National Library of Energy BETA

Sample records for fusion energy science

  1. Fusion Energy Sciences

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Fusion Energy Sciences Fusion Energy Sciences Expanding the fundamental understanding of matter at very high temperatures and densities and to build the scientific foundation ...

  2. Fusion Energy Sciences

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ... Batteries Electric Drive Systems Hydrogen Materials & Components Compatibility Hydrogen ...

  3. Fusion Energy Sciences Jobs

    Office of Science (SC)

    fesaboutjobs Below is a list of currently open federal employment opportunities in the Office of Science. Prospective applicants should follow the links to the formal position...

  4. Fusion Energy Sciences Network Requirements Review Final Report

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Fusion Energy Sciences Network Requirements Review Final Report Office of Fusion Energy Sciences, DOE Office of Science Energy Sciences Network (ESnet) Germantown, Maryland August ...

  5. Applying physics, teamwork to fusion energy science | Princeton...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Applying physics, teamwork to fusion energy science American Fusion News Category: Massachusetts Institute of Technology (MIT) Link: Applying physics, teamwork to fusion energy science

  6. Fusion Energy Sciences Advisory Committee (FESAC) Homepage |...

    Office of Science (SC)

    The Fusion Energy Sciences Advisory Committee (FESAC) has been Chartered .pdf file (266KB) pursuant to Section 14(a)(2)(A) of the Federal Advisory Committee Act Public Law 92-463, ...

  7. NERSC Role in Fusion Energy Science Research Katherine Yelick

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Fusion Energy Science Research Katherine Yelick NERSC Director Requirements Workshop NERSC ... on the design of next generation fusion experiments such as ITER. NERSC: All ...

  8. Assessment of the Fusion Energy Sciences Program. Final Report

    SciTech Connect

    2001-05-01

    An assessment of the Office of Fusion Energy Sciences (OFES) program with guidance for future program strategy. The overall objective of this study is to prepare an independent assessment of the scientific quality of the Office of Fusion Energy Sciences program at the Department of Energy. The Fusion Science Assessment Committee (FuSAC) has been appointed to conduct this study.

  9. Applications of Fusion Energy Sciences Research - Scientific Discoveries and New Technologies Beyond Fusion

    SciTech Connect

    Wendt, Amy; Callis, Richard; Efthimion, Philip; Foster, John; Keane, Christopher; Onsager, Terry; O'Shea, Patrick

    2015-09-01

    Since the 1950s, scientists and engineers in the U.S. and around the world have worked hard to make an elusive goal to be achieved on Earth: harnessing the reaction that fuels the stars, namely fusion. Practical fusion would be a source of energy that is unlimited, safe, environmentally benign, available to all nations and not dependent on climate or the whims of the weather. Significant resources, most notably from the U.S. Department of Energy (DOE) Office of Fusion Energy Sciences (FES), have been devoted to pursuing that dream, and significant progress is being made in turning it into a reality. However, that is only part of the story. The process of creating a fusion-based energy supply on Earth has led to technological and scientific achievements of far-reaching impact that touch every aspect of our lives. Those largely unanticipated advances, spanning a wide variety of fields in science and technology, are the focus of this report. There are many synergies between research in plasma physics (the study of charged particles and fluids interacting with self-consistent electric and magnetic fields), high-energy physics, and condensed matter physics dating back many decades. For instance, the formulation of a mathematical theory of solitons, solitary waves which are seen in everything from plasmas to water waves to Bose-Einstein Condensates, has led to an equal span of applications, including the fields of optics, fluid mechanics and biophysics. Another example, the development of a precise criterion for transition to chaos in Hamiltonian systems, has offered insights into a range of phenomena including planetary orbits, two-person games and changes in the weather. Seven distinct areas of fusion energy sciences were identified and reviewed which have had a recent impact on fields of science, technology and engineering not directly associated with fusion energy: Basic plasma science; Low temperature plasmas; Space and astrophysical plasmas; High energy density

  10. A Plan for the Development of Fusion Energy. Final Report to Fusion Energy Sciences Advisory Committee, Fusion Development Path Panel

    SciTech Connect

    None, None

    2003-03-05

    This report presents a plan for the deployment of a fusion demonstration power plant within 35 years, leading to commercial application of fusion energy by mid-century. The plan is derived from the necessary features of a demonstration fusion power plant and from the time scale defined by President Bush. It identifies critical milestones, key decision points, needed major facilities and required budgets.

  11. Review of the Strategic Plan for International Collaboration on Fusion Science and Technology Research. Fusion Energy Sciences Advisory Committee (FESAC)

    SciTech Connect

    none,

    1998-01-23

    The United States Government has employed international collaborations in magnetic fusion energy research since the program was declassified in 1958. These collaborations have been successful not only in producing high quality scientific results that have contributed to the advancement of fusion science and technology, they have also allowed us to highly leverage our funding. Thus, in the 1980s, when the funding situation made it necessary to reduce the technical breadth of the U.S. domestic program, these highly leveraged collaborations became key strategic elements of the U.S. program, allowing us to maintain some degree of technical breadth. With the recent, nearly complete declassification of inertial confinement fusion, the use of some international collaboration is expected to be introduced in the related inertial fusion energy research activities as well. The United States has been a leader in establishing and fostering collaborations that have involved scientific and technological exchanges, joint planning, and joint work at fusion facilities in the U.S. and worldwide. These collaborative efforts have proven mutually beneficial to the United States and our partners. International collaborations are a tool that allows us to meet fusion program goals in the most effective way possible. Working with highly qualified people from other countries and other cultures provides the collaborators with an opportunity to see problems from new and different perspectives, allows solutions to arise from the diversity of the participants, and promotes both collaboration and friendly competition. In short, it provides an exciting and stimulating environment resulting in a synergistic effect that is good for science and good for the people of the world.

  12. Office of Fusion Energy Sciences. A ten-year perspective (2015-2025)

    SciTech Connect

    2015-12-01

    The vision described here builds on the present U.S. activities in fusion plasma and materials science relevant to the energy goal and extends plasma science at the frontier of discovery. The plan is founded on recommendations made by the National Academies, a number of recent studies by the Fusion Energy Sciences Advisory Committee (FESAC), and the Administration’s views on the greatest opportunities for U.S. scientific leadership.This report highlights five areas of critical importance for the U.S. fusion energy sciences enterprise over the next decade: 1) Massively parallel computing with the goal of validated whole-fusion-device modeling will enable a transformation in predictive power, which is required to minimize risk in future fusion energy development steps; 2) Materials science as it relates to plasma and fusion sciences will provide the scientific foundations for greatly improved plasma confinement and heat exhaust; 3) Research in the prediction and control of transient events that can be deleterious to toroidal fusion plasma confinement will provide greater confidence in machine designs and operation with stable plasmas; 4) Continued stewardship of discovery in plasma science that is not expressly driven by the energy goal will address frontier science issues underpinning great mysteries of the visible universe and help attract and retain a new generation of plasma/fusion science leaders; 5) FES user facilities will be kept world-leading through robust operations support and regular upgrades. Finally, we will continue leveraging resources among agencies and institutions and strengthening our partnerships with international research facilities.

  13. Response to FESAC survey, non-fusion connections to Fusion Energy Sciences. Applications of the FES-supported beam and plasma simulation code, Warp

    SciTech Connect

    Friedman, A.; Grote, D. P.; Vay, J. L.

    2015-05-29

    The Fusion Energy Sciences Advisory Committee’s subcommittee on non-fusion applications (FESAC NFA) is conducting a survey to obtain information from the fusion community about non-fusion work that has resulted from their DOE-funded fusion research. The subcommittee has requested that members of the community describe recent developments connected to the activities of the DOE Office of Fusion Energy Sciences. Two questions in particular were posed by the subcommittee. This document contains the authors’ responses to those questions.

  14. Report of the Integrated Program Planning Activity for the DOE Fusion Energy Sciences Program

    SciTech Connect

    2000-12-01

    This report of the Integrated Program Planning Activity (IPPA) has been prepared in response to a recommendation by the Secretary of Energy Advisory Board that, ''Given the complex nature of the fusion effort, an integrated program planning process is an absolute necessity.'' We, therefore, undertook this activity in order to integrate the various elements of the program, to improve communication and performance accountability across the program, and to show the inter-connectedness and inter-dependency of the diverse parts of the national fusion energy sciences program. This report is based on the September 1999 Fusion Energy Sciences Advisory Committee's (FESAC) report ''Priorities and Balance within the Fusion Energy Sciences Program''. In its December 5,2000, letter to the Director of the Office of Science, the FESAC has reaffirmed the validity of the September 1999 report and stated that the IPPA presents a framework and process to guide the achievement of the 5-year goals listed in the 1999 report. The National Research Council's (NRC) Fusion Assessment Committee draft final report ''An Assessment of the Department of Energy's Office of Fusion Energy Sciences Program'', reviewing the quality of the science in the program, was made available after the IPPA report had been completed. The IPPA report is, nevertheless, consistent with the recommendations in the NRC report. In addition to program goals and the related 5-year, 10-year, and 15-year objectives, this report elaborates on the scientific issues associated with each of these objectives. The report also makes clear the relationships among the various program elements, and cites these relationships as the reason why integrated program planning is essential. In particular, while focusing on the science conducted by the program, the report addresses the important balances between the science and energy goals of the program, between the MFE and IFE approaches, and between the domestic and international aspects

  15. Fusion energy

    SciTech Connect

    Baylor, Larry

    2014-05-02

    Larry Baylor explains how the US ITER team is working to prevent solar flare-like events at a fusion energy reactor that will be like a small sun on earth

  16. Fusion energy

    ScienceCinema

    Baylor, Larry

    2016-07-12

    Larry Baylor explains how the US ITER team is working to prevent solar flare-like events at a fusion energy reactor that will be like a small sun on earth

  17. Large Scale Computing and Storage Requirements for Fusion Energy Sciences: Target 2017

    SciTech Connect

    Gerber, Richard

    2014-05-02

    The National Energy Research Scientific Computing Center (NERSC) is the primary computing center for the DOE Office of Science, serving approximately 4,500 users working on some 650 projects that involve nearly 600 codes in a wide variety of scientific disciplines. In March 2013, NERSC, DOE?s Office of Advanced Scientific Computing Research (ASCR) and DOE?s Office of Fusion Energy Sciences (FES) held a review to characterize High Performance Computing (HPC) and storage requirements for FES research through 2017. This report is the result.

  18. Fusion Science to Prepare

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    DIII-D Explorations of Fusion Science to Prepare for ITER and FNSF Dr. Richard Buttery General Atomics Tuesday, Dec 10, 2013 - 11:00AM MBG AUDITORIUM Refreshments at 10:45AM The ...

  19. FES Science Network Requirements - Report of the Fusion Energy Sciences Network Requirements Workshop Conducted March 13 and 14, 2008

    SciTech Connect

    Tierney, Brian; Dart, Eli; Tierney, Brian

    2008-07-10

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the U.S. Department of Energy Office of Science, the single largest supporter of basic research in the physical sciences in the United States of America. In support of the Office of Science programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 20 years. In March 2008, ESnet and the Fusion Energy Sciences (FES) Program Office of the DOE Office of Science organized a workshop to characterize the networking requirements of the science programs funded by the FES Program Office. Most sites that conduct data-intensive activities (the Tokamaks at GA and MIT, the supercomputer centers at NERSC and ORNL) show a need for on the order of 10 Gbps of network bandwidth for FES-related work within 5 years. PPPL reported a need for 8 times that (80 Gbps) in that time frame. Estimates for the 5-10 year time period are up to 160 Mbps for large simulations. Bandwidth requirements for ITER range from 10 to 80 Gbps. In terms of science process and collaboration structure, it is clear that the proposed Fusion Simulation Project (FSP) has the potential to significantly impact the data movement patterns and therefore the network requirements for U.S. fusion science. As the FSP is defined over the next two years, these changes will become clearer. Also, there is a clear and present unmet need for better network connectivity between U.S. FES sites and two Asian fusion experiments--the EAST Tokamak in China and the KSTAR Tokamak in South Korea. In addition to achieving its goal of collecting and characterizing the network requirements of the science endeavors funded by the FES Program Office, the workshop emphasized that there is a need for research into better ways of conducting remote

  20. Inertial Fusion and High-Energy-Density Science in the United States

    SciTech Connect

    Tarter, C B

    2001-09-06

    Inertial fusion and high-energy density science worldwide is poised to take a great leap forward. In the US, programs at the University of Rochester, Sandia National Laboratories, Los Alamos National Laboratory, Lawrence Livermore National Laboratory (LLNL), the Naval Research Laboratory, and many smaller laboratories have laid the groundwork for building a facility in which fusion ignition can be studied in the laboratory for the first time. The National Ignition Facility (NIF) is being built by the Department of Energy's National Nuclear Security Agency to provide an experimental test bed for the US Stockpile Stewardship Program (SSP) to ensure the dependability of the country's nuclear deterrent without underground nuclear testing. NIF and other large laser systems being planned such as the Laser MegaJoule (LMJ) in France will also make important contributions to basic science, the development of inertial fusion energy, and other scientific and technological endeavors. NIF will be able to produce extreme temperatures and pressures in matter. This will allow simulating astrophysical phenomena (on a tiny scale) and measuring the equation of state of material under conditions that exist in planetary cores.

  1. The National Ignition Facility: The Path to Ignition, High Energy Density Science and Inertial Fusion Energy

    SciTech Connect

    Moses, E

    2011-03-25

    The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL) in Livermore, CA, is a Nd:Glass laser facility capable of producing 1.8 MJ and 500 TW of ultraviolet light. This world's most energetic laser system is now operational with the goals of achieving thermonuclear burn in the laboratory and exploring the behavior of matter at extreme temperatures and energy densities. By concentrating the energy from its 192 extremely energetic laser beams into a mm{sup 3}-sized target, NIF can produce temperatures above 100 million K, densities of 1,000 g/cm{sup 3}, and pressures 100 billion times atmospheric pressure - conditions that have never been created in a laboratory and emulate those in the interiors of planetary and stellar environments. On September 29, 2010, NIF performed the first integrated ignition experiment which demonstrated the successful coordination of the laser, the cryogenic target system, the array of diagnostics and the infrastructure required for ignition. Many more experiments have been completed since. In light of this strong progress, the U.S. and the international communities are examining the implication of achieving ignition on NIF for inertial fusion energy (IFE). A laser-based IFE power plant will require a repetition rate of 10-20 Hz and a 10% electrical-optical efficiency laser, as well as further advances in large-scale target fabrication, target injection and tracking, and other supporting technologies. These capabilities could lead to a prototype IFE demonstration plant in 10- to 15-years. LLNL, in partnership with other institutions, is developing a Laser Inertial Fusion Energy (LIFE) baseline design and examining various technology choices for LIFE power plant This paper will describe the unprecedented experimental capabilities of the NIF, the results achieved so far on the path toward ignition, the start of fundamental science experiments and plans to transition NIF to an international user facility

  2. Science DMZ Fuels Fusion Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Report Network Problems: trouble@es.net Provide Web Site Feedback: info@es.net Science DMZ Fuels Fusion Research General Atomics remote controls fusion experiments, bridges...

  3. Opportunities in the Fusion Energy Sciences Program. Appendix C: Topical Areas Characterization

    SciTech Connect

    1999-06-30

    Recent years have brought dramatic advances in the scientific understanding of fusion plasmas and in the generation of fusion power in the laboratory. Today, there is little doubt that fusion energy production is feasible. The challenge is to make fusion energy practical. As a result of the advances of the last few years, there are now exciting opportunities to optimize fusion systems so that an attractive new energy source will be available when it may be needed in the middle of the next century. The risk of conflicts arising from energy shortages and supply cutoffs, as well as the risk of severe environmental impacts from existing methods of energy production, are among the reasons to pursue these opportunities.

  4. Opportunities in the Fusion Energy Sciences Program [Includes Appendix C: Topical Areas Characterization

    SciTech Connect

    1999-06-01

    Recent years have brought dramatic advances in the scientific understanding of fusion plasmas and in the generation of fusion power in the laboratory. Today, there is little doubt that fusion energy production is feasible. The challenge is to make fusion energy practical. As a result of the advances of the last few years, there are now exciting opportunities to optimize fusion systems so that an attractive new energy source will be available when it may be needed in the middle of the next century. The risk of conflicts arising from energy shortages and supply cutoffs, as well as the risk of severe environmental impacts from existing methods of energy production, are among the reasons to pursue these opportunities.

  5. Large Scale Computing and Storage Requirements for Fusion Energy...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Home Science at NERSC HPC Requirements Reviews Requirements Reviews: Target 2014 Fusion Energy Sciences (FES) Large Scale Computing and Storage Requirements for Fusion ...

  6. How Fusion Energy Works

    Energy.gov [DOE]

    Fusion energy is the energy source of the sun and all of the stars. As part of How Energy Works, we'll cover everything from fuel sources to plasma physics and beyond.

  7. Research Needs for Magnetic Fusion Energy Sciences. Report of the Research Needs Workshop (ReNeW) Bethesda, Maryland, June 8-12, 2009

    SciTech Connect

    2009-06-08

    Nuclear fusion - the process that powers the sun - offers an environmentally benign, intrinsically safe energy source with an abundant supply of low-cost fuel. It is the focus of an international research program, including the ITE R fusion collaboration, which involves seven parties representing half the world's population. The realization of fusion power would change the economics and ecology of energy production as profoundly as petroleum exploitation did two centuries ago. The 21st century finds fusion research in a transformed landscape. The worldwide fusion community broadly agrees that the science has advanced to the point where an aggressive action plan, aimed at the remaining barriers to practical fusion energy, is warranted. At the same time, and largely because of its scientific advance, the program faces new challenges; above all it is challenged to demonstrate the timeliness of its promised benefits. In response to this changed landscape, the Office of Fusion Energy Sciences (OFES ) in the US Department of Energy commissioned a number of community-based studies of the key scientific and technical foci of magnetic fusion research. The Research Needs Workshop (ReNeW) for Magnetic Fusion Energy Sciences is a capstone to these studies. In the context of magnetic fusion energy, ReNeW surveyed the issues identified in previous studies, and used them as a starting point to define and characterize the research activities that the advance of fusion as a practical energy source will require. Thus, ReNeW's task was to identify (1) the scientific and technological research frontiers of the fusion program, and, especially, (2) a set of activities that will most effectively advance those frontiers. (Note that ReNeW was not charged with developing a strategic plan or timeline for the implementation of fusion power.) This Report presents a portfolio of research activities for US research in magnetic fusion for the next two decades. It is intended to provide a

  8. Fusion Nuclear Science Pathways Assessment

    SciTech Connect

    C.E. Kessel, et. al.

    2012-02-23

    With the strong commitment of the US to the success of the ITER burning plasma mission, and the project overall, it is prudent to consider how to take the most advantage of this investment. The production of energy from fusion has been a long sought goal, and the subject of several programmatic investigations and time line proposals [1]. The nuclear aspects of fusion research have largely been avoided experimentally for practical reasons, resulting in a strong emphasis on plasma science. Meanwhile, ITER has brought into focus how the interface between the plasma and engineering/technology, presents the most challenging problems for design. In fact, this situation is becoming the rule and no longer the exception. ITER will demonstrate the deposition of 0.5 GW of neutron heating to the blanket, deliver a heat load of 10-20 MW/m2 or more on the divertor, inject 50-100 MW of heating power to the plasma, all at the expected size scale of a power plant. However, in spite of this, and a number of other technologies relevant power plant, ITER will provide a low neutron exposure compared to the levels expected to a fusion power plant, and will purchase its tritium entirely from world reserves accumulated from decades of CANDU reactor operations. Such a decision for ITER is technically well founded, allowing the use of conventional materials and water coolant, avoiding the thick tritium breeding blankets required for tritium self-sufficiency, and allowing the concentration on burning plasma and plasma-engineering interface issues. The neutron fluence experienced in ITER over its entire lifetime will be ~ 0.3 MW-yr/m2, while a fusion power plant is expected to experience 120-180 MW-yr/m2 over its lifetime. ITER utilizes shielding blanket modules, with no tritium breeding, except in test blanket modules (TBM) located in 3 ports on the midplane [2], which will provide early tests of the fusion nuclear environment with very low tritium production (a few g per year).

  9. Overview of the RFX fusion science program

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... Fusion 51 (2011) 094023 P. Martin et al 17 Department of Physics, Nankai University, Tianjin 300071, People's Republic of China 18 EURATOMCCFE Fusion Association, Culham Science ...

  10. Review of Burning Plasma Physics. Fusion Energy Sciences Advisory Committee (FESAC)

    SciTech Connect

    Berk, Herb; Betti, Riccardo; Dahlburg, Jill; Freidberg, Jeff; Hopper, Bick; Meade, Dale; Navritil, Jerry; Nevins, Bill; Ono, Masa; Perkins, Rip; Prager, Stewart; Schoenburg, Kurt; Taylor, Tony; Uckan, Nermin

    2001-09-01

    The next frontier in the quest for magnetic fusion energy is the development of a basic understanding of plasma behavior in the regime of strong self-heating, the so called “burning plasma” regime. The general consensus in the fusion community is that the exploration of this frontier requires a new, relatively large experimental facility - a burning plasma experiment. The motivation, justification, and steps required to build such a facility are the primary focus of our report. The specific goals of the report are as follows. First, the report describes the critical scientific and engineering phenomena that are expected to arise for the first time, or else in a strongly modified form, in a burning plasma. Second, the report shows that the capabilities of existing experiments are inadequate to investigate these phenomena, thereby providing a major justification for a new facility. Third, the report compares the features and predicted performance of the three major next generation burning plasma experiments under current consideration (ITER-FEAT, FIRE, and IGNITOR), which are aimed at addressing these problems. Deliberately, no selection of the best option is made or attempted since such a decision involves complex scientific and cost issues that are beyond the scope of the present panel report. Fourth, the report makes specific recommendations regarding a process to move the burning plasma program forward, including a procedure for choosing the best option and the future activities of the Next Step Option (NSO) program. Fifth, the report attempts to provide a proper perspective for the role of burning plasmas with respect to the overall U.S. fusion program. The introduction provides the basic background information required for understanding the context in which the U.S. fusion community thinks about burning plasma issues. It “sets the stage” for the remainder of the report.

  11. Fusion Energy Sciences Advisory Committee Reports on Review of the Fusion Materials Research Program, Review of the Proposed Proof-of-Principle Programs, Review of the Possible Pathways for Pursuing Burning Plasma Physics, and Comments on the ER Facilities Roadmap

    SciTech Connect

    none,

    1998-07-01

    The Fusion Energy Science Advisory Committee was asked to conduct a review of Fusion Materials Research Program (the Structural Materials portion of the Fusion Program) by Dr. Martha Krebs, Director of Energy Research for the Department of Energy. This request was motivated by the fact that significant changes have been made in the overall direction of the Fusion Program from one primarily focused on the milestones necessary to the construction of successively larger machines to one where the necessary scientific basis for an attractive fusion energy system is. better understood. It was in this context that the review of current scientific excellence and recommendations for future goals and balance within the Program was requested.

  12. How Fusion Energy Works | Department of Energy

    Energy.gov [DOE] (indexed site)

    3 likes How Fusion Energy Works Fusion energy is the energy source of the sun and all of the stars. In fusion, two light atomic nuclei are fused together to create energy (as ...

  13. Large Scale Production Computing and Storage Requirements for Fusion Energy

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Sciences: Target 2017 Large Scale Production Computing and Storage Requirements for Fusion Energy Sciences: Target 2017 The NERSC Program Requirements Review "Large Scale Production Computing and Storage Requirements for Fusion Energy Sciences" is organized by the Department of Energy's Office of Fusion Energy Sciences (FES), Office of Advanced Scientific Computing Research (ASCR), and the National Energy Research Scientific Computing Center (NERSC). The review's goal is to

  14. ITER Fusion Energy

    ScienceCinema

    Dr. Norbert Holtkamp

    2016-07-12

    ITER (in Latin “the way”) is designed to demonstrate the scientific and technological feasibility of fusion energy. Fusion is the process by which two light atomic nuclei combine to form a heavier over one and thus release energy. In the fusion process two isotopes of hydrogen – deuterium and tritium – fuse together to form a helium atom and a neutron. Thus fusion could provide large scale energy production without greenhouse effects; essentially limitless fuel would be available all over the world. The principal goals of ITER are to generate 500 megawatts of fusion power for periods of 300 to 500 seconds with a fusion power multiplication factor, Q, of at least 10. Q ? 10 (input power 50 MW / output power 500 MW). The ITER Organization was officially established in Cadarache, France, on 24 October 2007. The seven members engaged in the project – China, the European Union, India, Japan, Korea, Russia and the United States – represent more than half the world’s population. The costs for ITER are shared by the seven members. The cost for the construction will be approximately 5.5 billion Euros, a similar amount is foreseen for the twenty-year phase of operation and the subsequent decommissioning.

  15. Breakthrough: Neutron Science for the Fusion Mission

    SciTech Connect

    McGreevy, Robert

    2012-04-24

    How Oak Ridge National Laboratory is helping to solve the world's energy problems through fusion energy research.

  16. Breakthrough: Neutron Science for the Fusion Mission

    ScienceCinema

    McGreevy, Robert

    2014-06-03

    How Oak Ridge National Laboratory is helping to solve the world's energy problems through fusion energy research.

  17. Response to FESAC survey, Non-Fusion Connections to Fusion Energy Sciences. Long Duration Directional Drives for Star Formation and Photoionization

    SciTech Connect

    Kane, J. O.; Martinez, D. A.; Pound, M. W.; Heeter, R. F.; Villette, B.; Casner, A.; Mancini, R. C.

    2015-06-19

    Due to the iconic status of the pillars of the Eagle Nebula, this research will bring popular attention to plasma physics, HED laboratory physics, and fundamental science at NIF and other experimental facilities. The result will be to both to bring new perspectives to the studies of hydrodynamics in inertial confinement fusion and HED scenarios in general, and to promote interest in the STEM disciplines.

  18. Fusion materials science and technology research opportunities...

    Office of Scientific and Technical Information (OSTI)

    the ITER era Citation Details In-Document Search Title: Fusion materials science and technology research opportunities now and during the ITER era Several high-priority...

  19. FY2014 FES (Fusion Energy Sciences) Theory & Simulation Performance Target, Final Report

    SciTech Connect

    Fu, Guoyong; Budny, Robert; Gorelenkov, Nikolai; Poli, Francesca; Chen, Yang; McClenaghan, Joseph; Lin, Zhihong; Spong, Don; Bass, Eric; Waltz, Ron

    2014-10-14

    We report here the work done for the FY14 OFES Theory Performance Target as given below: "Understanding alpha particle confinement in ITER, the world's first burning plasma experiment, is a key priority for the fusion program. In FY 2014, determine linear instability trends and thresholds of energetic particle-driven shear Alfven eigenmodes in ITER for a range of parameters and profiles using a set of complementary simulation models (gyrokinetic, hybrid, and gyrofluid). Carry out initial nonlinear simulations to assess the effects of the unstable modes on energetic particle transport". In the past year (FY14), a systematic study of the alpha-driven Alfven modes in ITER has been carried out jointly by researchers from six institutions involving seven codes including the transport simulation code TRANSP (r. Budny and F. Poli, PPPL), three gyrokinetic codes: GEM (Y. Chen, Univ. of Colorado), GTC (J. McClenaghan, Z. Lin, UCI), and GYRO (E. Bass, R. Waltz, UCSD/GA), the hybrid code M3D-K (G.Y. Fu, PPPL), the gyro-fluid code TAEFL (D. Spong, ORNL), and the linear kinetic stability code NOVA-K (N. Gorelenkov, PPPL). A range of ITER parameters and profiles are specified by TRANSP simulation of a hybrid scenario case and a steady state scenario case. Based on the specified ITER equilibria linear stability calculations are done to determine the stability boundary of alpha-driven high-n TAEs using the five initial value codes (GEM, GTC, GYRO, M3D-K, and TAEFL) and the kinetic stability code (NOVA-K). Both the effects of alpha particles and beam ions have been considered. Finally the effects of the unstable modes on energetic particle transport have been explored using GEM and M3D-K.

  20. Fusion Nuclear Science and Technology Program - Status and Plans...

    Office of Environmental Management (EM)

    Plans for Tritium Research Fusion Nuclear Science and Technology Program - Status and ... Falls, Idaho on September 23-25, 2014. Fusion Nuclear Science and Technology Program - ...

  1. Fusion Nuclear Science and Technology Program - Status and plans...

    Office of Environmental Management (EM)

    plans for tritium research Fusion Nuclear Science and Technology Program - Status and ... Princeton, New Jersey on May 05-07, 2015. Fusion Nuclear Science and Technology Program - ...

  2. Energy Sciences

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Materials Scientists are advancing the fundamental science of materials within the context of global energy-related challenges. They are developing experimental and theoretical...

  3. Energy Science

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy Science Print Our current fossil-fuel-based system ... X-Ray Microscopy Reveals How Crystal Mechanics Drive ... Breakthrough Research on Platinum-Nickel Alloys Hydrogen Storage ...

  4. Fusion Energy Sciences

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Home Heating Systems » Furnaces and Boilers Furnaces and Boilers Upgrading to a high efficiency furnace or boiler is an effective way to save money on home heating. Upgrading to a high efficiency furnace or boiler is an effective way to save money on home heating. Most U.S. homes are heated with either furnaces or boilers. Furnaces heat air and distribute the heated air through the house using ducts. Boilers heat water, and provide either hot water or steam for heating. Steam is distributed via

  5. Glossary of fusion energy

    SciTech Connect

    Whitson, M.O.

    1982-01-01

    This glossary gives brief descriptions of approximately 400 terms used by the fusion community. Schematic diagrams and photographs of the major US experiments are also included. (MOW)

  6. US ITER - Why Fusion?

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    US Fusion Research Sites US Fusion Research Sites DOE Office of Science: US Fusion Energy Sciences Program Fusion Power Associates General Atomics DIIII-D National Fusion Facility Georgia Tech: Fusion Research Center Lawrence Livermore National Laboratory: National Ignition Facility Los Alamos National Laboratory: Fusion Energy Sciences MIT: Plasma Science and Fusion Center Naval Research Laboratory: Plasma Physics Division Oak Ridge National Laboratory: Fusion Energy Division Princeton Plasma

  7. Fusion Technologies for Laser Inertial Fusion Energy (LIFE) ...

    Office of Scientific and Technical Information (OSTI)

    Resource Relation: Conference: Presented at: 7th International Conference on Inertial Fusion Sciences and Applications, Bordeaux, France, Sep 12 - Sep 16, 2011 Research Org: ...

