National Library of Energy BETA

Sample records for gas resource estimate

  1. Primer on gas integrated resource planning

    SciTech Connect

    Goldman, C.; Comnes, G.A.; Busch, J.; Wiel, S.

    1993-12-01

    This report discusses the following topics: gas resource planning: need for IRP; gas integrated resource planning: methods and models; supply and capacity planning for gas utilities; methods for estimating gas avoided costs; economic analysis of gas utility DSM programs: benefit-cost tests; gas DSM technologies and programs; end-use fuel substitution; and financial aspects of gas demand-side management programs.

  2. NETL: Natural Gas Resources

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Natural Gas Resources Useful for heating, manufacturing, and as chemical feedstock, natural gas has the added benefit of producing fewer greenhouse gas emissions than other fossil fuels used in power production.The United States is endowed with an abundance of natural gas resources, so increasing use of natural gas power can help strengthen domestic energy security. NETL research efforts enhance technologies that reduce the cost, increase the efficiency, and reduce the environmental risk of

  3. Technically Recoverable Shale Oil and Shale Gas Resources:

    Annual Energy Outlook

    ... The risked shale gas resource in-place in the dry gas prospective area is 256 Tcf, with 51 Tcf estimated as the risked, technically recoverable shale gas resource. Devonian ...

  4. Deepwater Oil & Gas Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Deepwater Oil & Gas Resources Deepwater Oil & Gas Resources The United States has significant natural gas and oil reserves. But many of these resources are increasingly harder to...

  5. Deepwater Oil & Gas Resources | Department of Energy

    Office of Environmental Management (EM)

    Deepwater Oil & Gas Resources Deepwater Oil & Gas Resources The United States has significant natural gas and oil reserves. But many of these resources are increasingly harder to ...

  6. Natural Gas Modernization Clearinghouse Resources | Department...

    Energy Saver

    Natural Gas Modernization Clearinghouse Resources Natural Gas Modernization Clearinghouse Resources << back to clearinghouse home NOTE: The resources provided here are intended for ...

  7. Imported resources - gas

    SciTech Connect

    Marxt, J.

    1995-12-01

    This paper examines aspects of the supply and demand of natural gas and natural gas products such as LNG in the Czech Republic.

  8. NATURAL GAS RESOURCES IN DEEP SEDIMENTARY BASINS

    SciTech Connect

    Thaddeus S. Dyman; Troy Cook; Robert A. Crovelli; Allison A. Henry; Timothy C. Hester; Ronald C. Johnson; Michael D. Lewan; Vito F. Nuccio; James W. Schmoker; Dennis B. Riggin; Christopher J. Schenk

    2002-02-05

    From a geological perspective, deep natural gas resources are generally defined as resources occurring in reservoirs at or below 15,000 feet, whereas ultra-deep gas occurs below 25,000 feet. From an operational point of view, ''deep'' is often thought of in a relative sense based on the geologic and engineering knowledge of gas (and oil) resources in a particular area. Deep gas can be found in either conventionally-trapped or unconventional basin-center accumulations that are essentially large single fields having spatial dimensions often exceeding those of conventional fields. Exploration for deep conventional and unconventional basin-center natural gas resources deserves special attention because these resources are widespread and occur in diverse geologic environments. In 1995, the U.S. Geological Survey estimated that 939 TCF of technically recoverable natural gas remained to be discovered or was part of reserve appreciation from known fields in the onshore areas and State waters of the United. Of this USGS resource, nearly 114 trillion cubic feet (Tcf) of technically-recoverable gas remains to be discovered from deep sedimentary basins. Worldwide estimates of deep gas are also high. The U.S. Geological Survey World Petroleum Assessment 2000 Project recently estimated a world mean undiscovered conventional gas resource outside the U.S. of 844 Tcf below 4.5 km (about 15,000 feet). Less is known about the origins of deep gas than about the origins of gas at shallower depths because fewer wells have been drilled into the deeper portions of many basins. Some of the many factors contributing to the origin of deep gas include the thermal stability of methane, the role of water and non-hydrocarbon gases in natural gas generation, porosity loss with increasing thermal maturity, the kinetics of deep gas generation, thermal cracking of oil to gas, and source rock potential based on thermal maturity and kerogen type. Recent experimental simulations using laboratory

  9. Unconventional Oil and Gas Resources

    SciTech Connect

    2006-09-15

    World oil use is projected to grow to 98 million b/d in 2015 and 118 million b/d in 2030. Total world natural gas consumption is projected to rise to 134 Tcf in 2015 and 182 Tcf in 2030. In an era of declining production and increasing demand, economically producing oil and gas from unconventional sources is a key challenge to maintaining global economic growth. Some unconventional hydrocarbon sources are already being developed, including gas shales, tight gas sands, heavy oil, oil sands, and coal bed methane. Roughly 20 years ago, gas production from tight sands, shales, and coals was considered uneconomic. Today, these resources provide 25% of the U.S. gas supply and that number is likely to increase. Venezuela has over 300 billion barrels of unproven extra-heavy oil reserves which would give it the largest reserves of any country in the world. It is currently producing over 550,000 b/d of heavy oil. Unconventional oil is also being produced in Canada from the Athabasca oil sands. 1.6 trillion barrels of oil are locked in the sands of which 175 billion barrels are proven reserves that can be recovered using current technology. Production from 29 companies now operating there exceeds 1 million barrels per day. The report provides an overview of continuous petroleum sources and gives a concise overview of the current status of varying types of unconventional oil and gas resources. Topics covered in the report include: an overview of the history of Oil and Natural Gas; an analysis of the Oil and Natural Gas industries, including current and future production, consumption, and reserves; a detailed description of the different types of unconventional oil and gas resources; an analysis of the key business factors that are driving the increased interest in unconventional resources; an analysis of the barriers that are hindering the development of unconventional resources; profiles of key producing regions; and, profiles of key unconventional oil and gas producers.

  10. Devonian shale gas resource assessment, Illinois basin

    SciTech Connect

    Cluff, R.M.; Cluff, S.G.; Murphy, C.M.

    1996-12-31

    In 1980 the National Petroleum Council published a resource appraisal for Devonian shales in the Appalachian, Michigan, and Illinois basins. Their Illinois basin estimate of 86 TCFG in-place has been widely cited but never verified nor revised. The NPC estimate was based on extremely limited canister off-gas data, used a highly simplified volumetric computation, and is not useful for targeting specific areas for gas exploration. In 1994 we collected, digitized, and normalized 187 representative gamma ray-bulk density logs through the New Albany across the entire basin. Formulas were derived from core analyses and methane adsorption isotherms to estimate total organic carbon (r{sup 2}=0.95) and gas content (r{sup 2}=0.79-0.91) from shale bulk density. Total gas in place was then calculated foot-by-foot through each well, assuming normal hydrostatic pressures and assuming the shale is gas saturated at reservoir conditions. The values thus determined are similar to peak gas contents determined by canister off-gassing of fresh cores but are substantially greater than average off-gas values. Greatest error in the methodology is at low reservoir pressures (or at shallow depths), however, the shale is generally thinner in these areas so the impact on the total resource estimate is small. The total New Albany gas in place was determined by integration to be 323 TCFG. Of this, 210 TCF (67%) is in the upper black Grassy Creek Shale, 72 TCF (23%) in the middle black and gray Selmier Shale, and 31 TCF (10%) in the basal black Blocher Shale. Water production concerns suggest that only the Grassy Creek Shale is likely to be commercially exploitable.

  11. Devonian shale gas resource assessment, Illinois basin

    SciTech Connect

    Cluff, R.M.; Cluff, S.G.; Murphy, C.M. )

    1996-01-01

    In 1980 the National Petroleum Council published a resource appraisal for Devonian shales in the Appalachian, Michigan, and Illinois basins. Their Illinois basin estimate of 86 TCFG in-place has been widely cited but never verified nor revised. The NPC estimate was based on extremely limited canister off-gas data, used a highly simplified volumetric computation, and is not useful for targeting specific areas for gas exploration. In 1994 we collected, digitized, and normalized 187 representative gamma ray-bulk density logs through the New Albany across the entire basin. Formulas were derived from core analyses and methane adsorption isotherms to estimate total organic carbon (r[sup 2]=0.95) and gas content (r[sup 2]=0.79-0.91) from shale bulk density. Total gas in place was then calculated foot-by-foot through each well, assuming normal hydrostatic pressures and assuming the shale is gas saturated at reservoir conditions. The values thus determined are similar to peak gas contents determined by canister off-gassing of fresh cores but are substantially greater than average off-gas values. Greatest error in the methodology is at low reservoir pressures (or at shallow depths), however, the shale is generally thinner in these areas so the impact on the total resource estimate is small. The total New Albany gas in place was determined by integration to be 323 TCFG. Of this, 210 TCF (67%) is in the upper black Grassy Creek Shale, 72 TCF (23%) in the middle black and gray Selmier Shale, and 31 TCF (10%) in the basal black Blocher Shale. Water production concerns suggest that only the Grassy Creek Shale is likely to be commercially exploitable.

  12. Resources | Center for Gas Separations

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Resources Outreach Center for Gas Separations: The Film by World Energy TV Carbon Capture Course Since 2011, Berend Smit and Jeffrey Reimer have taught a course on carbon capture in collaboration with four other researchers and lectures at UC Berkeley and Lawrence Berkeley National Lab. As part of the Berkeley Energy and Climate Lectures, the joint graduate/undergraduate course encompasses an informative and detailed survey of carbon capture, geological sequestration, and alternative

  13. Time and Resource Estimation Tool

    Energy Science and Technology Software Center

    2004-06-08

    RESTORE is a computer software tool that allows one to model a complex set of steps required to accomplish a goal (e.g., repair a ruptured natural gas pipeline and restore service to customers). However, the time necessary to complete step may be uncertain and may be affected by conditions, such as the weather, the time of day, the day of the week. Therefore, "nature" can influence which steps are taken and the time needed tomore » complete each step. In addition, the tool allows one to model the costs for each step, which also may be uncertain. RESTORE allows the user to estimate the time and cost, both of which may be uncertain, to achieve an intermediate stage of completion, as well as overall completion. The software also makes it possible to model parallel, competing groups of activities (i.e., parallel paths) so that progreSs at a ‘merge point’ can proceed before other competing activities are completed. For example, RESTORE permits one to model a workaround and a simultaneous complete repair to determine a probability distribution for the earliest time service can be restored to a critical customer. The tool identifies the ‘most active path’ through the network of tasks, which is extremely important information for assessing the most effective way to speed-up or slow-down progress. Unlike other project planning and risk analysis tools, RESTORE provides an intuitive, graphical, and object-oriented environment for structuring a model and setting its parameters.« less

  14. Power, Optimization, Waste Estimating, Resourcing Tool

    Energy Science and Technology Software Center

    2009-08-13

    Planning, Optimization, Waste Estimating, Resourcing tool (POWERtool) is a comprehensive relational database software tool that can be used to develop and organize a detailed project scope, plan work tasks, develop bottoms-up field cost and waste estimates for facility Deactivation and Decommissioning (D&D), equipment, and environmental restoration (ER) projects and produces resource-loaded schedules.

  15. Unconventional gas outlook: resources, economics, and technologies

    SciTech Connect

    Drazga, B.

    2006-08-15

    The report explains the current and potential of the unconventional gas market including country profiles, major project case studies, and new technology research. It identifies the major players in the market and reports their current and forecasted projects, as well as current volume and anticipated output for specific projects. Contents are: Overview of unconventional gas; Global natural gas market; Drivers of unconventional gas sources; Forecast; Types of unconventional gas; Major producing regions Overall market trends; Production technology research; Economics of unconventional gas production; Barriers and challenges; Key regions: Australia, Canada, China, Russia, Ukraine, United Kingdom, United States; Major Projects; Industry Initiatives; Major players. Uneconomic or marginally economic resources such as tight (low permeability) sandstones, shale gas, and coalbed methane are considered unconventional. However, due to continued research and favorable gas prices, many previously uneconomic or marginally economic gas resources are now economically viable, and may not be considered unconventional by some companies. Unconventional gas resources are geologically distinct in that conventional gas resources are buoyancy-driven deposits, occurring as discrete accumulations in structural or stratigraphic traps, whereas unconventional gas resources are generally not buoyancy-driven deposits. The unconventional natural gas category (CAM, gas shales, tight sands, and landfill) is expected to continue at double-digit growth levels in the near term. Until 2008, demand for unconventional natural gas is likely to increase at an AAR corresponding to 10.7% from 2003, aided by prioritized research and development efforts. 1 app.

  16. Low-Temperature Hydrothermal Resource Potential Estimate

    DOE Data Explorer

    Katherine Young

    2016-06-30

    Compilation of data (spreadsheet and shapefiles) for several low-temperature resource types, including isolated springs and wells, delineated area convection systems, sedimentary basins and coastal plains sedimentary systems. For each system, we include estimates of the accessible resource base, mean extractable resource and beneficial heat. Data compiled from USGS and other sources. The paper (submitted to GRC 2016) describing the methodology and analysis is also included.

  17. Florida Dry Natural Gas Reserves Estimated Production (Billion...

    Energy Information Administration (EIA) (indexed site)

    Estimated Production (Billion Cubic Feet) Florida Dry Natural Gas Reserves Estimated ... Dry Natural Gas Reserves Estimated Production Florida Dry Natural Gas Proved Reserves Dry ...

  18. West Virginia Dry Natural Gas Reserves Estimated Production ...

    Energy Information Administration (EIA) (indexed site)

    Estimated Production (Billion Cubic Feet) West Virginia Dry Natural Gas Reserves Estimated ... Dry Natural Gas Reserves Estimated Production West Virginia Dry Natural Gas Proved ...

  19. Virginia Dry Natural Gas Reserves Estimated Production (Billion...

    Energy Information Administration (EIA) (indexed site)

    Estimated Production (Billion Cubic Feet) Virginia Dry Natural Gas Reserves Estimated ... Dry Natural Gas Reserves Estimated Production Virginia Dry Natural Gas Proved Reserves Dry ...

  20. New York Dry Natural Gas Reserves Estimated Production (Billion...

    Gasoline and Diesel Fuel Update

    Estimated Production (Billion Cubic Feet) New York Dry Natural Gas Reserves Estimated ... Dry Natural Gas Reserves Estimated Production New York Dry Natural Gas Proved Reserves Dry ...

  1. New Mexico Dry Natural Gas Reserves Estimated Production (Billion...

    Gasoline and Diesel Fuel Update

    Estimated Production (Billion Cubic Feet) New Mexico Dry Natural Gas Reserves Estimated ... Dry Natural Gas Reserves Estimated Production New Mexico Dry Natural Gas Proved Reserves ...

  2. North Dakota Dry Natural Gas Reserves Estimated Production (Billion...

    Energy Information Administration (EIA) (indexed site)

    Estimated Production (Billion Cubic Feet) North Dakota Dry Natural Gas Reserves Estimated ... Dry Natural Gas Reserves Estimated Production North Dakota Dry Natural Gas Proved Reserves ...

  3. Oil and gas resources in the West Siberian Basin, Russia

    SciTech Connect

    1997-12-01

    The primary objective of this study is to assess the oil and gas potential of the West Siberian Basin of Russia. The study does not analyze the costs or technology necessary to achieve the estimates of the ultimate recoverable oil and gas. This study uses reservoir data to estimate recoverable oil and gas quantities which were aggregated to the field level. Field totals were summed to a basin total for discovered fields. An estimate of undiscovered oil and gas, from work of the US Geological Survey (USGS), was added to give a total basin resource volume. Recent production decline points out Russia`s need to continue development of its discovered recoverable oil and gas. Continued exploration is required to discover additional oil and gas that remains undiscovered in the basin.

  4. How EIA Estimates Natural Gas Production

    Reports and Publications

    2004-01-01

    The Energy Information Administration (EIA) publishes estimates monthly and annually of the production of natural gas in the United States. The estimates are based on data EIA collects from gas producing states and data collected by the U. S. Minerals Management Service (MMS) in the Department of Interior. The states and MMS collect this information from producers of natural gas for various reasons, most often for revenue purposes. Because the information is not sufficiently complete or timely for inclusion in EIA's Natural Gas Monthly (NGM), EIA has developed estimation methodologies to generate monthly production estimates that are described in this document.

  5. Adjusted Estimates of Texas Natural Gas Production

    Reports and Publications

    2005-01-01

    The Energy Information Administration (EIA) is adjusting its estimates of natural gas production in Texas for 2004 and 2005 to correctly account for carbon dioxide (CO2) production.

  6. A Review of Geothermal Resource Estimation Methodology | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Geothermal Resource Estimation Methodology Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: A Review of Geothermal Resource Estimation...

  7. Estimating the Value of Electricity Storage Resources in Electricity...

    Office of Environmental Management (EM)

    Estimating the Value of Electricity Storage Resources in Electricity Markets - EAC 2011 Estimating the Value of Electricity Storage Resources in Electricity Markets - EAC 2011 The ...

  8. Oil and Gas Resources of the Fergana Basin (Uzbekistan, Tadzhikistan, and Kyrgysztan)

    Reports and Publications

    1994-01-01

    Provides the most comprehensive assessment publicly available for oil and gas resources in the Fergana Basin. Includes projections of potential oil supply and U.S. Geological Survey estimates of undiscovered recoverable oil and gas.

  9. New Methodology for Natural Gas Production Estimates

    Reports and Publications

    2010-01-01

    A new methodology is implemented with the monthly natural gas production estimates from the EIA-914 survey this month. The estimates, to be released April 29, 2010, include revisions for all of 2009. The fundamental changes in the new process include the timeliness of the historical data used for estimation and the frequency of sample updates, both of which are improved.

  10. Imported resources - gas/oil

    SciTech Connect

    Jakob, K.

    1995-12-01

    The goal of this presentation is to provide information on issues of crude oil and natural gas supply at a conference addressing the problems of energy in Eastern and Central Europe. Although this can inevitably be performed through the {open_quotes}binoculars{close_quotes} of the petroleum sector of my country, I will try to present the issues and challenges that are thought to be characteristic in general for the region.

  11. Accounting for Depletion of Oil and Gas Resources in Malaysia

    SciTech Connect

    Othman, Jamal Jafari, Yaghoob

    2012-12-15

    Since oil and gas are non-renewable resources, it is important to identify the extent to which they have been depleted. Such information will contribute to the formulation and evaluation of appropriate sustainable development policies. This paper provides an assessment of the changes in the availability of oil and gas resources in Malaysia by first compiling the physical balance sheet for the period 2000-2007, and then assessing the monetary balance sheets for the said resource by using the Net Present Value method. Our findings show serious reduction in the value of oil reserves from 2001 to 2005, due to changes in crude oil prices, and thereafter the depletion rates decreased. In the context of sustainable development planning, albeit in the weak sustainability sense, it will be important to ascertain if sufficient reinvestments of the estimated resource rents in related or alternative capitals are being attempted by Malaysia. For the study period, the cumulative resource rents were to the tune of RM61 billion. Through a depletion or resource rents policy, the estimated quantum may guide the identification of a reinvestment threshold (after considering needed capital investment for future development of the industry) in light of ensuring the future productive capacity of the economy at the time when the resource is exhausted.

  12. ,"Florida Dry Natural Gas Reserves Estimated Production (Billion...

    Energy Information Administration (EIA) (indexed site)

    Data for" ,"Data 1","Florida Dry Natural Gas Reserves Estimated ... 10:36:58 AM" "Back to Contents","Data 1: Florida Dry Natural Gas Reserves Estimated ...

  13. California Division of Oil, Gas, and Geothermal Resources | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    reservoirs. Division requirements encourage wise development of California's oil, gas, and geothermal resources while protecting the environment.2 References "CDOGGR...

  14. Natural gas resource data base for the United States (1987). Final report, June-December 1987

    SciTech Connect

    Kent, H.C.; Finney, J.J.

    1988-02-01

    This data base gives a detailed summary of the estimated potential resources of natural gas in the United States, including postulated depth distributions, field sizes, well recoveries and success rates. The study (an expansion on the 1986 resource estimates of the Potential Gas Committee) analyzed the distribution and characteristics of the resource potential estimated to occur in the onshore geologic provinces of the lower 48 states, as well as the resources beneath the continental shelf and slope offshore from Louisiana and Texas. The areas that hold the greatest potential for future natural gas exploration and development include the Atlantic, Gulf Coast, Mid-Continent and Rocky Mountain areas, which contain approximately 92% of the estimated undiscovered resources. The results of the study are intended to be used to assist in making cost determinations which can be utilized in the development of supply models and in planning.

  15. Wind Resource Estimation and Mapping at the National Renewable...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Resource Estimation and Mapping at the National Renewable Energy Laboratory April 1999 * NRELCP-500-26245 M. Schwartz Presented at the ASES Solar '99 Conference Portland, Maine...

  16. Development of Alaskan gas hydrate resources: Annual report, October 1986--September 1987

    SciTech Connect

    Sharma, G.D.; Kamath, V.A.; Godbole, S.P.; Patil, S.L.; Paranjpe, S.G.; Mutalik, P.N.; Nadem, N.

    1987-10-01

    Solid ice-like mixtures of natural gas and water in the form of natural gas hydrated have been found immobilized in the rocks beneath the permafrost in Arctic basins and in muds under the deep water along the American continental margins, in the North Sea and several other locations around the world. It is estimated that the arctic areas of the United States may contain as much as 500 trillion SCF of natural gas in the form of gas hydrates (Lewin and Associates, 1983). While the US Arctic gas hydrate resources may have enormous potential and represent long term future source of natural gas, the recovery of this resource from reservoir frozen with gas hydrates has not been commercialized yet. Continuing study and research is essential to develop technologies which will enable a detailed characterization and assessment of this alternative natural gas resource, so that development of cost effective extraction technology.

  17. Estimating the Value of Electricity Storage Resources in Electricity

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Markets - EAC 2011 | Department of Energy Estimating the Value of Electricity Storage Resources in Electricity Markets - EAC 2011 Estimating the Value of Electricity Storage Resources in Electricity Markets - EAC 2011 The purpose of this report is to assist the U.S. Department of Energy (DOE) in 1) establishing a framework for understanding the role electricity storage resources (storage) can play in wholesale and retail electricity markets, 2) assessing the value of electricity storage in a

  18. Estimating Externalities of Natural Gas Fuel Cycles, Report 4

    SciTech Connect

    Barnthouse, L.W.; Cada, G.F.; Cheng, M.-D.; Easterly, C.E.; Kroodsma, R.L.; Lee, R.; Shriner, D.S.; Tolbert, V.R.; Turner, R.S.

    1998-01-01

    This report describes methods for estimating the external costs (and possibly benefits) to human health and the environment that result from natural gas fuel cycles. Although the concept of externalities is far from simple or precise, it generally refers to effects on individuals' well being, that result from a production or market activity in which the individuals do not participate, or are not fully compensated. In the past two years, the methodological approach that this report describes has quickly become a worldwide standard for estimating externalities of fuel cycles. The approach is generally applicable to any fuel cycle in which a resource, such as coal, hydro, or biomass, is used to generate electric power. This particular report focuses on the production activities, pollution, and impacts when natural gas is used to generate electric power. In the 1990s, natural gas technologies have become, in many countries, the least expensive to build and operate. The scope of this report is on how to estimate the value of externalities--where value is defined as individuals' willingness to pay for beneficial effects, or to avoid undesirable ones. This report is about the methodologies to estimate these externalities, not about how to internalize them through regulations or other public policies. Notwithstanding this limit in scope, consideration of externalities can not be done without considering regulatory, insurance, and other considerations because these institutional factors affect whether costs (and benefits) are in fact external, or whether they are already somehow internalized within the electric power market. Although this report considers such factors to some extent, much analysis yet remains to assess the extent to which estimated costs are indeed external. This report is one of a series of reports on estimating the externalities of fuel cycles. The other reports are on the coal, oil, biomass, hydro, and nuclear fuel cycles, and on general methodology.

  19. Technically Recoverable Shale Oil and Shale Gas Resources:

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration ...

  20. Technically Recoverable Shale Oil and Shale Gas Resources

    Energy Information Administration (EIA) (indexed site)

    ... However, this more detailed delineation of the prospective area is beyond the scope of this initial resource assessment. Study Methodology EIAARI World Shale Gas and Shale Oil ...

  1. Federal Utility Partnership Working Group: Atlanta Gas Light Resources

    Energy.gov [DOE]

    Presentation—given at the April 2012 Federal Utility Partnership Working Group (FUPWG) meeting—lists Altanta Gas Light (AGL) resources and features a map of its footprint.

  2. The Greenhouse Gas Protocol Initiative: Measurement and Estimation...

    OpenEI (Open Energy Information) [EERE & EIA]

    GHG Emissions AgencyCompany Organization: World Resources Institute, World Business Council for Sustainable Development Sector: Energy, Climate Focus Area: Greenhouse Gas Phase:...

  3. Buildings Greenhouse Gas Mitigation Estimator Worksheet | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Buildings Greenhouse Gas Mitigation Estimator Worksheet Buildings Greenhouse Gas Mitigation Estimator Worksheet Excel tool helps agencies estimate the greenhouse gas (GHG) mitigation reduction from implementing energy efficiency measures across a portfolio of buildings. It is designed to be applied to groups of office buildings. For example, at a program level (regional or site) that can be summarized at the agency level. While the default savings and cost estimates apply to office

  4. Oil and gas resources remaining in the Permian Basin

    SciTech Connect

    Not Available

    1989-01-01

    In this book the authors present a reevaluation of the oil and gas resource base remaining in existing Permian Basin reservoirs. The Permian Basin is one of the nation's premier sources of oil production, accounting for almost one quarter of the total domestic oil resource. The distribution and magnitude of oil and gas resources discovered in the basin are documented at the play and reservoir levels. Data on reservoir geology and volumetric analysis come from the oil and gas atlases published by the Bureau of Economic Geology, the Bureau's oil-reservoir data base, and NRG Associates Significant Oil and Gas Fields of the United States.

  5. US Low-Temperature EGS Resource Potential Estimate

    DOE Data Explorer

    Katherine Young

    2016-06-30

    Shapefile of shallow, low-temperature EGS resources for the United States, and accompanying paper (submitted to GRC 2016) describing the methodology and analysis. These data are part of a very rough estimate created for use in the U.S. Department of Energy Geothermal Technology Office's Vision Study. They are not a robust estimate of low-temperature EGS resources in the U.S, and should be used accordingly.

  6. Expert system technology for natural gas resource development

    SciTech Connect

    Munro, R.G.

    1997-12-31

    Materials data are used in all aspects of the development of natural gas resources. Unconventional gas resources require special attention in their development and may benefit from heuristic assessments of the materials data, geological site conditions, and the knowledge base accumulated from previous unconventional site developments. Opportunities for using expert systems in the development of unconventional natural gas resources are discussed. A brief introduction to expert systems is provided in a context that emphasizes the practical nature of their service. The discussion then focuses on the development of unconventional gas reserves. Whenever possible, the likelihood of success in constructing useful expert systems for gas resource development is indicated by comparisons to existing expert systems that perform comparable functions in other industries. Significant opportunities are found for applications to site assessment, the interpretation of well log data, and the monitoring and optimization of gas processing in small-scale recovery operations.

  7. Revision Policy for EIA Weekly Underground Natural Gas Storage Estimates

    Weekly Natural Gas Storage Report

    Revision Policy for EIA Weekly Underground Natural Gas Storage Estimates Latest Update: November 16, 2015 This report consists of the following sections: General EIA Weekly Natural Gas Storage Report Revisions Policy - a description of how revisions to the Weekly Natural Gas Storage Report estimates may occur EIA Weekly Natural Gas Storage Report Policy to Allow Unscheduled Release of Revisions - a description of the policy that will be implemented in the event of an out-of-cycle release

  8. Estimation of economic parameters of U.S. hydropower resources

    SciTech Connect

    Hall, Douglas G.; Hunt, Richard T.; Reeves, Kelly S.; Carroll, Greg R.

    2003-06-01

    Tools for estimating the cost of developing and operating and maintaining hydropower resources in the form of regression curves were developed based on historical plant data. Development costs that were addressed included: licensing, construction, and five types of environmental mitigation. It was found that the data for each type of cost correlated well with plant capacity. A tool for estimating the annual and monthly electric generation of hydropower resources was also developed. Additional tools were developed to estimate the cost of upgrading a turbine or a generator. The development and operation and maintenance cost estimating tools, and the generation estimating tool were applied to 2,155 U.S. hydropower sites representing a total potential capacity of 43,036 MW. The sites included totally undeveloped sites, dams without a hydroelectric plant, and hydroelectric plants that could be expanded to achieve greater capacity. Site characteristics and estimated costs and generation for each site were assembled in a database in Excel format that is also included within the EERE Library under the title, “Estimation of Economic Parameters of U.S. Hydropower Resources - INL Hydropower Resource Economics Database.”

  9. The Resource Potential of Natural Gas Hydrates

    Energy.gov [DOE] (indexed site)

    GAIL Ltd Geological Survey of Canada Geotek Ltd Idaho National Laboratory Integrated Ocean Drilling Program JOI, Inc. Lamont-Doherty Earth Obs Ministry of Petrol and Natural Gas ...

  10. Minnesota Energy Resources (Gas) - Residential Energy Efficiency...

    Energy.gov [DOE] (indexed site)

    Tankless Water Heater Program Info Sector Name Utility Administrator Minnesota Energy Resources Website http:www.minnesotaenergyresources.comhomerebates.aspx State Minnesota...

  11. Development of Alaskan gas hydrate resources

    SciTech Connect

    Kamath, V.A.; Sharma, G.D.; Patil, S.L.

    1991-06-01

    The research undertaken in this project pertains to study of various techniques for production of natural gas from Alaskan gas hydrates such as, depressurization, injection of hot water, steam, brine, methanol and ethylene glycol solutions through experimental investigation of decomposition characteristics of hydrate cores. An experimental study has been conducted to measure the effective gas permeability changes as hydrates form in the sandpack and the results have been used to determine the reduction in the effective gas permeability of the sandpack as a function of hydrate saturation. A user friendly, interactive, menu-driven, numerical difference simulator has been developed to model the dissociation of natural gas hydrates in porous media with variable thermal properties. A numerical, finite element simulator has been developed to model the dissociation of hydrates during hot water injection process.

  12. Preliminary assessment of the availability of U.S. natural gas resources to meet U.S. transportation energy demand.

    SciTech Connect

    Singh, M. K.; Moore, J. S.

    2002-03-04

    Recent studies have indicated that substitutes for conventional petroleum resources will be needed to meet U.S. transportation energy demand in the first half of this century. One possible substitute is natural gas which can be used as a transportation fuel directly in compressed natural gas or liquefied natural gas vehicles or as resource fuel for the production of hydrogen for fuel cell vehicles. This paper contains a preliminary assessment of the availability of U.S. natural gas resources to meet future U.S. transportation fuel demand. Several scenarios of natural gas demand, including transportation demand, in the U.S. to 2050 are developed. Natural gas resource estimates for the U. S. are discussed. Potential Canadian and Mexican exports to the U.S. are estimated. Two scenarios of potential imports from outside North America are also developed. Considering all these potential imports, U.S. natural gas production requirements to 2050 to meet the demand scenarios are developed and compared with the estimates of U.S. natural gas resources. The comparison results in a conclusion that (1) given the assumptions made, there are likely to be supply constraints on the availability of U.S. natural gas supply post-2020 and (2) if natural gas use in transportation grows substantially, it will have to compete with other sectors of the economy for that supply-constrained natural gas.

  13. Estimate of Geothermal Energy Resource in Major U.S. Sedimentary...

    Office of Scientific and Technical Information (OSTI)

    Estimate of Geothermal Energy Resource in Major U.S. Sedimentary Basins (Presentation) Citation Details In-Document Search Title: Estimate of Geothermal Energy Resource in Major ...

  14. Wellhead to wire utilization of remote gas resources

    SciTech Connect

    Harris, R.A.; Hines, T.L.

    1998-12-31

    Utilization of remote gas resources in developing countries continues to offer challenges and opportunities to producers and contractors. The Aguaytia Gas and Power Project is an example where perseverance and creativity resulted in successful utilization of natural gas resources in the Ucayali Region of Central Peru, a country which previously had no natural gas infrastructure. The resource for the project was first discovered by Mobil in 1961, and remained undeveloped for over thirty years due to lack of infrastructure and markets. Maple Gas won a competitively bid contract to develop the Aguaytia gas reserves in March of 1993. The challenges facing Maple Gas were to develop downstream markets for the gas, execute contracts with Perupetro S.A. and other Peruvian government entities, raise financing for the project, and solicit and execute engineering procurement and construction (EPC) contracts for the execution of the project. The key to development of the downstream markets was the decision to generate electric power and transmit the power over the Andes to the main electrical grid along the coast of Peru. Supplemental revenue could be generated by gas sales to a small regional power plant and extraction of LPG and natural gasoline for consumption in the Peruvian market. Three separate lump sum contracts were awarded to Asea Brown Boveri (ABB) companies for the gas project, power project and transmission project. Each project presented its unique challenges, but the commonalities were the accelerated schedule, high rainfall in a prolonged wet season and severe logistics due to lack of infrastructure in the remote region. This presentation focuses on how the gas plant contractor, ABB Randall, working in harmony with the developer, Maple Gas, tackled the challenges to monetize a remote gas resource.

  15. Minnesota Energy Resources (Gas) - Commercial and Industrial...

    Energy.gov [DOE] (indexed site)

    on energy saving opportunities, and estimated costs and savings. Free facility benchmarking services which analyze energy usage are available as well. Applications for audits...

  16. Nebraska Nonassociated Natural Gas, Wet After Lease Separation, Estimated

    Energy Information Administration (EIA) (indexed site)

    Production from Reserves (Billion Cubic Feet) Estimated Production from Reserves (Billion Cubic Feet) Nebraska Nonassociated Natural Gas, Wet After Lease Separation, Estimated Production from Reserves (Billion Cubic Feet) No Data Available For This Series - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Nonassociated Natural Gas Estimated

  17. Table 17. Estimated natural gas plant liquids and dry natural gas content of tot

    Energy Information Administration (EIA) (indexed site)

    Estimated natural gas plant liquids and dry natural gas content of total natural gas proved reserves, 2014" "million barrels and billion cubic feet" ,"Total Wet Natural Gas Proved Reserves",,,,"Estimated content of proved reserves" " State and Subdivision",,2014,,,"Natural Gas Plant Liquids",,"Dry Natural Gas" ,,"billion cubic feet",,,"million barrels",,"billion cubic feet"

  18. Estimate of the Geothermal Energy Resource in the Major Sedimentary Basins in the United States (Presentation)

    SciTech Connect

    Esposito, A.; Porro, C.; Augustine, C.; Roberts, B.

    2012-09-01

    Because most sedimentary basins have been explored for oil and gas, well logs, temperatures at depth, and reservoir properties such as depth to basement and formation thickness are well known. The availability of this data reduces exploration risk and allows development of geologic exploration models for each basin. This study estimates the magnitude of recoverable geothermal energy from 15 major known U.S. sedimentary basins and ranks these basins relative to their potential. The total available thermal resource for each basin was estimated using the volumetric heat-in-place method originally proposed by (Muffler, 1979). A qualitative recovery factor was determined for each basin based on data on flow volume, hydrothermal recharge, and vertical and horizontal permeability. Total sedimentary thickness maps, stratigraphic columns, cross sections, and temperature gradient information was gathered for each basin from published articles, USGS reports, and state geological survey reports. When published data were insufficient, thermal gradients and reservoir properties were derived from oil and gas well logs obtained on oil and gas commission databases. Basin stratigraphy, structural history, and groundwater circulation patterns were studied in order to develop a model that estimates resource size, temperature distribution, and a probable quantitative recovery factor.

  19. Estimate of Geothermal Energy Resource in Major U.S. Sedimentary Basins (Presentation)

    SciTech Connect

    Porro, C.; Augustine, C.

    2012-04-01

    This study estimates the magnitude of geothermal energy from fifteen major known US sedimentary basins and ranks these basins relative to their potential. Because most sedimentary basins have been explored for oil and gas, well logs, temperatures at depth, and reservoir properties are known. This reduces exploration risk and allows development of geologic exploration models for each basin as well as a relative assessment of geologic risk elements for each play. The total available thermal resource for each basin was estimated using the volumetric heat-in-place method originally proposed by Muffler (USGS). Total sedimentary thickness maps, stratigraphic columns, cross sections, and temperature gradient Information were gathered for each basin from published articles, USGS reports, and state geological survey reports. When published data was insufficient, thermal gradients and reservoir properties were derived from oil and gas well logs obtained on oil and gas commission websites. Basin stratigraphy, structural history, and groundwater circulation patterns were studied in order to develop a model that estimates resource size and temperature distribution, and to qualitatively assess reservoir productivity.

