National Library of Energy BETA

Sample records for gas wells drilled

  1. Oil and Gas Well Drilling | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Drilling Jump to: navigation, search OpenEI Reference LibraryAdd to library General: Oil and Gas Well Drilling Author Jeff Tester Published NA, 2011 DOI Not Provided Check for...

  2. Horizontal underbalanced drilling of gas wells with coiled tubing

    SciTech Connect

    Cox, R.J.; Li, J.; Lupick, G.S.

    1999-03-01

    Coiled tubing drilling technology is gaining popularity and momentum as a significant and reliable method of drilling horizontal underbalanced wells. It is quickly moving into new frontiers. To this point, most efforts in the Western Canadian Basin have been focused towards sweet oil reservoirs in the 900--1300 m true vertical depth (TVD) range, however there is an ever-increasing interest in deeper and gas-producing formations. Significant design challenges on both conventional and coiled tubing drilling operations are imposed when attempting to drill these formations underbalanced. Coiled tubing is an ideal technology for underbalanced drilling due to its absence of drillstring connections resulting in continuous underbalanced capabilities. This also makes it suitable for sour well drilling and live well intervention without the risk of surface releases of reservoir gas. Through the use of pressure deployment procedures it is possible to complete the drilling operation without need to kill the well, thereby maintaining underbalanced conditions right through to the production phase. The use of coiled tubing also provides a means for continuous wireline communication with downhole steering, logging and pressure recording devices.

  3. Onsite-generated nitrogen for oil and gas well drilling

    SciTech Connect

    1995-08-01

    New equipment that can generate gaseous nitrogen at the well site has been used successfully in a variety of oil and gas well drilling applications in the US and Canada, affording the many benefits of drilling with gas or air, while also eliminating the danger of downhole fires, and/or providing significant savings over delivered liquid nitrogen. The technology involves the use of a hollow fiber membrane polymer incorporated into a skid-mounted nitrogen production unit (NPU) designed for use in oilfield conditions. Generon Systems, Inc., a wholly owned subsidiary of The Dow Chemical Co., fabricates the membrane fiber and other equipment for the NPUs. The equipment is exclusively marketed for Generon, for oil and gas applications, by Energy Technology Services Corp., of Englewood, Colorado. This paper reviews this equipment and its application to horizontal drilling. It also reviews the safety advantage of nitrogen in lost circulation zones.

  4. Laser Oil and Gas Well Drilling Demonstration Videos

    DOE Data Explorer

    ANL's Laser Applications Laboratory and collaborators are examining the feasibility of adapting high-power laser technology to drilling for gas and oil. The initial phase is designed to establish a scientific basis for developing a commercial laser drilling system and determine the level of gas industry interest in pursuing future research. Using lasers to bore a hole offers an entirely new approach to mechanical drilling. The novel drilling system would transfer light energy from lasers on the surface, down a borehole by a fiber optic bundle, to a series of lenses that would direct the laser light to the rock face. Researchers believe that state-of-the-art lasers have the potential to penetrate rock many times faster than conventional boring technologies - a huge benefit in reducing the high costs of operating a drill rig. Because the laser head does not contact the rock, there is no need to stop drilling to replace a mechanical bit. Moreover, researchers believe that lasers have the ability to melt the rock in a way that creates a ceramic sheath in the wellbore, eliminating the expense of buying and setting steel well casing. A laser system could also contain a variety of downhole sensors, including visual imaging systems that could communicate with the surface through the fiber optic cabling. Earlier studies have been promising, but there is still much to learn. One of the primary objectives of the new study will be to obtain much more precise measurements of the energy requirements needed to transmit light from surface lasers down a borehole with enough power to bore through rocks as much as 20,000 feet or more below the surface. Another objective will be to determine if sending the laser light in sharp pulses, rather than as a continuous stream, could further increase the rate of rock penetration. A third aspect will be to determine if lasers can be used in the presence of drilling fluids. In most wells, thick fluids called "drilling muds" are injected into

  5. U.S. Nominal Cost per Natural Gas Well Drilled (Thousand Dollars per Well)

    Gasoline and Diesel Fuel Update

    Natural Gas Well Drilled (Thousand Dollars per Well) U.S. Nominal Cost per Natural Gas Well Drilled (Thousand Dollars per Well) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 102.7 94.7 97.1 92.4 104.8 101.9 133.8 141.0 148.5 154.3 1970's 160.7 166.6 157.8 155.3 189.2 262.0 270.4 313.5 374.2 443.1 1980's 536.4 698.6 864.3 608.1 489.8 508.7 522.9 380.4 460.3 457.8 1990's 471.3 506.6 426.1 521.2 535.1 629.7 616.0 728.6 815.6 798.4 2000's 756.9 896.5 991.9

  6. U.S. Average Depth of Natural Gas Exploratory Wells Drilled (Feet per Well)

    Gasoline and Diesel Fuel Update

    Wells Drilled (Feet per Well) U.S. Average Depth of Natural Gas Exploratory Wells Drilled (Feet per Well) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1940's 5,682 1950's 5,466 5,497 6,071 5,654 6,059 5,964 6,301 6,898 6,657 6,613 1960's 6,298 6,457 6,728 6,370 7,547 7,295 8,321 7,478 7,697 8,092 1970's 7,695 7,649 7,400 6,596 6,456 6,748 6,777 6,625 6,662 6,630 1980's 6,604 6,772 6,921 6,395 6,502 6,787 6,777 6,698 6,683 6,606 1990's 7,100 7,122 6,907 6,482 6,564

  7. Shallow gas well drilling with coiled tubing in the San Juan Basin

    SciTech Connect

    Moon, R.G.; Ovitz, R.W.; Guild, G.J.; Biggs, M.D.

    1996-12-31

    Coiled tubing is being utilized to drill new wells, for re-entry drilling to deepen or laterally extend existing wells, and for underbalanced drilling to prevent formation damage. Less than a decade old, coiled tubing drilling technology is still in its inaugral development stage. Initially, utilizing coiled tubing was viewed as a {open_quotes}science project{close_quotes} to determine the validity of performing drilling operations in-lieu of the conventional rotary rig. Like any new technology, the initial attempts were not always successful, but did show promise as an economical alternative if continued efforts were made in the refinement of equipment and operational procedures. A multiwell project has been completed in the San Juan Basin of Northwestern New Mexico which provides documentation indicating that coiled tubing can be an alternative to the conventional rotary rig. A 3-well pilot project, a 6-well project was completed uniquely utilizing the combined resources of a coiled tubing service company, a producing company, and a drilling contractor. This combination of resources aided in the refinement of surface equipment, personnel, mud systems, jointed pipe handling, and mobilization. The results of the project indicate that utilization of coiled tubing for the specific wells drilled was an economical alternative to the conventional rotary rig for drilling shallow gas wells.

  8. Drilling and operating oil, gas, and geothermal wells in an H/sub 2/S environment

    SciTech Connect

    Dosch, M.W.; Hodgson, S.F.

    1981-01-01

    The following subjects are covered: facts about hydrogen sulfides; drilling and operating oil, gas, and geothermal wells; detection devices and protective equipment; hazard levels and safety procedures; first aid; and H/sub 2/S in California oil, gas, and geothermal fields. (MHR)

  9. U.S. Real Cost per Foot of Crude Oil, Natural Gas, and Dry Wells Drilled

    Gasoline and Diesel Fuel Update

    (Dollars per Foot) Foot of Crude Oil, Natural Gas, and Dry Wells Drilled (Dollars per Foot) U.S. Real Cost per Foot of Crude Oil, Natural Gas, and Dry Wells Drilled (Dollars per Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 61.83 60.39 61.71 58.22 58.11 59.64 64.51 66.84 67.56 67.15 1970's 68.42 65.82 68.82 70.65 83.31 97.34 100.66 109.49 123.76 136.64 1980's 142.52 159.51 173.34 127.81 106.27 108.09 107.90 80.21 92.78 93.63 1990's 93.23 97.86

  10. Well drilling apparatus and method

    DOEpatents

    Alvis, Robert L.; Newsom, Melvin M.

    1977-01-01

    Well drilling rates may be increased by impelling projectiles to fracture rock formations and drilling with rock drill bits through the projectile fractured rock.

  11. U.S. Nominal Cost per Crude Oil, Natural Gas, and Dry Well Drilled

    Gasoline and Diesel Fuel Update

    (Thousand Dollars per Well) Oil, Natural Gas, and Dry Well Drilled (Thousand Dollars per Well) U.S. Nominal Cost per Crude Oil, Natural Gas, and Dry Well Drilled (Thousand Dollars per Well) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 54.9 54.5 58.6 55.0 55.8 60.6 68.4 72.9 81.5 88.6 1970's 94.9 94.7 106.4 117.2 138.7 177.8 191.6 227.2 280.0 331.4 1980's 367.7 453.7 514.4 371.7 326.5 349.4 364.6 279.6 354.7 362.2 1990's 383.6 421.5 382.6 426.8 483.2

  12. DEVELOPMENT OF GLASS AND GLASS CERAMIC PROPPANTS FROM GAS SHALE WELL DRILL CUTTINGS

    SciTech Connect

    Johnson, F.; Fox, K.

    2013-10-02

    The objective of this study was to develop a method of converting drill cuttings from gas shale wells into high strength proppants via flame spheroidization and devitrification processing. Conversion of drill cuttings to spherical particles was only possible for small particle sizes (< 53 {micro}m) using a flame former after a homogenizing melting step. This size limitation is likely to be impractical for application as conventional proppants due to particle packing characteristics. In an attempt to overcome the particle size limitation, sodium and calcium were added to the drill cuttings to act as fluxes during the spheroidization process. However, the flame former remained unable to form spheres from the fluxed material at the relatively large diameters (0.5 - 2 mm) targeted for proppants. For future work, the flame former could be modified to operate at higher temperature or longer residence time in order to produce larger, spherical materials. Post spheroidization heat treatments should be investigated to tailor the final phase assemblage for high strength and sufficient chemical durability.

  13. U.S. Nominal Cost per Foot of Crude Oil, Natural Gas, and Dry Wells Drilled

    Gasoline and Diesel Fuel Update

    (Dollars per Foot) Oil, Natural Gas, and Dry Wells Drilled (Dollars per Foot) U.S. Nominal Cost per Foot of Crude Oil, Natural Gas, and Dry Wells Drilled (Dollars per Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 13.01 12.85 13.31 12.69 12.86 13.44 14.95 15.97 16.83 17.56 1970's 18.84 19.03 20.76 22.50 28.93 36.99 40.46 46.81 56.63 67.70 1980's 77.02 94.30 108.73 83.34 71.90 75.35 76.88 58.71 70.23 73.55 1990's 76.07 82.64 70.27 75.30 79.49 87.22

  14. U.S. Nominal Cost per Foot of Natural Gas Wells Drilled (Dollars per Foot)

    Gasoline and Diesel Fuel Update

    Natural Gas Wells Drilled (Dollars per Foot) U.S. Nominal Cost per Foot of Natural Gas Wells Drilled (Dollars per Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 18.57 17.65 18.10 17.19 18.57 18.35 21.75 23.05 24.05 25.58 1970's 26.75 27.70 27.78 27.46 34.11 46.23 49.78 57.57 68.37 80.66 1980's 95.16 122.17 146.20 108.37 88.80 93.09 93.02 69.55 84.65 86.86 1990's 90.73 93.10 72.83 83.15 81.90 95.97 98.67 117.55 127.94 138.42 2000's 138.39 172.05 175.78

  15. U.S. Average Depth of Natural Gas Developmental Wells Drilled (Feet per

    Gasoline and Diesel Fuel Update

    Well) Developmental Wells Drilled (Feet per Well) U.S. Average Depth of Natural Gas Developmental Wells Drilled (Feet per Well) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1940's 3,412 1950's 3,766 3,837 4,015 4,373 4,365 4,339 4,734 4,950 4,801 5,120 1960's 5,321 5,145 5,186 5,198 5,171 5,337 5,474 5,629 5,716 5,531 1970's 5,644 5,670 5,259 5,286 5,173 5,238 4,960 5,053 5,066 5,082 1980's 5,093 5,149 5,453 5,187 5,158 5,193 5,080 5,112 5,155 5,038 1990's

  16. U.S. Footage Drilled for Crude Oil, Natural Gas, and Dry Exploratory Wells

    Gasoline and Diesel Fuel Update

    (Thousand Feet) Wells (Thousand Feet) U.S. Footage Drilled for Crude Oil, Natural Gas, and Dry Exploratory Wells (Thousand Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1940's 34,798 1950's 40,175 49,344 55,615 60,664 59,601 69,206 74,337 69,181 61,484 63,253 1960's 55,831 54,442 53,616 53,485 55,497 49,204 55,709 47,839 50,958 57,466 1970's 43,530 41,895 44,956 45,618 51,315 54,677 53,617 57,949 65,197 63,096 1980's 74,288 101,808 88,856 69,690 80,853

  17. U.S. Footage Drilled for Natural Gas Exploratory and Developmental Wells

    Gasoline and Diesel Fuel Update

    (Thousand Feet) and Developmental Wells (Thousand Feet) U.S. Footage Drilled for Natural Gas Exploratory and Developmental Wells (Thousand Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1940's 12,437 1950's 13,685 13,947 15,257 18,248 18,857 19,930 22,738 23,836 25,555 26,606 1960's 28,246 29,292 28,949 24,533 25,598 24,931 25,948 21,581 20,716 24,162 1970's 23,623 23,460 30,006 38,045 38,449 44,454 49,113 63,686 75,841 80,468 1980's 92,106 108,353 107,149

  18. U.S. Footage Drilled for Natural Gas Developmental Wells (Thousand Feet)

    Gasoline and Diesel Fuel Update

    Developmental Wells (Thousand Feet) U.S. Footage Drilled for Natural Gas Developmental Wells (Thousand Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1940's 10,028 1950's 11,329 11,451 11,863 14,296 14,458 14,718 17,559 17,869 20,083 20,575 1960's 22,780 24,042 23,762 20,303 21,394 21,174 20,140 17,602 16,975 19,177 1970's 19,945 19,850 25,159 31,007 30,766 36,032 39,992 53,431 64,043 67,825 1980's 78,244 91,274 92,386 67,844 81,545 68,149 39,638 37,520 40,371

  19. U.S. Footage Drilled for Natural Gas Exploratory Wells (Thousand Feet)

    Gasoline and Diesel Fuel Update

    Wells (Thousand Feet) U.S. Footage Drilled for Natural Gas Exploratory Wells (Thousand Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1940's 2,409 1950's 2,356 2,496 3,394 3,952 4,399 5,212 5,179 5,967 5,472 6,031 1960's 5,466 5,250 5,187 4,230 4,204 3,757 5,808 3,979 3,741 4,985 1970's 3,678 3,610 4,847 7,038 7,683 8,422 9,121 10,255 11,798 12,643 1980's 13,862 17,079 14,763 10,264 9,935 8,144 5,401 5,064 4,992 4,664 1990's 5,765 4,615 3,543 3,947 5,120

  20. U.S. Natural Gas Developmental Wells Drilled (Number of Elements)

    Gasoline and Diesel Fuel Update

    (Percent) Commercial Delivered for the Account of Others (Percent) U.S. Natural Gas % of Total Commercial Delivered for the Account of Others (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 10.9 1990's 13.4 14.9 16.8 16.1 20.7 23.3 22.4 29.2 33.0 33.9 2000's 36.1 34.0 36.4 34.9 35.9 35.0 36.3 37.6 38.1 40.8 2010's 42.5 44.2 46.8 46.1 46.2 46.6 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  1. Recovery Act. Sub-Soil Gas and Fluid Inclusion Exploration and Slim Well Drilling, Pumpernickel Valley, Nevada

    SciTech Connect

    Fairbank, Brian D.

    2015-03-27

    Nevada Geothermal Power Company (NGP) was awarded DOE Award DE-EE0002834 in January 2010 to conduct sub-soil gas and fluid inclusion studies and slim well drilling at its Black Warrior Project (now known as North Valley) in Washoe and Churchill Counties, Nevada. The project was designed to apply highly detailed, precise, low-cost subsoil and down-hole gas geochemistry methods from the oil and gas industry to identify upflow zone drilling targets in an undeveloped geothermal prospect. NGP ran into multiple institutional barriers with the Black Warrior project relating to property access and extensive cultural survey requirement. NGP requested that the award be transferred to NGP’s Pumpernickel Valley project, due to the timing delay in obtaining permits, along with additional over-budget costs required. Project planning and permit applications were developed for both the original Black Warrior location and at Pumpernickel. This included obtaining proposals from contractors able to conduct required environmental and cultural surveying, designing the two-meter probe survey methodology and locations, and submitting Notices of Intent and liaising with the Bureau of Land Management to have the two-meter probe work approved. The award had an expiry date of April 30, 2013; however, due to the initial project delays at Black Warrior, and the move of the project from Black Warrior to Pumpernickel, NGP requested that the award deadline be extended. DOE was amenable to this, and worked with NGP to extend the deadline. However, following the loss of the Blue Mountain geothermal power plant in Nevada, NGP’s board of directors changed the company’s mandate to one of cash preservation. NGP was unable to move forward with field work on the Pumpernickel property, or any of its other properties, until additional funding was secured. NGP worked to bring in a project partner to form a joint venture on the property, or to buy the property. This was unsuccessful, and NGP notified

  2. Offshore multiple well drilling and production apparatus

    SciTech Connect

    Kirkland, K.G.; Masciopinto, A.J.

    1980-03-11

    A modular multiple well drilling and production template structure is combined with a production riser base module to provide an underwater apparatus which allows a plurality of wells to be drilled, completed and produced by operations carried out from a single vessel or platform without remote installation of flowlines.

  3. Optimizing Geothermal Drilling: Oil and Gas Technology Transfer

    SciTech Connect

    Denninger, Kate; Eustes, Alfred; Visser, Charles; Baker, Walt; Bolton, Dan; Bell, Jason; Bell, Sean; Jacobs, Amelia; Nagandran, Uneshddarann; Tilley, Mitch; Quick, Ralph

    2015-09-02

    There is a significant amount of financial risk associated with geothermal drilling. This study of drilling operations seeks opportunities to improve upon current practices and technologies. The scope of this study included analyzing 21 geothermal wells and 21 oil and gas wells. The goal was to determine a 'Perfect Well' using historical data to compare the best oil and gas well to the best geothermal well. Unfortunately, limitations encountered in the study included missing data (bit records, mud information, etc.) and poor data collection practices An online software database was used to format drilling data to IADC coded daily drilling reports and generate figures for analysis. Six major issues have been found in geothermal drilling operations. These problems include lost circulation, rig/ equipment selection, cementing, penetration rate, drilling program, and time management. As a result of these issues, geothermal drilling averaged 56.4 days longer than drilling comparable oil and gas wells in the wells in this study. Roughly $13.9 million was spent on non-productive time in the 21 geothermal wells, compared with only $1.3 million in the oil and gas wells, assuming a cost of $50,000 per day. Comparable events such as drilling the same sized hole, tripping in/out, cementing, and running the same size casing took substantially less time in the oil and gas wells. Geothermal wells were drilled using older and/or less advanced technology to depths less than 10,000 feet, while oil and gas wells reached 12,500 feet faster with purpose built rigs. A new approach is now underway that will optimize drilling programs throughout the drilling industry using Mechanical Specific Energy (MSE) as a tool to realize efficient drilling processes. Potential improvements for current geothermal operations are: the use of electronic records, real time services, and official glossary terms to describe rig operations, and advanced drilling rigs/technology.

  4. Subsea well template for directional drilling

    SciTech Connect

    Goldsmith, R.G.

    1988-07-05

    A method is described for drilling widely spaced boreholes into a hydrocarbon producing subsea formation comprising the steps of: positioning a subsea drilling template on the bottom of a body of water, the subsea drilling template including laterally disposed, substantially cylindrical drilling guides having a longitudinal axis wherein at least one of the drilling guides has its longitudinal axis disposed at an angle of less than 90/sup 0/ relative to a horizontal plane passing through the subsea drilling template; mooring a drilling vessel floating on the surface of the body of water in a first position relative to the subsea drilling template using a plurality of mooring catenaries; extending a drill string from the floating vessel to the subsea template, the drill string passing into the one of the drilling guides along its longitudinal axis which is disposed at an angle of less than 90/sup 0/; drilling a borehole below the template into the hydrocarbon producing subsea formation; repositioning the drilling vessel to another position relative to the subsea template by adjusting the mooring catenaries; extending the drill string from the vessel into another of the drilling guides; drilling another borehole below the template; and repeating the steps of repositioning the drilling vessel, extending the drill string and drilling the widely spaced boreholes.

  5. Optimizing Geothermal Drilling: Oil and Gas Technology Transfer

    SciTech Connect

    Tilley, Mitch; Eustes, Alfred; Visser, Charles; Baker, Walt; Bolton, Dan; Bell, Jason; Nagandran, Uneshddarann; Quick, Ralph

    2015-01-26

    There is a significant amount of financial risk associated with geothermal drilling; however, there are opportunities to improve upon current practices and technologies used. The scope of this drilling operational study included 21 geothermal wells and 21 oil and gas wells. The goal was to determine a 'perfect well' using historical data to compare the best oil and gas well to the best geothermal well. Unfortunately, limitations encountered in the study included missing data (bit records, mud information, etc.), poor data collection, and difficult to ascertain handwriting. An online software database was used to format drilling data to IADC coded daily drilling reports and generate analysis figures. Six major issues have been found in geothermal drilling operations. These problems include lost circulation, rig/equipment selection, cementing, penetration rate, drilling program, and time management. As a result of these issues, geothermal drilling averages 56.4 days longer than drilling comparable oil and gas wells in the wells in this study. Roughly $13.9 million would be lost due to non-productive time in the 21 geothermal wells and only $1.3 million in the oil and gas wells, assuming a cost of $50,000 per day. Comparable events such as drilling the same sized hole, tripping in/out, cementing, and running the same size casing took substantially less time in the oil and gas wells. Geothermal wells were drilled using older and/or less advanced technology to depths less than 10,000 feet, while oil and gas wells reached 12,500 feet faster with purpose built rigs. A new approach is now underway that will optimize drilling programs throughout the drilling industry. It is the use of Mechanical Specific Energy (MSE) as a tool to realize efficient drilling processes. However, a work-flow must also be established in order for there to be an efficient drilling program. Potential improvements for current geothermal operations are: the use of electronic records, real time

  6. Columbia Gas preserves wetlands with directional drilling

    SciTech Connect

    Luginbuhl, K.K.; Gartman, D.K.

    1995-10-01

    This paper reviews the use of directional drilling to install a 12 inch natural gas pipeline near Avon, Ohio. As a result of increased demand, the utility decided that it would need additional lines for pressure control with the only feasible route being through a forested and scrub/shrub wetland. This paper reviews the permitting requirements along with the directional drilling design and operation. Unfortunately during drilling, bentonite drilling fluids came to the surface requiring remedial action procedures. The paper then provides a detailed clean up strategy and makes recommendations on how to prevent such a break through in the future.

  7. The drilling of a horizontal well in a mature oil field

    SciTech Connect

    Rougeot, J.E.; Lauterbach, K.A.

    1991-01-01

    This report documents the drilling of a medium radius horizontal well in the Bartlesville Sand of the Flatrock Field, Osage County, Oklahoma by Rougeot Oil and Gas Corporation (Rougeot) of Sperry, Oklahoma. The report includes the rationale for selecting the particular site, the details of drilling the well, the production response, conclusions reached, and recommendations made for the future drilling of horizontal wells. 11 figs., 2 tabs.

  8. Idaho Well Construction and Drilling Forms Webpage | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Not Provided DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Idaho Well Construction and Drilling Forms Webpage Citation Idaho Department...

  9. EM Telemetry Tool for Deep Well Drilling Applications

    SciTech Connect

    Jeffrey M. Gabelmann

    2005-11-15

    This final report discusses the successful development and testing of a deep operational electromagnetic (EM) telemetry system, produced under a cooperative agreement with the United States Department of Energy's National Energy Technology Laboratory. This new electromagnetic telemetry system provides a wireless communication link between sensors deployed deep within oil and gas wells and data acquisition equipment located on the earth's surface. EM based wireless telemetry is a highly appropriate technology for oil and gas exploration in that it avoids the need for thousands of feet of wired connections. In order to achieve the project performance objectives, significant improvements over existing EM telemetry systems were made. These improvements included the development of new technologies that have improved the reliability of the communications link while extending operational depth. A key element of the new design is the incorporation of a data-fusion methodology which enhances the communication receiver's ability to extract very weak signals from large amounts of ambient environmental noise. This innovative data-fusion receiver based system adapts advanced technologies, not normally associated with low-frequency communications, and makes them work within the harsh drilling environments associated with the energy exploration market. Every element of a traditional EM telemetry system design, from power efficiency to reliability, has been addressed. The data fusion based EM telemetry system developed during this project is anticipated to provide an EM tool capability that will impact both onshore and offshore oil and gas exploration operations, for conventional and underbalanced drilling applications.

  10. Horizontal well replaces hydraulic fracturing in North Sea gas well

    SciTech Connect

    Reynolds, D.A.; Seymour, K.P. )

    1991-11-25

    This paper reports on excessive water production from hydraulically fractured wells in a poor quality reservoir in the North SEa which prompted the drilling of a horizontal well. Gas production from the horizontal well reached six times that of the offset vertical wells, and no water production occurred. This horizontal well proved commercial the western section of the Anglia field. Horizontal drilling in the North SEa is as an effective technology to enhance hydrocarbon recovery from reservoirs that previously had proven uncommercial with other standard techniques. It is viable for the development of marginal reservoirs, particularly where conditions preclude stimulation from hydraulic fracturing.

  11. Resonant acoustic transducer system for a well drilling string

    DOEpatents

    Kent, William H.; Mitchell, Peter G.

    1981-01-01

    For use in transmitting acoustic waves propagated along a well drilling string, a piezoelectric transducer is provided operating in the relatively low loss acoustic propagation range of the well drilling string. The efficiently coupled transmitting transducer incorporates a mass-spring-piezoelectric transmitter combination permitting resonant operation in the desired low frequency range.

  12. Resonant acoustic transducer system for a well drilling string

    DOEpatents

    Nardi, Anthony P.

    1981-01-01

    For use in transmitting acoustic waves propated along a well drilling string, a piezoelectric transducer is provided operating in the relatively low loss acoustic propagation range of the well drilling string. The efficiently coupled transmitting transducer incorporates a mass-spring-piezoelectric transmitter combination permitting a resonant operation in the desired low frequency range.

  13. Delaware-Val Verde gas drilling busy

    SciTech Connect

    Petzet, G.A.

    1992-01-13

    Deep and not so deep exploration is under way in the southeastern Delaware and northwestern Val Verde basins in West Texas. Northern Terrell County is seeing a good agenda of Permian Wolfcamp development drilling in spite of testy gas prices. This paper reports that none of the drilling appears to be targeted to Ouachita facies along the Marathon portion of the Ouachita Overthrust, although oil production from several of those fields has been respectable. And a number of exploratory tests to 20,000 ft and deeper are under way or on tap in eastern Pecos County and Terrell County.

  14. Salt Wells Geothermal Exploratory Drilling Program EA(DOI-BLM...

    OpenEI (Open Energy Information) [EERE & EIA]

    Exploratory Drilling Program EA (DOI-BLM-NV-C010-2009-0006-EA) Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Salt Wells Geothermal Exploratory...

  15. Application of water-base mud in deep well drilling

    SciTech Connect

    Li, Y.; Qian, F.; Lo, P.

    1982-01-01

    This paper reports the results of laboratory research and field practice on the application of temperature resistant water-base muds for deep drilling in Sichuan Province, China. The major problems discussed include mud stability; adjustment and control of mud properties under high temperatures and pressures; the effect of pH on the properties of mud systems. Some means of solving these and other problems involved in deep well drilling are proposed.

  16. Method and apparatus for deep underwater well drilling and completion

    SciTech Connect

    Lawson, J.E.

    1984-01-24

    A method and apparatus are disclosed for remotely establishing an underwater well under conditions of great water depth including a drilling guide structure located on the floor of the body of water; a single handling and guiding string extending upwardly from the drilling guide structure and maintained in tension by an elongated buoy; a series of drilling guide arm units, flowline guide arm units and wellhead guide arm units to be lowered down the string, oriented relative to desired well positions and then retrieved once the wells have been drilled and the wellheads and flowlines secured in place; and a production gathering assembly to be lowered down the string, oriented relative to the wellheads and flowlines, and then coupled to these wellheads and flowlines. The orientation is accomplished between an orientation member on the outer surface of a tubular member extending upwardly from the guide structure and orientation members on the inner surfaces of open-ended members in the drilling guide arm units, flowline guide arm units, wellhead guide arm units and the production gathering assembly.

  17. Solicitation - Geothermal Drilling Development and Well Maintenance Projects

    SciTech Connect

    Sattler, A.R.

    1999-07-07

    Energy (DOE)-industry research and development (R and D) organization, sponsors near-term technology development projects for reducing geothermal drilling and well maintenance costs. Sandia National Laboratories (Albuquerque, NM) administers DOE funds for GDO cost-shared projects and provides technical support. The GDO serves a very important function in fostering geothermal development. It encourages commercialization of emerging, cost-reducing drilling technologies, while fostering a spirit of cooperation among various segments of the geothermal industry. For Sandia, the GDO also serves as a means of identifying the geothermal industry's drilling fuel/or well maintenance problems, and provides an important forum for technology transfer. Successfully completed GDO projects include: the development of a high-temperature borehole televiewer, high-temperature rotating head rubbers, a retrievable whipstock, and a high-temperature/high-pressure valve-changing tool. Ongoing GDO projects include technology for stemming lost circulation; foam cement integrity log interpretation, insulated drill pipe, percussive mud hammers for geothermal drilling, a high-temperature/ high-pressure valve changing tool assembly (adding a milling capability), deformed casing remediation, high- temperature steering tools, diagnostic instrumentation for casing in geothermal wells, and elastomeric casing protectors.

  18. Coiled tubing buckling implication in drilling and completing horizontal wells

    SciTech Connect

    Wu, J.; Juvkam-Wold, H.C.

    1995-03-01

    This paper discusses coiled tubing buckling and load transmission when drilling and completing horizontal wells. Comprehensive analyses and new equations are presented to predict buckling of coiled tubing, slack-off weight transmission, actual bit weight or packer load, and maximum horizontal length. Coiled tubing lock-up and yield due to buckling are also discussed. These equations can also be used for other coiled tubing operations, such as coiled tubing workover, coiled tubing well stimulation, and even for conventional joint-connected drill strings. Calculations based on the equations presented are also compared with the previous literature.

  19. Underbalanced coiled-tubing-drilled horizontal well in the North Sea

    SciTech Connect

    Wodka, P.; Tirsgaard, H.; Damgaard, A.P.; Adamsen, C.J.

    1996-05-01

    Maersk Olie and Gas A/S (Maersk Oil) has drilled a 3,309-ft-long near-horizontal drainhole with coiled tubing to a total measured depth (MD) of 11,000 ft in the Danish sector of the North Sea. The well was completed in may 1994 as a 3{1/2}-in. openhole producer in the Gorm field chalk reservoir. Part of the well was drilled at underbalanced conditions, and oil production rates of up to 1,100 STB/D were reached during drilling. Conventional well-test equipment was used for handling returns. A nearby process facilities platform supplied lift gas and received the produced hydrocarbons during the drilling phase. Worth noting are the penetration of several chert layers, the fairly long reach, and the application of geosteering. Indications were that the well productivity was significantly improved compared with that of a conventionally drilled well, but problems were experienced with borehole stability in a fractured region.

  20. In-well vapor stripping drilling and characterization work plan

    SciTech Connect

    Koegler, K.J.

    1994-03-13

    This work plan provides the information necessary for drilling, sampling, and hydrologic testing of wells to be completed in support of a demonstration of the in-well vapor stripping system. The in-well vapor stripping system is a remediation technology designed to preferentially extract volatile organic compounds (VOCs) from contaminated groundwater by converting them to a vapor phase. Air-lift pumping is used to lift and aerate groundwater within the well. The volatiles escaping the aerated water are drawn off by a slight vacuum and treated at the surface while the water is allowed to infiltrate the vadose zone back to the watertable.

  1. Continuous injection of an inert gas through a drill rig for drilling into potentially hazardous areas

    DOEpatents

    McCormick, Steve H.; Pigott, William R.

    1997-01-01

    A drill rig for drilling in potentially hazardous areas includes a drill having conventional features such as a frame, a gear motor, gear box, and a drive. A hollow rotating shaft projects through the drive and frame. An auger, connected to the shaft is provided with a multiplicity of holes. An inert gas is supplied to the hollow shaft and directed from the rotating shaft to the holes in the auger. The inert gas flows down the hollow shaft, and then down the hollow auger and out through the holes in the bottom of the auger into the potentially hazardous area.

  2. Continuous injection of an inert gas through a drill rig for drilling into potentially hazardous areas

    DOEpatents

    McCormick, S.H.; Pigott, W.R.

    1997-12-30

    A drill rig for drilling in potentially hazardous areas includes a drill having conventional features such as a frame, a gear motor, gear box, and a drive. A hollow rotating shaft projects through the drive and frame. An auger, connected to the shaft is provided with a multiplicity of holes. An inert gas is supplied to the hollow shaft and directed from the rotating shaft to the holes in the auger. The inert gas flows down the hollow shaft, and then down the hollow auger and out through the holes in the bottom of the auger into the potentially hazardous area. 3 figs.

  3. Virginia Natural Gas Number of Gas and Gas Condensate Wells ...

    Energy Information Administration (EIA) (indexed site)

    Gas and Gas Condensate Wells (Number of Elements) Virginia Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 ...

  4. Nevada Natural Gas Gross Withdrawals from Gas Wells (Million...

    Energy Information Administration (EIA) (indexed site)

    from Gas Wells (Million Cubic Feet) Nevada Natural Gas Gross Withdrawals from Gas Wells ... Natural Gas Gross Withdrawals from Gas Wells Nevada Natural Gas Gross Withdrawals and ...

  5. Surface control bent sub for directional drilling of petroleum wells

    DOEpatents

    Russell, Larry R.

    1986-01-01

    Directional drilling apparatus for incorporation in a drill string, wherein a lower apparatus section is angularly deviated from vertical by cam action and wherein rotational displacement of the angularly deviated apparatus section is overcome by additional cam action, the apparatus being operated by successive increases and decreases of internal drill string pressure.

  6. Black Warrior: Sub-soil gas and fluid inclusion exploration and slim well

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    drilling | Department of Energy Black Warrior: Sub-soil gas and fluid inclusion exploration and slim well drilling Black Warrior: Sub-soil gas and fluid inclusion exploration and slim well drilling DOE Geothermal Peer Review 2010 - Presentation. Project Objectives: Discover a blind, low-moderate temperature resource: Apply a combination of detailed sub-soil gas, hydrocarbon, and isotope data to define possible upflow areas; Calibrate the sub-soil chemistry with down-hole fluid inclusion

  7. Geopressured-geothermal well report. Volume I. Drilling and completion

    SciTech Connect

    Not Available

    1982-01-01

    Gladys McCall site activities are covered through the completion of the test well and salt water disposal well. The test well was drilled to a total depth of 16,510 feet, then plugged back to 15,831 feet. Three 4'' diameter diamond cores were taken for analysis. An existing well on site, the Getty-Butts Gladys McCall No. 1, was reentered and completed to a depth of 3514 feet as a salt water disposal well. The geologic interpretation of the Gladys McCall site indicated target sands for testing at 15,080 feet through 15, 831 feet. Reservoir fluid temperature at this depth is estimated to be approximately 313/sup 0/F and pressure is estimated to be +-12,800 psi. The preliminary reservoir volume estimate is 3.6 billion barrels of brine. The design wells program includes environmental monitoring of the Gladys McCall site by Louisiana State University. Field stations are set up to monitor surface and ground water quality, subsidence, land loss and shoreline erosion, and seismicity. As of December 31, 1981 the study shows no significant impact on the environment by site operations.

  8. Planning and well evaluations improve horizontal drilling results

    SciTech Connect

    Hovda, S. )

    1994-10-31

    A systematic approach, including better planning and performance evaluation, improved the horizontal drilling efficiency of a multiwell program in the Oseberg field in the North Sea. The horizontal drilling program in the Oseberg field is one of the most comprehensive horizontal drilling programs in the North Sea. The present horizontal drilling program consists of 14 oil producers from the C platform and 18 from the B platform. Total horizontal displacement varies from around 1,500 m to 5,540 m. The lengths of the horizontal section vary from 600 m to 1,500 m. The paper discusses will planning, directional drilling, drilling problems with coal seams and orientation, true vertical depth control, horizontal liner cement, spacer system, cement slurries, job execution, and results.

  9. Resonant acoustic transducer and driver system for a well drilling string communication system

    DOEpatents

    Chanson, Gary J.; Nicolson, Alexander M.

    1981-01-01

    The acoustic data communication system includes an acoustic transmitter and receiver wherein low frequency acoustic waves, propagating in relatively loss free manner in well drilling string piping, are efficiently coupled to the drill string and propagate at levels competitive with the levels of noise generated by drilling machinery also present in the drill string. The transmitting transducer incorporates a mass-spring piezoelectric transmitter and amplifier combination that permits self-oscillating resonant operation in the desired low frequency range.

  10. Did Devonian shale wells drilled during the 1980`s and early 1990`s in West Virginia measure up to expectations?

    SciTech Connect

    Hohn, M.E.; McDowell, R.R.; Matchen, D.L.; Woods, T.J.

    1996-09-01

    In the mid-1980`s, a model of future Devonian shale drilling and production was prepared for the Gas Research Institute (GRI). In late 1995, the West Virginia Geological and Economic Survey (WVGES) was contracted by GRI to evaluate actual drilling and production in the 1980`s and early 1990`s and compare these data to the predictions made in the existing model. Drilling activity data were compiled for the years 1979-1993 for all wells drilled, and for all Devonian shale wells drilled. Monthly and annual production data were summarized for both categories. The Devonian shale wells were subdivided into two subsets: (1) the western black shales trend and (2) the eastern black and gray shales and siltstones trend, according to the play definitions used in the {open_quotes}Atlas of Major Appalachian Gas Reservoirs{close_quotes}. Devonian shale wells were subdivided into vintages by completion year. Finally, each Devonian shale well was assigned to a 30 minute geographic grid or {open_quotes}cell{close_quotes} and production data were compiled and compared between cells. Analysis of the data led to the following conclusions: fewer shale wells were being drilled in the early 1990s, but these wells had better recoveries than the wells drilled in the 1980s. Some grid cells showed higher recoveries for the black and gray shales and siltstones play than in cells with black shale reservoirs alone. These higher recoveries perhaps can be attributed to the common practice of completing and producing shallower zones (i.e. Mississippian sandstones) in addition to the Devonian shales.

  11. Interagency Collaboration to Address Environmental Impacts of Shale Gas Drilling

    Office of Energy Efficiency and Renewable Energy (EERE)

    A memorandum of understanding to perform collaborative research related to airborne emissions and air quality at natural gas drilling sites has been signed by the Office of Fossil Energy’s National Energy Technology Laboratory and the National Institute for Occupational Safety and Health.

  12. Carbon Sequestration Partner Initiates Drilling of CO2 Injection Well in

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Illinois Basin | Department of Energy Sequestration Partner Initiates Drilling of CO2 Injection Well in Illinois Basin Carbon Sequestration Partner Initiates Drilling of CO2 Injection Well in Illinois Basin February 17, 2009 - 12:00pm Addthis Washington, D.C. -- The Midwest Geological Sequestration Consortium (MGSC), one of seven regional partnerships created by the U.S. Department of Energy (DOE) to advance carbon sequestration technologies nationwide, has begun drilling the injection well

  13. U.S. Average Depth of Crude Oil Exploratory Wells Drilled (Feet per Well)

    Gasoline and Diesel Fuel Update

    Wells Drilled (Feet per Well) U.S. Average Depth of Crude Oil Exploratory Wells Drilled (Feet per Well) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1940's 4,232 1950's 4,335 4,609 4,781 4,761 4,740 4,819 4,901 5,036 4,993 5,021 1960's 5,170 5,099 5,124 4,878 5,509 5,672 5,700 5,758 5,914 6,054 1970's 6,247 5,745 5,880 6,243 5,855 5,913 6,010 5,902 6,067 6,011 1980's 5,727 5,853 5,504 5,141 5,565 5,865 6,069 6,104 6,182 6,028 1990's 6,838 6,641 6,930 6,627 6,671

  14. U.S. Average Depth of Dry Holes Developmental Wells Drilled (Feet per Well)

    Gasoline and Diesel Fuel Update

    Developmental Wells Drilled (Feet per Well) U.S. Average Depth of Dry Holes Developmental Wells Drilled (Feet per Well) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1940's 3,225 1950's 3,077 3,255 3,520 3,401 3,512 3,699 3,574 3,605 3,631 3,844 1960's 3,889 3,782 4,239 4,143 4,207 4,446 3,900 3,901 4,311 4,437 1970's 4,714 4,633 4,725 4,851 4,599 4,415 4,439 4,662 4,600 4,517 1980's 4,214 4,226 4,184 3,974 4,205 4,306 4,236 4,390 4,704 4,684 1990's 4,755 4,629

  15. U.S. Average Depth of Dry Holes Exploratory Wells Drilled (Feet per Well)

    Gasoline and Diesel Fuel Update

    Exploratory Wells Drilled (Feet per Well) U.S. Average Depth of Dry Holes Exploratory Wells Drilled (Feet per Well) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1940's 3,658 1950's 3,733 4,059 4,334 4,447 4,408 4,498 4,425 4,488 4,449 4,602 1960's 4,575 4,799 4,790 4,933 4,980 5,007 5,117 5,188 5,589 5,739 1970's 5,700 5,796 5,882 5,808 5,649 5,674 5,607 5,605 5,812 5,716 1980's 5,533 5,582 5,367 4,800 5,178 5,317 5,447 5,294 5,748 5,579 1990's 5,685 5,658 5,480

  16. U.S. Nominal Cost per Dry Well Drilled (Thousand Dollars per Well)

    Gasoline and Diesel Fuel Update

    Dry Well Drilled (Thousand Dollars per Well) U.S. Nominal Cost per Dry Well Drilled (Thousand Dollars per Well) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 44.0 45.2 50.8 48.2 48.5 53.1 56.9 61.5 66.2 70.2 1970's 80.9 86.8 94.9 105.8 141.7 177.2 190.3 230.2 281.7 339.6 1980's 376.5 464.0 515.4 366.5 329.2 372.3 389.2 259.1 366.4 355.4 1990's 367.5 441.2 357.6 387.7 491.5 481.2 541.0 655.6 973.2 1,115.5 2000's 1,075.4 1,620.4 1,673.4 2,065.1 1,977.3 2,392.9

  17. Crump Geyser Exploration and Drilling Project. High Precision Geophysics and Detailed Structural Exploration and Slim Well Drilling

    SciTech Connect

    Fairbank, Brian D.; Smith, Nicole

    2015-06-10

    The Crump Geyser Exploration and Drilling Project – High Precision Geophysics and Detailed Structural Exploration and Slim Well Drilling ran from January 29, 2010 to September 30, 2013. During Phase 1 of the project, collection of all geophysical surveys was completed as outlined in the Statement of Project Objectives. In addition, a 5000-foot full sized exploration well was drilled by Ormat, and preexisting drilling data was discovered for multiple temperature gradient wells within the project area. Three dimensional modeling and interpretation of results from the geophysical surveys and drilling data gave confidence to move to the project into Phase 2 drilling. Geological and geophysical survey interpretations combined with existing downhole temperature data provided an ideal target for the first slim-hole drilled as the first task in Phase 2. Slim-hole 35-34 was drilled in September 2011 and tested temperature, lithology, and permeability along the primary range-bounding fault zone near its intersection with buried northwest-trending faults that have been identified using geophysical methods. Following analysis of the results of the first slim-hole 35-34, the second slim hole was not drilled and subsequent project tasks, including flowing differential self-potential (FDSP) surveys that were designed to detail the affect of production and injection on water flow in the shallow aquifer, were not completed. NGP sold the Crump project to Ormat in August 2014, afterwards, there was insufficient time and interest from Ormat available to complete the project objectives. NGP was unable to continue managing the award for a project they did not own due to liability issues and Novation of the award was not a viable option due to federal award timelines. NGP submitted a request to mutually terminate the award on February 18, 2015. The results of all of the technical surveys and drilling are included in this report. Fault interpretations from surface geology, aeromag

  18. Validation of Innovative Exploration Technologies for Newberry Volcano: Map showing location of wells permitted, drilled and seismic test 2012

    DOE Data Explorer

    Jaffe, Todd

    2012-01-01

    Innovative Exploration Technologies for Newberry Volcano: Map showing location of wells permitted, drilled & seismic test, 2012

  19. Validation of Innovative Exploration Technologies for Newberry Volcano: Map showing location of wells permitted, drilled and seismic test 2012

    DOE Data Explorer

    Jaffe, Todd

    Innovative Exploration Technologies for Newberry Volcano: Map showing location of wells permitted, drilled & seismic test, 2012

  20. Zero Discharge Water Management for Horizontal Shale Gas Well...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    (fracking), coupled with horizontal drilling, has facilitated exploitation of huge natural gas (gas) reserves in the Devonian-age Marcellus Shale Formation (Marcellus) of...