  8. Science

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Science Stockpile Stewardship National Security National Competitiveness Fusion and Ignition Energy for the Future How to Make a Star Discovery Science Photon Science HAPLS...

  9. Before the House Science and Technology Subcommittee on Energy...

    Energy.gov [DOE] (indexed site)

    BY: Dr. Edmund Synakowski, Associate Director Offfice of Fusion Energy Sciences Office of Science Subject: DOE Fusion Energy Program PDF icon 10-29-09FinalTestimony(Synakowski)....

  10. U.S. Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Basic Energy Sciences Biological & Environmental Research Fusion Energy Sciences High ... Biological and Environmental Research Fusion Energy Sciences High Energy Physics ...

  11. Biological Sciences

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Science Energy Science Engineering Science Environmental Science Fusion Science Math & Computer Science Nuclear Science Share Your Research NERSC Citations Home Science at...

  12. MIT's Plasma Science Fusion Center: Tokamak Experiments Come...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Tokamak Experiments Come Clean about Impurity Transport American Fusion News Category: Massachusetts Institute of Technology (MIT) Link: MIT's Plasma Science Fusion Center: Tokamak...

  13. Origins | U.S. DOE Office of Science (SC)

    Office of Science (SC)

    Origins Fusion Energy Sciences (FES) FES Home About Research Fusion Institutions Fusion ... Facilities Science Highlights Benefits of FES Funding Opportunities Fusion Energy Sciences ...

  14. Basic Energy Sciences

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Basic Energy Sciences Basic Energy Sciences Supporing research to understand, predict and ... The DOE Office of Science's Basic Energy Sciences program equips scientists with a ...

  15. Fusion Technologies for Laser Inertial Fusion Energy (LIFE) ...

    Office of Scientific and Technical Information (OSTI)

    Title: Fusion Technologies for Laser Inertial Fusion Energy (LIFE) Authors: Kramer, K J ; Latkowski, J F ; Abbott, R P ; Anklam, T P ; Dunne, A M ; El-Dasher, B S ; Flowers, D L ; ...

  16. (Fusion energy research)

    SciTech Connect

    Phillips, C.A.

    1988-01-01

    This report discusses the following topics: principal parameters achieved in experimental devices (FY88); tokamak fusion test reactor; Princeton beta Experiment-Modification; S-1 Spheromak; current drive experiment; x-ray laser studies; spacecraft glow experiment; plasma deposition and etching of thin films; theoretical plasma; tokamak modeling; compact ignition tokamak; international thermonuclear experimental reactor; Engineering Department; Project Planning and Safety Office; quality assurance and reliability; and technology transfer.

  17. Office of Basic Energy Sciences program to meet high priority nuclear data needs of the Office of Fusion Energy 1983 review

    SciTech Connect

    Haight, R.C.; Larson, D.C.

    1983-11-01

    This review was prepared during a coordination meeting held at Oak Ridge National Laboratory on September 28-29, 1983. Participants included research scientists working for this program, a representative from the OFE's Coordination of Magnetic Fusion Energy (MFE) Nuclear Data Needs Activities, and invited specialists.

  18. U. S. Fusion Energy Future

    SciTech Connect

    John A. Schmidt; Dan Jassby; Scott Larson; Maria Pueyo; Paul H. Rutherford

    2000-10-12

    Fusion implementation scenarios for the US have been developed. The dependence of these scenarios on both the fusion development and implementation paths has been assessed. A range of implementation paths has been studied. The deployment of CANDU fission reactors in Canada and the deployment of fission reactors in France have been assessed as possible models for US fusion deployment. The waste production and resource (including tritium) needs have been assessed. The conclusion that can be drawn from these studies is that it is challenging to make a significant impact on energy production during this century. However, the rapid deployment of fission reactors in Canada and France support fusion implementation scenarios for the US with significant power production during this century. If the country can meet the schedule requirements then the resource needs and waste production are found to be manageable problems.

  19. Advanced energy conversion methods for cold fusion

    SciTech Connect

    Prelas, M.A. )

    1989-09-01

    If cold fusion is verified, then the next important question deals with how it can be used to produce energy. Several direct energy conversion concepts for use with cold fusion are discussed.

  20. Before the House Science and Technology Subcommittee on Energy and

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Environment | Department of Energy BY: Dr. Edmund Synakowski, Associate Director Offfice of Fusion Energy Sciences Office of Science Subject: DOE Fusion Energy Program 10-29-09_Final_Testimony_(Synakowski).pdf (76.95 KB) More Documents & Publications Before the House Subcommittee on Energy - Committee on Science, Space, and Technology EA-0813: Final Environmental Assessment Fusion Nuclear Science and Technology Program - Status and Plans for Tritium Research

  1. U.S. Signs International Fusion Energy Agreement | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Signs International Fusion Energy Agreement U.S. Signs International Fusion Energy Agreement November 21, 2006 - 9:25am Addthis Large-Scale, Clean Fusion Energy Project to Begin Construction PARIS, FRANCE - Representing the United States, Dr. Raymond L. Orbach, Under Secretary for Science of the U.S. Department of Energy (DOE), today joined counterparts from China, the European Union, India, Japan, the Republic of Korea and the Russian Federation to sign an agreement to build the international

  2. Perspective on the Role of Negative Ions and Ion-Ion Plasmas in Heavy Ion Fusion Science, Magnetic Fusion Energy,and Related Fields

    SciTech Connect

    Grisham, L. R.; Kwan, J. W.

    2008-08-01

    Some years ago it was suggested that halogen negative ions could offer a feasible alternative path to positive ions as a heavy ion fusion driver beam which would not suffer degradation due to electron accumulation in the accelerator and beam transport system, and which could be converted to a neutral beam by photodetachment near the chamber entrance if desired. Since then, experiments have demonstrated that negative halogen beams can be extracted and accelerated away from the gas plume near the source with a surviving current density close to what could be achieved with a positive ion of similar mass, and with comparable optical quality. In demonstrating the feasibility of halogen negative ions as heavy ion driver beams, ion - ion plasmas, an interesting and somewhat novel state of matter, were produced. These plasmas, produced near the extractor plane of the sources, appear, based upon many lines of experimental evidence, to consist of almost equal densities of positive and negative chlorine ions, with only a small component of free electrons. Serendipitously, the need to extract beams from this plasma for driver development provides a unique diagnostic tool to investigate the plasma, since each component - positive ions, negative ions, and electrons - can be extracted and measured separately. We discuss the relevance of these observations to understanding negative ion beam extraction from electronegative plasmas such as halogens, or the more familiar hydrogen of magnetic fusion ion sources. We suggest a concept which might improve negative hydrogen extraction by the addition of a halogen. The possibility and challenges of producing ion - ion plasmas with thin targets of halogens or, perhaps, salt, is briefly addressed.

  3. Science Highlights | U.S. DOE Office of Science (SC)

    Office of Science (SC)

    Science Highlights Fusion Energy Sciences (FES) FES Home About Research Facilities Science Highlights Benefits of FES Funding Opportunities Fusion Energy Sciences Advisory ...

  4. Scientists discuss progress toward magnetic fusion energy at 2013 AAAS

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    annual meeting | Princeton Plasma Physics Lab Scientists discuss progress toward magnetic fusion energy at 2013 AAAS annual meeting February 21, 2013 Tweet Widget Google Plus One Share on Facebook Scientists participating in the worldwide effort to develop magnetic fusion energy for generating electricity gave progress reports to the 2013 annual meeting of the American Association for the Advancement of Science in Boston. Speaking were physicists George "Hutch" Neilson of the U.S.

  5. Z-Pinch Fusion for Energy Applications

    SciTech Connect

    SPIELMAN,RICK B.

    2000-01-01

    Z pinches, the oldest fusion concept, have recently been revisited in light of significant advances in the fields of plasma physics and pulsed power engineering. The possibility exists for z-pinch fusion to play a role in commercial energy applications. We report on work to develop z-pinch fusion concepts, the result of an extensive literature search, and the output for a congressionally-mandated workshop on fusion energy held in Snowmass, Co July 11-23,1999.

  6. The Heavy Ion Fusion Science Virtual National Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    The Heavy Ion Fusion Science Virtual National Laboratory Python in a Parallel Environment Dave Grote - LLNL & LBNL NUG2013 User Day Wednesday, February 15, 2013 Slide 2 The Heavy Ion Fusion Science Virtual National Laboratory Outline * Why we use Python * How we use Python * Parallel Python with pyMPI * Our graphics model with Pygist * Parallel Python drawbacks and resolutions - Start up time - Static building * Conclusions Slide 3 The Heavy Ion Fusion Science Virtual National Laboratory 3

  7. Exploring Plasma Science Advances from Fusion Findings to Astrophysica...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Exploring Plasma Science Advances from Fusion Findings to Astrophysical Achievements By ... The latest advances in plasma physics were the focus of more than 1,000 scientists from ...

  8. Basic Energy Sciences Reports

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Basic Energy Sciences Reports Basic Energy Sciences Reports The list below of Basic Energy ... The report originated from a January 25, 2005, request from the Office of Science and is ...

  9. Questions and answers about ITER and fusion energy

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... Major research efforts are essential now to bring fusion energy to the commercial grid in the 2040s. What happened to "cold fusion," sonofusion, electrostatic confinement fusion, ...

  10. Summary of Assessment of Prospects for Inertial Fusion Energy...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Summary of Assessment of Prospects for Inertial Fusion Energy American Fusion News Category: National Ignition Facility Link: Summary of Assessment of Prospects for Inertial Fusion ...

  11. Recommendations on the Nature and Level of U.S. Participation in the International Thermonuclear Experimental Reactor Extension of the Experimental Reactor Extension of the Engineering Design Activities. Panel Report To Fusion Energy Sciences Advisory Committee (FESAC)

    SciTech Connect

    none,

    1998-01-31

    The DOE Office of Energy Research chartered through the Fusion Energy Sciences Advisory Committee (FESAC) a panel to "address the topic of U. S. participation in an ITER construction phase, assuming the ITER Parties decide to proceed with construction." (Attachment 1: DOE Charge, September 1996). Given that there is expected to be a transition period of three to five years between the conclusion of the Engineering Design Activities (EDA) and the possible construction start, the DOE Office of Energy Research expanded the charge to "include the U.S. role in an interim period between the EDA and construction." (Attachment 2: DOE Expanded Charge, May 1997). This panel has heard presentations and received input from a wide cross-section of parties with an interest in the fusion program. The panel concluded it could best fulfill its responsibility under this charge by considering the fusion energy science and technology portion of the U.S. program in its entirety. Accordingly, the panel is making some recommendations for optimum use of the transition period considering the goals of the fusion program and budget pressures.

  12. Fusion energy | Princeton Plasma Physics Lab

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    energy Subscribe to RSS - Fusion energy The energy released when two atomic nuclei fuse together. This process powers the sun and stars. Read more Stewart Prager Stewart Prager was ...

  13. Site map for the E-print Network -- Energy, science, and technology...

    Office of Scientific and Technical Information (OSTI)

    Nuclear Technologies Fossil Fuels Geosciences Materials Science Mathematics Physics Plasma Physics and Fusion Power Transmission, Distribution and Plants Renewable Energy ...

  14. Ch. 37, Inertial Fusion Energy Technology

    SciTech Connect

    Moses, E

    2010-06-09

    Nuclear fission, nuclear fusion, and renewable energy (including biofuels) are the only energy sources capable of satisfying the Earth's need for power for the next century and beyond without the negative environmental impacts of fossil fuels. Substantially increasing the use of nuclear fission and renewable energy now could help reduce dependency on fossil fuels, but nuclear fusion has the potential of becoming the ultimate base-load energy source. Fusion is an attractive fuel source because it is virtually inexhaustible, widely available, and lacks proliferation concerns. It also has a greatly reduced waste impact, and no danger of runaway reactions or meltdowns. The substantial environmental, commercial, and security benefits of fusion continue to motivate the research needed to make fusion power a reality. Replicating the fusion reactions that power the sun and stars to meet Earth's energy needs has been a long-sought scientific and engineering challenge. In fact, this technological challenge is arguably the most difficult ever undertaken. Even after roughly 60 years of worldwide research, much more remains to be learned. the magnitude of the task has caused some to declare that fusion is 20 years away, and always will be. This glib criticism ignores the enormous progress that has occurred during those decades, progress inboth scientific understanding and essential technologies that has enabled experiments producing significant amounts of fusion energy. For example, more than 15 megawatts of fusion power was produced in a pulse of about half a second. Practical fusion power plants will need to produce higher powers averaged over much longer periods of time. In addition, the most efficient experiments to date have required using about 50% more energy than the resulting fusion reaction generated. That is, there was no net energy gain, which is essential if fusion energy is to be a viable source of electricity. The simplest fusion fuels, the heavy isotopes of

  15. NREL: Energy Sciences - Chemical and Materials Science

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    in the U.S. Department of Energy (DOE) National Photovoltaic Program and DOE Basic Energy Sciences Program. Materials Science. The Materials Science Group's research...

  16. Low Temperature Plasma Science: Not Only the Fourth State of Matter but All of Them. Report of the Department of Energy Office of Fusion Energy Sciences Workshop on Low Temperature Plasmas, March 25-57, 2008

    SciTech Connect

    2008-09-01

    Low temperature plasma science (LTPS) is a field on the verge of an intellectual revolution. Partially ionized plasmas (often referred to as gas discharges) are used for an enormous range of practical applications, from light sources and lasers to surgery and making computer chips, among many others. The commercial and technical value of low temperature plasmas (LTPs) is well established. Modern society would simply be less advanced in the absence of LTPs. Much of this benefit has resulted from empirical development. As the technology becomes more complex and addresses new fields, such as energy and biotechnology, empiricism rapidly becomes inadequate to advance the state of the art. The focus of this report is that which is less well understood about LTPs - namely, that LTPS is a field rich in intellectually exciting scientific challenges and that addressing these challenges will result in even greater societal benefit by placing the development of plasma technologies on a solid science foundation. LTPs are unique environments in many ways. Their nonequilibrium and chemically active behavior deviate strongly from fully ionized plasmas, such as those found in magnetically confined fusion or high energy density plasmas. LTPs are strongly affected by the presence of neutral species-chemistry adds enormous complexity to the plasma environment. A weakly to partially ionized gas is often characterized by strong nonequilibrium in the velocity and energy distributions of its neutral and charged constituents. In nonequilibrium LTP, electrons are generally hot (many to tens of electron volts), whereas ions and neutrals are cool to warm (room temperature to a few tenths of an electron volt). Ions and neutrals in thermal LTP can approach or exceed an electron volt in temperature. At the same time, ions may be accelerated across thin sheath boundary layers to impact surfaces, with impact energies ranging up to thousands of electron volts. These moderately energetic electrons

  17. Scientists discuss progress toward magnetic fusion energy at...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Scientists discuss progress toward magnetic fusion energy at 2013 AAAS annual meeting ... Scientists participating in the worldwide effort to develop magnetic fusion energy for ...

  18. Major next steps proposed for development of fusion energy based...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Major next steps proposed for development of fusion energy based on the spherical tokamak ... Mega Ampere Spherical Tokamak. Photo courtesy of Culham Centre for Fusion Energy. Mega ...

  19. LIFE: The Case for Early Commercialization of Fusion Energy ...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: LIFE: The Case for Early Commercialization of Fusion Energy Citation Details In-Document Search Title: LIFE: The Case for Early Commercialization of Fusion Energy ...

  20. Axisymmetric Tandem Mirror Magnetic Fusion Energy Power Plant...

    Office of Scientific and Technical Information (OSTI)

    Magnetic Fusion Energy Power Plant with Thick Liquid-Walls Citation Details In-Document Search Title: Axisymmetric Tandem Mirror Magnetic Fusion Energy Power Plant with Thick ...

  1. Basic Energy Sciences

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Basic Energy Sciences Basic Energy Sciences Supporting research to understand, predict and ultimately control matter and energy at the electronic, atomic, and molecular levels. Get Expertise Toni Taylor (505) 665-0030 Email David Morris (505) 665-6487 Email Claudia Mora (505) 665-7832 Email Research fosters fundamental scientific discoveries to meet energy, environmental, and national security challenges The DOE Office of Science's Basic Energy Sciences program equips scientists with a powerful

  2. MIT Plasma Science & Fusion Center: research>alcator>research...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Contact Information Physics Research High-Energy- Density Physics Waves & Beams Fusion Technology & Engineering Plasma Technology Useful Links Collaborations at Alcator...

  3. MIT Plasma Science & Fusion Center: research>alcator>introduction

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Contact Information Physics Research High-Energy- Density Physics Waves & Beams Fusion Technology & Engineering Francis Bitter Magnet Laboratoroy Useful Links The links...

  4. DOE Science Showcase - Clean Fusion Power | OSTI, US Dept of...

    Office of Scientific and Technical Information (OSTI)

    advanced systems for fusion energy and nuclear power, primary scientific challenges ... R&D Project Summaries DOE Data Explorer Nuclear Power and Advanced Systems Information ...

  5. NSTX Diagnostics for Fusion Plasma Science Studies

    SciTech Connect

    R. Kaita; D. Johnson; L. Roquemore; M. Bitter; F. Levinton; F. Paoletti; D. Stutman; and the NSTX Team

    2001-07-05

    This paper will discuss how plasma science issues are addressed by the diagnostics for the National Spherical Torus Experiment (NSTX), the newest large-scale machine in the magnetic confinement fusion (MCF) program. The development of new schemes for plasma confinement involves the interplay of experimental results and theoretical interpretations. A fundamental requirement, for example, is a determination of the equilibria for these configurations. For MCF, this is well established in the solutions of the Grad-Shafranov equation. While it is simple to state its basis in the balance between the kinetic and magnetic pressures, what they are as functions of space and time are often not easy to obtain. Quantities like the plasma pressure and current density are not directly measurable. They are derived from data that are themselves complex products of more basic parameters. The same difficulties apply to the understanding of plasma instabilities. Not only are the needs for spatial and temporal resolution more stringent, but the wave parameters which characterize the instabilities are difficult to resolve. We will show how solutions to the problems of diagnostic design on NSTX, and the physics insight the data analysis provides, benefits both NSTX and the broader scientific community.

  6. Report from the Committee of Visitors on its Review of the Processes and Procedures used to Manage the Theory and Computations Program, Fusion Energy Sciences Advisory Committee

    SciTech Connect

    none,

    2004-03-01

    A Committee of Visitors (COV) was formed to review the procedures used by the Office of Fusion Energy Sciences to manage its Theory and Computations program. The COV was pleased to conclude that the research portfolio supported by the OFES Theory and Computations Program was of very high quality. The Program supports research programs at universities, research industries, and national laboratories that are well regarded internationally and address questions of high relevance to the DOE. A major change in the management of the Theory and Computations program over the past few years has been the introduction of a system of comparative peer review to guide the OFES Theory Team in selecting proposals for funding. The COV was impressed with the success of OFES in its implementation of comparative peer review and with the quality of the reviewers chosen by the OFES Theory Team. The COV concluded that the competitive peer review process has improved steadily over the three years that it has been in effect and that it has improved both the fairness and accountability of the proposal review process. While the COV commends OFES in its implementation of comparative review, the COV offers the following recommendations in the hope that they will further improve the comparative peer review process: The OFES should improve the consistency of peer reviews. We recommend adoption of a “results-oriented” scoring system in their guidelines to referees (see Appendix II), a greater use of review panels, and a standard format for proposals; The OFES should further improve the procedures and documentation for proposal handling. We recommend that the “folders” documenting funding decisions contain all the input from all of the reviewers, that OFES document their rationale for funding decisions which are at variance with the recommendation of the peer reviewers, and that OFES provide a Summary Sheet within each folder; The OFES should better communicate the procedures used to

  7. Basic Energy Sciences Update

    Energy.gov [DOE] (indexed site)

    Operations Office of Science Vacant Patricia Dehmer (A) Nuclear Physics Tim Hallman Advanced Scientific Computing Research Steve Binkley Nuclear Energy Pete Lyons Fossil Energy...

  8. Fusion energy development: Breakeven and beyond: Keynote address

    SciTech Connect

    Furth, H.P.

    1988-02-01

    The scientific feasibility, technological inevitability, and economic necessity of fusion as an energy source are discussed.

  9. DOE's Ed Synakowski traces key discoveries in the quest for fusion energy

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    | Princeton Plasma Physics Lab DOE's Ed Synakowski traces key discoveries in the quest for fusion energy By Jeanne Jackson DeVoe March 9, 2016 Tweet Widget Google Plus One Share on Facebook The DOE's Associate Director of Science for Fusion Energy Sciences Ed Synakowski discusses the "aha" moments in the development of fusion energy at a March 5 Ronald E. Hatcher Science on Saturday lecture. (Photo by Elle Starkman/PPPL Office of Communications) The DOE's Associate Director of

  10. A Fusion Development Facility on the Critical Path to Fusion Energy

    SciTech Connect

    Chan, V. S.; Stambaugh, R

    2011-01-01

    A fusion development facility (FDF) based on the tokamak approach with normal conducting magnetic field coils is presented. FDF is envisioned as a facility with the dual objective of carrying forward advanced tokamak (AT) physics and enabling the development of fusion energy applications. AT physics enables the design of a compact steady-state machine of moderate gain that can provide the neutron fluence required for FDF's nuclear science development objective. A compact device offers a uniquely viable path for research and development in closing the fusion fuel cycle because of the demand to consume only a moderate quantity of the limited supply of tritium fuel before the technology is in hand for breeding tritium.

  11. A fusion development facility on the critical path to fusion energy

    SciTech Connect

    Chan, Dr. Vincent; Canik, John; Peng, Yueng Kay Martin

    2011-01-01

    A fusion development facility (FDF) based on the tokamak approach with normal conducting magnetic field coils is presented. FDF is envisioned as a facility with the dual objective of carrying forward advanced tokamak (AT) physics and enabling the development of fusion energy applications. AT physics enables the design of a compact steady-state machine of moderate gain that can provide the neutron fluence required for FDF s nuclear science development objective. A compact device offers a uniquely viable path for research and development in closing the fusion fuel cycle because of the demand to consume only a moderate quantity of the limited supply of tritium fuel before the technology is in hand for breeding tritium.

  12. Fusion Energy Greg Hammett & Russell Kulsred Princeton University

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Spitzer's 100th: Founding PPPL & Pioneering Work in Fusion Energy Greg Hammett & Russell ... Jr. made major contributions in several fields of astrophysics, plasma physics, and fusion ...

  13. HEDP and new directions for fusion energy

    SciTech Connect

    Kirkpatrick, Ronald C

    2009-01-01

    The Quest for fusion energy has a long history and the demonstration of thermonuclear energy release in 1951 represented a record achievement for high energy density. While this first demonstration was in response to the extreme fears of mankind, it also marked the beginning of a great hope that it would usher in an era of boundless cheap energy. In fact, fusion still promises to be an enabling technology that can be compared to the prehistoric utilization of fire. Why has the quest for fusion energy been so long on promises and so short in fulfillment? This paper briefly reviews past approaches to fusion energy and suggests new directions. By putting aside the old thinking and vigorously applying our experimental, computational and theoretical tools developed over the past decades we should be able to make rapid progress toward satisfying an urgent need. Fusion not only holds the key to abundant green energy, but also promises to enable deep space missions and the creation of rare elements and isotopes for wide-ranging industrial applications and medical diagnostics.

  14. Climate & Earth Science

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Human-Induced Climate Change Reduces Chance of Flooding in Okavango Delta Energy Science Engineering Science Environmental Science Fusion Science Math & Computer Science Nuclear...

  15. Review of the Inertial Fusion Energy Program

    SciTech Connect

    none,

    2004-03-29

    Igniting fusion fuel in the laboratory remains an alluring goal for two reasons: the desire to study matter under the extreme conditions needed for fusion burn, and the potential of harnessing the energy released as an attractive energy source for mankind. The inertial confinement approach to fusion involves rapidly compressing a tiny spherical capsule of fuel, initially a few millimeters in radius, to densities and temperatures higher than those in the core of the sun. The ignited plasma is confined solely by its own inertia long enough for a significant fraction of the fuel to burn before the plasma expands, cools down and the fusion reactions are quenched. The potential of this confinement approach as an attractive energy source is being studied in the Inertial Fusion Energy (IFE) program, which is the subject of this report. A complex set of interrelated requirements for IFE has motivated the study of novel potential solutions. Three types of “drivers” for fuel compression are presently studied: high-averagepower lasers (HAPL), heavy-ion (HI) accelerators, and Z-Pinches. The three main approaches to IFE are based on these drivers, along with the specific type of target (which contains the fuel capsule) and chamber that appear most promising for a particular driver.

  16. 2012 | U.S. DOE Office of Science (SC)

    Office of Science (SC)

    2 Fusion Energy Sciences (FES) FES Home About Research Facilities Science Highlights Benefits of FES Funding Opportunities Fusion Energy Sciences Advisory Committee (FESAC) ...

  17. 2015 | U.S. DOE Office of Science (SC)

    Office of Science (SC)

    5 Fusion Energy Sciences (FES) FES Home About Research Facilities Science Highlights Benefits of FES Funding Opportunities Fusion Energy Sciences Advisory Committee (FESAC) ...

  18. 2016 | U.S. DOE Office of Science (SC)

    Office of Science (SC)

    6 Fusion Energy Sciences (FES) FES Home About Research Facilities Science Highlights Benefits of FES Funding Opportunities Fusion Energy Sciences Advisory Committee (FESAC) ...

  19. Facilities | U.S. DOE Office of Science (SC)

    Office of Science (SC)

    Fusion Energy Sciences (FES) FES Home About Research Facilities User Facilities ITER External link Science Highlights Benefits of FES Funding Opportunities Fusion Energy Sciences ...

  20. How Does Fusion Energy Work? | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    How Does Fusion Energy Work? How Does Fusion Energy Work? July 29, 2016 - 1:27pm Addthis How Does Fusion Energy Work? Pat Adams Pat Adams Digital Content Specialist, Office of Public Affairs Carly Wilkins Carly Wilkins Multimedia Designer A plain building in Plainsboro, New Jersey houses a machine that can produce plasma -- superheated, charged gas -- hotter than the center of the sun. We're talking 100 million degrees Fahrenheit...in a building...in New Jersey. It's the NSTX-U, the National

  1. Visualization and Analysis in Support of Fusion Science

    SciTech Connect

    Sanderson, Allen R.

    2012-10-01

    This report summarizes the results of the award for “Visualization and Analysis in Support of Fusion Science.” With this award our main efforts have been to develop and deploy visualization and analysis tools in three areas 1) magnetic field line analysis 2) query based visualization and 3) comparative visualization.

  2. 10 Facts You Should Know About Fusion Energy | Princeton Plasma...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    10 Facts You Should Know About Fusion Energy By Larry Bernard January 25, 2016 Tweet ... Stars - and there are billions and billions of them - produce energy by fusion of light ...

  3. How Does Fusion Energy Work? | Princeton Plasma Physics Lab

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    By Raphael Rosen August 25, 2016 Tweet Widget Google Plus One Share on Facebook Fusion is the energy source of the sun and stars. (Photo by U.S. Department of Energy) Fusion is the ...

  4. ESnet - the energy sciences network strategic plan

    SciTech Connect

    1996-12-01

    The goal of the Energy Sciences Network (ESnet) Program is to provide a highly capable and reliable communications infrastructure that supports the Department of Energy`s (DOE) missions and enables DOE researchers to tap the power of leading-edge information technologies. ESnet provides an essential infrastructure that enhances national competitiveness and accelerates the development of future generations of high-performance, distributed computing systems and networks. These computing systems and networks are vital to modern scientific research. In addition, they enable development of new approaches to energy management, environmental restoration and waste management, national security, industrial processing, and health care, and also facilitate public access to government information. Extensive networks developed by the DOE`s high-energy physics and fusion energy research communities were the forerunners of the ESnet. These networks initially provided improved access to high-energy accelerator sites and to the Magnetic Fusion Energy Supercomputer Center, which opened at Lawrence Livermore National Laboratory in 1974.

  5. US ITER - Why Fusion?

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Educational Resources Fusion Educational Resources DOE Office of Science Fusion Energy Programs Education Links FuseNet: The European Fusion Education Network General Atomics Fusion Education PPPL Science Education Program PPPL FusEdWeb Educational Outreach: US ITER staff members are available for presentations on fusion energy and the ITER project to technical, civic, community, and student groups. To make arrangements for a speaker, please contact Mark Uhran, Communications Manager,

  6. Questions and answers about ITER and fusion energy

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    QA & What is fusion? Fusion, the energy source of the sun and stars, is the most efficient process for converting mass into energy (E = mc 2 ). The fusion process is environmentally benign and does not emit gases that contribute to global warming or acid rain. Abundant fuel supplies for fusion are available that could meet the needs of the world's population for more than 10,000 years if the fusion process is harnessed successfully. When will fusion successfully produce useable energy? The

  7. All User Facilities | U.S. DOE Office of Science (SC)

    Office of Science (SC)

    Neutron Scanning Facilities Nanoscale Science Research Centers Biological and Environmental Research Fusion Energy Sciences High Energy Physics Nuclear Physics Science ...

  8. Vintage DOE: What is Fusion | Department of Energy

    Office of Environmental Management (EM)

    Vintage DOE: What is Fusion Vintage DOE: What is Fusion January 10, 2011 - 12:45pm Addthis Ginny Simmons Ginny Simmons Former Managing Editor for Energy.gov, Office of Public ...

  9. Overview of US Fusion Energy Programs: January 1993

    SciTech Connect

    Crandall, D.H.

    1994-09-01

    The US Fusion Program is in {open_quotes}Transition.{close_quotes} This happens so infrequently that no one knows exactly what to expect; it makes everyone a little skittish. Program leadership does make a difference; Secretary Watkins was a positive force for fusion. Energy Research Director Happer remains in his position and is a positive force for scientific quality. Secretary O`Leary has stated that {open_quotes}Fusion energy holds great promise as an element of the nation`s long-term energy supply.{close_quotes} While new leaders may seek new directions with important implications for fusion, it seems reasonable to expect that, for fusion, such changes are likely to emerge slowly. Thus the assumption now is that the fusion priorities remain unchanged. In the spirit of optimism surrounding the new administration, the Fusion Energy Program`s intention is to make as much progress as possible on the course presently established.

  10. MIT's Plasma Science Fusion Center: I-Mode Powers Up on Alcator...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    I-Mode Powers Up on Alcator C-Mod Tokamak American Fusion News Category: Massachusetts Institute of Technology (MIT) Link: MIT's Plasma Science Fusion Center: I-Mode Powers Up on...

