's 34,332 35,391 41,284 41,532 42,497 46,916 61,276 69,084 71,019 75,034 2000's 68,752 67,034 64,735 56,363 53,805 53,404 38,313 43,379 43,300 40,023 2010's 39,444 35,020 12,703

  19. Zero Discharge Water Management for Horizontal Shale Gas Well...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    (fracking), coupled with horizontal drilling, has facilitated exploitation of huge natural gas (gas) reserves in the Devonian-age Marcellus Shale Formation (Marcellus) of...

  20. U.S. Average Depth of Natural Gas Exploratory Wells Drilled (Feet per Well)

    Gasoline and Diesel Fuel Update

    Wells Drilled (Feet per Well) U.S. Average Depth of Natural Gas Exploratory Wells Drilled (Feet per Well) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1940's 5,682 1950's 5,466 5,497 6,071 5,654 6,059 5,964 6,301 6,898 6,657 6,613 1960's 6,298 6,457 6,728 6,370 7,547 7,295 8,321 7,478 7,697 8,092 1970's 7,695 7,649 7,400 6,596 6,456 6,748 6,777 6,625 6,662 6,630 1980's 6,604 6,772 6,921 6,395 6,502 6,787 6,777 6,698 6,683 6,606 1990's 7,100 7,122 6,907 6,482 6,564

  1. NEW AND NOVEL FRACTURE STIMULATION TECHNOLOGIES FOR THE REVITALIZATION OF EXISTING GAS STORAGE WELLS

    SciTech Connect

    Unknown

    1999-12-01

    Gas storage wells are prone to continued deliverability loss at a reported average rate of 5% per annum (in the U.S.). This is a result of formation damage due to the introduction of foreign materials during gas injection, scale deposition and/or fines mobilization during gas withdrawal, and even the formation and growth of bacteria. As a means to bypass this damage and sustain/enhance well deliverability, several new and novel fracture stimulation technologies were tested in gas storage fields across the U.S. as part of a joint U.S. Department of Energy and Gas Research Institute R&D program. These new technologies include tip-screenout fracturing, hydraulic fracturing with liquid CO{sub 2} and proppant, extreme overbalance fracturing, and high-energy gas fracturing. Each of these technologies in some way address concerns with fracturing on the part of gas storage operators, such as fracture height growth, high permeability formations, and fluid sensitivity. Given the historical operator concerns over hydraulic fracturing in gas storage wells, plus the many other unique characteristics and resulting stimulation requirements of gas storage reservoirs (which are described later), the specific objective of this project was to identify new and novel fracture stimulation technologies that directly address these concerns and requirements, and to demonstrate/test their potential application in gas storage wells in various reservoir settings across the country. To compare these new methods to current industry deliverability enhancement norms in a consistent manner, their application was evaluated on a cost per unit of added deliverability basis, using typical non-fracturing well remediation methods as the benchmark and considering both short-term and long-term deliverability enhancement results. Based on the success (or lack thereof) of the various fracture stimulation technologies investigated, guidelines for their application, design and implementation have been

  2. Combination gas producing and waste-water disposal well

    DOEpatents

    Malinchak, Raymond M.

    1984-01-01

    The present invention is directed to a waste-water disposal system for use in a gas recovery well penetrating a subterranean water-containing and methane gas-bearing coal formation. A cased bore hole penetrates the coal formation and extends downwardly therefrom into a further earth formation which has sufficient permeability to absorb the waste water entering the borehole from the coal formation. Pump means are disposed in the casing below the coal formation for pumping the water through a main conduit towards the water-absorbing earth formation. A barrier or water plug is disposed about the main conduit to prevent water flow through the casing except for through the main conduit. Bypass conduits disposed above the barrier communicate with the main conduit to provide an unpumped flow of water to the water-absorbing earth formation. One-way valves are in the main conduit and in the bypass conduits to provide flow of water therethrough only in the direction towards the water-absorbing earth formation.

  3. Multi-zone methods to predict gas well performance

    SciTech Connect

    Blanchard, L.A.; Newhouse, J.R.

    1982-01-01

    The contributing elements of a formula developed for accurately predicting the performance of gas wells which include a high permeability zone interbedded with one or more low permeability zones are discussed. The theory assumes the existence of 3 conditions: (1) the well depletes without water encroachment; (2) each zone remains discreet from every other - that is, without cross flow among zones when the well is producing; and (3) each zone has either a hydraulic fracture or some skin effect. As a practical matter in using the model, only one of these reservoir conditions need to be met - freedom from water encroachment. The model developed does not adapt to reservoirs that have limited cross flow between zones. It also adapts to those with a hydraulic fracture in only some of the zones and includes equations which help to calculate matrix permeability whenever a known hydraulic fracture does exist. The functions of the model are illustrated by assuming the existence of a shaley-sand, 6-zone reservoir and by ascribing to it certain characteristics. The use of the model is examined and its results are discussed.

  4. Tennessee Underground Natural Gas Storage - All Operators

    Annual Energy Outlook

    340 340 340 340 340 340 1997-2015 Base Gas 340 340 340 340 340 340 1997-2015 Working Gas 1997-2011 Net Withdrawals 1998-2006 Injections 1997-2005 Withdrawals 1997-2006 Change in...

  5. ,"U.S. Underground Natural Gas Storage - All Operators"

    Energy Information Administration (EIA) (indexed site)

    U.S. Underground Natural Gas Storage - All Operators",3,"Annual",2014,"06301935" ,"Release Date:","09302015" ,"Next Release Date:","10302015" ,"Excel File...

  6. California--State Offshore Natural Gas Withdrawals from Gas Wells (Million

    Energy Information Administration (EIA) (indexed site)

    Cubic Feet) Gas Wells (Million Cubic Feet) California--State Offshore Natural Gas Withdrawals from Gas Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 3,537 2,134 1980's 2,446 2,170 1,931 1,799 1,319 6,126 5,342 2,068 1,413 855 1990's 340 0 0 0 0 0 0 0 0 0 2000's 0 0 0 0 0 0 156 312 266 582 2010's 71 259 640 413 410 454 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  7. Idaho Natural Gas Underground Storage Injections All Operators...

    Gasoline and Diesel Fuel Update

    Injections All Operators (Million Cubic Feet) Idaho Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 ...

  8. Alaska Natural Gas Underground Storage Injections All Operators...

    Gasoline and Diesel Fuel Update

    Injections All Operators (Million Cubic Feet) Alaska Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 ...

  9. Georgia Natural Gas Underground Storage Injections All Operators...

    Annual Energy Outlook

    Injections All Operators (Million Cubic Feet) Georgia Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 ...

  10. Gas characterization system operation, maintenance, and calibration plan

    SciTech Connect

    Tate, D.D.

    1996-03-04

    This document details the responsibilities and requirements for operation, maintenance, and calibration of the Gas Characterization Systems (GCS) analytical instrumentation. It further, defines the division of responsibility between the Characterization Monitoring Development organization and Tank Farms Operations.

  11. Nebraska Underground Natural Gas Storage - All Operators

    Energy Information Administration (EIA) (indexed site)

    Base Gas 20,031 22,197 22,197 22,197 22,197 22,197 1990-2016 Working Gas 13,797 11,418 10,438 8,645 8,093 8,192 1990-2016 Net Withdrawals -1,193 212 979 1,788 549 -103 1990-2016 ...

  12. Oklahoma Underground Natural Gas Storage - All Operators

    Energy Information Administration (EIA) (indexed site)

    Base Gas 185,345 185,530 183,624 183,624 183,624 183,624 1990-2016 Working Gas 173,608 169,454 162,995 136,212 126,100 131,961 1990-2016 Net Withdrawals -13,483 3,951 8,250 26,725 ...

  13. Pennsylvania Underground Natural Gas Storage - All Operators

    Energy Information Administration (EIA) (indexed site)

    Base Gas 344,161 343,997 343,965 343,818 343,699 336,838 1990-2016 Working Gas 380,696 386,683 375,251 287,921 225,614 212,465 1990-2016 Net Withdrawals -31,589 -5,821 11,466 ...

  14. Missouri Underground Natural Gas Storage - All Operators

    Energy Information Administration (EIA) (indexed site)

    Base Gas 7,845 7,845 7,845 7,845 7,845 7,845 1990-2016 Working Gas 6,341 6,537 6,493 6,045 6,198 6,063 1990-2016 Net Withdrawals -268 -212 28 433 -168 119 1990-2016 Injections 268 ...

  15. Michigan Underground Natural Gas Storage - All Operators

    Energy Information Administration (EIA) (indexed site)

    Gas 394,117 394,117 394,117 386,427 387,027 385,038 1990-2015 Working Gas 241,221 323,709 398,647 488,022 563,188 622,544 1990-2015 Net Withdrawals -82,150 -82,493 -74,938...

  16. Arkansas Underground Natural Gas Storage - All Operators

    Energy Information Administration (EIA) (indexed site)

    Base Gas 10,841 11,213 11,664 11,664 11,652 11,652 1990-2016 Working Gas 2,222 2,132 1,808 1,374 1,057 619 1990-2016 Net Withdrawals -212 -283 -127 434 328 438 1990-2016 Injections ...

  17. Texas Underground Natural Gas Storage - All Operators

    Energy Information Administration (EIA) (indexed site)

    Base Gas 297,441 297,427 293,580 294,440 294,891 295,519 1990-2016 Working Gas 470,258 471,593 469,012 411,431 386,432 405,225 1990-2016 Net Withdrawals -41,913 -2,086 6,424 56,721 ...

  18. Maryland Underground Natural Gas Storage - All Operators

    Energy Information Administration (EIA) (indexed site)

    ,818 62,080 61,590 61,074 57,082 54,789 1990-2016 Base Gas 45,677 45,677 45,677 45,677 45,677 45,677 1990-2016 Working Gas 16,141 16,403 15,913 15,396 11,405 9,111 1990-2016 Net ...

  19. Washington Underground Natural Gas Storage - All Operators

    Energy Information Administration (EIA) (indexed site)

    5,053 45,877 42,090 39,380 37,900 32,046 1990-2016 Base Gas 22,300 22,300 22,300 22,300 22,300 22,300 1990-2016 Working Gas 22,753 23,577 19,790 17,080 15,600 9,746 1990-2016 Net ...

  20. Minnesota Underground Natural Gas Storage - All Operators

    Energy Information Administration (EIA) (indexed site)

    6,573 6,835 6,984 6,973 6,658 6,531 1990-2016 Base Gas 4,848 4,848 4,848 4,848 4,848 4,848 1990-2016 Working Gas 1,725 1,987 2,136 2,125 1,810 1,683 1990-2016 Net Withdrawals -219 ...

  1. Operating a blast furnace using dried top gas

    SciTech Connect

    Kundrat, D.M.

    1993-08-10

    A method is described of operating a blast furnace, comprising: introducing into the top of the furnace a charge containing metal oxide, coke and flux, collecting a top gas CO, H[sub 2], carbon dioxide and water from the furnace, increasing the reducing potential of said collected top gas by removing water but without removing carbon dioxide from at least a portion of said collected top gas thereby forming a dried top gas, heating said dried top gas to form a heated dried top gas, introducing said heated dried top gas into the lower half of the stack of the furnace at a position above which said coke is not reactive and introducing an oxygen-containing gas and a hydrogenaceous fuel into the bosh of the furnace whereby said metal oxide is reduced to a molten metal using said heated dried top gas.

  2. Chena Hot Springs Resort - Electric Power Generation Using Geothermal Fluid Coproduced from Oil and/or Gas Wells

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Using Geothermal Fluid Coproduced from Oil and/or Gas Wells PI - Bernie Karl Chena Hot Springs Resort Track 1 Project Officer: Eric Hass Total Project Funding: $724,000 April 22, 2013 This presentation does not contain any proprietary confidential, or otherwise restricted information. 2 | US DOE Geothermal Office eere.energy.gov Relevance/Impact of Research Project Objectives * Design, build, and operate low temperature, mobile, geothermal power plant capable of co-producing off oil/gas wells *

  3. Two-Dimensional Electron Gas in Monolayer InN Quantum Wells....

    Office of Scientific and Technical Information (OSTI)

    Two-Dimensional Electron Gas in Monolayer InN Quantum Wells. Citation Details In-Document Search Title: Two-Dimensional Electron Gas in Monolayer InN Quantum Wells. Abstract not...

  4. Application of new and novel fracture stimulation technologies to enhance the deliverability of gas storage wells

    SciTech Connect

    1995-04-01

    Based on the information presented in this report, our conclusions regarding the potential for new and novel fracture stimulation technologies to enhance the deliverability of gas storage wells are as follows: New and improved gas storage well revitalization methods have the potential to save industry on the order of $20-25 million per year by mitigating deliverability decline and reducing the need for costly infill wells Fracturing technologies have the potential to fill this role, however operators have historically been reluctant to utilize this approach due to concerns with reservoir seal integrity. With advanced treatment design tools and methods, however, this risk can be minimized. Of the three major fracturing classifications, namely hydraulic, pulse and explosive, two are believed to hold potential to gas storage applications (hydraulic and pulse). Five particular fracturing technologies, namely tip-screenout fracturing, fracturing with liquid carbon dioxide, and fracturing with gaseous nitrogen, which are each hydraulic methods, and propellant and nitrogen pulse fracturing, which are both pulse methods, are believed to hold potential for gas storage applications and will possibly be tested as part of this project. Field evidence suggests that, while traditional well remediation methods such as blowing/washing, mechanical cleaning, etc. do improve well deliverability, wells are still left damaged afterwards, suggesting that considerable room for further deliverability enhancement exists. Limited recent trials of hydraulic fracturing imply that this approach does in fact provide superior deliverability results, but further RD&D work is needed to fully evaluate and demonstrate the benefits and safe application of this as well as other fracture stimulation technologies.

  5. Mississippi Underground Natural Gas Storage - All Operators

    Energy Information Administration (EIA) (indexed site)

    Show Data By: Data Series Area Feb-16 Mar-16 Apr-16 May-16 Jun-16 Jul-16 View History ... Working Gas 126,026 138,218 144,545 151,714 149,937 142,873 1990-2016 Net Withdrawals ...

  6. Montana Underground Natural Gas Storage - All Operators

    Energy Information Administration (EIA) (indexed site)

    Withdrawals 264 2,609 3,670 4,406 2,112 1,418 1990-2016 Change in Working Gas from Same Period Previous Year Volume 2,239 3,471 3,197 3,391 4,649 5,247 1990-2016 Percent 9.4 17.3 ...

  7. Virginia Underground Natural Gas Storage - All Operators

    Energy Information Administration (EIA) (indexed site)

    Working Gas 4,980 5,251 5,202 3,591 3,573 3,438 1997-2016 Net Withdrawals -545 -270 48 1,612 17 135 1995-2016 Injections 1,077 722 392 1,258 1,471 653 1997-2016 Withdrawals 533 451 ...

  8. Ohio Underground Natural Gas Storage - All Operators

    Energy Information Administration (EIA) (indexed site)

    Working Gas 181,373 192,681 184,926 165,463 118,381 86,221 1990-2016 Net Withdrawals -22,886 -11,308 7,717 19,441 47,082 32,160 1990-2016 Injections 23,451 13,257 2,530 1,632 70 ...

  9. Performance of wells in solution-gas-drive reservoirs

    SciTech Connect

    Camacho-V, R.G. ); Raghavan, R. )

    1989-12-01

    The authors examine buildup responses in solution-gas-drive reservoirs. The development presented here parallels the development for single-phase liquid flow. Analogs from pseudopressures and time transformations are presented and gas-drive-solutions are correlated with appropriate liquid-flow solutions. The influence of the skin region is documented. The basis for the success of the producing GOR method to compute the saturation distribution at shut-in is presented. The consequences of using the Perrine-Martin analog to analyze buildup data are discussed.

  10. Nevada Natural Gas Withdrawals from Oil Wells (Million Cubic Feet)

    Gasoline and Diesel Fuel Update

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 NA NA NA 2010's NA - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Quantity of Natural Gas Production Associated with Reported Wellhead Value Nevada Natural Gas Wellhead Value and Marketed Production

    Year Jan Feb Mar Apr May Jun Jul Aug Sep

  11. US--State Offshore Natural Gas Withdrawals from Oil Wells (Million...

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Million Cubic Feet) US--State Offshore Natural Gas Withdrawals from Oil Wells ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Offshore Gross ...

  12. NREL Document Profiles Natural Gas Fueling, Fleet Operation

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Document Profiles Natural Gas Fueling, Fleet Operation Media may contact: George Douglas, 303-275-4096 email: George Douglas Steve Ginter, Mack, 610-709-3259 Golden, Colo., June 7, 2000 - A unique and successful natural gas fueling and fleet operation involving trash haulers is discussed in a recent document issued by the U.S. Department of Energy's National Renewable Energy Laboratory (NREL). The NREL document, Waste Management's LNG Truck Fleet Start-Up Experience, offers solid evidence that

  13. Shallow gas well drilling with coiled tubing in the San Juan Basin

    SciTech Connect

    Moon, R.G.; Ovitz, R.W.; Guild, G.J.; Biggs, M.D.

    1996-12-31

    Coiled tubing is being utilized to drill new wells, for re-entry drilling to deepen or laterally extend existing wells, and for underbalanced drilling to prevent formation damage. Less than a decade old, coiled tubing drilling technology is still in its inaugral development stage. Initially, utilizing coiled tubing was viewed as a {open_quotes}science project{close_quotes} to determine the validity of performing drilling operations in-lieu of the conventional rotary rig. Like any new technology, the initial attempts were not always successful, but did show promise as an economical alternative if continued efforts were made in the refinement of equipment and operational procedures. A multiwell project has been completed in the San Juan Basin of Northwestern New Mexico which provides documentation indicating that coiled tubing can be an alternative to the conventional rotary rig. A 3-well pilot project, a 6-well project was completed uniquely utilizing the combined resources of a coiled tubing service company, a producing company, and a drilling contractor. This combination of resources aided in the refinement of surface equipment, personnel, mud systems, jointed pipe handling, and mobilization. The results of the project indicate that utilization of coiled tubing for the specific wells drilled was an economical alternative to the conventional rotary rig for drilling shallow gas wells.

  14. Serviceability of coiled tubing for sour oil and gas wells

    SciTech Connect

    1997-06-01

    Hydrogen sulfide (H{sub 2}S) can reduce useful coiled-tubing (CT) life by strength degradation through a combination of hydrogen blistering, hydrogen-induced cracking (HIC), stress-oriented hydrogen-induced cracking (SOHIC), sulfide-stress cracking (SSC), and possible weight-loss corrosion. These effects may work synergistically with the cyclic cold working of the steel that takes place during spooling and running. Prior studies on carbon steels have shown that cold work may significantly reduce the SSC threshold stresses. To develop a CT performance database, CLI Intl. Inc. conducted a multiclient program to increase understanding of the combined effects of strain cycling and resistance of CT to cracking in H{sub 2}S environments. The program was supported by 14 sponsors consisting of major oil and gas companies, service companies, CT manufacturers, and materials suppliers.

  15. Illinois Natural Gas Number of Oil Wells (Number of Elements)

    Gasoline and Diesel Fuel Update

    Commercial Consumers (Number of Elements) Illinois Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 241,367 278,473 252,791 1990's 257,851 261,107 263,988 268,104 262,308 264,756 265,007 268,841 271,585 274,919 2000's 279,179 278,506 279,838 281,877 273,967 276,763 300,606 296,465 298,418 294,226 2010's 291,395 293,213 297,523 282,743 294,391 295,869 - = No Data Reported; -- = Not Applicable; NA =

  16. SMOOTH OIL & GAS FIELD OUTLINES MADE FROM BUFFERED WELLS

    Energy Information Administration (EIA) (indexed site)

    The VBA code provided at the bottom of this document is an updated version (from ArcGIS ... but with "smu" suffix added to name. The first layer must contain the well points ...

  17. Well-to-Wheels Energy Use and Greenhouse Gas Emissions of Plug...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles Well-to-Wheels Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles Presented at ...

  18. Natural Gas Compression Technology Improves Transport and Efficiencies, Lowers Operating Costs

    Energy.gov [DOE]

    An award-winning compressor design that decreases the energy required to compress and transport natural gas, lowers operating costs, improves efficiencies and reduces the environmental footprint of well site operations has been developed by a Massachusetts-based company with support from the U.S. Department of Energy

  19. Illinois Natural Gas Gross Withdrawals from Coalbed Wells (Million...

    Energy Information Administration (EIA) (indexed site)

    Coalbed Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009...

  20. VACASULF operation at Citizens Gas and Coke Utility

    SciTech Connect

    Currey, J.H.

    1995-12-01

    Citizens Gas and Coke Utility is a Public Charitable Trust which operates as the Department of Utilities of the City of Indianapolis, Indiana. Indianapolis Coke, the trade name for the Manufacturing Division of the Utility, operates a by-products coke plant in Indianapolis, Indiana. The facility produces both foundry and blast furnace coke. Surplus Coke Oven gas, generated by the process, is mixed with Natural Gas for sale to industrial and residential customers. In anticipation of regulatory developments, beginning in 1990, Indianapolis Coke undertook the task to develop an alternate Coke Oven Gas desulfurization technology for its facility. The new system was intended to perform primary desulfurization of the gas, dramatically extending the oxide bed life, thus reducing disposal liabilities. Citizens Gas chose the VACASULF technology for its primary desulfurization system. VACASULF requires a single purchased material, Potassium Hydroxide (KOH). The KOH reacts with Carbon Dioxide in the coke Oven Gas to form Potassium Carbonate (potash) which in turn absorbs the Hydrogen Sulfide. The rich solution releases the absorbed sulfide under strong vacuum in the desorber column. Operating costs are reduced through utilization of an inherent heat source which is transferred indirectly via attendant reboilers. The Hydrogen Sulfide is transported by the vacuum pumps to the Claus Kiln and Reactor for combustion, reaction, and elemental Sulfur recovery. Regenerated potash solution is returned to the Scrubber.

  1. Natural Gas Transportation - Infrastructure Issues and Operational Trends

    Reports and Publications

    2001-01-01

    This report examines how well the current national natural gas pipeline network has been able to handle today's market demand for natural gas. In addition, it identifies those areas of the country where pipeline utilization is continuing to grow rapidly and where new pipeline capacity is needed or is planned over the next several years.

  2. Microsoft Word - RUL_3Q2010_Rpt_Gas_Samp_Results_18Wells.doc

    Office of Legacy Management (LM)

    Monitoring Results Natural Gas Wells near the Project Rulison Horizon U.S. Department of Energy Office of Legacy Management Grand Junction, Colorado Date Sampled: 13 July 2010 Purpose: The purpose of this sample collection is to monitor for radionuclides from Project Rulison. The bottom hole locations (BHLs) of the 18 gas wells sampled are within 1.1 miles of the Project Rulison detonation horizon. All wells sampled have produced or are producing gas from the Williams Fork Formation. Background:

  3. South Dakota Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) South Dakota Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 72 69 74 68 65 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) South Dakota Natural Gas

  4. New York Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) New York Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 988 1,170 1,589 1,731 1,697 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) New York Natural Gas

  5. Lightweight proppants for deep gas well stimulation. Final report

    SciTech Connect

    Cutler, R.A.; Ratsep, O.; Johnson, D.L.

    1984-01-01

    The need exists for lower density, less expensive proppants for use in hydraulic fracturing treatments. Ceramics, fabricated as fully sintered or hollow spheres, are the best materials for obtaining economical proppants due to their chemical/thermal stability and high strength. This report summarizes work performed during the fourth and final year of a Department of Energy research program to develop improved proppants for hydraulic fracturing applications. Hollow proppants with strengths intermediate between sand and bauxite were fabricated by spray drying. A counter current spray drying technique using a single fluid nozzle was able to make spherical ceramic proppants. The effect of spray-drying parameters on proppant strength is discussed. Further optimization of spray drying parameters is needed to achieve proppants with single, concentric voids and thick walls. Novel techniques for densifying proppants were investigated including plasma, microwave and radio frequency induction heating. Densification times were two orders of magnitude faster than conventional sintering cycles. The problems associated with ultrarapid densification are discussed as well as areas where this type of processing should be applied. A method of strengthening sand and other low strength proppants is discussed. Residual compressive surface stresses can be induced which strengthen the proppants which fail in tension. Accomplishments during the present research program are reviewed and areas of additional research which will lead to improved proppants are identified. 20 references, 23 figures, 19 tables.

  6. Indiana Natural Gas Withdrawals from Oil Wells (Million Cubic Feet)

    Gasoline and Diesel Fuel Update

    Withdrawals from Oil Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0

  7. South Carolina Natural Gas Underground Storage Injections All Operators

    Energy Information Administration (EIA) (indexed site)

    (Million Cubic Feet) Underground Storage Injections All Operators (Million Cubic Feet) South Carolina Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 48 80 70 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Injections of Natural Gas

  8. Nevada Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet)

    Gasoline and Diesel Fuel Update

    Gas Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0

  9. Black Warrior: Sub-soil gas and fluid inclusion exploration and slim well

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    drilling | Department of Energy Black Warrior: Sub-soil gas and fluid inclusion exploration and slim well drilling Black Warrior: Sub-soil gas and fluid inclusion exploration and slim well drilling DOE Geothermal Peer Review 2010 - Presentation. Project Objectives: Discover a blind, low-moderate temperature resource: Apply a combination of detailed sub-soil gas, hydrocarbon, and isotope data to define possible upflow areas; Calibrate the sub-soil chemistry with down-hole fluid inclusion

  10. Microsoft Word - RUL_1Q2009_Gas_Samp_Results_6wells_22Jan09

    Office of Legacy Management (LM)

    09 U.S. Department of Energy Office of Legacy Management Grand Junction, Colorado Date Sampled: 22 January 2009 Purpose: The purpose of this environmental sample collection is to monitor natural gas and production water from natural gas wells drilled near the Project Rulison test site. As part of the Department of Energy's (DOE's) directive to protect human health and the environment, samples are collected from producing gas wells and analyzed to ensure no Rulison related radionuclides have

  11. Microsoft Word - RUL_1Q2011_Gas_Samp_Results_7Wells

    Office of Legacy Management (LM)

    31 March 2011 Purpose: The purpose of this sample collection is to monitor for radionuclides from Project Rulison. The bottom-hole locations (BHLs) of the seven gas wells sampled are between 0.75 and 0.90 mile from the Project Rulison detonation point. All wells sampled are producing gas from the Williams Fork Formation. Background: Project Rulison was the second test under the Plowshare Program to stimulate natural-gas recovery from tight sandstone formations. On 10 September 1969, a

  12. Microsoft Word - RUL_2Q2011_Gas_Samp_Results_7Wells_23June2011

    Office of Legacy Management (LM)

    23 June 2011 Purpose: The purpose of this environmental sample collection is to monitor natural gas and production water from natural gas wells drilled near the Project Rulison test site. As part of the DOE's directive to protect human health and the environment, sample are collected and analyzed from producing gas wells to ensure no Rulison related radionuclides have migrated outside the DOE institution control boundary. Using the DOE Rulison Monitoring Plan as guidance, samples are collected

  13. Coefficient indicates if rod pump can unload water from gas well

    SciTech Connect

    Hu Yongquan; Wu Zhijun

    1995-09-11

    A sucker rod pump can efficiently dewater gas wells if the separation coefficient is sufficiently high. To determine this separation coefficient, it is not sufficient to only know if the system meets the criteria of rod string stress, horsehead load, and crankshaft torque. This paper reviews water production and gas locking problems at the Sichuan gas field and identifies the methodologies used to optimize the pumping efficiency of the area wells.

