National Library of Energy BETA

Sample records for gas highway clean

  1. GE, Clean Energy Fuels Partner to Expand Natural Gas Highway...

    OpenEI (Open Energy Information) [EERE & EIA]

    GE, Clean Energy Fuels Partner to Expand Natural Gas Highway Home > Groups > Clean and Renewable Energy Jessi3bl's picture Submitted by Jessi3bl(15) Member 16 December, 2012 -...

  2. Hawaii Clean Energy Iniative - Construction Upon a State Highway...

    OpenEI (Open Energy Information) [EERE & EIA]

    LibraryAdd to library PermittingRegulatory Guidance - Instructions: Hawaii Clean Energy Iniative - Construction Upon a State Highway Permit PacketPermittingRegulatory...

  3. Gas cleaning system and method

    DOEpatents

    Newby, Richard Allen

    2006-06-06

    A gas cleaning system for removing at least a portion of contaminants, such as halides, sulfur, particulates, mercury, and others, from a synthesis gas (syngas). The gas cleaning system may include one or more filter vessels coupled in series for removing halides, particulates, and sulfur from the syngas. The gas cleaning system may be operated by receiving gas at a first temperature and pressure and dropping the temperature of the syngas as the gas flows through the system. The gas cleaning system may be used for an application requiring clean syngas, such as, but not limited to, fuel cell power generation, IGCC power generation, and chemical synthesis.

  4. clean energy | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    Member 16 December, 2012 - 19:18 GE, Clean Energy Fuels Partner to Expand Natural Gas Highway clean energy Clean Energy Fuels energy Environment Fuel GE Innovation...

  5. Exhaust gas clean up process

    DOEpatents

    Walker, R.J.

    1988-06-16

    A method of cleaning an exhaust gas containing particulates, SO/sub 2/ and NO/sub x/ is described. The method involves prescrubbing with water to remove HCl and most of the particulates, scrubbing with an aqueous absorbent containing a metal chelate and dissolved sulfite salt to remove NO/sub x/ and SO/sub 2/, and regenerating the absorbent solution by controlled heating, electrodialysis and carbonate salt addition. The NO/sub x/ is removed as N/sub 2/ gas or nitrogen sulfonate ions and the oxides of sulfur are removed as a valuable sulfate salt. 4 figs.

  6. Exhaust gas clean up process

    DOEpatents

    Walker, Richard J.

    1989-01-01

    A method of cleaning an exhaust gas containing particulates, SO.sub.2 and NO.sub.x includes prescrubbing with water to remove HCl and most of the particulates, scrubbing with an aqueous absorbent containing a metal chelate and dissolved sulfite salt to remove NO.sub.x and SO.sub.2, and regenerating the absorbent solution by controlled heating, electrodialysis and carbonate salt addition. The NO.sub.x is removed as N.sub.2 or nitrogen-sulfonate ions and the oxides of sulfur are removed as a vaulable sulfate salt.

  7. COAL CLEANING BY GAS AGGLOMERATION

    SciTech Connect

    T.D. Wheelock

    1999-03-01

    The technical feasibility of a gas agglomeration method for cleaning coal was demonstrated by means of bench-scale tests conducted with a mixing system which enabled the treatment of ultra-fine coal particles with a colloidal suspension of microscopic gas bubbles in water. A suitable suspension of microbubbles was prepared by first saturating water with air or carbon dioxide under pressure then reducing the pressure to release the dissolved gas. The formation of microbubbles was facilitated by agitation and a small amount of i-octane. When the suspension of microbubbles and coal particles was mixed, agglomeration was rapid and small spherical agglomerates were produced. Since the agglomerates floated, they were separated from the nonfloating tailings in a settling chamber. By employing this process in numerous agglomeration tests of moderately hydrophobic coals with 26 wt.% ash, it was shown that the ash content would be reduced to 6--7 wt.% while achieving a coal recovery of 75 to 85% on a dry, ash-free basis. This was accomplished by employing a solids concentration of 3 to 5 w/w%, an air saturation pressure of 136 to 205 kPa (5 to 15 psig), and an i-octane concentration of 1.0 v/w% based on the weight of coal.

  8. Clean Energy Fuels | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    by Jessi3bl(15) Member 16 December, 2012 - 19:18 GE, Clean Energy Fuels Partner to Expand Natural Gas Highway clean energy Clean Energy Fuels energy Environment Fuel GE Innovation...

  9. Alternative Fuels Data Center: Automakers Innovate With Clean Gas

    Alternative Fuels and Advanced Vehicles Data Center

    Technologies Automakers Innovate With Clean Gas Technologies to someone by E-mail Share Alternative Fuels Data Center: Automakers Innovate With Clean Gas Technologies on Facebook Tweet about Alternative Fuels Data Center: Automakers Innovate With Clean Gas Technologies on Twitter Bookmark Alternative Fuels Data Center: Automakers Innovate With Clean Gas Technologies on Google Bookmark Alternative Fuels Data Center: Automakers Innovate With Clean Gas Technologies on Delicious Rank Alternative

  10. COAL CLEANING BY GAS AGGLOMERATION

    SciTech Connect

    MEIYU SHEN; ROYCE ABBOTT; T.D. WHEELOCK

    1998-09-30

    The agglomeration of ultrafine-size coal particles in an aqueous suspension by means of microscopic gas bubbles was demonstrated in numerous experiments with a scale model mixing system. Coal samples from both the Pittsburgh No. 8 Seam and the Upper Freeport Seam were used for these experiments. A small amount of i-octane was added to facilitate the process. Microscopic gas bubbles were generated by saturating the water used for suspending coal particles with gas under pressure and then reducing the pressure. Microagglomerates were produced which appeared to consist of gas bubbles encapsulated in coal particles. Since dilute particle suspensions were employed, it was possible to monitor the progress of agglomeration by observing changes in turbidity. By such means it became apparent that the rate of agglomeration depends on the concentration of microscopic gas bubbles and to a lesser extent on the concentration of i-octane. Similar results were obtained with both Pittsburgh No. 8 coal and Upper Freeport coal.

  11. Clean-coal technology by-products used in a highway embankment stabilization demonstration project. Master's thesis

    SciTech Connect

    Nodjomian, S.M.

    1994-01-01

    Clean-coal technology by-products are used in a highway embankment demonstration project. This research chronicles the procedures used in the process and analyzes the stability of a repaired highway embankment. The reconstructed slope is analyzed using an Intelligent Discussion Support System that was developed from a slope stability program. Water quality studies are performed and an instrumentation plan is suggested. The calculated factors of safety and the observed embankment performance give indications that the field demonstration project was a success. Long-term monitoring will be the best barometer for determining embankment gross movement and the future of FGD by-products as a stabilizing material.

  12. Gas Cleaning and Siloxane Removal

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    - H2O, H2S, Siloxanes, VOCs, CO2, N2 and O2 - Production of gas for Pipeline, CNG and LNG - Siloxasorb Siloxane removal systems * Experience - 60 projects total - 19 for Digester ...

  13. Clean and Renewable Energy | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    Renewable Energy, Solar, Wind Jessi3bl GE, Clean Energy Fuels Partner to Expand Natural Gas Highway Posted by: Jessi3bl 16 Dec 2012 - 19:18 Tags: clean energy, Clean Energy Fuels,...

  14. OpenEI Community - clean energy

    OpenEI (Open Energy Information) [EERE & EIA]

    +0000 Dc 1057 at http:en.openei.orgcommunity GE, Clean Energy Fuels Partner to Expand Natural Gas Highway http:en.openei.orgcommunityblogge-clean-energy-fuels-partner-expa...

  15. Revamping AK-Ashland gas cleaning system

    SciTech Connect

    Brandes, H.; Koerbel, R.; Haberkamp, K.; Keeton, S.

    1995-07-01

    AK Steel`s (formerly Armco) BOF shop was using a static precipitator for the primary collection. The system was designed for full combustion in the gas collecting hoods. No secondary dust collection was in place. A detailed study on alternative solutions led to a completely different system in 1990, and an order was awarded to Mannesmann Demag Corp. (MDC) in Dec. 1990. The new gas collection system is using suppressed combustion with the capability to collect Co at a later stage. The gas cleaning uses the Mannesmann Demag Baumco scrubber with a venturi throat for gas flow control. All auxiliary components, water treatment plant, electric substations and sludge handling were designed and supplied by MDC. The secondary dust collection covers the hot metal and scrap charging into the BOF`s, reladling, desulfurization and deslagging by a pulse jet baghouse. All emission limits set by the EPA and guaranteed by MDC have been met by the systems installed.

  16. Clean Cities Moving Fleets Forward with Liquefied Natural Gas | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Moving Fleets Forward with Liquefied Natural Gas Clean Cities Moving Fleets Forward with Liquefied Natural Gas May 30, 2013 - 2:52pm Addthis Waste hauler Enviro Express converted its fleet of heavy-duty trucks to run on liquefied natural gas (LNG) and built the first LNG station east of the Mississippi River with help from the Energy Department's Clean Cities initiative. | Photo courtesy of New Haven Clean Cities Coalition. Waste hauler Enviro Express converted its fleet of

  17. Ultra Clean and Efficient Natural Gas Reciprocating Engine for CHP -

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Presentation by Dresser Waukesha, June 2011 | Department of Energy Ultra Clean and Efficient Natural Gas Reciprocating Engine for CHP - Presentation by Dresser Waukesha, June 2011 Ultra Clean and Efficient Natural Gas Reciprocating Engine for CHP - Presentation by Dresser Waukesha, June 2011 Presentation on an Ultra Clean 1.1 MW High Efficiency Natural Gas Engine Powered Combined Heat and Power (CHP) System, given by Jim Zurlo of Dresser Waukesha, at the U.S. DOE Industrial Distributed

  18. Gas Cleaning for Remote Solid Oxide Fuel Cell (SOFC) Applications

    Energy.gov [DOE] (indexed site)

    up for Fuel Cell Applications, Argonne National Lab Fuel (NG, LPG, LFG, ADG, APG, biodiesel) opportunities and impurity issues Gas Cleaning for Remote SOFC Applications Acumentrics ...

  19. Center for Gas Separations Relevant to Clean Energy Technologies...

    Office of Science (SC)

    Center for Gas Separations Relevant to Clean Energy Technologies (CGS) Energy Frontier Research Centers (EFRCs) EFRCs Home Centers EFRC External Websites Research Science ...

  20. NOVEL GAS CLEANING/CONDITIONING FOR INTEGRATED GASIFICATION COMBINED CYCLE

    SciTech Connect

    Dennis A. Horazak; Richard A. Newby; Eugene E. Smeltzer; Rachid B. Slimane; P. Vann Bush; James L. Aderhold Jr; Bruce G. Bryan

    2005-12-01

    Development efforts have been underway for decades to replace dry-gas cleaning technology with humid-gas cleaning technology that would maintain the water vapor content in the raw gas by conducting cleaning at sufficiently high temperature to avoid water vapor condensation and would thus significantly simplify the plant and improve its thermal efficiency. Siemens Power Generation, Inc. conducted a program with the Gas Technology Institute (GTI) to develop a Novel Gas Cleaning process that uses a new type of gas-sorbent contactor, the ''filter-reactor''. The Filter-Reactor Novel Gas Cleaning process described and evaluated here is in its early stages of development and this evaluation is classified as conceptual. The commercial evaluations have been coupled with integrated Process Development Unit testing performed at a GTI coal gasifier test facility to demonstrate, at sub-scale the process performance capabilities. The commercial evaluations and Process Development Unit test results are presented in Volumes 1 and 2 of this report, respectively. Two gas cleaning applications with significantly differing gas cleaning requirements were considered in the evaluation: IGCC power generation, and Methanol Synthesis with electric power co-production. For the IGCC power generation application, two sets of gas cleaning requirements were applied, one representing the most stringent ''current'' gas cleaning requirements, and a second set representing possible, very stringent ''future'' gas cleaning requirements. Current gas cleaning requirements were used for Methanol Synthesis in the evaluation because these cleaning requirements represent the most stringent of cleaning requirements and the most challenging for the Filter-Reactor Novel Gas Cleaning process. The scope of the evaluation for each application was: (1) Select the configuration for the Filter-Reactor Novel Gas Cleaning Process, the arrangement of the individual gas cleaning stages, and the probable operating

  1. Renewable Natural Gas Clean-up Challenges and Applications

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Renewable Natural Gas Clean-up p Challenges and Applications Renewable Resource Webinar July 13, 2011 Brian Weeks, Gas Technology Institute 281 235 7993, brian.weeks@gastechnology.org Kristine Wiley, Gas Technology Institute 847 768 0910 kristine wiley@gastechnology org 847 768 0910, kristine.wiley@gastechnology.org 2 Today's Talk Today s Talk >Who is GTI Who is GTI >What is Renewable Natural Gas (RNG) Ch ll f R bl N t l G >Challenges for Renewable Natural Gas >How do we clean up

  2. Ultra Clean and Efficient Natural Gas Reciprocating Engine for...

    Energy.gov [DOE] (indexed site)

    Presentation on an Ultra Clean 1.1 MW High Efficiency Natural Gas Engine Powered Combined Heat and Power (CHP) System, given by Jim Zurlo of Dresser Waukesha, at the U.S. DOE ...

  3. Quadrogen Gas Clean-Up Technology for Fuel Cell Applications

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    to: Quadrogen Gas Clean-up Technology for Fuel Cell Applications Presented by: Alakh Prasad, President & CEO 7 March 2014 Quadrogen Power Systems, Inc. Quadrogen Overview Developed proprietary gas clean-up technology for fuel cell applications  First demonstration unit using biogas in operation for more than 2 ½ years  Second unit using biogas operational by Q3/2014  Third unit using landfill gas operational by Q1/2015  Working on associated gas applications 7 March 2014 2 The

  4. Renewable Natural Gas Clean-up Challenges and Applications

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Natural Gas Clean-up p Challenges and Applications Renewable Resource Workshop January 13, 2011 Washington, D.C. Brian Weeks, Gas Technology Institute gy 281 235 7993, brian.weeks@gastechnology.org 2 Today's Talk Today s Talk >Who is GTI Who is GTI >What is Renewable Natural Gas (RNG) Ch ll f R bl N t l G >Challenges for Renewable Natural Gas >How do we clean up RNG? >Recommendations and Summary 2 - - 3 GTI at a Glance... > Not-for-profit research > Not for profit research,

  5. Engineering analysis of biomass gasifier product gas cleaning technology

    SciTech Connect

    Baker, E.G.; Brown, M.D.; Moore, R.H.; Mudge, L.K.; Elliott, D.C.

    1986-08-01

    For biomass gasification to make a significant contribution to the energy picture in the next decade, emphasis must be placed on the generation of clean, pollutant-free gas products. This reports attempts to quantify levels of particulated, tars, oils, and various other pollutants generated by biomass gasifiers of all types. End uses for biomass gases and appropriate gas cleaning technologies are examined. Complete systems analysis is used to predit the performance of various gasifier/gas cleanup/end use combinations. Further research needs are identified. 128 refs., 20 figs., 19 tabs.

  6. Alternative Fuels Data Center: Cities Make the Clean Switch to Natural Gas

    Alternative Fuels and Advanced Vehicles Data Center

    Cities Make the Clean Switch to Natural Gas to someone by E-mail Share Alternative Fuels Data Center: Cities Make the Clean Switch to Natural Gas on Facebook Tweet about Alternative Fuels Data Center: Cities Make the Clean Switch to Natural Gas on Twitter Bookmark Alternative Fuels Data Center: Cities Make the Clean Switch to Natural Gas on Google Bookmark Alternative Fuels Data Center: Cities Make the Clean Switch to Natural Gas on Delicious Rank Alternative Fuels Data Center: Cities Make the

  7. Renewable Natural Gas Clean-up Challenges and Applications | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Renewable Natural Gas Clean-up Challenges and Applications Renewable Natural Gas Clean-up Challenges and Applications Presentation at Waste-to-Energy using Fues Cells Webinar, July 13, 2011. wte_dod-doe_wkshp71311_weeks.pdf (1.47 MB) More Documents & Publications Renewable Natural Gas Clean-up Challenges and Applications Renewable Natural Gas Clean-up Challenges and Applications Workshop on Gas Clean-Up for Fuel Cell Applications

  8. Gas stream cleaning system and method

    DOEpatents

    Kunchal, S. Kumar; Erck, Louis J.; Harris, Harry A.

    1979-04-13

    An oil mist and solid particle laden gas from an oil shale retorting operation is initially treated with a temperature controlled oil spray and then by a coalescer to reduce the quantity of oil mist and remove most of the solid particle content of the gas stream and then finally treated by an electrostatic precipitator to essentially remove the oil mist remaining in the gas.

  9. Testing in flue gas cleaning systems of waste incineration plants

    SciTech Connect

    Wallen, B.; Bergquist, A.; Nordstroem, J.

    1995-07-01

    Test racks containing creviced, welded coupons of stainless steels (SS), nickel-based alloys, and titanium were exposed in gas cleaning systems in municipal waste incineration plants. The environments in the cleaning systems were very corrosive. The best corrosion resistance was shown by the superaustenitic SS UNS S32654 and the nickel-based alloys UNS N10276 (C-276) and N06022 (C-22). Titanium performed poorly and was attacked by excessive uniform corrosion.

  10. New challenges to air/gas cleaning systems

    SciTech Connect

    Kovach, J.L.

    1997-08-01

    This paper discusses the need for changes in the design and manufacturing of air and gas cleaning systems to meet waste management and site remediation requirements. Current design and manufacturing practices are primarily directed toward evaluating operational problems with existing systems in nuclear reactor facilities. However, nuclear waste management needs have developed which are much broader in scope and have different processing conditions. Numerous examples of air cleaning needs for waste management activities are provided; the major differences from operating facility needs are the requirement for continuous effluent treatment under widely different processing conditions. Related regulatory issues are also discussed briefly. 1 ref.

  11. Clean and Renewable Energy | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    Blog entry Technology Innovation & Solutions GE, Clean Energy Fuels Partner to Expand Natural Gas Highway Jessi3bl 16 Dec 2012 - 19:18 Groups Menu You must login in order to post...

  12. Clean and Renewable Energy | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    Last Post sort icon Blog entry Environment GE, Clean Energy Fuels Partner to Expand Natural Gas Highway Jessi3bl 16 Dec 2012 - 19:18 Groups Menu You must login in order to post...

  13. Evaluation of Ultra Clean Fuels from Natural Gas

    SciTech Connect

    Robert Abbott; Edward Casey; Etop Esen; Douglas Smith; Bruce Burke; Binh Nguyen; Samuel Tam; Paul Worhach; Mahabubul Alam; Juhun Song; James Szybist; Ragini Acharya; Vince Zello; David Morris; Patrick Flynn; Stephen Kirby; Krishan Bhatia; Jeff Gonder; Yun Wang; Wenpeng Liu; Hua Meng; Subramani Velu; Jian-Ping Shen, Weidong Gu; Elise Bickford; Chunshan Song; Chao-Yang Wang; Andre' Boehman

    2006-02-28

    ConocoPhillips, in conjunction with Nexant Inc., Penn State University, and Cummins Engine Co., joined with the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) in a cooperative agreement to perform a comprehensive study of new ultra clean fuels (UCFs) produced from remote sources of natural gas. The project study consists of three primary tasks: an environmental Life Cycle Assessment (LCA), a Market Study, and a series of Engine Tests to evaluate the potential markets for Ultra Clean Fuels. The overall objective of DOE's Ultra Clean Transportation Fuels Initiative is to develop and deploy technologies that will produce ultra-clean burning transportation fuels for the 21st century from both petroleum and non-petroleum resources. These fuels will: (1) Enable vehicles to comply with future emission requirements; (2) Be compatible with the existing liquid fuels infrastructure; (3) Enable vehicle efficiencies to be significantly increased, with concomitantly reduced CO{sub 2} emissions; (4) Be obtainable from a fossil resource, alone or in combination with other hydrocarbon materials such as refinery wastes, municipal wastes, biomass, and coal; and (5) Be competitive with current petroleum fuels. The objectives of the ConocoPhillips Ultra Clean Fuels Project are to perform a comprehensive life cycle analysis and to conduct a market study on ultra clean fuels of commercial interest produced from natural gas, and, in addition, perform engine tests for Fisher-Tropsch diesel and methanol in neat, blended or special formulations to obtain data on emissions. This resulting data will be used to optimize fuel compositions and engine operation in order to minimize the release of atmospheric pollutants resulting from the fuel combustion. Development and testing of both direct and indirect methanol fuel cells was to be conducted and the optimum properties of a suitable fuel-grade methanol was to be defined. The results of the study are also applicable

  14. Safety of natural gas dual-fueled vehicles: Addendum to safety analysis of natural gas vehicles transiting highway tunnels

    SciTech Connect

    Shaaban, S.H.; Zalak, V.M. )

    1991-01-01

    A safety analysis was performed to assess the relative hazard of vehicles containing both compressed natural gas (CNG) and gasoline, referred to as dual-fueled vehicles, compared to the hazard of a dedicated CNG vehicle. This study expands upon previous work that examined the safety of CNG vehicles transiting highway tunnels. The approach was to examine operational data, test results and to perform thermal analyses to determine if there are any synergistic effects where the total consequences of fuel release might be greater than the sum of the two fuels released separately. This study concluded that a dual-fueled vehicle poses a slightly greater risk than a dedicated CNG vehicle; however, this marginal increase in risk is small and is within the bounds of risk posed by gasoline-powered vehicles. 4 refs.

  15. EERE Success Story-Concrete Company Moving to Natural Gas with Clean

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Cities | Department of Energy Concrete Company Moving to Natural Gas with Clean Cities EERE Success Story-Concrete Company Moving to Natural Gas with Clean Cities March 10, 2015 - 10:25am Addthis Concrete mixing in the Great Lakes region is increasingly fueled by compressed natural gas (CNG), thanks to the help of the Vehicle Technologies Office's Clean Cities program. In 2010, the Chicago Area Clean Cities Coalition's American Recovery and Reinvestment Act project covered the incremental

  16. Tidd hot gas clean up program. Final report

    SciTech Connect

    1995-10-01

    This Final Report on the Tidd Hot Gas Clean Up Program covers the period from initial Proof-of-Concept testing in August, 1990, through final equipment inspections in May, 1995. The Tidd Hot Gas Clean Up (HGCU) system was installed in the Tidd Pressurized Fluidized Bed Combustion (PFBC) Demonstration Plant, which is the first utility-scale PFBC plant in the United States. Detailed design work on the project began in July, 1990, and site construction began in December, 1991. Initial operation of the system occurred in May, 1992, and the hot gas filter was commissioned in October, 1992. The test program ended in March, 1995, when the Tidd Plant was shut down following its four-year test program. Section 1.0 of this report is an executive summary of the project covering the project background, system description, test results and conclusions. Section 2.0 is an introduction covering the program objectives and schedule. Section 3.0 provides detailed descriptions of the system and its major components. Section 4.0 provides detailed results of all testing including observations and posttest inspection results. Sections 5.0 and 6.0 list the program conclusions and recommendations, respectively. Appendix I is a report prepared by Southern Research Institute on the properties of Tidd PFBC ash sampled during the test program. Appendix II is a report prepared by Westinghouse STC on the performance of candle filter fail-safe regenerator devices.

  17. Workshop on Gas Clean-Up for Fuel Cell Applications | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Workshop on Gas Clean-Up for Fuel Cell Applications Workshop on Gas Clean-Up for Fuel Cell Applications The U.S. Department of Energy's (DOE's) Argonne National Laboratory (ANL) hosted the Workshop on Gas Clean-Up for Fuel Cell Applications on March 6-7, 2014, in Argonne, Illinois. The workshop was sponsored by the DOE Fuel Cell Technologies Office and included participants from industry, academia, national labs, government agencies, and other stakeholders. The objectives of the workshop were to

  18. Workshop on Gas Clean-Up for Fuel Cell Applications - Agenda

    Energy.gov [DOE] (indexed site)

    AM Lunch 1:25 PM Plenary and Panel Discussion -1: Fuel (NG, LPG, LFG, ADG, APG, biodiesel, ...) opportunities and impurity issues 1:30 PM Gas Cleaning for Remote SOFC ...

  19. Special Delivery for Sustainability: Clean Cities Supports UPS in Expanding Natural Gas Operations

    Office of Energy Efficiency and Renewable Energy (EERE)

    With support from the Energy Department's Clean Cities program, United Parcel Service plans to deploy 1,000 liquefied natural gas trucks, making it the biggest private fleet of its kind in the United States.

  20. Biomass Gas Clean-Up Using a Therminator

    SciTech Connect

    2006-04-01

    Clean-up and conditioning of syngas is a key technical barrier to the commercialization of biomass gasification systems. Current technologies do not meet the necessary performance, cost, and environmental criteria to achieve commercialization of biomass gasification technologies.

  1. The Clean Coal Technology Program 100 MWe demonstration of gas suspension absorption for flue gas desulfurization

    SciTech Connect

    Hsu, F.E.; Hedenhag, J.G.; Marchant, S.K.; Pukanic, G.W.; Norwood, V.M.; Burnett, T.A.

    1997-12-31

    AirPol Inc., with the cooperation of the Tennessee Valley Authority (TVA) under a Cooperative Agreement with the United States Department of Energy, installed and tested a 10 MWe Gas Suspension Absorption (GSA) Demonstration system at TVA`s Shawnee Fossil Plant near Paducah, Kentucky. This low-cost retrofit project demonstrated that the GSA system can remove more than 90% of the sulfur dioxide from high-sulfur coal-fired flue gas, while achieving a relatively high utilization of reagent lime. This paper presents a detailed technical description of the Clean Coal Technology demonstration project. Test results and data analysis from the preliminary testing, factorial tests, air toxics texts, 28-day continuous demonstration run of GSA/electrostatic precipitator (ESP), and 14-day continuous demonstration run of GSA/pulse jet baghouse (PJBH) are also discussed within this paper.

  2. Next Generation Natural Gas Vehicle Program Phase I: Clean Air...

    Office of Scientific and Technical Information (OSTI)

    AIR PARTNERS; EXHAUST GAS RECIRCULATION; EGR; NOX; NGNGV; ACCOLD; PACCOLD; NATURAL GAS; LNG; DUAL-FUEL; Transportation Word Cloud More Like This Full Text preview image File size ...

  3. Jeffrey Kortright | Center for Gas SeparationsRelevant to Clean...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    the Kortright group is developing novel soft x-ray based techniques for probing gas adsorption in MOFs. EFRC publications: Drisdell, Walter S.; and Kortright, Jeffrey B Gas cell...

  4. Kinetics of combined SO/sub 2//NO in flue gas clean-up

    SciTech Connect

    Chang, S.G.; Littlejohn, D.

    1985-03-01

    The kinetics of reactions involving SO/sub 2/, NO, and ferrous chelate additives in wet flue gas simultaneous desulfurization and denitrification scrubbers are discussed. The relative importance of these reactions are assessed. The relevance of these reactions to spray dryer processes for combined SO/sub 2//NO flue gas clean-up is addressed. 37 refs., 7 figs.

  5. Hiroyasu Furukawa | Center for Gas SeparationsRelevant to Clean...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Kim, Jaheon; and Yaghi, Omar M Introduction of Functionality, Selection of Topology, and Enhancement of Gas Adsorption in Multivariate Metal-Organic Framework-177, J. Am. Chem. ...

  6. Renewable Natural Gas Clean-up Challenges and Applications

    Energy.gov [DOE]

    Presentation by Brian Weeks, Gas Technology Institute, at the Waste-to-Energy Using Fuel Cells Workshop held Jan. 13, 2011

  7. Concrete Company Moving to Natural Gas with Clean Cities | Department...

    Energy Saver

    fueled by compressed natural gas (CNG), thanks to the help of the Vehicle ... project covered the incremental cost of 14 CNG cement mixing vehicles for Ozinga Brothers ...

  8. Lorenzo Maserati | Center for Gas SeparationsRelevant to Clean...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    design consists of ultra thin MOF coatings on polymer supports that allow for high permeability while maintaining high gas selectivity. My efforts span membrane fabrication and...

  9. Mitsuharu Suzuki | Center for Gas SeparationsRelevant to Clean...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    (MTV-MOFs) for efficient gas capture and storage. An MTV-MOF comprises multiple types of organic ... Precisely Designed Interior for Carbon Dioxide Capture in the Presence of ...

  10. Clean Cities Moving Fleets Forward with Liquefied Natural Gas...

    Energy.gov [DOE] (indexed site)

    Waste hauler Enviro Express converted its fleet of heavy-duty trucks to run on liquefied natural gas (LNG) and built the first LNG station east of the Mississippi River with help...

  11. DOE Issues Request for Information on Gas Clean-Up for Fuel Cell Applications

    Energy.gov [DOE]

    The U.S. Department of Energy's (DOE's) Fuel Cell Technologies Office has issued a request for information (RFI) to obtain feedback and opinions from industry, academia, research laboratories, government agencies, and other stakeholders on the report findings from the Gas Clean-up for Fuel Cell Applications Workshop.

  12. Corrosion testing in the flue gas cleaning and condensation systems in Swedish waste incineration plants

    SciTech Connect

    Wallen, B.; Bergqvist, A.; Nordstroem, J.