  11. Solar Energy Science Projects

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Resource Center Solar Energy Resource Center Sub Program Topic Resource Search Results Title Date Author SubProgram Topic Description

    Science Projects Curriculum: Solar Power -(thermodynamics, light/electromagnetic, radiation, energy transformation, conduction/convection, seasons, trigonometry) Grade Level: Middle or High School Size: Whole class or small groups (3 to 4) Time: Activities range from 2 to 5 class periods, depending on abilities of students. Summary: The first three activities

  12. Princeton University Energy Scholars report focuses on fusion energy |

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Princeton Plasma Physics Lab Princeton University Energy Scholars report focuses on fusion energy By Jeanne Jackson DeVoe July 28, 2016 Tweet Widget Google Plus One Share on Facebook Adam Cohen, at left, former deputy director for operations at PPPL, with Princeton Energy Scholars in the National Spherical Torus Experiment-Upgrade Control Room during a tour of PPPL in June 2014. (Photo by Elle Starkman/PPPL Office of Communications) Adam Cohen, at left, former deputy director for operations

  13. Fiscal year 1984 Department of Energy authorization (magnetic fusion energy)

    SciTech Connect

    Not Available

    1983-01-01

    Volume V of the hearing record covers two days of testimony by representatives of laboratories and industries involved in fusion energy research, followed by Alvin W. Trivelpiece and others of DOE, on the need to encourage industrial involvement and responsibility in the fusion energy effort. The fusion community expressed optimism for the program, but noted the limitations in program imposed by DOE budgets. Trivelpiece responded that the $467 million budget reflects strong support from the administration. There was disagreement among the witnesses on the direction that engineering efforts should take and whether DOE offices are guilty of meddling in the program. Appendices with additional material and statements for the record follow each day's testimony. (DCK)

  14. Staff | U.S. DOE Office of Science (SC)

    Office of Science (SC)

    About Staff Fusion Energy Sciences (FES) FES Home About Organization Chart .pdf file ... Research Facilities Science Highlights Benefits of FES Funding Opportunities Fusion Energy ...

  15. Laser fusion experiment yields record energy at NIF | National...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Laser fusion experiment yields record energy at NIF | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing...

  16. Z-inertial fusion energy: power plant final report FY 2006.

    SciTech Connect

    Anderson, Mark; Kulcinski, Gerald; Zhao, Haihua; Cipiti, Benjamin B.; Olson, Craig Lee; Sierra, Dannelle P.; Meier, Wayne; McConnell, Paul E.; Ghiaasiaan, M. (Georgia Institute of Technology, Atlanta, GA); Kern, Brian (Georgia Institute of Technology, Atlanta, GA); Tajima, Yu (University of California, Los Angeles, CA); Campen, Chistopher (University of California, Berkeley, CA); Sketchley, Tomas (University of California, Los Angeles, CA); Moir, R (Lawrence Livermore National Laboratories); Bardet, Philippe M. (University of California, Berkeley, CA); Durbin, Samuel; Morrow, Charles W.; Vigil, Virginia L (University of Wisconsin, Madison, WI); Modesto-Beato, Marcos A.; Franklin, James Kenneth; Smith, James Dean; Ying, Alice; Cook, Jason T.; Schmitz, Lothar (University of California, Los Angeles, CA); Abdel-Khalik, S. (Georgia Institute of Technology, Atlanta, GA); Farnum, Cathy Ottinger; Abdou, Mohamed A.; Bonazza, Riccardo; Rodriguez, Salvador B.; Sridharan, Kumar (University of Wisconsin, Madison, WI); Rochau, Gary Eugene; Gudmundson, Jesse; Peterson, Per F.; Marriott, Ed; Oakley, Jason

    2006-10-01

    This report summarizes the work conducted for the Z-inertial fusion energy (Z-IFE) late start Laboratory Directed Research Project. A major area of focus was on creating a roadmap to a z-pinch driven fusion power plant. The roadmap ties ZIFE into the Global Nuclear Energy Partnership (GNEP) initiative through the use of high energy fusion neutrons to burn the actinides of spent fuel waste. Transmutation presents a near term use for Z-IFE technology and will aid in paving the path to fusion energy. The work this year continued to develop the science and engineering needed to support the Z-IFE roadmap. This included plant system and driver cost estimates, recyclable transmission line studies, flibe characterization, reaction chamber design, and shock mitigation techniques.

  17. Fiscal Year 1987 Department of Energy Authorization (magnetic fusion energy). Hearings before the Subcommittee on Energy Research and Production of the Committee on Science and Technology, House of Representatives, Ninety-Ninth Congress, Second Session, February 25, 26, 1986, Volume V

    SciTech Connect

    Not Available

    1986-01-01

    Volume V of the hearing record covers two days of hearings on the magnetic fusion energy programs. Alvin Trivelpiece of DOE, Stephen Dean of Fusion Power Associates, Allen Mense of the Institute of Electrical and Electronic Engineers, and George Miley of the University Fusion Association testified on the impact of budget reductions and the role of international cooperation in the fusion energy effort. Trivelpiece reviewed progress of the past 25 years, and discussed the problem of funding long-range energy options during an energy surplus. International collaboration has focused on the Engineering Test Reactor (ETR) program. Rep. Mike McCormack described some of the myths surrounding fusion research and its goals, and outlined three lines of approach toward reaching the goal of producing fusion electricity. Others commended changes in policy direction as being helpful despite budget cuts.

  18. NREL: Energy Analysis - Energy Sciences Technology Analysis

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy Sciences Technology Analysis To help meet the nation's needs for clean energy, inexpensive alternative fuels, and a healthy environment, researchers in NREL's Energy Sciences are improving our understanding of the science behind renewable energy and energy-efficient technologies. These technologies include photovoltaics (solar cells), fuels and energy systems made from biomass (plants and waste products) and hydrogen, and advanced energy storage and transmission systems. In this work, our

  19. New Theoretical Model of the Complex Edge Region of Fusion Plasmas...

    Office of Science (SC)

    New Theoretical Model of the Complex Edge Region of Fusion Plasmas Proves Accurate Fusion Energy Sciences (FES) FES Home About Research Facilities Science Highlights Benefits of ...

  20. Exploring Plasma Science Advances from Fusion Findings to Astrophysical

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Achievements | Princeton Plasma Physics Lab Exploring Plasma Science Advances from Fusion Findings to Astrophysical Achievements By John Greenwald December 4, 2012 Tweet Widget Google Plus One Share on Facebook The latest advances in plasma physics were the focus of more than 1,000 scientists from around the world who gathered in Providence, R.I., from Oct. 29 through Nov. 2 for the 54th Annual Meeting of the American Physical Society's Division of Plasma Physics (APS-DPP). Papers, posters

  1. Energy, information science, and systems science

    SciTech Connect

    Wallace, Terry C; Mercer - Smith, Janet A

    2011-02-01

    This presentation will discuss global trends in population, energy consumption, temperature changes, carbon dioxide emissions, and energy security programs at Los Alamos National Laboratory. LANL's capabilities support vital national security missions and plans for the future. LANL science supports the energy security focus areas of impacts of Energy Demand Growth, Sustainable Nuclear Energy, and Concepts and Materials for Clean Energy. The innovation pipeline at LANL spans discovery research through technology maturation and deployment. The Lab's climate science capabilities address major issues. Examples of modeling and simulation for the Coupled Ocean and Sea Ice Model (COSIM) and interactions of turbine wind blades and turbulence will be given.

  2. The role of the National Ignition Facility in the development of inertial fusion energy

    SciTech Connect

    Logan, B.G.

    1996-06-01

    The authors have completed a conceptual design for a 1.8-MJ, 500-TW, 0.35-{mu}m solid-state laser system for the National Ignition Facility (NIF), which will demonstrate inertial fusion ignition and gain for national security, energy, and science applications. The technical goal of the U.S. Inertial Confinement Fusion (ICF) Program as stated in the current ICF Five-Year Program Plan is {open_quotes}to produce pure fusion ignition and burn in the laboratory, with fusion yields of 200 to 1000 MJ, in support of three missions: (1) to play an essential role in accessing physics regimes of interest in nuclear weapon design...; (2) to provide an above-ground simulation capability for nuclear weapon effects...; and (3) to develop inertial fusion energy for civilian power production.{close_quotes} This article addresses the third goal-- the development of inertial fusion energy (IFE). This article reports a variety of potential contributions the NIF could make to the development of IFE, drawn from a nationally attended workshop held at the University of California at Berkeley in Feb, 1994. In addition to demonstrating fusion ignition as a fundamental basis for IFE, the findings of the workshop, are that the NIF could also provide important data for target physics and fabrication technology, for IFE target chamber phenomena such as materials responses to target emissions, and for fusion power technology-relevant tests.

  3. Science Education | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Education Science Education Energy is a physical quantity that follows precise natural laws. Check out our NEW Energy Literacy Video Series, which highlights the 7 Essential Principles of Energy to help engage students in energy. | Energy Department Video. For kids of all ages, there is always something new to learn about science and technology. The Energy Department supports science education through educational online content, resources for parents and teachers, internships and student

  4. Office of Basic Energy Sciences; ...

    Office of Scientific and Technical Information (OSTI)

    Final Technical Report submitted to the Department of Energy - Office of Basic Energy Sciences; Dr. Lane C. Wilson, Program Manager Period of performance for Sept 15, 2010 - Sept ...

  5. Magnet design considerations for Fusion Nuclear Science Facility

    DOE PAGES [OSTI]

    Zhai, Yuhu; Kessel, Chuck; El-guebaly, Laila; Titus, Peter

    2016-02-25

    The Fusion Nuclear Science Facility (FNSF) is a nuclear confinement facility to provide a fusion environment with components of the reactor integrated together to bridge the technical gaps of burning plasma and nuclear science between ITER and the demonstration power plant (DEMO). Compared to ITER, the FNSF is smaller in size but generates much higher magnetic field, 30 times higher neutron fluence with 3 orders of magnitude longer plasma operation at higher operating temperatures for structures surrounding the plasma. Input parameters to the magnet design from system code analysis include magnetic field of 7.5 T at the plasma center withmore » plasma major radius of 4.8 m and minor radius of 1.2 m, and a peak field of 15.5 T on the TF coils for FNSF. Both low temperature superconductor (LTS) and high temperature superconductor (HTS) are considered for the FNSF magnet design based on the state-of-the-art fusion magnet technology. The higher magnetic field can be achieved by using the high performance ternary Restack Rod Process (RRP) Nb3Sn strands for toroidal field (TF) magnets. The circular cable-in-conduit conductor (CICC) design similar to ITER magnets and a high aspect ratio rectangular CICC design are evaluated for FNSF magnets but low activation jacket materials may need to be selected. The conductor design concept and TF coil winding pack composition and dimension based on the horizontal maintenance schemes are discussed. Neutron radiation limits for the LTS and HTS superconductors and electrical insulation materials are also reviewed based on the available materials previously tested. As a result, the material radiation limits for FNSF magnets are defined as part of the conceptual design studies for FNSF magnets.« less

  6. Fiscal Year 1983 Department of Energy budget review (magnetic-fusion energy). Volume V. Hearings before the Subcommittee on Energy Research and Production of the Committee on Science and Technology, US House of Representatives, Ninety-Seventh Congress, Second Session, March 23-24, 1982

    SciTech Connect

    Not Available

    1982-01-01

    Volume V covers two days of budget hearings on the magnetic-fusion-energy program. The nine witnesses included Alvin W. Trivelpiece of the DOE Office of Energy Research and John F. Clarke, Director for Fusion Energy of the Office of Energy Research. Witnesses were asked to respond to questions about the level of funding, the technical progress of the program, and the appropriate timing and level of industrial development. Two panels of interested members of industry and the fusion-energy community testified. The record includes their statements and additional material submitted for the record. (DCK)

  7. Fusion-fission energy systems evaluation

    SciTech Connect

    Teofilo, V.L.; Aase, D.T.; Bickford, W.E.

    1980-01-01

    This report serves as the basis for comparing the fusion-fission (hybrid) energy system concept with other advanced technology fissile fuel breeding concepts evaluated in the Nonproliferation Alternative Systems Assessment Program (NASAP). As such, much of the information and data provided herein is in a form that meets the NASAP data requirements. Since the hybrid concept has not been studied as extensively as many of the other fission concepts being examined in NASAP, the provided data and information are sparse relative to these more developed concepts. Nevertheless, this report is intended to provide a perspective on hybrids and to summarize the findings of the rather limited analyses made to date on this concept.

  8. Fusion Links | U.S. DOE Office of Science (SC)

    Office of Science (SC)

    Fusion Facilities and Personnel Directory External link Fusion Power Associates External link Institute of Electrical and Electronic Engineers External link International Tokamak ...

  9. How Does Fusion Energy Work? | Princeton Plasma Physics Lab

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    How Does Fusion Energy Work? By Raphael Rosen August 25, 2016 Tweet Widget Google Plus One Share on Facebook (Photo by U.S. Department of Energy) Click here for a cool infographic ...

  10. Scientific and technological advancements in inertial fusion energy

    DOE PAGES [OSTI]

    Hinkel, D. E.

    2013-09-26

    Scientific advancements in inertial fusion energy (IFE) were reported on at the IAEA Fusion Energy Conference, October 2012. Results presented transect the different ways to assemble the fuel, different scenarios for igniting the fuel, and progress in IFE technologies. The achievements of the National Ignition Campaign within the USA, using the National Ignition Facility (NIF) to indirectly drive laser fusion, have found beneficial the achievements in other IFE arenas such as directly driven laser fusion and target fabrication. Moreover, the successes at NIF have pay-off to alternative scenarios such as fast ignition, shock ignition, and heavy-ion fusion as well asmore » to directly driven laser fusion. As a result, this synergy is summarized here, and future scientific studies are detailed.« less

  11. Scientific and technological advancements in inertial fusion energy

    SciTech Connect

    Hinkel, D. E.

    2013-09-26

    Scientific advancements in inertial fusion energy (IFE) were reported on at the IAEA Fusion Energy Conference, October 2012. Results presented transect the different ways to assemble the fuel, different scenarios for igniting the fuel, and progress in IFE technologies. The achievements of the National Ignition Campaign within the USA, using the National Ignition Facility (NIF) to indirectly drive laser fusion, have found beneficial the achievements in other IFE arenas such as directly driven laser fusion and target fabrication. Moreover, the successes at NIF have pay-off to alternative scenarios such as fast ignition, shock ignition, and heavy-ion fusion as well as to directly driven laser fusion. As a result, this synergy is summarized here, and future scientific studies are detailed.

  12. LIFE: The Case for Early Commercialization of Fusion Energy

    SciTech Connect

    Anklam, T; Simon, A J; Powers, S; Meier, W R

    2010-11-30

    This paper presents the case for early commercialization of laser inertial fusion energy (LIFE). Results taken from systems modeling of the US electrical generating enterprise quantify the benefits of fusion energy in terms of carbon emission, nuclear waste and plutonium production avoidance. Sensitivity of benefits-gained to timing of market-entry is presented. These results show the importance of achieving market entry in the 2030 time frame. Economic modeling results show that fusion energy can be competitive with other low-carbon energy sources. The paper concludes with a description of the LIFE commercialization path. It proposes constructing a demonstration facility capable of continuous fusion operations within 10 to 15 years. This facility will qualify the processes and materials needed for a commercial fusion power plant.

  13. Plasma Turbulence Simulations Reveal Promising Insight for Fusion Energy |

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Princeton Plasma Physics Lab Plasma Turbulence Simulations Reveal Promising Insight for Fusion Energy By Argonne National Laboratory March 31, 2014 Tweet Widget Google Plus One Share on Facebook Simulation of microturbulence in a tokamak fusion device. (Credit: Chad Jones and Kwan-Liu Ma, University of California, Davis; Stephane Ethier, Princeton Plasma Physics Laboratory) Simulation of microturbulence in a tokamak fusion device. (Credit: Chad Jones and Kwan-Liu Ma, University of

  14. Overview of Japanese activities on tritium research for fusion...

    Office of Environmental Management (EM)

    for Tritium Issues Research Subjects - Fusion (Processing, Blanket, First Wall, Safety, ... Energy Agency - National Institute for Fusion Science (NIFS) - National Institute of ...

  15. The Effects of Neutron Transfer on Nuclear Fusion at Low Energies

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Neutron Transfer on Nuclear Fusion at Low Energies Nuclear fusion produces heavier nuclei in stars and in laboratories. At energies so low that a classical particle could not ...

  16. Sandia National Labs: PCNSC: Departments: Energy Sciences

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Semiconductor & Optical Sciences Energy Sciences > CINT User Program > CINT Science Small Science Cluster Business Office News Partnering Research Neal Shinn Neal D. Shinn Sr. ...

  17. Inertial fusion: an energy-production option for the future

    SciTech Connect

    Hovingh, J.; Pitts, J.H.; Monsler, M.J.; Grow, G.R.

    1982-05-01

    The authors discuss the inertial-confinement approach to fusion energy. After explaining the fundamentals of fusion, they describe the state of the art of fusion experiments, emphasizing the results achieved through the use of neodymium-doped glass lasers at Lawrence Livermore National Laboratory and at other laboratories. They highlight recent experimental results confirming theoretical predictions that short-wavelength lasers have excellent energy absorption on fuel pellets. Compressions of deuterium-tritium fuel of over 100 times liquid density have been measured, only a factor of 10 away from the compression required for a commercial reactor. Finally, it is shown how to exploit the unique characteristics of inertial fusion to design reactor chambers that have a very high power density and a long life, features that the authors believe will eventually lead to fusion power at a competitive cost.

  18. Quantify Plasma Response to Non-Axisymmetric (3D) Magnetic Fields in Tokamaks, Final Report for FES (Fusion Energy Sciences) FY2014 Joint Research Target

    SciTech Connect

    Strait, E. J.; Park, J. -K.; Marmar, E. S.; Ahn, J. -W.; Berkery, J. W.; Burrell, K. H.; Canik, J. M.; Delgado-Aparicio, L.; Ferraro, N. M.; Garofalo, A. M.; Gates, D. A.; Greenwald, M.; Kim, K.; King, J. D.; Lanctot, M. J.; Lazerson, S. A.; Liu, Y. Q.; Lore, J. D.; Menard, J. E.; Nazikian, R.; Shafer, M. W.; Paz-Soldan, C.; Reiman, A. H.; Rice, J. E.; Sabbagh, S. A.; Sugiyama, L.; Turnbull, A. D.; Volpe, F.; Wang, Z. R.; Wolfe, S. M.

    2014-09-30

    The goal of the 2014 Joint Research Target (JRT) has been to conduct experiments and analysis to investigate and quantify the response of tokamak plasmas to non-axisymmetric (3D) magnetic fields. Although tokamaks are conceptually axisymmetric devices, small asymmetries often result from inaccuracies in the manufacture and assembly of the magnet coils, or from nearby magnetized objects. In addition, non-axisymmetric fields may be deliberately applied for various purposes. Even at small amplitudes of order 10-4 of the main axisymmetric field, such “3D” fields can have profound impacts on the plasma performance. The effects are often detrimental (reduction of stabilizing plasma rotation, degradation of energy confinement, localized heat flux to the divertor, or excitation of instabilities) but may in some case be beneficial (maintenance of rotation, or suppression of instabilities). In general, the magnetic response of the plasma alters the 3D field, so that the magnetic field configuration within the plasma is not simply the sum of the external 3D field and the original axisymmetric field. Typically the plasma response consists of a mixture of local screening of the external field by currents induced at resonant surfaces in the plasma, and amplification of the external field by stable kink modes. Thus, validated magnetohydrodynamic (MHD) models of the plasma response to 3D fields are crucial to the interpretation of existing experiments and the prediction of plasma performance in future devices. The non-axisymmetric coil sets available at each facility allow well-controlled studies of the response to external 3D fields. The work performed in support of the 2014 Joint Research Target has included joint modeling and analysis of existing experimental data, and collaboration on new experiments designed to address the goals of the JRT. A major focus of the work was validation of numerical models through quantitative comparison to experimental data, in

  19. The Science and Energy Plan | Department of Energy

    Energy.gov [DOE] (indexed site)

    The Science and Energy Plan Download the Science and Energy Plan PDF FY 2016 Science and Energy Plan The FY 2016 Science and Energy Plan (SEP) is aimed at improving the overall ...

  20. MIT Plasma Science & Fusion Center: research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Research Program Information Publications & News Meetings & Seminars Contact Information Physics Research Fusion Technology & Engineering Plasma Technology Waves & Beams Useful...

  1. The Science and Energy Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    The Science and Energy Plan The Science and Energy Plan The Science and Energy Plan Download the Science and Energy Plan [PDF] FY 2016 Science and Energy Plan The FY 2016 Science and Energy Plan (SEP) is aimed at improving the overall effectiveness of the Science and Energy enterprise by: Creating awareness and transparency about how DOE performs its science and energy functions Demonstrating how the Department operates as a coordinated system to address complex challenges Providing a baseline

  2. International Atomic Energy Agency holds conference on fusion roadmap |

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Princeton Plasma Physics Lab International Atomic Energy Agency holds conference on fusion roadmap By John Greenwald November 8, 2012 Tweet Widget Google Plus One Share on Facebook Hutch Neilson, third from left, chaired the four-day International Atomic Energy Agency Conference at the University of California at Los Angeles in mid-October, which drew 70 participants from 16 countries and international groups. Pictured here from left to right are Keeman Kim, National Fusion Research

  3. Basic Energy Sciences

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ... Batteries Electric Drive Systems Hydrogen Materials & Components Compatibility Hydrogen ...

  4. Environmental Science | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Science & Innovation » Science & Technology » Environmental Science Environmental Science A revolutionary new turbine technology for hydropower plants is one step closer to its first commercial deployment. At peak performance, an Alden turbine should convert about 94 percent of the water’s energy into usable electricity, comparable or superior to the efficiency of traditional turbines; the overall wildlife survival rate should be over 98 percent, up from 80-85 percent for a

  5. Photons & Fusion Newsletter - 2014

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    4 / february Photons & Fusion Newsletter - 2014 February Photons & Fusion is a monthly review of science and technology at the National Ignition Facility & Photon Science Directorate. For more information, submit a question. Nature Article Reports on Fuel Gain Achieved In NIF High-Foot Experiments A key step on the way to ignition on NIF is for the energy generated through fusion reactions in an inertially confined fusion plasma to exceed the amount of energy deposited into the

  6. MIT- Energy Science and Engineering Laboratory | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Science and Engineering Laboratory Jump to: navigation, search Logo: MIT- Energy Science and Engineering Laboratory Name: MIT- Energy Science and Engineering Laboratory Address: 77...

  7. Science Education | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Science & Innovation » Science Education Science Education October 24, 2016 Tricks, Treats and Tips for a Ghoulishly Low Energy Bill Join Energy.gov to celebrate Energyween, a spooky, week-long celebration of energy, how we use it, and what each of us can do to make our energy use more sustainable. October 14, 2016 Hydrogen & Fuel Cells 8-1/2 X 11 Posters Hydrogen & Fuel Cells posters with infographic explaining how Fuel Cells work. October 13, 2016 Students from T.C. Williams High

  8. Funding Opportunities | U.S. DOE Office of Science (SC)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Opportunities Fusion Energy Sciences (FES) FES Home About Research Facilities Science Highlights Benefits ... Award Search Public Abstracts Additional Requirements and ...

  9. Fusion scientists gear up to learn how to harness plasma energy...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Living on the edge Fusion scientists gear up to learn how to harness plasma energy By ... working on an advanced experimental fusion machine are readying experiments that ...

  10. PPPL to launch major upgrade of key fusion energy test facility...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    to launch major upgrade of key fusion energy test facility NSTX project will produce most ... of nuclear fusion as a clean, safe and abundant fuel for generating electricity. ...

  11. Basic Energy Sciences Jobs

    Office of Science (SC)

    aboutjobs Below is a list of currently open federal employment opportunities in the Office of Science. Prospective applicants should follow the links to the formal position...

  12. Laser Intertial Fusion Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System

    SciTech Connect

    Kramer, Kevin James

    2010-04-08

    This study investigates the neutronics design aspects of a hybrid fusion-fission energy system called the Laser Fusion-Fission Hybrid (LFFH). A LFFH combines current Laser Inertial Confinement fusion technology with that of advanced fission reactor technology to produce a system that eliminates many of the negative aspects of pure fusion or pure fission systems. When examining the LFFH energy mission, a significant portion of the United States and world energy production could be supplied by LFFH plants. The LFFH engine described utilizes a central fusion chamber surrounded by multiple layers of multiplying and moderating media. These layers, or blankets, include coolant plenums, a beryllium (Be) multiplier layer, a fertile fission blanket and a graphite-pebble reflector. Each layer is separated by perforated oxide dispersion strengthened (ODS) ferritic steel walls. The central fusion chamber is surrounded by an ODS ferritic steel first wall. The first wall is coated with 250-500 μm of tungsten to mitigate x-ray damage. The first wall is cooled by Li17Pb83 eutectic, chosen for its neutron multiplication and good heat transfer properties. The Li17Pb83 flows in a jacket around the first wall to an extraction plenum. The main coolant injection plenum is immediately behind the Li17Pb83, separated from the Li17Pb83 by a solid ODS wall. This main system coolant is the molten salt flibe (2LiF-BeF2), chosen for beneficial neutronics and heat transfer properties. The use of flibe enables both fusion fuel production (tritium) and neutron moderation and multiplication for the fission blanket. A Be pebble (1 cm diameter) multiplier layer surrounds the coolant injection plenum and the coolant flows radially through perforated walls across the bed. Outside the Be layer, a fission fuel layer comprised of depleted uranium contained in Tristructural-isotropic (TRISO) fuel particles

  13. A Pilot Plant: The Fastest Path to Commercial Fusion Energy

    SciTech Connect

    Robert J. Goldston

    2010-03-03

    Considerable effort has been dedicated to determining the possible properties of a magneticconfinement fusion power plant, particularly in the U.S.1, Europe2 and Japan3. There has also been some effort to detail the development path to fusion energy, particularly in the U.S.4 Only limited attention has been given, in Japan5 and in China6, to the options for a specific device to form the bridge from the International Thermonuclear Experimental Reactor, ITER, to commercial fusion energy. Nor has much attention been paid, since 2003, to the synergies between magnetic and inertial fusion energy development. Here we consider, at a very high level, the possibility of a Qeng ? 1 Pilot Plant, with linear dimensions ~ 2/3 the linear dimensions of a commercial fusion power plant, as the needed bridge. As we examine the R&D needs for such a system we find significant synergies between the needs for the development of magnetic and inertial fusion energy.

  14. DOE Science Showcase - Clean Fusion Power | OSTI, US Dept of...

    Office of Scientific and Technical Information (OSTI)

    Clean Fusion Power Search Results from DOE Databases View research documents, citations, accomplishments, projects, and scientific research data related to advanced systems for ...

  15. MIT Plasma Science & Fusion Center: research>alcator>

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    of harnessing the nuclear process that powers our sun. This stellar process, called fusion, produces minimal waste and offers the hope of an almost limitless supply of safe,...

  16. MIT Plasma Science & Fusion Center: research>alcator>information

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    & Beams Technology & Engineering Francis Bitter Magnet Laboratory Useful Links What is Fusion? The nucleus of an atom consists of protons, which have a positive electrical charge,...

  17. Lab Breakthrough: Neutron Science for the Fusion Mission

    Energy.gov [DOE]

    An accelerator team from Oak Ridge National Laboratory is working with an international consortium to make fusion power technology commercially viable by 2050.

  18. Warp Speed and Lightsabers: Energy Science Fiction vs Energy Science

    Energy.gov [DOE]

    From powering space travel to energizing weapons, energy technology plays a prominent role in science fiction. Experts from the National Labs help us separate the fact from the fiction.

  19. Developing inertial fusion energy - Where do we go from here?

    SciTech Connect

    Meier, W.R.; Logan, G.

    1996-06-11

    Development of inertial fusion energy (IFE) will require continued R&D in target physics, driver technology, target production and delivery systems, and chamber technologies. It will also require the integration of these technologies in tests and engineering demonstrations of increasing capability and complexity. Development needs in each of these areas are discussed. It is shown how IFE development will leverage off the DOE Defense Programs funded inertial confinement fusion (ICF) work.

  20. Professor and Director of the Fusion Science Center of Extreme States of

    National Nuclear Security Administration (NNSA)

    Matter and Fast Ignition, University of Rochester | National Nuclear Security Administration | (NNSA) Professor and Director of the Fusion Science Center of Extreme States of Matter and Fast Ignition, University of Rochester Edward Moses congratulates fellow award winner Riccardo Betti Riccardo Betti September 2009 Edward Teller Medal Riccardo Betti of the University of Rochester's Fusion Science Center of Extreme State fo Matter and Fast Ignition was recently awarded with the 2009 Edward

  1. About NIF & Photon Science

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    NIF users include scientists from the U.S. Department of Energy national laboratories, worldwide fusion energy and high energy density science research centers, academia, and other ...

  2. Fusion Simulation Project. Workshop sponsored by the U.S. Department of Energy Rockville, MD, May 16-18, 2007

    SciTech Connect

    2007-05-16

    The mission of the Fusion Simulation Project is to develop a predictive capability for the integrated modeling of magnetically confined plasmas. This FSP report adds to the previous activities that defined an approach to integrated modeling in magnetic fusion. These previous activities included a Fusion Energy Sciences Advisory Committee panel that was charged to study integrated simulation in 2002. The report of that panel [Journal of Fusion Energy 20, 135 (2001)] recommended the prompt initiation of a Fusion Simulation Project. In 2003, the Office of Fusion Energy Sciences formed a steering committee that developed a project vision, roadmap, and governance concepts [Journal of Fusion Energy 23, 1 (2004)]. The current FSP planning effort involved forty-six physicists, applied mathematicians and computer scientists, from twenty-one institutions, formed into four panels and a coordinating committee. These panels were constituted to consider: Status of Physics Components, Required Computational and Applied Mathematics Tools, Integration and Management of Code Components, and Project Structure and Management. The ideas, reported here, are the products of these panels, working together over several months and culminating in a three-day workshop in May 2007.

  3. Fusion Simulation Project. Workshop Sponsored by the U.S. Department of Energy, Rockville, MD, May 16-18, 2007

    SciTech Connect

    Kritz, A.; Keyes, D.