  14. Wireless technology collects real-time information from oil and gas wells

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Wireless technology collects real-time information from oil and gas wells Wireless technology collects real-time information from oil and gas wells The patented system delivers continuous electromagnetic data on the reservoir conditions, enabling economical and effective monitoring and analysis. April 3, 2012 One of several active projects, LANL and Chevron co-developed INFICOMM(tm), a wireless technology used to collect real-time temperature and pressure information from sensors in oil and gas

  15. H. R. 4564: a bill to amend the Internal Revenue Code of 1954 to provide a deduction and special net operating loss rules with respect to certain losses on domestic crude oil, to increase tariffs on petroleum and petroleum products, to require the Strategic Petroleum Reserve to be filled with stripper well oil, and to eliminate certain restrictions on the sale of natural gas and on the use of natural gas and oil. Introduced in the House of Representatives, Ninety-Ninth Congress, Second Session, April 10, 1986

    SciTech Connect

    Not Available

    1986-01-01

    The Secure Energy Supply Act of 1986 amends the Internal Revenue Code of 1954. Title I provides a deduction and special net operating loss treatment for certain losses on crude oil. Title II increases tariffs on petroleum and petroleum products, the revenues of which will cover authorized refunds. Title III provides that only stripper well oil or oil exchanged for stripper well oil will be used to fill the Strategic Petroleum Reserve. Title IV removes wellhead price controls and repeals Natural Gas Act jurisdiction over certain first sales of natural gas. Later titles repeal certain restrictions on the use of natural gas and petroleum, repeal incremental pricing requirements, and promote flexibility in rescheduling or marking down troubled loans. The bill was referred to the House Committees on Ways and Means, Energy and Commerce, and Banking, Finance, and Urban Affairs.

  16. Consortium for Petroleum & Natural Gas Stripper Wells PART 2 OF 3

    SciTech Connect

    Morrison, Joel

    2011-12-01

    The United States has more oil and gas wells than any other country. As of December 31, 2004, there were more than half a million producing oil wells in the United States. That is more than three times the combined total for the next three leaders: China, Canada, and Russia. The Stripper Well Consortium (SWC) is a partnership that includes domestic oil and gas producers, service and supply companies, trade associations, academia, the Department of Energy’s Strategic Center for Natural Gas and Oil (SCNGO) at the National Energy Technology Laboratory (NETL), and the New York State Energy Research and Development Authority (NYSERDA). The Consortium was established in 2000. This report serves as a final technical report for the SWC activities conducted over the May 1, 2004 to December 1, 2011 timeframe. During this timeframe, the SWC worked with 173 members in 29 states and three international countries, to focus on the development of new technologies to benefit the U.S. stripper well industry. SWC worked with NETL to develop a nationwide request-for-proposal (RFP) process to solicit proposals from the U.S. stripper well industry to develop and/or deploy new technologies that would assist small producers in improving the production performance of their stripper well operations. SWC conducted eight rounds of funding. A total of 132 proposals were received. The proposals were compiled and distributed to an industrydriven SWC executive council and program sponsors for review. Applicants were required to make a formal technical presentation to the SWC membership, executive council, and program sponsors. After reviewing the proposals and listening to the presentations, the executive council made their funding recommendations to program sponsors. A total of 64 projects were selected for funding, of which 59 were fully completed. Penn State then worked with grant awardees to issue a subcontract for their approved work. SWC organized and hosted a total of 14 meetings

  17. Consortium for Petroleum & Natural Gas Stripper Wells PART 3 OF 3

    SciTech Connect

    Morrison, Joel

    2011-12-01

    The United States has more oil and gas wells than any other country. As of December 31, 2004, there were more than half a million producing oil wells in the United States. That is more than three times the combined total for the next three leaders: China, Canada, and Russia. The Stripper Well Consortium (SWC) is a partnership that includes domestic oil and gas producers, service and supply companies, trade associations, academia, the Department of Energy’s Strategic Center for Natural Gas and Oil (SCNGO) at the National Energy Technology Laboratory (NETL), and the New York State Energy Research and Development Authority (NYSERDA). The Consortium was established in 2000. This report serves as a final technical report for the SWC activities conducted over the May 1, 2004 to December 1, 2011 timeframe. During this timeframe, the SWC worked with 173 members in 29 states and three international countries, to focus on the development of new technologies to benefit the U.S. stripper well industry. SWC worked with NETL to develop a nationwide request-for-proposal (RFP) process to solicit proposals from the U.S. stripper well industry to develop and/or deploy new technologies that would assist small producers in improving the production performance of their stripper well operations. SWC conducted eight rounds of funding. A total of 132 proposals were received. The proposals were compiled and distributed to an industrydriven SWC executive council and program sponsors for review. Applicants were required to make a formal technical presentation to the SWC membership, executive council, and program sponsors. After reviewing the proposals and listening to the presentations, the executive council made their funding recommendations to program sponsors. A total of 64 projects were selected for funding, of which 59 were fully completed. Penn State then worked with grant awardees to issue a subcontract for their approved work. SWC organized and hosted a total of 14 meetings

  18. Methodology for optimizing the development and operation of gas storage fields

    SciTech Connect

    Mercer, J.C.; Ammer, J.R.; Mroz, T.H.

    1995-04-01

    The Morgantown Energy Technology Center is pursuing the development of a methodology that uses geologic modeling and reservoir simulation for optimizing the development and operation of gas storage fields. Several Cooperative Research and Development Agreements (CRADAs) will serve as the vehicle to implement this product. CRADAs have been signed with National Fuel Gas and Equitrans, Inc. A geologic model is currently being developed for the Equitrans CRADA. Results from the CRADA with National Fuel Gas are discussed here. The first phase of the CRADA, based on original well data, was completed last year and reported at the 1993 Natural Gas RD&D Contractors Review Meeting. Phase 2 analysis was completed based on additional core and geophysical well log data obtained during a deepening/relogging program conducted by the storage operator. Good matches, within 10 percent, of wellhead pressure were obtained using a numerical simulator to history match 2 1/2 injection withdrawal cycles.

  19. Operating experience review of an INL gas monitoring system

    DOE PAGES [OSTI]

    Cadwallader, Lee C.; DeWall, K. G.; Herring, J. S.

    2015-03-01

    This article describes the operations of several types of gas monitors in use at the Idaho National Laboratory (INL) High Temperature Electrolysis Experiment (HTE) laboratory. The gases monitored in the lab room are hydrogen, carbon monoxide, carbon dioxide, and oxygen. The operating time, calibration, and both actual and unwanted alarms are described. The calibration session time durations are described. Some simple calculations are given to estimate the reliability of these monitors and the results are compared to operating experiences of other types of monitors.

  20. Operating experience review of an INL gas monitoring system

    SciTech Connect

    Cadwallader, Lee C.; DeWall, K. G.; Herring, J. S.

    2015-03-12

    This article describes the operations of several types of gas monitors in use at the Idaho National Laboratory (INL) High Temperature Electrolysis Experiment (HTE) laboratory. The gases monitored in the lab room are hydrogen, carbon monoxide, carbon dioxide, and oxygen. The operating time, calibration, and both actual and unwanted alarms are described. The calibration session time durations are described. In addition, some simple calculations are given to estimate the reliability of these monitors and the results are compared to operating experiences of other types of monitors.

  1. U.S. Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) U.S. Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 181,241 195,869 203,990 215,815 215,867 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) U.S. Natural

  2. New Mexico Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) New Mexico Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 12,887 13,791 14,171 14,814 14,580 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) New Mexico

  3. North Dakota Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) North Dakota Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 5,561 7,379 9,363 11,532 12,799 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) North Dakota

  4. West Virginia Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) West Virginia Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 2,373 2,509 2,675 2,606 2,244 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) West Virginia

  5. New and existing gas wells promise bountiful LPG output in Michigan

    SciTech Connect

    Not Available

    1991-01-01

    Michigan remains the leading LP-gas producer in the Northeast quadrant of the U.S. This paper reports that boosted by a number of new natural gas wells and a couple of new gas processing plants, the state is firmly anchored in the butane/propane production business. Since 1981, more than 100 deep gas wells, most in excess of 8000 feet in depth, have been completed as indicated producers in the state. Many of these are yielding LPG-grade stock. So, combined with LPG-grade production from shallower geologic formations, the supply picture in this area looks promising for the rest of the country.

  6. Rhode Island Natural Gas Underground Storage Injections All Operators

    Energy Information Administration (EIA) (indexed site)

    (Million Cubic Feet) Rhode Island Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Injections of Natural Gas into Underground

  7. Microsoft Word - RBL_3Q2010_Rpt_Gas_Samp_Results_3Wells

    Office of Legacy Management (LM)

    near the Project Rio Blanco Horizon U.S. Department of Energy Office of Legacy Management Grand Junction, Colorado Date Sampled: 13 September 2010 Purpose: The purpose of this sample collection is to monitor natural gas wells for radionuclides from Project Rio Blanco. The bottom-hole locations (BHLs) of the 3 gas wells sampled are within 1.4 miles of the Project Rio Blanco detonation horizon. All wells sampled have produced or are producing gas from the Mesaverde Group. Background: Project Rio

  8. Federal Offshore--Gulf of Mexico Natural Gas Number of Oil Wells (Number of

    Gasoline and Diesel Fuel Update

    Condensate Wells (Number of Elements) Gas and Gas Condensate Wells (Number of Elements) Federal Offshore--Gulf of Mexico Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0 NA 2000's NA 3,271 3,245 3,039 2,781 2,123 2,419 2,552 1,527 1,984 2010's 1,852 2,226 1,892 1,588 1,377 1,163 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  9. Rhode Island Natural Gas Underground Storage Injections All Operators

    Energy Information Administration (EIA) (indexed site)

    (Million Cubic Feet) Underground Storage Injections All Operators (Million Cubic Feet) Rhode Island Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 97 243 137 1990's 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Injections of

  10. Rhode Island Natural Gas Underground Storage Net Withdrawals All Operators

    Energy Information Administration (EIA) (indexed site)

    (Million Cubic Feet) Net Withdrawals All Operators (Million Cubic Feet) Rhode Island Natural Gas Underground Storage Net Withdrawals All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's -6 411 541 1990's 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Net Withdrawals of Natural

  11. Massachusetts Natural Gas Underground Storage Net Withdrawals All Operators

    Energy Information Administration (EIA) (indexed site)

    (Million Cubic Feet) Net Withdrawals All Operators (Million Cubic Feet) Massachusetts Natural Gas Underground Storage Net Withdrawals All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's -174 -102 253 1970's -200 -96 -1,074 2,468 1,707 -2,185 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016

  12. Table 4.6 Crude Oil and Natural Gas Exploratory Wells, 1949-2010

    Energy Information Administration (EIA) (indexed site)

    6 Crude Oil and Natural Gas Exploratory Wells, 1949-2010 Year Wells Drilled Successful Wells Footage Drilled 1 Average Footage Drilled Crude Oil 2 Natural Gas 3 Dry Holes 4 Total Crude Oil 2 Natural Gas 3 Dry Holes 4 Total Crude Oil 2 Natural Gas 3 Dry Holes 4 Total Number Percent Thousand Feet Feet per Well 1949 1,406 424 7,228 9,058 20.2 5,950 2,409 26,439 34,798 4,232 5,682 3,658 3,842 1950 1,583 431 8,292 10,306 19.5 6,862 2,356 30,957 40,175 4,335 5,466 3,733 3,898 1951 1,763 454 9,539

  13. Strings of liquid beads for gas-liquid contact operations

    SciTech Connect

    Hattori, Kenji; Ishikawa, Mitsukuni; Mori, Y.H. . Dept. of Mechanical Engineering)

    1994-12-01

    Energy recovery from hot gases exhausted from power plants, garbage incineration facilities, and many industrial processes has been growing due to demands for saving the primary-energy consumption. A novel device for gas-liquid contact operations is proposed to feed a liquid onto wires (or threads) hanging down in a gas stream is proposed. The liquid disintegrates into beads strung on each wire at regular intervals; if the wire is moderately wettable, a thin film forms to sheathe the wire, thereby interconnecting the beads. Since the beads fall down slowly, which possibly renews the film flowing down even more slowly, a sufficient gas-liquid contact time is available even in a contactor with considerably limited height. An approximate calculation method is developed for predicting the variation in the temperature effectiveness for the liquid (the fractional approach of the liquid exit temperature to the gas inlet temperature) with the falling distance, assuming an applicability of strings-of-beads contactors to thermal energy recovery from hot gas streams.

  14. Dynamic gas flow during plasma operation in TMX-U

    SciTech Connect

    Pickles, W.L.; Carter, M.R.; Clower, C.A.; Drake, R.P.; Hunt, A.L.; Simonen, T.C.; Turner, W.C.

    1982-11-12

    Control of the neutral density outside of the plasma radius is essential for proper operation of the various plasma configurations in TMX-U. TMX-U excess-beam, stream-gun, gas-box, and beam-reflux gases are pumped internally in regions defined by 73/sup 0/ Ti-gettered liners and warm Ti-gettered plasma liners. The array of fast and slow ion gauges - a large TMX-U diagnostic - has been used to measure the dynamic pressure in many of the liner-defined regions on three time scales. The natural divertor action, or plasma pump effect, of mirror plasmas has been measured using the ion gauge diagnostics on a fast time scale during operation of TMX-U with ECRH start-up. Routine operation of TMX-U is enhanced by the ability to verify the effectiveness of gettering and to locate leaks using pressure data collected on the two slow time scales. A computer code, DYNAVAC 6, which treats TMX-U as a set of conductance-coupled regions with pumping and sources in each region, has been used to successfully model the overall gas dynamics during all phases of TMX-U operation.

  15. Hydrogen and Oxygen Gas Monitoring System Design and Operation

    SciTech Connect

    Lee C. Cadwallader; Kevin G. DeWall; J. Stephen Herring

    2007-06-01

    This paper describes pertinent design practices of selecting types of monitors, monitor unit placement, setpoint selection, and maintenance considerations for gas monitors. While hydrogen gas monitors and enriched oxygen atmosphere monitors as they would be needed for hydrogen production experiments are the primary focus of this paper, monitors for carbon monoxide and carbon dioxide are also discussed. The experiences of designing, installing, and calibrating gas monitors for a laboratory where experiments in support of the DOE Nuclear Hydrogen Initiative (NHI) are described along with codes, standards, and regulations for these monitors. Information from the literature about best operating practices is also presented. The NHI program has two types of activities. The first, near-term activity is laboratory and pilot-plant experimentation with different processes in the kilogram per day scale to select the most promising types of processes for future applications of hydrogen production. Prudent design calls for indoor gas monitors to sense any hydrogen leaks within these laboratory rooms. The second, longer-term activity is the prototype, or large-scale plants to produce tons of hydrogen per day. These large, outdoor production plants will require area (or “fencepost”) monitoring of hydrogen gas leaks. Some processes will have oxygen production with hydrogen production, and any oxygen releases are also safety concerns since oxygen gas is the strongest oxidizer. Monitoring of these gases is important for personnel safety of both indoor and outdoor experiments. There is some guidance available about proper placement of monitors. The fixed point, stationary monitor can only function if the intruding gas contacts the monitor. Therefore, monitor placement is vital to proper monitoring of the room or area. Factors in sensor location selection include: indoor or outdoor site, the location and nature of potential vapor/gas sources, chemical and physical data of the

  16. Identification, Verification, and Compilation of Produced Water Management Practices for Conventional Oil and Gas Production Operations

    SciTech Connect

    Rachel Henderson

    2007-09-30

    The project is titled 'Identification, Verification, and Compilation of Produced Water Management Practices for Conventional Oil and Gas Production Operations'. The Interstate Oil and Gas Compact Commission (IOGCC), headquartered in Oklahoma City, Oklahoma, is the principal investigator and the IOGCC has partnered with ALL Consulting, Inc., headquartered in Tulsa, Oklahoma, in this project. State agencies that also have partnered in the project are the Wyoming Oil and Gas Conservation Commission, the Montana Board of Oil and Gas Conservation, the Kansas Oil and Gas Conservation Division, the Oklahoma Oil and Gas Conservation Division and the Alaska Oil and Gas Conservation Commission. The objective is to characterize produced water quality and management practices for the handling, treating, and disposing of produced water from conventional oil and gas operations throughout the industry nationwide. Water produced from these operations varies greatly in quality and quantity and is often the single largest barrier to the economic viability of wells. The lack of data, coupled with renewed emphasis on domestic oil and gas development, has prompted many experts to speculate that the number of wells drilled over the next 20 years will approach 3 million, or near the number of current wells. This level of exploration and development undoubtedly will draw the attention of environmental communities, focusing their concerns on produced water management based on perceived potential impacts to fresh water resources. Therefore, it is imperative that produced water management practices be performed in a manner that best minimizes environmental impacts. This is being accomplished by compiling current best management practices for produced water from conventional oil and gas operations and to develop an analysis tool based on a geographic information system (GIS) to assist in the understanding of watershed-issued permits. That would allow management costs to be kept in line with

  17. Field testing the Raman gas composition sensor for gas turbine operation

    SciTech Connect

    Buric, M.; Chorpening, B.; Mullem, J.; Ranalli, J.; Woodruff, S.

    2012-01-01

    A gas composition sensor based on Raman spectroscopy using reflective metal lined capillary waveguides is tested under field conditions for feed-forward applications in gas turbine control. The capillary waveguide enables effective use of low powered lasers and rapid composition determination, for computation of required parameters to pre-adjust burner control based on incoming fuel. Tests on high pressure fuel streams show sub-second time response and better than one percent accuracy on natural gas fuel mixtures. Fuel composition and Wobbe constant values are provided at one second intervals or faster. The sensor, designed and constructed at NETL, is packaged for Class I Division 2 operations typical of gas turbine environments, and samples gas at up to 800 psig. Simultaneous determination of the hydrocarbons methane, ethane, and propane plus CO, CO2, H2O, H2, N2, and O2 are realized. The capillary waveguide permits use of miniature spectrometers and laser power of less than 100 mW. The capillary dimensions of 1 m length and 300 μm ID also enable a full sample exchange in 0.4 s or less at 5 psig pressure differential, which allows a fast response to changes in sample composition. Sensor operation under field operation conditions will be reported.

  18. Residual Gas Analysis for Long-Pulse, Advanced Tokamak Operation

    SciTech Connect

    Klepper, C Christopher; Hillis, Donald Lee; Bucalossi, J.; Douai, D.; OddonCEA, IRFM, P.; VartanianCEA-Cadarach, S.; Colas, L.; Manenc, L.; Pegourie, B.

    2010-01-01

    A shielded residual gas analyzer RGA system on Tore Supra can function during plasma operation and is set up to monitor the composition of the neutral gas in one of the pumping ducts of the toroidal pumped limited. This diagnostic RGA has been used in long-pulse up to 6 min discharges for continuous monitoring of up to 15 masses simultaneously. Comparison of the RGA-measured evolution of the H2 /D2 isotopic ratio in the exhaust gas to that measured by an energetic neutral particle analyzer in the plasma core provides a way to monitor the evolution of particle balance. RGA monitoring of corrective H2 injection to maintain proper minority heating is providing a database for improved ion cyclotron resonance heating, potentially with RGA-base feedback control. In very long pulses 4 min absence of significant changes in the RGA-monitored, hydrocarbon particle pressures is an indication of proper operation of the actively cooled, carbon-based plasma facing components. Also H2 could increase due to thermodesorption of overheated plasma facing components. 2010 American Institute of Physics.

  19. Estimating gas desorption parameters from Devonian shale well-test data

    SciTech Connect

    Lane, H.S.; Watson, A.T.; Lancaster, D.E.

    1995-05-01

    The feasibility of detecting and estimating gas desorption parameters accurately from a history match of Devonian shale well-test pressure data is examined. Both drawdown and buildup tests are analyzed, and based on the results of these analyses, a desorption-specific well-test design is proposed. The results from a simulated desorption-specific test suggest that it may be possible to characterize gas desorption from a well test with reasonable accuracy, even when the effects of desorption are partially masked by wellbore storage and skin effects.

  20. In situ experiments of geothermal well stimulation using gas fracturing technology

    SciTech Connect

    Chu, T.Y.; Warpinski, N.; Jacobson, R.D.

    1988-07-01

    The results of an experimental study of gas fracturing technology for geothermal well stimulation demonstrated that multiple fractures could be created to link water-filled boreholes with existing fractures. The resulting fracture network and fracture interconnections were characterized by mineback as well as flow tests. Commercial oil field fracturing tools were used successfully in these experiments. Simple scaling laws for gas fracturing and a brief discussion of the application of this technique to actual geothermal well stimulation are presented. 10 refs., 42 figs., 4 tabs.

  1. DEVELOPMENT OF GLASS AND GLASS CERAMIC PROPPANTS FROM GAS SHALE WELL DRILL CUTTINGS

    SciTech Connect

    Johnson, F.; Fox, K.

    2013-10-02

    The objective of this study was to develop a method of converting drill cuttings from gas shale wells into high strength proppants via flame spheroidization and devitrification processing. Conversion of drill cuttings to spherical particles was only possible for small particle sizes (< 53 {micro}m) using a flame former after a homogenizing melting step. This size limitation is likely to be impractical for application as conventional proppants due to particle packing characteristics. In an attempt to overcome the particle size limitation, sodium and calcium were added to the drill cuttings to act as fluxes during the spheroidization process. However, the flame former remained unable to form spheres from the fluxed material at the relatively large diameters (0.5 - 2 mm) targeted for proppants. For future work, the flame former could be modified to operate at higher temperature or longer residence time in order to produce larger, spherical materials. Post spheroidization heat treatments should be investigated to tailor the final phase assemblage for high strength and sufficient chemical durability.

  2. Investigation of gas hydrate-bearing sandstone reservoirs at the "Mount Elbert" stratigraphic test well, Milne Point, Alaska

    SciTech Connect

    Boswell, R.M.; Hunter, R.; Collett, T.; Digert, S. Inc., Anchorage, AK); Hancock, S.; Weeks, M. Inc., Anchorage, AK); Mt. Elbert Science Team

    2008-01-01

    In February 2007, the U.S. Department of Energy, BP Exploration (Alaska), Inc., and the U.S. Geological Survey conducted an extensive data collection effort at the "Mount Elbert #1" gas hydrates stratigraphic test well on the Alaska North Slope (ANS). The 22-day field program acquired significant gas hydrate-bearing reservoir data, including a full suite of open-hole well logs, over 500 feet of continuous core, and open-hole formation pressure response tests. Hole conditions, and therefore log data quality, were excellent due largely to the use of chilled oil-based drilling fluids. The logging program confirmed the existence of approximately 30 m of gashydrate saturated, fine-grained sand reservoir. Gas hydrate saturations were observed to range from 60% to 75% largely as a function of reservoir quality. Continuous wire-line coring operations (the first conducted on the ANS) achieved 85% recovery through 153 meters of section, providing more than 250 subsamples for analysis. The "Mount Elbert" data collection program culminated with open-hole tests of reservoir flow and pressure responses, as well as gas and water sample collection, using Schlumberger's Modular Formation Dynamics Tester (MDT) wireline tool. Four such tests, ranging from six to twelve hours duration, were conducted. This field program demonstrated the ability to safely and efficiently conduct a research-level openhole data acquisition program in shallow, sub-permafrost sediments. The program also demonstrated the soundness of the program's pre-drill gas hydrate characterization methods and increased confidence in gas hydrate resource assessment methodologies for the ANS.

  3. Microsoft Word - RUL_4Q2010_Rpt_Gas_Samp_Results_8Wells

    Office of Legacy Management (LM)

    the Project Rulison Horizon U.S. Department of Energy Office of Legacy Management Grand Junction, Colorado Date Sampled: 21 October 2010 Purpose: The purpose of this sample collection is to monitor for radionuclides from Project Rulison. The bottom hole locations (BHLs) of the 8 gas wells sampled are within 0.75 and 1.0 mile of the Project Rulison detonation horizon. All wells sampled have produced or are producing gas from the Williams Fork Formation. Background: Project Rulison was the second

  4. Workover well control. Part 4. Coiled-tubing pigs speed workover operations

    SciTech Connect

    Adams, N.

    1981-09-14

    Many workover operations can be completed quickly and efficiently by using coiled tubing instead of jointed tubing or conventional rigs. In general, coiled tubing is a continuous string of small-diameter tubing that can be run into the well without the necessity of making joint connections. The operations are safe, involve small amounts of rig time, and usually are more economical than other forms of concentric work. Coiled tubing work is usually conducted on producing wells, which necessitates pressure-control precautions. Applications for coiled tubing involve all aspects of workover operations except wire-line work. Coiled tubing can be used in initiating flow, cleaning out sand in tubing, and performing stimulation operations. In addition, drilling can be conducted with coiled tubing when down-hole motors are used.

  5. New York Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    Gasoline and Diesel Fuel Update

    35,813 31,124 26,424 23,458 20,201 17,829 1967-2015 From Gas Wells 35,163 30,495 25,985 23,111 19,808 17,609 1967-2015 From Oil Wells 650 629 439 348 393 220 1967-2015 From Shale Gas Wells 0 0 0 0 0 0 2007-2015 From Coalbed Wells 0 0 0 0 0 0 2006-2015 Repressuring 0 0 0 0 0 0 2006-2015 Vented and Flared 0 0 0 0 0 0 1967-2015 Nonhydrocarbon Gases Removed 0 0 0 0 0 0 2006-2015 Marketed Production 35,813 31,124 26,424 23,458 20,201 17,829 1967-2015 Dry Production 35,813 31,124 26,424 23,458 20,201

  6. Ohio Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic Feet)

    Gasoline and Diesel Fuel Update

    78,122 78,858 84,482 166,017 512,371 1,014,848 1967-2015 From Gas Wells 73,459 30,655 65,025 55,583 51,541 46,237 1967-2015 From Oil Wells 4,651 45,663 6,684 10,317 13,022 32,674 1967-2015 From Shale Gas Wells 11 2,540 12,773 100,117 447,809 935,937 2007-2015 From Coalbed Wells 0 0 0 0 0 0 2006-2015 Repressuring 0 0 0 0 0 0 1967-2015 Vented and Flared 0 0 0 0 0 0 1967-2015 Nonhydrocarbon Gases Removed 0 0 0 0 0 0 2006-2015 Marketed Production 78,122 78,858 84,482 166,017 512,371 1,014,848

  7. Utah Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic Feet)

    Gasoline and Diesel Fuel Update

    436,885 461,507 490,393 470,863 454,545 423,300 1967-2015 From Gas Wells 328,135 351,168 402,899 383,216 361,474 333,232 1967-2015 From Oil Wells 42,526 49,947 31,440 36,737 45,513 45,781 1967-2015 From Shale Gas Wells 0 0 1,333 992 877 676 2007-2015 From Coalbed Wells 66,223 60,392 54,722 49,918 46,680 43,612 2002-2015 Repressuring 1,187 1,449 0 0 NA 0 1967-2015 Vented and Flared 2,080 1,755 0 0 NA 0 1967-2015 Nonhydrocarbon Gases Removed 1,573 778 0 0 NA 0 1996-2015 Marketed Production 432,045

  8. Model operating permits for natural gas processing plants

    SciTech Connect

    Arend, C.