    1994-12-31

    Test racks containing creviced, welded coupons of stainless steels, nickel base alloys and titanium have been exposed in various parts of the gas cleaning systems in three municipal waste incineration plants. The flue gases were rich in hydrogen halides and the environments in the cleaning systems were very corrosive causing mainly crevice and pitting corrosion. The best corrosion resistance was shown by the superaustenitic stainless steel S32654 and the nickel base alloys N10276 and N06022. Titanium performed badly and was attacked by excessive uniform corrosion.

  13. Innovative coke oven gas cleaning system for retrofit applications. Volume 1, Public design report

    SciTech Connect

    Not Available

    1994-05-24

    This Public Design Report provides, in a single document, available nonproprietary design -information for the ``Innovative Coke Oven Gas Cleaning System for Retrofit Applications`` Demonstration Project at Bethlehem Steel Corporation`s Sparrows Point, Maryland coke oven by-product facilities. This project demonstrates, for the first time in the United States, the feasibility of integrating four commercially available technologies (processes) for cleaning coke oven gas. The four technologies are: Secondary Gas Cooling, Hydrogen Sulfide and Ammonia Removal, Hydrogen Sulfide and Ammonia Recovery, and Ammonia Destruction and Sulfur Recovery. In addition to the design aspects, the history of the project and the role of the US Department of,Energy are briefly discussed. Actual plant capital and projected operating costs are also presented. An overview of the integration (retrofit) of the processes into the existing plant is presented and is followed by detailed non-proprietary descriptions of the four technologies and their overall effect on reducing the emissions of ammonia, sulfur, and other pollutants from coke oven gas. Narrative process descriptions, simplified process flow diagrams, input/output stream data, operating conditions, catalyst and chemical requirements, and utility requirements are given for each unit. Plant startup provisions, environmental considerations and control monitoring, and safety considerations are also addressed for each process.

  14. Novel Approach for Biomass Synthesis Gas Cleaning for Liquid Fuel Applications

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Novel Approach for Biomass Synthesis Gas Cleaning for Liquid Fuel Applications WBS 3.2.5.9 May 22, 2013 Thermo-chemical Platform Review Presented by: Ben Phillips, Emery Energy Lyman Frost, Ceramatec 2 Project Overview * Start Date - 9/30/2008 * Completion Date - Dec 2012 * Construction - 100% complete * Project - 100% complete 1. Tt-C - Gasification of Wood, Biorefinery Residue Streams and Low Sugar Biomass 2. Tt-F - Syngas Cleanup & Conditioning 3. Tt-H - Validation of Syngas Quality Total

  15. Next Generation Natural Gas Vehicle Program Phase I: Clean Air Partners 0.5 g/hp-h NOx Engine Concept; Final Report

    SciTech Connect

    Wong, H. C.

    2003-07-01

    Subcontractor report details work done by Clean Air Partners to develop 0.5 g/hp-h NOx natural gas engine exhaust gas recirculation (EGR) technology for the Next Generation Natural Gas Vehicle Program.

  16. Environmental trends in Asia are accelerating the introduction of clean coal technologies and natural gas

    SciTech Connect

    Johnson, C.J.

    1997-09-01

    This paper examines the changing energy mix for Asia to 2020, and impacts of increased coal consumption on Asia`s share of world SO{sub 2} and CO{sub 2} emissions. Stricter SO{sub 2} emissions laws are summarized for eight Asian economies along with implications for fuel and technology choices. The paper compares the economics of different technologies for coal and natural gas in 1997 and in 2007. Trends toward introducing clean coal technologies and the use of natural gas will accelerate in response to tighter environmental standards by 2000. The most important coal conversion technology for Asia, particularly China, in the long term is likely to be integrated gasification combined-cycle (IGCC), but only under the assumption of multiple products.

  17. Gas stream clean-up filter and method for forming same

    DOEpatents

    Mei, Joseph S.; DeVault, James; Halow, John S.

    1993-01-01

    A gas cleaning filter is formed in-situ within a vessel containing a fluidizable bed of granular material of a relatively large size fraction. A filter membrane provided by a porous metal or ceramic body or such a body supported a perforated screen on one side thereof is coated in-situ with a layer of the granular material from the fluidized bed by serially passing a bed-fluidizing gas stream through the bed of granular material and the membrane. The layer of granular material provides the filtering medium for the combined membrane-granular layer filter. The filter is not blinded by the granular material and provides for the removal of virtually all of the particulates from a process gas stream. The granular material can be at least partially provided by a material capable of chemically reacting with and removing sulfur compounds from the process gas stream. Low level radioactive waste containing organic material may be incinerated in a fluidized bed in communication with the described filter for removing particulates from the gaseous combustion products.

  18. Method of and apparatus for preheating pressurized fluidized bed combustor and clean-up subsystem of a gas turbine power plant

    DOEpatents

    Cole, Rossa W.; Zoll, August H.

    1982-01-01

    In a gas turbine power plant having a pressurized fluidized bed combustor, gas turbine-air compressor subsystem and a gas clean-up subsystem interconnected for fluid flow therethrough, a pipe communicating the outlet of the compressor of the gas turbine-air compressor subsystem with the interior of the pressurized fluidized bed combustor and the gas clean-up subsystem to provide for flow of compressed air, heated by the heat of compression, therethrough. The pressurized fluidized bed combustor and gas clean-up subsystem are vented to atmosphere so that the heated compressed air flows therethrough and loses heat to the interior of those components before passing to the atmosphere.

  19. A High-Temperature Fuel Cell to Provide On-Site Process Reducing Gas, Clean Power, and Heat

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Combined Heat, Hydrogen, and Power System A High-Temperature Fuel Cell to Provide On-Site Process Reducing Gas, Clean Power, and Heat Introduction In order for metal products to have desired properties, most metal is thermally processed at a high temperature one or more times under a controlled atmosphere. Many different thermal operations are used including oxide reduction, annealing, brazing, sintering, and carburizing. A mixture of hydrogen and nitrogen gas often provides a reducing

  20. [USA] highway statistics, 1997

    SciTech Connect

    1999-11-01

    This is an annual report containing analyzed statistical data on motor fuel; motor vehicles, driver licensing, highway-user taxation; state highway finance; highway mileage; federal aid for highways; highway finance data for municipalities; counties; townships, and other units of local government; select tables/charts from the 1995 Nationwide Personal transportation Survey; and international data. This report has been published since 1945. These and other State-by-State tabulations are all available in electronic form on the Internet at http:///www.fhwa. dot.gov/pubstats.html. The data tables can be viewed in PDF and downloaded as in spreadsheet format.

  1. Clean Cities Program saves 375 million gallons of gas in 2006 - News

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    the fifth issue of the U.S. 1 w"" Department of Energy's (DOE) Clean Cities Drive. Each issue of the I I newsletter will bring you valuable information from the Clean Cities pro- I I gram to help you succeed in putting more alternative fuel vehicles (AFVs) I I onto our roads. If you have a story to 1 1 tell, a picture to share, or information of interest to Clean Cities participants, 1 1 please call the Clean Cities Hodine at 1 -800-CCITIES. 1 1 1 Technical and Training Centers

  2. Chapter 8 - Advancing Clean Transportation and Vehicle Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Chapter 8 - Advancing Clean Transportation and Vehicle Systems and Technologies Transportation is a complex sector composed of light duty, medium duty, heavy duty, and non-highway ...

  3. Chapter 4: Advancing Clean Electric Power Technologies | Carbon Dioxide Capture for Natural Gas and Industrial Applications Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Gas and Industrial Applications Carbon Dioxide Capture Technologies Carbon Dioxide Storage Technologies Crosscutting Technologies in Carbon Dioxide Capture and Storage Fast-spectrum Reactors Geothermal Power High Temperature Reactors Hybrid Nuclear-Renewable Energy Systems Hydropower Light Water Reactors Marine and Hydrokinetic Power Nuclear Fuel Cycles Solar Power Stationary Fuel Cells Supercritical Carbon Dioxide Brayton Cycle Wind Power ENERGY U.S. DEPARTMENT OF Clean Power Quadrennial

  4. TREATMENT TANK OFF-GAS TESTING FOR THE ENHANCED CHEMICAL CLEANING PROCESS

    SciTech Connect

    Wiersma, B.

    2011-08-29

    The purpose of this activity was to provide a bounding estimate of the volume of hydrogen gas generated during Enhanced Chemical Cleaning (ECC) of residual sludge remaining in a Type I or Type II treatment tank as well as to provide results independent of the sludge volume in the waste tank to be cleaned. Previous testing to support Chemical Cleaning was based on a 20:1 oxalic acid to sludge ratio. Hydrogen gas evolution is the primary safety concern. Sealed vessel coupon tests were performed to estimate the hydrogen generation rate due to corrosion of carbon steel by 2.5 wt.% oxalic acid. These tests determined the maximum instantaneous hydrogen generation rate, the rate at which the generation rate decays, and the total hydrogen generated. These values were quantified based on a small scale methodology similar to the one described in WSRC-STI-2007-00209, Rev. 0. The measured rates support identified Safety Class functions. The tests were performed with ASTM A285 Grade C carbon steel coupons. Bounding conditions were determined for the solution environment. The oxalic acid concentration was 2.5 wt.% and the test temperature was 75 C. The test solution was agitated and contained no sludge simulant. Duplicate tests were performed and showed excellent reproducibility for the hydrogen generation rate and total hydrogen generated. The results showed that the hydrogen generation rate was initially high, but decayed rapidly within a couple of days. A statistical model was developed to predict the instantaneous hydrogen generation rate as a function of exposure time by combining both sets of data. An upper bound on the maximum hydrogen generation rate was determined from the upper 95% confidence limit. The upper bound confidence limit for the hydrogen generation rate is represented by the following equation. ln (G{sub v}) = -8.22-0.0584 t + 0.0002 t{sup 2}. This equation should be utilized to estimate the instantaneous hydrogen generation rate per unit surface area, G

  5. National Highway Planning Network

    Energy Science and Technology Software Center

    1992-02-02

    NHPN, the National Highway Planning Network, is a database of major highways in the continental United States that is used for national-level analyses of highway transportation issues that require use of a network, such as studies of highway performance, network design, social and environmental impacts of transportation, vehicle routing and scheduling, and mapping. The network is based on a set of roadways digitized by the U. S. Geological Survey (USGS) from the 1980 National Atlasmore » and has been enhanced with additional roads, attribute detail, and topological error corrections to produce a true analytic network. All data have been derived from or checked against information obtained from state and Federal governmental agencies. Two files comprise this network: one describing links and the other nodes. This release, NHPN1.0, contains 44,960 links and 28,512 nodes representing approximately 380,000 miles of roadway.« less

  6. CAN SORBENT-BASED GAS PHASE AIR CLEANING FOR VOCS SUBSTITUTE FOR VENTILATION IN COMMERCIAL BUILDINGS?

    SciTech Connect

    Fisk, William; Fisk, William J.

    2007-08-01

    This paper reviews current knowledge about the suitability of sorbent-based air cleaning for removing volatile organic compounds (VOCs) from the air in commercial buildings, as needed to enable reductions in ventilation rates and associated energy savings. The principles of sorbent air cleaning are introduced, criteria are suggested for sorbent systems that can counteract indoor VOC concentration increases from reduced ventilation, major findings from research on sorbent performance for this application are summarized, and related priority research needs are identified. Major conclusions include: sorbent systems can remove a broad range of VOCs with moderate to high efficiency, sorbent technologies perform effectively when challenged with VOCs at the low concentrations present indoors, and there is a large uncertainty about the lifetime and associated costs of sorbent air cleaning systems when used in commercial buildings for indoor VOC control. Suggested priority research includes: experiments to determine sorbent system VOC removal efficiencies and lifetimes considering the broad range and low concentration of VOCs indoors; evaluations of in-situ regeneration of sorbents; and an updated analysis of the cost of sorbent air cleaning relative to the cost of ventilation.

  7. Sorbent-Based Gas Phase Air Cleaning for VOCs in CommercialBuildings

    SciTech Connect

    Fisk, William J.

    2006-05-01

    This paper provides a review of current knowledge about the suitability of sorbent-based air cleaning for removing volatile organic compounds (VOCs) from the air in commercial buildings as needed to enable reductions in ventilation rates and associated energy savings. The fundamental principles of sorbent air cleaning are introduced, criteria are suggested for sorbent systems that can counteract indoor VOC concentration increases from reduced ventilation, major findings from research on sorbent performance for this application are summarized, novel sorbent technologies are described, and related priority research needs are identified. Major conclusions include: sorbent systems can remove a broad range of VOCs with moderate to high efficiency, sorbent technologies perform effectively when challenged with VOCs at the low concentrations present indoors, and there is a large uncertainty about the lifetime and associated costs of sorbent air cleaning systems when used in commercial buildings for indoor VOC control. Suggested priority research includes: experiments to determine sorbent system VOC removal efficiencies and lifetimes considering the broad range and low concentration of VOCs indoors; evaluations of in-situ regeneration of sorbents; and an updated analysis of the cost of sorbent air cleaning relative to the cost of ventilation.

  8. Overview of the effect of Title III of the 1990 Clean Air Act Amendments on the natural gas industry

    SciTech Connect

    Child, C.J.

    1995-12-31

    The regulation of hazardous air pollutants by Title III of the Clean Air Act Amendments of 1990 has a potential wide-ranging impact for the natural gas industry. Title III includes a list of 189 hazardous air pollutants (HAPs) which are targeted for reduction. Under Title III, HAP emissions from major sources will be reduced by the implementation of maximum achievable control technology (MACT) standards. If the source is defined as a major source, it must also comply with Title V (operating permit) and Title VII (enhanced monitoring) requirements. This presentation will review Title III`s effect on the natural gas industry by discussing the regulatory requirements and schedules associated with MACT as well as the control technology options available for affected sources.

  9. 2015 Vehicle Buyer's Guide (Brochure), Clean Cities, Energy Efficiency...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Vehicle Buyer's Guide Clean Cities Propane Natural Gas Biodiesel Electric Hybrid Ethanol ... Natural Gas . . . . . . . . 12 Biodiesel . . . . . . . . . . . . . . . . . . . . ...

  10. An Ghysels | Center for Gas SeparationsRelevant to Clean Energy...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    MSPhD in Engineering - Applied Physics, Ghent University EFRC research: Metal Organic ... We have explored framework flexibility effects induced by gas adsorption using Monte ...

  11. 2015 | Center for Gas SeparationsRelevant to Clean Energy Technologies...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Introduction of Functionality, Selection of Topology, and Enhancement of Gas Adsorption in Multivariate Metal-Organic Framework-177 Introduction of Functionality, Selection of ...

  12. Omar Yaghi | Center for Gas SeparationsRelevant to Clean Energy...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Kim, Jaheon; and Yaghi, Omar M Introduction of Functionality, Selection of Topology, and Enhancement of Gas Adsorption in Multivariate Metal-Organic Framework-177, J. Am. Chem. ...

  13. Richard Luis Martin | Center for Gas SeparationsRelevant to Clean...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    to many pressing energy-related challenges such as carbon dioxide capture and natural gas storage. ... (MOFs): Designing Isoreticular MOF-5 Analogues Comprising Commercially ...

  14. Anne Marti | Center for Gas SeparationsRelevant to Clean Energy...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    MOFs studied specifically for carbon capture technologies contain unsaturated metal sites, ... water-limiting gas loading within the MOF. Developing MOFs that can efficiently ...

  15. October 24, 2012 | Center for Gas SeparationsRelevant to Clean...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Foundry, LBNL) Structure and Properties of Gas Adsorbed Metal-Organic Frameworks Stephen Geier (Department of Chemistry, UC Berkeley) Adsorption and Separation of Small...

  16. November 30, 2011 | Center for Gas SeparationsRelevant to Clean...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ...Computational Science Div., National Energy Technology Laboratory) Techno-Economical Rating of Post-combustion Gas Permeation Carbon Capture Systems Eric Bloch (Dept. of Chemistry, ...

  17. Benjamin K. Keitz | Center for Gas SeparationsRelevant to Clean...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Institute of Technology BS in Chemical Engineering, University of Texas at Austin EFRC research: Metal-organic frameworks (MOFs) have shown great promise for a variety of gas...

  18. Gokhan Barin | Center for Gas SeparationsRelevant to Clean Energy...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Such features become particularly useful in challenging applications such as toxic gas (ammonia) removal from air and metal ion separations in aqueous media. My research...

  19. May 27, 2015 | Center for Gas SeparationsRelevant to Clean Energy...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    of California Berkeley) Enhanced Permeation in Hybrid MOF-Polymer Membranes Rocio Mercado (Univeristy of California Berkeley) DFT-Derived Force Fields for Gas Adsorbents in...

  20. Enabling Clean Consumption of Low Btu and Reactive Fuels in Gas...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    "Opportunity fuels" offer an alternative to natural gas. These unconventional fuels are often derived from agricultural, industrial, and municipal waste streams or from byproducts ...

  1. October 26, 2011 | Center for Gas SeparationsRelevant to Clean...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    List Felipe Gndara (Dept. of Chemistry & Biochemistry, UCLA) Understanding gas adsorption in zeolitic imidazolate frameworks (ZIFs) Sergey Maximoff (Dept. of Chemical &...

  2. Changyi Li | Center for Gas SeparationsRelevant to Clean Energy...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Membrane-based gas separations have the potential to be a much more efficient process. The research in our group focuses on creating hybrid polymer-metal-organic-framework ...

  3. March 30, 2016 | Center for Gas SeparationsRelevant to Clean...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Next List Joyjit Kundu (LBNL) Selective Gas Capture via Kinetic Trapping Mercedes Taylor (UC Berkeley) Tuning the CH4-Induced Phase Transition of a Flexible Metal-Organic Framework

  4. Hye Jeong Park | Center for Gas SeparationsRelevant to Clean...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Functionality, ISelection of Topology, and Enhancement of Gas Adsorption in Multivariate Metal-organic Framework-177 J. Am. Chem. Soc., 137, 2641-2650 (2015). 10.1021ja512311a

  5. 2011 | Center for Gas SeparationsRelevant to Clean Energy Technologies...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Co-assembly of Nanotube Subunits and Block Copolymers Link to article Sep 6, 2012 Metal-Organic Frameworks Capture CO2 From Coal Gasification Flue Gas Link to article Sep 6, 2012...

  6. Fluid/particle separation and coal cleaning: Progress, potential advances, and their effects on FGD (flue-gas desulfurization)

    SciTech Connect

    Livengood, C.D.; Doctor, R.D.

    1989-01-01

    Argonne National Laboratory (ANL) has been investigating several approaches to SO{sub 2} and NO{sub x} control that could play significant roles in future emission-control strategies. These techniques include greater application of an existing technology, physical coal cleaning (PCC), as a precombustion complement to FGD, and the combined removal of NO{sub x} and SO{sub 2} in flue-gas cleanup (FGC) systems based on spray drying (a wet/dry process) or in-duct injection of dry sorbents. This paper discusses the results of some of that research with particular attention to the beneficial role of fabric filtration in the dry and wet/dry FGC processes. 7 refs., 5 figs.

  7. Clean coal reference plants: Pulverized coal boiler with flue gas desulfurization. Topical report

    SciTech Connect

    1995-09-01

    The Clean Coal Technology Demonstration Program (CCT) is a government and industry cofunded technology development effort to demonstrate a new generation of innovative coal utilization processes in a series of full-scale facilities. The goal of the program is to provide the U.S. energy marketplace with a number of advanced, more efficient, and environmentally responsive coal-using technologies. To achieve this goal, a multiphased effort consisting of five separate solicitations has been completed. The Morgantown Energy Technology Center (METC) has the responsibility for monitoring the CCT Projects within certain technology categories, which, in general, correspond to the center`s areas of technology development. Primarily the categories of METC CCT projects are: atmospheric fluid bed combustion, pressurized fluidized bed combustion, integrated gasification combined cycle, mild gasification, and industrial applications.

  8. SOx-NOx-Rox Box{trademark} flue gas clean-up demonstration. Final report

    SciTech Connect

    1995-09-01

    Babcock and Wilcox`s (B and W) SOx-NOx-Rox Box{trademark} process effectively removes SOx, NOx and particulate (Rox) from flue gas generated from coal-fired boilers in a single unit operation, a high temperature baghouse. The SNRB technology utilizes dry sorbent injection upstream of the baghouse for removal of SOx and ammonia injection upstream of a zeolitic selective catalytic reduction (SCR) catalyst incorporated in the baghouse to reduce NOx emissions. Because the SOx and NOx removal processes require operation at elevated gas temperatures (800--900 F) for high removal efficiency, high-temperature fabric filter bags are used in the baghouse. The SNRB technology evolved from the bench and laboratory pilot scale to be successfully demonstrated at the 5-MWe field scale. This report represents the completion of Milestone M14 as specified in the Work Plan. B and W tested the SNRB pollution control system at a 5-MWe demonstration facility at Ohio Edison`s R.E. Burger Plant located near Shadyside, Ohio. The design and operation were influenced by the results from laboratory pilot testing at B and W`s Alliance Research Center. The intent was to demonstrate the commercial feasibility of the SNRB process. The SNRB facility treated a 30,000 ACFM flue gas slipstream from Boiler No. 8. Operation of the facility began in May 1992 and was completed in May 1993. About 2,300 hours of high-temperature operation were achieved. The main emissions control performance goals of: greater than 70% SO{sub 2} removal using a calcium-based sorbent; greater than 90% NOx removal with minimal ammonia slip; and particulate emissions in compliance with the New Source Performance Standards (NSPS) of 0.03 lb/million Btu were exceeded simultaneously in the demonstration program when the facility was operated at optimal conditions. Testing also showed significant reductions in emissions of some hazardous air pollutants.

  9. Economic comparison of clean coal generating technologies with natural gas-combined cycle systems

    SciTech Connect

    Sebesta, J.J.; Hoskins, W.W. )

    1990-01-01

    This paper reports that there are four combustion technologies upon which U.S. electric utilities are expected to rely for the majority of their future power generating needs. These technologies are pulverized coal- fired combustion (PC); coal-fired fluidized bed combustion (AFBC); coal gasification, combined cycle systems (CGCC); and natural gas-fired combined cycle systems (NGCC). The engineering and economic parameters which affect the choice of a technology include capital costs, operating and maintenance costs, fuel costs, construction schedule, process risk, environmental and site impacts, fuel efficiency and flexibility, plant availability, capacity factors, timing of startup, and the importance of utility economic and financial factors.

  10. Clean coal technology III 10 MW demonstration of gas suspension absorption. Final public design report

    SciTech Connect

    1995-06-01

    This report provides the nonproprietary design information for the ``10 MW Demonstration of Gas Suspension Absorption (GSA)`` Demonstration Project at Tennessee Valley Authority`s (TVA) Shawnee Power Station, Center for Emission Research (CER). The 10 MW Demonstration of GSA program is designed to demonstrate the performance of the GSA system in treating the flue gas from a boiler burning high sulfur coal. This project involves design, manufacturing, construction and testing of a retrofitted GSA system. This report presents a nonproprietary description of the technology and overall process performance requirements, plant location and plant facilities. The process, mechanical, structural and electrical design of the GSA system as well as project cost information are included. It also includes a description the modification or alterations made during the course of construction and start-up. Plant start-up provisions, environmental considerations and control, monitoring and safety considerations are also addressed for the process. This report, initially drafted in 1993, covers design information available prior to startup of the demonstration project. It does not reflect the results obtained in that project, which is now complete.

  11. Ultra Clean 1.1MW High Efficiency Natural Gas Engine Powered System

    SciTech Connect

    Zurlo, James; Lueck, Steve

    2011-08-31

    Dresser, Inc. (GE Energy, Waukesha gas engines) will develop, test, demonstrate, and commercialize a 1.1 Megawatt (MW) natural gas fueled combined heat and power reciprocating engine powered package. This package will feature a total efficiency > 75% and ultra low CARB permitting emissions. Our modular design will cover the 1 – 6 MW size range, and this scalable technology can be used in both smaller and larger engine powered CHP packages. To further advance one of the key advantages of reciprocating engines, the engine, generator and CHP package will be optimized for low initial and operating costs. Dresser, Inc. will leverage the knowledge gained in the DOE - ARES program. Dresser, Inc. will work with commercial, regulatory, and government entities to help break down barriers to wider deployment of CHP. The outcome of this project will be a commercially successful 1.1 MW CHP package with high electrical and total efficiency that will significantly reduce emissions compared to the current central power plant paradigm. Principal objectives by phases for Budget Period 1 include: • Phase 1 – market study to determine optimum system performance, target first cost, lifecycle cost, and creation of a detailed product specification. • Phase 2 – Refinement of the Waukesha CHP system design concepts, identification of critical characteristics, initial evaluation of technical solutions, and risk mitigation plans. Background

  12. Advanced Acid Gas Separation Technology for Clean Power and Syngas Applications

    SciTech Connect

    Amy, Fabrice; Hufton, Jeffrey; Bhadra, Shubhra; Weist, Edward; Lau, Garret; Jonas, Gordon

    2015-06-30

    Air Products has developed an acid gas removal technology based on adsorption (Sour PSA) that favorably compares with incumbent AGR technologies. During this DOE-sponsored study, Air Products has been able to increase the Sour PSA technology readiness level by successfully operating a two-bed test system on coal-derived sour syngas at the NCCC, validating the lifetime and performance of the adsorbent material. Both proprietary simulation and data obtained during the testing at NCCC were used to further refine the estimate of the performance of the Sour PSA technology when expanded to a commercial scale. In-house experiments on sweet syngas combined with simulation work allowed Air Products to develop new PSA cycles that allowed for further reduction in capital expenditure. Finally our techno economic analysis of the use the Sour PSA technology for both IGCC and coal-to-methanol applications suggests significant improvement of the unit cost of electricity and methanol compared to incumbent AGR technologies.

  13. SOx-NOx-Rox Box{trademark} flue gas clean-up demonstration. Final report

    SciTech Connect

    1995-09-01

    The SNRB{trademark} Flue Gas Cleanup Demonstration Project was cooperatively funded by the U.S. Department of Energy (DOE), the Ohio Coal Development Office (OCDO), B&W, the Electric Power Research Institute (EPRI), Ohio Edison, Norton Chemical Process Products Company and the 3M Company. The SNRB{trademark} technology evolved from the bench and laboratory pilot scale to be successfully demonstrated at the 5-MWe field scale. Development of the SNRB{trademark} process at B&W began with pilot testing of high-temperature dry sorbent injection for SO{sub 2} removal in the 1960`s. Integration of NO{sub x} reduction was evaluated in the 1970`s. Pilot work in the 1980`s focused on evaluation of various NO{sub x} reduction catalysts, SO{sub 2} sorbents and integration of the catalyst with the baghouse. This early development work led to the issuance of two US process patents to B&W - No. 4,309,386 and No. 4,793,981. An additional patent application for improvements to the process is pending. The OCDO was instrumental in working with B&W to develop the process to the point where a larger scale demonstration of the technology was feasible. This report represents the completion of Milestone M14 as specified in the Work Plan. B&W tested the SNRB{trademark} pollution control system at a 5-MWe demonstration facility at Ohio Edison`s R. E. Burger Plant located near Shadyside, Ohio. The design and operation were influenced by the results from laboratory pilot testing at B&W`s Alliance Research Center. The intent was to demonstrate the commercial feasibility of the SNRB{trademark} process. The SNRB{trademark} facility treated a 30,000 ACFM flue gas slipstream from Boiler No. 8. Operation of the facility began in May 1992 and was completed in May 1993.

  14. Highways of hope

    SciTech Connect

    2007-08-15

    It is hoped that through public-private partnerships between Alpha Natural Resources and Pioneer Group and Virginia Department of Transportation, and between one of these coal companies and Buchanan County, Virginia, Industrial Development Authority a four-lane 'highway of hope' between Lovers Gap and Poplar Gap will be paved and a ridge top connector route will eventually be completed to Bull Gap where it will intersect with the Coalfields Expressway and US 460. The town of Grundy is also looking into strip mining coal from beneath the small mountaintop airport at Lovers Gap and turning it into a regional airport. The article discusses these plans. 4 photos.

  15. Emission assessment at the Burj Hammoud inactive municipal landfill: Viability of landfill gas recovery under the clean development mechanism

    SciTech Connect

    El-Fadel, Mutasem; Abi-Esber, Layale; Salhab, Samer

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer LFG emissions are measured at an abandoned landfill with highly organic waste. Black-Right-Pointing-Pointer Mean headspace and vent emissions are 0.240 and 0.074 l CH{sub 4}/m{sup 2} hr, respectively. Black-Right-Pointing-Pointer At sites with high food waste content, LFG generation drops rapidly after site closure. Black-Right-Pointing-Pointer The viability of LFG recovery for CDMs in developing countries is doubtful. - Abstract: This paper examines landfill gas (LFG) emissions at a large inactive waste disposal site to evaluate the viability of investment in LFG recovery through the clean development mechanism (CDM) initiative. For this purpose, field measurements of LFG emissions were conducted and the data were processed by geospatial interpolation to estimate an equivalent site emission rate which was used to calibrate and apply two LFG prediction models to forecast LFG emissions at the site. The mean CH{sub 4} flux values calculated through tessellation, inverse distance weighing and kriging were 0.188 {+-} 0.014, 0.224 {+-} 0.012 and 0.237 {+-} 0.008 l CH{sub 4}/m{sup 2} hr, respectively, compared to an arithmetic mean of 0.24 l/m{sup 2} hr. The flux values are within the reported range for closed landfills (0.06-0.89 l/m{sup 2} hr), and lower than the reported range for active landfills (0.42-2.46 l/m{sup 2} hr). Simulation results matched field measurements for low methane generation potential (L{sub 0}) values in the range of 19.8-102.6 m{sup 3}/ton of waste. LFG generation dropped rapidly to half its peak level only 4 yrs after landfill closure limiting the sustainability of LFG recovery systems in similar contexts and raising into doubt promoted CDM initiatives for similar waste.

