National Library of Energy BETA

Sample records for gas demand figure

  1. Figure F8. Coal demand regions

    Gasoline and Diesel Fuel Update

    9 U.S. Energy Information Administration | Annual Energy Outlook 2016 Regional maps Figure F8. Coal demand regions Figure F7. Coal Demand Regions CT,MA,ME,NH,RI,VT OH 1. NE 3. S1 4. S2 5. GF 6. OH 7. EN AL,MS MN,ND,SD IA,NE,MO,KS TX,LA,OK,AR MT,WY,ID CO,UT,NV AZ,NM 9. AM 11. C2 12. WS 13. MT 14. CU 15. ZN WV,MD,DC,DE 2. YP Region Content Region Code NY,PA,NJ VA,NC,SC GA,FL IN,IL,MI,WI Region Content Region Code 14. CU 13. MT 16. PC 15. ZN 12. WS 11. C2 9. AM 5. GF 8. KT 4. S2 7. EN 6. OH 2. YP

  2. Working Gas in Underground Storage Figure

    Annual Energy Outlook

    Working Gas in Underground Storage Figure Working Gas in Underground Storage Figure Working Gas in Underground Storage Compared with 5-Year Range Graph....

  3. Working Gas in Underground Storage Figure

    Annual Energy Outlook

    Gas in Underground Storage Figure Working Gas in Underground Storage Compared with 5-Year Range Graph...

  4. Working Gas in Underground Storage Figure

    Gasoline and Diesel Fuel Update

    Working Gas in Underground Storage Figure Working Gas in Underground Storage Compared with 5-Year Range Graph.

  5. Canada Mexico Figure 11. Flow of natural gas exports, 2014

    Energy Information Administration (EIA) (indexed site)

    8 Canada Mexico Figure 11. Flow of natural gas exports, 2014 (billion cubic feet) Source: Energy Information Administration, based on data from the Office of Fossil Energy, U.S. ...

  6. Figure F5. Oil and gas supply model regions

    Gasoline and Diesel Fuel Update

    6 Appendix F Figure F5. Oil and gas supply model regions Figure F4. Oil and Gas Supply Model Regions Atlantic WA MT WY ID NV UT CO AZ NM TX OK IA KS MO IL IN KY TN MS AL FL GA SC NC WV PA NJ MD DE NY CT ME RI MA NH VA WI MI OH NE SD MN ND AR LA OR CA VT Northeast (1) Gulf of Mexico Gulf Coast (2) Midcontinent (3) Rocky Mountain (5) West Coast (6) Pacific Offshore North Slope AK TX TX NM TX Southwest (4) Onshore North Slope Other Alaska Source: U.S. Energy Information Administration, Office of

  7. Figure F6. Natural gas transmission and distribution model regions

    Gasoline and Diesel Fuel Update

    7 U.S. Energy Information Administration | Annual Energy Outlook 2016 Regional maps Figure F6. Natural gas transmission and distribution model regions 218 U.S. Energy Information Administration / Annual Energy Outlook 2010 Figure F5. Natural Gas Transmission and Distribution Model Regions Pacifi c (9) Moun tain (8) CA (12) AZ/N M (11) W. North Centr al (4) W. South Centr al (7) E. South Centr al (6) E. North Centr al (3) S. Atlan tic (5) FL (10) Mid. Atlan tic (2) New Engl. (1) W. Canad a E.

  8. Natural Gas Processing Plants in the United States: 2010 Update / Figure 7

    Gasoline and Diesel Fuel Update

    7. Natural Gas Processing Plants in Alaska, 2009 Figure 7. Natural Gas Processing Plants in Alaska, 2009

  9. Natural Gas Infrastructure Implications of Increased Demand from...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Natural Gas Infrastructure Implications of Increased Demand from the Electric Sector Natural Gas Infrastructure Implications of Increased Demand from the Electric Sector This ...

  10. Natural Gas Processing Plants in the United States: 2010 Update / Figure 1

    Gasoline and Diesel Fuel Update

    1. Natural Gas Processing Plants and Production Basins, 2009 Figure 1. Natural Gas Processing Plants and Production Basins, 2009 Source: U.S. Energy Information Administration, GasTran Natural Gas Transportation Information System

  11. Natural Gas Infrastructure Implications of Increased Demand from...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Implications of Increased Demand from the Electric Power Sector U.S. Department of Energy Page i Natural Gas Infrastructure Implications of Increased Demand from the Electric Power ...

  12. Maintaining urban gas systems demands special technologies

    SciTech Connect

    Anglero, T.F. )

    1994-04-01

    Brooklyn Union Gas Co. has been providing gas to 50% of the population of New York City for the last 100 years. The company has constructed an elaborate gas distribution network that includes a gas main under nearly every city street in a service territory that includes Brooklyn, Staten Island and parts of Queens. Conventional ways of pipeline construction and maintenance are inadequate in today's environment of heightened competition, increased regulations and, most importantly, demanding customer expectations of quality service. As a result, Brooklyn Union Gas must use special construction and maintenance methods in its operations, and in particular trenchless technologies. Over the past 10 years the company has paid close attention to developing a variety of trenchless techniques. Like many gas distribution companies providing service in densely populated urban areas, Brooklyn Union must operate and maintain its gas distribution network in a challenging environment of increasing governmental regulation and escalating field construction costs. Technological innovation is not a luxury, but instead a necessity to achieve corporate growth, regulatory compliance and greater customer satisfaction. Trenchless technologies offset rising pipe installation costs and provide benefits both to the customer and the company. Of special value to Brooklyn Union is the development of systems that renovate old metal pipes by lining. Such techniques are described.

  13. Natural Gas Processing Plants in the United States: 2010 Update / Figure 4

    Gasoline and Diesel Fuel Update

    4. Natural Gas Processing Plants, Production Basins, and Plays in the Gulf of Mexico States, 2009 Figure 4. Natural Gas Processing Plants, Production Basins, and Plays in the Gulf of Mexico States,

  14. Natural Gas Processing Plants in the United States: 2010 Update / Figure 5

    Gasoline and Diesel Fuel Update

    5. Natural Gas Processing Plants, Production Basins, and Plays in the Rocky Mountain States and California, 2009 Figure 5. Natural Gas Processing Plants, Production Basins, and Plays in the Rocky Mountain States and California,

  15. Natural Gas Processing Plants in the United States: 2010 Update / Figure 6

    Gasoline and Diesel Fuel Update

    6. Natural Gas Processing Plants, Production Basins, and Plays in the Midwestern and Eastern States, 2009 Figure 6. Natural Gas Processing Plants, Production Basins, and Plays in the Midwestern and Eastern States,

  16. Report: Natural Gas Infrastructure Implications of Increased Demand from

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    the Electric Power Sector | Department of Energy Report: Natural Gas Infrastructure Implications of Increased Demand from the Electric Power Sector Report: Natural Gas Infrastructure Implications of Increased Demand from the Electric Power Sector This report examines the potential infrastructure needs of the U.S. interstate natural gas pipeline transmission system across a range of future natural gas demand scenarios that drive increased electric power sector natural gas use. To perform this

  17. Oil, gas tanker industry responding to demand, contract changes

    SciTech Connect

    True, W.R.

    1998-03-02

    Steady if slower growth in demand for crude oil and natural gas, low levels of scrapping, and a moderate newbuilding pace bode well for the world`s petroleum and natural-gas shipping industries. At year-end 1997, several studies of worldwide demand patterns and shipping fleets expressed short and medium-term optimism for seaborne oil and gas trade and fleet growth. The paper discusses steady demand and shifting patterns, the aging fleet, the slowing products traffic, the world`s fleet, gas carriers, LPG demand, and LPG vessels.

  18. Natural Gas Processing Plants in the United States: 2010 Update / Figure 3

    Gasoline and Diesel Fuel Update

    3. Natural Gas Processing Plants Utilization Rates Based on 2008 Flows Figure 3. Natural Gas Processing Plants Utilization Rates Based on 2008 Flows Note: Average utilization rates are based on 2008 flows and 2009 capacity, which were used as a proxy for 2009 and reported 2009 capacity reported on Form EIA-757.

  19. Mexican demand for US natural gas

    SciTech Connect

    Kanter, M.A.; Kier, P.H.

    1993-09-01

    This study describes the Mexican natural gas industry as it exists today and the factors that have shaped the evolution of the industry in the past or that are expected to influence its progress; it also projects production and use of natural gas and estimates the market for exports of natural gas from the United States to Mexico. The study looks ahead to two periods, a near term (1993--1995) and an intermediate term (1996--2000). The bases for estimates under two scenarios are described. Under the conservative scenario, exports of natural gas from the United States would decrease from the 1992 level of 250 million cubic feet per day (MMCF/d), would return to that level by 1995, and would reach about 980 MMCF/D by 2000. Under the more optimistic scenario, exports would decrease in 1993 and would recover and rise to about 360 MMCF/D in 1995 and to 1,920 MMCF/D in 2000.

  20. Impact of Interruptible Natural Gas Service on Northeast Heating Oil Demand

    Reports and Publications

    2001-01-01

    Assesses the extent of interruptible natural gas contracts and their effect on heating oil demand in the Northeast.

  1. Natural Gas Processing Plants in the United States: 2010 Update / Figure 2

    Gasoline and Diesel Fuel Update

    2. Processing Plant Capacity and Percent of Total U.S. Capacity, 2009 Figure 2. Processing Plant Capacity and Percent of Total U.S. Capacity, 2009

  2. World gas supply seen ample for decades as demand expands

    SciTech Connect

    Not Available

    1992-11-09

    Considering the prospect for new natural gas discoveries, the world gas reserves to production ratio is expected to exceed 100 years by 2000 and will still be about 80 years in 2020. World natural gas reserves were estimated at 327 trillion cu m in 1989, of which 118 trillion cu m were considered proved. Only 15% of world gas reserves lie in the Middle East, J. Balazuc, Gaz de France production and transport manager, told the World Energy Council meeting in Berlin. World gas reserves continue to grow, with the strongest growth in Africa and the Asia-Pacific region, Balazuc said. World gas production, estimated to have been 2 trillion cu m in 1989, is expected to grow to 2.5 trillion cu m in 2000 and 2.8-3.0 trillion cu m in 2020, depending on the price.

  3. Microsoft Word - figure_21.doc

    Energy Information Administration (EIA) (indexed site)

    5 Figure 21. Average citygate price of natural gas in the United States, 2014 (dollars per thousand cubic feet) U.S. Energy Information Administration | Natural Gas Annual ...

  4. Natural Gas Infrastructure Implications of Increased Demand from the Electric Power Sector

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Implications of Increased Demand from the Electric Power Sector U.S. Department of Energy Page i Natural Gas Infrastructure Implications of Increased Demand from the Electric Power Sector U.S. Department of Energy Page iii Table of Contents Executive Summary ....................................................................................................................................... v 1. Introduction

  5. Worldwide Natural Gas Supply and Demand and the Outlook for Global LNG Trade

    Reports and Publications

    1997-01-01

    This article is adapted from testimony by Jay Hakes, Administrator of the Energy Information Administration, before the Senate Energy and Natural Resources Committee on July 23, 1997. The hearing focused on the examination of certain aspects of natural gas into the next century with special emphasis on world natural gas supply and demand to 2015.

  6. Natural Gas Infrastructure Implications of Increased Demand from the Electric Sector

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report examines the potential infrastructure needs of the U.S. interstate natural gas pipeline transmission system across a range of future natural gas demand scenarios that drive increased electric power sector natural gas use. To perform this analysis, the U.S. Department of Energy commissioned Deloitte MarketPoint to examine scenarios in its North American Integrated Model (NAIM), which simultaneously models the electric power and the natural gas sectors. This study concludes that, under scenarios in which natural gas demand from the electric power sector increases, the incremental increase in interstate natural gas pipeline expansion is modest, relative to historical capacity additions. Similarly, capital expenditures on new interstate pipelines in the scenarios considered here are projected to be significantly less than the capital expenditures associated with infrastructure expansion over the last 15 years.

  7. Growing Brazilian demand to spur gas network in South America

    SciTech Connect

    Deffarges, E.H. ); Maurer, L.I.A. )

    1993-01-18

    A recent combination in South America of economic and geopolitical factors is prompting development of a new integrated gas-pipeline network in the continent's Southern Cone. The crucial factors include privatization, regional integration, economic growth, and environmental concerns. The area, Latin America's largest regional entity, includes Brazil (population 150 million and a 1990 GNP of about $375 billion, 9th largest in the world), Argentina (population 32 million and the third largest Latin American economy after Brazil and Mexico), Bolivia, Chile, Paraguay, and Uruguay. Argentina, Brazil, Paraguay, and Uruguay are members of the MercoSur economic bloc whose objective is to develop free trade in the region. There are very few integrated pipeline networks in the world. Besides the giant North American system, with hundreds of producers and pipelines, there is only one other large integrated network. It connects continental European countries to their outside suppliers such as Norway, the C.I.S., and Algeria. The emergence of a new pipeline system is therefore important for the natural-gas industry worldwide and even more so if it occurs in a region now growing rapidly after a decade of economic difficulties.

  8. Facts, Figures

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Figures Facts, Figures The Lab's mission is to develop and apply science and technology to ensure the safety, security, and reliability of the U.S. nuclear deterrent; reduce global threats; and solve other emerging national security and energy challenges. Facts, Figures for 2016 People Total employees: 10,500, including approximately: Los Alamos National Security, LLC: 6,850 Centerra-LA (Guard Force): 300 Contractors: 400 Students: 1,100 Unionized craft workers: 880 Post doctoral researchers:

  9. The Future of U.S. Natural Gas: Supply, Demand & Infrastructure Developments

    Office of Energy Efficiency and Renewable Energy (EERE)

    This analysis forecasts natural gas supply, demand, and infrastructure developments through 2030 using an inventory and cell model. After introduction of methodology and market approach, the analysis describes expectations of production and supply and demand. This includes how production shifts in North America have shifted Midstream needs, trends in drilling that are leading to more wells with fewer rigs, and processing capacity considerations. Finally, the analysis describing the regionally driven infrastructure requirements and the impact on natural gas price forecasts and regional basis and volatility is presented.

  10. Framing scenarios of electricity generation and gas use: EPRI report series on gas demands for power generation. Final report

    SciTech Connect

    Thumb, S.; Glover, W.; Hughes, W.R.

    1996-07-01

    Results of three EPRI projects have been combined to analyze power industry consumption of gas and other generating fuels. The report`s capstone is a scenario analysis of power industry generation and fuel consumption. The Utility Fuel Consumption Model (UFCM), developed for the project, predicts generating capacity and generation by region and fuel through 2015, based on load duration curves, generation dispatch, and expected capacity additions. Scenarios embody uncertain factors, such as electricity demand growth, fuel switching, coal-gas competition, the merit order of gas-coal dispatch, and retirement of nuclear units, that substantially affect gas consumption. Some factors, especially electricity demand have very large effects. The report includes a consistent database on NUG (non-utility generation) capacity and generation and assesses historical and prospective trends in NUG generation. The report shows that NUG capacity growth will soon decline substantially. The study assesses industry capability for price-induced fuel switching from gas to oil and coal, documenting conversions of coal units to dual coal-gas capability and determining that gas-to-oil switching remains a strong influence on fuel availability and gas prices, though regulation and taxation have increased trigger prices for switching. 61 tabs.

  11. Microsoft Word - figure_25.doc

    Energy Information Administration (EIA) (indexed site)

    1 Figure 25. Average price of natural gas delivered to U.S. electric power consumers, 2014 (dollars per thousand cubic feet) U.S. Energy Information Administration | Natural Gas ...

  12. Microsoft Word - figure_22.doc

    Energy Information Administration (EIA) (indexed site)

    8 Figure 22. Average price of natural gas delivered to U.S. residential consumers, 2014 (dollars per thousand cubic feet) U.S. Energy Information Administration | Natural Gas ...

  13. Microsoft Word - figure_23.doc

    Energy Information Administration (EIA) (indexed site)

    9 Figure 23. Average price of natural gas delivered to U.S. commercial consumers, 2014 (dollars per thousand cubic feet) U.S. Energy Information Administration | Natural Gas Annual ...

  14. Factors that will influence oil and gas supply and demand in the 21st century

    SciTech Connect

    Holditch, S.A.; Chianelli, R.R.

    2008-04-15

    A recent report published by the National Petroleum Council (NPC) in the United States predicted a 50-60% growth in total global demand for energy by 2030. Because oil, gas, and coal will continue to be the primary energy sources during this time, the energy industry will have to continue increasing the supply of these fuels to meet this increasing demand. Achieving this goal will require the exploitation of both conventional and unconventional reservoirs of oil and gas in (including coalbed methane) an environmentally acceptable manner. Such efforts will, in turn, require advancements in materials science, particularly in the development of materials that can withstand high-pressure, high-temperature, and high-stress conditions.

  15. Preliminary assessment of the availability of U.S. natural gas resources to meet U.S. transportation energy demand.

    SciTech Connect

    Singh, M. K.; Moore, J. S.

    2002-03-04

    Recent studies have indicated that substitutes for conventional petroleum resources will be needed to meet U.S. transportation energy demand in the first half of this century. One possible substitute is natural gas which can be used as a transportation fuel directly in compressed natural gas or liquefied natural gas vehicles or as resource fuel for the production of hydrogen for fuel cell vehicles. This paper contains a preliminary assessment of the availability of U.S. natural gas resources to meet future U.S. transportation fuel demand. Several scenarios of natural gas demand, including transportation demand, in the U.S. to 2050 are developed. Natural gas resource estimates for the U. S. are discussed. Potential Canadian and Mexican exports to the U.S. are estimated. Two scenarios of potential imports from outside North America are also developed. Considering all these potential imports, U.S. natural gas production requirements to 2050 to meet the demand scenarios are developed and compared with the estimates of U.S. natural gas resources. The comparison results in a conclusion that (1) given the assumptions made, there are likely to be supply constraints on the availability of U.S. natural gas supply post-2020 and (2) if natural gas use in transportation grows substantially, it will have to compete with other sectors of the economy for that supply-constrained natural gas.

  16. Microsoft Word - figure_24.doc

    Energy Information Administration (EIA) (indexed site)

    0 Figure 24. Average price of natural gas delivered to U.S. onsystem industrial consumers, 2014 (dollars per thousand cubic feet) U.S. Energy Information Administration | Natural ...

  17. Microsoft Word - Figure_01.doc

    Energy Information Administration (EIA) (indexed site)

    3 Figure 1. Selected average prices of natural gas in the United States, 2010-2014 0 1 2 3 4 5 6 7 2010 2011 2012 2013 2014 E xports Im ports C itygate dollars per thousand cubic ...

  18. Microsoft Word - Figure_05.doc

    Energy Information Administration (EIA) (indexed site)

    24 0 1 2 3 4 2013 2014 2015 2016 2017 All Storage Fields Other than Salt Caverns Salt Caverns trillion cubic feet Trillion Cubic Feet Figure 5 Note: Geographic coverage is the 50 states and the District of Columbia. Alaska was added to U.S. total as of January 2013. Source: Energy Information Administration (EIA): Form EIA-191, "Monthly Underground Gas Storage Report." Billion Cubic Meters Figure 5. Working gas in underground natural gas storage in the United States, 2013-2016

  19. Short-Term Energy Outlook Model Documentation: Hydrocarbon Gas Liquids Supply and Demand

    Reports and Publications

    2015-01-01

    The hydrocarbon gas liquids (ethane, propane, butanes, and natural gasoline) module of the Short-Term Energy Outlook (STEO) model is designed to provide forecasts of U.S. production, consumption, refinery inputs, net imports, and inventories.

  20. Microsoft Word - Figure_02.doc

    Energy Information Administration (EIA) (indexed site)

    6 0.0 0.2 0.4 0.6 0.8 1.0 1.2 2013 2014 2015 2016 2017 Residential Commercial trillion cubic feet Figure 2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 2013 2014 2015 2016 2017 Industrial Electric Power trillion cubic feet Sources: 2013-2015: Energy Information Administration (EIA): Form EIA-857, "Monthly Report of Natural Gas Purchases and Deliveries to Consumers"; Form EIA-923, "Power Plant Operations Report"; EIA computations; and Natural Gas Annual 2015. January 2016 through current

  1. Cancer Facts & Figures - 2010

    National Nuclear Security Administration (NNSA)

    ... among smokers), certain metals (chromium, cadmium, arsenic), 16 Cancer Facts & Figures 2010 some organic chemicals, radiation, air pollution, and a history of tuberculosis. ...

  2. Microsoft Word - Figure_13_2015.doc

    Energy Information Administration (EIA) (indexed site)

    35 2015 Flow Capacity (million cubic feet per day) Figure 13. Principal Interstate Natural Gas Flow Capacity Summary, 2015 Source: Energy Information Administration, Office of Oil, Gas, and Coal Supply Statistics. = Direction of Flow = Bi-directional 15,000 12,000 9,000 6,000 3,000 0

  3. Microsoft Word - figure_07-2016.doc

    Energy Information Administration (EIA) (indexed site)

    1 Source: Office of Fossil Energy, U.S. Department of Energy, Natural Gas Imports and Exports. Figure 7. U.S. natural gas trade summary, 2011-2015 0 0.5 1 1.5 2 2.5 3 3.5 4 2011 2012 2013 2014 2015 Total Imports Total Exports Net Imports trillion cubic feet

  4. Microsoft Word - figure_09_2016.doc

    Energy Information Administration (EIA) (indexed site)

    3 Canada Mexico Figure 9. Flow of natural gas imports, 2015 (billion cubic feet) Source: Energy Information Administration, based on data from the Office of Fossil Energy, U.S. Department of Energy, Natural Gas Imports and Exports. 12 50 674 190 United States 6 1 Trinidad/Tobago 12 Norway 6 Yemen 535 420 233 11 133 430 12 9 7 71 3

  5. Figure ES1. Map of Northern Alaska

    Energy Information Administration (EIA) (indexed site)

    Figure ES1. Map of Northern Alaska figurees1.jpg (61418 bytes) Source: Edited from U.S. Geological Survey, "The Oil and Gas Resource Potential of the Arctic National Wildlife Refuge 1002 Area, Alaska," Open File Report 98-34, 1999. Return to the Executive Summary.

  6. Microsoft Word - figure_14.doc

    Energy Information Administration (EIA) (indexed site)

    42 Figure 14. Net interstate movements, imports, and exports of natural gas in the United States, 2015 (million cubic feet) Norway Trinidad/ Tobago Yemen Norway Egypt Turkey Interstate Movements Not Shown on Map From Volume To From Volume To CT RI MD DC IN MA MD VA MA CT RI MA MA NH VA DC WA MT ID OR W Y ND SD CA NV UT CO NE KS AZ NM OK TX MN WI MI IA IL IN OH MO AR MS AL GA TN KY FL SC NC WV MD DE VA PA NJ NY CT RI MA VT NH ME LA HI AK Mexico Canada Canada Canada Canada Canada Canada Canada

  7. Demand Reduction

    Energy.gov [DOE]

    Grantees may use funds to coordinate with electricity supply companies and utilities to reduce energy demands on their power systems. These demand reduction programs are usually coordinated through...

  8. Working Gas in Underground Storage Figure

    Gasoline and Diesel Fuel Update

    68.6 47.3 29.6 20.4 13.5 6.2 1973-2016 Alaska 3.5 10.2 18.0 23.6 30.8 38.3 2013-2016 Lower 48 States 69.7 47.8 29.7 20.3 13.4 6.0 2011-2016 Alabama 163.9 67.0 26.8 15.0 -4.6 -10.7 1996-2016 Arkansas -40.3 -34.0 -28.2 -25.9 -12.7 -4.4 1991-2016 California -3.3 -2.8 -7.1 -7.7 -10.5 -11.3 1991-2016 Colorado 10.8 14.3 13.5 7.7 7.2 4.4 1991-2016 Illinois 15.1 8.8 2.0 3.4 -0.3 -0.7 1991-2016 Indiana 56.6 45.0 34.1 23.1 14.8 4.5 1991-2016 Iowa 10.2 2.7 -9.5 -20.0 -20.3 -13.7 1991-2016 Kansas 52.9 59.7

  9. Microsoft Word - Figure_03_04.doc

    Energy Information Administration (EIA) (indexed site)

    8 0 2 4 6 8 10 12 14 16 18 20 22 2013 2014 2015 2016 2017 Residential Commercial Industrial Electric Power Citygate dollars per thousand cubic feet Figure 3 and 4 0 2 4 6 8 10 12 14 16 18 20 22 2013 2014 2015 2016 2017 NGPL Composite Spot Price NG Spot Price at Henry Hub dollars per thousand cubic feet Note: Prices are in nominal dollars. Sources: 2013-2015: Energy Information Administration (EIA), Natural Gas Annual 2015. January 2016 through current month: Form EIA-857, "Monthly Report of

  10. Figure F1. United States Census Divisions

    Gasoline and Diesel Fuel Update

    53 Figure 17. Natural gas delivered to consumers in the United States, 2015 Volumes in Million Cubic Feet Trillion Cubic Feet trillion cubic feet All Other States Wisconsin Indiana Texas Pennsylvania New Jersey Ohio Michigan Illinois California New York 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 Residential All Other States Minnesota Massachusetts Pennsylvania New Jersey Ohio Michigan Texas Illinois California New York 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 Commercial trillion cubic feet Res idential 4,609,670

  11. travel-demand-modeling

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Demand Modeler, Cambridge Systematics, Tallahassee, FL Abstract ... Travel demand ... Ahmed Mohideen Travel Demand Modeler Cambridge Systematics, Tallahassee, FL Transportation ...

  12. Commercial & Industrial Demand Response

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    & Events Skip navigation links Smart Grid Demand Response Agricultural Residential Demand Response Commercial & Industrial Demand Response Cross-sector Demand Response...

  13. Natural Gas Weekly Update

    Annual Energy Outlook

    natural gas demand, thereby contributing to larger net injections of natural gas into storage. Other Market Trends: EIA Releases The Natural Gas Annual 2006: The Energy...

  14. Microsoft Word - figure_03.doc

    Energy Information Administration (EIA) (indexed site)

    Oil and Gas Reserves"; PointLogic Energy; Ventyx; and the Bureau of Safety and Environmental Enforcement, and predecessor agencies. IN OH TN WV VA KY MD PA NY VT NH MA CT ME RI ...

  15. PHOBOS Experiment: Figures and Data

    DOE Data Explorer

    The PHOBOS Collaboration

    PHOBOS consists of many silicon detectors surrounding the interaction region. With these detectors physicists can count the total number of produced particles and study the angular distributions of all the products. Physicists know from other branches of physics that a characteristic of phase transitions are fluctuations in physical observables. With the PHOBOS array they look for unusual events or fluctuations in the number of particles and angular distribution. The articles that have appeared in refereed science journals are listed here with separate links to the supporting data plots, figures, and tables of numeric data.  See also supporting data for articles in technical journals at http://www.phobos.bnl.gov/Publications/Technical/phobos_technical_publications.htm and from conference proceedings at http://www.phobos.bnl.gov/Publications/Proceedings/phobos_proceedings_publications.htm

  16. PHOBOS Experiment: Figures and Data

    DOE Data Explorer

    The PHOBOS Collaboration

    PHOBOS consists of many silicon detectors surrounding the interaction region. With these detectors physicists can count the total number of produced particles and study the angular distributions of all the products. Physicists know from other branches of physics that a characteristic of phase transitions are fluctuations in physical observables. With the PHOBOS array they look for unusual events or fluctuations in the number of particles and angular distribution. The articles that have appeared in refereed science journals are listed here with separate links to the supporting data plots, figures, and tables of numeric data.† See also supporting data for articles in technical journals at http://www.phobos.bnl.gov/Publications/Technical/phobos_technical_publications.htm and from conference proceedings at http://www.phobos.bnl.gov/Publications/Proceedings/phobos_proceedings_publications.htm

  17. Microsoft Word - figure_02.doc

    Energy Information Administration (EIA) (indexed site)

    Additions Withdrawals Gas Industry Use Residential Commercial Industrial Vehicle Fuel Electric Power 32.9 0.5 0.3 3.4 2.625 0.071 1.054 0.701 27.1 1.7 3.7 3.2 2.3 3.2 7.5 ...

  18. Microsoft Word - Figure_01.doc

    Energy Information Administration (EIA) (indexed site)

    May 2016 U.S. Energy Information Administration | Natural Gas Monthly 4 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 2013 2014 2015 2016 2017 ...

  19. Simulation and Analysis of North American Natural Gas Supply and Delivery during a Winter High-Demand Event with Loss of Marcellus Production

    Office of Energy Efficiency and Renewable Energy (EERE)

    As part of QER 1.1 analysis, EPSA asked Sandia National Lab to explore scenarios under which a full or partial freeze-off limits natural gas production in the Marcellus Basin. This report describes how several scenarios would affect the production, delivery, storage, and consumption of natural gas.

  20. Figure2.jpg | OSTI, US Dept of Energy Office of Scientific and Technical

    Office of Scientific and Technical Information (OSTI)

    Information Figure2

  1. Figure3.jpg | OSTI, US Dept of Energy Office of Scientific and Technical

    Office of Scientific and Technical Information (OSTI)

    Information Figure3

  2. Figure4.jpg | OSTI, US Dept of Energy Office of Scientific and Technical

    Office of Scientific and Technical Information (OSTI)

    Information Figure4

  3. Imported resources - gas

    SciTech Connect

    Marxt, J.

    1995-12-01

    This paper examines aspects of the supply and demand of natural gas and natural gas products such as LNG in the Czech Republic.

  4. Natural Gas Weekly Update

    Annual Energy Outlook

    cooling demand for natural gas. Meanwhile, it became increasingly clear that Hurricane Frances likely would not pose a significant threat to natural gas production in the Gulf of...

  5. Report: Natural Gas Infrastructure Implications of Increased...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Report: Natural Gas Infrastructure Implications of Increased Demand from the Electric Power Sector Report: Natural Gas Infrastructure Implications of Increased Demand from the ...

  6. World Natural Gas Model

    Energy Science and Technology Software Center

    1994-12-01

    RAMSGAS, the Research and Development Analysis Modeling System World Natural Gas Model, was developed to support planning of unconventional gaseoues fuels research and development. The model is a scenario analysis tool that can simulate the penetration of unconventional gas into world markets for oil and gas. Given a set of parameter values, the model estimates the natural gas supply and demand for the world for the period from 1980 to 2030. RAMSGAS is based onmore¬†¬Ľ a supply/demand framwork and also accounts for the non-renewable nature of gas resources. The model has three fundamental components: a demand module, a wellhead production cost module, and a supply/demand interface module. The demand for gas is a product of total demand for oil and gas in each of 9 demand regions and the gas share. Demand for oil and gas is forecast from the base year of 1980 through 2030 for each demand region, based on energy growth rates and price-induced conservation. For each of 11 conventional and 19 unconventional gas supply regions, wellhead production costs are calculated. To these are added transportation and distribution costs estimates associated with moving gas from the supply region to each of the demand regions and any economic rents. Based on a weighted average of these costs and the world price of oil, fuel shares for gas and oil are computed for each demand region. The gas demand is the gas fuel share multiplied by the total demand for oil plus gas. This demand is then met from the available supply regions in inverse proportion to the cost of gas from each region. The user has almost complete control over the cost estimates for each unconventional gas source in each year and thus can compare contributions from unconventional resources under different cost/price/demand scenarios.¬ę¬†less

  7. Turkey's energy demand and supply

    SciTech Connect

    Balat, M.

    2009-07-01

    The aim of the present article is to investigate Turkey's energy demand and the contribution of domestic energy sources to energy consumption. Turkey, the 17th largest economy in the world, is an emerging country with a buoyant economy challenged by a growing demand for energy. Turkey's energy consumption has grown and will continue to grow along with its economy. Turkey's energy consumption is high, but its domestic primary energy sources are oil and natural gas reserves and their production is low. Total primary energy production met about 27% of the total primary energy demand in 2005. Oil has the biggest share in total primary energy consumption. Lignite has the biggest share in Turkey's primary energy production at 45%. Domestic production should be to be nearly doubled by 2010, mainly in coal (lignite), which, at present, accounts for almost half of the total energy production. The hydropower should also increase two-fold over the same period.

  8. EIA - Greenhouse Gas Emissions - Table-Figure Notes and Sources

    Gasoline and Diesel Fuel Update

    ... website www.epa.govttnchiefconferenceei16session3k.weitz.pdf; and U.S. Environmental Protection Agency, "Reducing Particle Pollution," website www.epa.govoar...

  9. Figure 17. Natural gas delivered to consumers in the United...

    Energy Information Administration (EIA) (indexed site)

    New Jersey Mississippi Louisiana Georgia Alabama Pennsylvania New York California Florida Texas 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 Electric Power Note: Vehicle fuel volume for 2015 ...

  10. Effect of Energy Efficiency Standards on Natural Gas Prices

    SciTech Connect

    Carnall, Michael; Dale, Larry; Lekov, Alex

    2011-07-26

    A primary justification for the establishment of energy efficiency standards for home appliances is the existence of information deficiencies and externalities in the market for appliances. For example, when a long-term homeowner purchases a new gas-fired water heater, she will maximize the value of her purchase by comparing the life-cycle cost of ownership of available units, including both total installed cost - purchase price plus installation costs - and operating cost in the calculus. Choice of the appliance with the lowest life-cycle costs leads to the most economically efficient balance between capital cost and fuel cost. However, if the purchaser's expected period of ownership is shorter than the useful life of the appliance, or the purchaser does not pay for the fuel used by the appliance, as is often the case with rental property, fuel cost will be external to her costs, biasing her decision toward spending less on fuel efficiency and resulting in the purchase of an appliance with greater than optimal fuel usage. By imposing an efficiency standard on appliances, less efficient appliances are made unavailable, precluding less efficient purchases and reducing fuel usage. The reduction in fuel demanded by residential users affects the total demand for such fuels as natural gas, for example. Reduced demand implies that residential customers are willing to purchase less gas at each price level. That is, the demand curve, labeled D{sub 0} in Figure 1, shifts to the left to D{sub 1}. If there is no change in the supply function, the supply curve will intersect the demand curve at a lower price. Residential demand is only one component of the total demand for natural gas. It is possible that total demand will decline very little if demand in other sectors increases substantially in response to a decline in the price. If demand does decrease, modeling studies generally confirm the intuition that reductions in demand for natural gas will result in reductions in its

  11. Demand Response | Department of Energy

    Energy Saver

    Technology Development Smart Grid Demand Response Demand Response Demand Response Demand response provides an opportunity for consumers to play a significant role in the ...