  20. Methodology for EIA Weekly Underground Natural Gas Storage Estimates

    Weekly Natural Gas Storage Report

    Methodology for EIA Weekly Underground Natural Gas Storage Estimates Latest Update: November 16, 2015 This report consists of the following sections: Survey and Survey Processing - a description of the survey and an overview of the program Sampling - a description of the selection process used to identify companies in the survey Estimation - how the regional estimates are prepared from the collected data Computing the Five-year Averages, Maxima, Minima, and Year-Ago Values for the Weekly Natural

  1. RESOURCE CHARACTERIZATION AND QUANTIFICATION OF NATURAL GAS-HYDRATE AND ASSOCIATED FREE-GAS ACCUMULATIONS IN THE PRUDHOE BAY - KUPARUK RIVER AREA ON THE NORTH SLOPE OF ALASKA

    SciTech Connect

    Robert Hunter; Shirish Patil; Robert Casavant; Tim Collett

    2003-06-02

    Interim results are presented from the project designed to characterize, quantify, and determine the commercial feasibility of Alaska North Slope (ANS) gas-hydrate and associated free-gas resources in the Prudhoe Bay Unit (PBU), Kuparuk River Unit (KRU), and Milne Point Unit (MPU) areas. This collaborative research will provide practical input to reservoir and economic models, determine the technical feasibility of gas hydrate production, and influence future exploration and field extension of this potential ANS resource. The large magnitude of unconventional in-place gas (40-100 TCF) and conventional ANS gas commercialization evaluation creates industry-DOE alignment to assess this potential resource. This region uniquely combines known gas hydrate presence and existing production infrastructure. Many technical, economical, environmental, and safety issues require resolution before enabling gas hydrate commercial production. Gas hydrate energy resource potential has been studied for nearly three decades. However, this knowledge has not been applied to practical ANS gas hydrate resource development. ANS gas hydrate and associated free gas reservoirs are being studied to determine reservoir extent, stratigraphy, structure, continuity, quality, variability, and geophysical and petrophysical property distribution. Phase 1 will characterize reservoirs, lead to recoverable reserve and commercial potential estimates, and define procedures for gas hydrate drilling, data acquisition, completion, and production. Phases 2 and 3 will integrate well, core, log, and long-term production test data from additional wells, if justified by results from prior phases. The project could lead to future ANS gas hydrate pilot development. This project will help solve technical and economic issues to enable government and industry to make informed decisions regarding future commercialization of unconventional gas-hydrate resources.

  2. Natural Gas Resources of the Greater Green River and Wind River...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Natural Gas Resources of the Greater Green River and Wind River Basins ... Resource Type: Technical Report Research Org: National Energy Technology Laboratory, ...

  3. Community Wind Handbook/Conduct a Wind Resource Estimate | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    "Windustry. Wind Resource Assessment" "AWS Scientific for the National Renewable Energy Laboratory. Wind Resource Assessment Handbook" Retrieved from "http:...

  4. Gas-Fired Distributed Energy Resource Technology Characterizations

    SciTech Connect

    Goldstein, L.; Hedman, B.; Knowles, D.; Freedman, S. I.; Woods, R.; Schweizer, T.

    2003-11-01

    The U. S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) is directing substantial programs in the development and encouragement of new energy technologies. Among them are renewable energy and distributed energy resource technologies. As part of its ongoing effort to document the status and potential of these technologies, DOE EERE directed the National Renewable Energy Laboratory to lead an effort to develop and publish Distributed Energy Technology Characterizations (TCs) that would provide both the department and energy community with a consistent and objective set of cost and performance data in prospective electric-power generation applications in the United States. Toward that goal, DOE/EERE - joined by the Electric Power Research Institute (EPRI) - published the Renewable Energy Technology Characterizations in December 1997.As a follow-up, DOE EERE - joined by the Gas Research Institute - is now publishing this document, Gas-Fired Distributed Energy Resource Technology Characterizations.

  5. Technically Recoverable Shale Oil and Shale Gas Resources:

    Energy Information Administration (EIA) (indexed site)

    Argentina Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of

  6. Technically Recoverable Shale Oil and Shale Gas Resources:

    Energy Information Administration (EIA) (indexed site)

    Australia Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of

  7. Technically Recoverable Shale Oil and Shale Gas Resources:

    Energy Information Administration (EIA) (indexed site)

    Brazil Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the

  8. Technically Recoverable Shale Oil and Shale Gas Resources:

    Energy Information Administration (EIA) (indexed site)

    Canada Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the

  9. Technically Recoverable Shale Oil and Shale Gas Resources:

    Energy Information Administration (EIA) (indexed site)

    Chad Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the

  10. Technically Recoverable Shale Oil and Shale Gas Resources:

    Energy Information Administration (EIA) (indexed site)

    Eastern Europe Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or

  11. Technically Recoverable Shale Oil and Shale Gas Resources:

    Energy Information Administration (EIA) (indexed site)

    Egypt Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the

  12. Technically Recoverable Shale Oil and Shale Gas Resources:

    Energy Information Administration (EIA) (indexed site)

    India and Pakistan Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or

  13. Technically Recoverable Shale Oil and Shale Gas Resources:

    Energy Information Administration (EIA) (indexed site)

    Indonesia Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of

  14. Technically Recoverable Shale Oil and Shale Gas Resources:

    Energy Information Administration (EIA) (indexed site)

    Jordan Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the

  15. Technically Recoverable Shale Oil and Shale Gas Resources:

    Energy Information Administration (EIA) (indexed site)

    Kazakhstan Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of

  16. Technically Recoverable Shale Oil and Shale Gas Resources:

    Energy Information Administration (EIA) (indexed site)

    Libya Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the

  17. Technically Recoverable Shale Oil and Shale Gas Resources:

    Energy Information Administration (EIA) (indexed site)

    Mexico Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the

  18. Technically Recoverable Shale Oil and Shale Gas Resources:

    Energy Information Administration (EIA) (indexed site)

    Mongolia Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of

  19. Technically Recoverable Shale Oil and Shale Gas Resources:

    Energy Information Administration (EIA) (indexed site)

    Morocco Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of

  20. Technically Recoverable Shale Oil and Shale Gas Resources:

    Energy Information Administration (EIA) (indexed site)

    Northern South America Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or

  1. Technically Recoverable Shale Oil and Shale Gas Resources:

    Energy Information Administration (EIA) (indexed site)

    Western Europe Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or

  2. Technically Recoverable Shale Oil and Shale Gas Resources:

    Energy Information Administration (EIA) (indexed site)

    Oman Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the

  3. Technically Recoverable Shale Oil and Shale Gas Resources:

    Energy Information Administration (EIA) (indexed site)

    South America Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee

  4. Technically Recoverable Shale Oil and Shale Gas Resources:

    Energy Information Administration (EIA) (indexed site)

    Poland Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the

  5. Technically Recoverable Shale Oil and Shale Gas Resources:

    Energy Information Administration (EIA) (indexed site)

    Russia Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the

  6. Technically Recoverable Shale Oil and Shale Gas Resources:

    Energy Information Administration (EIA) (indexed site)

    South Africa Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee

  7. Technically Recoverable Shale Oil and Shale Gas Resources:

    Energy Information Administration (EIA) (indexed site)

    Thailand Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of

  8. Technically Recoverable Shale Oil and Shale Gas Resources:

    Energy Information Administration (EIA) (indexed site)

    Tunisia Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of

  9. Technically Recoverable Shale Oil and Shale Gas Resources:

    Energy Information Administration (EIA) (indexed site)

    Arab Emirates Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee

  10. Research Portfolio Report Unconventional Oil & Gas Resources:

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Air, Wellbore Integrity & Induced Seismicity Cover image: NETL's Mobile Air Monitoring Laboratory. Research Portfolio Report Unconventional Oil & Gas Resources: Air, Wellbore Integrity & Induced Seismicity DOE/NETL-2015/1693 Prepared by: Mari Nichols-Haining, Jennifer Funk, and Christine Rueter KeyLogic Systems, Inc. National Energy Technology Laboratory (NETL) Contact: James Ammer james.ammer@netl.doe.gov Contract DE-FE0004003 Activity 4003.200.03 DISCLAIMER This report was

  11. Research Portfolio Report Unconventional Oil & Gas Resources:

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Produced Water Treatment & Management Cover image: Western Research Institute treating and reusing coal-bed methane (CBM) pro- duced water. Research Portfolio Report Unconventional Oil & Gas Resources: ProducedProduced Water Treatment & Management DOE/NETL-2015/1692 Prepared by: Velda Frisco, Mari Nichols-Haining, and Christine Rueter KeyLogic Systems, Inc. National Energy Technology Laboratory (NETL) Contact: James Ammer james.ammer@netl.doe.gov Contract DE-FE0004003 Activity

  12. Research Portfolio Report Unconventional Oil & Gas Resources:

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Subsurface Geology and Engineering Cover image: "Fragments below exposure of fissile Marcellus black shale at Marcellus, N.Y." by Lvklock is licensed under CC by SA-3.0. Research Portfolio Report Unconventional Oil & Gas Resources: Subsurface Geology and Engineering DOE/NETL-2015/1691 Prepared by: Velda Frisco, Mari Nichols-Haining, and Christine Rueter KeyLogic Systems, Inc. National Energy Technology Laboratory (NETL) Contact: James Ammer james.ammer@netl.doe.gov Contract

  13. Greenhouse gas reduction strategy: A team approach to resource management

    SciTech Connect

    Ngai, C.C.; Borchert, G.; Ho, K.T.; Lee, S.

    1996-12-31

    In spite of the conflicting evidence of global warming due to greenhouse gas emission, PanCanadian accepts the reduction of greenhouse gas as both a political and environmental reality. While PanCanadian is committed to participate in the government and industry sponsored voluntary climate change challenge, we are also acutely aware of its potential impact on our competitiveness considering our status as a hydrocarbon producer and exporter. This paper describes a multi-discipline team approach to the challenge of reducing greenhouse gas. This includes identification of all greenhouse gas emission sources, listing the opportunities and relative impact of each remedial solution, and estimated cost associated with the reduction. Both immediate solutions and long term strategies are explored. This includes energy conservation, improving process efficiency and promoting environmental training and awareness programs. A number of important issues become evident in greenhouse gas reduction related to the exploration and production of hydrocarbons: depleting pressure and water encroachment in reservoirs; energy required for producing oil as opposed to producing gas; and public perception of flaring as compared with venting. A cost and benefit study of greenhouse gas reduction opportunities in terms of net present values is discussed. This paper describes a process that can be adapted by other producers in managing air emissions.

  14. Pennsylvania Dry Natural Gas Reserves Estimated Production (Billion Cubic

    Energy Information Administration (EIA) (indexed site)

    Feet) Estimated Production (Billion Cubic Feet) Pennsylvania Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 52 69 117 1980's 68 94 102 121 134 123 116 128 162 136 1990's 160 140 139 138 141 113 132 129 131 130 2000's 117 114 133 165 155 181 176 183 211 273 2010's 591 1,248 2,241 3,283 4,197 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  15. Mississippi Dry Natural Gas Reserves Estimated Production (Billion Cubic

    Energy Information Administration (EIA) (indexed site)

    Feet) Estimated Production (Billion Cubic Feet) Mississippi Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 88 121 154 1980's 170 196 198 159 181 151 165 178 181 155 1990's 141 143 109 111 82 91 88 93 79 79 2000's 78 94 98 94 93 86 83 100 110 100 2010's 87 75 64 61 54 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  16. Montana Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Estimated Production (Billion Cubic Feet) Montana Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 49 44 47 1980's 61 86 45 49 46 49 42 42 60 43 1990's 48 48 52 50 49 51 52 55 51 41 2000's 67 73 77 86 95 100 117 112 114 113 2010's 93 75 65 62 58 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015

  17. Louisiana State Offshore Dry Natural Gas Reserves Estimated Production

    Energy Information Administration (EIA) (indexed site)

    (Billion Cubic Feet) Estimated Production (Billion Cubic Feet) Louisiana State Offshore Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 407 188 200 196 195 1990's 145 127 117 137 144 152 177 161 128 117 2000's 127 158 122 126 99 68 83 86 95 83 2010's 74 49 84 66 52 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  18. Michigan Nonassociated Natural Gas, Wet After Lease Separation, Estimated

    Energy Information Administration (EIA) (indexed site)

    Production from Reserves (Billion Cubic Feet) Estimated Production from Reserves (Billion Cubic Feet) Michigan Nonassociated Natural Gas, Wet After Lease Separation, Estimated Production from Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 96 1980's 111 94 81 69 81 69 68 68 76 85 1990's 76 114 110 111 115 130 179 192 215 208 2000's 300 218 218 195 194 198 183 170 145 151 2010's 151 137 130 120 112 - = No Data Reported; -- =

  19. Miscellaneous States Dry Natural Gas Reserves Estimated Production (Billion

    Energy Information Administration (EIA) (indexed site)

    Cubic Feet) Estimated Production (Billion Cubic Feet) Miscellaneous States Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 11 12 11 1980's 18 15 7 8 7 11 6 7 10 7 1990's 7 7 6 10 10 11 6 3 3 3 2000's 6 5 7 12 8 18 10 14 20 30 2010's 16 24 14 12 11 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  20. Montana Nonassociated Natural Gas, Wet After Lease Separation, Estimated

    Energy Information Administration (EIA) (indexed site)

    Production from Reserves (Billion Cubic Feet) Estimated Production from Reserves (Billion Cubic Feet) Montana Nonassociated Natural Gas, Wet After Lease Separation, Estimated Production from Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 42 1980's 51 74 36 39 38 41 31 32 47 36 1990's 40 42 46 44 43 45 47 51 46 35 2000's 62 67 70 79 86 86 100 92 88 80 2010's 70 57 45 39 35 - = No Data Reported; -- = Not Applicable; NA = Not

  1. New Mexico - East Dry Natural Gas Reserves Estimated Production (Billion

    Energy Information Administration (EIA) (indexed site)

    Cubic Feet) Estimated Production (Billion Cubic Feet) New Mexico - East Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 604 553 596 1980's 515 531 498 424 439 429 325 382 359 396 1990's 392 424 437 456 466 418 432 418 427 491 2000's 447 518 526 507 516 522 480 462 459 454 2010's 392 377 404 447 464 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  2. New Mexico - West Dry Natural Gas Reserves Estimated Production (Billion

    Energy Information Administration (EIA) (indexed site)

    Cubic Feet) Estimated Production (Billion Cubic Feet) New Mexico - West Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 523 546 553 1980's 549 555 444 375 417 414 303 346 372 364 1990's 495 589 706 881 896 979 991 1,129 1,022 1,048 2000's 1,061 1,018 998 908 1,011 971 946 887 890 896 2010's 828 793 765 708 710 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  3. Alabama Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Estimated Production (Billion Cubic Feet) Alabama Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 24 42 46 1980's 64 85 1990's 104 146 256 281 391 360 373 376 394 376 2000's 359 345 365 350 327 300 287 274 257 254 2010's 223 218 214 175 176 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next

  4. Alaska Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Estimated Production (Billion Cubic Feet) Alaska Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 206 216 228 1980's 213 235 261 273 324 312 324 349 400 401 1990's 339 353 414 393 423 396 446 475 513 459 2000's 506 461 460 478 478 469 408 388 354 358 2010's 317 327 299 285 304 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company

  5. Arkansas Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Estimated Production (Billion Cubic Feet) Arkansas Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 109 120 100 1980's 117 121 158 206 188 175 123 129 159 166 1990's 164 173 204 188 186 182 200 189 170 163 2000's 154 160 157 166 170 174 188 269 456 698 2010's 951 1,079 1,151 1,140 1,142 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  6. California Dry Natural Gas Reserves Estimated Production (Billion Cubic

    Energy Information Administration (EIA) (indexed site)

    Feet) Estimated Production (Billion Cubic Feet) California Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 301 313 347 1980's 294 372 345 335 306 1990's 293 308 285 252 244 216 217 212 246 266 2000's 282 336 291 265 247 268 255 253 237 239 2010's 243 311 200 188 176 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  7. Alabama Nonassociated Natural Gas, Wet After Lease Separation, Estimated

    Energy Information Administration (EIA) (indexed site)

    Production from Reserves (Billion Cubic Feet) Estimated Production from Reserves (Billion Cubic Feet) Alabama Nonassociated Natural Gas, Wet After Lease Separation, Estimated Production from Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 44 1980's 63 85 1990's 104 147 254 276 385 354 367 372 391 380 2000's 365 345 365 347 325 298 286 273 262 256 2010's 225 218 204 174 167 - = No Data Reported; -- = Not Applicable; NA = Not

  8. Alaska Nonassociated Natural Gas, Wet After Lease Separation, Estimated

    Energy Information Administration (EIA) (indexed site)

    Production from Reserves (Billion Cubic Feet) Estimated Production from Reserves (Billion Cubic Feet) Alaska Nonassociated Natural Gas, Wet After Lease Separation, Estimated Production from Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 176 1980's 161 181 188 193 189 200 179 179 184 192 1990's 158 184 219 184 201 195 211 207 204 202 2000's 198 213 200 204 206 213 192 164 149 136 2010's 145 152 129 108 101 - = No Data

  9. Arkansas Nonassociated Natural Gas, Wet After Lease Separation, Estimated

    Energy Information Administration (EIA) (indexed site)

    Production from Reserves (Billion Cubic Feet) Estimated Production from Reserves (Billion Cubic Feet) Arkansas Nonassociated Natural Gas, Wet After Lease Separation, Estimated Production from Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 91 1980's 90 94 150 196 178 173 119 124 154 161 1990's 152 152 180 167 167 160 178 173 157 159 2000's 150 157 153 161 166 171 183 265 454 694 2010's 948 1,074 1,143 1,132 1,133 - = No Data

  10. California - Coastal Region Onshore Dry Natural Gas Reserves Estimated

    Energy Information Administration (EIA) (indexed site)

    Production (Billion Cubic Feet) Estimated Production (Billion Cubic Feet) California - Coastal Region Onshore Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 29 28 28 1980's 27 31 34 34 28 28 26 24 23 23 1990's 23 20 20 17 16 14 13 17 12 8 2000's 10 12 11 11 10 18 9 12 11 12 2010's 12 11 11 12 13 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure

  11. California - Los Angeles Basin Onshore Dry Natural Gas Reserves Estimated

    Energy Information Administration (EIA) (indexed site)

    Production (Billion Cubic Feet) Estimated Production (Billion Cubic Feet) California - Los Angeles Basin Onshore Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 30 22 23 1980's 19 22 13 16 26 22 17 17 15 15 1990's 10 11 10 9 9 8 10 10 9 9 2000's 8 9 9 10 10 9 8 8 6 7 2010's 6 6 6 6 7 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  12. California - San Joaquin Basin Onshore Dry Natural Gas Reserves Estimated

    Energy Information Administration (EIA) (indexed site)

    Production (Billion Cubic Feet) Estimated Production (Billion Cubic Feet) California - San Joaquin Basin Onshore Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 235 252 285 1980's 238 310 290 307 342 323 313 292 286 259 1990's 252 270 245 219 213 188 186 178 217 237 2000's 256 307 264 238 220 234 232 227 217 214 2010's 220 289 178 165 150 - = No Data Reported; -- = Not Applicable; NA = Not

  13. California Federal Offshore Dry Natural Gas Reserves Estimated Production

    Energy Information Administration (EIA) (indexed site)

    (Billion Cubic Feet) Estimated Production (Billion Cubic Feet) California Federal Offshore Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 4 4 5 1980's 5 53 46 37 36 1990's 41 47 48 45 47 47 49 37 37 37 2000's 46 44 46 47 47 33 37 40 36 37 2010's 28 31 22 21 20 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release

  14. California Nonassociated Natural Gas, Wet After Lease Separation, Estimated

    Energy Information Administration (EIA) (indexed site)

    Production from Reserves (Billion Cubic Feet) Estimated Production from Reserves (Billion Cubic Feet) California Nonassociated Natural Gas, Wet After Lease Separation, Estimated Production from Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 160 1980's 152 180 151 144 115 1990's 117 140 131 107 98 98 81 65 51 47 2000's 80 94 88 87 77 85 88 101 88 80 2010's 69 64 59 46 42 - = No Data Reported; -- = Not Applicable; NA = Not

  15. California State Offshore Dry Natural Gas Reserves Estimated Production

    Energy Information Administration (EIA) (indexed site)

    (Billion Cubic Feet) Estimated Production (Billion Cubic Feet) California State Offshore Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 7 11 11 1980's 10 16 12 11 9 1990's 8 7 10 7 6 6 8 7 8 12 2000's 8 8 7 6 7 7 6 6 3 6 2010's 5 5 5 5 6 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next

  16. Utah Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Estimated Production (Billion Cubic Feet) Utah Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 62 58 54 1980's 61 79 87 68 76 73 60 60 40 64 1990's 71 81 111 165 184 165 180 177 216 220 2000's 226 288 286 278 282 308 349 365 417 447 2010's 432 449 478 456 433 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  17. New York Nonassociated Natural Gas, Wet After Lease Separation, Estimated

    Energy Information Administration (EIA) (indexed site)

    Production from Reserves (Billion Cubic Feet) Estimated Production from Reserves (Billion Cubic Feet) New York Nonassociated Natural Gas, Wet After Lease Separation, Estimated Production from Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 11 1980's 10 11 9 12 18 18 27 23 19 22 1990's 18 19 22 22 21 16 21 18 16 15 2000's 14 28 35 35 44 51 49 44 46 35 2010's 35 30 26 22 19 - = No Data Reported; -- = Not Applicable; NA = Not

  18. Ohio Nonassociated Natural Gas, Wet After Lease Separation, Estimated

    Energy Information Administration (EIA) (indexed site)

    Production from Reserves (Billion Cubic Feet) Estimated Production from Reserves (Billion Cubic Feet) Ohio Nonassociated Natural Gas, Wet After Lease Separation, Estimated Production from Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 32 1980's 26 19 19 30 51 51 47 45 69 62 1990's 83 77 68 67 79 67 57 48 42 52 2000's 48 48 60 62 63 61 63 63 70 69 2010's 65 68 65 144 486 - = No Data Reported; -- = Not Applicable; NA = Not

  19. Texas - RRC District 1 Dry Natural Gas Reserves Estimated Production

    Energy Information Administration (EIA) (indexed site)

    (Billion Cubic Feet) Estimated Production (Billion Cubic Feet) Texas - RRC District 1 Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 119 110 124 1980's 112 139 100 87 94 114 116 130 161 206 1990's 161 159 141 112 97 89 86 105 113 107 2000's 86 104 98 100 120 128 109 92 85 82 2010's 113 218 422 678 854 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  20. Texas - RRC District 10 Dry Natural Gas Reserves Estimated Production

    Energy Information Administration (EIA) (indexed site)

    (Billion Cubic Feet) Estimated Production (Billion Cubic Feet) Texas - RRC District 10 Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,033 948 896 1980's 854 808 734 621 587 549 489 471 515 515 1990's 492 472 509 470 500 455 457 387 418 408 2000's 386 373 337 338 375 398 450 482 574 553 2010's 569 650 698 686 632 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld

  1. Texas - RRC District 2 Onshore Dry Natural Gas Reserves Estimated

    Energy Information Administration (EIA) (indexed site)

    Production (Billion Cubic Feet) Estimated Production (Billion Cubic Feet) Texas - RRC District 2 Onshore Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 396 349 413 1980's 366 404 374 343 320 328 341 349 318 291 1990's 254 244 246 232 224 189 190 214 219 306 2000's 361 322 288 282 296 305 323 301 310 259 2010's 237 306 430 534 673 - = No Data Reported; -- = Not Applicable; NA = Not

  2. Texas - RRC District 3 Onshore Dry Natural Gas Reserves Estimated

    Energy Information Administration (EIA) (indexed site)

    Production (Billion Cubic Feet) Estimated Production (Billion Cubic Feet) Texas - RRC District 3 Onshore Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,063 1,003 955 1980's 865 796 782 740 752 673 639 569 533 517 1990's 474 470 502 532 600 701 856 886 781 813 2000's 883 741 588 576 582 558 532 512 505 509 2010's 508 409 350 317 321 - = No Data Reported; -- = Not Applicable; NA = Not

  3. Texas - RRC District 6 Dry Natural Gas Reserves Estimated Production

    Energy Information Administration (EIA) (indexed site)

    (Billion Cubic Feet) Estimated Production (Billion Cubic Feet) Texas - RRC District 6 Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 252 275 321 1980's 352 365 381 341 402 396 415 395 416 453 1990's 534 522 532 619 596 620 583 599 594 591 2000's 575 644 624 642 683 752 774 896 983 1,004 2010's 1,017 1,079 1,124 1,057 1,002 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  4. Texas - RRC District 8 Dry Natural Gas Reserves Estimated Production

    Energy Information Administration (EIA) (indexed site)

    (Billion Cubic Feet) Estimated Production (Billion Cubic Feet) Texas - RRC District 8 Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,401 1,265 1,214 1980's 1,159 1,008 832 713 643 646 619 633 734 654 1990's 663 691 693 660 688 631 583 572 541 559 2000's 547 533 524 484 493 464 480 538 541 545 2010's 549 470 564 662 767 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  5. Texas - RRC District 9 Dry Natural Gas Reserves Estimated Production

    Energy Information Administration (EIA) (indexed site)

    (Billion Cubic Feet) Estimated Production (Billion Cubic Feet) Texas - RRC District 9 Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 108 130 108 1980's 99 119 149 122 130 141 128 112 117 107 1990's 106 104 99 104 100 103 104 106 101 104 2000's 144 185 258 332 412 361 407 519 650 687 2010's 733 613 611 603 616 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  6. Texas State Offshore Dry Natural Gas Reserves Estimated Production (Billion

    Energy Information Administration (EIA) (indexed site)

    Cubic Feet) Estimated Production (Billion Cubic Feet) Texas State Offshore Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 282 222 134 110 116 103 1990's 108 110 74 86 73 62 72 77 59 63 2000's 60 65 67 67 65 60 32 33 50 40 2010's 27 21 22 14 10 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015

  7. Kentucky Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Estimated Production (Billion Cubic Feet) Kentucky Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 48 52 49 1980's 60 52 44 38 54 53 56 58 60 65 1990's 62 78 61 66 64 67 58 79 63 59 2000's 67 73 79 78 83 85 66 80 93 108 2010's 96 101 83 81 70 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next

  8. Utah Nonassociated Natural Gas, Wet After Lease Separation, Estimated

    Energy Information Administration (EIA) (indexed site)

    Production from Reserves (Billion Cubic Feet) Estimated Production from Reserves (Billion Cubic Feet) Utah Nonassociated Natural Gas, Wet After Lease Separation, Estimated Production from Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 29 1980's 37 58 65 49 59 59 46 36 30 41 1990's 42 49 77 137 160 151 166 169 204 208 2000's 218 276 275 266 268 286 323 340 393 423 2010's 405 413 441 414 374 - = No Data Reported; -- = Not

  9. Virginia Nonassociated Natural Gas, Wet After Lease Separation, Estimated

    Energy Information Administration (EIA) (indexed site)

    Production from Reserves (Billion Cubic Feet) Estimated Production from Reserves (Billion Cubic Feet) Virginia Nonassociated Natural Gas, Wet After Lease Separation, Estimated Production from Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 6 4 8 15 15 19 18 18 1990's 7 12 25 36 51 52 55 46 61 66 2000's 71 78 75 82 72 70 102 109 126 178 2010's 172 156 153 142 145 - = No Data Reported; -- = Not Applicable; NA = Not Available; W

  10. Florida Nonassociated Natural Gas, Wet After Lease Separation, Estimated

    Energy Information Administration (EIA) (indexed site)

    Production from Reserves (Billion Cubic Feet) Estimated Production from Reserves (Billion Cubic Feet) Florida Nonassociated Natural Gas, Wet After Lease Separation, Estimated Production from Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0 1980's 0 0 0 0 0 0 0 0 0 0 1990's 0 0 0 0 0 0 0 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 7 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  11. Kansas Nonassociated Natural Gas, Wet After Lease Separation, Estimated

    Energy Information Administration (EIA) (indexed site)

    Production from Reserves (Billion Cubic Feet) Estimated Production from Reserves (Billion Cubic Feet) Kansas Nonassociated Natural Gas, Wet After Lease Separation, Estimated Production from Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 755 1980's 647 602 439 374 455 509 465 441 551 553 1990's 525 597 610 675 697 702 730 647 577 520 2000's 519 460 495 446 396 396 365 377 368 346 2010's 316 294 273 266 253 - = No Data

  12. Kentucky Nonassociated Natural Gas, Wet After Lease Separation, Estimated

    Energy Information Administration (EIA) (indexed site)

    Production from Reserves (Billion Cubic Feet) Estimated Production from Reserves (Billion Cubic Feet) Kentucky Nonassociated Natural Gas, Wet After Lease Separation, Estimated Production from Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 52 1980's 61 53 46 40 55 53 56 58 60 65 1990's 63 80 63 68 65 69 60 81 65 60 2000's 69 77 83 80 87 88 70 84 97 113 2010's 102 107 88 87 74 - = No Data Reported; -- = Not Applicable; NA = Not

  13. Louisiana - North Dry Natural Gas Reserves Estimated Production (Billion

    Energy Information Administration (EIA) (indexed site)

    Cubic Feet) Estimated Production (Billion Cubic Feet) Louisiana - North Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 317 344 335 1980's 338 402 336 335 362 311 334 316 353 362 1990's 381 366 334 327 328 343 387 424 400 377 2000's 384 390 395 401 453 498 552 553 685 992 2010's 1,721 2,563 2,614 1,899 1,561 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  14. Oil and gas resources of the Fergana basin (Uzbekistan, Tadzhikistan, and Kyrgyzstan). Advance summary

    SciTech Connect

    Not Available

    1993-12-07

    The Energy Information Administration (EIA), in cooperation with the US Geological Survey (USGS), has assessed 13 major petroleum producing regions outside of the United States. This series of assessments has been performed under EIA`s Foreign Energy Supply Assessment Program (FESAP). The basic approach used in these assessments was to combine historical drilling, discovery, and production data with EIA reserve estimates and USGS undiscovered resource estimates. Field-level data for discovered oil were used for these previous assessments. In FESAP, supply projections through depletion were typically formulated for the country or major producing region. Until now, EIA has not prepared an assessment of oil and gas provinces in the former Soviet Union (FSU). Before breakup of the Soviet Union in 1991, the Fergana basin was selected for a trial assessment of its discovered and undiscovered oil and gas. The object was to see if enough data could be collected and estimated to perform reasonable field-level estimates of oil and gas in this basin. If so, then assessments of other basins in the FSU could be considered. The objective was met and assessments of other basins can be considered. Collected data for this assessment cover discoveries through 1987. Compared to most other oil and gas provinces in the FSU, the Fergana basin is relatively small in geographic size, and in number and size of most of its oil and gas fields. However, with recent emphasis given to the central graben as a result of the relatively large Mingbulak field, the basin`s oil and gas potential has significantly increased. At least 7 additional fields to the 53 fields analyzed are known and are assumed to have been discovered after 1987.

  15. Estimating the Wind Resource in Uttarakhand: Comparison of Dynamic Downscaling with Doppler Lidar Wind Measurements

    Energy.gov [DOE]

    Previous estimates of the wind resources in Uttarakhand, India, suggest minimal wind resources in this region. To explore whether or not the complex terrain in fact provides localized regions of...

  16. World oil and gas resources-future production realities

    SciTech Connect

    Masters, C.D.; Root, D.H.; Attanasi, E.D. )

    1990-01-01

    Welcome to uncertainty was the phrase Jack Schanz used to introduce both layman and professionals to the maze of petroleum energy data that must be comprehended to achieve understanding of this critical commodity. Schanz was referring to the variables as he and his colleagues with Resources for the Future saw them in those years soon after the energy-awakening oil embargo of 1973. In some respects, the authors have made progress in removing uncertainty from energy data, but in general, we simply must accept that there are many points of view and many ways for the blindman to describe the elephant. There can be definitive listing of all uncertainties, but for this paper the authors try to underscore those traits of petroleum occurrence and supply that the author's believe bear most heavily on the understanding of production and resource availability. Because oil and gas exist in nature under such variable conditions and because the products themselves are variable in their properties, the authors must first recognize classification divisions of the resource substances, so that the reader might always have a clear perception of just what we are talking about and how it relates to other components of the commodity in question.

  17. Natural gas cost for evaluating energy resource opportunities at Fort Stewart

    SciTech Connect

    Stucky, D.J.; Shankle, S.A.

    1993-01-01

    Ft. Stewart, a United States Army Forces Command (FORSCOM) installation located near Hinesville, Georgia, is currently undergoing an evaluation of its energy usage, which is being performed by Pacific Northwest Laboratory. In order to examine the energy resource opportunities (EROs) at Ft. Stewart, marginal fuel costs must be calculated. The marginal, or avoided, cost of gas service is used in conjunction with the estimated energy savings of an ERO to calculate the dollar value of those savings. In the case of natural gas, the costing becomes more complicated due to the installation of a propane-air mixing station. The propane-air station is being built under a shared energy savings (SES) contract. The building of a propane-air station allows Ft. Stewart to purchase natural gas from their local utility at an interruptible rate, which is lower than the rate for contracting natural gas on a firm basis. The propane-air station will also provide Ft. Stewart with fuel in the event that the natural gas supply is curtailed. While the propane-air station does not affect the actual cost of natural gas, it does affect the cost of services provided by gas. Because the propane-air station and the SES contract affect the cost of gas service, they must be included in the analysis. Our analysis indicates a marginal cost of gas service of 30.0 cents per therm, assuming a total propane usage by the mixing station of 42,278 gallons (38,600 therms) annually. Because the amount of propane that may be required in the event of a curtailment is small relative to the total service requirement, variations in the actual amount should not significantly affect the cost per therm.

  18. World Shale Gas Resources: An Initial Assessment of 14 Regions Outside the United States

    Reports and Publications

    2011-01-01

    The Energy Information Administration sponsored Advanced Resources International, Inc., to assess 48 gas shale basins in 32 countries, containing almost 70 shale gas formations. This effort has culminated in the report: World Shale Gas Resources: An Initial Assessment of 14 Regions Outside the United States.

  19. Estimating the Wind Resource in Uttarakhand: Comparison of Dynamic...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    More Documents & Publications U.S. Virgin Islands Wind Resources Update 2014 The Wind Forecast Improvement Project (WFIP): A PublicPrivate Partnership for Improving Short Term ...

  20. Geopressured Geothermal Resource and Recoverable Energy Estimate for the Wilcox and Frio Formations, Texas (Presentation)

    SciTech Connect

    Esposito, A.; Augustine, C.

    2011-10-01

    An estimate of the total and recoverable geopressured geothermal resource of the fairways in the Wilcox and Frio formations is made using the current data available. The flow rate of water and methane for wells located in the geopressured geothermal fairways is simulated over a 20-year period utilizing the TOUGH2 Reservoir Simulator and research data. The model incorporates relative permeability, capillary pressure, rock compressibility, and leakage from the bounding shale layers. The simulations show that permeability, porosity, pressure, sandstone thickness, well spacing, and gas saturation in the sandstone have a significant impact on the percent of energy recovered. The results also predict lower average well production flow rates and a significantly higher production of natural gas relative to water than in previous studies done from 1975 to 1980. Previous studies underestimate the amount of methane produced with hot brine. Based on the work completed in this study, multiphase flow processes and reservoir boundary conditions greatly influence the total quantity of the fluid produced as well as the ratio of gas and water in the produced fluid.