  16. Federal Highway Administration | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Administration Jump to: navigation, search Logo: Federal Highway Administration Name: Federal Highway Administration Abbreviation: FHWA Address: 1200 New Jersey Ave, SE Place:...

  17. Special Delivery for Sustainability: Clean Cities Supports UPS...

    Energy Saver

    Special Delivery for Sustainability: Clean Cities Supports UPS in Expanding Natural Gas Operations Special Delivery for Sustainability: Clean Cities Supports UPS in Expanding ...

  18. Chapter 8 - Advancing Clean Transportation and Vehicle Systems and

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Technologies | Department of Energy 8 - Advancing Clean Transportation and Vehicle Systems and Technologies Chapter 8 - Advancing Clean Transportation and Vehicle Systems and Technologies Chapter 8 - Advancing Clean Transportation and Vehicle Systems and Technologies Transportation is a complex sector composed of light duty, medium duty, heavy duty, and non-highway vehicles; rail; aircraft; and ships used for personal transport, movement of goods, construction, agriculture, and mining as

  19. Clean coal

    SciTech Connect

    Liang-Shih Fan; Fanxing Li

    2006-07-15

    The article describes the physics-based techniques that are helping in clean coal conversion processes. The major challenge is to find a cost- effective way to remove carbon dioxide from the flue gas of power plants. One industrially proven method is to dissolve CO{sub 2} in the solvent monoethanolamine (MEA) at a temperature of 38{sup o}C and then release it from the solvent in another unit when heated to 150{sup o}C. This produces CO{sub 2} ready for sequestration. Research is in progress with alternative solvents that require less energy. Another technique is to use enriched oxygen in place of air in the combustion process which produces CO{sub 2} ready for sequestration. A process that is more attractive from an energy management viewpoint is to gasify coal so that it is partially oxidized, producing a fuel while consuming significantly less oxygen. Several IGCC schemes are in operation which produce syngas for use as a feedstock, in addition to electricity and hydrogen. These schemes are costly as they require an air separation unit. Novel approaches to coal gasification based on 'membrane separation' or chemical looping could reduce the costs significantly while effectively capturing carbon dioxide. 1 ref., 2 figs., 1 photo.

  20. Clean Cities

    Office of Energy Efficiency and Renewable Energy (EERE)

    Clean Cities works to reduce U.S. reliance on petroleum in transportation by establishing local coalitions of public- and private-sector stakeholders across the country.

  1. clean power

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    clean power - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy ... Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water ...

  2. A versatile elevated-pressure reactor combined with an ultrahigh vacuum surface setup for efficient testing of model and powder catalysts under clean gas-phase conditions

    SciTech Connect

    Morfin, Franck; Piccolo, Laurent

    2013-09-15

    A small-volume reaction cell for catalytic or photocatalytic testing of solid materials at pressures up to 1000 Torr has been coupled to a surface-science setup used for standard sample preparation and characterization under ultrahigh vacuum (UHV). The reactor and sample holder designs allow easy sample transfer from/to the UHV chamber, and investigation of both planar and small amounts of powder catalysts under the same conditions. The sample is heated with an infrared laser beam and its temperature is measured with a compact pyrometer. Combined in a regulation loop, this system ensures fast and accurate temperature control as well as clean heating. The reaction products are automatically sampled and analyzed by mass spectrometry and/or gas chromatography (GC). Unlike previous systems, our GC apparatus does not use a recirculation loop and allows working in clean conditions at pressures as low as 1 Torr while detecting partial pressures smaller than 10{sup ?4} Torr. The efficiency and versatility of the reactor are demonstrated in the study of two catalytic systems: butadiene hydrogenation on Pd(100) and CO oxidation over an AuRh/TiO{sub 2} powder catalyst.

  3. Alternative Fuels Data Center: Phoenix Cleans Up with Natural...

    Alternative Fuels and Advanced Vehicles Data Center

    Phoenix Cleans Up with Natural Gas to someone by E-mail Share Alternative Fuels Data Center: Phoenix Cleans Up with Natural Gas on Facebook Tweet about Alternative Fuels Data ...

  4. Alternative Fuels Data Center: Virginia Cleans up With Natural...

    Alternative Fuels and Advanced Vehicles Data Center

    Virginia Cleans up With Natural Gas Refuse Trucks to someone by E-mail Share Alternative Fuels Data Center: Virginia Cleans up With Natural Gas Refuse Trucks on Facebook Tweet ...

  5. Alternative Fuels Data Center: V Garofalo Carting Cleans up New...

    Alternative Fuels and Advanced Vehicles Data Center

    V Garofalo Carting Cleans up New York With Natural Gas Trucks to someone by E-mail Share Alternative Fuels Data Center: V Garofalo Carting Cleans up New York With Natural Gas ...

  6. U.S.-China Clean Energy Cooperation

    Office of Environmental Management (EM)

    ... The two countries are bringing U.S. and Chinese scientists and engineers together to cooperate on developing clean coal and carbon capture and storage technologies. * Shale Gas ...

  7. National Clean Fleets Partnership Moves Forward | Department...

    Office of Environmental Management (EM)

    In other cases, Clean Cities is connecting national partners with existing local resources. For example, one company is working with NREL to identify natural gas fueling stations ...

  8. Clean Coal Technology III: 10 MW Demonstration of Gas Suspension Absorption final project performance and economics report

    SciTech Connect

    Hsu, F.E.

    1995-08-01

    The 10 MW Demonstration of the Gas Suspension Absorption (GSA) program is a government and industry co-funded technology development. The objective of the project is to demonstrate the performance of the GSA system in treating a 10 MW slipstream of flue gas resulting from the combustion of a high sulfur coal. This project involves design, fabrication, construction and testing of the GSA system. The Project Performance and Economics Report provides the nonproprietary information for the ``10 MW Demonstration of the Gas Suspension Absorption (GSA) Project`` installed at Tennessee Valley Authority`s (TVA) Shawnee Power Station, Center for Emissions Research (CER) at Paducah, Kentucky. The program demonstrated that the GSA flue-gas-desulfurization (FGD) technology is capable of achieving high SO{sub 2} removal efficiencies (greater than 90%), while maintaining particulate emissions below the New Source Performance Standards (NSPS), without any negative environmental impact (section 6). A 28-day test demonstrated the reliability and operability of the GSA system during continuous operation. The test results and detailed discussions of the test data can be obtained from TVA`s Final Report (Appendix A). The Air Toxics Report (Appendix B), prepared by Energy and Environmental Research Corporation (EERC) characterizes air toxic emissions of selected hazardous air pollutants (HAP) from the GSA process. The results of this testing show that the GSA system can substantially reduce the emission of these HAP. With its lower capital costs and maintenance costs (section 7), as compared to conventional semi-dry scrubbers, the GSA technology commands a high potential for further commercialization in the United States. For detailed information refer to The Economic Evaluation Report (Appendix C) prepared by Raytheon Engineers and Constructors.

  9. Preliminary evaluation of a concept using microwave energy to improve an adsorption-based, natural gas clean-up process

    SciTech Connect

    Grimes, R.W.

    1992-12-01

    This report describes the results of a preliminary evaluation performed to: (1) determine if microwave energy could be used to regenerate a zeolite adsorbent and (2) to evaluate the feasibility of using microwave energy to improve the desorption phase of a pressure swing adsorption process applied to upgrading natural gas (methane) contaminated with nitrogen. Microwave regeneration was evaluated by comparing the adsorption characteristics of a zeolite preconditioned by heating under vacuum to the characteristics of the same zeolite after various lengths of exposure to microwave energy. The applicability of microwave regeneration to natural gas cleanup was evaluated by measuring the rise in adsorbent temperature resulting from the microwave exposure. Microwave energy consumed by heating the adsorbent is not productive and must therefore be minimal for a process to be economically viable. Exposure of the methane-saturated chabazite for 2 minutes to microwave energy effectively regenerated the adsorbent, but resulted in a 75{degrees}F (42{degrees}C) rise in adsorbent temperature. This temperature rise indicates that the concept is unacceptable for natural gas processing due to excessive energy consumption.

  10. Hawaii Department of Transportation Highways Division | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Hawaii Department of Transportation Highways Division Address: 869 Punchbowl Street, Room 513 Place: Honolulu, Hawaii Zip: 96809 Website: hawaii.govdothighways Coordinates:...

  11. Imperfect graphene renders 'electrical highways' > Archived News...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    method invented In This Section EMC2 News Archived News Stories Imperfect graphene renders 'electrical highways' July 11th, 2013 By Anne Ju Muller lab: Three dark...

  12. The Transient Regeneration in the Patchy Cleaning of Rigid Gas Filters--Comparison of Modeling to Experiment

    SciTech Connect

    Ferer, M.V.; Dittler, A.; Kasper, G.; Smith, D.H.

    2002-09-19

    The experimental investigations performed within the scope of the present contribution are carried out in a lab scale filter test rig, which is built according to German VDI guideline 3926. The filter coupon (15 cm diameter) under investigation is mounted parallel to the crude gas channel which enables cross flow filtration as experienced in filter housings. Besides the photometric concentration monitor and the control device, an optical measuring system is mounted on the filter test rig opposite the filter coupon. This measuring system enables the full-field in situ measurement of the dust cake height distribution on the surface of the filter medium. From these measurements, we obtain the overall frequency of regeneration as well as the local frequencies of regeneration and the patch size distribution, as discussed later. In addition, we investigate the influence of the regeneration behavior on the filtration performance (time dependence of filtration cycle times and residual pressure drop) of the filter medium.

  13. Clean Cities Welcomes New North Florida Coalition | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Cities Welcomes New North Florida Coalition Clean Cities Welcomes New North Florida Coalition June 29, 2016 - 10:30am Addthis Wanda Forrest, Coordinator of the Northern Florida Clean Fuels Coalition in Jacksonville, and Mike Scarpino, of Clean Cities, standing next to a compressed natural gas vehicle. | Photo courtesy of Clean Cities Wanda Forrest, Coordinator of the Northern Florida Clean Fuels Coalition in Jacksonville, and Mike Scarpino, of Clean Cities, standing next to a compressed natural

  14. Vehicle Technologies Office: Moving America Forward with Clean Vehicles |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Moving America Forward with Clean Vehicles Vehicle Technologies Office: Moving America Forward with Clean Vehicles The U.S. Department of Energy's Vehicle Technologies Office supports research, development (R&D), and deployment of efficient and sustainable highway transportation technologies that will improve fuel economy and enable America to use less petroleum. These technologies, which include plug-in electric vehicles (also known as PEVs or electric cars),

  15. Clean Energy Project

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Vehicle Buyer's Guide Clean Cities Biodiesel Ethanol Flex-Fuel Hybrid Electric Plug-In Hybrid All-Electric Hydrogen Fuel Cell Propane Natural Gas Disclaimers This report was prepared as an account of work sponsored by an agency of the United States govern- ment. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any

  16. CLEAN AIR | FEDEX | NATIONAL CLEAN ENERGY SUMMIT | CLEAN ENERGY...

    OpenEI (Open Energy Information) [EERE & EIA]

    | NATIONAL CLEAN ENERGY SUMMIT | CLEAN ENERGY ACT | ENERGY INDEPENDENCE | FREDRICK SMITH | OIL | RENEWABLE ENERGY Home There are currently no posts in this category. Syndicate...

  17. CDOT - State Highway Access Permit Application | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    State Highway Access Permit Application Jump to: navigation, search OpenEI Reference LibraryAdd to library General: CDOT - State Highway Access Permit Application Author Colorado...

  18. Off-Highway Heavy Vehicle Diesel Efficiency Improvement and Emissions...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Off-Highway Heavy Vehicle Diesel Efficiency Improvement and Emissions Reduction Off-Highway Heavy Vehicle Diesel Efficiency Improvement and Emissions Reduction 2005 Diesel Engine ...

  19. Highway De-icing Snowmelt Low Temperature Geothermal Facility...

    OpenEI (Open Energy Information) [EERE & EIA]

    De-icing Snowmelt Low Temperature Geothermal Facility Jump to: navigation, search Name Highway De-icing Snowmelt Low Temperature Geothermal Facility Facility Highway De-icing...

  20. Clean Cities Internships

    Energy.gov [DOE]

    Clean Cities offers internships through the Clean Cities University Workforce Development Program, which unites Clean Cities coalitions with students interested in changing the future of onroad...

  1. What is Clean Cities?; Clean Cities Fact Sheet (September 2008...

    Energy Saver

    is Clean Cities?; Clean Cities Fact Sheet (September 2008 Update) What is Clean Cities?; Clean Cities Fact Sheet (September 2008 Update) Fact sheet describes the Clean Cities ...

  2. Clean Cities: Ann Arbor Clean Cities coalition

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Clean Cities Coalition in April 2015. She served as Clean Cities intern for both the Detroit and Ann Arbor Clean Cities Coalitions from the fall 2013 through the winter 2015 and...

  3. Clean Cities: Maine Clean Communities coalition

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Maine Clean Communities Coalition The Maine Clean Communities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use...

  4. Clean Cities: Southern Colorado Clean Cities coalition

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Colorado Clean Cities coalition Contact Information Kyle Lisek 303-847-0271 klisek@lungs.org Coalition Website Clean Cities Coordinator Kyle Lisek Kyle Lisek is coordinator of...

  5. Clean Cities: Denver Metro Clean Cities coalition

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Metro Clean Cities coalition Contact Information Tyler Svitak 303-847-0281 tsvitak@lungs.org Coalition Website Clean Cities Coordinator Tyler Svitak Photo of Tyler Svitak...

  6. Clean Cities: North Dakota Clean Cities coalition

    Alternative Fuels and Advanced Vehicles Data Center

    Clean Cities. Moffitt is the communications director for the Clean Fuel & Vehicle Technology program of the American Lung Association of the Upper Midwest. He joined the...

  7. Clean Cities Now, Vol. 15, No. 1, April 2011 (Brochure)

    SciTech Connect

    Not Available

    2011-04-01

    Biannual newsletter for the U.S. Department of Energy's Clean Cities initiative. The newsletter includes feature stories on electric vehicle deployment, renewable natural gas, and articles on Clean Cities coalition successes across the country.

  8. HYDROGEN TO THE HIGHWAYS | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    HYDROGEN TO THE HIGHWAYS HYDROGEN TO THE HIGHWAYS 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. tv_04_grasman.pdf (1.13 MB) More Documents & Publications Hydrogen Vehicle and Infrastructure Demonstration and Validation Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen

  9. Highway statistics, 1985. 40th anniversary edition, 1945-1985

    SciTech Connect

    Not Available

    1986-01-01

    The publication, the 41st of an annual series, presents the 1985 analyzed statistics of general interest on motor fuel, motor vehicles, driver licensing, highway-user taxation, State highway finance, highway mileage, and Federal aid for highways; and 1984 highway finance data for municipalities, counties, townships, and other units of local government. A listing of the data is given in the table of contents, and a brief description is given in the text accompanying each section.

  10. Biotechnology for Clean Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Biotechnology for Clean Vehicles Biotechnology for Clean Vehicles Biotechnology for Clean Vehicles: Harnessing Synthetic Biology to Enable Next-Generation Biomaterials and Biofuels Even as the deployment of renewable power such as wind and solar have served to substantially reduce greenhouse gas emissions from the utility sector, emissions from the transportation sector have remained largely unchanged. Effectively addressing climate emissions from the transportation sector will require

  11. Chicago Clean Air, Clean Water Project: Environmental Monitoring...

    Office of Scientific and Technical Information (OSTI)

    Chicago Clean Air, Clean Water Project: Environmental Monitoring for a Healthy, Sustainable Urban Future Citation Details In-Document Search Title: Chicago Clean Air, Clean Water ...

  12. Clean Energy Policy Analysis: Impact Analysis of Potential Clean...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Clean Energy Policy Analysis: Impact Analysis of Potential Clean Energy Policy Options for the Hawaii Clean Energy Initiative Clean Energy Policy Analysis: Impact Analysis of ...

  13. International Clean Energy Coalition

    SciTech Connect

    Erin Skootsky; Matt Gardner; Bevan Flansburgh

    2010-09-28

    In 2003, the National Association of Regulatory Utility Commissioners (NARUC) and National Energy Technology Laboratories (NETL) collaboratively established the International Clean Energy Coalition (ICEC). The coalition consisting of energy policy-makers, technologists, and financial institutions was designed to assist developing countries in forming and supporting local approaches to greenhouse gas mitigation within the energy sector. ICEC's work focused on capacity building and clean energy deployment in countries that rely heavily on fossil-based electric generation. Under ICEC, the coalition formed a steering committee consisting of NARUC members and held a series of meetings to develop and manage the workplan and define successful outcomes for the projects. ICEC identified India as a target country for their work and completed a country assessment that helped ICEC build a framework for discussion with Indian energy decisionmakers including two follow-on in-country workshops. As of the conclusion of the project in 2010, ICEC had also conducted outreach activities conducted during United Nations Framework Convention on Climate Change (UNFCCC) Ninth Conference of Parties (COP 9) and COP 10. The broad goal of this project was to develop a coalition of decision-makers, technologists, and financial institutions to assist developing countries in implementing affordable, effective and resource appropriate technology and policy strategies to mitigate greenhouse gas emissions. Project goals were met through international forums, a country assessment, and in-country workshops. This project focused on countries that rely heavily on fossil-based electric generation.

  14. Alternative Fuels Data Center: Triangle Clean Cities Resource...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Triangle Clean Cities Resource Gives CNG Installation a Boost " Although North Carolina has 23 public natural gas fueling stations and many vehicle fleets using this fuel, we are ...

  15. Clean Cities: Denver Metro Clean Cities coalition

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Metro Clean Cities coalition Contact Information Tyler Svitak 303-847-0281 tsvitak@lungs.org Janna West-Heiss 303-847-0276 jwheiss@lungs.org Coalition Website Clean Cities...

  16. Clean Cities: Wisconsin Clean Cities coalition

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    as co-director for South Shore Clean Cities of Northern Indiana from 2005-2011. Her dedication to the Clean Cities' mission extends north to Wisconsin where she has served as...

  17. A 100-Gigabit Highway for Science

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    A 100-Gigabit Highway for Science News & Publications ESnet News Media & Press Publications and Presentations Galleries ESnet Awards and Honors Contact Us Media Jon Bashor, jbashor@lbl.gov, +1 510 486 5849 or Media@es.net Technical Assistance: 1 800-33-ESnet (Inside the US) 1 800-333-7638 (Inside the US) 1 510-486-7600 (Globally) 1 510-486-7607 (Globally) Report Network Problems: trouble@es.net Provide Web Site Feedback: info@es.net A 100-Gigabit Highway for Science Researchers Take a

  18. Clean Cities 2012 Vehicle Buyer's Guide (Brochure)

    SciTech Connect

    Not Available

    2012-03-01

    The expanding availability of alternative fuels and advanced vehicles makes it easier than ever to reduce petroleum use, cut emissions, and save on fuel costs. The Clean Cities 2012 Vehicle Buyer's Guide features a comprehensive list of model year 2012 vehicles that can run on ethanol, biodiesel, electricity, propane or natural gas. Drivers and fleet managers across the country are looking for ways to reduce petroleum use, fuel costs, and vehicle emissions. As you'll find in this guide, these goals are easier to achieve than ever before, with an expanding selection of vehicles that use gasoline or diesel more efficiently, or forego them altogether. Plug-in electric vehicles made a grand entrance onto U.S. roadways in model year (MY) 2011, and their momentum in the market is poised for continued growth in 2012. Sales of the all-electric Nissan Leaf surpassed 8,000 in the fall of 2011, and the plug-in hybrid Chevy Volt is now available nationwide. Several new models from major automakers will become available throughout MY 2012, and drivers are benefiting from a rapidly growing network of charging stations, thanks to infrastructure development initiatives in many states. Hybrid electric vehicles, which first entered the market just a decade ago, are ubiquitous today. Hybrid technology now allows drivers of all vehicle classes, from SUVs to luxury sedans to subcompacts, to slash fuel use and emissions. Alternative fueling infrastructure is expanding in many regions, making natural gas, propane, ethanol, and biodiesel attractive and convenient choices for many consumers and fleets. And because fuel availability is the most important factor in choosing an alternative fuel vehicle, this growth opens up new possibilities for vehicle ownership. This guide features model-specific information about vehicle specs, manufacturer suggested retail price (MSRP), fuel economy, and emissions. You can use this information to compare vehicles and help inform your buying decisions

  19. Missouri Clean Energy District

    Energy.gov [DOE]

    In July 2010 Missouri enacted the Property Assessed Clean Energy Act, which led to the creation of the statewide Missouri Clean Energy District (MCED) in January 2011.

  20. NCAT Harvesting Clean Energy

    Energy.gov [DOE]

    The National Center for Appropriate Technology (NCAT) is hosting the 14th Annual Harvesting Clean Energy Conference to help advance rural economic development through clean energy development and...

  1. CT Clean Energy Communities

    Energy.gov [DOE]

    The Clean Energy Communities program, offered by the Clean Energy Finance & Investment Authority and the Connecticut Energy Efficiency Fund, offers incentives for communities that pledge their...

  2. Application for State Highway Approach | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    to: navigation, search OpenEI Reference LibraryAdd to library Form: Application for State Highway Approach Abstract This page links to the ODOT Application for State Highway...

  3. Colorado - State Highway Access Code | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - State Highway Access Code Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Colorado - State Highway Access CodeLegal...

  4. Application & Checklist for Highway Right of Way Lease | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    & Checklist for Highway Right of Way Lease Jump to: navigation, search OpenEI Reference LibraryAdd to library Reference: Application & Checklist for Highway Right of Way Lease...

  5. CDOT State Highway Access Permit Application | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    State Highway Access Permit Application Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: CDOT State Highway Access Permit Application Abstract This is an...

  6. Recent content in Clean and Renewable Energy | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    Natural Gas Highway Jessi3bl 16 Dec 2012 - 19:18 Blog entry IRENA launches global atlas of renewable energy potential Graham7781 11 Feb 2013 - 15:18 Blog entry Energy...

  7. Ultra Efficient CHHP Using a High Temperature Fuel Cell to Provide On-Site Process Reducing Gas, Clean Power, and Heat

    SciTech Connect

    Jahnke, Fred C.

    2015-06-30

    FuelCell Energy and ACuPowder investigated and demonstrated the use of waste anode exhaust gas from a high temperature fuel cell for replacing the reducing gas in a metal processing furnace. Currently companies purchase high pressure or liquefied gases for the reducing gas which requires substantial energy in production, compression/liquefaction, and transportation, all of which is eliminated by on-site use of anode exhaust gas as reducing gas. We performed research on the impact of the gas composition on product quality and then demonstrated at FuelCell Energy’s manufacturing facility in Torrington, Connecticut. This demonstration project continues to operate even though the research program is completed as it provides substantial benefits to the manufacturing facility by supplying power, heat, and hydrogen.

  8. Clean Coal Diesel Demonstration Project

    SciTech Connect

    Robert Wilson

    2006-10-31

    A Clean Coal Diesel project was undertaken to demonstrate a new Clean Coal Technology that offers technical, economic and environmental advantages over conventional power generating methods. This innovative technology (developed to the prototype stage in an earlier DOE project completed in 1992) enables utilization of pre-processed clean coal fuel in large-bore, medium-speed, diesel engines. The diesel engines are conventional modern engines in many respects, except they are specially fitted with hardened parts to be compatible with the traces of abrasive ash in the coal-slurry fuel. Industrial and Municipal power generating applications in the 10 to 100 megawatt size range are the target applications. There are hundreds of such reciprocating engine power-plants operating throughout the world today on natural gas and/or heavy fuel oil.

  9. Clean air program: Design guidelines for bus transit systems using liquefied petroleum gas (LPG) as an alternative fuel. Final report, July 1995-April 1996

    SciTech Connect

    Raj, P.K.; Hathaway, W.T.; Kangas, R.

    1996-09-01

    The Federal Transit Administration (FTA) has initiated the development of `Design Guidelines for Bus Transit Systems Using Alternative Fuels.` This report provides design guidelines for the safe uses of Liquefied Petroleum Gas (LPG). It forms a part of the series of individual monographs being published by the FTA on (the guidelines for the safe use of) Compressed Natural Gas (CNG), Liquefied Natural Gas (LNG), Liquefied Petroleum Gas (LPG) and alcohol fuels (Methanol and Ethanol). Each report in this series describes for the subject fuel the important fuel properties, guidelines for the design and operation of bus fueling, storage and maintenance facilities, issues on personnel training and emergency preparedness.

  10. Feebates, Footprints and Highway Safety

    SciTech Connect

    Greene, David L

    2009-01-01

    This paper presents an analysis of a market-based policy aimed at encouraging manufacturers to develop more fuel efficient vehicles without affecting the car buyer s choice of vehicle size. A vehicle s size is measured by its footprint , the product of track width and wheelbase. Traditional market-based policies to promote higher fuel economy, such as higher gasoline taxes or gas guzzler taxes, also induce motorists to purchase smaller vehicles. Whether or not such policies affect overall road safety remains controversial, however. Feebates, a continuous schedule of new vehicle taxes and rebates as a function of vehicle fuel consumption, can also be made a function of vehicle size, thus removing the incentive to buy a smaller vehicle. A feebate system based on a vehicle s footprint creates the same incentive to adopt technology to improve fuel economy as simple feebate systems while removing any incentive for manufacturers or consumers to downsize vehicles.

  11. National Clean Fleets Partnership Fact Sheet and Progress Update |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Clean Fleets Partnership Fact Sheet and Progress Update National Clean Fleets Partnership Fact Sheet and Progress Update The National Clean Fleets Partnership is helping America's largest commercial fleets speed the adoption of alternative fuels, electric vehicles, and fuel economy improvements. National Clean Fleets Partnership Fact Sheet and Progress Update_March 2012.pdf (326.8 KB) More Documents & Publications SANBAG - Ryder Natural Gas Vehicle Project Engaging

  12. Pay for Clean Energy

    Energy.gov [DOE]

    Transitioning to a clean energy economy requires innovative financing solutions that enable state, local, and tribal governments to invest in clean energy technologies. However, the clean energy puzzle can be daunting, especially when it comes to paying for clean energy efforts. The resources available here aim to provide an overview of financing for state, local, and tribal governments who are designing and implementing clean energy financing programs.

  13. Clean Cities: Los Angeles Clean Cities coalition

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    took on the role of Clean Cities Coordinator. His major job duties focus on mobile source air pollution reduction programs. He has managed the City's Interdepartmental Alternative...

  14. Clean Cities: Norwich Clean Cities coalition

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    administering and reporting on various programs and grant awards, including the Connecticut Clean Fuels Program and the recent Congestion Mitigation and Air Quality (CMAQ)...

  15. CONCEPTUAL STUDIES OF A FUEL-FLEXIBLE LOW-SWIRL COMBUSTION SYSTEM FOR THE GAS TURBINE IN CLEAN COAL POWER PLANTS

    SciTech Connect

    Smith, K.O.; Littlejohn, David; Therkelsen, Peter; Cheng, Robert K.; Ali, S.

    2009-11-30

    This paper reports the results of preliminary analyses that show the feasibility of developing a fuel flexible (natural gas, syngas and high-hydrogen fuel) combustion system for IGCC gas turbines. Of particular interest is the use of Lawrence Berkeley National Laboratory's DLN low swirl combustion technology as the basis for the IGCC turbine combustor. Conceptual designs of the combustion system and the requirements for the fuel handling and delivery circuits are discussed. The analyses show the feasibility of a multi-fuel, utility-sized, LSI-based, gas turbine engine. A conceptual design of the fuel injection system shows that dual parallel fuel circuits can provide range of gas turbine operation in a configuration consistent with low pollutant emissions. Additionally, several issues and challenges associated with the development of such a system, such as flashback and auto-ignition of the high-hydrogen fuels, are outlined.

  16. Evaluating Investments in Natural Gas Vehicles and Infrastructure for Your Fleet: Vehicle Infrastructure Cash-Flow Estimation -- VICE 2.0; Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    SciTech Connect

    Gonzales, John

    2015-04-02

    Presentation by Senior Engineer John Gonzales on Evaluating Investments in Natural Gas Vehicles and Infrastructure for Your Fleet using the Vehicle Infrastructure Cash-flow Estimation (VICE) 2.0 model.