  12. Cross-sector Demand Response

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    & Events Skip navigation links Smart Grid Demand Response Agricultural Residential Demand Response Commercial & Industrial Demand Response Cross-sector Demand Response...

  13. Natural gas productive capacity for the lower 48 States, 1980 through 1995

    SciTech Connect

    Not Available

    1994-07-14

    The purpose of this report is to analyze monthly natural gas wellhead productive capacity in the lower 48 States from 1980 through 1992 and project this capacity from 1993 through 1995. For decades, natural gas supplies and productive capacity have been adequate to meet demand. In the 1970`s the capacity surplus was small because of market structure (split between interstate and intrastate), increasing demand, and insufficient drilling. In the early 1980`s, lower demand, together with increased drilling, led to a large surplus capacity as new productive capacity came on line. After 1986, this large surplus began to decline as demand for gas increased, gas prices fell, and gas well completions dropped sharply. In late December 1989, the decline in this surplus, accompanied by exceptionally high demand and temporary weather-related production losses, led to concerns about the adequacy of monthly productive capacity for natural gas. These concerns should have been moderated by the gas system`s performance during the unusually severe winter weather in March 1993 and January 1994. The declining trend in wellhead productive capacity is expected to be reversed in 1994 if natural gas prices and drilling meet or exceed the base case assumption. This study indicates that in the low, base, and high drilling cases, monthly productive capacity should be able to meet normal production demands through 1995 in the lower 48 States (Figure ES1). Exceptionally high peak-day or peak-week production demand might not be met because of physical limitations such as pipeline capacity. Beyond 1995, as the capacity of currently producing wells declines, a sufficient number of wells and/or imports must be added each year in order to ensure an adequate gas supply.

  14. I.D I VI Figure

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ~press - ,~,.--;~ 3.1 ,,~-.::;:.--- ~ ( 3.1 ( ;-; t\ I.D I VI Figure 9-1. Location of the original Cypress Grove Set-Aside and the Stave Island and Georgia Power replacement Areas. Set-Aside 9: Cypress Grove, Stave Island, and Georgia Power

  15. Residential Demand Sector Data, Commercial Demand Sector Data, Industrial Demand Sector Data - Annual Energy Outlook 2006

    SciTech Connect

    2009-01-18

    Tables describing consumption and prices by sector and census division for 2006 - includes residential demand, commercial demand, and industrial demand

  16. Demand Response Analysis Tool

    Energy Science and Technology Software Center

    2012-03-01

    Demand Response Analysis Tool is a software developed at the Lawrence Berkeley National Laboratory. It is initially funded by Southern California Edison. Our goal in developing this tool is to provide an online, useable, with standardized methods, an analysis tool to evaluate demand and demand response performance of commercial and industrial facilities. The tool provides load variability and weather sensitivity analysis capabilities as well as development of various types of baselines. It can be usedmore¬†¬Ľ by researchers, real estate management firms, utilities, or any individuals who are interested in analyzing their demand and demand response capabilities.¬ę¬†less

  17. Demand Response Analysis Tool

    SciTech Connect

    2012-03-01

    Demand Response Analysis Tool is a software developed at the Lawrence Berkeley National Laboratory. It is initially funded by Southern California Edison. Our goal in developing this tool is to provide an online, useable, with standardized methods, an analysis tool to evaluate demand and demand response performance of commercial and industrial facilities. The tool provides load variability and weather sensitivity analysis capabilities as well as development of various types of baselines. It can be used by researchers, real estate management firms, utilities, or any individuals who are interested in analyzing their demand and demand response capabilities.

  18. Figure correction of multilayer coated optics

    DOEpatents

    Chapman; Henry N. , Taylor; John S.

    2010-02-16

    A process is provided for producing near-perfect optical surfaces, for EUV and soft-x-ray optics. The method involves polishing or otherwise figuring the multilayer coating that has been deposited on an optical substrate, in order to correct for errors in the figure of the substrate and coating. A method such as ion-beam milling is used to remove material from the multilayer coating by an amount that varies in a specified way across the substrate. The phase of the EUV light that is reflected from the multilayer will be affected by the amount of multilayer material removed, but this effect will be reduced by a factor of 1-n as compared with height variations of the substrate, where n is the average refractive index of the multilayer.

  19. figure1_solitons.jpg | OSTI, US Dept of Energy Office of Scientific and

    Office of Scientific and Technical Information (OSTI)

    Technical Information figure1_solitons

  20. Figure 1_space.jpg | OSTI, US Dept of Energy Office of Scientific and

    Office of Scientific and Technical Information (OSTI)

    Technical Information Figure 1_space

  1. STEO December 2012 - coal demand

    Energy Information Administration (EIA) (indexed site)

    coal demand seen below 1 billion tons in 2012 for fourth year in a row Coal consumption by U.S. power plants to generate electricity is expected to fall below 1 billion tons in 2012 for the fourth year in a row. Domestic coal consumption is on track to total 829 million tons this year. That's the lowest level since 1992, according to the U.S. Energy Information Administration's new monthly energy forecast. Utilities and power plant operators are choosing to burn more lower-priced natural gas

  2. Managing Increased Charging Demand

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Managing Increased Charging Demand Carrie Giles ICF International, Supporting the Workplace Charging Challenge Workplace Charging Challenge Do you already own an EV? Are you...

  3. Residential Demand Response

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    in-home displays with controllable home area network capabilities and thermal storage devices for home heating. Goals and objectives: Reduce the City's NCP demand above...

  4. Demand Dispatch-Intelligent

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... Markets for Demand Dispatch services must be in place. ... loads at commercial and industrial customers' facilities in ... reported by Power Shift Atlantic 8 - which will monitor ...

  5. Sandia National Laboratories: Facts & Figures

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Facts & Figures Sandia's multimission work is represented in a diverse funding portfolio. Budget FY15 Operating $ 2,809.7 million Capital equipment $ 41.0 million Construction $ 29.9 million TOTAL LAB FUNDING $ 2,880.6 million Note: Sandia's fiscal year (FY) runs from October 1 through September 30. Funding by source FY15 NNSA Weapons activities $ 1,576.6 million Defense nuclear nonproliferation $ 143.9 million Other NNSA $ 1.0 million Total NNSA $ 1,721.0 million Non-NNSA DOE Electricity

  6. Figure F2. Electricity market module regions

    Energy Information Administration (EIA) (indexed site)

    F-3 U.S. Energy Information Administration | Annual Energy Outlook 2016 Regional maps Figure F2. Electricity market module regions Source: U.S. Energy Information Administration, Office of Energy Analysis. 1 2 3 4 5 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 6 7 1. ERCT TRE All 2. FRCC FRCC All 3. MROE MRO East 4. MROW MRO West 5. NEWE NPCC New England 6. NYCW NPCC NYC/Westchester 7. NYLI NPCC Long Island 8. NYUP NPCC Upstate NY 9. RFCE RFC East 10. RFCM RFC Michigan 11. RFCW RFC West 12. SRDA

  7. Figure F7. Coal supply regions

    Gasoline and Diesel Fuel Update

    8 Appendix F Figure F7. Coal supply regions WA ID OR CA NV UT TX OK AR MO LA MS AL GA FL TN SC NC KY VA WV WY CO SD ND MI MN WI IL IN OH MD PA NJ DE CT MA NH VT NY ME RI MT NE IA KS MI AZ NM 500 0 SCALE IN MILES APPALACHIA Northern Appalachia Central Appalachia Southern Appalachia INTERIOR NORTHERN GREAT PLAINS Eastern Interior Western Interior Gulf Lignite Dakota Lignite Western Montana Wyoming, Northern Powder River Basin Wyoming, Southern Powder River Basin Western Wyoming OTHER WEST Rocky

  8. Surface figure control for coated optics

    DOEpatents

    Ray-Chaudhuri, Avijit K.; Spence, Paul A.; Kanouff, Michael P.

    2001-01-01

    A pedestal optical substrate that simultaneously provides high substrate dynamic stiffness, provides low surface figure sensitivity to mechanical mounting hardware inputs, and constrains surface figure changes caused by optical coatings to be primarily spherical in nature. The pedestal optical substrate includes a disk-like optic or substrate section having a top surface that is coated, a disk-like base section that provides location at which the substrate can be mounted, and a connecting cylindrical section between the base and optics or substrate sections. The optic section has an optical section thickness.sup.2 /optical section diameter ratio of between about 5 to 10 mm, and a thickness variation between front and back surfaces of less than about 10%. The connecting cylindrical section may be attached via three spaced legs or members. However, the pedestal optical substrate can be manufactured from a solid piece of material to form a monolith, thus avoiding joints between the sections, or the disk-like base can be formed separately and connected to the connecting section. By way of example, the pedestal optical substrate may be utilized in the fabrication of optics for an extreme ultraviolet (EUV) lithography imaging system, or in any optical system requiring coated optics and substrates with reduced sensitivity to mechanical mounts.

  9. Finding Six-Figure ROI From Energy Efficiency | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Six-Figure ROI From Energy Efficiency Finding Six-Figure ROI From Energy Efficiency September 28, 2010 - 10:20am Addthis Kevin Craft What are the key facts? Recovery Act funded ...

  10. Microsoft Word - figure_12-2015.doc

    Energy Information Administration (EIA) (indexed site)

    Pipeline Exports LNG Exports LNG Re-exports * In 2013, 115 million cubic feet (Mcf) of compressed natural gas (CNG) were exported to Canada. ** In 2014, 217 Mcf of CNG were ...

  11. Microsoft Word - figure_10_2015.doc

    Gasoline and Diesel Fuel Update

    Pipeline Imports LNG Imports * In 2014, 303 million cubic feet of compressed natural gas (CNG) were imported from Canada. Source: Office of Fossil Energy, U.S. Department of ...

  12. Figure ES1. Map of Northern Alaska

    Energy Information Administration (EIA) (indexed site)

    Geological Survey, "The Oil and Gas Resource Potential of the Arctic National Wildlife Refuge 1002 Area, Alaska," Open File Report 98-34, 1999. Return to the Executive Summary.

  13. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update

    oil and gas resources will be necessary even as efficiency improvements reduce demand and renewable sources become more available. In order to retain public trust environmentally...

  14. Natural Gas Weekly Update

    Annual Energy Outlook

    which summarizes the likely demand, supply, and prices for natural gas, heating oil, propane, and electricity during the upcoming winter (October 2004 - March 2005). According to...

  15. Demand Response- Policy

    Energy.gov [DOE]

    Demand response is an electricity tariff or program established to motivate changes in electric use by end-use customers, designed to induce lower electricity use typically at times of high market prices or when grid reliability is jeopardized.

  16. Demand Dispatch-Intelligent

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Demand Dispatch-Intelligent Demand for a More Efficient Grid 10 August 2011 DOE/NETL- DE-FE0004001 U.S. Department of Energy Office of Electricity Delivery and Energy Reliability Prepared by: National Energy Technology Laboratory Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal

  17. Demand Response Dispatch Tool

    SciTech Connect

    2012-08-31

    The Demand Response (DR) Dispatch Tool uses price profiles to dispatch demand response resources and create load modifying profiles. These annual profiles are used as inputs to production cost models and regional planning tools (e.g., PROMOD). The tool has been effectively implemented in transmission planning studies conducted by the Western Electricity Coordinating Council via its Transmission Expansion Planning and Policy Committee. The DR Dispatch Tool can properly model the dispatch of DR resources for both reliability and economic conditions.

  18. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update

    to withdraw natural gas from storage to meet current demand. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage decreased to 2,406 Bcf as of...

  19. Natural Gas Weekly Update

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    heating-related demand for natural gas that limited the size of the net addition to storage. The economic incentives for storing natural gas for next winter are considerably...

  20. Working Gas Capacity

    Energy Information Administration (EIA) (indexed site)

    5 2015 Working Gas Capacity (billion cubic feet) ‚Č• 100 75 to 99 U.S. Energy Information Administration | Natural Gas Annual Figure 15. Locations of existing natural gas underground storage fields in the United States, 2015 50 to 74 Source: Energy Information Administration (EIA), Form EIA-191, "Monthly Underground Gas Storage Report." Reservoir Type Sites = Depleted Field 329 = Salt Cav

  1. Coordination of Energy Efficiency and Demand Response

    SciTech Connect

    Goldman, Charles; Reid, Michael; Levy, Roger; Silverstein, Alison

    2010-01-29

    This paper reviews the relationship between energy efficiency and demand response and discusses approaches and barriers to coordinating energy efficiency and demand response. The paper is intended to support the 10 implementation goals of the National Action Plan for Energy Efficiency's Vision to achieve all cost-effective energy efficiency by 2025. Improving energy efficiency in our homes, businesses, schools, governments, and industries - which consume more than 70 percent of the nation's natural gas and electricity - is one of the most constructive, cost-effective ways to address the challenges of high energy prices, energy security and independence, air pollution, and global climate change. While energy efficiency is an increasingly prominent component of efforts to supply affordable, reliable, secure, and clean electric power, demand response is becoming a valuable tool in utility and regional resource plans. The Federal Energy Regulatory Commission (FERC) estimated the contribution from existing U.S. demand response resources at about 41,000 megawatts (MW), about 5.8 percent of 2008 summer peak demand (FERC, 2008). Moreover, FERC recently estimated nationwide achievable demand response potential at 138,000 MW (14 percent of peak demand) by 2019 (FERC, 2009).2 A recent Electric Power Research Institute study estimates that 'the combination of demand response and energy efficiency programs has the potential to reduce non-coincident summer peak demand by 157 GW' by 2030, or 14-20 percent below projected levels (EPRI, 2009a). This paper supports the Action Plan's effort to coordinate energy efficiency and demand response programs to maximize value to customers. For information on the full suite of policy and programmatic options for removing barriers to energy efficiency, see the Vision for 2025 and the various other Action Plan papers and guides available at www.epa.gov/eeactionplan.

  2. Compare All CBECS Activities: Natural Gas Use

    Energy Information Administration (EIA) (indexed site)

    call 202-586-8800. Natural Gas Consumption per Building by Building Type Inpatient health care buildings used by far the most natural gas per building. Figure showing natural...

  3. Demand Response Dispatch Tool

    Energy Science and Technology Software Center

    2012-08-31

    The Demand Response (DR) Dispatch Tool uses price profiles to dispatch demand response resources and create load modifying profiles. These annual profiles are used as inputs to production cost models and regional planning tools (e.g., PROMOD). The tool has been effectively implemented in transmission planning studies conducted by the Western Electricity Coordinating Council via its Transmission Expansion Planning and Policy Committee. The DR Dispatch Tool can properly model the dispatch of DR resources for bothmore¬†¬Ľ reliability and economic conditions.¬ę¬†less

  4. Demand Response | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Demand Response Demand Response Demand Response Demand response provides an opportunity for consumers to play a significant role in the operation of the electric grid by reducing or shifting their electricity usage during peak periods in response to time-based rates or other forms of financial incentives. Demand response programs are being used by some electric system planners and operators as resource options for balancing supply and demand. Such programs can lower the cost of electricity in

  5. LNG demand, shipping will expand through 2010

    SciTech Connect

    True, W.R.

    1998-02-09

    The 1990s, especially the middle years, have witnessed a dramatic turnaround in the growth of liquefied-natural-gas demand which has tracked equally strong natural-gas demand growth. This trend was underscored late last year by several annual studies of world LNG demand and shipping. As 1998 began, however, economic turmoil in Asian financial markets has clouded near-term prospects for LNG in particular and all energy in general. But the extent of damage to energy markets is so far unclear. A study by US-based Institute of Gas Technology, Des Plaines, IL, reveals that LNG imports worldwide have climbed nearly 8%/year since 1980 and account for 25% of all natural gas traded internationally. In the mid-1970s, the share was only 5%. In 1996, the most recent year for which complete data are available, world LNG trade rose 7.7% to a record 92 billion cu m, outpacing the overall consumption for natural gas which increased 4.7% in 1996. By 2015, says the IGT study, natural-gas use would surpass coal as the world`s second most widely used fuel, after petroleum. Much of this growth will occur in the developing countries of Asia where gas use, before the current economic crisis began, was projected to grow 8%/year through 2015. Similar trends are reflected in another study of LNG trade released at year end 1997, this from Ocean Shipping Consultants Ltd., Surrey, U.K. The study was done too early, however, to consider the effects of the financial problems roiling Asia.

  6. Demand Charges | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Demand Charges Jump to: navigation, search Retrieved from "http:en.openei.orgwindex.php?titleDemandCharges&oldid488967" Feedback Contact needs updating Image needs...

  7. Figure 1. Project Area, Focused Study Area, Potential Access...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Page 4 of 8 Figure 1. Project Area, Focused Study Area, Potential Access Agreement Land, and Land Not Suitable for Conveyance...

  8. Oil and Gas Research| GE Global Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Oil & Gas We're balancing the increasing demand for finite resources with technology that ensures access to energy for generations to come. Home > Innovation > Oil & Gas ...

  9. Reducing gas generators and methods for generating a reducing gas

    SciTech Connect

    Scotto, Mark Vincent; Perna, Mark Anthony

    2015-11-03

    One embodiment of the present invention is a unique reducing gas generator. Another embodiment is a unique method for generating a reducing gas. Other embodiments include apparatuses, systems, devices, hardware, methods, and combinations for generating reducing gas. Further embodiments, forms, features, aspects, benefits, and advantages of the present application will become apparent from the description and figures provided herewith.

  10. Residential Sector Demand Module

    Gasoline and Diesel Fuel Update

    Stoves Geothermal Heat Pump Natural Gas Heat Pump Variables: HSYSSHR 2002-5,eg,b,r Benchmarking Data from Short-Term Energy Outlook Definition: Household energy consumption by...

  11. Total Working Gas Capacity

    Gasoline and Diesel Fuel Update

    Confidential Presentation to: April 7, 2008 Middle East oil demand and Lehman Brothers oil price outlook Adam Robinson Middle East oil demand u Three pillars of Middle East oil demand - Petrodollar reinvestment - Purchasing power rise - Power sector constraints u Natural gas shortages for power generation mean balance of risks to any Middle East oil demand forecast are firmly to the upside, adding to summer upside seasonality u Lehman Brothers has pegged 3Q08 as the tightest quarter of the

  12. EIA - Natural Gas Pipeline Network - Expansion Process Flow Diagram

    Energy Information Administration (EIA) (indexed site)

    Development & Expansion > Development and Expansion Process Figure About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Development and Expansion Process For Natural Gas Pipeline Projects Figure showing the expansion process

  13. What is a High Electric Demand Day?

    Energy.gov [DOE]

    This presentation by T. McNevin of the New Jersey Bureau of Air Quality Planning was part of the July 2008 Webcast sponsored by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Weatherization and Intergovernmental Program Clean Energy and Air Quality Integration Initiative that was titled Role of Energy Efficiency and Renewable Energy in Improving Air Quality and Addressing Greenhouse Gas Reduction Goals on High Electric Demand Days.

  14. Climate policy implications for agricultural water demand

    SciTech Connect

    Chaturvedi, Vaibhav; Hejazi, Mohamad I.; Edmonds, James A.; Clarke, Leon E.; Kyle, G. Page; Davies, Evan; Wise, Marshall A.; Calvin, Katherine V.

    2013-03-01

    Energy, water and land are scarce resources, critical to humans. Developments in each affect the availability and cost of the others, and consequently human prosperity. Measures to limit greenhouse gas concentrations will inevitably exact dramatic changes on energy and land systems and in turn alter the character, magnitude and geographic distribution of human claims on water resources. We employ the Global Change Assessment Model (GCAM), an integrated assessment model to explore the interactions of energy, land and water systems in the context of alternative policies to limit climate change to three alternative levels: 2.5 Wm-2 (445 ppm CO2-e), 3.5 Wm-2 (535 ppm CO2-e) and 4.5 Wm-2 (645 ppm CO2-e). We explore the effects of two alternative land-use emissions mitigation policy options‚ÄĒone which taxes terrestrial carbon emissions equally with fossil fuel and industrial emissions, and an alternative which only taxes fossil fuel and industrial emissions but places no penalty on land-use change emissions. We find that increasing populations and economic growth could be anticipated to almost triple demand for water for agricultural systems across the century even in the absence of climate policy. In general policies to mitigate climate change increase agricultural demands for water still further, though the largest changes occur in the second half of the century, under both policy regimes. The two policies examined profoundly affected both the sources and magnitudes of the increase in irrigation water demands. The largest increases in agricultural irrigation water demand occurred in scenarios where only fossil fuel emissions were priced (but not land-use change emission) and were primarily driven by rapid expansion in bioenergy production. In these scenarios water demands were large relative to present-day total available water, calling into question whether it would be physically possible to produce the associated biomass energy. We explored the potential of improved

  15. Primer on gas integrated resource planning

    SciTech Connect

    Goldman, C.; Comnes, G.A.; Busch, J.; Wiel, S.

    1993-12-01

    This report discusses the following topics: gas resource planning: need for IRP; gas integrated resource planning: methods and models; supply and capacity planning for gas utilities; methods for estimating gas avoided costs; economic analysis of gas utility DSM programs: benefit-cost tests; gas DSM technologies and programs; end-use fuel substitution; and financial aspects of gas demand-side management programs.

  16. Interim Data Changes in the Short-term Energy Outlook Data Systems Related to Electric Power Sector and Natural Gas Demand Data Revisions (Released in the STEO December 2002)

    Reports and Publications

    2002-01-01

    Beginning with the December 2002 issue of the Energy Information Administration's Short-Term Energy Outlook (STEO), electricity generation and related fuel consumption totals will be presented on a basis that is consistent with the definitions and aggregates used in the 2001 edition of EIA's Annual Energy Review (AER). Particularly affected by these changes are the demand and balancing item totals for natural

  17. Demand Response Quick Assessment Tool

    Energy Science and Technology Software Center

    2008-12-01

    DRQAT (Demand Response Quick Assessment Tool) is the tool for assessing demand response saving potentials for large commercial buildings. This tool is based on EnergyPlus simulations of prototypical buildings and HVAC equipment. The opportunities for demand reduction and cost savings with building demand responsive controls vary tremendously with building type and location. The assessment tools will predict the energy and demand savings, the economic savings, and the thermal comfor impact for various demand responsive strategies.more¬†¬Ľ Users of the tools will be asked to enter the basic building information such as types, square footage, building envelope, orientation, utility schedule, etc. The assessment tools will then use the prototypical simulation models to calculate the energy and demand reduction potential under certain demand responsive strategies, such as precooling, zonal temperature set up, and chilled water loop and air loop set points adjustment.¬ę¬†less

  18. Figure ES2. Annual Indices of Real Disposable Income, Vehicle...

    Energy Information Administration (EIA) (indexed site)

    ES2 Figure ES2. Annual Indices of Real Disposable Income, Vehicle-Miles Traveled, Consumer Price Index (CPI-U), and Real Average Retail Gasoline Price, 1978-2004, 1985100...

  19. Demand Response Programs, 6. edition

    SciTech Connect

    2007-10-15

    The report provides a look at the past, present, and future state of the market for demand/load response based upon market price signals. It is intended to provide significant value to individuals and companies who are considering participating in demand response programs, energy providers and ISOs interested in offering demand response programs, and consultants and analysts looking for detailed information on demand response technology, applications, and participants. The report offers a look at the current Demand Response environment in the energy industry by: defining what demand response programs are; detailing the evolution of program types over the last 30 years; discussing the key drivers of current initiatives; identifying barriers and keys to success for the programs; discussing the argument against subsidization of demand response; describing the different types of programs that exist including:direct load control, interruptible load, curtailable load, time-of-use, real time pricing, and demand bidding/buyback; providing examples of the different types of programs; examining the enablers of demand response programs; and, providing a look at major demand response programs.

  20. Gas-separation process

    DOEpatents

    Toy, L.G.; Pinnau, I.; Baker, R.W.

    1994-01-25

    A process is described for separating condensable organic components from gas streams. The process makes use of a membrane made from a polymer material that is glassy and that has an unusually high free volume within the polymer material. 6 figures.

  1. Natural Gas Industry and Markets

    Reports and Publications

    2006-01-01

    This special report provides an overview of the supply and disposition of natural gas in 2004 and is intended as a supplement to the Energy Information Administration's (EIA) Natural Gas Annual 2004 (NGA). Unless otherwise stated, all data and figures in this report are based on summary statistics published in the NGA 2004.

  2. EIA - Greenhouse Gas Emissions - High-GWP gases

    Annual Energy Outlook

    ... drop in PFC emissions. Figure Data U.S. emissionsd of PFCs, 1990, 2005, 2008, and 2009 5.4. Sulfur hexafluoride SF6, an excellent dielectric gas or insulating gas for high-voltage ...

  3. Natural Gas Weekly Update

    Annual Energy Outlook

    reverse direction and fall to 3.91 per MMBtu yesterday. Natural gas demand for power burn increased across the country during the report week. According to data from BENTEK...

  4. Natural Gas Weekly Update

    Annual Energy Outlook

    levels and 25 percent below the 5-year average. Natural gas prices are likely to stay high as long as above-normal storage injection demand competes with industrial and...

  5. Natural Gas Weekly Update

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    suppliers a strong economic incentive to inject gas into storage in preparation for heating demand next winter. The 12-month strip, or the average price for contracts over the...

  6. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update

    1 (next release 2:00 p.m. on October 28) Increased natural gas demand owing to falling temperatures this week (Wednesday-Wednesday, October 13-20) combined with higher petroleum...

  7. Natural Gas Weekly Update

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    11 (next release 2:00 p.m. on August 18) Natural gas spot prices exhibited increases in most locations this week (Wednesday - Wednesday, August 3 - 10) as demand responded to above...

  8. Natural Gas Weekly Update

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    crude oil prices and increasing cooling demand in some regions contributed to natural gas spot prices climbing more than 10 percent at trading locations in the Lower 48 States...

  9. Natural Gas Weekly Update

    Annual Energy Outlook

    August 3 (next release 2:00 p.m. on August 10, 2006) Natural gas spot prices increased sharply this week (Wednesday-Wednesday, July 26 - August 2), as demand for power generation...

  10. Natural Gas Weekly Update

    Annual Energy Outlook

    or 9 percent to 4.68 per MMBtu. Lighter cooling demand for natural gas owing to the Labor Day holiday weekend and milder temperatures east of the Rockies likely contributed...

  11. Demand Responsive Lighting: A Scoping Study

    SciTech Connect

    Rubinstein, Francis; Kiliccote, Sila

    2007-01-03

    increased awareness of the need to standardize on emerging wireless technologies are evidence of this transformation. In addition to increased standardization of digital control protocols controller capabilities, the lighting industry has improved the performance of dimming lighting systems over the last two years. The system efficacy of today's current dimming ballasts is approaching that of non-dimming program start ballasts. The study finds that the benefits of applying digital controls technologies to California's unique commercial buildings market are enormous. If California were to embark on an concerted 20 year program to improve the demand responsiveness and energy efficiency of commercial building lighting systems, the State could avoid adding generation capacity, improve the elasticity of the grid, save Californians billion of dollars in avoided energy charges and significantly reduce greenhouse gas emissions.

  12. Reducing Peak Demand to Defer Power Plant Construction in Oklahoma

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Reducing Peak Demand to Defer Power Plant Construction in Oklahoma Located in the heart of "Tornado Alley," Oklahoma Gas & Electric Company's (OG&E) electric grid faces significant challenges from severe weather, hot summers, and about 2% annual load growth. To better control costs and manage electric reliability under these conditions, OG&E is pursuing demand response strategies made possible by implementation of smart grid technologies, tools, and techniques from

  13. China's Coal: Demand, Constraints, and Externalities

    SciTech Connect

    Aden, Nathaniel; Fridley, David; Zheng, Nina

    2009-07-01

    likely to come from the burgeoning coal-liquefaction and chemicals industries. If coal to chemicals capacity reaches 70 million tonnes and coal-to-liquids capacity reaches 60 million tonnes, coal feedstock requirements would add an additional 450 million tonnes by 2025. Even with more efficient growth among these drivers, China's annual coal demand is expected to reach 3.9 to 4.3 billion tonnes by 2025. Central government support for nuclear and renewable energy has not reversed China's growing dependence on coal for primary energy. Substitution is a matter of scale: offsetting one year of recent coal demand growth of 200 million tonnes would require 107 billion cubic meters of natural gas (compared to 2007 growth of 13 BCM), 48 GW of nuclear (compared to 2007 growth of 2 GW), or 86 GW of hydropower capacity (compared to 2007 growth of 16 GW). Ongoing dependence on coal reduces China's ability to mitigate carbon dioxide emissions growth. If coal demand remains on a high growth path, carbon dioxide emissions from coal combustion alone would exceed total US energy-related carbon emissions by 2010. Within China's coal-dominated energy system, domestic transportation has emerged as the largest bottleneck for coal industry growth and is likely to remain a constraint to further expansion. China has a low proportion of high-quality reserves, but is producing its best coal first. Declining quality will further strain production and transport capacity. Furthermore, transporting coal to users has overloaded the train system and dramatically increased truck use, raising transportation oil demand. Growing international imports have helped to offset domestic transport bottlenecks. In the long term, import demand is likely to exceed 200 million tonnes by 2025, significantly impacting regional markets.

  14. Demand Response Technology Roadmap A

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    meetings and workshops convened to develop content for the Demand Response Technology Roadmap. The project team has developed this companion document in the interest of providing...

  15. Natural Gas Weekly Update, Printer-Friendly Version

    Annual Energy Outlook

    cooling demand for natural gas. Meanwhile, it became increasingly clear that Hurricane Frances likely would not pose a significant threat to natural gas production in the Gulf of...

  16. BILIWG: Consistent "Figures of Merit" (Presentation)

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    BILIWG: Consistent "Figures of Merit" A finite set of results reported in consistent units * To track progress of individual projects on a consistent basis * To enable comparing projects in a transparent manner Potential BILIWG Figures of Merit Key BILI Distributed Reforming Targets * Cost ($/kg of H2): H2A analysis - Distributed reforming station,1000 kg/day ave./daily dispensed, 5000/6250 psi (and 10,000/12,000 psi) dispensing, 500 units/yr. * nth unit vs. 500 units/yr ? * production

  17. DemandDirect | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    DemandDirect Place: Woodbury, Connecticut Zip: 6798 Sector: Efficiency, Renewable Energy, Services Product: DemandDirect provides demand response, energy efficiency, load...

  18. Gas Shale Plays? The Global Transition

    Annual Energy Outlook

    in TOC, thermally mature in the gas to oil windows, and among the most prospective in Europe for shale development. Figure VIII-5 exhibits organic-rich shales that are typically...

  19. China, India demand cushions prices

    SciTech Connect

    Boyle, M.

    2006-11-15

    Despite the hopes of coal consumers, coal prices did not plummet in 2006 as demand stayed firm. China and India's growing economies, coupled with solid supply-demand fundamentals in North America and Europe, and highly volatile prices for alternatives are likely to keep physical coal prices from wide swings in the coming year.

  20. Demand Response for Ancillary Services

    SciTech Connect

    Alkadi, Nasr E; Starke, Michael R

    2013-01-01

    Many demand response resources are technically capable of providing ancillary services. In some cases, they can provide superior response to generators, as the curtailment of load is typically much faster than ramping thermal and hydropower plants. Analysis and quantification of demand response resources providing ancillary services is necessary to understand the resources economic value and impact on the power system. Methodologies used to study grid integration of variable generation can be adapted to the study of demand response. In the present work, we describe and illustrate a methodology to construct detailed temporal and spatial representations of the demand response resource and to examine how to incorporate those resources into power system models. In addition, the paper outlines ways to evaluate barriers to implementation. We demonstrate how the combination of these three analyses can be used to translate the technical potential for demand response providing ancillary services into a realizable potential.

  1. Automated Demand Response and Commissioning

    SciTech Connect

    Piette, Mary Ann; Watson, David S.; Motegi, Naoya; Bourassa, Norman

    2005-04-01

    This paper describes the results from the second season of research to develop and evaluate the performance of new Automated Demand Response (Auto-DR) hardware and software technology in large facilities. Demand Response (DR) is a set of activities to reduce or shift electricity use to improve the electric grid reliability and manage electricity costs. Fully-Automated Demand Response does not involve human intervention, but is initiated at a home, building, or facility through receipt of an external communications signal. We refer to this as Auto-DR. The evaluation of the control and communications must be properly configured and pass through a set of test stages: Readiness, Approval, Price Client/Price Server Communication, Internet Gateway/Internet Relay Communication, Control of Equipment, and DR Shed Effectiveness. New commissioning tests are needed for such systems to improve connecting demand responsive building systems to the electric grid demand response systems.

  2. Regulatory risks paralyzing power industry while demand grows

    SciTech Connect

    Maize, K.; Peltier, R.

    2008-01-15

    2008 will be the year the US generation industry grapples with CO{sub 2} emission. Project developers are suddenly coal-shy, mostly flirting with new nuclear plants waiting impatiently in line for equipment manufacturers to catch up with the demand for wind turbines, and finding gas more attractive again. With no proven greenhouse gas sequestration technology on the horizon, utilities will be playing it safe with energy-efficiency ploys rather than rushing to contract for much-needed new generation.

  3. Honeywell Demonstrates Automated Demand Response Benefits for...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Honeywell Demonstrates Automated Demand Response Benefits for Utility, Commercial, and Industrial Customers Honeywell Demonstrates Automated Demand Response Benefits for Utility, ...

  4. Demand Response for Ancillary Services

    Energy.gov [DOE]

    Methodologies used to study grid integration of variable generation can be adapted to the study of demand response. In the present work, we describe and implement a methodology to construct detailed temporal and spatial representations of demand response resources and to incorporate those resources into power system models. In addition, the paper outlines ways to evaluate barriers to implementation. We demonstrate how the combination of these three analyses can be used to assess economic value of the realizable potential of demand response for ancillary services.

  5. Greater fuel diversity needed to meet growing US electricity demand

    SciTech Connect

    Burt, B.; Mullins, S.

    2008-01-15

    Electricity demand is growing in the USA. One way to manage the uncertainty is to diversity fuel sources. Fuel sources include coal, natural gas, nuclear and renewable energy sources. Tables show actual and planned generation projects by fuel types. 1 fig., 2 tabs.