  1. Nevada Natural Gas Gross Withdrawals from Gas Wells (Million...

    Annual Energy Outlook

    Release Date: 05312016 Next Release Date: 06302016 Referring Pages: Natural Gas Gross Withdrawals from Gas Wells Nevada Natural Gas Gross Withdrawals and Production Natural Gas ...

  2. OPTIMIZATION OF INFILL DRILLING IN NATURALLY-FRACTURED TIGHT-GAS RESERVOIRS

    SciTech Connect

    Lawrence W. Teufel; Her-Yuan Chen; Thomas W. Engler; Bruce Hart

    2004-05-01

    A major goal of industry and the U.S. Department of Energy (DOE) fossil energy program is to increase gas reserves in tight-gas reservoirs. Infill drilling and hydraulic fracture stimulation in these reservoirs are important reservoir management strategies to increase production and reserves. Phase II of this DOE/cooperative industry project focused on optimization of infill drilling and evaluation of hydraulic fracturing in naturally-fractured tight-gas reservoirs. The cooperative project involved multidisciplinary reservoir characterization and simulation studies to determine infill well potential in the Mesaverde and Dakota sandstone formations at selected areas in the San Juan Basin of northwestern New Mexico. This work used the methodology and approach developed in Phase I. Integrated reservoir description and hydraulic fracture treatment analyses were also conducted in the Pecos Slope Abo tight-gas reservoir in southeastern New Mexico and the Lewis Shale in the San Juan Basin. This study has demonstrated a methodology to (1) describe reservoir heterogeneities and natural fracture systems, (2) determine reservoir permeability and permeability anisotropy, (3) define the elliptical drainage area and recoverable gas for existing wells, (4) determine the optimal location and number of new in-fill wells to maximize economic recovery, (5) forecast the increase in total cumulative gas production from infill drilling, and (6) evaluate hydraulic fracture simulation treatments and their impact on well drainage area and infill well potential. Industry partners during the course of this five-year project included BP, Burlington Resources, ConocoPhillips, and Williams.

  3. US--Federal Offshore Natural Gas Withdrawals from Gas Wells ...

    Energy Information Administration (EIA) (indexed site)

    Gas Wells (Million Cubic Feet) US--Federal Offshore Natural Gas Withdrawals from Gas Wells ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Offshore Gross ...

  4. Technical and economic evaluation of selected compact drill rigs for drilling 10,000 foot geothermal production wells

    SciTech Connect

    Huttrer, G.W.

    1997-11-01

    This report summarizes the investigation and evaluation of several {open_quotes}compact{close_quotes} drill rigs which could be used for drilling geothermal production wells. Use of these smaller rigs would save money by reducing mobilization costs, fuel consumption, crew sizes, and environmental impact. Advantages and disadvantages of currently-manufactured rigs are identified, and desirable characteristics for the {open_quotes}ideal{close_quotes} compact rig are defined. The report includes a detailed cost estimate of a specific rig, and an evaluation of the cost/benefit ratio of using this rig. Industry contacts for further information are given.

  5. U.S. Geothermal Drills Another Prolific Well at Neal Hot Springs...

    OpenEI (Open Energy Information) [EERE & EIA]

    for Project Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: U.S. Geothermal Drills Another Prolific Well at Neal Hot Springs Completes Production Wells...

  6. Florida Natural Gas Number of Gas and Gas Condensate Wells (Number...

    Gasoline and Diesel Fuel Update

    Gas and Gas Condensate Wells (Number of Elements) Florida Natural Gas Number of Gas and ...2016 Referring Pages: Number of Producing Gas Wells (Summary) Florida Natural Gas Summary

  7. Texas--State Offshore Natural Gas Withdrawals from Gas Wells...

    Energy Information Administration (EIA) (indexed site)

    Gas Wells (Million Cubic Feet) Texas--State Offshore Natural Gas Withdrawals from Gas ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Offshore Gross ...

  8. Federal Offshore--Alabama Natural Gas Withdrawals from Gas Wells...

    Energy Information Administration (EIA) (indexed site)

    Gas Wells (Million Cubic Feet) Federal Offshore--Alabama Natural Gas Withdrawals from Gas ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Offshore Gross ...

  9. Alaska--State Offshore Natural Gas Withdrawals from Gas Wells...

    Energy Information Administration (EIA) (indexed site)

    Gas Wells (Million Cubic Feet) Alaska--State Offshore Natural Gas Withdrawals from Gas ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Offshore Gross ...

  10. Louisiana--State Offshore Natural Gas Withdrawals from Gas Wells...

    Energy Information Administration (EIA) (indexed site)

    Gas Wells (Million Cubic Feet) Louisiana--State Offshore Natural Gas Withdrawals from Gas ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Offshore Gross ...

  11. Federal Offshore--Texas Natural Gas Withdrawals from Gas Wells...

    Energy Information Administration (EIA) (indexed site)

    Gas Wells (Million Cubic Feet) Federal Offshore--Texas Natural Gas Withdrawals from Gas ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Offshore Gross ...

  12. Drilling, completion, stimulation, and testing of BDM/CNGD Well 3997, Lee District, Calhoun County, West Virginia

    SciTech Connect

    Overbey, W.K. Jr.; Carden, R.S.; Salamy, S.P.; Locke, C.D.; Johnson, H.R.

    1992-03-01

    This report discusses the detailed field operations in drilling, casing, completing, and stimulating the Hunter Bennett No. 3997 well located in Lee District, Calhoun County West Virginia. The project was designed and managed by BDM in cooperation with CNG Development Company. The well was spudded on November 9, 1990, and drilling was completed on December 14, 1990. The well was drilled on an average asmuth of 312 degrees with a total horizontal displacement of 2459 feet. The well was turned to a 90 degree inclination from the vertical over a measured course length of 1216 feet. Approximately 1381 feet of the well had an inclination higher than 86 degrees, while 2179 feet had an inclination greater than 62 degrees. The well was partitioned into five zones for stimulation purposes. Each zone is a little more than 300 feet long. The well was stimulated with nitrogen gas in zones one and two. Early production results are encouraging. The BDM/CNGD horizontal well averaged 147 mcfd of gas over the first week of production and, in week five, began to produce oil at a rate of about 2 bbl/day.

  13. Drilling, completion, stimulation, and testing of BDM/CNGD Well 3997, Lee District, Calhoun County, West Virginia. Final report

    SciTech Connect

    Overbey, W.K. Jr.; Carden, R.S.; Salamy, S.P.; Locke, C.D.; Johnson, H.R.

    1992-03-01

    This report discusses the detailed field operations in drilling, casing, completing, and stimulating the Hunter Bennett No. 3997 well located in Lee District, Calhoun County West Virginia. The project was designed and managed by BDM in cooperation with CNG Development Company. The well was spudded on November 9, 1990, and drilling was completed on December 14, 1990. The well was drilled on an average asmuth of 312 degrees with a total horizontal displacement of 2459 feet. The well was turned to a 90 degree inclination from the vertical over a measured course length of 1216 feet. Approximately 1381 feet of the well had an inclination higher than 86 degrees, while 2179 feet had an inclination greater than 62 degrees. The well was partitioned into five zones for stimulation purposes. Each zone is a little more than 300 feet long. The well was stimulated with nitrogen gas in zones one and two. Early production results are encouraging. The BDM/CNGD horizontal well averaged 147 mcfd of gas over the first week of production and, in week five, began to produce oil at a rate of about 2 bbl/day.

  14. Phase 2 Reese River Geothermal Project Slim Well 56-4 Drilling...

    OpenEI (Open Energy Information) [EERE & EIA]

    Phase 2 Reese River Geothermal Project Slim Well 56-4 Drilling And Testing Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Phase 2 Reese River Geothermal...

  15. U.S. Geothermal Drills Prolific Well at Neal Hot Springs | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Hot Springs Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: U.S. Geothermal Drills Prolific Well at Neal Hot Springs Abstract NA Author U.S. Geothermal...

  16. Drilling and Production Testing the Methane Hydrate Resource Potential Associated with the Barrow Gas Fields

    SciTech Connect

    Steve McRae; Thomas Walsh; Michael Dunn; Michael Cook

    2010-02-22

    In November of 2008, the Department of Energy (DOE) and the North Slope Borough (NSB) committed funding to develop a drilling plan to test the presence of hydrates in the producing formation of at least one of the Barrow Gas Fields, and to develop a production surveillance plan to monitor the behavior of hydrates as dissociation occurs. This drilling and surveillance plan was supported by earlier studies in Phase 1 of the project, including hydrate stability zone modeling, material balance modeling, and full-field history-matched reservoir simulation, all of which support the presence of methane hydrate in association with the Barrow Gas Fields. This Phase 2 of the project, conducted over the past twelve months focused on selecting an optimal location for a hydrate test well; design of a logistics, drilling, completion and testing plan; and estimating costs for the activities. As originally proposed, the project was anticipated to benefit from industry activity in northwest Alaska, with opportunities to share equipment, personnel, services and mobilization and demobilization costs with one of the then-active exploration operators. The activity level dropped off, and this benefit evaporated, although plans for drilling of development wells in the BGF's matured, offering significant synergies and cost savings over a remote stand-alone drilling project. An optimal well location was chosen at the East Barrow No.18 well pad, and a vertical pilot/monitoring well and horizontal production test/surveillance well were engineered for drilling from this location. Both wells were designed with Distributed Temperature Survey (DTS) apparatus for monitoring of the hydrate-free gas interface. Once project scope was developed, a procurement process was implemented to engage the necessary service and equipment providers, and finalize project cost estimates. Based on cost proposals from vendors, total project estimated cost is $17.88 million dollars, inclusive of design work

  17. Drilling extended-reach/high-angle wells through overpressured shale formation

    SciTech Connect

    Guild, G.J.; Jeffrey, J.T.; Carter, J.A.

    1994-09-01

    This paper discusses Amoco U.K. Exploration Co.'s unsuccessfully attempts to drill an extended-reach well in Arbroath field (U.K. Block 22/17) and how problems encountered were resolved on subsequent high-angle and extended-reach drilling operations in the field. The resolution of these problems over the course of drilling four high-angle wells and one extended-reach well involved (1) determining mud weight by use of rock mechanics principles, (2) evaluating hole conditions with a wellsite torque-and-drag program, (3) optimizing BHA performance, and (4) developing techniques for effective high-angle hole cleaning. By use of the methods outlined in this paper, improved drilling performance and significant cost savings are demonstrated.

  18. Phase 2 drilling operations at the Long Valley Exploratory Well (LVF 51--20)

    SciTech Connect

    Finger, J.T.; Jacobson, R.D.

    1992-06-01

    This report describes the second drilling phase, completed to a depth of 7588 feet in November 1991, of the Long Valley Exploratory Well near Mammoth Lakes, California. The well in Long Valley Caldera is planned to reach an ultimate depth of 20,000 feet or a bottomhole temperature of 500{degrees}C (whichever comes first). There will be four drilling phases, at least a year apart with scientific experiments in the wellbore between active drilling periods. Phase 1 drilling in 1989 was completed with 20 in. casing from surface to a depth of 2558 ft., and a 3.8 in. core hole was drilled below the shoe to a depth of 2754 in. Phase 2 included a 17-{1/2} in. hole out of the 20 in. shoe, with 13-3/8 in. casing to 6825 ft., and continuous wireline coring below that to 7588 ft. This document comprises a narrative log of the daily activities, the daily drilling reports, mud logger's reports, summary of drilling fluids used, and other miscellaneous records.

  19. Other States Natural Gas Gross Withdrawals from Gas Wells (Million...

    Energy Information Administration (EIA) (indexed site)

    Gas Wells (Million Cubic Feet) Other States Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 72,328 ...

  20. Illinois Natural Gas Withdrawals from Gas Wells (Million Cubic...

    Annual Energy Outlook

    Gas Wells (Million Cubic Feet) Illinois Natural Gas Withdrawals from Gas Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 40 37 39 38 37 36 35 ...

  1. Nevada Natural Gas Gross Withdrawals from Gas Wells (Million...

    Gasoline and Diesel Fuel Update

    from Gas Wells (Million Cubic Feet) Nevada Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 ...

  2. Kentucky Natural Gas Withdrawals from Gas Wells (Million Cubic...

    Energy Information Administration (EIA) (indexed site)

    Gas Wells (Million Cubic Feet) Kentucky Natural Gas Withdrawals from Gas Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 7,021 6,303 6,870 ...

  3. Missouri Natural Gas Withdrawals from Gas Wells (Million Cubic...

    Energy Information Administration (EIA) (indexed site)

    Withdrawals from Gas Wells (Million Cubic Feet) Missouri Natural Gas Withdrawals from Gas Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 1 ...

  4. Ohio Natural Gas Withdrawals from Gas Wells (Million Cubic Feet...

    Energy Information Administration (EIA) (indexed site)

    Gas Wells (Million Cubic Feet) Ohio Natural Gas Withdrawals from Gas Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 13,138 11,794 12,855 ...

  5. Montana Natural Gas Gross Withdrawals from Gas Wells (Million...

    Energy Information Administration (EIA) (indexed site)

    Gas Wells (Million Cubic Feet) Montana Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 4,561 3,826 4,106 ...

  6. Utah Natural Gas Gross Withdrawals from Gas Wells (Million Cubic...

    Energy Information Administration (EIA) (indexed site)

    Gas Wells (Million Cubic Feet) Utah Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 21,638 18,808 21,037 ...

  7. Louisiana Natural Gas Gross Withdrawals from Gas Wells (Million...

    Energy Information Administration (EIA) (indexed site)

    Gas Wells (Million Cubic Feet) Louisiana Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 425,704 369,500 ...

  8. Indiana Natural Gas Withdrawals from Gas Wells (Million Cubic...

    Energy Information Administration (EIA) (indexed site)

    Withdrawals from Gas Wells (Million Cubic Feet) Indiana Natural Gas Withdrawals from Gas Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 21 18 ...

  9. Michigan Natural Gas Gross Withdrawals from Gas Wells (Million...

    Energy Information Administration (EIA) (indexed site)

    Gas Wells (Million Cubic Feet) Michigan Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 9,579 8,593 ...

  10. Tennessee Natural Gas Withdrawals from Gas Wells (Million Cubic...

    Energy Information Administration (EIA) (indexed site)

    Gas Wells (Million Cubic Feet) Tennessee Natural Gas Withdrawals from Gas Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 ...

  11. Virginia Natural Gas Withdrawals from Gas Wells (Million Cubic...

    Energy Information Administration (EIA) (indexed site)

    Withdrawals from Gas Wells (Million Cubic Feet) Virginia Natural Gas Withdrawals from Gas Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 1,849 ...

  12. Maryland Natural Gas Withdrawals from Gas Wells (Million Cubic...

    Energy Information Administration (EIA) (indexed site)

    Withdrawals from Gas Wells (Million Cubic Feet) Maryland Natural Gas Withdrawals from Gas Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 5 ...

  13. Oregon Natural Gas Gross Withdrawals from Gas Wells (Million...

    Energy Information Administration (EIA) (indexed site)

    from Gas Wells (Million Cubic Feet) Oregon Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 246 244 232 ...

  14. Mississippi Natural Gas Gross Withdrawals from Gas Wells (Million...

    Energy Information Administration (EIA) (indexed site)

    Gas Wells (Million Cubic Feet) Mississippi Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 14,797 13,076 ...

  15. Wyoming Natural Gas Gross Withdrawals from Gas Wells (Million...

    Energy Information Administration (EIA) (indexed site)

    Gas Wells (Million Cubic Feet) Wyoming Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 58,111 51,244 ...

  16. Colorado Natural Gas Gross Withdrawals from Gas Wells (Million...

    Energy Information Administration (EIA) (indexed site)

    Gas Wells (Million Cubic Feet) Colorado Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 15,390 18,697 ...

  17. Nebraska Natural Gas Withdrawals from Gas Wells (Million Cubic...

    Energy Information Administration (EIA) (indexed site)

    Gas Wells (Million Cubic Feet) Nebraska Natural Gas Withdrawals from Gas Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 9 10 11 6 9 8 10 9 8 ...

  18. New York Natural Gas Number of Gas and Gas Condensate Wells ...

    Energy Information Administration (EIA) (indexed site)

    Gas and Gas Condensate Wells (Number of Elements) New York Natural Gas Number of Gas and ... Number of Producing Gas Wells Number of Producing Gas Wells (Summary) New York Natural Gas ...

  19. Scientific Objectives of the Gulf of Mexico Gas Hydrate JIP Leg II Drilling

    SciTech Connect

    Jones, E.; Latham, T.; McConnell, D.; Frye, M.; Hunt, J.; Shedd, W.; Shelander, D.; Boswell, R.M.; Rose, K.K.; Ruppel, C.; Hutchinson, D.; Collett, T.; Dugan, B.; Wood, W.

    2008-05-01

    The Gulf of Mexico Methane Hydrate Joint Industry Project (JIP) has been performing research on marine gas hydrates since 2001 and is sponsored by both the JIP members and the U.S. Department of Energy. In 2005, the JIP drilled the Atwater Valley and Keathley Canyon exploration blocks in the Gulf of Mexico to acquire downhole logs and recover cores in silt- and clay-dominated sediments interpreted to contain gas hydrate based on analysis of existing 3-D seismic data prior to drilling. The new 2007-2009 phase of logging and coring, which is described in this paper, will concentrate on gas hydrate-bearing sands in the Alaminos Canyon, Green Canyon, and Walker Ridge protraction areas. Locations were selected to target higher permeability, coarser-grained lithologies (e.g., sands) that have the potential for hosting high saturations of gas hydrate and to assist the U.S. Minerals Management Service with its assessment of gas hydrate resources in the Gulf of Mexico. This paper discusses the scientific objectives for drilling during the upcoming campaign and presents the results from analyzing existing seismic and well log data as part of the site selection process. Alaminos Canyon 818 has the most complete data set of the selected blocks, with both seismic data and comprehensive downhole log data consistent with the occurrence of gas hydrate-bearing sands. Preliminary analyses suggest that the Frio sandstone just above the base of the gas hydrate stability zone may have up to 80% of the available sediment pore space occupied by gas hydrate. The proposed sites in the Green Canyon and Walker Ridge areas are also interpreted to have gas hydrate-bearing sands near the base of the gas hydrate stability zone, but the choice of specific drill sites is not yet complete. The Green Canyon site coincides with a 4-way closure within a Pleistocene sand unit in an area of strong gas flux just south of the Sigsbee Escarpment. The Walker Ridge site is characterized by a sand

  20. Selection of area and specific site for drilling a horizontal well in Calhoun County, West Virginia

    SciTech Connect

    Reeves, T.K.; Overbey, W.K. Jr.; Salamy, S.P.; Locke, C.D.

    1992-03-01

    This report discusses the data collection and analysis procedures used to establish criteria for geologic and engineering studies conducted by BDM to select a general area for more detailed study and a specific site for the drilling of a cooperative well with an industry partner, the Consolidated Natural Gas Development Company (CNGD). The results of detailed geologic studies are presented for two areas in Calhoun County, West Virginia, and one area along the Logan-Boone County line in West Virginia. The effects of Appalachian Basin tectonics and the Rome Trough Rift system were identified on seismic lines made available by (CNGD). These helped to identify and define the trapping mechanisms which had been effective in each area. Engineering analyses of past production histories provided data to support selection of target areas and then to select a specific site that met the project requirements for production, reservoir pressure, and risk. A final site was selected in Lee District at the southwestern margin of the Sand Ridge gas field based on the combination of a geologic trapping mechanism and reservoir pressures which were projected as 580 psi with a stress ratio of 0.53.

  1. Drilling fluids and lost circulation in hot dry rock geothermal wells at Fenton Hill

    SciTech Connect

    Nuckols, E.B.; Miles, D.; Laney, R.; Polk, G.; Friddle, H.; Simpson, G.; Baroid, N.L.

    1981-01-01

    Geothermal hot dry rock drilling activities at Fenton Hill in the Jemez Mountains of northern New Mexico encountered problems in designing drilling fluids that will reduce catastrophic lost circulation. Four wells (GT-2, EE-1, EE-2, and EE-3) penetrated 733 m (2405 ft) of Cenozoic and Paleozoic sediments and Precambrian crystalline rock units to +4572 m (+15,000 ft). The Cenozoic rocks consist of volcanics (rhyolite, tuff, and pumice) and volcaniclastic sediments. Paleozoic strata include Permian red beds (Abo Formation) and the Pennsylvanian Madera and Sandia Formations, which consist of massive limestones and shales. Beneath the Sandia Formation are igneous and metamorphic rocks of Precambrian age. The drilling fluid used for the upper sedimentary formations was a polymeric flocculated bentonite drilling fluid. Severe loss of circulation occurred in the cavernous portions of the Sandia limestones. The resultant loss of hydrostatic head caused sloughing of the Abo and of some beds within the Madera Formation. Stuck pipe, repetitive reaming, poor casing cement jobs and costly damage to the intermediate casing resulted. The Precambrian crystalline portion of the EE-2 and EE-3 wells were directionally drilled at a high angle, and drilled with water as the primary circulating fluid. Due to high temperatures (approximately 320/sup 0/C (608/sup 0/F) BHT) and extreme abrasiveness of the deeper part of the Precambrian crystalline rocks, special problems of corrosion inhibition and of torque friction were incurred.

  2. Alabama--State Offshore Natural Gas Withdrawals from Gas Wells...

    Energy Information Administration (EIA) (indexed site)

    Withdrawals from Gas Wells (Million Cubic Feet) Alabama--State Offshore Natural Gas ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Offshore Gross ...

  3. Application of coiled-tubing-drilling technology on a deep underpressured gas reservoir

    SciTech Connect

    1997-06-01

    The Upper-Mississippian Elkton formation is a dolomitized shallow-water carbonate consisting of dense limestones and porous dolomites. The Elkton was deposited in an open-shelf environment as crinoid grainstones, coral packstones, and lime muds. Deposition of impermeable shales and siltstones of the Lower Cretaceous created the lateral and updip seals. Reservoir thickness can be up to 20 m, with porosities reaching 20% and averaging 10%. The reservoir gas contains approximately 0.5% hydrogen sulfide. Well 11-18 was to be completed in the Harmatten Elkton pool. The pool went on production in 1967 at an initial pressure of 23,500 kPa. At the current pressure of 16,800 kPa, the remaining reserves are underpressured at 6.5 kPa/m, and underbalanced horizontal drilling was selected as the most suitable technique for exploiting remaining reserves. Coiled-tubing (CT) technology was selected to ensure continuous underbalanced conditions and maintain proper well control while drilling. The paper describes the equipment, CT drilling summary, and drilling issues.

  4. Adaptive control system for gas producing wells

    SciTech Connect

    Fedor, Pashchenko; Sergey, Gulyaev; Alexander, Pashchenko

    2015-03-10

    Optimal adaptive automatic control system for gas producing wells cluster is proposed intended for solving the problem of stabilization of the output gas pressure in the cluster at conditions of changing gas flow rate and changing parameters of the wells themselves, providing the maximum high resource of hardware elements of automation.

  5. New Mexico Natural Gas Number of Gas and Gas Condensate Wells...

    Energy Information Administration (EIA) (indexed site)

    Gas and Gas Condensate Wells (Number of Elements) New Mexico Natural Gas Number of Gas and ... Number of Producing Gas Wells Number of Producing Gas Wells (Summary) New Mexico Natural ...

  6. North Dakota Natural Gas Number of Gas and Gas Condensate Wells...

    Energy Information Administration (EIA) (indexed site)

    Gas and Gas Condensate Wells (Number of Elements) North Dakota Natural Gas Number of Gas ... Number of Producing Gas Wells Number of Producing Gas Wells (Summary) North Dakota Natural ...

  7. Small drill-hole, gas mini-permeameter probe

    DOEpatents

    Molz, III, Fred J.; Murdoch, Lawrence C.; Dinwiddie, Cynthia L.; Castle, James W.

    2002-12-03

    The distal end of a basic tube element including a stopper device with an expandable plug is positioned in a pre-drilled hole in a rock face. Rotating a force control wheel threaded on the tube element exerts force on a sleeve that in turn causes the plug component of the stopper means to expand and seal the distal end of the tube in the hole. Gas under known pressure is introduced through the tube element. A thin capillary tube positioned in the tube element connects the distal end of the tube element to means to detect and display pressure changes and data that allow the permeability of the rock to be determined.

  8. Small drill-hole, gas mini-permeameter probe

    DOEpatents

    Molz, III, Fred J.; Murdoch, Lawrence C.; Dinwiddie, Cynthia L.; Castle, James W.

    2002-01-01

    The distal end of a basic tube element including a stopper device with an expandable plug is positioned in a pre-drilled hole in a rock face. Rotating a force control wheel threaded on the tube element exerts force on a sleeve that in turn causes the plug component of the stopper means to expand and seal the distal end of the tube in the hole. Gas under known pressure is introduced through the tube element. A thin capillary tube positioned in the tube element connects the distal end of the tube element to means to detect and display pressure changes and data that allow the permeability of the rock to be determined.

  9. Phase 2 Reese River Geothermal Project Slim Well 56-4 Drilling and Testing

    SciTech Connect

    Henkle, William R.; Ronne, Joel

    2008-06-15

    This report covers the drilling and testing of the slim well 56-4 at the Reese River Geothermal Project in Lander County, Nevada. This well was partially funded through a GRED III Cooperative Funding Agreement # DE-FC36-04GO14344, from USDOE.

  10. Unique aspects of drilling and completing hot-dry-rock geothermal wells

    SciTech Connect

    Carden, R.S.; Nicholson, R.W.; Pettitt, R.A.; Rowley, J.C.

    1983-01-01

    Drilling operations at the Fenton Hill Hot Dry Rock (HDR) Geothermal Test Site have led to numerous developments needed to solve the problems caused by a very harsh downhole environment. A pair of deep wells were drilled to approximately 15,000 ft (4.6 km); formation temperatures were in excess of 600/sup 0/F (300/sup 0/C). The wells were directionally drilled, inclined at 35/sup 0/, one above the other, in a direction orthogonal to the least principal stress field. The well site is near the flank of a young silicic composite volcano in the Jemez Mountains of northern New Mexico. The completion of this pair of wells is unique in reservoir development. The lower well was planned as a cold water injector which will be cooled by the introduced water from the static geothermal gradient to about 80/sup 0/F (25/sup 0/C). The upper well will be heated during production to over 500/sup 0/F (250/sup 0/C). The well pair is designed to perform as a closed loop heat-extraction system connected by hydraulic fractures with a vertical spacing of 1200 ft between the wells. These conditions strongly constrain the drilling technique, casing design, cement formulation, and cementing operations.

  11. The Iea'S Role In Advanced Geothermal Drilling | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    increase the cost of drilling, logging, and completing geothermal wells, compared to oil and gas. Cost reductions are critical because drilling and completing the production...

  12. Fundamental Research on Percussion Drilling: Improved rock mechanics

    Office of Scientific and Technical Information (OSTI)

    full-scale laboratory investigations Michael S. Bruno 58 GEOSCIENCES; 02 PETROLEUM; 03 NATURAL GAS; ROCK DRILLING; PRESSURE DEPENDENCE; ROCK MECHANICS; ROTARY DRILLING; WELL...

  13. Table 4.6 Crude Oil and Natural Gas Exploratory Wells, 1949-2010

    Energy Information Administration (EIA) (indexed site)

    6 Crude Oil and Natural Gas Exploratory Wells, 1949-2010 Year Wells Drilled Successful Wells Footage Drilled 1 Average Footage Drilled Crude Oil 2 Natural Gas 3 Dry Holes 4 Total Crude Oil 2 Natural Gas 3 Dry Holes 4 Total Crude Oil 2 Natural Gas 3 Dry Holes 4 Total Number Percent Thousand Feet Feet per Well 1949 1,406 424 7,228 9,058 20.2 5,950 2,409 26,439 34,798 4,232 5,682 3,658 3,842 1950 1,583 431 8,292 10,306 19.5 6,862 2,356 30,957 40,175 4,335 5,466 3,733 3,898 1951 1,763 454 9,539

  14. Statement of Work for Drilling Four CERCLA Groundwater Monitoring Wells During Fiscal Year 2006, 300-FF-5 Operable Unit

    SciTech Connect

    Williams, Bruce A.

    2005-10-10

    This document contains the statement of work required to drill, characterize, and construct the proposed groundwater monitoring wells at 300-FF-5 Operable Unit during FY 2006.

  15. Recovery Act Funds Expand Groundwater Treatment at Hanford Site: Contractor CH2M HILL drills record number of wells

    Energy.gov [DOE]

    RICHLAND, Wash. – Workers at the Hanford Site have surpassed goals for drilling wells to detect and remove contamination from groundwater.

  16. Laser-Mechanical Drilling for Geothermal Energy: Low-Contact Drilling Technology to Enable Economical EGS Wells

    SciTech Connect

    2010-01-15

    Broad Funding Opportunity Announcement Project: Foro Energy is developing a unique capability and hardware system to transmit high power lasers over long distances via fiber optic cables. This laser power is integrated with a mechanical drilling bit to enable rapid and sustained penetration of hard rock formations too costly to drill with mechanical drilling bits alone. The laser energy that is directed at the rock basically softens the rock, allowing the mechanical bit to more easily remove it. Foro Energy’s laser-assisted drill bits have the potential to be up to 10 times more economical than conventional hard-rock drilling technologies, making them an effective way to access the U.S. energy resources currently locked under hard rock formations.

  17. Florida Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Florida Natural Gas Number of Oil Wells (Number of ... Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Florida ...

  18. Microsoft Word - RUL_1Q2009_Gas_Samp_Results_6wells_22Jan09

    Office of Legacy Management (LM)

    09 U.S. Department of Energy Office of Legacy Management Grand Junction, Colorado Date Sampled: 22 January 2009 Purpose: The purpose of this environmental sample collection is to monitor natural gas and production water from natural gas wells drilled near the Project Rulison test site. As part of the Department of Energy's (DOE's) directive to protect human health and the environment, samples are collected from producing gas wells and analyzed to ensure no Rulison related radionuclides have

  19. Microsoft Word - RUL_2Q2011_Gas_Samp_Results_7Wells_23June2011

    Office of Legacy Management (LM)

    23 June 2011 Purpose: The purpose of this environmental sample collection is to monitor natural gas and production water from natural gas wells drilled near the Project Rulison test site. As part of the DOE's directive to protect human health and the environment, sample are collected and analyzed from producing gas wells to ensure no Rulison related radionuclides have migrated outside the DOE institution control boundary. Using the DOE Rulison Monitoring Plan as guidance, samples are collected

  20. Utah Natural Gas Number of Gas and Gas Condensate Wells (Number...

    Energy Information Administration (EIA) (indexed site)

    Gas and Gas Condensate Wells (Number of Elements) Utah Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 ...

  1. Wyoming Natural Gas Number of Gas and Gas Condensate Wells (Number...

    Energy Information Administration (EIA) (indexed site)

    Gas and Gas Condensate Wells (Number of Elements) Wyoming Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 ...

  2. West Virginia Natural Gas Number of Gas and Gas Condensate Wells...

    Energy Information Administration (EIA) (indexed site)

    Gas and Gas Condensate Wells (Number of Elements) West Virginia Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 ...

  3. Crump Geyser: High Precision Geophysics & Detailed Structural Exploration & Slim Well Drilling

    Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. Project objectives: Discover new 260F and 300F geothermal reservoirs in Oregon. To demonstrate the application of high precision geophysics for well targeting. Demonstrate a combined testing approach to Flowing Differential Self Potential (FDSP) and electrical tomography resistivity as a guide to exploration and development. Demonstrate utility and benefits of sump-less drilling for a low environmental impact. Create both short and long term employment through exploration, accelerated development timeline and operation.

  4. Footage Drilled for Crude Oil and Natural Gas Wells

    Gasoline and Diesel Fuel Update

    Stocks 2010 2011 2012 2013 2014 2015 View History U.S. 40,534 39,717 37,768 27,121 20,275 18,133 1993-2015 PAD District 1 3,913 3,741 3,513 3,190 1,785 1,901 1993-2015 Connecticut 1993-2004 Delaware 1993-2009 Florida 586 734 747 545 397 652 1993-2015 Georgia 374 251 220 269 235 220 1993-2015 Maine 130 152 254 1993-2013 Maryland 1993-2008 Massachusetts 2 4 3 6 5 5 1993-2015 New Hampshire 1993-2005 New Jersey 667 275 795 489 102 384 1993-2015 New York 194 628 483 394 43 11 1993-2015 North

  5. Costs of Crude Oil and Natural Gas Wells Drilled

    Gasoline and Diesel Fuel Update

    07/21/2016 Next Release Date: 08/31/2016

  6. Footage Drilled for Crude Oil and Natural Gas Wells

    Gasoline and Diesel Fuel Update

    Values shown for the current two months are preliminary. Values shown for the previous two months may be revised to account for late submissions and corrections. Final revisions to monthly and annual values are available upon publication of the June Petroleum Marketing Monthly. Annual averages that precede the release of the June Petroleum Marketing Monthly are calculated from monthly data. Data through 2015 are final. Effective January 2009, selected crude streams were discontinued and new

  7. Costs of Crude Oil and Natural Gas Wells Drilled

    Gasoline and Diesel Fuel Update

    16,220.8 16,658.8 16,651.0 17,047.0 16,981.8 17,079.3 1994-2016 East Coast (PADD 1) W W W W W W 1994-2016 New England (PADD 1A) - - - - - - 1994-2016 Connecticut - - - - - - 1994-2016 Maine - - - - - - 1994-2016 Massachusetts - - - - - - 1994-2016 New Hampshire - - - - - - 1994-2016 Rhode Island - - - - - - 1994-2016 Vermont - - - - - - 1994-2016 Central Atlantic (PADD 1B) W W W W W W 1994-2016 Delaware - - - - - - 1994-2016 District of Columbia - - - - - - 1994-2016 Maryland - - - - - -

  8. Drilling Sideways - A Review of Horizontal Well Technology and Its Domestic Application

    Reports and Publications

    1993-01-01

    Focuses primarily on domestic horizontal drilling applications, past and present, and on salient aspects of current and near-future horizontal drilling and completion technology.

  9. U.S. Average Depth of Crude Oil Developmental Wells Drilled (Feet per Well)

    Gasoline and Diesel Fuel Update

    Estimated Production from Reserves (Billion Cubic Feet) Estimated Production from Reserves (Billion Cubic Feet) U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation, Estimated Production from Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 3,405 1980's 3,405 3,316 3,248 3,355 3,518 3,454 3,443 3,351 3,192 3,099 1990's 2,936 2,968 3,031 2,868 2,907 2,886 2,938 3,022 3,136 3,313 2000's 3,299 3,193 2,988 2,855 2,742

  10. Successful drilling of the first horizontal well in a mature field

    SciTech Connect

    Marruffo, I.; Achong, C.

    1996-08-01

    This paper discusses how the decision to drill the first horizontal well of a reservoir was taken, based on Production acceleration and the incremental economy of cash flow. The reservoir is located in the Guafita-Norto Field in Western Venezuela, contiguous to the La Yuca-Cano Limon Fields in Colombia. Guafita-Norte has 183 million stb of remaining oil reserves with 26 production wells on electrical submergible pumps. The STOIP of this under saturated reservoir (bubble point pressure is 36 psi) is 160 million stb with an initial GOR of 10 stf/stb, having a permeability between 1.5-12 darcies with a strong water drive, water coning and sanding problems due to fines migration. During 1995, it was decided to drill the first horizontal well in the reservoir based on a 3-D numerical simulation with radial flow (for water coning) and local grid refinement (for horizontal wells) coupled to an economic analysis. The simulation predetermines an initial production rate for a horizontal well 2.5 times greater than for a vertical one, and the incremental cash flow for the horizontal well is 4.5 MM$ larger for the vertical one in four (4) years, with a ROR of 200%. The horizontal well was drilled with oil-based mud to avoid hole collapse, and it was completed open hole with a single screen pack. The well is currently producing between 2000 and 3500 stb/d, clean, on natural flow. This study has clearly shown that the ultimate and decisive parameter to be weighed before undertaking this type of project, is the economic analysis, which must be performed as extensively as the technical analysis.

  11. GAS INJECTION/WELL STIMULATION PROJECT

    SciTech Connect

    John K. Godwin

    2005-12-01

    Driver Production proposes to conduct a gas repressurization/well stimulation project on a six well, 80-acre portion of the Dutcher Sand of the East Edna Field, Okmulgee County, Oklahoma. The site has been location of previous successful flue gas injection demonstration but due to changing economic and sales conditions, finds new opportunities to use associated natural gas that is currently being vented to the atmosphere to repressurize the reservoir to produce additional oil. The established infrastructure and known geological conditions should allow quick startup and much lower operating costs than flue gas. Lessons learned from the previous project, the lessons learned form cyclical oil prices and from other operators in the area will be applied. Technology transfer of the lessons learned from both projects could be applied by other small independent operators.

  12. Maximize revenue from gas condensate wells

    SciTech Connect

    Hall, S.R.

    1988-07-01

    A computerized oil/gas modeling program called C.O.M.P. allows operators to select the economically optimum producing equipment for a given gas-condensate well-stream. This article, the first of two, discusses use of the model to analyze performance of six different production system on the same wellstream and at the same wellhead conditions. All producing equipment options are unattended wellhead facilities designed for high volume gas-condensate wells and are not gas plants. A second article to appear in September will discuss operating experience with one of the producing systems analyzed, integrated multi-stage separation with stabilization and compression (the HERO system), which was developed by U.S. Enertek, Inc. This equipment was chosen for the wellstream analyzed because of the potential revenue increase indicated by the model.

  13. U.S. Footage Drilled for Crude Oil, Natural Gas, and Dry Developmental

    Gasoline and Diesel Fuel Update

    Wells (Thousand Feet) Developmental Wells (Thousand Feet) U.S. Footage Drilled for Crude Oil, Natural Gas, and Dry Developmental Wells (Thousand Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1940's 100,821 1950's 117,183 122,802 128,518 133,581 148,408 156,976 158,943 147,864 131,820 137,441 1960's 136,345 135,191 141,018 129,164 131,923 125,678 107,215 93,518 94,012 99,642 1970's 95,026 85,358 92,875 92,605 102,059 125,817 133,365 157,917 173,472 181,702

  14. U.S. Footage Drilled for Crude Oil, Natural Gas, and Dry Exploratory and

    Gasoline and Diesel Fuel Update

    Developmental Wells (Thousand Feet) and Developmental Wells (Thousand Feet) U.S. Footage Drilled for Crude Oil, Natural Gas, and Dry Exploratory and Developmental Wells (Thousand Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1940's 135,619 1950's 157,358 172,146 184,133 194,245 208,009 226,182 233,280 217,045 193,304 200,694 1960's 192,176 189,633 194,634 182,649 187,420 174,882 162,924 141,357 144,970 157,108 1970's 138,556 127,253 137,831 138,223

  15. EA-2012: Strategic Test Well (s) Planning and Drilling for Long-Term Methane Hydrate Production Testing in Alaska

    Energy.gov [DOE]

    DOE is preparing an EA that evaluates the potential environmental impacts of providing financial support for planning, analysis, and engineering services to support a proposed project of Petrotechnical Resources of Alaska with Japan Oil, Gas and Metals National Corporation to perform gas hydrate drilling and testing on the North Slope of Alaska.