  1. Texas Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Estimated Production (Billion Cubic Feet) Texas Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 5,567 5,151 4,620 4,517 4,590 4,568 1990's 4,478 4,480 4,545 4,645 4,775 4,724 4,889 4,942 4,855 4,897 2000's 5,072 5,138 5,038 5,166 5,318 5,424 5,608 6,263 7,009 7,017 2010's 6,974 7,139 7,570 7,607 7,877 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  2. Louisiana Dry Natural Gas Reserves Estimated Production (Billion Cubic

    Energy Information Administration (EIA) (indexed site)

    Feet) Estimated Production (Billion Cubic Feet) Louisiana Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,482 1,741 1,625 1,691 1,687 1990's 1,596 1,527 1,494 1,457 1,453 1,403 1,521 1,496 1,403 1,421 2000's 1,443 1,479 1,338 1,280 1,322 1,206 1,309 1,257 1,319 1,544 2010's 2,189 2,985 3,057 2,344 1,960 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  3. Louisiana - South Onshore Dry Natural Gas Reserves Estimated Production

    Energy Information Administration (EIA) (indexed site)

    (Billion Cubic Feet) Estimated Production (Billion Cubic Feet) Louisiana - South Onshore Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2,367 2,203 2,005 1980's 1,860 1,673 1,472 1,293 1,327 1,243 1,219 1,109 1,142 1,130 1990's 1,070 1,034 1,043 993 981 908 957 911 875 927 2000's 932 931 821 753 770 640 674 618 539 469 2010's 394 373 359 379 347 - = No Data Reported; -- = Not Applicable;

  4. Louisiana Nonassociated Natural Gas, Wet After Lease Separation, Estimated

    Energy Information Administration (EIA) (indexed site)

    Production from Reserves (Billion Cubic Feet) Estimated Production from Reserves (Billion Cubic Feet) Louisiana Nonassociated Natural Gas, Wet After Lease Separation, Estimated Production from Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,254 1,464 1,404 1,525 1,522 1990's 1,464 1,412 1,358 1,375 1,363 1,346 1,459 1,386 1,285 1,323 2000's 1,348 1,379 1,283 1,227 1,283 1,167 1,282 1,230 1,246 1,462 2010's 2,107 2,909 2,974

  5. Lower 48 States Dry Natural Gas Reserves Estimated Production (Billion

    Energy Information Administration (EIA) (indexed site)

    Cubic Feet) Estimated Production (Billion Cubic Feet) Lower 48 States Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 18,637 18,589 19,029 1980's 18,486 18,502 17,245 15,515 16,869 15,673 15,286 15,765 16,270 16,582 1990's 16,894 16,849 17,009 17,396 17,899 17,570 18,415 18,736 18,207 18,469 2000's 18,713 19,318 18,893 18,947 18,690 17,989 18,137 19,078 20,169 21,236 2010's 21,922 23,228

  6. Colorado Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Estimated Production (Billion Cubic Feet) Colorado Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 174 167 156 1980's 163 165 196 156 171 166 188 159 188 220 1990's 229 282 320 387 447 514 540 562 676 719 2000's 759 882 964 1,142 1,050 1,104 1,174 1,326 1,441 1,524 2010's 1,590 1,694 1,681 1,527 1,561 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  7. Wyoming Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Estimated Production (Billion Cubic Feet) Wyoming Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 315 329 355 1980's 416 423 391 414 484 433 402 456 510 591 1990's 583 639 714 713 780 806 782 891 838 1,213 2000's 1,070 1,286 1,388 1,456 1,524 1,642 1,695 1,825 2,026 2,233 2010's 2,218 2,088 2,001 1,992 1,718 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  8. Wyoming Nonassociated Natural Gas, Wet After Lease Separation, Estimated

    Energy Information Administration (EIA) (indexed site)

    Production from Reserves (Billion Cubic Feet) Estimated Production from Reserves (Billion Cubic Feet) Wyoming Nonassociated Natural Gas, Wet After Lease Separation, Estimated Production from Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 295 1980's 352 354 334 346 400 381 325 385 411 510 1990's 485 544 619 683 747 740 720 854 793 1,173 2000's 1,050 1,275 1,375 1,458 1,537 1,648 1,714 1,828 2,066 2,288 2010's 2,271 2,151 2,051

  9. New Mexico Nonassociated Natural Gas, Wet After Lease Separation, Estimated

    Energy Information Administration (EIA) (indexed site)

    Production from Reserves (Billion Cubic Feet) Estimated Production from Reserves (Billion Cubic Feet) New Mexico Nonassociated Natural Gas, Wet After Lease Separation, Estimated Production from Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 961 1980's 896 925 802 677 724 700 499 607 608 649 1990's 794 879 1,027 1,212 1,220 1,242 1,272 1,423 1,339 1,421 2000's 1,400 1,415 1,397 1,284 1,397 1,383 1,332 1,264 1,274 1,264 2010's

  10. Oklahoma Nonassociated Natural Gas, Wet After Lease Separation, Estimated

    Energy Information Administration (EIA) (indexed site)

    Production from Reserves (Billion Cubic Feet) Estimated Production from Reserves (Billion Cubic Feet) Oklahoma Nonassociated Natural Gas, Wet After Lease Separation, Estimated Production from Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,354 1980's 1,296 1,425 1,381 1,321 1,517 1,432 1,394 1,558 1,682 1,792 1990's 1,874 1,855 1,767 1,663 1,636 1,506 1,538 1,532 1,506 1,278 2000's 1,412 1,420 1,442 1,501 1,520 1,570 1,604

  11. Texas - RRC District 4 Onshore Dry Natural Gas Reserves Estimated

    Energy Information Administration (EIA) (indexed site)

    Production (Billion Cubic Feet) Estimated Production (Billion Cubic Feet) Texas - RRC District 4 Onshore Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,319 1,188 1,208 1980's 1,117 1,053 969 926 1,065 1,044 1,169 1,158 1,089 1,117 1990's 1,075 1,114 1,124 1,213 1,226 1,264 1,263 1,292 1,323 1,236 2000's 1,289 1,395 1,398 1,381 1,295 1,232 1,157 1,172 1,156 1,013 2010's 893 886 926 819

  12. Texas - RRC District 5 Dry Natural Gas Reserves Estimated Production

    Energy Information Administration (EIA) (indexed site)

    (Billion Cubic Feet) Estimated Production (Billion Cubic Feet) Texas - RRC District 5 Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 83 89 153 1980's 125 139 129 131 164 167 165 171 162 156 1990's 160 170 171 175 185 167 187 210 224 219 2000's 303 335 377 457 490 650 783 1,130 1,521 1,718 2010's 1,771 1,904 1,752 1,582 1,412 - = No Data Reported; -- = Not Applicable; NA = Not Available; W

  13. Texas Nonassociated Natural Gas, Wet After Lease Separation, Estimated

    Energy Information Administration (EIA) (indexed site)

    Production from Reserves (Billion Cubic Feet) Estimated Production from Reserves (Billion Cubic Feet) Texas Nonassociated Natural Gas, Wet After Lease Separation, Estimated Production from Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 4,672 4,265 3,877 3,860 3,966 3,954 1990's 3,928 3,879 3,917 4,161 4,296 4,284 4,466 4,525 4,396 4,438 2000's 4,577 4,776 4,727 4,815 4,992 5,146 5,370 6,029 6,729 6,716 2010's 6,641 6,748

  14. Colorado Nonassociated Natural Gas, Wet After Lease Separation, Estimated

    Energy Information Administration (EIA) (indexed site)

    Production from Reserves (Billion Cubic Feet) Estimated Production from Reserves (Billion Cubic Feet) Colorado Nonassociated Natural Gas, Wet After Lease Separation, Estimated Production from Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 132 1980's 143 143 173 135 153 148 166 131 163 199 1990's 208 243 271 303 378 436 494 533 647 687 2000's 725 834 914 1,085 995 1,048 1,115 1,260 1,370 1,458 2010's 1,546 1,625 1,563 1,372

  15. Estimating the potential of greenhouse gas mitigation in Kazakhstan

    SciTech Connect

    Monacrovich, E.; Pilifosova, O.; Danchuck, D.

    1996-09-01

    As part of the studies related to the obligations of the UN Framework Convention on Climate Change, the Republic of Kazakhstan started activities to inventory greenhouse gas (GHG) emissions and assess of GHG mitigation options, The objective of this paper is to present an estimate of the possibility of mitigating GHG emissions and determine the mitigation priorities. It presents a compilation of the possible options and their assessment in terms of major criteria and implementation feasibility. Taking into account the structure of GHG emissions in Kazakhstan in 1990, preliminary estimates of the potential for mitigation are presented for eight options for the energy sector and agriculture and forestry sector. The reference scenario prepared by expert assessments assumes a reduction of CO{sub 2} emissions in 1996-1998 by about 26% from the 1990 level due to general economic decline, but then emissions increase. It is estimated that the total potential for the mitigation of CO{sub 2} emissions for the year 2000 is 3% of the CO{sub 2} emissions in the reference scenario. The annual reduction in methane emissions due to the estimated options can amount to 5%-6% of the 1990 level. 10 refs., 1 fig., 4 tabs.

  16. Estimating the Wind Resource in Uttarakhand: Comparison of Dynamic Downscaling with Doppler Lidar Wind Measurements

    SciTech Connect

    Lundquist, J. K.; Pukayastha, A.; St. Martin, C.; Newsom, R.

    2014-03-01

    Previous estimates of the wind resources in Uttarakhand, India, suggest minimal wind resources in this region. To explore whether or not the complex terrain in fact provides localized regions of wind resource, the authors of this study employed a dynamic down scaling method with the Weather Research and Forecasting model, providing detailed estimates of winds at approximately 1 km resolution in the finest nested simulation.

  17. An Estimate of Shallow, Low-Temperature Geothermal Resources of the United

    Office of Scientific and Technical Information (OSTI)

    States: Preprint (Conference) | SciTech Connect An Estimate of Shallow, Low-Temperature Geothermal Resources of the United States: Preprint Citation Details In-Document Search Title: An Estimate of Shallow, Low-Temperature Geothermal Resources of the United States: Preprint Low-temperature geothermal resources in the United States potentially hold an enormous quantity of thermal energy, useful for direct use in residential, commercial and industrial applications such as space and water

  18. Oklahoma Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Estimated Production (Billion Cubic Feet) Oklahoma Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,691 1,667 1,592 1980's 1,526 1,700 1,636 1,544 1,778 1,686 1,658 1,813 1,896 1,983 1990's 2,058 1,983 1,895 1,770 1,721 1,562 1,580 1,555 1,544 1,308 2000's 1,473 1,481 1,518 1,554 1,563 1,587 1,601 1,659 1,775 1,790 2010's 1,703 1,697 1,763 1,890 2,123 - = No Data Reported; -- = Not Applicable;

  19. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update

    of the Alaska gas pipeline. The opening of ANWR might reduce the gas resource risk of building an Alaska gas pipeline, as the area has an estimated 3.6 trillion cubic...

  20. Anadarko's Proposed Acquisition of Kerr-McGee and Western Gas Resources

    Reports and Publications

    2006-01-01

    Presentation of company-level, non-proprietary data and relevant aggregate data for worldwide oil and natural gas reserves and production of Anadarko, Kerr-McGee, and Western Gas Resources to inform discussions of Anadarko Petroleum Corp.'s proposed acquisition of both Kerr-McGee Corp. and Western Gas Resources Inc. for a total of $23.3 billion, which was announced June 23, 2006.

  1. Renewable energy development in China: Resource assessment, technology status, and greenhouse gas mitigation potential

    SciTech Connect

    Wan, Y.; Renne, O.D.; Junfeng, Li

    1996-12-31

    China, which has pursued aggressive policies to encourage economic development, could experience the world`s fastest growth in energy consumption over the next two decades. China has become the third largest energy user in the world since 1990 when primary energy consumption reached 960 million tons of coal equivalent (tce). Energy use is increasing at an annual rate of 6-7% despite severe infrastructure and capital constraints on energy sector development. Energy consumption in China is heavily dominated by coal, and fossil fuels provide up to 95% of all commercial energy use. Coal currently accounts for 77% of total primary energy use; oil, 16%; hydropower, 5%; and natural gas, 2%. Coal is expected to continue providing close to three-quarters of all energy consumed, and the amount of coal used is expected to triple by year 2020. Currently, renewable energy resources (except for hydropower) account for only a fraction of total energy consumption. However, the estimated growth in greenhouse gas emissions, as well as serious local and regional environmental pollution problems caused by combustion of fossil fuels, provides strong arguments for the development of renewable energy resources. Renewable energy potential in China is significantly greater than that indicated by the current level of use. With a clear policy goal and consistent efforts from the Government of China, renewables can play a far larger role in its future energy supply.

  2. Development of an Improved Methodology to Assess Potential Unconventional Gas Resources

    SciTech Connect

    Salazar, Jesus; McVay, Duane A. Lee, W. John

    2010-12-15

    Considering the important role played today by unconventional gas resources in North America and their enormous potential for the future around the world, it is vital to both policy makers and industry that the volumes of these resources and the impact of technology on these resources be assessed. To provide for optimal decision making regarding energy policy, research funding, and resource development, it is necessary to reliably quantify the uncertainty in these resource assessments. Since the 1970s, studies to assess potential unconventional gas resources have been conducted by various private and governmental agencies, the most rigorous of which was by the United States Geological Survey (USGS). The USGS employed a cell-based, probabilistic methodology which used analytical equations to calculate distributions of the resources assessed. USGS assessments have generally produced distributions for potential unconventional gas resources that, in our judgment, are unrealistically narrow for what are essentially undiscovered, untested resources. In this article, we present an improved methodology to assess potential unconventional gas resources. Our methodology is a stochastic approach that includes Monte Carlo simulation and correlation between input variables. Application of the improved methodology to the Uinta-Piceance province of Utah and Colorado with USGS data validates the means and standard deviations of resource distributions produced by the USGS methodology, but reveals that these distributions are not right skewed, as expected for a natural resource. Our investigation indicates that the unrealistic shape and width of the gas resource distributions are caused by the use of narrow triangular input parameter distributions. The stochastic methodology proposed here is more versatile and robust than the USGS analytic methodology. Adoption of the methodology, along with a careful examination and revision of input distributions, should allow a more realistic

  3. Types of Possible Survey Errors in Estimates Published in the Weekly Natural Gas Storage Report

    Weekly Natural Gas Storage Report

    U.S. Energy Information Administration | Types of Possible Survey Errors in Estimates Published in the Weekly Natural Gas Storage Report 1 February 2016 Types of Possible Survey Errors in Estimates Published in the Weekly Natural Gas Storage Report The U.S. Energy Information Administration (EIA) collects and publishes natural gas storage information on a monthly and weekly basis. The Form EIA-191, Monthly Underground Natural Gas Storage Report, is a census survey that collects field-level

  4. Estimate of Maximum Underground Working Gas Storage Capacity in the United States: 2007 Update

    Reports and Publications

    2007-01-01

    This report provides an update to an estimate for U.S. aggregate natural gas storage capacity that was released in 2006.

  5. Toward Production From Gas Hydrates: Current Status, Assessment of Resources, and Simulation-Based Evaluationof Technology and Potential

    SciTech Connect

    Reagan, Matthew; Moridis, George J.; Collett, Timothy; Boswell, Ray; Kurihara, M.; Reagan, Matthew T.; Koh, Carolyn; Sloan, E. Dendy

    2008-02-12

    Gas hydrates are a vast energy resource with global distribution in the permafrost and in the oceans. Even if conservative estimates are considered and only a small fraction is recoverable, the sheer size of the resource is so large that it demands evaluation as a potential energy source. In this review paper, we discuss the distribution of natural gas hydrate accumulations, the status of the primary international R&D programs, and the remaining science and technological challenges facing commercialization of production. After a brief examination of gas hydrate accumulations that are well characterized and appear to be models for future development and gas production, we analyze the role of numerical simulation in the assessment of the hydrate production potential, identify the data needs for reliable predictions, evaluate the status of knowledge with regard to these needs, discuss knowledge gaps and their impact, and reach the conclusion that the numerical simulation capabilities are quite advanced and that the related gaps are either not significant or are being addressed. We review the current body of literature relevant to potential productivity from different types of gas hydrate deposits, and determine that there are consistent indications of a large production potential at high rates over long periods from a wide variety of hydrate deposits. Finally, we identify (a) features, conditions, geology and techniques that are desirable in potential production targets, (b) methods to maximize production, and (c) some of the conditions and characteristics that render certain gas hydrate deposits undesirable for production.

  6. Results from DOE Expedition Confirm Existence of Resource-Quality Gas

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Hydrate in Gulf of Mexico | Department of Energy Results from DOE Expedition Confirm Existence of Resource-Quality Gas Hydrate in Gulf of Mexico Results from DOE Expedition Confirm Existence of Resource-Quality Gas Hydrate in Gulf of Mexico March 30, 2010 - 1:00pm Addthis Washington, DC - Gas hydrate, a potentially immense energy resource, occurs at high saturations within reservoir-quality sands in the Gulf of Mexico, according to reports released by the Office of Fossil Energy's (FE)

  7. Minnesota Energy Resources (Gas) - Low-Income New Construction...

    Energy.gov [DOE] (indexed site)

    State Minnesota Program Type Rebate Program Rebate Amount Gas Furnace: 500 Integrated Space and Water Heating System: 900 Electronic Programmable Set-Back...

  8. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update

    ... hydrocarbons (e.g., viscosity) prevent oil and gas extraction technology from producing 100% of ... Economically important Carboniferous coal deposits and tight sands of the ...

  9. Geothermal -- The Energy Under Our Feet: Geothermal Resource Estimates for the United States

    SciTech Connect

    Green, B. D.; Nix, R. G.

    2006-11-01

    On May 16, 2006, the National Renewable Energy Laboratory (NREL) in Golden, Colorado hosted a geothermal resources workshop with experts from the geothermal community. The purpose of the workshop was to re-examine domestic geothermal resource estimates. The participating experts were organized into five working groups based on their primary area of expertise in the following types of geothermal resource or application: (1) Hydrothermal, (2) Deep Geothermal Systems, (3) Direct Use, (4) Geothermal Heat Pumps (GHPs), and (5) Co-Produced and Geopressured. The workshop found that the domestic geothermal resource is very large, with significant benefits.

  10. Development of Alaskan gas hydrate resources. Final report

    SciTech Connect

    Kamath, V.A.; Sharma, G.D.; Patil, S.L.

    1991-06-01

    The research undertaken in this project pertains to study of various techniques for production of natural gas from Alaskan gas hydrates such as, depressurization, injection of hot water, steam, brine, methanol and ethylene glycol solutions through experimental investigation of decomposition characteristics of hydrate cores. An experimental study has been conducted to measure the effective gas permeability changes as hydrates form in the sandpack and the results have been used to determine the reduction in the effective gas permeability of the sandpack as a function of hydrate saturation. A user friendly, interactive, menu-driven, numerical difference simulator has been developed to model the dissociation of natural gas hydrates in porous media with variable thermal properties. A numerical, finite element simulator has been developed to model the dissociation of hydrates during hot water injection process.

  11. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update

    ... Source: CDS Oil and Gas Group, PLC, 2006 Scarce geochemical data suggest 2.5% overall ... production capacity in Chile to Louisiana, USA. 27 VII. Other South America EIAARI World ...

  12. DOE Showcases Websites for Tight Gas Resource Development

    Energy.gov [DOE]

    Two U.S. Department of Energy projects funded by the Office of Fossil Energy's National Energy Technology Laboratory provide quick and easy web-based access to sought after information on tight-gas sandstone plays.

  13. Technically Recoverable Shale Oil and Shale Gas Resources:

    Annual Energy Outlook

    ... which resulted when data were judged to be inadequate to provide a useful estimate. ... Eagle Ford and Niobrara shale plays in the USA. Ecopetrol, ConocoPhillips, ExxonMobil, ...

  14. Oil and Gas Resources of the West Siberian Basin, Russia

    Reports and Publications

    1997-01-01

    Provides an assessment of the oil and gas potential of the West Siberian Basin of Russia. The report was prepared in cooperation with the U. S. Geological Survey (USGS) and is part of the Energy Information Administration's (EIA) Foreign Energy Supply Assessment Program (FESAP).

  15. Resource planning for gas utilities: Using a model to analyze pivotal issues

    SciTech Connect

    Busch, J.F.; Comnes, G.A.

    1995-11-01

    With the advent of wellhead price decontrols that began in the late 1970s and the development of open access pipelines in the 1980s and 90s, gas local distribution companies (LDCs) now have increased responsibility for their gas supplies and face an increasingly complex array of supply and capacity choices. Heretofore this responsibility had been share with the interstate pipelines that provide bundled firm gas supplies. Moreover, gas supply an deliverability (capacity) options have multiplied as the pipeline network becomes increasing interconnected and as new storage projects are developed. There is now a fully-functioning financial market for commodity price hedging instruments and, on interstate Pipelines, secondary market (called capacity release) now exists. As a result of these changes in the natural gas industry, interest in resource planning and computer modeling tools for LDCs is increasing. Although in some ways the planning time horizon has become shorter for the gas LDC, the responsibility conferred to the LDC and complexity of the planning problem has increased. We examine current gas resource planning issues in the wake of the Federal Energy Regulatory Commission`s (FERC) Order 636. Our goal is twofold: (1) to illustrate the types of resource planning methods and models used in the industry and (2) to illustrate some of the key tradeoffs among types of resources, reliability, and system costs. To assist us, we utilize a commercially-available dispatch and resource planning model and examine four types of resource planning problems: the evaluation of new storage resources, the evaluation of buyback contracts, the computation of avoided costs, and the optimal tradeoff between reliability and system costs. To make the illustration of methods meaningful yet tractable, we developed a prototype LDC and used it for the majority of our analysis.

  16. Estimating Policy-Driven Greenhouse Gas Emissions Trajectories in California: The California Greenhouse Gas Inventory Spreadsheet (GHGIS) Model

    SciTech Connect

    Greenblatt, Jeffery B.

    2013-10-10

    A California Greenhouse Gas Inventory Spreadsheet (GHGIS) model was developed to explore the impact of combinations of state policies on state greenhouse gas (GHG) and regional criteria pollutant emissions. The model included representations of all GHG- emitting sectors of the California economy (including those outside the energy sector, such as high global warming potential gases, waste treatment, agriculture and forestry) in varying degrees of detail, and was carefully calibrated using available data and projections from multiple state agencies and other sources. Starting from basic drivers such as population, numbers of households, gross state product, numbers of vehicles, etc., the model calculated energy demands by type (various types of liquid and gaseous hydrocarbon fuels, electricity and hydrogen), and finally calculated emissions of GHGs and three criteria pollutants: reactive organic gases (ROG), nitrogen oxides (NOx), and fine (2.5 ?m) particulate matter (PM2.5). Calculations were generally statewide, but in some sectors, criteria pollutants were also calculated for two regional air basins: the South Coast Air Basin (SCAB) and the San Joaquin Valley (SJV). Three scenarios were developed that attempt to model: (1) all committed policies, (2) additional, uncommitted policy targets and (3) potential technology and market futures. Each scenario received extensive input from state energy planning agencies, in particular the California Air Resources Board. Results indicate that all three scenarios are able to meet the 2020 statewide GHG targets, and by 2030, statewide GHG emissions range from between 208 and 396 MtCO2/yr. However, none of the scenarios are able to meet the 2050 GHG target of 85 MtCO2/yr, with emissions ranging from 188 to 444 MtCO2/yr, so additional policies will need to be developed for California to meet this stringent future target. A full sensitivity study of major scenario assumptions was also performed. In terms of criteria pollutants

  17. Estimating household fuel oil/kerosine, natural gas, and LPG prices by census region

    SciTech Connect

    Poyer, D.A.; Teotia, A.P.S.

    1994-08-01

    The purpose of this research is to estimate individual fuel prices within the residential sector. The data from four US Department of Energy, Energy Information Administration, residential energy consumption surveys were used to estimate the models. For a number of important fuel types - fuel oil, natural gas, and liquefied petroleum gas - the estimation presents a problem because these fuels are not used by all households. Estimates obtained by using only data in which observed fuel prices are present would be biased. A correction for this self-selection bias is needed for estimating prices of these fuels. A literature search identified no past studies on application of the selectivity model for estimating prices of residential fuel oil/kerosine, natural gas, and liquefied petroleum gas. This report describes selectivity models that utilize the Dubin/McFadden correction method for estimating prices of residential fuel oil/kerosine, natural gas, and liquefied petroleum gas in the Northeast, Midwest, South, and West census regions. Statistically significant explanatory variables are identified and discussed in each of the models. This new application of the selectivity model should be of interest to energy policy makers, researchers, and academicians.

  18. Estimation of Gas Leak Rates Through Very Small Orifices

    Office of Scientific and Technical Information (OSTI)

    ... n i c v e l o c i t y ; o r i n o t h e r words: f o r c r i t i c a l o r choked f l o w ... 1700F. The composition of the gas is known to be a mixture of helium and water vapor. ...

  19. Benefits of Greenhouse Gas Mitigation on the Supply, Management, and Use of Water Resources in the United States

    SciTech Connect

    Strzepek, K.; Neumann, Jim; Smith, Joel; Martinich, Jeremy; Boehlert, Brent; Hejazi, Mohamad I.; Henderson, Jim; Wobus, Cameron; Jones, Russ; Calvin, Katherine V.; Johnson, D.; Monier, Erwan; Strzepek, J.; Yoon, Jin-Ho

    2014-11-29

    Climate change impacts on water resources in the U.S. are likely to be far-reaching and substantial, because the water sector spans many parts of the economy, from supply and demand for agriculture, industry, energy production, transportation and municipal use to damages from natural hazards. This paper provides impact and damage estimates from five water resource-related models in the CIRA frame work, addressing drought risk, flooding damages, water supply and demand, and global water scarcity. The four models differ in the water system assessed, their spatial scale, and the units of assessment, but together they provide a quantitative and descriptive richness in characterizing water resource sector effects of climate change that no single model can capture. The results also address the sensitivity of these estimates to greenhouse gas emission scenarios, climate sensitivity alternatives, and global climate model selection. While calculating the net impact of climate change on the water sector as a whole may be impractical, because each of the models applied here uses a consistent set of climate scenarios, broad conclusions can be drawn regarding the patterns of change and the benefits of GHG mitigation policies for the water sector. Two key findings emerge: 1) climate mitigation policy substantially reduces the impact of climate change on the water sector across multiple dimensions; and 2) the more managed the water resources system, the more tempered the climate change impacts and the resulting reduction of impacts from climate mitigation policies.

  20. Benefits of Greenhouse Gas Mitigation on the Supply, Management, and Use of Water Resources in the United States

    DOE PAGES [OSTI]

    Strzepek, K.; Neumann, Jim; Smith, Joel; Martinich, Jeremy; Boehlert, Brent; Hejazi, Mohamad I.; Henderson, Jim; Wobus, Cameron; Jones, Russ; Calvin, Katherine V.; et al

    2014-11-29

    Climate change impacts on water resources in the U.S. are likely to be far-reaching and substantial, because the water sector spans many parts of the economy, from supply and demand for agriculture, industry, energy production, transportation and municipal use to damages from natural hazards. This paper provides impact and damage estimates from five water resource-related models in the CIRA frame work, addressing drought risk, flooding damages, water supply and demand, and global water scarcity. The four models differ in the water system assessed, their spatial scale, and the units of assessment, but together they provide a quantitative and descriptive richnessmore » in characterizing water resource sector effects of climate change that no single model can capture. The results also address the sensitivity of these estimates to greenhouse gas emission scenarios, climate sensitivity alternatives, and global climate model selection. While calculating the net impact of climate change on the water sector as a whole may be impractical, because each of the models applied here uses a consistent set of climate scenarios, broad conclusions can be drawn regarding the patterns of change and the benefits of GHG mitigation policies for the water sector. Two key findings emerge: 1) climate mitigation policy substantially reduces the impact of climate change on the water sector across multiple dimensions; and 2) the more managed the water resources system, the more tempered the climate change impacts and the resulting reduction of impacts from climate mitigation policies.« less

  1. Estimation of fast transient overvoltage in gas-insulated substation

    SciTech Connect

    Yanabu, S.; Murase, H.; Aoyagi, H.; Okubo, H.; Kawaguchi, Y. )

    1990-10-01

    By using a commercial 550kV GIS to measure disconnector-induced FTO (fast transient overvoltages) on site, extensive data were obtained. The maximum FTO estimated from observation was 2.7 pu. Such a high FTO was observed infrequently and occurred only at the open end of bus bars. Through a comparison between simulation and measurement by employing a 1-GHz surge sensor, the authors demonstrate that when estimating the level of FTO by EMPT, no large errors are likely to be involved even without strict simulation of such GIS components as spacers, disconnectors, and short bus branches. Thus, the estimated FTO levels analytically obtained agree well with measured values within an error of 0.1 pu.

  2. Comparison of Natural Gas Storage Estimates from the EIA and AGA

    Reports and Publications

    1997-01-01

    The Energy Information Administration (EIA) has been publishing monthly storage information for years. In order to address the need for more timely information, in 1994 the American Gas Association (AGA) began publishing weekly storage levels. Both the EIA and the AGA series provide estimates of the total working gas in storage, but use significantly different methodologies.

  3. New Project To Improve Characterization of U.S. Gas Hydrate Resources |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Project To Improve Characterization of U.S. Gas Hydrate Resources New Project To Improve Characterization of U.S. Gas Hydrate Resources October 22, 2014 - 10:02am Addthis WASHINGTON, D.C. -The U.S. Department of Energy (DOE) today announced the selection of a multi-year, field-based research project designed to gain further insight into the nature, formation, occurrence and physical properties of methane hydrate-bearing sediments for the purpose of methane hydrate

  4. Natural Gas Resources of the Greater Green River and Wind River Basins of Wyoming (Assessing the Technology Needs of Sub-economic Resources, Phase I: Greater Green River and Wind river Basins, Fall 2002)

    SciTech Connect

    Boswell, Ray; Douds, Ashley; Pratt, Skip; Rose, Kelly; Pancake, Jim; Bruner, Kathy; Kuuskraa, Vello; Billingsley, Randy

    2003-02-28

    In 2000, NETL conducted a review of the adequacy of the resource characterization databases used in its Gas Systems Analysis Model (GSAM). This review indicated that the most striking deficiency in GSAMs databases was the poor representation of the vast resource believed to exist in low-permeability sandstone accumulations in western U.S. basins. The models databases, which are built primarily around the United States Geological Survey (USGS) 1995 National Assessment (for undiscovered resources), reflected an estimate of the original-gas-inplace (OGIP) only in accumulations designated technically-recoverable by the USGS roughly 3% to 4% of the total estimated OGIP of the region. As these vast remaining resources are a prime target of NETL programs, NETL immediately launched an effort to upgrade its resource characterizations. Upon review of existing data, NETL concluded that no existing data were appropriate sources for its modeling needs, and a decision was made to conduct new, detailed log-based, gas-in-place assessments.

  5. Models, Simulators, and Data-driven Resources for Oil and Natural Gas Research

    DOE Data Explorer

    NETL provides a number of analytical tools to assist in conducting oil and natural gas research. Software, developed under various DOE/NETL projects, includes numerical simulators, analytical models, databases, and documentation.[copied from http://www.netl.doe.gov/technologies/oil-gas/Software/Software_main.html] Links lead users to methane hydrates models, preedictive models, simulators, databases, and other software tools or resources.

  6. Estimating U.S. Methane Emissions from the Natural Gas Supply Chain. Approaches, Uncertainties, Current Estimates, and Future Studies

    SciTech Connect

    Heath, Garvin; Warner, Ethan; Steinberg, Daniel; Brandt, Adam

    2015-08-01

    A growing number of studies have raised questions regarding uncertainties in our understanding of methane (CH4) emissions from fugitives and venting along the natural gas (NG) supply chain. In particular, a number of measurement studies have suggested that actual levels of CH4 emissions may be higher than estimated by EPA" tm s U.S. GHG Emission Inventory. We reviewed the literature to identify the growing number of studies that have raised questions regarding uncertainties in our understanding of methane (CH4) emissions from fugitives and venting along the natural gas (NG) supply chain.

  7. Innovative Telemetry System Will Help Tap Hard-to-Reach Natural Gas Resources

    Energy.gov [DOE]

    The commercialization of an innovative telemetry communications system developed through a U.S. Department of Energy research program will help U.S. producers tap previously hard-to-reach natural gas resources deep underground, resulting in access to additional supplies that will help enhance national energy security.

  8. Geothermal resource base of the world: a revision of the Electric Power Research Institute's estimate

    SciTech Connect

    Aldrich, M.J.; Laughlin, A.W.; Gambill, D.T.

    1981-04-01

    Review of the Electric Power Research Institute's (EPRI) method for calculating the geothermal resource base of a country shows that modifications are needed for several of the assumptions used in the calculation. These modifications include: (1) separating geothermal belts into volcanic types with a geothermal gradient of 50{sup 0}C/km and complex types in which 80% of the area has a temperature gradient of 30{sup 0}C/km and 20% has a gradient of 45{sup 0}C/km, (2) using the actual mean annual temperature of a country rather than an assumed 15{sup 0}C average ambient temperature, and (3) making separate calculations for the resource stored in water/brine and that stored in rock. Comparison of this method (Revised EPRI) for calculating a geothermal resource base with other resource base estimates made from a heat flow map of Europe indicates that the technique yields reasonable values. The calculated geothermal resource bases, stored in water and rock to a depth of 5 km, for each country in the world are given. Approximately five times as much energy is stored in rock as is stored in water.

  9. Comparison of Historical Satellite-Based Estimates of Solar Radiation Resources with Recent Rotating Shadowband Radiometer Measurements: Preprint

    SciTech Connect

    Myers, D. R.

    2009-03-01

    The availability of rotating shadow band radiometer measurement data at several new stations provides an opportunity to compare historical satellite-based estimates of solar resources with measurements. We compare mean monthly daily total (MMDT) solar radiation data from eight years of NSRDB and 22 years of NASA hourly global horizontal and direct beam solar estimates with measured data from three stations, collected after the end of the available resource estimates.

  10. Benefit cost estimation and cooperation in greenhouse gas abatement

    SciTech Connect

    Hamaide, B.

    1997-12-31

    The world is divided in five players: the USA, the other OECD countries, the former Soviet Union, China and the Rest of the World. The damage equation is formulated around the benchmark damage (at twice the CO{sub 2} level) and the change of temperature in time due to past concentration and current emissions. For having damage cost data (or benefit data) with respect to emissions reduction, damages must be computed at each level of restriction, summed from 2000 to 2100 and discounted back at a predetermined two percent rate of time preference. Abatement costs have been estimated by various authors, some of which believe in no-regrets and some of which only believe in low-regrets policy, some of which are aggregate and some of which are disaggregate. Both theories are taken into account to find abatement cost data between the lower bound of some studies and the upper bound of others. Finally, all exercise is undertaken for getting a curve through the disaggregated benefit and cost data and the best regional fit, represented by a mathematical expression is chosen.

  11. Comparative analysis of electric and gas industries regulatory initiatives on Integrated Resource Planning (IRP). Topical report, July 1992-November 1993

    SciTech Connect

    Stapor, M.C.; Hederman, W.F.

    1993-11-01

    The report focuses on the parallels and contrasts between gas and electric utilities that have implications for applying analogies from electric utility integrated resource planning (IRP)/demand-side management (DSM) to gas utilities. In addition, the report provides an overview of IRP and DSM trends as applied to gas utilities. Understanding the similarities and differences between the gas and electric utilities is an important step toward adopting appropriate regulatory policies for gas IRP/DSM.

  12. Hydrogen Resource Assessment: Hydrogen Potential from Coal, Natural Gas, Nuclear, and Hydro Power

    SciTech Connect

    Milbrandt, A.; Mann, M.

    2009-02-01

    This paper estimates the quantity of hydrogen that could be produced from coal, natural gas, nuclear, and hydro power by county in the United States. The study estimates that more than 72 million tonnes of hydrogen can be produced from coal, natural gas, nuclear, and hydro power per year in the country (considering only 30% of their total annual production). The United States consumed about 396 million tonnes of gasoline in 2007; therefore, the report suggests the amount of hydrogen from these sources could displace about 80% of this consumption.

  13. Impact of Limitations on Access to Oil and Natural Gas Resources in the Federal Outer Continental Shelf (released in AEO2009)

    Reports and Publications

    2009-01-01

    The U.S. offshore is estimated to contain substantial resources of both crude oil and natural gas, but until recently some of the areas of the lower 48 states Outer Continental Shelf (OCS) have been under leasing moratoria. The Presidential ban on offshore drilling in portions of the lower 48 OCS was lifted in July 2008, and the Congressional ban was allowed to expire in September 2008, removing regulatory obstacles to development of the Atlantic and Pacific OCS.

  14. Estimation of current density distribution of PAFC by analysis of cell exhaust gas

    SciTech Connect

    Kato, S.; Seya, A.; Asano, A.

    1996-12-31

    To estimate distributions of Current densities, voltages, gas concentrations, etc., in phosphoric acid fuel cell (PAFC) stacks, is very important for getting fuel cells with higher quality. In this work, we leave developed a numerical simulation tool to map out the distribution in a PAFC stack. And especially to Study Current density distribution in the reaction area of the cell, we analyzed gas composition in several positions inside a gas outlet manifold of the PAFC stack. Comparing these measured data with calculated data, the current density distribution in a cell plane calculated by the simulation, was certified.

  15. Recoverable Resource Estimate of Identified Onshore Geopressured Geothermal Energy in Texas and Louisiana (Presentation)

    SciTech Connect

    Esposito, A.; Augustine, C.