    2007-05-18

    The mission of the Fusion Simulation Project is to develop a predictive capability for the integrated modeling of magnetically confined plasmas. This FSP report adds to the previous activities that defined an approach to integrated modeling in magnetic fusion. These previous activities included a Fusion Energy Sciences Advisory Committee panel that was charged to study integrated simulation in 2002. The report of that panel [Journal of Fusion Energy 20, 135 (2001)] recommended the prompt initiation of a Fusion Simulation Project. In 2003, the Office of Fusion Energy Sciences formed a steering committee that developed a project vision, roadmap, and governance concepts [Journal of Fusion Energy 23, 1 (2004)]. The current FSP planning effort involved forty-six physicists, applied mathematicians and computer scientists, from twenty-one institutions, formed into four panels and a coordinating committee. These panels were constituted to consider: Status of Physics Components, Required Computational and Applied Mathematics Tools, Integration and Management of Code Components, and Project Structure and Management. The ideas, reported here, are the products of these panels, working together over several months and culminating in a three-day workshop in May 2007.

  4. Dr. Cherry Murray Confirmed as Director of the Office of Science...

    Energy Saver

    Murray will oversee research in the areas of advanced scientific computing, basic energy sciences, biological and environmental sciences, fusion energy sciences, high energy ...

  5. DOE Office of Science Publishes Update of Landmark Plan: "Facilities...

    Energy.gov [DOE] (indexed site)

    by the Office of Science, including fusion energy, advanced scientific computation, ... collaboration that aims to harness fusion energy, which powers the sun and stars, ...

  6. Photons & Fusion Newsletter

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    photons fusion 2012 Photons & Fusion Newsletter August 2012 Photons & Fusion is a monthly review of science and technology at the National Ignition Facility & Photon Science ...

  7. Science and Energy Town Hall

    Energy.gov [DOE]

    Watch a live broadcast of the Science & Energy Town Hall on Wednesday, January 20, 2016 from 2:30 p.m. to 3:30 p.m. EST.

  8. Renewable Energy: science, politics, and economics (Technical...

    Office of Scientific and Technical Information (OSTI)

    Renewable Energy: science, politics, and economics Citation Details In-Document Search Title: Renewable Energy: science, politics, and economics Authors: Migliori, Albert 1 + ...

  9. Renewable Energy: science, politics, and economics (Technical...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Renewable Energy: science, politics, and economics Citation Details In-Document Search Title: Renewable Energy: science, politics, and economics You are ...

  10. Renewable Energy: science, politics, and economics (Technical...

    Office of Scientific and Technical Information (OSTI)

    Renewable Energy: science, politics, and economics Citation Details In-Document Search Title: Renewable Energy: science, politics, and economics You are accessing a document ...

  11. A new vision for fusion energy research: Fusion rocket engines for planetary defense

    SciTech Connect

    Wurden, G. A.; Weber, T. E.; Turchi, P. J.; Parks, P. B.; Evans, T. E.; Cohen, S. A.; Cassibry, J. T.; Campbell, E. M.

    2015-11-16

    Here, we argue that it is essential for the fusion energy program to identify an imagination-capturing critical mission by developing a unique product which could command the marketplace. We lay out the logic that this product is a fusion rocket engine, to enable a rapid response capable of deflecting an incoming comet, to prevent its impact on the planet Earth, in defense of our population, infrastructure, and civilization. As a side benefit, deep space solar system exploration, with greater speed and orders-of-magnitude greater payload mass would also be possible.

  12. A New Vision for Fusion Energy Research: Fusion Rocket Engines for Planetary Defense

    SciTech Connect

    Wurden, G. A.; Weber, T. E.; Turchi, P. J.; Parks, P. B.; Evans, T. E.; Cohen, S. A.; Cassibry, J. T.; Campbell, E. M.

    2015-11-16

    Here, we argue that it is essential for the fusion energy program to identify an imagination-capturing critical mission by developing a unique product which could command the marketplace. We also lay out the logic that this product is a fusion rocket engine, to enable a rapid response capable of deflecting an incoming comet, to prevent its impact on the planet Earth, in defense of our population, infrastructure, and civilization. Deep space solar system exploration, with greater speed and orders-of-magnitude greater payload mass is also be possible.

  13. Materials Science | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Materials Science Materials Science The unique internal construction of the gas-filled panels developed at the Lawrence Berkeley National Laboratory in California are as effective barriers to heat as its pink fibrous counterparts with less material in less space. <a href="http://energy.gov/articles/berkeley-labs-gas-filled-insulation-rivals-fiber-buildings-sector">Learn more about this cost-effective, energy-efficient insulation</a>. The unique internal construction of the

  14. The National Ignition Facility and the Path to Fusion Energy

    SciTech Connect

    Moses, E

    2011-07-26

    The National Ignition Facility (NIF) is operational and conducting experiments at the Lawrence Livermore National Laboratory (LLNL). The NIF is the world's largest and most energetic laser experimental facility with 192 beams capable of delivering 1.8 megajoules of 500-terawatt ultraviolet laser energy, over 60 times more energy than any previous laser system. The NIF can create temperatures of more than 100 million degrees and pressures more than 100 billion times Earth's atmospheric pressure. These conditions, similar to those at the center of the sun, have never been created in the laboratory and will allow scientists to probe the physics of planetary interiors, supernovae, black holes, and other phenomena. The NIF's laser beams are designed to compress fusion targets to the conditions required for thermonuclear burn, liberating more energy than is required to initiate the fusion reactions. Experiments on the NIF are focusing on demonstrating fusion ignition and burn via inertial confinement fusion (ICF). The ignition program is conducted via the National Ignition Campaign (NIC) - a partnership among LLNL, Los Alamos National Laboratory, Sandia National Laboratories, University of Rochester Laboratory for Laser Energetics, and General Atomics. The NIC program has also established collaborations with the Atomic Weapons Establishment in the United Kingdom, Commissariat a Energie Atomique in France, Massachusetts Institute of Technology, Lawrence Berkeley National Laboratory, and many others. Ignition experiments have begun that form the basis of the overall NIF strategy for achieving ignition. Accomplishing this goal will demonstrate the feasibility of fusion as a source of limitless, clean energy for the future. This paper discusses the current status of the NIC, the experimental steps needed toward achieving ignition and the steps required to demonstrate and enable the delivery of fusion energy as a viable carbon-free energy source.

  15. Fusion energy for space missions in the 21st Century

    SciTech Connect

    Schulze, N.R.

    1991-08-01

    Future space missions were hypothesized and analyzed and the energy source for their accomplishment investigated. The mission included manned Mars, scientific outposts to and robotic sample return missions from the outer planets and asteroids, as well as fly-by and rendezvous mission with the Oort Cloud and the nearest star, Alpha Centauri. Space system parametric requirements and operational features were established. The energy means for accomplishing the High Energy Space Mission were investigated. Potential energy options which could provide the propulsion and electric power system and operational requirements were reviewed and evaluated. Fusion energy was considered to be the preferred option and was analyzed in depth. Candidate fusion fuels were evaluated based upon the energy output and neutron flux. Reactors exhibiting a highly efficient use of magnetic fields for space use while at the same time offering efficient coupling to an exhaust propellant or to a direct energy convertor for efficient electrical production were examined. Near term approaches were identified.

  16. Energy Efficiency and Renewable Energy Science and Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Education & Professional Development Graduate & Postdoctoral Opportunities Energy Efficiency and Renewable Energy Science and Technology Policy Fellowships Energy Efficiency ...

  17. Interdisciplinary | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    offices: Advanced Scientific Computing Research, Basic Energy Sciences, Biological and Environmental Research, Fusion Energy Sciences, High Energy Physics and Nuclear Physics. ...

  18. The Effects of Neutron Transfer on Nuclear Fusion at Low Energies

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Neutron Transfer on Nuclear Fusion at Low Energies Nuclear fusion produces heavier nuclei in stars and in laboratories. At energies so low that a classical particle could not penetrate the Coulomb repulsion of the nucleus, the Coulomb barrier, fusion takes place by quantum tunneling. At these energies, fusion rates can be sensitive to the interplay between nuclear structure and nuclear reactions. This talk presents experimental studies of the influence of neutron transfer on sub-barrier fusion.

  19. Supercomputers Predict New Turbulent Interactions in Fusion Plasmas | U.S.

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    DOE Office of Science (SC) Supercomputers Predict New Turbulent Interactions in Fusion Plasmas Fusion Energy Sciences (FES) FES Home About Research Facilities Science Highlights Benefits of FES Funding Opportunities Fusion Energy Sciences Advisory Committee (FESAC) Community Resources Contact Information Fusion Energy Sciences U.S. Department of Energy SC-24/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-4941 F: (301) 903-8584 E: Email Us More Information »

  20. Better Fusion Plasma Operating Scenarios are Being Explored and Extended on

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    the Alcator C-Mod Tokamak | U.S. DOE Office of Science (SC) Better Fusion Plasma Operating Scenarios are Being Explored and Extended on the Alcator C-Mod Tokamak Fusion Energy Sciences (FES) FES Home About Research Facilities Science Highlights Benefits of FES Funding Opportunities Fusion Energy Sciences Advisory Committee (FESAC) Community Resources Contact Information Fusion Energy Sciences U.S. Department of Energy SC-24/Germantown Building 1000 Independence Ave., SW Washington, DC 20585

  1. Fusion: A necessary component of US energy policy

    SciTech Connect

    Correll, D.L. Jr.

    1989-01-11

    US energy policy must ensure that its security, its economy, or its world leadership in technology development are not compromised by failure to meet the nation's electrical energy needs. Increased concerns over the greenhouse effect from fossil-fuel combustion mean that US energy policy must consider how electrical energy dependence on oil and coal can be lessened by conservation, renewable energy sources, and advanced energy options (nuclear fission, solar energy, and thermonuclear fusion). In determining how US energy policy is to respond to these issues, it will be necessary to consider what role each of the three advanced energy options might play, and to determine how these options can complement one another. This paper reviews and comments on the principal US studies and legislation that have addressed fusion since 1980, and then suggests a research, development, and demonstration program that is consistent with the conclusions of those prior authorities and that will allow us to determine how fusion technology can fit into a US energy policy that takes a balanced, long term view of US needs. 17 refs.

  2. Recent U.S. advances in ion-beam-driven high energy densityphysics and heavy ion fusion

    SciTech Connect

    Logan, B.G.; Bieniosek, F.M.; Celata, C.M.; Coleman, J.; Greenway, W.; Henestroza, E.; Kwan, J.W.; Lee, E.P.; Leitner, M.; Roy,P.K.; Seidl, P.A.; Vay, J-L.; Waldron, W.L.; Yu, S.S.; Barnard, J.J.; Cohen, R.H.; Friedman, A.; Grote, D.P.; Kireeff Covo, M.; Molvik, A.W.; Lund, S.M.; Meier, W.R.; Sharp, W.; Davidson, R.C.; Efthimion, P.C.; Gilson, E.P.; Grisham, L.; Kaganovich, Qin H.; Sefkow, A.B.; Startsev,E.A.; Welch, D.; Olson, C.

    2006-07-05

    During the past two years, significant experimental and theoretical progress has been made in the US heavy ion fusion science program in longitudinal beam compression, ion-beam-driven warm dense matter, beam acceleration, high brightness beam transport; and advanced theory and numerical simulations. Innovations in longitudinal compression of intense ion beams by > 50 X propagating through background plasma enable initial beam target experiments in warm dense matter to begin within the next two years. They are assessing how these new techniques might apply to heavy ion fusion drivers for inertial fusion energy.

  3. Science on Tap-Why the dinosaurs needed fusion rockets too

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Science on Tap-Why the dinosaurs needed fusion rockets too Science on Tap-Why the dinosaurs needed fusion rockets too WHEN: Jul 21, 2016 5:30 PM - 7:00 PM WHERE: UnQuarked Wine Room 145 Central Park Square, Los Alamos, NM 87544, USA CONTACT: Linda Anderman (505) 665-9196 CATEGORY: Bradbury INTERNAL: Calendar Login Event Description Science on Tap presents a variety of topics on which to engage and discuss. Free; open to all ages! Join Glen Wurden, of the Lab's Plasma Physics group, to hear about

  4. NREL: Energy Sciences - Biosciences

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Biosciences Illustration shows photosynthetic cycle. At the top left are the labels solar energy, H2O, and CO2; an arrow points down to Lignocellulosic Biomass. An arrow from this...

  5. Sandia Energy Materials Science

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Sandia Wins Funding for Two DOE-EERE Computer-Aided Battery-Safety R&D Projects http:energy.sandia.govsandia-wins-funding-for-two-doe-eere-computer-aided-battery-safety-rd-proje...

  6. Biological Science | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Biological Science Biological Science The protozoan Plasmodium falciparum gliding through a cell in the gut of a mosquito, its primary host. Although five different species of Plasmodium can cause malaria, Plasmodium falciparum causes the most severe disease. | Photo courtesy of Wikipedia Commons. <a href="http://energy.gov/articles/malaria-researchers-find-weakness-global-killer">Read more</a> The protozoan Plasmodium falciparum gliding through a cell in the gut of a

  7. By Institution | U.S. DOE Office of Science (SC)

    Office of Science (SC)

    ASCR Advanced Scientific Computing Research BER Biological and Environmental Research BES Basic Energy Sciences FES Fusion Energy Sciences HEP High Energy Physics NP ...

  8. Energy BioSciences Institute | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    search Logo: Energy BioSciences Institute Name: Energy BioSciences Institute Place: Berkeley, California Zip: 94720 Region: Bay Area Website: www.energybiosciencesinstitute...

  9. Weihai International Renewable Energy Science Park | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Science Park Jump to: navigation, search Name: Weihai International Renewable Energy Science Park. Place: Weihai, Shandong Province, China Sector: Renewable Energy Product:...

  10. Wuxi Erquan Solar Energy Science Technology Co Ltd | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Erquan Solar Energy Science Technology Co Ltd Jump to: navigation, search Name: Wuxi Erquan Solar Energy Science& Technology Co Ltd Place: Wuxi, Jiangsu Province, China Zip: 214128...

  11. Wuxi Shangpin Solar Energy Science Technology Co | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Shangpin Solar Energy Science Technology Co Jump to: navigation, search Name: Wuxi Shangpin Solar Energy Science & Technology Co Place: Wuxi, Jiangsu Province, China Product:...

  12. Determination of Atomic Data Pertinent to the Fusion Energy Program

    SciTech Connect

    Reader, J.

    2013-06-11

    We summarize progress that has been made on the determination of atomic data pertinent to the fusion energy program. Work is reported on the identification of spectral lines of impurity ions, spectroscopic data assessment and compilations, expansion and upgrade of the NIST atomic databases, collision and spectroscopy experiments with highly charged ions on EBIT, and atomic structure calculations and modeling of plasma spectra.

  13. Koel applies science of surface chemistry to fusion research at PPPL |

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Princeton Plasma Physics Lab Koel applies science of surface chemistry to fusion research at PPPL By Catherine Zandonella March 26, 2012 Tweet Widget Google Plus One Share on Facebook To study the interactions of lithium under conditions similar to what might be found in a fusion reactor, lithium on a sample of TZM molybdenum, which is an alloy of molybdenum, titanium, zirconium and carbon known for its high strength and temperature properties, is heated inside an ultrahigh vacuum chamber

  14. ReNeW: Magnetic Fusion Energy Research Needs for the ITER Era...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ReNeW: Magnetic Fusion Energy Research Needs for the ITER Era Citation Details In-Document Search Title: ReNeW: Magnetic Fusion Energy Research Needs for the ITER Era Authors: ...

  15. Department of Energy to Compete Management and Operating Contracts...

    Energy Saver

    ... for plasma and fusion science. Part of the Laboratory's mission is to provide the highest quality science education in fusion energy, plasma physics, and related technologies. ...

  16. Energy Secretary Moniz Announces 2013 Ernest Orlando Lawrence...

    Energy Saver

    sciences; condensed matter and materials; fusion and plasma sciences; high energy and ... Siegfried H. Glenzer, SLAC National Accelerator Laboratory: for his work advancing fusion ...

  17. Fusion Materials Science and Technology Research Needs: Now and During the ITER era

    SciTech Connect

    Wirth, Brian D.; Kurtz, Richard J.; Snead, Lance L.

    2013-09-30

    The plasma facing components, first wall and blanket systems of future tokamak-based fusion power plants arguably represent the single greatest materials engineering challenge of all time. Indeed, the United States National Academy of Engineering has recently ranked the quest for fusion as one of the top grand challenges for engineering in the 21st Century. These challenges are even more pronounced by the lack of experimental testing facilities that replicate the extreme operating environment involving simultaneous high heat and particle fluxes, large time varying stresses, corrosive chemical environments, and large fluxes of 14-MeV peaked fusion neutrons. This paper will review, and attempt to prioritize, the materials research and development challenges facing fusion nuclear science and technology into the ITER era and beyond to DEMO. In particular, the presentation will highlight the materials degradation mechanisms we anticipate to occur in the fusion environment, the temperature- displacement goals for fusion materials and plasma facing components and the near and long-term materials challenges required for both ITER, a fusion nuclear science facility and longer term ultimately DEMO.

  18. DOE and Fusion Links | Princeton Plasma Physics Lab

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    DOE and Fusion Links United States Department of Energy U.S. Department of Energy Office of Science Office of Fusion Energy Sciences U.S. D.O.E. Princeton Site Office Map showing U.S. Fusion Program Participants U.S. D.O.E. Science Laboratories U.S. D.O.E. User Facilities U.S. D.O.E. Funding Opportunities Other Fusion Research Sites United States Sites General Atomics (GA) MIT Plasma Science and Fusion Center U.S. ITER National Ignition Facility (NIF) American Fusion News International Sites

  19. Posters | U.S. DOE Office of Science (SC)

    Office of Science (SC)

    Posters Fusion Energy Sciences (FES) FES Home About Research Fusion Institutions Fusion Links International Activities Facilities Science Highlights Benefits of FES Funding Opportunities Fusion Energy Sciences Advisory Committee (FESAC) Community Resources Contact Information Fusion Energy Sciences U.S. Department of Energy SC-24/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-4941 F: (301) 903-8584 E: Email Us More Information » International Activities Posters

  20. E. O. Lawrence Award Nominations | U.S. DOE Office of Science...

    Office of Science (SC)

    Condensed Matter and Materials Sciences, Energy Science and Innovation, Fusion and Plasma Sciences, High Energy and Nuclear Physics, and National Security and Nonproliferation. ...

  1. Science Academy from Chevron Energy Technology Company

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    receives 25,000 for Math and Science Academy from Chevron Energy Technology Company ... New Mexico Math and Science Academy, a professional development program for K-12 teachers. ...

  2. Elevance Renewable Sciences Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Elevance Renewable Sciences Inc Jump to: navigation, search Name: Elevance Renewable Sciences Inc Place: Bolingbrook, Illinois Zip: 60440 Sector: Biofuels, Renewable Energy...

  3. Fusion Education | U.S. DOE Office of Science (SC)

    Office of Science (SC)

    ... Energy Information Administration Information on energy sources, including petroleum, natural gas, coal, nuclear, renewables, end use consumption, prices, & frequently asked ...

  4. DOE National Science Bowl | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    DOE National Science Bowl DOE National Science Bowl April 28, 2016 8:00AM EDT to May 2, 2016 5:00PM EDT Washington, D.C. Contact http:science.energy.govwdtsnsb

  5. Building Science | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Science Building Science This presentation was given at the Summer 2012 DOE Building America meeting on July 25, 2012, and addressed the question How do we first do no harm with high-r enclosures?Ž issue1_highr_enclosures.pdf (5.05 MB) More Documents & Publications Issue #1: How Do We First Do No Harm with High-R Enclosures? ZERH Webinar: Getting Enclosures Right in Zero Energy Ready Homes Basement Insulation Systems - Building America Top Innovation

  6. Directions | U.S. DOE Office of Science (SC)

    Office of Science (SC)

    Directions Fusion Energy Sciences (FES) FES Home About Organization Chart .pdf file (49KB) Staff FES Budget FES Committees of Visitors Directions Jobs Fusion and Plasmas Research ...

  7. User Facilities | U.S. DOE Office of Science (SC)

    Office of Science (SC)

    Facilities Fusion Energy Sciences (FES) FES Home About Research Facilities User Facilities DIII-D National Fusion Facility (DIII-D) National Spherical Torus Experiment (NSTX) ...

  8. DIII-D National Fusion Facility (DIII-D) | U.S. DOE Office of...

    Office of Science (SC)

    DIII-D National Fusion Facility (DIII-D) Fusion Energy Sciences (FES) FES Home About Research Facilities User Facilities DIII-D National Fusion Facility (DIII-D) National Spherical ...

  9. Center for Electrochemical Energy Science | Argonne National...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy Science Research Program Publications & Presentations News An Energy Frontier Research Center Exploring the electrochemical reactivity of oxide materials and their...

  10. ENERGY FRONTIER RESEARCH CENTERS SCIENCE FOR OUR...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    FRONTIER RESEARCH CENTERS SCIENCE FOR OUR NATION'S ENERGY FUTURE September 2016 CALIFORNIA Light-Material Interactions in Energy Conversion (LMI) California Institute of Technology ...

  11. Budget by Program | U.S. DOE Office of Science (SC)

    Office of Science (SC)

    Advanced Scientific Computing Research (ASCR) Basic Energy Sciences (BES) Biological and Environmental Research (BER) Fusion Energy Sciences (FES) High Energy Physics (HEP) Nuclear ...

  12. 2015 | U.S. DOE Office of Science (SC)

    Office of Science (SC)

    environmental sciences, fusion energy sciences, high energy physics, and nuclear physics. ... Producing Cold Electron Beams to Increase Collision Rates at the Relativistic Heavy Ion ...

  13. Science on Saturday: Reimagining the Possible: Scientific Transformati...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Science on Saturday: Reimagining the Possible: Scientific Transformations Shaping the Path Towards Fusion Energy Dr. Edmund Synakowski Department of Energy, Office of Science ...

  14. MIT Plasma Science & Fusion Center: research, alcator, publications...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Research Program Information Publications & News Meetings & Seminars Contact Information Physics Research High-Energy- Density Physics Waves & Beams Technology & Engineering...

  15. COLLOQUIUM: DIII-D Explorations of Fusion Science to Prepare for ITER and

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    FNSF | Princeton Plasma Physics Lab December 10, 2013, 11:00am to 12:30pm Colloquia MBG Auditorium COLLOQUIUM: DIII-D Explorations of Fusion Science to Prepare for ITER and FNSF Dr. Richard Buttery General Atomics, DIII-D Presentation: File Presentation Abstract: PDF icon COLL.12.10.13.pdf Recent DIII-D research has provided significant new information for the physics basis of key scientific issues for successful operation of ITER and future steady state fusion tokamaks, including control of

  16. Theoretical Fusion Research | Princeton Plasma Physics Lab

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    NSTX-U Education Organization Contact Us Overview Experimental Fusion Research Theoretical Fusion Research Basic Plasma Science Plasma Astrophysics Other Physics and Engineering Research PPPL Technical Reports NSTX-U Theoretical Fusion Research About Theory Department The fusion energy sciences mission of the Theory Department at the Princeton Plasma Physics Laboratory (PPPL) is to help provide the scientific foundations for establishing magnetic confinement as an attractive, technically

  17. Photon Science for Renewable Energy

    SciTech Connect

    Hussain, Zahid; Tamura, Lori; Padmore, Howard; Schoenlein, Bob; Bailey, Sue

    2010-03-31

    Our current fossil-fuel-based system is causing potentially catastrophic changes to our planet. The quest for renewable, nonpolluting sources of energy requires us to understand, predict, and ultimately control matter and energy at the electronic, atomic, and molecular levels. Light-source facilities - the synchrotrons of today and the next-generation light sources of tomorrow - are the scientific tools of choice for exploring the electronic and atomic structure of matter. As such, these photon-science facilities are uniquely positioned to jump-start a global revolution in renewable and carbonneutral energy technologies. In these pages, we outline and illustrate through examples from our nation's light sources possible scientific directions for addressing these profound yet urgent challenges.

  18. Energy Efficiency and Renewable Energy Science and Technology Policy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fellowships | Department of Energy Education & Professional Development » Graduate & Postdoctoral Opportunities » Energy Efficiency and Renewable Energy Science and Technology Policy Fellowships Energy Efficiency and Renewable Energy Science and Technology Policy Fellowships Program Description The Energy Efficiency and Renewable Energy (EERE) Science and Technology Policy (STP) Fellowships serve as a next step in the educational and professional development of scientists and

  19. MIT Plasma Science & Fusion Center: research>alcator>publications...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    & News Meetings & Seminars Contact Information Physics Research High-Energy- Density Physics Waves & Beams Technology & Engineering Useful Links APS Presentations New Orleans...

  20. USAJobs Search | Department of Energy

    Energy.gov [DOE] (indexed site)

    agency of the Nation's research programs in high-energy physics, nuclear physics, and fusion energy sciences. The Office of Science manages fundamental research programs in basic...

  1. USAJobs Search | Department of Energy

    Energy.gov [DOE] (indexed site)

    of - the Nation's research programs in high-energy physics, nuclear physics, and fusion energy sciences. The Office of Science manages fundamental research programs in basic...

  2. USAJobs Search | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    federal funding agency of - the Nation's research programs in high-energy physics, nuclear physics, and fusion energy sciences. The Office of Science manages fundamental...

  3. USAJobs Search | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    agency of the Nation's research programs in high-energy physics, nuclear physics, and fusion energy sciences. The Office of Science manages fundamental research programs in...

  4. The Fusion Science Research Plan for the Major U.S. Tokamaks. Advisory report

    SciTech Connect

    none,

    1996-05-31

    In summary, the community has developed a research plan for the major tokamak facilities that will produce impressive scientific benefits over the next two years. The plan is well aligned with the new mission and goals of the restructured fusion energy sciences program recommended by FEAC. Budget increases for all three facilities will allow their programs to move forward in FY 1997, increasing their rate of scientific progress. With a shutdown deadline now established, the TFTR will forego all but a few critical upgrades and maximize operation to achieve a set of high-priority scientific objectives with deuterium-tritium plasmas. The DIII-D and Alcator C-Mod facilities will still fall well short of full utilization. Increasing the run time in – vii – DIII-D is recommended to increase the scientific output using its existing capabilities, even if scheduled upgrades must be further delayed. An increase in the Alcator C-Mod budget is recommended, at the expense of equal and modest reductions (~1%) in the other two facilities if necessary, to develop its capabilities for the long-term and increase its near-term scientific output.

  5. Department of Energy National Science Bowl | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy National Science Bowl Department of Energy National Science Bowl May 5, 2008 - 11:30am Addthis Remarks as Prepared for Delivery by Secretary Bodman Thank you,...

  6. Integrated Chamber Design for the Laser Inertial Fusion Energy (LIFE) Engine

    SciTech Connect

    Latkowski, J F; Kramer, K J; Abbott, R P; Morris, K R; DeMuth, J; Divol, L; El-Dasher, B; Lafuente, A; Loosmore, G; Reyes, S; Moses, G A; Fratoni, M; Flowers, D; Aceves, S; Rhodes, M; Kane, J; Scott, H; Kramer, R; Pantano, C; Scullard, C; Sawicki, R; Wilks, S; Mehl, M

    2010-12-07

    The Laser Inertial Fusion Energy (LIFE) concept is being designed to operate as either a pure fusion or hybrid fusion-fission system. A key component of a LIFE engine is the fusion chamber subsystem. The present work details the chamber design for the pure fusion option. The fusion chamber consists of the first wall and blanket. This integrated system must absorb the fusion energy, produce fusion fuel to replace that burned in previous targets, and enable both target and laser beam transport to the ignition point. The chamber system also must mitigate target emissions, including ions, x-rays and neutrons and reset itself to enable operation at 10-15 Hz. Finally, the chamber must offer a high level of availability, which implies both a reasonable lifetime and the ability to rapidly replace damaged components. An integrated LIFE design that meets all of these requirements is described herein.

  7. MIT Plasma Science & Fusion Center: research, alcator, publications...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    2nd Annual Meeting of the APS Division of Plasma Physics, Chicago, 2010 Invited Orals A. Hubbard I-mode regime with an edge energy transport barrier but no particle barrier in...

  8. Prospects for inertial fusion as an energy source

    SciTech Connect

    Hogan, W.J.

    1989-06-26

    Progress in the Inertial Confinement Fusion (ICF) Program has been very rapid in the last few years. Target physics experiments with laboratory lasers and in underground nuclear tests have shown that the drive conditions necessary to achieve high gain can be achieved in the laboratory with a pulse-shaped driver of about 10 MJ. Requirements and designs for a Laboratory Microfusion Facility (LMF) have been formulated. Research on driver technology necessary for an ICF reactor is making progress. Prospects for ICF as an energy source are very promising. 11 refs., 5 figs.

  9. Heavy Ion Inertial Fusion Energy: Summaries of Program Elements

    SciTech Connect

    Friedman, A; Barnard, J J; Kaganovich, I; Seidl, P A; Briggs, R J; Faltens, A; Kwan, J W; Lee, E P; Logan, B G

    2011-02-28

    The goal of the Heavy Ion Fusion (HIF) Program is to apply high-current accelerator technology to IFE power production. Ion beams of mass {approx}100 amu and kinetic energy {>=} 1 GeV provide efficient energy coupling into matter, and HIF enjoys R&D-supported favorable attributes of: (1) the driver, projected to be robust and efficient; see 'Heavy Ion Accelerator Drivers.'; (2) the targets, which span a continuum from full direct to full indirect drive (and perhaps fast ignition), and have metal exteriors that enable injection at {approx}10 Hz; see 'IFE Target Designs'; (3) the near-classical ion energy deposition in the targets; see 'Beam-Plasma Interactions'; (4) the magnetic final lens, robust against damage; see 'Final Optics-Heavy Ion Beams'; and (5) the fusion chamber, which may use neutronically-thick liquids; see 'Liquid-Wall Chambers.' Most studies of HIF power plants have assumed indirect drive and thick liquid wall protection, but other options are possible.

  10. Fusion materials high energy-neutron studies. A status report

    SciTech Connect

    Doran, D.G.; Guinan, M.W.

    1980-01-01

    The objectives of this paper are (1) to provide background information on the US Magnetic Fusion Reactor Materials Program, (2) to provide a framework for evaluating nuclear data needs associated with high energy neutron irradiations, and (3) to show the current status of relevant high energy neutron studies. Since the last symposium, the greatest strides in cross section development have been taken in those areas providing FMIT design data, e.g., source description, shielding, and activation. In addition, many dosimetry cross sections have been tentatively extrapolated to 40 MeV and integral testing begun. Extensive total helium measurements have been made in a variety of neutron spectra. Additional calculations are needed to assist in determining energy dependent cross sections.

  11. Zhuhai Oil Energy Science and Technology | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    it. Zhuhai Oil Energy Science and Technology is a company based in Zhuhai, China. Zhuai Oil Energy produces biofuels and recently increased its production capacity to 60 metric...