  16. U.S. Average Depth of Crude Oil Exploratory and Developmental Wells Drilled

    Gasoline and Diesel Fuel Update

    (Feet per Well) and Developmental Wells Drilled (Feet per Well) U.S. Average Depth of Crude Oil Exploratory and Developmental Wells Drilled (Feet per Well) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1940's 3,720 1950's 3,893 4,103 4,214 4,033 4,028 3,981 3,942 4,021 3,916 3,935 1960's 3,889 3,994 4,070 4,063 4,042 4,059 4,013 3,825 4,153 4,286 1970's 4,385 4,126 4,330 4,369 3,812 3,943 3,895 4,025 4,017 3,966 1980's 3,801 3,923 3,793 3,662 3,791 3,906 3,999

  17. U.S. Average Depth of Dry Exploratory and Developmental Wells Drilled (Feet

    Gasoline and Diesel Fuel Update

    per Well) Exploratory and Developmental Wells Drilled (Feet per Well) U.S. Average Depth of Dry Exploratory and Developmental Wells Drilled (Feet per Well) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1940's 3,473 1950's 3,445 3,706 3,983 4,004 4,004 4,161 4,079 4,126 4,110 4,275 1960's 4,248 4,311 4,524 4,552 4,598 4,723 4,573 4,616 5,053 5,195 1970's 5,265 5,305 5,377 5,403 5,191 5,073 5,014 5,120 5,183 5,071 1980's 4,791 4,827 4,691 4,320 4,631 4,733 4,763

  18. Drilling Productivity Report

    Reports and Publications

    2016-01-01

    Energy Information Administration’s (EIA) new Drilling Productivity Report (DPR) takes a fresh look at oil and natural gas production, starting with an assessment of how and where drilling for hydrocarbons is taking place. The DPR uses recent data on the total number of drilling rigs in operation along with estimates of drilling productivity and estimated changes in production from existing oil and natural gas wells to provide estimated changes in oil and natural gas production for six key fields. EIA's approach does not distinguish between oil-directed rigs and gas-directed rigs because once a well is completed it may produce both oil and gas; more than half of the wells produce both.

  19. Drilling and abandonment preparation of CO₂ storage wells – Experience from the Ketzin pilot site

    SciTech Connect

    Prevedel, Bernhard; Martens, Sonja; Norden, Ben; Henninges, Jan; Freifeld, Barry M.

    2014-12-31

    At Ketzin, located west of Berlin, the GFZ German Centre for Geosciences is operating Europe's largest CO₂ research storage site. This pilot site has been developed since 2004 and is comprised of one combined injection/observation well and four monitoring wells. From June 2008 to August 2013, a total of 67 kilotons of CO₂ were safely injected into the sandstone units of the Upper Triassic Stuttgart Formation in a depth between 630 to 650 m. The paper discusses the well designs and lessons learned in drilling engineering and operations. The abandonment phase started in Ketzin with the first plug cementation of the observation well Ktzi 202 shortly after shut-in of CO₂ injection. The experience with the first CO₂ well killing operation will be reviewed.

  20. Drilling and abandonment preparation of CO₂ storage wells – Experience from the Ketzin pilot site

    DOE PAGES [OSTI]

    Prevedel, Bernhard; Martens, Sonja; Norden, Ben; Henninges, Jan; Freifeld, Barry M.

    2014-12-31

    At Ketzin, located west of Berlin, the GFZ German Centre for Geosciences is operating Europe's largest CO₂ research storage site. This pilot site has been developed since 2004 and is comprised of one combined injection/observation well and four monitoring wells. From June 2008 to August 2013, a total of 67 kilotons of CO₂ were safely injected into the sandstone units of the Upper Triassic Stuttgart Formation in a depth between 630 to 650 m. The paper discusses the well designs and lessons learned in drilling engineering and operations. The abandonment phase started in Ketzin with the first plug cementation ofmore » the observation well Ktzi 202 shortly after shut-in of CO₂ injection. The experience with the first CO₂ well killing operation will be reviewed.« less

  1. Design, drilling, and testing of a deviated HTHP exploration well in the North Sea

    SciTech Connect

    Seymour, K.P.; MacAndrew, R.

    1994-12-01

    Significant quantities of hydrocarbon reserves are contained in North Sea high-temperature, high-pressure (HTHP) reservoirs. Development of these reserves will require deviated wells. This paper outlines the planning, drilling, and testing of the first deviated HTHP well in the UK Sector of the North Sea. The high temperature requires mud systems, downhole equipment, and tools designed to work at elevated temperatures. The convergence of pore and fracture pressures leads to problems owing to the narrow band of mud weight between inducing losses and inducing a kick. This aspect of these wells probably causes the most trouble. The high mud weights required for well control leads to a situation where, owing to the large difference between formation-fluid and mud pressure gradients, mud overbalance becomes so high at the bottom of long permeable hole sections that differential sticking becomes likely. These problems are magnified when drilling small-diameter directional holes. The most important single factor in controlling these problems is the mud system design.

  2. Bull heading to kill live gas wells

    SciTech Connect

    Oudeman, P.; Avest, D. ter; Grodal, E.O.; Asheim, H.A.; Meissner, R.J.H.

    1994-12-31

    To kill a live closed-in gas well by bull heading down the tubing, the selected pump rate should be high enough to ensure efficient displacement of the gas into the formation (i.e., to avoid the kill fluid bypassing the gas). On the other hand, the pressures that develop during bull heading at high rate must not exceed wellhead pressure rating, tubing or casing burst pressures or the formation breakdown gradient, since this will lead, at best, to a very inefficient kill job. Given these constraints, the optimum kill rate, requited hydraulic horsepower, density and type of kill fluids have to be selected. For this purpose a numerical simulator has been developed, which predicts the sequence of events during bull heading. Pressures and flow rates in the well during the kill job are calculated, taking to account slip between the gas and kill fluid, hydrostatic and friction pressure drop, wellbore gas compression and leak-off to the formation. Comparison with the results of a dedicated field test demonstrates that these parameters can be estimated accurately. Example calculations will be presented to show how the simulator can be used to identify an optimum kill scenario.

  3. Downhole fluid sampling at the SSSDP (Salton Sea Scientific Drilling Project) California State 2-14 well, Salton Sea, California

    SciTech Connect

    Goff, F.; Shevenell, L.; Grigsby, C.O.; Dennis, B.

    1987-07-01

    In situ fluid sampling activities were conducted at the Salton Sea Scientific Drilling Project (SSSDP) well during late December 1985 and late March 1986 to obtain unflashed samples of Salton Sea brine. In late December, three sampling runs were made to depths of approximately 1800 m and temperatures of 300/sup 0/C. In late March, 10 sampling runs were made to depths of approximately 3150 m and temperatures of 350/sup 0/C. In brief, the Los Alamos tool obtained samples from four of eight runs; the Lawrence Berkeley tool obtained samples from one of one run; the Leutert Instruments, Inc., tool obtained samples from zero of three runs; and the USGS quartz crystal experiment was lost in the well. The most complete sample was obtained from run No. 11, using the Los Alamos sampler and Sandia battery pack/controller on a wireline. About 1635 ml of brine, two noble gas samples, and two bulk gas samples were collected from this run. Samples of brine and gas from productive runs have been distributed to about 15 researchers for various types of analyses. Chemical analyses by the Los Alamos and US Geological Survey analytical teams are presented in this report, although they are not corrected for flashing and precipitation.

  4. Natural Gas Wells Near Project Rulison

    Office of Legacy Management (LM)

    for Natural Gas Wells Near Project Rulison Second Quarter 2013 U.S. Department of Energy Office of Legacy Management Grand Junction, Colorado Date Sampled: April 3, 2013 Background: Project Rulison was the second underground nuclear test under the Plowshare Program to stimulate natural-gas recovery from deep, low-permeability formations. On September 10, 1969, a 40-kiloton-yield nuclear device was detonated 8,426 feet (1.6 miles) below the ground surface in the Williams Fork Formation, at what

  5. RAPID/Geothermal/Well Field/Alaska | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    At a Glance Jurisdiction: Alaska Drilling & Well Field Permit Agency: Alaska Division of Oil and Gas Drilling & Well Field Permit All wells drilled in support or in search of the...

  6. U.S. Nominal Cost per Foot of Crude Oil Wells Drilled (Dollars per Foot)

    Gasoline and Diesel Fuel Update

    Oil Wells Drilled (Dollars per Foot) U.S. Nominal Cost per Foot of Crude Oil Wells Drilled (Dollars per Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 13.22 13.11 13.41 13.20 13.12 13.94 15.04 16.61 18.63 19.28 1970's 19.29 18.41 20.77 22.54 27.82 34.17 37.35 41.16 49.72 58.29 1980's 66.36 80.40 86.34 72.65 66.32 66.78 68.35 58.35 62.28 64.92 1990's 69.17 73.75 69.50 67.52 70.57 78.09 70.60 90.48 108.88 156.45 2000's 125.96 153.72 194.55 221.13 298.45

  7. U.S. Nominal Cost per Foot of Dry Wells Drilled (Dollars per Foot)

    Gasoline and Diesel Fuel Update

    Dry Wells Drilled (Dollars per Foot) U.S. Nominal Cost per Foot of Dry Wells Drilled (Dollars per Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 10.56 10.56 11.20 10.58 10.64 11.21 12.34 12.87 12.88 13.23 1970's 15.21 16.02 17.28 19.22 26.76 33.86 36.94 43.49 52.55 64.60 1980's 73.70 90.03 104.09 79.10 67.18 73.69 76.53 51.05 66.96 67.61 1990's 67.49 83.05 67.82 72.56 86.60 84.60 95.74 115.09 157.79 182.99 2000's 181.83 271.63 284.17 345.94 327.91

  8. Zero Discharge Water Management for Horizontal Shale Gas Well Development

    SciTech Connect

    Paul Ziemkiewicz; Jennifer Hause; Raymond Lovett; David Locke Harry Johnson; Doug Patchen

    2012-03-31

    Hydraulic fracturing technology (fracking), coupled with horizontal drilling, has facilitated exploitation of huge natural gas (gas) reserves in the Devonian-age Marcellus Shale Formation (Marcellus) of the Appalachian Basin. The most-efficient technique for stimulating Marcellus gas production involves hydraulic fracturing (injection of a water-based fluid and sand mixture) along a horizontal well bore to create a series of hydraulic fractures in the Marcellus. The hydraulic fractures free the shale-trapped gas, allowing it to flow to the well bore where it is conveyed to pipelines for transport and distribution. The hydraulic fracturing process has two significant effects on the local environment. First, water withdrawals from local sources compete with the water requirements of ecosystems, domestic and recreational users, and/or agricultural and industrial uses. Second, when the injection phase is over, 10 to 30% of the injected water returns to the surface. This water consists of flowback, which occurs between the completion of fracturing and gas production, and produced water, which occurs during gas production. Collectively referred to as returned frac water (RFW), it is highly saline with varying amounts of organic contamination. It can be disposed of, either by injection into an approved underground injection well, or treated to remove contaminants so that the water meets the requirements of either surface release or recycle use. Depending on the characteristics of the RFW and the availability of satisfactory disposal alternatives, disposal can impose serious costs to the operator. In any case, large quantities of water must be transported to and from well locations, contributing to wear and tear on local roadways that were not designed to handle the heavy loads and increased traffic. The search for a way to mitigate the situation and improve the overall efficiency of shale gas production suggested a treatment method that would allow RFW to be used as make

  9. Tax credits stimulate gas drilling without decreasing federal tax revenue: A win-win situation

    SciTech Connect

    Cline, S.B.

    1995-12-31

    The long-term U.S. natural gas resource base (1300 + TCF) exists. The challenge is the timely conversion of that resource base to proved, deliverable reserves. Tax credits stimulate the transfer of the natural gas resource base to deliverable proved reserves by effective price enhancement and through the discovery, application, and dissemination of technology. Tax incentives act as net price increases to gas producers as long as all companies have roughly the same tax rate and all are able to utilize the credit. Tax incentives can thus be merged with gas price for statistical purposes. This paper demonstrates how the existence of the 29 credits stimulated drilling, increased relatively clean burning gas reserves, resulted in new technological advances and possibly increased federal tax receipts with no upward pressure on gas prices. New tax-stimulus mechanisms are introduced that will help ensure that tax credits both stimulate drilling and increase tax revenue.

  10. U.S. Footage Drilled for Crude Oil Exploratory and Developmental Wells

    Gasoline and Diesel Fuel Update

    (Thousand Feet) and Developmental Wells (Thousand Feet) U.S. Footage Drilled for Crude Oil Exploratory and Developmental Wells (Thousand Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1940's 79,428 1950's 92,695 95,106 98,148 102,136 113,362 121,148 120,352 110,043 93,105 94,611 1960's 86,568 85,626 88,431 81,809 80,463 73,322 67,340 58,634 59,517 61,582 1970's 56,859 49,109 49,269 44,416 52,025 66,819 68,892 75,451 77,041 82,688 1980's 125,262 172,167

  11. U.S. Footage Drilled for Dry Exploratory and Developmental Wells (Thousand

    Gasoline and Diesel Fuel Update

    Feet) and Developmental Wells (Thousand Feet) U.S. Footage Drilled for Dry Exploratory and Developmental Wells (Thousand Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1940's 43,754 1950's 50,977 63,093 70,730 73,862 75,790 85,103 90,190 83,167 74,643 79,476 1960's 77,361 74,716 77,253 76,307 81,360 76,629 69,636 61,142 64,737 71,364 1970's 58,074 54,685 58,556 55,761 62,899 69,220 68,977 76,728 85,788 81,642 1980's 99,575 134,934 123,746 105,222 119,860

  12. Federal Offshore California Natural Gas Withdrawals from Gas Wells (Million

    Energy Information Administration (EIA) (indexed site)

    Cubic Feet) Gas Wells (Million Cubic Feet) Federal Offshore California Natural Gas Withdrawals from Gas Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0 0 0 1980's 0 0 0 3,986 18,920 31,227 27,279 23,425 17,931 12,246 1990's 15,640 16,464 13,947 10,618 11,064 7,874 5,508 4,260 3,966 2,775 2000's 7,323 3,913 3,080 1,731 850 684 2,094 2,137 1,601 1,206 2010's 1,757 1,560 14,559 14,296 7,007 3,105 - = No Data Reported; -- = Not

  13. Maximize revenue from gas condensate wells

    SciTech Connect

    Hall, S.R. )

    1988-09-01

    A computerized oil/gas modeling program called C.O.M.P. was used to analyze comparative recovery, losses and revenues from six different producing systems on a given wellstream as tested on initial completion. A multi-stage separation/stabilization/compression system (HERO system) manufactured by U.S. Enertek, Inc., was subsequently installed to produce the well, plus five other wells in the immediate area. This article compares theoretical gains forecast by the modeling program with actual gains recorded during later testing of the same well with a two-stage separation hookup and the multi-stage unit. The test using two-stage separation was run as a basis for comparison. Operating temperatures and pressures for each test are shown.

  14. Innovative website for drilling waste management. (Conference...

    Office of Scientific and Technical Information (OSTI)

    Sponsoring Org: US Department of Energy (US) Country of Publication: United States Language: English Subject: 02 PETROLEUM; 03 NATURAL GAS; WELL DRILLING; EXPLORATION; WASTE ...

  15. Consortium for Petroleum & Natural Gas Stripper Wells

    SciTech Connect

    Morrison, Joel

    2011-12-01

    The United States has more oil and gas wells than any other country. As of December 31, 2004, there were more than half a million producing oil wells in the United States. That is more than three times the combined total for the next three leaders: China, Canada, and Russia. The Stripper Well Consortium (SWC) is a partnership that includes domestic oil and gas producers, service and supply companies, trade associations, academia, the Department of Energy’s Strategic Center for Natural Gas and Oil (SCNGO) at the National Energy Technology Laboratory (NETL), and the New York State Energy Research and Development Authority (NYSERDA). The Consortium was established in 2000. This report serves as a final technical report for the SWC activities conducted over the May 1, 2004 to December 1, 2011 timeframe. During this timeframe, the SWC worked with 173 members in 29 states and three international countries, to focus on the development of new technologies to benefit the U.S. stripper well industry. SWC worked with NETL to develop a nationwide request-for-proposal (RFP) process to solicit proposals from the U.S. stripper well industry to develop and/or deploy new technologies that would assist small producers in improving the production performance of their stripper well operations. SWC conducted eight rounds of funding. A total of 132 proposals were received. The proposals were compiled and distributed to an industry-driven SWC executive council and program sponsors for review. Applicants were required to make a formal technical presentation to the SWC membership, executive council, and program sponsors. After reviewing the proposals and listening to the presentations, the executive council made their funding recommendations to program sponsors. A total of 64 projects were selected for funding, of which 59 were fully completed. Penn State then worked with grant awardees to issue a subcontract for their approved work. SWC organized and hosted a total of 14 meetings

  16. McGinness Hills Well 27A-10 Daily Drilling Report Data

    DOE Data Explorer

    Knudsen, Steven

    This data should be used with the daily drilling record and other data which can be obtained from the contact listed below

  17. McGinness Hills Well 27A-10 Daily Drilling Report Data

    DOE Data Explorer

    Knudsen, Steven

    2014-03-25

    This data should be used with the daily drilling record and other data which can be obtained from the contact listed below

  18. IMPROVED NATURAL GAS STORAGE WELL REMEDIATION

    SciTech Connect

    James C. Furness; Donald O. Johnson; Michael L. Wilkey; Lynn Furness; Keith Vanderlee; P. David Paulsen

    2001-12-01

    This report summarizes the research conducted during Budget Period One on the project ''Improved Natural Gas Storage Well Remediation''. The project team consisted of Furness-Newburge, Inc., the technology developer; TechSavants, Inc., the technology validator; and Nicor Technologies, Inc., the technology user. The overall objectives for the project were: (1) To develop, fabricate and test prototype laboratory devices using sonication and underwater plasma to remove scale from natural gas storage well piping and perforations; (2) To modify the laboratory devices into units capable of being used downhole; (3) To test the capability of the downhole units to remove scale in an observation well at a natural gas storage field; (4) To modify (if necessary) and field harden the units and then test the units in two pressurized injection/withdrawal gas storage wells; and (5) To prepare the project's final report. This report covers activities addressing objectives 1-3. Prototype laboratory units were developed, fabricated, and tested. Laboratory testing of the sonication technology indicated that low-frequency sonication was more effective than high-frequency (ultrasonication) at removing scale and rust from pipe sections and tubing. Use of a finned horn instead of a smooth horn improves energy dispersal and increases the efficiency of removal. The chemical data confirmed that rust and scale were removed from the pipe. The sonication technology showed significant potential and technical maturity to warrant a field test. The underwater plasma technology showed a potential for more effective scale and rust removal than the sonication technology. Chemical data from these tests also confirmed the removal of rust and scale from pipe sections and tubing. Focusing of the underwater plasma's energy field through the design and fabrication of a parabolic shield will increase the technology's efficiency. Power delivered to the underwater plasma unit by a sparkplug repeatedly was

  19. U.S. Footage Drilled for Crude Oil Exploratory Wells (Thousand Feet)

    Gasoline and Diesel Fuel Update

    Wells (Thousand Feet) U.S. Footage Drilled for Crude Oil Exploratory Wells (Thousand Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1940's 5,950 1950's 6,862 8,125 8,491 9,432 9,409 10,774 11,111 9,794 8,712 8,545 1960's 6,829 5,900 6,205 6,409 6,715 5,366 6,817 5,678 5,642 6,563 1970's 4,729 3,786 4,028 4,008 5,029 5,806 6,527 6,870 7,105 7,941 1980's 10,177 15,515 13,413 10,437 12,294 9,854 6,579 5,652 5,286 3,659 1990's 5,320 4,469 3,957 3,572 3,970 3,934

  20. U.S. Footage Drilled for Dry Developmental Wells (Thousand Feet)

    Gasoline and Diesel Fuel Update

    Developmental Wells (Thousand Feet) U.S. Footage Drilled for Dry Developmental Wells (Thousand Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1940's 17,315 1950's 20,020 24,370 26,999 26,582 29,998 31,883 32,143 29,747 27,343 30,800 1960's 33,826 31,423 35,030 33,460 36,782 36,548 26,552 22,960 23,162 25,446 1970's 22,951 20,186 22,475 21,190 24,296 28,772 31,008 35,905 39,493 39,130 1980's 49,326 65,720 63,066 56,233 61,236 52,784 30,636 26,842 25,438 20,152

  1. U.S. Footage Drilled for Dry Exploratory Wells (Thousand Feet)

    Gasoline and Diesel Fuel Update

    Wells (Thousand Feet) U.S. Footage Drilled for Dry Exploratory Wells (Thousand Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1940's 26,439 1950's 30,957 38,723 43,731 47,280 45,792 53,220 58,047 53,420 47,300 48,676 1960's 43,535 43,293 42,223 42,847 44,578 40,081 43,084 38,182 41,575 45,918 1970's 35,123 34,499 36,081 34,571 38,603 40,448 37,969 40,823 46,295 42,512 1980's 50,249 69,214 60,680 48,989 58,624 47,604 30,325 26,746 27,079 21,947 1990's 20,752

  2. Laboratory development and field application of a novel water-based drill-in fluid for geopressured horizontal wells

    SciTech Connect

    Dobson, J.W.; Harrison, J.C.; Hale, A.H.

    1996-12-31

    Research has identified a novel water-based drill-in fluid for drilling and completing geopressured horizontal wells. This fluid has a unique combination of properties which make it especially suitable for geopressured applications. They include the use of calcium and/or zinc bromide as a base brine, minimal concentration of calcium carbonate as bridging material, low plastic viscosity, tight fluid loss control, good filter cake properties, and excellent return permeability. This drill-in fluid has been used successfully to drill a 1,200 foot production interval, 4.75 inch diameter wellbore in the Gulf of Mexico with a system weight of 13.2 lbm/gal, bottom hole temperature of 185{degrees} F., and a 1400 to 1700 psi overbalance. The system functioned very well in both the drilling and completion operations. Fluid rheology was easily maintainable and the hole conditions were excellent without torque or drag problems. Initial production data suggests that the well is producing at expected rates with low drawdown pressure.

  3. US--State Offshore Natural Gas Withdrawals from Gas Wells (Million...

    Energy Information Administration (EIA) (indexed site)

    Gas Wells (Million Cubic Feet) US--State Offshore Natural Gas Withdrawals from Gas Wells ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Offshore Gross ...

  4. MODELING OF FLOW AND TRANSPORT INDUCED BY PRODUCTION OF HYDROFRACTURE-STIMULATED GAS WELLS NEAR THE RULISON NUCLEAR TEST

    SciTech Connect

    Hodges, Rex A.; Cooper, Clay; Falta, Ronald

    2012-09-17

    The Piceance Basin in western Colorado contains significant reserves of natural gas in poorly connected, low-permeability (tight) sandstone lenses of the Mesaverde Group. The ability to enhance the production of natural gas in this area has long been a goal of the oil and gas industry. The U.S. Atomic Energy Commission, a predecessor agency to the U.S. Department of Energy (DOE) and the U.S. Nuclear Regulatory Commission, participated in three tests using nuclear detonations to fracture tight formations in an effort to enhance gas production. The tests were conducted under Project Plowshare, a program designed to identify peaceful, beneficial uses for nuclear devices. The first, Project Gasbuggy, was conducted in 1967 in the San Juan Basin of New Mexico. The two subsequent tests, Project Rulison in 1969 and Project Rio Blanco in 1973, were in the Piceance Basin. The ability to enhance natural gas production from tight sands has become practical through advances in hydraulic fracturing technology (hydrofracturing). This technology has led to an increase in drilling activity near the Rulison site, raising concerns that contamination currently contained in the subsurface could be released through a gas well drilled too close to the site. As wells are drilled nearer the site, the DOE Office of Legacy Management has taken the approach outlined in the June 2010 Rulison Path Forward document (DOE 2010), which recommends a conservative, staged approach to gas development. Drillers are encouraged to drill wells in areas with a low likelihood of encountering contamination (both distance and direction from the detonation zone are factors) and to collect data from these wells prior to drilling nearer the site’s 40 acre institutional control boundary (Lot 11). Previous modeling results indicate that contamination has been contained within Lot 11 (Figure 1). The Path Forward document couples the model predictions with the monitoring of gas and produced water from the gas wells

  5. Drill core major, trace and rare earth element anlayses from wells RN-17B and RN-30, Reykjanes, Iceland

    DOE Data Explorer

    Andrew Fowler

    2015-04-01

    Analytical results for X-ray fluorescence (XRF) and inductively coupled plasma mass spectrometry (ICP-MS) measurement of major, trace and rare earth elements in drill core from geothermal wells in Reykjanes, Iceland. Total Fe was analyzed as FeO, therefore is not included under the Fe2O3 column.

  6. Nevada Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Gas and Gas Condensate Wells (Number of Elements) Nevada Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 5 5 4 4 2000's 4 4 4 4 4 4 4 4 0 0 2010's 0 0 0 0 1 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Producing Gas

  7. Geological aspects of drilling horizontal wells in steam flood reservoirs, west side, southern San Joaquin Valley, California

    SciTech Connect

    Crough, D.D.; Holman, M.L.; Sande, J.J. )

    1994-04-01

    Shell Western E P Inc. has drilled 11 horizontal wells in four mature steam floods in the Coalinga, South Belridge, and Midway-Sunset fields. Two medium radius wells are producing from the Pliocene Etchegoin Formation in Coalinga. One medium radius well is producing from the Pleistocene Tulare Formation in South Belridge field. Three short radius and five medium radius wells are producing from the upper Miocene, Sub-Hoyt and Potter sands in Midway-Sunset field. Horizontal wells at the base of these reservoirs and/or structurally downdip near the oil-water contact are ideally suited to take advantage of the gravity drainage production mechanism. Reservoir studies and production experience have shown these horizontal wells should increase reserves, improve recovery efficiency, improve the oil-steam ratio, and improve project profitability. Geological considerations of targeting the wells vary between fields because of the different depositional environments and resulting reservoir characteristics. The thin sands and semicontinuous shales in the Tulare Formation and the Etchegoin Formation require strict structural control on the top and base of the target sand. In the Sub-Hoyt and Potter sands, irregularities of the oil-water contact and sand and shale discontinuities must be understood. Logging and measurement while drilling provide geosteering capability in medium radius wells. Teamwork between all engineering disciplines and drilling and producing operations has been critical to horizontal well success.

  8. Table 6.4 Natural Gas Gross Withdrawals and Natural Gas Well Productivity, 1960-2011

    Energy Information Administration (EIA) (indexed site)

    Natural Gas Gross Withdrawals and Natural Gas Well Productivity, 1960-2011 Year Natural Gas Gross Withdrawals From Crude Oil, Natural Gas, Coalbed, and Shale Gas Wells Natural Gas Well Productivity Texas 1 Louisiana 1 Oklahoma Other States 1 Federal Gulf of Mexico 2 Total Onshore Offshore Total Gross With- drawals From Natural Gas Wells 3 Producing Wells 4 Average Productivity Federal State Total Million Cubic Feet Million Cubic Feet Million Cubic Feet Number Cubic Feet per Well 1960 6,964,900

  9. Advanced drilling systems study.

    SciTech Connect

    Pierce, Kenneth G.; Livesay, Billy Joe; Finger, John Travis

    1996-05-01

    This report documents the results of a study of advanced drilling concepts conducted jointly for the Natural Gas Technology Branch and the Geothermal Division of the U.S. Department of Energy. A number of alternative rock cutting concepts and drilling systems are examined. The systems cover the range from current technology, through ongoing efforts in drilling research, to highly speculative concepts. Cutting mechanisms that induce stress mechanically, hydraulically, and thermally are included. All functions necessary to drill and case a well are considered. Capital and operating costs are estimated and performance requirements, based on comparisons of the costs for alternative systems to conventional drilling technology, are developed. A number of problems common to several alternatives and to current technology are identified and discussed.

  10. Kentucky Natural Gas Gross Withdrawals from Coalbed Wells (Million...

    Energy Information Administration (EIA) (indexed site)

    Coalbed Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ... Natural Gas Gross Withdrawals from Coalbed Wells Kentucky Natural Gas Gross Withdrawals ...

  11. Maryland Natural Gas Gross Withdrawals from Coalbed Wells (Million...

    Energy Information Administration (EIA) (indexed site)

    Coalbed Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ... Natural Gas Gross Withdrawals from Coalbed Wells Maryland Natural Gas Gross Withdrawals ...

  12. Indiana Natural Gas Withdrawals from Oil Wells (Million Cubic...

    Energy Information Administration (EIA) (indexed site)

    Withdrawals from Oil Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep ... Referring Pages: Natural Gas Gross Withdrawals from Oil Wells Indiana Natural Gas Gross ...

  13. Nebraska Natural Gas Gross Withdrawals from Coalbed Wells (Million...

    Energy Information Administration (EIA) (indexed site)

    Coalbed Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ... Natural Gas Gross Withdrawals from Coalbed Wells Nebraska Natural Gas Gross Withdrawals ...

  14. New York Natural Gas Gross Withdrawals from Coalbed Wells (Million...

    Energy Information Administration (EIA) (indexed site)

    Coalbed Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ... Natural Gas Gross Withdrawals from Coalbed Wells New York Natural Gas Gross Withdrawals ...

  15. Missouri Natural Gas Gross Withdrawals from Oil Wells (Million...

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 ... Referring Pages: Natural Gas Gross Withdrawals from Oil Wells Missouri Natural Gas Gross ...

  16. North America: A better second half for drilling--Maybe. [Oil and gas exploration and development in North America

    SciTech Connect

    Not Available

    1993-08-01

    This paper provides data on the exploration, production, and drilling activity of the oil and gas industry in Canada, the US, and Central America. The section on the US discusses trends in drilling activity in both the first and second half of 1993. Statistical information on all oil and gas producing states if provided in a tabular format. Information on exploration and development expenditures is also discussed. Data is also provided drilling and production information for Canada, Mexico, Guatemala, Belize, Nicaragua, and other minor production areas.

  17. Tennessee Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Gas and Gas Condensate Wells (Number of Elements) Tennessee Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 700 1990's 690 650 600 505 460 420 2000's 380 350 400 430 280 400 330 305 285 310 2010's 230 1,027 1,027 1,089 NA NA - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next

  18. South Dakota Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Gas and Gas Condensate Wells (Number of Elements) South Dakota Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 53 1990's 54 54 38 47 55 56 61 60 59 60 2000's 71 68 69 61 61 69 69 71 71 89 2010's 102 155 159 133 128 124 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next

  19. Maryland Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Gas and Gas Condensate Wells (Number of Elements) Maryland Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 8 1990's 7 7 9 7 7 7 8 8 8 8 2000's 7 7 5 7 7 7 7 7 7 7 2010's 7 7 7 7 5 7 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages:

  20. Missouri Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Gas and Gas Condensate Wells (Number of Elements) Missouri Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 4 1990's 8 6 5 8 12 15 24 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 19 15 7 6 NA - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring

  1. Nebraska Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Gas and Gas Condensate Wells (Number of Elements) Nebraska Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 15 1990's 11 12 22 59 87 87 88 91 95 96 2000's 98 96 106 109 111 114 114 186 322 285 2010's 276 307 299 246 109 140 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next

  2. Oregon Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Gas and Gas Condensate Wells (Number of Elements) Oregon Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 18 1990's 19 16 16 18 19 17 18 17 15 19 2000's 17 20 18 15 15 15 14 18 21 24 2010's 26 28 24 24 12 14 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date:

  3. Alaska Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Gas and Gas Condensate Wells (Number of Elements) Alaska Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 108 1990's 111 110 112 113 104 100 102 141 148 99 2000's 152 170 165 195 224 227 231 239 261 261 2010's 269 274 281 300 338 329 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  4. Arizona Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Gas and Gas Condensate Wells (Number of Elements) Arizona Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3 1990's 5 6 6 6 6 7 7 8 8 8 2000's 9 8 7 9 6 6 7 7 6 6 2010's 5 5 4 3 6 6 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages:

  5. Illinois Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Gas and Gas Condensate Wells (Number of Elements) Illinois Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 241 1990's 356 373 382 385 390 372 370 372 185 300 2000's 280 300 225 240 251 316 316 43 45 51 2010's 50 40 40 34 36 35 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016

  6. US--Federal Offshore Natural Gas Withdrawals from Oil Wells ...

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Million Cubic Feet) US--Federal Offshore Natural Gas Withdrawals from Oil Wells ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Offshore Gross ...

  7. Use of Cutting-Edge Horizontal and Underbalanced Drilling Technologies and Subsurface Seismic Techniques to Explore, Drill and Produce Reservoired Oil and Gas from the Fractured Monterey Below 10,000 ft in the Santa Maria Basin of California

    SciTech Connect

    George Witter; Robert Knoll; William Rehm; Thomas Williams

    2005-09-29

    This project was undertaken to demonstrate that oil and gas can be drilled and produced safely and economically from a fractured Monterey reservoir in the Santa Maria Basin of California by employing horizontal wellbores and underbalanced drilling technologies. Two vertical wells were previously drilled in this area with heavy mud and conventional completions; neither was commercially productive. A new well was drilled by the project team in 2004 with the objective of accessing an extended length of oil-bearing, high-resistivity Monterey shale via a horizontal wellbore, while implementing managed-pressure drilling (MPD) techniques to avoid formation damage. Initial project meetings were conducted in October 2003. The team confirmed that the demonstration well would be completed open-hole to minimize productivity impairment. Following an overview of the geologic setting and local field experience, critical aspects of the application were identified. At the pre-spud meeting in January 2004, the final well design was confirmed and the well programming/service company requirements assigned. Various design elements were reduced in scope due to significant budgetary constraints. Major alterations to the original plan included: (1) a VSP seismic survey was delayed to a later phase; (2) a new (larger) surface hole would be drilled rather than re-enter an existing well; (3) a 7-in. liner would be placed into the top of the Monterey target as quickly as possible to avoid problems with hole stability; (4) evaluation activities were reduced in scope; (5) geosteering observations for fracture access would be deduced from penetration rate, cuttings description and hydrocarbon in-flow; and (6) rather than use nitrogen, a novel air-injection MPD system was to be implemented. Drilling operations, delayed from the original schedule by capital constraints and lack of rig availability, were conducted from September 12 to November 11, 2004. The vertical and upper curved sections were

  8. U.S. Average Depth of Crude Oil, Natural Gas, and Dry Developmental Wells

    Gasoline and Diesel Fuel Update

    Drilled (Feet per Well) Developmental Wells Drilled (Feet per Well) U.S. Average Depth of Crude Oil, Natural Gas, and Dry Developmental Wells Drilled (Feet per Well) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1940's 3,568 1950's 3,691 3,851 3,999 3,880 3,905 3,904 3,880 3,966 3,907 3,999 1960's 4,020 4,064 4,227 4,193 4,179 4,288 4,112 4,004 4,328 4,431 1970's 4,610 4,480 4,590 4,687 4,249 4,285 4,214 4,404 4,421 4,374 1980's 4,166 4,209 4,225 4,004 4,125

  9. U.S. Average Depth of Crude Oil, Natural Gas, and Dry Exploratory Wells

    Gasoline and Diesel Fuel Update

    Drilled (Feet per Well) Wells Drilled (Feet per Well) U.S. Average Depth of Crude Oil, Natural Gas, and Dry Exploratory Wells Drilled (Feet per Well) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1940's 3,842 1950's 3,898 4,197 4,476 4,557 4,550 4,632 4,587 4,702 4,658 4,795 1960's 4,770 4,953 4,966 5,016 5,174 5,198 5,402 5,388 5,739 5,924 1970's 5,885 5,915 6,015 5,955 5,777 5,842 5,825 5,798 5,978 5,916 1980's 5,733 5,793 5,597 5,035 5,369 5,544 5,680 5,563

  10. U.S. Average Depth of Natural Gas Exploratory and Developmental Wells

    Gasoline and Diesel Fuel Update

    Drilled (Feet per Well) and Developmental Wells Drilled (Feet per Well) U.S. Average Depth of Natural Gas Exploratory and Developmental Wells Drilled (Feet per Well) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1940's 3,698 1950's 3,979 4,056 4,342 4,599 4,670 4,672 5,018 5,326 5,106 5,396 1960's 5,486 5,339 5,408 5,368 5,453 5,562 5,928 5,898 5,994 5,918 1970's 5,860 5,890 5,516 5,488 5,387 5,470 5,220 5,254 5,262 5,275 1980's 5,275 5,351 5,617 5,319 5,276

  11. Use of Cutting-Edge Horizontal and Underbalanced Drilling Technologies and Subsurface Seismic Techniques to Explore, Drill and Produce Reservoired Oil and Gas from the Fractured Monterey Below 10,000 ft in the Santa Maria Basin of California

    SciTech Connect

    George Witter; Robert Knoll; William Rehm; Thomas Williams

    2006-06-30

    This project was undertaken to demonstrate that oil and gas can be drilled and produced safely and economically from a fractured Monterey reservoir in the Santa Maria Basin of California by employing horizontal wellbores and underbalanced drilling technologies. Two vertical wells were previously drilled in this area with heavy mud and conventional completions; neither was commercially productive. A new well was drilled by the project team in 2004 with the objective of accessing an extended length of oil-bearing, high-resistivity Monterey shale via a horizontal wellbore, while implementing managed-pressure drilling (MPD) techniques to avoid formation damage. Initial project meetings were conducted in October 2003. The team confirmed that the demonstration well would be completed open-hole to minimize productivity impairment. Following an overview of the geologic setting and local field experience, critical aspects of the application were identified. At the pre-spud meeting in January 2004, the final well design was confirmed and the well programming/service company requirements assigned. Various design elements were reduced in scope due to significant budgetary constraints. Major alterations to the original plan included: (1) a VSP seismic survey was delayed to a later phase; (2) a new (larger) surface hole would be drilled rather than re-enter an existing well; (3) a 7-in. liner would be placed into the top of the Monterey target as quickly as possible to avoid problems with hole stability; (4) evaluation activities were reduced in scope; (5) geosteering observations for fracture access would be deduced from penetration rate, cuttings description and hydrocarbon in-flow; and (6) rather than use nitrogen, a novel air-injection MPD system was to be implemented. Drilling operations, delayed from the original schedule by capital constraints and lack of rig availability, were conducted from September 12 to November 11, 2004. The vertical and upper curved sections were

  12. USE OF CUTTING-EDGE HORIZONTAL AND UNDERBALANCED DRILLING TECHNOLOGIES AND SUBSURFACE SEISMIC TECHNIQUES TO EXPLORE, DRILL AND PRODUCE RESERVOIRED OIL AND GAS FROM THE FRACTURED MONTEREY BELOW 10,000 FT IN THE SANTA MARIA BASIN OF CALIFORNIA

    SciTech Connect

    George Witter; Robert Knoll; William Rehm; Thomas Williams

    2005-02-01

    This project was undertaken to demonstrate that oil and gas can be drilled and produced safely and economically from a fractured Monterey reservoir in the Santa Maria Basin of California by employing horizontal wellbores and underbalanced drilling technologies. Two vertical wells were previously drilled in this area by Temblor Petroleum with heavy mud and conventional completions; neither was commercially productive. A new well was drilled by the project team in 2004 with the objective of accessing an extended length of oil-bearing, high-resistivity Monterey shale via a horizontal wellbore, while implementing managed-pressure drilling (MPD) techniques to avoid formation damage. Initial project meetings were conducted in October 2003. The team confirmed that the demonstration well would be completed open-hole to minimize productivity impairment. Following an overview of the geologic setting and local field experience, critical aspects of the application were identified. At the pre-spud meeting in January 2004, the final well design was confirmed and the well programming/service company requirements assigned. Various design elements were reduced in scope due to significant budgetary constraints. Major alterations to the original plan included: (1) a VSP seismic survey was delayed to a later phase; (2) a new (larger) surface hole would be drilled rather than re-enter an existing well; (3) a 7-in. liner would be placed into the top of the Monterey target as quickly as possible to avoid problems with hole stability; (4) evaluation activities were reduced in scope; (5) geosteering observations for fracture access would be deduced from penetration rate, cuttings description and hydrocarbon in-flow; and (6) rather than use nitrogen, a novel air-injection MPD system was to be implemented. Drilling operations, delayed from the original schedule by capital constraints and lack of rig availability, were conducted from September 12 to November 11, 2004. The vertical and upper

  13. Tennessee Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Tennessee Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 52 75 NA NA NA - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Tennessee Natural Gas Summ

  14. Alaska--State Offshore Natural Gas Withdrawals from Oil Wells...

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Million Cubic Feet) Alaska--State Offshore Natural Gas Withdrawals from Oil ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Offshore Gross ...

  15. Federal Offshore--Alabama Natural Gas Withdrawals from Oil Wells...

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Million Cubic Feet) Federal Offshore--Alabama Natural Gas Withdrawals from Oil ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Offshore Gross ...

  16. Texas--State Offshore Natural Gas Withdrawals from Oil Wells...

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Million Cubic Feet) Texas--State Offshore Natural Gas Withdrawals from Oil ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Offshore Gross ...

  17. Louisiana--State Offshore Natural Gas Withdrawals from Oil Wells...

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Million Cubic Feet) Louisiana--State Offshore Natural Gas Withdrawals from Oil ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Offshore Gross ...

  18. Federal Offshore--Texas Natural Gas Withdrawals from Oil Wells...

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Million Cubic Feet) Federal Offshore--Texas Natural Gas Withdrawals from Oil ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Offshore Gross ...

  19. Michigan Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Michigan Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 510 514 537 584 532 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Michigan Natural Gas Summary

  20. Mississippi Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Mississippi Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 561 618 581 540 501 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Mississippi Natural Gas

  1. Missouri Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Missouri Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 1 1 1 1 NA - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Missouri Natural Gas Summary

  2. Montana Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Montana Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 1,956 2,147 2,268 2,377 2,277 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Montana Natural Gas

  3. Nebraska Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Nebraska Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 84 73 54 51 51 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Nebraska Natural Gas Summar

  4. Nevada Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Nevada Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 4 4 4 4 4 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Nevada Natural Gas Summary

  5. Ohio Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Ohio Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 6,775 6,745 7,038 7,257 5,941 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Ohio Natural Gas

  6. Alabama Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Alabama Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 346 367 402 436 414 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Alabama Natural Gas Sum

  7. Alaska Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Alaska Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 2,040 1,981 2,006 2,042 2,096 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Alaska Natural Gas

  8. Arizona Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Arizona Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 1 1 1 0 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Arizona Natural Gas Summary

  9. Arkansas Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Arkansas Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 165 174 218 233 240 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Arkansas Natural Gas

  10. Utah Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Utah Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 3,119 3,520 3,946 4,249 3,966 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Utah Natural Gas

  11. Virginia Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Virginia Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 2 1 1 2 2 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Virginia Natural Gas Summary

  12. Wyoming Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Wyoming Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 4,430 4,563 4,391 4,538 4,603 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Wyoming Natural Gas

  13. Kentucky Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Kentucky Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 317 358 340 NA NA - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Kentucky Natural Gas Su

  14. Dewatering of coalbed methane wells with hydraulic gas pump

    SciTech Connect

    Amani, M.; Juvkam-Wold, H.C.