    2012-04-01

    Geopressured geothermal reservoirs are characterized by high temperatures and high pressures with correspondingly large quantities of dissolved methane. Due to these characteristics, the reservoirs provide two sources of energy: chemical energy from the recovered methane, and thermal energy from the recovered fluid at temperatures high enough to operate a binary power plant for electricity production. Formations with the greatest potential for recoverable energy are located in the gulf coastal region of Texas and Louisiana where significantly overpressured and hot formations are abundant. This study estimates the total recoverable onshore geopressured geothermal resource for identified sites in Texas and Louisiana. In this study a geopressured geothermal resource is defined as a brine reservoir with fluid temperature greater than 212 degrees F and a pressure gradient greater than 0.7 psi/ft.

  16. Using Geothermal Play Types as an Analogue for Estimating Potential Resource Size

    SciTech Connect

    Terry, Rachel; Young, Katherine

    2015-09-02

    Blind geothermal systems are becoming increasingly common as more geothermal fields are developed. Geothermal development is known to have high risk in the early stages of a project development because reservoir characteristics are relatively unknown until wells are drilled. Play types (or occurrence models) categorize potential geothermal fields into groups based on geologic characteristics. To aid in lowering exploration risk, these groups' reservoir characteristics can be used as analogues in new site exploration. The play type schemes used in this paper were Moeck and Beardsmore play types (Moeck et al. 2014) and Brophy occurrence models (Brophy et al. 2011). Operating geothermal fields throughout the world were classified based on their associated play type, and then reservoir characteristics data were catalogued. The distributions of these characteristics were plotted in histograms to develop probability density functions for each individual characteristic. The probability density functions can be used as input analogues in Monte Carlo estimations of resource potential for similar play types in early exploration phases. A spreadsheet model was created to estimate resource potential in undeveloped fields. The user can choose to input their own values for each reservoir characteristic or choose to use the probability distribution functions provided from the selected play type. This paper also addresses the United States Geological Survey's 1978 and 2008 assessment of geothermal resources by comparing their estimated values to reported values from post-site development. Information from the collected data was used in the comparison for thirty developed sites in the United States. No significant trends or suggestions for methodologies could be made by the comparison.

  17. Estimating the greenhouse gas benefits of forestry projects: A Costa Rican Case Study

    SciTech Connect

    Busch, Christopher; Sathaye, Jayant; Sanchez Azofeifa, G. Arturo

    2000-09-01

    If the Clean Development Mechanism proposed under the Kyoto Protocol is to serve as an effective means for combating global climate change, it will depend upon reliable estimates of greenhouse gas benefits. This paper sketches the theoretical basis for estimating the greenhouse gas benefits of forestry projects and suggests lessons learned based on a case study of Costa Rica's Protected Areas Project, which is a 500,000 hectare effort to reduce deforestation and enhance reforestation. The Protected Areas Project in many senses advances the state of the art for Clean Development Mechanism-type forestry projects, as does the third-party verification work of SGS International Certification Services on the project. Nonetheless, sensitivity analysis shows that carbon benefit estimates for the project vary widely based on the imputed deforestation rate in the baseline scenario, e.g. the deforestation rate expected if the project were not implemented. This, along with a newly available national dataset that confirms other research showing a slower rate of deforestation in Costa Rica, suggests that the use of the 1979--1992 forest cover data originally as the basis for estimating carbon savings should be reconsidered. When the newly available data is substituted, carbon savings amount to 8.9 Mt (million tones) of carbon, down from the original estimate of 15.7 Mt. The primary general conclusion is that project developers should give more attention to the forecasting land use and land cover change scenarios underlying estimates of greenhouse gas benefits.

  18. Estimating retained gas volumes in the Hanford tanks using waste level measurements

    SciTech Connect

    Whitney, P.D.; Chen, G.; Gauglitz, P.A.; Meyer, P.A.; Miller, N.E.

    1997-09-01

    The Hanford site is home to 177 large, underground nuclear waste storage tanks. Safety and environmental concerns surround these tanks and their contents. One such concern is the propensity for the waste in these tanks to generate and trap flammable gases. This report focuses on understanding and improving the quality of retained gas volume estimates derived from tank waste level measurements. While direct measurements of gas volume are available for a small number of the Hanford tanks, the increasingly wide availability of tank waste level measurements provides an opportunity for less expensive (than direct gas volume measurement) assessment of gas hazard for the Hanford tanks. Retained gas in the tank waste is inferred from level measurements -- either long-term increase in the tank waste level, or fluctuations in tank waste level with atmospheric pressure changes. This report concentrates on the latter phenomena. As atmospheric pressure increases, the pressure on the gas in the tank waste increases, resulting in a level decrease (as long as the tank waste is {open_quotes}soft{close_quotes} enough). Tanks with waste levels exhibiting fluctuations inversely correlated with atmospheric pressure fluctuations were catalogued in an earlier study. Additionally, models incorporating ideal-gas law behavior and waste material properties have been proposed. These models explicitly relate the retained gas volume in the tank with the magnitude of the waste level fluctuations, dL/dP. This report describes how these models compare with the tank waste level measurements.

  19. Comparative Evaluation of Two Methods to Estimate Natural Gas Production in Texas

    Reports and Publications

    2003-01-01

    This report describes an evaluation conducted by the Energy Information Administration (EIA) in August 2003 of two methods that estimate natural gas production in Texas. The first method (parametric method) was used by EIA from February through August 2003 and the second method (multinomial method) replaced it starting in September 2003, based on the results of this evaluation.

  20. Estimate of Maximum Underground Working Gas Storage Capacity in the United States

    Reports and Publications

    2006-01-01

    This report examines the aggregate maximum capacity for U.S. natural gas storage. Although the concept of maximum capacity seems quite straightforward, there are numerous issues that preclude the determination of a definitive maximum volume. The report presents three alternative estimates for maximum capacity, indicating appropriate caveats for each.

  1. Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment; Task 2: Gas Cleanup Design and Cost Estimates -- Wood Feedstock

    SciTech Connect

    Nexant Inc.

    2006-05-01

    As part of Task 2, Gas Cleanup and Cost Estimates, Nexant investigated the appropriate process scheme for treatment of wood-derived syngas for use in the synthesis of liquid fuels. Two different 2,000 metric tonne per day gasification schemes, a low-pressure, indirect system using the gasifier, and a high-pressure, direct system using gasification technology were evaluated. Initial syngas conditions from each of the gasifiers was provided to the team by the National Renewable Energy Laboratory. Nexant was the prime contractor and principal investigator during this task; technical assistance was provided by both GTI and Emery Energy.

  2. Estimations and prospects of secondary recovery through conventional gas and waterflooding

    SciTech Connect

    Araujo, J.B.

    1981-03-01

    Conventional waterflooding and/or gas injection have been used extensively for the production of additional hydrocarbons, preferably in light and medium oil reservoirs, and in a lesser extent in heavy oil reservoirs. There are 182 active projects of secondary recovery distributed in Venezuela as follows: 113 projects of gas injection, 64 of waterflooding, and 5 projects of simultaneous injection of gas and water. The daily production by using these methods is 800,000 bpd (40% of national production), and it is expected that 6,000 million bbl of additional oil will be recovered. An objective estimation of the active projects of gas injection and/or waterflooding performed at the present in Venezuela is presented based on statistical data and relevant results. The future prospects also are predicted and quantified.

  3. Estimation of Fracture Porosity in an Unsaturated Fractured Welded Tuff Using Gas Tracer Testing

    SciTech Connect

    B.M. Freifeild

    2001-10-18

    Kinematic fracture porosity is an important hydrologic transport parameter for predicting the potential of rapid contaminant migration through fractured rock. The transport velocity of a solute moving within a fracture network is inversely related to the fracture porosity. Since fracture porosity is often one or two orders of magnitude smaller than matrix porosity, and fracture permeability is often orders of magnitude greater than matrix permeability, solutes may travel significantly faster in the fracture network than in the surrounding matrix. This dissertation introduces a new methodology for conducting gas tracer tests using a field portable mass spectrometer along with analytical tools for estimating fracture porosity using the measured tracer concentration breakthrough curves. Field experiments were conducted at Yucca Mountain, Nevada, consisting of air-permeability transient testing and gas-tracer-transport tests. The experiments were conducted from boreholes drilled within an underground tunnel as part of an investigation of rock mass hydrological behavior. Air-permeability pressure transients, recorded during constant mass flux injections, have been analyzed using a numerical inversion procedure to identify fracture permeability and porosity. Dipole gas tracer tests have also been conducted from the same boreholes used for air-permeability testing. Mass breakthrough data has been analyzed using a random walk particle-tracking model, with a dispersivity that is a function of the advective velocity. The estimated fracture porosity using the tracer test and air-injection test data ranges from .001 to .015. These values are an order of magnitude greater than the values estimated by others using hydraulically estimated fracture apertures. The estimates of porosity made using air-permeability test data are shown to be highly sensitive to formation heterogeneity. Uncertainty analyses performed on the gas tracer test results show high confidence in the parameter

  4. Rapid estimate of solid volume in large tuff cores using a gas pycnometer

    SciTech Connect

    Thies, C.; Geddis, A.M.; Guzman, A.G.

    1996-09-01

    A thermally insulated, rigid-volume gas pycnometer system has been developed. The pycnometer chambers have been machined from solid PVC cylinders. Two chambers confine dry high-purity helium at different pressures. A thick-walled design ensures minimal heat exchange with the surrounding environment and a constant volume system, while expansion takes place between the chambers. The internal energy of the gas is assumed constant over the expansion. The ideal gas law is used to estimate the volume of solid material sealed in one of the chambers. Temperature is monitored continuously and incorporated into the calculation of solid volume. Temperature variation between measurements is less than 0.1{degrees}C. The data are used to compute grain density for oven-dried Apache Leap tuff core samples. The measured volume of solid and the sample bulk volume are used to estimate porosity and bulk density. Intrinsic permeability was estimated from the porosity and measured pore surface area and is compared to in-situ measurements by the air permeability method. The gas pycnometer accommodates large core samples (0.25 m length x 0.11 m diameter) and can measure solid volume greater than 2.20 cm{sup 3} with less than 1% error.

  5. Estimating gas desorption parameters from Devonian shale well-test data

    SciTech Connect

    Lane, H.S.; Watson, A.T.; Lancaster, D.E.

    1995-05-01

    The feasibility of detecting and estimating gas desorption parameters accurately from a history match of Devonian shale well-test pressure data is examined. Both drawdown and buildup tests are analyzed, and based on the results of these analyses, a desorption-specific well-test design is proposed. The results from a simulated desorption-specific test suggest that it may be possible to characterize gas desorption from a well test with reasonable accuracy, even when the effects of desorption are partially masked by wellbore storage and skin effects.

  6. ,"Alabama Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)"

    Energy Information Administration (EIA) (indexed site)

    Estimated Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  7. ,"Alaska Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)"

    Energy Information Administration (EIA) (indexed site)

    Estimated Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alaska Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  8. ,"Arkansas Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)"

    Energy Information Administration (EIA) (indexed site)

    Estimated Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  9. ,"California Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)"

    Energy Information Administration (EIA) (indexed site)

    Estimated Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  10. ,"Colorado Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)"

    Energy Information Administration (EIA) (indexed site)

    Estimated Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  11. ,"Kansas Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)"

    Energy Information Administration (EIA) (indexed site)

    Estimated Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kansas Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  12. ,"Kentucky Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)"

    Energy Information Administration (EIA) (indexed site)

    Estimated Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  13. ,"Louisiana Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)"

    Energy Information Administration (EIA) (indexed site)

    Estimated Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  14. ,"Michigan Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)"

    Energy Information Administration (EIA) (indexed site)

    Estimated Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Michigan Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  15. ,"Mississippi Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)"

    Energy Information Administration (EIA) (indexed site)

    Estimated Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  16. ,"Montana Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)"

    Energy Information Administration (EIA) (indexed site)

    Estimated Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Montana Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  17. ,"Virginia Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)"

    Energy Information Administration (EIA) (indexed site)

    Estimated Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Virginia Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  18. ,"West Virginia Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)"

    Energy Information Administration (EIA) (indexed site)

    Estimated Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","West Virginia Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  19. ,"Wyoming Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)"

    Energy Information Administration (EIA) (indexed site)

    Estimated Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  20. Texas - RRC District 7B Dry Natural Gas Reserves Estimated Production

    Energy Information Administration (EIA) (indexed site)

    (Billion Cubic Feet) Estimated Production (Billion Cubic Feet) Texas - RRC District 7B Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 98 100 129 1980's 132 118 113 123 121 114 102 106 103 78 1990's 80 68 68 65 65 58 69 67 60 64 2000's 55 51 59 57 51 65 90 139 187 171 2010's 149 196 265 228 181 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure

  1. Texas - RRC District 7C Dry Natural Gas Reserves Estimated Production

    Energy Information Administration (EIA) (indexed site)

    (Billion Cubic Feet) Estimated Production (Billion Cubic Feet) Texas - RRC District 7C Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 261 259 243 1980's 256 234 261 228 254 248 238 242 259 290 1990's 301 285 285 309 334 321 370 372 356 327 2000's 296 315 327 350 348 349 369 346 342 328 2010's 315 293 309 328 424 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  2. Texas - RRC District 8A Dry Natural Gas Reserves Estimated Production

    Energy Information Administration (EIA) (indexed site)

    (Billion Cubic Feet) Estimated Production (Billion Cubic Feet) Texas - RRC District 8A Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 164 146 121 1980's 129 102 105 105 83 89 65 71 67 81 1990's 70 71 101 68 87 64 69 55 66 100 2000's 87 75 93 100 108 102 102 103 105 108 2010's 93 94 97 99 103 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  3. ,"New Mexico Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)"

    Energy Information Administration (EIA) (indexed site)

    Estimated Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  4. ,"New York Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)"

    Energy Information Administration (EIA) (indexed site)

    Estimated Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New York Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  5. ,"North Dakota Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)"

    Energy Information Administration (EIA) (indexed site)

    Estimated Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","North Dakota Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  6. ,"Ohio Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)"

    Energy Information Administration (EIA) (indexed site)

    Estimated Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Ohio Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  7. ,"Oklahoma Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)"

    Energy Information Administration (EIA) (indexed site)

    Estimated Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  8. ,"Pennsylvania Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)"

    Energy Information Administration (EIA) (indexed site)

    Estimated Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Pennsylvania Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  9. ,"Texas Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)"

    Energy Information Administration (EIA) (indexed site)

    Estimated Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Texas Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  10. ,"U.S. Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)"

    Energy Information Administration (EIA) (indexed site)

    Estimated Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  11. ,"Utah Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)"

    Energy Information Administration (EIA) (indexed site)

    Estimated Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Utah Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  12. A METHOD FOR ESTIMATING GAS PRESSURE IN 3013 CONTAINERS USING AN ISP DATABASE QUERY

    SciTech Connect

    Friday, G; L. G. Peppers, L; D. K. Veirs, D

    2008-07-31

    The U.S. Department of Energy's Integrated Surveillance Program (ISP) is responsible for the storage and surveillance of plutonium-bearing material. During storage, plutonium-bearing material has the potential to generate hydrogen gas from the radiolysis of adsorbed water. The generation of hydrogen gas is a safety concern, especially when a container is breached within a glove box during destructive evaluation. To address this issue, the DOE established a standard (DOE, 2004) that sets the criteria for the stabilization and packaging of material for up to 50 years. The DOE has now packaged most of its excess plutonium for long-term storage in compliance with this standard. As part of this process, it is desirable to know within reasonable certainty the total maximum pressure of hydrogen and other gases within the 3013 container if safety issues and compliance with the DOE standards are to be attained. The principal goal of this investigation is to document the method and query used to estimate total (i.e. hydrogen and other gases) gas pressure within a 3013 container based on the material properties and estimated moisture content contained in the ISP database. Initial attempts to estimate hydrogen gas pressure in 3013 containers was based on G-values (hydrogen gas generation per energy input) derived from small scale samples. These maximum G-values were used to calculate worst case pressures based on container material weight, assay, wattage, moisture content, container age, and container volume. This paper documents a revised hydrogen pressure calculation that incorporates new surveillance results and includes a component for gases other than hydrogen. The calculation is produced by executing a query of the ISP database. An example of manual mathematical computations from the pressure equation is compared and evaluated with results from the query. Based on the destructive evaluation of 17 containers, the estimated mean absolute pressure was significantly higher

  13. Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment; Task 2: Gas Cleanup Design and Cost Estimates -- Black Liquor Gasification

    SciTech Connect

    Nexant Inc.

    2006-05-01

    As part of Task 2, Gas Cleanup and Cost Estimates, Nexant investigated the appropriate process scheme for removal of acid gases from black liquor-derived syngas for use in both power and liquid fuels synthesis. Two 3,200 metric tonne per day gasification schemes, both low-temperature/low-pressure (1100 deg F, 40 psi) and high-temperature/high-pressure (1800 deg F, 500 psi) were used for syngas production. Initial syngas conditions from each of the gasifiers was provided to the team by the National Renewable Energy Laboratory and Princeton University. Nexant was the prime contractor and principal investigator during this task; technical assistance was provided by both GTI and Emery Energy.

  14. Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources

    SciTech Connect

    Russell E. Fray

    2007-06-30

    RPSEA is currently in its first year of performance under contract DE-AC26-07NT42677, Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Program Administration. Progress continues to be made in establishing the program administration policies, procedures, and strategic foundation for future research awards. Significant progress was made in development of the draft program solicitations. In addition, RPSEA personnel continued an aggressive program of outreach to engage the industry and ensure wide industry participation in the research award solicitation process.

  15. Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources

    SciTech Connect

    Russell E. Fray

    2007-05-31

    RPSEA is currently in its first year of performance under contract DE-AC26-07NT42677, Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Program Administration. Significant progress has been made in establishing the program administration policies, procedures, and strategic foundation for future research awards. RPSEA has concluded an industry-wide collaborative effort to identify focus areas for research awards under this program. This effort is summarized in the RPSEA Draft Annual Plan, which is currently under review by committees established by the Secretary of Energy.

  16. Natural Gas Weekly Update, Printer-Friendly Version

    Annual Energy Outlook

    of the Alaska gas pipeline. The opening of ANWR might reduce the gas resource risk of building an Alaska gas pipeline, as the area has an estimated 3.6 trillion cubic...

  17. Nonlinear Bayesian Algorithms for Gas Plume Detection and Estimation from Hyper-spectral Thermal Image Data

    SciTech Connect

    Heasler, Patrick G.; Posse, Christian; Hylden, Jeff L.; Anderson, Kevin K.

    2007-06-13

    This paper presents a nonlinear Bayesian regression algorithm for the purpose of detecting and estimating gas plume content from hyper-spectral data. Remote sensing data, by its very nature, is collected under less controlled conditions than laboratory data. As a result, the physics-based model that is used to describe the relationship between the observed remotesensing spectra, and the terrestrial (or atmospheric) parameters that we desire to estimate, is typically littered with many unknown "nuisance" parameters (parameters that we are not interested in estimating, but also appear in the model). Bayesian methods are well-suited for this context as they automatically incorporate the uncertainties associated with all nuisance parameters into the error estimates of the parameters of interest. The nonlinear Bayesian regression methodology is illustrated on realistic simulated data from a three-layer model for longwave infrared (LWIR) measurements from a passive instrument. This shows that this approach should permit more accurate estimation as well as a more reasonable description of estimate uncertainty.

  18. Meta-Analysis of Estimates of Life Cycle Greenhouse Gas Emissions from Concentrating Solar Power: Preprint

    SciTech Connect

    Heath, G. A.; Burkhardt, J. J.

    2011-09-01

    In reviewing life cycle assessment (LCA) literature of utility-scale CSP systems, this analysis focuses on clarifying central tendency and reducing variability in estimates of life cycle greenhouse gas (GHG) emissions through a meta-analytical process called harmonization. From 125 references reviewed, 10 produced 36 independent GHG emission estimates passing screens for quality and relevance: 19 for parabolic trough technology and 17 for power tower technology. The interquartile range (IQR) of published GHG emission estimates was 83 and 20 g CO2eq/kWh for trough and tower, respectively, with medians of 26 and 38 g CO2eq/kWh. Two levels of harmonization were applied. Light harmonization reduced variability in published estimates by using consistent values for key parameters pertaining to plant design and performance. Compared to the published estimates, IQR was reduced by 69% and median increased by 76% for troughs. IQR was reduced by 26% for towers, and median was reduced by 34%. A second level of harmonization was applied to five well-documented trough LC GHG emission estimates, harmonizing to consistent values for GHG emissions embodied in materials and from construction activities. As a result, their median was further reduced by 5%, while the range increased by 6%. In sum, harmonization clarified previous results.

  19. NATURAL GAS FROM SHALE: Questions and Answers Why is Shale Gas Important?

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Why is Shale Gas Important? With the advance of extraction technology, shale gas production has led to a new abundance of natural gas supply in the United States over the past decade, and is expected to continue to do so for the foreseeable future. According to the Energy Information Administration (EIA), the unproved technically recoverable U.S. shale gas resource is estimated at 482 trillion cubic feet. 1 Estimated proved and unproved shale gas resources amount to a combined 542 trillion cubic

  20. Geological Carbon Sequestration Storage Resource Estimates for the Ordovician St. Peter Sandstone, Illinois and Michigan Basins, USA

    SciTech Connect

    Barnes, David; Ellett, Kevin; Leetaru, Hannes

    2014-09-30

    The Cambro-Ordovician strata of the Midwest of the United States is a primary target for potential geological storage of CO2 in deep saline formations. The objective of this project is to develop a comprehensive evaluation of the Cambro-Ordovician strata in the Illinois and Michigan Basins above the basal Mount Simon Sandstone since the Mount Simon is the subject of other investigations including a demonstration-scale injection at the Illinois Basin Decatur Project. The primary reservoir targets investigated in this study are the middle Ordovician St Peter Sandstone and the late Cambrian to early Ordovician Knox Group carbonates. The topic of this report is a regional-scale evaluation of the geologic storage resource potential of the St Peter Sandstone in both the Illinois and Michigan Basins. Multiple deterministic-based approaches were used in conjunction with the probabilistic-based storage efficiency factors published in the DOE methodology to estimate the carbon storage resource of the formation. Extensive data sets of core analyses and wireline logs were compiled to develop the necessary inputs for volumetric calculations. Results demonstrate how the range in uncertainty of storage resource estimates varies as a function of data availability and quality, and the underlying assumptions used in the different approaches. In the simplest approach, storage resource estimates were calculated from mapping the gross thickness of the formation and applying a single estimate of the effective mean porosity of the formation. Results from this approach led to storage resource estimates ranging from 3.3 to 35.1 Gt in the Michigan Basin, and 1.0 to 11.0 Gt in the Illinois Basin at the P10 and P90 probability level, respectively. The second approach involved consideration of the diagenetic history of the formation throughout the two basins and used depth-dependent functions of porosity to derive a more realistic spatially variable model of porosity rather than applying a

  1. Resources

    Energy.gov [DOE]

    Case studies and additional resources on implementing renewable energy in Federal new construction and major renovations are available.

  2. Impacts of Increased Access to Oil & Natural Gas Resources in the Lower 48 Federal Outer Continental Shelf (released in AEO2007)

    Reports and Publications

    2007-01-01

    This analysis was updated for Annual Energy Outlook 2009 (AEO): Impact of Limitations on Access to Oil and Natural Gas Resources in the Federal Outer Continental Shelf (OCS). The OCS is estimated to contain substantial resources of crude oil and natural gas; however, some areas of the OCS are subject to drilling restrictions. With energy prices rising over the past several years, there has been increased interest in the development of more domestic oil and natural gas supply, including OCS resources. In the past, federal efforts to encourage exploration and development activities in the deep waters of the OCS have been limited primarily to regulations that would reduce royalty payments by lease holders. More recently, the states of Alaska and Virginia have asked the federal government to consider leasing in areas off their coastlines that are off limits as a result of actions by the President or Congress. In response, the Minerals Management Service (MMS) of the U.S. Department of the Interior has included in its proposed 5-year leasing plan for 2007-2012 sales of one lease in the Mid-Atlantic area off the coastline of Virginia and two leases in the North Aleutian Basin area of Alaska. Development in both areas still would require lifting of the current ban on drilling.

  3. New Wind Energy Resource Potential Estimates for the United States (Presentation)

    SciTech Connect

    Elliott, D.; Schwartz, M.; Haymes, S.; Heimiller, D.; Scott, G.; Brower, M.; Hale, E.; Phelps, B.

    2011-01-01

    This presentation provides an overview of the wind energy resource mapping efforts conducted at NREL and by Truepower.

  4. Resources

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering ...

  5. U.S. Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Estimated Production (Billion Cubic Feet) U.S. Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 18,843 18,805 19,257 1980's 18,699 18,737 17,506 15,788 17,193 15,985 15,610 16,114 16,670 16,983 1990's 17,233 17,202 17,423 17,789 18,322 17,966 18,861 19,211 18,720 18,928 2000's 19,219 19,779 19,353 19,425 19,168 18,458 18,545 19,466 20,523 21,594 2010's 22,239 23,555 24,912 25,233 26,611 - = No

  6. U.S. Natural Gas, Wet After Lease Separation Reserves Estimated Production

    Energy Information Administration (EIA) (indexed site)

    (Billion Cubic Feet) Estimated Production (Billion Cubic Feet) U.S. Natural Gas, Wet After Lease Separation Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 20,079 1980's 19,500 19,554 18,292 16,590 18,032 16,798 16,401 16,904 17,466 17,752 1990's 18,003 18,012 18,269 18,641 19,210 18,874 19,783 20,134 19,622 19,856 2000's 20,164 20,642 20,248 20,231 20,017 19,259 19,373 20,318 21,415 22,537 2010's 23,224

  7. U.S. Nonassociated Natural Gas, Wet After Lease Separation, Estimated

    Energy Information Administration (EIA) (indexed site)

    Production from Reserves (Billion Cubic Feet) Estimated Production from Reserves (Billion Cubic Feet) U.S. Nonassociated Natural Gas, Wet After Lease Separation, Estimated Production from Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 16,674 1980's 16,095 16,238 15,044 13,235 14,514 13,344 12,958 13,553 14,274 14,653 1990's 15,067 15,044 15,238 15,773 16,303 15,988 16,845 17,112 16,486 16,543 2000's 16,863 17,451 17,260

  8. U.S. Federal Offshore Dry Natural Gas Reserves Estimated Production

    Energy Information Administration (EIA) (indexed site)

    (Billion Cubic Feet) Estimated Production (Billion Cubic Feet) U.S. Federal Offshore Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 4,984 4,674 4,556 4,622 4,772 4,674 5,040 5,170 4,909 4,922 2000's 4,819 4,957 4,469 4,353 3,921 2,939 2,775 2,731 2,250 2,377 2010's 2,154 1,660 1,360 1,198 1,148 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure

  9. Gulf of Mexico Federal Offshore - Texas Dry Natural Gas Reserves Estimated

    Energy Information Administration (EIA) (indexed site)

    Production (Billion Cubic Feet) Estimated Production (Billion Cubic Feet) Gulf of Mexico Federal Offshore - Texas Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 720 855 1,025 1,203 1,235 1,311 1990's 1,434 1,360 1,275 1,258 1,285 1,251 1,285 1,238 1,144 1,164 2000's 1,147 1,178 996 1,062 1,072 909 765 625 462 454 2010's 409 318 277 236 246 - = No Data Reported; -- = Not Applicable; NA =

  10. Resources

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Resources Resources Policies, Manuals & References Map Transportation Publications ⇒ Navigate Section Resources Policies, Manuals & References Map Transportation Publications Getting Help or Information askUS - Operations Unified Services Portal IT Help Desk (or call x4357) Facilities Work Request Center Telephone Services Travel Site Info Laboratory Map Construction Updates Laboratory Shuttle Buses Cafeteria Menu News and Events Today at Berkeley Lab News Center Press Releases Feature

  11. A Methodology for the Assessment of Unconventional (Continuous) Resources with an Application to the Greater Natural Buttes Gas Field, Utah

    SciTech Connect

    Olea, Ricardo A.; Cook, Troy A.; Coleman, James L.

    2010-12-15

    The Greater Natural Buttes tight natural gas field is an unconventional (continuous) accumulation in the Uinta Basin, Utah, that began production in the early 1950s from the Upper Cretaceous Mesaverde Group. Three years later, production was extended to the Eocene Wasatch Formation. With the exclusion of 1100 non-productive ('dry') wells, we estimate that the final recovery from the 2500 producing wells existing in 2007 will be about 1.7 trillion standard cubic feet (TSCF) (48.2 billion cubic meters (BCM)). The use of estimated ultimate recovery (EUR) per well is common in assessments of unconventional resources, and it is one of the main sources of information to forecast undiscovered resources. Each calculated recovery value has an associated drainage area that generally varies from well to well and that can be mathematically subdivided into elemental subareas of constant size and shape called cells. Recovery per 5-acre cells at Greater Natural Buttes shows spatial correlation; hence, statistical approaches that ignore this correlation when inferring EUR values for untested cells do not take full advantage of all the information contained in the data. More critically, resulting models do not match the style of spatial EUR fluctuations observed in nature. This study takes a new approach by applying spatial statistics to model geographical variation of cell EUR taking into account spatial correlation and the influence of fractures. We applied sequential indicator simulation to model non-productive cells, while spatial mapping of cell EUR was obtained by applying sequential Gaussian simulation to provide multiple versions of reality (realizations) having equal chances of being the correct model. For each realization, summation of EUR in cells not drained by the existing wells allowed preparation of a stochastic prediction of undiscovered resources, which range between 2.6 and 3.4 TSCF (73.6 and 96.3 BCM) with a mean of 2.9 TSCF (82.1 BCM) for Greater Natural Buttes

  12. Human resource needs and development for the gas industry of the future

    SciTech Connect

    Klass, D.L.

    1991-01-01

    The natural gas industry will confront many challenges in the 1990s and beyond, one of which is the development of human resources to meet future needs. An efficient, trained work force in this era of environmental concern, high technology, and alternative fuels is essential for the industry to continue to meet the competition and to safely deliver our product and service to all customers. Unfortunately, during this period there will be an increasing shortfall of technical personnel to replace those lost to attrition and a steady decline in the availability of new employees who are able to read, write, and perform simple math. Technological and government developments that will impact the industry and the skill levels needed by the industry employees are reviewed. In-house and external training of professional and nonprofessional personnel and the benefits and disadvantages of selected advanced training methods are discussed. Recommendations are presented that can help improve the training of gas industry employees to meet future needs. 22 refs.

  13. Future directions in advanced exploratory research related to oil, gas, shale and tar sand resources

    SciTech Connect

    Not Available

    1987-01-01

    The Office of Technical Coordination (OTC) is responsible for long-range, high-risk research that could provide major advances in technologies for the use of fossil fuels. In late 1986, OTC was given responsibility for an existing program of research in Advanced Process Technology (APT) for oil, gas, shale, and tar sands. To meet these challenges and opportunities, the OTC approached the National Research Council with a request to organize an advisory panel to examine future directions in fundamental research appropriate for sponsorship by the Advanced Process Technology program. An advisory group was formed with broad representation from the geosciences, physical sciences, and engineering disciplines to accomplish this task. The charge to the panel was to prepare a report for the director of the Office of Technical Coordination, identifying critical research areas. This report contains the findings and recommendations of the panel. It is written both to advise the research management of the Department of Energy on research opportunities and needs, and to stimulate interest and involvement in the research community in fundamental research related to fossil energy, and in particular, oil and gas resources. 1 tab.

  14. Drilling and Production Testing the Methane Hydrate Resource Potential Associated with the Barrow Gas Fields

    SciTech Connect

    Steve McRae; Thomas Walsh; Michael Dunn; Michael Cook

    2010-02-22

    In November of 2008, the Department of Energy (DOE) and the North Slope Borough (NSB) committed funding to develop a drilling plan to test the presence of hydrates in the producing formation of at least one of the Barrow Gas Fields, and to develop a production surveillance plan to monitor the behavior of hydrates as dissociation occurs. This drilling and surveillance plan was supported by earlier studies in Phase 1 of the project, including hydrate stability zone modeling, material balance modeling, and full-field history-matched reservoir simulation, all of which support the presence of methane hydrate in association with the Barrow Gas Fields. This Phase 2 of the project, conducted over the past twelve months focused on selecting an optimal location for a hydrate test well; design of a logistics, drilling, completion and testing plan; and estimating costs for the activities. As originally proposed, the project was anticipated to benefit from industry activity in northwest Alaska, with opportunities to share equipment, personnel, services and mobilization and demobilization costs with one of the then-active exploration operators. The activity level dropped off, and this benefit evaporated, although plans for drilling of development wells in the BGF's matured, offering significant synergies and cost savings over a remote stand-alone drilling project. An optimal well location was chosen at the East Barrow No.18 well pad, and a vertical pilot/monitoring well and horizontal production test/surveillance well were engineered for drilling from this location. Both wells were designed with Distributed Temperature Survey (DTS) apparatus for monitoring of the hydrate-free gas interface. Once project scope was developed, a procurement process was implemented to engage the necessary service and equipment providers, and finalize project cost estimates. Based on cost proposals from vendors, total project estimated cost is $17.88 million dollars, inclusive of design work

  15. ADAPTIVE MANAGEMENT AND PLANNING MODELS FOR CULTURAL RESOURCES IN OIL & GAS FIELDS IN NEW MEXICO AND WYOMING

    SciTech Connect

    Peggy Robinson

    2005-07-01

    This report summarizes activities that have taken place in the last six (6) months (January 2005-June 2005) under the DOE-NETL cooperative agreement ''Adaptive Management and Planning Models for Cultural Resources in Oil and Gas Fields, New Mexico and Wyoming'' DE-FC26-02NT15445. This project examines the practices and results of cultural resource investigation and management in two different oil and gas producing areas of the United States: southeastern New Mexico and the Powder River Basin of Wyoming. The project evaluates how cultural resource investigations have been conducted in the past and considers how investigation and management could be pursued differently in the future. The study relies upon full database population for cultural resource inventories and resources and geomorphological studies. These are the basis for analysis of cultural resource occurrence, strategies for finding and evaluating cultural resources, and recommendations for future management practices. Activities can be summarized as occurring in either Wyoming or New Mexico. Gnomon as project lead, worked in both areas.

  16. Recovery of Fresh Water Resources from Desalination of Brine Produced During Oil and Gas Production Operations

    SciTech Connect

    David B. Burnett; Mustafa Siddiqui

    2006-12-29

    Management and disposal of produced water is one of the most important problems associated with oil and gas (O&G) production. O&G production operations generate large volumes of brine water along with the petroleum resource. Currently, produced water is treated as a waste and is not available for any beneficial purposes for the communities where oil and gas is produced. Produced water contains different contaminants that must be removed before it can be used for any beneficial surface applications. Arid areas like west Texas produce large amount of oil, but, at the same time, have a shortage of potable water. A multidisciplinary team headed by researchers from Texas A&M University has spent more than six years is developing advanced membrane filtration processes for treating oil field produced brines The government-industry cooperative joint venture has been managed by the Global Petroleum Research Institute (GPRI). The goal of the project has been to demonstrate that treatment of oil field waste water for re-use will reduce water handling costs by 50% or greater. Our work has included (1) integrating advanced materials into existing prototype units and (2) operating short and long-term field testing with full size process trains. Testing at A&M has allowed us to upgrade our existing units with improved pre-treatment oil removal techniques and new oil tolerant RO membranes. We have also been able to perform extended testing in 'field laboratories' to gather much needed extended run time data on filter salt rejection efficiency and plugging characteristics of the process train. The Program Report describes work to evaluate the technical and economical feasibility of treating produced water with a combination of different separation processes to obtain water of agricultural water quality standards. Experiments were done for the pretreatment of produced water using a new liquid-liquid centrifuge, organoclay and microfiltration and ultrafiltration membranes for the

  17. Estimate of Geothermal Energy Resource in Major U.S. Sedimentary Basins (Presentation), NREL (National Renewable Energy Laboratory)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ESTIMATE OF GEOTHERMAL ENERGY RESOURCE IN MAJOR U.S. SEDIMENTARY BASINS Colleen Porro and Chad Augustine April 24, 2012 National Renewable Energy Lab, Golden, CO NREL/PR-6A20-55017 NATIONAL RENEWABLE ENERGY LABORATORY Sedimentary Basin Geothermal WHAT IS SEDIMENTARY BASIN GEOTHERMAL? 2 Geothermal Energy from Sedimentary Rock - Using hot" geothermal fluids (>100 o C) produced from sedimentary basins to generate electricity - Advantages: * Reservoirs are porous, permeable, and well

  18. Development and Demonstration of Mobile, Small Footprint Exploration and Development Well System for Arctic Unconventional Gas Resources (ARCGAS)

    SciTech Connect

    Paul Glavinovich

    2002-11-01

    Traditionally, oil and gas field technology development in Alaska has focused on the high-cost, high-productivity oil and gas fields of the North Slope and Cook Inlet, with little or no attention given to Alaska's numerous shallow, unconventional gas reservoirs (carbonaceous shales, coalbeds, tight gas sands). This is because the high costs associated with utilizing the existing conventional oil and gas infrastructure, combined with the typical remoteness and environmental sensitivity of many of Alaska's unconventional gas plays, renders the cost of exploring for and producing unconventional gas resources prohibitive. To address these operational challenges and promote the development of Alaska's large unconventional gas resource base, new low-cost methods of obtaining critical reservoir parameters prior to drilling and completing more costly production wells are required. Encouragingly, low-cost coring, logging, and in-situ testing technologies have already been developed by the hard rock mining industry in Alaska and worldwide, where an extensive service industry employs highly portable diamond-drilling rigs. From 1998 to 2000, Teck Cominco Alaska employed some of these technologies at their Red Dog Mine site in an effort to quantify a large unconventional gas resource in the vicinity of the mine. However, some of the methods employed were not fully developed and required additional refinement in order to be used in a cost effective manner for rural arctic exploration. In an effort to offset the high cost of developing a new, low-cost exploration methods, the US Department of Energy, National Petroleum Technology Office (DOE-NPTO), partnered with the Nana Regional Corporation and Teck Cominco on a technology development program beginning in 2001. Under this DOE-NPTO project, a team comprised of the NANA Regional Corporation (NANA), Teck Cominco Alaska and Advanced Resources International, Inc. (ARI) have been able to adapt drilling technology developed for the

  19. Emerging energy security issues: Natural gas in the Gulf Nations, An overview of Middle East resources, export potentials, and markets. Report Series No. 4

    SciTech Connect

    Ripple, R.D.; Hagen, R.E.