  6. Patterns of US energy demand

    SciTech Connect

    Piper, V.

    1987-08-01

    Patterns of US energy use - both current and projected - define an important part of the context in which energy policy decisions are made. This document attempts to provide a policy-oriented overview of US energy use and demand patterns. Specifically, this document: reviews the patterns of US energy use, with emphasis on those aspects that have implications for US energy security; places US energy use and projected demand in a global context, particularly as it relates to a changing world oil market and the dependency of various sectors of the economy on oil; highlights the important interactions between changes in the US economy and changing energy demand; and provides insight into the functioning of energy end-use markets and future energy demand.

  7. Residential Demand Module - NEMS Documentation

    Reports and Publications

    2014-01-01

    Model Documentation - Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code.

  8. Industrial Demand Module - NEMS Documentation

    Reports and Publications

    2014-01-01

    Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Module. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code.

  9. Demand Response Spinning Reserve Demonstration

    SciTech Connect

    Eto, Joseph H.; Nelson-Hoffman, Janine; Torres, Carlos; Hirth,Scott; Yinger, Bob; Kueck, John; Kirby, Brendan; Bernier, Clark; Wright,Roger; Barat, A.; Watson, David S.

    2007-05-01

    The Demand Response Spinning Reserve project is a pioneeringdemonstration of how existing utility load-management assets can providean important electricity system reliability resource known as spinningreserve. Using aggregated demand-side resources to provide spinningreserve will give grid operators at the California Independent SystemOperator (CAISO) and Southern California Edison (SCE) a powerful, newtool to improve system reliability, prevent rolling blackouts, and lowersystem operating costs.

  10. Electrical energy and demand savings from a geothermal heat pump energy savings performance contract at Ft. Polk, LA

    SciTech Connect

    Shonder, J.A.; Hughes, P.J.

    1997-06-01

    At Fort Polk, LA the space conditioning systems of an entire city (4,003 military family housing units) have been converted to geothermal heat pumps (GHP) under an energy savings performance contract. At the same time, other efficiency measures such as compact fluorescent lights (CFLs), low-flow hot water outlets, and attic insulation were installed. Pre- and post-retrofit data were taken at 15-minute intervals on energy flows through the electrical distribution feeders that serve the family housing areas of the post. 15-minute interval data was also taken on energy use from a sample of the residences. This paper summarizes the electrical energy and demand savings observed in this data. Analysis of feeder-level data shows that for a typical year, the project will result in a 25.6 million kWh savings in electrical energy use, or 32.4% of the pre-retrofit electrical consumption in family housing. Results from analysis of building-level data compare well with this figure. Analysis of feeder-level data also shows that the project has resulted in a reduction of peak electrical demand of 6,541 kW, which is 39.6% of the pre-retrofit peak electrical demand. In addition to these electrical savings, the facility is also saving an estimated 260,000 therms per year of natural gas. It should be noted that the energy savings presented in this document are the apparent energy savings observed in the monitored data, and are not to be confused with the contracted energy savings used as the basis for payments. To determine the contracted energy savings, the apparent energy savings may require adjustments for such things as changes in indoor temperature performance criteria, additions of ceiling fans, and other factors.

  11. Polarized Ion Beams in Figure-8 Rings of JLab's MEIC

    SciTech Connect

    Derbenev, Yaroslav; Lin, Fanglei; Morozov, Vasiliy; Zhang, Yuhong; Kondratenko, Anatoliy; Kondratenko, M.A.; Filatov, Yury

    2014-07-01

    The Medium-energy Electron-Ion Collider (MEIC) proposed by Jefferson Lab is designed to provide high polarization of both colliding beams. One of the unique features of JLab's MEIC is figure-8 shape of its rings. It allows preservation and control of polarization of all ion species including small-anomalous-magnetic-moment deuterons during their acceleration and storage. The figure-8 design conceptually expands the capability of obtaining polarized high-energy beams in comparison to conventional designs because of its property of having no preferred periodic spin direction. This allows one to control effectively the beam polarization by means of magnetic insertions with small field integrals. We present a complete scheme for preserving the ion polarization during all stages of acceleration and its control in the collider's experimental straights.

  12. NOvA (Fermilab E929) Official Plots and Figures

    DOE Data Explorer

    The NOvA collaboration, consisting of 180 researchers across 28 institutions and managed by the Fermi National Accelerator Laboratory (FNAL), is developing instruments for a neutrino-focused experiment that will attempt to answer three fundamental questions in neutrino physics: 1) Can we observe the oscillation of muon neutrinos to electron neutrinos; 2) What is the ordering of the neutrino masses; and 3) What is the symmetry between matter and antimatter? The collaboration makes various data plots and figures available. These are grouped under five headings, with brief descriptions included for each individual figure: Neutrino Spectra, Detector Overview, Theta12 Mass Hierarchy CP phase, Theta 23 Delta Msqr23, and NuSterile.

  13. Volume_III_App_A_Figures_Chapter2

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Plains & Eastern EIS Figure 2.1-1: Converter Station General Layout 0 50 100 Miles OKLAHOMA ARKANSAS NE W M EX IC O T N COLORADO MISSOURI KANSAS MISSISSIPPI LOUISIANA TEXAS A R Arkansas AC Interconnection Siting Area Oklahoma AC Interconnection Siting Area Future Optima Substation Region 4 Link 3 Variation 2 Lee Creek Variation Oklahoma Converter Station Siting Area Arkansas Converter Station Siting Area Tennessee Converter Station Siting Area Region 1 Region 2 Region 3 Region 4 Region 5

  14. International Oil Supplies and Demands

    SciTech Connect

    Not Available

    1992-04-01

    The eleventh Energy Modeling Forum (EMF) working group met four times over the 1989--1990 period to compare alternative perspectives on international oil supplies and demands through 2010 and to discuss how alternative supply and demand trends influence the world's dependence upon Middle Eastern oil. Proprietors of eleven economic models of the world oil market used their respective models to simulate a dozen scenarios using standardized assumptions. From its inception, the study was not designed to focus on the short-run impacts of disruptions on oil markets. Nor did the working group attempt to provide a forecast or just a single view of the likely future path for oil prices. The model results guided the group's thinking about many important longer-run market relationships and helped to identify differences of opinion about future oil supplies, demands, and dependence.

  15. International Oil Supplies and Demands

    SciTech Connect

    Not Available

    1991-09-01

    The eleventh Energy Modeling Forum (EMF) working group met four times over the 1989--90 period to compare alternative perspectives on international oil supplies and demands through 2010 and to discuss how alternative supply and demand trends influence the world's dependence upon Middle Eastern oil. Proprietors of eleven economic models of the world oil market used their respective models to simulate a dozen scenarios using standardized assumptions. From its inception, the study was not designed to focus on the short-run impacts of disruptions on oil markets. Nor did the working group attempt to provide a forecast or just a single view of the likely future path for oil prices. The model results guided the group's thinking about many important longer-run market relationships and helped to identify differences of opinion about future oil supplies, demands, and dependence.

  16. Turkey opens electricity markets as demand grows

    SciTech Connect

    McKeigue, J.; Da Cunha, A.; Severino, D. [Global Business Reports (United States)

    2009-06-15

    Turkey's growing power market has attracted investors and project developers for over a decade, yet their plans have been dashed by unexpected political or financial crises or, worse, obstructed by a lengthy bureaucratic approval process. Now, with a more transparent retail electricity market, government regulators and investors are bullish on Turkey. Is Turkey ready to turn the power on? This report closely examine Turkey's plans to create a power infrastructure capable of providing the reliable electricity supplies necessary for sustained economic growth. It was compiled with on-the-ground research and extensive interview with key industrial and political figures. Today, hard coal and lignite account for 21% of Turkey's electricity generation and gas-fired plants account for 50%. The Alfin Elbistan-B lignite-fired plant has attracted criticism for its lack of desulfurization units and ash dam facilities that have tarnished the industry's image. A 1,100 MW hard-coal fired plant using supercritical technology is under construction. 9 figs., 1 tab.

  17. Natural Gas Summary from the Short-Term Energy Outlook

    Gasoline and Diesel Fuel Update

    gas is heavily used for power generation. Such conditions could cause a mid-year spike in prices to above 6 per MMBtu. With high natural gas prices, natural gas demand is...

  18. Natural Gas Weekly Update, Printer-Friendly Version

    Gasoline and Diesel Fuel Update

    gas is heavily used for power generation. Such conditions could cause a mid-year spike in prices to above 6 per MMBtu. With high natural gas prices, natural gas demand is...

  19. U.S. Coal Supply and Demand

    Gasoline and Diesel Fuel Update

    U.S. Coal Supply and Demand > U.S. Coal Supply and Demand U.S. Coal Supply and Demand 2010 Review (entire report also available in printer-friendly format ) Previous Editions 2009 ...

  20. EIA projections of coal supply and demand

    SciTech Connect

    Klein, D.E.

    1989-10-23

    Contents of this report include: EIA projections of coal supply and demand which covers forecasted coal supply and transportation, forecasted coal demand by consuming sector, and forecasted coal demand by the electric utility sector; and policy discussion.

  1. Figure F3. North American Electric Reliability Corporation regions

    Gasoline and Diesel Fuel Update

    3 U.S. Energy Information Administration | Annual Energy Outlook 2016 Regional maps Figure F2. Electricity market module regions Source: U.S. Energy Information Administration, Office of Energy Analysis. 1 2 3 4 5 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 6 7 1. ERCT TRE All 2. FRCC FRCC All 3. MROE MRO East 4. MROW MRO West 5. NEWE NPCC New England 6. NYCW NPCC NYC/Westchester 7. NYLI NPCC Long Island 8. NYUP NPCC Upstate NY 9. RFCE RFC East 10. RFCM RFC Michigan 11. RFCW RFC West 12. SRDA

  2. Gas filled panel insulation

    DOEpatents

    Griffith, B.T.; Arasteh, D.K.; Selkowitz, S.E.

    1993-12-14

    A structural or flexible highly insulative panel which may be translucent, is formed from multi-layer polymeric material in the form of an envelope surrounding a baffle. The baffle is designed so as to minimize heat transfer across the panel, by using material which forms substantially closed spaces to suppress convection of the low conductivity gas fill. At least a portion of the baffle carries a low emissivity surface for suppression of infrared radiation. 18 figures.

  3. High Electric Demand Days: Clean Energy Strategies for Improving Air Quality

    Energy.gov [DOE]

    This presentation, presented in July 2008, addressed greenhouse gas reduction goals on high electric demand days. Presenter was Art Diem of the State and Local Capacity Building Branch at the U.S. Environmental Protection Agency.

  4. Flue gas desulfurization

    DOEpatents

    Im, K.H.; Ahluwalia, R.K.

    1984-05-01

    The invention involves a combustion process in which combustion gas containing sulfur oxide is directed past a series of heat exchangers to a stack and in which a sodium compound is added to the combustion gas in a temparature zone of above about 1400 K to form Na/sub 2/SO/sub 4/. Preferably, the temperature is above about 1800 K and the sodium compound is present as a vapor to provide a gas-gas reaction to form Na/sub 2/SO/sub 4/ as a liquid. Since liquid Na/sub 2/SO/sub 4/ may cause fouling of heat exchanger surfaces downstream from the combustion zone, the process advantageously includes the step of injecting a cooling gas downstream of the injection of the sodium compound yet upstream of one or more heat exchangers to cool the combustion gas to below about 1150 K and form solid Na/sub 2/SO/sub 4/. The cooling gas is preferably a portion of the combustion gas downstream which may be recycled for cooling. It is further advantageous to utilize an electrostatic precipitator downstream of the heat exchangers to recover the Na/sub 2/SO/sub 4/. It is also advantageous in the process to remove a portion of the combustion gas cleaned in the electrostatic precipitator and recycle that portion upstream to use as the cooling gas. 3 figures.

  5. Generating Demand for Multifamily Building Upgrades | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Generating Demand for Multifamily Building Upgrades Generating Demand for Multifamily Building Upgrades Better Buildings Residential Network Peer Exchange Call Series: Generating...

  6. Demand Management Institute (DMI) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Demand Management Institute (DMI) Jump to: navigation, search Name: Demand Management Institute (DMI) Address: 35 Walnut Street Place: Wellesley, Massachusetts Zip: 02481 Region:...

  7. Marketing & Driving Demand: Social Media Tools & Strategies ...

    Energy Saver

    Marketing & Driving Demand: Social Media Tools & Strategies - January 16, 2011 (Text Version) Marketing & Driving Demand: Social Media Tools & Strategies - January 16, 2011 (Text ...

  8. Generating Demand for Multifamily Building Upgrades | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Generating Demand for Multifamily Building Upgrades Generating Demand for Multifamily Building Upgrades Better Buildings Residential Network Peer Exchange Call Series: Generating ...

  9. Projecting Electricity Demand in 2050

    SciTech Connect

    Hostick, Donna J.; Belzer, David B.; Hadley, Stanton W.; Markel, Tony; Marnay, Chris; Kintner-Meyer, Michael C. W.

    2014-07-01

    This paper describes the development of end-use electricity projections and load curves that were developed for the Renewable Electricity (RE) Futures Study (hereafter RE Futures), which explored the prospect of higher percentages (30% - 90%) of total electricity generation that could be supplied by renewable sources in the United States. As input to RE Futures, two projections of electricity demand were produced representing reasonable upper and lower bounds of electricity demand out to 2050. The electric sector models used in RE Futures required underlying load profiles, so RE Futures also produced load profile data in two formats: 8760 hourly data for the year 2050 for the GridView model, and in 2-year increments for 17 time slices as input to the Regional Energy Deployment System (ReEDS) model. The process for developing demand projections and load profiles involved three steps: discussion regarding the scenario approach and general assumptions, literature reviews to determine readily available data, and development of the demand curves and load profiles.

  10. Promising Technology: Demand Control Ventilation

    Energy.gov [DOE]

    Demand control ventilation (DCV) measures carbon dioxide concentrations in return air or other strategies to measure occupancy, and accurately matches the ventilation requirement. This system reduces ventilation when spaces are vacant or at lower than peak occupancy. When ventilation is reduced, energy savings are accrued because it is not necessary to heat, cool, or dehumidify as much outside air.

  11. Commercial Demand Module - NEMS Documentation

    Reports and Publications

    2014-01-01

    Documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Commercial Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components.

  12. Fermilab E866 (NuSea) Figures and Data Plots

    DOE Data Explorer

    None

    The NuSea Experiment at Fermilab studied the internal structure of protons, in particular the difference between up quarks and down quarks. This experiment also addressed at least two other physics questions: nuclear effects on the production of charmonia states (bound states of charm and anti-charm quarks) and energy loss of quarks in nuclei from Drell-Yan measurements on nuclei. While much of the NuSea data are available only to the collaboration, figures, data plots, and tables are presented as stand-alone items for viewing or download. They are listed in conjunction with the published papers, theses, or presentations in which they first appeared. The date range is 1998 to 2008. To see these figures and plots, click on E866 publications or go directly to http://p25ext.lanl.gov/e866/papers/papers.html. Theses are at http://p25ext.lanl.gov/e866/papers/e866theses/e866theses.html and the presentations are found at http://p25ext.lanl.gov/e866/papers/e866talks/e866talks.html. Many of the items are postscript files.

  13. The alchemy of demand response: turning demand into supply

    SciTech Connect

    Rochlin, Cliff

    2009-11-15

    Paying customers to refrain from purchasing products they want seems to run counter to the normal operation of markets. Demand response should be interpreted not as a supply-side resource but as a secondary market that attempts to correct the misallocation of electricity among electric users caused by regulated average rate tariffs. In a world with costless metering, the DR solution results in inefficiency as measured by deadweight losses. (author)

  14. Addressing Energy Demand through Demand Response. International Experiences and Practices

    SciTech Connect

    Shen, Bo; Ghatikar, Girish; Ni, Chun Chun; Dudley, Junqiao; Martin, Phil; Wikler, Greg

    2012-06-01

    Demand response (DR) is a load management tool which provides a cost-effective alternative to traditional supply-side solutions to address the growing demand during times of peak electrical load. According to the US Department of Energy (DOE), demand response reflects ‚Äúchanges in electric usage by end-use customers from their normal consumption patterns in response to changes in the price of electricity over time, or to incentive payments designed to induce lower electricity use at times of high wholesale market prices or when system reliability is jeopardized.‚ÄĚ 1 The California Energy Commission (CEC) defines DR as ‚Äúa reduction in customers‚Äô electricity consumption over a given time interval relative to what would otherwise occur in response to a price signal, other financial incentives, or a reliability signal.‚ÄĚ 2 This latter definition is perhaps most reflective of how DR is understood and implemented today in countries such as the US, Canada, and Australia where DR is primarily a dispatchable resource responding to signals from utilities, grid operators, and/or load aggregators (or DR providers).

  15. North American Natural Gas Markets

    SciTech Connect

    Not Available

    1989-02-01

    This report summarizes die research by an Energy Modeling Forum working group on the evolution of the North American natural gas markets between now and 2010. The group's findings are based partly on the results of a set of economic models of the natural gas industry that were run for four scenarios representing significantly different conditions: two oil price scenarios (upper and lower), a smaller total US resource base (low US resource case), and increased potential gas demand for electric generation (high US demand case). Several issues, such as the direction of regulatory policy and the size of the gas resource base, were analyzed separately without the use of models.

  16. North American Natural Gas Markets

    SciTech Connect

    Not Available

    1988-12-01

    This report sunnnarizes the research by an Energy Modeling Forum working group on the evolution of the North American natural gas markets between now and 2010. The group's findings are based partly on the results of a set of economic models of the natural gas industry that were run for four scenarios representing significantly different conditions: two oil price scenarios (upper and lower), a smaller total US resource base (low US resource case), and increased potential gas demand for electric generation (high US demand case). Several issues, such as the direction of regulatory policy and the size of the gas resource base, were analyzed separately without the use of models.

  17. 9-D polarized proton transport in the MEIC figure 8 collider ring - first steps

    SciTech Connect

    Meot, F.; Morozov, V. S.

    2015-05-03

    Spin tracking studies in the MEIC figure-8 collider ion ring are presented, based on a very preliminary design of the lattice. They provide numerical illustrations of some of the aspects of the figure-8 concept, including spin-rotator based spin control, and lay out the path towards a complete spin tracking simulation of a figure-8 ring.

  18. 9-D polarized proton transport in the MEIC figure-8 collider ring: first steps

    SciTech Connect

    Meot, F.; Morozov, V. S.

    2014-10-24

    Spin tracking studies in the MEIC figure-8 collider ion ring are presented, based on a very preliminary design of the lattice. They provide numerical illustrations of some of the aspects of the figure-8 concept, including spin-rotator based spin control, and lay out the path towards a complete spin tracking simulation of a figure-8 ring.

  19. Drivers of Future Energy Demand

    Gasoline and Diesel Fuel Update

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 3,405 3,901 4,133 4,041 2000's 8,829 8,050 10,938 10,551 7,292 7,223 15,647 16,102 46,437 43,953 2010's 44,470 44,836 46,069 53,679 64,072 67,144

    Drivers of Future Energy Demand in China Asian Energy Demand Outlook 2014 EIA Energy Conference July 14, 2014 Valerie J. Karplus MIT Sloan School of Management 2 www.china.org.cn www.flickr.com www.wikimedia.org globalchange.mit.edu Global Climate Change Human

  20. The bear awakens: Resurgence of oil and gas in the former Soviet Union

    SciTech Connect

    Foreman, N.E.

    1996-12-31

    Since dissolution of the Soviet Union (USSR) in late 1991, the oil and gas industries in the 15 component nations have been in a state of turmoil stemming mainly from past communist management practices and the transition to Western-style market economies and multiparty governments. As a result, oil and gas output have fallen dramatically. This study incorporates separate oil and gas production forecasts, predicted independently by onshore and offshore sectors, for each of the producing republics of the Former Soviet Union (FSU) over the period 1996-2005. Supply--assessed by full-cycle resource analysis--and demand, estimated from available historic and projected consumption figures, are balanced to yield a coherent picture. Production of both oil and gas for the FSU is forecast to recover strongly. Oil and condensate output--led by Russia, Kazakhstan, and Azerbaijan--are forecast to rebound to 9,545 MBOPD by 2005, which will reinstate the FSU as one of the world`s premier crude exporting blocs. Natural gas output--propelled by gains in Russia, Turkmenistan, and Uzbekistan--will likewise resurge, reaching a world-leading 96,051 MMCFD level, of which a large amount will be exported.

  1. STAR (Solenoidal Tracker at RHIC) Figures and Data

    DOE Data Explorer

    The STAR Collaboration

    The primary physics task of STAR is to study the formation and characteristics of the quark-gluon plasma (QGP), a state of matter believed to exist at sufficiently high energy densities. STAR consists of several types of detectors, each specializing in detecting certain types of particles or characterizing their motion. These detectors work together in an advanced data acquisition and subsequent physics analysis that allows final statements to be made about the collision. The STAR Publications page provides access to all published papers by the STAR Collaboration, and many of them have separate links to the figures and data found in or supporting the paper. See also the data-rich summaries of the research at http://www.star.bnl.gov/central/physics/results/. [See also DDE00230

  2. BRAHMS (Broad Range Hadron Magnetic Spectrometer) Figures and Data Archive

    DOE Data Explorer

    The BRAHMS experiment was designed to measure charged hadrons over a wide range of rapidity and transverse momentum to study the reaction mechanisms of the relativistic heavy ion reactions at the Relativistic Heavy Ion Collider at Brookhaven National Laboratory and the properties of the highly excited nuclear matter formed in these reactions. The experiment took its first data during the RHIC 2000 year run and completed data taking in June 2006. The BRAHMS archive makes publications available and also makes data and figures from those publications available as separate items. See also the complete list of publications, multimedia presentations, and related papers at http://www4.rcf.bnl.gov/brahms/WWW/publications.html

  3. Process for selected gas oxide removal by radiofrequency catalysts

    DOEpatents

    Cha, C.Y.

    1993-09-21

    This process to remove gas oxides from flue gas utilizes adsorption on a char bed subsequently followed by radiofrequency catalysis enhancing such removal through selected reactions. Common gas oxides include SO[sub 2] and NO[sub x]. 1 figure.

  4. Unconventional oil and gas (UOG) reservoirs present unique subsurface...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... Figure 1. NETL schematic of hydraulically-fractured shale gas system. It is important to understand not only the characteristics and behavior of the target formation but also the ...

  5. Natural Gas Summary from the Short-Term Energy Outlook

    Gasoline and Diesel Fuel Update

    commercial sector demand are offset by lower demand in the electric power sector. Short-Term Natural Gas Market Outlook, September 2003 History Projections Jun-03 Jul-03 Aug-03...

  6. Demand Response Valuation Frameworks Paper

    SciTech Connect

    Heffner, Grayson

    2009-02-01

    While there is general agreement that demand response (DR) is a valued component in a utility resource plan, there is a lack of consensus regarding how to value DR. Establishing the value of DR is a prerequisite to determining how much and what types of DR should be implemented, to which customers DR should be targeted, and a key determinant that drives the development of economically viable DR consumer technology. Most approaches for quantifying the value of DR focus on changes in utility system revenue requirements based on resource plans with and without DR. This ''utility centric'' approach does not assign any value to DR impacts that lower energy and capacity prices, improve reliability, lower system and network operating costs, produce better air quality, and provide improved customer choice and control. Proper valuation of these benefits requires a different basis for monetization. The review concludes that no single methodology today adequately captures the wide range of benefits and value potentially attributed to DR. To provide a more comprehensive valuation approach, current methods such as the Standard Practice Method (SPM) will most likely have to be supplemented with one or more alternative benefit-valuation approaches. This report provides an updated perspective on the DR valuation framework. It includes an introduction and four chapters that address the key elements of demand response valuation, a comprehensive literature review, and specific research recommendations.

  7. Coordination of Energy Efficiency and Demand Response

    SciTech Connect

    none,

    2010-01-01

    Summarizes existing research and discusses current practices, opportunities, and barriers to coordinating energy efficiency and demand response programs.

  8. Isotope Production in Light of Increasing Demand

    SciTech Connect

    Patton, B.

    2004-10-05

    This presentation is a part of the panel discussion on isotope production in light of increasing demand.

  9. Demand Response Resource Assessment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Demand Response Resource Assessment Demand Response Resource Assessment This dataset provides estimates for hourly electric loads and demand response potential across regions of the U.S. and for different end-uses across the commercial, residential, industrial, and municipal sectors. Two different weather years are provided, 2006 and 2013, for a projected 2020 electric load. Dataset More Documents & Publications Demand Response and Energy Storage Integration Study Barriers to Industrial

  10. Energy demand and population changes

    SciTech Connect

    Allen, E.L.; Edmonds, J.A.

    1980-12-01

    Since World War II, US energy demand has grown more rapidly than population, so that per capita consumption of energy was about 60% higher in 1978 than in 1947. Population growth and the expansion of per capita real incomes have led to a greater use of energy. The aging of the US population is expected to increase per capita energy consumption, despite the increase in the proportion of persons over 65, who consume less energy than employed persons. The sharp decline in the population under 18 has led to an expansion in the relative proportion of population in the prime-labor-force age groups. Employed persons are heavy users of energy. The growth of the work force and GNP is largely attributable to the growing participation of females. Another important consequence of female employment is the growth in ownership of personal automobiles. A third factor pushing up labor-force growth is the steady influx of illegal aliens.

  11. Gas hydrate cool storage system

    DOEpatents

    Ternes, M.P.; Kedl, R.J.

    1984-09-12

    The invention presented relates to the development of a process utilizing a gas hydrate as a cool storage medium for alleviating electric load demands during peak usage periods. Several objectives of the invention are mentioned concerning the formation of the gas hydrate as storage material in a thermal energy storage system within a heat pump cycle system. The gas hydrate was formed using a refrigerant in water and an example with R-12 refrigerant is included. (BCS)

  12. Climate Mitigation Policy Implications for Global Irrigation Water Demand

    SciTech Connect

    Chaturvedi, Vaibhav; Hejazi, Mohamad I.; Edmonds, James A.; Clarke, Leon E.; Kyle, G. Page; Davies, Evan; Wise, Marshall A.

    2013-08-22

    Energy, water and land are scarce resources, critical to humans. Developments in each affect the availability and cost of the others, and consequently human prosperity. Measures to limit greenhouse gas concentrations will inevitably exact dramatic changes on energy and land systems and in turn alter the character, magnitude and geographic distribution of human claims on water resources. We employ the Global Change Assessment Model (GCAM), an integrated assessment model to explore the interactions of energy, land and water systems in the context of alternative policies to limit climate change to three alternative levels: 2.5 Wm-2 (445 ppm CO2-e), 3.5 Wm-2 (535 ppm CO2-e) and 4.5 Wm-2 (645 ppm CO2-e). We explore the effects of alternative land-use emissions mitigation policy options‚ÄĒone which values terrestrial carbon emissions equally with fossil fuel and industrial emissions, and an alternative which places no penalty on land-use change emissions. We find that increasing populations and economic growth could be anticipated to lead to increased demand for water for agricultural systems (+200%), even in the absence of climate change. In general policies to mitigate climate change will increase agricultural demands for water, regardless of whether or not terrestrial carbon is valued or not. Burgeoning demands for water are driven by the demand for bioenergy in response to emissions mitigation policies. We also find that the policy matters. Increases in the demand for water when terrestrial carbon emissions go un-prices are vastly larger than when terrestrial system carbon emissions are prices at the same rate as fossil fuel and industrial emissions. Our estimates for increased water demands when terrestrial carbon systems go un-priced are larger than earlier studies. We find that the deployment of improved irrigation delivery systems could mitigate some of the increase in water demands, but cannot reverse the increases in water demands when terrestrial carbon

  13. Figure 1. Project Area, Focused Study Area, Potential Access Agreement Land, and Land Not

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Page 4 of 8 Figure 1. Project Area, Focused Study Area, Potential Access Agreement Land, and Land Not Suitable for Conveyance

  14. The application of a figure of merit for nuclear explosive utility...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: The application of a figure of merit for nuclear explosive utility as metric for material attractiveness in a nuclear material theft scenario Citation Details ...

  15. Natural Gas Weekly Update, Printer-Friendly Version

    Annual Energy Outlook

    oil and gas resources will be necessary even as efficiency improvements reduce demand and renewable sources become more available. In order to retain public trust environmentally...

  16. Mid-South Metallurgical Makes Electrical and Natural Gas System...

    Energy.gov [DOE] (indexed site)

    This included installing new furnace insulation, implementing an electrical demand system, ... Mid-South Metallurgical Makes Electrical and Natural Gas System Upgrades to Reduce Energy ...

  17. -South Metallurgical Makes Electrical and Natural Gas System...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    South Metallurgical Makes Electrical and Natural Gas System Upgrades to Reduce Energy Use ... new furnace insulation, implementing an electrical demand system, installing energy ...

  18. Natural Gas Weekly Update, Printer-Friendly Version

    Annual Energy Outlook

    markets. The global recession reduced demand, softened prices, and slowed investment. During the year, natural gas prices moved closer to parity with coal prices. As a...

  19. Natural Gas Weekly Update, Printer-Friendly Version

    Annual Energy Outlook

    which summarizes the likely demand, supply, and prices for natural gas, heating oil, propane, and electricity during the upcoming winter (October 2004 - March 2005). According to...

  20. Natural Gas Summary from the Short-Term Energy Outlook

    Annual Energy Outlook

    change the pattern of annual demand shifts reported in earlier Outlooks. Short-Term Natural Gas Market Outlook, December 2002 History Projections Sep-02 Oct-02 Nov-02...

  1. Providing Reliability Services through Demand Response: A Prelimnary Evaluation of the Demand Response Capabilities of Alcoa Inc.

    SciTech Connect

    Starke, Michael R; Kirby, Brendan J; Kueck, John D; Todd, Duane; Caulfield, Michael; Helms, Brian

    2009-02-01

    Demand response is the largest underutilized reliability resource in North America. Historic demand response programs have focused on reducing overall electricity consumption (increasing efficiency) and shaving peaks but have not typically been used for immediate reliability response. Many of these programs have been successful but demand response remains a limited resource. The Federal Energy Regulatory Commission (FERC) report, 'Assessment of Demand Response and Advanced Metering' (FERC 2006) found that only five percent of customers are on some form of demand response program. Collectively they represent an estimated 37,000 MW of response potential. These programs reduce overall energy consumption, lower green house gas emissions by allowing fossil fuel generators to operate at increased efficiency and reduce stress on the power system during periods of peak loading. As the country continues to restructure energy markets with sophisticated marginal cost models that attempt to minimize total energy costs, the ability of demand response to create meaningful shifts in the supply and demand equations is critical to creating a sustainable and balanced economic response to energy issues. Restructured energy market prices are set by the cost of the next incremental unit of energy, so that as additional generation is brought into the market, the cost for the entire market increases. The benefit of demand response is that it reduces overall demand and shifts the entire market to a lower pricing level. This can be very effective in mitigating price volatility or scarcity pricing as the power system responds to changing demand schedules, loss of large generators, or loss of transmission. As a global producer of alumina, primary aluminum, and fabricated aluminum products, Alcoa Inc., has the capability to provide demand response services through its manufacturing facilities and uniquely through its aluminum smelting facilities. For a typical aluminum smelter, electric power

  2. Scenarios of energy demand and efficiency potential for Bulgaria

    SciTech Connect

    Tzvetanov, P.; Ruicheva, M.; Denisiev, M.

    1996-12-31

    The paper presents aggregated results on macroeconomic and final energy demand scenarios developed within the Bulgarian Country Study on Greenhouse Gas Emissions Mitigation, supported by US Country Studies Program. The studies in this area cover 5 main stages: (1) {open_quotes}Baseline{close_quotes} and {open_quotes}Energy Efficiency{close_quotes} socioeconomic and energy policy philosophy; (2) Modeling of macroeconomic and sectoral development till 2020; (3) Expert assessments on the technological options for energy efficiency increase and GHG mitigation in the Production, Transport and Households and Services Sectors; (4) Bottom-up modeling of final energy demand; and (5) Sectoral and overall energy efficiency potential and policy. Within the Bulgarian Country Study, the presented results have served as a basis for the final integration stage {open_quotes}Assessment of the Mitigation Policy and Measures in the Energy System of Bulgaria{close_quotes}.

  3. Hawaii demand-side management resource assessment. Final report, Reference Volume 3 -- Residential and commercial sector DSM analyses: Detailed results from the DBEDT DSM assessment model; Part 1, Technical potential

    SciTech Connect

    1995-04-01

    The Hawaii Demand-Side Management Resource Assessment was the fourth of seven projects in the Hawaii Energy Strategy (HES) program. HES was designed by the Department of Business, Economic Development, and Tourism (DBEDT) to produce an integrated energy strategy for the State of Hawaii. The purpose of Project 4 was to develop a comprehensive assessment of Hawaii`s demand-side management (DSM) resources. To meet this objective, the project was divided into two phases. The first phase included development of a DSM technology database and the identification of Hawaii commercial building characteristics through on-site audits. These Phase 1 products were then used in Phase 2 to identify expected energy impacts from DSM measures in typical residential and commercial buildings in Hawaii. The building energy simulation model DOE-2.1E was utilized to identify the DSM energy impacts. More detailed information on the typical buildings and the DOE-2.1E modeling effort is available in Reference Volume 1, ``Building Prototype Analysis``. In addition to the DOE-2.1E analysis, estimates of residential and commercial sector gas and electric DSM potential for the four counties of Honolulu, Hawaii, Maui, and Kauai through 2014 were forecasted by the new DBEDT DSM Assessment Model. Results from DBEDTs energy forecasting model, ENERGY 2020, were linked with results from DOE-2.1E building energy simulation runs and estimates of DSM measure impacts, costs, lifetime, and anticipated market penetration rates in the DBEDT DSM Model. Through its algorithms, estimates of DSM potential for each forecast year were developed. Using the load shape information from the DOE-2.1E simulation runs, estimates of electric peak demand impacts were developed. Numerous tables and figures illustrating the technical potential for demand-side management are included.

  4. Natural Gas Weekly Update, Printer-Friendly Version

    Gasoline and Diesel Fuel Update

    to withdraw natural gas from storage to meet current demand. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage decreased to 2,406 Bcf as of...

  5. Natural Gas Summary from the Short-Term Energy Outlook

    Gasoline and Diesel Fuel Update

    economy. In 2003, natural gas demand growth is expected across all sectors. Short-Term Natural Gas Market Outlook, July 2002 History Projections Apr-02 Ma May-02 Jun-02...