    1995-12-31

    Major sources as defined in Title V of the Clean Air Act Amendments of 1990 that are required to submit an operating permit application will need to: Evaluate their compliance status; Determine a strategic method of presenting the general and specific conditions of their Model Operating Permit (MOP); Maintain compliance with air quality regulations. A MOP is prepared to assist permitting agencies and affected facilities in the development of operating permits for a specific source category. This paper includes a brief discussion of example permit conditions that may be applicable to various types of Title V sources. A MOP for a generic natural gas processing plant is provided as an example. The MOP should include a general description of the production process and identify emission sources. The two primary elements that comprise a MOP are: Provisions of all existing state and/or local air permits; Identification of general and specific conditions for the Title V permit. The general provisions will include overall compliance with all Clean Air Act Titles. The specific provisions include monitoring, record keeping, and reporting. Although Title V MOPs are prepared on a case-by-case basis, this paper will provide a general guideline of the requirements for preparation of a MOP. Regulatory agencies have indicated that a MOP included in the Title V application will assist in preparation of the final permit provisions, minimize delays in securing a permit, and provide support during the public notification process.

  9. Summary of field operations Powerline Wells PL-1, PL-2, PL-3

    SciTech Connect

    Foutz, W.L.

    1996-03-01

    This report summarizes field operations and hydrogeologic data obtained during installation of the Powerline monitoring/test wells near the western boundary of Kirtland Air Force Base. These wells were installed in 1994 as part of the Site-Wide Hydrogeologic Characterization Project saturated zone investigation. The Site-Wide Hydrogeologic Characterization Project is part of Sandia National Laboratories, New Mexico, Environmental Restoration Project. Three wells were drilled and completed at this location, and named PL-1, PL-2, and PL-3. They are located northwest of Tech Area 3, and are named after a high-voltage powerline located just south of the wells. The objectives of the Powerline wells were to determine the depth to water, complete 2 water table wells and a deeper Santa Fe Group well, to determine the geologic provenance of Santa Fe Group sediments at this location, and to obtain background core samples for radiological analysis. During these field operations, important subsurface hydrogeologic data were obtained. These data include drill cuttings and lithologic descriptions, core samples with background analytical data, geophysical logs, water quality parameters, and water levels. Aquifer tests at the Powerline location will generate data that may yield information on anisotropy in the Santa Fe Group and constrain numerical modeling results that indicate that there is a major northward component of groundwater flow from McCormick Ranch and Tech Area 3 test sites toward City of Albuquerque and KAFB well fields.

  10. ,"Midwest Region Underground Natural Gas Storage - All Operators...

    Energy Information Administration (EIA) (indexed site)

    ...282016 11:29:21 AM" "Back to Contents","Data 1: Total Underground Storage" ... Region Natural Gas in Underground Storage (Base Gas) (MMcf)","Midwest Region Natural Gas ...

  11. ,"West Virginia Underground Natural Gas Storage - All Operators...

    Energy Information Administration (EIA) (indexed site)

    ...282016 11:29:59 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","West Virginia Natural Gas in ...

  12. ,"New York Underground Natural Gas Storage - All Operators"

    Energy Information Administration (EIA) (indexed site)

    ...282016 11:29:48 AM" "Back to Contents","Data 1: Total Underground Storage" ... York Natural Gas in Underground Storage (Base Gas) (MMcf)","New York Natural Gas in ...

  13. ,"Mountain Region Underground Natural Gas Storage - All Operators...

    Energy Information Administration (EIA) (indexed site)

    ...282016 11:29:22 AM" "Back to Contents","Data 1: Total Underground Storage" ... Region Natural Gas in Underground Storage (Base Gas) (MMcf)","Mountain Region Natural Gas ...

  14. ,"Pacific Region Underground Natural Gas Storage - All Operators...

    Energy Information Administration (EIA) (indexed site)

    ...282016 11:29:26 AM" "Back to Contents","Data 1: Total Underground Storage" ... Region Natural Gas in Underground Storage (Base Gas) (MMcf)","Pacific Region Natural Gas ...

  15. ,"East Region Underground Natural Gas Storage - All Operators...

    Energy Information Administration (EIA) (indexed site)

    ...282016 11:29:19 AM" "Back to Contents","Data 1: Total Underground Storage" ... Region Natural Gas in Underground Storage (Base Gas) (MMcf)","East Region Natural Gas in ...

  16. ,"New Mexico Underground Natural Gas Storage - All Operators...

    Energy Information Administration (EIA) (indexed site)

    ...,"N5020NM2","N5070NM2","N5050NM2","N5060NM2" "Date","New Mexico Natural Gas Underground Storage Volume (MMcf)","New Mexico Natural Gas in Underground Storage (Base Gas) ...

  17. Fire protection considerations for the design and operation of liquefied petroleum gas (LPG) storage facilities

    SciTech Connect

    Not Available

    1989-01-01

    This standard addresses the design, operation, and maintenance of LPG storage facilities from the standpoint of prevention and control of releases, fire-protection design, and fire-control measures, as well as the history of LPG storage facility failure, facility design philosophy, operating and maintenance procedures, and various fire-protection and firefighting approaches and presentations. The storage facilities covered are LPG installations (storage vessels and associated loading/unloading/transfer systems) at marine and pipeline terminals, natural gas processing plants, refineries, petrochemical plants, and tank farms.

  18. Unconventional oil and gas (UOG) development and operations release...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... Partnership and the Environmental Council of States' Shale Gas Caucus on methane mitigation technologies, tools, and practices throughout the natural gas supply chain. ...

  19. Monitoring Results Natural Gas Wells Near Project Rulison Fourth Quarter 2015

    Office of Legacy Management (LM)

    Fourth Quarter 2015 February 2016 Doc. No. S13825 Page 1 of 6 Monitoring Results Natural Gas Wells Near Project Rulison Fourth Quarter 2015 U.S. Department of Energy Office of Legacy Management Grand Junction, Colorado Date Sampled: September 9, 2015 Background Project Rulison was the second Plowshare Program test to stimulate natural gas recovery from deep, low-permeability formations. On September 10, 1969, a 40-kiloton-yield nuclear device was detonated 8,426 feet (1.6 miles) below ground

  20. Monitoring Results Natural Gas Wells Near Project Rulison third Quarter 2015

    Office of Legacy Management (LM)

    5 November 2015 Doc. No. S13372 Page 1 of 6 Monitoring Results Natural Gas Wells Near Project Rulison Third Quarter 2015 U.S. Department of Energy Office of Legacy Management Grand Junction, Colorado Date Sampled: June 22, 2015 Background Project Rulison was the second Plowshare Program test to stimulate natural gas recovery from deep, low-permeability formations. On September 10, 1969, a 40-kiloton-yield nuclear device was detonated 8,426 feet (1.6 miles) below ground surface in the Williams

  1. Monitoring Results for Natural Gas Wells Near Project Rulison, 2nd Quarter, Fiscal Year 2015

    Office of Legacy Management (LM)

    2nd Quarter FY 2015, Rulison Site October 2015 Doc. No. S13368 Page 1 of 6 Monitoring Results for Natural Gas Wells Near Project Rulison, 2nd Quarter, Fiscal Year 2015 U.S. Department of Energy Office of Legacy Management Grand Junction, Colorado Date Sampled: March 31, 2015 Background Project Rulison was the second Plowshare Program test to stimulate natural gas recovery from deep, low-permeability formations. On September 10, 1969, a 40-kiloton-yield nuclear device was detonated 8,426 feet

  2. Development and Demonstration of Mobile, Small Footprint Exploration and Development Well System for Arctic Unconventional Gas Resources (ARCGAS)

    SciTech Connect

    Paul Glavinovich

    2002-11-01

    Traditionally, oil and gas field technology development in Alaska has focused on the high-cost, high-productivity oil and gas fields of the North Slope and Cook Inlet, with little or no attention given to Alaska's numerous shallow, unconventional gas reservoirs (carbonaceous shales, coalbeds, tight gas sands). This is because the high costs associated with utilizing the existing conventional oil and gas infrastructure, combined with the typical remoteness and environmental sensitivity of many of Alaska's unconventional gas plays, renders the cost of exploring for and producing unconventional gas resources prohibitive. To address these operational challenges and promote the development of Alaska's large unconventional gas resource base, new low-cost methods of obtaining critical reservoir parameters prior to drilling and completing more costly production wells are required. Encouragingly, low-cost coring, logging, and in-situ testing technologies have already been developed by the hard rock mining industry in Alaska and worldwide, where an extensive service industry employs highly portable diamond-drilling rigs. From 1998 to 2000, Teck Cominco Alaska employed some of these technologies at their Red Dog Mine site in an effort to quantify a large unconventional gas resource in the vicinity of the mine. However, some of the methods employed were not fully developed and required additional refinement in order to be used in a cost effective manner for rural arctic exploration. In an effort to offset the high cost of developing a new, low-cost exploration methods, the US Department of Energy, National Petroleum Technology Office (DOE-NPTO), partnered with the Nana Regional Corporation and Teck Cominco on a technology development program beginning in 2001. Under this DOE-NPTO project, a team comprised of the NANA Regional Corporation (NANA), Teck Cominco Alaska and Advanced Resources International, Inc. (ARI) have been able to adapt drilling technology developed for the

  3. Summary of tank information relating salt well pumping to flammable gas safety issues

    SciTech Connect

    Caley, S.M.; Mahoney, L.A.; Gauglitz, P.A.

    1996-09-01

    The Hanford Site has 149 single-shell tanks (SSTs) containing radioactive wastes that are complex mixes of radioactive and chemical products. Active use of these SSTs was phased out completely by November 1980, and the first step toward final disposal of the waste in the SSTs is interim stabilization, which involves removing essentially all of the drainable liquid from the tank. Stabilization can be achieved administratively, by jet pumping to remove drainable interstitial liquid, or by supernatant pumping. To date, 116 tanks have been declared interim stabilized; 44 SSTs have had drainable liquid removed by salt well jet pumping. Of the 149 SSTs, 19 are on the Flammable Gas Watch List (FGWL) because the waste in these tanks is known or suspected, in all but one case, to generate and retain mixtures of flammable gases, including; hydrogen, nitrous oxide, and ammonia. Salt well pumping to remove the drainable interstitial liquid from these SSTs is expected to cause the release of much of the retained gas, posing a number of safety concerns. The scope of this work is to collect and summarize information, primarily tank data and observations, that relate salt well pumping to flammable gas safety issues. While the waste within FGWL SSTs is suspected offering flammable gases, the effect of salt well pumping on the waste behavior is not well understood. This study is being conducted for the Westinghouse Hanford Company as part of the Flammable Gas Project at the Pacific Northwest National Laboratory (PNNL). Understanding the historical tank behavior during and following salt well pumping will help to resolve the associated safety issues.

  4. Utilization of endless coiled tubing and nitrogen gas in geothermal well system maintenance

    SciTech Connect

    McReynolds, A.S.; Maxson, H.L.

    1980-09-01

    The use of endless coiled tubing and nitrogen gas combine to offer efficient means of initiating and maintaining geothermal and reinjection well productivity. Routine applications include initial flashing of wells in addition to the surging of the formation by essentially the same means to increase production rates. Various tools can be attached to the tubing for downhole measurement purposes whereby the effectiveness of the tools is enhanced by this method of introduction to the well bore. Remedial work such as scale and fill removal can also be accomplished in an efficient manner by using the tubing as a work string and injecting various chemicals in conjunction with specialized tools to remedy downhole problems.

  5. Installation of 2 7/8-in. coiled-tubing tailpipes in live gas wells

    SciTech Connect

    Campbell, J.A.; Bayes, K.P.

    1994-05-01

    This paper describes a technique for installing 2 7/8-in. coiled tubing as tailpipe extensions below existing production packers in live gas wells. It also covers the use of coiled tubing as a way to complete wells. Large savings in rig time and deferred production have been realized with this technique. Fluid losses to the formation do not occur, and no expensive rig time is needed to kill or clean up the wells, as required for conventional workovers below existing production packers. This technique is particularly applicable in depleted reservoirs that could be impaired by traditional workover methods.

  6. Stopping a water crossflow in a sour-gas producing well

    SciTech Connect

    Hello, Y. Le; Woodruff, J.

    1998-09-01

    Lacq is a sour-gas field in southwest France. After maximum production of 774 MMcf/D in the 1970`s, production is now 290 MMcf/D, with a reservoir pressure of 712 psi. Despite the loss of pressure, production is maintained by adapting the surface equipment and well architecture to reservoir conditions. The original 5-in. production tubing is being replaced with 7-in. tubing to sustain production rates. During openhole cleaning, the casing collapsed in Well LA141. The primary objective was to plug all possible hydraulic communication paths into the lower zones. The following options were available: (1) re-entering the well from the top and pulling the fish before setting cement plugs; (2) sidetracking the well; and (3) drilling a relief well to intercept Well LA141 above the reservoirs. The decision was made to start with the first option and switch to a sidetrack if this option failed.

  7. Successful removal of zinc sulfide scale restriction from a hot, deep, sour gas well

    SciTech Connect

    Kenrick, A.J.; Ali, S.A.

    1997-07-01

    Removal of zinc sulfide scale with hydrochloric acid from a hot, deep, Norphlet Sandstone gas well in the Gulf of Mexico resulted in a 29% increase in the production rates. The zinc sulfide scale was determined to be in the near-wellbore area. The presence of zinc sulfide is explained by the production of 25 ppm H{sub 2}S gas, and the loss of 50--100 bbl of zinc bromide fluid to the formation. Although zinc sulfide scale has been successfully removed with hydrochloric acid in low-to-moderate temperature wells, no analogous treatment data were available for high temperature, high pressure (HTHP) Norphlet wells. Therefore laboratory testing was initiated to identify suitable acid systems for scale removal, and select a high quality corrosion inhibitor that would mitigate detrimental effects of the selected acid on downhole tubulars and surface equipment. This case history presents the first successful use of hydrochloric acid in removing zinc sulfide scale from a HTHP Norphlet sour gas well.

  8. U.S. Real Cost per Foot of Crude Oil, Natural Gas, and Dry Wells Drilled

    Gasoline and Diesel Fuel Update

    (Dollars per Foot) Foot of Crude Oil, Natural Gas, and Dry Wells Drilled (Dollars per Foot) U.S. Real Cost per Foot of Crude Oil, Natural Gas, and Dry Wells Drilled (Dollars per Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 61.83 60.39 61.71 58.22 58.11 59.64 64.51 66.84 67.56 67.15 1970's 68.42 65.82 68.82 70.65 83.31 97.34 100.66 109.49 123.76 136.64 1980's 142.52 159.51 173.34 127.81 106.27 108.09 107.90 80.21 92.78 93.63 1990's 93.23 97.86

  9. U.S. Nominal Cost per Crude Oil, Natural Gas, and Dry Well Drilled

    Gasoline and Diesel Fuel Update

    (Thousand Dollars per Well) Oil, Natural Gas, and Dry Well Drilled (Thousand Dollars per Well) U.S. Nominal Cost per Crude Oil, Natural Gas, and Dry Well Drilled (Thousand Dollars per Well) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 54.9 54.5 58.6 55.0 55.8 60.6 68.4 72.9 81.5 88.6 1970's 94.9 94.7 106.4 117.2 138.7 177.8 191.6 227.2 280.0 331.4 1980's 367.7 453.7 514.4 371.7 326.5 349.4 364.6 279.6 354.7 362.2 1990's 383.6 421.5 382.6 426.8 483.2

  10. Gas-liquid separator and method of operation

    DOEpatents

    Soloveichik, Grigorii Lev; Whitt, David Brandon

    2009-07-14

    A system for gas-liquid separation in electrolysis processes is provided. The system includes a first compartment having a liquid carrier including a first gas therein and a second compartment having the liquid carrier including a second gas therein. The system also includes a gas-liquid separator fluidically coupled to the first and second compartments for separating the liquid carrier from the first and second gases.

  11. Operating experience with ESP`s and permanent downhole flowmeters in Wytch Farm extended reach wells

    SciTech Connect

    Brodie, A.; Allan, J.; Hill, G.

    1994-12-31

    One third of the recoverable reserves in BP`s UK onshore oilfield, Wytch Farm, lie in an offshore extension of the field. These reserves, which have until recently been undeveloped, are now being exploited using Electric Submersible Pump`s (ESP`s) in Extended Reach (ER) wells drilled from onshore wellsites. The relatively high productivities achieved, as a result of successful horizontal completions, have pushed ESP technology to the limits in terms of capacity and power requirements. This paper presents a case history of the unique set of problems encountered during and subsequent to start-up of the ESP`s in the first 3 of these wells. The problems, in particular, pump suction blockage problems, were directly attributable to the position of the ESP`s in the near horizontal section (82--85 degrees) of the wells. The paper also describes the innovative permanent downhole flowmeter system which was incorporated in the completion. The system measures and logs flow rate data, pump suction pressure, pump discharge pressure and temperature. Examples are presented which clearly demonstrate how these data have been invaluable in understanding the problems encountered in the initial ER wells and the role the system has played in extending ESP run lives. Finally, completion equipment modifications and operating procedure changes, which were successfully introduced to resolve the problems encountered in the first two wells, and avoid them in subsequent wells, are described.

  12. New Mexico Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    Gasoline and Diesel Fuel Update

    1,341,475 1,287,682 1,276,296 1,247,394 1,266,379 1,296,458 1967-2015 From Gas Wells 616,134 556,024 653,057 588,127 532,600 472,356 1967-2015 From Oil Wells 238,580 252,326 127,009 160,649 204,342 249,366 1967-2015 From Shale Gas Wells 71,867 93,071 127,548 167,961 218,023 287,587 2007-2015 From Coalbed Wells 414,894 386,262 368,682 330,658 311,414 287,149 2002-2015 Repressuring 7,513 6,687 9,906 12,583 17,599 26,382 1967-2015 Vented and Flared 1,586 4,360 12,259 21,053 19,119 24,850 1967-2015

  13. Texas Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic Feet)

    Gasoline and Diesel Fuel Update

    7,593,697 7,934,689 8,143,510 8,299,472 8,659,188 8,801,282 1967-2015 From Gas Wells 4,441,188 3,794,952 3,619,901 3,115,409 2,672,326 2,316,239 1967-2015 From Oil Wells 849,560 1,073,301 860,675 1,166,810 1,558,002 1,801,212 1967-2015 From Shale Gas Wells 2,302,950 3,066,435 3,662,933 4,017,253 4,428,859 4,683,831 2007-2015 From Coalbed Wells 0 0 0 0 0 0 2002-2015 Repressuring 558,854 502,020 437,367 423,413 440,153 533,047 1967-2015 Vented and Flared 39,569 35,248 47,530 76,113 90,125 113,786

  14. Spin coherence of the two-dimensional electron gas in a GaAs quantum well

    SciTech Connect

    Larionov, A. V.

    2015-01-15

    The coherent spin dynamics of the quasi-two-dimensional electron gas in a GaAs quantum well is experimentally investigated using the time-resolved spin Kerr effect in an optical cryostat with a split coil inducing magnetic fields of up to 6 T at a temperature of about 2 K. The electron spin dephasing times and degree of anisotropy of the spin relaxation of electrons are measured in zero magnetic field at different electron densities. The dependence of the spin-orbit splitting on the electron-gas density is established. In the integral quantum-Hall-effect mode, the unsteady behavior of the spin dephasing time of 2D electrons of the lower Landau spin sublevel near the odd occupation factor ν = 3 is found. The experimentally observed unsteady behavior of the spin dephasing time can be explained in terms of new-type cyclotron modes that occur in a liquid spin texture.

  15. Systems acceptance and operability testing for rotary mode core sampling in flammable gas tanks

    SciTech Connect

    Corbett, J.E., Westinghouse Hanford

    1996-07-29

    This document provides instructions for the system acceptance and operability testing of the rotary mode core sampling system, modified for use in flammable gas tanks.

  16. Foamed Cement Helping to Ensure Safer Oil and Gas Operations | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Foamed Cement Helping to Ensure Safer Oil and Gas Operations Foamed Cement Helping to Ensure Safer Oil and Gas Operations September 29, 2016 - 8:53am Addthis Foamed Cement Helping to Ensure Safer Oil and Gas Operations Foamed cement, which looks and feels like a gritty gray shaving cream, is used during oil and gas drilling operations to encase production tubes and prevent leaks and spills. The cured material creates a seal that protects underground sources of drinking water, but

  17. Hydrogeochemical investigations in support of well logging operations at the Zunil geothermal field, Guatemala

    SciTech Connect

    Adams, A.; Golf, F.; Trujillo, P.E. Jr.; Counce, D.; Archuleta, J.; Dennis, B. ); Medina, V. . Inst. Nacional de Electrificacion)

    1990-01-01

    A suite of 41 thermal and nonthermal waters in the Zunil-Quetzaltenango region, Guatemala, were collected as part of a well logging operation conducted by the Instituto Nacional de Electrificacion (INDE) and Los Alamos National Laboratory. Both in situ and weirbox samples were collected in the Zunil geothermal field. The various data suggest that the reservoir at Zunil is geochemically inhomogeneous. Stable isotope data suggest recharge to the field comes primarily from the north and east whereas tritium data indicate that the reservoir waters may be 500 to 7500 years old. 14 refs., 4 figs., 3 tabs.

  18. ,"U.S. Underground Natural Gas Storage - All Operators"

    Energy Information Administration (EIA) (indexed site)

    Total Underground Storage",6,"Monthly","72015","01151973" ,"Data 2","Change in Working Gas from Same Period Previous Year",2,"Monthly","72015","01151973" ,"Release...

  19. Computer simulation of nonstationary thermal fields in design and operation of northern oil and gas fields

    SciTech Connect

    Vaganova, N. A.; Filimonov, M. Yu.

    2015-11-30

    A mathematical model, numerical algorithm and program code for simulation and long-term forecasting of changes in permafrost as a result of operation of a multiple well pad of northern oil and gas field are presented. In the model the most significant climatic and physical factors are taken into account such as solar radiation, determined by specific geographical location, heterogeneous structure of frozen soil, thermal stabilization of soil, possible insulation of the objects, seasonal fluctuations in air temperature, and freezing and thawing of the upper soil layer. Results of computing are presented.

  20. Formation resistivity measurements from within a cased well used to quantitatively determine the amount of oil and gas present

    DOEpatents

    Vail, III, William B.

    1997-01-01

    Methods to quantitatively determine the separate amounts of oil and gas in a geological formation adjacent to a cased well using measurements of formation resistivity are disclosed. The steps include obtaining resistivity measurements from within a cased well of a given formation, obtaining the porosity, obtaining the resistivity of formation water present, computing the combined amounts of oil and gas present using Archie's Equations, determining the relative amounts of oil and gas present from measurements within a cased well, and then quantitatively determining the separate amounts of oil and gas present in the formation.

  1. Formation resistivity measurements from within a cased well used to quantitatively determine the amount of oil and gas present

    DOEpatents

    Vail, W.B. III

    1997-05-27

    Methods to quantitatively determine the separate amounts of oil and gas in a geological formation adjacent to a cased well using measurements of formation resistivity are disclosed. The steps include obtaining resistivity measurements from within a cased well of a given formation, obtaining the porosity, obtaining the resistivity of formation water present, computing the combined amounts of oil and gas present using Archie`s Equations, determining the relative amounts of oil and gas present from measurements within a cased well, and then quantitatively determining the separate amounts of oil and gas present in the formation. 7 figs.

  2. Well blowout rates in California Oil and Gas District 4--Update and Trends

    SciTech Connect

    Jordan, Preston D.; Benson, Sally M.

    2009-10-01

    Well blowouts are one type of event in hydrocarbon exploration and production that generates health, safety, environmental and financial risk. Well blowouts are variously defined as 'uncontrolled flow of well fluids and/or formation fluids from the wellbore' or 'uncontrolled flow of reservoir fluids into the wellbore'. Theoretically this is irrespective of flux rate and so would include low fluxes, often termed 'leakage'. In practice, such low-flux events are not considered well blowouts. Rather, the term well blowout applies to higher fluxes that rise to attention more acutely, typically in the order of seconds to days after the event commences. It is not unusual for insurance claims for well blowouts to exceed US$10 million. This does not imply that all blowouts are this costly, as it is likely claims are filed only for the most catastrophic events. Still, insuring against the risk of loss of well control is the costliest in the industry. The risk of well blowouts was recently quantified from an assembled database of 102 events occurring in California Oil and Gas District 4 during the period 1991 to 2005, inclusive. This article reviews those findings, updates them to a certain extent and compares them with other well blowout risk study results. It also provides an improved perspective on some of the findings. In short, this update finds that blowout rates have remained constant from 2005 to 2008 within the limits of resolution and that the decline in blowout rates from 1991 to 2005 was likely due to improved industry practice.

  3. AGA Producing Region Underground Natural Gas Storage - All Operators

    Energy Information Administration (EIA) (indexed site)

    1,689,895 1,688,206 1,865,696 2,041,963 2,126,724 2,176,332 1994-2015 Base Gas 1,087,170 1,084,178 1,084,148 1,086,406 1,088,335 1,088,465 1994-2015 Working Gas 602,725 604,028...

  4. Internal combustion engine for natural gas compressor operation

    DOEpatents

    Hagen, Christopher L.; Babbitt, Guy; Turner, Christopher; Echter, Nick; Weyer-Geigel, Kristina

    2016-04-19

    This application concerns systems and methods for compressing natural gas with an internal combustion engine. In a representative embodiment, a system for compressing a gas comprises a reciprocating internal combustion engine including at least one piston-cylinder assembly comprising a piston configured to travel in a cylinder and to compress gas in the cylinder in multiple compression stages. The system can further comprise a first pressure tank in fluid communication with the piston-cylinder assembly to receive compressed gas from the piston-cylinder assembly until the first pressure tank reaches a predetermined pressure, and a second pressure tank in fluid communication with the piston-cylinder assembly and the first pressure tank. The second pressure tank can be configured to receive compressed gas from the piston-cylinder assembly until the second pressure tank reaches a predetermined pressure. When the first and second pressure tanks have reached the predetermined pressures, the first pressure tank can be configured to supply gas to the piston-cylinder assembly, and the piston can be configured to compress the gas supplied by the first pressure tank such that the compressed gas flows into the second pressure tank.

  5. Lower 48 States Underground Natural Gas Storage - All Operators

    Energy Information Administration (EIA) (indexed site)

    8,266,377 8,001,243 7,270,200 6,866,117 2011-2016 Base Gas 4,350,036 4,350,581 4,353,183 4,348,362 4,346,354 4,345,766 2011-2016 Working Gas 3,600,021 3,928,475 3,913,194 ...

  6. Midwest Region Underground Natural Gas Storage - All Operators

    Energy Information Administration (EIA) (indexed site)

    375 2,180,135 2,319,830 2,461,785 2,582,258 2,578,619 2014-2015 Base Gas 1,496,379 1,496,378 1,488,687 1,489,658 1,487,866 1,487,894 2014-2015 Working Gas 564,995 683,757 831,144...

  7. AGA Producing Region Underground Natural Gas Storage - All Operators

    Energy Information Administration (EIA) (indexed site)

    1,863,519 1,917,665 2,042,184 2,206,064 2,200,189 2,159,737 1994-2014 Base Gas 1,083,436 1,087,842 1,089,725 1,089,543 1,089,660 1,089,228 1994-2014 Working Gas 780,084 829,824...