  17. California Hydrogen Highway Network October 3, 2007

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Hydrogen Highway Network April 3, 2008 California Air Resources Board California Blueprint Plan * Phased approach to infrastructure implementation * Environmental goals * Shared risk CaH2Net Background * Governor's Executive Order, S-7-04 formed the CaH2Net in April 2004 * A Blueprint Plan, May 2005 * Legislative Authority - SB76, $6.5 Million, stations, vehicles, support - Budget Act 2006, $6.5 Million, ZBuses, stations - Budget Act 2007, $6 Million, stations, support The State's Contribution *

  18. Highway vehicle electric drive in the United States : 2009 status and issues.

    SciTech Connect

    Santini, D. J.; Energy Systems

    2011-02-16

    The status of electric drive technology in the United States as of early 2010 is documented. Rapidly evolving electric drive technologies discussed include hybrid electric vehicles, multiple types of plug-in hybrid electric vehicles, and battery electric vehicles. Recent trends for hybrids are quantified. Various plug-in vehicles entering the market in the near term are examined. The technical and economic requirements for electric drive to more broadly succeed in a wider range of highway vehicle applications are described, and implications for the most promising new markets are provided. Federal and selected state government policy measures promoting and preparing for electric drive are discussed. Taking these into account, judgment on areas where increased Clean Cities funds might be most productively focused over the next five years are provided. In closing, the request by Clean Cities for opinion on the broad range of research needs providing near-term support to electric drive is fulfilled.

  19. Clean Energy Finance Guide (Chapter 5: Basic Concepts for Clean...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Clean Energy Finance Guide (Chapter 5: Basic Concepts for Clean Energy Unsecured Lending and Loan Loss Reserve Funds) Clean Energy Finance Guide (Chapter 5: Basic Concepts for ...

  20. Clean Energy Policy Analysis: Impact Analysis of Potential Clean...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    7891 April 2010 Clean Energy Policy Analysis: Impact Analysis of Potential Clean Energy Policy Options for the Hawaii Clean Energy Initiative S. Busche and E. Doris National ...

  1. Bioenergy & Clean Cities

    Energy.gov [DOE]

    DOE's Bioenergy Technologies Office and the Clean Cities program regularly conduct a joint Web conference for state energy office representatives and Clean Cities coordinators. The Web conferences...

  2. Clean Cities: Coalition Contacts

    Alternative Fuels and Advanced Vehicles Data Center

    Ficicchia Empire Clean Cities Northeast 212-839-7728 Christina Ficicchia See Bio 55 Water St, 9th Fl New York, NY 10041 Website New York David Keefe Genesee Region Clean...

  3. Clean Cities Program Contacts

    SciTech Connect

    2015-07-31

    Contact information for the U.S. Department of Energy's Clean Cities program staff and for the coordinators of the nearly 100 local Clean Cities coalitions across the country.

  4. What Is Clean Cities?

    SciTech Connect

    Not Available

    2007-08-01

    This Clean Cities Program fact sheet describes the purpose and scope of this DOE program. Clean Cities facilitates the use of alternative and advanced fuels and vehicles to displace petroleum in the transportation sector.

  5. Clean the Past

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Clean the Past Image of MDA B excavation with text overlay of 'How does LANL protect human ... Clean the Past Home Google Earth Tour: Environmental Cleanup Protections: Cleanup What ...

  6. What We Clean Up & Why

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Environmental Stewardship Environmental Cleanup What We Clean Up & Why What We Clean Up & Why We clean up legacy waste sites and contaminated areas for return to the public. ...

  7. Clean Sierra Club Combined

    Energy Saver

    Clean Cities Coalition Regions Clean Cities Coalition Regions Nearly 100 Clean Cities coalitions work to reduce petroleum use in communities across the country. Led by Clean Cities coordinators, coalitions are composed of businesses, fuel providers, vehicle fleets, state and local government agencies, and community organizations. These stakeholders come together to share information and resources, educate the public, help craft public policy, and collaborate on projects that reduce petroleum

  8. What Is Clean Cities?

    SciTech Connect

    Not Available

    2008-04-01

    Fact sheet describes the Clean Cities program and includes the contact information for its 86 active coalitions.

  9. What is Clean Cities?

    SciTech Connect

    Not Available

    2008-09-01

    Fact sheet describes the Clean Cities program and includes the contact information for its 86 active coalitions.

  10. Small Businesses Helping Drive Economy: Clean Energy, Clean Sites |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Businesses Helping Drive Economy: Clean Energy, Clean Sites Small Businesses Helping Drive Economy: Clean Energy, Clean Sites A memo on small businesses helping drive the economy: clean energy and clean sites. Small Businesses Helping Drive Economy: Clean Energy, Clean Sites (257.52 KB) More Documents & Publications Small_Business_Memo_Mar2010.pdf Federal Incentives for Wind Power Deployment Remarks by David Sandalow, Assistant Secretary of Energy for Policy and

  11. Public Private Partnership in National Highways: Indian Perspective...

    OpenEI (Open Energy Information) [EERE & EIA]

    duties on construction equipment. References Retrieved from "http:en.openei.orgwindex.php?titlePublicPrivatePartnershipinNationalHighways:IndianPerspective&oldid77...

  12. Vermont Agency of Transportation Highway Permit Application Informatio...

    OpenEI (Open Energy Information) [EERE & EIA]

    search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook: Vermont Agency of Transportation Highway Permit Application InformationPermitting...

  13. Clean Cities: Long Beach Clean Cities coalition

    Alternative Fuels and Advanced Vehicles Data Center

    15 years. Tedtaotao was appointed co-coordinator of Long Beach Clean Cities in January, 2014. LA County Public Works 2275 Alcazar St Los Angeles, CA 90033 Search Coalitions Search...

  14. Clean Cities: Clean Cities-Georgia

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Atlanta was designated as the first Clean Cities coalition in the nation at the Georgia Dome in 1993. Prior to being elected as the coalition's executive director, Francis served...

  15. Advanced clean combustion technology in Shanxi province

    SciTech Connect

    Xie, K.-C.

    2004-07-01

    Biomass energy resources in China are first described, along with biomass gasification R & D now underway. In Shanxi province biomass and other regenerative energy is relatively little used but coal resources are large. Hence Shanxi is mainly developing clean coal technology to meet its economic and environmental protection requirements. Clean combustion research at Taiyuan University of Technology includes cofiring of coal and RDF in FBC, gas purification and adsorption, fundamentals of plasma-aided coal pyrolysis and gasification and coal derived liquid fuels from synthesis gas. 5 refs.

  16. South Carolina Clean Energy Summit

    Energy.gov [DOE]

    The South Carolina Clean Energy Business Alliance will host the fourth annual Clean Energy Summit. Learn more. 

  17. What is Clean Cities? October 2011 (Brochure)

    SciTech Connect

    Not Available

    2011-10-01

    Brochure describes the Clean Cities program and includes the contact information for its 85 coalitions. Sponsored by the U.S. Department of Energy's (DOE) Vehicle Technologies Program (VTP), Clean Cities is a government-industry partnership that reduces petroleum consumption in the transportation sector. Clean Cities contributes to the energy, environmental, and economic security of the United States by supporting local decisions to reduce our dependence on imported petroleum. Established in 1993 in response to the Energy Policy Act (EPAct) of 1992, the partnership provides tools and resources for voluntary, community-centered programs to reduce consumption of petroleum-based fuels. In nearly 100 coalitions, government agencies and private companies voluntarily come together under the umbrella of Clean Cities. The partnership helps all parties identify mutual interests and meet the objectives of reducing the use of petroleum, developing regional economic opportunities, and improving air quality. Clean Cities deploys technologies and practices developed by VTP. These include idle-reduction equipment, electric-drive vehicles, fuel economy measures, and renewable and alternative fuels, such as natural gas, liquefied petroleum gas (propane), electricity, hydrogen, biofuels, and biogas. Idle-reduction equipment is targeted primarily to buses and heavy-duty trucks, which use more than 2 billion gallons of fuel every year in the United States while idling. Clean Cities fuel economy measures include public education on vehicle choice and fuel-efficient driving practices.

  18. Heavy Truck Clean Diesel Cooperative Research Program

    SciTech Connect

    Milam, David

    2006-12-31

    This report is the final report for the Department of Energy on the Heavy Truck Engine Program (Contract No. DE-FC05-00OR22806) also known as Heavy Truck Clean Diesel (HTCD) Program. Originally, this was scoped to be a $38M project over 5 years, to be 50/50 co-funded by DOE and Caterpillar. The program started in June 2000. During the program the timeline was extended to a sixth year. The program completed in December 2006. The program goal was to develop and demonstrate the technologies required to enable compliance with the 2007 and 2010 (0.2g/bhph NOx, 0.01g/bhph PM) on-highway emission standards for Heavy Duty Trucks in the US with improvements in fuel efficiency compared to today's engines. Thermal efficiency improvement from a baseline of 43% to 50% was targeted.

  19. Enthusiam greets establishment of vigorous LPG clean fuels coalition

    SciTech Connect

    Not Available

    1990-07-01

    In a concerted effort to promote the fair consideration of LP-gas as an alternative fuel nationwide, a number of prominent corporations and individuals have established a new group called the LP-Gas Clean Fuels Coalition (Irvine, Calif.). This paper discusses how the coalition will spearhead the industry's efforts to encourage favorable clean-air legislation and regulations through the gathering and dissemination of accurate information from all industry sources. Coalition members believe that LP-gas is not being equitably considered in the current Congressional push to legislate clean alternative fuels.

  20. Off-Highway Transportation-Related Fuel Use

    SciTech Connect

    Davis, S.C.

    2004-05-08

    The transportation sector includes many subcategories--for example, on-highway, off-highway, and non-highway. Use of fuel for off-highway purposes is not well documented, nor is the number of off-highway vehicles. The number of and fuel usage for on-highway and aviation, marine, and rail categories are much better documented than for off-highway land-based use. Several sources document off-highway fuel use under specific conditions--such as use by application (e.g., recreation) or by fuel type (e.g., gasoline). There is, however, no single source that documents the total fuel used off-highway and the number of vehicles that use the fuel. This report estimates the fuel usage and number of vehicles/equipment for the off-highway category. No new data have been collected nor new models developed to estimate the off-highway data--this study is limited in scope to using data that already exist. In this report, unless they are being quoted from a source that uses different terminology, the terms are used as listed below. (1) ''On-highway/on-road'' includes land-based transport used on the highway system or other paved roadways. (2) ''Off-highway/off-road'' includes land-based transport not using the highway system or other paved roadways. (3) ''Non-highway/non-road'' includes other modes not traveling on highways such as aviation, marine, and rail. It should be noted that the term ''transportation'' as used in this study is not typical. Generally, ''transportation'' is understood to mean the movement of people or goods from one point to another. Some of the off-highway equipment included in this study doesn't transport either people or goods, but it has utility in movement (e.g., a forklift or a lawn mower). Along these lines, a chain saw also has utility in movement, but it cannot transport itself (i.e., it must be carried) because it does not have wheels. Therefore, to estimate the transportation-related fuel used off-highway, transportation equipment is defined to

  1. Clean Cities ozone air quality attainment and maintenance strategies that employ alternative fuel vehicles, with special emphasis on natural gas and propane

    SciTech Connect

    Santini, D.J.; Saricks, C.L.

    1998-08-04

    -fueled for gasoline-fueled heavy-duty vehicles. Finally, it raises and expands on the relevance of AFVs and their deployment to some other provisions embedded in EPA`s current guidance for implementing 1-hour NAAQS--standards which currently remain in effect--as tools to provide immediate reductions in ozone, without waiting for promised future clean technologies.

  2. Clean Energy Policy Analysis: Impact Analysis of Potential Clean Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Policy Options for the Hawaii Clean Energy Initiative | Department of Energy Clean Energy Policy Analysis: Impact Analysis of Potential Clean Energy Policy Options for the Hawaii Clean Energy Initiative Clean Energy Policy Analysis: Impact Analysis of Potential Clean Energy Policy Options for the Hawaii Clean Energy Initiative This report provides detailed analyses of the following policies to determine the impact they may have on ratepayers, businesses, and the state in terms of energy

  3. Water Treatment System Cleans Marcellus Shale Wastewater | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Water Treatment System Cleans Marcellus Shale Wastewater Water Treatment System Cleans Marcellus Shale Wastewater April 13, 2011 - 1:00pm Addthis Washington, DC - A water treatment system that can turn wastewater into clean water has been shown to reduce potential environmental impacts associated with producing natural gas from shale formations in the Appalachian basin. Altela Inc.'s AltelaRain® 4000 water desalination system was tested at BLX, Inc.'s Sleppy well site in Indiana

  4. Clean Cities Program Contacts

    Alternative Fuels and Advanced Vehicles Data Center

    Clean Cities is funded and managed by the U.S. Department of Energy. Regional managers ... 412-386-7334 cleancities.energy.gov VEHICLE TECHNOLOGIES OFFICE DOE...

  5. Clean Energy Development Fund

    Energy.gov [DOE]

    Vermont's Clean Energy Development Fund (CEDF) was established in 2005 to promote the development and deployment of cost-effective and environmentally sustainable electric power and thermal...

  6. What is Clean Cities?

    SciTech Connect

    Not Available

    2008-01-01

    Fact sheet describes the Clean Cities program, outlines its resources, and lists the contact information for its almost 90 coalition coordinators.

  7. Clean Cities & Transportation Tools

    Energy.gov [DOE]

    This presentation, presented on July 28, 2010, was on the DOE Clean Cities program to promote the use of alternative fuels and reduce petroleum consumption.

  8. Colorado - C.R.S. 43-2-101 et seq., State, County and City Highway...

    OpenEI (Open Energy Information) [EERE & EIA]

    Colorado Department of Transportation to regulate design, construction, improvement, maintenance and general management of the State highway system and highway right-of-ways....

  9. Texas - 43-TAC-21 - Leasing of Highway Assets | Open Energy Informatio...

    OpenEI (Open Energy Information) [EERE & EIA]

    Texas - 43-TAC-21 - Leasing of Highway AssetsLegal Abstract This section sets forth the requirements and procedures for the leasing of highway assets by the Texas...

  10. Combined plasma/liquid cleaning of substrates

    DOEpatents

    Selwyn, Gary S.; Henins, Ivars

    2003-04-15

    Apparatus and method for cleaning substrates. A substrate is held and rotated by a chuck and an atmospheric pressure plasma jet places a plasma onto predetermined areas of the substrate. Subsequently liquid rinse is sprayed onto the predetermined areas. In one embodiment, a nozzle sprays a gas onto the predetermined areas to assist in drying the predetermined areas when needed.

  11. 17th DOE nuclear air cleaning conference: proceedings. Volume 2

    SciTech Connect

    First, M.W.

    1983-02-01

    Volume 2 contains papers presented at the following sessions: adsorption; noble gas treatment; personnel education and training; filtration and filter testing; measurement and instrumentation; air cleaning equipment response to accident related stress; containment venting air cleaning; and an open end session. Twenty-eight papers were indexed separately for inclusion in the Energy Data Base. Ten papers had been entered earlier.

  12. Clean Energy Manufacturing Initiative

    SciTech Connect

    2013-04-01

    The initiative will strategically focus and rally EERE’s clean energy technology offices and Advanced Manufacturing Office around the urgent competitive opportunity for the United States to be the leader in the clean energy manufacturing industries and jobs of today and tomorrow.

  13. Kansas City Buses Provide a Clean Ride for Kids

    Energy.gov [DOE]

    On Wednesday March 16, the Kansas City, Kansas School District welcomed some newcomers to their community – 47 natural gas school buses deployed as part of the Clean Cities Alternative Fuel Vehicle Pilot Program.

  14. Clean Cities: Tulsa Clean Cities coalition

    Alternative Fuels and Advanced Vehicles Data Center

    of AFV-based petroleum savings. Annual greenhouse gas emissions avoided: 9,014 tons of CO2 See the GHG by AFV tab for a breakdown of AFV-based greenhouse gas savings. Annual...

  15. Clean Cities: Rogue Valley Clean Cities coalition

    Alternative Fuels and Advanced Vehicles Data Center

    of AFV-based petroleum savings. Annual greenhouse gas emissions avoided: 24,799 tons of CO2 See the GHG by AFV tab for a breakdown of AFV-based greenhouse gas savings. Annual...

  16. The NOXSO clean coal project

    SciTech Connect

    Black, J.B.; Woods, M.C.; Friedrich, J.J.; Browning, J.P.

    1997-12-31

    The NOXSO Clean Coal Project will consist of designing, constructing, and operating a commercial-scale flue-gas cleanup system utilizing the NOXSO Process. The process is a waste-free, dry, post-combustion flue-gas treatment technology which uses a regenerable sorbent to simultaneously adsorb sulfur dioxide (SO{sub 2}) and nitrogen oxides (NO{sub x}) from flue gas from coal-fired boilers. The NOXSO plant will be constructed at Alcoa Generating Corporation`s (AGC) Warrick Power Plant near Evansville, Indiana and will treat all the flue gas from the 150-MW Unit 2 boiler. The NOXSO plant is being designed to remove 98% of the SO{sub 2} and 75% of the NO{sub x} when the boiler is fired with 3.4 weight percent sulfur, southern-Indiana coal. The NOXSO plant by-product will be elemental sulfur. The elemental sulfur will be shipped to Olin Corporation`s Charleston, Tennessee facility for additional processing. As part of the project, a liquid SO{sub 2} plant has been constructed at this facility to convert the sulfur into liquid SO{sub 2}. The project utilizes a unique burn-in-oxygen process in which the elemental sulfur is oxidized to SO{sub 2} in a stream of compressed oxygen. The SO{sub 2} vapor will then be cooled and condensed. The burn-in-oxygen process is simpler and more environmentally friendly than conventional technologies. The liquid SO{sub 2} plant produces 99.99% pure SO{sub 2} for use at Olin`s facilities. The $82.8 million project is co-funded by the US Department of Energy (DOE) under Round III of the Clean Coal Technology program. The DOE manages the project through the Pittsburgh Energy Technology Center (PETC).

  17. 2013 Second Quarter Clean Energy/Clean Transportation Jobs Report

    Office of Energy Efficiency and Renewable Energy (EERE)

    Enivronmental Entrepreneurs (E2) Clean Energy/Clean Transportation Jobs Report tracks clean energy job announcements from companies, elected officials, the media and other sources, to show how how...

  18. APPARATUS FOR CLEANING GASES WITH ELECTROSTATICALLY CHARGED PARTICLES

    DOEpatents

    Johnstone, H.F.

    1960-02-01

    An apparatus is described for cleaning gases with the help of electrostatically charged pellets. The pellets are blown past baffles in a conduit and into the center of a rotuting body of the gas to be cleaned. The pellets are charged electrostatically by impinging on the baffles. The pellets collect the particles suspended in the gas in their passage from the center of the rotating body to its edge.

  19. Strategy for the Integration of Hydrogen as a Vehicle Fuel into the Existing Natural Gas Vehicle Fueling Infrastructure of the Interstate Clean Transportation Corridor Project: 22 April 2004--31 August 2005

    SciTech Connect

    Gladstein, Neandross and Associates

    2005-09-01

    Evaluates opportunities to integrate hydrogen into the fueling stations of the Interstate Clean Transportation Corridor--an existing network of LNG fueling stations in California and Nevada.

  20. The U.S. and China - Advancing Clean Energy Research Through...

    Energy.gov [DOE] (indexed site)

    Advances in clean coal, including carbon capture and storage. What two countries lead the world in energy consumption, energy production and greenhouse gas emissions? The United ...

  1. Clean Cities: Alamo Area Clean Cities (San Antonio) coalition

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Alamo Area Clean Cities (San Antonio) Coalition The Alamo Area Clean Cities (San Antonio) coalition works with vehicle fleets, fuel providers, community leaders, and other...

  2. Clean Cities: Yellowstone-Teton Clean Energy coalition

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Yellowstone-Teton Clean Energy Coalition The Yellowstone-Teton Clean Energy coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce...

  3. Clean Cities: Lone Star Clean Fuels Alliance (Central Texas)...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Lone Star Clean Fuels Alliance (Central Texas) Coalition The Lone Star Clean Fuels Alliance (Central Texas) coalition works with vehicle fleets, fuel providers, community leaders,...

  4. Clean Cities: Connecticut Southwestern Area Clean Cities coalition

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Connecticut Southwestern Area Clean Cities Coalition The Connecticut Southwestern Area Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and...

  5. Clean Cities: Capitol Clean Cities of Connecticut coalition

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Capitol Clean Cities of Connecticut Coalition The Capitol Clean Cities of Connecticut coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders...

  6. Seminars | Center for Gas Separations

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Gallery 2016 All-Hands Meeting (November 8-9, 2016) © 2016 The Center for Gas Separations Relevant to Clean Energy Technologies, an Energy Frontier Research Center

  7. Keeping condensers clean

    SciTech Connect

    Wicker, K.

    2006-04-15

    The humble condenser is among the biggest contributors to a steam power plant's efficiency. But although a clean condenser can provide great economic benefit, a dirty one can raise plant heat rate, resulting in large losses of generation revenue and/or unnecessarily high fuel bills. Conventional methods for cleaning fouled tubes range form chemicals to scrapers to brushes and hydro-blasters. This article compares the available options and describes how one power station, Omaha Public Power District's 600 MW North Omaha coal-fired power station, cleaned up its act. The makeup and cooling water of all its five units comes from the Missouri River. 6 figs.

  8. Cleaning method and apparatus

    DOEpatents

    Jackson, Darryl D. (Los Alamos, NM); Hollen, Robert M. (Los Alamos, NM)

    1983-01-01

    A new automatable cleaning apparatus which makes use of a method of very thoroughly and quickly cleaning a gauze electrode used in chemical analyses is given. The method generates very little waste solution, and this is very important in analyzing radioactive materials, especially in aqueous solutions. The cleaning apparatus can be used in a larger, fully automated controlled potential coulometric apparatus. About 99.98% of a 5 mg. plutonium sample was removed in less than 3 minutes, using only about 60 ml. of rinse solution and two main rinse steps.

  9. Cleaning method and apparatus

    DOEpatents

    Jackson, D.D.; Hollen, R.M.

    1981-02-27

    A method of very thoroughly and quikcly cleaning a guaze electrode used in chemical analyses is given, as well as an automobile cleaning apparatus which makes use of the method. The method generates very little waste solution, and this is very important in analyzing radioactive materials, especially in aqueous solutions. The cleaning apparatus can be used in a larger, fully automated controlled potential coulometric apparatus. About 99.98% of a 5 mg plutonium sample was removed in less than 3 minutes, using only about 60 ml of rinse solution and two main rinse steps.

  10. Simultaneous specimen and stage cleaning device for analytical electron microscope

    DOEpatents

    Zaluzec, Nestor J.

    1996-01-01

    An improved method and apparatus are provided for cleaning both a specimen stage, a specimen and an interior of an analytical electron microscope (AEM). The apparatus for cleaning a specimen stage and specimen comprising a plasma chamber for containing a gas plasma and an air lock coupled to the plasma chamber for permitting passage of the specimen stage and specimen into the plasma chamber and maintaining an airtight chamber. The specimen stage and specimen are subjected to a reactive plasma gas that is either DC or RF excited. The apparatus can be mounted on the analytical electron microscope (AEM) for cleaning the interior of the microscope.

  11. Clean Currents | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Currents Jump to: navigation, search Logo: Clean Currents Name: Clean Currents Address: 155 Gibbs St. Suite 425 Place: Rockville, Maryland Zip: 20850 Sector: Wind energy...

  12. Clean Fractionation - Energy Innovation Portal

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search Clean ... Using a single-phase mixture digestion process followed by a phase separation, Clean ...

  13. RESULTS OF RADIOLOGICAL MEASUREMENTS TAKEN NEAR JUNCTION OF HIGHWAY...

    Office of Legacy Management (LM)

    RESULTS OF RADIOLOGICAL MEASUREMENTS TAKEN NEAR JUNCTION OF HIGHWAY 3I AND MILITARY ROAD ... JI'NCTION OF UIGUIAY 31 ATiID ilILITART ROAD IN NIAGARA FALLS, NEW YOBT B. A. Berven D ...

  14. Idaho - Access Management: Standards and Procedures for Highway...

    OpenEI (Open Energy Information) [EERE & EIA]

    Access Management: Standards and Procedures for Highway Right-of-Way Encroachments Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance...

  15. ADOT Policy for Accommodating Utilities on Highway Rights-Of...

    OpenEI (Open Energy Information) [EERE & EIA]

    Policy for Accommodating Utilities on Highway Rights-Of-Way Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: ADOT Policy for...

  16. High carbon fly ash finds uses in highway construction

    SciTech Connect

    Wen, H.; Patton, R.

    2008-07-01

    The beneficial use of high carbon fly ash in a highway construction project is discussed. The fly ash also had a relatively high content of mercury and some other heavy metals. 1 fig., 4 photos.

  17. Vermont Permit and License Information, Work in a State Highway...

    OpenEI (Open Energy Information) [EERE & EIA]

    Information, Work in a State Highway Right of Way Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook: Vermont Permit...

  18. Waiver of Preferential Right to Lease Highway Right of Way |...

    OpenEI (Open Energy Information) [EERE & EIA]

    Waiver of Preferential Right to Lease Highway Right of Way Jump to: navigation, search OpenEI Reference LibraryAdd to library Reference: Waiver of Preferential Right to Lease...

  19. Vermont Agency of Transportation Work Within Highway Rights-of...

    OpenEI (Open Energy Information) [EERE & EIA]

    GuidancePermittingRegulatory GuidanceGuideHandbook Abstract Guidance on the 19 V.S.A. 1111 Highway Right-of-Way Permit Application (Form TA 210). Author Vermont...

  20. Title 19 Chapter 1 State Highway Law | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    1 State Highway LawLegal Published NA Year Signed or Took Effect 1985 Legal Citation 19 V.S.A. 1-43 DOI Not Provided Check for DOI availability: http:crossref.org Online...

  1. Title 19 Chapter 3 Town Highways | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    3 Town HighwaysLegal Published NA Year Signed or Took Effect 1985 Legal Citation 19 V.S.A. 301-318 DOI Not Provided Check for DOI availability: http:crossref.org Online...

  2. Clean Cities: Louisiana Clean Fuels coalition

    Alternative Fuels and Advanced Vehicles Data Center

    worked successfully across a variety of industries including oil and gas exploration, health-care software, and solar installation and brings many years of event planning,...

  3. Clean Energy Works

    Energy.gov [DOE]

    Through Clean Energy Works, homeowners can finance up to $30,000 at a fixed interest rate for home energy efficiency retrofits for a variety of measures. Customers have varying lender and loan op...

  4. Clean Energy Fund (CEF)

    Energy.gov [DOE]

    On January 2016, the New York Public Service Commission (PUC) approved $5 billion Clean Energy Fund (CEF) as a successor to the New York’s Energy Efficiency Portfolio Standard (EEPS) and Renewable...

  5. Enhanced Chemical Cleaning

    SciTech Connect

    Spires, Renee H.

    2010-11-01

    Renee Spires, Project Manager at Savannah River Remediation, opens Session 3 (Accelerated Waste Retrieval and Closure: Key Technologies) at the 2010 EM Waste Processing Technical Exchange with a talk on enhanced chemical cleaning.

  6. Clean Energy Procurement

    Office of Energy Efficiency and Renewable Energy (EERE)

    Subsequently, in 2009, the state embarked upon an initiative with the University System of Maryland, termed "Clean Energy Horizons," to contract for renewable energy through long-term power...

  7. Clean Energy Ministerial

    Energy.gov [DOE]

    The United States will host the seventh Clean Energy Ministerial (CEM7) in San Francisco, California, on June 1–2, 2016. The annual meeting of energy ministers and other high-level delegates from...

  8. Clean Coal Research

    Office of Energy Efficiency and Renewable Energy (EERE)

    DOE's clean coal R&D is focused on developing and demonstrating advanced power generation and carbon capture, utilization and storage technologies for existing facilities and new fossil-fueled...

  9. RFA-14-0002 - In the Matter of Highway Oil, Inc. | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    RFA-14-0002 - In the Matter of Highway Oil, Inc. RFA-14-0002 - In the Matter of Highway Oil, Inc. On December 10, 2014, OHA released funds held in escrow for Highway Oil, Inc. (Highway) in the Subpart V refund proceeding. Highway submitted five applications for refunds in five different Subpart V proceedings and was granted refunds in each proceeding. During the time that these refunds were granted to Highway, Highway was the subject of a Proposed Remedial Order (PRO) issued by the Economic

  10. #CleanTechNow

    SciTech Connect

    Moniz, Ernest

    2013-09-17

    Over the past four years, America's clean energy future has come into sharper focus. Yesterday's visionary goals are now hard data -- tangible evidence that our energy system is undergoing a transformation. The Energy Department's new paper "Revolution Now: The Future Arrives for Four Clean Energy Technologies" highlights these changes and shows how cost reductions and product improvements have sparked a surge in consumer demand for wind turbines, solar panels, electric cars and super efficient lighting.

  11. #CleanTechNow

    ScienceCinema

    Moniz, Ernest

    2016-07-12

    Over the past four years, America's clean energy future has come into sharper focus. Yesterday's visionary goals are now hard data -- tangible evidence that our energy system is undergoing a transformation. The Energy Department's new paper "Revolution Now: The Future Arrives for Four Clean Energy Technologies" highlights these changes and shows how cost reductions and product improvements have sparked a surge in consumer demand for wind turbines, solar panels, electric cars and super efficient lighting.