    1995-09-01

    This paper proceeds with a presentation of the natural gas resource base of the Gulf nations of the Middle East. The resource base is put in the context of the world natural gas resource and trade flows. This is followed by a discussion of the existing and planned project to move Gulf natural gas to consuming regions. Then a discussion of the source of demand in the likely target markets for the Gulf resource follows. Next, the nature of LNG pricing is discussed. A brief summary concludes the paper.

  20. Impacts of individual fish movement patterns on estimates of mortality due to dissolved gas supersaturation in the Columbia River Basin.

    SciTech Connect

    Scheibe, Timothy D.; Richmond, Marshall C.; Fidler, Larry E.

    2002-12-31

    Spatial and temporal distributions of dissolved gases in the Columbia and Snake rivers vary due to many factors including river channel and dam geometries, operational decisions, and natural variations in flow rates. As a result, the dissolved gas exposure histories experienced by migrating juvenile salmonids can vary significantly among individual fish. A discrete, particle-based model of individual fish movements and dissolved gas exposure history has been developed and applied to examine the effects of such variability on estimates of fish mortality. The model, called the Fish Individual-based Numerical Simulator or FINS, is linked to a two-dimensional (vertically-averaged) hydrodynamic simulator that quantifies local water velocity, temperature, and dissolved gas levels as a function of river flow rates and dam operations. Simulated gas exposure histories are then input to biological mortality models to predict the effects of various river configurations on fish injury and mortality due to dissolved gas supersaturation. This model framework provides a critical linkage between hydrodynamic models of the river system and models of biological effects. FINS model parameters were estimated and validated based on observations of individual fish movements collected using radiotelemetry methods during 1997 and 1998. The model was then used to simulate exposure histories under selected operational scenarios. We compare mortality rates estimated using the FINS model approach (incorporating individual behavior and spatial and temporal variability) to those estimated using average exposure times and levels as is done in traditional lumped-parameter model approaches.

  1. Transportation Infrastructure Requirement Resources | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Find infrastructure requirement resources below. DOE Resource Alternative Fuels Data Center: Natural Gas Fueling Infrastructure Development. Other Resource National Governors ...

  2. ESTIMATION OF RADIOLYTIC GAS GENERATION RATE FOR CYLINDRICAL RADIOACTIVE WASTE PACKAGES - APPLICATION TO SPENT ION EXCHANGE RESIN CONTAINERS

    SciTech Connect

    Husain, A.; Lewis, Brent J.

    2003-02-27

    Radioactive waste packages containing water and/or organic substances have the potential to radiolytically generate hydrogen and other combustible gases. Typically, the radiolytic gas generation rate is estimated from the energy deposition rate and the radiolytic gas yield. Estimation of the energy deposition rate must take into account the contributions from all radionuclides. While the contributions from non-gamma emitting radionuclides are relatively easy to estimate, an average geometry factor must be computed to determine the contribution from gamma emitters. Hitherto, no satisfactory method existed for estimating the geometry factors for a cylindrical package. In the present study, a formulation was developed taking into account the effect of photon buildup. A prototype code, called PC-CAGE, was developed to numerically solve the integrals involved. Based on the selected dimensions for a cylinder, the specified waste material, the photon energy of interest and a value for either the absorption or attenuation coefficient, the code outputs values for point and average geometry factors. These can then be used to estimate the internal dose rate to the material in the cylinder and hence to calculate the radiolytic gas generation rate. Besides the ability to estimate the rates of radiolytic gas generation, PC-CAGE can also estimate the dose received by the container material. This is based on values for the point geometry factors at the surface of the cylinder. PC-CAGE was used to calculate geometry factors for a number of cylindrical geometries. Estimates for the absorbed dose rate in container material were also obtained. The results for Ontario Power Generation's 3 m3 resin containers indicate that about 80% of the source gamma energy is deposited internally. In general, the fraction of gamma energy deposited internally depends on the dimensions of the cylinder, the material within it and the photon energy; the fraction deposited increases with increasing

  3. Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment; Task 1: Cost Estimates of Small Modular Systems

    SciTech Connect

    Nexant Inc.

    2006-05-01

    This deliverable is the Final Report for Task 1, Cost Estimates of Small Modular Systems, as part of NREL Award ACO-5-44027, ''Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup and Oxygen Separation Equipment''. Subtask 1.1 looked into processes and technologies that have been commercially built at both large and small scales, with three technologies, Fluidized Catalytic Cracking (FCC) of refinery gas oil, Steam Methane Reforming (SMR) of Natural Gas, and Natural Gas Liquids (NGL) Expanders, chosen for further investigation. These technologies were chosen due to their applicability relative to other technologies being considered by NREL for future commercial applications, such as indirect gasification and fluidized bed tar cracking. Research in this subject is driven by an interest in the impact that scaling has on the cost and major process unit designs for commercial technologies. Conclusions from the evaluations performed could be applied to other technologies being considered for modular or skid-mounted applications.

  4. Table 4.1 Technically Recoverable Crude Oil and Natural Gas Resource...

    Energy Information Administration (EIA) (indexed site)

    Region Proved Reserves 1 Unproved Resources Total Technically Recoverable Resources 2 Crude Oil and Lease Condensate (billion barrels) 48 States 3 Onshore 14.2 112.6 126.7 48 ...

  5. This latest issues of the Ntrual Gas Montly (March 2004) contains estimates

    Gasoline and Diesel Fuel Update

    of natural gas data through all of 2003 for many d Natural Gas Data for 2003 Preliminary data for 2003 indicate that natural gas total supply and demand were down in 2003 by almost 5 percent compared to 2002. Dry natural gas production in 2003 was 19,068 billion cubic feet (Bcf) compared with 18,964 Bcf in 2002. The increase in the production level reflects the increased drilling for natural gas. However, although natural gas well completions increased by 26 percent in 2003 compared with the

  6. Estimating Adult Chinook Salmon Exposure to Dissolved Gas Supersaturation Downstream of Hydroelectric Dams Using Telemetry and Hydrodynamic Models

    SciTech Connect

    Johnson, Eric L.; Clabough, Tami S.; Peery, Christopher A.; Bennett, David H.; bjornn, Theodore C.; Caudill, Christopher C.; Richmond, Marshall C.

    2007-11-01

    Gas bubble disease (GBD) has been recognized for years as a potential problem for fishes in the Columbia River basin. GBD results from exposure to gas supersaturated water created by discharge over dam spillways. Spill typically creates a downstream plume of water with high total dissolved gas supersaturation (TDGS) that may be positioned along either shore or mid-channel, depending on dam operations. We obtained spatial data on fish migration paths and migration depths for 228 adult spring and summer Chinook salmon, Oncorhynchus tshawytscha, during 2000. Migration paths were compared to output from a two-dimensional hydrodynamic and dissolved gas model to estimate the potential for GBD expression and to test for behavioral avoidance of the high TDGS plume in unrestrained fish migrating under field conditions. Consistent with our previous estimates using single-location estimates of TDGS, we observed salmon swam sufficiently deep in the water column to receive complete hydrostatic compensation 95.9% of time spent in the Bonneville tailrace and 88.1% of the time in the Ice Harbor tailrace. The majority of depth uncompensated exposure occurred at TDGS levels > 115%. Adult spring and summer Chinook salmon tended to migrate near the shoreline. Adults moved into the high dissolved gas plume as often as they moved out of it downstream of Bonneville Dam, providing no evidence that adults moved laterally to avoid areas with elevated dissolved gas levels. The strong influence of dam operations on the position of the high-TDGS plume and shoreline-orientation behaviors of adults suggest that exposure of adult salmonids to high-TDGS conditions may be minimized using operational conditions that direct the plume mid-channel, particularly during periods of high discharge and spill. More generally, our approach illustrates the potential for combined field and modeling efforts to estimate the fine-scale environmental conditions encountered by fishes in natural and regulated rivers.

  7. Unconventional gas: truly a game changer?

    SciTech Connect

    2009-08-15

    If prices of natural gas justify and/or if concerns about climate change push conventional coal off the table, vast quantities of unconventional gas can be brought to market at reasonable prices. According to a report issued by PFC Energy, global unconventional natural gas resources that may be ultimately exploited with new technologies could be as much as 3,250,000 billion cubic feet. Current conventional natural gas resources are estimated around 620,000 billion cubic feet.

  8. ADAPTIVE MANAGEMENT AND PLANNING MODELS FOR CULTURAL RESOURCES IN OIL & GAS FIELDS IN NEW MEXICO AND WYOMING

    SciTech Connect

    Peggy Robinson

    2004-07-01

    This report contains a summary of activities of Gnomon, Inc. and five subcontractors that have taken place during the first six months of 2004 (January 1, 2004-June 30, 2004) under the DOE-NETL cooperative agreement: ''Adaptive Management and Planning Models for Cultural Resources in Oil & Gas Fields in New Mexico and Wyoming'', DE-FC26-02NT15445. Although Gnomon and all five subcontractors completed tasks during these six months, most of the technical experimental work was conducted by the subcontractor, SRI Foundation (SRIF). SRIF created a sensitivity model for the Azotea Mesa area of southeastern New Mexico that rates areas as having a very good chance, a good chance, or a very poor chance of containing cultural resource sites. SRIF suggested that the results of the sensitivity model might influence possible changes in cultural resource management (CRM) practices in the Azote Mesa area of southeastern New Mexico.

  9. Estimating U.S. Methane Emissions from the Natural Gas Supply...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    is to develop the empirical foundation for activity factor uncertainty estimation. 6. Transparency and credibility of inventory estimates can be improved by bolstering...

  10. Greenhouse Emission Reductions and Natural Gas Vehicles: A Resource Guide on Technology Options and Project Development

    SciTech Connect

    Orestes Anastasia; NAncy Checklick; Vivianne Couts; Julie Doherty; Jette Findsen; Laura Gehlin; Josh Radoff

    2002-09-01

    Accurate and verifiable emission reductions are a function of the degree of transparency and stringency of the protocols employed in documenting project- or program-associated emissions reductions. The purpose of this guide is to provide a background for law and policy makers, urban planners, and project developers working with the many Greenhouse Gas (GHG) emission reduction programs throughout the world to quantify and/or evaluate the GHG impacts of Natural Gas Vehicle (NGVs). In order to evaluate the GHG benefits and/or penalties of NGV projects, it is necessary to first gain a fundamental understanding of the technology employed and the operating characteristics of these vehicles, especially with regard to the manner in which they compare to similar conventional gasoline or diesel vehicles. Therefore, the first two sections of this paper explain the basic technology and functionality of NGVs, but focus on evaluating the models that are currently on the market with their similar conventional counterparts, including characteristics such as cost, performance, efficiency, environmental attributes, and range. Since the increased use of NGVs, along with Alternative Fuel Vehicle (AFVs) in general, represents a public good with many social benefits at the local, national, and global levels, NGVs often receive significant attention in the form of legislative and programmatic support. Some states mandate the use of NGVs, while others provide financial incentives to promote their procurement and use. Furthermore, Federal legislation in the form of tax incentives or procurement requirements can have a significant impact on the NGV market. In order to implement effective legislation or programs, it is vital to have an understanding of the different programs and activities that already exist so that a new project focusing on GHG emission reduction can successfully interact with and build on the experience and lessons learned of those that preceded it. Finally, most programs

  11. Philadelphia gas works medium-Btu coal gasification project: capital and operating cost estimate, financial/legal analysis, project implementation

    SciTech Connect

    Not Available

    1981-12-01

    This volume of the final report is a compilation of the estimated capital and operating costs for the project. Using the definitive design as a basis, capital and operating costs were developed by obtaining quotations for equipment delivered to the site. Tables 1.1 and 1.2 provide a summary of the capital and operating costs estimated for the PGW Coal Gasification Project. In the course of its Phase I Feasibility Study of a medium-Btu coal-gas facility, Philadelphia Gas Works (PGW) identified the financing mechanism as having great impact on gas cost. Consequently, PGW formed a Financial/Legal Task Force composed of legal, financial, and project analysis specialists to study various ownership/management options. In seeking an acceptable ownership, management, and financing arrangement, certain ownership forms were initially identified and classified. Several public ownership, private ownership, and third party ownership options for the coal-gas plant are presented. The ownership and financing forms classified as base alternatives involved tax-exempt and taxable financing arrangements and are discussed in Section 3. Project implementation would be initiated by effectively planning the methodology by which commercial operation will be realized. Areas covered in this report are sale of gas to customers, arrangements for feedstock supply and by-product disposal, a schedule of major events leading to commercialization, and a plan for managing the implementation.

  12. A Resource Assessment Of Geothermal Energy Resources For Converting Deep Gas Wells In Carbonate Strata Into Geothermal Extraction Wells: A Permian Basin Evaluation

    SciTech Connect

    Erdlac, Richard J., Jr.

    2006-10-12

    Previously conducted preliminary investigations within the deep Delaware and Val Verde sub-basins of the Permian Basin complex documented bottom hole temperatures from oil and gas wells that reach the 120-180C temperature range, and occasionally beyond. With large abundances of subsurface brine water, and known porosity and permeability, the deep carbonate strata of the region possess a good potential for future geothermal power development. This work was designed as a 3-year project to investigate a new, undeveloped geographic region for establishing geothermal energy production focused on electric power generation. Identifying optimum geologic and geographic sites for converting depleted deep gas wells and fields within a carbonate environment into geothermal energy extraction wells was part of the project goals. The importance of this work was to affect the three factors limiting the expansion of geothermal development: distribution, field size and accompanying resource availability, and cost. Historically, power production from geothermal energy has been relegated to shallow heat plumes near active volcanic or geyser activity, or in areas where volcanic rocks still retain heat from their formation. Thus geothermal development is spatially variable and site specific. Additionally, existing geothermal fields are only a few 10’s of square km in size, controlled by the extent of the heat plume and the availability of water for heat movement. This plume radiates heat both vertically as well as laterally into the enclosing country rock. Heat withdrawal at too rapid a rate eventually results in a decrease in electrical power generation as the thermal energy is “mined”. The depletion rate of subsurface heat directly controls the lifetime of geothermal energy production. Finally, the cost of developing deep (greater than 4 km) reservoirs of geothermal energy is perceived as being too costly to justify corporate investment. Thus further development opportunities

  13. Property-rights application in utilization of natural resources: the case of Iran's natural gas

    SciTech Connect

    Abghari, M.H.

    1982-01-01

    The concessionaries produce more oil in Iran because of fear of nationalization, lower oil production costs in the Middle East, and more investment opportunities around the globe. This higher discount rate means more oil production and also, more natural gas, a joint product, is produced. Produced natural gas could have been used in the Iranian market, or exported. Low oil prices and high transportation costs of natural gas resulted in the low well-head value of natural gas. The fear of nationalization kept concessionaires from utilizing natural gas in Iran's domestic market. The high transportation costs of natural gas was a negative factor in export utilization. Also, if natural gas, which can be substituted for oil in many uses, were to be utilized, concessionaires would have had to produce less oil. Because oil had a well-established market, it would have been contrary to their interest to leave a lot of oil underground while their concessions ran out. Consequently, they chose to take the oil and flare natural gas. The Iranian government must take responsibility in this matter also. The country's rulers were not concerned with maximizing the country's wealth, but maximizing the security of their regimes, and their personal wealth and pleasure.

  14. World Natural Gas Model

    Energy Science and Technology Software Center

    1994-12-01

    RAMSGAS, the Research and Development Analysis Modeling System World Natural Gas Model, was developed to support planning of unconventional gaseoues fuels research and development. The model is a scenario analysis tool that can simulate the penetration of unconventional gas into world markets for oil and gas. Given a set of parameter values, the model estimates the natural gas supply and demand for the world for the period from 1980 to 2030. RAMSGAS is based onmore » a supply/demand framwork and also accounts for the non-renewable nature of gas resources. The model has three fundamental components: a demand module, a wellhead production cost module, and a supply/demand interface module. The demand for gas is a product of total demand for oil and gas in each of 9 demand regions and the gas share. Demand for oil and gas is forecast from the base year of 1980 through 2030 for each demand region, based on energy growth rates and price-induced conservation. For each of 11 conventional and 19 unconventional gas supply regions, wellhead production costs are calculated. To these are added transportation and distribution costs estimates associated with moving gas from the supply region to each of the demand regions and any economic rents. Based on a weighted average of these costs and the world price of oil, fuel shares for gas and oil are computed for each demand region. The gas demand is the gas fuel share multiplied by the total demand for oil plus gas. This demand is then met from the available supply regions in inverse proportion to the cost of gas from each region. The user has almost complete control over the cost estimates for each unconventional gas source in each year and thus can compare contributions from unconventional resources under different cost/price/demand scenarios.« less

  15. Estimating Methods

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    1997-03-28

    Based on the project's scope, the purpose of the estimate, and the availability of estimating resources, the estimator can choose one or a combination of techniques when estimating an activity or project. Estimating methods, estimating indirect and direct costs, and other estimating considerations are discussed in this chapter.

  16. ,"U.S. Natural Gas, Wet After Lease Separation Reserves Estimated Production (Billion Cubic Feet)"

    Energy Information Administration (EIA) (indexed site)

    Estimated Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Natural Gas, Wet After Lease Separation Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  17. ,"U.S. Nonassociated Natural Gas, Wet After Lease Separation, Estimated Production from Reserves (Billion Cubic Feet)"

    Energy Information Administration (EIA) (indexed site)

    Estimated Production from Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Nonassociated Natural Gas, Wet After Lease Separation, Estimated Production from Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  18. DOE Expedition Discovers the First Gulf of Mexico Resource-Quality Gas Hydrate Deposits

    Energy.gov [DOE]

    The Office of Fossil Energy's National Energy Technology Laboratory has established that gas hydrate can and does occur at high saturations within reservoir-quality sands in the Gulf of Mexico.

  19. Unconventional Natural Gas

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... 21 Exhibit 1-9 U.S. oil- and gas-producing ... for natural gas extraction (NETL, 2014) ... shale gas, tight gas sands, and coalbed methane resources. ...

  20. Adaptive Management and Planning Models for Cultural Resources in Oil and Gas Fields in New Mexico and Wyoming

    SciTech Connect

    Eckerle, William; Hall, Stephen

    2005-12-30

    In 2002, Gnomon, Inc., entered into a cooperative agreement with the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) for a project entitled, Adaptive Management and Planning Models for Cultural Resources in Oil and Gas Fields in New Mexico and Wyoming (DE-FC26-02NT15445). This project, funded through DOE’s Preferred Upstream Management Practices grant program, examined cultural resource management practices in two major oil- and gas-producing areas, southeastern New Mexico and the Powder River Basin of Wyoming (Figure 1). The purpose of this project was to examine how cultural resources have been investigated and managed and to identify more effective management practices. The project also was designed to build information technology and modeling tools to meet both current and future management needs. The goals of the project were described in the original proposal as follows: Goal 1. Create seamless information systems for the project areas. Goal 2. Examine what we have learned from archaeological work in the southeastern New Mexico oil fields and whether there are better ways to gain additional knowledge more rapidly or at a lower cost. Goal 3. Provide useful sensitivity models for planning, management, and as guidelines for field investigations. Goal 4. Integrate management, investigation, and decision- making in a real-time electronic system. Gnomon, Inc., in partnership with the Wyoming State Historic Preservation Office (WYSHPO) and Western GeoArch Research, carried out the Wyoming portion of the project. SRI Foundation, in partnership with the New Mexico Historic Preservation Division (NMHPD), Statistical Research, Inc., and Red Rock Geological Enterprises, completed the New Mexico component of the project. Both the New Mexico and Wyoming summaries concluded with recommendations how cultural resource management (CRM) processes might be modified based on the findings of this research.

  1. Plan for protection of oil and natural gas resources Naval Oil Shale Reserve No. 1 and No. 3, Garfield County, Colorado. [Communitization to prevent losses to nearby drillers

    SciTech Connect

    Not Available

    1987-10-01

    This plan provides for the protection of the Government's interest in hydrocarbons found in Naval Oil Shale Reserve No.1 (NOSR-1) and Naval Oil Shale Reserve No. 3 (NOSR-3) located in GArfield County, Colorado, and complements a similar plan developed in 1983. Recent development of private property near NOSR-3 exceeds the activity contemplated in the 1983 plan, and has progressed to drilling units on land which, under Colorado spacing orders, would include at least 50 percent NOSR-3 land. Due to the proximity of these commerical gas wells to NOSR-3 land, it is estimated that gas produced from the wells would include gas which had migrated from NOSR-3. To protect the Government's interest in these and other such wells which may be drilled near NOSR-1 or NOSR-3, the Department's plan of primary protection is to enter into communitization agreements with the private developers when they initiate wells which would drain NOSR-1 or NOSR-3 hydrocarbons. In general, these agreements would permit the sharing of costs and hydrocarbon production based on surface acreage owned by each party in each of the drilling units. If attempts to obtain such agreements fail, or if it is determined that offset wells are needed in addition to the communitized units, the Department plans to drill and produce wells on NOSR-1 and NOSR-3 which would offset production from nearby wells on private lands. These measures will preclude the migration of NOSR-1 and NOSR-3 hydrocarbons to privately-owned wells, and protect the Government's resources. The results of the Department of Justice anti-trust review performed pursuant to Section 7430(g) of title 10, United States Code, are provided as a part of this plan at Exhibit N.

  2. Minnesota Energy Resources (Gas)- Commercial and Industrial Energy Efficiency Rebate Program

    Energy.gov [DOE]

    MER also provides rebates to commercial and industrial customers for an energy audit which provides a walk-through of the premise and a report on energy saving opportunities, and estimated costs...

  3. Kalman-filtered compressive sensing for high resolution estimation of anthropogenic greenhouse gas emissions from sparse measurements.

    SciTech Connect

    Ray, Jaideep; Lee, Jina; Lefantzi, Sophia; Yadav, Vineet; Michalak, Anna M.; van Bloemen Waanders, Bart Gustaaf; McKenna, Sean Andrew

    2013-09-01

    The estimation of fossil-fuel CO2 emissions (ffCO2) from limited ground-based and satellite measurements of CO2 concentrations will form a key component of the monitoring of treaties aimed at the abatement of greenhouse gas emissions. The limited nature of the measured data leads to a severely-underdetermined estimation problem. If the estimation is performed at fine spatial resolutions, it can also be computationally expensive. In order to enable such estimations, advances are needed in the spatial representation of ffCO2 emissions, scalable inversion algorithms and the identification of observables to measure. To that end, we investigate parsimonious spatial parameterizations of ffCO2 emissions which can be used in atmospheric inversions. We devise and test three random field models, based on wavelets, Gaussian kernels and covariance structures derived from easily-observed proxies of human activity. In doing so, we constructed a novel inversion algorithm, based on compressive sensing and sparse reconstruction, to perform the estimation. We also address scalable ensemble Kalman filters as an inversion mechanism and quantify the impact of Gaussian assumptions inherent in them. We find that the assumption does not impact the estimates of mean ffCO2 source strengths appreciably, but a comparison with Markov chain Monte Carlo estimates show significant differences in the variance of the source strengths. Finally, we study if the very different spatial natures of biogenic and ffCO2 emissions can be used to estimate them, in a disaggregated fashion, solely from CO2 concentration measurements, without extra information from products of incomplete combustion e.g., CO. We find that this is possible during the winter months, though the errors can be as large as 50%.

  4. Estimated size and performance of a natural gas fired duplex Stirling for domestic refrigeration applications

    SciTech Connect

    Berchowitz, D.M. ); Shonder, J. )

    1991-01-01

    Calibrated calculations are used to size an integrated Stirling cooler and engine (Duplex configuration). Fuel for the engine is natural gas and the working fluid is helium. The potential exists for long life and low noise. Performance is shown to be very competitive when compared to standard vapor compression systems. 10 refs., 8 figs., 1 tab.

  5. Evaluating Investments in Natural Gas Vehicles and Infrastructure for Your Fleet: Vehicle Infrastructure Cash-Flow Estimation -- VICE 2.0; Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    SciTech Connect

    Gonzales, John

    2015-04-02

    Presentation by Senior Engineer John Gonzales on Evaluating Investments in Natural Gas Vehicles and Infrastructure for Your Fleet using the Vehicle Infrastructure Cash-flow Estimation (VICE) 2.0 model.

  6. NREL: Renewable Resource Data Center - Biomass Resource Data

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Data The following biomass resource data collections can be found in the Renewable Resource Data Center (RReDC). Current Biomass Resource Supply An estimate of biomass resources...

  7. Analytical estimation of neutron yield in a micro gas-puff X pinch

    SciTech Connect

    Derzon, M. S.; Galambos, P. C. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Hagen, E. C. [NSTec, North Las Vegas, Nevada 89031 (United States)

    2012-12-01

    In this paper, we present the basic concepts for developing a micro x pinch as a small-scale neutron source. For compact sources, these concepts offer repetitive function at higher yields and pulsing rates than competing methods. The uniqueness of these concepts arises from the use of microelectronic technology to reduce the size of the target plasma and to efficiently heat the target gas. The use of repetitive microelectromechanical systems (MEMs) gas puff technology, as compared to cryogenic wires or solid targets (for the beam-target alternatives), has the potential to be robust and have a long lifetime because the plasma is not created from solid surfaces. The modeling suggests that a 50 J at the wall plug pulse could provide >10{sup 5} tritium (DT) neutrons and 10{sup 3} deuterium (DD) neutrons at temperatures of a few keV. At 1 kHz, this would be >10{sup 8} and 10{sup 6} neutrons per second, DT and DD, respectively, with a 250 {mu}m anode-cathode gap. DT gas puff devices may provide >10{sup 12} neutrons/s operating at 1 kHz and requiring 100 kW. The MEMs approach offers potentially high pulse rates and yields.

  8. A new laboratory technique to estimate gas diffusion characteristics of coal

    SciTech Connect

    Harpalani, S.; Ouyang, S.

    1999-07-01

    This paper describes a new experimental technique developed to measure the diffusion coefficient (D) for a coal-methane system using the transient flow mechanism, and examine its dependency on factors that change with continued flow-pressure and gas concentration. Although developed primarily for coalbed methane reservoirs and coal in the gob regions, it also has application in situations where a second gas is injected in coal since it utilizes the principle of counter-diffusion. The results show that there is a continuous decrease in the value of D with decreasing mean concentration of methane in coal. The logarithm of D varies directly with the pressure. Two effects may be responsible for this decrease. The first is a possible change in the flow mechanism with decreasing methane concentration due to the existence of varying pore sizes in coal. The other is the volumetric strain of solid coal matrix induced by desorption of gas, the so called shrinkage effect. This matrix shrinkage may be resulting in reduced pore sizes, and consequently, a decrease in the value of D.

  9. Types of Possible Survey Errors in Estimates Published in the Weekly Natural Gas Storage Report

    Reports and Publications

    2016-01-01

    This document lists types of potential errors in EIA estimates published in the WNGSR. Survey errors are an unavoidable aspect of data collection. Error is inherent in all collected data, regardless of the source of the data and the care and competence of data collectors. The type and extent of error depends on the type and characteristics of the survey.

  10. Mineral resources: Timely processing can increase rent revenue from certain oil/gas leases

    SciTech Connect

    Not Available

    1987-01-01

    Federal regulations require that onshore oil and gas leases that are subsequently determined to overlie a known geologic structure are to have their rental rates increased. The Bureau of Land Management does not have internal controls that ensure that such rental increases are processed consistently and in a timely manner. Although BLM'S state offices in Colorado and Wyoming generally increased rental rates for leases determined to overlie known geologic structures, these increases were not made in a timely manner during calendar years 1984 and 1985. These delays resulted in lost revenue of $552,614. There were also a few instances in the two states in which the rental rates had not been increased at all, causing an additional revenue loss of at least $15,123.

  11. Preliminary Estimates of Combined Heat and Power Greenhouse GasAbatement Potential for California in 2020

    SciTech Connect

    Firestone, Ryan; Ling, Frank; Marnay, Chris; Hamachi LaCommare,Kristina

    2007-07-31

    The objective of this scoping project is to help the California Energy Commission's (CEC) Public Interest Energy Research (PIER) Program determine where it should make investments in research to support combined heat and power (CHP) deployment. Specifically, this project will: {sm_bullet} Determine what impact CHP might have in reducing greenhouse gas (GHG) emissions, {sm_bullet} Determine which CHP strategies might encourage the most attractive early adoption, {sm_bullet} Identify the regulatory and technological barriers to the most attractive CHP strategies, and {sm_bullet} Make recommendations to the PIER program as to research that is needed to support the most attractive CHP strategies.

  12. Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment; Task 2.3: Sulfur Primer

    SciTech Connect

    Nexant Inc.

    2006-05-01

    This deliverable is Subtask 2.3 of Task 2, Gas Cleanup Design and Cost Estimates, of NREL Award ACO-5-44027, ''Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup and Oxygen Separation Equipment''. Subtask 2.3 builds upon the sulfur removal information first presented in Subtask 2.1, Gas Cleanup Technologies for Biomass Gasification by adding additional information on the commercial applications, manufacturers, environmental footprint, and technical specifications for sulfur removal technologies. The data was obtained from Nexant's experience, input from GTI and other vendors, past and current facility data, and existing literature.

  13. Resources for global risk assessment: The International Toxicity Estimates for Risk (ITER) and Risk Information Exchange (RiskIE) databases

    SciTech Connect

    Wullenweber, Andrea Kroner, Oliver; Kohrman, Melissa; Maier, Andrew; Dourson, Michael; Rak, Andrew; Wexler, Philip; Tomljanovic, Chuck

    2008-11-15

    The rate of chemical synthesis and use has outpaced the development of risk values and the resolution of risk assessment methodology questions. In addition, available risk values derived by different organizations may vary due to scientific judgments, mission of the organization, or use of more recently published data. Further, each organization derives values for a unique chemical list so it can be challenging to locate data on a given chemical. Two Internet resources are available to address these issues. First, the International Toxicity Estimates for Risk (ITER) database ( (www.tera.org/iter)) provides chronic human health risk assessment data from a variety of organizations worldwide in a side-by-side format, explains differences in risk values derived by different organizations, and links directly to each organization's website for more detailed information. It is also the only database that includes risk information from independent parties whose risk values have undergone independent peer review. Second, the Risk Information Exchange (RiskIE) is a database of in progress chemical risk assessment work, and includes non-chemical information related to human health risk assessment, such as training modules, white papers and risk documents. RiskIE is available at (http://www.allianceforrisk.org/RiskIE.htm), and will join ITER on National Library of Medicine's TOXNET ( (http://toxnet.nlm.nih.gov/)). Together, ITER and RiskIE provide risk assessors essential tools for easily identifying and comparing available risk data, for sharing in progress assessments, and for enhancing interaction among risk assessment groups to decrease duplication of effort and to harmonize risk assessment procedures across organizations.

  14. Hydrothermal Resources

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Hydrothermal Resources A geothermal resource requires fluid, heat, and permeability to generate electricity. Conventional hydrothermal resources contain all three components naturally. These geothermal systems can occur in widely diverse geologic settings, sometimes without clear surface manifestations of the underlying resource. In 2008, the U.S. Geological Survey (USGS) estimated that 30 GWe of undiscovered geothermal resources exist in the western United States 1- ten times the current

  15. Calculators for Estimating Greenhouse Gas Emissions from Public Transit Agency Vehicle Fleet Operations

    SciTech Connect

    Weigel, Brent; Southworth, Frank; Meyer, Michael D

    2010-01-01

    This paper reviews calculation tools available for quantifying the greenhouse gas emissions associated with different types of public transit service, and their usefulness in helping a transit agency to reduce its carbon footprint through informed vehicle and fuel procurement decisions. Available calculators fall into two categories: registry/inventory based calculators most suitable for standardized voluntary reporting, carbon trading, and regulatory compliance; and multi-modal life cycle analysis calculators that seek comprehensive coverage of all direct and indirect emissions. Despite significant progress in calculator development, no single calculator as yet contains all of the information needed by transit agencies to develop a truly comprehensive, life cycle analysis-based accounting of the emissions produced by its vehicle fleet operations, and for a wide range of vehicle/fuel technology options.

  16. Estimates of global, regional, and national annual CO{sub 2} emissions from fossil-fuel burning, hydraulic cement production, and gas flaring: 1950--1992

    SciTech Connect

    Boden, T.A.; Marland, G.; Andres, R.J.

    1995-12-01

    This document describes the compilation, content, and format of the most comprehensive C0{sub 2}-emissions database currently available. The database includes global, regional, and national annual estimates of C0{sub 2} emissions resulting from fossil-fuel burning, cement manufacturing, and gas flaring in oil fields for 1950--92 as well as the energy production, consumption, and trade data used for these estimates. The methods of Marland and Rotty (1983) are used to calculate these emission estimates. For the first time, the methods and data used to calculate CO, emissions from gas flaring are presented. This C0{sub 2}-emissions database is useful for carbon-cycle research, provides estimates of the rate at which fossil-fuel combustion has released C0{sub 2} to the atmosphere, and offers baseline estimates for those countries compiling 1990 C0{sub 2}-emissions inventories.

  17. Technique of estimation of actual strength of a gas pipeline section at its deformation in landslide action zone

    SciTech Connect

    Tcherni, V.P.

    1996-12-31

    The technique is given which permits determination of stress and strain state (SSS) and estimation of actual strength of a section of a buried main gas pipeline (GP) in the case of its deformation in a landslide action zone. The technique is based on the use of three-dimensional coordinates of axial points of the deformed GP section. These coordinates are received by a full-scale survey. The deformed axis of the surveyed GP section is described by the polynomial. The unknown coefficients of the polynomial can be determined from the boundary conditions at points of connection with contiguous undeformed sections as well as by use of minimization methods in mathematical processing of full-scale survey results. The resulting form of GP section`s axis allows one to determine curvatures and, accordingly, bending moments along all the length of the considered section. The influence of soil resistance to longitudinal displacements of a pipeline is used to determine longitudinal forces. Resulting values of bending moments and axial forces as well as the known value of internal pressure are used to analyze all necessary components of an actual SSS of pipeline section and to estimate its strength by elastic analysis.