    1995-12-31

    The coalbed methane industry has become an important source of natural gas production. Proper dewatering of coalbed methane (CBM) wells is the key to efficient gas production from these reservoirs. This paper presents the Hydraulic Gas Pump as a new alternative dewatering system for CBM wells. The Hydraulic Gas Pump (HGP) concept offers several operational advantages for CBM wells. Gas interference does not affect its operation. It resists solids damage by eliminating the lift mechanism and reducing the number of moving parts. The HGP has a flexible production rate and is suitable for all production phases of CBM wells. It can also be designed as a wireline retrievable system. We conclude that the Hydraulic Gas Pump is a suitable dewatering system for coalbed methane wells.

  15. Reverse trade mission on the drilling and completion of geothermal wells

    SciTech Connect

    Not Available

    1989-09-09

    This draft report was prepared as required by Task No. 2 of the US Department of Energy, Grant No. DE-FG07-89ID12850 Reverse Trade Mission to Acquaint International Representatives with US Power Plant and Drilling Technology'' (mission). As described in the grant proposal, this report covers the reactions of attendees toward US technology, its possible use in their countries, and an evaluation of the mission by the staff leaders. Note this is the draft report of one of two missions carried out under the same contract number. Because of the diversity of the mission subjects and the different attendees at each, a separate report for each mission has been prepared. This draft report has been sent to all mission attendees, specific persons in the US Department of Energy and Los Alamos National Lab., the California Energy Commission (CEC), and various other governmental agencies.

  16. Texas Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Gas and Gas Condensate Wells (Number of Elements) Texas Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 48,609 1990's 50,867 47,615 46,298 47,101 48,654 54,635 53,816 56,747 58,736 58,712 2000's 60,577 63,704 65,779 68,572 72,237 74,827 74,265 76,436 87,556 93,507 2010's 95,014 139,368 140,087 140,964 142,292 142,368 - = No Data Reported; -- = Not Applicable; NA = Not

  17. U.S. Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Gas and Gas Condensate Wells (Number of Elements) U.S. Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 262,483 1990's 269,790 276,987 276,014 282,152 291,773 298,541 301,811 310,971 316,929 302,421 2000's 341,678 373,304 387,772 393,327 406,147 425,887 440,516 452,945 476,652 493,100 2010's 487,627 574,593 577,916 572,742 565,951 555,364 - = No Data Reported; -- = Not

  18. Pennsylvania Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Gas and Gas Condensate Wells (Number of Elements) Pennsylvania Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 30,000 1990's 30,300 31,000 31,000 31,100 31,150 31,025 31,792 32,692 21,576 23,822 2000's 36,000 40,100 40,830 42,437 44,227 46,654 49,750 52,700 55,631 57,356 2010's 44,500 61,815 62,922 61,838 67,621 68,536 - = No Data Reported; -- = Not Applicable; NA = Not

  19. Louisiana Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Gas and Gas Condensate Wells (Number of Elements) Louisiana Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 16,309 1990's 16,889 15,271 13,512 15,569 12,958 14,169 15,295 14,958 18,399 16,717 2000's 15,700 16,350 17,100 16,939 20,734 18,838 17,459 18,145 19,213 18,860 2010's 19,137 19,318 19,345 18,802 18,660 18,382 - = No Data Reported; -- = Not Applicable; NA = Not

  20. Michigan Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Gas and Gas Condensate Wells (Number of Elements) Michigan Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,207 1990's 1,438 2,620 3,257 5,500 6,000 5,258 5,826 6,825 7,000 6,750 2000's 7,068 7,425 7,700 8,600 8,500 8,900 9,200 9,712 9,995 10,600 2010's 10,100 10,480 10,381 10,322 10,246 9,929 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  1. Mississippi Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Gas and Gas Condensate Wells (Number of Elements) Mississippi Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 543 1990's 585 629 507 620 583 535 568 560 527 560 2000's 997 1,143 979 427 1,536 1,676 1,836 2,315 2,343 2,320 2010's 1,979 1,703 1,666 1,632 1,594 1,560 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  2. Montana Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Gas and Gas Condensate Wells (Number of Elements) Montana Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,700 1990's 2,607 2,802 2,890 3,075 2,940 2,918 2,990 3,071 3,423 3,634 2000's 3,321 4,331 4,544 4,539 4,971 5,751 6,578 6,925 7,095 7,031 2010's 6,059 6,615 6,366 5,870 5,682 5,655 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  3. Ohio Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Gas and Gas Condensate Wells (Number of Elements) Ohio Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 34,450 1990's 34,586 34,760 34,784 34,782 34,731 34,520 34,380 34,238 34,098 33,982 2000's 33,897 33,917 34,593 33,828 33,828 33,735 33,945 34,416 34,416 34,963 2010's 34,931 31,966 31,647 30,804 31,060 26,599 - = No Data Reported; -- = Not Applicable; NA = Not Available; W

  4. Oklahoma Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Gas and Gas Condensate Wells (Number of Elements) Oklahoma Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 27,443 1990's 24,547 28,216 28,902 29,118 29,121 29,733 29,733 29,734 30,101 21,790 2000's 21,507 32,672 33,279 34,334 35,612 36,704 38,060 38,364 41,921 43,600 2010's 44,000 51,712 51,472 50,606 50,044 49,852 - = No Data Reported; -- = Not Applicable; NA = Not

  5. Alabama Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Gas and Gas Condensate Wells (Number of Elements) Alabama Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,701 1990's 2,362 3,392 3,350 3,514 3,565 3,526 4,105 4,156 4,171 4,204 2000's 4,359 4,597 4,803 5,157 5,526 5,523 6,227 6,591 6,860 6,913 2010's 7,026 6,243 6,203 6,174 6,117 6,044 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  6. Arkansas Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Gas and Gas Condensate Wells (Number of Elements) Arkansas Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,830 1990's 2,952 2,780 3,500 3,500 3,500 3,988 4,020 3,700 3,900 3,650 2000's 4,000 4,825 6,755 7,606 3,460 3,462 3,814 4,773 5,592 6,314 2010's 7,397 8,428 9,012 9,324 9,778 9,965 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  7. California Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Gas and Gas Condensate Wells (Number of Elements) California Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,214 1990's 1,162 1,377 1,126 1,092 1,261 997 978 930 847 1,152 2000's 1,169 1,244 1,232 1,249 1,272 1,356 1,451 1,540 1,645 1,643 2010's 1,580 4,240 4,356 4,183 4,211 4,209 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  8. Colorado Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Gas and Gas Condensate Wells (Number of Elements) Colorado Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 5,125 1990's 5,741 5,562 5,912 6,372 7,056 7,017 8,251 12,433 13,838 13,838 2000's 22,442 22,117 23,554 18,774 16,718 22,691 20,568 22,949 25,716 27,021 2010's 28,813 43,792 46,141 46,883 46,876 46,322 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  9. Indiana Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Gas and Gas Condensate Wells (Number of Elements) Indiana Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,310 1990's 1,307 1,334 1,333 1,336 1,348 1,347 1,367 1,458 1,479 1,498 2000's 1,502 1,533 1,545 2,291 2,386 2,321 2,336 2,350 525 563 2010's 620 914 819 921 895 899 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  10. Kansas Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Gas and Gas Condensate Wells (Number of Elements) Kansas Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 13,935 1990's 16,980 17,948 18,400 19,472 19,365 22,020 21,388 21,500 21,000 17,568 2000's 15,206 15,357 16,957 17,387 18,120 18,946 19,713 19,713 17,862 21,243 2010's 22,145 25,362 25,013 24,802 24,840 24,451 - = No Data Reported; -- = Not Applicable; NA = Not Available;

  11. Kentucky Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Gas and Gas Condensate Wells (Number of Elements) Kentucky Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 11,248 1990's 11,713 12,169 12,483 12,836 13,036 13,311 13,501 13,825 14,381 14,750 2000's 13,487 14,370 14,367 12,900 13,920 14,175 15,892 16,563 16,290 17,152 2010's 17,670 12,708 13,179 14,557 NA NA - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  12. STIMULATION TECHNOLOGIES FOR DEEP WELL COMPLETIONS

    SciTech Connect

    Stephen Wolhart

    2003-06-01

    The Department of Energy (DOE) is sponsoring a Deep Trek Program targeted at improving the economics of drilling and completing deep gas wells. Under the DOE program, Pinnacle Technologies is conducting a project to evaluate the stimulation of deep wells. The objective of the project is to assess U.S. deep well drilling & stimulation activity, review rock mechanics & fracture growth in deep, high pressure/temperature wells and evaluate stimulation technology in several key deep plays. Phase 1 was recently completed and consisted of assessing deep gas well drilling activity (1995-2007) and an industry survey on deep gas well stimulation practices by region. Of the 29,000 oil, gas and dry holes drilled in 2002, about 300 were drilled in the deep well; 25% were dry, 50% were high temperature/high pressure completions and 25% were simply deep completions. South Texas has about 30% of these wells, Oklahoma 20%, Gulf of Mexico Shelf 15% and the Gulf Coast about 15%. The Rockies represent only 2% of deep drilling. Of the 60 operators who drill deep and HTHP wells, the top 20 drill almost 80% of the wells. Six operators drill half the U.S. deep wells. Deep drilling peaked at 425 wells in 1998 and fell to 250 in 1999. Drilling is expected to rise through 2004 after which drilling should cycle down as overall drilling declines.

  13. Maryland Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Maryland Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Maryland Natural Gas Summary

  14. Oregon Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oregon Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Oregon Natural Gas Summary

  15. Exploration for deep gas in the Devonian Chaco Basin of Southern Bolivia: Sequence stratigraphy, predictions, and well results

    SciTech Connect

    Williams, K.E.; Radovich, B.J.; Brett, J.W.

    1995-12-31

    In mid 1991, a team was assembled in Texaco`s Frontier Exploration Department (FED) to define the hydrocarbon potential of the Chaco Basin of Southern Bolivia. The Miraflores No. 1 was drilled in the fall of 1992, for stratigraphic objectives. The well confirmed the predicted stratigraphic trap in the Mid-Devonian, with gas discovered in two highstand and transgressive sands. They are low contrast and low resistivity sands that are found in a deep basin `tight gas` setting. Testing of the gas sands was complicated by drilling fluid interactions at the well bore. Subsequent analysis indicated that the existing porosity and permeability were reduced, such that a realistic test of reservoir capabilities was prevented.

  16. Oil/gas separator for installation at burning wells

    DOEpatents

    Alonso, Carol T.; Bender, Donald A.; Bowman, Barry R.; Burnham, Alan K.; Chesnut, Dwayne A.; Comfort, III, William J.; Guymon, Lloyd G.; Henning, Carl D.; Pedersen, Knud B.; Sefcik, Joseph A.; Smith, Joseph A.; Strauch, Mark S.

    1993-01-01

    An oil/gas separator is disclosed that can be utilized to return the burning wells in Kuwait to production. Advantageously, a crane is used to install the separator at a safe distance from the well. The gas from the well is burned off at the site, and the oil is immediately pumped into Kuwait's oil gathering system. Diverters inside the separator prevent the oil jet coming out of the well from reaching the top vents where the gas is burned. The oil falls back down, and is pumped from an annular oil catcher at the bottom of the separator, or from the concrete cellar surrounding the well.

  17. Oil/gas separator for installation at burning wells

    DOEpatents

    Alonso, C.T.; Bender, D.A.; Bowman, B.R.; Burnham, A.K.; Chesnut, D.A.; Comfort, W.J. III; Guymon, L.G.; Henning, C.D.; Pedersen, K.B.; Sefcik, J.A.; Smith, J.A.; Strauch, M.S.

    1993-03-09

    An oil/gas separator is disclosed that can be utilized to return the burning wells in Kuwait to production. Advantageously, a crane is used to install the separator at a safe distance from the well. The gas from the well is burned off at the site, and the oil is immediately pumped into Kuwait's oil gathering system. Diverters inside the separator prevent the oil jet coming out of the well from reaching the top vents where the gas is burned. The oil falls back down, and is pumped from an annular oil catcher at the bottom of the separator, or from the concrete cellar surrounding the well.

  18. Other States Natural Gas Gross Withdrawals from Coalbed Wells...

    Energy Information Administration (EIA) (indexed site)

    Coalbed Wells (Million Cubic Feet) Other States Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 0 0 ...

  19. Missouri Natural Gas Gross Withdrawals from Oil Wells (Million...

    Gasoline and Diesel Fuel Update

    from Oil Wells (Million Cubic Feet) Missouri Natural Gas Gross Withdrawals from Oil Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 ...

  20. Indiana Natural Gas Withdrawals from Oil Wells (Million Cubic...

    Gasoline and Diesel Fuel Update

    Oil Wells (Million Cubic Feet) Indiana Natural Gas Withdrawals from Oil Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 ...

  1. Other States Natural Gas Gross Withdrawals from Oil Wells (Million...

    Annual Energy Outlook

    Oil Wells (Million Cubic Feet) Other States Natural Gas Gross Withdrawals from Oil Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 3,459 3,117 ...

  2. Illinois Natural Gas Withdrawals from Oil Wells (Million Cubic...

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Million Cubic Feet) Illinois Natural Gas Withdrawals from Oil Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 1 1 1 1 1 1 2 1 1 1 1...

  3. Drilling equipment to shrink

    SciTech Connect

    Silverman, S.

    2000-01-01

    Drilling systems under development will take significant costs out of the well construction process. From small coiled tubing (CT) drilling rigs for North Sea wells to microrigs for exploration wells in ultra-deepwater, development projects under way will radically cut the cost of exploratory holes. The paper describes an inexpensive offshore system, reeled systems drilling vessel, subsea drilling rig, cheap exploration drilling, laser drilling project, and high-pressure water jets.

  4. Stopping a water crossflow in a sour-gas producing well

    SciTech Connect

    Hello, Y. Le; Woodruff, J.

    1998-09-01

    Lacq is a sour-gas field in southwest France. After maximum production of 774 MMcf/D in the 1970`s, production is now 290 MMcf/D, with a reservoir pressure of 712 psi. Despite the loss of pressure, production is maintained by adapting the surface equipment and well architecture to reservoir conditions. The original 5-in. production tubing is being replaced with 7-in. tubing to sustain production rates. During openhole cleaning, the casing collapsed in Well LA141. The primary objective was to plug all possible hydraulic communication paths into the lower zones. The following options were available: (1) re-entering the well from the top and pulling the fish before setting cement plugs; (2) sidetracking the well; and (3) drilling a relief well to intercept Well LA141 above the reservoirs. The decision was made to start with the first option and switch to a sidetrack if this option failed.

  5. User Coupled Confirmation Drilling Program case study: City of Alamosa, Colorado, Alamosa No. 1 geothermal test well

    SciTech Connect

    Zeisloft, J.; Sibbett, B.S.

    1985-08-01

    A 7118 ft (2170 m) deep geothermal test well was drilled on the south edge of the city of Alamosa, Colorado as part of the Department of Energy's User Coupled Confirmation Drilling Program. The project was selected on the bases of a potential direct heat geothermal resource within the Rio Grande rift graben and resource users in Alamosa. The well site was selected on the hypothesis of a buried horst along which deep thermal fluids might be rising. In addition, there were city wells that were anomalous in temperature and the location was convenient to potential application. The Alamosa No. 1 penetrated 2000 ft (610 m) of fine clastic rocks over 4000 ft (1219 m) of volcaniclastic rock resting on precambrian crystalline rock at a depth of 6370 ft (1942 m). Due to poor hole conditions, geophysical logs were not run. The stabilized bottom hole temperature was 223/sup 0/F (106/sup 0/C) with a gradient of 2.6/sup 0/F/100 ft (47/sup 0/C/km). Limited testing indicated a very low production capacity. 16 refs., 6 figs.

  6. Texas Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Texas Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 85,030 94,203 96,949 104,205 105,159 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Texas Natural

  7. Pennsylvania Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Pennsylvania Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 7,046 7,627 7,164 8,481 7,557 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Pennsylvania

  8. Louisiana Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Louisiana Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 5,201 5,057 5,078 5,285 4,968 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Louisiana Natural

  9. Oklahoma Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Oklahoma Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 6,723 7,360 8,744 7,105 8,368 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Oklahoma Natural

  10. California Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) California Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 25,958 26,061 26,542 26,835 27,075 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) California

  11. Colorado Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Colorado Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 5,963 6,456 6,799 7,771 7,733 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Colorado Natural

  12. U.S. Footage Drilled for Crude Oil Developmental Wells (Thousand Feet)

    Gasoline and Diesel Fuel Update

    Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) U.S. Federal Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 6,773 6,487 6,315 6,120 6,738 7,471 7,437 7,913 7,495 7,093 2000's 7,010 8,649 8,090 7,417 6,361 5,904 4,835 4,780 5,106 5,223 2010's 5,204

  13. Indiana Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's NA NA NA NA NA - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Indiana Natural Gas Summary

  14. Kansas Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Kansas Natural Gas Summary

  15. Trip report for field visit to Fayetteville Shale gas wells.

    SciTech Connect

    Veil, J. A.; Environmental Science Division

    2007-09-30

    This report describes a visit to several gas well sites in the Fayetteville Shale on August 9, 2007. I met with George Sheffer, Desoto Field Manager for SEECO, Inc. (a large gas producer in Arkansas). We talked in his Conway, Arkansas, office for an hour and a half about the processes and technologies that SEECO uses. We then drove into the field to some of SEECO's properties to see first-hand what the well sites looked like. In 2006, the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) made several funding awards under a program called Low Impact Natural Gas and Oil (LINGO). One of the projects that received an award is 'Probabilistic Risk-Based Decision Support for Oil and Gas Exploration and Production Facilities in Sensitive Ecosystems'. The University of Arkansas at Fayetteville has the lead on the project, and Argonne National Laboratory is a partner. The goal of the project is to develop a Web-based decision support tool that will be used by mid- and small-sized oil and gas companies as well as environmental regulators and other stakeholders to proactively minimize adverse ecosystem impacts associated with the recovery of gas reserves in sensitive areas. The project focuses on a large new natural gas field called the Fayetteville Shale. Part of the project involves learning how the natural gas operators do business in the area and the technologies they employ. The field trip on August 9 provided an opportunity to do that.

  16. U.S. Crude Oil Developmental Wells Drilled (Number of Elements)

    Gasoline and Diesel Fuel Update

    Wet (Billion Cubic Feet) Reserves in Nonproducing Reservoirs, Wet (Billion Cubic Feet) U.S. Associated-Dissolved Natural Gas, Reserves in Nonproducing Reservoirs, Wet (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 5,289 5,631 5,477 5,639 2000's 5,195 6,628 6,573 5,903 5,416 6,271 6,045 6,890 6,680 7,615 2010's 9,099 13,260 19,550 22,218 27,240 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  17. The IEA's role in advanced geothermal drilling.

    SciTech Connect

    Hoover, Eddie Ross; Jelacic, Allan; Finger, John Travis; Tyner, Craig E.

    2004-06-01

    This paper describes an 'Annex', or task, that is part of the International Energy Agency's Geothermal Implementing Agreement. Annex 7 is aimed at improving the state of the art in geothermal drilling, and has three subtasks: an international database on drilling cost and performance, a 'best practices' drilling handbook, and collaborative testing among participating countries. Drilling is an essential and expensive part of geothermal exploration, production, and maintenance. High temperature, corrosive fluids, and hard, fractured formations increase the cost of drilling, logging, and completing geothermal wells, compared to oil and gas. Cost reductions are critical because drilling and completing the production and injection well field can account for approximately half the capital cost for a geothermal power project. Geothermal drilling cost reduction can take many forms, e.g., faster drilling rates, increased bit or tool life, less trouble (twist-offs, stuck pipe, etc.), higher per-well production through multilaterals, and others. Annex 7 addresses all aspects of geothermal well construction, including developing a detailed understanding of worldwide geothermal drilling costs, understanding geothermal drilling practices and how they vary across the globe, and development of improved drilling technology. Objectives for Annex 7 include: (1) Quantitatively understand geothermal drilling costs and performance from around the world and identify ways to improve costs, performance, and productivity. (2) Identify and develop new and improved technologies for significantly reducing the cost of geothermal well construction. (3) Inform the international geothermal community about these drilling technologies. (4) Provide a vehicle for international cooperation, collaborative field tests, and data sharing toward the development and demonstration of improved geothermal drilling technology.

  18. Thermodynamic behavior of gas in storage cavities and production wells

    SciTech Connect

    Hugout, B.

    1982-01-01

    A computer model predicts the performance of gas storage in salt cavities in terms of the volume of cavity that is available for the gas and the pressure and temperature within the cavity and at all points of the production well. The model combines a simplified estimate of volume (derived from studies of rock mechanics) with two thermodynamic models - one for the cavity, the other for the well. Designed specifically for single-phase flow, the model produces values that agree well with measured data.

  19. Research projects needed for expediting development of domestic oil and gas resources through arctic, offshore, and drilling technology

    SciTech Connect

    Canja, S.; Williams, C.R.

    1982-04-01

    This document contains the research projects which were identified at an industry-government workshop on Arctic, Offshore, and Drilling Technology (AODT) held at Bartlesville Energy Technology Center, January 5-7, 1981. The purpose of the workshop was to identify those problem areas where government research could provide technology advancement that would assist industry in accelerating the discovery and development of US oil and gas resouces. The workshop results are to be used to guide an effective research program. The workshop identified and prioritized the tasks that need to be implemented. All of the projects listed in the Arctic and Offshore sections were selected as appropriate for a Department of Energy (DOE) research role. The drilling projects identified as appropriate only for industry research have been separated in the Drilling section of this report.

  20. Demonstration of the enrichment of medium quality gas from gob wells through interactive well operating practices. Final report, June--December, 1995

    SciTech Connect

    Blackburn, S.T.; Sanders, R.G.; Boyer, C.M. II; Lasseter, E.L.; Stevenson, J.W.; Mills, R.A.

    1995-12-01

    Methane released to the atmosphere during coal mining operations is believed to contribute to global warming and represents a waste of a valuable energy resource. Commercial production of pipeline-quality gob well methane through wells drilled from the surface into the area above the gob can, if properly implemented, be the most effective means of reducing mine methane emissions. However, much of the gas produced from gob wells is vented because the quality of the gas is highly variable and is often below current natural gas pipeline specifications. Prior to the initiation of field-testing required to further understand the operational criteria for upgrading gob well gas, a preliminary evaluation and assessment was performed. An assessment of the methane gas in-place and producible methane resource at the Jim Walter Resources, Inc. No. 4 and No. 5 Mines established a potential 15-year supply of 60 billion cubic feet of mien methane from gob wells, satisfying the resource criteria for the test site. To understand the effect of operating conditions on gob gas quality, gob wells producing pipeline quality (i.e., < 96% hydrocarbons) gas at this site will be operated over a wide range of suction pressures. Parameters to be determined will include absolute methane quantity and methane concentration produced through the gob wells; working face, tailgate and bleeder entry methane levels in the mine; and the effect on the economics of production of gob wells at various levels of methane quality. Following this, a field demonstration will be initiated at a mine where commercial gob gas production has not been attempted. The guidelines established during the first phase of the project will be used to design the production program. The economic feasibility of various utilization options will also be tested based upon the information gathered during the first phase. 41 refs., 41 figs., 12 tabs.

  1. State-of-the-art in coalbed methane drilling fluids

    SciTech Connect

    Baltoiu, L.V.; Warren, B.K.; Natras, T.A.

    2008-09-15

    The production of methane from wet coalbeds is often associated with the production of significant amounts of water. While producing water is necessary to desorb the methane from the coal, the damage from the drilling fluids used is difficult to assess, because the gas production follows weeks to months after the well is drilled. Commonly asked questions include the following: What are the important parameters for drilling an organic reservoir rock that is both the source and the trap for the methane? Has the drilling fluid affected the gas production? Are the cleats plugged? Does the 'filtercake' have an impact on the flow of water and gas? Are stimulation techniques compatible with the drilling fluids used? This paper describes the development of a unique drilling fluid to drill coalbed methane wells with a special emphasis on horizontal applications. The fluid design incorporates products to match the delicate surface chemistry on the coal, a matting system to provide both borehole stability and minimize fluid losses to the cleats, and a breaker method of removing the matting system once drilling is completed. This paper also discusses how coal geology impacts drilling planning, drilling practices, the choice of drilling fluid, and completion/stimulation techniques for Upper Cretaceous Mannville-type coals drilled within the Western Canadian Sedimentary Basin. A focus on horizontal coalbed methane (CBM) wells is presented. Field results from three horizontal wells are discussed, two of which were drilled with the new drilling fluid system. The wells demonstrated exceptional stability in coal for lengths to 1000 m, controlled drilling rates and ease of running slotted liners. Methods for, and results of, placing the breaker in the horizontal wells are covered in depth.

  2. Kinetic inhibition of natural gas hydrates in offshore drilling, production, and processing. Annual report, January 1--December 31, 1994

    SciTech Connect

    1994-12-31

    Natural gas hydrates are crystalline materials formed of natural gas and water at elevated pressures and reduced temperatures. Because natural gas hydrates can plug drill strings, pipelines, and process equipment, there is much effort expended to prevent their formation. The goal of this project was to provide industry with more economical hydrate inhibitors. The specific goals for the past year were to: define a rational approach for inhibitor design, using the most probable molecular mechanism; improve the performance of inhibitors; test inhibitors on Colorado School of Mines apparatuses and the Exxon flow loop; and promote sharing field and flow loop results. This report presents the results of the progress on these four goals.

  3. Parcperdue geopressure-geothermal project. Study a geopressured reservoir by drilling and producing a well in a limited geopressured water sand. Final technical report, September 28, 1979-December 31, 1983

    SciTech Connect

    Hamilton, J.R.; Stanley, J.G.

    1984-01-15

    The behavior of geopressured reservoirs was investigated by drilling and producing a well in small, well defined, geopressured reservoir; and performing detailed pressure transient analysis together with geological, geophysical, chemical, and physical studies. The Dow-DOE L. R. Sweezy No. 1 well was drilled to a depth of 13,600 feet in Parcperdue field, just south of Lafayette, Louisiana, and began production in April, 1982. The production zone was a poorly consolidated sandstone which constantly produced sand into the well stream, causing damage to equipment and causing other problems. The amount of sand production was kept manageable by limiting the flow rate to below 10,000 barrels per day. Reservoir properties of size, thickness, depth, temperature, pressure, salinity, porosity, and permeability were close to predicted values. The reservoir brine was undersaturated with respect to gas, containing approximately 20 standard cubic feet of gas per barrel of brine. Shale dewatering either did not occur or was insignificant as a drive mechanism. Production terminated when the gravel-pack completion failed and the production well totally sanded in, February, 1983. Total production up to the sanding incident was 1.94 million barrels brine and 31.5 million standard cubic feet gas.

  4. Albania has active but difficult drilling program

    SciTech Connect

    Shehu, F. ); Johnston, D. )

    1991-11-18

    The technical and economic performance of drilling operations in Albania has improved during the past few years, though it has not reached a high level. The low performance results from geological complications and the use of old equipment with low capacities. Most of the rigs do not have adequate hydraulic or kinematic systems. Low quality spare parts, a lack of imported material, and infrequent maintenance cause downtime from mechanical failures. The average time spent drilling is only 25-40% of the time on location, and the average drilling rate is about 4-5 m/hr. This paper reviews production drilling statistics for oil and gas wells in Albanies.

  5. Alaska Oil and Gas Conservation Commission | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    The AOGCC website has Alaska state oil and gas data related to monthly drilling and production reports, oil and gas databases, well history, and well information, along with...

  6. Controls for offshore high pressure corrosive gas wells

    SciTech Connect

    Bailliet, R.M.

    1982-01-01

    In September 1981, Shell Oil Company began production from its first high-pressure corrosive gas well in the Gulf of Mexico. The extreme pressures and corrosive nature of the gas required the installation of a 20,000 psi low alloy steel christmas tree, equipped with 12 hydraulically operated safety and control valves. This study describes the instrumentation and control system developed to operate this complex well. Similar wells have been produced on shore, but the limited space available on an offshore platform has required the development of new techniques for operating these wells. The instrumentation system described utilizes conventional pneumatics and hydraulics for control plus intrinsically-safe electronics for data acquisition. The use of intrinsically-safe field wiring provided maximum safety while avoiding the need for explosion-proof conduit and wiring methods in division one hazardous areas.

  7. Missouri Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    Gasoline and Diesel Fuel Update

    NA NA NA 9 3 1 1967-2015 From Gas Wells NA NA NA 8 3 1 1967-2015 From Oil Wells NA NA NA 1 * 0 2007-2015 From Shale Gas Wells NA NA NA 0 0 0 2007-2015 From Coalbed Wells NA NA NA 0 0 0 2007-2015 Repressuring NA NA NA 0 0 0 2007-2015 Vented and Flared NA NA NA 0 0 0 2007-2015 Nonhydrocarbon Gases Removed NA NA NA 0 0 0 2007-2015 Marketed Production NA NA NA 9 3 1 1967-2015 Dry Production NA NA NA 9 3 Feet)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 0 0 0 0 0 0 0 0 0 0 0 0

  8. Montana Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    Gasoline and Diesel Fuel Update

    93,266 79,506 66,954 63,242 59,160 57,421 1967-2015 From Gas Wells 51,117 37,937 27,518 19,831 17,015 13,571 1967-2015 From Oil Wells 19,292 21,777 20,085 23,152 22,757 23,065 1967-2015 From Shale Gas Wells 12,937 13,101 15,619 18,636 18,910 20,428 2007-2015 From Coalbed Wells 9,920 6,691 3,731 1,623 478 357 2002-2015 Repressuring 5 4 0 0 NA 0 1967-2015 Vented and Flared 5,722 4,878 0 0 NA 0 1967-2015 Nonhydrocarbon Gases Removed NA NA 0 0 NA 0 1996-2015 Marketed Production 87,539 74,624 66,954

  9. Nebraska Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    Gasoline and Diesel Fuel Update

    2,255 1,980 1,328 1,032 417 477 1967-2015 From Gas Wells 2,092 1,854 1,317 1,027 353 399 1967-2015 From Oil Wells 163 126 11 5 63 78 1967-2015 From Shale Gas Wells 0 0 0 0 0 0 2007-2015 From Coalbed Wells 0 0 0 0 0 0 2006-2015 Repressuring 0 0 0 0 0 0 1967-2015 Vented and Flared 24 21 0 0 NA 0 1967-2015 Nonhydrocarbon Gases Removed 0 0 0 0 NA 0 2006-2015 Marketed Production 2,231 1,959 1,328 1,032 417 477 1967-2015 Dry Production 2,231 1,959 1,328 1,032 417 477 Feet)

    Year Jan Feb Mar Apr

  10. Nevada Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    Gasoline and Diesel Fuel Update

    4 3 4 3 3 3 1991-2015 From Gas Wells 0 0 0 0 * 1 2006-2015 From Oil Wells 4 3 4 3 3 3 1991-2015 From Shale Gas Wells 0 0 0 0 0 0 2007-2015 From Coalbed Wells 0 0 0 0 0 0 2006-2015 Repressuring 0 0 0 0 0 0 2006-2015 Vented and Flared 0 0 0 0 0 0 1991-2015 Nonhydrocarbon Gases Removed 0 0 0 0 0 0 2006-2015 Marketed Production 4 3 4 3 3 3 1991-2015 Dry Production 4 3 4 3 3 3 1991 Feet)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0

  11. Oklahoma Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    Gasoline and Diesel Fuel Update

    827,328 1,888,870 2,023,461 1,993,754 2,331,086 2,499,599 1967-2015 From Gas Wells 1,140,111 1,281,794 1,394,859 1,210,315 1,402,378 1,573,880 1967-2015 From Oil Wells 210,492 104,703 53,720 71,515 136,270 130,482 1967-2015 From Shale Gas Wells 406,143 449,167 503,329 663,507 746,686 759,519 2007-2015 From Coalbed Wells 70,581 53,206 71,553 48,417 45,751 35,719 2002-2015 Repressuring 0 0 0 0 0 0 1967-2015 Vented and Flared 0 0 0 0 0 0 1967-2015 Nonhydrocarbon Gases Removed 0 0 0 0 0 0 1996-2015

  12. Oregon Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    Gasoline and Diesel Fuel Update

    407 1,344 770 770 1,142 848 1979-2015 From Gas Wells 1,407 1,344 770 770 1,142 848 1979-2015 From Oil Wells 0 0 0 0 0 0 1996-2015 From Shale Gas Wells 0 0 0 0 0 0 2007-2015 From Coalbed Wells 0 0 0 0 0 0 2002-2015 Repressuring 0 0 0 0 0 0 1994-2015 Vented and Flared 0 0 0 0 0 0 1996-2015 Nonhydrocarbon Gases Removed 0 0 0 0 0 0 1994-2015 Marketed Production 1,407 1,344 770 770 1,142 848 1979-2015 Dry Production 1,407 1,344 770 770 1,142 848 Feet)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep

  13. Pennsylvania Natural Gas Gross Withdrawals from Coalbed Wells (Million

    Gasoline and Diesel Fuel Update

    572,902 1,310,592 2,256,696 3,259,042 4,257,693 4,812,983 1967-2015 From Gas Wells 173,450 242,305 210,609 207,872 217,702 293,325 1967-2015 From Oil Wells 0 0 3,456 2,987 3,527 2,629 1967-2015 From Shale Gas Wells 399,452 1,068,288 2,042,632 3,048,182 4,036,463 4,517,028 2007-2015 From Coalbed Wells 0 0 0 0 0 0 2006-2015 Repressuring 0 0 0 0 0 0 1967-2015 Vented and Flared 0 0 0 0 0 0 1967-2015 Nonhydrocarbon Gases Removed 0 0 0 0 0 0 1997-2015 Marketed Production 572,902 1,310,592 2,256,696

  14. South Dakota Natural Gas Gross Withdrawals from Coalbed Wells (Million

    Gasoline and Diesel Fuel Update

    12,540 12,449 15,085 16,205 15,305 14,531 1967-2015 From Gas Wells 1,300 933 14,396 15,693 15,006 14,196 1967-2015 From Oil Wells 11,240 11,516 689 512 299 335 1967-2015 From Shale Gas Wells 0 0 0 0 0 0 2007-2015 From Coalbed Wells 0 0 0 0 0 0 2006-2015 Repressuring 0 0 0 0 NA 0 1967-2015 Vented and Flared 2,136 2,120 0 0 NA 0 1967-2015 Nonhydrocarbon Gases Removed 8,543 8,480 0 0 NA 0 1997-2015 Marketed Production 1,862 1,848 15,085 16,205 15,305 14,531 1970-2015 Dry Production 1,862 1,848

  15. Virginia Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    Gasoline and Diesel Fuel Update

    147,255 151,094 146,405 139,382 133,661 127,584 1967-2015 From Gas Wells 23,086 20,375 21,802 26,815 10,143 10,679 1967-2015 From Oil Wells 0 0 9 9 12 8 2006-2015 From Shale Gas Wells 16,433 18,501 17,212 13,016 12,309 11,059 2007-2015 From Coalbed Wells 107,736 112,219 107,383 99,542 111,197 105,838 2006-2015 Repressuring 0 0 0 0 0 0 2003-2015 Vented and Flared NA NA 0 0 NA 0 1967-2015 Nonhydrocarbon Gases Removed 0 0 0 0 0 0 1997-2015 Marketed Production 147,255 151,094 146,405 139,382 133,661

  16. West Virginia Natural Gas Gross Withdrawals from Coalbed Wells (Million

    Gasoline and Diesel Fuel Update

    265,174 394,125 539,860 741,853 1,067,114 1,318,822 1967-2015 From Gas Wells 151,401 167,113 193,537 167,118 185,005 174,090 1967-2015 From Oil Wells 0 0 1,477 2,660 1,687 2,018 1967-2015 From Shale Gas Wells 113,773 227,012 344,847 572,076 880,422 1,142,714 2007-2015 From Coalbed Wells 0 0 0 0 0 0 2006-2015 Repressuring 0 0 0 0 NA 0 1967-2015 Vented and Flared 0 0 0 0 NA 0 2006-2015 Nonhydrocarbon Gases Removed 0 0 0 0 NA 0 2006-2015 Marketed Production 265,174 394,125 539,860 741,853 1,067,114

  17. California Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    Gasoline and Diesel Fuel Update

    319,891 279,130 246,822 252,310 238,988 231,060 1967-2015 From Gas Wells 73,017 63,902 91,904 88,203 60,936 57,031 1967-2015 From Oil Wells 151,369 120,880 67,065 69,839 70,475 66,065 1967-2015 From Shale Gas Wells 95,505 94,349 87,854 94,268 107,577 107,964 2007-2015 From Coalbed Wells 0 0 0 0 0 0 2002-2015 Repressuring 27,240 23,905 0 0 NA 0 1967-2015 Vented and Flared 2,790 2,424 0 0 NA 0 1967-2015 Nonhydrocarbon Gases Removed 3,019 2,624 0 0 NA 0 1980-2015 Marketed Production 286,841 250,177

  18. Colorado Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    Gasoline and Diesel Fuel Update

    ,589,664 1,649,306 1,709,376 1,604,860 1,643,487 1,704,836 1967-2015 From Gas Wells 526,077 563,750 1,036,572 801,749 728,978 761,886 1967-2015 From Oil Wells 338,565 359,537 67,466 106,784 178,657 236,009 1967-2015 From Shale Gas Wells 195,131 211,488 228,796 247,046 315,469 308,642 2007-2015 From Coalbed Wells 529,891 514,531 376,543 449,281 420,383 398,298 2002-2015 Repressuring 10,043 10,439 0 0 NA 0 1967-2015 Vented and Flared 1,242 1,291 0 0 NA 0 1967-2015 Nonhydrocarbon Gases Removed 0 0

  19. Florida Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    Gasoline and Diesel Fuel Update

    3,938 17,129 18,681 18,011 3,178 5,790 1971-2015 From Gas Wells 0 0 17,182 16,459 43 69 1996-2015 From Oil Wells 13,938 17,129 1,500 1,551 3,135 5,720 1971-2015 From Shale Gas Wells 0 0 0 0 0 0 2007-2015 From Coalbed Wells 0 0 0 0 0 0 2002-2015 Repressuring 0 0 17,909 17,718 2,682 5,291 1976-2015 Vented and Flared 0 0 0 0 NA 0 1971-2015 Nonhydrocarbon Gases Removed 1,529 2,004 0 0 NA 0 1980-2015 Marketed Production 12,409 15,125 773 292 496 499 1967-2015 Dry Production 12,409 15,125 773 292 263

  20. Kansas Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    Gasoline and Diesel Fuel Update

    325,591 309,952 296,299 292,467 286,480 285,236 1967-2015 From Gas Wells 247,651 236,834 264,610 264,223 261,093 261,877 1967-2015 From Oil Wells 39,071 37,194 0 0 0 0 1967-2015 From Shale Gas Wells 0 0 0 0 0 0 2007-2015 From Coalbed Wells 38,869 35,924 31,689 28,244 25,387 23,359 2002-2015 Repressuring 548 521 0 0 NA 0 1967-2015 Vented and Flared 323 307 0 0 NA 0 1967-2015 Nonhydrocarbon Gases Removed 0 0 0 0 0 0 2002-2015 Marketed Production 324,720 309,124 296,299 292,467 286,480 285,236

  1. Kentucky Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    Gasoline and Diesel Fuel Update

    135,330 124,243 106,122 94,665 93,091 85,775 1967-2015 From Gas Wells 133,521 122,578 106,122 94,665 93,091 85,775 1967-2015 From Oil Wells 1,809 1,665 0 0 0 0 1967-2015 From Shale Gas Wells 0 0 0 0 0 0 2007-2015 From Coalbed Wells 0 0 0 0 0 0 2006-2015 Repressuring 0 0 0 0 NA 0 2006-2015 Vented and Flared 0 0 0 0 NA 0 1967-2015 Nonhydrocarbon Gases Removed 0 0 0 0 NA 0 2006-2015 Marketed Production 135,330 124,243 106,122 94,665 93,091 85,775 1967-2015 Dry Production 130,754 119,559 99,551

  2. Maryland Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    Gasoline and Diesel Fuel Update

    43 34 44 32 20 27 1967-2015 From Gas Wells 43 34 44 32 20 27 1967-2015 From Oil Wells 0 0 0 0 0 0 2006-2015 From Shale Gas Wells 0 0 0 0 0 0 2007-2015 From Coalbed Wells 0 0 0 0 0 0 2006-2015 Repressuring 0 0 0 0 0 0 2006-2015 Vented and Flared 0 0 0 0 0 0 2006-2015 Nonhydrocarbon Gases Removed 0 0 0 0 0 0 2006-2015 Marketed Production 43 34 44 32 20 27 1967-2015 Dry Production 43 34 44 32 20 27 Feet)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0

  3. Michigan Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    Gasoline and Diesel Fuel Update

    136,782 143,826 129,333 123,622 115,065 107,634 1967-2015 From Gas Wells 7,345 18,470 17,041 17,502 14,139 12,329 1967-2015 From Oil Wells 9,453 11,620 4,470 4,912 5,560 4,796 1967-2015 From Shale Gas Wells 119,984 113,736 107,822 101,208 95,366 90,509 2007-2015 From Coalbed Wells 0 0 0 0 0 0 2002-2015 Repressuring 2,340 2,340 0 0 NA 0 1967-2015 Vented and Flared 3,324 3,324 0 0 NA 0 1967-2015 Nonhydrocarbon Gases Removed 0 0 0 0 0 0 1996-2015 Marketed Production 131,118 138,162 129,333 123,622

  4. Program calculates economic limit for oil and gas wells

    SciTech Connect

    Juran, K.P.

    1986-10-01

    A program written for the HP-41 CV/CX computer may be used to make a quick evaluation of when an oil or gas well's production rate will cease to be economical. The article lists data necessary for performing the calculation, equations used and the programs's steps. In addition, user instructions and three sample problems are included.

  5. Geothermal Well Stimulated Using High Energy Gas Fracturing

    SciTech Connect

    Chu, T.Y.; Jacobson, R.D.; Warpinski, N.; Mohaupt, Henry

    1987-01-20

    This paper reports the result of an experimental study of the High Energy Gas Fracturing (HEGF) technique for geothermal well stimulation. These experiments demonstrated that multiple fractures could be created to link a water-filled borehole with other fractures. The resulting fracture network and fracture interconnections were characterized by flow tests as well as mine back. Commercial oil field fracturing tools were used successfully in these experiments. 5 refs., 2 tabs., 5 figs.