  8. South Central Region Underground Natural Gas Storage - All Operators

    Energy Information Administration (EIA) (indexed site)

    225 2,109,107 2,154,799 2,265,050 2,381,950 2,393,620 2014-2015 Base Gas 1,058,973 1,059,103 1,058,987 1,058,721 1,060,652 1,061,199 2014-2015 Working Gas 1,002,252 1,050,004...

  9. U.S. Footage Drilled for Crude Oil, Natural Gas, and Dry Exploratory Wells

    Gasoline and Diesel Fuel Update

    (Thousand Feet) Wells (Thousand Feet) U.S. Footage Drilled for Crude Oil, Natural Gas, and Dry Exploratory Wells (Thousand Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1940's 34,798 1950's 40,175 49,344 55,615 60,664 59,601 69,206 74,337 69,181 61,484 63,253 1960's 55,831 54,442 53,616 53,485 55,497 49,204 55,709 47,839 50,958 57,466 1970's 43,530 41,895 44,956 45,618 51,315 54,677 53,617 57,949 65,197 63,096 1980's 74,288 101,808 88,856 69,690 80,853

  10. U.S. Footage Drilled for Natural Gas Exploratory and Developmental Wells

    Gasoline and Diesel Fuel Update

    (Thousand Feet) and Developmental Wells (Thousand Feet) U.S. Footage Drilled for Natural Gas Exploratory and Developmental Wells (Thousand Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1940's 12,437 1950's 13,685 13,947 15,257 18,248 18,857 19,930 22,738 23,836 25,555 26,606 1960's 28,246 29,292 28,949 24,533 25,598 24,931 25,948 21,581 20,716 24,162 1970's 23,623 23,460 30,006 38,045 38,449 44,454 49,113 63,686 75,841 80,468 1980's 92,106 108,353 107,149

  11. U.S. Nominal Cost per Foot of Crude Oil, Natural Gas, and Dry Wells Drilled

    Gasoline and Diesel Fuel Update

    (Dollars per Foot) Oil, Natural Gas, and Dry Wells Drilled (Dollars per Foot) U.S. Nominal Cost per Foot of Crude Oil, Natural Gas, and Dry Wells Drilled (Dollars per Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 13.01 12.85 13.31 12.69 12.86 13.44 14.95 15.97 16.83 17.56 1970's 18.84 19.03 20.76 22.50 28.93 36.99 40.46 46.81 56.63 67.70 1980's 77.02 94.30 108.73 83.34 71.90 75.35 76.88 58.71 70.23 73.55 1990's 76.07 82.64 70.27 75.30 79.49 87.22

  12. U.S. Nominal Cost per Foot of Natural Gas Wells Drilled (Dollars per Foot)

    Gasoline and Diesel Fuel Update

    Natural Gas Wells Drilled (Dollars per Foot) U.S. Nominal Cost per Foot of Natural Gas Wells Drilled (Dollars per Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 18.57 17.65 18.10 17.19 18.57 18.35 21.75 23.05 24.05 25.58 1970's 26.75 27.70 27.78 27.46 34.11 46.23 49.78 57.57 68.37 80.66 1980's 95.16 122.17 146.20 108.37 88.80 93.09 93.02 69.55 84.65 86.86 1990's 90.73 93.10 72.83 83.15 81.90 95.97 98.67 117.55 127.94 138.42 2000's 138.39 172.05 175.78

  13. U.S. Average Depth of Crude Oil, Natural Gas, and Dry Developmental Wells

    Gasoline and Diesel Fuel Update

    Drilled (Feet per Well) Developmental Wells Drilled (Feet per Well) U.S. Average Depth of Crude Oil, Natural Gas, and Dry Developmental Wells Drilled (Feet per Well) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1940's 3,568 1950's 3,691 3,851 3,999 3,880 3,905 3,904 3,880 3,966 3,907 3,999 1960's 4,020 4,064 4,227 4,193 4,179 4,288 4,112 4,004 4,328 4,431 1970's 4,610 4,480 4,590 4,687 4,249 4,285 4,214 4,404 4,421 4,374 1980's 4,166 4,209 4,225 4,004 4,125

  14. U.S. Average Depth of Crude Oil, Natural Gas, and Dry Exploratory Wells

    Gasoline and Diesel Fuel Update

    Drilled (Feet per Well) Wells Drilled (Feet per Well) U.S. Average Depth of Crude Oil, Natural Gas, and Dry Exploratory Wells Drilled (Feet per Well) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1940's 3,842 1950's 3,898 4,197 4,476 4,557 4,550 4,632 4,587 4,702 4,658 4,795 1960's 4,770 4,953 4,966 5,016 5,174 5,198 5,402 5,388 5,739 5,924 1970's 5,885 5,915 6,015 5,955 5,777 5,842 5,825 5,798 5,978 5,916 1980's 5,733 5,793 5,597 5,035 5,369 5,544 5,680 5,563

  15. U.S. Average Depth of Natural Gas Developmental Wells Drilled (Feet per

    Gasoline and Diesel Fuel Update

    Well) Developmental Wells Drilled (Feet per Well) U.S. Average Depth of Natural Gas Developmental Wells Drilled (Feet per Well) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1940's 3,412 1950's 3,766 3,837 4,015 4,373 4,365 4,339 4,734 4,950 4,801 5,120 1960's 5,321 5,145 5,186 5,198 5,171 5,337 5,474 5,629 5,716 5,531 1970's 5,644 5,670 5,259 5,286 5,173 5,238 4,960 5,053 5,066 5,082 1980's 5,093 5,149 5,453 5,187 5,158 5,193 5,080 5,112 5,155 5,038 1990's

  16. U.S. Average Depth of Natural Gas Exploratory and Developmental Wells

    Gasoline and Diesel Fuel Update

    Drilled (Feet per Well) and Developmental Wells Drilled (Feet per Well) U.S. Average Depth of Natural Gas Exploratory and Developmental Wells Drilled (Feet per Well) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1940's 3,698 1950's 3,979 4,056 4,342 4,599 4,670 4,672 5,018 5,326 5,106 5,396 1960's 5,486 5,339 5,408 5,368 5,453 5,562 5,928 5,898 5,994 5,918 1970's 5,860 5,890 5,516 5,488 5,387 5,470 5,220 5,254 5,262 5,275 1980's 5,275 5,351 5,617 5,319 5,276

  17. Well-to-wheels Analysis of Energy Use and Greenhouse Gas Emissions of Hydrogen Produced with Nuclear Energy

    SciTech Connect

    Wu, Ye; Wang, Michael Q.; Vyas, Anant D.; Wade, David C.; Taiwo, Temitope A.

    2004-07-01

    A fuel-cycle model-called the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model-has been developed at Argonne National Laboratory to evaluate well-to-wheels (WTW) energy and emission impacts of motor vehicle technologies fueled with various transportation fuels. The GREET model contains various hydrogen (H{sub 2}) production pathways for fuel-cell vehicles (FCVs) applications. In this effort, the GREET model was expanded to include four nuclear H{sub 2} production pathways: (1) H{sub 2} production at refueling stations via electrolysis using Light Water Reactor (LWR)-generated electricity; (2) H{sub 2} production in central plants via thermo-chemical water cracking using steam from High Temperature Gas cooled Reactor (HTGR); (3) H{sub 2} production in central plants via high-temperature electrolysis using HTGR-generated electricity and steam; and (4) H{sub 2} production at refueling stations via electrolysis using HTGR-generated electricity The WTW analysis of these four options include these stages: uranium ore mining and milling; uranium ore transportation; uranium conversion; uranium enrichment; uranium fuel fabrication; uranium fuel transportation; electricity or H{sub 2} production in nuclear power plants; H{sub 2} transportation; H{sub 2} compression; and H{sub 2} FCVs operation. Due to large differences in electricity requirements for uranium fuel enrichment between gas diffusion and centrifuge technologies, two scenarios were designed for uranium enrichment: (1) 55% of fuel enriched through gaseous diffusion technology and 45% through centrifuge technology (the current technology split for U.S. civilian nuclear power plants); and (2) 100% fuel enrichment using the centrifuge technology (a future trend). Our well-to-pump (WTP) results show that significant reductions in fossil energy use and greenhouse gas (GHG) emissions are achieved by nuclear-based H{sub 2} compared to natural gas-based H{sub 2} production via steam

  18. Pacific Region Underground Natural Gas Storage - All Operators

    Energy Information Administration (EIA) (indexed site)

    Mar-16 Apr-16 May-16 Jun-16 Jul-16 Aug-16 View History Natural Gas in Storage 525,124 546,324 565,012 575,121 575,495 573,856 2013-2016 Base Gas 259,331 259,331 259,331 259,331 259,331 259,331 2013-2016 Working Gas 265,792 286,993 305,681 315,789 316,164 314,524 2013-2016 Net Withdrawals -3,232 -21,206 -22,310 -10,112 -906 2,142 2013-2016 Injections 16,892 23,819 27,387 15,867 11,961 10,000 2013-2016 Withdrawals 13,660 2,613 5,078 5,755 11,056 12,142 2013-2016 Change in Working Gas from Same

  19. U.S. Underground Natural Gas Storage - All Operators

    Energy Information Administration (EIA) (indexed site)

    Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming ... Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 Mar-16 View History Natural Gas in Storage 8,317,848 ...

  20. Lower 48 States Underground Natural Gas Storage - All Operators

    Gasoline and Diesel Fuel Update

    5,996,949 5,804,144 6,125,877 6,622,606 6,984,761 7,267,318 2011-2015 Base Gas 4,345,006 4,345,836 4,345,412 4,347,895 4,356,082 4,357,143 2011-2015 Working Gas 1,651,943 1,458,308...

  1. New Mexico Underground Natural Gas Storage - All Operators

    Energy Information Administration (EIA) (indexed site)

    74,320 74,935 73,367 71,954 73,611 74,781 1990-2016 Base Gas 29,362 29,362 29,362 29,362 29,362 29,362 1990-2016 Working Gas 44,957 45,573 44,005 42,592 44,249 45,419 1990-2016 Net ...

  2. Statement of Work for Drilling Four CERCLA Groundwater Monitoring Wells During Fiscal Year 2006, 300-FF-5 Operable Unit

    SciTech Connect

    Williams, Bruce A.

    2005-10-10

    This document contains the statement of work required to drill, characterize, and construct the proposed groundwater monitoring wells at 300-FF-5 Operable Unit during FY 2006.

  3. Combination gas-producing and waste-water disposal well. [DOE patent application

    DOEpatents

    Malinchak, R.M.

    1981-09-03

    The present invention is directed to a waste-water disposal system for use in a gas recovery well penetrating a subterranean water-containing and methane gas-bearing coal formation. A cased bore hole penetrates the coal formation and extends downwardly therefrom into a further earth formation which has sufficient permeability to absorb the waste water entering the borehole from the coal formation. Pump means are disposed in the casing below the coal formation for pumping the water through a main conduit towards the water-absorbing earth formation. A barrier or water plug is disposed about the main conduit to prevent water flow through the casing except for through the main conduit. Bypass conduits disposed above the barrier communicate with the main conduit to provide an unpumped flow of water to the water-absorbing earth formation. One-way valves are in the main conduit and in the bypass conduits to provide flow of water therethrough only in the direction towards the water-absorbing earth formation.

  4. Purge gas protected transportable pressurized fuel cell modules and their operation in a power plant

    DOEpatents

    Zafred, P.R.; Dederer, J.T.; Gillett, J.E.; Basel, R.A.; Antenucci, A.B.

    1996-11-12

    A fuel cell generator apparatus and method of its operation involves: passing pressurized oxidant gas and pressurized fuel gas into modules containing fuel cells, where the modules are each enclosed by a module housing surrounded by an axially elongated pressure vessel, and where there is a purge gas volume between the module housing and pressure vessel; passing pressurized purge gas through the purge gas volume to dilute any unreacted fuel gas from the modules; and passing exhaust gas and circulated purge gas and any unreacted fuel gas out of the pressure vessel; where the fuel cell generator apparatus is transportable when the pressure vessel is horizontally disposed, providing a low center of gravity. 11 figs.

  5. Purge gas protected transportable pressurized fuel cell modules and their operation in a power plant

    DOEpatents

    Zafred, Paolo R.; Dederer, Jeffrey T.; Gillett, James E.; Basel, Richard A.; Antenucci, Annette B.

    1996-01-01

    A fuel cell generator apparatus and method of its operation involves: passing pressurized oxidant gas, (O) and pressurized fuel gas, (F), into fuel cell modules, (10 and 12), containing fuel cells, where the modules are each enclosed by a module housing (18), surrounded by an axially elongated pressure vessel (64), where there is a purge gas volume, (62), between the module housing and pressure vessel; passing pressurized purge gas, (P), through the purge gas volume, (62), to dilute any unreacted fuel gas from the modules; and passing exhaust gas, (82), and circulated purge gas and any unreacted fuel gas out of the pressure vessel; where the fuel cell generator apparatus is transpatable when the pressure vessel (64) is horizontally disposed, providing a low center of gravity.

  6. TECHNOLOGIES TO ENHANCE OPERATION OF THE EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE

    SciTech Connect

    Anthony J. Smalley; Ralph E. Harris; Gary D. Bourn

    2003-10-01

    This report documents work performed in the fourth quarter of the project entitled: ''Technologies to Enhance Operation of the Existing Natural Gas Compression Infrastructure''. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report describes the following work: second field test; test data analysis for the first field test; operational optimization plans.

  7. Stimulation rationale for shale gas wells: a state-of-the-art report

    SciTech Connect

    Young, C.; Barbour, T.; Blanton, T.L.

    1980-12-01

    Despite the large quantities of gas contained in the Devonian Shales, only a small percentage can be produced commercially by current production methods. This limited production derives both from the unique reservoir properties of the Devonian Shales and the lack of stimulation technologies specifically designed for a shale reservoir. Since October 1978 Science Applications, Inc. has been conducting a review and evaluation of various shale well stimulation techniques with the objective of defining a rationale for selecting certain treatments given certain reservoir conditions. Although this review and evaluation is ongoing and much more data will be required before a definitive rationale can be presented, the studies to date do allow for many preliminary observations and recommendations. For the hydraulic type treatments the use of low-residual-fluid treatments is highly recommended. The excellent shale well production which is frequently observed with only moderate wellbore enlargement treatments indicates that attempts to extend fractures to greater distances with massive hydraulic treatments are not warranted. Immediate research efforts should be concentrated upon limiting production damage by fracturing fluids retained in the formation, and upon improving proppant transport and placement so as to maximize fracture conductivity. Recent laboratory, numerical modeling and field studies all indicate that the gas fracturing effects of explosive/propellant type treatments are the predominate production enhancement mechanism and that these effects can be controlled and optimized with properly designed charges. Future research efforts should be focused upon the understanding, prediction and control of wellbore fracturing with tailored-pulse-loading charges. 36 references, 7 figures, 2 tables.

  8. New Claus tail-gas process proved in German operation

    SciTech Connect

    Kettner, R.; Liermann, N.

    1988-01-11

    A process for removing sulfur components from Claus-plant tail gases increases sulfur-recovery rates to 99.5%. It has been in use for more than 4 years. In December 1983, a tail-gas cleaning unit was started up for the sulfur-recovery plants of the Nordeutsche Erdgas Aufbereitungsgesellschaft (NEAG) natural-gas treating complex at Voigten, West Germany. NEAG, a joint venture of Exxon, Shell, and Mobil Oil, desulfurizes 7.7 million normal cu m/day (approximately 271.2 million cfd) of sour gas in three plants. Up to 1,050 tons/day of elemental sulfur are produced (Fig. 1). Mobil Oil AG developed the process which has been dubbed the Mobil direct-oxidation process (Modop).

  9. Mountain Region Underground Natural Gas Storage - All Operators

    Energy Information Administration (EIA) (indexed site)

    570,852 578,589 603,180 623,304 635,601 646,974 2013-2016 Base Gas 426,050 426,104 426,133 426,165 426,157 426,145 2013-2016 Working Gas 144,803 152,484 177,047 197,139 209,444 220,828 2013-2016 Net Withdrawals -910 -7,610 -24,696 -20,024 -12,418 -11,103 2013-2016 Injections 16,189 15,107 27,298 22,765 17,788 18,160 2013-2016 Withdrawals 15,279 7,497 2,602 2,741 5,370 7,057 2013-2016 Change in Working Gas from Same Period Previous Year Volume 31,462 36,352 41,855 42,528 37,629 33,712 2013-2016

  10. East Region Underground Natural Gas Storage - All Operators

    Energy Information Administration (EIA) (indexed site)

    1,548,115 1,573,767 1,667,782 1,766,857 1,847,563 1,917,286 2013-2016 Base Gas 1,111,752 1,111,114 1,111,399 1,112,116 1,112,301 1,112,465 2013-2016 Working Gas 436,363 462,653 556,383 654,741 735,262 804,821 2013-2016 Net Withdrawals 53,638 -26,243 -93,997 -99,152 -80,674 -69,715 2013-2016 Injections 35,986 68,951 108,757 110,810 100,101 90,867 2013-2016 Withdrawals 89,624 42,709 14,761 11,657 19,426 21,151 2013-2016 Change in Working Gas from Same Period Previous Year Volume 197,072 153,989

  11. Formation resistivity measurements from within a cased well used to quantitatively determine the amount of oil and gas present

    DOEpatents

    Vail, III, William Banning

    2000-01-01

    Methods to quantitatively determine the separate amounts of oil and gas in a geological formation adjacent to a cased well using measurements of formation resistivity. The steps include obtaining resistivity measurements from within a cased well of a given formation, obtaining the porosity, obtaining the resistivity of formation water present, computing the combined amounts of oil and gas present using Archie's Equations, determining the relative amounts of oil and gas present from measurements within a cased well, and then quantitatively determining the separate amounts of oil and gas present in the formation. Resistivity measurements are obtained from within the cased well by conducting A.C. current from within the cased well to a remote electrode at a frequency that is within the frequency range of 0.1 Hz to 20 Hz.

  12. Strontium isotope quantification of siderite, brine and acid mine drainage contributions to abandoned gas well discharges in the Appalachian Plateau

    SciTech Connect

    Chapman, Elizabeth C.; Capo, Rosemary C.; Stewart, Brian W.; Hedin, Robert S.; Weaver, Theodore J.; Edenborn, Harry M.

    2013-04-01

    Unplugged abandoned oil and gas wells in the Appalachian region can serve as conduits for the movement of waters impacted by fossil fuel extraction. Strontium isotope and geochemical analysis indicate that artesian discharges of water with high total dissolved solids (TDS) from a series of gas wells in western Pennsylvania result from the infiltration of acidic, low Fe (Fe < 10 mg/L) coal mine drainage (AMD) into shallow, siderite (iron carbonate)-cemented sandstone aquifers. The acidity from the AMD promotes dissolution of the carbonate, and metal- and sulfate-contaminated waters rise to the surface through compromised abandoned gas well casings. Strontium isotope mixing models suggest that neither upward migration of oil and gas brines from Devonian reservoirs associated with the wells nor dissolution of abundant nodular siderite present in the mine spoil through which recharge water percolates contribute significantly to the artesian gas well discharges. Natural Sr isotope composition can be a sensitive tool in the characterization of complex groundwater interactions and can be used to distinguish between inputs from deep and shallow contamination sources, as well as between groundwater and mineralogically similar but stratigraphically distinct rock units. This is of particular relevance to regions such as the Appalachian Basin, where a legacy of coal, oil and gas exploration is coupled with ongoing and future natural gas drilling into deep reservoirs.

  13. TECHNOLOGIES TO ENHANCE OPERATION OF THE EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE

    SciTech Connect

    Anthony J. Smalley; Ralph E. Harris; Gary D. Bourn

    2004-03-01

    This report documents work performed in Phase I of the project entitled: ''Technologies to Enhance Operation of the Existing Natural Gas Compression Infrastructure''. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report describes a number of potential enhancements to the existing natural gas compression infrastructure that have been identified and qualitatively demonstrated in tests on three different integral engine/compressors in natural gas transmission service.

  14. TECHNOLOGIES TO ENHANCE OPERATION OF THE EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE

    SciTech Connect

    Anthony J. Smalley; Ralph E. Harris; Gary D. Bourn

    2004-08-01

    This report documents work performed in Phase I of the project entitled: ''Technologies to Enhance Operation of the Existing Natural Gas Compression Infracture''. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report describes a number of potential enhancements to the existing natural gas compression infrastructure that have been identified and tested on four different integral engine/compressors in natural gas transmission service.

  15. New York Underground Natural Gas Storage - All Operators

    Annual Energy Outlook

    Show Data By: Data Series Area Feb-16 Mar-16 Apr-16 May-16 Jun-16 Jul-16 View History ... Working Gas 73,296 68,695 70,516 81,586 88,885 92,270 1990-2016 Net Withdrawals 14,573 ...

  16. California--State Offshore Natural Gas Withdrawals from Oil Wells (Million

    Energy Information Administration (EIA) (indexed site)

    Cubic Feet) Oil Wells (Million Cubic Feet) California--State Offshore Natural Gas Withdrawals from Oil Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 11,226 12,829 1980's 11,634 11,759 12,222 12,117 12,525 13,378 12,935 10,962 9,728 8,243 1990's 7,743 7,610 7,242 6,484 7,204 5,904 6,309 7,171 6,883 6,738 2000's 7,808 7,262 7,068 6,866 6,966 6,685 6,654 6,977 6,764 5,470 2010's 5,483 4,904 4,411 5,057 5,395 4,692 - = No Data

  17. U.S. Footage Drilled for Natural Gas Developmental Wells (Thousand Feet)

    Gasoline and Diesel Fuel Update

    Developmental Wells (Thousand Feet) U.S. Footage Drilled for Natural Gas Developmental Wells (Thousand Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1940's 10,028 1950's 11,329 11,451 11,863 14,296 14,458 14,718 17,559 17,869 20,083 20,575 1960's 22,780 24,042 23,762 20,303 21,394 21,174 20,140 17,602 16,975 19,177 1970's 19,945 19,850 25,159 31,007 30,766 36,032 39,992 53,431 64,043 67,825 1980's 78,244 91,274 92,386 67,844 81,545 68,149 39,638 37,520 40,371

  18. U.S. Footage Drilled for Natural Gas Exploratory Wells (Thousand Feet)

    Gasoline and Diesel Fuel Update

    Wells (Thousand Feet) U.S. Footage Drilled for Natural Gas Exploratory Wells (Thousand Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1940's 2,409 1950's 2,356 2,496 3,394 3,952 4,399 5,212 5,179 5,967 5,472 6,031 1960's 5,466 5,250 5,187 4,230 4,204 3,757 5,808 3,979 3,741 4,985 1970's 3,678 3,610 4,847 7,038 7,683 8,422 9,121 10,255 11,798 12,643 1980's 13,862 17,079 14,763 10,264 9,935 8,144 5,401 5,064 4,992 4,664 1990's 5,765 4,615 3,543 3,947 5,120

  19. Wetland treatment of oil and gas well waste waters. Final report

    SciTech Connect

    Kadlec, R.; Srinivasan, K.

    1995-08-01

    Constructed wetlands are small on-site systems that possess three of the most desirable components of an industrial waste water treatment scheme: low cost, low maintenance and upset resistance. The main objective of the present study is to extend the knowledge base of wetland treatment systems to include processes and substances of particular importance to small, on-site systems receiving oil and gas well wastewaters. A list of the most relevant and comprehensive publications on the design of wetlands for water quality improvement was compiled and critically reviewed. Based on our literature search and conversations with researchers in the private sector, toxic organics such as Phenolics and b-naphthoic acid, (NA), and metals such as CU(II) and CR(VI) were selected as target adsorbates. A total of 90 lysimeters equivalent to a laboratory-scale wetland were designed and built to monitor the uptake and transformation of toxic organics and the immobilization of metal ions. Studies on the uptake of toxic organics such as phenol and b-naphthoic acid (NA) and heavy metals such as Cu(II) and Cr(VI), the latter two singly or as non-stoichiometric mixtures by laboratory-type wetlands (LWs) were conducted. These LWs were designed and built during the first year of this study. A road map and guidelines for a field-scale implementation of a wetland system for the treatment of oil and gas wastewaters have been suggested. Two types of wetlands, surface flow (SF) and sub surface flow (SSF), have been considered, and the relative merits of each configuration have been reviewed.

  20. Stakeholder acceptance analysis: In-well vapor stripping, in-situ bioremediation, gas membrane separation system (membrane separation)

    SciTech Connect

    Peterson, T.

    1995-12-01

    This document provides stakeholder evaluations on innovative technologies to be used in the remediation of volatile organic compounds from soils and ground water. The technologies evaluated are; in-well vapor stripping, in-situ bioremediation, and gas membrane separation.

  1. A Guidance Document for Kentucky's Oil and Gas Operators

    SciTech Connect

    Bender, Rick

    2002-03-18

    The accompanying report, manual and assimilated data represent the initial preparation for submission of an Application for Primacy under the Class II Underground Injection Control (UIC) program on behalf of the Commonwealth of Kentucky. The purpose of this study was to identify deficiencies in Kentucky law and regulation that would prevent the Kentucky Division of Oil and Gas from receiving approval of primacy of the UIC program, currently under control of the United States Environmental Protection Agency (EPA) in Atlanta, Georgia.

  2. Cliffs Minerals, Inc. Eastern Gas Shales Project, Ohio No. 5 well - Lorain County. Phase II report. Preliminary laboratory results

    SciTech Connect

    1980-04-01

    The US Department of Energy is funding a research and development program entitled the Eastern Gas Shales Project designed to increase commercial production of natural gas in the eastern United States from Middle and Upper Devonian Shales. The program's objectives are as follows: (1) to evaluate recoverable reserves of gas contained in the shales; (2) to enhanced recovery technology for production from shale gas reservoirs; and (3) to stimulate interest among commercial gas suppliers in the concept of producing large quantities of gas from low-yield, shallow Devonian Shale wells. The EGSP-Ohio No. 5 well was cored under a cooperative cost-sharing agreement between the Department of Energy (METC) and Columbia Gas Transmission Corporation. Detailed characterization of the core was performed at the Eastern Gas Shale Project's Core Laboratory. At the well site, suites of wet and dry hole geophysical logs were run. Characterization work performed at the Laboratory included photographic logs, lithologic logs, fracture logs, measurements of core color variation, and stratigraphic interpretation of the cored intervals. In addition samples were tested for physical properties by Michigan Technological University. Physical properties data obtained were for: directional ultrasonic velocity; directional tensile strength; strength in point load; and trends of microfractures.