  6. Natural gas pipeline technology overview.

    SciTech Connect

    Folga, S. M.; Decision and Information Sciences

    2007-11-01

    The United States relies on natural gas for one-quarter of its energy needs. In 2001 alone, the nation consumed 21.5 trillion cubic feet of natural gas. A large portion of natural gas pipeline capacity within the United States is directed from major production areas in Texas and Louisiana, Wyoming, and other states to markets in the western, eastern, and midwestern regions of the country. In the past 10 years, increasing levels of gas from Canada have also been brought into these markets (EIA 2007). The United States has several major natural gas production basins and an extensive natural gas pipeline network, with almost 95% of U.S. natural gas imports coming from Canada. At present, the gas pipeline infrastructure is more developed between Canada and the United States than between Mexico and the United States. Gas flows from Canada to the United States through several major pipelines feeding U.S. markets in the Midwest, Northeast, Pacific Northwest, and California. Some key examples are the Alliance Pipeline, the Northern Border Pipeline, the Maritimes & Northeast Pipeline, the TransCanada Pipeline System, and Westcoast Energy pipelines. Major connections join Texas and northeastern Mexico, with additional connections to Arizona and between California and Baja California, Mexico (INGAA 2007). Of the natural gas consumed in the United States, 85% is produced domestically. Figure 1.1-1 shows the complex North American natural gas network. The pipeline transmission system--the 'interstate highway' for natural gas--consists of 180,000 miles of high-strength steel pipe varying in diameter, normally between 30 and 36 inches in diameter. The primary function of the transmission pipeline company is to move huge amounts of natural gas thousands of miles from producing regions to local natural gas utility delivery points. These delivery points, called 'city gate stations', are usually owned by distribution companies, although some are owned by transmission companies

  7. NCEP_Demand_Response_Draft_111208.indd

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    National Council on Electricity Policy: Electric Transmission Series for State Offi cials Demand Response and Smart Metering Policy Actions Since the Energy Policy Act of 2005: A Summary for State Offi cials Demand Response and Smart Metering Policy Actions Since the Energy Policy Act of 2005: A Summary for State Offi cials Prepared by the U.S. Demand Response Coordinating Committee for The National Council on Electricity Policy Fall 2008 i National Council on Electricity Policy: Electric

  8. Integration of Demand Side Management, Distributed Generation...

    OpenEI (Open Energy Information) [EERE & EIA]

    various aspects of demand response, distributed generation, smart grid and energy storage. Annex 9 is a list of pilot programs and case studies, with links to those...

  9. Geographically Based Hydrogen Demand and Infrastructure Rollout...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Rollout Scenario Analysis Geographically Based Hydrogen Demand and Infrastructure Rollout Scenario Analysis Presentation by Margo Melendez at the 2010-2025 Scenario Analysis for ...

  10. Robust Unit Commitment Considering Uncertain Demand Response

    DOE PAGES [OSTI]

    Liu, Guodong; Tomsovic, Kevin

    2014-09-28

    Although price responsive demand response has been widely accepted as playing an important role in the reliable and economic operation of power system, the real response from demand side can be highly uncertain due to limited understanding of consumers' response to pricing signals. To model the behavior of consumers, the price elasticity of demand has been explored and utilized in both research and real practice. However, the price elasticity of demand is not precisely known and may vary greatly with operating conditions and types of customers. To accommodate the uncertainty of demand response, alternative unit commitment methods robust to themore¬†¬Ľ uncertainty of the demand response require investigation. In this paper, a robust unit commitment model to minimize the generalized social cost is proposed for the optimal unit commitment decision taking into account uncertainty of the price elasticity of demand. By optimizing the worst case under proper robust level, the unit commitment solution of the proposed model is robust against all possible realizations of the modeled uncertain demand response. Numerical simulations on the IEEE Reliability Test System show the e ectiveness of the method. Finally, compared to unit commitment with deterministic price elasticity of demand, the proposed robust model can reduce the average Locational Marginal Prices (LMPs) as well as the price volatility.¬ę¬†less

  11. Robust Unit Commitment Considering Uncertain Demand Response

    SciTech Connect

    Liu, Guodong; Tomsovic, Kevin

    2014-09-28

    Although price responsive demand response has been widely accepted as playing an important role in the reliable and economic operation of power system, the real response from demand side can be highly uncertain due to limited understanding of consumers' response to pricing signals. To model the behavior of consumers, the price elasticity of demand has been explored and utilized in both research and real practice. However, the price elasticity of demand is not precisely known and may vary greatly with operating conditions and types of customers. To accommodate the uncertainty of demand response, alternative unit commitment methods robust to the uncertainty of the demand response require investigation. In this paper, a robust unit commitment model to minimize the generalized social cost is proposed for the optimal unit commitment decision taking into account uncertainty of the price elasticity of demand. By optimizing the worst case under proper robust level, the unit commitment solution of the proposed model is robust against all possible realizations of the modeled uncertain demand response. Numerical simulations on the IEEE Reliability Test System show the e ectiveness of the method. Finally, compared to unit commitment with deterministic price elasticity of demand, the proposed robust model can reduce the average Locational Marginal Prices (LMPs) as well as the price volatility.

  12. Demand Response - Policy | Department of Energy

    Energy.gov [DOE] (indexed site)

    OE's mission includes assisting states and regions in developing policies that decrease demand on existing energy infrastructure. Appropriate cost-effective demandresponse ...

  13. Distributed Automated Demand Response - Energy Innovation Portal

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy Analysis Energy Analysis Electricity Transmission Electricity Transmission Find More Like This Return to Search Distributed Automated Demand Response Lawrence Livermore ...

  14. Using Mobile Applications to Generate Customer Demand

    Energy.gov [DOE]

    Better Buildings Residential Network Peer Exchange Call Series: Using Mobile Applications to Generate Customer Demand, Call Slides and Discussion Summary, March 12, 2015.

  15. Fabricate-on-Demand Vacuum Insulating Glazings

    Energy.gov [DOE]

    PPG is working to design a fabricate-on-demand process to overcome the cost and supply chain issues preventing widespread adoption of vacuum insulating glazings (VIGs).

  16. BPA, Energy Northwest launch demand response pilot

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    BPA-Energy-Northwest-launch-demand-response-pilot Sign In About | Careers | Contact | Investors | bpa.gov Search News & Us Expand News & Us Projects & Initiatives Expand...

  17. Reducing Logistics Footprints and Replenishment Demands: Nano...

    Office of Scientific and Technical Information (OSTI)

    Logistics Footprints and Replenishment Demands: Nano-engineered Silica Aerogels a Proven Method for Water Treatment Citation Details In-Document Search Title: Reducing Logistics ...

  18. Reducing Logistics Footprints and Replenishment Demands: Nano...

    Office of Scientific and Technical Information (OSTI)

    Water Treatment Citation Details In-Document Search Title: Reducing Logistics Footprints and Replenishment Demands: Nano-engineered Silica Aerogels a Proven Method for Water ...

  19. Marketing & Driving Demand Collaborative - Social Media Tools...

    Energy.gov [DOE] (indexed site)

    More Documents & Publications Using Social Media for Long-Term Branding Marketing & Driving Demand: Social Media Tools & Strategies - January 16, 2011 (Text Version) Generating ...

  20. Energy Efficiency, Demand Response, and Volttron

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ENERGY EFFICIENCY, DEMAND RESPONSE, AND VOLTTRON Presented by Justin Sipe SEEMINGLY SIMPLE STATEMENTS Utilities need more capacity to handle growth on the grid ...

  1. Demand Response in the ERCOT Markets

    SciTech Connect

    Patterson, Mark

    2011-10-25

    ERCOT grid serves 85% of Texas load over 40K+ miles transmission line. Demand response: voluntary load response, load resources, controllable load resources, and emergency interruptible load service.

  2. Geographically Based Hydrogen Consumer Demand and Infrastructure...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Geographically Based Hydrogen Consumer Demand and Infrastructure Analysis Final Report M. Melendez and A. Milbrandt Technical Report NRELTP-540-40373 October 2006 NREL is operated...

  3. Regression Models for Demand Reduction based on Cluster Analysis of Load Profiles

    SciTech Connect

    Yamaguchi, Nobuyuki; Han, Junqiao; Ghatikar, Girish; Piette, Mary Ann; Asano, Hiroshi; Kiliccote, Sila

    2009-06-28

    This paper provides new regression models for demand reduction of Demand Response programs for the purpose of ex ante evaluation of the programs and screening for recruiting customer enrollment into the programs. The proposed regression models employ load sensitivity to outside air temperature and representative load pattern derived from cluster analysis of customer baseline load as explanatory variables. The proposed models examined their performances from the viewpoint of validity of explanatory variables and fitness of regressions, using actual load profile data of Pacific Gas and Electric Company's commercial and industrial customers who participated in the 2008 Critical Peak Pricing program including Manual and Automated Demand Response.

  4. SAN ANTONIO SPURS DEMAND FOR ENERGY EFFICIENCY | Department of...

    Energy Saver

    SAN ANTONIO SPURS DEMAND FOR ENERGY EFFICIENCY SAN ANTONIO SPURS DEMAND FOR ENERGY EFFICIENCY SAN ANTONIO SPURS DEMAND FOR ENERGY EFFICIENCY As a city that experiences seasonal ...

  5. Forecourt and Gas Infrastructure Optimization

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Forecourt and Gas Infrastructure Optimization Bruce Kelly Nexant, Inc. Hydrogen Delivery Analysis Meeting May 8-9, 2007 Columbia, Maryland 2 Analysis of Market Demand and Supply Variations Supply Side Variations: Central Production Plant Outages - Scheduled yearly maintenance: Typically 5 to 10 consecutive days each year - Unscheduled maintenance outages: Indeterminate time and length - Natural disasters: A few days? Demand side variations - Hourly at refueling sites - Day to day at refueling

  6. Automation of Capacity Bidding with an Aggregator Using Open Automated Demand Response

    SciTech Connect

    Kiliccote, Sila; Piette, Mary Ann

    2008-10-01

    This report summarizes San Diego Gas& Electric Company?s collaboration with the Demand Response Research Center to develop and test automation capability for the Capacity Bidding Program in 2007. The report describes the Open Automated Demand Response architecture, summarizes the history of technology development and pilot studies. It also outlines the Capacity Bidding Program and technology being used by an aggregator that participated in this demand response program. Due to delays, the program was not fully operational for summer 2007. However, a test event on October 3, 2007, showed that the project successfully achieved the objective to develop and demonstrate how an open, Web?based interoperable automated notification system for capacity bidding can be used by aggregators for demand response. The system was effective in initiating a fully automated demand response shed at the aggregated sites. This project also demonstrated how aggregators can integrate their demand response automation systems with San Diego Gas& Electric Company?s Demand Response Automation Server and capacity bidding program.

  7. Demand for petrochem feedstock to buoy world LPG industry

    SciTech Connect

    Not Available

    1992-05-18

    This paper reports that use of liquefied petroleum gas as petrochemical feedstock will increase worldwide, providing major growth opportunities for LPG producers. World exports of liquefied petroleum gas will increase more slowly than production as producers choose to use LPG locally as chemical feedstock and export in value added forms such as polyethylene. So predicts Poten and Partners Inc., New York. Poten forecasts LPG production in exporting countries will jump to 95 million tons in 2010 from 45 million tons in 1990. However, local and regional demand will climb to 60 million tons/year from 23 million tons/year during the same period. So supplies available for export will rise to 35 million tons in 2010 from 22 million tons in 1990.

  8. North American Natural Gas Markets. Volume 1

    SciTech Connect

    Not Available

    1988-12-01

    This report sunnnarizes the research by an Energy Modeling Forum working group on the evolution of the North American natural gas markets between now and 2010. The group`s findings are based partly on the results of a set of economic models of the natural gas industry that were run for four scenarios representing significantly different conditions: two oil price scenarios (upper and lower), a smaller total US resource base (low US resource case), and increased potential gas demand for electric generation (high US demand case). Several issues, such as the direction of regulatory policy and the size of the gas resource base, were analyzed separately without the use of models.

  9. North American Natural Gas Markets. Volume 2

    SciTech Connect

    Not Available

    1989-02-01

    This report summarizes die research by an Energy Modeling Forum working group on the evolution of the North American natural gas markets between now and 2010. The group`s findings are based partly on the results of a set of economic models of the natural gas industry that were run for four scenarios representing significantly different conditions: two oil price scenarios (upper and lower), a smaller total US resource base (low US resource case), and increased potential gas demand for electric generation (high US demand case). Several issues, such as the direction of regulatory policy and the size of the gas resource base, were analyzed separately without the use of models.

  10. Strategies for Demand Response in Commercial Buildings

    SciTech Connect

    Watson, David S.; Kiliccote, Sila; Motegi, Naoya; Piette, Mary Ann

    2006-06-20

    This paper describes strategies that can be used in commercial buildings to temporarily reduce electric load in response to electric grid emergencies in which supplies are limited or in response to high prices that would be incurred if these strategies were not employed. The demand response strategies discussed herein are based on the results of three years of automated demand response field tests in which 28 commercial facilities with an occupied area totaling over 11 million ft{sup 2} were tested. Although the demand response events in the field tests were initiated remotely and performed automatically, the strategies used could also be initiated by on-site building operators and performed manually, if desired. While energy efficiency measures can be used during normal building operations, demand response measures are transient; they are employed to produce a temporary reduction in demand. Demand response strategies achieve reductions in electric demand by temporarily reducing the level of service in facilities. Heating ventilating and air conditioning (HVAC) and lighting are the systems most commonly adjusted for demand response in commercial buildings. The goal of demand response strategies is to meet the electric shed savings targets while minimizing any negative impacts on the occupants of the buildings or the processes that they perform. Occupant complaints were minimal in the field tests. In some cases, ''reductions'' in service level actually improved occupant comfort or productivity. In other cases, permanent improvements in efficiency were discovered through the planning and implementation of ''temporary'' demand response strategies. The DR strategies that are available to a given facility are based on factors such as the type of HVAC, lighting and energy management and control systems (EMCS) installed at the site.

  11. Residential Electricity Demand in China -- Can Efficiency Reverse the Growth?

    SciTech Connect

    Letschert, Virginie; McNeil, Michael A.; Zhou, Nan

    2009-05-18

    The time when energy-related carbon emissions come overwhelmingly from developed countries is coming to a close. China has already overtaken the United States as the world's leading emitter of greenhouse gas emissions. The economic growth that China has experienced is not expected to slow down significantly in the long term, which implies continued massive growth in energy demand. This paper draws on the extensive expertise from the China Energy Group at LBNL on forecasting energy consumption in China, but adds to it by exploring the dynamics of demand growth for electricity in the residential sector -- and the realistic potential for coping with it through efficiency. This paper forecasts ownership growth of each product using econometric modeling, in combination with historical trends in China. The products considered (refrigerators, air conditioners, fans, washing machines, lighting, standby power, space heaters, and water heating) account for 90percent of household electricity consumption in China. Using this method, we determine the trend and dynamics of demandgrowth and its dependence on macroeconomic drivers at a level of detail not accessible by models of a more aggregate nature. In addition, we present scenarios for reducing residential consumption through efficiency measures defined at the product level. The research takes advantage of an analytical framework developed by LBNL (BUENAS) which integrates end use technology parameters into demand forecasting and stock accounting to produce detailed efficiency scenarios, thus allowing for a technologically realistic assessment of efficiency opportunities specifically in the Chinese context.

  12. Tax and revenue effects of natural gas deregulation. [Monograph

    SciTech Connect

    Not Available

    1981-01-01

    Independent macroeconomic and microeconomic analyses found that federal revenues will increase $39 to $49 billion during the next 4 years if natural gas prices were fully dereglated in early 1982 without a windfall tax. This figure could exceed $75 billion with a windfall profits tax, and could make a significant contribution toward reducing the federal deficit. It is emphasized that the additional revenues would only be realized if there prompt decontrol of prices. 1 figure, 5 tables. (DCK)

  13. Electricity demand in a developing country. [Paraguay

    SciTech Connect

    Westley, G.D.

    1984-08-01

    This study analyzes the residential and commercial demand for electricity in ten regions in Paraguay for 1970-1977. Models that are both linear and nonlinear in the parameters are estimated. The nonlinear model takes advantage of prior information on the nature of the appliances being utilized and simultaneously deals with the demand discontinuities caused by appliance indivisibility. Three dynamic equations, including a novel cumulative adjustment model, all indicate rapid adjustment to desired appliance stock levels. Finally, the multiproduct surplus loss obtained from an estimated demand equation is used to measure the welfare cost of power outages. 15 references.

  14. Autonomous Demand Response for Primary Frequency Regulation

    SciTech Connect

    Donnelly, Matt; Trudnowski, Daniel J.; Mattix, S.; Dagle, Jeffery E.

    2012-02-28

    The research documented within this report examines the use of autonomous demand response to provide primary frequency response in an interconnected power grid. The work builds on previous studies in several key areas: it uses a large realistic model (i.e., the interconnection of the western United States and Canada); it establishes a set of metrics that can be used to assess the effectiveness of autonomous demand response; and it independently adjusts various parameters associated with using autonomous demand response to assess effectiveness and to examine possible threats or vulnerabilities associated with the technology.

  15. FERC sees huge potential for demand response

    SciTech Connect

    2010-04-15

    The FERC study concludes that U.S. peak demand can be reduced by as much as 188 GW -- roughly 20 percent -- under the most aggressive scenario. More moderate -- and realistic -- scenarios produce smaller but still significant reductions in peak demand. The FERC report is quick to point out that these are estimates of the potential, not projections of what could actually be achieved. The main varieties of demand response programs include interruptible tariffs, direct load control (DLC), and a number of pricing schemes.

  16. Agricultural Irrigation Demand Response Estimation Tool

    Energy Science and Technology Software Center

    2014-02-01

    This program is used to model the energy demand of agricultural irrigation pumps, used to maintain soil moisture levels in irrigated fields. This modeling is accomplished using historical data from evapotranspirationmeasuring weather stations (from the California Irrigation Management Information System) as well as irrigation system characteristics for the field(s) to be modeled. The modelled energy demand is used to estimate the achievable demand response (DR) potential of the field(s), for use in assessing the valuemore¬†¬Ľ of the DR for the utility company. The program can accept input data with varying degrees of rigor, and estimate the uncertainty of the output accordingly.¬ę¬†less

  17. Gas Storage Technology Consortium

    SciTech Connect

    Joel Morrison

    2005-09-14

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1, 2005 through June 30, 2005. During this time period efforts were directed toward (1) GSTC administration changes, (2) participating in the American Gas Association Operations Conference and Biennial Exhibition, (3) issuing a Request for Proposals (RFP) for proposal solicitation for funding, and (4) organizing the proposal selection meeting.

  18. Volatile coal prices reflect supply, demand uncertainties

    SciTech Connect

    Ryan, M.

    2004-12-15

    Coal mine owners and investors say that supply and demand are now finally in balance. But coal consumers find that both spot tonnage and new contract coal come at a much higher price.

  19. Demand Response and Energy Storage Integration Study

    Energy.gov [DOE]

    This study is a multi-national laboratory effort to assess the potential value of demand response and energy storage to electricity systems with different penetration levels of variable renewable...

  20. Diagnostics on Demand | GE Global Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    The "Diagnostics on Demand" Infectious Disease Test Kit Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new ...

  1. Global Energy: Supply, Demand, Consequences, Opportunities

    ScienceCinema

    Majumdar, Arun

    2016-07-12

    July 29, 2008 Berkeley Lab lecture: Arun Majumdar, Director of the Environmental Energy Technologies Division, discusses current and future projections of economic growth, population, and global energy demand and supply, and explores the implications of these trends for the environment.

  2. Solar in Demand | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    in Demand Solar in Demand June 15, 2012 - 10:23am Addthis Kyle Travis, left and Jon Jackson, with Lighthouse Solar, install microcrystalline PV modules on top of Kevin Donovan's town home. | Credit: Dennis Schroeder. Kyle Travis, left and Jon Jackson, with Lighthouse Solar, install microcrystalline PV modules on top of Kevin Donovan's town home. | Credit: Dennis Schroeder. April Saylor April Saylor Former Digital Outreach Strategist, Office of Public Affairs What does this mean for me? A new

  3. Measuring the capacity impacts of demand response

    SciTech Connect

    Earle, Robert; Kahn, Edward P.; Macan, Edo

    2009-07-15

    Critical peak pricing and peak time rebate programs offer benefits by increasing system reliability, and therefore, reducing capacity needs of the electric power system. These benefits, however, decrease substantially as the size of the programs grows relative to the system size. More flexible schemes for deployment of demand response can help address the decreasing returns to scale in capacity value, but more flexible demand response has decreasing returns to scale as well. (author)

  4. Gas Hydrate Storage of Natural Gas

    SciTech Connect

    Rudy Rogers; John Etheridge

    2006-03-31

    Environmental and economic benefits could accrue from a safe, above-ground, natural-gas storage process allowing electric power plants to utilize natural gas for peak load demands; numerous other applications of a gas storage process exist. A laboratory study conducted in 1999 to determine the feasibility of a gas-hydrates storage process looked promising. The subsequent scale-up of the process was designed to preserve important features of the laboratory apparatus: (1) symmetry of hydrate accumulation, (2) favorable surface area to volume ratio, (3) heat exchanger surfaces serving as hydrate adsorption surfaces, (4) refrigeration system to remove heat liberated from bulk hydrate formation, (5) rapid hydrate formation in a non-stirred system, (6) hydrate self-packing, and (7) heat-exchanger/adsorption plates serving dual purposes to add or extract energy for hydrate formation or decomposition. The hydrate formation/storage/decomposition Proof-of-Concept (POC) pressure vessel and supporting equipment were designed, constructed, and tested. This final report details the design of the scaled POC gas-hydrate storage process, some comments on its fabrication and installation, checkout of the equipment, procedures for conducting the experimental tests, and the test results. The design, construction, and installation of the equipment were on budget target, as was the tests that were subsequently conducted. The budget proposed was met. The primary goal of storing 5000-scf of natural gas in the gas hydrates was exceeded in the final test, as 5289-scf of gas storage was achieved in 54.33 hours. After this 54.33-hour period, as pressure in the formation vessel declined, additional gas went into the hydrates until equilibrium pressure/temperature was reached, so that ultimately more than the 5289-scf storage was achieved. The time required to store the 5000-scf (48.1 hours of operating time) was longer than designed. The lower gas hydrate formation rate is attributed to a

  5. Ethanol Demand in United States Gasoline Production

    SciTech Connect

    Hadder, G.R.

    1998-11-24

    The Oak Ridge National Laboratory (OWL) Refinery Yield Model (RYM) has been used to estimate the demand for ethanol in U.S. gasoline production in year 2010. Study cases examine ethanol demand with variations in world oil price, cost of competing oxygenate, ethanol value, and gasoline specifications. For combined-regions outside California summer ethanol demand is dominated by conventional gasoline (CG) because the premised share of reformulated gasoline (RFG) production is relatively low and because CG offers greater flexibility for blending high vapor pressure components like ethanol. Vapor pressure advantages disappear for winter CG, but total ethanol used in winter RFG remains low because of the low RFG production share. In California, relatively less ethanol is used in CG because the RFG production share is very high. During the winter in California, there is a significant increase in use of ethanol in RFG, as ethanol displaces lower-vapor-pressure ethers. Estimated U.S. ethanol demand is a function of the refiner value of ethanol. For example, ethanol demand for reference conditions in year 2010 is 2 billion gallons per year (BGY) at a refiner value of $1.00 per gallon (1996 dollars), and 9 BGY at a refiner value of $0.60 per gallon. Ethanol demand could be increased with higher oil prices, or by changes in gasoline specifications for oxygen content, sulfur content, emissions of volatile organic compounds (VOCS), and octane numbers.

  6. Refrigerated Warehouse Demand Response Strategy Guide

    SciTech Connect

    Scott, Doug; Castillo, Rafael; Larson, Kyle; Dobbs, Brian; Olsen, Daniel

    2015-11-01

    This guide summarizes demand response measures that can be implemented in refrigerated warehouses. In an appendix, it also addresses related energy efficiency opportunities. Reducing overall grid demand during peak periods and energy consumption has benefits for facility operators, grid operators, utility companies, and society. State wide demand response potential for the refrigerated warehouse sector in California is estimated to be over 22.1 Megawatts. Two categories of demand response strategies are described in this guide: load shifting and load shedding. Load shifting can be accomplished via pre-cooling, capacity limiting, and battery charger load management. Load shedding can be achieved by lighting reduction, demand defrost and defrost termination, infiltration reduction, and shutting down miscellaneous equipment. Estimation of the costs and benefits of demand response participation yields simple payback periods of 2-4 years. To improve demand response performance, it’s suggested to install air curtains and another form of infiltration barrier, such as a rollup door, for the passageways. Further modifications to increase efficiency of the refrigeration unit are also analyzed. A larger condenser can maintain the minimum saturated condensing temperature (SCT) for more hours of the day. Lowering the SCT reduces the compressor lift, which results in an overall increase in refrigeration system capacity and energy efficiency. Another way of saving energy in refrigerated warehouses is eliminating the use of under-floor resistance heaters. A more energy efficient alternative to resistance heaters is to utilize the heat that is being rejected from the condenser through a heat exchanger. These energy efficiency measures improve efficiency either by reducing the required electric energy input for the refrigeration system, by helping to curtail the refrigeration load on the system, or by reducing both the load and required energy input.

  7. Gas Storage Technology Consortium

    SciTech Connect

    Joel L. Morrison; Sharon L. Elder

    2007-06-30

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is crucial in meeting the needs of these new markets. To address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1, 2007 through June 30, 2007. Key activities during this time period included: (1) Organizing and hosting the 2007 GSTC Spring Meeting; (2) Identifying the 2007 GSTC projects, issuing award or declination letters, and begin drafting subcontracts; (3) 2007 project mentoring teams identified; (4) New NETL Project Manager; (5) Preliminary planning for the 2007 GSTC Fall Meeting; (6) Collecting and compiling the 2005 GSTC project final reports; and (7) Outreach and communications.

  8. Gas Storage Technology Consortium

    SciTech Connect

    Joel L. Morrison; Sharon L. Elder

    2006-05-10

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of January 1, 2006 through March 31, 2006. Activities during this time period were: (1) Organize and host the 2006 Spring Meeting in San Diego, CA on February 21-22, 2006; (2) Award 8 projects for co-funding by GSTC for 2006; (3) New members recruitment; and (4) Improving communications.

  9. Gas Storage Technology Consortium

    SciTech Connect

    Joel L. Morrison; Sharon L. Elder

    2007-03-31

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is crucial in meeting the needs of these new markets. To address the gas storage needs of the natural gas industry, an industry-driven consortium was created - the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of January1, 2007 through March 31, 2007. Key activities during this time period included: {lg_bullet} Drafting and distributing the 2007 RFP; {lg_bullet} Identifying and securing a meeting site for the GSTC 2007 Spring Proposal Meeting; {lg_bullet} Scheduling and participating in two (2) project mentoring conference calls; {lg_bullet} Conducting elections for four Executive Council seats; {lg_bullet} Collecting and compiling the 2005 GSTC Final Project Reports; and {lg_bullet} Outreach and communications.

  10. Gas Storage Technology Consortium

    SciTech Connect

    Joel L. Morrison; Sharon L. Elder

    2006-07-06

    Gas storage is a critical element in the natural gas industry. Producers, transmission & distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1 to June 30, 2006. Key activities during this time period include: (1) Develop and process subcontract agreements for the eight projects selected for cofunding at the February 2006 GSTC Meeting; (2) Compiling and distributing the three 2004 project final reports to the GSTC Full members; (3) Develop template, compile listserv, and draft first GSTC Insider online newsletter; (4) Continue membership recruitment; (5) Identify projects and finalize agenda for the fall GSTC/AGA Underground Storage Committee Technology Transfer

  11. Major challenges loom for natural gas industry, study says

    SciTech Connect

    O'Driscoll, M.

    1994-01-28

    The 1994 edition of Natural Gas Trends, the annual joint study by Cambridge Energy Research Associates and Arthur Anderson Co., says that new oil-to-gas competition, price risks and the prospect of unbundling for local distribution companies loom as major challenges for the natural gas industry. With a tighter supply-demand balance in the past two years compounded by the fall in oil prices, gas is in head-to-head competition with oil for marginal markets, the report states. And with higher gas prices in 1993, industrial demand growth slowed while utility demand for gas fell. Some of this was related to fuel switching, particularly in the electric utility sector. Total electric power demand for gas has risen slightly due to the growth in industrial power generation, but there has yet to be a pronounced surge in gas use during the 1990s - a decade in which many had expected gas to make major inroads into the electric power sector, the report states. And while utilities still have plans to add between 40,000 and 45,000 megawatts of gas-fired generating capacity, gas actually has lost ground in the utility market to coal and nuclear power: In 1993, electricity output from coal and nuclear rose, while gas-fired generation fell to an estimated 250 billion kilowatt-hours - the lowest level since 1986, when gas generated 246 billion kwh.

  12. Development of ion beam figuring system with electrostatic deflection for ultraprecise X-ray reflective optics

    SciTech Connect

    Yamada, Jumpei; Matsuyama, Satoshi Sano, Yasuhisa; Yamauchi, Kazuto

    2015-09-15

    We developed an ion beam figuring system that utilizes electrostatic deflection. The system can produce an arbitrary shape by deterministically scanning the ion beam. The scan of the ion beam, which can be precisely controlled using only an electrical signal, enables us to avoid degradation of the mirror shape caused by imperfect acceleration or deceleration of a mechanically scanning stage. Additionally, this surface figuring method can easily be combined with X-ray metrology because the workpiece remains fixed during the figuring. We evaluated the figuring accuracy of the system by fabricating a plano-elliptical mirror for X-ray focusing. A mirror with a shape error of 1.4 nm root mean square (RMS) with a maximum removal depth of 992 nm, which corresponds to figuring accuracy of 0.14% RMS, was achieved. After the second shape corrections, an elliptical shape with a shape error of approximately 1 nm peak-to-valley, 0.48 nm RMS could be fabricated. Then, the mirror surface was smoothed by a low-energy ion beam. Consequently, a micro-roughness of 0.117 nm RMS, measured by atomic force microscopy, was achieved over an area of 1 √ó 1 őľm{sup 2}.

  13. Model Documentation Report: Residential Sector Demand Module...

    Gasoline and Diesel Fuel Update

    Stoves Geothermal Heat Pump Natural Gas Heat Pump Variables: HSYSSHR 2006,eg,b,r Benchmarking Data from Short-Term Energy Outlook Definition: Household energy consumption by...

  14. Model Documentation Report: Residential Sector Demand Module...

    Gasoline and Diesel Fuel Update

    Stoves Geothermal Heat Pump Natural Gas Heat Pump Variables: HSYSSHR 2001,eg,b,r Benchmarking Data from Short-Term Energy Outlook Definition: Household energy consumption by...

  15. Demand Response Performance and Communication Strategy: AHRI...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... California Power Agency Northern Indiana Public Service Company NV Energy NYSERDA Omaha Public Power District Oncor Corporation Pacific Gas and Electric Company PECO Energy ...

  16. STEO November 2012 - natural gas supply

    Energy Information Administration (EIA) (indexed site)

    natural gas supplies plentiful to help meet higher demand this winter As Americans move deeper into the winter heating season, the amount of U.S. natural gas in underground storage reached an estimated 3.9 trillion cubic feet at the end of October. That's up 3 percent from the same time last year and a record high says the U.S. Energy Information Administration in its new monthly short-term energy outlook. The bigger supply will help meet U.S. residential natural gas demand this winter, which is

  17. Gas flow means for improving efficiency of exhaust hoods

    DOEpatents

    Gadgil, A.J.

    1994-01-11

    Apparatus is described for inhibiting the flow of contaminants in an exhaust enclosure toward an individual located adjacent an opening into the exhaust enclosure by providing a gas flow toward a source of contaminants from a position in front of an individual to urge said contaminants away from the individual toward a gas exit port. The apparatus comprises a gas manifold which may be worn by a person as a vest. The manifold has a series of gas outlets on a front face thereof facing away from the individual and toward the contaminants to thereby provide a flow of gas from the front of the individual toward the contaminants. 15 figures.

  18. Underground natural gas storage reservoir management

    SciTech Connect

    Ortiz, I.; Anthony, R.

    1995-06-01

    The objective of this study is to research technologies and methodologies that will reduce the costs associated with the operation and maintenance of underground natural gas storage. This effort will include a survey of public information to determine the amount of natural gas lost from underground storage fields, determine the causes of this lost gas, and develop strategies and remedial designs to reduce or stop the gas loss from selected fields. Phase I includes a detailed survey of US natural gas storage reservoirs to determine the actual amount of natural gas annually lost from underground storage fields. These reservoirs will be ranked, the resultant will include the amount of gas and revenue annually lost. The results will be analyzed in conjunction with the type (geologic) of storage reservoirs to determine the significance and impact of the gas loss. A report of the work accomplished will be prepared. The report will include: (1) a summary list by geologic type of US gas storage reservoirs and their annual underground gas storage losses in ft{sup 3}; (2) a rank by geologic classifications as to the amount of gas lost and the resultant lost revenue; and (3) show the level of significance and impact of the losses by geologic type. Concurrently, the amount of storage activity has increased in conjunction with the net increase of natural gas imports as shown on Figure No. 3. Storage is playing an ever increasing importance in supplying the domestic energy requirements.

  19. Utility Sector Impacts of Reduced Electricity Demand

    SciTech Connect

    Coughlin, Katie

    2014-12-01

    This report presents a new approach to estimating the marginal utility sector impacts associated with electricity demand reductions. The method uses publicly available data and provides results in the form of time series of impact factors. The input data are taken from the Energy Information Agency's Annual Energy Outlook (AEO) projections of how the electric system might evolve in the reference case, and in a number of side cases that incorporate different effciency and other policy assumptions. The data published with the AEO are used to define quantitative relationships between demand-side electricity reductions by end use and supply-side changes to capacity by plant type, generation by fuel type and emissions of CO2, Hg, NOx and SO2. The impact factors define the change in each of these quantities per unit reduction in site electricity demand. We find that the relative variation in these impacts by end use is small, but the time variation can be significant.