  18. Battery-Powered Electric and Hybrid Electric Vehicle Projects to Reduce Greenhouse Gas Emissions: A Resource for Project Development

    SciTech Connect

    National Energy Technology Laboratory

    2002-07-31

    The transportation sector accounts for a large and growing share of global greenhouse gas (GHG) emissions. Worldwide, motor vehicles emit well over 900 million metric tons of carbon dioxide (CO2) each year, accounting for more than 15 percent of global fossil fuel-derived CO2 emissions.1 In the industrialized world alone, 20-25 percent of GHG emissions come from the transportation sector. The share of transport-related emissions is growing rapidly due to the continued increase in transportation activity.2 In 1950, there were only 70 million cars, trucks, and buses on the world’s roads. By 1994, there were about nine times that number, or 630 million vehicles. Since the early 1970s, the global fleet has been growing at a rate of 16 million vehicles per year. This expansion has been accompanied by a similar growth in fuel consumption.3 If this kind of linear growth continues, by the year 2025 there will be well over one billion vehicles on the world’s roads.4 In a response to the significant growth in transportation-related GHG emissions, governments and policy makers worldwide are considering methods to reverse this trend. However, due to the particular make-up of the transportation sector, regulating and reducing emissions from this sector poses a significant challenge. Unlike stationary fuel combustion, transportation-related emissions come from dispersed sources. Only a few point-source emitters, such as oil/natural gas wells, refineries, or compressor stations, contribute to emissions from the transportation sector. The majority of transport-related emissions come from the millions of vehicles traveling the world’s roads. As a result, successful GHG mitigation policies must find ways to target all of these small, non-point source emitters, either through regulatory means or through various incentive programs. To increase their effectiveness, policies to control emissions from the transportation sector often utilize indirect means to reduce emissions, such

  19. Unconventional Resources Technology Advisory Committee | Department...

    Office of Environmental Management (EM)

    The Unconventional Resources Technology Advisory Committee advises DOE on its research in unconventional oil and natural gas resources, such as shale gas. The Unconventional ...

  20. Fluid pressure arrival time tomography: Estimation and assessment in the presence of inequality constraints, with an application to a producing gas field at Krechba, Algeria

    SciTech Connect

    Rucci, A.; Vasco, D.W.; Novali, F.

    2010-04-01

    Deformation in the overburden proves useful in deducing spatial and temporal changes in the volume of a producing reservoir. Based upon these changes we estimate diffusive travel times associated with the transient flow due to production, and then, as the solution of a linear inverse problem, the effective permeability of the reservoir. An advantage an approach based upon travel times, as opposed to one based upon the amplitude of surface deformation, is that it is much less sensitive to the exact geomechanical properties of the reservoir and overburden. Inequalities constrain the inversion, under the assumption that the fluid production only results in pore volume decreases within the reservoir. We apply the formulation to satellite-based estimates of deformation in the material overlying a thin gas production zone at the Krechba field in Algeria. The peak displacement after three years of gas production is approximately 0.5 cm, overlying the eastern margin of the anticlinal structure defining the gas field. Using data from 15 irregularly-spaced images of range change, we calculate the diffusive travel times associated with the startup of a gas production well. The inequality constraints are incorporated into the estimates of model parameter resolution and covariance, improving the resolution by roughly 30 to 40%.

  1. Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment; Task 9: Mixed Alcohols From Syngas -- State of Technology

    SciTech Connect

    Nexant Inc.

    2006-05-01

    This deliverable is for Task 9, Mixed Alcohols from Syngas: State of Technology, as part of National Renewable Energy Laboratory (NREL) Award ACO-5-44027, ''Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup and Oxygen Separation Equipment''. Task 9 supplements the work previously done by NREL in the mixed alcohols section of the 2003 technical report Preliminary Screening--Technical and Economic Assessment of Synthesis Gas to Fuels and Chemicals with Emphasis on the Potential for Biomass-Derived Syngas.

  2. Automating Natural Disaster Impact Analysis: An Open Resource to Visually Estimate a Hurricane s Impact on the Electric Grid

    SciTech Connect

    Barker, Alan M; Freer, Eva B; Omitaomu, Olufemi A; Fernandez, Steven J; Chinthavali, Supriya; Kodysh, Jeffrey B

    2013-01-01

    An ORNL team working on the Energy Awareness and Resiliency Standardized Services (EARSS) project developed a fully automated procedure to take wind speed and location estimates provided by hurricane forecasters and provide a geospatial estimate on the impact to the electric grid in terms of outage areas and projected duration of outages. Hurricane Sandy was one of the worst US storms ever, with reported injuries and deaths, millions of people without power for several days, and billions of dollars in economic impact. Hurricane advisories were released for Sandy from October 22 through 31, 2012. The fact that the geoprocessing was automated was significant there were 64 advisories for Sandy. Manual analysis typically takes about one hour for each advisory. During a storm event, advisories are released every two to three hours around the clock, and an analyst capable of performing the manual analysis has other tasks they would like to focus on. Initial predictions of a big impact and landfall usually occur three days in advance, so time is of the essence to prepare for utility repair. Automated processing developed at ORNL allowed this analysis to be completed and made publicly available within minutes of each new advisory being released.

  3. Resource Assessment for Hydrogen Production: Hydrogen Production Potential from Fossil and Renewable Energy Resources

    SciTech Connect

    Melaina, M.; Penev, M.; Heimiller, D.

    2013-09-01

    This study examines the energy resources required to produce 4-10 million metric tonnes of domestic, low-carbon hydrogen in order to fuel approximately 20-50 million fuel cell electric vehicles. These projected energy resource requirements are compared to current consumption levels, projected 2040 business as usual consumptions levels, and projected 2040 consumption levels within a carbonconstrained future for the following energy resources: coal (assuming carbon capture and storage), natural gas, nuclear (uranium), biomass, wind (on- and offshore), and solar (photovoltaics and concentrating solar power). The analysis framework builds upon previous analysis results estimating hydrogen production potentials and drawing comparisons with economy-wide resource production projections

  4. ,"U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation, Estimated Production from Reserves (Billion Cubic Feet)"

    Energy Information Administration (EIA) (indexed site)

    Estimated Production from Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation, Estimated Production from Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  5. Estimating potential photovoltaic yield with r.sun and the open source Geographical Resources Analysis Support System

    SciTech Connect

    Nguyen, H.T.; Pearce, J.M.

    2010-05-15

    The package r.sun within the open source Geographical Resources Analysis Support System (GRASS) can be used to compute insolation including temporal and spatial variation of albedo and solar photovoltaic yield. A complete algorithm is presented covering the steps of data acquisition and preprocessing to post-simulation whereby candidate lands for incoming solar farms projects are identified. The optimal resolution to acquire reliable solar energy outputs to be integrated into PV system design software was determined to be 1 square km. A case study using the algorithm developed here was performed on a North American region encompassing fourteen counties in South-eastern Ontario. It was confirmed for the case study that Ontario has a large potential for solar electricity. This region is found to possess over 935,000 acres appropriate for solar farm development, which could provide 90 GW of PV. This is nearly 60% of Ontario's projected peak electricity demand in 2025. The algorithm developed and tested in this paper can be generalized to any region in the world in order to foster the most environmentally-responsible development of large-scale solar farms. (author)

  6. NETL: Oil & Gas

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Oil & Gas Efficient recovery of our nation's fossil fuel resources in an environmentally ... and challenging locations of many of our remaining oil and natural gas accumulations. ...

  7. Oil & Gas Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Oil & Gas Research Unconventional Resources NETL's onsite research in unconventional resources is focused on developing the data and modeling tools needed to predict and quantify ...

  8. Dry Natural Gas

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Estimated natural gas plant liquids and dry natural gas content of total natural gas proved reserves, 2014 million barrels and billion cubic feet 2014 Dry Natural Gas billion cubic ...

  9. Reserve estimates in western basins: Unita Basin. Final report, Part III

    SciTech Connect

    1995-10-01

    This study characterizes an extremely large gas resource located in low permeability, sandstone reservoirs of the Mesaverde group and Wasatch formation in the Uinta Basin, Utah. Total in-place resource is estimated at 395.5 Tcf. Via application of geologic, engineering and economic criteria, the portion of this resource potentially recoverable as reserves is estimated. Those volumes estimated include probable, possible and potential categories and total 3.8 Tcf as a mean estimate of recoverable gas for all plays considered in the basin. Two plays were included in this study and each was separately analyzed in terms of its tight gas resource, established productive characteristics and future reserves potential based on a constant $2/Mcf wellhead gas price scenario. A scheme has been developed to break the overall resource estimate down into components that can be considered as differing technical and economic challenges that must be overcome in order to exploit such resources; in other words, to convert those resources to economically recoverable reserves. About 82.1% of the total evaluated resource is contained within sandstones that have extremely poor reservoir properties with permeabilities considered too low for commerciality using current frac technology.

  10. Natural resources law handbook

    SciTech Connect

    Not Available

    1991-01-01

    This book covers legal topics ranging from ownership-related issues (including disposition, use and management of privately and publicly-owned lands, resources, minerals and waters) to the protection and maintenance of our nation's natural resources. It contains chapters on oil and gas resources, coal resources, and minerals and mining.

  11. EIA - Natural Gas Pipeline Network - Natural Gas Pipeline Mileage...

    Gasoline and Diesel Fuel Update

    Mileage by State About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates Estimated Natural Gas Pipeline Mileage in the ...

  12. Unconventional Resources Technology Advisory Committee | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Unconventional Resources Technology Advisory Committee Unconventional Resources Technology Advisory Committee The Unconventional Resources Technology Advisory Committee advises DOE on its research in unconventional oil and natural gas resources, such as shale gas. The Unconventional Resources Technology Advisory Committee advises DOE on its research in unconventional oil and natural gas resources, such as shale gas. Mission The Secretary of Energy, in response to provisions of

  13. Variable pressure supercritical Rankine cycle for integrated natural gas and power production from the geopressured geothermal resource

    SciTech Connect

    Goldsberry, F.L.

    1982-03-01

    A small-scale power plant cycle that utilizes both a variable pressure vaporizer (heater) and a floating pressure (and temperature) air-cooled condenser is described. Further, it defends this choice on the basis of classical thermodynamics and minimum capital cost by supporting these conclusions with actual comparative examples. The application suggested is for the geopressured geothermal resource. The arguments cited in this application apply to any process (petrochemical, nuclear, etc.) involving waste heat recovery.

  14. Improving the Availability and Delivery of Critical Information for Tight Gas Resource Development in the Appalachian Basin

    SciTech Connect

    Mary Behling; Susan Pool; Douglas Patchen; John Harper

    2008-12-31

    To encourage, facilitate and accelerate the development of tight gas reservoirs in the Appalachian basin, the geological surveys in Pennsylvania and West Virginia collected widely dispersed data on five gas plays and formatted these data into a large database that can be accessed by individual well or by play. The database and delivery system that were developed can be applied to any of the 30 gas plays that have been defined in the basin, but for this project, data compilation was restricted to the following: the Mississippian-Devonian Berea/Murrysville sandstone play and the Upper Devonian Venango, Bradford and Elk sandstone plays in Pennsylvania and West Virginia; and the 'Clinton'/Medina sandstone play in northwestern Pennsylvania. In addition, some data were collected on the Tuscarora Sandstone play in West Virginia, which is the lateral equivalent of the Medina Sandstone in Pennsylvania. Modern geophysical logs are the most common and cost-effective tools for evaluating reservoirs. Therefore, all of the well logs in the libraries of the two surveys from wells that had penetrated the key plays were scanned, generating nearly 75,000 scanned e-log files from more than 40,000 wells. A standard file-naming convention for scanned logs was developed, which includes the well API number, log curve type(s) scanned, and the availability of log analyses or half-scale logs. In addition to well logs, other types of documents were scanned, including core data (descriptions, analyses, porosity-permeability cross-plots), figures from relevant chapters of the Atlas of Major Appalachian Gas Plays, selected figures from survey publications, and information from unpublished reports and student theses and dissertations. Monthly and annual production data from 1979 to 2007 for West Virginia wells in these plays are available as well. The final database also includes digitized logs from more than 800 wells, sample descriptions from more than 550 wells, more than 600 digital photos

  15. Research projects needed for expediting development of domestic oil and gas resources through arctic, offshore, and drilling technology

    SciTech Connect

    Canja, S.; Williams, C.R.

    1982-04-01

    This document contains the research projects which were identified at an industry-government workshop on Arctic, Offshore, and Drilling Technology (AODT) held at Bartlesville Energy Technology Center, January 5-7, 1981. The purpose of the workshop was to identify those problem areas where government research could provide technology advancement that would assist industry in accelerating the discovery and development of US oil and gas resouces. The workshop results are to be used to guide an effective research program. The workshop identified and prioritized the tasks that need to be implemented. All of the projects listed in the Arctic and Offshore sections were selected as appropriate for a Department of Energy (DOE) research role. The drilling projects identified as appropriate only for industry research have been separated in the Drilling section of this report.

  16. NATURAL GAS FROM SHALE: Questions and Answers Shale Gas Glossary

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Glossary Acquifer - A single underground geological formation, or group of formations, containing water. Antrim Shale - A shale deposit located in the northern Michigan basin that is a Devonian age rock formation lying at a relatively shallow depth of 1,000 feet. Gas has been produced from this formation for several decades primarily via vertical, rather than horizontal, wells. The Energy Information Administration (EIA) estimates the technically recoverable Antrim shale resource at 20 trillion

  17. Oil & Gas Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Oil & Gas Research Unconventional Resources NETL's onsite research in unconventional resources is focused on developing the data and modeling tools needed to predict and quantify potential risks associated with oil and gas resources in shale reservoirs that require hydraulic fracturing or other engineering measures to produce. Fugitive Emissions | Produced Water Management | Subsurface Fluid & Gas Migration | Induced Seismicity Offshore Resources Building the scientific understanding and

  18. Natural Gas Weekly Update

    Annual Energy Outlook

    of 1 Tcf from the 1994 estimate of 51 Tcf. Ultimate potential for natural gas is a science-based estimate of the total amount of conventional gas in the province and is an...

  19. oil and gas portfolio reports

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Natural Gas & Oil Program Research Portfolio Reports The Office of Fossil Energy (FE)... focus areas: Unconventional Oil & Gas Resources; Ultra-Deepwater; and Small Producers. ...

  20. DOE's Carbon Utilization and Storage Atlas Estimates at Least 2,400 Billion

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Metric Tons of U.S. CO2 Storage Resource | Department of Energy DOE's Carbon Utilization and Storage Atlas Estimates at Least 2,400 Billion Metric Tons of U.S. CO2 Storage Resource DOE's Carbon Utilization and Storage Atlas Estimates at Least 2,400 Billion Metric Tons of U.S. CO2 Storage Resource December 19, 2012 - 12:00pm Addthis Washington, DC - The United States has at least 2,400 billion metric tons of possible carbon dioxide (CO2) storage resource in saline formations, oil and gas

  1. Geothermal Energy Production from Low Temperature Resources,...

    OpenEI (Open Energy Information) [EERE & EIA]

    Geothermal Energy Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and Geopressured Resources Jump to: navigation, search Geothermal ARRA Funded...

  2. California PRC Section 6903, Definitions for Geothermal Resources...

    OpenEI (Open Energy Information) [EERE & EIA]

    Resources Act, as provided by the California Department of Conservation, Division of Oil, Gas, and Geothermal Resources: "For the purposes of this chapter, 'geothermal resources'...

  3. Gas hydrates: Technology status report

    SciTech Connect

    Not Available

    1987-01-01

    In 1983, the US Department of Energy (DOE) assumed the responsibility for expanding the knowledge base and for developing methods to recover gas from hydrates. These are ice-like mixtures of gas and water where gas molecules are trapped within a framework of water molecules. This research is part of the Unconventional Gas Recovery (UGR) program, a multidisciplinary effort that focuses on developing the technology to produce natural gas from resources that have been classified as unconventional because of their unique geologies and production mechanisms. Current work on gas hydrates emphasizes geological studies; characterization of the resource; and generic research, including modeling of reservoir conditions, production concepts, and predictive strategies for stimulated wells. Complementing this work is research on in situ detection of hydrates and field tests to verify extraction methods. Thus, current research will provide a comprehensive technology base from which estimates of reserve potential can be made, and from which industry can develop recovery strategies. 7 refs., 3 figs., 6 tabs.

  4. Preliminary Geospatial Analysis of Arctic Ocean Hydrocarbon Resources

    SciTech Connect

    Long, Philip E.; Wurstner, Signe K.; Sullivan, E. C.; Schaef, Herbert T.; Bradley, Donald J.

    2008-10-01

    Ice coverage of the Arctic Ocean is predicted to become thinner and to cover less area with time. The combination of more ice-free waters for exploration and navigation, along with increasing demand for hydrocarbons and improvements in technologies for the discovery and exploitation of new hydrocarbon resources have focused attention on the hydrocarbon potential of the Arctic Basin and its margins. The purpose of this document is to 1) summarize results of a review of published hydrocarbon resources in the Arctic, including both conventional oil and gas and methane hydrates and 2) develop a set of digital maps of the hydrocarbon potential of the Arctic Ocean. These maps can be combined with predictions of ice-free areas to enable estimates of the likely regions and sequence of hydrocarbon production development in the Arctic. In this report, conventional oil and gas resources are explicitly linked with potential gas hydrate resources. This has not been attempted previously and is particularly powerful as the likelihood of gas production from marine gas hydrates increases. Available or planned infrastructure, such as pipelines, combined with the geospatial distribution of hydrocarbons is a very strong determinant of the temporal-spatial development of Arctic hydrocarbon resources. Significant unknowns decrease the certainty of predictions for development of hydrocarbon resources. These include: 1) Areas in the Russian Arctic that are poorly mapped, 2) Disputed ownership: primarily the Lomonosov Ridge, 3) Lack of detailed information on gas hydrate distribution, and 4) Technical risk associated with the ability to extract methane gas from gas hydrates. Logistics may control areas of exploration more than hydrocarbon potential. Accessibility, established ownership, and leasing of exploration blocks may trump quality of source rock, reservoir, and size of target. With this in mind, the main areas that are likely to be explored first are the Bering Strait and Chukchi

  5. Basic taxation of natural resources

    SciTech Connect

    Not Available

    1986-01-01

    This book contains 19 selections. Some of the titles are: Introduction to taxation and natural resources; The economic interest concept; Oil and gas exploration and development expenditures; Percentage depletion for oil and gas; and Mine reclamation and closing expenses.

  6. Oil- and gas-supply modeling

    SciTech Connect

    Gass, S.I.

    1982-05-01

    The symposium on Oil and Gas Supply Modeling, held at the Department of Commerce, Washington, DC (June 18-20, 1980), was funded by the Energy Information Administration of the Department of Energy and co-sponsored by the National Bureau of Standards' Operations Research Division. The symposium was organized to be a forum in which the theoretical and applied state-of-the-art of oil and gas supply models could be presented and discussed. Speakers addressed the following areas: the realities of oil and gas supply, prediction of oil and gas production, problems in oil and gas modeling, resource appraisal procedures, forecasting field size and production, investment and production strategies, estimating cost and production schedules for undiscovered fields, production regulations, resource data, sensitivity analysis of forecasts, econometric analysis of resource depletion, oil and gas finding rates, and various models of oil and gas supply. This volume documents the proceedings (papers and discussion) of the symposium. Separate abstracts have been prepared for individual papers for inclusion in the Energy Data Base.

  7. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update

    oil and gas resources will be necessary even as efficiency improvements reduce demand and renewable sources become more available. In order to retain public trust environmentally...

  8. Natural Gas Weekly Update

    Annual Energy Outlook

    Inventory of Onshore Federal Lands' Oil and Gas Resources and the Extent and Nature of Restrictions or Impediments to Their Development. The report, which was...

  9. 2007 Estimated International Energy Flows

    SciTech Connect

    Smith, C A; Belles, R D; Simon, A J

    2011-03-10

    An energy flow chart or 'atlas' for 136 countries has been constructed from data maintained by the International Energy Agency (IEA) and estimates of energy use patterns for the year 2007. Approximately 490 exajoules (460 quadrillion BTU) of primary energy are used in aggregate by these countries each year. While the basic structure of the energy system is consistent from country to country, patterns of resource use and consumption vary. Energy can be visualized as it flows from resources (i.e. coal, petroleum, natural gas) through transformations such as electricity generation to end uses (i.e. residential, commercial, industrial, transportation). These flow patterns are visualized in this atlas of 136 country-level energy flow charts.

  10. Colorado Oil and Gas Commission | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    gas natural resources. Responsible development results in: The efficient exploration and production of oil and gas resources in a manner consistent with the protection of public...

  11. Colorado Oil and Gas Conservation Commission | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    gas natural resources. Responsible development results in: The efficient exploration and production of oil and gas resources in a manner consistent with the protection of public...

  12. California Department of Conservation, Division of Oil, Gas,...

    OpenEI (Open Energy Information) [EERE & EIA]

    Conservation, Division of Oil, Gas, and Geothermal Resources Jump to: navigation, search Name: California Department of Conservation, Division of Oil, Gas, and Geothermal Resources...

  13. Physical Properties of Gas Hydrates: A Review

    DOE PAGES [OSTI]

    Gabitto, Jorge F.; Tsouris, Costas

    2010-01-01

    Memore » thane gas hydrates in sediments have been studied by several investigators as a possible future energy resource. Recent hydrate reserves have been estimated at approximately 10 16   m 3 of methane gas worldwide at standard temperature and pressure conditions. In situ dissociation of natural gas hydrate is necessary in order to commercially exploit the resource from the natural-gas-hydrate-bearing sediment. The presence of gas hydrates in sediments dramatically alters some of the normal physical properties of the sediment. These changes can be detected by field measurements and by down-hole logs. An understanding of the physical properties of hydrate-bearing sediments is necessary for interpretation of geophysical data collected in field settings, borehole, and slope stability analyses; reservoir simulation; and production models. This work reviews information available in literature related to the physical properties of sediments containing gas hydrates. A brief review of the physical properties of bulk gas hydrates is included. Detection methods, morphology, and relevant physical properties of gas-hydrate-bearing sediments are also discussed.« less

  14. Shale Natural Gas Estimated Production

    Gasoline and Diesel Fuel Update

    3,110 5,336 7,994 10,371 11,415 13,447 2007-2014 Alaska 0 0 0 0 0 0 2007-2014 Lower 48 States 3,110 5,336 7,994 10,371 11,415 13,447 2007-2014 Alabama 0 0 2007-2010 Arkansas 527 ...

  15. Shale Natural Gas Estimated Production

    Gasoline and Diesel Fuel Update

    2,116 3,110 5,336 7,994 10,371 11,415 2007-2013 Alaska 0 0 0 0 0 0 2007-2013 Lower 48 States 2,116 3,110 5,336 7,994 10,371 11,415 2007-2013 Alabama 0 0 0 2007-2010 Arkansas 279...

  16. Natural Gas Liquids Estimated Production

    Gasoline and Diesel Fuel Update

    1,285,627 1,322,588 1,396,273 1,483,085 1,512,143 1,586,541 1930-2015 Alabama 1967-1998 Alaska 1967-1998 Arizona 1967-1998 Arkansas 1967-1998 California 1967-1998 Colorado 1967-1998 Delaware 1967-1992 Florida 1967-1998 Idaho 1967-1992 Illinois 1967-1998 Indiana 1967-1998 Kansas 1967-1998 Kentucky 1967-1998 Louisiana 1967-1998 Maryland 1967-1998 Michigan 1967-1998 Mississippi 1967-1998 Missouri 1967-1998 Montana 1967-1998 Nebraska 1967-1998 Nevada 1967-1998 New Mexico 1967-1998 New York 1967-1998

  17. Analysis of Critical Permeabilty, Capillary Pressure and Electrical Properties for Mesaverde Tight Gas Sandstones from Western U.S. Basins

    SciTech Connect

    Alan Byrnes; Robert Cluff; John Webb; John Victorine; Ken Stalder; Daniel Osburn; Andrew Knoderer; Owen Metheny; Troy Hommertzheim; Joshua Byrnes; Daniel Krygowski; Stefani Whittaker

    2008-06-30

    Although prediction of future natural gas supply is complicated by uncertainty in such variables as demand, liquefied natural gas supply price and availability, coalbed methane and gas shale development rate, and pipeline availability, all U.S. Energy Information Administration gas supply estimates to date have predicted that Unconventional gas sources will be the dominant source of U.S. natural gas supply for at least the next two decades (Fig. 1.1; the period of estimation). Among the Unconventional gas supply sources, Tight Gas Sandstones (TGS) will represent 50-70% of the Unconventional gas supply in this time period (Fig. 1.2). Rocky Mountain TGS are estimated to be approximately 70% of the total TGS resource base (USEIA, 2005) and the Mesaverde Group (Mesaverde) sandstones represent the principal gas productive sandstone unit in the largest Western U.S. TGS basins including the basins that are the focus of this study (Washakie, Uinta, Piceance, northern Greater Green River, Wind River, Powder River). Industry assessment of the regional gas resource, projection of future gas supply, and exploration programs require an understanding of reservoir properties and accurate tools for formation evaluation. The goal of this study is to provide petrophysical formation evaluation tools related to relative permeability, capillary pressure, electrical properties and algorithms for wireline log analysis. Detailed and accurate moveable gas-in-place resource assessment is most critical in marginal gas plays and there is need for quantitative tools for definition of limits on gas producibility due to technology and rock physics and for defining water saturation. The results of this study address fundamental questions concerning: (1) gas storage; (2) gas flow; (3) capillary pressure; (4) electrical properties; (5) facies and upscaling issues; (6) wireline log interpretation algorithms; and (7) providing a web-accessible database of advanced rock properties. The following text

  18. The Growth of U.S. Natural Gas: An Uncertain Outlook for U.S. and World Supply

    Gasoline and Diesel Fuel Update

    The Growth of U.S. Natural Gas: An Uncertain Outlook for U.S. and World Supply For 2015 EIA Energy Conference June 15, 2015 | Washington, D.C. By John Staub, Team Lead, Exploration and Production Analysis Outline * Changes in U.S. natural gas - Why resource estimates change * Why resource estimates produced with different methods should be different and are valuable * What we need to know about a play to get a fairly accurate estimate - Intersection of geology, technology & above-ground

  19. Unconventional Energy Resources: 2007-2008 Review

    SciTech Connect

    2009-06-15

    This paper summarizes five 2007-2008 resource commodity committee reports prepared by the Energy Minerals Division (EMD) of the American Association of Petroleum Geologists. Current United States and global research and development activities related to gas hydrates, gas shales, geothermal resources, oil sands, and uranium resources are included in this review. These commodity reports were written to advise EMD leadership and membership of the current status of research and development of unconventional energy resources. Unconventional energy resources are defined as those resources other than conventional oil and natural gas that typically occur in sandstone and carbonate rocks. Gas hydrate resources are potentially enormous; however, production technologies are still under development. Gas shale, geothermal, oil sand, and uranium resources are now increasing targets of exploration and development, and are rapidly becoming important energy resources that will continue to be developed in the future.

  20. Unconventional Energy Resources: 2013 Review

    SciTech Connect

    Collaboration: American Association of Petroleum Geologists, Energy Minerals Division

    2013-11-30

    This report contains nine unconventional energy resource commodity summaries and an analysis of energy economics prepared by committees of the Energy Minerals Division of the American Association of Petroleum Geologists. Unconventional energy resources, as used in this report, are those energy resources that do not occur in discrete oil or gas reservoirs held in structural or stratigraphic traps in sedimentary basins. These resources include coal, coalbed methane, gas hydrates, tight-gas sands, gas shale and shale oil, geothermal resources, oil sands, oil shale, and U and Th resources and associated rare earth elements of industrial interest. Current U.S. and global research and development activities are summarized for each unconventional energy commodity in the topical sections of this report.

  1. Unconventional Energy Resources: 2015 Review

    SciTech Connect

    Collaboration: American Association of Petroleum Geologists, Energy Minerals Division

    2015-12-15

    This paper includes 10 summaries for energy resource commodities including coal and unconventional resources, and an analysis of energy economics and technology prepared by committees of the Energy Minerals Division of the American Association of Petroleum Geologists. Unconventional energy resources, as used in this report, are those energy resources that do not occur in discrete oil or gas reservoirs held in structural or stratigraphic traps in sedimentary basins. Such resources include coalbed methane, oil shale, U and Th deposits and associated rare earth elements of industrial interest, geothermal, gas shale and liquids, tight gas sands, gas hydrates, and bitumen and heavy oil. Current U.S. and global research and development activities are summarized for each unconventional energy resource commodity in the topical sections of this report, followed by analysis of unconventional energy economics and technology.

  2. Hydrogen Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Resources Hydrogen Resources Hydrogen can be produced from diverse, domestic resources. Currently, most hydrogen is produced from fossil fuels, specifically natural gas. Electricity-from the grid or from renewable sources such as wind, solar, geothermal, or biomass-is also currently used to produce hydrogen. In the longer term, solar energy and biomass can be used more directly to generate hydrogen. Natural Gas and Other Fossil Fuels Fossil fuels can be reformed to release the hydrogen from

  3. Natural Gas Infrastructure Modernization | Department of Energy

    Energy.gov [DOE] (indexed site)

    Methane is both a potent greenhouse gas and valuable energy resource.| Photo courtesy of the Energy Department. In order to help modernize the nation's natural gas transmission and ...

  4. EIA - Analysis of Natural Gas Exploration & Reserves

    Annual Energy Outlook

    Exploration & Reserves 2009 U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Reserves 2008 Annual Report Categories: Resources & Reserves (Released, 10292009, PDF, XLS, and...

  5. Oil and Gas Research| GE Global Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Oil & Gas We're balancing the increasing demand for finite resources with technology that ensures access to energy for generations to come. Home > Innovation > Oil & Gas ...

  6. Evaluating New Hydropower Resources

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Assessment of Energy Potential from New Stream-reach Development in the United States ... The estimated technical resource capac- ity for new stream-reach development is 84.7 GW, ...

  7. Natural Gas Weekly Update

    Annual Energy Outlook

    Estimates Database. Other Market Trends: Comments Received on Proposed Weekly Natural Gas Storage Report Revision Policy: The Energy Information Administration (EIA) solicited...

  8. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update

    Storage Estimates Database. Other Market Trends: EIA Releases New Report on the Fundamentals of Natural Gas Storage: EIA prepared a new report to provide general background...

  9. Petroleum resources of Venezuela and Trinidad and Tobago

    SciTech Connect

    Not Available

    1983-07-01

    The status of known and ultimately recoverable crude oil and natural gas resources of the Federal Republics of Venezuela, and Trinidad and Tobago (hereafter referred to as Trinidad) is set forth in this report. The rates that oil resources may be available to world markets are also covered in the report. A section on the petroleum geology of the region is included. The Republics of Venezuela and Trinidad share a common and ancient petroleum history. Over a century of exploration and development have resulted in the cumulative production of nearly 39 billion barrels of oil from Venezuela and over 2 billion barrels from Trinidad. Both republics have passed their peak status as oil producers. Venezuela reached its peak as the second largest producer in the world in the mid-fifties, and Trinidad attained its highest status as the eighth largest oil producer in the early forties. The report concludes that Venezuela and Trinidad have depleted slightly less than one-half of their ultimately recoverable crude oil resources. Based on feasible production rates and estimates of remaining recoverable resources, nearly two-thirds of Venezuela's oil resources and about three-fourths of Trinidad's oil resources may be depleted by the year 2000. The natural gas resources of both countries are underutilized and underdeveloped.

  10. Unconventional Energy Resources: 2011 Review

    SciTech Connect

    Collaboration: American Association of Petroleum Geologists

    2011-12-15

    This report contains nine unconventional energy resource commodity summaries prepared by committees of the Energy Minerals Division (EMD) of the American Association of Petroleum Geologists. Unconventional energy resources, as used in this report, are those energy resources that do not occur in discrete oil or gas reservoirs held in structural or stratigraphic traps in sedimentary basins. These resources include coal, coalbed methane, gas hydrates, tight gas sands, gas shale and shale oil, geothermal resources, oil sands, oil shale, and uranium resources. Current U.S. and global research and development activities are summarized for each unconventional energy commodity in the topical sections of this report. Coal and uranium are expected to supply a significant portion of the world's energy mix in coming years. Coalbed methane continues to supply about 9% of the U.S. gas production and exploration is expanding in other countries. Recently, natural gas produced from shale and low-permeability (tight) sandstone has made a significant contribution to the energy supply of the United States and is an increasing target for exploration around the world. In addition, oil from shale and heavy oil from sandstone are a new exploration focus in many areas (including the Green River area of Wyoming and northern Alberta). In recent years, research in the areas of geothermal energy sources and gas hydrates has continued to advance. Reviews of the current research and the stages of development of these unconventional energy resources are described in the various sections of this report.

  11. South Dakota Department of Natural Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    development in South Dakota related to the exploration and development of oil and gas resources. References "South Dakota Department of Natural Resources" Retrieved...

  12. NREL: Energy Analysis: Resource Assessment

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Resource Assessment NREL has developed maps and tools to conduct renewable energy resource assessments at the state, national and international level. Around the world, interest is growing in renewable energy as a strategy to mitigate greenhouse gas emissions and increase energy security. The starting point for new renewable energy projects is a characterization of the renewable resources available across a region, a resource assessment. NREL uses geospatial data sets to identify regions that

  13. The Antrim shale, fractured gas reservoirs with immense potential

    SciTech Connect

    Manger, K.C.; Woods, T.J. Curtis, J.B.

    1996-12-31

    Antrim shale gas production has grown from 0.4 Bcf of gas in 1987 to 127 Bcf in 1994, causing record gas production in Michigan. Recent industry activity suggests the play will continue to expand. The GRI Hydrocarbon Model`s Antrim resource base description was developed in 1991 based on industry activity through 1990. The 1991 description estimated 32 Tcf of recoverable resource, and was limited to northern Michigan which represents only part of the Antrim`s total potential. This description indicated production could increase manyfold, even with low prices. However, its well recovery rate is less than current industry results and projected near term production lags actual production by 1 to 2 years. GRI is updating its description to better reflect current industry results and incorporate all prospective areas. The description in northern Michigan is updated using production and well data through 1994 and results from GRI`s research program. The description is then expanded to the entire basin. Results indicate the northern resource is somewhat larger than the previous estimate and the wells perform better. Extrapolation to the entire basin using a geologic analog model approximately doubles the 1991 estimate. The model considers depositional, structural, and tectonic influences; fracturing; organic content; thermal history; and hydrocarbon generation, migration and storage. Pleistocene glaciation and biogenic gas are also included for areas near the Antrim subcrop.

  14. The Antrim shale, fractured gas reservoirs with immense potential

    SciTech Connect

    Manger, K.C. ); Woods, T.J. ) Curtis, J.B. )

    1996-01-01

    Antrim shale gas production has grown from 0.4 Bcf of gas in 1987 to 127 Bcf in 1994, causing record gas production in Michigan. Recent industry activity suggests the play will continue to expand. The GRI Hydrocarbon Model's Antrim resource base description was developed in 1991 based on industry activity through 1990. The 1991 description estimated 32 Tcf of recoverable resource, and was limited to northern Michigan which represents only part of the Antrim's total potential. This description indicated production could increase manyfold, even with low prices. However, its well recovery rate is less than current industry results and projected near term production lags actual production by 1 to 2 years. GRI is updating its description to better reflect current industry results and incorporate all prospective areas. The description in northern Michigan is updated using production and well data through 1994 and results from GRI's research program. The description is then expanded to the entire basin. Results indicate the northern resource is somewhat larger than the previous estimate and the wells perform better. Extrapolation to the entire basin using a geologic analog model approximately doubles the 1991 estimate. The model considers depositional, structural, and tectonic influences; fracturing; organic content; thermal history; and hydrocarbon generation, migration and storage. Pleistocene glaciation and biogenic gas are also included for areas near the Antrim subcrop.

  15. Alternative Fuels Data Center: Natural Gas

    Alternative Fuels and Advanced Vehicles Data Center

    Natural Gas Printable Version Share this resource Send a link to Alternative Fuels Data Center: Natural Gas to someone by E-mail Share Alternative Fuels Data Center: Natural Gas on ...

  16. Marketing Resources

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Expand Utility Resources News & Events Expand News & Events Skip navigation links Marketing Resources Marketing Portal Reports, Publications, and Research Utility Toolkit...

  17. Feed Resource Recovery | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    search Name: Feed Resource Recovery Place: Wellesley, Massachusetts Product: Start-up planning to convert waste to fertilizer and biomethane gas. Coordinates: 42.29776,...

  18. Mineral Resource Information System for Field Lab in the Osage Mineral Reservation Estate

    SciTech Connect

    Carroll, H.B.; Johnson, William I.

    1999-04-27

    The Osage Mineral Reservation Estate is located in Osage County, Oklahoma. Minerals on the Estate are owned by members of the Osage Tribe who are shareholders in the Estate. The Estate is administered by the Osage Agency, Branch of Minerals, operated by the U.S. Bureau of Indian Affairs (BIA). Oil, natural gas, casinghead gas, and other minerals (sand, gravel, limestone, and dolomite) are exploited by lessors. Operators may obtain from the Branch of Minerals and the Osage Mineral Estate Tribal Council leases to explore and exploit oil, gas, oil and gas, and other minerals on the Estate. Operators pay a royalty on all minerals exploited and sold from the Estate. A mineral Resource Information system was developed for this project to evaluate the remaining hydrocarbon resources located on the Estate. Databases on Microsoft Excel spreadsheets of operators, leases, and production were designed for use in conjunction with an evaluation spreadsheet for estimating the remaining hydrocarbons on the Estate.