  12. OSTI, US Dept of Energy Office of Scientific and Technical Information...

    Office of Scientific and Technical Information (OSTI)

    ... Language barrier broken with Multilingual WorldWideScience.org BETA May DOE Science Showcase - Clean Fusion Power April DOE Science Showcase - Green Energy March DOE Science ...

  13. Fusion Materials Science and Technology Research Opportunities now and during the ITER Era

    SciTech Connect

    Zinkle, Steven J.; Blanchard, James; Callis, Richard W.; Kessel, Charles E.; Kurtz, Richard J.; Lee, Peter J.; Mccarthy, Kathryn; Morley, Neil; Najmabadi, Farrokh; Nygren, Richard; Tynan, George R.; Whyte, Dennis G.; Willms, Scott; Wirth, Brian D.

    2014-03-13

    Several high-priority near-term potential research activities to address fusion nuclear science challenges are summarized. General recommendations include: 1) Research should be preferentially focused on the most technologically advanced options (i.e., options that have been developed at least through the single-effects concept exploration stage, Technology Readiness Levels >3), 2) Significant near-term progress can be achieved by modifying existing facilities and/or moderate investment in new medium-scale facilities, and 3) Computational modeling for fusion nuclear sciences is generally not yet sufficiently robust to enable truly predictive results to be obtained, but large reductions in risk, cost and schedule can be achieved by careful integration of experiment and modeling.

  14. Fusion materials science and technology research opportunities now and during the ITER era

    SciTech Connect

    S.J. Zinkle; J.P. Planchard; R.W. Callis; C.E. Kessel; P.J. Lee; K.A. McCarty; Various Others

    2014-10-01

    Several high-priority near-term potential research activities to address fusion nuclear science challenges are summarized. General recommendations include: (1) Research should be preferentially focused on the most technologically advanced options (i.e., options that have been developed at least through the singleeffects concept exploration stage, technology readiness levels >3), (2) Significant near-term progress can be achieved by modifying existing facilities and/or moderate investment in new medium-scale facilities, and (3) Computational modeling for fusion nuclear sciences is generally not yet sufficiently robust to enable truly predictive results to be obtained, but large reductions in risk, cost and schedule can be achieved by careful integration of experiment and modeling.

  15. Fusion Energy Division: Annual progress report, period ending December 31, 1987

    SciTech Connect

    Morgan, O.B. Jr.; Berry, L.A.; Sheffield, J.

    1988-11-01

    The Fusion Program of Oak Ridge National Laboratory (ORNL), a major part of the national fusion program, carries out research in nearly all areas of magnetic fusion. Collaboration among staff from ORNL, Martin Marietta Energy Systems, Inc., private industry, the academic community, and other fusion laboratories, in the United States and abroad, is directed toward the development of fusion as an energy source. This report documents the program's achievements during 1987. Issued as the annual progress report of the ORNL Fusion Energy Division, it also contains information from components of the Fusion Program that are external to the division (about 15% of the program effort). The areas addressed by the Fusion Program include the following: experimental and theoretical research on magnetic confinement concepts, engineering and physics of existing and planned devices, development and testing of diagnostic tools and techniques in support of experiments, assembly and distribution to the fusion community of databases on atomic physics and radiation effects, development and testing of technologies for heating and fueling fusion plasmas, development and testing of superconducting magnets for containing fusion plasmas, and development and testing of materials for fusion devices. Highlights from program activities are included in this report. 126 figs., 15 tabs.

  16. Fusion Energy Division progress report, 1 January 1990--31 December 1991

    SciTech Connect

    Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.

    1994-03-01

    The Fusion Program of the Oak Ridge National Laboratory (ORNL), a major part of the national fusion program, encompasses nearly all areas of magnetic fusion research. The program is directed toward the development of fusion as an economical and environmentally attractive energy source for the future. The program involves staff from ORNL, Martin Marietta Energy systems, Inc., private industry, the academic community, and other fusion laboratories, in the US and abroad. Achievements resulting from this collaboration are documented in this report, which is issued as the progress report of the ORNL Fusion Energy Division; it also contains information from components for the Fusion Program that are external to the division (about 15% of the program effort). The areas addressed by the Fusion Program include the following: experimental and theoretical research on magnetic confinement concepts; engineering and physics of existing and planned devices, including remote handling; development and testing of diagnostic tools and techniques in support of experiments; assembly and distribution to the fusion community of databases on atomic physics and radiation effects; development and testing of technologies for heating and fueling fusion plasmas; development and testing of superconducting magnets for containing fusion plasmas; development and testing of materials for fusion devices; and exploration of opportunities to apply the unique skills, technology, and techniques developed in the course of this work to other areas (about 15% of the Division`s activities). Highlights from program activities during 1990 and 1991 are presented.

  17. E-print Network home page -- Energy, science, and technology...

    Office of Scientific and Technical Information (OSTI)

    sciences, primarily in physics but also including subject areas such as chemistry, biology and life sciences, materials science, nuclear sciences and engineering, energy ...

  18. Science & Technology - 2015

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    FAQs Visit Us Science Stockpile Stewardship National Security National Competitiveness Fusion and Ignition Experiments Fast Ignition Energy for the Future How to Make a Star How...

  19. About | U.S. DOE Office of Science (SC)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    About Fusion Energy Sciences (FES) FES Home About Organization Chart .pdf file (49KB) Staff FES Budget FES Committees of Visitors Directions Jobs Fusion and Plasmas Research Facilities Science Highlights Benefits of FES Funding Opportunities Fusion Energy Sciences Advisory Committee (FESAC) Community Resources Contact Information Fusion Energy Sciences U.S. Department of Energy SC-24/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-4941 F: (301) 903-8584 E: Email

  20. FES Budget | U.S. DOE Office of Science (SC)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Budget Fusion Energy Sciences (FES) FES Home About Organization Chart .pdf file (49KB) Staff FES Budget FES Committees of Visitors Directions Jobs Fusion and Plasmas Research Facilities Science Highlights Benefits of FES Funding Opportunities Fusion Energy Sciences Advisory Committee (FESAC) Community Resources Contact Information Fusion Energy Sciences U.S. Department of Energy SC-24/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-4941 F: (301) 903-8584 E: Email

  1. Jobs | U.S. DOE Office of Science (SC)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Jobs Fusion Energy Sciences (FES) FES Home About Organization Chart .pdf file (49KB) Staff FES Budget FES Committees of Visitors Directions Jobs Fusion and Plasmas Research Facilities Science Highlights Benefits of FES Funding Opportunities Fusion Energy Sciences Advisory Committee (FESAC) Community Resources Contact Information Fusion Energy Sciences U.S. Department of Energy SC-24/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-4941 F: (301) 903-8584 E: Email

  2. Building Science Education | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Residential Buildings » Building America » Building Science Education Building Science Education student photo.jpg The U.S. Department of Energy (DOE) Building America program recognizes that the education of future design/construction industry professionals in solid building science principles is critical to widespread development of high performance homes that are energy efficient, healthy, and durable. The Building Science Education Roadmap, developed by DOE and leaders of the building

  3. Fusion scientists gear up to learn how to harness plasma energy...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... property of absorbing particles that hit it so that much less cold gas enters the plasma. ... plasma stays hotter -three important characteristics for the creation of fusion energy. ...

  4. Interim report of the Cold Fusion Panel of the Energy Research Advisory Board

    SciTech Connect

    Not Available

    1989-08-01

    This report reviews the current status of cold fusion and makes some preliminary conclusions and recommendations, as requested by the Secretary of Energy.

  5. Science and Energy | Department of Energy

    Energy.gov [DOE] (indexed site)

    F-16 (865) 574-6694 kelsey.mandel@hc.doe.gov Science Headquarters - HR Advisory Office GARDNER, WALT SR HR BUSINESS PARTNER 301-903-0994 waltrunette.gardner@science.doe.gov Science ...

  6. The role of the NIF in the development of inertial fusion energy

    SciTech Connect

    Logan, B.G.

    1995-03-16

    Recent decisions by DOE to proceed with the National Ignition Facility (NIF) and the first half of the Induction Systems Linac Experiments (ILSE) can provide the scientific basis for inertial fusion ignition and high-repetition heavy-ion driver physics, respectively. Both are critical to Inertial Fusion Energy (IFE). A conceptual design has been completed for a 1.8-MJ, 500-TW, 0.35-{micro}m-solid-state laser system, the NIF. The NIF will demonstrate inertial fusion ignition and gain for national security applications, and for IFE development. It will support science applications using high-power lasers. The demonstration of inertial fusion ignition and gain, along with the parallel demonstration of the feasibility of an efficient, high-repetition-rate driver, would provide the basis for a follow-on Engineering Test Facility (ETF) identified in the National Energy Policy Act of 1992. The ETF would provide an integrated testbed for the development and demonstration of the technologies needed for IFE power plants. In addition to target physics of ignition, the NIF will contribute important data on IFE target chamber issues, including neutron damage, activation, target debris clearing, operational experience in many areas prototypical to future IFE power plants, and an opportunity to provide tests of candidate low-cost IFE targets and injection systems. An overview of the NIF design and the target area environments relevant to conducting IFE experiments are described in Section 2. In providing this basic data for IFE, the NIF will provide confidence that an ETF can be successful in the integration of drivers, target chambers, and targets for IFE.

  7. Department of Energy Office of Science Transportation Overview...

    Office of Environmental Management (EM)

    Energy Office of Science Transportation Overview Department of Energy Office of Science Transportation Overview Overview of the Office of Science for Transportation. PDF icon ...

  8. Energy Department Announces 61 Scientists to Receive Early Career...

    Energy.gov [DOE] (indexed site)

    Advanced Scientific Computing Research Basic Energy Sciences Biological and Environmental Research Fusion Energy Sciences High Energy Physics Nuclear Physics Addthis Related ...

  9. SRNL Science and Innovation - Clean Energy

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Clean Energy Clean Energy Science and Innovation Clean Energy Hydrogen Production and Storage Nuclear Fuel Cycle Research and Development Renewable Energy Research Among the most critical future challenges for our nation is the development of abundant, reliable and sustainable energy sources. Providing the energy security fix in America will require an energy mix - a variety of energy sources. The expertise of the Savannah River National Laboratory (SRNL), located at the Department of Energy's

  10. 2012 Science Alliance | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Science Alliance 2012 Science Alliance Addthis Science Alliance 1 of 5 Science Alliance Students arrive at the welcome tent during the beginning of the two-day Science Alliance, in which more than 900 area high school juniors enjoyed presentations in 14 separate areas on a midway in the X-2207A parking lot. Image: Energy Department's Office of Environmental Management Date taken: 2012-09-25 08:59 Science Alliance 2 of 5 Science Alliance DOE Site Lead Joel Bradburne, Site Director Dr. Vince Adams

  11. Fusion Energy Division annual progress report, period ending December 31, 1989

    SciTech Connect

    Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.

    1991-07-01

    The Fusion Program of Oak Ridge National Laboratory (ORNL) carries out research in most areas of magnetic confinement fusion. The program is directed toward the development of fusion as an energy source and is a strong and vital component of both the US fusion program and the international fusion community. Issued as the annual progress report of the ORNL Fusion Energy Division, this report also contains information from components of the Fusion Program that are carried out by other ORNL organizations (about 15% of the program effort). The areas addressed by the Fusion Program and discussed in this report include the following: Experimental and theoretical research on magnetic confinement concepts, engineering and physics of existing and planned devices, including remote handling, development and testing of diagnostic tools and techniques in support of experiments, assembly and distribution to the fusion community of databases on atomic physics and radiation effects, development and testing of technologies for heating and fueling fusion plasmas, development and testing of superconducting magnets for containing fusion plasmas, development and testing of materials for fusion devices, and exploration of opportunities to apply the unique skills, technology, and techniques developed in the course of this work to other areas. Highlights from program activities are included in this report.

  12. NREL: Energy Sciences - Jun-Wei Luo

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    factors." Energy Environmental & Science (4); p. 2546. Luo, J.-W.; Zunger, A. (2010). "Design Principles and Coupling Mechanisms in the 2D Quantum Well Topological Insulator...

  13. Ion Deflection for Final Optics In Laser Inertial Fusion Power...

    Office of Scientific and Technical Information (OSTI)

    Ion Deflection for Final Optics In Laser Inertial Fusion Power Plants Citation Details ... Visit OSTI to utilize additional information resources in energy science and technology. A ...

  14. Axisymmetric Magnetic Mirror Fusion-Fission Hybrid (Conference...

    Office of Scientific and Technical Information (OSTI)

    Conference: Axisymmetric Magnetic Mirror Fusion-Fission Hybrid Citation Details ... Visit OSTI to utilize additional information resources in energy science and technology. A ...

  15. Axisymmetric Magnetic Mirror Fusion-Fission Hybrid (Technical...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Axisymmetric Magnetic Mirror Fusion-Fission Hybrid Citation Details ... Visit OSTI to utilize additional information resources in energy science and technology. A ...

  16. Highly Charged Ions in Magnetic Fusion Plasmas: Research Opportunities...

    Office of Scientific and Technical Information (OSTI)

    Highly Charged Ions in Magnetic Fusion Plasmas: Research Opportunities and Diagnostic ... Visit OSTI to utilize additional information resources in energy science and technology. A ...

  17. Optimizing High-Z Coatings for Inertial Fusion Energy Shells

    SciTech Connect

    Stephens, Elizabeth H.; Nikroo, Abbas; Goodin, Daniel T.; Petzoldt, Ronald W.

    2003-05-15

    Inertial fusion energy (IFE) reactors require shells with a high-Z coating that is both permeable, for timely filling with deuterium-tritium, and reflective, for survival in the chamber. Previously, gold was deposited on shells while they were agitated to obtain uniform, reproducible coatings. However, these coatings were rather impermeable, resulting in unacceptably long fill times. We report here on an initial study on Pd coatings on shells in the same manner. We have found that these palladium-coated shells are substantially more permeable than gold. Pd coatings on shells remained stable on exposure to deuterium. Pd coatings had lower reflectivity compared to gold that leads to a lower working temperature, and efficiency, of the proposed fusion reactor. Seeking to combine the permeability of Pd coatings and high reflectivity of gold, AuPd-alloy coatings were produced using a cosputtering technique. These alloys demonstrated higher permeability than Au and higher reflectivity than Pd. However, these coatings were still less reflective than the gold coatings. To improve the permeability of gold's coatings, permeation experiments were performed at higher temperatures. With the parameters of composition, thickness, and temperature, we have the ability to comply with a large target design window.

  18. Basic Energy Sciences FY 2011 Research Summaries

    SciTech Connect

    2011-01-01

    This report provides a collection of research abstracts for more than 1,300 research projects funded by the Office of Basic Energy Sciences (BES) in Fiscal Year 2011 at some 180 institutions across the U.S. This volume is organized along the three BES divisions: Materials Sciences and Engineering; Chemical Sciences, Geosciences, and Biosciences; and Scientific User Facilities.

  19. Basic Energy Sciences FY 2012 Research Summaries

    SciTech Connect

    2012-01-01

    This report provides a collection of research abstracts and highlights for more than 1,400 research projects funded by the Office of Basic Energy Sciences (BES) in Fiscal Year 2012 at some 180 institutions across the U.S. This volume is organized along the three BES Divisions: Materials Sciences and Engineering; Chemical Sciences, Geosciences, and Biosciences; and Scientific User Facilities.

  20. Basic Energy Sciences FY 2014 Research Summaries

    SciTech Connect

    2014-01-01

    This report provides a collection of research abstracts and highlights for more than 1,200 research projects funded by the Office of Basic Energy Sciences (BES) in Fiscal Year 2014 at some 200 institutions across the U.S. This volume is organized along the three BES Divisions: Materials Sciences and Engineering; Chemical Sciences, Geosciences, and Biosciences; and Scientific User Facilities.

  1. Background: Energy's holy grail. [The quest for controlled fusion

    SciTech Connect

    Not Available

    1993-01-22

    This article presents a brief history of the pursuit and development of fusion as a power source. Starting with the 1950s through the present, the research efforts of the US and other countries is highlighted, including a chronology of hey developments. Other topics discussed include cold fusion and magnetic versus inertial fusion issues.

  2. Department of Energy National Science Bowl | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    National Science Bowl Department of Energy National Science Bowl May 5, 2008 - 11:30am Addthis Remarks as Prepared for Delivery by Secretary Bodman Thank you, Ray. And thanks to ...

  3. Before the House Science and Technology Subcommittee on Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Subcommittee on Energy and Environment Before the House Science and Technology Subcommittee on Energy and Environment Before the House Science and Technology Subcommittee on Energy...

  4. Primary Science of Energy Student Guide (42 Activities) | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Student Guide (42 Activities) Primary Science of Energy Student Guide (42 Activities) Information about Primary Science of Energy, 42 student activities on energy basics for grades...

  5. DOE's Ed Synakowski traces key discoveries in the quest for fusion...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    the quest for fusion energy By Jeanne Jackson DeVoe March 9, 2016 Tweet Widget Google Plus One Share on Facebook The DOE's Associate Director of Science for Fusion Energy ...

  6. House Committee on Science | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Science House Committee on Science February 16, 2005 - 10:25am Addthis Remarks by Secretary Samuel W. Bodman Chairman Boehlert, Congressman Gordon, members of the Committee, thank you for welcoming me back, this time in my new role as Secretary of Energy. I am grateful for the opportunity to discuss the President's fiscal year 2006 budget for science at the Department of Energy. I come before you this morning with tremendous enthusiasm for the Department's mission to maintain and enhance

  7. Response to FESAC survey, Non-Fusion Connections to Fusion Energy...

    Office of Scientific and Technical Information (OSTI)

    Citation Details In-Document Search Title: Response to FESAC survey, Non-Fusion ... Due to the iconic status of the pillars of the Eagle Nebula, this research will bring ...

  8. Fusion Energy Division progress report, January 1, 1992--December 31, 1994

    SciTech Connect

    Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.; Shannon, T.E.

    1995-09-01

    The report covers all elements of the ORNL Fusion Program, including those implemented outside the division. Non-fusion work within FED, much of which is based on the application of fusion technologies and techniques, is also discussed. The ORNL Fusion Program includes research and development in most areas of magnetic fusion research. The program is directed toward the development of fusion as an energy source and is a strong and vital component of both the US and international fusion efforts. The research discussed in this report includes: experimental and theoretical research on magnetic confinement concepts; engineering and physics of existing and planned devices; development and testing of plasma diagnostic tools and techniques; assembly and distribution of databases on atomic physics and radiation effects; development and testing of technologies for heating and fueling fusion plasmas; and development and testing of materials for fusion devices. The activities involving the use of fusion technologies and expertise for non-fusion applications ranged from semiconductor manufacturing to environmental management.

  9. Rising Solar Energy Science and Technology Co Ltd | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Rising Solar Energy Science and Technology Co Ltd Place: Qinhuangdao, Hebei Province, China Zip: 66600 Sector: Solar Product: Chinese solar module laminator manufacturer...

  10. Axisymmetric Tandem Mirror Magnetic Fusion Energy Power Plant...

    Office of Scientific and Technical Information (OSTI)

    A fusion power plant is described that utilizes a new version of the tandem mirror device including spinning liquid walls. The magnetic configuration is evaluated with an ...

  11. Magnetic fusion energy research: A summary of accomplishments

    SciTech Connect

    Not Available

    1986-12-01

    Some of the more important contributions of the research program needed to establish the scientific and technical base for fusion power production are discussed. (MOW)

  12. Magnetic Fusion Energy Research: A Summary of Accomplishments

    DOE R&D Accomplishments

    1986-12-01

    Some of the more important contributions of the research program needed to establish the scientific and technical base for fusion power production are discussed. (MOW)

  13. DOE Science Showcase - Energy Plants of the Future | OSTI, US...

    Office of Scientific and Technical Information (OSTI)

    Database Follow NETL Gasification IGCC Research in DOE Databases Energy Citations Database Information Bridge Science.gov WorldWideScience.org Visit the Science Showcase homepage.

  14. DOE Science Showcase - Mesoscale | OSTI, US Dept of Energy Office...

    Office of Scientific and Technical Information (OSTI)

    Mesoscale science entails the observation, understanding, and control of these ... FOR MESOSCALE SCIENCE, A Report from the Basic Energy Sciences Advisory Committee. ...

  15. Great Lakes Science Center Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Science Center Wind Farm Jump to: navigation, search Name Great Lakes Science Center Wind Farm Facility Great Lakes Science Center Sector Wind energy Facility Type Community Wind...

  16. Basic Energy Sciences: Summary of Accomplishments

    DOE R&D Accomplishments

    1990-05-01

    For more than four decades, the Department of Energy, including its predecessor agencies, has supported a program of basic research in nuclear- and energy-related sciences, known as Basic Energy Sciences. The purpose of the program is to explore fundamental phenomena, create scientific knowledge, and provide unique user'' facilities necessary for conducting basic research. Its technical interests span the range of scientific disciplines: physical and biological sciences, geological sciences, engineering, mathematics, and computer sciences. Its products and facilities are essential to technology development in many of the more applied areas of the Department's energy, science, and national defense missions. The accomplishments of Basic Energy Sciences research are numerous and significant. Not only have they contributed to Departmental missions, but have aided significantly the development of technologies which now serve modern society daily in business, industry, science, and medicine. In a series of stories, this report highlights 22 accomplishments, selected because of their particularly noteworthy contributions to modern society. A full accounting of all the accomplishments would be voluminous. Detailed documentation of the research results can be found in many thousands of articles published in peer-reviewed technical literature.

  17. Benefits of FES | U.S. DOE Office of Science (SC)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Benefits of FES Fusion Energy Sciences (FES) FES Home About Research Facilities Science Highlights Benefits of FES Fusion Education Funding Opportunities Fusion Energy Sciences Advisory Committee (FESAC) Community Resources Contact Information Fusion Energy Sciences U.S. Department of Energy SC-24/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-4941 F: (301) 903-8584 E: Email Us More Information » Benefits of FES Print Text Size: A A A FeedbackShare Page The

  18. FES Committees of Visitors | U.S. DOE Office of Science (SC)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Committees of Visitors Fusion Energy Sciences (FES) FES Home About Organization Chart .pdf file (49KB) Staff FES Budget FES Committees of Visitors Directions Jobs Fusion and Plasmas Research Facilities Science Highlights Benefits of FES Funding Opportunities Fusion Energy Sciences Advisory Committee (FESAC) Community Resources Contact Information Fusion Energy Sciences U.S. Department of Energy SC-24/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-4941 F: (301)

  19. DOE Science Showcase - Tidal Energy | OSTI, US Dept of Energy...

    Office of Scientific and Technical Information (OSTI)

    DOE Science Showcase - Tidal Energy Point absorbers generate electricity by converting the energy in waves using a float that rides the waves and is attached to a moored conversion ...

  20. TIMELY DELIVERY OF LASER INERTIAL FUSION ENERGY (LIFE)

    SciTech Connect

    Dunne, A M

    2010-11-30

    The National Ignition Facility (NIF), the world's largest and most energetic laser system, is now operational at Lawrence Livermore National Laboratory. A key goal of the NIF is to demonstrate fusion ignition for the first time in the laboratory. Its flexibility allows multiple target designs (both indirect and direct drive) to be fielded, offering substantial scope for optimization of a robust target design. In this paper we discuss an approach to generating gigawatt levels of electrical power from a laser-driven source of fusion neutrons based on these demonstration experiments. This 'LIFE' concept enables rapid time-to-market for a commercial power plant, assuming success with ignition and a technology demonstration program that links directly to a facility design and construction project. The LIFE design makes use of recent advances in diode-pumped, solid-state laser technology. It adopts the paradigm of Line Replaceable Units utilized on the NIF to provide high levels of availability and maintainability and mitigate the need for advanced materials development. A demonstration LIFE plant based on these design principles is described, along with the areas of technology development required prior to plant construction. A goal-oriented, evidence-based approach has been proposed to allow LIFE power plant rollout on a time scale that meets policy imperatives and is consistent with utility planning horizons. The system-level delivery builds from our prior national investment over many decades and makes full use of the distributed capability in laser technology, the ubiquity of semiconductor diodes, high volume manufacturing markets, and U.S. capability in fusion science and nuclear engineering. The LIFE approach is based on the ignition evidence emerging from NIF and adopts a line-replaceable unit approach to ensure high plant availability and to allow evolution from available technologies and materials. Utilization of a proven physics platform for the ignition

  1. Harnessing the Energy of the Stars | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Science & Progress and Former Under Secretary for Science These are exciting times for fusion energy. Today I'm sharing that excitement with several hundred scientists at a...

  2. Weaving Community and Science | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Weaving Community and Science Weaving Community and Science October 22, 2013 - 5:41pm Addthis What does this project do? Goal 4. Optimize the use of land and assets Weaving Community and Science: Former Summer Intern Is Investigating Plant Uptake of Contaminants on Disposal Cell Covers Carrie Nuva Joseph, a former U.S. Department of Energy (DOE) summer intern at the Grand Junction, Colorado, office; current graduate student in the University of Arizona's Department of Soil, Water, and

  3. Fusion Energy Division annual progress report period ending December 31, 1986

    SciTech Connect

    Morgan, O.B. Jr.; Berry, L.A.; Sheffield, J.

    1987-10-01

    This annual report on fusion energy discusses the progress on work in the following main topics: toroidal confinement experiments; atomic physics and plasma diagnostics development; plasma theory and computing; plasma-materials interactions; plasma technology; superconducting magnet development; fusion engineering design center; materials research and development; and neutron transport. (LSP)

  4. 23rd IAEA Fusion Energy Conference: Summary Of Sessions EX/C and ICC

    SciTech Connect

    Hawryluk, R J

    2011-01-05

    An overview is given of recent experimental results in the areas of innovative confinement concepts, operational scenarios and confinement experiments as presented at the 2010 IAEA Fusion Energy Conference. Important new findings are presented from fusion devices worldwide, with a strong focus towards the scientific and technical issues associated with ITER and W7-X devices, presently under construction.

  5. Amplifying Magnetic Fields in High Energy Density Plasmas | U...

    Office of Science (SC)

    Amplifying Magnetic Fields in High Energy Density Plasmas Fusion Energy Sciences (FES) FES Home About Research Facilities Science Highlights Benefits of FES Funding Opportunities ...

  6. NREL: Energy Sciences - Joongoo Kang

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    his Ph.D. in physics from the KAIST, South Korea, under the supervision of Prof. K. J. Chang. His background is in solid-state physics and materials science based on...

  7. NREL: Energy Sciences - Tim Snow

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    and Materials Science Center. Since graduating in 1987, he has worked within the semiconductor field for Intel, LSI Logic, Atmel, and ZettaCore, Inc. He holds a U.S. patent for...

  8. NREL: Energy Sciences - Yufeng Zhao

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Dr. Zhao graduated from the physics department of Harbin University of Science & Technology and earned his Ph.D. degree from Peking University in 1998. After two years at the...

  9. Chemical Science | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Chemical Science Chemical Science Plant fatty acids are used in a vast range of products, from polymers to plastics and soaps to industrial feed stocks -- making up an estimated $150 billion market annually. A new discovery of inserting double bonds in the fatty acids could show the way to the designer production of plant fatty acids, and, in turn, to new industrial applications and new products. <a href

  10. Physicists are a new kind of superhero in comic book on fusion energy |

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Princeton Plasma Physics Lab Physicists are a new kind of superhero in comic book on fusion energy By Jeanne Jackson DeVoe November 9, 2015 Tweet Widget Google Plus One Share on Facebook PPPL has a new comic book on fusion energy. PPPL has a new comic book on fusion energy. Gallery: Sajan Saini (Photo by Massimo Licata) (Photo by Photo by Massimo Licata ) Sajan Saini (Photo by Massimo Licata) Frank Espinosa (Photo by Ilaria D'Uva) (Photo by Photo by Ilaria D'Uva ) Frank Espinosa (Photo by

  11. DOE Science Showcase - Thorium Research | OSTI, US Dept of Energy...

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect - thorium research results from DOE science, technology, and engineering ... Additional Resources Department of Energy Office of Science DOE Office of Nuclear Energy ...

  12. DOE Science Showcase - Fission Theory | OSTI, US Dept of Energy...

    Office of Scientific and Technical Information (OSTI)

    Office of Nuclear Energy, DOE Nuclear Physics, DOE Office of Science The History of ... of Reactors, Energy.gov Fission theory science research from the National Library of ...

  13. Mesa Energy formerly called Mesa Environmental Sciences | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Energy formerly called Mesa Environmental Sciences Jump to: navigation, search Name: Mesa Energy (formerly called Mesa Environmental Sciences) Place: Pennsylvania Zip: 19355...

  14. DOE Science Showcase - Startup Stars | OSTI, US Dept of Energy...

    Office of Scientific and Technical Information (OSTI)

    DOE Science Showcase - Startup Stars The Next Top Energy Innovator Iowa Powder Atomization ... Energy Department Technology Transfer Programs Visit the Science Showcase homepage. Last ...

  15. DOE Zero Energy Home Webinar: Comprehensive Building Science...

    Energy Saver

    DOE Zero Energy Home Webinar: Comprehensive Building Science (Text Version) Below is the text version of the webinar, DOE Zero Energy Ready Home - Comprehensive Building Science, ...

  16. Office of the Under Secretary for Science and Energy | Department...

    Energy Saver

    Science and Energy Office of the Under Secretary for Science and Energy Updates on the Interagency Task Force on Natural Gas Storage Safety - Working with Stakeholders Updates on ...

  17. Khazanah Nasional Berhad Beijing China Sciences General Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Khazanah Nasional Berhad Beijing China Sciences General Energy JV Jump to: navigation, search Name: Khazanah Nasional Berhad & Beijing China Sciences General Energy JV Place: China...

  18. Beijing China Sciences General Energy Environment GEE | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Sciences General Energy Environment GEE Jump to: navigation, search Name: Beijing China Sciences General Energy&Environment (GEE) Place: Beijing Municipality, China Zip: 100080...

  19. Shanghai Chaori Solar Energy Science Technology Development Co...

    OpenEI (Open Energy Information) [EERE & EIA]

    Chaori Solar Energy Science Technology Development Co Ltd Jump to: navigation, search Name: Shanghai Chaori Solar Energy Science & Technology Development Co Ltd Place: Shanghai,...

  20. Qinhuangdao Rising Solar Energy Science and Technology Co Ltd...

    OpenEI (Open Energy Information) [EERE & EIA]

    Rising Solar Energy Science and Technology Co Ltd Jump to: navigation, search Name: Qinhuangdao Rising Solar Energy Science and Technology Co., Ltd Place: Qinhuadao, Hebei...