  20. International Oil Supplies and Demands. Volume 2

    SciTech Connect

    Not Available

    1992-04-01

    The eleventh Energy Modeling Forum (EMF) working group met four times over the 1989--1990 period to compare alternative perspectives on international oil supplies and demands through 2010 and to discuss how alternative supply and demand trends influence the world`s dependence upon Middle Eastern oil. Proprietors of eleven economic models of the world oil market used their respective models to simulate a dozen scenarios using standardized assumptions. From its inception, the study was not designed to focus on the short-run impacts of disruptions on oil markets. Nor did the working group attempt to provide a forecast or just a single view of the likely future path for oil prices. The model results guided the group`s thinking about many important longer-run market relationships and helped to identify differences of opinion about future oil supplies, demands, and dependence.

  1. Wireless Demand Response Controls for HVAC Systems

    SciTech Connect

    Federspiel, Clifford

    2009-06-30

    The objectives of this scoping study were to develop and test control software and wireless hardware that could enable closed-loop, zone-temperature-based demand response in buildings that have either pneumatic controls or legacy digital controls that cannot be used as part of a demand response automation system. We designed a SOAP client that is compatible with the Demand Response Automation Server (DRAS) being used by the IOUs in California for their CPP program, design the DR control software, investigated the use of cellular routers for connecting to the DRAS, and tested the wireless DR system with an emulator running a calibrated model of a working building. The results show that the wireless DR system can shed approximately 1.5 Watts per design CFM on the design day in a hot, inland climate in California while keeping temperatures within the limits of ASHRAE Standard 55: Thermal Environmental Conditions for Human Occupancy.

  2. International Oil Supplies and Demands. Volume 1

    SciTech Connect

    Not Available

    1991-09-01

    The eleventh Energy Modeling Forum (EMF) working group met four times over the 1989--90 period to compare alternative perspectives on international oil supplies and demands through 2010 and to discuss how alternative supply and demand trends influence the world`s dependence upon Middle Eastern oil. Proprietors of eleven economic models of the world oil market used their respective models to simulate a dozen scenarios using standardized assumptions. From its inception, the study was not designed to focus on the short-run impacts of disruptions on oil markets. Nor did the working group attempt to provide a forecast or just a single view of the likely future path for oil prices. The model results guided the group`s thinking about many important longer-run market relationships and helped to identify differences of opinion about future oil supplies, demands, and dependence.

  3. Centralized and Decentralized Control for Demand Response

    SciTech Connect

    Lu, Shuai; Samaan, Nader A.; Diao, Ruisheng; Elizondo, Marcelo A.; Jin, Chunlian; Mayhorn, Ebony T.; Zhang, Yu; Kirkham, Harold

    2011-04-29

    Demand response has been recognized as an essential element of the smart grid. Frequency response, regulation and contingency reserve functions performed traditionally by generation resources are now starting to involve demand side resources. Additional benefits from demand response include peak reduction and load shifting, which will defer new infrastructure investment and improve generator operation efficiency. Technical approaches designed to realize these functionalities can be categorized into centralized control and decentralized control, depending on where the response decision is made. This paper discusses these two control philosophies and compares their relative advantages and disadvantages in terms of delay time, predictability, complexity, and reliability. A distribution system model with detailed household loads and controls is built to demonstrate the characteristics of the two approaches. The conclusion is that the promptness and reliability of decentralized control should be combined with the predictability and simplicity of centralized control to achieve the best performance of the smart grid.

  4. DEMAND CONTROLLED VENTILATION AND CLASSROOM VENTILATION

    SciTech Connect

    Fisk, William J.; Mendell, Mark J.; Davies, Molly; Eliseeva, Ekaterina; Faulkner, David; Hong, Tienzen; Sullivan, Douglas P.

    2014-01-06

    This document summarizes a research effort on demand controlled ventilation and classroom ventilation. The research on demand controlled ventilation included field studies and building energy modeling. Major findings included: ? The single-location carbon dioxide sensors widely used for demand controlled ventilation frequently have large errors and will fail to effectively control ventilation rates (VRs).? Multi-location carbon dioxide measurement systems with more expensive sensors connected to multi-location sampling systems may measure carbon dioxide more accurately.? Currently-available optical people counting systems work well much of the time but have large counting errors in some situations. ? In meeting rooms, measurements of carbon dioxide at return-air grilles appear to be a better choice than wall-mounted sensors.? In California, demand controlled ventilation in general office spaces is projected to save significant energy and be cost effective only if typical VRs without demand controlled ventilation are very high relative to VRs in codes. Based on the research, several recommendations were developed for demand controlled ventilation specifications in the California Title 24 Building Energy Efficiency Standards.The research on classroom ventilation collected data over two years on California elementary school classrooms to investigate associations between VRs and student illness absence (IA). Major findings included: ? Median classroom VRs in all studied climate zones were below the California guideline, and 40percent lower in portable than permanent buildings.? Overall, one additional L/s per person of VR was associated with 1.6percent less IA. ? Increasing average VRs in California K-12 classrooms from the current average to the required level is estimated to decrease IA by 3.4percent, increasing State attendance-based funding to school districts by $33M, with $6.2 M in increased energy costs. Further VR increases would provide additional benefits

  5. Gas venting

    DOEpatents

    Johnson, Edwin F.

    1976-01-01

    Improved gas venting from radioactive-material containers which utilizes the passageways between interbonded impervious laminae.

  6. Chinese Oil Demand: Steep Incline Ahead

    Energy Information Administration (EIA) (indexed site)

    Chinese Oil Demand: Steep Incline Ahead Malcolm Shealy Alacritas, Inc. April 7, 2008 Oil Demand: China, India, Japan, South Korea 0 2 4 6 8 1995 2000 2005 2010 Million Barrels/Day China South Korea Japan India IEA China Oil Forecast 0 2 4 6 8 10 12 14 16 18 2000 2005 2010 2015 2020 2025 2030 Million Barrels/Day WEO 2007 16.3 mbd 12.7 mbd IEA China Oil Forecasts 0 2 4 6 8 10 12 14 16 18 2000 2005 2010 2015 2020 2025 2030 Million Barrels/Day WEO 2007 WEO 2006 WEO 2004 WEO 2002 Vehicle Sales in

  7. Demand Response Opportunities in Industrial Refrigerated Warehouses in California

    SciTech Connect

    Goli, Sasank; McKane, Aimee; Olsen, Daniel

    2011-06-14

    Industrial refrigerated warehouses that implemented energy efficiency measures and have centralized control systems can be excellent candidates for Automated Demand Response (Auto-DR) due to equipment synergies, and receptivity of facility managers to strategies that control energy costs without disrupting facility operations. Auto-DR utilizes OpenADR protocol for continuous and open communication signals over internet, allowing facilities to automate their Demand Response (DR). Refrigerated warehouses were selected for research because: They have significant power demand especially during utility peak periods; most processes are not sensitive to short-term (2-4 hours) lower power and DR activities are often not disruptive to facility operations; the number of processes is limited and well understood; and past experience with some DR strategies successful in commercial buildings may apply to refrigerated warehouses. This paper presents an overview of the potential for load sheds and shifts from baseline electricity use in response to DR events, along with physical configurations and operating characteristics of refrigerated warehouses. Analysis of data from two case studies and nine facilities in Pacific Gas and Electric territory, confirmed the DR abilities inherent to refrigerated warehouses but showed significant variation across facilities. Further, while load from California's refrigerated warehouses in 2008 was 360 MW with estimated DR potential of 45-90 MW, actual achieved was much less due to low participation. Efforts to overcome barriers to increased participation may include, improved marketing and recruitment of potential DR sites, better alignment and emphasis on financial benefits of participation, and use of Auto-DR to increase consistency of participation.

  8. Washington: Sustainability Training for Realtors in High Demand...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Sustainability Training for Realtors in High Demand Washington: Sustainability Training for Realtors in High Demand March 6, 2014 - 5:50pm Addthis Demand has been high for a free ...

  9. Tankless Demand Water Heater Basics | Department of Energy

    Energy Saver

    Water Heating Tankless Demand Water Heater Basics Tankless Demand Water Heater Basics August 19, 2013 - 2:57pm Addthis Illustration of an electric demand water heater. At the ...

  10. Availability of Canadian imports to meet U.S. demand for ethane, propane and butane

    SciTech Connect

    Hawkins, D.J.

    1996-12-31

    Historically, Canada has had a surplus of ethane, propane and butane. Almost all of the available propane and butane in Canadian natural gas streams is recovered. While there is significant ethane recovery in Canada, ethane that cannot be economically sold is left in the gas streams. All of the surplus Canadian ethane and most of the Canadian surplus propane and butane is exported to the US. Some volumes of Canadian propane and butane have been moved offshore by marine exports to the Asia-Pacific region or South America, or directly to Mexico by rail. Essentially all of the Canadian ethane, 86% of the propane and 74% of the butane are recovered by gas processing. Canadian natural gas production has increased significantly over the last 10 years. Canadian gas resources in the Western Canadian Sedimentary Basin should permit further expansion of gas exports, and several gas pipeline projects are pending to expand the markets for Canadian gas in the US. The prospective increase in Canadian gas production will yield higher volumes of ethane, propane and butane. While there is a potential to expand domestic markets for ethane, propane and butane, a significant part of the incremental production will move to export markets. This paper provides a forecast of the expected level of ethane, propane and butane exports from Canada and discusses the supply, demand and logistical developments which may affect export availability from Canada.

  11. Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity;

    Energy Information Administration (EIA) (indexed site)

    7 End Uses of Fuel Consumption, 2006; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Demand Residual and Natural Gas(c) LPG and Coke and Breeze) for Electricity(a) Fuel Oil Diesel Fuel(b) (billion NGL(d) (million End Use (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) Total United States TOTAL FUEL CONSUMPTION 977,338 40 22 5,357 21

  12. Structuring Rebate and Incentive Programs for Sustainable Demand...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Structuring Rebate and Incentive Programs for Sustainable Demand Structuring Rebate and Incentive Programs for Sustainable Demand Better Buildings Neighborhood Program Peer...

  13. Using Mobile Applications to Generate Customer Demand | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Using Mobile Applications to Generate Customer Demand Using Mobile Applications to Generate Customer Demand Better Buildings Residential Network Peer Exchange Call Series: Using...

  14. FERC Presendation: Demand Response as Power System Resources...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    FERC Presendation: Demand Response as Power System Resources, October 29, 2010 FERC Presendation: Demand Response as Power System Resources, October 29, 2010 Federal Energy ...

  15. 2010 Assessment of Demand Response and Advanced Metering - Staff...

    Energy.gov [DOE] (indexed site)

    2010 Assessment of Demand Response and Advanced Metering - Staff Report. The Federal Energy Regulatory Commission's 2010 Demand Response and Advanced Metering Survey (2010 FERC ...

  16. Retail Demand Response in Southwest Power Pool | Department of...

    Energy Saver

    Retail Demand Response in Southwest Power Pool Retail Demand Response in Southwest Power Pool In 2007, the Southwest Power Pool (SPP) formed the Customer Response Task Force (CRTF) ...

  17. Implementation Proposal for the National Action Plan on Demand...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Implementation Proposal for the National Action Plan on DemandResponse - July 2011 Implementation Proposal for the National Action Plan on Demand Response - July 2011 Report to ...

  18. SGDP Report: Interoperability of Demand Response Resources Demonstrati...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    SGDP Report: Interoperability of Demand Response Resources Demonstration in NY (February 2015) SGDP Report: Interoperability of Demand Response Resources Demonstration in NY ...

  19. A National Forum on Demand Response: Results on What Remains...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    A National Forum on Demand Response: Results on What Remains to Be Done to Achieve Its Potential - Measurement and Verification Working Group A National Forum on Demand Response: ...

  20. Reducing Energy Demand in Buildings Through State Energy Codes...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Reducing Energy Demand in Buildings Through State Energy Codes Reducing Energy Demand in ... More Documents & Publications Technology Performance Exchange - 2013 BTO Peer Review ...

  1. Demand Response and Energy Storage Integration Study - Past Workshops...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Demand Response and Energy Storage Integration Study - Past Workshops Demand Response and Energy Storage Integration Study - Past Workshops The project was initiated and informed...

  2. Demand Response and Smart Metering Policy Actions Since the Energy...

    Office of Environmental Management (EM)

    Demand Response and Smart Metering Policy Actions Since the Energy Policy Act of 2005: A Summary for State Officials Demand Response and Smart Metering Policy Actions Since the ...

  3. Can Automotive Battery Recycling Help Meet Lithium Demand? |...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Can Automotive Battery Recycling Help Meet Lithium Demand? Title Can Automotive Battery Recycling Help Meet Lithium Demand? Publication Type Presentation Year of Publication 2013...

  4. Demand Response and Energy Storage Integration Study | Department...

    Office of Environmental Management (EM)

    and Energy Storage Integration Study Demand Response and Energy Storage Integration Study Demand response and energy storage resources present potentially important sources of bulk ...

  5. SGDP Report Now Available: Interoperability of Demand Response...

    Energy Saver

    SGDP Report Now Available: Interoperability of Demand Response Resources Demonstration in NY (February 2015) SGDP Report Now Available: Interoperability of Demand Response ...

  6. Using Partnerships to Drive Demand and Provide Services in Communities...

    Energy Saver

    Partnerships to Drive Demand and Provide Services in Communities Using Partnerships to Drive Demand and Provide Services in Communities Better Buildings Neighborhood Program ...

  7. Draft Chapter 3: Demand-Side Resources | Department of Energy

    Office of Environmental Management (EM)

    Demand-Side Resources Draft Chapter 3: Demand-Side Resources Utilities in many states have been implementing energy efficiency and load management programs (collectively called ...

  8. Agreement Template for Energy Conservation and Demand Side Management...

    Energy Saver

    Agreement Template for Energy Conservation and Demand Side Management Services Agreement Template for Energy Conservation and Demand Side Management Services Template agreement ...

  9. Sustainable Energy Resources for Consumers (SERC) - On-Demand...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    On-Demand Tankless Water Heaters Sustainable Energy Resources for Consumers (SERC) - On-Demand Tankless Water Heaters This presentation, aimed at Sustainable Energy Resources for ...

  10. Estimating Costs and Efficiency of Storage, Demand, and Heat...

    Energy Saver

    Estimating Costs and Efficiency of Storage, Demand, and Heat Pump Water Heaters Estimating Costs and Efficiency of Storage, Demand, and Heat Pump Water Heaters A water heater's ...

  11. Estimating Costs and Efficiency of Storage, Demand, and Heat...

    Energy Saver

    Costs and Efficiency of Storage, Demand, and Heat Pump Water Heaters Estimating Costs and Efficiency of Storage, Demand, and Heat Pump Water Heaters A water heater's energy ...

  12. Energy technologies and their impact on demand

    SciTech Connect

    Drucker, H.

    1995-06-01

    Despite the uncertainties, energy demand forecasts must be made to guide government policies and public and private-sector capital investment programs. Three principles can be identified in considering long-term energy prospects. First energy demand will continue to grow, driven by population growth, economic development, and the current low per capita energy consumption in developing countries. Second, energy technology advancements alone will not solve the problem. Energy-efficient technologies, renewable resource technologies, and advanced electric power technologies will all play a major role but will not be able to keep up with the growth in world energy demand. Third, environmental concerns will limit the energy technology choices. Increasing concern for environmental protection around the world will restrict primarily large, centralized energy supply facilities. The conclusion is that energy system diversity is the only solution. The energy system must be planned with consideration of both supply and demand technologies, must not rely on a single source of energy, must take advantage of all available technologies that are specially suited to unique local conditions, must be built with long-term perspectives, and must be able to adapt to change.

  13. Indianapolis Offers a Lesson on Driving Demand

    Energy.gov [DOE]

    Successful program managers know that understanding the factors that drive homeowners to make upgrades is critical to the widespread adoption of energy efficiency. What better place to learn about driving demand for upgrades than in Indianapolis, America's most famous driving city?

  14. Energy Demand (released in AEO2010)

    Reports and Publications

    2010-01-01

    Growth in U.S. energy use is linked to population growth through increases in demand for housing, commercial floorspace, transportation, manufacturing, and services. This affects not only the level of energy use, but also the mix of fuels and consumption by sector.

  15. Onshore rig surplus diminishes as demand rises

    SciTech Connect

    Isenberg, E.M.

    1997-09-22

    US and international onshore surplus rig supply is diminishing rapidly as rig demand in many regions continues to increase. Consequently, capital costs associated with reactivating, constructing, and refurbishing new and existing rigs are on the rise. In addition, rising operating costs are putting upward pressure on operating costs. In order to justify replacement of existing rigs, US rig day rates will need to more than double. Current rig-market indicators show that rig demand should continue to rise at current levels, or even accelerate. Day rates will have to rise to a level that justifies investments in new capacity, and with continuing rig attrition, even more rigs will have to be built to offset deletions. It is not a matter of whether this will occur, but only when. This will not necessarily threaten the operators` returns over the long-term because technological advances will continue, resulting in lower exploration and production costs. The paper discusses the drivers of increasing demand, faster recovery rates, increasing rig demand, diminishing rig supply, and escalating component costs.

  16. Fact #844: October 27, 2014 Electricity Generated from Coal has Declined while Generation from Natural Gas has Grown

    Office of Energy Efficiency and Renewable Energy (EERE)

    From 2002 to 2012, most states have reduced their reliance on coal for electricity generation. The figure below shows the percent change in electricity generated by coal and natural gas for each...

  17. Unconventional gas outlook: resources, economics, and technologies

    SciTech Connect

    Drazga, B.

    2006-08-15

    The report explains the current and potential of the unconventional gas market including country profiles, major project case studies, and new technology research. It identifies the major players in the market and reports their current and forecasted projects, as well as current volume and anticipated output for specific projects. Contents are: Overview of unconventional gas; Global natural gas market; Drivers of unconventional gas sources; Forecast; Types of unconventional gas; Major producing regions Overall market trends; Production technology research; Economics of unconventional gas production; Barriers and challenges; Key regions: Australia, Canada, China, Russia, Ukraine, United Kingdom, United States; Major Projects; Industry Initiatives; Major players. Uneconomic or marginally economic resources such as tight (low permeability) sandstones, shale gas, and coalbed methane are considered unconventional. However, due to continued research and favorable gas prices, many previously uneconomic or marginally economic gas resources are now economically viable, and may not be considered unconventional by some companies. Unconventional gas resources are geologically distinct in that conventional gas resources are buoyancy-driven deposits, occurring as discrete accumulations in structural or stratigraphic traps, whereas unconventional gas resources are generally not buoyancy-driven deposits. The unconventional natural gas category (CAM, gas shales, tight sands, and landfill) is expected to continue at double-digit growth levels in the near term. Until 2008, demand for unconventional natural gas is likely to increase at an AAR corresponding to 10.7% from 2003, aided by prioritized research and development efforts. 1 app.

  18. Hot gas filter and system assembly

    DOEpatents

    Lippert, Thomas Edwin; Palmer, Kathryn Miles; Bruck, Gerald Joseph; Alvin, Mary Anne; Smeltzer, Eugene E.; Bachovchin, Dennis Michael

    1999-01-01

    A filter element for separating fine dirty particles from a hot gas. The filter element comprises a first porous wall and a second porous wall. Each porous wall has an outer surface and an inner surface. The first and second porous walls being coupled together thereby forming a substantially closed figure and open at one end. The open end is formed to be coupled to a hot gas clean up system support structure. The first and second porous walls define a channel beginning at the open end and terminate at the closed end through which a filtered clean gas can flow through and out into the clean gas side of a hot gas clean up system.

  19. Hot gas filter and system assembly

    DOEpatents

    Lippert, T.E.; Palmer, K.M.; Bruck, G.J.; Alvin, M.A.; Smeltzer, E.E.; Bachovchin, D.M.

    1999-08-31

    A filter element is described for separating fine dirty particles from a hot gas. The filter element comprises a first porous wall and a second porous wall. Each porous wall has an outer surface and an inner surface. The first and second porous walls being coupled together thereby forming a substantially closed figure and open at one end. The open end is formed to be coupled to a hot gas clean up system support structure. The first and second porous walls define a channel beginning at the open end and terminate at the closed end through which a filtered clean gas can flow through and out into the clean gas side of a hot gas clean up system. 8 figs.

  20. Natural gas inventories to remain high at end of winter heating...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Natural gas inventories to remain high at end of winter heating season Despite the jump in natural gas use to meet heating demand during the recent winter storm that walloped the ...

  1. Natural gas information 1996 (1997 edition)

    SciTech Connect

    1997-09-16

    A detailed reference work on gas supply and demand covering not only the OECD countries but also the rest of the world, this publication contains essential information on LNG and pipeline trade, gas reserves, storage capacity, and prices. The main part of the book concentrates on OECD countries, showing a detailed gas supply and demand balance for each country and for three OECD regions: North America, Europe, and Asia-Pacific, as well as a breakdown of gas consumption by end-user. Import and export data are reported by source and destination. Also included are maps of the pipeline systems in 25 IEA countries and information on their ownership and operations, transit of gas, regulatory features, and transportation tariffs.

  2. As the world economy continues to expand the demand for petroleum based fuel increases and the price of these fuels rises

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    November 2004 Structural Studies of Catalytically Stabilized Industrial Hydrotreating Catalysts Myriam Perez De la Rosa 1 , Gilles Berhault 2 , Apurva Mehta 3 , Russell R. Chianelli 1 1 University of Texas at El Paso, Materials Research Technology Institute, El Paso, TX 2 Institut de Recherches sur la Catalyse, CNRS, Villeurbanne cedex, France 3 Stanford Synchrotron Radiation Laboratory, Menlo Park, CA Figure 1: MoS 2 layered structure. As the world economy continues to expand the demand for

  3. Demand for superpremium needle cokes on upswing

    SciTech Connect

    Acciarri, J.A.; Stockman, G.H. )

    1989-12-01

    The authors discuss how recent supply shortages of super-premium quality needle cokes, plus the expectation of increased shortfalls in the future, indicate that refiners should consider upgrading their operations to fill these demands. Calcined, super-premium needle cokes are currently selling for as much as $550/metric ton, fob producer, and increasing demand will continue the upward push of the past year. Needle coke, in its calcined form, is the major raw material in the manufacture of graphite electrodes. Used in steelmaking, graphite electrodes are the electrical conductors that supply the heat source, through arcing electrode column tips, to electric arc steel furnaces. Needle coke is commercially available in three grades - super premium, premium, and intermediate. Super premium is used to produce electrodes for the most severe electric arc furnace steelmaking applications, premium for electrodes destined to less severe operations, and intermediate for even less critical needs.

  4. Home Network Technologies and Automating Demand Response

    SciTech Connect

    McParland, Charles

    2009-12-01

    Over the past several years, interest in large-scale control of peak energy demand and total consumption has increased. While motivated by a number of factors, this interest has primarily been spurred on the demand side by the increasing cost of energy and, on the supply side by the limited ability of utilities to build sufficient electricity generation capacity to meet unrestrained future demand. To address peak electricity use Demand Response (DR) systems are being proposed to motivate reductions in electricity use through the use of price incentives. DR systems are also be design to shift or curtail energy demand at critical times when the generation, transmission, and distribution systems (i.e. the 'grid') are threatened with instabilities. To be effectively deployed on a large-scale, these proposed DR systems need to be automated. Automation will require robust and efficient data communications infrastructures across geographically dispersed markets. The present availability of widespread Internet connectivity and inexpensive, reliable computing hardware combined with the growing confidence in the capabilities of distributed, application-level communications protocols suggests that now is the time for designing and deploying practical systems. Centralized computer systems that are capable of providing continuous signals to automate customers reduction of power demand, are known as Demand Response Automation Servers (DRAS). The deployment of prototype DRAS systems has already begun - with most initial deployments targeting large commercial and industrial (C & I) customers. An examination of the current overall energy consumption by economic sector shows that the C & I market is responsible for roughly half of all energy consumption in the US. On a per customer basis, large C & I customers clearly have the most to offer - and to gain - by participating in DR programs to reduce peak demand. And, by concentrating on a small number of relatively sophisticated

  5. Gas separating

    DOEpatents

    Gollan, Arye

    1988-01-01

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing.

  6. Gas separating

    DOEpatents

    Gollan, Arye Z. [Newton, MA

    1990-12-25

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing.

  7. Price-responsive demand management for a smart grid world

    SciTech Connect

    Chao, Hung-po

    2010-01-15

    Price-responsive demand is essential for the success of a smart grid. However, existing demand-response programs run the risk of causing inefficient price formation. This problem can be solved if each retail customer could establish a contract-based baseline through demand subscription before joining a demand-response program. (author)

  8. Retail Demand Response in Southwest Power Pool

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    LBNL-1470E Retail Demand Response in Southwest Power Pool Ranjit Bharvirkar, Grayson Heffner and Charles Goldman Lawrence Berkeley National Laboratory Environmental Energy Technologies Division January 2009 The work described in this report was funded by the Office of Electricity Delivery and Energy Reliability, Permitting, Siting and Analysis of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Disclaimer This document was

  9. Implications of Low Electricity Demand Growth

    Gasoline and Diesel Fuel Update

    2014 EIA Energy Conference July 14, 2014 | Washington, DC Jim Diefenderfer, Director, Office of Electricity, Coal, Nuclear, & Renewables Analysis U.S. Energy Information Administration Implications of low electricity demand growth Growth in electricity use slows, but still increases by 29% from 2012 to 2040 -2% 0% 2% 4% 6% 8% 10% 12% 14% 1950 1960 1970 1980 1990 2000 2010 2020 2030 2040 percent growth (3-year compounded annual growth rate) Source: EIA, Annual Energy Outlook 2014 Reference

  10. Grid Integration of Aggregated Demand Response, Part 2: Modeling Demand Response in a Production Cost Model

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Grid Integration of Aggregated Demand Response, Part 2: Modeling Demand Response in a Production Cost Model Marissa Hummon, David Palchak, Paul Denholm, and Jennie Jorgenson National Renewable Energy Laboratory Daniel J. Olsen, Sila Kiliccote, Nance Matson, Michael Sohn, Cody Rose, Junqiao Dudley, and Sasank Goli Lawrence Berkeley National Laboratory Ookie Ma U.S. Department of Energy Technical Report NREL/TP-6A20-58492 December 2013 NREL is a national laboratory of the U.S. Department of Energy

  11. Grid Integration of Aggregated Demand Response, Part 2: Modeling Demand Response in a Production Cost Model

    SciTech Connect

    Hummon, Marissa; Palchak, David; Denholm, Paul; Jorgenson, Jennie; Olsen, Daniel J.; Kiliccote, Sila; Matson, Nance; Sohn, Michael; Rose, Cody; Dudley, Junqiao; Goli, Sasank; Ma, Ookie

    2013-12-01

    This report is one of a series stemming from the U.S. Department of Energy (DOE) Demand Response and Energy Storage Integration Study. This study is a multi-national-laboratory effort to assess the potential value of demand response (DR) and energy storage to electricity systems with different penetration levels of variable renewable resources and to improve our understanding of associatedmarkets and institutions. This report implements DR resources in the commercial production cost model PLEXOS.

  12. U.S. Energy Information Administration | Natural Gas Annual

    Energy Information Administration (EIA) (indexed site)

    14 Figure 5. Gross withdrawals of natural gas in the United States, by type of well, 2011-2015 0 2000 4000 6000 8000 10000 12000 14000 16000 2011 2012 2013 2014 2015 From Gas Wells From Oil Wells From Coalbed Wells From Shale Gas Wells billion cubic feet Sources: Production data for all natural gas producing states were obtained directly from state and federal agencies, state-sponsored public record databases, or commercial data vendors such as PointLogic Energy, DI, and Ventyx. Other sources of

  13. Gas Storage Technology Consortium

    SciTech Connect

    Joel L. Morrison; Sharon L. Elder

    2006-09-30

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created-the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of July 1, 2006 to September 30, 2006. Key activities during this time period include: {lg_bullet} Subaward contracts for all 2006 GSTC projects completed; {lg_bullet} Implement a formal project mentoring process by a mentor team; {lg_bullet} Upcoming Technology Transfer meetings: {sm_bullet} Finalize agenda for the American Gas Association Fall Underground Storage Committee/GSTC Technology Transfer Meeting in San Francisco, CA. on October 4, 2006; {sm_bullet} Identify projects and finalize agenda for the Fall GSTC Technology

  14. GAS STORAGE TECHNOLOGY CONSORTIUM

    SciTech Connect

    Robert W. Watson

    2004-07-15

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. Base funding for the consortium is provided by the U.S. Department of Energy (DOE). In addition, funding is anticipated from the Gas Technology Institute (GTI). The first phase, Phase 1A, was initiated on September 30, 2003, and was completed on March 31, 2004. Phase 1A of the project included the creation of the GSTC structure, development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with

  15. GAS STORAGE TECHNOLGOY CONSORTIUM

    SciTech Connect

    Robert W. Watson

    2004-04-23

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. Base funding for the consortium is provided by the U.S. Department of Energy (DOE). In addition, funding is anticipated from the Gas Technology Institute (GTI). The first phase, Phase 1A, was initiated on September 30, 2003, and is scheduled for completion on March 31, 2004. Phase 1A of the project includes the creation of the GSTC structure, development of constitution (by-laws) for the consortium, and development and refinement of a technical approach (work plan) for

  16. GAS STORAGE TECHNOLOGY CONSORTIUM

    SciTech Connect

    Robert W. Watson

    2004-04-17

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. Base funding for the consortium is provided by the U.S. Department of Energy (DOE). In addition, funding is anticipated from the Gas Technology Institute (GTI). The first phase, Phase 1A, was initiated on September 30, 2003, and is scheduled for completion on March 31, 2004. Phase 1A of the project includes the creation of the GSTC structure, development of constitution (by-laws) for the consortium, and development and refinement of a technical approach (work plan) for

  17. A hybrid inventory management system respondingto regular demand and surge demand

    SciTech Connect

    Mohammad S. Roni; Mingzhou Jin; Sandra D. Eksioglu

    2014-06-01

    This paper proposes a hybrid policy for a stochastic inventory system facing regular demand and surge demand. The combination of two different demand patterns can be observed in many areas, such as healthcare inventory and humanitarian supply chain management. The surge demand has a lower arrival rate but higher demand volume per arrival. The solution approach proposed in this paper incorporates the level crossing method and mixed integer programming technique to optimize the hybrid inventory policy with both regular orders and emergency orders. The level crossing method is applied to obtain the equilibrium distributions of inventory levels under a given policy. The model is further transformed into a mixed integer program to identify an optimal hybrid policy. A sensitivity analysis is conducted to investigate the impact of parameters on the optimal inventory policy and minimum cost. Numerical results clearly show the benefit of using the proposed hybrid inventory model. The model and solution approach could help healthcare providers or humanitarian logistics providers in managing their emergency supplies in responding to surge demands.

  18. Chapter 3 Demand-Side Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Demand-Side Resources Chapter 3 Demand-Side Resources Demand-side resources serve resource adequacy needs by reducing load, which reduces the need for additional generation. Typically, these resources result from one of two methods of reducing load: energy efficiency or demand response / load management. The energy efficiency method designs and deploys technologies and design practices that reduce energy use while delivering the same service. Chapter 3 Demand-Side Resources (578.63 KB) More

  19. FERC Presendation: Demand Response as Power System Resources, October 29,

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    2010 | Department of Energy FERC Presendation: Demand Response as Power System Resources, October 29, 2010 FERC Presendation: Demand Response as Power System Resources, October 29, 2010 Federal Energy Regulatory Commission (FERC) presentation on demand response as power system resources before the Electicity Advisory Committee, October 29, 2010 Demand Response as Power System Resources (247.13 KB) More Documents & Publications A National Forum on Demand Response: Results on What Remains

  20. Demand Response - Policy: More Information | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Demand Response - Policy: More Information Demand Response - Policy: More Information OE's commitment to ensuring non-wires options to modernize the nation's electricity delivery system includes ongoing support of a number of national and regional activities in support of demand response. The New England Demand Response Initiative (NEDRI), OE's initial endeavor to assist states with non-wire solutions, was created to develop a comprehensive, coordinated set of demand response programs for the

  1. Dramatic Demand Reduction In The Desert Southwest

    SciTech Connect

    Boehm, Robert; Hsieh, Sean; Lee, Joon; Baghzouz, Yahia; Cross, Andrew; Chatterjee, Sarah

    2015-07-06

    This report summarizes a project that was funded to the University of Nevada Las Vegas (UNLV), with subcontractors Pulte Homes and NV Energy. The project was motivated by the fact that locations in the Desert Southwest portion of the US demonstrate very high peak electrical demands, typically in the late afternoons in the summer. These high demands often require high priced power to supply the needs, and the large loads can cause grid supply problems. An approach was proposed through this contact that would reduce the peak electrical demands to an anticipated 65% of what code-built houses of the similar size would have. It was proposed to achieve energy reduction through four approaches applied to a development of 185 homes in northwest part of Las Vegas named Villa Trieste. First, the homes would all be highly energy efficient. Secondly, each house would have a PV array installed on it. Third, an advanced demand response technique would be developed to allow the resident to have some control over the energy used. Finally, some type of battery storage would be used in the project. Pulte Homes designed the houses. The company considered initial cost vs. long-term savings and chose options that had relatively short paybacks. HERS (Home Energy Rating Service) ratings for the homes are approximately 43 on this scale. On this scale, code-built homes rate at 100, zero energy homes rate a 0, and Energy Star homes are 85. In addition a 1.764 Wp (peak Watt) rated PV array was used on each house. This was made up of solar shakes that were in visual harmony with the roofing material used. A demand response tool was developed to control the amount of electricity used during times of peak demand. While demand response techniques have been used in the utility industry for some time, this particular approach is designed to allow the customer to decide the degree of participation in the response activity. The temperature change in the residence can be decided by the residents by

  2. Virginia Natural Gas Number of Gas and Gas Condensate Wells ...

    Energy Information Administration (EIA) (indexed site)

    Gas and Gas Condensate Wells (Number of Elements) Virginia Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 ...