  19. Unconventional Resources Technology Advisory Committee

    Energy Saver

    ... Act of 2005 has provided steady funding for the long-term cooperative research required to make progress toward safe and efficient development of the gas shale resource base. ...

  20. World Shale Resources

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Deputy Administrator The U.S. has experienced a rapid increase in natural gas and oil production from shale and other tight resources 2 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0...

  1. EIA - Analysis of Natural Gas Storage

    Annual Energy Outlook

    Prices This presentation provides information about EIA's estimates of working gas peak storage capacity, and the development of the natural gas storage industry....

  2. BASIN-CENTERED GAS SYSTEMS OF THE U.S.

    SciTech Connect

    Marin A. Popov; Vito F. Nuccio; Thaddeus S. Dyman; Timothy A. Gognat; Ronald C. Johnson; James W. Schmoker; Michael S. Wilson; Charles Bartberger

    2000-11-01

    The USGS is re-evaluating the resource potential of basin-centered gas accumulations in the U.S. because of changing perceptions of the geology of these accumulations, and the availability of new data since the USGS 1995 National Assessment of United States oil and gas resources (Gautier et al., 1996). To attain these objectives, this project used knowledge of basin-centered gas systems and procedures such as stratigraphic analysis, organic geochemistry, modeling of basin thermal dynamics, reservoir characterization, and pressure analysis. This project proceeded in two phases which had the following objectives: Phase I (4/1998 through 5/1999): Identify and describe the geologic and geographic distribution of potential basin-centered gas systems, and Phase II (6/1999 through 11/2000): For selected systems, estimate the location of those basin-centered gas resources that are likely to be produced over the next 30 years. In Phase I, we characterize thirty-three (33) potential basin-centered gas systems (or accumulations) based on information published in the literature or acquired from internal computerized well and reservoir data files. These newly defined potential accumulations vary from low to high risk and may or may not survive the rigorous geologic scrutiny leading towards full assessment by the USGS. For logistical reasons, not all basins received the level of detail desired or required.

  3. Estimating the upper limit of gas production from Class 2 hydrate accumulations in the permafrost: 2. Alternative well designs and sensitivity analysis

    SciTech Connect

    Moridis, G.; Reagan, M.T.

    2011-01-15

    In the second paper of this series, we evaluate two additional well designs for production from permafrost-associated (PA) hydrate deposits. Both designs are within the capabilities of conventional technology. We determine that large volumes of gas can be produced at high rates (several MMSCFD) for long times using either well design. The production approach involves initial fluid withdrawal from the water zone underneath the hydrate-bearing layer (HBL). The production process follows a cyclical pattern, with each cycle composed of two stages: a long stage (months to years) of increasing gas production and decreasing water production, and a short stage (days to weeks) that involves destruction of the secondary hydrate (mainly through warm water injection) that evolves during the first stage, and is followed by a reduction in the fluid withdrawal rate. A well configuration with completion throughout the HBL leads to high production rates, but also the creation of a secondary hydrate barrier around the well that needs to be destroyed regularly by water injection. However, a configuration that initially involves heating of the outer surface of the wellbore and later continuous injection of warm water at low rates (Case C) appears to deliver optimum performance over the period it takes for the exhaustion of the hydrate deposit. Using Case C as the standard, we determine that gas production from PA hydrate deposits increases with the fluid withdrawal rate, the initial hydrate saturation and temperature, and with the formation permeability.

  4. Gas hydrates

    SciTech Connect

    Not Available

    1985-04-01

    There is a definite need for the US government to provide leadership for research in gas hydrates and to coordinate its activities with academia, industry, private groups, federal agencies, and their foreign counterparts. In response to this need, the DOE Morgantown Energy Technology Center implemented a gas hydrates R and D program. Understanding the resource will be achieved through: assessment of current technology; characterization of gas hydrate geology and reservoir engineering; and development of diagnostic tools and methods. Research to date has focused on geology. As work progressed, areas where gas hydrates are likely to occur were identified, and specific high potential areas were targeted for future detailed investigation. Initial research activities involved the development of the Geologic Analysis System (GAS); which will provide, through approximately 30 software packages, the capability to manipulate and correlate several types of geologic and petroleum data into maps, graphics, and reports. Preliminary mapping of hydrate prospects for the Alaskan North Slope is underway. Geological research includes physical system characterization which focuses on creating synthetic methane hydrates and developing synthetic hydrate cores using tetrahydrofuran, consolidated rock cores, frost base mixtures, water/ice base mixtures, and water base mixtures. Laboratory work produced measurements of the sonic velocity and electrical resistivity of these synthetic hydrates. During 1983, a sample from a natural hydrate core recovered from the Pacific coast of Guatemala was tested for these properties by METC. More recently, a natural hydrate sample from the Gulf of Mexico was also acquired and testing of this sample is currently underway. In addition to the development of GAS, modeling and systems analysis work focused on the development of conceptual gas hydrate production models. 16 figs., 6 tabs.

  5. Recoverable Resource Estimate of Identified Onshore Geopressured...

    Office of Scientific and Technical Information (OSTI)

    AAPG 2012 Annual Convention and Exhibition Ariel Esposito and Chad Augustine April 24, 2012 NRELPR-6A20-54999 2 * Geopressured Geothermal o Reservoirs characterized by pore...

  6. US crude oil, natural gas, and natural gas liquids reserves

    SciTech Connect

    Not Available

    1990-10-05

    This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1989, and production volumes for the year 1989 for the total United States and for selected states and state sub-divisions. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), its two major components (nonassociated and associated-dissolved gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, two components of natural gas liquids, lease condensate and natural gas plant liquids, have their reserves and production reported separately. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. 28 refs., 9 figs., 15 tabs.

  7. Natural gas leak mapper

    DOEpatents

    Reichardt, Thomas A.; Luong, Amy Khai; Kulp, Thomas J.; Devdas, Sanjay

    2008-05-20

    A system is described that is suitable for use in determining the location of leaks of gases having a background concentration. The system is a point-wise backscatter absorption gas measurement system that measures absorption and distance to each point of an image. The absorption measurement provides an indication of the total amount of a gas of interest, and the distance provides an estimate of the background concentration of gas. The distance is measured from the time-of-flight of laser pulse that is generated along with the absorption measurement light. The measurements are formated into an image of the presence of gas in excess of the background. Alternatively, an image of the scene is superimosed on the image of the gas to aid in locating leaks. By further modeling excess gas as a plume having a known concentration profile, the present system provides an estimate of the maximum concentration of the gas of interest.

  8. North American Natural Gas Markets

    SciTech Connect

    Not Available

    1989-02-01

    This report summarizes die research by an Energy Modeling Forum working group on the evolution of the North American natural gas markets between now and 2010. The group's findings are based partly on the results of a set of economic models of the natural gas industry that were run for four scenarios representing significantly different conditions: two oil price scenarios (upper and lower), a smaller total US resource base (low US resource case), and increased potential gas demand for electric generation (high US demand case). Several issues, such as the direction of regulatory policy and the size of the gas resource base, were analyzed separately without the use of models.

  9. North American Natural Gas Markets

    SciTech Connect

    Not Available

    1988-12-01

    This report sunnnarizes the research by an Energy Modeling Forum working group on the evolution of the North American natural gas markets between now and 2010. The group's findings are based partly on the results of a set of economic models of the natural gas industry that were run for four scenarios representing significantly different conditions: two oil price scenarios (upper and lower), a smaller total US resource base (low US resource case), and increased potential gas demand for electric generation (high US demand case). Several issues, such as the direction of regulatory policy and the size of the gas resource base, were analyzed separately without the use of models.

  10. Contacts & Resources

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Contacts & Resources Contacts & Resources Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 envoutreach@lanl.gov Public...

  11. Solar Resources by Class and Country - Datasets - OpenEI Datasets

    OpenEI (Open Energy Information) [EERE & EIA]

    Solar Resources by Class and Country These estimates are derived from the best available solar resource data available to NREL. Resources are organized by class and country....

  12. Resources - JCAP

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    0 Resources Hero.jpg Resources Research Introduction Thrusts Library Resources Research Introduction Why Solar Fuels? Goals & Objectives Thrusts Thrust 1 Thrust 2 Thrust 3 Thrust 4 Library Publications Research Highlights Videos Resources User Facilities Expert Team Benchmarking Database Device Simulation Tool XPS Spectral Database JCAP offers a number of databases and simulation tools for solar-fuel generator researchers and developers. User Facilities Expert Team solarfuels1.jpg

  13. Computing Resources

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Cluster-Image TRACC RESEARCH Computational Fluid Dynamics Computational Structural Mechanics Transportation Systems Modeling Computing Resources The TRACC Computational Clusters ...

  14. Gas Exploration Software for Reducing Uncertainty in Gas Concentration

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Estimates - Energy Innovation Portal Energy Analysis Energy Analysis Find More Like This Return to Search Gas Exploration Software for Reducing Uncertainty in Gas Concentration Estimates Lawrence Berkeley National Laboratory Contact LBL About This Technology Technology Marketing SummaryEstimating reservoir parameters for gas exploration from geophysical data is subject to a large degree of uncertainty. Seismic imaging techniques, such as seismic amplitude versus angle (AVA) analysis, can

  15. Arkansas Oil and Gas Commission | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Oil and Gas Commission Jump to: navigation, search Name: Arkansas Oil and Gas Commission Address: 301 Natural Resources Dr. Ste 102 Place: Arkansas Zip: 72205 Website:...

  16. First AEO2015 Oil and Gas Working Group Meeting Summary

    Energy Information Administration (EIA) (indexed site)

    TEAM EXPLORATION AND PRODUCTION and NATURAL GAS MARKETS TEAMS SUBJECT: First AEO2015 Oil and Gas Working Group ... to High Resource case * World oil price outlooks based on ...

  17. Alternative Fuels Data Center: Natural Gas Vehicles

    Alternative Fuels and Advanced Vehicles Data Center

    Natural Gas Printable Version Share this resource Send a link to Alternative Fuels Data Center: Natural Gas Vehicles to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Vehicles on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Vehicles on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Vehicles on Google Bookmark Alternative Fuels Data Center: Natural Gas Vehicles on Delicious Rank Alternative Fuels Data Center: Natural Gas Vehicles on Digg Find

  18. Western Resource Adequacy: Challenges - Approaches - Metrics | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Resource Adequacy: Challenges - Approaches - Metrics Western Resource Adequacy: Challenges - Approaches - Metrics West-Wide Resource Assessment Team. Committee on Regional Electric Power Cooperation. March 25, 2004 San Francisco, California Western Resource Adequacy: Challenges - Approaches - Metrics (368.96 KB) More Documents & Publications Eastern Wind Integration and Transmission Study (EWITS) (Revised) Estimating the Benefits and Costs of Distributed Energy Technologies

  19. Geothermal Power/Oil & Gas Coproduction Opportunity

    SciTech Connect

    DOE

    2012-02-01

    Coproduced geothermal resources can deliver near-term energy savings, diminish greenhouse gas emissions, extend the economic life of oil and gas fields, and profitably utilize oil and gas field infrastructure. This two-pager provides an overview of geothermal coproduced resources.

  20. Fort Carson Wind Resource Assessment

    SciTech Connect

    Robichaud, R.

    2012-10-01

    This report focuses on the wind resource assessment, the estimated energy production of wind turbines, and economic potential of a wind turbine project on a ridge in the southeastern portion of the Fort Carson Army base.

  1. NREL: Renewable Resource Data Center - Wind Resource Information

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Wind Resource Information Photo of five wind turbines at the Nine Canyon Wind Project. The Nine Canyon Wind Project in Benton County, Washington, includes 37 wind turbines and 48 MW of capacity. Detailed wind resource information can be found on NREL's Wind Research website. This site provides access to state and international wind resource maps. Wind Integration Datasets are provided to help energy professionals perform wind integration studies and estimate power production from hypothetical

  2. Natural Gas Weekly Update

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    settled at 7.737 per MMBtu, only 0.001 per MMBtu lower on the week. Recent Natural Gas Market Data Estimated Average Wellhead Prices Sept-04 Oct-04 Nov-04 Dec-04 Jan-05...

  3. Natural Gas Weekly Update

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    for the March contract ended the week up almost 5 cents at 2.191 per MMBtu. Natural gas stocks remained well above last year's level as estimated net withdrawals were 82 Bcf...

  4. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update

    a large estimate of net injections of working gas into storage put downward pressure on spot and futures prices. Some parts of New England saw high temperatures only in the 70s for...

  5. Mobile Resources

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy Efficiency & Renewable Energy Alternative Fueling Station Locator Fuel Type Biodiesel (B20 and above) Compressed Natural Gas Electric Ethanol (E85) Hydrogen Liquefied Natural Gas (LNG) Liquefied Petroleum Gas (Propane) Location Enter a city, postal code, or address Include private stations Not all stations are open to the public. Choose this option to also search private fueling stations. Search Caution: The AFDC recommends that users verify that stations are open, available to the

  6. NREL: Wind Research - Offshore Wind Resource Characterization

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Wind Resource Characterization Map of the United States, showing the wind potential of offshore areas across the country. Enlarge image US offshore wind speed estimates at 90-m ...

  7. Resource Characterization

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering ...

  8. CSP Resources

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas ...

  9. Online Resources

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    online resources Online Resources Fusion and Plasma Physics Fusion Energy Education FuseEdWeb: Fusion Energy Education A Webby-award-winning site sponsored by LLNL and the Princeton Plasma Physics Laboratory with information and links to the world of fusion and plasma physics. General Atomics Fusion Education General Atomics Fusion Education Fusion education resources for teachers and students from General Atomics. Lasers and Photon Science Optics for Kids Optics 4 Kids Learn about optics-the

  10. Subcontractor Resources

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Community, Environment » Environmental Stewardship » Subcontactor Resources Subcontractor Resources We make it easy for you to work for Environmental Programs. Contact Environmental Programs Directorate Office (505) 606-2337 Points of Contact Subcontracts Manager Robin Reynolds Badging LANL TRU Program (LTP) - Mary Thronas Corrective Actions Program (CAP) - Tammie Fredenburg Records Debi Guffee Training Lisarae Lattin Resources Badge request form (docx) Injury illness card (pdf) Laboratory

  11. Business resources

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Business » Small Business » Business resources Business resources Setting new standards and small business initiatives within NNSA that will contribute to developing and strengthening our strategic partners for national security challenges. Contact Small Business Office (505) 667-4419 Email Broaden your market-find more resources with other labs, organizations LANL encourages business owners to fully research the Laboratory and to also market their services and products to other businesses,

  12. U.S. crude oil, natural gas, and natural gas liquids reserves 1997 annual report

    SciTech Connect

    Wood, John H.; Grape, Steven G.; Green, Rhonda S.

    1998-12-01

    This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1997, as well as production volumes for the US and selected States and State subdivisions for the year 1997. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1997 is provided. 21 figs., 16 tabs.

  13. Additional Resources

    Energy.gov [DOE]

    The following resources are focused on Federal new construction and major renovation projects, sustainable construction, and the role of renewable energy technologies in such facilities. These...

  14. Subcontractor Resources

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Robin Reynolds Badging LANL TRU Program (LTP) - Mary Thronas Corrective Actions Program (CAP) - Tammie Fredenburg Records Debi Guffee Training Lisarae Lattin Resources Badge...

  15. Middle East fuel supply & gas exports for power generation

    SciTech Connect

    Mitchell, G.K.; Newendorp, T.

    1995-12-31

    The Middle East countries that border on, or are near, the Persian Gulf hold over 65% of the world`s estimated proven crude oil reserves and 32% of the world`s estimated proven natural gas reserves. In fact, approximately 5% of the world`s total proven gas reserves are located in Qatar`s offshore North Field. This large natural gas/condensate field is currently under development to supply three LNG export projects, as well as a sub-sea pipeline proposal to export gas to Pakistan. The Middle East will continue to be a major source of crude oil and oil products to world petroleum markets, including fuel for existing and future base load, intermediate cycling and peaking electric generation plants. In addition, as the Persian Gulf countries turn their attention to exploiting their natural gas resources, the fast-growing need for electricity in the Asia-Pacific and east Africa areas offers a potential market for both pipeline and LNG export opportunities to fuel high efficiency, gas-fired combustion turbine power plants. Mr. Mitchell`s portion of this paper will discuss the background, status and timing of several Middle Eastern gas export projects that have been proposed. These large gas export projects are difficult and costly to develop and finance. Consequently, any IPP developers that are considering gas-fired projects which require Mid-East LNG as a fuel source, should understand the numerous sources and timing to securing project debt, loan terms and conditions, and, restrictions/credit rating issues associated with securing financing for these gas export projects. Mr. Newendorp`s section of the paper will cover the financing aspects of these projects, providing IPP developers with additional considerations in selecting the primary fuel supply for an Asian-Pacific or east African electric generation project.

  16. Title 20 AAC 25.705-.740 Geothermal Resources | Open Energy Informatio...

    OpenEI (Open Energy Information) [EERE & EIA]

    ResourcesLegal Abstract Title 20 of the Alaska Administrative Code Chapter 25, Alaska Oil and Gas Conservation Commission Article 7, Geothermal Resources, Sections 705-740....

  17. Mapping and Assessment of the United States Ocean Wave Energy Resource

    SciTech Connect

    Hagerman, G.; Scott, G.

    2011-12-01

    This project estimates the naturally available and technically recoverable U.S. wave energy resources.

  18. Unconventional gas systems analysis

    SciTech Connect

    Zammerilli, A.M.; Duda, J.R.; Layne, A.W.

    1992-01-01

    Gas systems analysis at the Morgantown Energy Technology Center (METC) crosscuts all sectors of the natural gas industry from resource to utilization. The board-based analysis identifies market needs that are required to maintain and expand the competitive position of natural gas in the overall energy supply by providing market pull'' options. METC systems analyses continually explore the impact of cost-lowering alternatives, which lead to the development of production and economic strategies to improve and promote the utilization of natural gas. Results of systems analyses identify socioeconomic, environmental, and regulatory barrier issues, providing a strategic base for guiding and improving future gas research, development, and demonstration initiative. Some recent analyses have focused on METC's directional well projects, targeting unconventional formations throughout the United States. Specifically, cost supply relationships and risk assessments are being developed for low-permeability gas formations underlying the Maverick, Greater Green River, Piceance, and Appalachian Basins.

  19. Surface Gas Sampling | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    In The Past 20 Years- Geochemistry In Geothermal Exploration Resource Evaluation And Reservoir Management Surface Gas Sampling At Fenton Hill HDR Geothermal Area (Goff &...

  20. Chemical Resources | Sample Preparation Laboratories

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Chemical Resources Chemical Inventory All Sample Preparation Labs are stocked with an assortment of common solvents, acids, bases, buffers, and other reagents. See our Chemical Inventories for a list of available reagents. If you need large quantities of any chemicals, please order or bring your own supply (see below). Chemical Inventories John Pople (Beamline Operations) maintains the SSRL gas inventories and Gas Cage Map. This information is provided on the SPL page as a courtesy. Please

  1. International Energy Outlook 2016-Natural gas - Energy Information

    Gasoline and Diesel Fuel Update

    Administration 3. Natural gas print version Overview Consumption of natural gas worldwide is projected to increase from 120 trillion cubic feet (Tcf) in 2012 to 203 Tcf in 2040 in the International Energy Outlook 2016 (IEO2016) Reference case. By energy source, natural gas accounts for the largest increase in world primary energy consumption. Abundant natural gas resources and robust production contribute to the strong competitive position of natural gas among other resources. Natural gas

  2. Archaeological Resources

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Archaeological Resources Archaeological Resources Our environmental stewardship commitment: we will cleanup the past, minimize impacts for current environmental operations, and create a sustainable future. April 12, 2012 Nake'muu Standing and previously collapsed walls at Nake'muu - note the window opening in the wall in the forefront of the photograph. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email The results of the

  3. NATURAL RESOURCES ASSESSMENT

    SciTech Connect

    D.F. Fenster

    2000-12-11

    The purpose of this report is to summarize the scientific work that was performed to evaluate and assess the occurrence and economic potential of natural resources within the geologic setting of the Yucca Mountain area. The extent of the regional areas of investigation for each commodity differs and those areas are described in more detail in the major subsections of this report. Natural resource assessments have focused on an area defined as the ''conceptual controlled area'' because of the requirements contained in the U.S. Nuclear Regulatory Commission Regulation, 10 CFR Part 60, to define long-term boundaries for potential radionuclide releases. New requirements (proposed 10 CFR Part 63 [Dyer 1999]) have obviated the need for defining such an area. However, for the purposes of this report, the area being discussed, in most cases, is the previously defined ''conceptual controlled area'', now renamed the ''natural resources site study area'' for this report (shown on Figure 1). Resource potential can be difficult to assess because it is dependent upon many factors, including economics (demand, supply, cost), the potential discovery of new uses for resources, or the potential discovery of synthetics to replace natural resource use. The evaluations summarized are based on present-day use and economic potential of the resources. The objective of this report is to summarize the existing reports and information for the Yucca Mountain area on: (1) Metallic mineral and mined energy resources (such as gold, silver, etc., including uranium); (2) Industrial rocks and minerals (such as sand, gravel, building stone, etc.); (3) Hydrocarbons (including oil, natural gas, tar sands, oil shales, and coal); and (4) Geothermal resources. Groundwater is present at the Yucca Mountain site at depths ranging from 500 to 750 m (about 1,600 to 2,500 ft) below the ground surface. Groundwater resources are not discussed in this report, but are planned to be included in the hydrology

  4. 343. Document entitled "Develop "Frontier" Resources to Ensure...

    Office of Environmental Management (EM)

    3. Document entitled "Develop "Frontier" Resources to Ensure Future Oil and Natural Gas Supply," dated March 8, 2001. B-5 Exemption - Information withheld (under Exemption 5) ...

  5. Ex Parte Memorandum - Natural Resources Defense Council | Department...

    Energy.gov [DOE] (indexed site)

    Memo102111Meeting.pdf (31.55 KB) More Documents & Publications American Gas Association Natural Resources Defense Council Ex Parte Communication Ex Parte Communication, July ...

  6. Electric Power Generation from Low-Temperature Geothermal Resources...

    OpenEI (Open Energy Information) [EERE & EIA]

    1 Recovery Act: Geothermal Technologies Program Project Type Topic 2 Geothermal Energy Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and...

  7. Washington Department of Natural Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    of Natural Resources is located in Olympia, Washington. About About 600 gas and oil wells have been drilled in Washington, but large-scale commercial production has never...

  8. Georgia Department of Natural Resources (GDNR) | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    References Retrieved from "http:en.openei.orgwindex.php?titleGeorgiaDepartmentofNaturalResources(GDNR)&oldid765343" Categories: Organizations Oil and Gas State Oil and...

  9. DeKalb County, Georgia: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Radiance Solar Resource Services Group (RSG) Servidyne SilvaGas Corporation FERCO Enterprises Inc Solar Systems USA Suniva Inc formerly Solarity Sustainable World Capital TCE...

  10. Georgia's 5th congressional district: Energy Resources | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Radiance Solar Resource Services Group (RSG) Servidyne SilvaGas Corporation FERCO Enterprises Inc Solar Systems USA Suniva Inc formerly Solarity Sustainable World Capital TCE...

  11. Hydrogen Resource Assessment: Hydrogen Potential from Coal, Natural...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    60-42773 February 2009 Hydrogen Resource Assessment Hydrogen Potential from Coal, Natural Gas, Nuclear, and Hydro Power Anelia Milbrandt and Margaret Mann National Renewable Energy...

  12. Alternative Fuels Data Center: Triangle Clean Cities Resource...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Triangle Clean Cities Resource Gives CNG Installation a Boost " Although North Carolina has 23 public natural gas fueling stations and many vehicle fleets using this fuel, we are ...

  13. Sonatrach prepares for greater exports of natural gas

    SciTech Connect

    Taleb, M. )

    1993-12-06

    Algeria is increasing its capacity to export natural gas in order to reinforce its strong position in the growing international market. The country's reserves are estimated at more than 3.6 trillion cu m. Algerian energy and development policy is based on a rational exploitation of this resource. A liquefield natural gas (LNG) pioneer, Algeria has one of the world's most important LNG production capacities. With a location encouraging export to nearby countries, Algeria has an important place in the world natural gas market and an exclusive role within its trading region. The effort will especially focus on southern Europe. The paper discusses Algeria's growing role in international markets, as well as local markets.

  14. State Oil and Gas Board State Oil and Gas Board Address Place...

    OpenEI (Open Energy Information) [EERE & EIA]

    Suite Arizona http www azogcc az gov Arkansas Oil and Gas Commission Arkansas Oil and Gas Commission Natural Resources Dr Ste Arkansas http www aogc state ar us JDesignerPro...

  15. Dry Natural Gas Estimated Production (Summary)

    Energy Information Administration (EIA) (indexed site)

    1,594 22,239 23,555 24,912 25,233 26,611 1977-2014 Federal Offshore Gulf of Mexico 1992-2007 Alabama 254 223 218 214 175 176 1977-2014 Alaska 358 317 327 299 285 304 1977-2014 Arkansas 698 951 1,079 1,151 1,140 1,142 1977-2014 California 239 243 311 200 188 176 1977-2014 Colorado 1,524 1,590 1,694 1,681 1,527 1,561 1977-2014 Florida 0 15 0 0 0 0 1977-2014 Kansas 334 305 285 281 283 272 1977-2014 Kentucky 108 96 101 83 81 70 1977-2014 Louisiana 1,544 2,189 2,985 3,057 2,344 1,960 1981-2014

  16. Dry Natural Gas Reserves Estimated Production

    Energy Information Administration (EIA) (indexed site)

    1,594 22,239 23,555 24,912 25,233 26,611 1977-2014 Federal Offshore U.S. 2,377 2,154 1,660 1,360 1,198 1,148 1990-2014 Pacific (California) 37 28 31 22 21 20 1977-2014 Gulf of Mexico (Louisiana & Alabama) 1,886 1,717 1,311 1,061 941 882 1981-2014 Gulf of Mexico (Texas) 454 409 318 277 236 246 1981-2014 Alaska 358 317 327 299 285 304 1977-2014 Lower 48 States 21,236 21,922 23,228 24,613 24,948 26,307 1977-2014 Alabama 254 223 218 214 175 176 1977-2014 Arkansas 698 951 1,079 1,151 1,140 1,142

  17. Training Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Learning and Workforce Development » Training Resources Training Resources Training Resources Type Training Resources

  18. U.S. Natural Gas Markets: Mid-Term Prospects for Natural Gas Supply

    Reports and Publications

    2001-01-01

    This service report describes the recent behavior of natural gas markets with respect to natural gas prices, their potential future behavior, the potential future supply contribution of liquefied natural gas and increased access to federally restricted resources, and the need for improved natural gas data.

  19. National conference on integrated resource planning: Proceedings

    SciTech Connect

    Not Available

    1991-12-31

    Until recently, state regulators have focused most of their attention on the development of least-cost or integrated resource planning (IRP) processes for electric utilities. A number of commissions are beginning to scrutinize the planning processes of local gas distribution companies (LDCs) because of the increased control that LDCs have over their purchased gas costs (as well as the associated risks) and because of questions surrounding the role and potential of gas end-use efficiency options. Traditionally, resource planning (LDCs) has concentrated on options for purchasing and storing gas. Integrated resource planning involves the creation of a process in which supply-side and demand-side options are integrated to create a resource mix that reliably satisfies customers` short-term and long-term energy service needs at the lowest cost. As applied to gas utilities, an integrated resource plan seeks to balance cost and reliability, and should not be interpreted simply as the search for lowest commodity costs. The National Association of Regulatory Utility Commissioners` (NARUC) Energy Conservation committee asked Lawrence Berkeley Laboratory (LBL) to survey state PUCs to determine the extent to which they have undertaken least cost planning for gas utilities. The survey included the following topics: status of state PUC least-cost planning regulations and practices for gas utilities; type and scope of natural gas DSM programs in effect, including fuel substitution; economic tests and analysis methods used to evaluate DSM programs; relationship between prudency reviews of gas utility purchasing practices and integrated resource planning; key regulatory issued facing gas utilities during the next five years.

  20. National conference on integrated resource planning: Proceedings

    SciTech Connect

    Not Available

    1991-01-01

    Until recently, state regulators have focused most of their attention on the development of least-cost or integrated resource planning (IRP) processes for electric utilities. A number of commissions are beginning to scrutinize the planning processes of local gas distribution companies (LDCs) because of the increased control that LDCs have over their purchased gas costs (as well as the associated risks) and because of questions surrounding the role and potential of gas end-use efficiency options. Traditionally, resource planning (LDCs) has concentrated on options for purchasing and storing gas. Integrated resource planning involves the creation of a process in which supply-side and demand-side options are integrated to create a resource mix that reliably satisfies customers' short-term and long-term energy service needs at the lowest cost. As applied to gas utilities, an integrated resource plan seeks to balance cost and reliability, and should not be interpreted simply as the search for lowest commodity costs. The National Association of Regulatory Utility Commissioners' (NARUC) Energy Conservation committee asked Lawrence Berkeley Laboratory (LBL) to survey state PUCs to determine the extent to which they have undertaken least cost planning for gas utilities. The survey included the following topics: status of state PUC least-cost planning regulations and practices for gas utilities; type and scope of natural gas DSM programs in effect, including fuel substitution; economic tests and analysis methods used to evaluate DSM programs; relationship between prudency reviews of gas utility purchasing practices and integrated resource planning; key regulatory issued facing gas utilities during the next five years.

  1. California Greenhouse Gas Emissions Standards for Light-Duty Vehicles (released in AEO2005)

    Reports and Publications

    2005-01-01

    In July 2002, California Assembly Bill 1493 (A.B. 1493) was signed into law. The law requires that the California Air Resources Board (CARB) develop and adopt, by January 1, 2005, greenhouse gas emission standards for light-duty vehicles that provide the maximum feasible reduction in emissions. In estimating the feasibility of the standard, CARB is required to consider cost-effectiveness, technological capability, economic impacts, and flexibility for manufacturers in meeting the standard.

  2. Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Resources Program | Department of Energy Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Program Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Program The Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Research Program, launched by the Energy Policy Act of 2005 (EPAct), is a public/private partnership valued at $400 million over eight years that is designed to benefit consumers by developing

  3. Gas intrusion into SPR caverns

    SciTech Connect

    Hinkebein, T.E.; Bauer, S.J.; Ehgartner, B.L.; Linn, J.K.; Neal, J.T.; Todd, J.L.; Kuhlman, P.S.; Gniady, C.T.; Giles, H.N.

    1995-12-01

    The conditions and occurrence of gas in crude oil stored in Strategic Petroleum Reserve, SPR, caverns is characterized in this report. Many caverns in the SPR show that gas has intruded into the oil from the surrounding salt dome. Historical evidence and the analyses presented here suggest that gas will continue to intrude into many SPR caverns in the future. In considering why only some caverns contain gas, it is concluded that the naturally occurring spatial variability in salt permeability can explain the range of gas content measured in SPR caverns. Further, it is not possible to make a one-to-one correlation between specific geologic phenomena and the occurrence of gas in salt caverns. However, gas is concluded to be petrogenic in origin. Consequently, attempts have been made to associate the occurrence of gas with salt inhomogeneities including anomalies and other structural features. Two scenarios for actual gas intrusion into caverns were investigated for consistency with existing information. These scenarios are gas release during leaching and gas permeation through salt. Of these mechanisms, the greater consistency comes from the belief that gas permeates to caverns through the salt. A review of historical operating data for five Bryan Mound caverns loosely supports the hypothesis that higher operating pressures reduce gas intrusion into caverns. This conclusion supports a permeability intrusion mechanism. Further, it provides justification for operating the caverns near maximum operating pressure to minimize gas intrusion. Historical gas intrusion rates and estimates of future gas intrusion are given for all caverns.

  4. NATURAL GAS FROM SHALE: Questions and Answers

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Where is shale gas found in the United States? Shale gas is located in many parts of the United States. These deposits occur in shale "plays" - a set of discovered, undiscovered or possible natural gas accumulations that exhibit similar geological characteristics. Shale plays are located within large-scale basins or accumulations of sedimentary rocks, often hundreds of miles across, that also may contain other oil and gas resources. 1 Shale gas production is currently occurring in 16

  5. Arctic Oil and Natural Gas Potential

    Reports and Publications

    2009-01-01

    This paper examines the discovered and undiscovered Arctic oil and natural gas resource base with respect to their location and concentration. The paper also discusses the cost and impediments to developing Arctic oil and natural gas resources, including those issues associated with environmental habitats and political boundaries.

  6. Hydrothermal Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    About the Geothermal Technologies Office » Hydrothermal Resources Hydrothermal Resources The Geysers geothermal field in California is still the largest producer of geothermal energy in the world. The Geysers geothermal field in California is still the largest producer of geothermal energy in the world. The development of advanced exploration tools and technologies will accelerate the discovery and utilization of the U.S. Geological Survey's estimated 30,000 MWe of undiscovered hydrothermal

  7. Characterization of oil and gas reservoirs and recovery technology deployment on Texas State Lands

    SciTech Connect

    Tyler, R.; Major, R.P.; Holtz, M.H.

    1997-08-01

    Texas State Lands oil and gas resources are estimated at 1.6 BSTB of remaining mobile oil, 2.1 BSTB, or residual oil, and nearly 10 Tcf of remaining gas. An integrated, detailed geologic and engineering characterization of Texas State Lands has created quantitative descriptions of the oil and gas reservoirs, resulting in delineation of untapped, bypassed compartments and zones of remaining oil and gas. On Texas State Lands, the knowledge gained from such interpretative, quantitative reservoir descriptions has been the basis for designing optimized recovery strategies, including well deepening, recompletions, workovers, targeted infill drilling, injection profile modification, and waterflood optimization. The State of Texas Advanced Resource Recovery program is currently evaluating oil and gas fields along the Gulf Coast (South Copano Bay and Umbrella Point fields) and in the Permian Basin (Keystone East, Ozona, Geraldine Ford and Ford West fields). The program is grounded in advanced reservoir characterization techniques that define the residence of unrecovered oil and gas remaining in select State Land reservoirs. Integral to the program is collaboration with operators in order to deploy advanced reservoir exploitation and management plans. These plans are made on the basis of a thorough understanding of internal reservoir architecture and its controls on remaining oil and gas distribution. Continued accurate, detailed Texas State Lands reservoir description and characterization will ensure deployment of the most current and economically viable recovery technologies and strategies available.

  8. North American Natural Gas Markets. Volume 1

    SciTech Connect

    Not Available

    1988-12-01

    This report sunnnarizes the research by an Energy Modeling Forum working group on the evolution of the North American natural gas markets between now and 2010. The group`s findings are based partly on the results of a set of economic models of the natural gas industry that were run for four scenarios representing significantly different conditions: two oil price scenarios (upper and lower), a smaller total US resource base (low US resource case), and increased potential gas demand for electric generation (high US demand case). Several issues, such as the direction of regulatory policy and the size of the gas resource base, were analyzed separately without the use of models.

  9. North American Natural Gas Markets. Volume 2

    SciTech Connect

    Not Available

    1989-02-01

    This report summarizes die research by an Energy Modeling Forum working group on the evolution of the North American natural gas markets between now and 2010. The group`s findings are based partly on the results of a set of economic models of the natural gas industry that were run for four scenarios representing significantly different conditions: two oil price scenarios (upper and lower), a smaller total US resource base (low US resource case), and increased potential gas demand for electric generation (high US demand case). Several issues, such as the direction of regulatory policy and the size of the gas resource base, were analyzed separately without the use of models.

  10. Natural Gas Weekly Update, Printer-Friendly Version

    Annual Energy Outlook

    of 1 Tcf from the 1994 estimate of 51 Tcf. Ultimate potential for natural gas is a science-based estimate of the total amount of conventional gas in the province and is an...

  11. Coal resources of Kyrgyzstan

    SciTech Connect

    Landis, E.R.; Bostick, N.H.; Gluskoter, H.J.; Johnson, E.A.; Harrison, C.D.; Huber, D.W.