  1. Shanshan Ulica Solar Energy Science Technology Co Ltd | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Ulica Solar Energy Science Technology Co Ltd Jump to: navigation, search Name: Shanshan Ulica Solar Energy Science&Technology Co Ltd Place: Shanghai, Shanghai Municipality, China...

  2. Before the Subcommittee on Energy - House Committee on Science...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Before the Subcommittee on Energy - House Committee on Science, Space, and Technology Before the Subcommittee on Energy - House Committee on Science, Space, and Technology ...

  3. Basic Energy Sciences (BES) Homepage | U.S. DOE Office of Science (SC)

    Office of Science (SC)

    BES Home Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: Email Us More Information » Science for Energy Discovery science solves mysteries, sparks innovation, and stimulates

  4. Solar Energy Educational Material, Activities and Science Projects

    Office of Scientific and Technical Information (OSTI)

    DOE Documents with ActivitiesProjects: Web Pages Solar Energy Education. Renewable Energy Activities for Junior HighMiddle School Science Solar Energy Education. Renewable Energy ...

  5. Basic Energy Sciences Materials Sciences programs: FWP executive summaries

    SciTech Connect

    Vook, F.L.; Samara, G.A.

    1989-02-01

    The goals of our Basic Energy Sciences (BES) Materials Science Program at Sandia are: (1) Perform basic, forefront interdisciplinary research using the capabilities of several organizations. (2) Choose programs broadly complementary to Sandia's weapons laboratory mission, but separably identifiable. (3) Perform research in a setting which enhances technological impact because of Sandia's spectrum of basic research, applied research and development engineering. (4) Use large, capital-intensive research facilities not usually found at universities. The BES Materials Science program at Sandia Albuquerque has the central theme of Scientifically Tailored Materials. The major objective of this program is to combine Sandia's expertise and capabilities in the areas of solid state sciences, advanced atomic-level diagnostics, and materials-processing science to produce new classes of tailorable materials for the US energy industry, the electronics industry and for defense needs. Current research in this program includes ion-implantation-modified materials, physics and chemistry of ceramics, tailored surfaces for materials applications, strained-layer semiconductors, chemical vapor deposition, surface photo kinetics, organic and high-temperature superconductors, advanced growth techniques for improved semiconductor structures and boron-rich very high temperature semiconductors.

  6. FES Presentations | U.S. DOE Office of Science (SC)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Presentations Fusion Energy Sciences (FES) FES Home About Research Facilities Science Highlights Benefits of FES Funding Opportunities Fusion Energy Sciences Advisory Committee (FESAC) Community Resources Featured Content Workshop Reports FES Presentations FES Program Documents Contact Information Fusion Energy Sciences U.S. Department of Energy SC-24/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-4941 F: (301) 903-8584 E: Email Us More Information » Community

  7. Community Resources | U.S. DOE Office of Science (SC)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Community Resources Fusion Energy Sciences (FES) FES Home About Research Facilities Science Highlights Benefits of FES Funding Opportunities Fusion Energy Sciences Advisory Committee (FESAC) Community Resources Featured Content Workshop Reports FES Presentations FES Program Documents Contact Information Fusion Energy Sciences U.S. Department of Energy SC-24/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-4941 F: (301) 903-8584 E: Email Us More Information »

  8. DOE Science Showcase - Nanotechnology | OSTI, US Dept of Energy...

    Office of Scientific and Technical Information (OSTI)

    to spotlight needs and target resources in this critical area of science and technology. ... DOepatents ScienceCinema Energy Citations Database Science.gov WorldWideScience.org ...

  9. PPPL Races Ahead with Fusion Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    the Power... PPPL Races Ahead with Fusion Research RESEARCH NEWS FROM PPPL uest Summer 2013, Issue 1 Contents 02 New Paths to Fusion Energy 09 ADVANCING FUSION THEORY 12 ADVANCING PLASMA SCIENCE 15 PARTNERSHIPS & COLLABORATIONS 19 EDUCATION & OUTREACH AWARDS Inside back cover Letter from the Director W elcome to the premiere issue of Quest, the annual magazine of the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL). We are pleased to provide this news of our strides

  10. Sandia Energy Office of Science

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    eronautics-and-astronauticsfeed 0 Detecting rare, abnormally large grains by x-ray diffraction http:energy.sandia.govdetecting-rare-abnormally-large-grains-by-x-ray-diffractio...

  11. DOE Science Showcase - Startup Stars | OSTI, US Dept of Energy...

    Office of Scientific and Technical Information (OSTI)

    Portal Technology Transfer Energy Department Answering President's Call on Commercialization Energy Department Technology Transfer Programs Visit the Science Showcase homepage.

  12. DOE Science Showcase - Aerogels | OSTI, US Dept of Energy Office...

    Office of Scientific and Technical Information (OSTI)

    Wikipedia Aerogel Blanket Insulation, Science.gov Advanced Carbon Aerogels for Energy ... Scitech Connect National Library of EnergyBeta Science.gov WorldWideScience.org Visit the ...

  13. Department of Energy Advance Methane Hydrates Science and Technology Projects

    Energy.gov [DOE]

    Descriptions for Energy Department Methane Hydrates Science and Technology Projects, August 31, 2012

  14. Solar energy education. Renewable energy activities for general science

    SciTech Connect

    Not Available

    1985-01-01

    Renewable energy topics are integrated with the study of general science. The literature is provided in the form of a teaching manual and includes such topics as passive solar homes, siting a home for solar energy, and wind power for the home. Other energy topics are explored through library research activities. (BCS)

  15. Workshop Reports | U.S. DOE Office of Science (SC)

    Office of Science (SC)

    Community Resources Featured Content Workshop Reports FES Presentations FES Program Documents Contact Information Fusion Energy Sciences U.S. Department of Energy SC-24Germantown ...

  16. Science & Innovation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Innovation Science & Innovation Mars Rover Curiosity Mars Rover Curiosity Mars Rover Curiosity landed safely on the planet's surface with an array of equipment powered with technology developed at the National Labs. Read more Dark Energy Cam Dark Energy Cam Fermilab's 570-megapixels, five-ton Dark Energy camera is expanding our understanding of the universe. Read more Celebrating the Higgs boson Celebrating the Higgs boson Scientists recently found evidence of the elusive particle that fills

  17. Semiconductor Laser Diode Pumps for Inertial Fusion Energy Lasers

    SciTech Connect

    Deri, R J

    2011-01-03

    Solid-state lasers have been demonstrated as attractive drivers for inertial confinement fusion on the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) and at the Omega Facility at the Laboratory for Laser Energetics (LLE) in Rochester, NY. For power plant applications, these lasers must be pumped by semiconductor diode lasers to achieve the required laser system efficiency, repetition rate, and lifetime. Inertial fusion energy (IFE) power plants will require approximately 40-to-80 GW of peak pump power, and must operate efficiently and with high system availability for decades. These considerations lead to requirements on the efficiency, price, and production capacity of the semiconductor pump sources. This document provides a brief summary of these requirements, and how they can be met by a natural evolution of the current semiconductor laser industry. The detailed technical requirements described in this document flow down from a laser ampl9ifier design described elsewhere. In brief, laser amplifiers comprising multiple Nd:glass gain slabs are face-pumped by two planar diode arrays, each delivering 30 to 40 MW of peak power at 872 nm during a {approx} 200 {micro}s quasi-CW (QCW) pulse with a repetition rate in the range of 10 to 20 Hz. The baseline design of the diode array employs a 2D mosaic of submodules to facilitate manufacturing. As a baseline, they envision that each submodule is an array of vertically stacked, 1 cm wide, edge-emitting diode bars, an industry standard form factor. These stacks are mounted on a common backplane providing cooling and current drive. Stacks are conductively cooled to the backplane, to minimize both diode package cost and the number of fluid interconnects for improved reliability. While the baseline assessment in this document is based on edge-emitting devices, the amplifier design does not preclude future use of surface emitting diodes, which may offer appreciable future cost reductions and

  18. FWP executive summaries: Basic energy sciences materials sciences programs

    SciTech Connect

    Not Available

    1990-02-01

    The BES Materials Science program at Sandia Albuquerque has the central theme of Scientifically Tailored Materials. The major objective of this program is to combine Sandia's expertise and capabilities in the areas of solid state sciences, advanced atomic-level diagnostics and materials-processing science to produce new classes of tailorable materials for the US energy industry, the electronics industry and for defense needs. Current research in this program includes the physics and chemistry of ceramics, the use of energetic particles for the synthesis and study of materials, high-temperature and organic superconductors, tailored surfaces for materials applications, chemical vapor deposition sciences, strained-layer semiconductors, advanced growth techniques for improved semiconductor structures and boron-rich very high temperature semiconductors. A new start just getting underway deals with the atomic level science of interfacial adhesion. Our interdisciplinary program utilizes a broad array of sophisticated, state-of-the-art experimental capabilities provided by other programs. The major capabilities include several molecular-beam epitaxy and chemical-vapor-deposition facilities, electron- and ion-beam accelerators, laser-based diagnostics, advanced surface spectroscopies, unique combined high-pressure/low-temperature/high-magnetic-field facilities, and the soon to be added scanning tunneling and atomic force microscopies.

  19. Physicist Zoe Martin's fusion quest: a stellar future

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Zoe Martin's fusion quest: a stellar future Physicist Zoe Martin's fusion quest: a stellar future From revealing radiation hydrodynamics to creating energy, physics student pursues science's boundaries. August 27, 2013 Zoe Martin's fusion quest: a stellar future From revealing radiation hydrodynamics to creating energy, physics student pursues science's boundaries. She also pursues gravity-defying dance in her spare time. Martin said her mentor, physicist Leslie Sherrill, takes the time to

  20. Energy Innovation Hubs: Achieving Our Energy Goals with Science |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Innovation Hubs: Achieving Our Energy Goals with Science Energy Innovation Hubs: Achieving Our Energy Goals with Science March 2, 2012 - 6:44pm Addthis Secretary Chu stops at Oak Ridge National Lab in February 2012 for a quick, nuclear-themed visit that included a tour of the Consortium for Advanced Simulation of Light Water Reactors (CASL) and a stop at the new Manufacturing Demonstration Facility (MDF). | Photo courtesy of Oak Ridge National Lab Secretary Chu stops at

  1. Progress on Light-Ion Fusion Reactions with Three-Nucleon Forces...

    Office of Scientific and Technical Information (OSTI)

    Progress on Light-Ion Fusion Reactions with Three-Nucleon Forces Citation Details ... Visit OSTI to utilize additional information resources in energy science and technology. A ...

  2. Before the Subcommittee on Energy - House Committee on Science...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Before the Senate Energy and Natural Resources Committee Before the Subcommittee on Energy and Power - Committee on Energy and Commerce Before House Committee on Science, Space, ...

  3. Fusion scientists gear up to learn how to harness plasma energy | Princeton

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Plasma Physics Lab Living on the edge Fusion scientists gear up to learn how to harness plasma energy By Kitta MacPherson March 28, 2011 Tweet Widget Google Plus One Share on Facebook Researchers working on an advanced experimental fusion reactor are readying experiments that will investigate a host of scientific puzzles, including how heat escapes as hot magnetized plasma, and what materials are best for handling intense plasma powers. Scientists conducting research on the National

  4. Office of Science

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Office of Science Office of Science Enabling remarkable discoveries and tools that transform our understanding of energy and matter and advance national, economic, and energy security. Advanced Scientific Computing Research» Basic Energy Sciences» Biological and Environmental Research» Fusion Energy Sciences» High Energy Physics» Nuclear Physics» Los Alamos projects help set path to next-generation supercomputers Los Alamos projects help set path to next-generation supercomputers READ MORE

  5. Chapter 9 - Enabling Capabilities for Science and Energy | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy 9 - Enabling Capabilities for Science and Energy Chapter 9 - Enabling Capabilities for Science and Energy Chapter 9 - Enabling Capabilities for Science and Energy Basic science expands our understanding of the natural world and forms the foundation for future technology. Energy systems that meet our energy security, economic, and environmental objectives require a new generation of materials that may not be naturally available. However, creating these new materials requires a level of

  6. Energy Sciences Network (ESnet) | U.S. DOE Office of Science (SC)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy Sciences Network (ESnet) Advanced Scientific Computing Research (ASCR) ASCR Home About Research Facilities User Facilities Argonne Leadership Computing Facility (ALCF) Energy Sciences Network (ESnet) National Energy Research Scientific Computing Center (NERSC) Oak Ridge Leadership Computing Facility (OLCF) Accessing ASCR Facilities Computational Science Graduate Fellowship (CSGF) Research & Evaluation Prototypes (REP) Science Highlights Benefits of ASCR Funding Opportunities Advanced

  7. DOE Science Showcase - Superconductivity | OSTI, US Dept of Energy...

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect - reports from DOE science, technology and engineering programs. ... National Library of EnergyBeta - search results from across the DOE Complex. Science.gov - ...

  8. Science Conference Proceedings | OSTI, US Dept of Energy Office...

    Office of Scientific and Technical Information (OSTI)

    Science Conference Proceedings The Science Conference Proceedings product has been discontinued. Please visit the OSTI homepage to search for Department of Energy R&D results. For ...

  9. DOE Science Showcase - Biofuels | OSTI, US Dept of Energy Office...

    Office of Scientific and Technical Information (OSTI)

    results from DOE science, technology and engineering research programs. National Library of EnergyBeta - search results from across the DOE Complex. Science.gov - search results ...

  10. DOE Science Showcase - Protein Folding | OSTI, US Dept of Energy...

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect - reports from DOE science, technology and engineering programs. ... National Library of EnergyBeta - search results from across the DOE Complex. Science.gov - ...

  11. DOE Science Showcase - Graphene | OSTI, US Dept of Energy Office...

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect - reports from DOE science, technology and engineering programs. ... National Library of EnergyBeta - search results from across the DOE Complex. Science.gov - ...

  12. DOE Science Showcase - Dark Matter and Dark Energy | OSTI, US...

    Office of Scientific and Technical Information (OSTI)

    cosmos to you, Science.gov Saul Perlmutter, LBNL physicists and 2011 Nobel laureate, discusses Dark Energy and the Accelerating Universe, DOE Office of Science DOE Office of ...

  13. OSTIblog Articles in the Energy Science and Technology Software...

    Office of Scientific and Technical Information (OSTI)

    Science and Technology Software Center (ESTSC) Topic OSTI by the numbers by Tim Byrne 02 ... The Energy Science and Technology Software Center (ESTSC) distributes over 1300 software ...

  14. DOE Science Showcase - Microbes | OSTI, US Dept of Energy Office...

    Office of Scientific and Technical Information (OSTI)

    Strategic investments by the Department of Energy (DOE) Office of Science have produced ... SciTech Connect - reports from DOE science, technology and engineering programs. ...

  15. Department of Energy Advances Geothermal Science through Collegiate...

    Office of Environmental Management (EM)

    Advances Geothermal Science through Collegiate Competition Department of Energy Advances Geothermal Science through Collegiate Competition February 25, 2013 - 2:33pm Addthis ...

  16. Energy Department and National Institute of Building Sciences...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    and National Institute of Building Sciences Release Better Buildings Workforce Guidelines Energy Department and National Institute of Building Sciences Release Better Buildings ...

  17. Before the House Subcommittee on Energy - Committee on Science...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    - Committee on Science, Space, and Technology Before the House Subcommittee on Energy - Committee on Science, Space, and Technology Testimony of Dr. Patricia Dehmer, Acting...

  18. Frontiers in Science Lectures focus on saving energy through...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Frontiers in Science Lectures Frontiers in Science Lectures focus on saving energy through ... of the Laboratory's Superconductivity Technology Center, discusses applications ...

  19. DOE Science Showcase: Space Technology | OSTI, US Dept of Energy...

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect - space technology results from DOE science, technology, and engineering ... RefreshLine.png Additional Resources DOE Office of Science DOE Office of Nuclear Energy ...

  20. Department of Energy Awards $9 Million in Grants for Science...

    Energy Saver

    for Science and Technical Research to Historically Black Colleges and Universities in South Carolina and Georgia Department of Energy Awards 9 Million in Grants for Science and ...

  1. Department of Energy Cites Brookhaven Science Associates, LLC...

    Energy Saver

    Brookhaven Science Associates, LLC for Worker Safety and Health Violations Department of Energy Cites Brookhaven Science Associates, LLC for Worker Safety and Health Violations ...

  2. Before the Subcommittee on Energy -- House Science, Space, and...

    Energy Saver

    -- House Science, Space, and Technology Committee Before the Subcommittee on Energy -- House Science, Space, and Technology Committee Testimony of Christopher Smith, Acting ...

  3. american museum of science and energy | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    american museum of science and energy | National Nuclear Security Administration Facebook ... Apply for Our Jobs Our Jobs Working at NNSA Blog Home american museum of science and ...

  4. Wuhan Guoce Science Technology Co Ltd Guoce | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Guoce Science Technology Co Ltd Guoce Jump to: navigation, search Name: Wuhan Guoce Science & Technology Co., Ltd (Guoce) Place: Wuhan, Hubei Province, China Sector: Wind energy...

  5. Goldwind Science Technology Co Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Science Technology Co Ltd Jump to: navigation, search Name: Goldwind Science & Technology Co Ltd Place: Urumqi, Xinjiang Autonomous Region, China Zip: 830000 Sector: Wind energy...

  6. Feng Fa Science and Technology | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Feng Fa Science and Technology Jump to: navigation, search Name: Feng Fa Science and Technology Place: Shenzhen, Guangdong Province, China Sector: Wind energy Product: A VCPE...

  7. Zhejiang Sunflower Light Energy Science Technology Co Ltd | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Science Technology Co Ltd Jump to: navigation, search Name: Zhejiang Sunflower Light Energy Science & Technology Co Ltd Place: Shaoxing, Zhejiang Province, China Zip: 312071...

  8. Jiuquan Xinmao Science and Technology Wind Power | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Science and Technology Wind Power Jump to: navigation, search Name: Jiuquan Xinmao Science and Technology Wind Power Place: Gansu Province, China Sector: Wind energy Product: Gansu...

  9. Expanding Science and Energy Literacy with America’s Science and Technology Centers

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Department's new partnership with the Association of Science and Technology Centers is advancing energy literacy through museums and science centers.

  10. Wind Energy Workforce Development: Engineering, Science, & Technology

    SciTech Connect

    Lesieutre, George A.; Stewart, Susan W.; Bridgen, Marc

    2013-03-29

    Broadly, this project involved the development and delivery of a new curriculum in wind energy engineering at the Pennsylvania State University; this includes enhancement of the Renewable Energy program at the Pennsylvania College of Technology. The new curricula at Penn State includes addition of wind energy-focused material in more than five existing courses in aerospace engineering, mechanical engineering, engineering science and mechanics and energy engineering, as well as three new online graduate courses. The online graduate courses represent a stand-alone Graduate Certificate in Wind Energy, and provide the core of a Wind Energy Option in an online intercollege professional Masters degree in Renewable Energy and Sustainability Systems. The Pennsylvania College of Technology erected a 10 kilowatt Xzeres wind turbine that is dedicated to educating the renewable energy workforce. The entire construction process was incorporated into the Renewable Energy A.A.S. degree program, the Building Science and Sustainable Design B.S. program, and other construction-related coursework throughout the School of Construction and Design Technologies. Follow-on outcomes include additional non-credit opportunities as well as secondary school career readiness events, community outreach activities, and public awareness postings.

  11. Before the House Science and Technology Subcommittee on Energy and

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Environment | Department of Energy Science and Technology Subcommittee on Energy and Environment Before the House Science and Technology Subcommittee on Energy and Environment Statement Before the Committee On Science And Technology, Subcommittee on Energy and Environment, U.S. House of Representatives By: Jacques Beaudry-Losique, Deputy Assistant Secretary for Renewable Energy, Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy Subject: Hearing Examining Marine and

  12. Fusion Energy Division annual progress report period ending December 31, 1983

    SciTech Connect

    Not Available

    1984-09-01

    The Fusion Program carries out work in a number of areas: (1) experimental and theoretical research on two magnetic confinement concepts - the ELMO Bumpy Torus (EBT) and the tokamak, (2) theoretical and engineering studies on a third concept - the stellarator, (3) engineering and physics of present-generation fusion devices, (4) development and testing of diagnostic tools and techniques, (5) development and testing of materials for fusion devices, (6) development and testing of the essential technologies for heating and fueling fusion plasmas, (7) development and testing of the superconducting magnets that will be needed to confine these plasmas, (8) design of future devices, (9) assessment of the environmental impact of fusion energy, and (10) assembly and distribution to the fusion community of data bases on atomic physics and radiation effects. The interactions between these activities and their integration into a unified program are major factors in the success of the individual activities, and the ORNL Fusion Program strives to maintain a balance among these activities that will lead to continued growth.

  13. Fermilab | Science | Particle Physics 101 | Science of Matter, Energy,

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Space and Time Science of Matter, Energy, Space and Time Standard Model and Higgs Illustration What is the world made of? The building blocks Physicists have identified 13 building blocks that are the fundamental constituents of matter. Our everyday world is made of just three of these building blocks: the up quark, the down quark and the electron. This set of particles is all that's needed to make protons and neutrons and to form atoms and molecules. The electron neutrino, observed in the

  14. Proliferation Risks of Magneetic Fusion Energy: Clandestine Production, Covert Production and Breakout

    SciTech Connect

    A. Glaser and R.J. Goldston

    2012-03-13

    Nuclear proliferation risks from magnetic fusion energy associated with access to weapon-usable materials can be divided into three main categories: (1) clandestine production of weapon-usable material in an undeclared facility, (2) covert production of such material inn a declared facility, and (3) use of a declared facility in a breakout scenario, in which a state begins production of fissile material without concealing the effort. In this paper we address each of these categories of risks from fusion. For each case, we find that the proliferation risk from fusion systems can be much lower than the equivalent risk from fission systems, if the fusion system is designed to accommodate appropriate safeguards.

  15. Fusion energy division annual progress report, period ending December 31, 1980

    SciTech Connect

    Not Available

    1981-11-01

    The ORNL Program encompasses most aspects of magnetic fusion research including research on two magnetic confinement programs (tokamaks and ELMO bumpy tori); the development of the essential technologies for plasma heating, fueling, superconducting magnets, and materials; the development of diagnostics; the development of atomic physics and radiation effect data bases; the assessment of the environmental impact of magnetic fusion; the physics and engineering of present-generation devices; and the design of future devices. The integration of all of these activities into one program is a major factor in the success of each activity. An excellent example of this integration is the extremely successful application of neutral injection heating systems developed at ORNL to tokamaks both in the Fusion Energy Division and at Princeton Plasma Physics Laboratory (PPPL). The goal of the ORNL Fusion Program is to maintain this balance between plasma confinement, technology, and engineering activities.

  16. DOE Science Showcase - Particle Physics | OSTI, US Dept of Energy...

    Office of Scientific and Technical Information (OSTI)

    Energy Citations Database DOE R&D Accomplishments DOE Data Explorer ScienceCinema Science.... the Higgs, BNL ANL particle physicist Tom LeCompte Visit the Science Showcase homepage.

  17. DOE Science Showcase - Particle Physics | OSTI, US Dept of Energy...

    Office of Scientific and Technical Information (OSTI)

    Particle Physics Particle Physics Research in DOE Databases Energy Citations Database DOE R&D Accomplishments DOE Data Explorer ScienceCinema Science.gov WorldWideScience.gov More ...

  18. Science for Our Nation's Energy Future | U.S. DOE Office of Science (SC)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Science for Our Nation's Energy Future Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events EFRC News EFRC Events DOE Announcements Publications History Contact BES Home 11.18.10 Science for Our Nation's Energy Future Print Text Size: A A A Subscribe FeedbackShare Page May 25-27, 2011 :: Science for Our Nation's Energy Future, the inaugural Energy Frontier Research Centers Summit and Forum on May 25 - 27, 2011 at the Renaissance Penn Quarter

  19. Inertial fusion energy: A clearer view of the environmental and safety perspectives

    SciTech Connect

    Latkowski, J.F.

    1996-11-01

    If fusion energy is to achieve its full potential for safety and environmental (S&E) advantages, the S&E characteristics of fusion power plant designs must be quantified and understood, and the resulting insights must be embodied in the ongoing process of development of fusion energy. As part of this task, the present work compares S&E characteristics of five inertial and two magnetic fusion power plant designs. For each design, a set of radiological hazard indices has been calculated with a system of computer codes and data libraries assembled for this purpose. These indices quantify the radiological hazards associated with the operation of fusion power plants with respect to three classes of hazard: accidents, occupational exposure, and waste disposal. The three classes of hazard have been qualitatively integrated to rank the best and worst fusion power plant designs with respect to S&E characteristics. From these rankings, the specific designs, and other S&E trends, design features that result in S&E advantages have been identified. Additionally, key areas for future fusion research have been identified. Specific experiments needed include the investigation of elemental release rates (expanded to include many more materials) and the verification of sequential charged-particle reactions. Improvements to the calculational methodology are recommended to enable future comparative analyses to represent more accurately the radiological hazards presented by fusion power plants. Finally, future work must consider economic effects. Trade-offs among design features will be decided not by S&E characteristics alone, but also by cost-benefit analyses. 118 refs., 35 figs., 35 tabs.

  20. Energy Secretary Moniz Launches the Nation's Newest Fusion Experiment at

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Francisco to Advance Technology Solutions, Accelerate Clean Energy Deployment | Department of Energy Hosts Gathering of World's Energy Ministers in San Francisco to Advance Technology Solutions, Accelerate Clean Energy Deployment Energy Secretary Moniz Hosts Gathering of World's Energy Ministers in San Francisco to Advance Technology Solutions, Accelerate Clean Energy Deployment June 2, 2016 - 5:47pm Addthis NEWS MEDIA CONTACT (202) 586-4940 DOENews@hq.doe.gov 21 Major Governments and the

  1. Photons & Fusion Newsletter

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    June 2013 Photons & Fusion is a monthly review of science and technology at the National Ignition Facility & Photon Science Directorate. For more information, submit a question....

  2. Closed Lab Announcements | U.S. DOE Office of Science (SC)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Lab Announcements Fusion Energy Sciences (FES) FES Home About Research Facilities Science Highlights Benefits of FES Funding Opportunities Closed Funding Opportunity Announcements (FOAs) Closed Lab Announcements Award Search / Public Abstracts Additional Requirements and Guidance for Digital Data Management Fusion Energy Sciences Advisory Committee (FESAC) Community Resources Contact Information Fusion Energy Sciences U.S. Department of Energy SC-24/Germantown Building 1000 Independence Ave., SW

  3. Controlling Plasmas for a Cleaner World | U.S. DOE Office of Science (SC)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Controlling Plasmas for a Cleaner World Fusion Energy Sciences (FES) FES Home About Research Facilities Science Highlights Benefits of FES Funding Opportunities Fusion Energy Sciences Advisory Committee (FESAC) Community Resources Contact Information Fusion Energy Sciences U.S. Department of Energy SC-24/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-4941 F: (301) 903-8584 E: Email Us More Information » 10.01.12 Controlling Plasmas for a Cleaner World New

  4. FES Program Documents | U.S. DOE Office of Science (SC)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Program Documents Fusion Energy Sciences (FES) FES Home About Research Facilities Science Highlights Benefits of FES Funding Opportunities Fusion Energy Sciences Advisory Committee (FESAC) Community Resources Featured Content Workshop Reports FES Presentations FES Program Documents Contact Information Fusion Energy Sciences U.S. Department of Energy SC-24/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-4941 F: (301) 903-8584 E: Email Us More Information »

  5. High Energy Physics

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    High Energy Physics High Energy Physics Investigating the field of high energy physics through experiments that strengthen our fundamental understanding of matter, energy, space, and time. Advanced Scientific Computing Research Basic Energy Sciences Biological and Environmental Research Fusion Energy Sciences High Energy Physics Nuclear Physics Advanced Scientific Computing Research Pioneering accelerator technology to improve the intensity of particle beams Office of Science Astrophysics'

  6. A Statement from Under Secretary for Science and Energy Franklin...

    Office of Environmental Management (EM)

    A Statement from Under Secretary for Science and Energy Franklin Orr on New Leadership at PNNL A Statement from Under Secretary for Science and Energy Franklin Orr on New Leadership ...

  7. EFRC Newsletter | Bringing Energy Science into the Classroom |

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Photosynthetic Antenna Research Center EFRC Newsletter | Bringing Energy Science into the Classroom June 19, 2015 EFRC Newsletter | Bringing Energy Science into the Classroom Featuring PARC Outreach Coordinator Rachel Ruggirello View Article Here

  8. Inertial-confinement fusion with lasers

    DOE PAGES [OSTI]

    Betti, R.; Hurricane, O. A.

    2016-05-03

    The quest for controlled fusion energy has been ongoing for over a half century. The demonstration of ignition and energy gain from thermonuclear fuels in the laboratory has been a major goal of fusion research for decades. Thermonuclear ignition is widely considered a milestone in the development of fusion energy, as well as a major scientific achievement with important applications to national security and basic sciences. The U.S. is arguably the world leader in the inertial con fment approach to fusion and has invested in large facilities to pursue it with the objective of establishing the science related to themore » safety and reliability of the stockpile of nuclear weapons. Even though significant progress has been made in recent years, major challenges still remain in the quest for thermonuclear ignition via laser fusion.« less

  9. National Science Bowl 2013 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Science Bowl 2013 National Science Bowl 2013 Addthis National Science Bowl 2013 1 of 16 National Science Bowl 2013 The 2013 National Science Bowl started off at the 4H Center,...

  10. Before the House Science and Technology Subcommittee on Energy and

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Environment | Department of Energy Subcommittee on Energy and Environment Before the House Science and Technology Subcommittee on Energy and Environment Before the House Science and Technology Subcommittee on Energy and Environment By: Dr. Anna Palmisano, Associate Director Office of Biological and Environmental Research Office of Science Subject: DOE's Office of Science Research Applications 9-10-09_Final_Testimony_(Palmisano).pdf (103.95 KB) More Documents & Publications HEARING BEFORE

  11. DOE Science Showcase - Genomics | OSTI, US Dept of Energy Office...

    Office of Scientific and Technical Information (OSTI)

    energy, industry, biomedical, and other application areas. DOE's Genomic Science Program research is ... Biological and Environmental Research Abstracts Database ...