  3. MODELING OF FLOW AND TRANSPORT INDUCED BY PRODUCTION OF HYDROFRACTURE-STIMULATED GAS WELLS NEAR THE RULISON NUCLEAR TEST

    SciTech Connect

    Hodges, Rex A.; Cooper, Clay; Falta, Ronald

    2012-09-17

    The Piceance Basin in western Colorado contains significant reserves of natural gas in poorly connected, low-permeability (tight) sandstone lenses of the Mesaverde Group. The ability to enhance the production of natural gas in this area has long been a goal of the oil and gas industry. The U.S. Atomic Energy Commission, a predecessor agency to the U.S. Department of Energy (DOE) and the U.S. Nuclear Regulatory Commission, participated in three tests using nuclear detonations to fracture tight formations in an effort to enhance gas production. The tests were conducted under Project Plowshare, a program designed to identify peaceful, beneficial uses for nuclear devices. The first, Project Gasbuggy, was conducted in 1967 in the San Juan Basin of New Mexico. The two subsequent tests, Project Rulison in 1969 and Project Rio Blanco in 1973, were in the Piceance Basin. The ability to enhance natural gas production from tight sands has become practical through advances in hydraulic fracturing technology (hydrofracturing). This technology has led to an increase in drilling activity near the Rulison site, raising concerns that contamination currently contained in the subsurface could be released through a gas well drilled too close to the site. As wells are drilled nearer the site, the DOE Office of Legacy Management has taken the approach outlined in the June 2010 Rulison Path Forward document (DOE 2010), which recommends a conservative, staged approach to gas development. Drillers are encouraged to drill wells in areas with a low likelihood of encountering contamination (both distance and direction from the detonation zone are factors) and to collect data from these wells prior to drilling nearer the site’s 40 acre institutional control boundary (Lot 11). Previous modeling results indicate that contamination has been contained within Lot 11 (Figure 1). The Path Forward document couples the model predictions with the monitoring of gas and produced water from the gas wells

  4. TECHNOLOGIES TO ENHANCE OPERATION OF THE EXISTNG NATURAL GAS COMPRESSION INFRASTRUCTURE

    SciTech Connect

    Anthony J. Smalle; Ralph E. Harris; Gary D. Bourn

    2003-07-01

    This report documents work performed in the third quarter of the project entitled: ''Technologies to Enhance Operation of the Existing Natural Gas Compression Infrastructure''. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report describes the following work: first field test; test data analysis.

  5. TECHNOLOGIES TO ENHANCE OPERATION OF THE EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE

    SciTech Connect

    Anthony J. Smalley; Ralph E. Harris; Gary D. Bourn

    2004-01-01

    This report documents work performed in the fifth quarter of the project entitled: ''Technologies to Enhance Operation of the Existing Natural Gas Compression Infrastructure''. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report describes the following work: completion of analysis of data from first visit to second site; preparation for follow-up testing.

  6. Operation of cover-gas system during SLSF tests. [LMFBR

    SciTech Connect

    Braid, T.H.; Harper, H.A.; Wilson, R.E.

    1982-01-01

    During two tests in the Sodium Loop Safety Facility (W1 and P4), high resolution gamma-ray spectroscopy was used to detect pin failure by observing radioactive fission product isotopes of Kr and Xe from exposed fuel. A continuous stream of argon cover gas from the in-pile loop was transferred to a shielded sample volume. Two germanium crystal spectrometers continuously recorded spectra of gamma rays in the energy range 80 keV to approx. 2.7 MeV. A very wide range of signal strength was accommodated without saturation by dilution of the sample, reduction of the sample chamber volume and insertion of detecter collimators. The cover gas system provided an unambiguous indication of fuel failure during a series of boiling tests in W1. In P4, spectra were recorded after a power transient that released molten fuel and from a mass of exposed fuel at a range of reactor power levels. Gamma rays were observed from isotopes of Kr and Xe with half-lives from 3.8 m to 5.2 d.

  7. Table 4.7 Crude Oil and Natural Gas Development Wells, 1949-2010

    Energy Information Administration (EIA) (indexed site)

    ... and Table 4.6 for exploratory wells only. * Service wells, stratigraphic tests, and core tests are excluded. * For 19491959, data represent wells completed in a given year. ...

  8. U.S. Crude Oil and Natural Gas Active Well Service Rigs in operation

    Gasoline and Diesel Fuel Update

    (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2,008 2,490 2,486 2,601 2,828 2,989 3,399 1980's 4,089 4,849 4,249 3,733 4,659 4,716 3,037 3,059 3,339 3,391 1990's 3,658 3,331 2,757 3,193 2,961 3,041 3,445 3,499 3,014 2,232 2000's 2,692 2,267 1,830 1,967 2,064 2,222 2,364 2,388 2,515 1,722 2010's 1,854 2,075 2,113

  9. U.S. Crude Oil and Natural Gas Active Well Service Rigs in operation

    Gasoline and Diesel Fuel Update

    Product: Crude Oil and Petroleum Products Crude Oil All Oils (Excluding Crude Oil) Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Ethylene Propane/Propylene Propylene (Nonfuel Use) Normal Butane/Butylene Refinery Grade Butane Isobutane/Butylene Other Hydrocarbons Oxygenates (excluding Fuel Ethanol) MTBE Other Oxygenates Renewables (including Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Unfinished Oils Unfinished Oils, Naphthas & Lighter Unfinished Oils,

  10. A Resource Assessment Of Geothermal Energy Resources For Converting Deep Gas Wells In Carbonate Strata Into Geothermal Extraction Wells: A Permian Basin Evaluation

    SciTech Connect

    Erdlac, Richard J., Jr.

    2006-10-12

    Previously conducted preliminary investigations within the deep Delaware and Val Verde sub-basins of the Permian Basin complex documented bottom hole temperatures from oil and gas wells that reach the 120-180C temperature range, and occasionally beyond. With large abundances of subsurface brine water, and known porosity and permeability, the deep carbonate strata of the region possess a good potential for future geothermal power development. This work was designed as a 3-year project to investigate a new, undeveloped geographic region for establishing geothermal energy production focused on electric power generation. Identifying optimum geologic and geographic sites for converting depleted deep gas wells and fields within a carbonate environment into geothermal energy extraction wells was part of the project goals. The importance of this work was to affect the three factors limiting the expansion of geothermal development: distribution, field size and accompanying resource availability, and cost. Historically, power production from geothermal energy has been relegated to shallow heat plumes near active volcanic or geyser activity, or in areas where volcanic rocks still retain heat from their formation. Thus geothermal development is spatially variable and site specific. Additionally, existing geothermal fields are only a few 10’s of square km in size, controlled by the extent of the heat plume and the availability of water for heat movement. This plume radiates heat both vertically as well as laterally into the enclosing country rock. Heat withdrawal at too rapid a rate eventually results in a decrease in electrical power generation as the thermal energy is “mined”. The depletion rate of subsurface heat directly controls the lifetime of geothermal energy production. Finally, the cost of developing deep (greater than 4 km) reservoirs of geothermal energy is perceived as being too costly to justify corporate investment. Thus further development opportunities

  11. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update

    planning information that will assist in maintaining the operational integrity and reliability of pipeline service, as well as providing gas-fired power plant operators with...

  12. Electric Power Generation from Coproduced Fluids from Oil and Gas Wells

    Energy.gov [DOE]

    The primary objective of this project is to demonstrate the technical and economic feasibility of generating electricity from non-conventional low temperature (150 to 300º F) geothermal resources in oil and gas settings.

  13. Regional long-term production modeling from a single well test, Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope

    SciTech Connect

    Anderson, Brian J.; Kurihara, Masanori; White, Mark D.; Moridis, George J.; Wilson, Scott J.; Pooladi-Darvish, Mehran; Gaddipati, Manohar; Masuda, Yoshihiro; Collett, Timothy S.; Hunter, Robert B.; Narita, Hideo; Rose, Kelly; Boswell, Ray

    2011-02-01

    Following the results from the open-hole formation pressure response test in the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well (Mount Elbert well) using Schlumberger's Modular Dynamics Formation Tester (MDT) wireline tool, the International Methane Hydrate Reservoir Simulator Code Comparison project performed long-term reservoir simulations on three different model reservoirs. These descriptions were based on 1) the Mount Elbert gas hydrate accumulation as delineated by an extensive history-matching exercise, 2) an estimation of the hydrate accumulation near the Prudhoe Bay L-pad, and 3) a reservoir that would be down-dip of the Prudhoe Bay L-pad and therefore warmer and deeper. All of these simulations were based, in part, on the results of the MDT results from the Mount Elbert Well. The comparison group's consensus value for the initial permeability of the hydrate-filled reservoir (k = 0.12 mD) and the permeability model based on the MDT history match were used as the basis for subsequent simulations on the three regional scenarios. The simulation results of the five different simulation codes, CMG STARS, HydrateResSim, MH-21 HYDRES, STOMP-HYD, and TOUGH+HYDRATE exhibit good qualitative agreement and the variability of potential methane production rates from gas hydrate reservoirs is illustrated. As expected, the predicted methane production rate increased with increasing in situ reservoir temperature; however, a significant delay in the onset of rapid hydrate dissociation is observed for a cold, homogeneous reservoir and it is found to be repeatable. The inclusion of reservoir heterogeneity in the description of this cold reservoir is shown to eliminate this delayed production. Overall, simulations utilized detailed information collected across the Mount Elbert reservoir either obtained or determined from geophysical well logs, including thickness (37 ft), porosity (35%), hydrate saturation (65%), intrinsic permeability (1000 mD), pore water

  14. Well-To-Wheels Energy and Greenhouse Gas Analysis of Plug-In Hybrid Electric Vehicles

    Alternative Fuels and Advanced Vehicles Data Center

    ii This page intentionally left blank. iii CONTENTS ACKNOWLEDGMENTS ........................................................................................................ xi NOTATION .............................................................................................................................. xiii EXECUTIVE SUMMARY ...................................................................................................... 1 ES.1 CD Operation of Gasoline PHEVs and BEVs

  15. H.R. 577: A Bill to amend the Internal Revenue Code of 1986 to provide a tax credit for the production of oil and gas from existing marginal oil and gas wells and from new oil and gas wells. Introduced in the House of Representatives, One Hundred Fourth Congress, First session

    SciTech Connect

    1995-12-31

    This document contains H.R. 577, A Bill to amend the Internal Revenue Code of 1986 to provide a tax credit for the production of oil and gas from existing marginal oil and gas wells and from new oil and gas wells. This Bill was introduced in the House of Representatives, 104th Congress, First Session, January 19, 1995.

  16. S.32: A Bill to amend the Internal Revenue Code of 1986 to provide a tax credit for the production of oil and gas from existing marginal oil and gas wells and from new oil and gas wells. Introduced in the Senate of the United States, One Hundred Fourth Congress, First session

    SciTech Connect

    1995-12-31

    This bill would establish tax credits for the production of oil and natural gas from existing marginal oil or gas wells, and from new oil and gas wells. It does so by adding a section to the Internal Revenue Code of 1986 which spells out the rules, the credit amounts, the scope of the terms used to define such facilities, and other rules.

  17. Well blowout rates and consequences in California Oil and Gas District 4 from 1991 to 2005: Implications for geological storage of carbon dioxide

    SciTech Connect

    Jordan, Preston; Jordan, Preston D.; Benson, Sally M.

    2008-05-15

    Well blowout rates in oil fields undergoing thermally enhanced recovery (via steam injection) in California Oil and Gas District 4 from 1991 to 2005 were on the order of 1 per 1,000 well construction operations, 1 per 10,000 active wells per year, and 1 per 100,000 shut-in/idle and plugged/abandoned wells per year. This allows some initial inferences about leakage of CO2 via wells, which is considered perhaps the greatest leakage risk for geological storage of CO2. During the study period, 9% of the oil produced in the United States was from District 4, and 59% of this production was via thermally enhanced recovery. There was only one possible blowout from an unknown or poorly located well, despite over a century of well drilling and production activities in the district. The blowout rate declined dramatically during the study period, most likely as a result of increasing experience, improved technology, and/or changes in safety culture. If so, this decline indicates the blowout rate in CO2-storage fields can be significantly minimized both initially and with increasing experience over time. Comparable studies should be conducted in other areas. These studies would be particularly valuable in regions with CO2-enhanced oil recovery (EOR) and natural gas storage.

  18. Hindered amine development and operating experience at Quirk Creek Gas Plant

    SciTech Connect

    Smart, P.; Devenny, I. [Imperial Oil Resources Ltd., Calgary, Alberta (Canada); Rendall, A. [Nalco/Exxon Energy Chemicals, Calgary, Alberta (Canada)

    1997-12-31

    The Imperial Oil Resources Limited Quirk Creek gas plant has a significant natural gas treating challenge. The natural gas feed contains H{sub 2}S, CO{sub 2}, carbonyl sulfide, mercaptans and elemental sulfur. The trace sulfur components are difficult to remove with conventional solvents. Over its 26 year history, three different solvents have been used. The latest solvent, a hybrid of a hindered amine and a physical solvent, has been operating for over two years, with better than expected performance. This high capacity solvent has lowered operating costs by over $500,000/yr by reducing solids formation. The development work, including pilot testing at Quirk Creek, and the operating history will be reviewed.

  19. Exploration for deep gas in the Devonian Chaco Basin of Southern Bolivia: Sequence stratigraphy, predictions, and well results

    SciTech Connect

    Williams, K.E.; Radovich, B.J.; Brett, J.W.

    1995-12-31

    In mid 1991, a team was assembled in Texaco`s Frontier Exploration Department (FED) to define the hydrocarbon potential of the Chaco Basin of Southern Bolivia. The Miraflores No. 1 was drilled in the fall of 1992, for stratigraphic objectives. The well confirmed the predicted stratigraphic trap in the Mid-Devonian, with gas discovered in two highstand and transgressive sands. They are low contrast and low resistivity sands that are found in a deep basin `tight gas` setting. Testing of the gas sands was complicated by drilling fluid interactions at the well bore. Subsequent analysis indicated that the existing porosity and permeability were reduced, such that a realistic test of reservoir capabilities was prevented.

  20. Bi-gas pilot plant operation. Technical progress report, 1 November-30 November 1980

    SciTech Connect

    1980-01-01

    Test G-14A was completed; Test G-15 was initiated and also completed. During the latter part of G-14A, solids feed and pressure control remained stable but problems in the slag removal and spray drying areas limited further completion of objectives. Test G-15 also had very stable solids feed but problems with the gas washer and slag tap burner interrupted testing. Accomplishments during operation were: control of Stage I temperature with fuel gas flow; operation at reduced fuel gas rates to the A and C char burners; operation with three char burners of the new design; and collection of material balance data. The BI-GAS staged concept of gasification was developed by Bituminous Coal Research primarily to maximize the yield of methane as the coal is devolitized by the hot, hydrogen rich gas in Stage II. At present, the major developmental effort is concentrated on gasification. Current goals are to assess the viability of the process from an operating and cost standpoint, determine possible improvements, and obtain design data for a full scale plant.

  1. TECHNOLOGIES TO ENHANCE OPERATION OF THE EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE

    SciTech Connect

    Anthony J. Smalley; Ralph E. Harris; Gary D. Bourn

    2004-10-01

    This quarterly report documents work performed under Tasks 10 through 14 of the project entitled: Technologies to Enhance Operation of the Existing Natural Gas Compression Infrastructure. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report documents the second series of tests performed on a GMW10 engine/compressor after modifications to add high pressure Fuel and a Turbocharger. It also presents baseline testing for air balance investigations and initial simulation modeling of the air manifold for a Cooper GMVH6.

  2. TECHNOLOGIES TO ENHANCE OPERATION OF THE EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE

    SciTech Connect

    Anthony J. Smalley; Ralph E. Harris; Gary D. Bourn

    2004-07-01

    This quarterly report documents work performed in Phase I of the project entitled: ''Technologies to Enhance Operation of the Existing Natural Gas Compression Infrastructure''. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report documents the second series of tests performed on a turbocharged HBA-6T engine/compressor. It also presents baseline testing for air balance investigations and initial simulation modeling of the air manifold for a Cooper GMVH6.

  3. TECHNOLOGIES TO ENHANCE OPERATION OF THE EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE

    SciTech Connect

    Anthony J. Smalley; Ralph E. Harris

    2003-01-01

    This report documents work performed in the first quarter of the project entitled: ''Technologies to Enhance Operation of the Existing Natural Gas Compression Infrastructure''. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report describes the following work: preparation and submission of the Research Management Plan; preparation and submission of the Technology Status Assessment; attendance at the Project Kick-Off meeting at DOE-NETL; formation of the Industry Advisory Committee (IAC) for the project; preparation of the Test Plan; acquisition and assembly of the data acquisition system (DAS).

  4. TECHNOLOGIES TO ENHANCE OPERATION OF THE EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE

    SciTech Connect

    Anthony J. Smalley

    2003-04-01

    This report documents work performed in the second quarter of the project entitled: ''Technologies to Enhance Operation of the Existing Natural Gas Compression Infrastructure''. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report describes the following work: preparation and submission of the Technology Status Assessment; formation of the Industry Advisory Committee (IAC) for the project; attendance at the first IAC meeting; preparation of the Test Plan; completion of the data acquisition system (DAS); plans for the first field test.

  5. Phase 2 drilling operations at the Long Valley Exploratory Well (LVF 51--20)

    SciTech Connect

    Finger, J.T.; Jacobson, R.D.

    1992-06-01

    This report describes the second drilling phase, completed to a depth of 7588 feet in November 1991, of the Long Valley Exploratory Well near Mammoth Lakes, California. The well in Long Valley Caldera is planned to reach an ultimate depth of 20,000 feet or a bottomhole temperature of 500{degrees}C (whichever comes first). There will be four drilling phases, at least a year apart with scientific experiments in the wellbore between active drilling periods. Phase 1 drilling in 1989 was completed with 20 in. casing from surface to a depth of 2558 ft., and a 3.8 in. core hole was drilled below the shoe to a depth of 2754 in. Phase 2 included a 17-{1/2} in. hole out of the 20 in. shoe, with 13-3/8 in. casing to 6825 ft., and continuous wireline coring below that to 7588 ft. This document comprises a narrative log of the daily activities, the daily drilling reports, mud logger's reports, summary of drilling fluids used, and other miscellaneous records.

  6. Methods of operation of apparatus measuring formation resistivity from within a cased well having one measurement and two compensation steps

    DOEpatents

    Vail, III, William B.

    1993-01-01

    Methods of operation of an apparatus having at least two pairs of voltage measurement electrodes vertically disposed in a cased well to measure the resistivity of adjacent geological formations from inside the cased well. During stationary measurements with the apparatus at a fixed vertical depth within the cased well, the invention herein discloses methods of operation which include a measurement step and subsequent first and second compensation steps respectively resulting in improved accuracy of measurement. First and second order errors of measurement are identified, and the measurement step and two compensation steps provide methods to substantially eliminate their influence on the results. A multiple frequency apparatus adapted to movement within the well is described which simultaneously provide the measurement and two compensation steps.

  7. Experimental evidence of hot carriers solar cell operation in multi-quantum wells heterostructures

    SciTech Connect

    Rodière, Jean; Lombez, Laurent; Le Corre, Alain; Durand, Olivier; Guillemoles, Jean-François

    2015-05-04

    We investigated a semiconductor heterostructure based on InGaAsP multi quantum wells (QWs) using optical characterizations and demonstrate its potential to work as a hot carrier cell absorber. By analyzing photoluminescence spectra, the quasi Fermi level splitting Δμ and the carrier temperature are quantitatively measured as a function of the excitation power. Moreover, both thermodynamics values are measured at the QWs and the barrier emission energy. High values of Δμ are found for both transition, and high carrier temperature values in the QWs. Remarkably, the quasi Fermi level splitting measured at the barrier energy exceeds the absorption threshold of the QWs. This indicates a working condition beyond the classical Shockley-Queisser limit.

  8. Final report on evaluation of cyclocraft support of oil and gas operations in wetland areas

    SciTech Connect

    Eggington, W.J.; Stevens, P.M.; John, C.J.; Harder, B.J.; Lindstedt, D.M.

    1994-10-01

    The cyclocraft is a proven hybrid aircraft, capable of VTOL, lifting heavy and bulky loads, highly controllable, having high safety characteristics and low operating costs. Mission Research Corporation (MRC), under Department of Energy sponsorship, is evaluating the potential use of cyclocraft in the transport of drill rigs, mud, pipes and other materials and equipment, in a cost effective and environmentally safe manner, to support oil and gas drilling, production, and transportation operations in wetland areas. Based upon the results of an earlier parametric study, a cyclocraft design, having a payload capacity of 45 tons and designated H.1 Cyclocraft, was selected for further study, including the preparation of a preliminary design and a development plan, and the determination of operating costs. This report contains all of the results derived from the program to evaluate the use of cyclocraft in the support of oil and gas drilling and production operations in wetland areas.

  9. An evaluation of the deep reservoir conditions of the Bacon-Manito geothermal field, Philippines using well gas chemistry

    SciTech Connect

    D'Amore, Franco; Maniquis-Buenviaje, Marinela; Solis, Ramonito P.

    1993-01-28

    Gas chemistry from 28 wells complement water chemistry and physical data in developing a reservoir model for the Bacon-Manito geothermal project (BMGP), Philippines. Reservoir temperature, THSH, and steam fraction, y, are calculated or extrapolated from the grid defined by the Fischer-Tropsch (FT) and H2-H2S (HSH) gas equilibria reactions. A correction is made for H2 that is lost due to preferential partitioning into the vapor phase and the reequilibration of H2S after steam loss.

  10. Well-to-Wheels Analysis of Energy Use and Greenhouse Gas Emissions...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of the upstream mix of electricity generation technologies for recharging plug-in hybrid electric vehicles (PHEVs), as well as the powertrain technology and fuel sources for PHEVs. ...

  11. Well-to-Wheels analysis of landfill gas-based pathways and their addition to the GREET model.

    SciTech Connect

    Mintz, M.; Han, J.; Wang, M.; Saricks, C.; Energy Systems

    2010-06-30

    Today, approximately 300 million standard cubic ft/day (mmscfd) of natural gas and 1600 MW of electricity are produced from the decomposition of organic waste at 519 U.S. landfills (EPA 2010a). Since landfill gas (LFG) is a renewable resource, this energy is considered renewable. When used as a vehicle fuel, compressed natural gas (CNG) produced from LFG consumes up to 185,000 Btu of fossil fuel and generates from 1.5 to 18.4 kg of carbon dioxide-equivalent (CO{sub 2}e) emissions per million Btu of fuel on a 'well-to-wheel' (WTW) basis. This compares with approximately 1.1 million Btu and 78.2 kg of CO{sub 2}e per million Btu for CNG from fossil natural gas and 1.2 million Btu and 97.5 kg of CO{sub 2}e per million Btu for petroleum gasoline. Because of the additional energy required for liquefaction, LFG-based liquefied natural gas (LNG) requires more fossil fuel (222,000-227,000 Btu/million Btu WTW) and generates more GHG emissions (approximately 22 kg CO{sub 2}e /MM Btu WTW) if grid electricity is used for the liquefaction process. However, if some of the LFG is used to generate electricity for gas cleanup and liquefaction (or compression, in the case of CNG), vehicle fuel produced from LFG can have no fossil fuel input and only minimal GHG emissions (1.5-7.7 kg CO{sub 2}e /MM Btu) on a WTW basis. Thus, LFG-based natural gas can be one of the lowest GHG-emitting fuels for light- or heavy-duty vehicles. This report discusses the size and scope of biomethane resources from landfills and the pathways by which those resources can be turned into and utilized as vehicle fuel. It includes characterizations of the LFG stream and the processes used to convert low-Btu LFG into high-Btu renewable natural gas (RNG); documents the conversion efficiencies and losses of those processes, the choice of processes modeled in GREET, and other assumptions used to construct GREET pathways; and presents GREET results by pathway stage. GREET estimates of well-to-pump (WTP), pump

  12. U.S. Natural Gas Developmental Wells Drilled (Number of Elements)

    Gasoline and Diesel Fuel Update

    (Percent) Commercial Delivered for the Account of Others (Percent) U.S. Natural Gas % of Total Commercial Delivered for the Account of Others (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 10.9 1990's 13.4 14.9 16.8 16.1 20.7 23.3 22.4 29.2 33.0 33.9 2000's 36.1 34.0 36.4 34.9 35.9 35.0 36.3 37.6 38.1 40.8 2010's 42.5 44.2 46.8 46.1 46.2 46.6 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  13. Water and gas chemistry from HGP-A geothermal well: January 1980 flow test

    SciTech Connect

    Thomas, D.M.

    1980-09-01

    A two-week production test was conducted on the geothermal well HGP-A. Brine chemistry indicates that approximately six percent of the well fluids are presently derived from seawater and that this fraction will probably increase during continued production. Reservoir production is indicated to be from two chemically distinct aquifers: one having relatively high salinity and low production and the other having lower salinity and producing the bulk of the discharge.

  14. Well-to-wheels analysis of energy use and greenhouse gas emissions of plug-in hybrid electric vehicles.

    SciTech Connect

    Elgowainy, A.; Han, J.; Poch, L.; Wang, M.; Vyas, A.; Mahalik, M.; Rousseau, A.

    2010-06-14

    Plug-in hybrid electric vehicles (PHEVs) are being developed for mass production by the automotive industry. PHEVs have been touted for their potential to reduce the US transportation sector's dependence on petroleum and cut greenhouse gas (GHG) emissions by (1) using off-peak excess electric generation capacity and (2) increasing vehicles energy efficiency. A well-to-wheels (WTW) analysis - which examines energy use and emissions from primary energy source through vehicle operation - can help researchers better understand the impact of the upstream mix of electricity generation technologies for PHEV recharging, as well as the powertrain technology and fuel sources for PHEVs. For the WTW analysis, Argonne National Laboratory researchers used the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model developed by Argonne to compare the WTW energy use and GHG emissions associated with various transportation technologies to those associated with PHEVs. Argonne researchers estimated the fuel economy and electricity use of PHEVs and alternative fuel/vehicle systems by using the Powertrain System Analysis Toolkit (PSAT) model. They examined two PHEV designs: the power-split configuration and the series configuration. The first is a parallel hybrid configuration in which the engine and the electric motor are connected to a single mechanical transmission that incorporates a power-split device that allows for parallel power paths - mechanical and electrical - from the engine to the wheels, allowing the engine and the electric motor to share the power during acceleration. In the second configuration, the engine powers a generator, which charges a battery that is used by the electric motor to propel the vehicle; thus, the engine never directly powers the vehicle's transmission. The power-split configuration was adopted for PHEVs with a 10- and 20-mile electric range because they require frequent use of the engine for acceleration and to provide

  15. Well-to-Wheels Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Well-to-Wheels Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles Amgad Elgowainy and Michael Wang Center for Transportation Research Argonne National Laboratory LDV Workshop July26, 2010 2 2 2 Team Members 2  ANL's Energy Systems (ES) Division  Michael Wang (team leader)  Dan Santini  Anant Vyas  Amgad Elgowainy  Jeongwoo Han  Aymeric Rousseau  ANL's Decision and Information Sciences (DIS) Division:  Guenter Conzelmann  Leslie Poch 

  16. Two-dimensional electron gas in monolayer InN quantum wells

    SciTech Connect

    Pan, Wei; Dimakis, Emmanouil; Wang, George T.; Moustakas, Theodore D.; Tsui, Daniel C.

    2014-11-24

    We report in this letter experimental results that confirm the two-dimensional nature of the electron systems in monolayer InN quantum wells embedded in GaN barriers. The electron density and mobility of the two-dimensional electron system (2DES) in these InN quantum wells are 5×1015 cm-2 and 420 cm2 /Vs, respectively. Moreover, the diagonal resistance of the 2DES shows virtually no temperature dependence in a wide temperature range, indicating the topological nature of the 2DES.

  17. Two-dimensional electron gas in monolayer InN quantum wells

    DOE PAGES [OSTI]

    Pan, Wei; Dimakis, Emmanouil; Wang, George T.; Moustakas, Theodore D.; Tsui, Daniel C.