    1995-12-31

    The rugged, mountainous country of Kyrgyzstan contains about one-half of the known coal resources of central Asia (a geographic and economic region that also includes Uzbekistan, Tadjikistan and Turkmenistan). Coal of Jurassic age is present in eight regions in Kyrgyzstan in at least 64 different named localities. Significant coal occurrences of about the same age are present in the central Asian countries of Kazakhstan, China, and Russia. Separation of the coal-bearing rocks into individual deposits results more than earth movements before and during formation of the present-day mountains and basins of the country than from deposition in separate basins.Separation was further abetted by deep erosion and removal of the coal-bearing rocks from many areas, followed by covering of the remaining coal-bearing rocks by sands and gravels of Cenozoic age. The total resources of coal in Kyrgyzstan have been reported as about 30 billion tons. In some of the reported localities, the coal resources are known and adequately explored. In other parts of the republic, the coal resources are inadequately understood or largely unexplored. The resource and reserve inventory of Kyrgyzstan is at best incomplete; for some purposes, such as short-term local and long-range national planning, it may be inadequate. Less than 8% of the total estimated resources are categorized as recoverable reserves, and the amount that is economically recoverable is unknown. The coal is largely of subbituminous and high-volatile C bituminous rank, most has low and medium ash and sulfur contents, and coals of higher rank (some with coking qualities) are present in one region. It is recommended that appropriate analyses and tests be made during planning for utilization.

  12. Shale Gas: Development Opportunities and Challenges

    SciTech Connect

    Zoback, Mark D.; Arent, Douglas J.

    2014-03-01

    The use of horizontal drilling and multistage hydraulic fracturing technologies has enabled the production of immense quantities of natural gas, to date principally in North America but increasingly in other countries around the world. The global availability of this resource creates both opportunities and challenges that need to be addressed in a timely and effective manner. There seems little question that rapid shale gas development, coupled with fuel switching from coal to natural gas for power generation, can have beneficial effects on air pollution, greenhouse gas emissions, and energy security in many countries. In this context, shale gas resources represent a critically important transition fuel on the path to a decarbonized energy future. For these benefits to be realized, however, it is imperative that shale gas resources be developed with effective environmental safeguards to reduce their impact on land use, water resources, air quality, and nearby communities.

  13. US crude oil, natural gas, and natural gas liquids reserves 1996 annual report

    SciTech Connect

    1997-12-01

    The EIA annual reserves report series is the only source of comprehensive domestic proved reserves estimates. This publication is used by the Congress, Federal and State agencies, industry, and other interested parties to obtain accurate estimates of the Nation`s proved reserves of crude oil, natural gas, and natural gas liquids. These data are essential to the development, implementation, and evaluation of energy policy and legislation. This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1996, as well as production volumes for the US and selected States and State subdivisions for the year 1996. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1996 is provided. 21 figs., 16 tabs.

  14. U.S. crude oil, natural gas, and natural gas liquids reserves 1995 annual report

    SciTech Connect

    1996-11-01

    The EIA annual reserves report series is the only source of comprehensive domestic proved reserves estimates. This publication is used by the Congress, Federal and State agencies, industry, and other interested parties to obtain accurate estimates of the Nation`s proved reserves of crude oil, natural gas, and natural gas liquids. These data are essential to the development, implementation, and evaluation of energy policy and legislation. This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1995, as well as production volumes for the US and selected States and State subdivisions for the year 1995. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1995 is provided. 21 figs., 16 tabs.

  15. Teacher Resources

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Teach and Learn Teach and Learn WELCOME! Whether you're a K-12 teacher, a university administrator, or a student interested in starting your path toward a clean energy career, we’ve got you covered. On this page, you'll find links to student competitions, internships, training and degree programs, career planning tools, and professional development opportunities. You can also explore videos, data tools, lessons, activities, and other online resources for educators at all levels. | Photo

  16. US crude oil, natural gas, and natural gas liquids reserves, 1992 annual report

    SciTech Connect

    Not Available

    1993-10-18

    This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1992, as well as production volumes for the United States, and selected States and State subdivisions for the year 1992. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), its two major components (nonassociated and associated-dissolved gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, two components of natural gas liquids, lease condensate and natural gas plant liquids, have their reserves and production data presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1992 is provided.

  17. Life-cycle analysis of shale gas and natural gas.

    SciTech Connect

    Clark, C.E.; Han, J.; Burnham, A.; Dunn, J.B.; Wang, M.

    2012-01-27

    The technologies and practices that have enabled the recent boom in shale gas production have also brought attention to the environmental impacts of its use. Using the current state of knowledge of the recovery, processing, and distribution of shale gas and conventional natural gas, we have estimated up-to-date, life-cycle greenhouse gas emissions. In addition, we have developed distribution functions for key parameters in each pathway to examine uncertainty and identify data gaps - such as methane emissions from shale gas well completions and conventional natural gas liquid unloadings - that need to be addressed further. Our base case results show that shale gas life-cycle emissions are 6% lower than those of conventional natural gas. However, the range in values for shale and conventional gas overlap, so there is a statistical uncertainty regarding whether shale gas emissions are indeed lower than conventional gas emissions. This life-cycle analysis provides insight into the critical stages in the natural gas industry where emissions occur and where opportunities exist to reduce the greenhouse gas footprint of natural gas.

  18. Adaptive control system for gas producing wells

    SciTech Connect

    Fedor, Pashchenko; Sergey, Gulyaev; Alexander, Pashchenko

    2015-03-10

    Optimal adaptive automatic control system for gas producing wells cluster is proposed intended for solving the problem of stabilization of the output gas pressure in the cluster at conditions of changing gas flow rate and changing parameters of the wells themselves, providing the maximum high resource of hardware elements of automation.

  19. Dealing with natural gas uncertainties

    SciTech Connect

    Clements, J.; Graeber, D. )

    1991-04-01

    The fuel of choice for generating new power is and will continue over the next two decades to be natural gas. It is the fuel of choice because it is plentiful, environmentally acceptable, and relatively inexpensive. This paper reports that gas reserves on the North American continent continue to be discovered in amounts that may keep the gas bubble inflated far longer than currently estimated. New gas transportation capacity is actively being developed to overcome the capacity bottlenecks and deliverability shortfalls. Natural gas prices will probably remain stable (with expected CPI-related increases) for the short run (2-4 years), and probably will be higher than CPI increases thereafter.

  20. Computing Resources

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Resources This page is the repository for sundry items of information relevant to general computing on BooNE. If you have a question or problem that isn't answered here, or a suggestion for improving this page or the information on it, please mail boone-computing@fnal.gov and we'll do our best to address any issues. Note about this page Some links on this page point to www.everything2.com, and are meant to give an idea about a concept or thing without necessarily wading through a whole website

  1. Fossil resource and energy security dynamics in conventional and carbon-constrained worlds

    SciTech Connect

    McCollum, David; Bauer, Nico; Calvin, Katherine V.; Kitous, Alban; Riahi, Keywan

    2014-04-01

    Fossil resource endowments and the future development of fossil fuel prices are important factors that will critically influence the nature and direction of the global energy system. In this paper we analyze a multi-model ensemble of long-term energy and emissions scenarios that were developed within the framework of the EMF27 integrated assessment model inter-comparison exercise. The diverse nature of these models highlights large uncertainties in the likely development of fossil resource (coal, oil, and natural gas) consumption, trade, and prices over the course of the twenty-first century and under different climate policy frameworks. We explore and explain some of the differences across scenarios and models and compare the scenario results with fossil resource estimates from the literature. A robust finding across the suite of IAMs is that the cumulative fossil fuel consumption foreseen by the models is well within the bounds of estimated recoverable reserves and resources. Hence, fossil resource constraints are, in and of themselves, unlikely to limit future GHG emissions. Our analysis also shows that climate mitigation policies could lead to a major reallocation of financial flows between regions, in terms of expenditures on fossil fuels and carbon, and can help to alleviate near-term energy security concerns via the reductions in oil imports and increases in energy system diversity they will help to motivate.

  2. Geothermal resources of Montana

    SciTech Connect

    Metesh, J.

    1994-06-01

    The Montana Bureau of Mines and Geology has updated its inventory of low and moderate temperature resources for the state and has assisted the Oregon Institute of Technology - GeoHeat Center and the University of Utah Research Institute in prioritizing and collocating important geothermal resource areas. The database compiled for this assessment contains information on location, flow, water chemistry, and estimated reservoir temperatures for 267 geothermal well and springs in Montana. For this assessment, the minimum temperature for low-temperature resource is defined as 10{degree} C above the mean annual air temperature at the surface. The maximum temperature for a moderate-temperature resource is defined as greater than 50{degree} C. Approximately 12% of the wells and springs in the database have temperatures above 50{degree} C, 17% are between 30{degree} and 50{degree} C, 29% are between 20{degree} and 30{degree}C, and 42% are between 10{degree} and 20{degree} C. Low and moderate temperature wells and springs can be found in nearly all areas of Montana, but most are in the western third of the state. Information sources for the current database include the MBMG Ground Water Information Center, the USGS statewide database, the USGS GEOTHERM database, and new information collected as part of this program. Five areas of Montana were identified for consideration in future investigations of geothermal development. The areas identified are those near Bozeman, Ennis, Butte, Boulder, and Camas Prairie. These areas were chosen based on the potential of the resource and its proximity to population centers.

  3. Gas venting

    DOEpatents

    Johnson, Edwin F.

    1976-01-01

    Improved gas venting from radioactive-material containers which utilizes the passageways between interbonded impervious laminae.

  4. Peak Underground Working Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update

    Definitions Definitions Since 2006, EIA has reported two measures of aggregate capacity, one based on demonstrated peak working gas storage, the other on working gas design capacity. Demonstrated Peak Working Gas Capacity: This measure sums the highest storage inventory level of working gas observed in each facility over the 5-year range from May 2005 to April 2010, as reported by the operator on the Form EIA-191M, "Monthly Underground Gas Storage Report." This data-driven estimate

  5. Natural gas monthly, March 1998

    SciTech Connect

    NONE

    1998-03-01

    The March 1998 edition of the Natural Gas Monthly highlights activities, events, and analyses associated with the natural gas industry. Volume and price data are presented for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. This report also features an article on the correction of errors in the drilling activity estimates series, and in-depth drilling activity data. 6 figs., 28 tabs.

  6. Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Resources Resources The following tools and resources have been useful to Department of ... Incentives Toolkit Partnerships Toolkit Tools Solution Center Cost-Effectiveness Tool ...

  7. Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Resources Resources The Office of Indian Energy provides the following resources to assist Tribes with energy development, capacity building, energy infrastructure, energy costs,...

  8. ORISE Resources: Consumer Health Resource Information Service...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Consumer Health Resource Information Service (CHRIS) guide The Consumer Health Resource Information Service (CHRIS) guide for faith-based organizations and communities was...

  9. Categorical Exclusion Determinations: Natural Gas Regulation | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Natural Gas Regulation Categorical Exclusion Determinations: Natural Gas Regulation Categorical Exclusion Determinations issued by Natural Gas Regulation. DOCUMENTS AVAILABLE FOR DOWNLOAD May 25, 2016 CX-200007 Categorical Exclusion Determination Cheniere Marketing, LLC CX(s) Applied: B5.7 Date: 05/25/2016 Location(s): Texas Office(s): Fossil Energy, Natural Gas Regulation May 18, 2016 CX-200008 Categorical Exclusion Determination Flint Hills Resources, LP CX(s) Applied: B5.7 Date:

  10. Community Wind Handbook/Understand Your Wind Resource and Conduct...

    OpenEI (Open Energy Information) [EERE & EIA]

    * Engage with Neighbors * Conduct a Wind Resource Estimate * Research Interconnecting behind Your Meter * Research Project Economics & Financing * Select the Final Design &...

  11. NATURAL GAS FROM SHALE: Questions and Answers It Seems Like Shale Gas Came Out

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    It Seems Like Shale Gas Came Out of Nowhere - What Happened? Knowledge of gas shale resources and even production techniques has been around a long time (see "Technological Highlights" timeline). But even as recently as a few years ago, very little of the resource was considered economical to produce. Innovative advances - especially in horizontal drilling, hydraulic fracturing and other well stimulation technologies - did much to make hundreds of trillions of cubic feet of shale gas

  12. Alternative Fuels Data Center: Compressed Natural Gas Fueling Stations

    Alternative Fuels and Advanced Vehicles Data Center

    Natural Gas Printable Version Share this resource Send a link to Alternative Fuels Data Center: Compressed Natural Gas Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas Fueling Stations on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas Fueling

  13. Alternative Fuels Data Center: Natural Gas Laws and Incentives

    Alternative Fuels and Advanced Vehicles Data Center

    Natural Gas Printable Version Share this resource Send a link to Alternative Fuels Data Center: Natural Gas Laws and Incentives to someone by E-mail Share Alternative Fuels Data ...

  14. FE Oil and Natural Gas News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    by the U.S. Department of Energy. March 30, 2010 Results from DOE Expedition Confirm Existence of Resource-Quality Gas Hydrate in Gulf of Mexico Gas hydrate, a potentially immense...

  15. Estimating electron drift velocities in magnetron discharges...

    Office of Scientific and Technical Information (OSTI)

    Citation Details In-Document Search Title: Estimating ... OSTI Identifier: 1172974 Report Number(s): LBNL-5865E DOE Contract Number: DE-AC02-05CH11231 Resource Type: Journal ...

  16. Natural Gas Citygate Price

    Gasoline and Diesel Fuel Update

    Renewable Electricity: State-level Issues and Perspectives July 12, 2016 2 40% Reduction in GHG emissions from 1990 levels Reducing greenhouse gas (GHG) emissions from the energy sector- power generation, industry, buildings, and transportation-is critical to protecting the health and welfare of New Yorkers and reaching the longer term goal of decreasing total carbon emissions 80% by 2050. 50% Generation of electricity from renewable energy sources Renewable resources, including solar, wind,

  17. Estimation and Uncertainty Analysis of Impacts of Future Heat...

    Office of Scientific and Technical Information (OSTI)

    However, the estimation of excess mortality attributable to future heat waves is subject to large uncertainties, which have not been examined under the latest greenhouse gas ...

  18. Solar resources

    SciTech Connect

    Hulstrom, R.L.

    1989-01-01

    Following the 1973 oil embargo, the US government initiated a program to develop and use solar energy. This led to individual programs devoted to developing various solar radiation energy conversion technologies: photovoltaic and solar-thermal conversion devices. Nearly concurrently, it was recognized that understanding the available insolation resources was required to develop and deploy solar energy devices and systems. It was also recognized that the insolation information available at that time (1973) was not adequate to meet the specific needs of the solar energy community. Federal efforts were initiated and conducted to produce new and more extensive information and data. The primary federal agencies that undertook such efforts were the Department of Energy (DOE) and the National Oceanic and Atmospheric Administration (NOAA). NOAA's efforts included activities performed by the National Weather Service (NWS) and the National Climatic Data Center (NCDC). This book has two man objectives: to report some of the insolation energy data, information, and products produced by the federal efforts and to describe how they were produced. Products include data bases, models and algorithms, monitoring networks, instrumentation, and scientific techniques. The scope of products and results does not include all those produced by past federal efforts. The book's scope and subject matter are oriented to support the intent and purpose of the other volumes in this series. In some cases, other pertinent material is presented to provide a more complete coverage of a given subject. 385 refs., 149 figs., 50 tabs.

  19. Human resources FY 1995 Site Program Plan WBS 6.10.2

    SciTech Connect

    Not Available

    1994-09-01

    This document contains information concerning human resources management at the Hanford Reservation. Information discusses the following topics: Cost estimates, closure and placement of labor resources, and management of human resources throughout the Hanford Site.

  20. Characterization of Gas Shales by X-ray Raman Spectroscopy |...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    SSRL Third Floor Conference Room 137-322 Drew Pomerantz, Schlumberger Unconventional hydrocarbon resources such as gas shale and oil-bearing shale have emerged recently as ...

  1. Characterization of Gas Shales by X-ray Raman Spectroscopy |...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    SSRL Conference Room 137-322 Drew Pomerantz, Schlumberger Unconventional hydrocarbon resources such as gas shale and oil-bearing shale have emerged recently as economically viable ...

  2. Natural Gas Weekly Update, Printer-Friendly Version

    Annual Energy Outlook

    oil and gas resources will be necessary even as efficiency improvements reduce demand and renewable sources become more available. In order to retain public trust environmentally...

  3. Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum...

    Energy.gov [DOE] (indexed site)

    The Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Research Program, launched by the Energy Policy Act of 2005 (EPAct), is a publicprivate ...

  4. Natural Gas Weekly Update, Printer-Friendly Version

    Gasoline and Diesel Fuel Update

    Inventory of Onshore Federal Lands' Oil and Gas Resources and the Extent and Nature of Restrictions or Impediments to Their Development. The report, which was...

  5. Kansas Oil and Gas Conservation Commission | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    service and safety of public utilities, common carriers, motor carriers, and regulate oil and gas production by protecting correlative rights and environmental resources....

  6. The Greenhouse Gas Protocol Initiative: Sector Specific Tools...

    OpenEI (Open Energy Information) [EERE & EIA]

    World Resources Institute, World Business Council for Sustainable Development Sector: Energy, Climate Focus Area: Industry, Greenhouse Gas Phase: Determine Baseline, Evaluate...

  7. RESEARCH AND DEVELOPMENT OF AN INTEGRAL SEPARATOR FOR A CENTRIFUGAL GAS PROCESSING FACILITY

    SciTech Connect

    LANCE HAYS

    2007-02-27

    A COMPACT GAS PROCESSING DEVICE WAS INVESTIGATED TO INCREASE GAS PRODUCTION FROM REMOTE, PREVIOUSLY UN-ECONOMIC RESOURCES. THE UNIT WAS TESTED ON AIR AND WATER AND WITH NATURAL GAS AND LIQUID. RESULTS ARE REPORTED WITH RECOMMENDATIONS FOR FUTURE WORK.

  8. Gas separating

    DOEpatents

    Gollan, Arye

    1988-01-01

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing.

  9. Gas separating

    DOEpatents

    Gollan, Arye Z. [Newton, MA

    1990-12-25

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing.

  10. Graph facilitates tracking water and gas influx

    SciTech Connect

    Gruy, H.J. )

    1990-03-26

    Graphing the vertical distribution of reservoir volume is an easy method for estimating the acre-ft remaining to be exploited in reservoirs with water or gas encroachment. To evaluate reservoir performance and estimate oil and gas reserves in water-drive reservoirs or oil reservoirs with a gas cap, it is necessary to determine the magnitude of the movement of oil-water and gas-oil contact surfaces. In reviewing reserve estimates and reservoir studies done by others, the authors have found that very few reservoir engineers or geologists have an easy method for tracking the movement of these surfaces and estimating the volumes of oil displaced water encroachment, gas cap expansion, or the volumes of oil lost by wetting the gas cap. The following method evolved from the author's studies of the East Texas field starting in 1942, and it took this form in the early 1950s.

  11. Assessment and Mapping of the Riverine Hydrokinetic Resource in the Continental United States

    SciTech Connect

    Jacobson, P.

    2012-12-12

    This report describes the methodology and results of the most rigorous assessment to date of the riverine hydrokinetic energy resource in the contiguous 48 states and Alaska, excluding tidal waters. The assessment provides estimates of the gross, naturally available resource, termed the theoretical resource, as well as estimates, termed the technically recoverable resource, that account for selected technological factors affecting capture and conversion of the theoretical resource. The technically recoverable resource does not account for all technical constraints on energy capture and conversion.

  12. Peak Underground Working Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update

    Methodology Methodology Demonstrated Peak Working Gas Capacity Estimates: Estimates are based on aggregation of the noncoincident peak levels of working gas inventories at individual storage fields as reported monthly over a 60-month period ending in April 2010 on Form EIA-191M, "Monthly Natural Gas Underground Storage Report." The months of measurement for the peak storage volumes by facilities may differ; i.e., the months do not necessarily coincide. As such, the noncoincident peak

  13. Virginia Natural Gas Number of Gas and Gas Condensate Wells ...

    Energy Information Administration (EIA) (indexed site)

    Gas and Gas Condensate Wells (Number of Elements) Virginia Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 ...

  14. Oil discoveries and basin resource prediction in Latin America: Past, present, and future

    SciTech Connect

    Kronman, G.E.; Aleman, A.M.; Rushworth, S.W. )

    1993-02-01

    Over 350 oil discoveries were made in Latin America during the 1980s. About 12% are estimated to contain reserves greater than 100 MMBO. Several of the larger finds (>500 MMBO), such as Cusiana (Colombia), Furrial/Musipan (Venezuela), Cano Lima (Colombia) and Marlim (Brazil) represent an important part of the giant field found worldwide since 1980. Most of the larger discoveries were made by national oil companies in Venezuela, Mexico and Brazil. Undiscovered oil resources of 40-80 BBO are estimated to remain in the highest potential Latin American basins, including those in Mexico, based on historical field size data and current geological knowledge. Over 150 BBO of produced oil and proven reserves has been found in the same group of basins. The probability of finding large undiscovered oil and gas fields (>100 MMBOE) in selected established and mature Latin American basins is high. The Campos (Brazil), Llanos (Colombia), Magadalena (Colombia), Maracaibo (Venezuela), Marahon-Oriente-Putomayo (Peru-Ecuador-Colombia), Maturin (Venezuela), Reforma-Campeche (Mexico) and Ucayali (Peru) basins have the best possibility for such accumulations. Another tier of frontier and emerging basins may also contain significant resources, but limited data makes it difficult to estimate their undiscovered resources. Some of the higher potential basins in this group include the Sierra de Chiapas (Mexico/Guatemala), Huallaga (Peru), Yucatan (Mexico), Sabinas, and Burgos (Mexico) basins.

  15. High potential recovery -- Gas repressurization

    SciTech Connect

    Madden, M.P.

    1998-05-01

    The objective of this project was to demonstrate that small independent oil producers can use existing gas injection technologies, scaled to their operations, to repressurize petroleum reservoirs and increase their economic oil production. This report gives background information for gas repressurization technologies, the results of workshops held to inform small independent producers about gas repressurization, and the results of four gas repressurization field demonstration projects. Much of the material in this report is based on annual reports (BDM-Oklahoma 1995, BDM-Oklahoma 1996, BDM-Oklahoma 1997), a report describing the results of the workshops (Olsen 1995), and the four final reports for the field demonstration projects which are reproduced in the Appendix. This project was designed to demonstrate that repressurization of reservoirs with gas (natural gas, enriched gas, nitrogen, flue gas, or air) can be used by small independent operators in selected reservoirs to increase production and/or decrease premature abandonment of the resource. The project excluded carbon dioxide because of other DOE-sponsored projects that address carbon dioxide processes directly. Two of the demonstration projects, one using flue gas and the other involving natural gas from a deeper coal zone, were both technical and economic successes. The two major lessons learned from the projects are the importance of (1) adequate infrastructure (piping, wells, compressors, etc.) and (2) adequate planning including testing compatibility between injected gases and fluids, and reservoir gases, fluids, and rocks.

  16. Gas evolution from geopressured brines

    SciTech Connect

    Matthews, C.S.

    1980-06-01

    The process of gas evolution from geopressured brine is examined using as a basis the many past studies of gas evolution from liquids in porous media. A discussion of a number of speculations that have been made concerning gas evolution from geopressured brines is provided. According to one, rapid pressure reduction will cause methane gas to evolve as when one opens a champagne bottle. It has been further speculated that evolved methane gas would migrate up to form an easily producible cap. As a result of detailed analyses, it can be concluded that methane gas evolution from geopressured brines is far too small to ever form a connected gas saturation except very near to the producing well. Thus, no significant gas cap could ever form. Because of the very low solubility of methaned in brine, the process of methane gas evolution is not at all analogous to evolution of carbon dioxide from champagne. A number of other speculations and questions on gas evolution are analyzed, and procedures for completing wells and testing geopressured brine reservoirs are discussed, with the conclusion that presently used procedures will provide adequate data to enable a good evaluation of this resource.

  17. Expedition Provides New Insight on Gas Hydrates in Gulf of Mexico...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    will be used to refine estimates of the nature, distribution and concentration of gas ... "Understanding the nature and setting of deepwater gas hydrates is central to the National ...

  18. Role of energy resources in New Mexico

    SciTech Connect

    Not Available

    1982-01-01

    The development of energy resources, particularly oil and gas, has contributed a major share of New Mexico's revenues and provided a predominant component of the economic base. The dependency of the development of what was considered abundant resources was the basis for economic growth and stability. This dependency may be disruptive to the future economic stability, and if a diversification of the economy does not take place, the state may be in danger of approaching the future without a strong economic base.

  19. Maps: Exploration, Resources, Reserves, and Production - Energy Information

    Energy Information Administration (EIA) (indexed site)

    Administration Maps: Exploration, Resources, Reserves, and Production Summary Maps: Natural gas in the Lower 48 States and North America Gas production in conventional fields, Lower 48 States PDF (2.8 MB) JPG (2.5 MB) Gas production in offshore fields, Lower 48 States PDF (0.4 MB) JPG (1.5 MB) Shale gas and oil plays, Lower 48 States (6/30/2016) PDF (1.9 MB) JPG (2.0 MB) Shale gas and oil plays, North America (5/9/2011) PDF (0.4 MB) JPG (1.2 MB) Major tight gas plays, Lower 48 States PDF

  20. Estimating Renewable Energy Economic Potential in the United States. Methodology and Initial Results

    SciTech Connect

    Brown, Austin; Beiter, Philipp; Heimiller, Donna; Davidson, Carolyn; Denholm, Paul; Melius, Jennifer; Lopez, Anthony; Hettinger, Dylan; Mulcahy, David; Porro, Gian

    2015-07-30

    This report describes a geospatial analysis method to estimate the economic potential of several renewable resources available for electricity generation in the United States. Economic potential, one measure of renewable generation potential, may be defined in several ways. For example, one definition might be expected revenues (based on local market prices) minus generation costs, considered over the expected lifetime of the generation asset. Another definition might be generation costs relative to a benchmark (e.g., a natural gas combined cycle plant) using assumptions of fuel prices, capital cost, and plant efficiency. Economic potential in this report is defined as the subset of the available resource technical potential where the cost required to generate the electricity (which determines the minimum revenue requirements for development of the resource) is below the revenue available in terms of displaced energy and displaced capacity. The assessment is conducted at a high geospatial resolution (more than 150,000 technology-specific sites in the continental United States) to capture the significant variation in local resource, costs, and revenue potential. This metric can be a useful screening factor for understanding the economic viability of renewable generation technologies at a specific location. In contrast to many common estimates of renewable energy potential, economic potential does not consider market dynamics, customer demand, or most policy drivers that may incent renewable energy generation.

  1. A comparison of estimates of cost-effectiveness of alternative fuels and vehicles for reducing emissions

    SciTech Connect

    Hadder, G.R.

    1995-11-01

    The cost-effectiveness ratio (CER) is a measure of the monetary value of resources expended to obtain reductions in emissions of air pollutants. The CER can lead to selection of the most effective sequence of pollution reduction options. Derived with different methodologies and technical assumptions, CER estimates for alternative fuel vehicles (AFVs) have varied widely among pervious studies. In one of several explanations of LCER differences, this report uses a consistent basis for fuel price to re-estimate CERs for AFVs in reduction of emissions of criteria pollutants, toxics, and greenhouse gases. The re-estimated CERs for a given fuel type have considerable differences due to non-fuel costs and emissions reductions, but the CERs do provide an ordinal sense of cost-effectiveness. The category with CER less than $5,000 per ton includes compressed natural gas and ed Petroleum gas vehicles; and E85 flexible-fueled vehicles (with fuel mixture of 85 percent cellulose-derived ethanol in gasoline). The E85 system would be much less attractive if corn-derived ethanol were used. The CER for E85 (corn-derived) is higher with higher values placed on the reduction of gas emissions. CER estimates are relative to conventional vehicles fueled with Phase 1 California reformulated gasoline (RFG). The California Phase 2 RFG program will be implemented before significant market penetration by AFVs. CERs could be substantially greater if they are calculated incremental to the Phase 2 RFG program. Regression analysis suggests that different assumptions across studies can sometimes have predictable effects on the CER estimate of a particular AFV type. The relative differences in cost and emissions reduction assumptions can be large, and the effect of these differences on the CER estimate is often not predictable. Decomposition of CERs suggests that methodological differences can make large contributions to CER differences among studies.

  2. 1992 Conversion Resources Supply Document

    SciTech Connect

    Not Available

    1992-03-01

    In recent years conservation of electric power has become an integral part of utility planning. The 1980 Pacific Northwest Electric Power Planning and Conservation Act (Northwest Power Act) requires that the region consider conservation potential in planning acquisitions of resources to meet load growth. The Bonneville Power Administration (BPA) developed its first estimates of conservation potential in 1982. Since that time BPA has updated its conservation supply analyses as a part of its Resource Program and other planning efforts. Major updates were published in 1985 and in January 1990. This 1992 document presents updated supply curves, which are estimates of the savings potential over time (cumulative savings) at different cost levels of energy conservation measures (ECMs). ECMs are devices, pieces of equipment, or actions that increase the efficiency of electricity use and reduce the amount of electricity used by end-use equipment.

  3. Natural gas monthly, August 1996

    SciTech Connect

    1996-08-01

    This analysis presents the most recent data on natural gas prices, supply, and consumption from the Energy Information Administration (EIA). The presentation of the latest monthly data is followed by an update on natural gas markets. The markets section examines the behavior of daily spot and futures prices based on information from trade press, as well as regional, weekly data on natural gas storage from the American Gas Association (AGA). This {open_quotes}Highlights{close_quotes} closes with a special section comparing and contrasting EIA and AGA storage data on a monthly and regional basis. The regions used are those defined by the AGA for their weekly data collection effort: the Producing Region, the Consuming Region East, and the Consuming Region West. While data on working gas levels have tracked fairly closely between the two data sources, differences have developed recently. The largest difference is in estimates of working gas levels in the East consuming region during the heating season.

  4. Sandia Energy - Resource Assessment

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Resource Assessment Home Stationary Power Energy Conversion Efficiency Water Power Resource Assessment Resource AssessmentAshley Otero2016-01-05T19:06:04+00:00 Characterizing wave...

  5. Gas separating

    DOEpatents

    Gollan, A.Z.

    1990-12-25

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing. 3 figs.

  6. Natural Gas

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage ...

  7. Gas magnetometer

    DOEpatents

    Walker, Thad Gilbert; Lancor, Brian Robert; Wyllie, Robert

    2016-05-03

    Measurement of a precessional rate of a gas, such as an alkali gas, in a magnetic field is made by promoting a non-uniform precession of the gas in which substantially no net magnetic field affects the gas during a majority of the precession cycle. This allows sensitive gases that would be subject to spin-exchange collision de-phasing to be effectively used for extremely sensitive measurements in the presence of an environmental magnetic field such as the Earth's magnetic field.

  8. Gas separating

    DOEpatents

    Gollan, A.

    1988-03-29

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing. 3 figs.

  9. Natural gas contracting in the '80s

    SciTech Connect

    La Grone, J.C.

    1981-01-01

    As the casinghead gas became recognized by state regulatory agencies as a valuable natural resource, they began issuing no-flare orders. This had the effect of forcing producers to shut in oil production until they made arrangements for using or marketing the gas. Low pressure gathering systems were built into the oil fields. Most of the casinghead gas produced in this country is now processed for the extraction of liquefiable hydrocarbons, and the residue gas sold to pipeline compaines. Regulations concerning casinghead gas are discussed.

  10. Solar Resource Assessment

    Office of Energy Efficiency and Renewable Energy (EERE)

    DOE solar resource research focuses on understanding historical solar resource patterns and making future predictions, both of which are needed to support reliable power system operation. As solar...

  11. Resources | Jefferson Lab

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Resources Resources Machine Control Center Display Jefferson Lab's accelerator is operated from the Machine Control Center. The MCC features a full-wall display that allows...

  12. NextEra Energy Resources formerly FPL Energy LLC | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Independent Power Producer active in wind, solar, hydroelectric, natural gas and nuclear References: NextEra Energy Resources (formerly FPL Energy LLC)1 This article is a...

  13. American Gas Association | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Association American Gas Association Memorandum Summarizing Ex Parte Communication 111011_Ex_Parte.pdf (691.79 KB) More Documents & Publications Ex Parte Memorandum - Natural Resources Defense Council American Gas Association Ex Parte Communication Microsoft Word - AGA Comments on 2011 Regulatory Burden RFI

  14. Gas Hydrates Research Programs: An International Review

    SciTech Connect

    Jorge Gabitto; Maria Barrufet

    2009-12-09

    Gas hydrates sediments have the potential of providing a huge amount of natural gas for human use. Hydrate sediments have been found in many different regions where the required temperature and pressure conditions have been satisfied. Resource exploitation is related to the safe dissociation of the gas hydrate sediments. Basic depressurization techniques and thermal stimulation processes have been tried in pilot efforts to exploit the resource. There is a growing interest in gas hydrates all over the world due to the inevitable decline of oil and gas reserves. Many different countries are interested in this valuable resource. Unsurprisingly, developed countries with limited energy resources have taken the lead in worldwide gas hydrates research and exploration. The goal of this research project is to collect information in order to record and evaluate the relative strengths and goals of the different gas hydrates programs throughout the world. A thorough literature search about gas hydrates research activities has been conducted. The main participants in the research effort have been identified and summaries of their past and present activities reported. An evaluation section discussing present and future research activities has also been included.

  15. Seneca Resources Corporation 16-118-NG- Long Term Export

    Energy.gov [DOE]

    The Office of Fossil Energy gives notice of receipt of an Application filed August 25, 2016 by Seneca Resources Corporation, requesting long-term authorization to export natural gas to Canada in a...

  16. Sandia Energy - Solar Resource Assessment

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Solar Resource Assessment Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Solar Resource Assessment Solar Resource AssessmentTara...

  17. Method for mapping a natural gas leak

    DOEpatents

    Reichardt, Thomas A.; Luong, Amy Khai; Kulp, Thomas J.; Devdas, Sanjay

    2009-02-03

    A system is described that is suitable for use in determining the location of leaks of gases having a background concentration. The system is a point-wise backscatter absorption gas measurement system that measures absorption and distance to each point of an image. The absorption measurement provides an indication of the total amount of a gas of interest, and the distance provides an estimate of the background concentration of gas. The distance is measured from the time-of-flight of laser pulse that is generated along with the absorption measurement light. The measurements are formatted into an image of the presence of gas in excess of the background. Alternatively, an image of the scene is superimposed on the image of the gas to aid in locating leaks. By further modeling excess gas as a plume having a known concentration profile, the present system provides an estimate of the maximum concentration of the gas of interest.

  18. Fermilab Office of General Counsel - Resources

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Resources Links Documents

  19. Economic approaches to nonrenewable resource taxation

    SciTech Connect

    Brewer, K.J.; Hamilton, S.E.; Westin, R.A.

    1996-12-31

    The purpose of this Article is to provide the reader with a survey of the current status of natural resource economics insofar as it related to tax policy. The topic is limited to oil, gas and minerals. The Article begins with a review of the kinds of oil and gas exploitation contracts that arose in the U.S. in a free-wheeling industry, the primary feature of which is that private owners of the oil and gas interests are able to enforce the property interests created by those contracts. The subject is important because (1) those contracts spread into the mining (and to a lesser extent the timber) industry, and (2) the contracts are closely analogous to later tax systems in which the state owns the resources. There is a tendency among thinkers in the area to overlook these market-based arrangements and to imagine that they are logically separate from tax systems. They are not separate. Moreover, by understanding the private forms, one is well-armed to evaluate the taxation of natural resources and to detect the limits, especially the inflexibility, of government-designed systems. One can then ask questions about the wisdom of any particular country`s choices in the field of natural resource taxation. The Article then moves to the economist`s stand on the subject, as expressed in the prevailing literature. Finally, the Article closes with some policy considerations with respect to structuring tax systems in which the state is the proprietor of the resources.

  20. Gas-powered integration

    SciTech Connect

    Hawrylyshyn, G.

    1993-05-01

    Popularly known as the Brazil/Bolivia Gas Deal, the project consists of a 20-year agreement to supply Bolivian natural gas to heavily industrialized southern Brazil. This is an inter-regional undertaking comparable in scope and significance to pipeline projects in Europe and the gas networks between the USA and Canada and Mexico. The Brazil/Boliviz agreement call foe a 10-month period to obtain financing and 30 months to build the 1,376 mile main pipeline, a job that will be undertaken individually by each country within its territory. The pipelines will meet at the border in Corumba. Aside from the main gasline, the 20-year agreement will also require the laying of 1,184 kilometers (736 miles) of additional feeder and distribution pipelines in Brazil, raising the total pipe mileage to 3,389 kilometers. Then there is the need to build the whole infrastructure for gas distribution facilities and to switch to gas to power the equipment in thousands of industrial plants, commercial establishments and residences. The total investment in this undertaking is estimated to surpass US$10 billion.