  12. Clean Tech Now | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Clean Tech Now Clean Tech Now Clean Tech Now Clean Tech Now Clean Tech Now Clean Tech Now Clean Tech Now Clean Tech Now Clean Tech Now Clean Tech Now America's energy landscape is undergoing a dramatic transformation. According to a new Energy Department report, falling costs for four clean energy technologies -- land-based wind power, solar panels, electric cars and LED lighting -- have led to a surge in demand and deployment. The numbers tell an exciting story: America is experiencing a

  13. What is Clean Cities? (Brochure)

    SciTech Connect

    Not Available

    2011-03-01

    Fact sheet describes the Clean Cities program and includes the contact information for its 87 coalitions.

  14. Clean Energy Works Oregon (CEWO)

    Energy.gov [DOE]

    Presents Clean Energy Works Oregon's program background and the four easy steps to lender selection.

  15. Revolutionizing Clean Energy Technology with Advanced Composites...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Revolutionizing Clean Energy Technology with Advanced Composites Revolutionizing Clean Energy Technology with Advanced Composites Addthis

  16. Repowering with clean coal technologies

    SciTech Connect

    Freier, M.D.; Buchanan, T.L.; DeLallo, M.L.; Goldstein, H.N.

    1996-02-01

    Repowering with clean coal technology can offer significant advantages, including lower heat rates and production costs, environmental compliance, incremental capacity increases, and life extension of existing facilities. Significant savings of capital costs can result by refurbishing and reusing existing sites and infrastructure relative to a greenfield siting approach. This paper summarizes some key results of a study performed by Parsons Power Group, Inc., under a contract with DOE/METC, which investigates many of the promising advanced power generation technologies in a repowering application. The purpose of this study was to evaluate the technical and economic results of applying each of a menu of Clean Coal Technologies in a repowering of a hypothetical representative fossil fueled power station. Pittsburgh No. 8 coal is used as the fuel for most of the cases evaluated herein, as well as serving as the fuel for the original unrepowered station. The steam turbine-generator, condenser, and circulating water system are refurbished and reused in this study, as is most of the existing site infrastructure such as transmission lines, railroad, coal yard and coal handling equipment, etc. The technologies evaluated in this study consisted of an atmospheric fluidized bed combustor, several varieties of pressurized fluid bed combustors, several types of gasifiers, a refueling with a process derived fuel, and, for reference, a natural gas fired combustion turbine-combined cycle.

  17. Clean Cities: Southeast Florida Clean Cities coalition

    Alternative Fuels and Advanced Vehicles Data Center

    Designated: May 5, 1994 Alternative Fueling Stations: Biodiesel (B20 and above): 2 Natural Gas: 12 Ethanol (E85): 30 Electric: 414 Propane: 27 Petroleum and GHG Savings* Total...

  18. Clean Cities: Honolulu Clean Cities coalition

    Alternative Fuels and Advanced Vehicles Data Center

    County; City of Honolulu Designated: August 29, 1995 Alternative Fueling Stations: Biodiesel (B20 and above): 3 Natural Gas: 1 Ethanol (E85): 3 Electric: 250 Hydrogen: 2 Propane:...

  19. Clean Cities: Palmetto State Clean Fuels coalition

    Alternative Fuels and Advanced Vehicles Data Center

    of South Carolina Designated: January 28, 2004 Alternative Fueling Stations: Biodiesel (B20 and above): 27 Natural Gas: 12 Ethanol (E85): 69 Electric: 298 Hydrogen: 2 Propane: 57...

  20. Off-Highway Gasoline Consuption Estimation Models Used in the Federal Highway Administration Attribution Process: 2008 Updates

    SciTech Connect

    Hwang, Ho-Ling; Davis, Stacy Cagle

    2009-12-01

    This report is designed to document the analysis process and estimation models currently used by the Federal Highway Administration (FHWA) to estimate the off-highway gasoline consumption and public sector fuel consumption. An overview of the entire FHWA attribution process is provided along with specifics related to the latest update (2008) on the Off-Highway Gasoline Use Model and the Public Use of Gasoline Model. The Off-Highway Gasoline Use Model is made up of five individual modules, one for each of the off-highway categories: agricultural, industrial and commercial, construction, aviation, and marine. This 2008 update of the off-highway models was the second major update (the first model update was conducted during 2002-2003) after they were originally developed in mid-1990. The agricultural model methodology, specifically, underwent a significant revision because of changes in data availability since 2003. Some revision to the model was necessary due to removal of certain data elements used in the original estimation method. The revised agricultural model also made use of some newly available information, published by the data source agency in recent years. The other model methodologies were not drastically changed, though many data elements were updated to improve the accuracy of these models. Note that components in the Public Use of Gasoline Model were not updated in 2008. A major challenge in updating estimation methods applied by the public-use model is that they would have to rely on significant new data collection efforts. In addition, due to resource limitation, several components of the models (both off-highway and public-us models) that utilized regression modeling approaches were not recalibrated under the 2008 study. An investigation of the Environmental Protection Agency's NONROAD2005 model was also carried out under the 2008 model update. Results generated from the NONROAD2005 model were analyzed, examined, and compared, to the extent that is

  1. Integrated coal cleaning, liquefaction, and gasification process

    DOEpatents

    Chervenak, Michael C.

    1980-01-01

    Coal is finely ground and cleaned so as to preferentially remove denser ash-containing particles along with some coal. The resulting cleaned coal portion having reduced ash content is then fed to a coal hydrogenation system for the production of desirable hydrocarbon gases and liquid products. The remaining ash-enriched coal portion is gasified to produce a synthesis gas, the ash is removed from the gasifier usually as slag, and the synthesis gas is shift converted with steam and purified to produce the high purity hydrogen needed in the coal hydrogenation system. This overall process increases the utilization of as-mined coal, reduces the problems associated with ash in the liquefaction-hydrogenation system, and permits a desirable simplification of a liquids-solids separation step otherwise required in the coal hydrogenation system.

  2. Gas Cleanup Strategies in Europe

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    HYGEAR GAS CLEANING EUROPE ELLART DE WIT ABOUT HYGEAR * Established in 2002 - 65 people - Acquired Plug Power Europe in 2009 * Products - Hydrogen Generation Systems - Biogas Cleaning systems - Fuel Cell Systems * Facilities - Catalysis and Adsorbents laboratory - 2000 m 2 System test facilities - Rapid prototyping shop - Flexible system assembly line Confidential & Proprietary NATURAL GAS CLEANING - SULFUR * Most sulfur is removed at well!! * What is in pipeline depends on source: -

  3. Clean Coal Power Initiative

    SciTech Connect

    Doug Bartlett; Rob James; John McDermott; Neel Parikh; Sanjay Patnaik; Camilla Podowski

    2006-03-31

    This report is the fifth quarterly Technical Progress Report submitted by NeuCo, Incorporated, under Award Identification Number, DE-FC26-04NT41768. This award is part of the Clean Coal Power Initiative (''CCPI''), the ten-year, $2B initiative to demonstrate new clean coal technologies in the field. This report is one of the required reports listed in Attachment B Federal Assistance Reporting Checklist, part of the Cooperative Agreement. The report covers the award period January 1, 2006 - March 31, 2006 and NeuCo's efforts within design, development, and deployment of on-line optimization systems during that period.

  4. Precision cleaning apparatus and method

    DOEpatents

    Schneider, Thomas W.; Frye, Gregory C.; Martin, Stephen J.

    1998-01-01

    A precision cleaning apparatus and method. The precision cleaning apparatus includes a cleaning monitor further comprising an acoustic wave cleaning sensor such as a quartz crystal microbalance (QCM), a flexural plate wave (FPW) sensor, a shear horizontal acoustic plate mode (SH--APM) sensor, or a shear horizontal surface acoustic wave (SH--SAW) sensor; and measurement means connectable to the sensor for measuring in-situ one or more electrical response characteristics that vary in response to removal of one or more contaminants from the sensor and a workpiece located adjacent to the sensor during cleaning. Methods are disclosed for precision cleaning of one or more contaminants from a surface of the workpiece by means of the cleaning monitor that determines a state of cleanliness and any residual contamination that may be present after cleaning; and also for determining an effectiveness of a cleaning medium for removing one or more contaminants from a workpiece.

  5. Precision cleaning apparatus and method

    DOEpatents

    Schneider, T.W.; Frye, G.C.; Martin, S.J.

    1998-01-13

    A precision cleaning apparatus and method are disclosed. The precision cleaning apparatus includes a cleaning monitor further comprising an acoustic wave cleaning sensor such as a quartz crystal microbalance (QCM), a flexural plate wave (FPW) sensor, a shear horizontal acoustic plate mode (SH--APM) sensor, or a shear horizontal surface acoustic wave (SH--SAW) sensor; and measurement means connectable to the sensor for measuring in-situ one or more electrical response characteristics that vary in response to removal of one or more contaminants from the sensor and a workpiece located adjacent to the sensor during cleaning. Methods are disclosed for precision cleaning of one or more contaminants from a surface of the workpiece by means of the cleaning monitor that determines a state of cleanliness and any residual contamination that may be present after cleaning; and also for determining an effectiveness of a cleaning medium for removing one or more contaminants from a workpiece. 11 figs.

  6. Clean Cities Tools

    SciTech Connect

    2014-12-19

    The U.S. Department of Energy's Clean Cities offers a large collection of Web-based tools on the Alternative Fuels Data Center. These calculators, interactive maps, and data searches can assist fleets, fuels providers, and other transportation decision makers in their efforts to reduce petroleum use.

  7. What is Clean Cities? Clean Cities, March 2010 (Brochure)

    SciTech Connect

    Not Available

    2010-03-01

    Fact sheet describes the Clean Cities program and includes the contact information for its 86 active coalitions.

  8. What Is Clean Cities? Clean Cities, November 2009 (Revised) (Brochure)

    SciTech Connect

    Not Available

    2009-11-01

    Fact sheet describes the Clean Cities program and includes the contact information for its 86 active coalitions.

  9. Six New Corporations Join the National Clean Fleets Partnership |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Six New Corporations Join the National Clean Fleets Partnership Six New Corporations Join the National Clean Fleets Partnership July 7, 2011 - 2:45pm Addthis UPS began incorporating alternative fuels and advanced vehicles into its fleet in the late 1980s. Today, the company operates nearly 2,000 vehicles that run on electricity, compressed natural gas, and other alternative fuels. UPS began incorporating alternative fuels and advanced vehicles into its fleet in the late

  10. Chapter 8: Advancing Clean Transportation and Vehicle Systems and Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    8: Advancing Clean Transportation and Vehicle Systems and Technologies September 2015 Quadrennial Technology Review 8 Advancing Clean Transportation and Vehicle Systems and Technologies Issues and RDD&D Opportunities  Transportation accounts for 10% of U.S. gross domestic product and provides essential services throughout the economy and for quality of life. It also represents 70% of all U.S. petroleum use and 27% of U.S. greenhouse gas (GHG) emissions.  Research opportunities to

  11. Clean Energy Materials EERE's Clean Energy Manufacturing Initiative Launches

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Sparking a Revolution in Clean Energy Materials EERE's Clean Energy Manufacturing Initiative Launches Energy Materials Network Volume 2, No. 1, January/February 2016 What's Happening @ EERE 2 A Message from Dave............................................ 3 ENERGY MATERIALS NETWORK Accelerating Materials Innovation & Advanced Manufacturing .......................................................... 4 Sparking a Revolution in Clean Energy Materials

  12. Twenty Years of Clean Energy

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Twenty Years of Clean Energy For more information contact: George Douglas (303) 275-4096 ... the floors of U.S. forests is converted into clean-burning ethanol to power cars. ...

  13. Leaf Clean Energy Company | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Clean Energy Company Jump to: navigation, search Logo: Leaf Clean Energy Company Name: Leaf Clean Energy Company Place: London, United Kingdom Website: www.leafcleanenergy.com...

  14. Category:CLEAN Webinar | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    CLEAN Webinar Jump to: navigation, search This page contains webinars hosted by the Coordinated Low Emissions Assistance Network (CLEAN). Pages in category "CLEAN Webinar" The...

  15. Clean Economy Network Foundation | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Clean Economy Network Foundation Jump to: navigation, search Logo: Clean Economy Network Foundation Name: Clean Economy Network Foundation Address: 1301 Pennsylvania Ave NW, Suite...

  16. Clean Energy Solutions Center | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Center Jump to: navigation, search Logo: Clean Energy Solutions Center Name Clean Energy Solutions Center AgencyCompany Organization Clean Energy Ministerial Sector Energy Focus...

  17. The Clean Energy Fund | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Clean Energy Fund Jump to: navigation, search Name: The Clean Energy Fund Place: Santa Monica, California Zip: 90403 Product: The Clean Energy Fund hopes to begin investing in...

  18. Turkey Clean Energy Partnership | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Turkey Clean Energy Partnership Jump to: navigation, search Logo: Turkey Clean Energy Partnership Name Turkey Clean Energy Partnership AgencyCompany Organization Argonne National...

  19. About the Clean Energy Manufacturing Initiative | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    About the Clean Energy Manufacturing Initiative About the Clean Energy Manufacturing Initiative The Clean Energy Manufacturing Initiative (CEMI) is a U.S. Department of Energy ...

  20. Sustainable development with clean coal

    SciTech Connect

    1997-08-01

    This paper discusses the opportunities available with clean coal technologies. Applications include new power plants, retrofitting and repowering of existing power plants, steelmaking, cement making, paper manufacturing, cogeneration facilities, and district heating plants. An appendix describes the clean coal technologies. These include coal preparation (physical cleaning, low-rank upgrading, bituminous coal preparation); combustion technologies (fluidized-bed combustion and NOx control); post-combustion cleaning (particulate control, sulfur dioxide control, nitrogen oxide control); and conversion with the integrated gasification combined cycle.

  1. Roughening and removal of surface contamination from beryllium using negative transferred-arc cleaning

    SciTech Connect

    Castro, R.G.; Hollis, K.J.; Elliott, K.E.

    1997-12-01

    Negative transferred-arc (TA) cleaning has been used extensively in the aerospace industry to clean and prepare surfaces prior to plasma spraying of thermal barrier coatings. This non-line of sight process can improve the bond strength of plasma sprayed coatings to the substrate material by cleaning and macroscopically roughening the surface. A variation of this cleaning methodology is also used in gas tungsten arc (GTA) welding to cathodically clean the surfaces of aluminum and magnesium prior to welding. Investigations are currently being performed to quantify the degree in which the negative transferred-arc process can clean and roughen metal surfaces. Preliminary information will be reported on the influence of processing conditions on roughening and the removal of carbon and other contaminates from the surface of beryllium. Optical, spectral and electrical methods to quantify cleaning of the surface will also be discussed. Applications for this technology include chemical-free precision cleaning of beryllium components.

  2. Texas GLO Highway Right of Way Leasing Forms | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Highway Right of Way Leasing Forms Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: Texas GLO Highway Right of Way Leasing FormsLegal...

  3. File:03HIEConstructionUponAStateHighwayROW.pdf | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    HIEConstructionUponAStateHighwayROW.pdf Jump to: navigation, search File File history File usage Metadata File:03HIEConstructionUponAStateHighwayROW.pdf Size of this preview: 463...

  4. File:03TXiHighwayRightofWayLease.pdf | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    TXiHighwayRightofWayLease.pdf Jump to: navigation, search File File history File usage Metadata File:03TXiHighwayRightofWayLease.pdf Size of this preview: 463 599 pixels. Other...

  5. AAC R17-3-500 Highway Encroachments and Permits | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    3-500 Highway Encroachments and Permits Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: AAC R17-3-500 Highway Encroachments...

  6. Fact #698: October 24, 2011 Changes in the Federal Highway Administration Vehicle Travel Data

    Energy.gov [DOE]

    With the April release of Table VM-1 from Highway Statistics 2009 came several changes to the availability of data on vehicle miles of travel (VMT). From 1966 to 2008, the Federal Highway...

  7. Healy Clean Coal Project

    SciTech Connect

    1997-12-31

    The Healy Clean Coal Project, selected by the U.S. Department of Energy under Round 111 of the Clean Coal Technology Program, has been constructed and is currently in the Phase 111 Demonstration Testing. The project is owned and financed by the Alaska Industrial Development and Export Authority (AIDEA), and is cofunded by the U.S. Department of Energy. Construction was 100% completed in mid-November of 1997, with coal firing trials starting in early 1998. Demonstration testing and reporting of the results will take place in 1998, followed by commercial operation of the facility. The emission levels of nitrogen oxides (NOx), sulfur dioxide (S02), and particulate from this 50-megawatt plant are expected to be significantly lower than current standards.

  8. Clean fractionation of biomass

    SciTech Connect

    Not Available

    1995-01-01

    The US Department of Energy (DOE) Alternative Feedstocks (AF) program is forging new links between the agricultural community and the chemicals industry through support of research and development (R & D) that uses `green` feedstocks to produce chemicals. The program promotes cost-effective industrial use of renewable biomass as feedstocks to manufacture high-volume chemical building blocks. Industrial commercialization of such processes would stimulate the agricultural sector by increasing the demand of agricultural and forestry commodities. New alternatives for American industry may lie in the nation`s forests and fields. The AF program is conducting ongoing research on a clean fractionation process. This project is designed to convert biomass into materials that can be used for chemical processes and products. Clean fractionation separates a single feedstock into individual components cellulose, hemicellulose, and lignin.

  9. Clean room wiping cloths

    SciTech Connect

    Harding, W.B.

    1981-01-01

    The suitability of various fabrics for use as clean room wiping cloths was investigated. These fabrics included knit polyester, knit nylon, urethane foam, woven cotton, nonwoven polyester, nonwoven rayon, nonwoven polyethylene and polypropylene, and woven nylon. These materials were tested for detachable lint and fibers, deterioration, and oil content which could leave contaminating films on wiped surfaces. Well-laundered nylon and polyester cloths knitted from filamentary yarn, with hems, were found to be suitable. (LCL)

  10. Alternative energy sources for non-highway transportation. Appendices

    SciTech Connect

    Not Available

    1980-06-01

    A planning study was made for DOE on alternate fuels for non-highway transportation (aircraft, rail, marine, and pipeline). The study provides DOE with a recommendation of what alternate fuels may be of interest to non-highway transportation users from now through 2025 and recommends R and D needed to allow non-petroleum derived fuels to be used in non-highway transportation. Volume III contains all of the references for the data used in the preliminary screening and is presented in 4 subvolumes. Volume IIIA covers the background information on the various prime movers used in the non-highway transportation area, the physical property data, the fuel-prime mover interaction and a review of some alternate energy forms. Volume IIIB covers the economics of producing, tranporting, and distributing the various fuels. Volume IIIC is concerned with the environment issues in production and use of the fuels, the energy efficiency in use and production, the fuel logistics considerations, and the overall ratings and selection of the fuels and prime movers for the detailed evaluation. Volume IIID covers the demand-related issues.

  11. Proceedings of the 21st DOE/NRC Nuclear Air Cleaning Conference; Sessions 1--8

    SciTech Connect

    First, M.W.

    1991-02-01

    Separate abstracts have been prepared for the papers presented at the meeting on nuclear facility air cleaning technology in the following specific areas of interest: air cleaning technologies for the management and disposal of radioactive wastes; Canadian waste management program; radiological health effects models for nuclear power plant accident consequence analysis; filter testing; US standard codes on nuclear air and gas treatment; European community nuclear codes and standards; chemical processing off-gas cleaning; incineration and vitrification; adsorbents; nuclear codes and standards; mathematical modeling techniques; filter technology; safety; containment system venting; and nuclear air cleaning programs around the world. (MB)

  12. Power-to-Gas for Energy Storage

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Power-to-Gas for Energy Storage Rob Harvey Director, Energy Storage DOE Electrolytic Hydrogen Production Workshop National Renewable Energy Laboratory, Golden, CO - Feb 28, 2014 1 Integrate Renewables Renewable Gas Options 2 Power-to-Gas converts clean generation when it is not needed into renewable fuel, power or heat where and when it is needed Power-to-Gas Solution Surplus Power Industrial H2 Natural Gas Grid Clean Fuel Dispatchable Power Low Carbon Heating Electrolyzer Solar Power Wind Power

  13. System of treating flue gas

    DOEpatents

    Ziegler, D.L.

    1975-12-01

    A system is described for treating or cleaning incinerator flue gas containing acid gases and radioactive and fissionable contaminants. Flue gas and a quench solution are fed into a venturi and then tangentially into the lower portion of a receptacle for restricting volumetric content of the solution. The upper portion of the receptacle contains a scrub bed to further treat or clean the flue gas.

  14. DOE - Fossil Energy: Clean Coal Technology

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    2-Clean Coal Technology An Energy Lesson Cleaning Up Coal The Clean Coal Technology Program The Clean Coal Technology Program began in 1985 when the United States and Canada ...

  15. Northeast Clean Energy Application Center

    SciTech Connect

    Bourgeois, Tom

    2013-09-30

    From October 1, 2009 through September 30, 2013 (“contract period”), the Northeast Clean Energy Application Center (“NE-CEAC”) worked in New York and New England (Connecticut, Rhode Island, Vermont, Massachusetts, New Hampshire, and Maine) to create a more robust market for the deployment of clean energy technologies (CETs) including combined heat and power (CHP), district energy systems (DES), and waste heat recovery (WHR) systems through the provision of technical assistance, education and outreach, and strategic market analysis and support for decision-makers. CHP, DES, and WHR can help reduce greenhouse gas emissions, reduce electrical and thermal energy costs, and provide more reliable energy for users throughout the United States. The NE-CEAC’s efforts in the provision of technical assistance, education and outreach, and strategic market analysis and support for decision-makers helped advance the market for CETs in the Northeast thereby helping the region move towards the following outcomes: • Reduction of greenhouse gas emissions and criteria pollutants • Improvements in energy efficiency resulting in lower costs of doing business • Productivity gains in industry and efficiency gains in buildings • Lower regional energy costs • Strengthened energy security • Enhanced consumer choice • Reduced price risks for end-users • Economic development effects keeping more jobs and more income in our regional economy Over the contract period, NE-CEAC provided technical assistance to approximately 56 different potential end-users that were interested in CHP and other CETs for their facility or facilities. Of these 56 potential end-users, five new CHP projects totaling over 60 MW of install capacity became operational during the contract period. The NE-CEAC helped host numerous target market workshops, trainings, and webinars; and NE-CEAC staff delivered presentations at many other workshops and conferences. In total, over 60 different workshops

  16. CleanFleet. Volume 2, Project Design and Implementation

    SciTech Connect

    1995-12-01

    The CleanFleet alternative fuels demonstration project evaluated five alternative motorfuels in commercial fleet service over a two-year period. The five fuels were compressed natural gas, propane gas, California Phase 2 reformulated gasoline (RFG), M-85 (85 percent methanol and 15 percent RFG), and electric vans. Eight-four vans were operated on the alternative fuels and 27 vans were operated on gasoline as baseline controls. Throughout the demonstration information was collected on fleet operations, vehicle emissions, and fleet economics. In this volume of the CleanFleet findings, the design and implementation of the project are summarized.

  17. CleanFleet. Final report: Volume 1, summary

    SciTech Connect

    1995-12-01

    The South Coast Alternative Fuels Demonstration, called CleanFleet, was conducted in the Los Angeles area from April 1992 through September 1994. The demonstration consisted of 111 package delivery vans operating on five alternative fuels and the control fuel, unleaded gasoline. The alternative fuels were propane gas, compressed natural gas, California Phase 2 reformulated gasoline (RFG), methanol with 15 percent RFG (called M-85), and electricity. This volume of the eight volume CleanFleet final report is a summary of the project design and results of the analysis of data collected during the demonstration on vehicle maintenance and durability, fuel economy, employee attitudes, safety and occupational hygiene, emissions, and fleet economics.

  18. National Clean Fleets Partnership (Fact Sheet)

    SciTech Connect

    Not Available

    2011-03-01

    Describes Clean Cities' National Clean Fleets Partnership, an initiative that helps large private fleets reduce petroleum use.

  19. INFOGRAPHIC | Made in America: Clean Energy Jobs

    Energy.gov [DOE]

    As the clean energy economy grows -- thousands of clean energy job opportunities are being created all across the country.

  20. Clean Energy Manufacturing Innovation Institute for Composites...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Clean Energy Manufacturing Innovation Institute for Composites Materials and Structures Clean Energy Manufacturing Innovation Institute for Composites Materials and Structures ...

  1. Idling - cruising the fuel inefficiency highway.

    SciTech Connect

    Gaines, L.; Levinson, T.

    2011-06-30

    advantageous technological alternatives to implement. In addition, although many equipment manufacturers have tried to educate customers and government agencies, they often provide conflicting claims about the comparative merits of different devices. This makes it difficult for truck owners to choose the right equipment for their needs. In this study, we present the first comparison of IR technologies with each other and with idling on the basis of both costs and full fuel-cycle emissions, for different locations, fuel prices, and idling patterns. The preferences described are for the technologies that reduce total emissions the most and cost truck owners the least. We also discuss how regulatory issues and legislation affect IR, what financial incentives help to promote IR, and how outreach and education approaches can be adopted to reduce the need to idle. Finally, we offer a prediction of how future research and development (R&D), regulations, and citizen involvement can help to improve fuel economy and clean the air.

  2. Diesel Fueled SOFC for Class 7/Class 8 On-Highway Truck Auxiliary Power

    SciTech Connect

    Vesely, Charles John-Paul; Fuchs, Benjamin S.; Booten, Chuck W.

    2010-03-31

    The following report documents the progress of the Cummins Power Generation (CPG) Diesel Fueled SOFC for Class 7/Class 8 On-Highway Truck Auxiliary Power (SOFC APU) development and final testing under the U.S. Department of Energy (DOE) Energy Efficiency and Renewable Energy (EERE) contract DE-FC36-04GO14318. This report overviews and summarizes CPG and partner development leading to successful demonstration of the SOFC APU objectives and significant progress towards SOFC commercialization. Significant SOFC APU Milestones: Demonstrated: Operation meeting SOFC APU requirements on commercial Ultra Low Sulfur Diesel (ULSD) fuel. SOFC systems operating on dry CPOX reformate. Successful start-up and shut-down of SOFC APU system without inert gas purge. Developed: Low cost balance of plant concepts and compatible systems designs. Identified low cost, high volume components for balance of plant systems. Demonstrated efficient SOFC output power conditioning. Demonstrated SOFC control strategies and tuning methods.

  3. Comprehensive Report to Congress Clean Coal Technology Program: Clean power from integrated coal/ore reduction

    SciTech Connect

    1996-10-01

    This report describes a clean coal program in which an iron making technology is paired with combined cycle power generation to produce 3300 tons per day of hot metal and 195 MWe of electricity. The COREX technology consists of a metal-pyrolyzer connected to a reduction shaft, in which the reducing gas comes directly from coal pyrolysis. The offgas is utilized to fuel a combined cycle power plant.

  4. UPS to Expand Use of Liquefied Natural Gas | Department of Energy

    Energy Saver

    UPS to Expand Use of Liquefied Natural Gas UPS to Expand Use of Liquefied Natural Gas October 25, 2013 - 12:00am Addthis UPS, a founding member of Clean Cities' National Clean ...

  5. ClEAN ENERGy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    25 ClEAN ENERGy Relations between the Corps and Southeastern have not always been cordial. The droughts of the late 1980s put pressure on both organizations as well as our preference customers. I came to the realization that we could no longer litigate and legislate; we must negotiate and cooperate. - AdmiNistrAtor JohN A. mcAllister, Jr. (1989-1995) 1 PARTNERS Advancing In November 1989, a new administrator arrived in Elberton to lead SEPA. John A. McAllister, Jr., "Johnny," was a

  6. Clean Energy Solutions Center: Assisting Countries with Clean Energy Policy

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    - Continuum Magazine | NREL A photo of colorful, light- colored buildings in Ghana. Solutions Center assistance will help develop policies to support renewable energy deployment in Ghana. Clean Energy Solutions Center: Assisting Countries with Clean Energy Policy NREL helps developing countries combat barriers to pave the way for policies and programs that advance clean energy technology deployment. Many countries are looking to grow their renewable energy and energy efficiency portfolios to

  7. Clean Cities: Northeast Ohio Clean Cities coalition (Cleveland...

    Alternative Fuels and Advanced Vehicles Data Center

    Vehicles Data Center. Cleveland Car Dealership Working Toward a More Sustainable Future Text version Search Coalitions Search for another coalition Northeast Ohio Clean...

  8. Clean Cities: San Diego Regional Clean Cities coalition

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    of Kevin Wood Kevin Wood is an associate program manager for transportation at the California Center for Sustainable Energy. He joined the San Diego Regional Clean Cities...

  9. Clean Cities: Greater Lansing Area Clean Cities coalition

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Calnin has worked with the Clean Cities initiative since 2007, having supported the Detroit Area coalition as well as the Greater Lansing Area coalition. With a background that...