  6. Development and Demonstration of Mobile, Small Footprint Exploration and Development Well System for Arctic Unconventional Gas Resources (ARCGAS)

    SciTech Connect

    Paul Glavinovich

    2002-11-01

    Traditionally, oil and gas field technology development in Alaska has focused on the high-cost, high-productivity oil and gas fields of the North Slope and Cook Inlet, with little or no attention given to Alaska's numerous shallow, unconventional gas reservoirs (carbonaceous shales, coalbeds, tight gas sands). This is because the high costs associated with utilizing the existing conventional oil and gas infrastructure, combined with the typical remoteness and environmental sensitivity of many of Alaska's unconventional gas plays, renders the cost of exploring for and producing unconventional gas resources prohibitive. To address these operational challenges and promote the development of Alaska's large unconventional gas resource base, new low-cost methods of obtaining critical reservoir parameters prior to drilling and completing more costly production wells are required. Encouragingly, low-cost coring, logging, and in-situ testing technologies have already been developed by the hard rock mining industry in Alaska and worldwide, where an extensive service industry employs highly portable diamond-drilling rigs. From 1998 to 2000, Teck Cominco Alaska employed some of these technologies at their Red Dog Mine site in an effort to quantify a large unconventional gas resource in the vicinity of the mine. However, some of the methods employed were not fully developed and required additional refinement in order to be used in a cost effective manner for rural arctic exploration. In an effort to offset the high cost of developing a new, low-cost exploration methods, the US Department of Energy, National Petroleum Technology Office (DOE-NPTO), partnered with the Nana Regional Corporation and Teck Cominco on a technology development program beginning in 2001. Under this DOE-NPTO project, a team comprised of the NANA Regional Corporation (NANA), Teck Cominco Alaska and Advanced Resources International, Inc. (ARI) have been able to adapt drilling technology developed for the

  7. Strontium isotope quantification of siderite, brine and acid mine drainage contributions to abandoned gas well discharges in the Appalachian Plateau

    SciTech Connect

    Chapman, Elizabeth C.; Capo, Rosemary C.; Stewart, Brian W.; Hedin, Robert S.; Weaver, Theodore J.; Edenborn, Harry M.

    2013-04-01

    Unplugged abandoned oil and gas wells in the Appalachian region can serve as conduits for the movement of waters impacted by fossil fuel extraction. Strontium isotope and geochemical analysis indicate that artesian discharges of water with high total dissolved solids (TDS) from a series of gas wells in western Pennsylvania result from the infiltration of acidic, low Fe (Fe < 10 mg/L) coal mine drainage (AMD) into shallow, siderite (iron carbonate)-cemented sandstone aquifers. The acidity from the AMD promotes dissolution of the carbonate, and metal- and sulfate-contaminated waters rise to the surface through compromised abandoned gas well casings. Strontium isotope mixing models suggest that neither upward migration of oil and gas brines from Devonian reservoirs associated with the wells nor dissolution of abundant nodular siderite present in the mine spoil through which recharge water percolates contribute significantly to the artesian gas well discharges. Natural Sr isotope composition can be a sensitive tool in the characterization of complex groundwater interactions and can be used to distinguish between inputs from deep and shallow contamination sources, as well as between groundwater and mineralogically similar but stratigraphically distinct rock units. This is of particular relevance to regions such as the Appalachian Basin, where a legacy of coal, oil and gas exploration is coupled with ongoing and future natural gas drilling into deep reservoirs.

  8. Monitoring Results Natural Gas Wells Near Project Rulison

    Office of Legacy Management (LM)

    Natural Gas Wells Near Project Rulison Third Quarter 2013 U.S. Department of Energy Office of Legacy Management Grand Junction, Colorado Date Sampled: June 12, 2013 Background: Project Rulison was the second Plowshare Program test to stimulate natural-gas recovery from deep and low permeability formations. On September 10, 1969, a 40-kiloton-yield nuclear device was detonated 8,426 feet (1.6 miles) below the ground surface in the Williams Fork Formation at what is now the Rulison, Colorado,

  9. Serviceability of coiled tubing for sour oil and gas wells

    SciTech Connect

    Cayard, M.S.; Kane, R.D.

    1996-08-01

    Coiled tubing is an extremely useful tool in many well logging and workover applications in oil and gas production operations. Several important concerns regarding its use include the need for improved guidelines for the assessment of mechanical integrity, fatigue damage, and the effects of hydrogen sulfide in sour oil and gas production environments. This paper provides information regarding the use of coiled tubing in sour environments with particular emphasis on sulfide stress cracking, hydrogen induced cracking and stress-oriented hydrogen induced cracking and how they work synergistically with cyclic cold working of the steel tubing.

  10. Remote Gas Well Monitoring Technology Applied to Marcellus Shale...

    Energy Saver

    ... the drilling effort in Washington County, WVU had been testing the remote, wireless system for the past year. Its success during testing demonstrates its ability to be a cost-effec...

  11. HIGH-POWER TURBODRILL AND DRILL BIT FOR DRILLING WITH COILED TUBING

    SciTech Connect

    Robert Radtke; David Glowka; Man Mohan Rai; David Conroy; Tim Beaton; Rocky Seale; Joseph Hanna; Smith Neyrfor; Homer Robertson

    2008-03-31

    Commercial introduction of Microhole Technology to the gas and oil drilling industry requires an effective downhole drive mechanism which operates efficiently at relatively high RPM and low bit weight for delivering efficient power to the special high RPM drill bit for ensuring both high penetration rate and long bit life. This project entails developing and testing a more efficient 2-7/8 in. diameter Turbodrill and a novel 4-1/8 in. diameter drill bit for drilling with coiled tubing. The high-power Turbodrill were developed to deliver efficient power, and the more durable drill bit employed high-temperature cutters that can more effectively drill hard and abrasive rock. This project teams Schlumberger Smith Neyrfor and Smith Bits, and NASA AMES Research Center with Technology International, Inc (TII), to deliver a downhole, hydraulically-driven power unit, matched with a custom drill bit designed to drill 4-1/8 in. boreholes with a purpose-built coiled tubing rig. The U.S. Department of Energy National Energy Technology Laboratory has funded Technology International Inc. Houston, Texas to develop a higher power Turbodrill and drill bit for use in drilling with a coiled tubing unit. This project entails developing and testing an effective downhole drive mechanism and a novel drill bit for drilling 'microholes' with coiled tubing. The new higher power Turbodrill is shorter, delivers power more efficiently, operates at relatively high revolutions per minute, and requires low weight on bit. The more durable thermally stable diamond drill bit employs high-temperature TSP (thermally stable) diamond cutters that can more effectively drill hard and abrasive rock. Expectations are that widespread adoption of microhole technology could spawn a wave of 'infill development' drilling of wells spaced between existing wells, which could tap potentially billions of barrels of bypassed oil at shallow depths in mature producing areas. At the same time, microhole coiled tube

  12. X-ray Scanner for ODP Leg 204: Drilling Gas Hydrates on Hydrate Ridge, Cascadia Continental Margin

    SciTech Connect

    Freifeld, Barry; Kneafsey, Tim; Pruess, Jacob; Reiter, Paul; Tomutsa, Liviu

    2002-08-08

    An x-ray scanner was designed and fabricated at Lawrence Berkeley National Laboratory to provide high speed acquisition of x-ray images of sediment cores collected on the Ocean Drilling Program (ODP) Leg 204: Drilling Gas Hydrates On Hydrate Ridge, Cascadia Continental Margin. This report discusses the design and fabrication of the instrument, detailing novel features that help reduce the weight and increase the portability of the instrument. Sample x-ray images are included. The x-ray scanner was transferred to scientific drilling vessel, the JOIDES Resolution, by the resupply ship Mauna Loa, out of Coos Bay, Oregon on July 25. ODP technicians were trained in the instruments operation. The availability of the x-ray scanner at the drilling site allows real-time imaging of cores containing methane hydrate immediately after retrieval. Thus, imaging experiments on cores can yield information on the distribution and quantity of methane hydrates. Performing these measurements at the location of core collection eliminates the need for high pressures or low temperature core handling while the cores are stored and transported to a remote imaging laboratory.

  13. Drill cutting and core major, trace and rare earth element anlayses from wells RN-17B and RN-30, Reykjanes, Iceland

    DOE Data Explorer

    Andrew Fowler

    2015-05-01

    Analytical results for x-ray fluorescence (XRF) and Inductively Couple Plasma Mass Spectrometry (ICP-MS) measurement of major, trace and rare earth elements in drill cuttings from geothermal wells in Reykjanes, Iceland. Total Fe was analyzed as FeO, therefore is not included under the Fe2O3 column.

  14. Horizontal drilling spurs optimism

    SciTech Connect

    Crouse, P.C. )

    1991-02-01

    1990 proved to be an exciting year for horizontal wells. This budding procedure appears to be heading for the mainstream oil and gas market, because it can more efficiently recover hydrocarbons from many reservoirs throughout the world. This paper reports on an estimated 1,000 wells that were drilled horizontally (all laterals) in 1990, with the Austin Chalk formation of Texas accounting for about 65% of all world activity. The Bakken Shale play in Montana and North Dakota proved to be the second most active area, with an estimated 90 wells drilled. Many operators in this play have indicated the bloom may be off the Bakken because of poor results outside the nose of the formation, further complicated by some of the harshest rock, reservoir and completion problems posed to horizontal technology.

  15. Use of Biostratigraphy to Increase Production, Reduce Operating Costs and Risks and Reduce Environmental Concerns in Oil Well Drilling

    SciTech Connect

    Edward Marks

    2005-09-09

    In the Santa Maria Basin, Santa Barbara County, California, four wells were processed and examined to determine the age and environment parameters in the oil producing sections. From west to east, we examined Cabot No. 1 Ferrero-Hopkins,from 3917.7 m (12850 ft) to 4032 m (13225 ft); Sun No. 5 Blair, from 3412 m (11190 ft) to 3722.5 m (12210 ft); Triton No. 10 Blair, from 1552 m (5090 ft) to 1863 m (6110 ft); and OTEC No. 1 Boyne, from 2058 m (6750 ft) to 2528 m (8293 ft). Lithic reports with lithic charts were prepared and submitted on each well. These tested for Sisquoc Fm lithology to be found in the Santa Maria area. This was noted in the OTEC No. 1 Boyne interval studied. The wells also tested for Monterey Fm. lithology, which was noted in all four wells examined. Composite samples of those intervals [combined into 9.15 m (30 foot) intervals] were processed for paleontology. Although the samples were very refractory and siliceous, all but one (Sun 5 Blair) yielded index fossil specimens, and as Sun 5 Blair samples below 3686 m (12090 ft) were processed previously, we were able to make identifications that would aid this study. The intervals examined were of the Sisquoc Formation, the Low Resistivity and the High Resistivity sections of the Monterey Formation. The Lower Sisquoc and the top of the late Miocene were identified by six index fossils: Bolivina barbarana, Gyroidina soldanii rotundimargo, Bulimina montereyana, Prunopyle titan, Axoprunum angelinum and Glyphodiscus stellatus. The Low Resistivity Monterey Fm. was identified by eight index fossils, all of which died out at the top of the late Miocene, late Mohnian: Nonion goudkoffi, Brizalina girardensis, Cibicides illingi, Siphocampe nodosaria, Stephanogonia hanzawai, Uvigerina modeloensis, Buliminella brevior, Tytthodiscus sp.and the wide geographic ranging index pelagic fossil, Sphaeroidinellopsis subdehiscens. The High Resistivity Monterey Fm. was identified by eight index fossils, all of which died

  16. Environmental Assessment: Geothermal Energy Geopressure Subprogram. Gulf Coast Well Drilling and Testing Activity (Frio, Wilcox, and Tuscaloosa Formations, Texas and Louisiana)

    SciTech Connect

    1981-09-01

    The Department of Energy (DOE) has initiated a program to evaluate the feasibility of developing the geothermal-geopressured energy resources of the Louisiana-Texas Gulf Coast. As part of this effort, DOE is contracting for the drilling of design wells to define the nature and extent of the geopressure resource. At each of several sites, one deep well (4000-6400 m) will be drilled and flow tested. One or more shallow wells will also be drilled to dispose of geopressured brines. Each site will require about 2 ha (5 acres) of land. Construction and initial flow testing will take approximately one year. If initial flow testing is successful, a continuous one-year duration flow test will take place at a rate of up to 6400 m{sup 3} (40,000 bbl) per day. Extensive tests will be conducted on the physical and chemical composition of the fluids, on their temperature and flow rate, on fluid disposal techniques, and on the reliability and performance of equipment. Each project will require a maximum of three years to complete drilling, testing, and site restoration.

  17. Mississippi Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    Gasoline and Diesel Fuel Update

    401,660 443,351 452,915 59,272 54,446 58,207 1967-2015 From Gas Wells 387,026 429,829 404,457 47,385 43,020 44,868 1967-2015 From Oil Wells 8,714 8,159 43,421 7,256 7,136 9,220 1967-2015 From Shale Gas Wells 0 0 0 0 0 0 2007-2015 From Coalbed Wells 5,921 5,363 5,036 4,630 4,289 4,119 2002-2015 Repressuring 3,480 3,788 0 0 NA 0 1967-2015 Vented and Flared 8,685 9,593 0 0 NA 0 1967-2015 Nonhydrocarbon Gases Removed 315,775 348,482 389,072 0 NA 0 1980-2015 Marketed Production 73,721 81,487 63,843

  18. North Dakota Natural Gas Gross Withdrawals from Coalbed Wells (Million

    Gasoline and Diesel Fuel Update

    113,867 157,025 258,568 345,787 463,216 584,743 1967-2015 From Gas Wells 10,501 14,287 22,261 24,313 21,956 25,969 1967-2015 From Oil Wells 38,306 27,739 17,434 12,854 13,973 11,515 1967-2015 From Shale Gas Wells 65,060 114,998 218,873 308,620 427,287 547,258 2007-2015 From Coalbed Wells 0 0 0 0 0 0 2002-2015 Repressuring 0 0 0 0 NA 0 1981-2015 Vented and Flared 24,582 49,652 79,564 102,855 129,717 106,590 1967-2015 Nonhydrocarbon Gases Removed 7,448 10,271 6,762 7,221 7,008 6,650 1984-2015

  19. Tennessee Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    Gasoline and Diesel Fuel Update

    5,144 4,851 5,825 5,400 5,294 4,276 1967-2015 From Gas Wells 5,144 4,851 5,825 5,400 5,294 4,276 1967-2015 From Oil Wells 0 0 0 0 0 0 1967-2015 From Shale Gas Wells 0 0 0 0 0 0 2007-2015 From Coalbed Wells 0 0 0 0 0 0 2006-2015 Repressuring 0 0 0 0 0 0 1967-2015 Vented and Flared 0 0 0 0 0 0 1967-2015 Nonhydrocarbon Gases Removed 0 0 0 0 0 0 1997-2015 Marketed Production 5,144 4,851 5,825 5,400 5,294 4,276 1967-2015 Dry Production 4,638 4,335 5,324 4,912 4,912 3,937 Feet)

    Year Jan Feb Mar

  20. Wyoming Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    Gasoline and Diesel Fuel Update

    ,514,657 2,375,301 2,225,622 2,047,757 1,998,505 1,983,731 1967-2015 From Gas Wells 1,787,599 1,709,218 1,762,095 1,673,667 1,668,749 1,685,213 1967-2015 From Oil Wells 151,871 152,589 24,544 29,134 39,827 56,197 1967-2015 From Shale Gas Wells 5,519 4,755 9,252 16,175 25,783 31,186 2007-2015 From Coalbed Wells 569,667 508,739 429,731 328,780 264,146 211,134 2002-2015 Repressuring 2,810 5,747 6,630 2,124 5,293 10,640 1967-2015 Vented and Flared 42,101 57,711 45,429 34,622 27,220 7,883 1967-2015

  1. Indiana Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    Gasoline and Diesel Fuel Update

    6,802 9,075 8,814 7,938 6,616 7,250 1967-2015 From Gas Wells 6,802 9,075 8,814 7,938 6,616 7,250 1967-2015 From Oil Wells 0 0 0 0 0 0 1967-2015 From Shale Gas Wells 0 0 0 0 0 0 2007-2015 From Coalbed Wells 0 0 0 0 0 0 2006-2015 Repressuring 0 0 0 0 0 0 2003-2015 Vented and Flared 0 0 0 0 0 0 2003-2015 Nonhydrocarbon Gases Removed 0 0 0 0 0 0 1997-2015 Marketed Production 6,802 9,075 8,814 7,938 6,616 7,250 1967-2015 Dry Production 6,802 9,075 8,814 7,938 6,616 7,25 Feet)

    Year Jan Feb Mar

  2. Louisiana Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    Gasoline and Diesel Fuel Update

    2,218,283 3,040,523 2,955,437 2,366,943 1,968,618 1,784,797 1967-2015 From Gas Wells 911,967 883,712 775,506 780,623 720,416 619,242 1967-2015 From Oil Wells 63,638 68,505 49,380 51,948 50,722 44,748 1967-2015 From Shale Gas Wells 1,242,678 2,088,306 2,130,551 1,534,372 1,197,480 1,120,806 2007-2015 From Coalbed Wells 0 0 0 0 0 0 2002-2015 Repressuring 3,606 5,015 0 2,829 3,199 4,248 1967-2015 Vented and Flared 4,578 6,302 0 3,912 4,606 3,748 1967-2015 Nonhydrocarbon Gases Removed 0 0 0 0 0 0

  3. Drilling Techniques | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    be made and then locations for further drilling can be narrowed down. Once a confident reservoir model is made Development Drilling methods can be employed. A geothermal well...

  4. Investigation of gas hydrate-bearing sandstone reservoirs at the "Mount Elbert" stratigraphic test well, Milne Point, Alaska

    SciTech Connect

    Boswell, R.M.; Hunter, R.; Collett, T.; Digert, S. Inc., Anchorage, AK); Hancock, S.; Weeks, M. Inc., Anchorage, AK); Mt. Elbert Science Team

    2008-01-01

    In February 2007, the U.S. Department of Energy, BP Exploration (Alaska), Inc., and the U.S. Geological Survey conducted an extensive data collection effort at the "Mount Elbert #1" gas hydrates stratigraphic test well on the Alaska North Slope (ANS). The 22-day field program acquired significant gas hydrate-bearing reservoir data, including a full suite of open-hole well logs, over 500 feet of continuous core, and open-hole formation pressure response tests. Hole conditions, and therefore log data quality, were excellent due largely to the use of chilled oil-based drilling fluids. The logging program confirmed the existence of approximately 30 m of gashydrate saturated, fine-grained sand reservoir. Gas hydrate saturations were observed to range from 60% to 75% largely as a function of reservoir quality. Continuous wire-line coring operations (the first conducted on the ANS) achieved 85% recovery through 153 meters of section, providing more than 250 subsamples for analysis. The "Mount Elbert" data collection program culminated with open-hole tests of reservoir flow and pressure responses, as well as gas and water sample collection, using Schlumberger's Modular Formation Dynamics Tester (MDT) wireline tool. Four such tests, ranging from six to twelve hours duration, were conducted. This field program demonstrated the ability to safely and efficiently conduct a research-level openhole data acquisition program in shallow, sub-permafrost sediments. The program also demonstrated the soundness of the program's pre-drill gas hydrate characterization methods and increased confidence in gas hydrate resource assessment methodologies for the ANS.

  5. Coiled tubing drilling with supercritical carbon dioxide

    DOEpatents

    Kolle , Jack J.

    2002-01-01

    A method for increasing the efficiency of drilling operations by using a drilling fluid material that exists as supercritical fluid or a dense gas at temperature and pressure conditions existing at a drill site. The material can be used to reduce mechanical drilling forces, to remove cuttings, or to jet erode a substrate. In one embodiment, carbon dioxide (CO.sub.2) is used as the material for drilling within wells in the earth, where the normal temperature and pressure conditions cause CO.sub.2 to exist as a supercritical fluid. Supercritical carbon dioxide (SC--CO.sub.2) is preferably used with coiled tube (CT) drilling equipment. The very low viscosity SC--CO.sub.2 provides efficient cooling of the drill head, and efficient cuttings removal. Further, the diffusivity of SC--CO.sub.2 within the pores of petroleum formations is significantly higher than that of water, making jet erosion using SC--CO.sub.2 much more effective than water jet erosion. SC--CO.sub.2 jets can be used to assist mechanical drilling, for erosion drilling, or for scale removal. A choke manifold at the well head or mud cap drilling equipment can be used to control the pressure within the borehole, to ensure that the temperature and pressure conditions necessary for CO.sub.2 to exist as either a supercritical fluid or a dense gas occur at the drill site. Spent CO.sub.2 can be vented to the atmosphere, collected for reuse, or directed into the formation to aid in the recovery of petroleum.

  6. Kinetic inhibition of natural gas hydrates in offshore drilling, production, and processing. Annual report, January 1--December 31, 1993

    SciTech Connect

    1993-12-31

    Natural gas hydrates are crystalline materials formed of natural gas and water at elevated pressures and reduced temperatures. Because natural gas hydrates can plug drill strings, pipelines, and process equipment, there is much effort expended to prevent their formation. The goal of this project was to provide industry with more economical hydrate inhibitors. The specific goals for the past year were to: continue both screening and high pressure experiments to determine optimum inhibitors; investigate molecular mechanisms of hydrate formation/inhibition, through microscopic and macroscopic experiments; begin controlled tests on the Exxon pilot plant loop at their Houston facility; and continue to act as a forum for the sharing of field test results. Progress on these objectives are described in this report.

  7. Modeling coiled-tubing velocity strings for gas wells

    SciTech Connect

    Martinez, J.; Martinez, A.

    1998-02-01

    Because of its ability to prolong well life, its relatively low expense, and the relative ease with which it is installed, coiled tubing has become a preferred remedial method of tubular completion for gas wells. Of course, the difficulty in procuring wireline-test data is a drawback to verifying the accuracy of the assumptions and predictions used for coiled-tubing selection. This increases the importance of the prediction-making process, and, as a result, places great emphasis on the modeling methods that are used. This paper focuses on the processes and methods for achieving sound multiphase-flow predictions by looking at the steps necessary to arrive at coiled-tubing selection. Furthermore, this paper examines the variables that serve as indicators of the viability of each tubing size, especially liquid holdup. This means that in addition to methodology, emphasis is placed on the use of a good wellbore model. The computer model discussed is in use industry wide.

  8. Federal Offshore California Natural Gas Withdrawals from Oil Wells (Million

    Energy Information Administration (EIA) (indexed site)

    Cubic Feet) Oil Wells (Million Cubic Feet) Federal Offshore California Natural Gas Withdrawals from Oil Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 5,417 5,166 5,431 1980's 5,900 12,763 17,751 20,182 27,443 33,331 31,799 31,380 31,236 38,545 1990's 34,332 35,391 41,284 41,532 42,497 46,916 61,276 69,084 71,019 75,034 2000's 68,752 67,034 64,735 56,363 53,805 53,404 38,313 43,379 43,300 40,023 2010's 39,444 35,020 12,703

  9. U.S. Crude Oil, Natural Gas, and Dry Developmental Wells Drilled (Number of

    Gasoline and Diesel Fuel Update

    Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1940's 28,254 1950's 31,744 31,887 32,138 34,427 38,009 40,208 40,963 37,281 33,742 34,372 1960's 33,915 33,262 33,361 30,803 31,566 29,307 26,071 23,356 21,720 22,486 1970's 20,614 19,052 20,234 19,759 24,019 29,362 31,651 35,857 39,238 41,539 1980's 58,248 74,517 69,037 62,564 71,070 58,962 33,163 28,739 26,030 22,741 1990's 26,917 24,993 20,133 21,892 18,471 18,189 20,553 24,431 20,466 17,097 2000's

  10. U.S. Crude Oil, Natural Gas, and Dry Exploratory Wells Drilled (Number of

    Gasoline and Diesel Fuel Update

    Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1940's 9,058 1950's 10,306 11,756 12,425 13,313 13,100 14,942 16,207 14,714 13,199 13,191 1960's 11,704 10,992 10,797 10,664 10,727 9,466 10,313 8,878 8,879 9,701 1970's 7,396 7,081 7,475 7,661 8,882 9,359 9,204 9,995 10,907 10,665 1980's 12,957 17,573 15,877 13,841 15,058 11,834 7,448 6,734 6,313 5,247 1990's 5,150 4,535 3,475 3,559 3,784 3,411 3,333 3,155 2,445 1,842 2000's 2,286 3,142 2,384 2,644 3,404

  11. U.S. Natural Gas Developmental Wells Drilled (Number of Elements)

    Gasoline and Diesel Fuel Update

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 140,457 143,420 40,508 165,589 29,670 -12,687 -7,522 -5,639 -25,646 -132,631 -75,869 -161,019 2002 -4,043 38,079 11,261 164,421 28,047 94,698 54,263 49,349 7,788 -124,023 -126,334 -128,599 2003 -85,911 76,412 117,834 42,839 29,671 16,325 80,113 57,301 11,671 -49,115 -135,623 -117,899 2004 -66,341 134,281 125,684 132,567 116,388 71,221 58,237 60,432 62,797 -13,466 -78,965 -141,694 2005 -41,225 103,738 14,442 131,451 60,083 57,514 61,979

  12. U.S. Natural Gas Exploratory Wells Drilled (Number of Elements)

    Gasoline and Diesel Fuel Update

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1940's 424 1950's 431 454 559 699 726 874 822 865 822 912 1960's 868 813 771 664 557 515 698 532 486 616 1970's 477 470 656 1,067 1,190 1,248 1,346 1,548 1,771 1,907 1980's 2,099 2,522 2,133 1,605 1,528 1,200 797 756 747 706 1990's 693 544 427 541 740 583 591 543 510 519 2000's 657 1,052 844 997 1,671 2,141 2,456 2,794 2,345 1,206 2010's 1,105

  13. U.S. Natural Gas Exploratory and Developmental Wells Drilled (Number of

    Gasoline and Diesel Fuel Update

    Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1940's 3,363 1950's 3,439 3,438 3,514 3,968 4,038 4,266 4,531 4,475 5,005 4,931 1960's 5,149 5,486 5,353 4,570 4,694 4,482 4,377 3,659 3,456 4,083 1970's 4,011 3,971 5,440 6,933 7,138 8,127 9,409 12,122 14,413 15,254 1980's 17,461 20,250 19,076 14,684 17,338 14,324 8,599 8,096 8,578 9,522 1990's 11,126 9,611 8,305 10,174 9,739 8,454 9,539 11,186 11,127 11,121 2000's 17,051 22,072 17,342 20,722 24,186

  14. U.S. Crude Oil, Natural Gas, and Dry Developmental Wells Drilled (Number of

    Gasoline and Diesel Fuel Update

    22,315 25,181 28,950 33,403 36,520 39,933 2009-2014 Adjustments 46 188 207 137 -595 440 2009-2014 Revision Increases 3,270 3,900 5,096 4,909 4,786 6,028 2009-2014 Revision Decreases 1,262 1,957 3,682 3,997 4,241 5,612 2009-2014 Sales 249 803 1,024 819 1,536 2,475 2009-2014 Acquisitions 344 1,470 1,561 1,234 1,925 2,828 2009-2014 Extensions 1,305 1,766 3,107 5,191 4,973 5,021 2009-2014 New Field Discoveries 141 124 481 55 191 164 2009-2014 New Reservoir Discoveries in Old Fields 95 169 88 129 343

  15. U.S. Crude Oil, Natural Gas, and Dry Exploratory Wells Drilled (Number of

    Gasoline and Diesel Fuel Update

    Elements) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1973 656 524 553 477 601 625 687 767 660 710 656 745 1974 630 627 660 703 767 741 793 779 761 826 803 792 1975 804 615 757 729 741 723 832 821 774 892 816 855 1976 898 733 810 733 689 758 718 765 774 778 787 761 1977 740 674 795 751 806 830 800 837 915 954 952 941 1978 876 748 861 890 894 904 942 924 925 1,058 928 957 1979 786 675 804 774 792 893 881 971 965 1,086 1,007 1,031 1980 1,027 925 911 941 940 1,088 1,094 1,157 1,220

  16. U.S. Natural Gas Exploratory Wells Drilled (Number of Elements)

    Gasoline and Diesel Fuel Update

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1973 60 61 69 82 96 85 112 93 103 110 94 102 1974 84 87 98 110 120 97 105 81 108 119 94 87 1975 96 81 91 95 113 104 128 133 94 113 109 91 1976 127 110 124 116 104 133 108 112 108 107 111 86 1977 81 99 137 127 117 154 130 147 139 136 150 131 1978 142 118 144 160 155 149 144 151 141 190 131 146 1979 131 120 164 149 153 177 151 156 159 214 162 171 1980 163 174 151 175 127 190 185 155 206 217 185 171 1981 211 179 191 215 225 209 206 236 238 210

  17. U.S. Natural Gas Exploratory and Developmental Wells Drilled (Number of

    Gasoline and Diesel Fuel Update

    Elements) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1973 519 454 494 546 598 543 615 690 574 694 616 590 1974 686 545 657 624 604 595 604 554 569 633 526 541 1975 613 539 534 587 634 673 731 838 788 842 673 675 1976 866 691 708 659 708 781 795 964 866 815 846 710 1977 847 782 1,014 899 946 1,092 1,030 1,187 1,070 1,166 1,025 1,064 1978 1,076 861 1,075 1,142 1,182 1,251 1,215 1,353 1,301 1,428 1,291 1,238 1979 1,337 917 1,114 1,117 1,258 1,335 1,286 1,424 1,302 1,582 1,328 1,254

  18. U.S. Real Cost per Crude Oil, Natural Gas, and Dry Well Drilled (Thousand

    Gasoline and Diesel Fuel Update

    2010 2011 2012 2013 2014 2015 View History U.S. Total 9.53 10.54 12.82 13.36 15.66 10.92 1985-2015 To Argentina -- 2015-2015 To Barbados -- 2015-2015 To Brazil 7.50 11.40 11.19 -- 15.51 15.19 2007-2015 Freeport, TX -- 12.74 11.19 -- 15.51 15.19 2007-2015 Sabine Pass, LA 7.50 11.00 -- -- -- -- 2007-2015 To Canada -- -- 13.29 14.35 14.48 12.36 2007-2015 Port Huron, MI -- 9.48 10.16 9.66 2012-2015 Crosby, ND -- 6.81 2014-2015 Portal, ND -- 10.18 2014-2015 Babb, MT -- 12.95 2014-2015 Buffalo, NY --

  19. Illinois DNR oil and gas division | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    is the regulatory authority in Illinois for permitting, drilling, operating, and plugging oil and gas production wells. The Division implements the Illinois Oil and Gas Act and...

  20. EERE Success Story-Percussive Hammer Enables Geothermal Drilling...

    Energy Saver

    Conventional pneumatic down-the-hole-hammer drilling systems-widely used in the mining and oil and gas sectors-perform well in hard rock environments and are capable of removing a ...

  1. Combination gas producing and waste-water disposal well

    DOEpatents

    Malinchak, Raymond M.

    1984-01-01

    The present invention is directed to a waste-water disposal system for use in a gas recovery well penetrating a subterranean water-containing and methane gas-bearing coal formation. A cased bore hole penetrates the coal formation and extends downwardly therefrom into a further earth formation which has sufficient permeability to absorb the waste water entering the borehole from the coal formation. Pump means are disposed in the casing below the coal formation for pumping the water through a main conduit towards the water-absorbing earth formation. A barrier or water plug is disposed about the main conduit to prevent water flow through the casing except for through the main conduit. Bypass conduits disposed above the barrier communicate with the main conduit to provide an unpumped flow of water to the water-absorbing earth formation. One-way valves are in the main conduit and in the bypass conduits to provide flow of water therethrough only in the direction towards the water-absorbing earth formation.

  2. Multi-zone methods to predict gas well performance

    SciTech Connect

    Blanchard, L.A.; Newhouse, J.R.

    1982-01-01

    The contributing elements of a formula developed for accurately predicting the performance of gas wells which include a high permeability zone interbedded with one or more low permeability zones are discussed. The theory assumes the existence of 3 conditions: (1) the well depletes without water encroachment; (2) each zone remains discreet from every other - that is, without cross flow among zones when the well is producing; and (3) each zone has either a hydraulic fracture or some skin effect. As a practical matter in using the model, only one of these reservoir conditions need to be met - freedom from water encroachment. The model developed does not adapt to reservoirs that have limited cross flow between zones. It also adapts to those with a hydraulic fracture in only some of the zones and includes equations which help to calculate matrix permeability whenever a known hydraulic fracture does exist. The functions of the model are illustrated by assuming the existence of a shaley-sand, 6-zone reservoir and by ascribing to it certain characteristics. The use of the model is examined and its results are discussed.

  3. Using coiled tubing in HP/HT corrosive gas wells

    SciTech Connect

    1997-06-01

    High-yield-strength (100,000 psi) coiled tubing (CT) material has allowed for CT intervention in Mobile Bay Norphlet completions. These wells are approximately 22,000-ft-vertical-depth, high-pressure, hydrogen sulfide (H{sub 2}S) gas wells. Operations performed on the Norphlet wells include a scale cleanout to approximately 22,000 ft, a hydrochloric acid (HCl) job at 415 F, and buildup removal from a safety valve. The scale cleanout was performed first with a spiral wash tool. The well was killed with 10-lbm/gal sodium bromide (NaBr) brine; the same brine was used for cleanout fluid. Cost savings of 60% were realized. A HCl matrix acid job at 415 F was performed next, followed by a scale cleanout across the downhole safety valve. The safety valve was cleared of debris in 1 operational day. Estimated cost of the CT operation was 5 to 10% less than that of a rig workover. The 100,000-psi-yield Ct material used for the Mobile Bay operations does not comply with the (NACE) Standard MR-0175. But on the basis of extensive laboratory testing by the CT manufacturer, the decision was made that the material would pass a modified test performed with decreased H{sub 2}S levels. A maximum level of 400 ppm H{sub 2}S was determined as the safe working limit. Because the maximum H{sub 2}S content in the wells described later was 120 ppm, the risk of sulfide-stress cracking (SSC) was considered acceptably low. Elevated bottomhole temperatures (BHT`s) increase the corrosion rate of metals exposed to corrosives. Extensive laboratory testing of corrosion inhibitors allowed for design of a matrix-acidizing treatment to remove near-wellbore damage caused by lost zinc bromide (ZnBr) completion brine.

  4. Evolution of coiled tubing drilling technology accelerates

    SciTech Connect

    Simmons, J.; Adam, B.

    1993-09-01

    This paper reviews the status of coiled tubing technology in oil and gas drilling operations. The paper starts with a description of current coiled tubing technology and provides a cost comparison between conventional and coiled tubing drilling. The results show that offshore operations are already competitive while onshore operations will still lag behind conventional drilling methods. A list of known coiled tubing drilling operations is provided which gives the current borehole diameters and depths associated with this technology. The paper then goes on to provide the advantages and disadvantages of the technology. The advantages include improved well control, a continuous drillstring, reduced mobilization costs, simplified logging and measurement-while drilling measurements, and less tripping required. The disadvantages include high friction with the borehole wall, downhole motors required, limited drillhole size, and fatigued or damaged sections of the tubing cannot be removed. Finally, a review of the reliability of this technology is provided.

  5. A dynamic model for underbalanced drilling with coiled tubing

    SciTech Connect

    Rommetveit, R.; Vefring, E.H.; Wang, Z.; Bieseman, T.; Faure, A.M.

    1995-11-01

    A model for underbalanced drilling with coiled tubing has been developed which takes into account all important factors contributing to the process. This model is a unique tool to plan and execute underbalanced or near balance drilling operations. It is a transient, one-dimensional multi-phase flow model with the following components: Lift gas system model, multiphase hydraulics model, reservoir-wellbore interaction model, drilling model, models for multiphase fluids (lift gas, produced gas, mud, foam, produced gas, oil, water and cuttings). Various alternative geometries for gas injection are modeled as well as all important operations during underbalanced drilling with coiled tubing. The model as well as some simulation results for its use are presented in this paper.

  6. Sweet lake geopressured-geothermal project, Magma Gulf-Technadril/DOE Amoco Fee. Annual report, December 1, 1979-February 27, 1981. Volume I. Drilling and completion test well and disposal well

    SciTech Connect

    Rodgers, R.W.

    1982-06-01

    The Sweet lake site is located approximately 15 miles southeast of Lake Charles in Cameron Parish, Louisiana. A geological study showed that the major structure in this area is a graben. The dip of the beds is northwesterly into the basin. A well drilled into the deep basin would find the target sand below 18,000', at high pressures and temperatures. However, since there is no well control in the basin, the specific site was chosen on the 15,000' contour of the target sand in the eastern, more narrow part of the garben. Those key control wells are present within one mile of the test well. The information acquired by drilling the test well confirmed the earlier geologic study. The target sand was reached at 15,065', had a porosity of over 20% and a permeability to water of 300 md. The original reservoir pressure was 12,060 psi and the bottom hole temperature 299{sup 0}F. There are approximately 250 net feet of sand available for the perforation. The disposal well was drilled to a total depth of 7440'.

  7. California--State Offshore Natural Gas Withdrawals from Gas Wells (Million

    Energy Information Administration (EIA) (indexed site)

    Cubic Feet) Gas Wells (Million Cubic Feet) California--State Offshore Natural Gas Withdrawals from Gas Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 3,537 2,134 1980's 2,446 2,170 1,931 1,799 1,319 6,126 5,342 2,068 1,413 855 1990's 340 0 0 0 0 0 0 0 0 0 2000's 0 0 0 0 0 0 156 312 266 582 2010's 71 259 640 413 410 454 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  8. Test report for core drilling ignitability testing

    SciTech Connect

    Witwer, K.S.

    1996-08-08

    Testing was carried out with the cooperation of Westinghouse Hanford Company and the United States Bureau of Mines at the Pittsburgh Research Center in Pennsylvania under the Memorandum of Agreement 14- 09-0050-3666. Several core drilling equipment items, specifically those which can come in contact with flammable gasses while drilling into some waste tanks, were tested under conditions similar to actual field sampling conditions. Rotary drilling against steel and rock as well as drop testing of several different pieces of equipment in a flammable gas environment were the specific items addressed. The test items completed either caused no ignition of the gas mixture, or, after having hardware changes or drilling parameters modified, produced no ignition in repeat testing.

  9. Site Selection for DOE/JIP Gas Hydrate Drilling in the Northern Gulf of Mexico

    SciTech Connect

    Collett, T.S.; Riedel, M.; Cochran, J.R.; Boswell, R.M.; Kumar, Pushpendra; Sathe, A.V.

    2008-07-01

    Studies of geologic and geophysical data from the offshore of India have revealed two geologically distinct areas with inferred gas hydrate occurrences: the passive continental margins of the Indian Peninsula and along the Andaman convergent margin. The Indian National Gas Hydrate Program (NGHP) Expedition 01 was designed to study the occurrence of gas hydrate off the Indian Peninsula and along the Andaman convergent margin with special emphasis on understanding the geologic and geochemical controls on the occurrence of gas hydrate in these two diverse settings. NGHP Expedition 01 established the presence of gas hydrates in Krishna- Godavari, Mahanadi and Andaman basins. The expedition discovered one of the richest gas hydrate accumulations yet documented (Site 10 in the Krishna-Godavari Basin), documented the thickest and deepest gas hydrate stability zone yet known (Site 17 in Andaman Sea), and established the existence of a fully-developed gas hydrate system in the Mahanadi Basin (Site 19).

  10. RESULTS FROM THE (1) DATA COLLECTION WORKSHOP, (2) MODELING WORKSHOP AND (3) DRILLING AND CORING METHODS WORKSHOP AS PART OF THE JOINT INDUSTRY PARTICIPATION (JIP) PROJECT TO CHARACTERIZE NATURAL GAS HYDRATES IN THE DEEPWATER GULF OF MEXICO

    SciTech Connect

    Stephen A. Holditch; Emrys Jones

    2002-09-01

    In 2000, Chevron began a project to learn how to characterize the natural gas hydrate deposits in the deepwater portions of the Gulf of Mexico. A Joint Industry Participation (JIP) group was formed in 2001, and a project partially funded by the U.S. Department of Energy (DOE) began in October 2001. The primary objective of this project is to develop technology and data to assist in the characterization of naturally occurring gas hydrates in the deepwater Gulf of Mexico. These naturally occurring gas hydrates can cause problems relating to drilling and production of oil and gas, as well as building and operating pipelines. Other objectives of this project are to better understand how natural gas hydrates can affect seafloor stability, to gather data that can be used to study climate change, and to determine how the results of this project can be used to assess if and how gas hydrates act as a trapping mechanism for shallow oil or gas reservoirs. As part of the project, three workshops were held. The first was a data collection workshop, held in Houston during March 14-15, 2002. The purpose of this workshop was to find out what data exist on gas hydrates and to begin making that data available to the JIP. The second and third workshop, on Geoscience and Reservoir Modeling, and Drilling and Coring Methods, respectively, were held simultaneously in Houston during May 9-10, 2002. The Modeling Workshop was conducted to find out what data the various engineers, scientists and geoscientists want the JIP to collect in both the field and the laboratory. The Drilling and Coring workshop was to begin making plans on how we can collect the data required by the project's principal investigators.

  11. Empirical test of the effects of Internal Revenue Code Section 465 on risk-taking by investors in oil and gas drilling programs

    SciTech Connect

    Christian, C.W.

    1985-01-01

    Taxation affects the cash flows generated by financial investments, and, under some conditions, it also affects the degree of risk investors are willing to bear. This study investigates the effects of the Internal Revenue Code Section 465 on risk-taking by financial investors in oil and gas drilling programs. Section 465 added new rules limiting loss deductions from certain activities, explicitly including oil and gas drilling. Prior research reached varying conclusions analytically, but most research concurs that investor risk-taking is reduced when a tax structure reduces loss-offsetting, i.e., reduces the deductibility of investment losses against other income. Section 465 does that under certain circumstances, so it presents an opportunity to empirically reexamine the question. This study presents null hypotheses that state that the percentage of limited-partner investment in drilling programs with different drilling objectives and deal term structures (and different levels of risk) was unchanged between the time periods before and after the enactment of Section 465. The study concludes that the loss deduction limitations of I.R.C. Section 465 did play a role in the reduction of risk-taking by limited partners in oil and gas drilling programs.