  3. Model documentation report: Commercial Sector Demand Module of the National Energy Modeling System

    SciTech Connect

    1998-01-01

    This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Commercial Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components. The NEMS Commercial Sector Demand Module is a simulation tool based upon economic and engineering relationships that models commercial sector energy demands at the nine Census Division level of detail for eleven distinct categories of commercial buildings. Commercial equipment selections are performed for the major fuels of electricity, natural gas, and distillate fuel, for the major services of space heating, space cooling, water heating, ventilation, cooking, refrigeration, and lighting. The algorithm also models demand for the minor fuels of residual oil, liquefied petroleum gas, steam coal, motor gasoline, and kerosene, the renewable fuel sources of wood and municipal solid waste, and the minor services of office equipment. Section 2 of this report discusses the purpose of the model, detailing its objectives, primary input and output quantities, and the relationship of the Commercial Module to the other modules of the NEMS system. Section 3 of the report describes the rationale behind the model design, providing insights into further assumptions utilized in the model development process to this point. Section 3 also reviews alternative commercial sector modeling methodologies drawn from existing literature, providing a comparison to the chosen approach. Section 4 details the model structure, using graphics and text to illustrate model flows and key computations.

  4. Natural Gas Year-in-Review - Energy Information Administration

    Gasoline and Diesel Fuel Update

    Productive Capacity for the Lower-48 States 1985 - 2003 EIA Home > Natural Gas > Natural Gas Analysis Publications Natural Gas Productive Capacity for the Lower-48 States 1985 - 2003 Printer-Friendly Version gascapdata.xls ratiodata.xls wellcountdata.xls Executive Summary This analysis examines the availability of effective productive capacity to meet the projected wellhead demand for natural gas through 2003. Effective productive capacity is defined as the maximum production available

  5. Natural Gas Weekly Update, Printer-Friendly Version

    Annual Energy Outlook

    reverse direction and fall to 3.91 per MMBtu yesterday. Natural gas demand for power burn increased across the country during the report week. According to data from BENTEK...

  6. Natural Gas Weekly Update, Printer-Friendly Version

    Gasoline and Diesel Fuel Update

    demand for gas, which spurred the price hikes. The NYMEX futures contract for July delivery at the Henry Hub expired yesterday (June 26) at 3.278 per MMBtu, falling over 17...

  7. Natural Gas Weekly Update, Printer-Friendly Version

    Annual Energy Outlook

    levels and 25 percent below the 5-year average. Natural gas prices are likely to stay high as long as above-normal storage injection demand competes with industrial and...

  8. Natural Gas Summary from the Short-Term Energy Outlook

    Annual Energy Outlook

    levels and 25 percent below the 5-year average. Natural gas prices are likely to stay high as long as above-normal storage injection demand competes with industrial and...

  9. Natural Gas Weekly Update, Printer-Friendly Version

    Annual Energy Outlook

    1 (next release 2:00 p.m. on August 18) Natural gas spot prices exhibited increases in most locations this week (Wednesday - Wednesday, August 3 - 10) as demand responded to above...

  10. Natural Gas Weekly Update, Printer-Friendly Version

    Annual Energy Outlook

    1 (next release 2:00 p.m. on October 28) Increased natural gas demand owing to falling temperatures this week (Wednesday-Wednesday, October 13-20) combined with higher petroleum...

  11. Natural Gas Weekly Update, Printer-Friendly Version

    Annual Energy Outlook

    crude oil prices and increasing cooling demand in some regions contributed to natural gas spot prices climbing more than 10 percent at trading locations in the Lower 48 States...

  12. Natural Gas Weekly Update, Printer-Friendly Version

    Annual Energy Outlook

    3 (next release 2:00 p.m. on August 10, 2006) Natural gas spot prices increased sharply this week (Wednesday-Wednesday, July 26 - August 2), as demand for power generation remained...

  13. Natural Gas Weekly Update, Printer-Friendly Version

    Annual Energy Outlook

    or 9 percent to 4.68 per MMBtu. Lighter cooling demand for natural gas owing to the Labor Day holiday weekend and milder temperatures east of the Rockies likely contributed...

  14. Natural Gas Summary from the Short-Term Energy Outlook

    Gasoline and Diesel Fuel Update

    and continued increases in demand over 2002 levels. Cold temperatures this past winter led to a record drawdown of storage stocks. By the end of March, estimated working gas...

  15. Natural Gas Summary from the Short-Term Energy Outlook

    Gasoline and Diesel Fuel Update

    because of somewhat weaker prices and higher demand in the electric power sector. Short-Term Natural Gas Market Outlook, July 2003 History Projections Apr-03 May-03 Jun-03 Jul-03...

  16. Natural Gas Summary from the Short-Term Energy Outlook

    Annual Energy Outlook

    demand in the first quarter of 2005 relative to the first quarter of 2004. Short-Term Natural Gas Market Outlook, March 2004 History Projections Dec-03 Jan-04 Feb-04...

  17. Rare earth-doped materials with enhanced thermoelectric figure of merit

    DOEpatents

    Venkatasubramanian, Rama; Cook, Bruce Allen; Levin, Evgenii M.; Harringa, Joel Lee

    2016-09-06

    A thermoelectric material and a thermoelectric converter using this material. The thermoelectric material has a first component including a semiconductor material and a second component including a rare earth material included in the first component to thereby increase a figure of merit of a composite of the semiconductor material and the rare earth material relative to a figure of merit of the semiconductor material. The thermoelectric converter has a p-type thermoelectric material and a n-type thermoelectric material. At least one of the p-type thermoelectric material and the n-type thermoelectric material includes a rare earth material in at least one of the p-type thermoelectric material or the n-type thermoelectric material.

  18. Long range self-assembly of polythiophene breath figures: Optical and morphological characterization

    DOE PAGES [OSTI]

    Routh, Prahlad K.; Nykypanchuk, Dmytro; Venkatesh, T. A.; Cotlet, Mircea

    2015-09-01

    Large area, device relevant sized microporous thin films are formed with commercially available polythiophenes by the breath figure technique, a water-assisted micro patterning method, with such semitransparent thin films exhibiting periodicity and uniformity dictated by the length of the polymer side chain. Compared to drop casted thin films, the microporous thin films exhibit increased crystallinity due to stronger packing of the polymer inside the honeycomb frame.

  19. Total pressing Indonesian gas development, exports

    SciTech Connect

    Not Available

    1994-01-24

    Total is on track to become Indonesia's leading gas exporter by the turn of the century. Total's aggressive development of its Mahakam Delta acreage in East Kalimantan is intended to keep pace with growing liquefied natural gas demand, mainly from Japan but also increasingly from South Korea and Taiwan. A frantic scramble is under way among natural gas suppliers in the Pacific Rim region, particularly those with current LNG export facilities, to accommodate projections of soaring natural gas demand in the region. Accordingly, Total's Indonesian gas production goal is the centerpiece of a larger strategy to become a major player in the Far East Asia gas scene. Its goals also fall in line with Indonesia's. Facing flat or declining oil production while domestic oil demand continues to soar along with a rapidly growing economy, Indonesia is heeding some studies that project the country could become a net oil importer by the turn of the century. The paper describes Total's Far East strategy, the Mahakam acreage which it operates, the shift to gas development, added discoveries, future development, project spending levels, and LNG export capacity.

  20. A Framework for Geometric Reasoning About Human Figures and Factors in Assembly Processes

    SciTech Connect

    Calton, Terri L.

    1999-07-20

    Automatic assembly sequencing and visualization tools are valuable in determining the best assembly sequences, but without Human Factors and Figure Models (HFFMs) it is difficult to evaluate or visualize human interaction. In industry, accelerating technological advances and shorter market windows have forced companies to turn to an agile manufacturing paradigm. This trend has promoted computerized automation of product design and manufacturing processes, such as automated assembly planning. However, all automated assembly planning software tools assume that the individual components fly into their assembled configuration and generate what appear to be perfectly valid operations, but in reality some operations cannot physically be carried out by a human. For example, the use of a ratchet may be reasoned feasible for an assembly operation; however, when a hand is placed on the tool the operation is no longer feasible, perhaps because of inaccessibility, insufficient strength or human interference with assembly components. Similarly, human figure modeling algorithms may indicate that assembly operations are not feasible and consequently force design modifications, however, if they had the capability to quickly generate alternative assembly sequences, they might have identified a feasible solution. To solve this problem, HFFMs must be integrated with automated assembly planning which allows engineers to quickly verify that assembly operations are possible and to see ways to make the designs even better. This paper presents a framework for integrating geometry-based assembly planning algorithms with commercially available human figure modeling software packages. Experimental results to selected applications along with lessons learned are presented.

  1. Taxonomy for Modeling Demand Response Resources

    SciTech Connect

    Olsen, Daniel; Kiliccote, Sila; Sohn, Michael; Dunn, Laura; Piette, Mary, A

    2014-08-01

    Demand response resources are an important component of modern grid management strategies. Accurate characterizations of DR resources are needed to develop systems of optimally managed grid operations and to plan future investments in generation, transmission, and distribution. The DOE Demand Response and Energy Storage Integration Study (DRESIS) project researched the degree to which demand response (DR) and energy storage can provide grid flexibility and stability in the Western Interconnection. In this work, DR resources were integrated with traditional generators in grid forecasting tools, specifically a production cost model of the Western Interconnection. As part of this study, LBNL developed a modeling framework for characterizing resource availability and response attributes of DR resources consistent with the governing architecture of the simulation modeling platform. In this report, we identify and describe the following response attributes required to accurately characterize DR resources: allowable response frequency, maximum response duration, minimum time needed to achieve load changes, necessary pre- or re-charging of integrated energy storage, costs of enablement, magnitude of controlled resources, and alignment of availability. We describe a framework for modeling these response attributes, and apply this framework to characterize 13 DR resources including residential, commercial, and industrial end-uses. We group these end-uses into three broad categories based on their response capabilities, and define a taxonomy for classifying DR resources within these categories. The three categories of resources exhibit different capabilities and differ in value to the grid. Results from the production cost model of the Western Interconnection illustrate that minor differences in resource attributes can have significant impact on grid utilization of DR resources. The implications of these findings will be explored in future DR valuation studies.

  2. Emerging Trends in US Vehicle Travel Demand

    Gasoline and Diesel Fuel Update

    Emerging Trends in US Vehicle Travel Demand www.travelbehavior.us 2014 EIA Energy Conference Nancy McGuckin Travel Behavior Analyst * Historic pattern of VMT per capita * Differences in changes since 2007 by State * Private and Commercial VMT in context * Why Millenials? www.travelbehavior.us 8,000 8,500 9,000 9,500 10,000 10,500 VMT/Capita per Year www.travelbehavior.us VMT per capita: an unprecedented change: Source: McGuckin's analysis of Census Population (Jul 1) and HPMS Historic VM-1

  3. Demand-Side Response from Industrial Loads

    SciTech Connect

    Starke, Michael R; Alkadi, Nasr E; Letto, Daryl; Johnson, Brandon; Dowling, Kevin; George, Raoule; Khan, Saqib

    2013-01-01

    Through a research study funded by the Department of Energy, Smart Grid solutions company ENBALA Power Networks along with the Oak Ridge National Laboratory (ORNL) have geospatially quantified the potential flexibility within industrial loads to leverage their inherent process storage to help support the management of the electricity grid. The study found that there is an excess of 12 GW of demand-side load flexibility available in a select list of top industrial facilities in the United States. Future studies will expand on this quantity of flexibility as more in-depth analysis of different industries is conducted and demonstrations are completed.

  4. GAS STORAGE TECHNOLOGY CONSORTIUM

    SciTech Connect

    Robert W. Watson

    2004-10-18

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. The first phase, Phase 1A, was initiated on September 30, 2003, and was completed on March 31, 2004. Phase 1A of the project included the creation of the GSTC structure, development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with Phase 1B and encompasses the period July 1, 2004, through September 30, 2004. During this time period there were three main activities. First was the ongoing

  5. Japan's Residential Energy Demand Outlook to 2030 Considering Energy Efficiency Standards"Top-Runner Approach"

    SciTech Connect

    Lacommare, Kristina S H; Komiyama, Ryoichi; Marnay, Chris

    2008-05-15

    As one of the measures to achieve the reduction in greenhouse gas emissions agreed to in the"Kyoto Protocol," an institutional scheme for determining energy efficiency standards for energy-consuming appliances, called the"Top-Runner Approach," was developed by the Japanese government. Its goal is to strengthen the legal underpinnings of various energy conservation measures. Particularly in Japan's residential sector, where energy demand has grown vigorously so far, this efficiency standard is expected to play a key role in mitigating both energy demand growth and the associated CO2 emissions. This paper presents an outlook of Japan's residential energy demand, developed by a stochastic econometric model for the purpose of analyzing the impacts of the Japan's energy efficiency standards, as well as the future stochastic behavior of income growth, demography, energy prices, and climate on the future energy demand growth to 2030. In this analysis, we attempt to explicitly take into consideration more than 30 kinds of electricity uses, heating, cooling and hot water appliances in order to comprehensively capture the progress of energy efficiency in residential energy end-use equipment. Since electricity demand, is projected to exhibit astonishing growth in Japan's residential sector due to universal increasing ownership of electric and other appliances, it is important to implement an elaborate efficiency standards policy for these appliances.

  6. Unconventional Oil and Gas Resources

    SciTech Connect

    2006-09-15

    World oil use is projected to grow to 98 million b/d in 2015 and 118 million b/d in 2030. Total world natural gas consumption is projected to rise to 134 Tcf in 2015 and 182 Tcf in 2030. In an era of declining production and increasing demand, economically producing oil and gas from unconventional sources is a key challenge to maintaining global economic growth. Some unconventional hydrocarbon sources are already being developed, including gas shales, tight gas sands, heavy oil, oil sands, and coal bed methane. Roughly 20 years ago, gas production from tight sands, shales, and coals was considered uneconomic. Today, these resources provide 25% of the U.S. gas supply and that number is likely to increase. Venezuela has over 300 billion barrels of unproven extra-heavy oil reserves which would give it the largest reserves of any country in the world. It is currently producing over 550,000 b/d of heavy oil. Unconventional oil is also being produced in Canada from the Athabasca oil sands. 1.6 trillion barrels of oil are locked in the sands of which 175 billion barrels are proven reserves that can be recovered using current technology. Production from 29 companies now operating there exceeds 1 million barrels per day. The report provides an overview of continuous petroleum sources and gives a concise overview of the current status of varying types of unconventional oil and gas resources. Topics covered in the report include: an overview of the history of Oil and Natural Gas; an analysis of the Oil and Natural Gas industries, including current and future production, consumption, and reserves; a detailed description of the different types of unconventional oil and gas resources; an analysis of the key business factors that are driving the increased interest in unconventional resources; an analysis of the barriers that are hindering the development of unconventional resources; profiles of key producing regions; and, profiles of key unconventional oil and gas producers.

  7. Economic Rebalancing and Electricity Demand in China

    SciTech Connect

    He, Gang; Lin, Jiang; Yuan, Alexandria

    2015-11-01

    Understanding the relationship between economic growth and electricity use is essential for power systems planning. This need is particularly acute now in China, as the Chinese economy is going through a transition to a more consumption and service oriented economy. This study uses 20 years of provincial data on gross domestic product (GDP) and electricity consumption to examine the relationship between these two factors. We observe a plateauing effect of electricity consumption in the richest provinces, as the electricity demand saturates and the economy develops and moves to a more service-based economy. There is a wide range of forecasts for electricity use in 2030, ranging from 5,308 to 8,292 kWh per capita, using different estimating functions, as well as in existing studies. It is therefore critical to examine more carefully the relationship between electricity use and economic development, as China transitions to a new growth phase that is likely to be less energy and resource intensive. The results of this study suggest that policymakers and power system planners in China should seriously re-evaluate power demand projections and the need for new generation capacity to avoid over-investment that could lead to stranded generation assets.

  8. National Action Plan on Demand Response

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 ACTUAL FORECAST National Action Plan on Demand Response the feDeRal eneRgy RegulatoRy commission staff 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 National Action Plan on Demand Response THE FEDERAL ENERGY REGULATORY COMMISSION

  9. Fuel Interchangeability Considerations for Gas Turbine Combustion

    SciTech Connect

    Ferguson, D.H.

    2007-10-01

    In recent years domestic natural gas has experienced a considerable growth in demand particularly in the power generation industry. However, the desire for energy security, lower fuel costs and a reduction in carbon emissions has produced an increase in demand for alternative fuel sources. Current strategies for reducing the environmental impact of natural gas combustion in gas turbine engines used for power generation experience such hurdles as flashback, lean blow-off and combustion dynamics. These issues will continue as turbines are presented with coal syngas, gasified coal, biomass, LNG and high hydrogen content fuels. As it may be impractical to physically test a given turbine on all of the possible fuel blends it may experience over its life cycle, the need to predict fuel interchangeability becomes imperative. This study considers a number of historical parameters typically used to determine fuel interchangeability. Also addressed is the need for improved reaction mechanisms capable of accurately modeling the combustion of natural gas alternatives.

  10. Gas separating

    DOEpatents

    Gollan, A.Z.

    1990-12-25

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing. 3 figs.

  11. Natural Gas

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage ...

  12. Gas magnetometer

    DOEpatents

    Walker, Thad Gilbert; Lancor, Brian Robert; Wyllie, Robert

    2016-05-03

    Measurement of a precessional rate of a gas, such as an alkali gas, in a magnetic field is made by promoting a non-uniform precession of the gas in which substantially no net magnetic field affects the gas during a majority of the precession cycle. This allows sensitive gases that would be subject to spin-exchange collision de-phasing to be effectively used for extremely sensitive measurements in the presence of an environmental magnetic field such as the Earth's magnetic field.

  13. Gas separating

    DOEpatents

    Gollan, A.

    1988-03-29

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing. 3 figs.

  14. Analysis of K west basin canister gas

    SciTech Connect

    Trimble, D.J., Fluor Daniel Hanford

    1997-03-06

    Gas and Liquid samples have been collected from a selection of the approximately 3,820 spent fuel storage canisters in the K West Basin. The samples were taken to characterize the contents of the gas and water in the canisters providing source term information for two subprojects of the Spent Nuclear Fuel Project (SNFP) (Fulton 1994): the K Basins Integrated Water Treatment System Subproject (Ball 1996) and the K Basins Fuel Retrieval System Subproject (Waymire 1996). The barrels of ten canisters were sampled for gas and liquid in 1995, and 50 canisters were sampled in a second campaign in 1996. The analysis results from the first campaign have been reported (Trimble 1995a, 1995b, 1996a, 1996b). The analysis results from the second campaign liquid samples have been documented (Trimble and Welsh 1997; Trimble 1997). This report documents the results for the gas samples from the second campaign and evaluates all gas data in terms of expected releases when opening the canisters for SNFP activities. The fuel storage canisters consist of two closed and sealed barrels, each with a gas trap. The barrels are attached at a trunion to make a canister, but are otherwise independent (Figure 1). Each barrel contains up to seven N Reactor fuel element assemblies. A gas space of nitrogen was established in the top 2.2 to 2.5 inches (5.6 to 6.4 cm) of each barrel. Many of the fuel elements were damaged allowing the metallic uranium fuel to be corroded by the canister water. The corrosion releases fission products and generates hydrogen gas. The released gas mixes with the gas-space gas and excess gas passes through the gas trap into the basin water. The canister design does not allow canister water to be exchanged with basin water.

  15. World coal demand grows and Australia meets the need

    SciTech Connect

    Fiscor, S.

    2007-02-15

    The article quotes world thermal coal exports and imports figures for 2005 and forecast figures for 2006 and 2007, and world metallurgical coal consumption, production, imports and exports figures for 2004-2007, from the Australian Bureau of Agriculture and Resource Economics (ABARE) 2006 Commodity Report. Australia exports a little more than 75% of its coal and it accounts for nearly 30% of the seaborne coal trade. Transportation constraints prevent some Australian coal producers form achieving full potential. The article also reports on 2006 production figures from and some new projects at the following Australian coal companies: BHP Billton, Xstrata Coal, Rio Tinto Coal Australia, Coal & Allied, Anglo Coal Australia, Peabody/Excel and Wesfarmers. 2 tabs.

  16. California: Geothermal Plant to Help Meet High Lithium Demand...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Geothermal Plant to Help Meet High Lithium Demand California: Geothermal Plant to Help Meet High Lithium Demand May 21, 2013 - 5:54pm Addthis Through funding provided by the...

  17. Driving Demand: Door-to-Door Outreach & Tracking Impacts | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Driving Demand: Door-to-Door Outreach & Tracking Impacts Driving Demand: Door-to-Door Outreach & Tracking Impacts This webinar covered door-to-door outreach and tracking metrics ...

  18. Demand Response: Lessons Learned with an Eye to the Future |...

    Energy Saver

    Demand Response: Lessons Learned with an Eye to the Future Demand Response: Lessons Learned with an Eye to the Future July 11, 2013 - 11:56am Addthis Patricia A. Hoffman Patricia ...

  19. Tankless or Demand-Type Water Heaters | Department of Energy

    Energy Saver

    or Demand-Type Water Heaters Tankless or Demand-Type Water Heaters Diagram of a tankless water heater. Diagram of a tankless water heater. Tankless water heaters, also known as ...

  20. Tacomo Power/AVTA PHEV Demand and Energy Cost Demonstration ...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ......... 6 2.5.3 Wireless Mesh Node Locations ... of Plug-In Hybrid Electric Vehicle Charging on Facility Demand ......

  1. SAN ANTONIO SPURS DEMAND FOR ENERGY EFFICIENCY | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    SAN ANTONIO SPURS DEMAND FOR ENERGY EFFICIENCY SAN ANTONIO SPURS DEMAND FOR ENERGY EFFICIENCY SAN ANTONIO SPURS DEMAND FOR ENERGY EFFICIENCY As a city that experiences seasonal spikes in energy demand and accompanying energy bills, San Antonio, Texas, wanted to help homeowners and businesses reduce their energy use and save on energy bills. The city partnered with CPS Energy, a municipally owned utility, to offer the CPS Energy Savers Program. Using $10 million in seed funding from the U.S.

  2. Retail Demand Response in Southwest Power Pool

    SciTech Connect

    Bharvirkar, Ranjit; Heffner, Grayson; Goldman, Charles

    2009-01-30

    In 2007, the Southwest Power Pool (SPP) formed the Customer Response Task Force (CRTF) to identify barriers to deploying demand response (DR) resources in wholesale markets and develop policies to overcome these barriers. One of the initiatives of this Task Force was to develop more detailed information on existing retail DR programs and dynamic pricing tariffs, program rules, and utility operating practices. This report describes the results of a comprehensive survey conducted by LBNL in support of the Customer Response Task Force and discusses policy implications for integrating legacy retail DR programs and dynamic pricing tariffs into wholesale markets in the SPP region. LBNL conducted a detailed survey of existing DR programs and dynamic pricing tariffs administered by SPP's member utilities. Survey respondents were asked to provide information on advance notice requirements to customers, operational triggers used to call events (e.g. system emergencies, market conditions, local emergencies), use of these DR resources to meet planning reserves requirements, DR resource availability (e.g. seasonal, annual), participant incentive structures, and monitoring and verification (M&V) protocols. Nearly all of the 30 load-serving entities in SPP responded to the survey. Of this group, fourteen SPP member utilities administer 36 DR programs, five dynamic pricing tariffs, and six voluntary customer response initiatives. These existing DR programs and dynamic pricing tariffs have a peak demand reduction potential of 1,552 MW. Other major findings of this study are: o About 81percent of available DR is from interruptible rate tariffs offered to large commercial and industrial customers, while direct load control (DLC) programs account for ~;;14percent. o Arkansas accounts for ~;;50percent of the DR resources in the SPP footprint; these DR resources are primarily managed by cooperatives. o Publicly-owned cooperatives accounted for 54percent of the existing DR resources

  3. Industrial demand side management: A status report

    SciTech Connect

    Hopkins, M.F.; Conger, R.L.; Foley, T.J.

    1995-05-01

    This report provides an overview of and rationale for industrial demand side management (DSM) programs. Benefits and barriers are described, and data from the Manufacturing Energy Consumption Survey are used to estimate potential energy savings in kilowatt hours. The report presents types and examples of programs and explores elements of successful programs. Two in-depth case studies (from Boise Cascade and Eli Lilly and Company) illustrate two types of effective DSM programs. Interviews with staff from state public utility commissions indicate the current thinking about the status and future of industrial DSM programs. A comprehensive bibliography is included, technical assistance programs are listed and described, and a methodology for evaluating potential or actual savings from projects is delineated.

  4. Sensor-based demand controlled ventilation

    SciTech Connect

    De Almeida, A.T.; Fisk, W.J.

    1997-07-01

    In most buildings, occupancy and indoor pollutant emission rates vary with time. With sensor-based demand-controlled ventilation (SBDCV), the rate of ventilation (i.e., rate of outside air supply) also varies with time to compensate for the changes in pollutant generation. In other words, SBDCV involves the application of sensing, feedback and control to modulate ventilation. Compared to ventilation without feedback, SBDCV offers two potential advantages: (1) better control of indoor pollutant concentrations; and (2) lower energy use and peak energy demand. SBDCV has the potential to improve indoor air quality by increasing the rate of ventilation when indoor pollutant generation rates are high and occupants are present. SBDCV can also save energy by decreasing the rate of ventilation when indoor pollutant generation rates are low or occupants are absent. After providing background information on indoor air quality and ventilation, this report provides a relatively comprehensive discussion of SBDCV. Topics covered in the report include basic principles of SBDCV, sensor technologies, technologies for controlling air flow rates, case studies of SBDCV, application of SBDCV to laboratory buildings, and research needs. SBDCV appears to be an increasingly attractive technology option. Based on the review of literature and theoretical considerations, the application of SBDCV has the potential to be cost-effective in applications with the following characteristics: (a) a single or small number of dominant pollutants, so that ventilation sufficient to control the concentration of the dominant pollutants provides effective control of all other pollutants; (b) large buildings or rooms with unpredictable temporally variable occupancy or pollutant emission; and (c) climates with high heating or cooling loads or locations with expensive energy.

  5. Nuclear Detection Figure Of Merit (NDFOM) Version 1.2 User's Guide

    SciTech Connect

    Stroud, Phillip D; Dufresne, Thomas A.

    2012-08-27

    NDFOM is a detector database and detector evaluation system, accessible as a web service. It runs on the same server as the Patriot service, but uses port 8081. In this user's guide, we will use the example case that the patriot service is running on http://patriot.lanl.gov. Then the NDFOM service would be accessible at the URL http://patriot.lanl.gov:8081/ndfom. In addition to local server installations, common server locations are 1) a patriot server running on a virtual machine (use the virtual machine URL with :8081/ndfom), and 2) a patriot server running on a local machine (use http://localhost:8081/ndfom or http://127.0.0.1:8081/ndfom). The home screen provides panels to select detectors, a scenario, and a figure-of-merit. It also has an 'analyze' button, which will evaluate the selected figure-of-merit for the selected detectors, for the scenario selected by the user. The detector effectiveness evaluations are presented through the browser in a ranked list of detectors. The user does not need to log in to perform analysis with pre-supplied detectors, scenarios, and FOMs. The homepage view is shown in Figure 1. The first panel displays a list of the detectors in the current detector database. The user can select one, some, or all detectors to evaluate. On the right of each listed detector, there is a star icon. Clicking that icon will open a panel that displays the details about that detector, such as detector material, dimensions, thresholds, etc. The center panel displays the pre-supplied scenarios that are in the database. A scenario specifies the source of interest, the spectrum of the radiation, the background radiation spectrum, the distance or distance of closest approach, the allowable false positive rate, and the dwell time or speed. Scenario details can be obtained by clicking the star to the right of a scenario. A scenario can be selected by clicking it.

  6. High thermoelectric figure of merit in nanocrystalline polyaniline at low temperatures

    SciTech Connect

    Nath, Chandrani; Kumar, Ashok E-mail: okram@csr.res.in; Kuo, Yung-Kang; Okram, Gunadhor Singh E-mail: okram@csr.res.in

    2014-09-29

    Thermoelectric coolers with figure of merit (ZT) close to unity at low temperatures are the need of the hour with new advances in high temperature superconductors, superconducting microelectronic circuits, quantum computers, and photonics. Here, we demonstrate that the conducting polymer polyaniline (Pani) doped with camphor sulfonic acid synthesized in semi-crystalline nanostructures, possesses a giant Seebeck effect at low temperatures. The resulting enormously large Seebeck coefficient (up to 0.6‚ÄČV/K) combined with an intrinsically low electrical conductivity and thermal conductivity give rise to a ZT‚ÄČ=‚ÄČ0.77 at 45‚ÄČK and ZT‚ÄČ=‚ÄČ2.17 at 17‚ÄČK.

  7. Executive Summary - Natural Gas and the Transformation of the U.S. Energy Sector: Electricity

    SciTech Connect

    Logan, J.; Heath, G.; Macknick, J.; Paranhos, E.; Boyd, W.; Carlson, K.

    2013-01-01

    In November 2012, the Joint Institute for Strategic Energy Analysis (JISEA) released a new report, 'Natural Gas and the Transformation of the U.S. Energy Sector: Electricity.' The study provides a new methodological approach to estimate natural gas related greenhouse gas (GHG) emissions, tracks trends in regulatory and voluntary industry practices, and explores various electricity futures. The Executive Summary provides key findings, insights, data, and figures from this major study.

  8. Unconventional Natural Gas

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... 21 Exhibit 1-9 U.S. oil- and gas-producing ... for natural gas extraction (NETL, 2014) ... shale gas, tight gas sands, and coalbed methane resources. ...

  9. Proceedings of the Chinese-American symposium on energy markets and the future of energy demand

    SciTech Connect

    Meyers, S.

    1988-11-01

    The Symposium was organized by the Energy Research Institute of the State Economic Commission of China, and the Lawrence Berkeley Laboratory and Johns Hopkins University from the United States. It was held at the Johns Hopkins University Nanjing Center in late June 1988. It was attended by about 15 Chinese and an equal number of US experts on various topics related to energy demand and supply. Each presenter is one of the best observers of the energy situation in their field. A Chinese and US speaker presented papers on each topic. In all, about 30 papers were presented over a period of two and one half days. Each paper was translated into English and Chinese. The Chinese papers provide an excellent overview of the emerging energy demand and supply situation in China and the obstacles the Chinese planners face in managing the expected increase in demand for energy. These are matched by papers that discuss the energy situation in the US and worldwide, and the implications of the changes in the world energy situation on both countries. The papers in Part 1 provide historical background and discuss future directions. The papers in Part 2 focus on the historical development of energy planning and policy in each country and the methodologies and tools used for projecting energy demand and supply. The papers in Part 3 examine the pattern of energy demand, the forces driving demand, and opportunities for energy conservation in each of the major sectors in China and the US. The papers in Part 4 deal with the outlook for global and Pacific region energy markets and the development of the oil and natural gas sector in China.

  10. Chapter 3: Demand-Side Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    : Demand-Side Resources Chapter 3: Demand-Side Resources Utilities in many states have been implementing energy efficiency and load management programs (collectively called demand-side resources), some for more than two decades. According to one source, U.S. electric utilities spent $14.7 billion on DSM programs between 1989 and 1999, an average of $1.3 billion per year. Chapter 3: Demand-Side Resources (265.28 KB) More Documents & Publications Chapter 3 Demand-Side Resources Draft Ch

  11. Natural Gas Transportation - Infrastructure Issues and Operational Trends

    Reports and Publications

    2001-01-01

    This report examines how well the current national natural gas pipeline network has been able to handle today's market demand for natural gas. In addition, it identifies those areas of the country where pipeline utilization is continuing to grow rapidly and where new pipeline capacity is needed or is planned over the next several years.

  12. Global Natural Gas Market Trends, 2. edition

    SciTech Connect

    2007-07-15

    The report provides an overview of major trends occurring in the natural gas industry and includes a concise look at the drivers behind recent rapid growth in gas usage and the challenges faced in meeting that growth. Topics covered include: an overview of Natural Gas including its history, the current market environment, and its future market potential; an analysis of the overarching trends that are driving a need for change in the Natural Gas industry; a description of new technologies being developed to increase production of Natural Gas; an evaluation of the potential of unconventional Natural Gas sources to supply the market; a review of new transportation methods to get Natural Gas from producing to consuming countries; a description of new storage technologies to support the increasing demand for peak gas; an analysis of the coming changes in global Natural Gas flows; an evaluation of new applications for Natural Gas and their impact on market sectors; and, an overview of Natural Gas trading concepts and recent changes in financial markets.

  13. U.S. Energy Information Administration | Natural Gas Annual

    Energy Information Administration (EIA) (indexed site)

    0 U.S. Energy Information Administration | Natural Gas Annual Figure 3. Marketed production of natural gas in the United States and the Gulf of Mexico, 2015 (million cubic feet) None 1-15,000 15,001-100,000 100,001-200,000 200,001-500,000 500,001 and over Sources: Production data for all natural gas producing states were obtained directly from state and federal agencies, state-sponsored public record databases, or commercial data vendors such as PointLogic Energy, DI, and Ventyx. Other sources

  14. Midwest Region Natural Gas Working Underground Storage Capacity (Million

    Gasoline and Diesel Fuel Update

    May 2003 1 Despite a national economic slowdown and a 4.9 percent drop in overall U.S. natural gas consumption in 2001, 1 more than 3,571 miles of pipeline and a record 12.8 billion cubic feet per day (Bcf/d) of natural gas pipeline capacity were added to the national pipeline network during 2002 (Table 1). The estimated cost was $4.4 billion. Overall, 54 natural gas pipeline projects were completed during 2002 (Figure 1, Table 2). 2 Of these, 34 were expansions of existing pipeline systems or

  15. Automated Demand Response Opportunities in Wastewater Treatment Facilities

    SciTech Connect

    Thompson, Lisa; Song, Katherine; Lekov, Alex; McKane, Aimee

    2008-11-19

    Wastewater treatment is an energy intensive process which, together with water treatment, comprises about three percent of U.S. annual energy use. Yet, since wastewater treatment facilities are often peripheral to major electricity-using industries, they are frequently an overlooked area for automated demand response opportunities. Demand response is a set of actions taken to reduce electric loads when contingencies, such as emergencies or congestion, occur that threaten supply-demand balance, and/or market conditions occur that raise electric supply costs. Demand response programs are designed to improve the reliability of the electric grid and to lower the use of electricity during peak times to reduce the total system costs. Open automated demand response is a set of continuous, open communication signals and systems provided over the Internet to allow facilities to automate their demand response activities without the need for manual actions. Automated demand response strategies can be implemented as an enhanced use of upgraded equipment and facility control strategies installed as energy efficiency measures. Conversely, installation of controls to support automated demand response may result in improved energy efficiency through real-time access to operational data. This paper argues that the implementation of energy efficiency opportunities in wastewater treatment facilities creates a base for achieving successful demand reductions. This paper characterizes energy use and the state of demand response readiness in wastewater treatment facilities and outlines automated demand response opportunities.