  10. Clean fractionation of biomass

    SciTech Connect

    1995-09-01

    The US DOE Alternative Feedstocks (AF) program is forging new links between the agricultural community and the chemicals industry through support of research and development (R&D) that uses green feedstocks to produce chemicals. The program promotes cost-effective industrial use of renewable biomass as feedstocks to manufacture high-volume chemical building blocks. Industrial commercialization of such processes would stimulate the agricultural sector by increasing the demand of agricultural and forestry commodities. A consortium of five DOE national laboratories has been formed with the objectives of providing industry with a broad range of expertise and helping to lower the risk of new process development through federal cost sharing. The AF program is conducting ongoing research on a clean fractionation process, designed to convert biomass into materials that can be used for chemical processes and products. The focus of the clean fractionation research is to demonstrate to industry that one technology can successfully separate all types of feedstocks into predictable types of chemical intermediates.

  11. Advancing Women in Clean Energy

    Energy.gov [DOE]

    As part of the Clean Energy Ministerial, C3E and its ambassadors have made it their mission to advance the leadership of women in clean energy around the world. In this series, we will leverage the experience and wisdom of some of the amazing C3E ambassadors who will share advice or suggestions that may be helpful for women seeking to advance their careers in clean energy.

  12. NREL: Technology Deployment - Clean Cities

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Clean Cities NREL assists the U.S. Department of Energy's Clean Cities program in supporting local actions to reduce petroleum use in transportation by providing technical assistance, educational and outreach publications, and coordinator support. Clean Cities is a national network of nearly 100 coalitions that bring together stakeholders in the public and private sectors to deploy alternative and renewable fuels, advanced vehicles, fuel economy improvements, idle-reduction measures, and new

  13. PFBC presents its clean coal credentials

    SciTech Connect

    Makansi, J.

    2005-12-01

    Pressurized fluidized-bed combustion (PFBC) combined cycle deserves as much consideration as integrated gasification combined cycle as a foundation technology for advanced, clean coal-fired power generation. Although corporate issues and low natural gas prices stalled PFBC development for a time, technology at full scale has proved quite worthy in several respects in Europe and Japan over the past 10 years. The article describes how the PFBC system power cycle works, describes its competitive features and reports progress on development. 4 figs.

  14. Checklist for transition to new highway fuel(s).

    SciTech Connect

    Risch, C.; Santini, D.J.

    2011-12-15

    Transportation is vital to the U.S. economy and society. As such, U.S. Presidents have repeatedly stated that the nation needs to reduce dependence on petroleum, especially for the highway transportation sector. Throughout history, highway transportation fuel transitions have been completed successfully both in United States and abroad. Other attempts have failed, as described in Appendix A: Historical Highway Fuel Transitions. Planning for a transition is critical because the changes can affect our nation's ability to compete in the world market. A transition will take many years to complete. While it is tempting to make quick decisions about the new fuel(s) of choice, it is preferable and necessary to analyze all the pertinent criteria to ensure that correct decisions are made. Doing so will reduce the number of changes in highway fuel(s). Obviously, changes may become necessary because of occurrences such as significant technology breakthroughs or major world events. With any and all of the possible transitions to new fuel(s), the total replacement of gasoline and diesel fuels is not expected. These conventional fuels are envisioned to coexist with the new fuel(s) for decades, while the revised fuel and vehicle infrastructures are implemented. The transition process must analyze the needs of the primary 'players,' which consist of the customers, the government, the fuel industry, and the automotive industry. To maximize the probability of future successes, the prime considerations of these groups must be addressed. Section 2 presents a succinct outline of the Checklist. Section 3 provides a brief discussion about the groupings on the Checklist.

  15. Clean Vita | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Provider of products and services to the building trade. Involved in a distribution joint venture with Solco International. References: Clean Vita1 This article is a stub....

  16. Clean coal technologies market potential

    SciTech Connect

    Drazga, B.

    2007-01-30

    Looking at the growing popularity of these technologies and of this industry, the report presents an in-depth analysis of all the various technologies involved in cleaning coal and protecting the environment. It analyzes upcoming and present day technologies such as gasification, combustion, and others. It looks at the various technological aspects, economic aspects, and the various programs involved in promoting these emerging green technologies. Contents: Industry background; What is coal?; Historical background of coal; Composition of coal; Types of coal; Environmental effects of coal; Managing wastes from coal; Introduction to clean coal; What is clean coal?; Byproducts of clean coal; Uses of clean coal; Support and opposition; Price of clean coal; Examining clean coal technologies; Coal washing; Advanced pollution control systems; Advanced power generating systems; Pulverized coal combustion (PCC); Carbon capture and storage; Capture and separation of carbon dioxide; Storage and sequestration of carbon dioxide; Economics and research and development; Industry initiatives; Clean Coal Power Initiative; Clean Coal Technology Program; Coal21; Outlook; Case Studies.

  17. CLEAN Reports | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    methodologies and tools International Assistance for Low-Emission Development Planning: CLEAN Inventory of Activities and Tools-Preliminary Trends National Renewable Energy...

  18. Clean Markets | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Markets Jump to: navigation, search Name: Clean Markets Place: Philadelphia, Pennsylvania Zip: 19118 Sector: Services Product: Philadelphia-based provider of market development...

  19. Clean Air Act, Section 309

    Energy Saver

    CLEAN AIR ACT 309* 7609. Policy review (a) The Administrator shall review and comment in writing on the environmental impact of any matter relating to duties and ...

  20. Self-Cleaning CSP Collectors

    Energy.gov [DOE]

    This fact sheet details the efforts of a Boston University-led team which is working on a DOE SunShot Initative project. The concentrated solar power industry needs an automated, efficient cleaning process that requires neither water nor moving parts to keep the solar collectors clean for maximum reflectance and energy output. This project team is working to develop a transparent electrodynamic screen as a self-cleaning technology for solar concentrators; cleaning is achieved without water, moving parts, or manual labor. Because of these features, it has a strong potential for worldwide deployment.

  1. EPA Clean Power Plan Seminar

    Energy.gov [DOE]

    The U.S. Environmental Protection Agency (EPA) is hosting an informational seminar addressing the opportunities and challenges presented by EPA's Clean Power Plan.

  2. Clean Cities Around the World

    SciTech Connect

    Not Available

    2005-01-01

    This 2-page fact sheet provides general information regarding Clean Cities International, including background, successful activities, importance of partnerships, accomplishments, and plans.

  3. Clean Cities Around the World

    SciTech Connect

    Not Available

    2005-11-01

    This fact sheet provides an update of Clean Cities International news, including successful activities, notable accomplishments, and plans for the future. It also includes background information.

  4. Connecting with Clean Tech CEO's

    Office of Energy Efficiency and Renewable Energy (EERE)

    Findings of CEO Roundtable discussions about how to drive economic development and job growth of the clean tech sector within the Sacramento Region.

  5. Residential Clean Energy Grant Program

    Energy.gov [DOE]

    Maryland's Residential Clean Energy Grant Program, administered by the Maryland Energy Administration (MEA), provides financial incentives to homeowners that install solar water-heating, solar...

  6. Local Option- Clean Energy Financing

    Energy.gov [DOE]

    Property-Assessed Clean Energy (PACE) financing effectively allows property owners to borrow money through their local government to pay for energy improvements. The amount borrowed is typically...

  7. Hawaii Clean Energy Final PEIS

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    A 1 2 Public Notices 3 Notices about the Draft Programmatic EIS Appendix A Hawai i Clean Energy Final PEIS A-1 September 2015 DOE/EIS-0459 The following Notice of Availability appeared in the Federal Register on April 18, 2014. Appendix A Hawai i Clean Energy Final PEIS A-2 September 2015 DOE/EIS-0459 Appendix A Hawai i Clean Energy Final PEIS A-3 September 2015 DOE/EIS-0459 DOE-Hawaii placed the following advertisement in The Garden Island on May 5 and 9, 2014. Appendix A Hawai i Clean Energy

  8. MOBILE4. 1: Highway-vehicle mobile-source emission-factor model (Apple MacIntosh version) (for microcomputers). Model-Simulation

    SciTech Connect

    Not Available

    1991-08-01

    MOBILE4.1 is the latest revision to EPA's highway vehicle mobile source emission factor model. Relative to MOBILE4, it contains numerous revisions and provides the user with additional options for modeling highway vehicle emission factors. it will calculate emission factors for hydrocarbons (HC), carbon monoxide, (CO), and oxides of nitrogen (NOx) from highway motor vehicles. It calculates emission factors for eight individual vehicle types, in two regions of the country (low and high altitude). The emission factors depend on various conditions such as ambient temperature, fuel volatility, speed, and mileage accrual rates. It will estimate emission factors for any calendar year between 1960 and 2020 inclusive. The 25 most recent model years are considered in operation in each calendar year. EPA is requiring that states and others preparing emission inventories for nonattainment areas for CO and ozone to use MOBILE4.1 in the development of the base year 1990 emission inventories required under the Clean Air Act of 1990.

  9. Limonene and tetrahydrofurfuryl alcohol cleaning agent

    DOEpatents

    Bohnert, George W.; Carter, Richard D.; Hand, Thomas E.; Powers, Michael T.

    1996-05-07

    The present invention is a tetrahydrofurfuryl alcohol and limonene or terpineol cleaning agent and method for formulating and/or using the cleaning agent. This cleaning agent effectively removes both polar and nonpolar contaminants from various electrical and mechanical parts and is readily used without surfactants, thereby reducing the need for additional cleaning operations. The cleaning agent is warm water rinsable without the use of surfactants. The cleaning agent can be azeotropic, enhancing ease of use in cleaning operations and ease of recycling.

  10. Limonene and tetrahydrofurfurly alcohol cleaning agent

    DOEpatents

    Bohnert, George W.; Carter, Richard D.; Hand, Thomas E.; Powers, Michael T.

    1997-10-21

    The present invention is a tetrahydrofurfuryl alcohol and limonene cleaning agent and method for formulating and/or using the cleaning agent. This cleaning agent effectively removes both polar and nonpolar contaminants from various electrical and mechanical parts and is readily used without surfactants, thereby reducing the need for additional cleaning operations. The cleaning agent is warm water rinsable without the use of surfactants. The cleaning agent can be azeotropic, enhancing ease of use in cleaning operations and ease of recycling.

  11. Limonene and tetrahydrofurfuryl alcohol cleaning agent

    DOEpatents

    Bohnert, G.W.; Carter, R.D.; Hand, T.E.; Powers, M.T.

    1997-10-21

    The present invention is a tetrahydrofurfuryl alcohol and limonene cleaning agent and method for formulating and/or using the cleaning agent. This cleaning agent effectively removes both polar and nonpolar contaminants from various electrical and mechanical parts and is readily used without surfactants, thereby reducing the need for additional cleaning operations. The cleaning agent is warm water rinsable without the use of surfactants. The cleaning agent can be azeotropic, enhancing ease of use in cleaning operations and ease of recycling.

  12. EIS-0516: Clean Path Energy Center Project; San Juan County, New Mexico

    Energy.gov [DOE]

    DOE’s Western Area Power Administration is preparing an EIS for the proposed interconnection of the Clean Path Energy Center Project to Western’s transmission system at the Shiprock Substation. The planned Clean Path Energy Center will consist of a 680 MW natural gas combined cycle power plant co-located with a 70 MW solar photovoltaic project.

  13. Jessi3bl's blog | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    by Jessi3bl(15) Member 16 December, 2012 - 19:18 GE, Clean Energy Fuels Partner to Expand Natural Gas Highway clean energy Clean Energy Fuels energy Environment Fuel GE Innovation...

  14. Transportation | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    by Jessi3bl(15) Member 16 December, 2012 - 19:18 GE, Clean Energy Fuels Partner to Expand Natural Gas Highway clean energy Clean Energy Fuels energy Environment Fuel GE Innovation...

  15. Fuel | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    by Jessi3bl(15) Member 16 December, 2012 - 19:18 GE, Clean Energy Fuels Partner to Expand Natural Gas Highway clean energy Clean Energy Fuels energy Environment Fuel GE Innovation...

  16. Technology Innovation & Solutions | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    by Jessi3bl(15) Member 16 December, 2012 - 19:18 GE, Clean Energy Fuels Partner to Expand Natural Gas Highway clean energy Clean Energy Fuels energy Environment Fuel GE Innovation...

  17. Innovation | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    by Jessi3bl(15) Member 16 December, 2012 - 19:18 GE, Clean Energy Fuels Partner to Expand Natural Gas Highway clean energy Clean Energy Fuels energy Environment Fuel GE Innovation...

  18. GE | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    by Jessi3bl(15) Member 16 December, 2012 - 19:18 GE, Clean Energy Fuels Partner to Expand Natural Gas Highway clean energy Clean Energy Fuels energy Environment Fuel GE Innovation...

  19. Environment | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    by Jessi3bl(15) Member 16 December, 2012 - 19:18 GE, Clean Energy Fuels Partner to Expand Natural Gas Highway clean energy Clean Energy Fuels energy Environment Fuel GE Innovation...

  20. Trucking | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    by Jessi3bl(15) Member 16 December, 2012 - 19:18 GE, Clean Energy Fuels Partner to Expand Natural Gas Highway clean energy Clean Energy Fuels energy Environment Fuel GE Innovation...

  1. The Clean Air Mercury Rule

    SciTech Connect

    Michael Rossler

    2005-07-01

    Coming into force on July 15, 2005, the US Clean Air Mercury Rule will use a market-based cap-and-trade approach under Section 111 of the Clean Air Act to reduce mercury emissions from the electric power sector. This article provides a comprehensive summary of the new rule. 14 refs., 2 tabs.

  2. Commercialization of clean coal technologies

    SciTech Connect

    Bharucha, N.

    1994-12-31

    The steps to commercialization are reviewed in respect of their relative costs, the roles of the government and business sectors, and the need for scientific, technological, and economic viability. The status of commercialization of selected clean coal technologies is discussed. Case studies related to a clean coal technology are reviewed and conclusions are drawn on the factors that determine commercialization.

  3. Clean Energy Business Plan Competition

    ScienceCinema

    Maxted, Sara Jane; Lojewski, Brandon; Scherson, Yaniv;

    2013-05-29

    Top Students Pitch Clean Energy Business Plans The six regional finalists of the National Clean Energy Business Plan Competition pitched their business plans to a panel of judges June 13 in Washington, D.C. The expert judges announced NuMat Technologies from Northwestern University as the grand prize winner.

  4. Clean Energy Business Plan Competition

    SciTech Connect

    Maxted, Sara Jane; Lojewski, Brandon; Scherson, Yaniv

    2012-01-01

    Top Students Pitch Clean Energy Business Plans The six regional finalists of the National Clean Energy Business Plan Competition pitched their business plans to a panel of judges June 13 in Washington, D.C. The expert judges announced NuMat Technologies from Northwestern University as the grand prize winner.

  5. clean energy manufacturing | netl.doe.gov

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Clean Energy Manufacturing Initiative The Clean Energy Manufacturing Initiative is a strategic integration and commitment of manufacturing efforts across the DOE Office of Energy Efficiency & Renewable Energy's (EERE's) clean energy technology offices and Advanced Manufacturing Office, focusing on American competitiveness in clean energy manufacturing. Clean Energy Manufacturing Initiative: http://www1.eere.energy.gov/energymanufacturing

  6. Clean Fleet Final Report

    Alternative Fuels and Advanced Vehicles Data Center

    ... Natural gas exits the secondary regulator at a pressure of 3.5 inches water column (w.c.). ... to 1.5 to 2 psig, and the second stage reduces it to -1.5 inches of water (-0.05 psig). ...

  7. High Efficiency, Clean Combustion

    SciTech Connect

    Donald Stanton

    2010-03-31

    Energy use in trucks has been increasing at a faster rate than that of automobiles within the U.S. transportation sector. According to the Energy Information Administration (EIA) Annual Energy Outlook (AEO), a 23% increase in fuel consumption for the U.S. heavy duty truck segment is expected between 2009 to 2020. The heavy duty vehicle oil consumption is projected to grow between 2009 and 2050 while light duty vehicle (LDV) fuel consumption will eventually experience a decrease. By 2050, the oil consumption rate by LDVs is anticipated to decrease below 2009 levels due to CAFE standards and biofuel use. In contrast, the heavy duty oil consumption rate is anticipated to double. The increasing trend in oil consumption for heavy trucks is linked to the vitality, security, and growth of the U.S. economy. An essential part of a stable and vibrant U.S. economy is a productive U.S. trucking industry. Studies have shown that the U.S. gross domestic product (GDP) is strongly correlated to freight transport. Over 90% of all U.S. freight tonnage is transported by diesel power and over 75% is transported by trucks. Given the vital role that the trucking industry plays in the economy, improving the efficiency of the transportation of goods was a central focus of the Cummins High Efficient Clean Combustion (HECC) program. In a commercial vehicle, the diesel engine remains the largest source of fuel efficiency loss, but remains the greatest opportunity for fuel efficiency improvements. In addition to reducing oil consumption and the dependency on foreign oil, this project will mitigate the impact on the environment by meeting US EPA 2010 emissions regulations. Innovation is a key element in sustaining a U.S. trucking industry that is competitive in global markets. Unlike passenger vehicles, the trucking industry cannot simply downsize the vehicle and still transport the freight with improved efficiency. The truck manufacturing and supporting industries are faced with numerous

  8. CleanFleet. Final report: Executive summary

    SciTech Connect

    1995-12-01

    CleanFleet, formally known as the South Coast Alternative Fuels Demonstration, was a comprehensive demonstration of alternative fuel vehicles (AFVs) in daily commercial service. Between April 1992 and September 1994, five alternative fuels were tested in 84 panel vans: compressed natural gas (CNG), propane gas, methanol as M-85, California Phase 2 reformulated gasoline (RFG), and electricity. The AFVs were used in normal FedEx package delivery service in the Los Angeles basin alongside 27 {open_quotes}control{close_quotes} vans operating on regular gasoline. The liquid and gaseous fuel vans were model year 1992 vans from Ford, Chevrolet, and Dodge. The two electric vehicles (EVs) were on loan to FedEx from Southern California Edison. The AFVs represented a snapshot in time of 1992 technologies that (1) could be used reliably in daily FedEx operations and (2) were supported by the original equipment manufacturers (OEMs). A typical van is shown in Figure 2. The objective of the project was to demonstrate and document the operational, emissions, and economic status of alternative fuel, commercial fleet delivery vans in the early 1990s for meeting air quality regulations in the mid to late 1990s. During the two-year demonstration, CleanFleet`s 111 vehicles travelled more than three million miles and provided comprehensive data on three major topics: fleet operations, emissions, and fleet economics. Fleet operations were examined in detail to uncover and resolve problems with the use of the fuels and vehicles in daily delivery service. Exhaust and evaporative emissions were measured on a subset of vans as they accumulated mileage. The California Air Resources Board (ARB) measured emissions to document the environmental benefits of these AFVs. At the same time, CleanFleet experience was used to estimate the costs to a fleet operator using AFVs to achieve the environmental benefits of reduced emissions.

  9. Method of cleaning a spent fuel assembly

    SciTech Connect

    Chung, D.K.; Jones, C.E. Jr.

    1989-05-09

    A method is described of cleaning a fuel assembly including surfaces thereof prior to decladding, each assembly surface contaminated with a radioactive alkali metal and comprising a plurality of pressurized metallic fuel pins containing a spent fissible material, the method comprising the sequential steps of: (a) placing the fuel assembly in a sealed chamber; (b) passing a heated, inert gas through the chamber to heat the fuel assembly to a temperature sufficient to cause volatilization of the alkali metal but insufficient to rupture the pressurized metal pins; (c) evacuating the chamber to a pressure of less than 0.5 mm of Hg to further enhance volatilization and removal of the alkali metal and maintaining the chamber at that pressure until the decay heat of the fissile materials causes the temperature of the fuel assembly to increase to a level which would be detrimental to the integrity of the metal pins; (d) cooling the fuel assembly by passing a cool, inert gas through the chamber to reduce the temperature of the fuel assembly to a desired level; (e) repeating the evacuation and cooling steps as required to insure removal of substantially all of the radioactive alkali metal from the assembly surface; and (f) recovering the cleaned fuel assembly from the chamber.

  10. A Not-So-Cheesy Approach to Clean Energy Manufacturing | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy A Not-So-Cheesy Approach to Clean Energy Manufacturing A Not-So-Cheesy Approach to Clean Energy Manufacturing May 30, 2012 - 6:24pm Addthis Betin Incorporated's generator converts gas from the plant's anaerobic digester into electricity. | Courtesy of Montchevré. Betin Incorporated's generator converts gas from the plant's anaerobic digester into electricity. | Courtesy of Montchevré. Kristin Swineford Communication Specialist, Weatherization and Intergovernmental Programs What

  11. SEP Success Story: A Not-So-Cheesy Approach to Clean Energy Manufacturing |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy A Not-So-Cheesy Approach to Clean Energy Manufacturing SEP Success Story: A Not-So-Cheesy Approach to Clean Energy Manufacturing May 30, 2012 - 5:17pm Addthis Betin Incorporated's generator converts gas from the plant's anaerobic digester into electricity. | Courtesy of Montchevré. Betin Incorporated's generator converts gas from the plant's anaerobic digester into electricity. | Courtesy of Montchevré. With investments from the Recovery Act, Betin Incorporated (the

  12. Clean Metal Casting

    SciTech Connect

    Makhlouf M. Makhlouf; Diran Apelian

    2002-02-05

    The objective of this project is to develop a technology for clean metal processing that is capable of consistently providing a metal cleanliness level that is fit for a given application. The program has five tasks: Development of melt cleanliness assessment technology, development of melt contamination avoidance technology, development of high temperature phase separation technology, establishment of a correlation between the level of melt cleanliness and as cast mechanical properties, and transfer of technology to the industrial sector. Within the context of the first task, WPI has developed a standardized Reduced Pressure Test that has been endorsed by AFS as a recommended practice. In addition, within the context of task1, WPI has developed a melt cleanliness sensor based on the principles of electromagnetic separation. An industrial partner is commercializing the sensor. Within the context of the second task, WPI has developed environmentally friendly fluxes that do not contain fluorine. Within the context of the third task, WPI modeled the process of rotary degassing and verified the model predictions with experimental data. This model may be used to optimize the performance of industrial rotary degassers. Within the context of the fourth task, WPI has correlated the level of melt cleanliness at various foundries, including a sand casting foundry, a permanent mold casting foundry, and a die casting foundry, to the casting process and the resultant mechanical properties. This is useful in tailoring the melt cleansing operations at foundries to the particular casting process and the desired properties of cast components.

  13. Clean Energy Solutions Centers Fact Sheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Clean Energy Solutions Centers Fact Sheet Clean Energy Solutions Centers Fact Sheet A fact sheet describing the mission of the Clean Energy Solution Center. Clean Energy Solutions ...

  14. E5 Clean Energy | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    E5 Clean Energy Jump to: navigation, search Name: e5 Clean Energy Place: Agoura Hills, California Zip: 91301 Sector: Solar Product: Sells solar energy systems. References: e5 Clean...

  15. Degreasing and cleaning superconducting RF Niobium cavities

    SciTech Connect

    Rauchmiller, Michael; Kellett, Ron; /Fermilab

    2011-09-01

    The purpose and scope of this report is to detail the steps necessary for degreasing and cleaning of superconducting RF Niobium cavities in the A0 clean room. It lists the required equipment and the cleaning procedure.

  16. CleanTech Biofuels | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    CleanTech Biofuels Jump to: navigation, search Name: CleanTech Biofuels Place: St. Louis, Missouri Zip: 63130 Sector: Biofuels Product: CleanTech Biofuels holds exclusive licenses...

  17. Clean Fleets Announcement | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Domain | Clean Fleets Announcement 4 of 14 4 of 14 Clean Fleets Announcement 4 of 14 Martha Johnson, General Services Administrator, speaks at a Clean Fleets event held at the...

  18. Texas Hydrogen Highway Fuel Cell Hybrid Bus and Fueling Infrastructure Technology Showcase - Final Scientific/Technical Report

    SciTech Connect

    Hitchcock, David

    2012-06-29

    The Texas Hydrogen Highway project has showcased a hydrogen fuel cell transit bus and hydrogen fueling infrastructure that was designed and built through previous support from various public and private sector entities. The aim of this project has been to increase awareness among transit agencies and other public entities on these transportation technologies, and to place such technologies into commercial applications, such as a public transit agency. The initial project concept developed in 2004 was to show that a skid-mounted, fully-integrated, factory-built and tested hydrogen fueling station could be used to simplify the design, and lower the cost of fueling infrastructure for fuel cell vehicles. The approach was to design, engineer, build, and test the integrated fueling station at the factory then install it at a site that offered educational and technical resources and provide an opportunity to showcase both the fueling station and advanced hydrogen vehicles. The two primary technology components include: Hydrogen Fueling Station: The hydrogen fueling infrastructure was designed and built by Gas Technology Institute primarily through a funding grant from the Texas Commission on Environmental Quality. It includes hydrogen production, clean-up, compression, storage, and dispensing. The station consists of a steam methane reformer, gas clean-up system, gas compressor and 48 kilograms of hydrogen storage capacity for dispensing at 5000 psig. The station is skid-mounted for easy installation and can be relocated if needed. It includes a dispenser that is designed to provide temperaturecompensated fills using a control algorithm. The total station daily capacity is approximately 50 kilograms. Fuel Cell Bus: The transit passenger bus built by Ebus, a company located in Downey, CA, was commissioned and acquired by GTI prior to this project. It is a fuel cell plug-in hybrid electric vehicle which is ADA compliant, has air conditioning sufficient for Texas operations

  19. Development and Demonstration of a Fuel-Efficient Class 8 Highway...

    Energy Saver

    Development and Demonstration of a Fuel-Efficient Class 8 Highway Vehicle 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer ...

  20. O.A.R. 734-051 - Highway Approaches, Access Control, Spacing...

    OpenEI (Open Energy Information) [EERE & EIA]

    1 - Highway Approaches, Access Control, Spacing Standards and Medians Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation:...

  1. Development and Demonstration of a Fuel-Efficient Class 8 Highway...

    Energy Saver

    More Documents & Publications Vehicle Technologies Office Merit Review 2015: Volvo SuperTruck Development and Demonstration of a Fuel-Efficient Class 8 Highway Vehicle Vehicle ...

  2. Fact #698: October 24, 2011 Changes in the Federal Highway Administrat...

    Energy.gov [DOE] (indexed site)

    ... Estimation procedures include use of State supplied data, the 2002 Census of Transportation Vehicle Inventory and Use Survey (VIUS), and other sources. 2 Totals by highway ...

  3. FEDERAL FINANCING PROGRAMS for CLEAN ENERGY

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    FEDERAL FINANCING PROGRAMS for CLEAN ENERGY FEDERAL FINANCING PROGRAMS FOR CLEAN ENERGY * 2016 | INSIDE COVER THIS PAGE INTENTIONALLY LEFT BLANK FOR PRINTING CONTENTS Foreword 3 Acknowledgements 5 Indexes of Federal Financing Programs for Clean Energy 6 * Federal Financing Programs for Clean Energy by Administering Agency * Federal Financing Programs for Clean Energy by Program Type Profiles of Federal Financing Programs 11 for Clean Energy by Agency * United States Department of Energy (DOE) *

  4. Clean Cities: Silicon Valley Clean Cities (San Jose) coalition

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    various programs at Breathe California of the Bay Area the "Local Clean Air and Healthy Lungs Leader," a nonprofit grassroots organization founded in 1911 to fight lung disease and...

  5. Clean Cities: Valley of the Sun Clean Cities coalition (Phoenix...

    Alternative Fuels and Advanced Vehicles Data Center

    Photo of Bill Sheaffer Bill Sheaffer began serving as coordinator of the Valley of the Sun Clean Cities coalition in 2002 and now serves as the executive director of this...

  6. Black Pine Engineering Wins Clean Energy Trust Clean Energy Challenge

    Office of Energy Efficiency and Renewable Energy (EERE)

    Student team from Michigan State University takes top honors at the Eastern Midwest regional competition of the Energy Department’s National Clean Energy Business Plan Competition for its advanced turbomachinery system for geothermal power plants.

  7. Clean Cities: Eastern Pennsylvania Alliance for Clean Transportation...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    resides. In 2006, Bandiero was elected to the Board of Directors of the Greater Philadelphia Clean Cities (GPCC) Coalition, where he served for over 2-12 years. In 2009, he...

  8. Characterization of the cleaning process on a transferred graphene

    SciTech Connect

    Huang, Li-Wei [Institute of Physics, Academia Sinica, Taipei 115, Taiwan (China); Department of Engineering and System Science, National Tsing Hua University, Hsinchu 300, Taiwan (China); Nano Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan (China); Chang, Cheng-Kai [Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan and Institute of Polymer Science and Engineering, National Taiwan University, Taipei 106, Taiwan (China); Chien, Fan-Ching [Department of Optics and Photonics, National Central University, Chung-Li 320, Taiwan (China); Chen, Kuei-Hsien [Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan (China); Chen, Peilin [Research Center of Applied Science, Academia Sinica, Taipei 115, Taiwan (China); Chen, Fu-Rong [Department of Engineering and System Science, National Tsing Hua University, Hsinchu 300, Taiwan (China); Chang, Chia-Seng, E-mail: jasonc@phys.sinica.edu.tw [Institute of Physics, Academia Sinica, Taipei 115, Taiwan and Nano Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan (China)

    2014-09-01

    Intrinsic graphene possesses many outstanding physical and chemical properties, but their full explorations are often hindered by the effects of substrate and/or contamination. The authors employ the ultrahigh vacuum transmission electron microscopy equipped with a residual gas analyzer to in-situ characterize an effective decontamination process on a suspended graphene. Raman spectroscopic spectra further verify the cleanness of the resultant graphene membrane. The authors also present two contrasting growth morphologies of copper nanoparticles obtained on both clean and unclean graphene surfaces and show that the intrinsic growth dynamics can only manifest on the surface without contaminations.