  12. HydroPulse Drilling

    SciTech Connect

    J.J. Kolle

    2004-04-01

    Tempress HydroPulse{trademark} tool increases overbalanced drilling rates by generating intense suction pulses at the drill bit. This report describes the operation of the tool; results of pressure drilling tests, wear tests and downhole drilling tests; and the business case for field applications. The HydroPulse{trademark} tool is designed to operate on weighted drilling mud at conventional flow rates and pressures. Pressure drilling tests confirm that the HydroPulse{trademark} tool provides 33% to 200% increased rate of penetration. Field tests demonstrated conventional rotary and mud motor drilling operations. The tool has been operated continuous for 50 hours on weighted mud in a wear test stand. This level of reliability is the threshold for commercial application. A seismic-while-drilling version of the tool was also developed and tested. This tool was used to demonstrate reverse vertical seismic profiling while drilling an inclined test well with a PDC bit. The primary applications for the HydroPulse{trademark} tool are deep onshore and offshore drilling where rate of penetration drives costs. The application of the seismic tool is vertical seismic profiling-while-drilling and look-ahead seismic imaging while drilling.

  13. Counter-Rotating Tandem Motor Drilling System

    SciTech Connect

    Kent Perry

    2009-04-30

    Gas Technology Institute (GTI), in partnership with Dennis Tool Company (DTC), has worked to develop an advanced drill bit system to be used with microhole drilling assemblies. One of the main objectives of this project was to utilize new and existing coiled tubing and slimhole drilling technologies to develop Microhole Technology (MHT) so as to make significant reductions in the cost of E&P down to 5000 feet in wellbores as small as 3.5 inches in diameter. This new technology was developed to work toward the DOE's goal of enabling domestic shallow oil and gas wells to be drilled inexpensively compared to wells drilled utilizing conventional drilling practices. Overall drilling costs can be lowered by drilling a well as quickly as possible. For this reason, a high drilling rate of penetration is always desired. In general, high drilling rates of penetration (ROP) can be achieved by increasing the weight on bit and increasing the rotary speed of the bit. As the weight on bit is increased, the cutting inserts penetrate deeper into the rock, resulting in a deeper depth of cut. As the depth of cut increases, the amount of torque required to turn the bit also increases. The Counter-Rotating Tandem Motor Drilling System (CRTMDS) was planned to achieve high rate of penetration (ROP) resulting in the reduction of the drilling cost. The system includes two counter-rotating cutter systems to reduce or eliminate the reactive torque the drillpipe or coiled tubing must resist. This would allow the application of maximum weight-on-bit and rotational velocities that a coiled tubing drilling unit is capable of delivering. Several variations of the CRTDMS were designed, manufactured and tested. The original tests failed leading to design modifications. Two versions of the modified system were tested and showed that the concept is both positive and practical; however, the tests showed that for the system to be robust and durable, borehole diameter should be substantially larger than

  14. Two-Dimensional Electron Gas in Monolayer InN Quantum Wells....

    Office of Scientific and Technical Information (OSTI)

    Two-Dimensional Electron Gas in Monolayer InN Quantum Wells. Citation Details In-Document Search Title: Two-Dimensional Electron Gas in Monolayer InN Quantum Wells. Abstract not...

  15. Performance of wells in solution-gas-drive reservoirs

    SciTech Connect

    Camacho-V, R.G. ); Raghavan, R. )

    1989-12-01

    The authors examine buildup responses in solution-gas-drive reservoirs. The development presented here parallels the development for single-phase liquid flow. Analogs from pseudopressures and time transformations are presented and gas-drive-solutions are correlated with appropriate liquid-flow solutions. The influence of the skin region is documented. The basis for the success of the producing GOR method to compute the saturation distribution at shut-in is presented. The consequences of using the Perrine-Martin analog to analyze buildup data are discussed.

  16. Nevada Natural Gas Withdrawals from Oil Wells (Million Cubic Feet)

    Gasoline and Diesel Fuel Update

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 NA NA NA 2010's NA - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Quantity of Natural Gas Production Associated with Reported Wellhead Value Nevada Natural Gas Wellhead Value and Marketed Production

    Year Jan Feb Mar Apr May Jun Jul Aug Sep

  17. Drilling Specifications: Well Installations in the 300 Area to Support PNNL’s Integrated Field-Scale Subsurface Research Challenge (IFC) Project

    SciTech Connect

    Bjornstad, Bruce N.; Vermeul, Vince R.

    2008-01-21

    Part of the 300 Area Integrated Field-Scale Subsurface Research Challenge (IFC) will be installation of a network of high density borings and wells to monitor migration of fluids and contaminants (uranium), both in groundwater and vadose zone, away from an surface infiltration plot (Figure A-1). The infiltration plot will be located over an area of suspected contamination at the former 300 Area South Process Pond (SPP). The SPP is located in the southeastern portion of the Hanford Site, within the 300-FF-5 Operable Unit. Pacific Northwest National Laboratory (PNNL) with the support of FH shall stake the well locations prior to the start of drilling. Final locations will be based on accessibility and will avoid any surface or underground structures or hazards as well as surface contamination.

  18. US--State Offshore Natural Gas Withdrawals from Oil Wells (Million...

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Million Cubic Feet) US--State Offshore Natural Gas Withdrawals from Oil Wells ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Offshore Gross ...

  19. NAFTA opportunities: Oil and gas field drilling machinery and services sector

    SciTech Connect

    Not Available

    1993-01-01

    The North American Free Trade Agreement (NAFTA) significantly improves market access in Mexico and Canada for U.S. exports of oil and gas field equipment. Foreign markets account for more than 80 percent of U.S. shipments of oil and gas field machinery. Foreign markets are expected to continue their importance to this industry, in the long term. Mexico and Canada are moderate-sized markets for U.S. exports of oilfield products. In 1992, U.S. exports of this equipment amounted to about $113 million to Mexico and $11 million to Canada.

  20. Apparatus for use in placing a submarine structure on the sea bed alongside an underwater well and method of drilling a plurality of closely spaced underwater wells

    SciTech Connect

    Shotbolt, K.

    1982-03-02

    A template for spacing a submarine structure such as an anchor block or a guide base for a second underwater well alongside an existing underwater well comprises a beam attached at one end, by means of a hinge, to a lowering guide which can be threaded over and be lowered along two guide wires of the first well, and at the other end by a remote-controlled release mechanism to the submarine structure such as the anchor block itself or a guide base for a second well. The beam, with such a submarine structure attached, is lowered down the guide wires while held in a vertical configuration, and is then swung into a generally horizontal configuration at the sea bed.

  1. New ceramic-epoxy technology for oil and gas drilling and production

    SciTech Connect

    Boyd, J.L.; Freeman, J.E.

    1997-08-01

    For the past ten years, an environmentally friendly, low V.O.C., high solids ceramic filled epoxy resin coating system has been successfully used to extend the useful life of pipe and equipment used for oil and gas service. This unique chemistry provides mechanical performance characteristics which withstand damage and abuse in oilfield use. Successful applications and field histories are summarized.

  2. Serviceability of coiled tubing for sour oil and gas wells

    SciTech Connect

    1997-06-01

    Hydrogen sulfide (H{sub 2}S) can reduce useful coiled-tubing (CT) life by strength degradation through a combination of hydrogen blistering, hydrogen-induced cracking (HIC), stress-oriented hydrogen-induced cracking (SOHIC), sulfide-stress cracking (SSC), and possible weight-loss corrosion. These effects may work synergistically with the cyclic cold working of the steel that takes place during spooling and running. Prior studies on carbon steels have shown that cold work may significantly reduce the SSC threshold stresses. To develop a CT performance database, CLI Intl. Inc. conducted a multiclient program to increase understanding of the combined effects of strain cycling and resistance of CT to cracking in H{sub 2}S environments. The program was supported by 14 sponsors consisting of major oil and gas companies, service companies, CT manufacturers, and materials suppliers.

  3. Illinois Natural Gas Number of Oil Wells (Number of Elements)

    Gasoline and Diesel Fuel Update

    Commercial Consumers (Number of Elements) Illinois Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 241,367 278,473 252,791 1990's 257,851 261,107 263,988 268,104 262,308 264,756 265,007 268,841 271,585 274,919 2000's 279,179 278,506 279,838 281,877 273,967 276,763 300,606 296,465 298,418 294,226 2010's 291,395 293,213 297,523 282,743 294,391 295,869 - = No Data Reported; -- = Not Applicable; NA =

  4. SMOOTH OIL & GAS FIELD OUTLINES MADE FROM BUFFERED WELLS

    Energy Information Administration (EIA) (indexed site)

    The VBA code provided at the bottom of this document is an updated version (from ArcGIS ... but with "smu" suffix added to name. The first layer must contain the well points ...

  5. Well-to-Wheels Energy Use and Greenhouse Gas Emissions of Plug...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles Well-to-Wheels Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles Presented at ...

  6. Illinois Natural Gas Gross Withdrawals from Coalbed Wells (Million...

    Energy Information Administration (EIA) (indexed site)

    Coalbed Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009...

  7. Geopressured-geothermal drilling and testing plan: Magma Gulf/Technadril-Dept. of Energy MGT-DOE AMOCO Fee No. 1 well, Cameron Parish, Lousiana

    SciTech Connect

    Not Available

    1980-07-01

    The following topics are covered: generalized site activities, occupational health and safety, drilling operations, production testing, environmental assessment and monitoring plan, permits, program management, reporting, and schedule. (MHR)

  8. Microsoft Word - RUL_3Q2010_Rpt_Gas_Samp_Results_18Wells.doc

    Office of Legacy Management (LM)

    Monitoring Results Natural Gas Wells near the Project Rulison Horizon U.S. Department of Energy Office of Legacy Management Grand Junction, Colorado Date Sampled: 13 July 2010 Purpose: The purpose of this sample collection is to monitor for radionuclides from Project Rulison. The bottom hole locations (BHLs) of the 18 gas wells sampled are within 1.1 miles of the Project Rulison detonation horizon. All wells sampled have produced or are producing gas from the Williams Fork Formation. Background:

  9. A Resource Assessment Of Geothermal Energy Resources For Converting Deep Gas Wells In Carbonate Strata Into Geothermal Extraction Wells: A Permian Basin Evaluation

    SciTech Connect

    Erdlac, Richard J., Jr.

    2006-10-12

    for geothermal resources have been hindered. To increase the effective regional implementation of geothermal resources as an energy source for power production requires meeting several objectives. These include: 1) Expand (oil and gas as well as geothermal) industry awareness of an untapped source of geothermal energy within deep permeable strata of sedimentary basins; 2) Identify and target specific geographic areas within sedimentary basins where deeper heat sources can be developed; 3) Increase future geothermal field size from 10 km2 to many 100’s km2 or greater; and 4) Increase the productive depth range for economic geothermal energy extraction below the current 4 km limit by converting deep depleted and abandoned gas wells and fields into geothermal energy extraction wells. The first year of the proposed 3-year resource assessment covered an eight county region within the Delaware and Val Verde Basins of West Texas. This project has developed databases in Excel spreadsheet form that list over 8,000 temperature-depth recordings. These recordings come from header information listed on electric well logs recordings from various shallow to deep wells that were drilled for oil and gas exploration and production. The temperature-depth data is uncorrected and thus provides the lower temperature that is be expected to be encountered within the formation associated with the temperature-depth recording. Numerous graphs were developed from the data, all of which suggest that a log-normal solution for the thermal gradient is more descriptive of the data than a linear solution. A discussion of these plots and equations are presented within the narrative. Data was acquired that enable the determination of brine salinity versus brine density with the Permian Basin. A discussion on possible limestone and dolostone thermal conductivity parameters is presented with the purpose of assisting in determining heat flow and reservoir heat content for energy extraction. Subsurface

  10. South Dakota Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) South Dakota Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 72 69 74 68 65 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) South Dakota Natural Gas

  11. New York Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) New York Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 988 1,170 1,589 1,731 1,697 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) New York Natural Gas

  12. Lightweight proppants for deep gas well stimulation. Final report

    SciTech Connect

    Cutler, R.A.; Ratsep, O.; Johnson, D.L.

    1984-01-01

    The need exists for lower density, less expensive proppants for use in hydraulic fracturing treatments. Ceramics, fabricated as fully sintered or hollow spheres, are the best materials for obtaining economical proppants due to their chemical/thermal stability and high strength. This report summarizes work performed during the fourth and final year of a Department of Energy research program to develop improved proppants for hydraulic fracturing applications. Hollow proppants with strengths intermediate between sand and bauxite were fabricated by spray drying. A counter current spray drying technique using a single fluid nozzle was able to make spherical ceramic proppants. The effect of spray-drying parameters on proppant strength is discussed. Further optimization of spray drying parameters is needed to achieve proppants with single, concentric voids and thick walls. Novel techniques for densifying proppants were investigated including plasma, microwave and radio frequency induction heating. Densification times were two orders of magnitude faster than conventional sintering cycles. The problems associated with ultrarapid densification are discussed as well as areas where this type of processing should be applied. A method of strengthening sand and other low strength proppants is discussed. Residual compressive surface stresses can be induced which strengthen the proppants which fail in tension. Accomplishments during the present research program are reviewed and areas of additional research which will lead to improved proppants are identified. 20 references, 23 figures, 19 tables.

  13. Indiana Natural Gas Withdrawals from Oil Wells (Million Cubic Feet)

    Gasoline and Diesel Fuel Update

    Withdrawals from Oil Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0

  14. Unconventional Oil and Gas Projects Help Reduce Environmental...

    Energy.gov [DOE] (indexed site)

    Unconventional Oil and Gas Projects Help Reduce Environmental Impact of Development Since the first commercial oil well was drilled in the United States in 1859, most of the ...

  15. Nevada Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet)

    Gasoline and Diesel Fuel Update

    Gas Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0

  16. Microsoft Word - RUL_1Q2011_Gas_Samp_Results_7Wells

    Office of Legacy Management (LM)

    31 March 2011 Purpose: The purpose of this sample collection is to monitor for radionuclides from Project Rulison. The bottom-hole locations (BHLs) of the seven gas wells sampled are between 0.75 and 0.90 mile from the Project Rulison detonation point. All wells sampled are producing gas from the Williams Fork Formation. Background: Project Rulison was the second test under the Plowshare Program to stimulate natural-gas recovery from tight sandstone formations. On 10 September 1969, a

  17. Coefficient indicates if rod pump can unload water from gas well

    SciTech Connect

    Hu Yongquan; Wu Zhijun

    1995-09-11

    A sucker rod pump can efficiently dewater gas wells if the separation coefficient is sufficiently high. To determine this separation coefficient, it is not sufficient to only know if the system meets the criteria of rod string stress, horsehead load, and crankshaft torque. This paper reviews water production and gas locking problems at the Sichuan gas field and identifies the methodologies used to optimize the pumping efficiency of the area wells.

  18. Wireless technology collects real-time information from oil and gas wells

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Wireless technology collects real-time information from oil and gas wells Wireless technology collects real-time information from oil and gas wells The patented system delivers continuous electromagnetic data on the reservoir conditions, enabling economical and effective monitoring and analysis. April 3, 2012 One of several active projects, LANL and Chevron co-developed INFICOMM(tm), a wireless technology used to collect real-time temperature and pressure information from sensors in oil and gas

  19. Feasibility of Optimizing Recovery and Reserves from a Mature and Geological Complex Multiple Turbidite Offshore Calif. Reservoir through the Drilling and Completion of a Trilateral Horizontal Well, Class III

    SciTech Connect

    Pacific Operators Offshore, Inc.

    2001-04-04

    The intent of this project was to increase production and extend the economic life of this mature field through the application of advanced reservoir characterization and drilling technology, demonstrating the efficacy of these technologies to other small operators of aging fields. Two study periods were proposed; the first to include data assimilation and reservoir characterization and the second to drill the demonstration well. The initial study period showed that a single tri-lateral well would not be economically efficient in redevelopment of Carpinteria's multiple deep water turbidite sand reservoirs, and the study was amended to include the drilling of a series of horizontal redrills from existing surplus well bores on Pacific Operators' Platform Hogan.

  20. U.S. Footage Drilled for Crude Oil, Natural Gas, and Dry Exploratory and

    Gasoline and Diesel Fuel Update

    Developmental Wells (Thousand Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1973 11,426 10,108 11,027 10,005 11,845 11,253 11,474 13,108 11,402 12,569 12,089 11,917 1974 12,015 10,950 12,805 13,188 13,147 12,441 13,830 12,701 12,661 13,803 12,600 13,233 1975 14,871 12,309 14,234 14,177 14,727 14,458 15,308 16,012 15,826 17,310 15,024 16,238 1976 17,592 14,050 15,622 14,925 14,206 15,326 14,884 16,098 15,861 16,635 15,852 15,931 1977 15,984 15,151 18,474 16,900 17,788 18,439

  1. Horizontal drilling improves recovery in Abu Dhabi

    SciTech Connect

    Muhairy, A.A. ); Farid, E.A. )

    1993-09-13

    Both onshore and offshore Abu Dhabi, horizontal wells have increased productivity three to four times more than that from vertical and deviated wells in the same reservoirs. Horizontal drilling technology was first applied in Abu Dhabi in February 1988, and through March 1993, 48 wells have been horizontally drilled. During the 5 years of horizontal drilling, the experience gained by both operating company and service company personnel has contributed to a substantial improvement in drilling rate, and hence, a reduction in drilling costs. The improvements in drilling and completions resulted from the following: The horizontal drilling and completion operations were analyzed daily, and these follow-up analyses helped optimize the planning of subsequent wells. The bits and bottom hole assemblies were continuously analyzed for optimum selections. Steerable drilling assemblies were found very effective in the upper sections of the wells. The paper describes drilling activities onshore and offshore, completion design, and the outlook for future well drilling.

  2. Coiled-tubing drilling

    SciTech Connect

    Leising, L.J.; Newman, K.R.

    1993-12-01

    For several years, CT has been used to drill scale and cement in cased wells. Recently, CT has been used (in place of a rotary drilling rig) to drill vertical and horizontal open holes. At this time, < 30 openhole CT drilling (CTD) jobs have been performed. However, there is a tremendous interest in this technique in the oil industry; many companies are actively involved in developing CTD technology. This paper discusses CTD applications and presents an engineering analysis of CTD. This analysis attempts to define the limits of what can and cannot be done with CTD. These limits are calculated with CT and drilling models used for other applications. The basic limits associated with CTD are weight and size, CT force and life, and hydraulic limits. Each limit is discussed separately. For a specific application, each limit must be considered.

  3. Evaluation of slurry injection technology for management of drilling wastes.

    SciTech Connect

    Veil, J. A.; Dusseault, M. B.

    2003-02-19

    Each year, thousands of new oil and gas wells are drilled in the United States and around the world. The drilling process generates millions of barrels of drilling waste each year, primarily used drilling fluids (also known as muds) and drill cuttings. The drilling wastes from most onshore U.S. wells are disposed of by removing the liquids from the drilling or reserve pits and then burying the remaining solids in place (called pit burial). This practice has low cost and the approval of most regulatory agencies. However, there are some environmental settings in which pit burial is not allowed, such as areas with high water tables. In the U.S. offshore environment, many water-based and synthetic-based muds and cuttings can be discharged to the ocean if discharge permit requirements are met, but oil-based muds cannot be discharged at all. At some offshore facilities, drilling wastes must be either hauled back to shore for disposal or disposed of onsite through an injection process.

  4. U.S. Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) U.S. Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 181,241 195,869 203,990 215,815 215,867 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) U.S. Natural

  5. New Mexico Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) New Mexico Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 12,887 13,791 14,171 14,814 14,580 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) New Mexico

  6. North Dakota Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) North Dakota Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 5,561 7,379 9,363 11,532 12,799 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) North Dakota

  7. West Virginia Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) West Virginia Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 2,373 2,509 2,675 2,606 2,244 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) West Virginia

  8. New and existing gas wells promise bountiful LPG output in Michigan

    SciTech Connect

    Not Available

    1991-01-01

    Michigan remains the leading LP-gas producer in the Northeast quadrant of the U.S. This paper reports that boosted by a number of new natural gas wells and a couple of new gas processing plants, the state is firmly anchored in the butane/propane production business. Since 1981, more than 100 deep gas wells, most in excess of 8000 feet in depth, have been completed as indicated producers in the state. Many of these are yielding LPG-grade stock. So, combined with LPG-grade production from shallower geologic formations, the supply picture in this area looks promising for the rest of the country.

  9. Microsoft Word - RBL_3Q2010_Rpt_Gas_Samp_Results_3Wells

    Office of Legacy Management (LM)

    near the Project Rio Blanco Horizon U.S. Department of Energy Office of Legacy Management Grand Junction, Colorado Date Sampled: 13 September 2010 Purpose: The purpose of this sample collection is to monitor natural gas wells for radionuclides from Project Rio Blanco. The bottom-hole locations (BHLs) of the 3 gas wells sampled are within 1.4 miles of the Project Rio Blanco detonation horizon. All wells sampled have produced or are producing gas from the Mesaverde Group. Background: Project Rio

  10. Federal Offshore--Gulf of Mexico Natural Gas Number of Oil Wells (Number of

    Gasoline and Diesel Fuel Update

    Condensate Wells (Number of Elements) Gas and Gas Condensate Wells (Number of Elements) Federal Offshore--Gulf of Mexico Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0 NA 2000's NA 3,271 3,245 3,039 2,781 2,123 2,419 2,552 1,527 1,984 2010's 1,852 2,226 1,892 1,588 1,377 1,163 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  11. Development and Manufacture of Cost-Effective Composite Drill Pipe

    SciTech Connect

    James C. Leslie

    2008-12-31

    Advanced Composite Products and Technology, Inc. (ACPT) has developed composite drill pipe (CDP) that matches the structural and strength properties of steel drill pipe, but weighs less than 50 percent of its steel counterpart. Funding for the multiyear research and development of CDP was provided by the U.S. Department of Energy Office of Fossil Energy through the Natural Gas and Oil Projects Management Division at the National Energy Technology Laboratory (NETL). Composite materials made of carbon fibers and epoxy resin offer mechanical properties comparable to steel at less than half the weight. Composite drill pipe consists of a composite material tube with standard drill pipe steel box and pin connections. Unlike metal drill pipe, composite drill pipe can be easily designed, ordered, and produced to meet specific requirements for specific applications. Because it uses standard joint connectors, CDP can be used in lieu of any part of or for the entire steel drill pipe section. For low curvature extended reach, deep directional drilling, or ultra deep onshore or offshore drilling, the increased strength to weight ratio of CDP will increase the limits in all three drilling applications. Deceased weight will reduce hauling costs and increase the amount of drill pipe allowed on offshore platforms. In extreme extended reach areas and high-angle directional drilling, drilling limits are associated with both high angle (fatigue) and frictional effects resulting from the combination of high angle curvature and/or total weight. The radius of curvature for a hole as small as 40 feet (12.2 meters) or a build rate of 140 degrees per 100 feet is within the fatigue limits of specially designed CDP. Other properties that can be incorporated into the design and manufacture of composite drill pipe and make it attractive for specific applications are corrosion resistance, non-magnetic intervals, and abrasion resistance coatings. Since CDP has little or no electromagnetic force

  12. Pressure sensor and Telemetry methods for measurement while drilling...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Pressure sensor and Telemetry methods for measurement while drilling in geothermal wells Pressure sensor and Telemetry methods for measurement while drilling in geothermal wells ...

  13. Advanced Mud System for Microhole Coiled Tubing Drilling

    SciTech Connect

    Kenneth Oglesby

    2008-12-01

    An advanced mud system was designed and key components were built that augment a coiled tubing drilling (CTD) rig that is designed specifically to drill microholes (less than 4-inch diameter) with advanced drilling techniques. The mud system was tailored to the hydraulics of the hole geometries and rig characteristics required for microholes and is capable of mixing and circulating mud and removing solids while being self contained and having zero discharge capability. Key components of this system are two modified triplex mud pumps (High Pressure Slurry Pumps) for advanced Abrasive Slurry Jetting (ASJ) and a modified Gas-Liquid-Solid (GLS) Separator for well control, flow return and initial processing. The system developed also includes an additional component of an advanced version of ASJ which allows cutting through most all materials encountered in oil and gas wells including steel, cement, and all rock types. It includes new fluids and new ASJ nozzles. The jetting mechanism does not require rotation of the bottom hole assembly or drill string, which is essential for use with Coiled Tubing (CT). It also has low reactive forces acting on the CT and generates cuttings small enough to be easily cleaned from the well bore, which is important in horizontal drilling. These cutting and mud processing components and capabilities compliment the concepts put forth by DOE for microhole coiled tubing drilling (MHTCTD) and should help insure the reality of drilling small diameter holes quickly and inexpensively with a minimal environmental footprint and that is efficient, compact and portable. Other components (site liners, sump and transfer pumps, stacked shakers, filter membranes, etc.. ) of the overall mud system were identified as readily available in industry and will not be purchased until we are ready to drill a specific well.

  14. Logs of wells and boreholes drilled during hydrogeologic studies at Lawrence Livermore National Laboratory Site 300, January 1, 1982--June 30, 1988: January 1, 1982 through June 30, 1988

    SciTech Connect

    Toney, K.C.; Crow, N.B.

    1988-01-01

    We present the hydrogeologic well logs for monitor wells and exploratory boreholes drilled at Lawrence Livermore National Laboratory (LLNL) Site 300 between the beginning of environmental investigations in June 1982 and the end of June 1988. These wells and boreholes were drilled as part of studies made to determine the horizontal and vertical distribution of volatile organic compounds (VOCs), high explosive (HE) compounds, and tritium in soil, rock, and ground water at Site 300. The well logs for 293 installations comprise the bulk of this report. We have prepared summaries of Site 300 geology and project history that provide a context for the well logs. Many of the logs in this report have also been published in previous topical reports, but they are nevertheless included in order to make this report a complete record of the wells and boreholes drilled prior to July 1988. A commercially available computer program, LOGGER has been used since late 1985 to generate these logs. This report presents details of the software programs and the hardware used. We are presently completing a project to devise a computer-aided design (CAD) system to produce hydrogeologic cross sections and fence diagrams, utilizing the digitized form of these logs. We find that our system produces publication-quality well and exploratory borehole logs at a lower cost than that of logs drafted by traditional methods.

  15. Transient aspects of unloading oil and gas wells with coiled tubing

    SciTech Connect

    Gu, H.

    1995-12-31

    Unloading oil and gas wells with coiled tubing (CT) conveyed nitrogen circulation is a transient process in which the original heavier fluid in a wellbore is displaced by nitrogen and lighter reservoir fluid. The transient aspects need to be considered when determining nitrogen volume and operation time for unloading a well. A computer wellbore simulator has been developed and used to study the transient effects. The simulator includes transient multiphase mass transport and takes into account the different fluids in the wellbore and from the reservoir. The simulator also includes the gas rise in the wellbore liquid below the CT and can be used for gas well unloading. The transient results of oil and gas well unloading are presented. The effects of CT size and depth, workover fluid, and nitrogen rate and volume on unloading are discussed. Unlike continuous gas lift, the total gas volume needed and the operation time in an unloading process can only be determined and optimized based on a transient analysis.

  16. Estimating gas desorption parameters from Devonian shale well-test data

    SciTech Connect

    Lane, H.S.; Watson, A.T.; Lancaster, D.E.

    1995-05-01

    The feasibility of detecting and estimating gas desorption parameters accurately from a history match of Devonian shale well-test pressure data is examined. Both drawdown and buildup tests are analyzed, and based on the results of these analyses, a desorption-specific well-test design is proposed. The results from a simulated desorption-specific test suggest that it may be possible to characterize gas desorption from a well test with reasonable accuracy, even when the effects of desorption are partially masked by wellbore storage and skin effects.

  17. In situ experiments of geothermal well stimulation using gas fracturing technology

    SciTech Connect

    Chu, T.Y.; Warpinski, N.; Jacobson, R.D.

    1988-07-01

    The results of an experimental study of gas fracturing technology for geothermal well stimulation demonstrated that multiple fractures could be created to link water-filled boreholes with existing fractures. The resulting fracture network and fracture interconnections were characterized by mineback as well as flow tests. Commercial oil field fracturing tools were used successfully in these experiments. Simple scaling laws for gas fracturing and a brief discussion of the application of this technique to actual geothermal well stimulation are presented. 10 refs., 42 figs., 4 tabs.

  18. Geopressured-Geothermal Drilling and Testing Plan, Volume II, Testing Plan; Dow Chemical Co. - Dept. of Energy Dow-DOE Sweezy No. 1 Well, Vermilion Parish, Louisiana

    SciTech Connect

    1982-02-01

    The Dow/D.O.E. L. R. Sweezy No. 1 geopressured geothermal production well was completed in August of 1981. The well was perforated and gravel packed in approximately 50 feet of sand from 13,344 feet to 13,395 feet. Permeabilities of 6 to 914 millidarcies were measured with porosity of 25 to 36%. Static surface pressure after well clean-up was 5000 psi. At 1000 B/D flow rate the drawdown was 50 psi. The water produced in clean-up contained 100,000 ppm TDS. This report details the plan for testing this well with the goal of obtaining sufficient data to define the total production curve of the small, 939 acre, reservoir. A production time of six to nine months is anticipated. The salt water disposal well is expected to be completed and surface equipment installed such that production testing will begin by April 1, 1982. The program should be finished and reports written by February 28, 1983. The brine will be produced from the No.1 well, passed through a separator where the gas is removed, then reinjected into the No.2 (SWD) well under separator pressure. Flow rates of up to 25,000 B/D are expected. The tests are divided into a two-week short-term test and six to nine-month long-term tests with periodic downhole measurement of drawdown and buildup rates. Data obtained in the testing will be relayed by phoneline computer hookup to Otis Engineering in Dallas, Texas, where the reservoir calculations and modeling will be done. At the point where sufficient data has been obtained to reach the objectives of the program, production will be ended, the wells plugged and abandoned, and a final report will be issued.

  19. NEW AND NOVEL FRACTURE STIMULATION TECHNOLOGIES FOR THE REVITALIZATION OF EXISTING GAS STORAGE WELLS

    SciTech Connect

    Unknown

    1999-12-01

    Gas storage wells are prone to continued deliverability loss at a reported average rate of 5% per annum (in the U.S.). This is a result of formation damage due to the introduction of foreign materials during gas injection, scale deposition and/or fines mobilization during gas withdrawal, and even the formation and growth of bacteria. As a means to bypass this damage and sustain/enhance well deliverability, several new and novel fracture stimulation technologies were tested in gas storage fields across the U.S. as part of a joint U.S. Department of Energy and Gas Research Institute R&D program. These new technologies include tip-screenout fracturing, hydraulic fracturing with liquid CO{sub 2} and proppant, extreme overbalance fracturing, and high-energy gas fracturing. Each of these technologies in some way address concerns with fracturing on the part of gas storage operators, such as fracture height growth, high permeability formations, and fluid sensitivity. Given the historical operator concerns over hydraulic fracturing in gas storage wells, plus the many other unique characteristics and resulting stimulation requirements of gas storage reservoirs (which are described later), the specific objective of this project was to identify new and novel fracture stimulation technologies that directly address these concerns and requirements, and to demonstrate/test their potential application in gas storage wells in various reservoir settings across the country. To compare these new methods to current industry deliverability enhancement norms in a consistent manner, their application was evaluated on a cost per unit of added deliverability basis, using typical non-fracturing well remediation methods as the benchmark and considering both short-term and long-term deliverability enhancement results. Based on the success (or lack thereof) of the various fracture stimulation technologies investigated, guidelines for their application, design and implementation have been

  20. Well blowout rates and consequences in California Oil and Gas District 4 from 1991 to 2005: Implications for geological storage of carbon dioxide

    SciTech Connect

    Jordan, Preston; Jordan, Preston D.; Benson, Sally M.

    2008-05-15

    Well blowout rates in oil fields undergoing thermally enhanced recovery (via steam injection) in California Oil and Gas District 4 from 1991 to 2005 were on the order of 1 per 1,000 well construction operations, 1 per 10,000 active wells per year, and 1 per 100,000 shut-in/idle and plugged/abandoned wells per year. This allows some initial inferences about leakage of CO2 via wells, which is considered perhaps the greatest leakage risk for geological storage of CO2. During the study period, 9% of the oil produced in the United States was from District 4, and 59% of this production was via thermally enhanced recovery. There was only one possible blowout from an unknown or poorly located well, despite over a century of well drilling and production activities in the district. The blowout rate declined dramatically during the study period, most likely as a result of increasing experience, improved technology, and/or changes in safety culture. If so, this decline indicates the blowout rate in CO2-storage fields can be significantly minimized both initially and with increasing experience over time. Comparable studies should be conducted in other areas. These studies would be particularly valuable in regions with CO2-enhanced oil recovery (EOR) and natural gas storage.

  1. Microsoft Word - RUL_4Q2010_Rpt_Gas_Samp_Results_8Wells

    Office of Legacy Management (LM)

    the Project Rulison Horizon U.S. Department of Energy Office of Legacy Management Grand Junction, Colorado Date Sampled: 21 October 2010 Purpose: The purpose of this sample collection is to monitor for radionuclides from Project Rulison. The bottom hole locations (BHLs) of the 8 gas wells sampled are within 0.75 and 1.0 mile of the Project Rulison detonation horizon. All wells sampled have produced or are producing gas from the Williams Fork Formation. Background: Project Rulison was the second

  2. Microhole High-Pressure Jet Drill for Coiled Tubing

    SciTech Connect

    Ken Theimer; Jack Kolle

    2007-06-30

    Tempress Small Mechanically-Assisted High-Pressure Waterjet Drilling Tool project centered on the development of a downhole intensifier (DHI) to boost the hydraulic pressure available from conventional coiled tubing to the level required for high-pressure jet erosion of rock. We reviewed two techniques for implementing this technology (1) pure high-pressure jet drilling and (2) mechanically-assisted jet drilling. Due to the difficulties associated with modifying a downhole motor for mechanically-assisted jet drilling, it was determined that the pure high-pressure jet drilling tool was the best candidate for development and commercialization. It was also determined that this tool needs to run on commingled nitrogen and water to provide adequate downhole differential pressure and to facilitate controlled pressure drilling and descaling applications in low pressure wells. The resulting Microhole jet drilling bottomhole assembly (BHA) drills a 3.625-inch diameter hole with 2-inch coil tubing. The BHA consists of a self-rotating multi-nozzle drilling head, a high-pressure rotary seal/bearing section, an intensifier and a gas separator. Commingled nitrogen and water are separated into two streams in the gas separator. The water stream is pressurized to 3 times the inlet pressure by the downhole intensifier and discharged through nozzles in the drilling head. The energy in the gas-rich stream is used to power the intensifier. Gas-rich exhaust from the intensifier is conducted to the nozzle head where it is used to shroud the jets, increasing their effective range. The prototype BHA was tested at operational pressures and flows in a test chamber and on the end of conventional coiled tubing in a test well. During instrumented runs at downhole conditions, the BHA developed downhole differential pressures of 74 MPa (11,000 psi, median) and 90 MPa (13,000 psi, peaks). The median output differential pressure was nearly 3 times the input differential pressure available from the

  3. OM300 Direction Drilling Module

    DOE Data Explorer

    MacGugan, Doug

    2013-08-22

    OM300 – Geothermal Direction Drilling Navigation Tool: Design and produce a prototype directional drilling navigation tool capable of high temperature operation in geothermal drilling Accuracies of 0.1° Inclination and Tool Face, 0.5° Azimuth Environmental Ruggedness typical of existing oil/gas drilling Multiple Selectable Sensor Ranges High accuracy for navigation, low bandwidth High G-range & bandwidth for Stick-Slip and Chirp detection Selectable serial data communications Reduce cost of drilling in high temperature Geothermal reservoirs Innovative aspects of project Honeywell MEMS* Vibrating Beam Accelerometers (VBA) APS Flux-gate Magnetometers Honeywell Silicon-On-Insulator (SOI) High-temperature electronics Rugged High-temperature capable package and assembly process

  4. Kinetic inhibition of natural gas hydrates in offshore drilling, production, and processing operations. Annual report, January 1--December 31, 1992

    SciTech Connect

    1992-12-31

    Natural gas hydrates are solid crystalline compounds which form when molecules smaller than n-butane contact molecules of water at elevated pressures and reduced temperatures, both above and below the ice point. Because these crystalline compounds plug flow channels, they are undesirable. In this project the authors proposed an alternate approach of controlling hydrate formation by preventing hydrate growth into a sizeable mass which could block a flow channel. The authors call this new technique kinetic inhibition, because while it allows the system to exist in the hydrate domain, it prevents the kinetic agglomeration of small hydrate crystals to the point of pluggage of a flow channel. In order to investigate the kinetic means of inhibiting hydrate formation, they held two consortium meetings, on June 1, 1990 and on August 31, 1990. At subsequent meetings, the authors determined the following four stages of the project, necessary to reach the goal of determining a new hydrate field inhibitor: (1) a rapid screening method was to be determined for testing the hydrate kinetic formation period of many surfactants and polymer candidates (both individually and combined), the present report presents the success of two screening apparatuses: a multi-reactor apparatus which is capable of rapid, high volume screening, and the backup screening method--a viscometer for testing with gas at high pressure; (2) the construction of two high, constant pressure cells were to experimentally confirm the success of the chemicals in the rapid screening apparatus; (3) in the third phase of the work, Exxon volunteered to evaluate the performance of the best chemicals from the previous two stages in their 4 inch I.D. Multiphase flow loop in Houston; (4) in the final phase of the work, the intention was to take the successful kinetic inhibition chemicals from the previous three stages and then test them in the field in gathering lines and wells from member companies.

  5. New York Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    Gasoline and Diesel Fuel Update

    35,813 31,124 26,424 23,458 20,201 17,829 1967-2015 From Gas Wells 35,163 30,495 25,985 23,111 19,808 17,609 1967-2015 From Oil Wells 650 629 439 348 393 220 1967-2015 From Shale Gas Wells 0 0 0 0 0 0 2007-2015 From Coalbed Wells 0 0 0 0 0 0 2006-2015 Repressuring 0 0 0 0 0 0 2006-2015 Vented and Flared 0 0 0 0 0 0 1967-2015 Nonhydrocarbon Gases Removed 0 0 0 0 0 0 2006-2015 Marketed Production 35,813 31,124 26,424 23,458 20,201 17,829 1967-2015 Dry Production 35,813 31,124 26,424 23,458 20,201

  6. Ohio Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic Feet)

    Gasoline and Diesel Fuel Update

    78,122 78,858 84,482 166,017 512,371 1,014,848 1967-2015 From Gas Wells 73,459 30,655 65,025 55,583 51,541 46,237 1967-2015 From Oil Wells 4,651 45,663 6,684 10,317 13,022 32,674 1967-2015 From Shale Gas Wells 11 2,540 12,773 100,117 447,809 935,937 2007-2015 From Coalbed Wells 0 0 0 0 0 0 2006-2015 Repressuring 0 0 0 0 0 0 1967-2015 Vented and Flared 0 0 0 0 0 0 1967-2015 Nonhydrocarbon Gases Removed 0 0 0 0 0 0 2006-2015 Marketed Production 78,122 78,858 84,482 166,017 512,371 1,014,848

  7. Utah Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic Feet)

    Gasoline and Diesel Fuel Update

    436,885 461,507 490,393 470,863 454,545 423,300 1967-2015 From Gas Wells 328,135 351,168 402,899 383,216 361,474 333,232 1967-2015 From Oil Wells 42,526 49,947 31,440 36,737 45,513 45,781 1967-2015 From Shale Gas Wells 0 0 1,333 992 877 676 2007-2015 From Coalbed Wells 66,223 60,392 54,722 49,918 46,680 43,612 2002-2015 Repressuring 1,187 1,449 0 0 NA 0 1967-2015 Vented and Flared 2,080 1,755 0 0 NA 0 1967-2015 Nonhydrocarbon Gases Removed 1,573 778 0 0 NA 0 1996-2015 Marketed Production 432,045

  8. Drilling technology/GDO

    SciTech Connect

    Kelsey, J.R.

    1985-01-01

    The Geothermal Technology Division of the US Department of Energy is sponsoring two programs related to drilling technology. The first is aimed at development of technology that will lead to reduced costs of drilling, completion, and logging of geothermal wells. This program has the official title ''Hard Rock Penetration Mechanics.'' The second program is intended to share with private industry the cost of development of technology that will result in solutions to the near term geothermal well problems. This program is referred to as the ''Geothermal Drilling Organization''. The Hard Rock Penetration Mechanics Program was funded at $2.65M in FY85 and the GDO was funded at $1.0M in FY85. This paper details the past year's activities and accomplishments and projects the plans for FY86 for these two programs.

  9. Application of new and novel fracture stimulation technologies to enhance the deliverability of gas storage wells

    SciTech Connect

    1995-04-01

    Based on the information presented in this report, our conclusions regarding the potential for new and novel fracture stimulation technologies to enhance the deliverability of gas storage wells are as follows: New and improved gas storage well revitalization methods have the potential to save industry on the order of $20-25 million per year by mitigating deliverability decline and reducing the need for costly infill wells Fracturing technologies have the potential to fill this role, however operators have historically been reluctant to utilize this approach due to concerns with reservoir seal integrity. With advanced treatment design tools and methods, however, this risk can be minimized. Of the three major fracturing classifications, namely hydraulic, pulse and explosive, two are believed to hold potential to gas storage applications (hydraulic and pulse). Five particular fracturing technologies, namely tip-screenout fracturing, fracturing with liquid carbon dioxide, and fracturing with gaseous nitrogen, which are each hydraulic methods, and propellant and nitrogen pulse fracturing, which are both pulse methods, are believed to hold potential for gas storage applications and will possibly be tested as part of this project. Field evidence suggests that, while traditional well remediation methods such as blowing/washing, mechanical cleaning, etc. do improve well deliverability, wells are still left damaged afterwards, suggesting that considerable room for further deliverability enhancement exists. Limited recent trials of hydraulic fracturing imply that this approach does in fact provide superior deliverability results, but further RD&D work is needed to fully evaluate and demonstrate the benefits and safe application of this as well as other fracture stimulation technologies.