  12. Energy Secretary Moniz Launches the Nation's Newest Fusion Experiment at

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    U.S. Energy Emergency Response | Department of Energy Calls for Increased Investment to Enhance U.S. Energy Emergency Response Energy Secretary Ernest Moniz Calls for Increased Investment to Enhance U.S. Energy Emergency Response August 16, 2016 - 11:38am Addthis News Media Contact DOENews@hq.doe.gov 202-586-4940 SEATTLE - In his testimony before a field hearing held today by Ranking Member Maria Cantwell and the Senate Committee on Energy and Natural Resources, U.S. Secretary of Energy

  13. FESAC Reports Archive | U.S. DOE Office of Science (SC)

    Office of Science (SC)

    ChargesReports FESAC Reports Archive Fusion Energy Sciences Advisory Committee (FESAC) ... "Review .pdf file (4.1MB) of the Inertial Fusion Energy Program", DOESC-0087, March 2004. ...

  14. Complete Fusion and Break-up Fusion Reactions in Light Ion Interactions at Low Energies

    SciTech Connect

    Cerutti, F.; Ferrari, A.; Gadioli, E.; Mairani, A.; Foertsch, S. V.; Buthelezi, E. Z.; Fujita, H.; Neveling, R.; Smit, F. D.; Dlamini, J.; Cowley, A. A.; Connell, S. H.

    2007-10-26

    Experimental spectra of intermediate mass fragments (IMFs) produced in the interaction of two {sup 12}C ions at incident energy of 200 MeV and their reproduction by a binary fragmentation model and the Boltzmann Master Equation theory as implemented into the Monte Carlo transport and interaction code FLUKA are shown.

  15. Solar Energy Education. Renewable energy activities for earth science

    SciTech Connect

    Not Available

    1980-01-01

    A teaching manual is provided to aid teachers in introducing renewable energy topics to earth science students. The main emphasis is placed on solar energy. Activities for the student include a study of the greenhouse effect, solar gain for home heating, measuring solar radiation, and the construction of a model solar still to obtain fresh water. Instructions for the construction of apparatus to demonstrate a solar still, the greenhouse effect and measurement of the altitude and azimuth of the sun are included. (BCS)

  16. Committees of Visitors | U.S. DOE Office of Science (SC)

    Office of Science (SC)

    ... Research (BER) Office of Fusion Energy Sciences (FES) Office of High Energy Physics (HEP) Office of Nuclear Physics (NP) Office of Workforce Development for Teachers ...

  17. Argonne Collaborative Center for Energy Storage Science | Argonne National

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Laboratory Collaborative Center for Energy Storage Science ACCESS: Bridging the gap between industry and Argonne energy storage expertise The Argonne Collaborative Center for Energy Storage Science (ACCESS) is a powerful collaborative of scientists and engineers from across Argonne that helps public and private-sector customers turn science into solutions. PDF icon Argonne_ACCESS

  18. Sandia Energy - Materials Science and Engineering Support for...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Materials Science and Engineering Support for Microsystems-Enabled Photovoltaic Grand Challenge Laboratory-Directed Research and Development Project Home Renewable Energy Energy...

  19. OSTIblog Articles in the Chemical Sciences Geosciences and Energy

    Office of Scientific and Technical Information (OSTI)

    Biosciences Division Topic | OSTI, US Dept of Energy Office of Scientific and Technical Information Chemical Sciences Geosciences and Energy Biosciences Division

  20. DOE Science Showcase - Wind Power | OSTI, US Dept of Energy,...

    Office of Scientific and Technical Information (OSTI)

    Profiling General Compression: A River of Wind, ScienceCinema, multimedia Solar and Wind Energy Resource Assessment (SWERA) Data from the National Renewable Energy Library and ...

  1. Before the House Subcommittee on Energy, Committee on Science...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Before the House Subcommittee on Energy, Committee on Science, Space and Technology Testimony of Dr. Peter Lyons, Assistant Secretary for Nuclear Energy Before the House ...

  2. Los Alamos Lab: Science Program Office, Energy Security Newsletter

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Fossil Energy & Environment Home Office of Science Home ... of a New Era for Solar Energy Carrier multiplication and quantum dots can double the efficiency of photovoltaic panels. ...

  3. DOE Science Showcase - Energy Department Scientists and Engineers...

    Office of Scientific and Technical Information (OSTI)

    Energy Department Scientists and Engineers Honored with Presidential Early Career Awards (PECASE) Researchers funded by the U.S. Department of Energy (DOE) Office of Science were ...

  4. Energy Frontier Research Center Center for Materials Science...

    Office of Scientific and Technical Information (OSTI)

    Energy Frontier Research Center Center for Materials Science of Nuclear Fuels Citation Details In-Document Search Title: Energy Frontier Research Center Center for Materials ...

  5. POWER SOURCES CHALLENGE FUSION PHYSICS! A CLEAN ENERGY

    Office of Environmental Management (EM)

    It looks like this in a very simplified way: H + H He + ENERGY. This energy can be calculated by the famous Einstein equation, E mc 2 . Each of the colliding hydrogen atoms ...

  6. Cold fusion, Alchemist's dream

    SciTech Connect

    Clayton, E.D.

    1989-09-01

    In this report the following topics relating to cold fusion are discussed: muon catalysed cold fusion; piezonuclear fusion; sundry explanations pertaining to cold fusion; cosmic ray muon catalysed cold fusion; vibrational mechanisms in excited states of D{sub 2} molecules; barrier penetration probabilities within the hydrogenated metal lattice/piezonuclear fusion; branching ratios of D{sub 2} fusion at low energies; fusion of deuterons into {sup 4}He; secondary D+T fusion within the hydrogenated metal lattice; {sup 3}He to {sup 4}He ratio within the metal lattice; shock induced fusion; and anomalously high isotopic ratios of {sup 3}He/{sup 4}He.

  7. Fusion reactor design | Princeton Plasma Physics Lab

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Read more about How Does Fusion Energy Work? How Does Fusion Energy Work? Fusion is the energy source of the sun and stars. Read more about How Does Fusion Energy Work? Major next ...

  8. Science & Innovation Reports | Department of Energy

    Energy Saver

    Science & Innovation Reports Science & Innovation Reports August 12, 2014 Audit Report: OAS-M-14-09 Office of Science's Management of Research Misconduct Allegations May 22, 2014 ...

  9. US ITER | Why Fusion?

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Why Fusion? US Fusion Research Educational Resources Why Fusion? Home > Why Fusion? What is Fusion? Fusion is a key element in long-term US energy plans. ITER will allow scientists to explore the physics of a burning plasma at energy densities close to that of a commercial power plant. This is a critical step towards producing and delivering electricity from fusion to the grid. Nuclear fusion occurs naturally in stars, like our sun. When hydrogen gets hot enough, the process of fusion

  10. The rhetoric of science: A case study of the cold fusion controversy

    SciTech Connect

    Hatfield, D.L.

    1992-01-01

    This dissertation examines the circumstances surrounding and the rhetoric involved in the cold fusion controversy begun on March 23, 1989, when two University of Utah electrochemists, Martin Fleischmann and Stanley Pons, announced by press conference the discovery of room-temperature nuclear fusion. The dissertation seeks to determine to what extent a rhetorical analysis of cold fusion discourse may increase understanding of the controversy; the success of Fleischmann and Pons as scientific rhetors; the ways in which scientists' attitudes, values, and assumptions manifest themselves in the discourse; and finally, what may be learned about scientific discourse by examining the cold fusion controversy in particular. Examined were Fleischmann and Pon's initial publication announcing the cold fusion discovery in the Journal of Electroanalytical Chemistry; Steven E. Jones's initial publication of his cold fusion discovery and several representative discourse samples from the journal Nature; and Fleischmann and Pons's latest article in the Journal of Fusion Technology. Cold fusion discourse addressed evidential issues, questioning the existence of the cold fusion phenomenon. Several lines of argument were evoked to address this issue, including experimental competence, experimental replication, external consistency, communality, and disinterestedness. Also discovered is division between electrochemists and physicists over what constitutes valid evidence: electrochemists looked to excess heat production as proof of fusion; physicists looked to neutron production. The study concludes that Fleischmann and Pons followed an unsuccessful rhetorical strategy in their initial published paper. An alternative rhetorical strategy was available to Fleischmann and Pons, one in which they could have interpreted their evidence, thereby evoking a less confrontational response from the scientific community.

  11. NETL Science & Engineering Ambassadors Guide Next Generation of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Decision-Makers | Department of Energy Science & Engineering Ambassadors Guide Next Generation of Energy Decision-Makers NETL Science & Engineering Ambassadors Guide Next Generation of Energy Decision-Makers March 7, 2016 - 12:06pm Addthis NETL Science & Engineering Ambassadors Guide Next Generation of Energy Decision-Makers A trio of scientists and engineers from the National Energy Technology Laboratory (NETL) are using their research skills and experience to prepare future

  12. Interdisciplinary research in climate and energy sciences

    SciTech Connect

    Xu, Xiaofeng; Goswami, Santonu; Gulledge, Jay; Wullschleger, Stan D.; Thornton, Peter E.

    2015-09-12

    Due to the complex nature of climate change, interdisciplinary research approaches involving knowledge and skills from a broad range of disciplines have been adopted for studying changes in the climate system as well as strategies for mitigating climate change (i.e., greenhouse gas emissions reductions) and adapting to its impacts on society and natural systems. Harnessing of renewable energy sources to replace fossil fuels is widely regarded as a long-term mitigation strategy that requires the synthesis of knowledge from engineering, technology, and natural and social sciences. In this study, we examine how the adoption of interdisciplinary approaches has evolved over time and in different geographic regions. We conducted a comprehensive literature survey using an evaluation matrix of keywords, in combination with a word cloud analysis, to evaluate the spatiotemporal dynamics of scholarly discourse about interdisciplinary approaches to climate change and renewable energy research and development (R&D). Publications that discuss interdisciplinary approaches to climate change and renewable energy have substantially increased over the last 60 years; it appears, however, that the nature, timing, and focus of these publications vary across countries and through time. Over the most recent three decades, the country-level contribution to interdisciplinary research for climate change has become more evenly distributed, but this was not true for renewable energy research, which remained dominated by the United Sates and a few other major economies. The research topics have also evolved: Water resource management was emphasized from 1990s to 2000s, policy and adaptation were emphasized from the 2000s to 2010 – 2013, while vulnerability became prominent during the most recent years (2010 – 2013). Lastly, our analysis indicates that the rate of growth of interdisciplinary research for renewable energy lags behind that for climate change, possibly because knowledge

  13. Interdisciplinary research in climate and energy sciences

    DOE PAGES [OSTI]

    Xu, Xiaofeng; Goswami, Santonu; Gulledge, Jay; Wullschleger, Stan D.; Thornton, Peter E.

    2015-09-12

    Due to the complex nature of climate change, interdisciplinary research approaches involving knowledge and skills from a broad range of disciplines have been adopted for studying changes in the climate system as well as strategies for mitigating climate change (i.e., greenhouse gas emissions reductions) and adapting to its impacts on society and natural systems. Harnessing of renewable energy sources to replace fossil fuels is widely regarded as a long-term mitigation strategy that requires the synthesis of knowledge from engineering, technology, and natural and social sciences. In this study, we examine how the adoption of interdisciplinary approaches has evolved over timemore » and in different geographic regions. We conducted a comprehensive literature survey using an evaluation matrix of keywords, in combination with a word cloud analysis, to evaluate the spatiotemporal dynamics of scholarly discourse about interdisciplinary approaches to climate change and renewable energy research and development (R&D). Publications that discuss interdisciplinary approaches to climate change and renewable energy have substantially increased over the last 60 years; it appears, however, that the nature, timing, and focus of these publications vary across countries and through time. Over the most recent three decades, the country-level contribution to interdisciplinary research for climate change has become more evenly distributed, but this was not true for renewable energy research, which remained dominated by the United Sates and a few other major economies. The research topics have also evolved: Water resource management was emphasized from 1990s to 2000s, policy and adaptation were emphasized from the 2000s to 2010 – 2013, while vulnerability became prominent during the most recent years (2010 – 2013). Lastly, our analysis indicates that the rate of growth of interdisciplinary research for renewable energy lags behind that for climate change, possibly because knowledge

  14. The National Ignition Facility: Ushering in a new age for high energy density science

    SciTech Connect

    Moses, E. I.; Boyd, R. N.; Remington, B. A.; Keane, C. J.; Al-Ayat, R.

    2009-04-15

    The National Ignition Facility (NIF) [E. I. Moses, J. Phys.: Conf. Ser. 112, 012003 (2008); https://lasers.llnl.gov/], completed in March 2009, is the highest energy laser ever constructed. The high temperatures and densities achievable at NIF will enable a number of experiments in inertial confinement fusion and stockpile stewardship, as well as access to new regimes in a variety of experiments relevant to x-ray astronomy, laser-plasma interactions, hydrodynamic instabilities, nuclear astrophysics, and planetary science. The experiments will impact research on black holes and other accreting objects, the understanding of stellar evolution and explosions, nuclear reactions in dense plasmas relevant to stellar nucleosynthesis, properties of warm dense matter in planetary interiors, molecular cloud dynamics and star formation, and fusion energy generation.

  15. Prospects for practical fusion power

    SciTech Connect

    Dean, S.O.

    1980-12-01

    The prospects for practical fusion power received a substantial shot in the arm recently when the President signed into law the Magnetic Fusion Engineering Act of 1980. This new law directs the Secretary of Energy to ''initiate at the earliest practical time each activity which he deems necessary to achieve the national goal for operation of a commercial demonstration plant at the turn of the twenty-first century''. The new law is in consonance with the conclusions of two panels which reviewed the status of magnetic fusion energy research during 1980. A Fusion Advisory Panel to the House Science and Technology Committee, chaired by Dr. Robert L. Hirsch of EXXON, concluded that ''fusion can be made commercial before 2000 if a national commitment is made soon''. And, the Department of Energy's Energy Research Advisory Board (ERAB), chaired by Dr. Solomon J. Buchsbaum of Bell Laboratories, concluded that ''recent progress in plasma confinement has been impressive'' and that ''as a result of this progress, the U.S. is now ready to embark on the next step toward the goal of achieving economic fusion power: the exploration of the engineering feasibility of fusion''. The basis for optimism that fusion will become a practical energy source around the turn of the century is three-fold: (1) dramatic scientific progress has occurred on a broad front during the past few years; (2) key fusion technologies have been developed for several large fusion facilities now under construction; and (3) a growing cadre of engineers have been identifying the engineering development tasks required for practical systems.

  16. Achieving competitive excellence in nuclear energy: The threat of proliferation; the challenge of inertial confinement fusion

    SciTech Connect

    Nuckolls, J.H.

    1994-06-01

    Nuclear energy will have an expanding role in meeting the twenty-first-century challenges of population and economic growth, energy demand, and global warming. These great challenges are non-linearly coupled and incompletely understood. In the complex global system, achieving competitive excellence for nuclear energy is a multi-dimensional challenge. The growth of nuclear energy will be driven by its margin of economic advantage, as well as by threats to energy security and by growing evidence of global warming. At the same time, the deployment of nuclear energy will be inhibited by concerns about nuclear weapons proliferation, nuclear waste and nuclear reactor safety. These drivers and inhibitors are coupled: for example, in the foreseeable future, proliferation in the Middle East may undermine energy security and increase demand for nuclear energy. The Department of Energy`s nuclear weapons laboratories are addressing many of these challenges, including nuclear weapons builddown and nonproliferation, nuclear waste storage and burnup, reactor safety and fuel enrichment, global warming, and the long-range development of fusion energy. Today I will focus on two major program areas at the Lawrence Livermore National Laboratory (LLNL): the proliferation of nuclear weapons and the development of inertial confinement fusion (ICF) energy.

  17. Energy Secretary Moniz Launches the Nation's Newest Fusion Experiment...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    One Share on Facebook U.S. Energy Secretary Ernest Moniz, center, in the NSTX-U test cell. ... plasmas at 100-million degree temperatures many times hotter than the core of the sun. ...

  18. FWP executive summaries: basic energy sciences materials sciences and engineering program (SNL/NM).

    SciTech Connect

    Samara, George A.; Simmons, Jerry A.

    2006-07-01

    This report presents an Executive Summary of the various elements of the Materials Sciences and Engineering Program which is funded by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy at Sandia National Laboratories, New Mexico. A general programmatic overview is also presented.

  19. Magneto-inertial Fusion: An Emerging Concept for Inertial Fusion and Dense Plasmas in Ultrahigh Magnetic Fields

    SciTech Connect

    Thio, Francis Y.C.

    2008-01-01

    An overview of the U.S. program in magneto-inertial fusion (MIF) is given in terms of its technical rationale, scientific goals, vision, research plans, needs, and the research facilities currently available in support of the program. Magneto-inertial fusion is an emerging concept for inertial fusion and a pathway to the study of dense plasmas in ultrahigh magnetic fields (magnetic fields in excess of 500 T). The presence of magnetic field in an inertial fusion target suppresses cross-field thermal transport and potentially could enable more attractive inertial fusion energy systems. A vigorous program in magnetized high energy density laboratory plasmas (HED-LP) addressing the scientific basis of magneto-inertial fusion has been initiated by the Office of Fusion Energy Sciences of the U.S. Department of Energy involving a number of universities, government laboratories and private institutions.

  20. Before the Subcommittee on Energy -- House Science, Space, and Technology

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Committee | Department of Energy -- House Science, Space, and Technology Committee Before the Subcommittee on Energy -- House Science, Space, and Technology Committee Testimony of Christopher Smith, Acting Assistant Secretary Before the Subcommittee on Energy -- House Science, Space, and Technology Committee 7-25-13_Christopher_Smith FT HSST.pdf (83.13 KB) More Documents & Publications Before the House Energy and Commerce Subcommittee on Oversight and Investigations Before the House

  1. Science Programs Organization | U.S. DOE Office of Science (SC)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Science Programs Organization Deputy Director for Science Programs Deputy Director Home Mission & Functions Deputy Director Biography Organization Organization Chart .pdf file (149KB) Advanced Scientific Computing Research Basic Energy Sciences Biological and Environmental Research Fusion Energy Sciences High Energy Physics Nuclear Physics Workforce Development for Teachers and Scientists Small Business Innovation Research and Small Business Technology Transfer Project Assessment Staff

  2. US Heavy Ion Beam Research for High Energy Density Physics Applications and Fusion

    SciTech Connect

    Davidson, R.C.; Logan, B.G.; Barnard, J.J.; Bieniosek, F.M.; Briggs, R.J.; et al.

    2005-09-19

    Key scientific results from recent experiments, modeling tools, and heavy ion accelerator research are summarized that explore ways to investigate the properties of high energy density matter in heavy-ion-driven targets, in particular, strongly-coupled plasmas at 0.01 to 0.1 times solid density for studies of warm dense matter, which is a frontier area in high energy density physics. Pursuit of these near-term objectives has resulted in many innovations that will ultimately benefit heavy ion inertial fusion energy. These include: neutralized ion beam compression and focusing, which hold the promise of greatly improving the stage between the accelerator and the target chamber in a fusion power plant; and the Pulse Line Ion Accelerator (PLIA), which may lead to compact, low-cost modular linac drivers.

  3. Center for Bio-Inspired Energy Science (CBES) | U.S. DOE Office of Science

    Office of Science (SC)

    (SC) Bio-Inspired Energy Science (CBES) Energy Frontier Research Centers (EFRCs) EFRCs Home Centers EFRC External Websites Research Science Highlights News & Events Publications History Contact BES Home Centers Center for Bio-Inspired Energy Science (CBES) Print Text Size: A A A FeedbackShare Page CBES Header Director Samuel Stupp Lead Institution Northwestern University Year Established 2009 Mission To discover and develop bio-inspired systems that reveal new connections between energy

  4. A National Collaboratory to Advance the Science of High Temperature Plasma Physics for Magnetic Fusion

    SciTech Connect

    Schissel, David P.; Abla, G.; Burruss, J. R.; Feibush, E.; Fredian, T. W.; Goode, M. M.; Greenwald, M. J.; Keahey, K.; Leggett, T.; Li, K.; McCune, D. C.; Papka, M. E.; Randerson, L.; Sanderson, A.; Stillerman, J.; Thompson, M. R.; Uram, T.; Wallace, G.

    2012-12-20

    This report summarizes the work of the National Fusion Collaboratory (NFC) Project to develop a persistent infrastructure to enable scientific collaboration for magnetic fusion research. The original objective of the NFC project was to develop and deploy a national FES Grid (FusionGrid) that would be a system for secure sharing of computation, visualization, and data resources over the Internet. The goal of FusionGrid was to allow scientists at remote sites to participate as fully in experiments and computational activities as if they were working on site thereby creating a unified virtual organization of the geographically dispersed U.S. fusion community. The vision for FusionGrid was that experimental and simulation data, computer codes, analysis routines, visualization tools, and remote collaboration tools are to be thought of as network services. In this model, an application service provider (ASP provides and maintains software resources as well as the necessary hardware resources. The project would create a robust, user-friendly collaborative software environment and make it available to the US FES community. This Grid's resources would be protected by a shared security infrastructure including strong authentication to identify users and authorization to allow stakeholders to control their own resources. In this environment, access to services is stressed rather than data or software portability.

  5. DOE Science Showcase - Read about Energy-Efficient Lighting ...

    Office of Scientific and Technical Information (OSTI)

    DOE Science Showcase - Read about Energy-Efficient Lighting From the DOE Press Release: ... Science.gov FAQ of Overview of Solid-State Lighting Solid-State Lighting: SSL Quality ...

  6. DOE Science Showcase - Supernovae | OSTI, US Dept of Energy Office...

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect - reports from DOE science, technology and engineering programs. National Library of EnergyBeta - search results from across the DOE Complex. Science.gov - search ...

  7. 21st Annual Department of Energy National Science Bowl April...

    Office of Environmental Management (EM)

    and the U.S. Virgin Islands - will be quizzed on various science topics including biology, chemistry, earth science, physics, astronomy, and energy, as well as math. "The U.S. ...

  8. Before the House Subcommittee on Energy - Committee on Science...

    Energy.gov [DOE] (indexed site)

    Dr. Patricia Dehmer, Acting Director of the Office of Science Before the House Subcommittee on Energy - Committee on Science, Space, and Technology 7-11-14PatriciaDehmner FT ...

  9. DOE Science Showcase - Energy Department Scientists and Engineers...

    Office of Scientific and Technical Information (OSTI)

    Researchers funded by the U.S. Department of Energy (DOE) Office of Science were recently ... a variety of issues, from computational biology to atomic, molecular and optical science. ...

  10. Contacts for Geospatial Science Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Geospatial Science Program Contacts for Geospatial Science Program LeAnn Oliver Associate Chief Information Officer for IT Policy and Governance US Department of Energy 202-586-0166 Geospatial

  11. Atomic data of tungsten for current and future uses in fusion and plasma science

    SciTech Connect

    Clementson, J.; Beiersdorfer, P.; Lennartsson, T.

    2013-04-19

    Atomic physics has played an important role throughout the history of experimental plasma physics. For example, accurate knowledge of atomic properties has been crucial for understanding the plasma energy balance and for diagnostic development. With the shift in magnetic fusion research toward high-temperature burning plasmas like those expected to be produced in the ITER tokamak, the atomic physics of tungsten has become important. Tungsten will be a constituent of ITER plasmas because of its use as a plasma-facing material able to withstand high heat loads with lower tritium retention than other possible materials. Already, ITER diagnostics are being developed based on using tungsten radiation. In particular, the ITER Core Imaging X-ray Spectrometer (CIXS), which is designed to measure the core ion temperature and bulk plasma motion, is being based on the x-ray emission of neonlike tungsten ions (W{sup 64+}). In addition, tungsten emission will at ITER be measured by extreme ultraviolet (EUV) and optical spectrometers to determine its concentration in the plasma and to assess power loss and tungsten sputtering rates. On present-day tokamaks tungsten measurements are therefore being performed in preparation of ITER. Tungsten has very complex spectra and most are still unknown. The WOLFRAM project at Livermore aims to produce data for tungsten in various spectral bands: Lshell x-ray emission for CIXS development, soft x-ray and EUV M- and N-shell tungsten emission for understanding the edge radiation from ITER plasmas as well as from contemporary tokamaks, and O-shell emission for developing spectral diagnostics of the ITER divertor.

  12. Expanding Science and Energy Literacy with America's Science...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    at museums. These visits created lasting impressions, inspiring us to discover more about the world around us. It's no wonder that science and technology museums around the ...

  13. Global Science Gateway Now Open | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Now Open Global Science Gateway Now Open June 22, 2007 - 2:07pm Addthis WorldWideScience.org opens public access to more than 200 million pages of international research information WASHINGTON, DC-The U.S. Department of Energy (DOE) and the British Library, along with eight other participating countries, today opened an online global gateway to science information from 15 national portals. The gateway, WorldWideScience.org, gives citizens, researchers and anyone interested in science the

  14. A review of research in ``cold fusion`` and its impact on energy conservation

    SciTech Connect

    Hurtak, J.J.; Bailey, P.G.

    1995-12-31

    During the past six years, cold fusion enhancement through a variety of research techniques has grown at a rapid rate to the point where it now can be regarded as a major field of endeavor, a second generation heat transfer technology. Observations have been made of deuteron-deuteron (d-d) fusion at room temperature during low voltage electrolytic infusion of deuterons into metallic titanium or palladium electrodes. Neutrons with and energy of approximately 2.5 MeV were with a sensitive neutron spectrometer at a rate of 2 {times} 10{sup {minus}3} n/s, which cannot be accounted for by ambient-neutron background variations. These reactions have been known to yield an excited helium nucleus ({sup 4} He) with approximately 23.8 MeV excess energy, where d+d= {sup 4}He + energy. In most successful experiments, 1% to 50% more heat than the input of electric power into the electrolytic cells has been recorded. These experiments are being successfully repeated on an international basis. Some of these results and various theories proposed to explain this phenomena are presented. Possible applications of ``cold fusion`` technology are given, and its impact on energy conservation is discussed.

  15. California Academy of Sciences | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Academy of Sciences Jump to: navigation, search Name: California Academy of Sciences Place: San Francisco, California Zip: 94103-3009 Product: Set up to explore, explain and...

  16. NREL: Energy Systems Integration - Computational Science and...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Computational Science and Visualization Computational science and visualization capabilities at NREL propel technology innovation as a research tool by which scientists and ...

  17. Lighting Science Group | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Science Group Jump to: navigation, search Name: Lighting Science Group Place: Dallas, Texas Zip: 75201 Product: LED design company, with multiple patents pending in power...

  18. Area Science Park | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Area Science Park Jump to: navigation, search Name: Area Science Park Place: Italy Sector: Services Product: General Financial & Legal Services ( Government Public sector )...

  19. PSE Science Park | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    PSE Science Park Jump to: navigation, search Name: PSE Science Park Place: Switzerland Sector: Services Product: General Financial & Legal Services ( Private family-controlled )...

  20. Summary of the report of the Senior Committee on Environmental, Safety, and Economic Aspects of Magnetic Fusion Energy

    SciTech Connect

    Holdren, J.P.; Berwald, D.H.; Budnitz, R.J.; Crocker, J.G.; Delene, J.G.; Endicott, R.D.; Kazimi, M.S.; Krakowski, R.A.; Logan, B.G.; Schultz, K.R.

    1987-09-10

    The Senior Committee on Environmental, Safety, and Economic Aspects of Magnetic Fusion Energy (ESECOM) has assessed magnetic fusion energy's prospects for providing energy with economic, environmental, and safety characteristics that would be attractive compared with other energy sources (mainly fission) available in the year 2015 and beyond. ESECOM gives particular attention to the interaction of environmental, safety, and economic characteristics of a variety of magnetic fusion reactors, and compares them with a variety of fission cases. Eight fusion cases, two fusion-fission hybrid cases, and four fission cases are examined, using consistent economic and safety models. These models permit exploration of the environmental, safety, and economic potential of fusion concepts using a wide range of possible materials choices, power densities, power conversion schemes, and fuel cycles. The ESECOM analysis indicates that magnetic fusion energy systems have the potential to achieve costs-of-electricity comparable to those of present and future fission systems, coupled with significant safety and environmental advantages. 75 refs., 2 figs., 24 tabs.

  1. Major next steps for fusion energy based on the spherical tokamak design |

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Princeton Plasma Physics Lab Major next steps for fusion energy based on the spherical tokamak design By John Greenwald August 24, 2016 Tweet Widget Google Plus One Share on Facebook Test cell of the National Spherical Torus Experiment-Upgrade with tokamak in the center. (Photo by Elle Starkman/PPPL Office of Communications) Test cell of the National Spherical Torus Experiment-Upgrade with tokamak in the center. Gallery: Physicist Jonathan Menard. (Photo by Elle Starkman/PPPL Office of

  2. PPPL to launch major upgrade of key fusion energy test facility | Princeton

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Plasma Physics Lab to launch major upgrade of key fusion energy test facility NSTX project will produce most powerful spherical torus in the world By John Greenwald January 9, 2012 Tweet Widget Google Plus One Share on Facebook NSTX-U cross section. NSTX-U cross section. Gallery: (Photo by Elle Starkman, PPPL Office of Communications) (Photo by Elle Starkman, PPPL Office of Communications) (Photo by Elle Starkman, PPPL Office of Communications) (Photo by Elle Starkman, PPPL Office of

  3. Energy Frontier | U.S. DOE Office of Science (SC)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy Frontier High Energy Physics (HEP) HEP Home About Research Science Drivers of Particle Physics Energy Frontier Experiments Intensity Frontier Cosmic Frontier Theoretical and Computational Physics Advanced Technology R&D Accelerator Stewardship Facilities Science Highlights Benefits of HEP Funding Opportunities Advisory Committees Community Resources Contact Information High Energy Physics U.S. Department of Energy SC-25/Germantown Building 1000 Independence Ave., SW Washington, DC

  4. Before the House Science and Technology Subcommittee on Energy...

    Energy.gov [DOE] (indexed site)

    Delivery and Energy Reliability Subject: Smart Grid: Cyber-Security and American Recovery ... Committee on Science and Technology, U.S. House of Representatives, July 23, 2009 ...

  5. E-print Network home page -- Energy, science, and technology...

    Office of Scientific and Technical Information (OSTI)

    Energy, science, and technology for the research community Enter Search Terms Search Advanced Search The E-print Network is . . . . . . a vast, integrated network of electronic ...

  6. Primary Science of Energy Teacher and Student Guides (42 Activities...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Teacher and Student Guides (42 Activities) Primary Science of Energy Teacher and Student Guides (42 Activities) Below is information about the student activitylesson plan from...

  7. DOE Zero Energy Home Webinar: Comprehensive Building Science (Text Version)

    Office of Energy Efficiency and Renewable Energy (EERE)

    Below is the text version of the webinar, DOE Zero Energy Ready Home - Comprehensive Building Science, presented in March 2014. Watch the presentation.