  9. METHOD OF CLEANING METAL SURFACES

    DOEpatents

    Winkler, H.W.; Morfitt, J.W.; Little, T.H.

    1959-05-19

    Cleaning fluids for removing deposits from metal surfaces are described. The cleaning agents of the invention consist of aqueous nitric acid and an amhydrous nitrate salt of a metal which is lower in the electromotive series than the element of the deposit to be removed. In general, the salt content of thc cleaning agents ranged from 10 to 90%, preferably from 10 to 40% by weight; and the balance of the composition comprises nitric acid of any strength from extremely dilute up to concentrated strength.

  10. Dry-cleaning of graphene

    SciTech Connect

    Algara-Siller, Gerardo; Lehtinen, Ossi; Kaiser, Ute; Turchanin, Andrey

    2014-04-14

    Studies of the structural and electronic properties of graphene in its pristine state are hindered by hydrocarbon contamination on the surfaces. Also, in many applications, contamination reduces the performance of graphene. Contamination is introduced during sample preparation and is adsorbed also directly from air. Here, we report on the development of a simple dry-cleaning method for producing large atomically clean areas in free-standing graphene. The cleanness of graphene is proven using aberration-corrected high-resolution transmission electron microscopy and electron spectroscopy.

  11. Clean Power Research | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    search Name: Clean Power Research Place: Napa, California Product: California-based clean energy consulting and research company. Coordinates: 38.298855, -122.285194 Show...

  12. Hudson Clean Energy Partners | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Clean Energy Partners Jump to: navigation, search Name: Hudson Clean Energy Partners Place: Teaneck, New Jersey Zip: 7666 Product: New Jersey-based private equity fund manager...

  13. Evergreen Clean Energy | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Clean Energy Jump to: navigation, search Name: Evergreen Clean Energy Place: Provo, Utah Zip: 84604 Sector: Geothermal energy Product: Utah-based private equity fund targeting...

  14. Connecticut Clean Energy Fund | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Connecticut Clean Energy Fund Jump to: navigation, search Name: Connecticut Clean Energy Fund Address: 200 Corporate Place Place: Rocky Hill, Connecticut Zip: 06067 Region:...

  15. Clean Pacific Ventures | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Ventures Jump to: navigation, search Logo: Clean Pacific Ventures Name: Clean Pacific Ventures Address: 425 California Street, Suite 2450 Place: San Francisco, California Zip:...

  16. Clean Diesel Technologies | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Clean Diesel Technologies Retrieved from "http:en.openei.orgwindex.php?titleCleanDieselTechnologies&oldid768455" Categories: Organizations Energy Efficiency...

  17. Suncatcher Clean Energy | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Suncatcher Clean Energy Jump to: navigation, search Name: Suncatcher Clean Energy Place: Corinth, New Jersey Zip: 5039 Sector: Renewable Energy Product: Sun Catcher, is dedicated...

  18. Clean Energy Incubator | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Incubator Jump to: navigation, search Name: Clean Energy Incubator Place: Austin, Texas Zip: Texas 78759 Sector: Renewable Energy Product: The Clean Energy Incubator is a program...

  19. Clean Energy Group Virginia | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Clean Energy Group Virginia Jump to: navigation, search Name: Clean Energy Group (Virginia) Place: Reston, Virginia Zip: VA 20191 Product: Virginia-based state regional office of...

  20. Austin Clean Energy Incubator | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Incubator Jump to: navigation, search Logo: Austin Clean Energy Incubator Name: Austin Clean Energy Incubator Address: 3925 West Braker Lane Place: Austin, Texas Zip: 78759 Region:...

  1. Clean Edge Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Edge Inc Jump to: navigation, search Logo: Clean Edge Inc Name: Clean Edge Inc Place: Portland, Oregon Zip: 97213 Region: Pacific Northwest Area Website: www.cleanedge.com...

  2. FE Clean Energy Group | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    FE Clean Energy Group Jump to: navigation, search Name: FE Clean Energy Group Place: Darien, Connecticut Zip: 6820 Sector: Efficiency Product: A Private Equity Fund Manager which...

  3. American Clean Coal Fuels | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    American Clean Coal Fuels Retrieved from "http:en.openei.orgwindex.php?titleAmericanCleanCoalFuels&oldid768408" Categories: Organizations Energy Generation Organizations...

  4. Clean Energy Portfolio Goal | Department of Energy

    Energy.gov [DOE] (indexed site)

    Renewables Portfolio Standard Summary In May 2011, Indiana enacted SB 251, creating the Clean Energy Portfolio Standard (CPS). The program sets a voluntary goal of 10% clean...

  5. Clean Energy Economy | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Portal Linkedin.jpg CleanTech Cleantech Venture Capital Global Renewable Energy Network (GReEN) MIT Club of Northern California CleanTech Renewable Energy Business...

  6. New England Clean Fuels | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    New England Clean Fuels Place: MA, Massachusetts Zip: 2420 Product: New England Clean Fuels, Inc (NECF) is a startup based on the concept of using photosynthetic microorganisms as...

  7. DOE - NNSA/NFO -- Operation Clean Desert

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ZONE > Operation Clean Desert NNSANFO Language Options U.S. DOENNSA - Nevada Field Office Operation Clean Desert FUN FOR ALL AGES Dr. Proton Graphic Adam - Smiling Operation ...

  8. Clean Economy Network | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Network Jump to: navigation, search Name: Clean Economy Network Place: Washington, Washington, DC Zip: 20004 Product: Washingt (DC-based advocacy group focused on clean energy and...

  9. FE Clean Coal News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Electricity from Innovative DOE-Supported Clean Coal Project An innovative clean coal technology project in Texas will supply electricity to the largest municipally owned...

  10. SciTech Connect: "clean coal"

    Office of Scientific and Technical Information (OSTI)

    clean coal" Find + Advanced Search Term Search Semantic Search Advanced Search All Fields: "clean coal" Semantic Semantic Term Title: Full Text: Bibliographic Data: Creator ...

  11. Clean Cites Now, Vol. 11, No. 4

    SciTech Connect

    Not Available

    2007-10-01

    Clean Cities Now is the official publication of the Clean Cities program. It features articles on alternative fuels and vehicles, idle reduction, fuel economy, and hybrid vehicles.

  12. Clean Energy Manufacturing Initiative Southeast Regional Summit...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Clean Energy Manufacturing Initiative Southeast Regional Summit Clean Energy Manufacturing Initiative Southeast Regional Summit July 9, 2015 8:30AM to 6:00PM EDT Renaissance...

  13. #CleanTechNow | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    #CleanTechNow #CleanTechNow Addthis Speakers Secretary Ernest Moniz Duration :44 Topic Commercial Lighting Alternative Fuel Vehicles Solar Wind

  14. Share Your Clean Energy Economy Story

    Energy.gov [DOE]

    How did you get involved in the Clean Energy Economy? Help other people learn the opportunities available in the clean energy sector by sharing your own story below.

  15. National Clean Energy Business Plan Competition | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Competition National Clean Energy Business Plan Competition The National Clean Energy Business Plan Competition inspired nearly 300 university teams across the country to create ...

  16. Clean Energy Manufacturing Funding Opportunities | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Funding Opportunities Clean Energy Manufacturing Funding Opportunities To accomplish the goals of the Clean Energy Manufacturing Initiative (CEMI), the U.S. Department of Energy ...

  17. FEDERAL FINANCING PROGRAMS for CLEAN ENERGY

    Energy.gov [DOE] (indexed site)

    FEDERAL FINANCING PROGRAMS for CLEAN ENERGY FEDERAL FINANCING PROGRAMS FOR CLEAN ENERGY * 2016 | INSIDE COVER THIS PAGE INTENTIONALLY LEFT BLANK FOR PRINTING CONTENTS Foreword 3 ...

  18. Clean Transportation Education Project | Department of Energy

    Energy.gov [DOE] (indexed site)

    Clean Cities Education & Outreach Activities Vehicle Technologies Office Merit Review 2014: Alternative Fuels Implementation Team (AFIT) for North Carolina Puget Sound Clean Cities ...

  19. clean energy manufacturing | netl.doe.gov

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Clean Energy Manufacturing Initiative The Clean Energy Manufacturing Initiative is a strategic integration and commitment of manufacturing efforts across the DOE Office of Energy ...

  20. Clean Energy Manufacturing Initiative | Department of Energy

    Energy.gov [DOE] (indexed site)

    Dave Danielson for an unforgettable dialogue on advances and obstacles in clean energy ... Read more Leadership Perspectives: The Opportunity for Clean Energy Manufacturing ...

  1. clean cities | netl.doe.gov

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Clean Cities (Technology Integration, Outreach and Deployment) Clean Cities advances the nation's economic, environmental, and energy security by supporting local actions to reduce ...

  2. Secretary Chu Announces Best Buy, Johnson Controls, Pacific Gas and

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Electric, and Veolia to Join National Clean Fleets Partnership | Department of Energy Best Buy, Johnson Controls, Pacific Gas and Electric, and Veolia to Join National Clean Fleets Partnership Secretary Chu Announces Best Buy, Johnson Controls, Pacific Gas and Electric, and Veolia to Join National Clean Fleets Partnership March 5, 2012 - 12:15pm Addthis INDIANAPOLIS, IN -- Energy Secretary Steven Chu today announced that four new corporate partners - Best Buy, Johnson Controls, Pacific Gas

  3. Property Assessed Clean Energy Financing

    Office of Energy Efficiency and Renewable Energy (EERE)

    The District of Columbia offers a commercial Property Assessed Clean Energy (PACE) program. PACE financing allows commercial and mulitfamily property owners in the district to borrow money to pay...

  4. Alternative and Clean Energy Program

    Energy.gov [DOE]

    NOTE: It is important to note that some applicants are only eligible to apply under some aspects of the program. Political subdivisions are only permitted to apply for loans or grants for Clean ...

  5. Clean Cities Now, Vol. 20, No. 1, Summer 2016 - Tackling Transportation: Clean Cities and NPS Team Up to Steer National Parks Toward a Sustainable Future (Newsletter), Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    Alternative Fuels and Advanced Vehicles Data Center

    National Parks Initiative Celebrates 5 Years ampCNG Champions a Cow-Powered, Renewable Natural Gas Fleet Yellowstone-Teton Coordinator Establishes Climate-Friendly Initiatives New Haven Intern Promotes Health Across the Region Tackling Transportation: Clean Cities and NPS Team Up to Steer National Parks Toward a Sustainable Future VOL. 20, NO. 1 | SUMMER 2016 INSIDE CLEAN CITIES NOW In This Issue Workplace charging takes off at Louisiana university thanks to coalition's teamwork, p. 17 Texas

  6. Energy 101: Clean Energy Manufacturing

    SciTech Connect

    2015-07-09

    Most of us have a basic understanding of manufacturing. It's how we convert raw materials, components, and parts into finished goods that meet our essential needs and make our lives easier. But what about clean energy manufacturing? Clean energy and advanced manufacturing have the potential to rejuvenate the U.S. manufacturing industry and open pathways to increased American competitiveness. Watch this video to learn more about this exciting movement and to see some of these innovations in action.

  7. Energy 101: Clean Energy Manufacturing

    Energy.gov [DOE]

    Most of us have a basic understanding of manufacturing. It's how we convert raw materials, components, and parts into finished goods that meet our essential needs and make our lives easier. But what about clean energy manufacturing? Clean energy and advanced manufacturing have the potential to rejuvenate the U.S. manufacturing industry and open pathways to increased American competitiveness. Watch this video to learn more about this exciting movement and to see some of these innovations in action.

  8. The Clean Energy Manufacturing Initiative

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Clean Energy Manufacturing Initiative (CEMI) is a U.S. Department of Energy (DOE)- wide commitment to innovation and breaking down market barriers in order to enhance U.S. manufacturing competitiveness while advancing the nation's energy goals. As part of its mission, CEMI builds partnerships around strategic priorities to increase U.S. clean energy manufacturing competitiveness. This requires an "all-hands-on-deck" approach that involves the nation's private and public sectors,

  9. Clean Energy Solutions Center (Presentation)

    SciTech Connect

    Reategui, S.

    2012-07-01

    The Clean Energy Ministerial launched the Clean Energy Solutions Center in April, 2011 for major economy countries, led by Australia and U.S. with other CEM partners. Partnership with UN-Energy is extending scope to support all developing countries: 1. Enhance resources on policies relating to energy access, small to medium enterprises (SMEs), and financing programs; 2. Offer expert policy assistance to all countries; 3. Expand peer to peer learning, training, and deployment and policy data for developing countries.

  10. Secretary Chu Announces Best Buy, Johnson Controls, Pacific Gas...

    Energy Saver

    Gas and Electric, and Veolia - are joining the Energy Department's National Clean Fleets Partnership, a broad public-... As of 2012, the company operates four CNG fueling stations ...

  11. Development of clean coal and clean soil technologies using advanced agglomeration techniques

    SciTech Connect

    Ignasiak, B.; Ignasiak, T.; Szymocha, K.

    1990-01-01

    Three major topics are discussed in this report: (1) Upgrading of Low Rank Coals by the Agflotherm Process. Test data, procedures, equipment, etc., are described for co-upgrading of subbituminous coals and heavy oil; (2) Upgrading of Bituminous Coals by the Agflotherm Process. Experimental procedures and data, bench and pilot scale equipments, etc., for beneficiating bituminous coals are described; (3) Soil Clean-up and Hydrocarbon Waste Treatment Process. Batch and pilot plant tests are described for soil contaminated by tar refuse from manufactured gas plant sites. (VC)

  12. Clean Energy Application Center

    SciTech Connect

    Freihaut, Jim

    2013-09-30

    The Mid Atlantic Clean Energy Application Center (MACEAC), managed by The Penn State College of Engineering, serves the six states in the Mid-Atlantic region (Pennsylvania, New Jersey, Delaware, Maryland, Virginia and West Virginia) plus the District of Columbia. The goals of the Mid-Atlantic CEAC are to promote the adoption of Combined Heat and Power (CHP), Waste Heat Recovery (WHR) and District Energy Systems (DES) in the Mid Atlantic area through education and technical support to more than 1,200 regional industry and government representatives in the region. The successful promotion of these technologies by the MACEAC was accomplished through the following efforts; (1)The MACEAC developed a series of technology transfer networks with State energy and environmental offices, Association of Energy Engineers local chapters, local community development organizations, utilities and, Penn State Department of Architectural Engineering alumni and their firms to effectively educate local practitioners about the energy utilization, environmental and economic advantages of CHP, WHR and DES; (2) Completed assessments of the regional technical and market potential for CHP, WHR and DE technologies application in the context of state specific energy prices, state energy and efficiency portfolio development. The studies were completed for Pennsylvania, New Jersey and Maryland and included a set of incentive adoption probability models used as a to guide during implementation discussions with State energy policy makers; (3) Using the technical and market assessments and adoption incentive models, the Mid Atlantic CEAC developed regional strategic action plans for the promotion of CHP Application technology for Pennsylvania, New Jersey and Maryland; (4) The CHP market assessment and incentive adoption model information was discussed, on a continuing basis, with relevant state agencies, policy makers and Public Utility Commission organizations resulting in CHP favorable incentive

  13. Innovative technologies on fuel assemblies cleaning for sodium fast reactors: First considerations on cleaning process

    SciTech Connect

    Simon, N.; Lorcet, H.; Beauchamp, F.; Guigues, E.; Lovera, P.; Fleche, J. L.; Lacroix, M.; Carra, O.; Prele, G.

    2012-07-01

    Within the framework of Sodium Fast Reactor development, innovative fuel assembly cleaning operations are investigated to meet the GEN IV goals of safety and of process development. One of the challenges is to mitigate the Sodium Water Reaction currently used in these processes. The potential applications of aqueous solutions of mineral salts (including the possibility of using redox chemical reactions) to mitigate the Sodium Water Reaction are considered in a first part and a new experimental bench, dedicated to this study, is described. Anhydrous alternative options based on Na/CO{sub 2} interaction are also presented. Then, in a second part, a functional study conducted on the cleaning pit is proposed. Based on experimental feedback, some calculations are carried out to estimate the sodium inventory on the fuel elements, and physical methods like hot inert gas sweeping to reduce this inventory are also presented. Finally, the implementation of these innovative solutions in cleaning pits is studied in regard to the expected performances. (authors)

  14. Development of adjustment factors for the EPA city and highway MPG values

    SciTech Connect

    Hellman, K.H.; Murrell, J.D.

    1984-01-01

    This paper describes the development of adjustment factors applicable to the EPA City and Highway MPG values. The paper discusses the data bases used, and the analytical methods employed to arrive at adjustment factors of 0.90 for the EPA City MPG value and 0.78 for the EPA Highway MPG value.

  15. Clean Energy and Bond Finance Initiative

    Energy.gov [DOE]

    Provides information on Clean Energy and Bond Finance Initiative (CE+BFI). CE+BFI brings together public infrastructure finance agencies, clean energy public fund managers and institutional investors across the country to explore how to raise capital at scale for clean energy development through bond financing. Author: Clean Energy and Bond Finance Initiative

  16. Clean Cities Now, Vol. 10, No. 4

    SciTech Connect

    Not Available

    2006-10-01

    Official Publication of Clean Cities and the Alternative Fuels Data Center (Newsletter) volume 10, number 4

  17. Advancing Clean Energy Technology (Fact Sheet)

    SciTech Connect

    Not Available

    2010-07-01

    DOE/EERE Solar Energy Technologies Program Fact Sheet - Advancing Clean Energy Technology, May 2010.

  18. Clean Energy Manufacturing Initiative | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Clean Energy Manufacturing Initiative Clean Energy Manufacturing Initiative Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity Video Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity Video Industrial efficiency and low-cost energy resources are key components to increasing U.S. energy productivity and makes the U.S. manufacturing sector more competitive. Companies find a competitive advantage in implementing efficiency

  19. What is Clean Cities? May 2011 (Brochure)

    SciTech Connect

    Not Available

    2011-05-01

    Fact sheet describes the Clean Cities program and includes the contact information for its 87 coalitions.

  20. Clean coal technologies: A business report

    SciTech Connect

    Not Available

    1993-01-01

    The book contains four sections as follows: (1) Industry trends: US energy supply and demand; The clean coal industry; Opportunities in clean coal technologies; International market for clean coal technologies; and Clean Coal Technology Program, US Energy Department; (2) Environmental policy: Clean Air Act; Midwestern states' coal policy; European Community policy; and R D in the United Kingdom; (3) Clean coal technologies: Pre-combustion technologies; Combustion technologies; and Post-combustion technologies; (4) Clean coal companies. Separate abstracts have been prepared for several sections or subsections for inclusion on the data base.

  1. Clean Energy Manufacturing Reports | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Reports Clean Energy Manufacturing Reports The Clean Energy Manufacturing Initiative develops competitiveness analysis and strategies that inform R&D investments and other efforts needed to address key barriers to growing U.S. clean energy manufacturing competitiveness. This unprecedented competitiveness analysis evaluates the costs of producing clean energy products in the U.S. compared to competitor nations to understand factory location decisions and identify key drivers to U.S. clean

  2. Clean Cities Alternative Fuel Price Report

    Alternative Fuels and Advanced Vehicles Data Center

    April 2009 Clean Cities Alternative Fuel Price Report CLEAN CITIES ALTERNATIVE FUEL PRICE REPORT APRIL 2009 Page 2 WELCOME! Welcome to the April 2009 issue of the Clean Cities Alternative Fuel Price Report, a quarterly report designed to keep you up to date on the prices of alternative fuels and conventional fuels in the U.S. This issue summarizes prices that were collected between April 1, 2009 and April 15, 2009 from Clean Cities Coordinators, fuel providers, and other Clean Cities

  3. Clean Cities Alternative Fuel Price Report

    Alternative Fuels and Advanced Vehicles Data Center

    January 2009 Clean Cities Alternative Fuel Price Report CLEAN CITIES ALTERNATIVE FUEL PRICE REPORT JANUARY 2009 Page 2 WELCOME! Welcome to the January 2009 issue of the Clean Cities Alternative Fuel Price Report, a quarterly report designed to keep you up to date on the prices of alternative fuels and conventional fuels in the U.S. This issue summarizes prices that were collected between January 12, 2009 and January 30, 2009 from Clean Cities Coordinators, fuel providers, and other Clean Cities

  4. Clean Cities Alternative Fuel Price Report

    Alternative Fuels and Advanced Vehicles Data Center

    Clean Cities Alternative Fuel Price Report July 2009 CLEAN CITIES ALTERNATIVE FUEL PRICE REPORT JULY 2009 WELCOME! Welcome to the July 2009 issue of the Clean Cities Alternative Fuel Price Report, a quarterly report designed to keep you up to date on the prices of alternative fuels and conventional fuels in the U.S. This issue summarizes prices that were collected between July 20, 2009 and July 31, 2009 from Clean Cities Coordinators, fuel providers, and other Clean Cities stakeholders.

  5. Clean Cities Alternative Fuel Price Report

    Alternative Fuels and Advanced Vehicles Data Center

    July 2008 Clean Cities Alternative Fuel Price Report CLEAN CITIES ALTERNATIVE FUEL PRICE REPORT JULY 2008 Page 2 WELCOME! Welcome to the July 2008 issue of the Clean Cities Alternative Fuel Price Report, a quarterly report designed to keep you up to date on the prices of alternative fuels and conventional fuels in the U.S. This issue summarizes prices that were collected between July 21, 2008 and July 31, 2008 from Clean Cities Coordinators, fuel providers, and other Clean Cities stakeholders.

  6. Clean Cities Alternative Fuel Price Report

    Alternative Fuels and Advanced Vehicles Data Center

    October 2008 Clean Cities Alternative Fuel Price Report CLEAN CITIES ALTERNATIVE FUEL PRICE REPORT OCTOBER 2008 Page 2 WELCOME! Welcome to the October 2008 issue of the Clean Cities Alternative Fuel Price Report, a quarterly report designed to keep you up to date on the prices of alternative fuels and conventional fuels in the U.S. This issue summarizes prices that were collected between October 2, 2008 and October 16, 2008 from Clean Cities Coordinators, fuel providers, and other Clean Cities

  7. Clean Cities Alternative Fuel Price Report

    Alternative Fuels and Advanced Vehicles Data Center

    9 Clean Cities Alternative Fuel Price Report CLEAN CITIES ALTERNATIVE FUEL PRICE REPORT OCTOBER 2009 Page 2 WELCOME! Welcome to the October 2009 issue of the Clean Cities Alternative Fuel Price Report, a quarterly report designed to keep you up to date on the prices of alternative fuels and conventional fuels in the U.S. This issue summarizes prices that were collected between October 16, 2009 and October 26, 2009 from Clean Cities Coordinators, fuel providers, and other Clean Cities

  8. Small Businesses Helping Drive Economy: Clean Energy, Clean Sites

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Small Businesses Helping Drive Economy: Clean Energy, Clean Sites "We should start where most new jobs do - in small businesses, companies that begin when an entrepreneur takes a chance on a dream, or a worker decides its time she became her own boss." --- President Obama, State of the Union Address, January 27, 2010 "Jobs will be our number one focus in 2010. And we're going to start where most new jobs do - with small businesses." --- President Obama, Nashua, New

  9. The Federal Highway Administration Gasohol Consumption Estimation Model

    SciTech Connect

    Hwang, HL

    2003-08-28

    The Federal Highway Administration (FHWA) is responsible for estimating the portion of Federal highway funds attributable to each State. The process involves use of State-reported data (gallons) and a set of estimation models when accurate State data is unavailable. To ensure that the distribution of funds is equitable, FHWA periodically reviews the estimation models. Estimation of the use of gasohol is difficult because of State differences in the definition of gasohol, inability of many States to separate and report gasohol usage from other fuel types, changes in fuel composition in nonattainment areas to address concerns over the use of certain fuel additives, and the lack of a valid State-level surrogate data set for gasohol use. Under the sponsorship of FHWA, Oak Ridge National Laboratory (ORNL) reviewed the regression-based gasohol estimation model that has been in use for several years. Based on an analytical assessment of that model and an extensive review of potential data sets, ORNL developed an improved rule-based model. The new model uses data from Internal Revenue Service, Energy Information Administration, Environmental Protection Agency, Department of Energy, ORNL, and FHWA sources. The model basically consists of three parts: (1) development of a controlled total of national gasohol usage, (2) determination of reliable State gasohol consumption data, and (3) estimation of gasohol usage for all other States. The new model will be employed for the 2004 attribution process. FHWA is currently soliciting comments and inputs from interested parties. Relevant data, as identified, will be pursued and refinements will be made by the research team if warranted.

  10. CleanFleet. Final report: Volume 5, employee attitude assessment

    SciTech Connect

    1995-12-01

    The experiences of couriers, operations managers, vehicle handlers (refuelers), and mechanics who drove and/or worked with alternative fuel vehicles, and the attitudes and perceptions of people with these experiences, are examined. Five alternative fuels studied in the CleanFleet project are considers& compressed natural gas, propane gas, California Phase 2 reformulated gasoline, M-85, and electricity. The three major areas of interest include comparative analysis of issues such as health, safety and vehicle performance, business issues encompassing several facets of station operations, and personal commentary and opinions about the CleanFleet project and the alterative fuels. Results of the employee attitude assessment are presented as both statistical and qualitative analysis.

  11. Hot gas filter and system assembly

    DOEpatents

    Lippert, Thomas Edwin; Palmer, Kathryn Miles; Bruck, Gerald Joseph; Alvin, Mary Anne; Smeltzer, Eugene E.; Bachovchin, Dennis Michael

    1999-01-01

    A filter element for separating fine dirty particles from a hot gas. The filter element comprises a first porous wall and a second porous wall. Each porous wall has an outer surface and an inner surface. The first and second porous walls being coupled together thereby forming a substantially closed figure and open at one end. The open end is formed to be coupled to a hot gas clean up system support structure. The first and second porous walls define a channel beginning at the open end and terminate at the closed end through which a filtered clean gas can flow through and out into the clean gas side of a hot gas clean up system.

  12. Hot gas filter and system assembly

    DOEpatents

    Lippert, T.E.; Palmer, K.M.; Bruck, G.J.; Alvin, M.A.; Smeltzer, E.E.; Bachovchin, D.M.

    1999-08-31

    A filter element is described for separating fine dirty particles from a hot gas. The filter element comprises a first porous wall and a second porous wall. Each porous wall has an outer surface and an inner surface. The first and second porous walls being coupled together thereby forming a substantially closed figure and open at one end. The open end is formed to be coupled to a hot gas clean up system support structure. The first and second porous walls define a channel beginning at the open end and terminate at the closed end through which a filtered clean gas can flow through and out into the clean gas side of a hot gas clean up system. 8 figs.

  13. Chapter 4: Advancing Clean Electric Power Technologies | Biopower Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Gas and Industrial Applications Carbon Dioxide Capture Technologies Carbon Dioxide Storage Technologies Crosscutting Technologies in Carbon Dioxide Capture and Storage Fast-spectrum Reactors Geothermal Power High Temperature Reactors Hybrid Nuclear-Renewable Energy Systems Hydropower Light Water Reactors Marine and Hydrokinetic Power Nuclear Fuel Cycles Solar Power Stationary Fuel Cells Supercritical Carbon Dioxide Brayton Cycle Wind Power ENERGY U.S. DEPARTMENT OF Clean Power Quadrennial

  14. Clean Cities: Capital District Clean Communities coalition (Albany...

    Alternative Fuels and Advanced Vehicles Data Center

    of AFV-based petroleum savings. Annual greenhouse gas emissions avoided: 14,196 tons of CO2 See the GHG by AFV tab for a breakdown of AFV-based greenhouse gas savings. Annual...

  15. Clean Cities: Houston-Galveston Clean Cities coalition

    Alternative Fuels and Advanced Vehicles Data Center

    of AFV-based petroleum savings. Annual greenhouse gas emissions avoided: 26,309 tons of CO2 See the GHG by AFV tab for a breakdown of AFV-based greenhouse gas savings. Annual...

  16. Clean Cities: Central Oklahoma Clean Cities (Oklahoma City) coalition

    Alternative Fuels and Advanced Vehicles Data Center

    of AFV-based petroleum savings. Annual greenhouse gas emissions avoided: 8,825 tons of CO2 See the GHG by AFV tab for a breakdown of AFV-based greenhouse gas savings. Annual...

  17. Clean Cities: Genesee Region Clean Communities (Rochester) coalition

    Alternative Fuels and Advanced Vehicles Data Center

    of AFV-based petroleum savings. Annual greenhouse gas emissions avoided: 2,982 tons of CO2 See the GHG by AFV tab for a breakdown of AFV-based greenhouse gas savings. Annual...