  10. Monitoring Results Natural Gas Wells Near Project Rulison Fourth Quarter 2015

    Office of Legacy Management (LM)

    Fourth Quarter 2015 February 2016 Doc. No. S13825 Page 1 of 6 Monitoring Results Natural Gas Wells Near Project Rulison Fourth Quarter 2015 U.S. Department of Energy Office of Legacy Management Grand Junction, Colorado Date Sampled: September 9, 2015 Background Project Rulison was the second Plowshare Program test to stimulate natural gas recovery from deep, low-permeability formations. On September 10, 1969, a 40-kiloton-yield nuclear device was detonated 8,426 feet (1.6 miles) below ground

  11. Monitoring Results Natural Gas Wells Near Project Rulison third Quarter 2015

    Office of Legacy Management (LM)

    5 November 2015 Doc. No. S13372 Page 1 of 6 Monitoring Results Natural Gas Wells Near Project Rulison Third Quarter 2015 U.S. Department of Energy Office of Legacy Management Grand Junction, Colorado Date Sampled: June 22, 2015 Background Project Rulison was the second Plowshare Program test to stimulate natural gas recovery from deep, low-permeability formations. On September 10, 1969, a 40-kiloton-yield nuclear device was detonated 8,426 feet (1.6 miles) below ground surface in the Williams

  12. Monitoring Results for Natural Gas Wells Near Project Rulison, 2nd Quarter, Fiscal Year 2015

    Office of Legacy Management (LM)

    2nd Quarter FY 2015, Rulison Site October 2015 Doc. No. S13368 Page 1 of 6 Monitoring Results for Natural Gas Wells Near Project Rulison, 2nd Quarter, Fiscal Year 2015 U.S. Department of Energy Office of Legacy Management Grand Junction, Colorado Date Sampled: March 31, 2015 Background Project Rulison was the second Plowshare Program test to stimulate natural gas recovery from deep, low-permeability formations. On September 10, 1969, a 40-kiloton-yield nuclear device was detonated 8,426 feet

  13. Penrose Well Temperatures

    DOE Data Explorer

    Christopherson, Karen

    2013-03-15

    Penrose Well Temperatures Geothermal waters have been encountered in several wells near Penrose in Fremont County, Colorado. Most of the wells were drilled for oil and gas exploration and, in a few cases, production. This ESRI point shapefile utilizes data from 95 wells in and around the Penrose area provided by the Colorado Oil and Gas Conservation Commission (COGCC) database at http://cogcc.state.co.us/ . Temperature data from the database were used to calculate a temperature gradient for each well. This information was then used to estimate temperatures at various depths. Projection: UTM Zone 13 NAD27 Extent: West -105.224871 East -105.027633 North 38.486269 South 38.259507 Originators: Colorado Oil and Gas Conservation Commission (COGCC) Karen Christopherson

  14. Summary of tank information relating salt well pumping to flammable gas safety issues

    SciTech Connect

    Caley, S.M.; Mahoney, L.A.; Gauglitz, P.A.

    1996-09-01

    The Hanford Site has 149 single-shell tanks (SSTs) containing radioactive wastes that are complex mixes of radioactive and chemical products. Active use of these SSTs was phased out completely by November 1980, and the first step toward final disposal of the waste in the SSTs is interim stabilization, which involves removing essentially all of the drainable liquid from the tank. Stabilization can be achieved administratively, by jet pumping to remove drainable interstitial liquid, or by supernatant pumping. To date, 116 tanks have been declared interim stabilized; 44 SSTs have had drainable liquid removed by salt well jet pumping. Of the 149 SSTs, 19 are on the Flammable Gas Watch List (FGWL) because the waste in these tanks is known or suspected, in all but one case, to generate and retain mixtures of flammable gases, including; hydrogen, nitrous oxide, and ammonia. Salt well pumping to remove the drainable interstitial liquid from these SSTs is expected to cause the release of much of the retained gas, posing a number of safety concerns. The scope of this work is to collect and summarize information, primarily tank data and observations, that relate salt well pumping to flammable gas safety issues. While the waste within FGWL SSTs is suspected offering flammable gases, the effect of salt well pumping on the waste behavior is not well understood. This study is being conducted for the Westinghouse Hanford Company as part of the Flammable Gas Project at the Pacific Northwest National Laboratory (PNNL). Understanding the historical tank behavior during and following salt well pumping will help to resolve the associated safety issues.

  15. Geothermal Energy & Drilling Technology

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy & Drilling Technology - Sandia Energy Energy Search Icon Sandia Home Locations ... Atmospheric Radiation Measurement Climate Reasearch Facility Geomechanics and Drilling ...

  16. Utilization of endless coiled tubing and nitrogen gas in geothermal well system maintenance

    SciTech Connect

    McReynolds, A.S.; Maxson, H.L.

    1980-09-01

    The use of endless coiled tubing and nitrogen gas combine to offer efficient means of initiating and maintaining geothermal and reinjection well productivity. Routine applications include initial flashing of wells in addition to the surging of the formation by essentially the same means to increase production rates. Various tools can be attached to the tubing for downhole measurement purposes whereby the effectiveness of the tools is enhanced by this method of introduction to the well bore. Remedial work such as scale and fill removal can also be accomplished in an efficient manner by using the tubing as a work string and injecting various chemicals in conjunction with specialized tools to remedy downhole problems.

  17. Installation of 2 7/8-in. coiled-tubing tailpipes in live gas wells

    SciTech Connect

    Campbell, J.A.; Bayes, K.P.

    1994-05-01

    This paper describes a technique for installing 2 7/8-in. coiled tubing as tailpipe extensions below existing production packers in live gas wells. It also covers the use of coiled tubing as a way to complete wells. Large savings in rig time and deferred production have been realized with this technique. Fluid losses to the formation do not occur, and no expensive rig time is needed to kill or clean up the wells, as required for conventional workovers below existing production packers. This technique is particularly applicable in depleted reservoirs that could be impaired by traditional workover methods.

  18. Recovery Efficiency Test Project: Phase 1, Activity report. Volume 1: Site selection, drill plan preparation, drilling, logging, and coring operations

    SciTech Connect

    Overbey, W.K. Jr.; Carden, R.S.; Kirr, J.N.

    1987-04-01

    The recovery Efficiency Test well project addressed a number of technical issues. The primary objective was to determine the increased efficiency gas recovery of a long horizontal wellbore over that of a vertical wellbore and, more specifically, what improvements can be expected from inducing multiple hydraulic fractures from such a wellbore. BDM corporation located, planned, and drilled a long radius turn horizontal well in the Devonian shale Lower Huron section in Wayne County, West Virginia, demonstrating that state-of-the-art technology is capable of drilling such wells. BDM successfully tested drilling, coring, and logging in a horizontal well using air as the circulating medium; conducted reservoir modeling studies to protect flow rates and reserves in advance of drilling operations; observed two phase flow conditions in the wellbore not observed previously; cored a fracture zone which produced gas; observed that fractures in the core and the wellbore were not systematically spaced (varied from 5 to 68 feet in different parts of the wellbore); observed that highest gas show rates reported by the mud logger corresponded to zone with lowest fracture spacing (five feet) or high fracture frequency. Four and one-half inch casting was successfully installed in the borehole and was equipped to isolate the horizontal section into eight (8) zones for future testing and stimulation operations. 6 refs., 48 figs., 10 tabs.

  19. Geothermal drilling in Cerro Prieto

    SciTech Connect

    Dominguez A., Bernardo

    1982-08-10

    The number of characteristics of the different wells that have been drilled in the Cerro Prieto geothermal field to date enable one to summarize the basic factors in the applied technology, draw some conclusions, improve systems and procedures, and define some problems that have not yet been satisfactorily solved, although the existing solution is the best now available. For all practical purposes, the 100 wells drilled in the three areas or blocks into which the Cerro Prieto field has been divided have been completed. Both exploratory and production wells have been drilled; problems of partial or total lack of control have made it necessary to abandon some of these wells, since they were unsafe to keep in production or even to be used for observation and/or study. The wells and their type, the type of constructed wells and the accumulative meters that have been drilled for such wells are summarized.

  20. Drilling and production statistics for major US coalbed methane and gas shale reservoirs. Topical report, June-August 1995

    SciTech Connect

    Kelso, B.S.; Lombardi, T.E.; Kuuskraa, J.A.

    1995-12-01

    The objective of this work is to provide GRI with a review and analysis of the oil and gas industry`s activity level and associated production from the major coalbed methane and gas shale reservoirs in the U.S. The authors specifically focused on the pre- and post-Section 29 qualifying deadline of December 1992 for unconventional gas Tax Credits. The primary plays investigated include the coalbed methane reservoirs in the San Juan, Warrier, Appalachian, Uinta, Powder River, and Pieceance basins and the gas shale plays in the Michigan, Fort Worth, Appalachian, Denver, and Illinois basins. A projection for future activity and production levels is made based on historic trends for each of the reservoir types. Telephone surveys were conducted with numerous operators to determine current activity status and to assist in projecting future activity of the two gas resources.

  1. Proposed Drill Sites

    DOE Data Explorer

    Lane, Michael

    Proposed drill sites for intermediate depth temperature gradient holes and/or deep resource confirmation wells. Temperature gradient contours based on shallow TG program and faults interpreted from seismic reflection survey are shown, as are two faults interpreted by seismic contractor Optim but not by Oski Energy, LLC.

  2. Proposed Drill Sites

    DOE Data Explorer

    Lane, Michael

    2013-06-28

    Proposed drill sites for intermediate depth temperature gradient holes and/or deep resource confirmation wells. Temperature gradient contours based on shallow TG program and faults interpreted from seismic reflection survey are shown, as are two faults interpreted by seismic contractor Optim but not by Oski Energy, LLC.

  3. Successful removal of zinc sulfide scale restriction from a hot, deep, sour gas well

    SciTech Connect

    Kenrick, A.J.; Ali, S.A.

    1997-07-01

    Removal of zinc sulfide scale with hydrochloric acid from a hot, deep, Norphlet Sandstone gas well in the Gulf of Mexico resulted in a 29% increase in the production rates. The zinc sulfide scale was determined to be in the near-wellbore area. The presence of zinc sulfide is explained by the production of 25 ppm H{sub 2}S gas, and the loss of 50--100 bbl of zinc bromide fluid to the formation. Although zinc sulfide scale has been successfully removed with hydrochloric acid in low-to-moderate temperature wells, no analogous treatment data were available for high temperature, high pressure (HTHP) Norphlet wells. Therefore laboratory testing was initiated to identify suitable acid systems for scale removal, and select a high quality corrosion inhibitor that would mitigate detrimental effects of the selected acid on downhole tubulars and surface equipment. This case history presents the first successful use of hydrochloric acid in removing zinc sulfide scale from a HTHP Norphlet sour gas well.

  4. Procedures control total mud losses while drilling in deep water

    SciTech Connect

    Dewar, J. ); Halkett, D. )

    1993-11-01

    In the deepwater (830-1,000 m) drilling program offshore Philippines, reefal limestones were encountered in which total mud losses could be expected because of the presence of large fractures. The danger was that a sudden drop in hydrostatic head (resulting from the losses) could allow any natural gas to enter the well bore quickly. The gas could then migrate up the well bore and form hydrates in the blowout preventers (BOPs). Once hydrates form, they are difficult to remove and can make a BOP stack inoperable. To combat this potential problem, containment procedures were developed to cope with these fluid losses. The philosophy behind the procedures was to prevent hydrocarbons from entering the well bore and, if they did enter, to ensure that they did not move up the well bore and into the riser. Additionally, procedures were developed to allow drilling to continue during the losses and the curing of losses.

  5. Stimulation Technologies for Deep Well Completions

    SciTech Connect

    Stephen Wolhart

    2005-06-30

    The Department of Energy (DOE) is sponsoring the Deep Trek Program targeted at improving the economics of drilling and completing deep gas wells. Under the DOE program, Pinnacle Technologies conducted a study to evaluate the stimulation of deep wells. The objective of the project was to review U.S. deep well drilling and stimulation activity, review rock mechanics and fracture growth in deep, high-pressure/temperature wells and evaluate stimulation technology in several key deep plays. This report documents results from this project.

  6. New Mexico Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    Gasoline and Diesel Fuel Update

    1,341,475 1,287,682 1,276,296 1,247,394 1,266,379 1,296,458 1967-2015 From Gas Wells 616,134 556,024 653,057 588,127 532,600 472,356 1967-2015 From Oil Wells 238,580 252,326 127,009 160,649 204,342 249,366 1967-2015 From Shale Gas Wells 71,867 93,071 127,548 167,961 218,023 287,587 2007-2015 From Coalbed Wells 414,894 386,262 368,682 330,658 311,414 287,149 2002-2015 Repressuring 7,513 6,687 9,906 12,583 17,599 26,382 1967-2015 Vented and Flared 1,586 4,360 12,259 21,053 19,119 24,850 1967-2015

  7. Texas Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic Feet)

    Gasoline and Diesel Fuel Update

    7,593,697 7,934,689 8,143,510 8,299,472 8,659,188 8,801,282 1967-2015 From Gas Wells 4,441,188 3,794,952 3,619,901 3,115,409 2,672,326 2,316,239 1967-2015 From Oil Wells 849,560 1,073,301 860,675 1,166,810 1,558,002 1,801,212 1967-2015 From Shale Gas Wells 2,302,950 3,066,435 3,662,933 4,017,253 4,428,859 4,683,831 2007-2015 From Coalbed Wells 0 0 0 0 0 0 2002-2015 Repressuring 558,854 502,020 437,367 423,413 440,153 533,047 1967-2015 Vented and Flared 39,569 35,248 47,530 76,113 90,125 113,786

  8. Spin coherence of the two-dimensional electron gas in a GaAs quantum well

    SciTech Connect

    Larionov, A. V.

    2015-01-15

    The coherent spin dynamics of the quasi-two-dimensional electron gas in a GaAs quantum well is experimentally investigated using the time-resolved spin Kerr effect in an optical cryostat with a split coil inducing magnetic fields of up to 6 T at a temperature of about 2 K. The electron spin dephasing times and degree of anisotropy of the spin relaxation of electrons are measured in zero magnetic field at different electron densities. The dependence of the spin-orbit splitting on the electron-gas density is established. In the integral quantum-Hall-effect mode, the unsteady behavior of the spin dephasing time of 2D electrons of the lower Landau spin sublevel near the odd occupation factor ν = 3 is found. The experimentally observed unsteady behavior of the spin dephasing time can be explained in terms of new-type cyclotron modes that occur in a liquid spin texture.

  9. Revenue surge to sustain drilling in U.S. and Canada

    SciTech Connect

    Beck, R.J.; Petzet, G.A.

    1997-01-27

    Drilling activity in the US and Canada will remain strong in 1997 after increasing in 1996. Oil and Gas Journal figures indicate that rising oil and gas prices provided operators during 1996 with their highest wellhead revenues since 1985. This portends robust capital and exploration spending as long as operators follow through with plans revealed in recent weeks. Also encouraging operators to boost drilling programs are economically juicy plays in the Gulf of Mexico, Gulf Coast, and several other onshore areas. A group of major oil companies indicated plans to increase US exploratory drilling this year against a slight dip in total US drilling. And Canada is matching or exceeding forecasters` expectations, with no letup in view from its last few years` pace of 11,000--12,000 wells/year. The paper discusses US economics, year to year performance, activities of the major oil companies, and Canadian activities.

  10. Consortium for Petroleum & Natural Gas Stripper Wells PART 2 OF 3

    SciTech Connect

    Morrison, Joel

    2011-12-01

    The United States has more oil and gas wells than any other country. As of December 31, 2004, there were more than half a million producing oil wells in the United States. That is more than three times the combined total for the next three leaders: China, Canada, and Russia. The Stripper Well Consortium (SWC) is a partnership that includes domestic oil and gas producers, service and supply companies, trade associations, academia, the Department of Energy’s Strategic Center for Natural Gas and Oil (SCNGO) at the National Energy Technology Laboratory (NETL), and the New York State Energy Research and Development Authority (NYSERDA). The Consortium was established in 2000. This report serves as a final technical report for the SWC activities conducted over the May 1, 2004 to December 1, 2011 timeframe. During this timeframe, the SWC worked with 173 members in 29 states and three international countries, to focus on the development of new technologies to benefit the U.S. stripper well industry. SWC worked with NETL to develop a nationwide request-for-proposal (RFP) process to solicit proposals from the U.S. stripper well industry to develop and/or deploy new technologies that would assist small producers in improving the production performance of their stripper well operations. SWC conducted eight rounds of funding. A total of 132 proposals were received. The proposals were compiled and distributed to an industrydriven SWC executive council and program sponsors for review. Applicants were required to make a formal technical presentation to the SWC membership, executive council, and program sponsors. After reviewing the proposals and listening to the presentations, the executive council made their funding recommendations to program sponsors. A total of 64 projects were selected for funding, of which 59 were fully completed. Penn State then worked with grant awardees to issue a subcontract for their approved work. SWC organized and hosted a total of 14 meetings

  11. Consortium for Petroleum & Natural Gas Stripper Wells PART 3 OF 3

    SciTech Connect

    Morrison, Joel

    2011-12-01

    The United States has more oil and gas wells than any other country. As of December 31, 2004, there were more than half a million producing oil wells in the United States. That is more than three times the combined total for the next three leaders: China, Canada, and Russia. The Stripper Well Consortium (SWC) is a partnership that includes domestic oil and gas producers, service and supply companies, trade associations, academia, the Department of Energy’s Strategic Center for Natural Gas and Oil (SCNGO) at the National Energy Technology Laboratory (NETL), and the New York State Energy Research and Development Authority (NYSERDA). The Consortium was established in 2000. This report serves as a final technical report for the SWC activities conducted over the May 1, 2004 to December 1, 2011 timeframe. During this timeframe, the SWC worked with 173 members in 29 states and three international countries, to focus on the development of new technologies to benefit the U.S. stripper well industry. SWC worked with NETL to develop a nationwide request-for-proposal (RFP) process to solicit proposals from the U.S. stripper well industry to develop and/or deploy new technologies that would assist small producers in improving the production performance of their stripper well operations. SWC conducted eight rounds of funding. A total of 132 proposals were received. The proposals were compiled and distributed to an industrydriven SWC executive council and program sponsors for review. Applicants were required to make a formal technical presentation to the SWC membership, executive council, and program sponsors. After reviewing the proposals and listening to the presentations, the executive council made their funding recommendations to program sponsors. A total of 64 projects were selected for funding, of which 59 were fully completed. Penn State then worked with grant awardees to issue a subcontract for their approved work. SWC organized and hosted a total of 14 meetings

  12. Drill string enclosure

    DOEpatents

    Jorgensen, Douglas K.; Kuhns, Douglass J.; Wiersholm, Otto; Miller, Timothy A.

    1993-01-01

    The drill string enclosure consists of six component parts, including; a top bracket, an upper acrylic cylinder, an acrylic drill casing guide, a lower acrylic cylinder, a bottom bracket, and three flexible ducts. The upper acrylic cylinder is optional based upon the drill string length. The drill string enclosure allows for an efficient drill and sight operation at a hazardous waste site.

  13. Drill string enclosure

    DOEpatents

    Jorgensen, D.K.; Kuhns, D.J.; Wiersholm, O.; Miller, T.A.

    1993-03-02

    The drill string enclosure consists of six component parts, including; a top bracket, an upper acrylic cylinder, an acrylic drill casing guide, a lower acrylic cylinder, a bottom bracket, and three flexible ducts. The upper acrylic cylinder is optional based upon the drill string length. The drill string enclosure allows for an efficient drill and sight operation at a hazardous waste site.

  14. Drilling a high-angle exploration sidetrack downdip along bedding, Gobe main prospect, Papua New Guinea

    SciTech Connect

    Jordan, J.A.; Valenti, G.L.

    1994-12-31

    The Gobe 4X sidetrack exploration well was drilled in a remote area of the Southern Highlands Province of Papua New Guinea using an innovative sidetrack technique for delineating hydrocarbons. After gas was encountered in the Gobe 4X straight hole, a nonconventional sidetrack was drilled down dip along the bedding plane of the reservoir sand and determined the gas-oil contact and the oil-water contact with a single wellbore thereby establishing the limits of the oil band. This was accomplished despite a difficult well trajectory, high deviation angle, large stepout and limited structural information.

  15. Formation resistivity measurements from within a cased well used to quantitatively determine the amount of oil and gas present

    DOEpatents

    Vail, III, William B.

    1997-01-01

    Methods to quantitatively determine the separate amounts of oil and gas in a geological formation adjacent to a cased well using measurements of formation resistivity are disclosed. The steps include obtaining resistivity measurements from within a cased well of a given formation, obtaining the porosity, obtaining the resistivity of formation water present, computing the combined amounts of oil and gas present using Archie's Equations, determining the relative amounts of oil and gas present from measurements within a cased well, and then quantitatively determining the separate amounts of oil and gas present in the formation.

  16. Formation resistivity measurements from within a cased well used to quantitatively determine the amount of oil and gas present

    DOEpatents

    Vail, W.B. III

    1997-05-27

    Methods to quantitatively determine the separate amounts of oil and gas in a geological formation adjacent to a cased well using measurements of formation resistivity are disclosed. The steps include obtaining resistivity measurements from within a cased well of a given formation, obtaining the porosity, obtaining the resistivity of formation water present, computing the combined amounts of oil and gas present using Archie`s Equations, determining the relative amounts of oil and gas present from measurements within a cased well, and then quantitatively determining the separate amounts of oil and gas present in the formation. 7 figs.

  17. Well blowout rates in California Oil and Gas District 4--Update and Trends

    SciTech Connect

    Jordan, Preston D.; Benson, Sally M.

    2009-10-01

    Well blowouts are one type of event in hydrocarbon exploration and production that generates health, safety, environmental and financial risk. Well blowouts are variously defined as 'uncontrolled flow of well fluids and/or formation fluids from the wellbore' or 'uncontrolled flow of reservoir fluids into the wellbore'. Theoretically this is irrespective of flux rate and so would include low fluxes, often termed 'leakage'. In practice, such low-flux events are not considered well blowouts. Rather, the term well blowout applies to higher fluxes that rise to attention more acutely, typically in the order of seconds to days after the event commences. It is not unusual for insurance claims for well blowouts to exceed US$10 million. This does not imply that all blowouts are this costly, as it is likely claims are filed only for the most catastrophic events. Still, insuring against the risk of loss of well control is the costliest in the industry. The risk of well blowouts was recently quantified from an assembled database of 102 events occurring in California Oil and Gas District 4 during the period 1991 to 2005, inclusive. This article reviews those findings, updates them to a certain extent and compares them with other well blowout risk study results. It also provides an improved perspective on some of the findings. In short, this update finds that blowout rates have remained constant from 2005 to 2008 within the limits of resolution and that the decline in blowout rates from 1991 to 2005 was likely due to improved industry practice.

  18. Advanced Seismic While Drilling System

    SciTech Connect

    Robert Radtke; John Fontenot; David Glowka; Robert Stokes; Jeffery Sutherland; Ron Evans; Jim Musser

    2008-06-30

    A breakthrough has been discovered for controlling seismic sources to generate selectable low frequencies. Conventional seismic sources, including sparkers, rotary mechanical, hydraulic, air guns, and explosives, by their very nature produce high-frequencies. This is counter to the need for long signal transmission through rock. The patent pending SeismicPULSER{trademark} methodology has been developed for controlling otherwise high-frequency seismic sources to generate selectable low-frequency peak spectra applicable to many seismic applications. Specifically, we have demonstrated the application of a low-frequency sparker source which can be incorporated into a drill bit for Drill Bit Seismic While Drilling (SWD). To create the methodology of a controllable low-frequency sparker seismic source, it was necessary to learn how to maximize sparker efficiencies to couple to, and transmit through, rock with the study of sparker designs and mechanisms for (a) coupling the sparker-generated gas bubble expansion and contraction to the rock, (b) the effects of fluid properties and dynamics, (c) linear and non-linear acoustics, and (d) imparted force directionality. After extensive seismic modeling, the design of high-efficiency sparkers, laboratory high frequency sparker testing, and field tests were performed at the University of Texas Devine seismic test site. The conclusion of the field test was that extremely high power levels would be required to have the range required for deep, 15,000+ ft, high-temperature, high-pressure (HTHP) wells. Thereafter, more modeling and laboratory testing led to the discovery of a method to control a sparker that could generate low frequencies required for deep wells. The low frequency sparker was successfully tested at the Department of Energy Rocky Mountain Oilfield Test Center (DOE RMOTC) field test site in Casper, Wyoming. An 8-in diameter by 26-ft long SeismicPULSER{trademark} drill string tool was designed and manufactured by TII

  19. Screening Assessment of Potential Human-Health Risk from Future Natural-Gas Drilling Near Project Rulison in Western Colorado

    SciTech Connect

    Daniels Jeffrey I.,Chapman Jenny B.

    2012-01-01

    The Project Rulison underground nuclear test was conducted in 1969 at a depth of 8,400 ft in the Williams Fork Formation of the Piceance Basin, west-central Colorado (Figure 1). The U.S. Department of Energy Office of Legacy Management (LM) is the steward of the site. Their management is guided by data collected from past site investigations and current monitoring, and by the results of calculations of expected behavior of contaminants remaining in the deep subsurface. The purpose of this screening risk assessment is to evaluate possible health risks from current and future exposure to Rulison contaminants so the information can be factored into LM's stewardship decisions. For example, these risk assessment results can inform decisions regarding institutional controls at the site and appropriate monitoring of nearby natural-gas extraction activities. Specifically, the screening risk analysis can provide guidance for setting appropriate action levels for contaminant monitoring to ensure protection of human health.

  20. Reservoir visualization for geosteering of horizontal wells

    SciTech Connect

    Bryant, I.D.; Baygun, B.; Frass, M.; Casco, R.

    1996-08-01

    Horizontal infill wells in the Lower Lagunillas reservoir of Bloque IV, Lake Maracaibo are being drilled in thin, oil-bearing zones that have been bypassed by gas. Steering the horizontal sections of these wells requires high resolution reservoir models that can be updated during drilling. An example from well VLD-1152 serves to illustrate how these models are generated and used. Resistivity images collected by wireline and logging-while-drilling (LWD) tools in the pilot well formed the basis of prejob, high resolution modeling of the formation properties. 3-D seismic data and data from an offset vertical seismic profile collected in the pilot well provided the structural model. During drilling information from cuttings and LWD tools was used to continuously update these models. After the well had been drilled, analysis of LWD resistivity images provided a detailed model of the relationship between the well trajectory and the dip of the formation. This information is used to improve interpretation of the LWD logs to provide a petrophysical evaluation of the well.

  1. Establishing nuclear facility drill programs

    SciTech Connect

    1996-03-01

    The purpose of DOE Handbook, Establishing Nuclear Facility Drill Programs, is to provide DOE contractor organizations with guidance for development or modification of drill programs that both train on and evaluate facility training and procedures dealing with a variety of abnormal and emergency operating situations likely to occur at a facility. The handbook focuses on conducting drills as part of a training and qualification program (typically within a single facility), and is not intended to included responses of personnel beyond the site boundary, e.g. Local or State Emergency Management, Law Enforcement, etc. Each facility is expected to develop its own facility specific scenarios, and should not limit them to equipment failures but should include personnel injuries and other likely events. A well-developed and consistently administered drill program can effectively provide training and evaluation of facility operating personnel in controlling abnormal and emergency operating situations. To ensure the drills are meeting their intended purpose they should have evaluation criteria for evaluating the knowledge and skills of the facility operating personnel. Training and evaluation of staff skills and knowledge such as component and system interrelationship, reasoning and judgment, team interactions, and communications can be accomplished with drills. The appendices to this Handbook contain both models and additional guidance for establishing drill programs at the Department`s nuclear facilities.

  2. The Alaska North Slope Stratigraphic Test Well

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    The Alaska North Slope Stratigraphic Test Well image showing Donyon Rig Photo courtesy Doyon Drilling Inc Project Background Maps of Research Area Photo Gallery Well log Data From BP-DOE-US "Mount Elbert" Test Is Now Available. Digital well log data acquired at the February 2007 gas hydrates test well at Milne Point, Alaska are now available. Data include Gamma ray, neutron porosity, density porosity, three-dimensional high resolution resistivity, acoustics including compressional- and

  3. A study of geothermal drilling and the production of electricity from geothermal energy

    SciTech Connect

    Pierce, K.G.; Livesay, B.J.

    1994-01-01

    This report gives the results of a study of the production of electricity from geothermal energy with particular emphasis on the drilling of geothermal wells. A brief history of the industry, including the influence of the Public Utilities Regulatory Policies Act, is given. Demand and supply of electricity in the United States are touched briefly. The results of a number of recent analytical studies of the cost of producing electricity are discussed, as are comparisons of recent power purchase agreements in the state of Nevada. Both the costs of producing electricity from geothermal energy and the costs of drilling geothermal wells are analyzed. The major factors resulting in increased cost of geothermal drilling, when compared to oil and gas drilling, are discussed. A summary of a series of interviews with individuals representing many aspects of the production of electricity from geothermal energy is given in the appendices. Finally, the implications of these studies are given, conclusions are presented, and program recommendations are made.

  4. Combination gas-producing and waste-water disposal well. [DOE patent application

    DOEpatents

    Malinchak, R.M.

    1981-09-03

    The present invention is directed to a waste-water disposal system for use in a gas recovery well penetrating a subterranean water-containing and methane gas-bearing coal formation. A cased bore hole penetrates the coal formation and extends downwardly therefrom into a further earth formation which has sufficient permeability to absorb the waste water entering the borehole from the coal formation. Pump means are disposed in the casing below the coal formation for pumping the water through a main conduit towards the water-absorbing earth formation. A barrier or water plug is disposed about the main conduit to prevent water flow through the casing except for through the main conduit. Bypass conduits disposed above the barrier communicate with the main conduit to provide an unpumped flow of water to the water-absorbing earth formation. One-way valves are in the main conduit and in the bypass conduits to provide flow of water therethrough only in the direction towards the water-absorbing earth formation.

  5. Optimizing drilling performance using a selected drilling fluid

    DOEpatents

    Judzis, Arnis; Black, Alan D.; Green, Sidney J.; Robertson, Homer A.; Bland, Ronald G.; Curry, David Alexander; Ledgerwood, III, Leroy W.

    2011-04-19

    To improve drilling performance, a drilling fluid is selected based on one or more criteria and to have at least one target characteristic. Drilling equipment is used to drill a wellbore, and the selected drilling fluid is provided into the wellbore during drilling with the drilling equipment. The at least one target characteristic of the drilling fluid includes an ability of the drilling fluid to penetrate into formation cuttings during drilling to weaken the formation cuttings.

  6. Stimulation rationale for shale gas wells: a state-of-the-art report

    SciTech Connect

    Young, C.; Barbour, T.; Blanton, T.L.

    1980-12-01

    Despite the large quantities of gas contained in the Devonian Shales, only a small percentage can be produced commercially by current production methods. This limited production derives both from the unique reservoir properties of the Devonian Shales and the lack of stimulation technologies specifically designed for a shale reservoir. Since October 1978 Science Applications, Inc. has been conducting a review and evaluation of various shale well stimulation techniques with the objective of defining a rationale for selecting certain treatments given certain reservoir conditions. Although this review and evaluation is ongoing and much more data will be required before a definitive rationale can be presented, the studies to date do allow for many preliminary observations and recommendations. For the hydraulic type treatments the use of low-residual-fluid treatments is highly recommended. The excellent shale well production which is frequently observed with only moderate wellbore enlargement treatments indicates that attempts to extend fractures to greater distances with massive hydraulic treatments are not warranted. Immediate research efforts should be concentrated upon limiting production damage by fracturing fluids retained in the formation, and upon improving proppant transport and placement so as to maximize fracture conductivity. Recent laboratory, numerical modeling and field studies all indicate that the gas fracturing effects of explosive/propellant type treatments are the predominate production enhancement mechanism and that these effects can be controlled and optimized with properly designed charges. Future research efforts should be focused upon the understanding, prediction and control of wellbore fracturing with tailored-pulse-loading charges. 36 references, 7 figures, 2 tables.

  7. Proceedings of the 1992 SPE Permian Basin oil and gas recovery conference

    SciTech Connect

    Not Available

    1992-01-01

    This book covers the proceedings of the 1992 Permian Basin Oil and Gas Recovery Conference. Topics covered include: fluid-loss measurements from drilling fluid, CO{sub 2} injection, coalbed methane production, drilling equipment, hydraulic fracturing in horizontal wells, reservoir characterization, cementing and well completions, and well testing.

  8. Impedance matched joined drill pipe for improved acoustic transmission

    DOEpatents

    Moss, William C.

    2000-01-01

    An impedance matched jointed drill pipe for improved acoustic transmission. A passive means and method that maximizes the amplitude and minimize the temporal dispersion of acoustic signals that are sent through a drill string, for use in a measurement while drilling telemetry system. The improvement in signal transmission is accomplished by replacing the standard joints in a drill string with joints constructed of a material that is impedance matched acoustically to the end of the drill pipe to which it is connected. Provides improvement in the measurement while drilling technique which can be utilized for well logging, directional drilling, and drilling dynamics, as well as gamma-ray spectroscopy while drilling post shot boreholes, such as utilized in drilling post shot boreholes.

  9. Formation resistivity measurements from within a cased well used to quantitatively determine the amount of oil and gas present

    DOEpatents

    Vail, III, William Banning

    2000-01-01

    Methods to quantitatively determine the separate amounts of oil and gas in a geological formation adjacent to a cased well using measurements of formation resistivity. The steps include obtaining resistivity measurements from within a cased well of a given formation, obtaining the porosity, obtaining the resistivity of formation water present, computing the combined amounts of oil and gas present using Archie's Equations, determining the relative amounts of oil and gas present from measurements within a cased well, and then quantitatively determining the separate amounts of oil and gas present in the formation. Resistivity measurements are obtained from within the cased well by conducting A.C. current from within the cased well to a remote electrode at a frequency that is within the frequency range of 0.1 Hz to 20 Hz.

  10. Property:EnvReviewDrilling | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    undergoing projects in California. California Department of Conservation, Division of Oil, Gas, and Geothermal Resources will be the lead agency for exploration and drilling...

  11. Use of Downhole Motors in Geothermal Drilling in the Philippines

    SciTech Connect

    Pyle, D. E.

    1981-01-01

    This paper describes the use of downhole motors in the Tiwi geothermal field in the Philippines, The discussion includes the application Of a Dyna-Drill with insert-type bits for drilling through surface alluvium. The economics of this type of drilling are compared to those of conventional rotary drilling. The paper also describes the use of a turbodrill that drills out scale as the well produces geothermal fluids.

  12. Rotary blasthole drilling update

    SciTech Connect

    Fiscor, S.

    2008-02-15

    Blasthole drilling rigs are the unsung heroes of open-pit mining. Recently manufacturers have announced new tools. Original equipment manufactures (OEMs) are making safer and more efficient drills. Technology and GPS navigation systems are increasing drilling accuracy. The article describes features of new pieces of equipment: Sandvik's DR460 rotary blasthole drill, P & H's C-Series drills and Atlas Copco's Pit Viper PV275 multiphase rotary blasthole drill rig. DrillNav Plus is a blasthole navigation system developed by Leica Geosystems. 5 photos.

  13. SMALLER FOOTPRINT DRILLING SYSTEM FOR DEEP AND HARD ROCK ENVIRONMENTS; FEASIBILITY OF ULTRA-HIGH SPEED DIAMOND DRILLING

    SciTech Connect

    Alan Black; Arnis Judzis

    2004-10-01

    The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high (greater than 10,000 rpm) rotational speeds. The work includes a feasibility of concept research effort aimed at development and test results that will ultimately result in the ability to reliably drill ''faster and deeper'' possibly with rigs having a smaller footprint to be more mobile. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration rock cutting with substantially lower inputs of energy and loads. The project draws on TerraTek results submitted to NASA's ''Drilling on Mars'' program. The objective of that program was to demonstrate miniaturization of a robust and mobile drilling system that expends small amounts of energy. TerraTek successfully tested ultrahigh speed ({approx}40,000 rpm) small kerf diamond coring. Adaptation to the oilfield will require innovative bit designs for full hole drilling or continuous coring and the eventual development of downhole ultra-high speed drives. For domestic operations involving hard rock and deep oil and gas plays, improvements in penetration rates is an opportunity to reduce well costs and make viable certain field developments. An estimate of North American hard rock drilling costs is in excess of $1,200 MM. Thus potential savings of $200 MM to $600 MM are possible if drilling rates are doubled [assuming bit life is reasonable]. The net result for operators is improved profit margin as well as an improved position on reserves. The significance of the ''ultra-high rotary speed drilling system'' is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining drilling

  14. SMALLER FOOTPRINT DRILLING SYSTEM FOR DEEP AND HARD ROCK ENVIRONMENTS; FEASIBILITY OF ULTRA-HIGH SPEED DIAMOND DRILLING

    SciTech Connect

    Alan Black; Arnis Judzis

    2004-10-01

    The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high (greater than 10,000 rpm) rotational speeds. The work includes a feasibility of concept research effort aimed at development and test results that will ultimately result in the ability to reliably drill ''faster and deeper'' possibly with rigs having a smaller footprint to be more mobile. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration rock cutting with substantially lower inputs of energy and loads. The project draws on TerraTek results submitted to NASA's ''Drilling on Mars'' program. The objective of that program was to demonstrate miniaturization of a robust and mobile drilling system that expends small amounts of energy. TerraTek successfully tested ultrahigh speed ({approx}40,000 rpm) small kerf diamond coring. Adaptation to the oilfield will require innovative bit designs for full hole drilling or continuous coring and the eventual development of downhole ultra-high speed drives. For domestic operations involving hard rock and deep oil and gas plays, improvements in penetration rates is an opportunity to reduce well costs and make viable certain field developments. An estimate of North American hard rock drilling costs is in excess of $1,200 MM. Thus potential savings of $200 MM to $600 MM are possible if drilling rates are doubled [assuming bit life is reasonable]. The net result for operators is improved profit margin as well as an improved position on reserves. The significance of the ''ultra-high rotary speed drilling system'' is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining drilling

  15. California--State Offshore Natural Gas Withdrawals from Oil Wells (Million

    Energy Information Administration (EIA) (indexed site)

    Cubic Feet) Oil Wells (Million Cubic Feet) California--State Offshore Natural Gas Withdrawals from Oil Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 11,226 12,829 1980's 11,634 11,759 12,222 12,117 12,525 13,378 12,935 10,962 9,728 8,243 1990's 7,743 7,610 7,242 6,484 7,204 5,904 6,309 7,171 6,883 6,738 2000's 7,808 7,262 7,068 6,866 6,966 6,685 6,654 6,977 6,764 5,470 2010's 5,483 4,904 4,411 5,057 5,395 4,692 - = No Data

  16. Ultratough, Thermally Stable Polycrystalline Diamond/Silicon Carbide Nanocomposites for Drill Bits

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Ultratough, Thermally Stable Polycrystalline Diamond/Silicon Carbide Nanocomposites for Drill Bits Synthesis, Characterization, and Application of Nanostructured Diamond/ Silicon Carbide Composites for Improved Drill Bit Performance Industrial drilling, mining, cutting, and grinding make heavy use of superhard materials with superior wear resistance. In the oil and gas drilling industry, the use of polycrystalline diamond compact (PDC) drill bits has become increasingly common, with PDC drill

  17. Wetland treatment of oil and gas well waste waters. Final report

    SciTech Connect

    Kadlec, R.; Srinivasan, K.

    1995-08-01

    Constructed wetlands are small on-site systems that possess three of the most desirable components of an industrial waste water treatment scheme: low cost, low maintenance and upset resistance. The main objective of the present study is to extend the knowledge base of wetland treatment systems to include processes and substances of particular importance to small, on-site systems receiving oil and gas well wastewaters. A list of the most relevant and comprehensive publications on the design of wetlands for water quality improvement was compiled and critically reviewed. Based on our literature search and conversations with researchers in the private sector, toxic organics such as Phenolics and b-naphthoic acid, (NA), and metals such as CU(II) and CR(VI) were selected as target adsorbates. A total of 90 lysimeters equivalent to a laboratory-scale wetland were designed and built to monitor the uptake and transformation of toxic organics and the immobilization of metal ions. Studies on the uptake of toxic organics such as phenol and b-naphthoic acid (NA) and heavy metals such as Cu(II) and Cr(VI), the latter two singly or as non-stoichiometric mixtures by laboratory-type wetlands (LWs) were conducted. These LWs were designed and built during the first year of this study. A road map and guidelines for a field-scale implementation of a wetland system for the treatment of oil and gas wastewaters have been suggested. Two types of wetlands, surface flow (SF) and sub surface flow (SSF), have been considered, and the relative merits of each configuration have been reviewed.

  18. Stakeholder acceptance analysis: In-well vapor stripping, in-situ bioremediation, gas membrane separation system (membrane separation)

    SciTech Connect

    Peterson, T.

    1995-12-01

    This document provides stakeholder evaluations on innovative technologies to be used in the remediation of volatile organic compounds from soils and ground water. The technologies evaluated are; in-well vapor stripping, in-situ bioremediation, and gas membrane separation.

  19. Laser Drilling - Drilling with the Power of Light

    SciTech Connect

    Iraj A. Salehi; Brian C. Gahan; Samih Batarseh

    2007-02-28

    Gas Technology Institute (GTI) has been the leading investigator in the field of high power laser applications research for well construction and completion applications. Since 1997, GTI (then as Gas Research Institute- GRI) has investigated several military and industrial laser systems and their ability to cut and drill into reservoir type rocks. In this report, GTI continues its investigation with a 5.34 kW ytterbium-doped multi-clad high power fiber laser (HPFL). When compared to its competitors; the HPFL represents a technology that is more cost effective to operate, capable of remote operations, and requires considerably less maintenance and repair. Work performed under this contract included design and implementation of laboratory experiments to investigate the effects of high power laser energy on a variety of rock types. All previous laser/rock interaction tests were performed on samples in the lab at atmospheric pressure. To determine the effect of downhole pressure conditions, a sophisticated tri-axial cell was designed and tested. For the first time, Berea sandstone, limestone and clad core samples were lased under various combinations of confining, axial and pore pressures. Composite core samples consisted of steel cemented to rock in an effort to represent material penetrated in a cased hole. The results of this experiment will assist in the development of a downhole laser perforation or side tracking prototype tool. To determine how this promising laser would perform under high pressure in-situ conditions, GTI performed a number of experiments with results directly comparable to previous data. Experiments were designed to investigate the effect of laser input parameters on representative reservoir rock types of sandstone and limestone. The focus of the experiments was on laser/rock interaction under confining pressure as would be the case for all drilling and completion operations. As such, the results would be applicable to drilling, perforation, and

  20. Chena Hot Springs Resort - Electric Power Generation Using Geothermal Fluid Coproduced from Oil and/or Gas Wells

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Using Geothermal Fluid Coproduced from Oil and/or Gas Wells PI - Bernie Karl Chena Hot Springs Resort Track 1 Project Officer: Eric Hass Total Project Funding: $724,000 April 22, 2013 This presentation does not contain any proprietary confidential, or otherwise restricted information. 2 | US DOE Geothermal Office eere.energy.gov Relevance/Impact of Research Project Objectives * Design, build, and operate low temperature, mobile, geothermal power plant capable of co-producing off oil/gas wells *

  1. Cliffs Minerals, Inc. Eastern Gas Shales Project, Ohio No. 5 well - Lorain County. Phase II report. Preliminary laboratory results

    SciTech Connect

    1980-04-01

    The US Department of Energy is funding a research and development program entitled the Eastern Gas Shales Project designed to increase commercial production of natural gas in the eastern United States from Middle and Upper Devonian Shales. The program's objectives are as follows: (1) to evaluate recoverable reserves of gas contained in the shales; (2) to enhanced recovery technology for production from shale gas reservoirs; and (3) to stimulate interest among commercial gas suppliers in the concept of producing large quantities of gas from low-yield, shallow Devonian Shale wells. The EGSP-Ohio No. 5 well was cored under a cooperative cost-sharing agreement between the Department of Energy (METC) and Columbia Gas Transmission Corporation. Detailed characterization of the core was performed at the Eastern Gas Shale Project's Core Laboratory. At the well site, suites of wet and dry hole geophysical logs were run. Characterization work performed at the Laboratory included photographic logs, lithologic logs, fracture logs, measurements of core color variation, and stratigraphic interpretation of the cored intervals. In addition samples were tested for physical properties by Michigan Technological University. Physical properties data obtained were for: directional ultrasonic velocity; directional tensile strength; strength in point load; and trends of microfractures.