    2014-11-24

    We report in this letter experimental results that confirm the two-dimensional nature of the electron systems in monolayer InN quantum wells embedded in GaN barriers. The electron density and mobility of the two-dimensional electron system (2DES) in these InN quantum wells are 5×1015 cm-2 and 420 cm2 /Vs, respectively. Moreover, the diagonal resistance of the 2DES shows virtually no temperature dependence in a wide temperature range, indicating the topological nature of the 2DES.

  18. Petroleum industry in Illinois, 1984. Oil and gas developments. Waterflood operations

    SciTech Connect

    Van Den Berg, J.; Treworgy, J.D.; Elyn, J.R.

    1986-01-01

    The report includes statistical information regarding the petroleum industry in Illinois during 1984. Illinois produced 28,873,000 barrels of crude oil in 1984. The value of this crude is estimated to be $830 million. New test holes drilled for oil and gas numbered 2732 - 4.1% more than in 1983. These tests resulted in 1575 oil wells, 21 gas wells, and 1136 dry holes. In addition, 28 former dry holes were reworked or deepened and completed as producers, and 9 former producers were reworked or deepened and completed as producers in new pay zones. In oil and gas exploration and development, including service wells and structure tests, total footage drilled in 1984 was 6,868,485 feet, 5.5% more than in 1983. Ten oil fields, 50 new pay zones in fields, and 51 extensions to fields were discovered in 1984.

  19. Well-to-wheels energy use and greenhouse gas emissions analysis of plug-in hybrid electric vehicles.

    SciTech Connect

    Elgowainy, A.; Burnham, A.; Wang, M.; Molburg, J.; Rousseau, A.; Energy Systems

    2009-03-31

    Researchers at Argonne National Laboratory expanded the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model and incorporated the fuel economy and electricity use of alternative fuel/vehicle systems simulated by the Powertrain System Analysis Toolkit (PSAT) to conduct a well-to-wheels (WTW) analysis of energy use and greenhouse gas (GHG) emissions of plug-in hybrid electric vehicles (PHEVs). The WTW results were separately calculated for the blended charge-depleting (CD) and charge-sustaining (CS) modes of PHEV operation and then combined by using a weighting factor that represented the CD vehicle-miles-traveled (VMT) share. As indicated by PSAT simulations of the CD operation, grid electricity accounted for a share of the vehicle's total energy use, ranging from 6% for a PHEV 10 to 24% for a PHEV 40, based on CD VMT shares of 23% and 63%, respectively. In addition to the PHEV's fuel economy and type of on-board fuel, the marginal electricity generation mix used to charge the vehicle impacted the WTW results, especially GHG emissions. Three North American Electric Reliability Corporation regions (4, 6, and 13) were selected for this analysis, because they encompassed large metropolitan areas (Illinois, New York, and California, respectively) and provided a significant variation of marginal generation mixes. The WTW results were also reported for the U.S. generation mix and renewable electricity to examine cases of average and clean mixes, respectively. For an all-electric range (AER) between 10 mi and 40 mi, PHEVs that employed petroleum fuels (gasoline and diesel), a blend of 85% ethanol and 15% gasoline (E85), and hydrogen were shown to offer a 40-60%, 70-90%, and more than 90% reduction in petroleum energy use and a 30-60%, 40-80%, and 10-100% reduction in GHG emissions, respectively, relative to an internal combustion engine vehicle that used gasoline. The spread of WTW GHG emissions among the different fuel production

  20. Technical Demonstration and Economic Validation of Geothermal-Produced Electricity from Coproduced Water at Existing Oil/Gas Wells in Texas

    Energy.gov [DOE]

    Technical Demonstration and Economic Validation of Geothermal-Produced Electricity from Coproduced Water at Existing Oil/Gas Wells in Texas.

  1. Well-to-Wheels Analysis of Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report examines energy use and emissions from primary energy source through vehicle operation to help researchers understand the impact of the upstream mix of electricity generation technologies for recharging PHEVs, as well as the powertrain technology and fuel sources for PHEVs.

  2. Well-to-Wheels Analysis of Energy Use and Greenhouse Gas Emissions of Plug-in Hybrid Electric Vehicles

    SciTech Connect

    Elgowainy, A.; Han, J.; Poch, L.; Wang, M.; Vyas, A.; Mahalik, M.; Rousseau, A.

    2010-06-01

    This report examines energy use and emissions from primary energy source through vehicle operation to help researchers understand the impact of the upstream mix of electricity generation technologies for recharging plug-in hybrid electric vehicles (PHEVs), as well as the powertrain technology and fuel sources for PHEVs.

  3. Operating experience with ESP`s and permanent downhole flowmeters in Wytch Farm extended-reach wells

    SciTech Connect

    Brodie, A.D.; Hill, G.; Allan, J.C.

    1995-10-01

    One-third of the recoverable reserves in British Petroleum Co.`s U.K. onshore oil field, Wytch Farm, lie in an offshore extension of the field. These reserves, which have been undeveloped until recently, are now being exploited with electric submersible pumps (ESP`s) in extended-reach wells drilled from onshore wellsites. The relatively high productivities achieved as a result of successful horizontal completions have pushed ESP technology to the limits in terms of capacity and power requirements. This paper presents a case history of /the unique set of problems encountered during and subsequent to startup of the ESP`s in the first three wells. The problems, in particular pump-suction-blockage problems, were directly attributable to the position of the ESP`s in the near-horizontal section (82 to 85{degree}) of the wells. The paper also describes the innovative permanent downhole flowmeter system incorporated in the completion. The system measures and logs flow-rate data, pump-suction and -discharge pressures, and temperature. Examples are presented that clearly demonstrate how these data have been invaluable in understanding the problems encountered in the initial extended-reach wells and the role the system has played in extending ESP run lives. Finally, completion-equipment modifications and operating-procedure changes, successfully introduced to resolve the problems encountered in the first two wells and to avoid them in subsequent wells, are described.

  4. TECHNOLOGIES TO ENHANCE THE OPERATION OF EXISTNG NATURAL GAS COMPRESSION INFRASTRUCTURE

    SciTech Connect

    Anthony J. Smalley; Ralph E. Harris; Gary D. Bourn; Danny M. Deffenbaugh

    2005-01-28

    This quarterly report documents work performed under Tasks 15, 16, and 18 through 23 of the project entitled: ''Technologies to Enhance the Operation of the Existing Natural Gas Compression Infrastructure''. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report first documents a survey test performed on an HBA-6 engine/compressor installed at Duke Energy's Bedford Compressor Station. This is one of several tests planned, which will emphasize identification and reduction of compressor losses. Additionally, this report presents a methodology for distinguishing losses in compressor attributable to valves, irreversibility in the compression process, and the attached piping (installation losses); it illustrates the methodology with data from the survey test. The report further presents the validation of the simulation model for the Air Balance tasks and outline of conceptual manifold designs.

  5. TECHNOLOGIES TO ENHANCE THE OPERATION OF EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE

    SciTech Connect

    Anthony J. Smalley; Ralph E. Harris; Gary D. Bourn; Danny M. Deffenbaugh

    2005-10-27

    This quarterly report documents work performed under Tasks 15, 16, and 18 through 23 of the project entitled: ''Technologies to Enhance the Operation of Existing Natural Gas Compression Infrastructure''. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report first summarizes key results from survey site tests performed on an HBA-6 installed at Duke Energy's Bedford compressor station, and on a TCVC10 engine/compressor installed at Dominion's Groveport Compressor Station. The report then presents results of design analysis performed on the Bedford HBA-6 to develop options and guide decisions for reducing pulsations and enhancing compressor system efficiency and capacity. The report further presents progress on modifying and testing the laboratory GMVH6 at SwRI for correcting air imbalance.

  6. TECHNOLOGIES TO ENHANCE THE OPERATION OF EXISTING NATURAL GAS COMPESSION INFRASTRUCTURE

    SciTech Connect

    Anthony J. Smalley; Ralph E. Harris; Gary D. Bourn; Danny M. Deffenbaugh

    2006-01-24

    This quarterly report documents work performed under Tasks 15, 16, and 18 through 23 of the project entitled: ''Technologies to Enhance the Operation of Existing Natural Gas Compression Infrastructure''. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report presents results of design analysis performed on the TCVC10 engine/compressor installed at Dominion's Groveport Compressor Station to develop options and guide decisions for reducing pulsations and enhancing compressor system efficiency and capacity. The report further presents progress on modifying and testing the laboratory GMVH6 at SwRI for correcting air imbalance.

  7. TECHNOLOGIES TO ENHANCE THE OPERATION OF EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE

    SciTech Connect

    Anthony J. Smalley; Ralph E. Harris; Gary D. Bourn; Danny M. Deffenbaugh

    2005-07-27

    This quarterly report documents work performed under Tasks 15, 16, and 18 through 23 of the project entitled: ''Technologies to Enhance the Operation of Existing Natural Gas Compression Infrastructure''. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report first documents a survey site test performed on a TCVC10 engine/compressor installed at Dominion's Groveport Compressor Station. This test completes planned screening efforts designed to guide selection of one or more units for design analysis and testing with emphasis on identification and reduction of compressor losses. The report further presents the validation of the simulation model for the Air Balance tasks and outline of conceptual manifold designs.

  8. Identifying emerging smart grid impacts to upstream and midstream natural gas operations.

    SciTech Connect

    McIntyre, Annie

    2010-09-01

    The Smart Grid has come to describe a next-generation electrical power system that is typified by the increased use of communications and information technology in the generation, delivery and consumption of electrical energy. Much of the present Smart Grid analysis focuses on utility and consumer interaction. i.e. smart appliances, home automation systems, rate structures, consumer demand response, etc. An identified need is to assess the upstream and midstream operations of natural gas as a result of the smart grid. The nature of Smart Grid, including the demand response and role of information, may require changes in upstream and midstream natural gas operations to ensure availability and efficiency. Utility reliance on natural gas will continue and likely increase, given the backup requirements for intermittent renewable energy sources. Efficient generation and delivery of electricity on Smart Grid could affect how natural gas is utilized. Things that we already know about Smart Grid are: (1) The role of information and data integrity is increasingly important. (2) Smart Grid includes a fully distributed system with two-way communication. (3) Smart Grid, a complex network, may change the way energy is supplied, stored, and in demand. (4) Smart Grid has evolved through consumer driven decisions. (5) Smart Grid and the US critical infrastructure will include many intermittent renewables.

  9. ,"Alaska Natural Gas Underground Storage Injections All Operators (MMcf)"

    Energy Information Administration (EIA) (indexed site)

    Injections All Operators (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alaska Natural Gas Underground Storage Injections All Operators (MMcf)",1,"Annual",1975 ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File

  10. ,"Alaska Natural Gas Underground Storage Net Withdrawals All Operators (MMcf)"

    Energy Information Administration (EIA) (indexed site)

    All Operators (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alaska Natural Gas Underground Storage Net Withdrawals All Operators (MMcf)",1,"Annual",1975 ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File

  11. ,"Connecticut Natural Gas Underground Storage Injections All Operators (MMcf)"

    Energy Information Administration (EIA) (indexed site)

    Injections All Operators (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Connecticut Natural Gas Underground Storage Injections All Operators (MMcf)",1,"Annual",1996 ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File

  12. ,"Connecticut Natural Gas Underground Storage Net Withdrawals All Operators (MMcf)"

    Energy Information Administration (EIA) (indexed site)

    Net Withdrawals All Operators (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Connecticut Natural Gas Underground Storage Net Withdrawals All Operators (MMcf)",1,"Annual",1996 ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File

  13. ,"Delaware Natural Gas Underground Storage Injections All Operators (MMcf)"

    Energy Information Administration (EIA) (indexed site)

    Injections All Operators (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Delaware Natural Gas Underground Storage Injections All Operators (MMcf)",1,"Annual",1975 ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File

  14. ,"Delaware Natural Gas Underground Storage Net Withdrawals All Operators (MMcf)"

    Energy Information Administration (EIA) (indexed site)

    Net Withdrawals All Operators (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Delaware Natural Gas Underground Storage Net Withdrawals All Operators (MMcf)",1,"Annual",1975 ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File

  15. ,"Georgia Natural Gas Underground Storage Injections All Operators (MMcf)"

    Energy Information Administration (EIA) (indexed site)

    Injections All Operators (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Georgia Natural Gas Underground Storage Injections All Operators (MMcf)",1,"Annual",1975 ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File

  16. ,"Georgia Natural Gas Underground Storage Net Withdrawals All Operators (MMcf)"

    Energy Information Administration (EIA) (indexed site)

    Net Withdrawals All Operators (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Georgia Natural Gas Underground Storage Net Withdrawals All Operators (MMcf)",1,"Annual",1975 ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File

  17. ,"Idaho Natural Gas Underground Storage Injections All Operators (MMcf)"

    Energy Information Administration (EIA) (indexed site)

    Injections All Operators (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Idaho Natural Gas Underground Storage Injections All Operators (MMcf)",1,"Annual",1975 ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File

  18. ,"Idaho Natural Gas Underground Storage Net Withdrawals All Operators (MMcf)"

    Energy Information Administration (EIA) (indexed site)

    Net Withdrawals All Operators (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Idaho Natural Gas Underground Storage Net Withdrawals All Operators (MMcf)",1,"Annual",1975 ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File

  19. ,"Massachusetts Natural Gas Underground Storage Injections All Operators (MMcf)"

    Energy Information Administration (EIA) (indexed site)

    Injections All Operators (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Massachusetts Natural Gas Underground Storage Injections All Operators (MMcf)",1,"Annual",1975 ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File

  20. ,"Massachusetts Natural Gas Underground Storage Net Withdrawals All Operators (MMcf)"

    Energy Information Administration (EIA) (indexed site)

    Net Withdrawals All Operators (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Massachusetts Natural Gas Underground Storage Net Withdrawals All Operators (MMcf)",1,"Annual",1975 ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File

  1. ,"Wisconsin Natural Gas Underground Storage Injections All Operators (MMcf)"

    Energy Information Administration (EIA) (indexed site)

    Injections All Operators (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Wisconsin Natural Gas Underground Storage Injections All Operators (MMcf)",1,"Annual",1973 ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File

  2. ,"Wisconsin Natural Gas Underground Storage Net Withdrawals All Operators (MMcf)"

    Energy Information Administration (EIA) (indexed site)

    Net Withdrawals All Operators (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Wisconsin Natural Gas Underground Storage Net Withdrawals All Operators (MMcf)",1,"Annual",1975 ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File

  3. ,"New Jersey Natural Gas Underground Storage Injections All Operators (MMcf)"

    Energy Information Administration (EIA) (indexed site)

    Injections All Operators (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New Jersey Natural Gas Underground Storage Injections All Operators (MMcf)",1,"Annual",1996 ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File

  4. ,"New Jersey Natural Gas Underground Storage Net Withdrawals All Operators (MMcf)"

    Energy Information Administration (EIA) (indexed site)

    Net Withdrawals All Operators (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New Jersey Natural Gas Underground Storage Net Withdrawals All Operators (MMcf)",1,"Annual",1996 ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File

  5. ,"North Carolina Natural Gas Underground Storage Injections All Operators (MMcf)"

    Energy Information Administration (EIA) (indexed site)

    Injections All Operators (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","North Carolina Natural Gas Underground Storage Injections All Operators (MMcf)",1,"Annual",1996 ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File

  6. ,"North Carolina Natural Gas Underground Storage Net Withdrawals All Operators (MMcf)"

    Energy Information Administration (EIA) (indexed site)

    Net Withdrawals All Operators (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","North Carolina Natural Gas Underground Storage Net Withdrawals All Operators (MMcf)",1,"Annual",1996 ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File

  7. ,"Rhode Island Natural Gas Underground Storage Net Withdrawals All Operators (MMcf)"

    Energy Information Administration (EIA) (indexed site)

    Net Withdrawals All Operators (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Rhode Island Natural Gas Underground Storage Net Withdrawals All Operators (MMcf)",1,"Annual",1996 ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File

  8. ,"South Carolina Natural Gas Underground Storage Injections All Operators (MMcf)"

    Energy Information Administration (EIA) (indexed site)

    Injections All Operators (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","South Carolina Natural Gas Underground Storage Injections All Operators (MMcf)",1,"Annual",1975 ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File

  9. ,"South Carolina Natural Gas Underground Storage Net Withdrawals All Operators (MMcf)"

    Energy Information Administration (EIA) (indexed site)

    Net Withdrawals All Operators (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","South Carolina Natural Gas Underground Storage Net Withdrawals All Operators (MMcf)",1,"Annual",1975 ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File

  10. Missouri Natural Gas Gross Withdrawals from Oil Wells (Million Cubic Feet)

    Gasoline and Diesel Fuel Update

    Oil Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0

  11. Special considerations on operating a fuel cell power plant using natural gas with marginal heating value

    SciTech Connect

    Moses, L. Ng; Chien-Liang Lin; Ya-Tang Cheng

    1996-12-31

    In realizing new power generation technologies in Taiwan, a phosphoric acid fuel cell power plant (model PC2513, ONSI Corporation) has been installed in the premises of the Power Research Institute of the Taiwan Power Company in Taipei County of Taiwan. The pipeline gas supplying to the site of this power plant has a high percentage of carbon dioxide and thus a slightly lower heating value than that specified by the manufacturer. Because of the lowering of heating value of input gas, the highest Output power from the power plant is understandably less than the rated power of 200 kW designed. Further, the transient response of the power plant as interrupted from the Grid is also affected. Since this gas is also the pipeline gas supplying to the heavily populated Taipei Municipal area, it is conceivable that the success of the operations of fuel cells using this fuel is of vital importance to the promotion of the use of this power generation technology in Taiwan. Hence, experiments were set up to assess the feasibility of this fuel cell power plant using the existing pipeline gas in this part of Taiwan where fuel cells would most likely find useful.

  12. Evaluations of Radionuclides of Uranium, Thorium, and Radium Associated with Produced Fluids, Precipitates, and Sludges from Oil, Gas, and Oilfield Brine Injection Wells in Mississippi

    SciTech Connect

    Ericksen, R.L.

    1999-10-28

    There is an unsurpassed lack of scientific data with respect to the concentrations and isotopic compositions of uranium, thorium, and radium in the produced formation fluids (brine), precipitates, and sludges generated with the operation of oil and gas wells in Mississippi. These radioactive elements when contained in the formation fluids have been given the term NORM, which is an acronym for naturally occurring radioactive materials. When they are technologically enhanced during oil and gas production activities resulting in the formation of scale (precipitates) and sludges they are termed TENORM (technologically enhanced naturally occurring radioactive materials). As used in this document, NORM and TENORM will be considered equivalent terms and the occurrence of NORM in the oilfield will be considered the result of production operations. As a result of the lack of data no scientifically sound theses may be developed concerning the presence of these radionuclides in the fluid brine, precipitate (scale), or sludge phases. Over the period of just one year, 1997 for example, Mississippi produced over 39,372,963,584 liters (10,402,368,186 gallons or 247,675,433 barrels) of formation water associated with hydrocarbon production from 41 counties across the state.

  13. AURORA: A FORTRAN program for modeling well stirred plasma and thermal reactors with gas and surface reactions

    SciTech Connect

    Meeks, E.; Grcar, J.F.; Kee, R.J.; Moffat, H.K.

    1996-02-01

    The AURORA Software is a FORTRAN computer program that predicts the steady-state or time-averaged properties of a well mixed or perfectly stirred reactor for plasma or thermal chemistry systems. The software was based on the previously released software, SURFACE PSR which was written for application to thermal CVD reactor systems. AURORA allows modeling of non-thermal, plasma reactors with the determination of ion and electron concentrations and the electron temperature, in addition to the neutral radical species concentrations. Well stirred reactors are characterized by a reactor volume, residence time or mass flow rate, heat loss or gas temperature, surface area, surface temperature, the incoming temperature and mixture composition, as well as the power deposited into the plasma for non-thermal systems. The model described here accounts for finite-rate elementary chemical reactions both in the gas phase and on the surface. The governing equations are a system of nonlinear algebraic relations. The program solves these equations using a hybrid Newton/time-integration method embodied by the software package TWOPNT. The program runs in conjunction with the new CHEMKIN-III and SURFACE CHEMKIN-III packages, which handle the chemical reaction mechanisms for thermal and non-thermal systems. CHEMKIN-III allows for specification of electron-impact reactions, excitation losses, and elastic-collision losses for electrons.

  14. Use of GTE-65 gas turbine power units in the thermal configuration of steam-gas systems for the refitting of operating thermal electric power plants

    SciTech Connect

    Lebedev, A. S.; Kovalevskii, V. P.; Getmanov, E. A.; Ermaikina, N. A.

    2008-07-15

    Thermal configurations for condensation, district heating, and discharge steam-gas systems (PGU) based on the GTE-65 gas turbine power unit are described. A comparative multivariant analysis of their thermodynamic efficiency is made. Based on some representative examples, it is shown that steam-gas systems with the GTE-65 and boiler-utilizer units can be effectively used and installed in existing main buildings during technical refitting of operating thermal electric power plants.

  15. Current distribution measurements inside an electromagnetic plasma gun operated in a gas-puff mode

    SciTech Connect

    Poehlmann, Flavio R.; Cappelli, Mark A.; Rieker, Gregory B.

    2010-12-15

    Measurements are presented of the time-dependent current distribution inside a coaxial electromagnetic plasma gun. The measurements are carried out using an array of six axially distributed dual-Rogowski coils in a balanced circuit configuration. The radial current distributions indicate that operation in the gas-puff mode, i.e., the mode in which the electrode voltage is applied before injection of the gas, results in a stationary ionization front consistent with the presence of a plasma deflagration. The effects of varying the bank capacitance, transmission line inductance, and applied electrode voltage were studied over the range from 14 to 112 {mu}F, 50 to 200 nH, and 1 to 3 kV, respectively.

  16. High pressure operation of tubular solid oxide fuel cells and their intergration with gas turbines

    SciTech Connect

    Haynes, C.; Wepfer, W.J.

    1996-12-31

    Fossil fuels continue to be used at a rate greater than that of their natural formation, and the current byproducts from their use are believed to have a detrimental effect on the environment (e.g. global warming). There is thus a significant impetus to have cleaner, more efficient fuel consumption alternatives. Recent progress has led to renewed vigor in the development of fuel cell technology, which has been shown to be capable of producing high efficiencies with relatively benign exhaust products. The tubular solid oxide fuel cell developed by Westinghouse Electric Corporation has shown significant promise. Modeling efforts have been and are underway to optimize and better understand this fuel cell technology. Thus far, the bulk of modeling efforts has been for operation at atmospheric pressure. There is now interest in developing high-efficiency integrated gas turbine/solid oxide fuel cell systems. Such operation of fuel cells would obviously occur at higher pressures. The fuel cells have been successfully modeled under high pressure operation and further investigated as integrated components of an open loop gas turbine cycle.

  17. ,"U.S. Underground Natural Gas Storage - All Operators"

    Energy Information Administration (EIA) (indexed site)

    U.S. Underground Natural Gas Storage - All Operators",3,"Annual",2015,"6/30/1935" ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File Name:","ng_stor_sum_dcu_nus_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/ng/ng_stor_sum_dcu_nus_a.htm" ,"Source:","Energy Information Administration" ,"For Help,

  18. Assessment of well-to-wheel energy use and greenhouse gas emissions of Fischer-Tropsch diesel.

    SciTech Connect

    Wang, M.

    2001-12-13

    The middle distillate fuel produced from natural gas (NG) via the Fischer-Tropsch (FT) process has been proposed as a motor fuel for compression-ignition (CI) engine vehicles. FT diesel could help reduce U.S. dependence on imported oil. The U.S. Department of Energy (DOE) is evaluating the designation of FT diesel as an alternative motor fuel under the 1992 Energy Policy Act (EPACT). As part of this evaluation, DOE has asked the Center for Transportation Research at Argonne National Laboratory to conduct an assessment of well-to-wheels (WTW) energy use and greenhouse gas (GHG) emissions of FT diesel compared with conventional motor fuels (i.e., petroleum diesel). For this assessment, we applied Argonne's Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model to conduct WTW analysis of FT diesel and petroleum diesel. This report documents Argonne's assessment. The results are presented in Section 2. Appendix A describes the methodologies and assumptions used in the assessment.

  19. Ten Years of Compressed Natural Gas (CNG) Operations at SunLine Transit Agency: April 2003--December 2004

    SciTech Connect

    Chandler, K.

    2006-01-01

    This report focuses on the lesson learned at the SunLine Transit Agency after it converted in 1994 its entire operating transit bus fleet to compressed natural gas (CNG).

  20. Hydrogen and Hydrogen/Natural Gas Station and Vehicle Operations - 2006 Summary Report

    SciTech Connect

    Francfort; Donald Karner; Roberta Brayer

    2006-09-01

    This report is a summary of the operations and testing of internal combustion engine vehicles that were fueled with 100% hydrogen and various blends of hydrogen and compressed natural gas (HCNG). It summarizes the operations of the Arizona Public Service Alternative Fuel Pilot Plant, which produces, compresses, and dispenses hydrogen fuel. Other testing activities, such as the destructive testing of a CNG storage cylinder that was used for HCNG storage, are also discussed. This report highlights some of the latest technology developments in the use of 100% hydrogen fuels in internal combustion engine vehicles. Reports are referenced and WWW locations noted as a guide for the reader that desires more detailed information. These activities are conducted by Arizona Public Service, Electric Transportation Applications, the Idaho National Laboratory, and the U.S. Department of Energy’s Advanced Vehicle Testing Activity.

  1. 90 MW build/own/operate gas turbine combined cycle cogeneration project with sludge drying plant

    SciTech Connect

    Schroppe, J.T.

    1986-04-01

    This paper will discuss some of the unique aspects of a build/own/operate cogeneration project for an oil refinery in which Foster Wheeler is involved. The organization is constructing a 90 MW plant that will supply 55 MW and 160,000 lb/hr of 600 psi, 700F steam to the Tosco Corporation's 130,000 bd Avon Oil Refinery in Martinez, California. (The refinery is located about 45 miles northeast of San Francisco.) Surplus power production will be sold to the local utility, Pacific Gas and Electric Co. (PG and E). Many of the aspects of this project took on a different perspective, since the contractor would build, own and operate the plant.

  2. Geohydrologic study of the Michigan Basin for the applicability of Jack W. McIntyre`s patented process for simultaneous gas recovery and water disposal in production wells

    SciTech Connect

    Maryn, S.

    1994-03-01

    Geraghty & Miller, Inc. of Midland, Texas conducted a geohydrologic study of the Michigan Basin to evaluate the applicability of Jack McIntyre`s patented process for gas recovery and water disposal in production wells. A review of available publications was conducted to identify, (1) natural gas reservoirs which generate large quantities of gas and water, and (2) underground injection zones for produced water. Research efforts were focused on unconventional natural gas formations. The Antrim Shale is a Devonian gas shale which produces gas and large quantities of water. Total 1992 production from 2,626 wells was 74,209,916 Mcf of gas and 25,795,334 bbl of water. The Middle Devonian Dundee Limestone is a major injection zone for produced water. ``Waterless completion`` wells have been completed in the Antrim Shale for gas recovery and in the Dundee Limestone for water disposal. Jack McIntyre`s patented process has potential application for the recovery of gas from the Antrim Shale and simultaneous injection of produced water into the Dundee Limestone.