  16. Measurement and evaluation techniques for automated demand response demonstration

    SciTech Connect

    Motegi, Naoya; Piette, Mary Ann; Watson, David S.; Sezgen, Osman; ten Hope, Laurie

    2004-08-01

    The recent electricity crisis in California and elsewhere has prompted new research to evaluate demand response strategies in large facilities. This paper describes an evaluation of fully automated demand response technologies (Auto-DR) in five large facilities. Auto-DR does not involve human intervention, but is initiated at a facility through receipt of an external communications signal. This paper summarizes the measurement and evaluation of the performance of demand response technologies and strategies in five large facilities. All the sites have data trending systems such as energy management and control systems (EMCS) and/or energy information systems (EIS). Additional sub-metering was applied where necessary to evaluate the facility's demand response performance. This paper reviews the control responses during the test period, and analyzes demand savings achieved at each site. Occupant comfort issues are investigated where data are available. This paper discusses methods to estimate demand savings and results from demand response strategies at five large facilities.

  17. Incentives for demand-side management

    SciTech Connect

    Reid, M.W.; Brown, J.B.

    1992-01-01

    This report is the first product of an ongoing project to monitor the efforts of states to remove regulatory barriers to, and provide financial incentives for, utility investment in demand-side management (DSM) resources. The project was commissioned by the National Association of Regulatory Utility Commissioners (NARUC) in response to growing interest among regulators for a comprehensive survey of developments in this area. Each state report beings with an overview of the state`s progress toward removing regulatory barriers and providing incentives for DSM. Information is organized under five headings: status; IRP regulations and practice; current treatment of DSM, directions and trends; commission contact person. Where applicable, each overview is followed by one or more sections that report on specific incentive proposals or mechanisms within the state. Information on each proposal or mechanism is organized under eight headings. A notation on each page identifies the utility or other group associated with the proposal or mechanism. The eight headings are as follows: status; background; treatment of cost recovery; treatment of lost revenues/decoupling; treatment of profitability; other features; issues, and additional observations.

  18. Incentives for demand-side management

    SciTech Connect

    Reid, M.W.; Brown, J.B. )

    1992-01-01

    This report is the first product of an ongoing project to monitor the efforts of states to remove regulatory barriers to, and provide financial incentives for, utility investment in demand-side management (DSM) resources. The project was commissioned by the National Association of Regulatory Utility Commissioners (NARUC) in response to growing interest among regulators for a comprehensive survey of developments in this area. Each state report beings with an overview of the state's progress toward removing regulatory barriers and providing incentives for DSM. Information is organized under five headings: status; IRP regulations and practice; current treatment of DSM, directions and trends; commission contact person. Where applicable, each overview is followed by one or more sections that report on specific incentive proposals or mechanisms within the state. Information on each proposal or mechanism is organized under eight headings. A notation on each page identifies the utility or other group associated with the proposal or mechanism. The eight headings are as follows: status; background; treatment of cost recovery; treatment of lost revenues/decoupling; treatment of profitability; other features; issues, and additional observations.

  19. Clean fuel for demanding environmental markets

    SciTech Connect

    Josewicz, W.; Natschke, D.E.

    1995-12-31

    Acurex Environmental Corporation is bringing Clean Fuel to the environmentally demand Krakow market, through the cooperative agreement with the U.S. Department of Energy. Clean fuel is a proprietary clean burning coal-based energy source intended for use in stoves and hand stoked boilers. Clean Fuel is a home heating fuel that is similar in form and function to raw coal, but is more environmentally friendly and lower in cost. The heating value of Clean Fuel is 24,45 kJ/kg. Extensive sets of confirmation runs were conducted in the Academy of Mining and Metallurgy in the Krakow laboratories. It demonstrated up to 54 percent reduction of particulate matter emission, up to 35 percent reduction of total hydrocarbon emissions. Most importantly, polycyclic aromatic hydrocarbons (toxic and carcinogens compounds) emissions were reduced by up to 85 percent, depending on species measured. The above comparison was made against premium chunk coal that is currently available in Krakow for approximately $83 to 93/ton. Clean Fuel will be made available in Krakow at a price approximately 10 percent lower than that of the premium chunk coal.

  20. Nevada Natural Gas Gross Withdrawals from Gas Wells (Million...

    Energy Information Administration (EIA) (indexed site)

    from Gas Wells (Million Cubic Feet) Nevada Natural Gas Gross Withdrawals from Gas Wells ... Natural Gas Gross Withdrawals from Gas Wells Nevada Natural Gas Gross Withdrawals and ...

  1. New Mexico Natural Gas Gross Withdrawals from Shale Gas (Million...

    Energy Information Administration (EIA) (indexed site)

    Shale Gas (Million Cubic Feet) New Mexico Natural Gas Gross Withdrawals from Shale Gas ... Natural Gas Gross Withdrawals from Shale Gas Wells New Mexico Natural Gas Gross ...

  2. Assumption to the Annual Energy Outlook 2014 - Residential Demand...

    Annual Energy Outlook

    oil, liquefied petroleum gas, natural gas, kerosene, electricity, wood, geothermal, and solar energy. The module's output includes number of households, equipment stock, average...

  3. Opportunities for Automated Demand Response in California Agricultural Irrigation

    SciTech Connect

    Olsen, Daniel; Aghajanzadeh, Arian; McKane, Aimee

    2015-08-01

    Pumping water for agricultural irrigation represents a significant share of California’s annual electricity use and peak demand. It also represents a large source of potential flexibility, as farms possess a form of storage in their wetted soil. By carefully modifying their irrigation schedules, growers can participate in demand response without adverse effects on their crops. This report describes the potential for participation in demand response and automated demand response by agricultural irrigators in California, as well as barriers to widespread participation. The report first describes the magnitude, timing, location, purpose, and manner of energy use in California. Typical on-­farm controls are discussed, as well as common impediments to participation in demand response and automated demand response programs. Case studies of demand response programs in California and across the country are reviewed, and their results along with overall California demand estimates are used to estimate statewide demand response potential. Finally, recommendations are made for future research that can enhance the understanding of demand response potential in this industry.

  4. Investigation of structural changes in residential electricity demand

    SciTech Connect

    Chern, W.S.; Bouis, H.E.

    1982-09-23

    The purpose of this study was to investigate the stability of aggregate national residential electricity demand coefficients over time. The hypothesis is maintained that the aggregate residential demand is the sum of various end-use demand components. Since the end-use composition changes over time, the demand relationship may change as well. Since the end-use composition differs among regions, the results obtained from this study can be used for making inferences about regional differences in electricity demand relationships. There are two additional sources for a possible structural change. One is that consumers may react differently to declining and rising prices, secondly, the impact of the 1973 oil embargo may have shifted demand preferences. The electricity demand model used for this study is presented. A moving regression method was employed to investigate changes in residential electricity demand over time. The statistical results show a strikingly consistent pattern of change for most of the structural variables. The most important finding of this study is that the estimated structure of residential electricity demand changes systematically over time as a result of changes in the characteristics (both durability and saturation level) of the stock of appliances. Furthermore, there is not strong evidence that the structural changes in demand occurred due to either the reversal of the declining trend of electricity prices or the impact of the 1973 oil embarge. (LCL)

  5. Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity;

    Energy Information Administration (EIA) (indexed site)

    Next MECS will be conducted in 2010 Table 5.3 End Uses of Fuel Consumption, 2006; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Demand Residual and Natural Gas(d) LPG and Coke and Breeze) NAICS for Electricity(b) Fuel Oil Diesel Fuel(c) (billion NGL(e) (million Code(a) End Use (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons)

  6. NATURAL GAS FROM SHALE: Questions and Answers Shale Gas Development Challenges -

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Surface Impacts (non-water) Key Points: * There are many local economic and energy benefits from shale gas development; there is also an inherent risk of increased traffic or other habitat disturbances that could affect residents, agriculture, farming, fishing and hunting. 1 * Shale gas development can lead to socio-economic impacts and can increase demands on local infrastructure, traffic, labor force, education, medical and other services. 2 Federal and state laws are designed to mitigate the

  7. Gas Storage Technology Consortium

    SciTech Connect

    Joel Morrison; Elizabeth Wood; Barbara Robuck

    2010-09-30

    The EMS Energy Institute at The Pennsylvania State University (Penn State) has managed the Gas Storage Technology Consortium (GSTC) since its inception in 2003. The GSTC infrastructure provided a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. The GSTC received base funding from the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) Oil & Natural Gas Supply Program. The GSTC base funds were highly leveraged with industry funding for individual projects. Since its inception, the GSTC has engaged 67 members. The GSTC membership base was diverse, coming from 19 states, the District of Columbia, and Canada. The membership was comprised of natural gas storage field operators, service companies, industry consultants, industry trade organizations, and academia. The GSTC organized and hosted a total of 18 meetings since 2003. Of these, 8 meetings were held to review, discuss, and select proposals submitted for funding consideration. The GSTC reviewed a total of 75 proposals and committed co-funding to support 31 industry-driven projects. The GSTC committed co-funding to 41.3% of the proposals that it received and reviewed. The 31 projects had a total project value of $6,203,071 of which the GSTC committed $3,205,978 in co-funding. The committed GSTC project funding represented an average program cost share of 51.7%. Project applicants provided an average program cost share of 48.3%. In addition to the GSTC co-funding, the consortium provided the domestic natural gas storage industry with a technology transfer and outreach infrastructure. The technology transfer and outreach were conducted by having project mentoring teams and a GSTC website, and by working closely with the Pipeline Research Council International (PRCI) to jointly host

  8. Gas hydrates

    SciTech Connect

    Not Available

    1985-04-01

    There is a definite need for the US government to provide leadership for research in gas hydrates and to coordinate its activities with academia, industry, private groups, federal agencies, and their foreign counterparts. In response to this need, the DOE Morgantown Energy Technology Center implemented a gas hydrates R and D program. Understanding the resource will be achieved through: assessment of current technology; characterization of gas hydrate geology and reservoir engineering; and development of diagnostic tools and methods. Research to date has focused on geology. As work progressed, areas where gas hydrates are likely to occur were identified, and specific high potential areas were targeted for future detailed investigation. Initial research activities involved the development of the Geologic Analysis System (GAS); which will provide, through approximately 30 software packages, the capability to manipulate and correlate several types of geologic and petroleum data into maps, graphics, and reports. Preliminary mapping of hydrate prospects for the Alaskan North Slope is underway. Geological research includes physical system characterization which focuses on creating synthetic methane hydrates and developing synthetic hydrate cores using tetrahydrofuran, consolidated rock cores, frost base mixtures, water/ice base mixtures, and water base mixtures. Laboratory work produced measurements of the sonic velocity and electrical resistivity of these synthetic hydrates. During 1983, a sample from a natural hydrate core recovered from the Pacific coast of Guatemala was tested for these properties by METC. More recently, a natural hydrate sample from the Gulf of Mexico was also acquired and testing of this sample is currently underway. In addition to the development of GAS, modeling and systems analysis work focused on the development of conceptual gas hydrate production models. 16 figs., 6 tabs.

  9. Coke oven gas injection to blast furnaces

    SciTech Connect

    Maddalena, F.L.; Terza, R.R.; Sobek, T.F.; Myklebust, K.L.

    1995-12-01

    U.S. Steel has three major facilities remaining in Pennsylvania`s Mon Valley near Pittsburgh. The Clairton Coke Works operates 12 batteries which produce 4.7 million tons of coke annually. The Edgar Thomson Works in Braddock is a 2.7 million ton per year steel plant. Irvin Works in Dravosburg has a hot strip mill and a range of finishing facilities. The coke works produces 120 mmscfd of coke oven gas in excess of the battery heating requirements. This surplus gas is used primarily in steel re-heating furnaces and for boiler fuel to produce steam for plant use. In conjunction with blast furnace gas, it is also used for power generation of up to 90 MW. However, matching the consumption with the production of gas has proved to be difficult. Consequently, surplus gas has been flared at rates of up to 50 mmscfd, totaling 400 mmscf in several months. By 1993, several changes in key conditions provided the impetus to install equipment to inject coke oven gas into the blast furnaces. This paper describes the planning and implementation of a project to replace natural gas in the furnaces with coke oven gas. It involved replacement of 7 miles of pipeline between the coking plants and the blast furnaces, equipment capable of compressing coke oven gas from 10 to 50 psig, and installation of electrical and control systems to deliver gas as demanded.

  10. Method and system for optical figuring by imagewise heating of a solvent

    DOEpatents

    Rushford, Michael C.

    2005-08-30

    A method and system of imagewise etching the surface of a substrate, such as thin glass, in a parallel process. The substrate surface is placed in contact with an etchant solution which increases in etch rate with temperature. A local thermal gradient is then generated in each of a plurality of selected local regions of a boundary layer of the etchant solution to imagewise etch the substrate surface in a parallel process. In one embodiment, the local thermal gradient is a local heating gradient produced at selected addresses chosen from an indexed array of addresses. The activation of each of the selected addresses is independently controlled by a computer processor so as to imagewise etch the substrate surface at region-specific etch rates. Moreover, etching progress is preferably concurrently monitored in real time over the entire surface area by an interferometer so as to deterministically control the computer processor to image-wise figure the substrate surface where needed.

  11. Gamma and neutron detection modeling in the nuclear detection figure of merit (NDFOM) portal

    SciTech Connect

    Stroud, Phillip D [Los Alamos National Laboratory; Saeger, Kevin J [Los Alamos National Laboratory

    2009-01-01

    The Nuclear Detection Figure Of Merit (NDFOM) portal is a database of objects and algorithms for evaluating the performance of radiation detectors to detect nuclear material. This paper describes the algorithms used to model the physics and mathematics of radiation detection. As a first-principles end-to-end analysis system, it starts with the representation of the gamma and neutron spectral fluxes, which are computed with the particle and radiation transport code MCNPX. The gamma spectra emitted by uranium, plutonium, and several other materials of interest are described. The impact of shielding and other intervening material is computed by the method of build-up factors. The interaction of radiation with the detector material is computed by a detector response function approach. The construction of detector response function matrices based on MCNPX simulation runs is described in detail. Neutron fluxes are represented in a three group formulation to treat differences in detector sensitivities to thermal, epithermal, and fast neutrons.

  12. PHENIX (Pioneering High Energy Nuclear Interaction eXperiment): Data Tables and Figures from Published Papers

    DOE Data Explorer

    The PHENIX Experiment is the largest of the four experiments currently taking data at the Relativistic Heavy Ion Collider. PHENIX, the Pioneering High Energy Nuclear Interaction eXperiment, is an exploratory experiment for the investigation of high energy collisions of heavy ions and protons. PHENIX is designed specifically to measure direct probes of the collisions such as electrons, muons, and photons. The primary goal of PHENIX is to discover and study a new state of matter called the Quark-Gluon Plasma. More than 60 published papers and preprints are listed here with links to the full text and separate links to the supporting PHENIX data in plain text tables and to EPS and GIF figures from the papers.

  13. Lessons learned in implementing a demand side management contract at the Presidio of San Francisco

    SciTech Connect

    Sartor, D.; Munn, M.

    1998-06-01

    The National Park Service (NSP) recently completed the implementation phase of its Power Saving Partners (PSP) Demand Side Management (DSM) contract with the local utility, Pacific Gas and Electric (PG&E). Through the DSM contract, NPS will receive approximately $4.1 million over eight years in payment for saving 61 kW of electrical demand, 179,000 km of electricity per year, and 1.1 million therms of natural gas per year. These payments are for two projects: the installation of high-efficiency lighting systems at the Thoreau Center for Sustainability and the replacement of an old central boiler plant with new, distributed boilers. Although these savings and payments are substantial, the electrical savings and contract payments fall well short of the projected 1,700 kW of electrical demand, 8 million kwh of annual electricity savings, and $11 million in payments, anticipated at the project's onset. Natural gas savings exceeded the initial forecast of 800,000 therms per year. The DSM contract payments did not meet expectations for a variety of reasons which fall into two broad categories: first, many anticipated projects were not constructed, and second, some of the projects that were constructed were not included in the program because the cost of implementing the DSM program's measurement and verification (M&V) requirements outweighed anticipated payments. This paper discusses the projects implemented, and examines the decisions made to withdraw some of them from the DSM contract. It also presents the savings that were realized and documented through M&V efforts. Finally, it makes suggestions relative to M&V protocols to encourage all efficiency measures, not just those that are easy to measure.

  14. Residential energy demand and the taxation of housing

    SciTech Connect

    Gentry, W.M.

    1994-12-31

    This paper examines how the favorable tax treatment of housing capital in the U.S. affects the demand for residential energy. Relative to a tax system that is neutral between different investments, the current taxation of housing lowers the cost of housing capital by 23%. The tax subsidy for housing capital increases the demand for housing services and the concomitant energy demand and creates an incentive for the substitution of capital for energy in the production of housing services. Eliminating this tax subsidy for housing would lower the demand for housing services by 11.8% and residential energy demand by 6.8%. Alternatively, the same reduction in residential energy demand could be obtained through a 20% tax on residential energy. 13 refs., 4 tabs.

  15. Natural Gas Compressor Stations on the Interstate Pipeline Network: Developments Since 1996

    Reports and Publications

    2007-01-01

    This special report looks at the use of natural gas pipeline compressor stations on the interstate natural gas pipeline network that serves the lower 48 states. It examines the compression facilities added over the past 10 years and how the expansions have supported pipeline capacity growth intended to meet the increasing demand for natural gas.

  16. SGDP Report: Interoperability of Demand Response Resources Demonstration in

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    NY (February 2015) | Department of Energy SGDP Report: Interoperability of Demand Response Resources Demonstration in NY (February 2015) SGDP Report: Interoperability of Demand Response Resources Demonstration in NY (February 2015) The Interoperability of Demand Response Resources Demonstration in NY was awarded to Con Edison in 2009 as part of DOE's Smart Grid Demonstration Project (SGDP) grants funded by the Recovery Act. The objective of the project was to develop and demonstrate

  17. Regulation Services with Demand Response - Energy Innovation Portal

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Regulation Services with Demand Response Pacific Northwest National Laboratory Contact PNNL About This Technology Using grid frequency information, researchers have created algorithms that intelligently control power demand while meeting consumer objectives (i.e. target pricing). Using grid frequency information, researchers have created algorithms that intelligently control power demand while meeting consumer objectives (i.e. target pricing). Technology Marketing Summary Grid Friendly(tm)

  18. Demand Response and Energy Storage Integration Study - Past Workshops |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Demand Response and Energy Storage Integration Study - Past Workshops Demand Response and Energy Storage Integration Study - Past Workshops The project was initiated and informed by the results of two DOE workshops; one on energy storage and the other on demand response. The workshops were attended by members of the electric power industry, researchers, and policy makers; and the study design and goals reflect their contributions to the collective thinking of the project

  19. Strategies for Aligning Program Demand with Contractor's Seasonal

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fluctuations | Department of Energy Strategies for Aligning Program Demand with Contractor's Seasonal Fluctuations Strategies for Aligning Program Demand with Contractor's Seasonal Fluctuations Better Buildings Neighborhood Program Workforce Peer Exchange Call: Strategies for Aligning Program Demand with Contractor's Seasonal Fluctuations, Call Slides and Discussion Summary, June 7, 2012. Call Slides and Discussion Summary (725.35 KB) More Documents & Publications Spotlight on Rutland

  20. Sustainable Energy Resources for Consumers (SERC) - On-Demand Tankless

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Water Heaters | Department of Energy On-Demand Tankless Water Heaters Sustainable Energy Resources for Consumers (SERC) - On-Demand Tankless Water Heaters This presentation, aimed at Sustainable Energy Resources for Consumers (SERC) grantees, provides information on Monitoring Checklists for the installation of On-Demand Tankless Water Heaters. serc_webinar_presentation_20111004.pdf (1.99 MB) More Documents & Publications Sustainable Energy Resources for Consumers (SERC) - Solar Hot

  1. Generating Demand for Multifamily Building Upgrades | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Demand for Multifamily Building Upgrades Generating Demand for Multifamily Building Upgrades Better Buildings Residential Network Peer Exchange Call Series: Generating Demand for Multifamily Building Upgrades, call slides and discussion summary, May 14, 2015. Call Slides and Discussion Summary (1.2 MB) More Documents & Publications Strategies to Address Split Incentives in Multifamily Buildings Outreach to Multifamily Landlords and Tenants Moving Multifamily Buildings From Assessments to

  2. Florida Natural Gas Number of Gas and Gas Condensate Wells (Number...

    Gasoline and Diesel Fuel Update

    Gas and Gas Condensate Wells (Number of Elements) Florida Natural Gas Number of Gas and ...2016 Referring Pages: Number of Producing Gas Wells (Summary) Florida Natural Gas Summary

  3. Table A51. Number of Establishments by Sponsorship of Any Programs of Demand

    Energy Information Administration (EIA) (indexed site)

    1. Number of Establishments by Sponsorship of Any Programs of Demand-Side Management through" " Electric Utility and Natural Gas Utility, by Industry Group and Selected Industries, 1994" ,," "," ",," "," ",," "," "," "," " ,," "," ","Any Programs"," "," ","Any Programs"," "," ",," " ,," "," of DSM

  4. Local government involvement in long term resource planning for community energy systems. Demand side management

    SciTech Connect

    Not Available

    1992-03-01

    A program was developed to coordinate governmental, research, utility, and business energy savings efforts, and to evaluate future potential actions, based on actual field data obtained during the implementation of Phase I of the State Resource Plan. This has lead to the establishment of a state conservation and energy efficiency fund for the purpose of establishing a DSM Program. By taking a state wide perspective on resource planning, additional savings, including environmental benefits, can be achieved through further conservation and demand management. This effort has already blossomed into a state directive for DSM programs for the natural gas industry.

  5. OG&E Uses Time-Based Rate Program to Reduce Peak Demand

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    1 OG&E Uses Time-Based Rate Program to Reduce Peak Demand As part of its Smart Grid Investment Grant (SGIG) project for the U.S. Department of Energy's (DOE) Office of Electricity Delivery and Energy Reliability (OE), Oklahoma Gas and Electric Company (OG&E) has successfully tested over a two-year period a new time-based rate, which provided about 4,670 participating customers with pric es that varied daily in order to induce a change in their patterns of electricity consumption and a

  6. Reducing Peak Demand to Defer Power Plant Construction in Oklahoma

    Energy.gov [DOE] (indexed site)

    The objective is to engage customers in lowering peak demand using smart technologies in homes and businesses and to achieve greater efficiencies on the distribution system. ...

  7. South Korea-ANL Distributed Energy Resources and Demand Side...

    OpenEI (Open Energy Information) [EERE & EIA]

    is part of a team that assists the Korean government in analyzing the economic and environmental benefits of distributed resources and demand side management (DSM). DSM has...

  8. Network-Driven Demand Side Management Website | Open Energy Informatio...

    OpenEI (Open Energy Information) [EERE & EIA]

    URI: cleanenergysolutions.orgcontentnetwork-driven-demand-side-management Language: English Policies: "Deployment Programs,Regulations" is not in the list of possible...

  9. Estimating Demand Response Market Potential | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    URI: cleanenergysolutions.orgcontentestimating-demand-response-market-pot Language: English Policies: "Deployment Programs,Regulations" is not in the list of possible...

  10. U.S. Electric Utility Demand-Side Management

    Reports and Publications

    2002-01-01

    Final issue of this report. - Presents comprehensive information on electric power industry demand side management (DSM) activities in the United States at the national, regional, and utility levels.

  11. SGDP Report Now Available: Interoperability of Demand Response...

    Energy.gov [DOE] (indexed site)

    Interoperability of Demand Response Resources Demonstration in NY was awarded to Con Edison in 2009 as part of DOE's Smart Grid Demonstration Project (SGDP) grants funded by the ...

  12. Demand Response National Trends: Implications for the West? ...

    Energy.gov [DOE] (indexed site)

    Committee on Regional Electric Power Cooperation. San Francisco, CA. March 25, 2004 Demand Response National Trends: Implications for the West? (116.66 KB) More Documents & ...

  13. Assessment of Energy Savings Potential from the Use of Demand...

    Office of Scientific and Technical Information (OSTI)

    Energy Savings Potential from the Use of Demand Controlled Ventilation in General Office Spaces in California Citation Details In-Document Search Title: Assessment of Energy ...

  14. National Action Plan on Demand Response, June 2010 | Department...

    Energy.gov [DOE] (indexed site)

    Federal Energy Regulatory Commission (FERC) is required to develop the National Action Plan on Demand Response (National Action Plan) as outlined in section 529 of the Energy ...

  15. Amplified Demand for Solar Trackers to Boost Market Growth in...

    OpenEI (Open Energy Information) [EERE & EIA]

    Amplified Demand for Solar Trackers to Boost Market Growth in Middle East and Africa Home > Groups > Solar Permitting Roadmap Development Wayne31jan's picture Submitted by...

  16. Experts Meeting: Behavioral Economics as Applied to Energy Demand...

    Energy Information Administration (EIA) (indexed site)

    Experts Meeting: Behavioral Economics as Applied to Energy Demand Analysis and Energy Efficiency Programs EIA Office of Energy Consumption and Efficiency Analysis July 17, 2013 | ...

  17. Strategies for Aligning Program Demand with Contractor's Seasonal...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Strategies for Aligning Program Demand with Contractor's Seasonal Fluctuations Better Buildings Neighborhood Program Workforce Peer Exchange Call: Strategies for Aligning Program ...

  18. Strategies for Marketing and Driving Demand for Commercial Financing Products

    Office of Energy Efficiency and Renewable Energy (EERE)

    Better Buildings Neighborhood Program Financing and Commercial Peer Exchange Call: Strategies for Marketing and Driving Demand for Commercial Financing Products, Call Slides and Discussion Summary, February 2, 2012.

  19. Nebraska Company Expands to Meet Demand for Hydrogen Fuel | Department...

    Energy.gov [DOE] (indexed site)

    fuel tanks that help deliver hydrogen to fleets throughout the country. The company has more than doubled its workforce to accommodate growing demand for the tanks. | Photo ...

  20. China-Transportation Demand Management in Beijing: Mitigation...

    OpenEI (Open Energy Information) [EERE & EIA]

    demand management (TDM) in Beijing in order to manage the steadily increasing traffic density. The project provides capacity building for decision-makers and transport planners in...

  1. How much will low prices stimulate oil demand?

    Energy Information Administration (EIA) (indexed site)

    ... Information Administration, Petroleum Supply Monthly and Petroleum Marketing Monthly (as of September 2015) Oil & Money Conference | How Much Will Low Prices Stimulate Oil Demand? ...

  2. Optical People Counting for Demand Controlled Ventilation: A...

    Office of Scientific and Technical Information (OSTI)

    of Counter Performance Citation Details In-Document Search Title: Optical People Counting for Demand Controlled Ventilation: A Pilot Study of Counter Performance This pilot ...

  3. Global GPS Phones Market Size, Segmentation, Demand Forecast...

    OpenEI (Open Energy Information) [EERE & EIA]

    we deeply analyzed the world's main region market conditions that including the product price, profit, capacity, production, capacity utilization, supply, demand and industry...

  4. Electricity demand as frequency controlled reserves, ForskEL...

    OpenEI (Open Energy Information) [EERE & EIA]

    ForskEL (Smart Grid Project) Jump to: navigation, search Project Name Electricity demand as frequency controlled reserves, ForskEL Country Denmark Coordinates 56.26392,...

  5. Electricity demand as frequency controlled reserves, ENS (Smart...

    OpenEI (Open Energy Information) [EERE & EIA]

    ENS (Smart Grid Project) Jump to: navigation, search Project Name Electricity demand as frequency controlled reserves, ENS Country Denmark Coordinates 56.26392, 9.501785...

  6. Demand Response Energy Consulting LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Response Energy Consulting LLC Jump to: navigation, search Name: Demand Response & Energy Consulting LLC Place: Delanson, New York Zip: NY 12053 Sector: Efficiency Product:...

  7. Coordination of Energy Efficiency and Demand Response: A Resource...

    OpenEI (Open Energy Information) [EERE & EIA]

    Coordination of Energy Efficiency and Demand Response: A Resource of the National Action Plan for Energy Efficiency Jump to: navigation, search Tool Summary LAUNCH TOOL Name:...

  8. Strategies for Marketing and Driving Demand for Commercial Financing...

    Energy.gov [DOE] (indexed site)

    Using Partnerships to Drive Demand and Provide Services in Communities Creative Financing Approaches for Residential Energy Efficiency Programs The Dog Days of Summer - ...

  9. Using Partnerships to Drive Demand and Provide Services in Communities

    Energy.gov [DOE]

    Better Buildings Neighborhood Program Multifamily and Low-Income Peer Exchange Call: Using Partnerships to Drive Demand and Provide Services in Communities, February 2, 2012.

  10. Opportunities for Mass Market Demand Response to Provide Ancillary Services

    SciTech Connect

    Pratt, Rob; Najewicz, Dave

    2011-10-01

    Discusses what is meant by mass market demand response to provide ancillary services and outlines opportunities for adoption, and barriers to adoption.

  11. Structuring Rebate and Incentive Programs for Sustainable Demand

    Energy.gov [DOE]

    Better Buildings Neighborhood Program Peer Exchange Call: Structuring Rebate and Incentive Programs for Sustainable Demand, call slides and discussion summary, August 18, 2011.

  12. Structuring Rebate and Incentive Programs for Sustainable Demand...

    Energy.gov [DOE] (indexed site)

    Neighborhood Program Peer Exchange Call: Structuring Rebate and Incentive Programs for Sustainable Demand, call slides and discussion summary, August 18, 2011. Call Slides and ...

  13. ECIS-Princeton Power Systems, Inc.: Demand Response Inverter

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Princeton Power Systems, Inc.: Demand Response Inverter - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable ...

  14. EnergySolve Demand Response | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Demand Response Place: Somerset, New Jersey Product: Somerset-based utility bill outsourcing company that provides electronic utility bill auditing, tariff analysis, late fee...

  15. Hydrogen Demand and Resource Assessment Tool | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Resource Assessment Tool Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Hydrogen Demand and Resource Assessment Tool AgencyCompany Organization: National Renewable...

  16. Geographically-Based Hydrogen Demand & Infrastructure Rollout Scenario Analysis (Presentation)

    SciTech Connect

    Melendez, M.

    2007-05-17

    This presentation by Margo Melendez at the 2007 DOE Hydrogen Program Annual Merit Review Meeting provides information about NREL's Hydrogen Demand & Infrastructure Rollout Scenario Analysis.

  17. Assumption to the Annual Energy Outlook 2014 - Commercial Demand...

    Annual Energy Outlook

    chosen to meet the projected service demands for the seven major end uses. Once technologies are chosen, the energy consumed by the equipment stock (both existing and purchased...

  18. Grid Integration of Aggregated Demand Response, Part 2: Modeling Demand Response in a Production Cost Model

    Energy.gov [DOE]

    Renewable integration studies have evaluated many challenges associated with deploying large amounts of variable wind and solar generation technologies. These studies can evaluate operational impacts associated with variable generation, benefits of improved wind and solar resource forecasting, and trade-offs between institutional changes, including increasing balancing area cooperation and technical changes such as installing new flexible generation. Demand response (DR) resources present a potentially important source of grid flexibility and can aid in integrating variable generation; however, integration analyses have not yet incorporated these resources explicitly into grid simulation models as part of a standard toolkit for resource planners.

  19. Method for designing gas tag compositions

    DOEpatents

    Gross, K.C.

    1995-04-11

    For use in the manufacture of gas tags such as employed in a nuclear reactor gas tagging failure detection system, a method for designing gas tagging compositions utilizes an analytical approach wherein the final composition of a first canister of tag gas as measured by a mass spectrometer is designated as node No. 1. Lattice locations of tag nodes in multi-dimensional space are then used in calculating the compositions of a node No. 2 and each subsequent node so as to maximize the distance of each node from any combination of tag components which might be indistinguishable from another tag composition in a reactor fuel assembly. Alternatively, the measured compositions of tag gas numbers 1 and 2 may be used to fix the locations of nodes 1 and 2, with the locations of nodes 3-N then calculated for optimum tag gas composition. A single sphere defining the lattice locations of the tag nodes may be used to define approximately 20 tag nodes, while concentric spheres can extend the number of tag nodes to several hundred. 5 figures.

  20. Opportunities for Automated Demand Response in California Wastewater Treatment Facilities

    SciTech Connect

    Aghajanzadeh, Arian; Wray, Craig; McKane, Aimee

    2015-08-30

    Previous research over a period of six years has identified wastewater treatment facilities as good candidates for demand response (DR), automated demand response (Auto-­DR), and Energy Efficiency (EE) measures. This report summarizes that work, including the characteristics of wastewater treatment facilities, the nature of the wastewater stream, energy used and demand, as well as details of the wastewater treatment process. It also discusses control systems and automated demand response opportunities. Furthermore, this report summarizes the DR potential of three wastewater treatment facilities. In particular, Lawrence Berkeley National Laboratory (LBNL) has collected data at these facilities from control systems, submetered process equipment, utility electricity demand records, and governmental weather stations. The collected data were then used to generate a summary of wastewater power demand, factors affecting that demand, and demand response capabilities. These case studies show that facilities that have implemented energy efficiency measures and that have centralized control systems are well suited to shed or shift electrical loads in response to financial incentives, utility bill savings, and/or opportunities to enhance reliability of service. In summary, municipal wastewater treatment energy demand in California is large, and energy-­intensive equipment offers significant potential for automated demand response. In particular, large load reductions were achieved by targeting effluent pumps and centrifuges. One of the limiting factors to implementing demand response is the reaction of effluent turbidity to reduced aeration at an earlier stage of the process. Another limiting factor is that cogeneration capabilities of municipal facilities, including existing power purchase agreements and utility receptiveness to purchasing electricity from cogeneration facilities, limit a facility’s potential to participate in other DR activities.