  18. Aftertreatment Technologies for Off-Highway Heavy-Duty Diesel Engines

    SciTech Connect

    Kass, M.D.

    2008-07-15

    The objective of this program was to explore a combination of advanced injection control and urea-selective catalytic reduction (SCR) to reduce the emissions of oxides of nitrogen (NOx) and particulate matter (PM) from a Tier 2 off-highway diesel engine to Tier 3 emission targets while maintaining fuel efficiency. The engine used in this investigation was a 2004 4.5L John Deere PowerTechTM; this engine was not equipped with exhaust gas recirculation (EGR). Under the original CRADA, the principal objective was to assess whether Tier 3 PM emission targets could be met solely by increasing the rail pressure. Although high rail pressure will lower the total PM emissions, it has a contrary effect to raise NOx emissions. To address this effect, a urea-SCR system was used to determine whether the enhanced NOx levels, associated with high rail pressure, could be reduced to Tier 3 levels. A key attraction for this approach is that it eliminates the need for a Diesel particulate filter (DPF) to remove PM emissions. The original CRADA effort was also performed using No.2 Diesel fuel having a maximum sulfur level of 500 ppm. After a few years, the CRADA scope was expanded to include exploration of advanced injection strategies to improve catalyst regeneration and to explore the influence of urea-SCR on PM formation. During this period the emission targets also shifted to meeting more stringent Tier 4 emissions for NOx and PM, and the fuel type was changed to ultra-low sulfur Diesel (ULSD) having a maximum sulfur concentration of 15 ppm. New discoveries were made regarding PM formation at high rail pressures and the influences of oxidation catalysts and urea-SCR catalysts. These results are expected to provide a pathway for lower PM and NOx emissions for both off- and on-highway applications. Industrial in-kind support was available throughout the project period. Review of the research results were carried out on a regular basis (annual reports and meetings) followed by

  19. New Jersey: Atlantic City Jitneys Running on Natural Gas | Department...

    Energy Saver

    New Jersey: Atlantic City Jitneys Running on Natural Gas New Jersey: Atlantic City Jitneys Running on Natural Gas November 6, 2013 - 12:00am Addthis In 2009, the New Jersey Clean ...

  20. Secretary Chu Announces Initiatives to Promote Clean Energy at First Clean

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Ministerial | Department of Energy Initiatives to Promote Clean Energy at First Clean Energy Ministerial Secretary Chu Announces Initiatives to Promote Clean Energy at First Clean Energy Ministerial July 20, 2010 - 12:00am Addthis Washington, D.C. - At the world's first Clean Energy Ministerial, U.S. Energy Secretary Steven Chu today announced that the United States is helping launch more than 10 international clean energy initiatives. These initiatives will cut energy waste; help

  1. Demonstration of a Low-NOx Heavy-Duty Natural Gas Engine

    SciTech Connect

    Not Available

    2004-02-01

    Results of a Next Generation Natural Gas Vehicle engine research project: A Caterpillar C-12 natural gas engine with Clean Air Power Dual-Fuel technology and exhaust gas recirculation demonstrated low NOx and PM emissions.

  2. Clean Coal Technology Demonstration Program

    Energy.gov [DOE]

    The Office of Fossil Energy’s Clean Coal Technology Demonstration Program (1986-1993) laid the foundation for effective technologies now in use that have helped significantly lower emissions of sulfur dioxide (SO2), nitrogen oxides (NOx) and airborne particulates (PM10).

  3. Geotechnical performance of a highway embankment constructed using waste foundry sand. Final report

    SciTech Connect

    Fox, P.J.; Mast, D.G.

    1998-11-23

    The purpose of this study was to evaluate the use of waste foundry sand (WFS) as a highway embankment material in a full-scale field demonstration project. This evaluation included geotechnical concerns, such as deformation, strength, hydraulic conductivity, and ease of construction. The report presents an introduction and previous research concerning WFS use in highway construction. A geotechnical laboratory testing program characterized the WFS used in the project, which was a waste product of Auburn Foundry, Inc., located in Auburn, Indiana. The project site was a 275 m section of the Country Route 206 highway project near Butler, Indiana.

  4. Clean Energy Infrastructure Educational Initiative

    SciTech Connect

    Hallinan, Kevin; Menart, James; Gilbert, Robert

    2012-08-31

    The Clean Energy Infrastructure Educational Initiative represents a collaborative effort by the University of Dayton, Wright State University and Sinclair Community College. This effort above all aimed to establish energy related programs at each of the universities while also providing outreach to the local, state-wide, and national communities. At the University of Dayton, the grant has aimed at: solidfying a newly created Master's program in Renewable and Clean Energy; helping to establish and staff a regional sustainability organization for SW Ohio. As well, as the prime grantee, the University of Dayton was responsible for insuring curricular sharing between WSU and the University of Dayton. Finally, the grant, through its support of graduate students, and through cooperation with the largest utilities in SW Ohio enabled a region-wide evaluation of over 10,000 commercial building buildings in order to identify the priority buildings in the region for energy reduction. In each, the grant has achieved success. The main focus of Wright State was to continue the development of graduate education in renewable and clean energy. Wright State has done this in a number of ways. First and foremost this was done by continuing the development of the new Renewable and Clean Energy Master's Degree program at Wright State . Development tasks included: continuing development of courses for the Renewable and Clean Energy Master's Degree, increasing the student enrollment, and increasing renewable and clean energy research work. The grant has enabled development and/or improvement of 7 courses. Collectively, the University of Dayton and WSU offer perhaps the most comprehensive list of courses in the renewable and clean energy area in the country. Because of this development, enrollment at WSU has increased from 4 students to 23. Secondly, the grant has helped to support student research aimed in the renewable and clean energy program. The grant helped to solidify new research

  5. FEDERAL FINANCING PROGRAMS FOR CLEAN ENERGY | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    FEDERAL FINANCING PROGRAMS FOR CLEAN ENERGY FEDERAL FINANCING PROGRAMS FOR CLEAN ENERGY Federal Financing Programs for Clean Energy.pdf (2.55 MB) More Documents & Publications FEDERAL FINANCING PROGRAMS FOR CLEAN ENERGY Federal Financing Programs for Clean Energy Guide to Federal Financing for Energy Efficiency and Clean Energy Deployment Federal Finance Facilities Available for Energy Efficiency Upgrades and Clean Energy Deployment

  6. Desulfurized gas production from vertical kiln pyrolysis

    DOEpatents

    Harris, Harry A.; Jones, Jr., John B.

    1978-05-30

    A gas, formed as a product of a pyrolysis of oil shale, is passed through hot, retorted shale (containing at least partially decomposed calcium or magnesium carbonate) to essentially eliminate sulfur contaminants in the gas. Specifically, a single chambered pyrolysis vessel, having a pyrolysis zone and a retorted shale gas into the bottom of the retorted shale zone and cleaned product gas is withdrawn as hot product gas near the top of such zone.

  7. Meeting today's challenges to supply tomorrow's energy. Clean fossil energy technical and policy seminar

    SciTech Connect

    2005-07-01

    Papers discussed the coal policy of China, Russia, Indonesia and Vietnam; clean coal technology (small-scale coal power plants, carbon capture and sequestration, new coking process SCOPE21, coal gasification (HyPr-RING), CO{sub 2} reduction technology, Supercritical coal-fired units and CFB boilers, EAGLE project, coal liquefaction), the coal consumer's view of clean fossil energy policy, and natural gas policy and technology. Some of the papers only consist of the presentation overheads/viewgraphs.

  8. Clean Energy - FE Dkt No. 14-54-LNG (FTA) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy - FE Dkt No. 14-54-LNG (FTA) Clean Energy - FE Dkt No. 14-54-LNG (FTA) The Office of Fossil Energy (FE) of the Department of Energy (DOE) gives notice of receipt of an application filed on March 18, 2014, by Clean Energy, requesting blanket authorization to engage in short-term imports and exports of up to 100 bcf of LNG gas. The authorization requested is for a two-year period commencing on the day the requested authorization is granted. Clean Energy requests that such authorization

  9. CleanLaunch | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    to: navigation, search Logo: CleanLaunch Name: CleanLaunch Address: 7706 Martin Luther King Blvd Place: Denver, Colorado Zip: 80238 Region: Rockies Area Number of Employees: 1-10...

  10. Indiana Clean Energy | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Clean Energy Jump to: navigation, search Name: Indiana Clean Energy Place: Frankfort, Indiana Zip: IN 46041 Product: Indiana-based company that will develop a 80m gallon biodiesel...

  11. clean-tech | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    - 13:42 How cleantech-as-a-service will drive renewable energy adoption 2015 adoption Big Data clean tech clean-tech cleantech cleantech forum cleantech-as-a-service cloud...

  12. clean tech | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    - 13:42 How cleantech-as-a-service will drive renewable energy adoption 2015 adoption Big Data clean tech clean-tech cleantech cleantech forum cleantech-as-a-service cloud...

  13. Clean Cities Now Vol. 16.1

    SciTech Connect

    2012-05-01

    Biannual newsletter for the U.S. Department of Energy's Clean Cities initiative. The newsletter includes feature stories on advanced vehicle deployment, idle reduction, and articles on Clean Cities coalition successes across the country.

  14. Clean Cities Now Vol. 17, No. 1

    SciTech Connect

    2013-05-24

    Biannual newsletter for the U.S. Department of Energy's Clean Cities initiative. The newsletter includes feature stories on advanced vehicle deployment, idle reduction, and articles on Clean Cities coalition successes across the country.

  15. Al Corn Clean Fuel | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Corn Clean Fuel Jump to: navigation, search Name: Al-Corn Clean Fuel Place: Claremont, North Dakota Product: Al-Corn is an ethanol plant located in Claremont, North Dakota, which...

  16. Clean Water Act | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: Clean Water ActLegal Abstract The Clean Water Act (CWA) establishes the basic structure for...

  17. ITEP Clean Power Plan and Tribes Training

    Energy.gov [DOE]

    The Institute of Environmental Professionals (ITEP) is hosting a Clean Power Plan and Tribes training provides detailed information for tribes to understand the Clean Power Plan and how it applies to their tribal lands.

  18. CleanTX Foundation | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    is a stub. You can help OpenEI by expanding it. CleanTX Foundation is a policy organization located in Austin, Texas. References About CleanTX Foundation Retrieved from...

  19. CleanTech Boston | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    This article is a stub. You can help OpenEI by expanding it. CleanTech Boston is an organization based in Boston, Massachusetts. References "CleanTechBoston.com" Retrieved from...

  20. Clean Cities Program Contacts (Fact Sheet)

    SciTech Connect

    Not Available

    2012-03-01

    This fact sheet provides contact information for program staff of the U.S. Department of Energy's Clean Cities program, as well as contact information for the nearly 100 local Clean Cities coalitions across the country.

  1. Clean Cities Program Contacts (Fact Sheet)

    SciTech Connect

    Not Available

    2013-12-01

    Contact information for the U.S. Department of Energy's Clean Cities program staff and for the coordinators of the nearly 100 local Clean Cities coalitions across the country.

  2. Initiative for Clean Energy | Photosynthetic Antenna Research...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Initiative for Clean Energy July 25, 2012 Initiative for Clean Energy Engineers at Washington University will work on low-cost solar cells and systems, while other partners will be...

  3. Clean Air Trade Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    a company specialising in CER purchase as well as project development and investment in clean energy. References: Clean Air Trade Inc1 This article is a stub. You can help OpenEI...

  4. Access to Clean Water | GE Global Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Clean Water Innovations Click to email this to a friend (Opens in new window) Share on ... What Works: Mark Little on Clean Water Innovations Mark Little, director of GE Global ...

  5. Public-Private Partnerships for Clean Energy Manufacturing Fact...

    Energy Saver

    Public-Private Partnerships for Clean Energy Manufacturing Fact Sheet Public-Private Partnerships for Clean Energy Manufacturing Fact Sheet Public-Private Partnerships for Clean ...

  6. Guide to Federal Financing for Energy Efficiency and Clean Energy...

    Energy Saver

    Home About the State & Local Solution Center Develop a Clean Energy Strategy Design and Implement Clean Energy Programs Pay for Clean Energy Efforts Access and Use Energy Data...

  7. Clean-Energy-Solutions-Centers-Fact-Sheet.pdf | Department of...

    Energy.gov [DOE] (indexed site)

    Clean-Energy-Solutions-Centers-Fact-Sheet.pdf More Documents & Publications Clean Energy Solutions Centers Fact Sheet Clean Energy Ministerial Press Fact Sheet SLED-Fact-Sheet.pdf...

  8. New Jersey's Clean Energy Program | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Clean Energy Program Jump to: navigation, search Logo: New Jersey's Clean Energy Program Name: New Jersey's Clean Energy Program Address: 44 South Clinton Avenue Place: Trenton,...

  9. Microsoft Word - EIR SOP Updated 101110 frank clean | Department...

    Energy Saver

    Word - EIR SOP Updated 101110 frank clean Microsoft Word - EIR SOP Updated 101110 frank clean Microsoft Word - EIR SOP Updated 101110 frank clean More Documents & Publications EIR...

  10. Plains and Eastern Clean Line Transmission Line: Comment from...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Plains and Eastern Clean Line Transmission Line: Comment from Change.org Plains and Eastern Clean Line Transmission Line: Comment from Mr. Leftwich Plains and Eastern Clean Line ...

  11. Plains and Eastern Clean Line Transmission Line: Comment from...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Plains and Eastern Clean Line Transmission Line: Comment from Fallon Sanford Plains and Eastern Clean Line Transmission Line: Comment from Mr. Leftwich Plains and Eastern Clean ...

  12. Primer on Clean Energy Lending: The Major Components and Options...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Primer on Clean Energy Lending: The Major Components and Options Primer on Clean Energy Lending: The Major Components and Options PDF icon Chapter 1: Primer on Clean Energy...

  13. NREL State Clean Energy Policies Analysis Project (SCEPA) | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    NREL State Clean Energy Policies Analysis Project (SCEPA) (Redirected from State Clean Energy Policies Analysis Project (SCEPA)) Jump to: navigation, search Name NREL State Clean...

  14. Design and Implement Clean Energy Programs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Design and Implement Clean Energy Programs Design and Implement Clean Energy Programs DICEPedit.png State and local governments are uniquely positioned to advance clean energy...

  15. EESTech Aryan Clean Coal Technologies JV | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    EESTech Aryan Clean Coal Technologies JV Jump to: navigation, search Name: EESTech & Aryan Clean Coal Technologies JV Place: India Product: India-based JV formed to develop clean...

  16. Advanced High Efficiency Clean Diesel Combustion with Low Cost...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Efficiency Clean Diesel Combustion with Low Cost for Hybrid Engines Advanced High Efficiency Clean Diesel Combustion with Low Cost for Hybrid Engines Clean, in-cylinder combustion ...

  17. Clean Energy Solutions Centers Fact Sheet | Department of Energy

    Energy.gov [DOE] (indexed site)

    A fact sheet describing the mission of the Clean Energy Solution Center. Clean Energy Solutions Centers Fact Sheet More Documents & Publications Clean-Energy-Solutions-Centers-Fact...

  18. Clean Energy Works Oregon (CEWO) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Clean Energy Works Oregon's program background and the four easy steps to lender selection. Clean Energy Works Oregon More Documents & Publications Clean Energy Works Oregon (CEWO)...

  19. Reduce Risk, Increase Clean Energy: How States and Cities are...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    manages the Clean Energy States Alliance, a coalition of state and municipal clean energy funds. ... But their issuances were primarily related to clean and waste water projects, and ...

  20. Plains and Eastern Clean Line Transmission Line: Comment from...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Clean Line: Arkansas and Oklahoma Plains and Eastern Clean Line Transmission Line: Comment from Block Plains and Eastern Clean Line: Arkansas and Oklahoma Comment submitted on ...

  1. Pay for Clean Energy Efforts | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Pay for Clean Energy Efforts Pay for Clean Energy Efforts PCEE.png Transitioning to a clean energy economy requires innovative financing solutions that enable state, local, and...

  2. Clean and Renewable Energy | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    Clean and Renewable Energy Home > Clean and Renewable Energy > Posts by term > Clean and Renewable Energy Content Group Activity By term Q & A Feeds Term: energy secretary Type...

  3. Clean and Renewable Energy | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    Clean and Renewable Energy Home > Clean and Renewable Energy > Posts by term > Clean and Renewable Energy Content Group Activity By term Q & A Feeds Term: Sunshot Initiative Type...

  4. Clean and Renewable Energy | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    Clean and Renewable Energy Home > Clean and Renewable Energy > Posts by term > Clean and Renewable Energy Content Group Activity By term Q & A Feeds Term: Innovation Type Term...

  5. Clean and Renewable Energy | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    Clean and Renewable Energy Home > Clean and Renewable Energy > Posts by term > Clean and Renewable Energy Content Group Activity By term Q & A Feeds Term: Partnerships Type Term...

  6. Clean and Renewable Energy | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    Clean and Renewable Energy Home > Clean and Renewable Energy > Posts by term > Clean and Renewable Energy Content Group Activity By term Q & A Feeds Term: Transportation Type Term...

  7. CLEAN-Low Emission Development Planning Webinar | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    (CLEAN), National Renewable Energy Laboratory Resource Type: Webinar, Training materials, Lessons learnedbest practices Website: en.openei.orgwikiCLEAN References: CLEAN...

  8. Clean Energy Lending From the Financial Institution Perspective...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Clean Energy Lending From the Financial Institution Perspective (Chapter 8 of the Clean Energy Finance Guide, 3rd Edition) Clean Energy Lending From the Financial Institution ...

  9. Hawaii Clean Energy Initiative (HCEI) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Hawaii Clean Energy Initiative (HCEI) Hawaii Clean Energy Initiative (HCEI) The Hawaii Clean Energy Initiative (HCEI) is an unprecedented effort to transform the entire Hawaii ...

  10. Plains and Eastern Clean Line Transmission Line: Comment from...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Plains and Eastern Clean Line Transmission Line: Comment from Mr. Dyer Plains and Eastern Clean Line Transmission Line: Comment from Sheila Beck Plains and Eastern Clean Line ...

  11. Pay for Clean Energy Efforts | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Pay for Clean Energy Efforts Pay for Clean Energy Efforts PCEE.png Transitioning to a clean energy economy requires innovative financing solutions that enable state, local, and ...

  12. RETScreen International Clean Energy Project Analysis Tool |...

    OpenEI (Open Energy Information) [EERE & EIA]

    URI: cleanenergysolutions.orgcontentretscreen-international-clean-energy- Language: String representation "English,Arabic, ... Urdu,Vietnamese" is too long. Policies:...

  13. Wisconsin Clean Transportation Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Wisconsin Clean Transportation Program Wisconsin Clean Transportation Program 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt048_ti_redmond_2012_o.pdf (4.9 MB) More Documents & Publications Wisconsin Clean Transportation Program Wisconsin Clean Transportation Program Vehicle Technologies Office Merit Review 2014: Alternative Fuel Market Development Program - Forwarding Wisconsin's Fuel Choice

  14. Clean Cities Coalition Regions | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Clean Cities Coalition Regions Clean Cities Coalition Regions Nearly 100 Clean Cities coalitions work to reduce petroleum use in communities across the country. Led by Clean Cities coordinators, coalitions are composed of businesses, fuel providers, vehicle fleets, state and local government agencies, and community organizations. These stakeholders come together to share information and resources, educate the public, help craft public policy, and collaborate on projects that reduce petroleum

  15. Champions of Change: Veterans Advancing Clean Energy

    Office of Energy Efficiency and Renewable Energy (EERE)

    Yesterday, Secretary Moniz honored veterans advancing clean energy and climate security at a White House "Champions of Change" event.

  16. Clean Energy Manufacturing Initiative: Increasing American Competitive...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Manufacturing Initiative: Increasing American Competitiveness Through Innovation Clean ... Manufacturing Initiative (CEMI), a collaborative effort between the federal government, ...

  17. Clean Energy Manufacturing Initiative Industrial Efficiency and...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Industrial Efficiency and Energy Productivity Video Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity Video Addthis Description Industrial ...

  18. Clean Cities Reaches Across the Sea

    Energy.gov [DOE]

    Clean Cities International collaborates with leaders from Kazakhstan and Sweden share best practices and accomplish mutual goals.

  19. What is Clean Cities? July 2010 (Brochure)

    SciTech Connect

    Not Available

    2010-07-01

    Fact sheet describes the Clean Cities program and includes the contact information for its 87 active coalitions.

  20. What is Clean Cities? December 2010 (Brochure)

    SciTech Connect

    Not Available

    2010-12-01

    Fact sheet describes the Clean Cities program and includes the contact information for its 87 active coalitions.

  1. WATER POWER FOR A CLEAN ENERGY FUTURE

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    WATER POWER FOR A CLEAN ENERGY FUTURE March 2016 WATER POWER PROGRAM WATER POWER PROGRAM Building a Clean Energy Economy Leading the world in clean energy is critical to strengthening the American economy. Targeted investments in clean en- ergy research and development jumpstart private sector innovation critical to our long-term economic growth, energy security, and international competitiveness. The U.S. Department of Energy (DOE) Water Power Program (the Pro- gram) is strengthening the

  2. Clean Energy Manufacturing Resources - Technology Feasibility | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Feasibility Clean Energy Manufacturing Resources - Technology Feasibility Clean Energy Manufacturing Resources - Technology Feasibility Find resources to help you evaluate the feasibility of your idea for a new clean energy technology or product. For determining feasibility, areas to consider include U.S. Department of Energy (DOE) priorities, licensing, R&D funding, and strategic project partnerships. For more resources, see the Clean Energy Manufacturing Federal Resource

  3. Clean Energy Manufacturing Resources - Technology Prototyping | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Prototyping Clean Energy Manufacturing Resources - Technology Prototyping Clean Energy Manufacturing Resources - Technology Prototyping Find resources to help you design and refine a prototype of a new clean energy technology or product. For prototyping, areas to consider include materials characterization; models and tools; intellectual property protection; small-scale production; R&D funding; and regional, state, and local resources. For more resources, see the Clean Energy

  4. Clean Cities Alternative Fuel Price Report

    Alternative Fuels and Advanced Vehicles Data Center

    1 Clean Cities Alternative Fuel Price Report April 2011 Page 2 WELCOME! Welcome to the April 2011 issue of the Clean Cities Alternative Fuel Price Report, a quarterly report designed to keep you up to date on the prices of alternative fuels and conventional fuels in the U.S. This issue summarizes prices that were collected between April 1, 2011 and April 15, 2011 from Clean Cities Coordinators, fuel providers, and other Clean Cities stakeholders. METHODOLOGY In order to collect price information

  5. Clean Cities Alternative Fuel Price Report

    Alternative Fuels and Advanced Vehicles Data Center

    0 Clean Cities Alternative Fuel Price Report January 2010 Page 2 WELCOME! Welcome to the January 2010 issue of the Clean Cities Alternative Fuel Price Report, a quarterly report designed to keep you up to date on the prices of alternative fuels and conventional fuels in the U.S. This issue summarizes prices that were collected between January 19, 2010 and January 29, 2010 from Clean Cities Coordinators, fuel providers, and other Clean Cities stakeholders. METHODOLOGY In order to collect price

  6. Clean Cities Alternative Fuel Price Report

    Alternative Fuels and Advanced Vehicles Data Center

    1 Clean Cities Alternative Fuel Price Report October 2011 Page 2 WELCOME! Welcome to the October 2011 issue of the Clean Cities Alternative Fuel Price Report, a quarterly report designed to keep you up to date on the prices of alternative fuels and conventional fuels in the U.S. This issue summarizes prices that were collected between September 30, 2011 and October 14, 2011 from Clean Cities Coordinators, fuel providers, and other Clean Cities stakeholders. METHODOLOGY In order to collect price

  7. Clean Energy Manufacturing Analysis Center Webinar

    Energy.gov [DOE]

    The U.S. Department of Energy offers a webinar to address clean energy manufacturing on April 5. Register today!

  8. Buying Clean Electricity | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Electricity & Fuel » Buying & Making Electricity » Buying Clean Electricity Buying Clean Electricity You have the option to purchase renewable electricity, either directly from your power supplier, from an independent clean power generator, or through renewable energy certificates. | Photo courtesy of Alstom 2010. You have the option to purchase renewable electricity, either directly from your power supplier, from an independent clean power generator, or through renewable energy

  9. Revolutionizing Clean Energy Technology with Advanced Composites

    SciTech Connect

    Hockfield, Susan; Holliday Jr, Charles O.; Markell, Brad

    2015-01-13

    Energy conservation and manufacturing leaders discuss manufacturing products with advance composites to revolutionize the future with clean energy technology.

  10. Code of Colorado Regulations 2 CCR 601-1, State Highway Access...

    OpenEI (Open Energy Information) [EERE & EIA]

    Code of Colorado Regulations 2 CCR 601-1, State Highway Access Code Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Code of...

  11. Fact #634: August 2, 2010 Off-highway Transportation-related Fuel Consumption

    Energy.gov [DOE]

    The Environmental Protection Agency's NONROAD2008a model estimates fuel use for off-highway equipment. Construction and mining equipment using diesel fuel account for the majority of this fuel use....

  12. Design procedure for pollutant loadings and impacts for highway stormwater runoff (IBM version) (for microcomputers). Software

    SciTech Connect

    Not Available

    1990-01-01

    The interactive computer program was developed to make a user friendly procedure for the personal computer for calculations and guidance to make estimations of pollutant loadings and impacts from highway stormwater runoff which are presented in the Publication FHWA-RD-88-006, Pollutant Loadings and Impacts from Highway Stormwater Runoff, Volume I: Design Procedure. The computer program is for the evaluation of the water quality impact from highway stormwater runoff to a lake or a stream from a specific highway site considering the necessary rainfall data and geographic site situation. The evaluation considers whether or not the resulting water quality conditions can cause a problem as indicated by the violations of water quality criteria or objectives.

  13. Design procedure for pollutant loadings and impacts for highway stormwater runoff (Macintosh version) (for microcomputers). Software

    SciTech Connect

    Not Available

    1990-01-01

    The interactive computer program was developed to make a user friendly procedure for the personal computer for calculations and guidance to make estimations of pollutant loadings and impacts from highway stormwater runoff which are presented in the Publication FHWA-RD-88-006, Pollutant Loadings and Impacts from Highway Stormwater Runoff, Volume I: Design Procedure. The computer program is for the evaluation of the water quality impact from highway stormwater runoff to a lake or a stream from a specific highway site considering the necessary rainfall data and geographic site situation. The evaluation considers whether or not the resulting water quality conditions can cause a problem as indicated by the violations of water quality criteria or objectives.

  14. Nevada Strengthens Electric Vehicle Infrastructure on Major U.S. Highway

    Energy.gov [DOE]

    In June, theNevada Governors Office of Energyand the local utility NV Energy announced theNevada Electric Highway joint initiative, an effort to facilitate electric vehicle (EV) transportation...

  15. An Optimal Deployment of Wireless Charging Lane for Electric Vehicles on Highway Corridors

    SciTech Connect

    Huang, Yongxi

    2016-01-01

    We propose an integrated modeling framework to optimally locate wireless charging facilities along a highway corridor to provide sufficient in-motion charging. The integrated model consists of a master, Infrastructure Planning Model that determines best locations with integrated two sub-models that explicitly capture energy consumption and charging and the interactions between electric vehicle and wireless charging technologies, geometrics of highway corridors, speed, and auxiliary system. The model is implemented in an illustrative case study of a highway corridor of Interstate 5 in Oregon. We found that the cost of establishing the charging lane is sensitive and increases with the speed to achieve. Through sensitivity analyses, we gain better understanding on the extent of impacts of geometric characteristics of highways and battery capacity on the charging lane design.

  16. 23 V.S.A. Section 1432 Length of Vehicles; Authorized Highways...

    OpenEI (Open Energy Information) [EERE & EIA]

    23 V.S.A. Section 1432 Length of Vehicles; Authorized Highways Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: 23 V.S.A. Section...

  17. 19 V.S.A. 1111 Highway Right-of-Way Permit Application (Form...

    OpenEI (Open Energy Information) [EERE & EIA]

    V.S.A. 1111 Highway Right-of-Way Permit Application (Form TA 210) Example Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance -...

  18. Development and Demonstration of a Fuel-Efficient Class 8 Highway...

    Energy.gov [DOE] (indexed site)

    SuperTruck Development and Demonstration of a Fuel-Efficient Class 8 Highway Vehicle Vehicle Systems DOE Contract: DE-EE0004232 P.I.: Pascal Amar, Volvo Technology of America 2012 ...

  19. 23 V.S.A. Section 1392 Gross Weight Limits on Highways | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Section 1392 Gross Weight Limits on HighwaysLegal Abstract Statute establishes the motor vehicle weight, load size, not to exceed 80,000 pounds without a permit. Published NA...

  20. Colorado - C.R.S. 43-2-106 et seq., Abandoned State Highways...

    OpenEI (Open Energy Information) [EERE & EIA]

    Apps Datasets Community Login | Sign Up Search Page Edit with form History Colorado - C.R.S. 43-2-106 et seq., Abandoned State Highways Jump to: navigation, search OpenEI...