  3. TECHNOLOGIES TO ENHANCE OPERATION OF THE EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE

    SciTech Connect

    Anthony J. Smalley; Ralph E. Harris; Gary D. Bourn; Danny M. Deffenbaugh

    2005-01-01

    This quarterly report documents work performed under Tasks 10 through 14 of the project entitled: ''Technologies to Enhance Operation of the Existing Natural Gas Compression Infrastructure''. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report first documents tests performed on a KVG103 engine/compressor installed at Duke's Thomaston Compressor Station. This is the first series of tests performed on a four-stroke engine under this program. Additionally, this report presents results, which complete a comparison of performance before and after modification to install High Pressure Fuel Injection and a Turbocharger on a GMW10 at Williams Station 60. Quarterly Reports 7 and 8 already presented detailed data from tests before and after this modification, but the final quantitative comparison required some further analysis, which is presented in Section 5 of this report. The report further presents results of detailed geometrical measurements and flow bench testing performed on the cylinders and manifolds of the Laboratory Cooper GMVH6 engine being employed for two-stroke engine air balance investigations. These measurements are required to enhance the detailed accuracy in modeling the dynamic interaction of air manifold, exhaust manifold, and in-cylinder fuel-air balance.

  4. Issues Involving The OSI Concept of Operation For Noble Gas Radionuclide Detection

    SciTech Connect

    Carrigan, C R; Sun, Y

    2011-01-21

    The development of a technically sound protocol for detecting the subsurface release of noble gas radionuclides is critical to the successful operation of an on site inspection (OSI) under the CTBT and has broad ramifications for all aspects of the OSI regime including the setting of specifications for both sampling and analysis equipment used during an OSI. With NA-24 support, we are investigating a variety of issues and concerns that have significant bearing on policy development and technical guidance regarding the detection of noble gases and the creation of a technically justifiable OSI concept of operation. The work at LLNL focuses on optimizing the ability to capture radioactive noble gases subject to the constraints of possible OSI scenarios. This focus results from recognizing the difficulty of detecting gas releases in geologic environments - a lesson we learned previously from the LLNL Non-Proliferation Experiment (NPE). Evaluation of a number of important noble gas detection issues, potentially affecting OSI policy, has awaited the US re-engagement with the OSI technical community. Thus, there have been numerous issues to address during the past 18 months. Most of our evaluations of a sampling or transport issue necessarily involve computer simulations. This is partly due to the lack of OSI-relevant field data, such as that provided by the NPE, and partly a result of the ability of LLNL computer-based models to test a range of geologic and atmospheric scenarios far beyond what could ever be studied in the field making this approach very highly cost effective. We review some highlights of the transport and sampling issues we have investigated during the past year. We complete the discussion of these issues with a description of a preliminary design for subsurface sampling that is intended to be a practical solution to most if not all the challenges addressed here.

  5. Use of Biostratigraphy to Increase Production, Reduce Operating Costs and Risks and Reduce Environmental Concerns in Oil Well Drilling

    SciTech Connect

    Edward Marks

    2005-09-09

    In the Santa Maria Basin, Santa Barbara County, California, four wells were processed and examined to determine the age and environment parameters in the oil producing sections. From west to east, we examined Cabot No. 1 Ferrero-Hopkins,from 3917.7 m (12850 ft) to 4032 m (13225 ft); Sun No. 5 Blair, from 3412 m (11190 ft) to 3722.5 m (12210 ft); Triton No. 10 Blair, from 1552 m (5090 ft) to 1863 m (6110 ft); and OTEC No. 1 Boyne, from 2058 m (6750 ft) to 2528 m (8293 ft). Lithic reports with lithic charts were prepared and submitted on each well. These tested for Sisquoc Fm lithology to be found in the Santa Maria area. This was noted in the OTEC No. 1 Boyne interval studied. The wells also tested for Monterey Fm. lithology, which was noted in all four wells examined. Composite samples of those intervals [combined into 9.15 m (30 foot) intervals] were processed for paleontology. Although the samples were very refractory and siliceous, all but one (Sun 5 Blair) yielded index fossil specimens, and as Sun 5 Blair samples below 3686 m (12090 ft) were processed previously, we were able to make identifications that would aid this study. The intervals examined were of the Sisquoc Formation, the Low Resistivity and the High Resistivity sections of the Monterey Formation. The Lower Sisquoc and the top of the late Miocene were identified by six index fossils: Bolivina barbarana, Gyroidina soldanii rotundimargo, Bulimina montereyana, Prunopyle titan, Axoprunum angelinum and Glyphodiscus stellatus. The Low Resistivity Monterey Fm. was identified by eight index fossils, all of which died out at the top of the late Miocene, late Mohnian: Nonion goudkoffi, Brizalina girardensis, Cibicides illingi, Siphocampe nodosaria, Stephanogonia hanzawai, Uvigerina modeloensis, Buliminella brevior, Tytthodiscus sp.and the wide geographic ranging index pelagic fossil, Sphaeroidinellopsis subdehiscens. The High Resistivity Monterey Fm. was identified by eight index fossils, all of which died

  6. Recovery Act. Sub-Soil Gas and Fluid Inclusion Exploration and Slim Well Drilling, Pumpernickel Valley, Nevada

    SciTech Connect

    Fairbank, Brian D.

    2015-03-27

    Nevada Geothermal Power Company (NGP) was awarded DOE Award DE-EE0002834 in January 2010 to conduct sub-soil gas and fluid inclusion studies and slim well drilling at its Black Warrior Project (now known as North Valley) in Washoe and Churchill Counties, Nevada. The project was designed to apply highly detailed, precise, low-cost subsoil and down-hole gas geochemistry methods from the oil and gas industry to identify upflow zone drilling targets in an undeveloped geothermal prospect. NGP ran into multiple institutional barriers with the Black Warrior project relating to property access and extensive cultural survey requirement. NGP requested that the award be transferred to NGP’s Pumpernickel Valley project, due to the timing delay in obtaining permits, along with additional over-budget costs required. Project planning and permit applications were developed for both the original Black Warrior location and at Pumpernickel. This included obtaining proposals from contractors able to conduct required environmental and cultural surveying, designing the two-meter probe survey methodology and locations, and submitting Notices of Intent and liaising with the Bureau of Land Management to have the two-meter probe work approved. The award had an expiry date of April 30, 2013; however, due to the initial project delays at Black Warrior, and the move of the project from Black Warrior to Pumpernickel, NGP requested that the award deadline be extended. DOE was amenable to this, and worked with NGP to extend the deadline. However, following the loss of the Blue Mountain geothermal power plant in Nevada, NGP’s board of directors changed the company’s mandate to one of cash preservation. NGP was unable to move forward with field work on the Pumpernickel property, or any of its other properties, until additional funding was secured. NGP worked to bring in a project partner to form a joint venture on the property, or to buy the property. This was unsuccessful, and NGP notified

  7. Technical, economic, and environmental impact study of converting Uzbekistan transportation fleets to natural gas operation. Export trade information

    SciTech Connect

    1997-04-30

    This study, conducted by Radian International, was funded by the U.S. Trade and Development Agency. The report assesses the feasibility (technical, economic and environmental) of converting the Uzbek transportation fleets to natural gas operation. The study focuses on the conversion of high fuel use vehicles and locomotives to liquefied natural gas (LNG) and the conversion of moderate fuel use veicles to compressed natural gas (CNG). The report is divided into the following sections: Executive Summary; (1.0) Introduction; (2.0) Country Background; (3.0) Characterization of Uzbek Transportation Fuels; (4.0) Uzbek Vehicle and Locomotive Fleet Characterization; (5.0) Uzbek Natural Gas Vehicle Conversion Shops; (6.0) Uzbek Natural Gas Infrastructure; (7.0) Liquefied Natural Gas (LNG) for Vehicular Fuel in Uzbekistan; (8.0) Economic Feasibility Study; (9.0) Environmental Impact Analysis; References; Appendices A - S.

  8. Aluto-Langano geothermal field, Ethiopian Rift Valley: Physical characteristics and the effects of gas on well performance

    SciTech Connect

    Gizaw, B. )

    1993-04-01

    This study, which focuses on the Aluto-Langano geothermal field, is part of the ongoing investigation of the geothermal systems in the Ethiopian Rift Valley. Aluto-Langano is a water-dominated gas-rich geothermal field, with a maximum temperature close to 360[degree]C, in the Lakes District region of the Ethiopian Rift Valley. The upflow zone for the system lies along a deep, young NNE trending fault and is characterized by boiling. As a result, the deep upflow zone loses some water as steam and produces a cooler saline shallow aquifer. The high partial pressure of carbon dioxide (about 30 bar in the reservoir) depresses the water table and restricts boiling to deeper levels. The main aquifer for the systems is in the Tertiary ignimbrite, which lies below 1400 m. The capacity of the existing wells is close to 7 MW[sub c]: the energy potential of the area is estimated to be between 3000 and 6000 MW[sub t] yr/km[sup 3], or 10-20 MW[sub c]/km[sup 3] for over 30 years.

  9. Calculators for Estimating Greenhouse Gas Emissions from Public Transit Agency Vehicle Fleet Operations

    SciTech Connect

    Weigel, Brent; Southworth, Frank; Meyer, Michael D

    2010-01-01

    This paper reviews calculation tools available for quantifying the greenhouse gas emissions associated with different types of public transit service, and their usefulness in helping a transit agency to reduce its carbon footprint through informed vehicle and fuel procurement decisions. Available calculators fall into two categories: registry/inventory based calculators most suitable for standardized voluntary reporting, carbon trading, and regulatory compliance; and multi-modal life cycle analysis calculators that seek comprehensive coverage of all direct and indirect emissions. Despite significant progress in calculator development, no single calculator as yet contains all of the information needed by transit agencies to develop a truly comprehensive, life cycle analysis-based accounting of the emissions produced by its vehicle fleet operations, and for a wide range of vehicle/fuel technology options.

  10. Analysis of an industrial cogeneration unit driven by a gas engine. Part 1: Experimental testing under full and part-load operating conditions

    SciTech Connect

    De Lucia, M.; Lanfranchi, C.

    1994-12-31

    This paper describes and analyzes an industrial cogeneration plant driven by a gas fueled reciprocating engine installed in a textile factory. It presents the results of experimental testing conducted under full and part-load operating conditions, as well as first-law energy considerations. The experimental tests conducted on the cogeneration unit proved the validity of the plant design and also enabled evaluation of part-load performance, which is the most common operating mode in cogeneration plants in the small-size industries which typical of central Italy.

  11. Operational Challenges in Gas-To-Liquid (GTL) Transportation Through Trans Alaska Pipeline System (TAPS)

    SciTech Connect

    Godwin A. Chukwu; Santanu Khataniar; Shirish Patil; Abhijit Dandekar

    2006-06-30

    Oil production from Alaskan North Slope oil fields has steadily declined. In the near future, ANS crude oil production will decline to such a level (200,000 to 400,000 bbl/day) that maintaining economic operation of the Trans-Alaska Pipeline System (TAPS) will require pumping alternative products through the system. Heavy oil deposits in the West Sak and Ugnu formations are a potential resource, although transporting these products involves addressing important sedimentation issues. One possibility is the use of Gas-to-Liquid (GTL) technology. Estimated recoverable gas reserves of 38 trillion cubic feet (TCF) on the North Slope of Alaska can be converted to liquid with GTL technology and combined with the heavy oils for a product suitable for pipeline transport. Issues that could affect transport of this such products through TAPS include pumpability of GTL and crude oil blends, cold restart of the pipeline following a prolonged winter shutdown, and solids deposition inside the pipeline. This study examined several key fluid properties of GTL, crude oil and four selected blends under TAPS operating conditions. Key measurements included Reid Vapor Pressure, density and viscosity, PVT properties, and solids deposition. Results showed that gel strength is not a significant factor for the ratios of GTL-crude oil blend mixtures (1:1; 1:2; 1:3; 1:4) tested under TAPS cold re-start conditions at temperatures above - 20 F, although Bingham fluid flow characteristics exhibited by the blends at low temperatures indicate high pumping power requirements following prolonged shutdown. Solids deposition is a major concern for all studied blends. For the commingled flow profile studied, decreased throughput can result in increased and more rapid solid deposition along the pipe wall, resulting in more frequent pigging of the pipeline or, if left unchecked, pipeline corrosion.

  12. Application of Hydrogen Assisted Lean Operation to Natural Gas-Fueled Reciprocating Engines (HALO)

    SciTech Connect

    Chad Smutzer

    2006-01-01

    Two key challenges facing Natural Gas Engines used for cogeneration purposes are spark plug life and high NOx emissions. Using Hydrogen Assisted Lean Operation (HALO), these two keys issues are simultaneously addressed. HALO operation, as demonstrated in this project, allows stable engine operation to be achieved at ultra-lean (relative air/fuel ratios of 2) conditions, which virtually eliminates NOx production. NOx values of 10 ppm (0.07 g/bhp-hr NO) for 8% (LHV H2/LHV CH4) supplementation at an exhaust O2 level of 10% were demonstrated, which is a 98% NOx emissions reduction compared to the leanest unsupplemented operating condition. Spark ignition energy reduction (which will increase ignition system life) was carried out at an oxygen level of 9%, leading to a NOx emission level of 28 ppm (0.13 g/bhp-hr NO). The spark ignition energy reduction testing found that spark energy could be reduced 22% (from 151 mJ supplied to the coil) with 13% (LHV H2/LHV CH4) hydrogen supplementation, and even further reduced 27% with 17% hydrogen supplementation, with no reportable effect on NOx emissions for these conditions and with stable engine torque output. Another important result is that the combustion duration was shown to be only a function of hydrogen supplementation, not a function of ignition energy (until the ignitability limit was reached). The next logical step leading from these promising results is to see how much the spark energy reduction translates into increase in spark plug life, which may be accomplished by durability testing.

  13. Illinois DNR oil and gas division | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    is the regulatory authority in Illinois for permitting, drilling, operating, and plugging oil and gas production wells. The Division implements the Illinois Oil and Gas Act and...

  14. TECHNOLOGIES TO ENHANCE THE OPERATION OF EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE

    SciTech Connect

    Anthony J. Smalley; Ralph E. Harris; Gary D. Bourn; Ford A. Phillips; Danny M. Deffenbaugh

    2006-05-31

    This project has documented and demonstrated the feasibility of technologies and operational choices for companies who operate the large installed fleet of integral engine compressors in pipeline service. Continued operations of this fleet is required to meet the projected growth of the U.S. gas market. Applying project results will meet the goals of the DOE-NETL Natural Gas Infrastructure program to enhance integrity, extend life, improve efficiency, and increase capacity, while managing NOx emissions. These benefits will translate into lower cost, more reliable gas transmission, and options for increasing deliverability from the existing infrastructure on high demand days. The power cylinders on large bore slow-speed integral engine/compressors do not in general combust equally. Variations in cylinder pressure between power cylinders occur cycle-to-cycle. These variations affect both individual cylinder performance and unit average performance. The magnitude of the variations in power cylinder combustion is dependent on a variety of parameters, including air/fuel ratio. Large variations in cylinder performance and peak firing pressure can lead to detonation and misfires, both of which can be damaging to the unit. Reducing the variation in combustion pressure, and moving the high and low performing cylinders closer to the mean is the goal of engine balancing. The benefit of improving the state of the engine ''balance'' is a small reduction in heat rate and a significant reduction in both crankshaft strain and emissions. A new method invented during the course of this project is combustion pressure ratio (CPR) balancing. This method is more effective than current methods because it naturally accounts for differences in compression pressure, which results from cylinder-to-cylinder differences in the amount of air flowing through the inlet ports and trapped at port closure. It also helps avoid compensation for low compression pressure by the addition of excess fuel

  15. Philadelphia gas works medium-Btu coal gasification project: capital and operating cost estimate, financial/legal analysis, project implementation

    SciTech Connect

    Not Available

    1981-12-01

    This volume of the final report is a compilation of the estimated capital and operating costs for the project. Using the definitive design as a basis, capital and operating costs were developed by obtaining quotations for equipment delivered to the site. Tables 1.1 and 1.2 provide a summary of the capital and operating costs estimated for the PGW Coal Gasification Project. In the course of its Phase I Feasibility Study of a medium-Btu coal-gas facility, Philadelphia Gas Works (PGW) identified the financing mechanism as having great impact on gas cost. Consequently, PGW formed a Financial/Legal Task Force composed of legal, financial, and project analysis specialists to study various ownership/management options. In seeking an acceptable ownership, management, and financing arrangement, certain ownership forms were initially identified and classified. Several public ownership, private ownership, and third party ownership options for the coal-gas plant are presented. The ownership and financing forms classified as base alternatives involved tax-exempt and taxable financing arrangements and are discussed in Section 3. Project implementation would be initiated by effectively planning the methodology by which commercial operation will be realized. Areas covered in this report are sale of gas to customers, arrangements for feedstock supply and by-product disposal, a schedule of major events leading to commercialization, and a plan for managing the implementation.

  16. Commercialization of waste gob gas and methane produced in conjunction with coal mining operations. Final report, August 1992--December 1993

    SciTech Connect

    Not Available

    1993-12-01

    The primary objectives of the project were to identify and evaluate existing processes for (1) using gas as a feedstock for production of marketable, value-added commodities, and (2) enriching contaminated gas to pipeline quality. The following gas conversion technologies were evaluated: (1) transformation to liquid fuels, (2) manufacture of methanol, (3) synthesis of mixed alcohols, and (4) conversion to ammonia and urea. All of these involved synthesis gas production prior to conversion to the desired end products. Most of the conversion technologies evaluated were found to be mature processes operating at a large scale. A drawback in all of the processes was the need to have a relatively pure feedstock, thereby requiring gas clean-up prior to conversion. Despite this requirement, the conversion technologies were preliminarily found to be marginally economic. However, the prohibitively high investment for a combined gas clean-up/conversion facility required that REI refocus the project to investigation of gas enrichment alternatives. Enrichment of a gas stream with only one contaminant is a relatively straightforward process (depending on the contaminant) using available technology. However, gob gas has a unique nature, being typically composed of from constituents. These components are: methane, nitrogen, oxygen, carbon dioxide and water vapor. Each of the four contaminants may be separated from the methane using existing technologies that have varying degrees of complexity and compatibility. However, the operating and cost effectiveness of the combined system is dependent on careful integration of the clean-up processes. REI is pursuing Phase 2 of this project for demonstration of a waste gas enrichment facility using the approach described above. This is expected to result in the validation of the commercial and technical viability of the facility, and the refinement of design parameters.

  17. Recovery of Fresh Water Resources from Desalination of Brine Produced During Oil and Gas Production Operations

    SciTech Connect

    David B. Burnett; Mustafa Siddiqui

    2006-12-29

    Management and disposal of produced water is one of the most important problems associated with oil and gas (O&G) production. O&G production operations generate large volumes of brine water along with the petroleum resource. Currently, produced water is treated as a waste and is not available for any beneficial purposes for the communities where oil and gas is produced. Produced water contains different contaminants that must be removed before it can be used for any beneficial surface applications. Arid areas like west Texas produce large amount of oil, but, at the same time, have a shortage of potable water. A multidisciplinary team headed by researchers from Texas A&M University has spent more than six years is developing advanced membrane filtration processes for treating oil field produced brines The government-industry cooperative joint venture has been managed by the Global Petroleum Research Institute (GPRI). The goal of the project has been to demonstrate that treatment of oil field waste water for re-use will reduce water handling costs by 50% or greater. Our work has included (1) integrating advanced materials into existing prototype units and (2) operating short and long-term field testing with full size process trains. Testing at A&M has allowed us to upgrade our existing units with improved pre-treatment oil removal techniques and new oil tolerant RO membranes. We have also been able to perform extended testing in 'field laboratories' to gather much needed extended run time data on filter salt rejection efficiency and plugging characteristics of the process train. The Program Report describes work to evaluate the technical and economical feasibility of treating produced water with a combination of different separation processes to obtain water of agricultural water quality standards. Experiments were done for the pretreatment of produced water using a new liquid-liquid centrifuge, organoclay and microfiltration and ultrafiltration membranes for the

  18. INTERNAL REPAIR OF GAS PIPLINES SURVEY OF OPERATOR EXPERIENCE AND INDUSTRY NEEDS REPORT

    SciTech Connect

    Ian D. Harris

    2003-09-01

    A repair method that can be applied from the inside of a gas transmission pipeline (i.e., a trenchless repair) is an attractive alternative to conventional repair methods since the need to excavate the pipeline is precluded. This is particularly true for pipelines in environmentally sensitive and highly populated areas. The objectives of the project are to evaluate, develop, demonstrate, and validate internal repair methods for pipelines; develop a functional specification for an internal pipeline repair system; and prepare a recommended practice for internal repair of pipelines. The purpose of this survey is to better understand the needs and performance requirements of the natural gas transmission industry regarding internal repair. A total of fifty-six surveys were sent to pipeline operators. A total of twenty completed surveys were returned, representing a 36% response rate, which is considered very good given the fact that tailored surveys are known in the marketing industry to seldom attract more than a 10% response rate. The twenty survey responses produced the following principal conclusions: (1) Use of internal weld repair is most attractive for river crossings, under other bodies of water (e.g., lakes and swamps) in difficult soil conditions, under highways, under congested intersections, and under railway crossings. All these areas tend to be very difficult and very costly if, and where, conventional excavated repairs may be currently used. (2) Internal pipe repair offers a strong potential advantage to the high cost of horizontal direct drilling (HDD) when a new bore must be created to solve a leak or other problem in a water/river crossing. (3) The typical travel distances required can be divided into three distinct groups: up to 305 m (1,000 ft.); between 305 m and 610 m (1,000 ft. and 2,000 ft.); and beyond 914 m (3,000 ft.). In concept, these groups require pig-based systems; despooled umbilical systems could be considered for the first two groups

  19. Well-to-Wheels Analysis of Energy Use and Greenhouse Gas Emissions of Plug-in Hybrid Electric Vehicles

    Publication and Product Library

    This report examines energy use and emissions from primary energy source through vehicle operation to help researchers understand the impact of the upstream mix of electricity generation technologies

  20. TECHNOLOGIES TO ENHANCE THE OPERATION OF EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE - MANIFOLD DESIGN FOR CONTROLLING ENGINE AIR BALANCE

    SciTech Connect

    Gary D. Bourn; Ford A. Phillips; Ralph E. Harris

    2005-12-01

    This document provides results and conclusions for Task 15.0--Detailed Analysis of Air Balance & Conceptual Design of Improved Air Manifolds in the ''Technologies to Enhance the Operation of Existing Natural Gas Compression Infrastructure'' project. SwRI{reg_sign} is conducting this project for DOE in conjunction with Pipeline Research Council International, Gas Machinery Research Council, El Paso Pipeline, Cooper Compression, and Southern Star, under DOE contract number DE-FC26-02NT41646. The objective of Task 15.0 was to investigate the perceived imbalance in airflow between power cylinders in two-stroke integral compressor engines and develop solutions via manifold redesign. The overall project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity.

  1. Task 23 - background report on subsurface environmental issues relating to natural gas sweetening and dehydration operations. Topical report, February 1, 1994--February 28, 1996

    SciTech Connect

    Sorensen, J.A.

    1998-12-31

    This report describes information pertaining to environmental issues, toxicity, environmental transport, and fate of alkanolamines and glycols associated with natural gas sweetening and dehydration operations. Waste management associated with the operations is also discussed.

  2. Natural Gas Weekly Update, Printer-Friendly Version

    Gasoline and Diesel Fuel Update

    planning information that will assist in maintaining the operational integrity and reliability of pipeline service, as well as providing gas-fired power plant operators with...

  3. Well-to-Wheels Analysis of Advanced Fuel/Vehicle Systems: A North American Study of Energy Use, Greenhouse Gas Emissions, and Criteria Pollutant Emissions

    SciTech Connect

    Brinkman, Norman; Wang, Michael; Weber, Trudy; Darlington, Thomas

    2005-05-01

    An accurate assessment of future fuel/propulsion system options requires a complete vehicle fuel-cycle analysis, commonly called a well-to-wheels (WTW) analysis. This WTW study analyzes energy use and emissions associated with fuel production (or well-to-tank [WTT]) activities and energy use and emissions associated with vehicle operation (or tank-to-wheels [TTW]) activities.

  4. Well-to-Wheels Analysis of Advanced Fuel/Vehicle Systems- A North American Study of Energy Use, Greenhouse Gas Emissions, and Criteria Pollutant Emissions

    Office of Energy Efficiency and Renewable Energy (EERE)

    A complete vehicle fuel-cycle analysis, commonly called a well-to-wheels (WTW) analysis that examines the use and emissions associated with fuel production (or well-to-tank [WTT]) activities and energy use and emissions associated with vehicle operation (or tank-to-wheels [TTW]) activities.

  5. The Use of Exhaust Gas Recirculation to Optimize Fuel Economy and Minimize Emission in Engines Operating on E85 Fuel

    SciTech Connect

    Wu, Ko-Jen

    2011-12-31

    This report summarizes activities conducted for the project “The Use of Exhaust Gas Recirculation to Optimized Fuel Economy and Minimize Emissions in Engines Operating on E85 Fuel” under COOPERATIVE AGREEMENT NUMBER DE-FC26-07NT43271, which are as outlined in the STATEMENT OF PROJECT OBJECTIVES (SOPO) dated March 2007 and in the supplemental SOPO dated October 2010. The project objective was to develop and demonstrate an internal combustion engine that is optimized for E85 (85% ethanol and 15% gasoline) fuel operation to achieve substantially improved fuel economy while operating with E85 fuel and that is also production viable in the near- to medium-term. The key engine technology selected for research and development was turbocharging, which is known to improve fuel economy thru downsizing and is in particular capable of exploiting ethanol fuel’s characteristics of high octane number and high latent heat of vaporization. The engine further integrated synergistic efficiency improving technologies of cooled exhaust gas recirculation (EGR), direct fuel injection and dual continuously variable intake and exhaust cam phasers. On the vehicle level, fuel economy was furthered thru powertrain system optimization by mating a state-of-the-art six-speed automatic transmission to the engine. In order to achieve the project’s objective of near- to medium-term production viability, it was essential to develop the engine to be flex-fuel capable of operating with fuels ranging from E0 (0% ethanol and 100% gasoline) to E85 and to use three-way type of catalyst technology for exhaust aftertreatment. Within these scopes, various technologies were developed through systems approach to focus on ways to help accelerate catalyst light-off. Significant amount of development took place during the course of the project within General Motors, LLC. Many prototype flex-fuel engines were designed, built and developed with various hardware configurations selected to achieve the project

  6. The gas phase emitter effect of lanthanum within ceramic metal halide lamps and its dependence on the La vapor pressure and operating frequency

    SciTech Connect

    Ruhrmann, C.; Hoebing, T.; Bergner, A.; Groeger, S.; Awakowicz, P.; Mentel, J.; Denissen, C.; Suijker, J.