  1. Gas sensor

    DOEpatents

    Schmid, Andreas K.; Mascaraque, Arantzazu; Santos, Benito; de la Figuera, Juan

    2014-09-09

    A gas sensor is described which incorporates a sensor stack comprising a first film layer of a ferromagnetic material, a spacer layer, and a second film layer of the ferromagnetic material. The first film layer is fabricated so that it exhibits a dependence of its magnetic anisotropy direction on the presence of a gas, That is, the orientation of the easy axis of magnetization will flip from out-of-plane to in-plane when the gas to be detected is present in sufficient concentration. By monitoring the change in resistance of the sensor stack when the orientation of the first layer's magnetization changes, and correlating that change with temperature one can determine both the identity and relative concentration of the detected gas. In one embodiment the stack sensor comprises a top ferromagnetic layer two mono layers thick of cobalt deposited upon a spacer layer of ruthenium, which in turn has a second layer of cobalt disposed on its other side, this second cobalt layer in contact with a programmable heater chip.

  2. Interoperability of Demand Response Resources Demonstration in NY

    SciTech Connect

    Wellington, Andre

    2014-03-31

    The Interoperability of Demand Response Resources Demonstration in NY (Interoperability Project) was awarded to Con Edison in 2009. The objective of the project was to develop and demonstrate methodologies to enhance the ability of customer sited Demand Response resources to integrate more effectively with electric delivery companies and regional transmission organizations.

  3. Open Automated Demand Response for Small Commerical Buildings

    SciTech Connect

    Dudley, June Han; Piette, Mary Ann; Koch, Ed; Hennage, Dan

    2009-05-01

    This report characterizes small commercial buildings by market segments, systems and end-uses; develops a framework for identifying demand response (DR) enabling technologies and communication means; and reports on the design and development of a low-cost OpenADR enabling technology that delivers demand reductions as a percentage of the total predicted building peak electric demand. The results show that small offices, restaurants and retail buildings are the major contributors making up over one third of the small commercial peak demand. The majority of the small commercial buildings in California are located in southern inland areas and the central valley. Single-zone packaged units with manual and programmable thermostat controls make up the majority of heating ventilation and air conditioning (HVAC) systems for small commercial buildings with less than 200 kW peak electric demand. Fluorescent tubes with magnetic ballast and manual controls dominate this customer group's lighting systems. There are various ways, each with its pros and cons for a particular application, to communicate with these systems and three methods to enable automated DR in small commercial buildings using the Open Automated Demand Response (or OpenADR) communications infrastructure. Development of DR strategies must consider building characteristics, such as weather sensitivity and load variability, as well as system design (i.e. under-sizing, under-lighting, over-sizing, etc). Finally, field tests show that requesting demand reductions as a percentage of the total building predicted peak electric demand is feasible using the OpenADR infrastructure.

  4. Role of Storage and Demand Response, Greening the Grid

    SciTech Connect

    2015-09-01

    Greening the Grid provides technical assistance to energy system planners, regulators, and grid operators to overcome challenges associated with integrating variable renewable energy into the grid. This document, part of a Greening the Grid toolkit, examines storage and demand response as means to match renewable energy supply with demand.

  5. Progress toward Producing Demand-Response-Ready Appliances

    SciTech Connect

    Hammerstrom, Donald J.; Sastry, Chellury

    2009-12-01

    This report summarizes several historical and ongoing efforts to make small electrical demand-side devices like home appliances more responsive to the dynamic needs of electric power grids. Whereas the utility community often reserves the word demand response for infrequent 2 to 6 hour curtailments that reduce total electrical system peak load, other beneficial responses and ancillary services that may be provided by responsive electrical demand are of interest. Historically, demand responses from the demand side have been obtained by applying external, retrofitted, controlled switches to existing electrical demand. This report is directed instead toward those manufactured products, including appliances, that are able to provide demand responses as soon as they are purchased and that require few, or no, after-market modifications to make them responsive to needs of power grids. Efforts to be summarized include Open Automated Demand Response, the Association of Home Appliance Manufacturer standard CHA 1, a simple interface being developed by the U-SNAP Alliance, various emerging autonomous responses, and the recent PinBus interface that was developed at Pacific Northwest National Laboratory.

  6. Reducing Energy Demand in Buildings Through State Energy Codes | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Reducing Energy Demand in Buildings Through State Energy Codes Reducing Energy Demand in Buildings Through State Energy Codes Building Codes Project for the 2013 Building Technologies Office's Program Peer Review bldgcodes03_guttman_040213.pdf (544.21 KB) More Documents & Publications Technology Performance Exchange - 2013 BTO Peer Review Atmospheric Pressure Deposition for Electrochromic Windows Building America System Research

  7. Demand for oil and energy in developing countries

    SciTech Connect

    Wolf, C. Jr.; Relles, D.A.; Navarro, J.

    1980-05-01

    How much of the world's oil and energy supply will the non-OPEC less-developed countries (NOLDCs) demand in the next decade. Will their requirements be small and thus fairly insignificant compared with world demand, or large and relatively important. How will world demand be affected by the economic growth of the NOLDCs. In this report, we try to develop some reasonable forecasts of NOLDC energy demands in the next 10 years. Our focus is mainly on the demand for oil, but we also give some attention to the total commercial energy requirements of these countries. We have tried to be explicit about the uncertainties associated with our forecasts, and with the income and price elasticities on which they are based. Finally, we consider the forecasts in terms of their implications for US policies concerning the NOLDCs and suggest areas of future research on NOLDC energy issues.

  8. Efforts to Harmonize Gas Pipeline Operations with the Demands of the Electricity Sector

    SciTech Connect

    Costello, Ken

    2006-12-15

    A possible future course of action is for pipelines to continue their efforts to provide new services with FERC approval. Over time, pipelines could satisfy power generators by giving them the flexibility and services they desire and for which they are willing to pay. Another possibility is that FERC will enact new rules governing regional electricity markets that would function similarly to nationwide business practices. (author)

  9. Oil and natural gas supply and demand trends in North America...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    TX By Adam Sieminski U.S. Energy Information Administration Historical and projected oil prices 2 crude oil price price per barrel (real 2010 dollars) Sources: U.S. Energy...

  10. Natural Gas Applications

    Annual Energy Outlook

    Gas Applications. If you need assistance viewing this page, please call (202) 586-8800. Energy Information Administration Home Page Home > Natural Gas > Natural Gas Applications...

  11. Gas atomization synthesis of refractory or intermetallic compounds and supersaturated solid solutions

    DOEpatents

    Anderson, I.E.; Lograsso, B.K.; Ellis, T.W.

    1994-11-29

    A metallic melt is atomized using a high pressure atomizing gas wherein the temperature of the melt and the composition of the atomizing gas are selected such that the gas and melt react in the atomization spray zone to form a refractory or intermetallic compound in the as-atomized powder particles. A metallic melt is also atomized using a high pressure atomizing gas mixture gas wherein the temperature of the melt and the ratio of a reactive gas to a carrier gas are selected to form powder particles comprising a supersaturated solid solution of the atomic species of the reactive gas in the particles. The powder particles are then heat treated to precipitate dispersoids in-situ therein to form a dispersion strengthened material. 9 figures.

  12. New Mexico Natural Gas in Underground Storage (Base Gas) (Million...

    Annual Energy Outlook

    Base Gas) (Million Cubic Feet) New Mexico Natural Gas in Underground Storage (Base Gas) ... Underground Base Natural Gas in Storage - All Operators New Mexico Underground Natural Gas ...

  13. New York Natural Gas in Underground Storage (Base Gas) (Million...

    Energy Information Administration (EIA) (indexed site)

    Base Gas) (Million Cubic Feet) New York Natural Gas in Underground Storage (Base Gas) ... Underground Base Natural Gas in Storage - All Operators New York Underground Natural Gas ...

  14. Shale gas is natural gas trapped inside

    Energy.gov [DOE] (indexed site)

    Shale gas is natural gas trapped inside formations of shale - fine grained sedimentary rocks that can be rich sources of petroleum and natural gas. Just a few years ago, much of ...

  15. Multiple-Filled Skutterudites: High Thermoelectric Figure of Merit through Separately Optimizing Electrical and Thermal Transports

    SciTech Connect

    Zhang, Weiqing; Yang, Jiong; Yang, Jihui; Wang, Hsin; Salvador, James R.; Shi, Xun; Chi, Miaofang; Cho, Jung Y; Bai, Shengqiang; Chen, Lidong

    2011-01-01

    Skutterudites CoSb{sub 3} with multiple cofillers Ba, La, and Yb were synthesized and very high thermoelectric figure of merit ZT = 1.7 at 850 K was realized. X-ray diffraction of the densified multiple-filled bulk samples reveals all samples are phase pure. High-resolution scanning transmission electron microscopy (STEM) and energy dispersive X-ray spectroscopy (EDS) analysis confirm that multiple guest fillers occupy the nanoscale-cages in the skutterudites. The fillers are further shown to be uniformly distributed and the Co-Sb skutterudite framework is virtually unperturbed from atomic scale to a few micrometers. Our results firmly show that high power factors can be realized by adjusting the total filling fraction of fillers with different charge states to reach the optimum carrier density, at the same time, lattice thermal conductivity can also be significantly reduced, to values near the glass limit of these materials, through combining filler species of different rattling frequencies to achieve broad-frequency phonon scattering. Therefore, partially filled skutterudites with multiple fillers of different chemical nature render unique structural characteristics for optimizing electrical and thermal transports in a relatively independent way, leading to continually enhanced ZT values from single- to double-, and finally to multiple-filled skutterudites. The idea of combining multiple fillers with different charge states and rattling frequencies for performance optimization is also expected to be valid for other caged TE compounds.

  16. Phase transition enhanced thermoelectric figure-of-merit in copper chalcogenides

    SciTech Connect

    Brown, David R.; Day, Tristan; Snyder, G. Jeffrey; Borup, Kasper A.; Christensen, Sebastian; Iversen, Bo B.

    2013-11-01

    While thermoelectric materials can be used for solid state cooling, waste heat recovery, and solar electricity generation, low values of the thermoelectric figure of merit, zT, have led to an efficiency too low for widespread use. Thermoelectric effects are characterized by the Seebeck coefficient or thermopower, which is related to the entropy associated with charge transport. For example, coupling spin entropy with the presence of charge carriers has enabled the enhancement of zT in cobalt oxides. We demonstrate that the coupling of a continuous phase transition to carrier transport in Cu{sub 2}Se over a broad (360‚Äď410 K) temperature range results in a dramatic peak in thermopower, an increase in phonon and electron scattering, and a corresponding doubling of zT (to 0.7 at 406 K), and a similar but larger increase over a wider temperature range in the zT of Cu{sub 1.97}Ag{sub .03}Se (almost 1.0 at 400 K). The use of structural entropy for enhanced thermopower could lead to new engineering approaches for thermoelectric materials with high zT and new green applications for thermoelectrics.

  17. GAS SEAL

    DOEpatents

    Monson, H.; Hutter, E.

    1961-07-11

    A seal is described for a cover closing an opening in the top of a pressure vessel that may house a nuclear reactor. The seal comprises a U-shaped trough formed on the pressure vessel around the opening therein, a mass of metal in the trough, and an edge flange on the cover extending loosely into the trough and dipping into the metal mass. The lower portion of the metal mass is kept melted, and the upper portion, solid. The solid pontion of the metal mass prevents pressure surges in the vessel from expelling the liquid portion of the metal mass from the trough; the liquld portion, thus held in place by the solid portion, does not allow gas to go through, and so gas cannot escape through shrinkage holes in the solid portion.

  18. Apparatus for dispensing compressed natural gas and liquified natural gas to natural gas powered vehicles

    SciTech Connect

    Bingham, Dennis A.; Clark, Michael L.; Wilding, Bruce M.; Palmer, Gary L.

    2007-05-29

    A fueling facility and method for dispensing liquid natural gas (LNG), compressed natural gas (CNG) or both on-demand. The fueling facility may include a source of LNG, such as cryogenic storage vessel. A low volume high pressure pump is coupled to the source of LNG to produce a stream of pressurized LNG. The stream of pressurized LNG may be selectively directed through an LNG flow path or to a CNG flow path which includes a vaporizer configured to produce CNG from the pressurized LNG. A portion of the CNG may be drawn from the CNG flow path and introduced into the CNG flow path to control the temperature of LNG flowing therethrough. Similarly, a portion of the LNG may be drawn from the LNG flow path and introduced into the CNG flow path to control the temperature of CNG flowing therethrough.

  19. ,"Natural Gas Consumption",,,"Natural Gas Expenditures"

    Energy Information Administration (EIA) (indexed site)

    Census Division, 1999" ,"Natural Gas Consumption",,,"Natural Gas Expenditures" ,"per Building (thousand cubic feet)","per Square Foot (cubic feet)","per Worker (thousand cubic...

  20. Assessment of Industrial Load for Demand Response across Western Interconnect

    SciTech Connect

    Alkadi, Nasr E; Starke, Michael R; Ma, Ookie

    2013-11-01

    Demand response (DR) has the ability to both increase power grid reliability and potentially reduce operating system costs. Understanding the role of demand response in grid modeling has been difficult due to complex nature of the load characteristics compared to the modeled generation and the variation in load types. This is particularly true of industrial loads, where hundreds of different industries exist with varying availability for demand response. We present a framework considering industrial loads for the development of availability profiles that can provide more regional understanding and can be inserted into analysis software for further study. The developed framework utilizes a number of different informational resources, algorithms, and real-world measurements to perform a bottom-up approach in the development of a new database with representation of the potential demand response resource in the industrial sector across the U.S. This tool houses statistical values of energy and demand response (DR) potential by industrial plant and geospatially locates the information for aggregation for different territories without proprietary information. This report will discuss this framework and the analyzed quantities of demand response for Western Interconnect (WI) in support of evaluation of the cost production modeling with power grid modeling efforts of demand response.

  1. Impacts of Demand-Side Resources on Electric Transmission Planning

    SciTech Connect

    Hadley, Stanton W.; Sanstad, Alan H.

    2015-01-01

    Will demand resources such as energy efficiency (EE), demand response (DR), and distributed generation (DG) have an impact on electricity transmission requirements? Five drivers for transmission expansion are discussed: interconnection, reliability, economics, replacement, and policy. With that background, we review the results of a set of transmission studies that were conducted between 2010 and 2013 by electricity regulators, industry representatives, and other stakeholders in the three physical interconnections within the United States. These broad-based studies were funded by the US Department of Energy and included scenarios of reduced load growth due to EE, DR, and DG. While the studies were independent and used different modeling tools and interconnect-specific assumptions, all provided valuable results and insights. However, some caveats exist. Demand resources were evaluated in conjunction with other factors, and limitations on transmission additions between scenarios made understanding the role of demand resources difficult. One study, the western study, included analyses over both 10- and 20-year planning horizons; the 10-year analysis did not show near-term reductions in transmission, but the 20-year indicated fewer transmission additions, yielding a 36percent capital cost reduction. In the eastern study the reductions in demand largely led to reductions in local generation capacity and an increased opportunity for low-cost and renewable generation to export to other regions. The Texas study evaluated generation changes due to demand, and is in the process of examining demand resource impacts on transmission.

  2. Analysis of Residential Demand Response and Double-Auction Markets

    SciTech Connect

    Fuller, Jason C.; Schneider, Kevin P.; Chassin, David P.

    2011-10-10

    Demand response and dynamic pricing programs are expected to play increasing roles in the modern Smart Grid environment. While direct load control of end-use loads has existed for decades, price driven response programs are only beginning to be explored at the distribution level. These programs utilize a price signal as a means to control demand. Active markets allow customers to respond to fluctuations in wholesale electrical costs, but may not allow the utility to control demand. Transactive markets, utilizing distributed controllers and a centralized auction can be used to create an interactive system which can limit demand at key times on a distribution system, decreasing congestion. With the current proliferation of computing and communication resources, the ability now exists to create transactive demand response programs at the residential level. With the combination of automated bidding and response strategies coupled with education programs and customer response, emerging demand response programs have the ability to reduce utility demand and congestion in a more controlled manner. This paper will explore the effects of a residential double-auction market, utilizing transactive controllers, on the operation of an electric power distribution system.

  3. Open Automated Demand Response Communications Specification (Version 1.0)

    SciTech Connect

    Piette, Mary Ann; Ghatikar, Girish; Kiliccote, Sila; Koch, Ed; Hennage, Dan; Palensky, Peter; McParland, Charles

    2009-02-28

    The development of the Open Automated Demand Response Communications Specification, also known as OpenADR or Open Auto-DR, began in 2002 following the California electricity crisis. The work has been carried out by the Demand Response Research Center (DRRC), which is managed by Lawrence Berkeley National Laboratory. This specification describes an open standards-based communications data model designed to facilitate sending and receiving demand response price and reliability signals from a utility or Independent System Operator to electric customers. OpenADR is one element of the Smart Grid information and communications technologies that are being developed to improve optimization between electric supply and demand. The intention of the open automated demand response communications data model is to provide interoperable signals to building and industrial control systems that are preprogrammed to take action based on a demand response signal, enabling a demand response event to be fully automated, with no manual intervention. The OpenADR specification is a flexible infrastructure to facilitate common information exchange between the utility or Independent System Operator and end-use participants. The concept of an open specification is intended to allow anyone to implement the signaling systems, the automation server or the automation clients.

  4. Dry Natural Gas

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Estimated natural gas plant liquids and dry natural gas content of total natural gas proved reserves, 2014 million barrels and billion cubic feet 2014 Dry Natural Gas billion cubic ...

  5. Alternative fuel trucks case studies: Running refuse haulers on compressed natural gas

    SciTech Connect

    Norton, P.; Kelly, K.

    1996-07-01

    This document details the experience of New York City`s compressed natural gas refuse haulers. These 35 ton vehicles have engines that displace 10 liters and provide 240 horsepower. Fuel economy, range, cost, maintenance, repair issues, and emissions are discussed. Photographs and figures illustrate the attributes of these alternative fuel vehicles.

  6. Development of Osaka gas type planar SOFC

    SciTech Connect

    Iha, M.; Shiratori, A.; Chikagawa, O.

    1996-12-31

    Osaka Gas Co. has been developing a planar type SOFC (OG type SOFC) which has a suitable structure for stacking. Murata Mfg. Co. has begun to develop the OG type SOFC stack through joint program since 1993. Figure 1 shows OG type cell structure. Because each cell is sustained by cell holders acting air manifold, the load of upper cell is not put on the lower cells. Single cell is composed of 3-layered membrane and LaCrO{sub 3} separator. 5 single cells are mounted on the cell holder, connected with Ni felt electrically, and bonded by glassy material sealant. We call the 5-cell stack a unit. Stacking 13 units, we succeeded 870 W generation in 1993. But the power density was low, 0.11 Wcm{sup -2} because of crack in the electrolyte and gas leakage at some cells.

  7. Nigeria: after crude, the gas

    SciTech Connect

    Not Available

    1980-11-01

    Misinterpretation of the laws of the marketplace have already brought Nigeria to the brink of a catastrophe in 1978, when the government had built up heavy stocks expecting a substantial increase in price. When it did not materialize and the production had to be dropped to 50% of the previous rate, in a country where crude constitutes 90% of the export revenues, the system was changed. The new plan is intended to reduce the dependence of Nigeria on oil exports. The production rate is set at between 2.2 and 2.5 million bpd. Due to a significant increase in domestic demand, the 2 existing refineries cannot fill the gap; 2 more refineries are planned. There also are substantial gas reserves; the associated gas, now flared, is to be recovered. A gas liquefaction plant also is in operation, with one-half of the output going to Europe and one-half to the US. Some of the oil and gas is earmarked for local petrochemical plants.

  8. Microwave plasma assisted supersonic gas jet deposition of thin film materials

    DOEpatents

    Schmitt, J.J. III; Halpern, B.L.

    1993-10-26

    An apparatus for fabricating thin film materials utilizing high speed gas dynamics relies on supersonic free jets of carrier gas to transport depositing vapor species generated in a microwave discharge to the surface of a prepared substrate where the vapor deposits to form a thin film. The present invention generates high rates of deposition and thin films of unforeseen high quality at low temperatures. 5 figures.

  9. Factors Affecting the Relationship between Crude Oil and Natural Gas Prices (released in AEO2010)

    Reports and Publications

    2010-01-01

    Over the 1995-2005 period, crude oil prices and U.S. natural gas prices tended to move together, which supported the conclusion that the markets for the two commodities were connected. Figure 26 illustrates the fairly stable ratio over that period between the price of low-sulfur light crude oil at Cushing, Oklahoma, and the price of natural gas at the Henry Hub on an energy-equivalent basis.

  10. Demand response compensation, net Benefits and cost allocation: comments

    SciTech Connect

    Hogan, William W.

    2010-11-15

    FERC's Supplemental Notice of Public Rulemaking addresses the question of proper compensation for demand response in organized wholesale electricity markets. Assuming that the Commission would proceed with the proposal ''to require tariff provisions allowing demand response resources to participate in wholesale energy markets by reducing consumption of electricity from expected levels in response to price signals, to pay those demand response resources, in all hours, the market price of energy for such reductions,'' the Commission posed questions about applying a net benefits test and rules for cost allocation. This article summarizes critical points and poses implications for the issues of net benefit tests and cost allocation. (author)

  11. A Look Ahead at Demand Response in New England

    SciTech Connect

    Burke, Robert B.; Henderson, Michael I.; Widergren, Steven E.

    2008-08-01

    The paper describes the demand response programs developed and in operation in New England, and the revised designs for participation in the forward capacity market. This description will include how energy efficiency, demand-side resources, and distributed generation are eligible to participate in this new forward capacity market. The paper will also discuss various methods that can be used to configure and communicate with demand response resources and important concerns in specifying interfaces that accommodate multiple technologies and allow technology choice and evolution.

  12. Figure 2. Stratigraphic Summary of Ages, Names and Rock Types in the ANWR

    Energy Information Administration (EIA) (indexed site)

    1002 2. Stratigraphic Summary of Ages, Names and Rock Types in the ANWR 1002 and Coastal Plain Area of the Alaska North Slope. Potentially Productive Reservoirs and Plays Assessed by the USGS are Indicated fig2.jpg (30091 bytes) Source: Edited from U.S. Geological Survey, "The Oil and Gas Resource Potential of the Arctic National Wildlife Refuge 1002 Area, Alaska," Open File Report 98-34, 1999.

  13. New demands, new supplies : a national look at the water balance of carbon dioxide capture and sequestration.

    SciTech Connect

    Krumhansl, James Lee; McNemar, Andrea , Morgantown, WV); Kobos, Peter Holmes; Roach, Jesse Dillon; Klise, Geoffrey Taylor

    2010-12-01

    Concerns over rising concentrations of greenhouse gases in the atmosphere have resulted in serious consideration of policies aimed at reduction of anthropogenic carbon dioxide (CO2) emissions. If large scale abatement efforts are undertaken, one critical tool will be geologic sequestration of CO2 captured from large point sources, specifically coal and natural gas fired power plants. Current CO2 capture technologies exact a substantial energy penalty on the source power plant, which must be offset with make-up power. Water demands increase at the source plant due to added cooling loads. In addition, new water demand is created by water requirements associated with generation of the make-up power. At the sequestration site however, saline water may be extracted to manage CO2 plum migration and pressure build up in the geologic formation. Thus, while CO2 capture creates new water demands, CO2 sequestration has the potential to create new supplies. Some or all of the added demand may be offset by treatment and use of the saline waters extracted from geologic formations during CO2 sequestration. Sandia National Laboratories, with guidance and support from the National Energy Technology Laboratory, is creating a model to evaluate the potential for a combined approach to saline formations, as a sink for CO2 and a source for saline waters that can be treated and beneficially reused to serve power plant water demands. This presentation will focus on the magnitude of added U.S. power plant water demand under different CO2 emissions reduction scenarios, and the portion of added demand that might be offset by saline waters extracted during the CO2 sequestration process.

  14. Comparative analysis of electric and gas industries regulatory initiatives on Integrated Resource Planning (IRP). Topical report, July 1992-November 1993

    SciTech Connect

    Stapor, M.C.; Hederman, W.F.

    1993-11-01

    The report focuses on the parallels and contrasts between gas and electric utilities that have implications for applying analogies from electric utility integrated resource planning (IRP)/demand-side management (DSM) to gas utilities. In addition, the report provides an overview of IRP and DSM trends as applied to gas utilities. Understanding the similarities and differences between the gas and electric utilities is an important step toward adopting appropriate regulatory policies for gas IRP/DSM.

  15. Natural Gas Basics

    SciTech Connect

    NREL Clean Cities

    2010-04-01

    Fact sheet answers questions about natural gas production and use in transportation. Natural gas vehicles are also described.

  16. Progress of gas-insulated transformers

    SciTech Connect

    Togawa, Y.; Ikeda, M.; Toda, K.; Esumi, K.

    1995-12-31

    The world`s first transformer was manufactured at Ganz in Hungary in 1885. Two years later in 1887 patents applications were made for about oil immersed transformers in the US. Since then, oil immersed types have predominated for medium- and large-capacity transformers, which are now giving way to gas insulated transformers in some areas. Behind such trends are plans to construct substations inside buildings or underground, because of the difficulty in acquiring land for substations in large cities where power demand is concentrated. Requirements are protection against accidents, compactness and overall economy. Total gas insulated substations combining GIS units and gas insulated transformers these needs. Demand for gas insulated transformers has been increasing rapidly, particularly in Japan and Hong Kong. First, relatively small-capacity models below 20--30 MVA were put into practical use and today 275 kV, 300 MVa models are in use and 500kV, 1,500 MVA models are coming into use. Engineering is progressing very rapidly in these areas. This paper describes the design techniques and important maintenance techniques for the latest gas insulated transformers from 5,000 kVA to 300 MVA.

  17. Assessment of the possibility of forecasting future natural gas curtailments

    SciTech Connect

    Lemont, S.

    1980-01-01

    This study provides a preliminary assessment of the potential for determining probabilities of future natural-gas-supply interruptions by combining long-range weather forecasts and natural-gas supply/demand projections. An illustrative example which measures the probability of occurrence of heating-season natural-gas curtailments for industrial users in the southeastern US is analyzed. Based on the information on existing long-range weather forecasting techniques and natural gas supply/demand projections enumerated above, especially the high uncertainties involved in weather forecasting and the unavailability of adequate, reliable natural-gas projections that take account of seasonal weather variations and uncertainties in the nation's energy-economic system, it must be concluded that there is little possibility, at the present time, of combining the two to yield useful, believable probabilities of heating-season gas curtailments in a form useful for corporate and government decision makers and planners. Possible remedial actions are suggested that might render such data more useful for the desired purpose in the future. The task may simply require the adequate incorporation of uncertainty and seasonal weather trends into modeling systems and the courage to report projected data, so that realistic natural gas supply/demand scenarios and the probabilities of their occurrence will be available to decision makers during a time when such information is greatly needed.

  18. Tankless or Demand-Type Water Heaters | Department of Energy

    Energy.gov [DOE] (indexed site)

    a demand water heater at each hot water outlet. ENERGY STAR estimates that a typical family can save 100 or more per year with an ENERGY STAR qualified tankless water heater....

  19. Global Energy: Supply, Demand, Consequences, Opportunities (LBNL Summer Lecture Series)

    SciTech Connect

    Majumdar, Arun

    2008-07-29

    Summer Lecture Series 2009: Arun Majumdar, Director of the Environmental Energy Technologies Division, discusses current and future projections of economic growth, population, and global energy demand and supply, and explores the implications of these trends for the environment.

  20. East Coast blizzard cuts into gasoline demand, but home electricity...

    Energy Information Administration (EIA) (indexed site)

    demand rises U.S. monthly gasoline consumption declined in January, as the big winter storm that shut down many East Coast cities kept people in their homes and off the road. ...

  1. Energy Upgrade California Drives Demand From Behind the Wheel...

    Energy Saver

    the 24-foot trailer has been hitting the road to drive demand for home energy upgrades ... of direct mail, program newsletters, road signs, and cross-promotional efforts among ...

  2. Benefits of Demand Response in Electricity Markets and Recommendations...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Demand response is a tariff or program established to motivate changes in electric use by end-use customers in response to changes in the price of electricity over time, or to give ...

  3. Demand Response in U.S. Electricity Markets: Empirical Evidence...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    in U.S. Electricity Markets: Empirical Evidence Demand Response in U.S. Electricity Markets: Empirical Evidence The work described in this paper was funded by the Office of ...

  4. Demand response medium sized industry consumers (Smart Grid Project...

    OpenEI (Open Energy Information) [EERE & EIA]

    demand and regulation power in Danish Industry consumers via a price and control signal from the supplier of electricity. The aim is to develop a valuable solution for the...

  5. Executive Order 13693 Training Now Available On Demand

    Energy.gov [DOE]

    Executive Order (E.O.) 13693: Recent Developments, Implementation Updates, and Opportunities Training is now available on-demand. The seminar covers the major goals of E. O. 13693 and offers...

  6. Enhanced Oil Recovery to Fuel Future Oil Demands | GE Global...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Enhanced Oil Recovery to Fuel Future Oil Demands Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) ...

  7. Behavioral Economics Applied to Energy Demand Analysis: A Foundation

    Energy Information Administration (EIA) (indexed site)

    Behavioral Economics Applied to Energy Demand Analysis: A Foundation October 2014 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. ...

  8. U.S. electric utility demand-side management 1993

    SciTech Connect

    1995-07-01

    This report presents comprehensive information on electric power industry demand-side management activities in the United States at the national, regional, and utility levels. Data is included for energy savings, peakload reductions, and costs.

  9. Detailed Modeling and Response of Demand Response Enabled Appliances

    SciTech Connect

    Vyakaranam, Bharat; Fuller, Jason C.

    2014-04-14

    Proper modeling of end use loads is very important in order to predict their behavior, and how they interact with the power system, including voltage and temperature dependencies, power system and load control functions, and the complex interactions that occur between devices in such an interconnected system. This paper develops multi-state time variant residential appliance models with demand response enabled capabilities in the GridLAB-DTM simulation environment. These models represent not only the baseline instantaneous power demand and energy consumption, but the control systems developed by GE Appliances to enable response to demand response signals and the change in behavior of the appliance in response to the signal. These DR enabled appliances are simulated to estimate their capability to reduce peak demand and energy consumption.

  10. Demand charge schedule data | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    Demand charge schedule data Home > Groups > Utility Rate Hi, I'm a new user of this database,so first, thanks for creating it, and apologies if this question is answered in...

  11. Global Energy: Supply, Demand, Consequences, Opportunities (LBNL Summer Lecture Series)

    ScienceCinema

    Majumdar, Arun

    2016-07-12

    Summer Lecture Series 2009: Arun Majumdar, Director of the Environmental Energy Technologies Division, discusses current and future projections of economic growth, population, and global energy demand and supply, and explores the implications of these trends for the environment.

  12. Agreement Template for Energy Conservation and Demand Side Management Services

    Office of Energy Efficiency and Renewable Energy (EERE)

    Template agreement between a federal agency and a utility company for the implementation of energy conservation measures and demand side management services. A detailed description of the template is also available below.

  13. MODELING THE DEMAND FOR E85 IN THE UNITED STATES

    SciTech Connect

    Liu, Changzheng; Greene, David L

    2013-10-01

    How demand for E85 might evolve in the future in response to changing economics and policies is an important subject to include in the National Energy Modeling System (NEMS). This report summarizes a study to develop an E85 choice model for NEMS. Using the most recent data from the states of Minnesota, North Dakota, and Iowa, this study estimates a logit model that represents E85 choice as a function of prices of E10 and E85, as well as fuel availability of E85 relative to gasoline. Using more recent data than previous studies allows a better estimation of non-fleet demand and indicates that the price elasticity of E85 choice appears to be higher than previously estimated. Based on the results of the econometric analysis, a model for projecting E85 demand at the regional level is specified. In testing, the model produced plausible predictions of US E85 demand to 2040.

  14. Monitoring SERC Technologies: On-Demand Tankless Water Heaters

    Energy.gov [DOE]

    A webinar by Ethan MacCormick, VP for Services to Energy Businesses at Performance Systems Development, about On-Demand Tankless Water Heaters and how to properly monitor the installation.

  15. Response to several FOIA requests - Renewable Energy. Demand...

    Energy.gov [DOE] (indexed site)

    Demand for fossil fuels surely will overrun supply sooner or later, as indeed it already has in the casc of United States domestic oil drilling. Recognition also is growing that ...

  16. New York Natural Gas Number of Gas and Gas Condensate Wells ...

    Energy Information Administration (EIA) (indexed site)

    Gas and Gas Condensate Wells (Number of Elements) New York Natural Gas Number of Gas and ... Number of Producing Gas Wells Number of Producing Gas Wells (Summary) New York Natural Gas ...

  17. Energy Upgrade California Drives Demand From Behind the Wheel | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Upgrade California Drives Demand From Behind the Wheel Energy Upgrade California Drives Demand From Behind the Wheel Photo of a trailer with the Energy Upgrade California logo and graphics painted on the side. With a goal of "energy efficiency or bust," the California Center for Sustainable Energy (CCSE) recently completed a statewide tour of its ongoing Energy Upgrade California Roadshow. The mobile exhibit made 11 stops in nine cities across California during November

  18. Hydrogen Demand and Resource Analysis (HyDRA) Model

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Demand and Resource Analysis (HyDRA) Model (National Renewable Energy Laboratory) Objectives To allow analysts, decision makers, and general users to view, download, and analyze hydrogen demand, resource, and infrastructure data spatially and dynamically. Key Attributes & Strengths HyDRA is an application that has the look, feel, and functionality of a traditional client-based GIS application. Users are able to create their own spatial datasets and upload them into the HyDRA application to

  19. Expert Panel: Forecast Future Demand for Medical Isotopes | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Expert Panel: Forecast Future Demand for Medical Isotopes Expert Panel: Forecast Future Demand for Medical Isotopes The Expert Panel has concluded that the Department of Energy and National Institutes of Health must develop the capability to produce a diverse supply of radioisotopes for medical use in quantities sufficient to support research and clinical activities. Such a capability would prevent shortages of isotopes, reduce American dependence on foreign radionuclide sources and

  20. Discrete Choice Analysis: Hydrogen FCV Demand Potential | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Discrete Choice Analysis: Hydrogen FCV Demand Potential Discrete Choice Analysis: Hydrogen FCV Demand Potential Presentation by Cory Welch at the 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure meeting on January 31, 2007. scenario_analysis_welch1_07.pdf (2.37 MB) More Documents & Publications HyDIVE (Hydrogen Dynamic Infrastructure and Vehicle Evolution) Model Analysis Analysis of the Transition to Hydrogen Fuel Cell Vehicles and the Potential