  2. Multi-gradient drilling method and system

    DOEpatents

    Maurer, William C.; Medley, Jr., George H.; McDonald, William J.

    2003-01-01

    A multi-gradient system for drilling a well bore from a surface location into a seabed includes an injector for injecting buoyant substantially incompressible articles into a column of drilling fluid associated with the well bore. Preferably, the substantially incompressible articles comprises hollow substantially spherical bodies.

  3. Status Report A Review of Slimhole Drilling

    SciTech Connect

    Zhu, Tao; Carroll, Herbert B.

    1994-09-01

    This 1994 report reviews the various applications of slimhole technology including for exploration in remote areas, low-cost development wells, reentering existing wells, and horizontal and multilateral drilling. Advantages of slimholes to regular holes are presented. Limitations and disadvantages of slimholes are also discussed. In 1994, slimhole drilling was still an ongoing development technology. (DJE 2005)

  4. Vale exploratory slimhole: Drilling and testing

    SciTech Connect

    Finger, J.T.; Jacobson, R.D.; Hickox, C.E.

    1996-06-01

    During April-May, 1995, Sandia National Laboratories, in cooperation with Trans-Pacific Geothermal Corporation, drilled a 5825{prime} exploratory slimhole (3.85 in. diameter) in the Vale Known Geothermal Resource Area (KGRA) near Vale, Oregon. This well was part of Sandia`s program to evaluate slimholes as a geothermal exploration tool. During drilling we performed several temperature logs, and after drilling was complete we performed injection tests, bailing from a zone isolated by a packer, and repeated temperature logs. In addition to these measurements, the well`s data set includes: 2714{prime} of continuous core (with detailed log); daily drilling reports from Sandia and from drilling contractor personnel; daily drilling fluid records; numerous temperature logs; pressure shut-in data from injection tests; and comparative data from other wells drilled in the Vale KGRA. This report contains: (1) a narrative account of the drilling and testing, (2) a description of equipment used, (3) a brief geologic description of the formation drilled, (4) a summary and preliminary interpretation of the data, and (5) recommendations for future work.

  5. Newberry exploratory slimhole: Drilling and testing

    SciTech Connect

    Finger, J.T.; Jacobson, R.D.; Hickox, C.E.

    1997-11-01

    During July--November, 1995, Sandia National Laboratories, in cooperation with CE Exploration, drilled a 5,360 feet exploratory slimhole (3.895 inch diameter) in the Newberry Known Geothermal Resource Area (KGRA) near Bend, Oregon. This well was part of Sandia`s program to evaluate slimholes as a geothermal exploration tool. During and after drilling the authors performed numerous temperature logs, and at the completion of drilling attempted to perform injection tests. In addition to these measurements, the well`s data set includes: over 4,000 feet of continuous core (with detailed log); daily drilling reports from Sandia and from drilling contractor personnel; daily drilling fluid record; and comparative data from other wells drilled in the Newberry KGRA. This report contains: (1) a narrative account of the drilling and testing, (2) a description of equipment used, (3) a brief geologic description of the formation drilled, (4) a summary and preliminary interpretation of the data, and (5) recommendations for future work.

  6. Subsea BOP stack built for Caspian drilling

    SciTech Connect

    Not Available

    1991-12-16

    This paper reports that Shaffer Inc. completed construction of a multi-million dollar subsea drilling system for Caspmorneftegas, an operating company in the Republic of Azerbaijan. The subsea stack will be installed on the semisubmersible drilling rig Shelf 7 currently under construction in Astrakan in the Soviet Union. Shelf 7 will drill wells in the Caspian Sea, one of the most prolific production areas in the Soviet Union.

  7. DEVELOPMENT OF NEW DRILLING FLUIDS

    SciTech Connect

    David B. Burnett

    2003-08-01

    The goal of the project has been to develop new types of drill-in fluids (DIFs) and completion fluids (CFs) for use in natural gas reservoirs. Phase 1 of the project was a 24-month study to develop the concept of advanced type of fluids usable in well completions. Phase 1 tested this concept and created a kinetic mathematical model to accurately track the fluid's behavior under downhole conditions. Phase 2 includes tests of the new materials and practices. Work includes the preparation of new materials and the deployment of the new fluids and new practices to the field. The project addresses the special problem of formation damage issues related to the use of CFs and DIFs in open hole horizontal well completions. The concept of a ''removable filtercake'' has, as its basis, a mechanism to initiate or trigger the removal process. Our approach to developing such a mechanism is to identify the components of the filtercake and measure the change in the characteristics of these components when certain cleanup (filtercake removal) techniques are employed.

  8. Ultrasonic drilling apparatus

    DOEpatents

    Duran, E.L.; Lundin, R.L.

    1988-06-20

    Apparatus attachable to an ultrasonic drilling machine for drilling deep holes in very hard materials, such as boron carbide, is provided. The apparatus utilizes a hollow spindle attached to the output horn of the ultrasonic drilling machine. The spindle has a hollow drill bit attached at the opposite end. A housing surrounds the spindle, forming a cavity for holding slurry. In operation, slurry is provided into the housing, and into the spindle through inlets while the spindle is rotating and ultrasonically reciprocating. Slurry flows through the spindle and through the hollow drill bit to cleanse the cutting edge of the bit during a drilling operation. 3 figs.

  9. Ultrasonic drilling apparatus

    DOEpatents

    Duran, Edward L.; Lundin, Ralph L.

    1989-01-01

    Apparatus attachable to an ultrasonic drilling machine for drilling deep holes in very hard materials, such as boron carbide, is provided. The apparatus utilizes a hollow spindle attached to the output horn of the ultrasonic drilling machine. The spindle has a hollow drill bit attached at the opposite end. A housing surrounds the spindle, forming a cavity for holding slurry. In operation, slurry is provided into the housing, and into the spindle through inlets while the spindle is rotating and ultrasonically reciprocating. Slurry flows through the spindle and through the hollow drill bit to cleanse the cutting edge of the bit during a drilling operation.

  10. An innovative drilling system

    SciTech Connect

    Nees, J.; Dickinson, E.; Dickinson, W.; Dykstra, H.

    1991-05-01

    The principal project objectives were the following: To demonstrate the capability of the Ultrashort Radius Radial System to drill and complete multiple horizontal radials in a heavy oil formation which had a production history of thermal operations. To study the effects that horizontal radials have on steam placement at specific elevations and on reducing gravity override. To demonstrate that horizontal radials could be utilized for cyclic production, i.e. for purposes of oil production as well as for steam injection. Each of these objectives was successfully achieved in the project. Early production results indicate that radials positively influenced cyclic performance. This report documents those results. 15 refs., 29 figs., 1 tab.

  11. Potter Drilling | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Zip: 94063 Product: Potter Drilling was founded in 2004 to develop and commercialize novel drilling technology. References: Potter Drilling1 This article is a stub. You can...

  12. Analysis of core samples from the BPXA-DOE-USGS Mount Elbert gas hydrate stratigraphic test well: Insights into core disturbance and handling

    SciTech Connect

    Kneafsey, Timothy J.; Lu, Hailong; Winters, William; Boswell, Ray; Hunter, Robert; Collett, Timothy S.

    2009-09-01

    Collecting and preserving undamaged core samples containing gas hydrates from depth is difficult because of the pressure and temperature changes encountered upon retrieval. Hydrate-bearing core samples were collected at the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well in February 2007. Coring was performed while using a custom oil-based drilling mud, and the cores were retrieved by a wireline. The samples were characterized and subsampled at the surface under ambient winter arctic conditions. Samples thought to be hydrate bearing were preserved either by immersion in liquid nitrogen (LN), or by storage under methane pressure at ambient arctic conditions, and later depressurized and immersed in LN. Eleven core samples from hydrate-bearing zones were scanned using x-ray computed tomography to examine core structure and homogeneity. Features observed include radial fractures, spalling-type fractures, and reduced density near the periphery. These features were induced during sample collection, handling, and preservation. Isotopic analysis of the methane from hydrate in an initially LN-preserved core and a pressure-preserved core indicate that secondary hydrate formation occurred throughout the pressurized core, whereas none occurred in the LN-preserved core, however no hydrate was found near the periphery of the LN-preserved core. To replicate some aspects of the preservation methods, natural and laboratory-made saturated porous media samples were frozen in a variety of ways, with radial fractures observed in some LN-frozen sands, and needle-like ice crystals forming in slowly frozen clay-rich sediments. Suggestions for hydrate-bearing core preservation are presented.

  13. Examination of core samples from the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope: Effects of retrieval and preservation

    SciTech Connect

    Kneafsey, T.J.; Liu, T.J. H.; Winters, W.; Boswell, R.; Hunter, R.; Collett, T.S.

    2011-06-01

    Collecting and preserving undamaged core samples containing gas hydrates from depth is difficult because of the pressure and temperature changes encountered upon retrieval. Hydrate-bearing core samples were collected at the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well in February 2007. Coring was performed while using a custom oil-based drilling mud, and the cores were retrieved by a wireline. The samples were characterized and subsampled at the surface under ambient winter arctic conditions. Samples thought to be hydrate bearing were preserved either by immersion in liquid nitrogen (LN), or by storage under methane pressure at ambient arctic conditions, and later depressurized and immersed in LN. Eleven core samples from hydrate-bearing zones were scanned using x-ray computed tomography to examine core structure and homogeneity. Features observed include radial fractures, spalling-type fractures, and reduced density near the periphery. These features were induced during sample collection, handling, and preservation. Isotopic analysis of the methane from hydrate in an initially LN-preserved core and a pressure-preserved core indicate that secondary hydrate formation occurred throughout the pressurized core, whereas none occurred in the LN-preserved core, however no hydrate was found near the periphery of the LN-preserved core. To replicate some aspects of the preservation methods, natural and laboratory-made saturated porous media samples were frozen in a variety of ways, with radial fractures observed in some LN-frozen sands, and needle-like ice crystals forming in slowly frozen clay-rich sediments. Suggestions for hydrate-bearing core preservation are presented.

  14. Table 4.7 Crude Oil and Natural Gas Development Wells, 1949-2010

    Energy Information Administration (EIA) (indexed site)

    ... and Table 4.6 for exploratory wells only. * Service wells, stratigraphic tests, and core tests are excluded. * For 19491959, data represent wells completed in a given year. ...

  15. Electric Power Generation from Coproduced Fluids from Oil and Gas Wells

    Energy.gov [DOE]

    The primary objective of this project is to demonstrate the technical and economic feasibility of generating electricity from non-conventional low temperature (150 to 300º F) geothermal resources in oil and gas settings.

  16. Handbook of Best Practices for Geothermal Drilling Released

    Energy.gov [DOE]

    The Handbook of Best Practices for Geothermal Drilling, funded by the U.S. Department of Energy’s Geothermal Technologies Program and prepared by Sandia National Laboratories, focuses on the complex process of drilling a geothermal well.

  17. Coiled tubing drilling requires economic and technical analyses

    SciTech Connect

    Gary, S.C. )

    1995-02-20

    Field experience has proven that coiled tubing drilling is a technical and economic option on some wells; however, coiled tubing drilling is not the solution to every drilling prospect or production-enhancement job. To determine if coiled tubing drilling is viable, the geographic, technical, and economic aspects of each project must be considered in detail. Generally, with some limitations, coiled tubing drilling is feasible primarily when jointed pipe cannot be used effectively. Also, coiled tubing drilling may be more appropriate because of some special well site requirements, such as environmental regulations requiring less surface disturbance. The paper discusses technical considerations which need to be considered, economic feasibility, limitations of well types (new shallow wells, conventional reentry, through-tubing reentry, and underbalanced drilling), and outlook for further growth in the coiled tubing drilling industry.

  18. Core Drilling Demonstration

    Office of Energy Efficiency and Renewable Energy (EERE)

    Tank Farms workers demonstrate core drilling capabilities for Hanford single-shell tanks. Core drilling is used to determine the current condition of each tank to assist in the overall assessment...

  19. Drilling Best Practices

    Energy.gov [DOE]

    Drilling Best Practices lunch presentation by Douglas Blankenship at the 2012 Peer Review Meeting on May 9, 2012.

  20. Hydromechanical drilling device

    DOEpatents

    Summers, David A.

    1978-01-01

    A hydromechanical drilling tool which combines a high pressure water jet drill with a conventional roller cone type of drilling bit. The high pressure jet serves as a tap drill for cutting a relatively small diameter hole in advance of the conventional bit. Auxiliary laterally projecting jets also serve to partially cut rock and to remove debris from in front of the bit teeth thereby reducing significantly the thrust loading for driving the bit.

  1. Water management technologies used by Marcellus Shale Gas Producers.

    SciTech Connect

    Veil, J. A.; Environmental Science Division

    2010-07-30

    Natural gas represents an important energy source for the United States. According to the U.S. Department of Energy's (DOE's) Energy Information Administration (EIA), about 22% of the country's energy needs are provided by natural gas. Historically, natural gas was produced from conventional vertical wells drilled into porous hydrocarbon-containing formations. During the past decade, operators have increasingly looked to other unconventional sources of natural gas, such as coal bed methane, tight gas sands, and gas shales.

  2. High Temperature 300°C Directional Drilling System

    SciTech Connect

    Chatterjee, Kamalesh; Aaron, Dick; Macpherson, John

    2015-07-31

    Many countries around the world, including the USA, have untapped geothermal energy potential. Enhanced Geothermal Systems (EGS) technology is needed to economically utilize this resource. Temperatures in some EGS reservoirs can exceed 300°C. To effectively utilize EGS resources, an array of injector and production wells must be accurately placed in the formation fracture network. This requires a high temperature directional drilling system. Most commercial services for directional drilling systems are rated for 175°C while geothermal wells require operation at much higher temperatures. Two U.S. Department of Energy (DOE) Geothermal Technologies Program (GTP) projects have been initiated to develop a 300°C capable directional drilling system, the first developing a drill bit, directional motor, and drilling fluid, and the second adding navigation and telemetry systems. This report is for the first project, “High Temperature 300°C Directional Drilling System, including drill bit, directional motor and drilling fluid, for enhanced geothermal systems,” award number DE-EE0002782. The drilling system consists of a drill bit, a directional motor, and drilling fluid. The DOE deliverables are three prototype drilling systems. We have developed three drilling motors; we have developed four roller-cone and five Kymera® bits; and finally, we have developed a 300°C stable drilling fluid, along with a lubricant additive for the metal-to-metal motor. Metal-to-metal directional motors require coatings to the rotor and stator for wear and corrosion resistance, and this coating research has been a significant part of the project. The drill bits performed well in the drill bit simulator test, and the complete drilling system has been tested drilling granite at Baker Hughes’ Experimental Test Facility in Oklahoma. The metal-to-metal motor was additionally subjected to a flow loop test in Baker Hughes’ Celle Technology Center in Germany, where it ran for more than 100

  3. U.S. Crude Oil, Natural Gas, and Dry Exploratory and Developmental Wells

    Gasoline and Diesel Fuel Update

    Drilled (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1940's 37,312 1950's 42,050 43,643 44,563 47,740 51,109 55,150 57,170 51,995 46,941 47,563 1960's 45,619 44,254 44,158 41,467 42,293 38,773 36,384 32,234 30,599 32,187 1970's 28,010 26,133 27,709 27,420 32,901 38,721 40,855 45,852 50,145 52,204 1980's 71,205 92,090 84,914 76,405 86,128 70,796 40,611 35,473 32,343 27,988 1990's 32,067 29,528 23,608 25,451 22,255 21,600 23,886 27,586

  4. U.S. Crude Oil, Natural Gas, and Dry Exploratory and Developmental Wells

    Gasoline and Diesel Fuel Update

    Drilled (Number of Elements) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1973 2,166 1,896 2,151 1,883 2,298 2,279 2,367 2,690 2,333 2,538 2,433 2,386 1974 2,462 2,224 2,629 2,716 2,823 2,771 2,972 2,825 2,726 3,063 2,729 2,961 1975 3,067 2,467 2,876 2,953 3,029 3,188 3,330 3,577 3,544 3,936 3,340 3,414 1976 3,891 3,024 3,373 3,256 3,157 3,447 3,213 3,647 3,502 3,588 3,406 3,351 1977 3,324 3,124 3,875 3,565 3,788 3,968 3,799 4,222 4,021 4,222 3,976 3,968 1978 3,852 3,074 3,800 4,231

  5. Thermal indicator for wells

    DOEpatents

    Gaven, Jr., Joseph V.; Bak, Chan S.

    1983-01-01

    Minute durable plate-like thermal indicators are employed for precision measuring static and dynamic temperatures of well drilling fluids. The indicators are small enough and sufficiently durable to be circulated in the well with drilling fluids during the drilling operation. The indicators include a heat resistant indicating layer, a coacting meltable solid component and a retainer body which serves to unitize each indicator and which may carry permanent indicator identifying indicia. The indicators are recovered from the drilling fluid at ground level by known techniques.

  6. Regional long-term production modeling from a single well test, Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope

    SciTech Connect

    Anderson, Brian J.; Kurihara, Masanori; White, Mark D.; Moridis, George J.; Wilson, Scott J.; Pooladi-Darvish, Mehran; Gaddipati, Manohar; Masuda, Yoshihiro; Collett, Timothy S.; Hunter, Robert B.; Narita, Hideo; Rose, Kelly; Boswell, Ray

    2011-02-01

    Following the results from the open-hole formation pressure response test in the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well (Mount Elbert well) using Schlumberger's Modular Dynamics Formation Tester (MDT) wireline tool, the International Methane Hydrate Reservoir Simulator Code Comparison project performed long-term reservoir simulations on three different model reservoirs. These descriptions were based on 1) the Mount Elbert gas hydrate accumulation as delineated by an extensive history-matching exercise, 2) an estimation of the hydrate accumulation near the Prudhoe Bay L-pad, and 3) a reservoir that would be down-dip of the Prudhoe Bay L-pad and therefore warmer and deeper. All of these simulations were based, in part, on the results of the MDT results from the Mount Elbert Well. The comparison group's consensus value for the initial permeability of the hydrate-filled reservoir (k = 0.12 mD) and the permeability model based on the MDT history match were used as the basis for subsequent simulations on the three regional scenarios. The simulation results of the five different simulation codes, CMG STARS, HydrateResSim, MH-21 HYDRES, STOMP-HYD, and TOUGH+HYDRATE exhibit good qualitative agreement and the variability of potential methane production rates from gas hydrate reservoirs is illustrated. As expected, the predicted methane production rate increased with increasing in situ reservoir temperature; however, a significant delay in the onset of rapid hydrate dissociation is observed for a cold, homogeneous reservoir and it is found to be repeatable. The inclusion of reservoir heterogeneity in the description of this cold reservoir is shown to eliminate this delayed production. Overall, simulations utilized detailed information collected across the Mount Elbert reservoir either obtained or determined from geophysical well logs, including thickness (37 ft), porosity (35%), hydrate saturation (65%), intrinsic permeability (1000 mD), pore water

  7. Elf well turns 90/degree/- and stays there

    SciTech Connect

    Astier, B.; Jourdan, A.; Baron, G.

    1981-01-01

    As part of an intensive research program, the French association IFP (Institut Francais du Petrole) and Elf-Aquitaine have drilled the first European horizontal hole. The well was spudded conventionally and then deviated so that its final path was horizontal, 2,198 ft (670 m) below the surface. More than 330 ft (100 m) were drilled between 89/degree/ and 92/degree/ of inclination. The project started with reservoir engineering studies aimed at demonstrating, on mathematical models, the effectiveness of a horizontal drain hole in areas where hydrocarbon recovery is poor or unsatisfactory, due to gas or water coning, poor flooding patterns, intersection of fractures in tight but fractured producing formations, or other causes. This technique has a number of potential applications both in and out of the oil industry. The well was drilled in 44 days. Horizontal displacement was 2,192 ft (668 m) with a total vertical depth of 2,198 ft (670 m). To accomplish this, it was necessary to drill 3,563 ft (1,086 m) of hole. In the 17/one-half/-in. hole, 73/4-in. drill collars and 5-in. heavy weight drill pipe were run above the bent sub and the monel collar. While reaming the hole, the drill string was rotated conventionally, one near bit and one stabilizer (30 ft above) being included in the string.

  8. H.R. 577: A Bill to amend the Internal Revenue Code of 1986 to provide a tax credit for the production of oil and gas from existing marginal oil and gas wells and from new oil and gas wells. Introduced in the House of Representatives, One Hundred Fourth Congress, First session

    SciTech Connect

    1995-12-31

    This document contains H.R. 577, A Bill to amend the Internal Revenue Code of 1986 to provide a tax credit for the production of oil and gas from existing marginal oil and gas wells and from new oil and gas wells. This Bill was introduced in the House of Representatives, 104th Congress, First Session, January 19, 1995.

  9. S.32: A Bill to amend the Internal Revenue Code of 1986 to provide a tax credit for the production of oil and gas from existing marginal oil and gas wells and from new oil and gas wells. Introduced in the Senate of the United States, One Hundred Fourth Congress, First session

    SciTech Connect

    1995-12-31

    This bill would establish tax credits for the production of oil and natural gas from existing marginal oil or gas wells, and from new oil and gas wells. It does so by adding a section to the Internal Revenue Code of 1986 which spells out the rules, the credit amounts, the scope of the terms used to define such facilities, and other rules.

  10. Ignitability testing for core drilling system. Final report

    SciTech Connect

    Cashdollar, K.L.; Furno, A.; Green, G.M.; Thomas, R.A.; Witwer, K.S.

    1995-06-15

    As part of a study of the hazards of the inspection of nuclear waste material stored at the Hanford, WA site, the Department of Energy (DOE) and Westinghouse Hanford Company (WHC) have developed a core drilling system to sample the material in large waste storage tanks. In support of this work, the US Bureau of Mines has studied the probability of ignition while core drilling into simulated salt cake that was permeated with a flammable gas mixture. No ignitions were observed while core drilling into the saltcake with or without a purge gas and no ignitions were observed while drilling into a steel plate.

  11. 10 Questions with Well-Bore Cement Researcher Dr. Barbara Kutchko |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy with Well-Bore Cement Researcher Dr. Barbara Kutchko 10 Questions with Well-Bore Cement Researcher Dr. Barbara Kutchko March 31, 2015 - 2:53pm Addthis Barbara Kutchko, a well-bore cement researcher, studies the make-up and properties of cement used in oil and gas drilling. | Photo courtesy of the National Energy Technology Lab (NETL). Barbara Kutchko, a well-bore cement researcher, studies the make-up and properties of cement used in oil and gas drilling. | Photo

  12. Geopressured geothermal drilling and completions technology development needs

    SciTech Connect

    Maish, A.B.

    1981-03-01

    Geopressured geothermal formations found in the Texas and Louisiana gulf coast region and elsewhere have the potential to supply large quantities of energy in the form of natural gas and warm brine (200 to 300/sup 0/F). Advances are needed, however, in hardware technology, well design technology, and drilling and completion practices to enable production and testing of exploratory wells and to enable economic production of the resource should further development be warranted. This report identifies needed technology for drilling and completing geopressured geothermal source and reinjection wells to reduce the cost and to accelerate commercial recovery of this resource. A comprehensive prioritized list of tasks to develop necessary technology has been prepared. Tasks listed in this report address a wide range of technology needs including new diagnostic techniques, control technologies, hardware, instrumentation, operational procedure guidelines and further research to define failure modes and control techniques. Tasks are organized into the functional areas of well design, drilling, casing installation, cementing, completions, logging, brine reinjection and workovers.

  13. 28. annual offshore technology conference: Proceedings. Volume 4: Field drilling and development systems

    SciTech Connect

    1996-12-31

    The 88 papers in this volume cover the following topics: Small operator implementation of subsea technology; Control system umbilicals, components and ROV interfacing; DeepStar--Results and plans; Deepwater subsea manifold systems; Drilling technology; Limit state design criteria for pipelines; Liuhua project; Mobile offshore drilling units; Offshore coiled tubing operations; Oman-India gas pipeline; Paraffin and hydrate control; Pompano--A deepwater subsea development; Severe operating conditions; Subsea production systems; and Well completions technology. Papers have been processed separately for inclusion on the data base.

  14. High Temperature Battery for Drilling Applications

    SciTech Connect

    Josip Caja

    2009-12-31

    In this project rechargeable cells based on the high temperature electrochemical system Na/beta''-alumina/S(IV) in AlCl3/NaCl were developed for application as an autonomous power source in oil/gas deep drilling wells. The cells operate in the temperature range from 150 C to 250 C. A prototype DD size cell was designed and built based on the results of finite element analysis and vibration testing. The cell consisted of stainless steel case serving as anode compartment with cathode compartment installed in it and a seal closing the cell. Critical element in cell design and fabrication was hermetically sealing the cell. The seal had to be leak tight, thermally and vibration stable and compatible with electrode materials. Cathode compartment was built of beta''-alumina tube which served as an electrolyte, separator and cathode compartment.

  15. An evaluation of the deep reservoir conditions of the Bacon-Manito geothermal field, Philippines using well gas chemistry

    SciTech Connect

    D'Amore, Franco; Maniquis-Buenviaje, Marinela; Solis, Ramonito P.

    1993-01-28

    Gas chemistry from 28 wells complement water chemistry and physical data in developing a reservoir model for the Bacon-Manito geothermal project (BMGP), Philippines. Reservoir temperature, THSH, and steam fraction, y, are calculated or extrapolated from the grid defined by the Fischer-Tropsch (FT) and H2-H2S (HSH) gas equilibria reactions. A correction is made for H2 that is lost due to preferential partitioning into the vapor phase and the reequilibration of H2S after steam loss.

  16. Where is the coiled tubing wave headed. [The increased use of coiled tube drilling equipment in the oil and gas industry

    SciTech Connect

    Newman, K. )

    1994-09-01

    In the late 1980s, the coiled tubing (CT) service market began a wave of growth and expansion unparalleled by other oil field services. In 1989, market growth was so rapid it was referred to as a ''CT revolution.'' The trend has continued through the early 1990s with annual growth rates of 20%--30%, while other oil field service markets have been stagnant or even shrinking. With the recent advent of open-hole CT drilling (CTD) and CT completions (CTC), the wave's momentum is increasing with no end in sight. Advances in CT manufacturing, fatigue prediction, larger-diameter tubing, CT logging and other CT equipment made in the late 1980s improved the reliability and effectiveness of CT services, triggering this wave of activity. The status of this technology is discussed along with the performance and reliability of coiled tubing drills.

  17. Deep drilling phase of the Pen Brand Fault Program

    SciTech Connect

    Stieve, A.

    1991-05-15

    This deep drilling activity is one element of the Pen Branch Fault Program at Savannah River Site (SRS). The effort will consist of three tasks: the extension of wells PBF-7 and PBF-8 into crystalline basement, geologic and drilling oversight during drilling operations, and the lithologic description and analysis of the recovered core. The drilling program addresses the association of the Pen Branch fault with order fault systems such as the fault that formed the Bunbarton basin in the Triassic.

  18. Well-to-Wheels Analysis of Energy Use and Greenhouse Gas Emissions...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of the upstream mix of electricity generation technologies for recharging plug-in hybrid electric vehicles (PHEVs), as well as the powertrain technology and fuel sources for PHEVs. ...

  19. Well-to-Wheels analysis of landfill gas-based pathways and their addition to the GREET model.

    SciTech Connect

    Mintz, M.; Han, J.; Wang, M.; Saricks, C.; Energy Systems

    2010-06-30

    Today, approximately 300 million standard cubic ft/day (mmscfd) of natural gas and 1600 MW of electricity are produced from the decomposition of organic waste at 519 U.S. landfills (EPA 2010a). Since landfill gas (LFG) is a renewable resource, this energy is considered renewable. When used as a vehicle fuel, compressed natural gas (CNG) produced from LFG consumes up to 185,000 Btu of fossil fuel and generates from 1.5 to 18.4 kg of carbon dioxide-equivalent (CO{sub 2}e) emissions per million Btu of fuel on a 'well-to-wheel' (WTW) basis. This compares with approximately 1.1 million Btu and 78.2 kg of CO{sub 2}e per million Btu for CNG from fossil natural gas and 1.2 million Btu and 97.5 kg of CO{sub 2}e per million Btu for petroleum gasoline. Because of the additional energy required for liquefaction, LFG-based liquefied natural gas (LNG) requires more fossil fuel (222,000-227,000 Btu/million Btu WTW) and generates more GHG emissions (approximately 22 kg CO{sub 2}e /MM Btu WTW) if grid electricity is used for the liquefaction process. However, if some of the LFG is used to generate electricity for gas cleanup and liquefaction (or compression, in the case of CNG), vehicle fuel produced from LFG can have no fossil fuel input and only minimal GHG emissions (1.5-7.7 kg CO{sub 2}e /MM Btu) on a WTW basis. Thus, LFG-based natural gas can be one of the lowest GHG-emitting fuels for light- or heavy-duty vehicles. This report discusses the size and scope of biomethane resources from landfills and the pathways by which those resources can be turned into and utilized as vehicle fuel. It includes characterizations of the LFG stream and the processes used to convert low-Btu LFG into high-Btu renewable natural gas (RNG); documents the conversion efficiencies and losses of those processes, the choice of processes modeled in GREET, and other assumptions used to construct GREET pathways; and presents GREET results by pathway stage. GREET estimates of well-to-pump (WTP), pump

  20. Method of deep drilling

    DOEpatents

    Colgate, Stirling A.

    1984-01-01

    Deep drilling is facilitated by the following steps practiced separately or in any combination: (1) Periodically and sequentially fracturing zones adjacent the bottom of the bore hole with a thixotropic fastsetting fluid that is accepted into the fracture to overstress the zone, such fracturing and injection being periodic as a function of the progression of the drill. (2) Casing the bore hole with ductile, pre-annealed casing sections, each of which is run down through the previously set casing and swaged in situ to a diameter large enough to allow the next section to run down through it. (3) Drilling the bore hole using a drill string of a low density alloy and a high density drilling mud so that the drill string is partially floated.

  1. Geothermal Drilling Organization

    SciTech Connect

    Sattler, A.R.

    1999-07-07

    The Geothermal Drilling Organization (GDO), founded in 1982 as a joint Department of Energy (DOE)-Industry organization, develops and funds near-term technology development projects for reducing geothermal drilling costs. Sandia National Laboratories administers DOE funds to assist industry critical cost-shared projects and provides development support for each project. GDO assistance to industry is vital in developing products and procedures to lower drilling costs, in part, because the geothermal industry is small and represents a limited market.

  2. Handbook of Best Practices for Geothermal Drilling

    Office of Energy Efficiency and Renewable Energy (EERE)

    This handbook focuses on the complex process of drilling a geothermal well, including techniques and hardware that have proven successful for both direct use and electricity generation around the world.

  3. Active Suppression of Drilling System Vibrations For Deep Drilling

    SciTech Connect

    Raymond, David W.; Blankenship, Douglas A.; Buerger, Stephen; Mesh, Mikhail; Radigan, William Thomas; Su, Jiann-Cherng

    2015-10-01

    The dynamic stability of deep drillstrings is challenged by an inability to impart controllability with ever-changing conditions introduced by geology, depth, structural dynamic properties and operating conditions. A multi-organizational LDRD project team at Sandia National Laboratories successfully demonstrated advanced technologies for mitigating drillstring vibrations to improve the reliability of drilling systems used for construction of deep, high-value wells. Using computational modeling and dynamic substructuring techniques, the benefit of controllable actuators at discrete locations in the drillstring is determined. Prototype downhole tools were developed and evaluated in laboratory test fixtures simulating the structural dynamic response of a deep drillstring. A laboratory-based drilling applicability demonstration was conducted to demonstrate the benefit available from deployment of an autonomous, downhole tool with self-actuation capabilities in response to the dynamic response of the host drillstring. A concept is presented for a prototype drilling tool based upon the technical advances. The technology described herein is the subject of U.S. Patent Application No. 62219481, entitled "DRILLING SYSTEM VIBRATION SUPPRESSION SYSTEMS AND METHODS", filed September 16, 2015.

  4. Water and gas chemistry from HGP-A geothermal well: January 1980 flow test

    SciTech Connect

    Thomas, D.M.

    1980-09-01

    A two-week production test was conducted on the geothermal well HGP-A. Brine chemistry indicates that approximately six percent of the well fluids are presently derived from seawater and that this fraction will probably increase during continued production. Reservoir production is indicated to be from two chemically distinct aquifers: one having relatively high salinity and low production and the other having lower salinity and producing the bulk of the discharge.

  5. MMW Drilling & Lining

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    MMW Drilling & Lining PI & Presenter: Ken Oglesby Impact Technologies LLC SubRecipient: MIT- Dr.Woskov, Dr.Einstein Research & Development Track Project Officers: Ava Coy & Erik ...

  6. Remote drill bit loader

    DOEpatents

    Dokos, J.A.

    1997-12-30

    A drill bit loader is described for loading a tapered shank of a drill bit into a similarly tapered recess in the end of a drill spindle. The spindle has a transverse slot at the inner end of the recess. The end of the tapered shank of the drill bit has a transverse tang adapted to engage in the slot so that the drill bit will be rotated by the spindle. The loader is in the form of a cylinder adapted to receive the drill bit with the shank projecting out of the outer end of the cylinder. Retainer pins prevent rotation of the drill bit in the cylinder. The spindle is lowered to extend the shank of the drill bit into the recess in the spindle and the spindle is rotated to align the slot in the spindle with the tang on the shank. A spring unit in the cylinder is compressed by the drill bit during its entry into the recess of the spindle and resiliently drives the tang into the slot in the spindle when the tang and slot are aligned. 5 figs.

  7. Remote drill bit loader

    DOEpatents

    Dokos, James A. (Idaho Falls, ID)

    1997-01-01

    A drill bit loader for loading a tapered shank of a drill bit into a similarly tapered recess in the end of a drill spindle. The spindle has a transverse slot at the inner end of the recess. The end of the tapered shank of the drill bit has a transverse tang adapted to engage in the slot so that the drill bit will be rotated by the spindle. The loader is in the form of a cylinder adapted to receive the drill bit with the shank projecting out of the outer end of the cylinder. Retainer pins prevent rotation of the drill bit in the cylinder. The spindle is lowered to extend the shank of the drill bit into the recess in the spindle and the spindle is rotated to align the slot in the spindle with the tang on the shank. A spring unit in the cylinder is compressed by the drill bit during its entry into the recess of the spindle and resiliently drives the tang into the slot in the spindle when the tang and slot are aligned.

  8. Training and Drills

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    1997-08-21

    The volume offers a framework for effective management of emergency response training and drills. Canceled by DOE G 151.1-3.

  9. Drilling Best Practices

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Drilling Best Practices Douglas Blankenship Sandia National Laboratories Lunch Presentation May 9, 2012 This presentation does not contain any proprietary confidential, or ...

  10. An overview of McKittrick coiled tubing drilling project

    SciTech Connect

    Ewert, D.P.; Ramagno, R.A.; Hurkmans, R.S.

    1995-12-31

    In an effort to reduce drilling costs on thermal wells, service companies began reducing casing sizes and well pad location sizes in 1993. Based on a successful four-well pilot project completed in early 1994 at the Belridge Field, a 115-well steam injector project was completed in the McKittrick Field in late 1994, of which 68 wells were drilled with coiled tubing. This paper will discuss why slimhole completions and coiled tubing drilling were selected for this project, the operational aspects of drilling 68 wells in 92 working days, and conclusions about the project.

  11. NATURAL GAS FROM SHALE: Questions and Answers Shale Gas Development Challenges -

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Water Key Points: * As with conventional oil and gas development, requirements from eight federal (including the Clean Water Act) and numerous state and local environmental and public health laws apply to shale gas and other unconventional oil and gas development. Consequently, the fracturing of wells is a process that is highly engineered, controlled and monitored. * Shale gas operations use water for drilling; water is also the primary component of fracturing fluid. * This water is likely to

  12. Well-to-Wheels Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Well-to-Wheels Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles Amgad Elgowainy and Michael Wang Center for Transportation Research Argonne National Laboratory LDV Workshop July26, 2010 2 2 2 Team Members 2  ANL's Energy Systems (ES) Division  Michael Wang (team leader)  Dan Santini  Anant Vyas  Amgad Elgowainy  Jeongwoo Han  Aymeric Rousseau  ANL's Decision and Information Sciences (DIS) Division:  Guenter Conzelmann  Leslie Poch 

  13. Two-dimensional electron gas in monolayer InN quantum wells

    SciTech Connect

    Pan, Wei; Dimakis, Emmanouil; Wang, George T.; Moustakas, Theodore D.; Tsui, Daniel C.

    2014-11-24

    We report in this letter experimental results that confirm the two-dimensional nature of the electron systems in monolayer InN quantum wells embedded in GaN barriers. The electron density and mobility of the two-dimensional electron system (2DES) in these InN quantum wells are 5×1015 cm-2 and 420 cm2 /Vs, respectively. Moreover, the diagonal resistance of the 2DES shows virtually no temperature dependence in a wide temperature range, indicating the topological nature of the 2DES.

  14. Two-dimensional electron gas in monolayer InN quantum wells

    DOE PAGES [OSTI]

    Pan, Wei; Dimakis, Emmanouil; Wang, George T.; Moustakas, Theodore D.; Tsui, Daniel C.

    2014-11-24

    We report in this letter experimental results that confirm the two-dimensional nature of the electron systems in monolayer InN quantum wells embedded in GaN barriers. The electron density and mobility of the two-dimensional electron system (2DES) in these InN quantum wells are 5×1015 cm-2 and 420 cm2 /Vs, respectively. Moreover, the diagonal resistance of the 2DES shows virtually no temperature dependence in a wide temperature range, indicating the topological nature of the 2DES.

  15. Step-out Well | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    step-out well should be drilled where there is some evidence of a permeable formation linked with the main reservoir. The well should be drilled in a location to where if it is an...

  16. Development and Application of Insulated Drill Pipe for High Temperature, High Pressure Drilling

    SciTech Connect

    Tom Champness; Tony Worthen; John Finger

    2008-12-31

    This project aimed to extend the insulated drill pipe (IDP) technology already demonstrated for geothermal drilling to HTHP drilling in deep gas reservoirs where temperatures are high enough to pose a threat to downhole equipment such as motors and electronics. The major components of the project were: a preliminary design; a market survey to assess industry needs and performance criteria; mechanical testing to verify strength and durability of IDP; and development of an inspection plan that would quantify the ability of various inspection techniques to detect flaws in assembled IDP. This report is a detailed description of those activities.

  17. Productivity and injectivity of horizontal wells. Quarterly report...

    Office of Scientific and Technical Information (OSTI)

    99 MATHEMATICS, COMPUTERS, INFORMATION SCIENCE, MANAGEMENT, LAW, MISCELLANEOUS; OIL WELLS; DAMAGE; WELL DRILLING; WELL COMPLETION; EQUATIONS; PROGRESS REPORT This report...

  18. Guiding drilling operations

    SciTech Connect

    Not Available

    1985-06-01

    Artificial intelligence (AI) was the overriding theme at this year's Offshore Technology Conference (OTC) exhibition and conference, with the emphasis more on drilling rather than production methods. A wide range of electronic aids to improve accuracy and speed in drilling operations - from calculators to computers - is described.

  19. Texas' lightly drilled Dalhart basin getting more oil exploration

    SciTech Connect

    Petzet, G.A.

    1991-06-24

    The Dalhart basin of the northwestern Texas Panhandle, the state's least drilled prospective area, is showing signs of another round of exploratory drilling. Horizon Oil and Gas Co., Dallas, opened ERT (Granite Wash) field in Potter County at 102 Bivins Ranch 9 miles north of Amarillo in early June. The discovery well pumped 105 b/d of 37.7{degrees} gravity oil and 48 b/d of water with gas too small to measure from perforations at 5,820-5,913 ft. Total depth is 7,516 ft in granite. In Hartley County, McKinney Operating Co., Amarillo, is pumped testing a second well in a field it discovered in 1990 that opened the first commercial Permian oil production in the Dalhart basin. The discovery well, McKinney's 1 Proctor, in section 63, block 22, CSL Survey, 19 miles west of Channing, pumped 12 b/d of oil and 15 b/d of water from Wolfcamp perforations at 4,038-50 ft. The well, which opened Proctor Ranch field, is producing about 35 b/d of oil.

  20. Method for laser drilling subterranean earth formations

    DOEpatents

    Shuck, Lowell Z.

    1976-08-31

    Laser drilling of subterranean earth formations is efficiently accomplished by directing a collimated laser beam into a bore hole in registry with the earth formation and transversely directing the laser beam into the earth formation with a suitable reflector. In accordance with the present invention, the bore hole is highly pressurized with a gas so that as the laser beam penetrates the earth formation the high pressure gas forces the fluids resulting from the drilling operation into fissures and pores surrounding the laser-drilled bore so as to inhibit deleterious occlusion of the laser beam. Also, the laser beam may be dynamically programmed with some time dependent wave form, e.g., pulsed, to thermally shock the earth formation for forming or enlarging fluid-receiving fissures in the bore.