    2015-08-07

    The gas phase emitter effect increases the lamp lifetime by lowering the work function and, with it, the temperature of the tungsten electrodes of metal halide lamps especially for lamps in ceramic vessels due to their high rare earth pressures. It is generated by a monolayer on the electrode surface of electropositive atoms of certain emitter elements, which are inserted into the lamp bulb by metal iodide salts. They are vaporized, dissociated, ionized, and deposited by an emitter ion current onto the electrode surface within the cathodic phase of lamp operation with a switched-dc or ac-current. The gas phase emitter effect of La and the influence of Na on the emitter effect of La are studied by spatially and phase-resolved pyrometric measurements of the electrode tip temperature, La atom, and ion densities by optical emission spectroscopy as well as optical broadband absorption spectroscopy and arc attachment images by short time photography. An addition of Na to the lamp filling increases the La vapor pressure within the lamp considerably, resulting in an improved gas phase emitter effect of La. Furthermore, the La vapor pressure is raised by a heating of the cold spot. In this way, conditions depending on the La vapor pressure and operating frequency are identified, at which the temperature of the electrodes becomes a minimum.

  7. Operating experience with gas-bearing circulators in a high-pressure helium loop

    SciTech Connect

    Sanders, J.P.; Gat, Uri; Young, H.C.

    1987-01-01

    A high-pressure engineering test loop has been designed and constructed at the Oak Ridge National Laboratory for circulating helium through a test chamber at temperatures to 1000/sup 0/C. The purpose of this loop is to determine the thermal and structural performance of proposed components for the primary loops of gas-cooled nuclear reactors. Five MW of power is available to provide the required gas temperature at the test chamber, and an air-cooled heat exchanger, rated at 4.4 MW, serves as a heat sink. This report contains results of tests performed on gas-bearing circulators.

  8. Oil and Gas Lease Equipment and Operating Costs 1994 Through 2009

    Gasoline and Diesel Fuel Update

    Oil and Gas Field Code Master List With Data for 2015 | Release Date: February 24, 2016 | Next Release Date: February 2017 Previous Issues Year: 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1998 1997 1996 1995 Go Comprehensive listing of U.S. oil and gas field names. Oil and Gas Field Code Master List 2015 Definition of a Field A field is defined as "an area consisting of a single reservoir or multiple reservoirs all grouped on, or related to, the same

  9. Estimating the upper limit of gas production from Class 2 hydrate accumulations in the permafrost: 2. Alternative well designs and sensitivity analysis

    SciTech Connect

    Moridis, G.; Reagan, M.T.

    2011-01-15

    In the second paper of this series, we evaluate two additional well designs for production from permafrost-associated (PA) hydrate deposits. Both designs are within the capabilities of conventional technology. We determine that large volumes of gas can be produced at high rates (several MMSCFD) for long times using either well design. The production approach involves initial fluid withdrawal from the water zone underneath the hydrate-bearing layer (HBL). The production process follows a cyclical pattern, with each cycle composed of two stages: a long stage (months to years) of increasing gas production and decreasing water production, and a short stage (days to weeks) that involves destruction of the secondary hydrate (mainly through warm water injection) that evolves during the first stage, and is followed by a reduction in the fluid withdrawal rate. A well configuration with completion throughout the HBL leads to high production rates, but also the creation of a secondary hydrate barrier around the well that needs to be destroyed regularly by water injection. However, a configuration that initially involves heating of the outer surface of the wellbore and later continuous injection of warm water at low rates (Case C) appears to deliver optimum performance over the period it takes for the exhaustion of the hydrate deposit. Using Case C as the standard, we determine that gas production from PA hydrate deposits increases with the fluid withdrawal rate, the initial hydrate saturation and temperature, and with the formation permeability.

  10. U.S. Offshore Crude Oil and Natural Gas Rotary Rigs in Operation (Number of

    Gasoline and Diesel Fuel Update

    Biomass Gas (Million Cubic Feet) U.S. Natural Gas Supplemental Gas - Biomass Gas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 4,484 4,155 3,133 2,964 2,705 2,731 3,104 2000's 3,571 2,097 0 253 358 406 457 375 382 508 2010's 1,294 1,405 1,573 1,585 1,503 1,425 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016

  11. Special Delivery for Sustainability: Clean Cities Supports UPS in Expanding Natural Gas Operations

    Office of Energy Efficiency and Renewable Energy (EERE)

    With support from the Energy Department's Clean Cities program, United Parcel Service plans to deploy 1,000 liquefied natural gas trucks, making it the biggest private fleet of its kind in the United States.

  12. Utilization of a fuel cell power plant for the capture and conversion of gob well gas. Final report, June--December, 1995

    SciTech Connect

    Przybylic, A.R.; Haynes, C.D.; Haskew, T.A.; Boyer, C.M. II; Lasseter, E.L.

    1995-12-01

    A preliminary study has been made to determine if a 200 kW fuel cell power plant operating on variable quality coalbed methane can be placed and successfully operated at the Jim Walter Resources No. 4 mine located in Tuscaloosa County, Alabama. The purpose of the demonstration is to investigate the effects of variable quality (50 to 98% methane) gob gas on the output and efficiency of the power plant. To date, very little detail has been provided concerning the operation of fuel cells in this environment. The fuel cell power plant will be located adjacent to the No. 4 mine thermal drying facility rated at 152 M British thermal units per hour. The dryer burns fuel at a rate of 75,000 cubic feet per day of methane and 132 tons per day of powdered coal. The fuel cell power plant will provide 700,000 British thermal units per hour of waste heat that can be utilized directly in the dryer, offsetting coal utilization by approximately 0.66 tons per day and providing an avoided cost of approximately $20 per day. The 200 kilowatt electrical power output of the unit will provide a utility cost reduction of approximately $3,296 each month. The demonstration will be completely instrumented and monitored in terms of gas input and quality, electrical power output, and British thermal unit output. Additionally, real-time power pricing schedules will be applied to optimize cost savings. 28 refs., 35 figs., 13 tabs.

  13. Sensitivity of natural gas HCCI combustion to fuel and operating parameters using detailed kinetic modeling

    SciTech Connect

    Aceves, S; Dibble, R; Flowers, D; Smith, J R; Westbrook, C K

    1999-07-19

    This paper uses the HCT (Hydrodynamics, Chemistry and Transport) chemical kinetics code to analyze natural gas HCCI combustion in an engine. The HCT code has been modified to better represent the conditions existing inside an engine, including a wall heat transfer correlation. Combustion control and low power output per displacement remain as two of the biggest challenges to obtaining satisfactory performance out of an HCCI engine, and these are addressed in this paper. The paper considers the effect of natural gas composition on HCCI combustion, and then explores three control strategies for HCCI engines: DME (dimethyl ether) addition, intake heating and hot EGR addition. The results show that HCCI combustion is sensitive to natural gas composition, and an active control may be required to compensate for possible changes in composition. The three control strategies being considered have a significant effect in changing the combustion parameters for the engine, and should be able to control HCCI combustion.

  14. Development of a Low NOx Medium sized Industrial Gas Turbine Operating on Hydrogen-Rich Renewable and Opportunity Fuels

    SciTech Connect

    Srinivasan, Ram

    2013-07-31

    This report presents the accomplishments at the completion of the DOE sponsored project (Contract # DE-FC26-09NT05873) undertaken by Solar Turbines Incorporated. The objective of this 54-month project was to develop a low NOx combustion system for a medium sized industrial gas turbine engine operating on Hydrogen-rich renewable and opportunity Fuels. The work in this project was focused on development of a combustion system sized for 15MW Titan 130 gas turbine engine based on design analysis and rig test results. Although detailed engine evaluation of the complete system is required prior to commercial application, those tasks were beyond the scope of this DOE sponsored project. The project tasks were organized in three stages, Stages 2 through 4. In Stage 2 of this project, Solar Turbines Incorporated characterized the low emission capability of current Titan 130 SoLoNOx fuel injector while operating on a matrix of fuel blends with varying Hydrogen concentration. The mapping in this phase was performed on a fuel injector designed for natural gas operation. Favorable test results were obtained in this phase on emissions and operability. However, the resulting fuel supply pressure needed to operate the engine with the lower Wobbe Index opportunity fuels would require additional gas compression, resulting in parasitic load and reduced thermal efficiency. In Stage 3, Solar characterized the pressure loss in the fuel injector and developed modifications to the fuel injection system through detailed network analysis. In this modification, only the fuel delivery flowpath was modified and the air-side of the injector and the premixing passages were not altered. The modified injector was fabricated and tested and verified to produce similar operability and emissions as the Stage 2 results. In parallel, Solar also fabricated a dual fuel capable injector with the same air-side flowpath to improve commercialization potential. This injector was also test verified to produce 15

  15. Natural Gas Weekly Update

    Annual Energy Outlook

    and prevent oil and gas migration. The new rules would require operators to pressure-test casings used in Marcellus Shale wells; to use a minimum of two pressure barriers during...

  16. Defect of the well-known (classical) expression for the ionization rate in gas-discharge plasma and its modification

    SciTech Connect

    Litvinov, I. I.

    2015-11-15

    A critical analysis is given of the well-known expression for the electron-impact ionization rate constant α{sub i} of neutral atoms and ions, derived by linearization of the ionization cross section σ{sub i}(ε) as a function of the electron energy near the threshold I and containing the characteristic factor (I + 2kT). Using the classical Thomson expression for the ionization cross section, it is shown that in addition to the linear slope of σ{sub i}(ε), it is also necessary to take into account the large negative curvature of this function near the threshold. In this case, the second term in parentheses changes its sign, which means that the commonly used expression for α{sub i} (∼4kT/I) already at moderate values of the temperature (kT/I ∼ 0.1). The source of this error lies in a mathematical mistake in the original approach and is related to the incorrect choice of the sequential orders of terms small in the parameter kT/I. On the basis of a large amount of experimental data and considerations similar to the Gryzinski theory, a universal two-parameter modification of the Thomson formula (as well as the Bethe—Born formula) is proposed and a new simple expression for the ionization rate constant for arbitrary values of kT/I is derived.

  17. Genesis of a three-phase subsea metering system. [Oil and gas metering systems for subsea operations

    SciTech Connect

    Dowty, E.L.; Hatton, G.J.; Durrett, M.G. ); Dean, T.L.; Jiskoot, R.J.J.

    1993-08-01

    Periodic well flow testing is necessary to monitor well and reservoir performance over time to optimize decisions on well production rates and new well requirements through improved reservoir models, to determine the timing of well workovers, and to identify when wells become uneconomical to produce. A dedicated test separator' conventionally is used to meter individual wells. Fluids from a well are separated into the three component phases (oil, gas, and water) in a large vessel, and the flow rate of each phase is measured on the respective outlet lines from the vessel. The same method currently is used for subsea satellite developments by providing a dedicated test pipeline' from the subsea field to carry a selected well's production to a test separator for metering on the host platform. The capital cost of these systems rises rapidly with distance. Greater distances between the wellhead and flow test system increase the cost of the test pipeline and require larger and hence more expensive slug catchers and risers. Clearly, a subsea-based well-test system could result in large capital cost savings by eliminating the need for conventional test systems. This paper tracks the development of one subsea well test system from conception to field testing on the Tartan. A platform in the North Sea. This work defines the design requirements of the system, reviews system development and fabrication, describes modifications made as a result of initial field tests, and reports the results of topside tests completed through Dec. 1990.

  18. Lightweight proppants for deep-gas-well stimulation. Third annual report, July 1, 1981-June 30, 1982

    SciTech Connect

    Cutler, R.A.; Enniss, D.O.; Swartz, G.C.; Jones, A.H.

    1983-04-01

    The need exists for lower-density, less-expensive proppants for use in hydraulic-fracturing treatments. Ceramics, fabricated as fully sintered or hollow spheres, are the best materials for obtaining economical proppants with adequate strength. Fabrication techniques are described for fabricating solid-porcelain proppants and hollow-ceramic proppants. Porcelain proppants made by mix-pelletization techniques have good characteristics for propping wells with closure stresses to 96.5 MPa (14,000 psi). The properties of porcelain proppants are compared with twelve commercially available or experimental proppants. Several of the proppants evaluated had adequate conductivity for most hydraulic-fracturing jobs and are less expensive than bauxite. A single-fluid nozzle, counter-current spray-drying technique was used to make hollow, spherical proppants. Alumina was used as the ceramic raw material for these spray-drying experiments, but the same technique can be used with other ceramic materials. Hollow proppants with strengths comparable to sand have been spray dried but further optimization of spray drying parameters is needed to achieve proppants with concentric voids and improved strength. Bauxite, mullite, alumina and mullite rods were fast fired in a plasma in order to see if it is feasible to sinter these materials rapidly. Fast firing appears to be an alternative method of sintering proppants and may reduce costs, thereby making proppants more cost competitive with sand. 42 figures, 20 tables.

  19. Operating France's gas grid; Gaz de France depends on sophisticated communications

    SciTech Connect

    Eon, M.; Adel-Manuel, M. )

    1989-10-01

    At Gaz de France, the means used for monitoring and intervention have developed as the transmission network has evolved. The control system for GdF's transmission network is described. It is designed to manage: compressor stations; metering and automatic control stations; pressure pre-regulating stations, city-gate stations and off-take stations for industrial users linked to the transmission system; and underground gas storage facilities.

  20. Dissolver Off-gas Hot Operations Authorization (AFCI CETE Milestone Report)

    SciTech Connect

    Jubin, Robert Thomas

    2009-06-01

    The head-end processing of the Coupled-End-to-End (CETE) Demonstration includes fuel receipt, fuel disassembly, exposure of fuel (e.g., by segmenting the fuel pins), voloxidation of the fuel to separate tritium, and fuel dissolution. All of these processing steps with the exception of the dissolution step will be accomplished in the Irradiated Fuels Examination Laboratory (IFEL) (Building 3525). The final headend step will be performed in the Radiochemical Engineering Development Center (Building 7920). The primary purpose of the fuel dissolution step is to prepare the solid fuel for subsequent liquid separations steps. This is accomplished by dissolving the fuel solids using nitric acid. During the dissolution process gases are evolved. Oxides of nitrogen are the primary off-gas components generated by the reactions of nitric acid and the fuel oxides however, during the dissolution and sparging of the resulting solution, iodine, C-14 as carbon dioxide, xenon, and krypton gasses are also released to the off-gas stream. The Dissolver Off-gas treatment rack provides a means of trapping these volatile fission products and other gases via various trapping media. Specifically the rack will recover iodine on a solid sorbent bed, scrub NOx in a water/acid column, scrub CO{sub 2} in a caustic scrubber column, remove moisture with solid sorbent drier beds and recover Xe and Kr using solid absorbent beds. The primary purpose of this experimental rack and the off-gas rack associated with the voloxidation equipment located at IFEL is to close the material balances around the volatile gases and to provide an understanding of the impacts of specific processing conditions on the fractions of the volatile components released from the various head-end processing steps.

  1. New Mexico Natural Gas Gross Withdrawals from Shale Gas (Million...

    Energy Information Administration (EIA) (indexed site)

    Shale Gas (Million Cubic Feet) New Mexico Natural Gas Gross Withdrawals from Shale Gas ... Natural Gas Gross Withdrawals from Shale Gas Wells New Mexico Natural Gas Gross ...

  2. Experience with pump gas seals

    SciTech Connect

    Nosowicz, J.; Schoepplein, W.

    1997-01-01

    The gas seal technology used in gas compressors has been successfully applied for emission-free sealing of liquid pumps in the past few years. The seals with pressurized gas supply systems are used as single or dual (tandem) seals. Gas seals, mainly as single seals, are frequently used as safety seals as well. Applying this non-contacting sealing system will result in reduced investment and operating cost. The paper discusses the sealing concept, operating performance, operating limits, gas-lubricated safety seals, field experience, and advantages.

  3. New Mexico Natural Gas in Underground Storage (Base Gas) (Million...

    Annual Energy Outlook

    Base Gas) (Million Cubic Feet) New Mexico Natural Gas in Underground Storage (Base Gas) ... Underground Base Natural Gas in Storage - All Operators New Mexico Underground Natural Gas ...

  4. New York Natural Gas in Underground Storage (Base Gas) (Million...

    Energy Information Administration (EIA) (indexed site)

    Base Gas) (Million Cubic Feet) New York Natural Gas in Underground Storage (Base Gas) ... Underground Base Natural Gas in Storage - All Operators New York Underground Natural Gas ...

  5. ,"U.S. Underground Natural Gas Storage - All Operators"

    Energy Information Administration (EIA) (indexed site)

    Total Underground Storage",6,"Monthly","8/2016","1/15/1973" ,"Data 2","Change in Working Gas from Same Period Previous Year",2,"Monthly","8/2016","1/15/1973" ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File Name:","ng_stor_sum_dcu_nus_m.xls" ,"Available from Web

  6. U.S. Natural Gas Rotary Rigs in Operation (Number of Elements)

    Gasoline and Diesel Fuel Update

    (Million Barrels) Acquisitions (Million Barrels) U.S. Natural Gas Liquids Lease Condensate, Proved Reserves Acquisitions (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 37 2010's 140 273 84 138 408 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Lease Condensate Reserves Acquisitions (Million

  7. Reduced gas pressure operation of sludge digesters: Expanded studies. Final report

    SciTech Connect

    Not Available

    1993-09-01

    Previous investigations strongly suggested that the municipal anaerobic sludge digestion process could be enhanced by reactor operation with subatmospheric headspace pressures. Enhanced solids destruction and methane production along with increased process stability were observed in these earlier studies. However, due to the small scale of the anaerobic reactors used ( {approx}1.5 L), definitive steady-state measurements could not be obtained. These expanded studies were undertaken to verify and define the magnitude of the benefits that might be obtained with vacuum operation of sludge digesters. Four reactors ({approx}15.0 L) were fed municipal sludge at three different organic loading rates while being maintained with a 15-day solids retention time. One reactor had a constant headspace pressure of 1.02 atm; a second was maintained at 0.75 atm; and the remaining two reactors were operated for the majority of the day at 1.02 atm, and for part of the day with a 0.75 atm headspace pressure. Additional small-scale, batch experiments were performed to help identify controlling digestion mechanisms. The results of these expanded studies indicate that vacuum operation did not yield significant advantages over the organic loading range investigated (0.088 to 0.352 lb VSS/ft{sup 3}{center_dot}d).

  8. Number of Producing Gas Wells

    Gasoline and Diesel Fuel Update

    Area 2010 2011 2012 2013 2014 2015 View History U.S. 487,627 574,593 577,916 572,742 565,951 555,364 1989-2015 Alabama 7,026 6,243 6,203 6,174 6,117 6,044 1989-2015 Alaska 269 274 ...

  9. Natural Gas Gross Withdrawals from Gas Wells

    Energy Information Administration (EIA) (indexed site)

    6-2016 Illinois NA NA NA NA NA NA 1991-2016 Indiana NA NA NA NA NA NA 1991-2016 Kentucky NA NA NA NA NA NA 1991-2016 Maryland NA NA NA NA NA NA 1991-2016 Michigan NA NA NA NA NA NA ...

  10. Natural Gas Gross Withdrawals from Gas Wells

    Gasoline and Diesel Fuel Update

    NA NA NA NA NA NA 1991-2016 Missouri NA NA NA NA NA NA 1991-2016 Nebraska NA NA NA NA NA NA 1991-2016 Nevada NA NA NA NA NA NA 1991-2016 New York NA NA NA NA NA NA 1991-2016 Oregon ...

  11. Natural Gas Gross Withdrawals from Gas Wells

    Energy Information Administration (EIA) (indexed site)

    14,414,287 13,247,498 12,291,070 12,504,227 10,759,545 10,384,119 1967-2014 U.S. State Offshore 259,848 234,236 208,970 204,667 186,887 159,337 1978-2014 Federal Offshore U.S....

  12. Natural Gas Gross Withdrawals from Gas Wells

    Gasoline and Diesel Fuel Update

    1978-2014 Federal Offshore U.S. 1,878,928 1,701,665 1,355,489 1,028,474 831,636 720,400 1977-2014 Alaska 137,639 127,417 112,268 107,873 91,686 104,219 1967-2014 Alaska Onshore...

  13. Gas erosion of impeller housing in the operation of a high-temperature, high-pressure helium circulator

    SciTech Connect

    Sanders, J.P.; Heestand, R.L.; Young, H.C.

    1987-01-01

    Three gas-bearing circulators are installed in series in a high-pressure, high-temperature loop to provide helium flow up to 0.47 m/sup 3//s at a total head of 78 kJ/kg. The design pressure is 10.7 MPa, and temperatures of 1000/sup 0/C can be obtained in the test section. The inlet temperature to the circulators is limited to 450/sup 0/C. During a routine examination of the circulator, deep V-shaped grooves were found in the stationary surface of this cavity. At the same time, a very fine, dark particulate was observed in crevices of the housing. At first it was assumed that the grooves were formed by particulate erosion; however, examination of the grooves and discussions with persons experienced with large circulator operation changed this opinion. Erosion caused by particulate is characteristically rounded on the bottom and has a greater width to depth aspect than the V-shaped grooves, which were observed. Analysis of the particulate indicated that it was essentially the material of the housing that had undergone reactions with impurities in the circulating gas. It was subsequently concluded that the impeller housing had not been heat treated in a sufficiently oxidizing atmosphere after machining to form an adherent oxide coating. This suboxide coating was eroded by the shear forces in the gas. The exposed layer of metal was then further oxidized by the impurities in the gas, and these layers of oxide were successively eroded to produce the grooves. This erosion problem was eliminated by machining a ring of the same material, heat treating it to form an adherent stable oxide, and bolting it in place in the cavity.

  14. Environmental and Economic Assessment of Discharges from Gulf of Mexico Region Oil and Gas Operations

    SciTech Connect

    Gettleson, David A

    1999-10-28

    The primary objectives of the project are to increase the base of scientific knowledge concerning (1) the fate and environmental effects of organics, trace metals, and NORM in water, sediment, and biota near several offshore oil and gas facilities; (2) the characteristics of produced water and produced sand discharges as they pertain to organics, trace metals, and NORM variably found in association with the discharges; (3) the recovery of three terminated produced water discharge sites located in wetland and high-energy open bay sites of coastal Louisiana; (4) the economic and energy supply impacts of existing and anticipated federal and state offshore and coastal discharge regulations; and (5) the catch, consumption and human use patterns of seafood species collected from coastal and offshore waters. The products of the effort will be a series of technical reports detailing the study procedures, results, and conclusions which contribute to the transfer of technology to the scientific community, petroleum industry, and state and federal agencies.

  15. U.S. Natural Gas Rotary Rigs in Operation (Number of Elements)

    Gasoline and Diesel Fuel Update

    Processed (Million Cubic Feet) U.S. Natural Gas Processed (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 15,641,633 16,316,674 17,655,108 1970's 18,509,309 19,252,807 19,947,740 19,679,291 18,684,480 17,748,426 17,717,951 17,569,835 17,012,234 1980's 14,816,393 14,163,667 13,173,129 13,946,385 13,434,644 12,949,592 12,874,263 12,794,932 12,810,246 1990's 14,610,303 16,229,684 16,045,855 16,396,894 16,459,516 16,930,662 17,470,017

  16. U.S. Offshore Crude Oil and Natural Gas Rotary Rigs in Operation (Number of

    Gasoline and Diesel Fuel Update

    Production from Reserves (Billion Cubic Feet) Estimated Production from Reserves (Billion Cubic Feet) U.S. Nonassociated Natural Gas, Wet After Lease Separation, Estimated Production from Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 16,674 1980's 16,095 16,238 15,044 13,235 14,514 13,344 12,958 13,553 14,274 14,653 1990's 15,067 15,044 15,238 15,773 16,303 15,988 16,845 17,112 16,486 16,543 2000's 16,863 17,451 17,260

  17. Hybrid sulfur cycle operation for high-temperature gas-cooled reactors

    DOEpatents

    Gorensek, Maximilian B

    2015-02-17

    A hybrid sulfur (HyS) cycle process for the production of hydrogen is provided. The process uses a proton exchange membrane (PEM) SO.sub.2-depolarized electrolyzer (SDE) for the low-temperature, electrochemical reaction step and a bayonet reactor for the high-temperature decomposition step The process can be operated at lower temperature and pressure ranges while still providing an overall energy efficient cycle process.

  18. STIMULATION TECHNOLOGIES FOR DEEP WELL COMPLETIONS

    SciTech Connect

    Stephen Wolhart

    2003-06-01

    The Department of Energy (DOE) is sponsoring a Deep Trek Program targeted at improving the economics of drilling and completing deep gas wells. Under the DOE program, Pinnacle Technologies is conducting a project to evaluate the stimulation of deep wells. The objective of the project is to assess U.S. deep well drilling & stimulation activity, review rock mechanics & fracture growth in deep, high pressure/temperature wells and evaluate stimulation technology in several key deep plays. Phase 1 was recently completed and consisted of assessing deep gas well drilling activity (1995-2007) and an industry survey on deep gas well stimulation practices by region. Of the 29,000 oil, gas and dry holes drilled in 2002, about 300 were drilled in the deep well; 25% were dry, 50% were high temperature/high pressure completions and 25% were simply deep completions. South Texas has about 30% of these wells, Oklahoma 20%, Gulf of Mexico Shelf 15% and the Gulf Coast about 15%. The Rockies represent only 2% of deep drilling. Of the 60 operators who drill deep and HTHP wells, the top 20 drill almost 80% of the wells. Six operators drill half the U.S. deep wells. Deep drilling peaked at 425 wells in 1998 and fell to 250 in 1999. Drilling is expected to rise through 2004 after which drilling should cycle down as overall drilling declines.

  19. Post-test analysis of 20kW molten carbonate fuel cell stack operated on coal gas. Final report, August 1993--February 1996

    SciTech Connect

    1996-05-01

    A 20kW carbonate fuel cell stack was operated with coal gas for the first time in the world. The stack was tested for a total of 4,000 hours, of which 3,900 hours of testing was conducted at the Louisiana Gasification Technology Incorporated, Plaquemine, Louisiana outdoor site. The operation was on either natural gas or coal gas and switched several times without any effects, demonstrating duel fuel capabilities. This test was conducted with 9142 kJ/m{sup 3} (245 Btu/cft) coal gas provided by a slipstream from Destec`s entrained flow, slagging, slurry-fed gasifier equipped with a cold gas cleanup subsystem. The stack generated up to 21 kW with this coal gas. Following completion of this test, the stack was brought to Energy Research Corporation (ERC) and a detailed post-test analysis was conducted to identify any effects of coal gas on cell components. This investigation has shown that the direct fuel cell (DFC) can be operated with properly cleaned and humidified coal-as, providing stable performance. The basic C direct fuel cell component materials are stable and display normal stability in presence of the coal gas. No effects of the coal-borne contaminants are apparent. Further cell testing at ERC 1 17, confirmed these findings.

  20. Environmental and economic assessment of discharges from Gulf of Mexico Region Oil and Gas Operations

    SciTech Connect

    Gettleson, D.A.

    1997-11-24

    Task 3 (Environmental Field Sampling and Analysis of NORM, Heavy Metals, and Organics) and 4 (Monitoring of the Recovery of Impacted Wetland and Open Bay Produced Water Discharge Sites in Coastal Louisiana and Texas) activities involved continued data analysis and report writing. Task 5 (Assessment of Economic Impacts of Offshore and Coastal Discharge Requirements on Present and Future Operations in the Gulf of Mexico Region) was issued as a final report during the previous reporting period. Task 6 (Synthesis of Gulf of Mexico Seafood Consumption and Use Patterns) activities included the preparation of the final report. There were no Task 7 (Technology Transfer Plan) activities to report. Task 8 (Project Management and Deliverables) activities involved the submission of the necessary reports and routine management.