  8. DOE Science Showcase - Space Technology | OSTI, US Dept of Energy...

    Office of Scientific and Technical Information (OSTI)

    Examples of this technology include space nuclear power, applications to detect and ... Additional Resources DOE Office of Science DOE Office of Nuclear Energy Infographic: Where ...

  9. DOE Science Showcase: Space Technology | OSTI, US Dept of Energy...

    Office of Scientific and Technical Information (OSTI)

    Examples of this technology include space nuclear power, applications to detect and ... Additional Resources DOE Office of Science DOE Office of Nuclear Energy Infographic: Where ...

  10. Energy Frontier Research Center Center for Materials Science...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Energy Frontier Research Center Center for Materials Science of Nuclear Fuels Citation ... dispersion, and, further, that advanced lattice dynamics simulations ...

  11. Fusion cross sections for the {sup 9}Be+{sup 124}Sn reaction at energies near the Coulomb barrier

    SciTech Connect

    Parkar, V. V.; Palit, R.; Sharma, Sushil K.; Naidu, B. S.; Santra, S.; Mahata, K.; Ramachandran, K.; Joshi, P. K.; Rath, P. K.; Trivedi, T.; Raghav, A.

    2010-11-15

    The complete and incomplete fusion cross sections for {sup 9}Be+{sup 124}Sn reaction have been deduced using the online {gamma}-ray measurement technique. Complete fusion at energies above the Coulomb barrier was found to be suppressed by {approx}28% compared to the coupled-channels calculations and is in agreement with the systematics of L. R. Gasques et al. [Phys. Rev. C 79, 034605 (2009)]. Study of the projectile dependence for fusion on a {sup 124}Sn target shows that, for {sup 9}Be nuclei, the enhancement at below-barrier energies is substantial compared to that of tightly bound nuclei.

  12. The National Ignition Facility and the Promise of Inertial Fusion Energy

    SciTech Connect

    Moses, E I

    2010-12-13

    The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL) in Livermore, CA, is now operational. The NIF is the world's most energetic laser system capable of producing 1.8 MJ and 500 TW of ultraviolet light. By concentrating the energy from its 192 extremely energetic laser beams into a mm{sup 3}-sized target, NIF can produce temperatures above 100 million K, densities of 1,000 g/cm{sup 3}, and pressures 100 billion times atmospheric pressure - conditions that have never been created in a laboratory and emulate those in planetary interiors and stellar environments. On September 29, 2010, the first integrated ignition experiment was conducted, demonstrating the successful coordination of the laser, cryogenic target system, array of diagnostics and infrastructure required for ignition demonstration. In light of this strong progress, the U.S. and international communities are examining the implication of NIF ignition for inertial fusion energy (IFE). A laser-based IFE power plant will require a repetition rate of 10-20 Hz and a laser with 10% electrical-optical efficiency, as well as further development and advances in large-scale target fabrication, target injection, and other supporting technologies. These capabilities could lead to a prototype IFE demonstration plant in the 10- to 15-year time frame. LLNL, in partnership with other institutions, is developing a Laser Inertial Fusion Engine (LIFE) concept and examining in detail various technology choices, as well as the advantages of both pure fusion and fusion-fission schemes. This paper will describe the unprecedented experimental capabilities of the NIF and the results achieved so far on the path toward ignition. The paper will conclude with a discussion about the need to build on the progress on NIF to develop an implementable and effective plan to achieve the promise of LIFE as a source of carbon-free energy.

  13. Science on Saturday: Reimagining the Possible: Scientific Transformations

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Shaping the Path Towards Fusion Energy | Princeton Plasma Physics Lab March 5, 2016, 9:30am Science On Saturday MBG Auditorium at PPPL Science on Saturday: Reimagining the Possible: Scientific Transformations Shaping the Path Towards Fusion Energy Dr. Edmund Synakowski Department of Energy, Office of Science Abstract: PDF icon Synakowski.pdf Science_on_Saturday05Mar2016_ESynakowski Contact Information Coordinator(s): Ms. Deedee Ortiz-Arias dortiz@pppl.gov Host(s): Dr. Andrew Zwicker

  14. Fusion Materials Research at Oak Ridge National Laboratory in Fiscal Year 2014

    SciTech Connect

    Wiffen, Frederick W.; Noe, Susan P.; Snead, Lance Lewis

    2014-10-01

    The realization of fusion energy is a formidable challenge with significant achievements resulting from close integration of the plasma physics and applied technology disciplines. Presently, the most significant technological challenge for the near-term experiments such as ITER, and next generation fusion power systems, is the inability of current materials and components to withstand the harsh fusion nuclear environment. The overarching goal of the ORNL fusion materials program is to provide the applied materials science support and understanding to underpin the ongoing DOE Office of Science fusion energy program while developing materials for fusion power systems. In doing so the program continues to be integrated both with the larger U.S. and international fusion materials communities, and with the international fusion design and technology communities.

  15. Alcator C-Mod | U.S. DOE Office of Science (SC)

    Office of Science (SC)

    Alcator C-Mod Fusion Energy Sciences (FES) FES Home About Research Facilities User Facilities DIII-D National Fusion Facility (DIII-D) National Spherical Torus Experiment (NSTX) ...

  16. FES User Facilities | U.S. DOE Office of Science (SC)

    Office of Science (SC)

    Print Text Size: A A A FeedbackShare Page The Fusion Energy Sciences program supports the following national scientific user facilities: DIII-D National Fusion Facility (DIII-D) at ...

  17. Coarse-grained molecular dynamics study of membrane fusion: Curvature effects on free energy barriers along the stalk mechanism

    SciTech Connect

    Kawamoto, Shuhei; Shinoda, Wataru; Klein, Michael L.

    2015-12-28

    The effects of membrane curvature on the free energy barrier for membrane fusion have been investigated using coarse-grained molecular dynamics (CG-MD) simulations, assuming that fusion takes place through a stalk intermediate. Free energy barriers were estimated for stalk formation as well as for fusion pore formation using the guiding potential method. Specifically, the three different geometries of two apposed membranes were considered: vesicle–vesicle, vesicle–planar, and planar–planar membranes. The free energy barriers for the resulting fusion were found to depend importantly on the fusing membrane geometries; the lowest barrier was obtained for vesicular membranes. Further, lipid sorting was observed in fusion of the mixed membranes of dimyristoyl phosphatidylcholine and dioleoyl phosphatidylethanolamine (DOPE). Specifically, DOPE molecules were found to assemble around the stalk to support the highly negative curved membrane surface. A consistent result for lipid sorting was observed when a simple continuum model (CM) was used, where the Helfrich energy and mixing entropy of the lipids were taken into account. However, the CM predicts a much higher free energy barrier than found using CG-MD. This discrepancy originates from the conformational changes of lipids, which were not considered in the CM. The results of the CG-MD simulations reveal that a large conformational change in the lipid takes place around the stalk region, which results in a reduction of free energy barriers along the stalk mechanism of membrane fusion.

  18. Energy Flow Diagram | U.S. DOE Office of Science (SC)

    Office of Science (SC)

    Science for Energy Flow » Energy Flow Diagram Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Program Summaries Brochures Reports Accomplishments Presentations BES and Congress Science for Energy Flow Energy Flow Diagram Seeing Matter Nano for Energy Scale of Things Chart Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown

  19. DOE Zero Energy Ready Home Webinar: Comprehensive Building Science

    Energy.gov [DOE]

    DOE Zero Energy Homes aren’t just really efficient – they’re also designed and built using solid building science principles. Version 3 of the ENERGY STAR Certified Homes program, a prerequisite...

  20. Before the House Subcommittee on Energy, Committee on Science...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Dr. Peter Lyons, Assistant Secretary for Nuclear Energy Before the House Subcommittee on Energy, Committee on Science, Space and Technology 12-11-14Peter Lyons FT HSST.pdf More...

  1. Before the House Science and Technology Subcommittee on Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Director, Office of High Energy Physics, Office of Science Subject: Investigating the Nature of Matter Energy, Space and Time PDF icon 10-1-09FinalTestimony(Kovar).pdf More...

  2. FES Committees of Visitors | U.S. DOE Office of Science (SC)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    FES Committees of Visitors Fusion Energy Sciences Advisory Committee (FESAC) FESAC Home Meetings Members Charges/Reports Charter .pdf file (266KB) FES Committees of Visitors Federal Advisory Committees FES Home FES Committees of Visitors Print Text Size: A A A FeedbackShare Page Fusion Energy Sciences Advisory Committee (FESAC) » The links below provide an archive of Fusion Energy Sciences (FES) Committees of Visitors (COV) reports and responses. 2014 FESAC COV Report on FES Program .pdf file

  3. FESAC Agenda - February 2001 | U.S. DOE Office of Science (SC)

    Office of Science (SC)

    1 Fusion Energy Sciences Advisory Committee (FESAC) FESAC Home Meetings Members Charges/Reports Charter .pdf file (266KB) FES Committees of Visitors Federal Advisory Committees FES Home Meetings FESAC Agenda - February 2001 Print Text Size: A A A FeedbackShare Page Fusion Energy Sciences Advisory Committee Meeting Agenda February 27-28, 2001 Bethesda, Maryland Tuesday, February 27, 2001 Date/Time Topic Speaker 0900 Welcome/Logistics Hazeltine 0905 Office of Fusion Energy Sciences Perspective

  4. Portsmouth Science Alliance | Department of Energy

    Energy Saver

    Science Alliance Portsmouth Science Alliance October 4, 2016 8:00AM EDT to October 6, 2016 5:00PM EDT Contact Greg Simonton, DOE Site Office: (740) 897-3737

  5. NREL: Energy Sciences - Kirstin M. Alberi

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    a B.S. in Materials Science and Engineering from the Massachusetts Institute of Technology in 2003 and a PhD in Materials Science and Engineering from the University of...

  6. Chuck Kessel Wins the 2015 Fusion Technology Award | Princeton Plasma

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Physics Lab Chuck Kessel Wins the 2015 Fusion Technology Award By Raphael Rosen July 13, 2015 Tweet Widget Google Plus One Share on Facebook Chuck Kessel, a principal engineer at the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL), has won the 2015 Fusion Technology Award. The honor, from the Institute of Electrical and Electronics Engineers' (IEEE) Nuclear and Plasma Sciences Society, recognizes outstanding contributions to fusion engineering and technology.

  7. Intense fusion neutron sources

    SciTech Connect

    Kuteev, B. V.; Goncharov, P. R.; Sergeev, V. Yu.; Khripunov, V. I.

    2010-04-15

    The review describes physical principles underlying efficient production of free neutrons, up-to-date possibilities and prospects of creating fission and fusion neutron sources with intensities of 10{sup 15}-10{sup 21} neutrons/s, and schemes of production and application of neutrons in fusion-fission hybrid systems. The physical processes and parameters of high-temperature plasmas are considered at which optimal conditions for producing the largest number of fusion neutrons in systems with magnetic and inertial plasma confinement are achieved. The proposed plasma methods for neutron production are compared with other methods based on fusion reactions in nonplasma media, fission reactions, spallation, and muon catalysis. At present, intense neutron fluxes are mainly used in nanotechnology, biotechnology, material science, and military and fundamental research. In the near future (10-20 years), it will be possible to apply high-power neutron sources in fusion-fission hybrid systems for producing hydrogen, electric power, and technological heat, as well as for manufacturing synthetic nuclear fuel and closing the nuclear fuel cycle. Neutron sources with intensities approaching 10{sup 20} neutrons/s may radically change the structure of power industry and considerably influence the fundamental and applied science and innovation technologies. Along with utilizing the energy produced in fusion reactions, the achievement of such high neutron intensities may stimulate wide application of subcritical fast nuclear reactors controlled by neutron sources. Superpower neutron sources will allow one to solve many problems of neutron diagnostics, monitor nano-and biological objects, and carry out radiation testing and modification of volumetric properties of materials at the industrial level. Such sources will considerably (up to 100 times) improve the accuracy of neutron physics experiments and will provide a better understanding of the structure of matter, including that of the

  8. Chapter 9: Enabling Capabilities for Science and Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    9: Enabling Capabilities for Science and Energy September 2015 Quadrennial Technology Review 9 Enabling Capabilities for Science and Energy Tools for Scientific Discovery and Technology Development  Investment in basic science research is expanding our understanding of how structure leads to function-from the atomic- and nanoscale to the mesoscale and beyond-in natural systems, and is enabling a transformation from observation to control and design of new systems with properties tailored to

  9. Photons & Fusion Newsletter - 2014

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Discovery Science on NIF: Exploring the Physics of Star Formation Article on MOIRE Optics on Cover of Applied Optics Mode 1 Drive Asymmetry in NIF Inertial Confinement Fusion...

  10. Proceedings of the Office of Fusion Energy/DOE workshop on ceramic matrix composites for structural applications in fusion reactors

    SciTech Connect

    Jones, R.H. ); Lucas, G.E. )

    1990-11-01

    A workshop to assess the potential application of ceramic matrix composites (CMCs) for structural applications in fusion reactors was held on May 21--22, 1990, at University of California, Santa Barbara. Participants included individuals familiar with materials and design requirements in fusion reactors, ceramic composite processing and properties and radiation effects. The primary focus was to list the feasibility issues that might limit the application of these materials in fusion reactors. Clear advantages for the use of CMCs are high-temperature operation, which would allow a high-efficiency Rankine cycle, and low activation. Limitations to their use are material costs, fabrication complexity and costs, lack of familiarity with these materials in design, and the lack of data on radiation stability at relevant temperatures and fluences. Fusion-relevant feasibility issues identified at this workshop include: hermetic and vacuum properties related to effects of matrix porosity and matrix microcracking; chemical compatibility with coolant, tritium, and breeder and multiplier materials, radiation effects on compatibility; radiation stability and integrity; and ability to join CMCs in the shop and at the reactor site, radiation stability and integrity of joints. A summary of ongoing CMC radiation programs is also given. It was suggested that a true feasibility assessment of CMCs for fusion structural applications could not be completed without evaluation of a material tailored'' to fusion conditions or at least to radiation stability. It was suggested that a follow-up workshop be held to design a tailored composite after the results of CMC radiation studies are available and the critical feasibility issues are addressed.

  11. Pillars of Recovery | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Environmental Cleanup - 6.0 billion Creating jobs and reducing the legacy cold war ... and Early Career Awards 83 million for Fusion Energy Sciences 58 million for Small ...

  12. Magellan @ NERSC Pushes Energy Efficiency Envelope

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Magellan team was able to use only one "cold row" to feed cool air to the entire ... problems in combustion, climate modeling, fusion energy, materials science, physics, ...

  13. U.S. Signs International Fusion Energy Agreement; Large-Scale...

    Office of Science (SC)

    ... Fusion is clean: It produces negligible atmospheric emissions and zero greenhouse gas ... fusion reactors would use lithium and deuterium, both readily available natural resources. ...

  14. Fusion Materials Research at Oak Ridge National Laboratory in Fiscal Year 2015

    SciTech Connect

    Wiffen, F. W.; Katoh, Yutai; Melton, Stephanie G.

    2015-12-01

    The realization of fusion energy is a formidable challenge with significant achievements resulting from close integration of the plasma physics and applied technology disciplines. Presently, the most significant technological challenge for the near-term experiments such as ITER, and next generation fusion power systems, is the inability of current materials and components to withstand the harsh fusion nuclear environment. The overarching goal of the Oak Ridge National Laboratory (ORNL) fusion materials program is to provide the applied materials science support and understanding to underpin the ongoing Department of Energy (DOE) Office of Science fusion energy program while developing materials for fusion power systems. In doing so the program continues to be integrated both with the larger United States (US) and international fusion materials communities, and with the international fusion design and technology communities.This document provides a summary of Fiscal Year (FY) 2015 activities supporting the Office of Science, Office of Fusion Energy Sciences Materials Research for Magnetic Fusion Energy (AT-60-20-10-0) carried out by ORNL. The organization of this report is mainly by material type, with sections on specific technical activities. Four projects selected in the Funding Opportunity Announcement (FOA) solicitation of late 2011 and funded in FY2012-FY2014 are identified by “FOA” in the titles. This report includes the final funded work of these projects, although ORNL plans to continue some of this work within the base program.

  15. Chapter 1: Energy Challenges | Representative DOE Energy and Science Program Worshops

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy and Science Program Workshops ENERGY U.S. DEPARTMENT OF Quadrennial Technology Review 2015 1 Quadrennial Technology Review 2015 Representative DOE Energy and Science Program Workshops Chapter 1: Supplemental Information The Quadrennial Technology Review (QTR) found very extensive outreach by the DOE Energy and Science Programs to the broad energy research, development, demonstration, and deployment (RDD&D) community- including industry, academia, civil society, national laboratories,

  16. X-Ray Energy Responses of Silicon Tomography Detectors Irradiated with Fusion Produced Neutrons

    SciTech Connect

    Kohagura, J. [Plasma Research Centre, University of Tsukuba (Japan); Cho, T. [Plasma Research Centre, University of Tsukuba (Japan); Hirata, M. [Plasma Research Centre, University of Tsukuba (Japan); Numakura, T. [Plasma Research Centre, University of Tsukuba (Japan); Yokoyama, N. [Plasma Research Centre, University of Tsukuba (Japan); Fukai, T. [Plasma Research Centre, University of Tsukuba (Japan); Tomii, Y. [Plasma Research Centre, University of Tsukuba (Japan); Tokioka, S. [Plasma Research Centre, University of Tsukuba (Japan); Miyake, Y. [Plasma Research Centre, University of Tsukuba (Japan); Kiminami, S. [Plasma Research Centre, University of Tsukuba (Japan); Shimizu, K. [Plasma Research Centre, University of Tsukuba (Japan); Miyoshi, S. [Plasma Research Centre, University of Tsukuba (Japan); Hirano, K. [High Energy Accelerator Research Organization (Japan); Yoshida, M. [Japan Atomic Energy Research Institute (Japan); Yamauchi, M. [Japan Atomic Energy Research Institute (Japan); Kondoh, T. [Japan Atomic Energy Research Institute (Japan); Nishitani, T. [Japan Atomic Energy Research Institute (Japan)

    2005-01-15

    In order to clarify the effects of fusion-produced neutron irradiation on silicon semiconductor x-ray detectors, the x-ray energy responses of both n- and p-type silicon tomography detectors used in the Joint European Torus (JET) tokamak (n-type) and the GAMMA 10 tandem mirror (p-type) are studied using synchrotron radiation at the Photon Factory of the National Laboratory for High Energy Accelerator Research Organization (KEK). The fusion neutronics source (FNS) of Japan Atomic Energy Research Institute (JAERI) is employed as well-calibrated D-T neutron source with fluences from 10{sup 13} to 10{sup 15} neutrons/cm{sup 2} onto these semiconductor detectors. Different fluence dependence is found between these two types of detectors; that is, (i) for the n-type detector, the recovery of the degraded response is found after the neutron exposure beyond around 10{sup 13} neutrons/cm{sup 2} onto the detector. A further finding is followed as a 're-degradation' by a neutron irradiation level over about 10{sup 14} neutrons/cm{sup 2}. On the other hand, (ii) the energy response of the p-type detector shows only a gradual decrease with increasing neutron fluences. These properties are interpreted by our proposed theory on semiconductor x-ray responses in terms of the effects of neutrons on the effective doping concentration and the diffusion length of a semiconductor detector.

  17. NREL: Energy Sciences - Chemistry and Nanoscience

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    and comprises the Chemical and Material Sciences Center and the National Center for Photovoltaics. Printable Version NREL is a national laboratory of the U.S. Department of...

  18. NREL: Energy Sciences - Solid-State Theory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Science Printable Version Solid-State Theory Image showing a roughly spherical red shape that looks like an apple that is floating within a yellow hemispherical shell....

  19. Bayer MaterialScience | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Leverkusen, Germany Website: www.bayermaterialscience.comi References: Bayer Material Science1 Information About Partnership with NREL Partnership with NREL Yes Partnership Type...

  20. Department of Energy Issues Requests for Nuclear Science and Engineering

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Scholarships and Fellowships Applications | Department of Energy Nuclear Science and Engineering Scholarships and Fellowships Applications Department of Energy Issues Requests for Nuclear Science and Engineering Scholarships and Fellowships Applications May 7, 2009 - 1:46pm Addthis The U.S. Department of Energy (DOE) today announced two new Requests for Application (RFA) as part of the Department's efforts to recruit and train the next generation of nuclear scientists and engineers - a

  1. Major next steps proposed for development of fusion energy based on the

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    spherical tokamak design | Princeton Plasma Physics Lab

    Major next steps proposed for development of fusion energy based on the spherical tokamak design By John Greenwald August 24, 2016 Tweet Widget Google Plus One Share on Facebook Phhysicist Jonathan Menard (Photo by Elle Starkman/Office of Communications) Phhysicist Jonathan Menard Gallery: Center stack of the NSTX-U. (Photo by Elle Starkman/PPPL Office of Communications) Center stack of the NSTX-U. NSTX-U test cell with tokamak in

  2. Elise - the next step in development of induction heavy ion drivers for inertial fusion energy

    SciTech Connect

    Lee, E.; Bangerter, R.O.; Celata, C.; Faltens, A.; Fessenden, T.; Peters, C.; Pickrell, J.; Reginato, L.; Seidl, P.; Yu, S.

    1994-11-01

    LBL, with the participation of LLNL and industry, proposes to build Elise, an electric-focused accelerator as the next logical step towards the eventual goal of a heavy-ion induction linac powerful enough to implode or {open_quotes}drive{close_quotes} inertial-confinement fusion targets. Elise will be at full driver scale in several important parameters-most notably line charge density (a function of beam size), which was not explored in earlier experiments. Elise will be capable of accelerating and electrostatically focusing four parallel, full-scale ion beams and will be designed to be extendible, by successive future construction projects, to meet the goal of the USA DOE Inertial Fusion Energy program (IFE). This goal is to address all remaining issues in heavy-ion IFE except target physics, which is currently the responsibility of DOE Defense Programs, and the target chamber. Thus Elise is the first step of a program that will provide a solid foundation of data for further progress toward a driver, as called for in the National Energy Strategy and National Energy Policy Act.

  3. Fusion Energy Sciences (FES) Homepage | U.S. DOE Office of Science...

    Office of Science (SC)

    ... electrons have been knocked free of atomic nuclei, forming an ensemble of ions and electrons that can conduct electrical currents and can respond to electric and magnetic fields. ...

  4. Science.gov, Geothermal Energy Technology exhibits at Tennessee Valley

    Office of Scientific and Technical Information (OSTI)

    Corridor Summit | OSTI, US Dept of Energy Office of Scientific and Technical Information gov, Geothermal Energy Technology exhibits at Tennessee Valley Corridor Summit Back to the OSTI News Listing for 2006 OSTI highlighted Science.gov and the Geothermal Energy Technology subject portal at the 16thTennessee Valley Corridor Summit, held at the Chattanooga Convention Center May 31 to June 1. Science.gov, the nation's "go to" Web portal for government science information, is a

  5. Photo of the Week: The Mirror Fusion Test Facility | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    The Mirror Fusion Test Facility Photo of the Week: The Mirror Fusion Test Facility July 19, 2013 - 4:17pm Addthis This 1981 photo shows the Mirror Fusion Test Facility (MFTF), an experimental magnetic confinement fusion device built using a magnetic mirror at Lawrence Livermore National Laboratory (LLNL). The MFTF functioned as the primary research center for mirror fusion devices. The design consisted of a 64-meter-long vacuum vessel fitted with 26 coil magnets bonding the center of the vessel

  6. Science-Driven Network

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Science-Driven Network Requirements for ESnet Update to the 2002 Office of Science Networking Requirements Workshop Report February 21, 2006 1-1 Science-Driven Network Requirements for ESnet Update to the 2002 Office of Science Networking Requirements Workshop Report February 21, 2006 Contributors Paul Adams, LBNL (Advanced Light Source) Shane Canon, ORNL (NLCF) Steven Carter, ORNL (NLCF) Brent Draney, LBNL (NERSC) Martin Greenwald, MIT (Magnetic Fusion Energy) Jason Hodges, ORNL (Spallation

  7. U.S. Department of Energy Office of Nuclear Energy, Science and...

    Energy.gov [DOE] (indexed site)

    One the cover: Albert Einstein (1879-1955) U.S. Department of Energy Office of Nuclear Energy, Science and Technology Washington, D.C. 20585 The History of Nuclear Energy Table of ...

  8. Energy Sciences Building | Argonne National Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    | Department of Energy Savings Tips on the Go: Check Out the New Energy Savers Mobile Site Energy Savings Tips on the Go: Check Out the New Energy Savers Mobile Site March 16, 2012 - 12:46pm Addthis Chris Stewart Senior Communicator at DOE's National Renewable Energy Laboratory For years, many of you have found energy-saving tips about how to save money and energy at home, in your vehicle, and at work on our EnergySavers desktop site. This month, we launched a new Energy Savers mobile

  9. Consent Order, Brookhaven Science Associates, LLC | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Associates, LLC Consent Order, Brookhaven Science Associates, LLC December 2015 Worker Safety and Health Enforcement Consent Order issued to Brookhaven Science Associates, LLC relating to an electrical shock event that occurred at the Brookhaven National Laboratory. On November 23, 2015, the U.S. Department of Energy (DOE) Office of Enterprise Assessments' Office of Enforcement issued a Consent Order (WCO-2015-02) to Brookhaven Science Associates, LLC, relating to an electrical shock suffered by

  10. Building America Building Science Education Roadmap | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Education Roadmap Building America Building Science Education Roadmap This roadmap outlines steps that U.S. Department of Energy Building America program must take to develop a robust building science education curriculum in coming years. ba_bldg_science_education_roadmap.pdf (645.63 KB) More Documents & Publications DOE Challenge Home Student Competition Building America Top Innovations Hall of Fame Profile - Building America's Top Innovations Propel the Home Building Industry toward Higher

  11. Center for Electrochemical Energy Science | Argonne National Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Research Program Publications & Presentations News About Staff About Staff Argonne National Laboratory Center for Electrochemical Energy Science Research Program Publications & Presentations News An Energy Frontier Research Center Exploring the electrochemical reactivity of oxide materials and their interfaces under the extreme conditions relevant to energy storage systems More Back to top Twitter Flickr Facebook Linked In YouTube Pinterest Google Plus

  12. Coal Utilization Science | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Crosscutting Research » Coal Utilization Science Coal Utilization Science Computer scientists at FE's NETL study a visualization of a power plant component. Computer scientists at FE's NETL study a visualization of a power plant component. Traditionally the process of taking a new power plant system from the drawing board to a first-of-a-kind prototype has involved a series of progressively larger engineering test facilities and pilot plants, leading ultimately to a full-scale demonstration.

  13. Middle School Energy and Nuclear Science Curriculum Now Available

    Office of Energy Efficiency and Renewable Energy (EERE)

    A new middle school science, technology, engineering, and math (STEM) curriculum called The Harnessed Atom is now available on the Office of Nuclear Energy website. This new curriculum offers...

  14. Department of Energy Advances Geothermal Science through Collegiate Competition

    Energy.gov [DOE]

    Emphasizing the Obama Administration's pledge to accelerate science, technology, engineering, and math (STEM) education, the U.S. Department of Energy today kicked off the 2013 National Geothermal Student Competition.

  15. BPA offering grants in science and energy education

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    offering grants in science and energy education 462015 12:00 AM Tweet Page Content Students from East Valley Central School in Yakima, Washington took a field trip to the Cle...

  16. DOE Science Showcase - Bent Crystals | OSTI, US Dept of Energy...

    Office of Scientific and Technical Information (OSTI)

    The UA9 experiment is investigating how crystals could help to steer particle beams in high-energy colliders, CERN Visit the Science Showcase Archive. Last updated on Wednesday 02 ...

  17. DOE Science Showcase - Green Energy | OSTI, US Dept of Energy...

    Office of Scientific and Technical Information (OSTI)

    Green Energy DOE Green Energy portal DOE GReen Energy Find green energy-related research and development information through a new online portal, DOE Green Energy. The free public ...

  18. Geospatial Science Program | Department of Energy

    Energy Saver

    Department of Energy Generating a Sustainable Wind Energy Future Thanks to Low Prices Generating a Sustainable Wind Energy Future Thanks to Low Prices August 17, 2016 - 4:00pm Addthis The U.S. wind power market remains strong thanks to sustained low prices, rapidly increasing wind energy generation, and growing corporate demand. The U.S. wind power market remains strong thanks to sustained low prices, rapidly increasing wind energy generation, and growing corporate demand. Patrick Gilman

  19. Large Scale Computing and Storage Requirements for Basic Energy Sciences:

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Target 2014 Large Scale Computing and Storage Requirements for Basic Energy Sciences: Target 2014 BESFrontcover.png Final Report Large Scale Computing and Storage Requirements for Basic Energy Sciences, Report of the Joint BES/ ASCR / NERSC Workshop conducted February 9-10, 2010 Workshop Agenda The agenda for this workshop is presented here: including presentation times and speaker information. Read More » Workshop Presentations Large Scale Computing and Storage Requirements for Basic

  20. Energy Frontier Research Center Center for Materials Science of Nuclear

    Office of Scientific and Technical Information (OSTI)

    Fuels (Technical Report) | SciTech Connect Technical Report: Energy Frontier Research Center Center for Materials Science of Nuclear Fuels Citation Details In-Document Search Title: Energy Frontier Research Center Center for Materials Science of Nuclear Fuels Scientific Successes * The first phonon density of states (PDOS) measurements for UO2 to include anharmonicity were obtained using time-of-flight inelastic neutron scattering at the Spallation Neutron Source (SNS), and an innovative,

  1. Before the House Science and Technology Subcommittee on Energy and

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Environment | Department of Energy Subcommittee on Energy and Environment By: Dr. Jehanne Gillo, Director Office of Facilities and Project Management, Office of Nuclear Physics, Office of Science Subject: DOE's Office of Science Research Applications 9-10-09_Final_Testimony_(Gillo).pdf (51.96 KB) More Documents & Publications Isotope Program Transportation Audit Report: OAS-FS-12-09 Audit Report: IG-0574

  2. Renewable energy is focus of New Science on Wheels programs offered by

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Bradbury Science Museum Science On Wheels Renewable energy is focus of New Science on Wheels programs offered by Bradbury Science Museum The classes are designed to generate interest in science and renewable energy by students at schools throughout Northern New Mexico. September 21, 2010 Bradbury Science Museum Bradbury Science Museum Contact Steve Sandoval Communications Office (505) 665-9206 Email The main goals of Science on Wheels are to interest children in science, help develop the

  3. U.S.Statements on International Fusion Reactor (ITER) Siting Decision |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy U.S.Statements on International Fusion Reactor (ITER) Siting Decision U.S.Statements on International Fusion Reactor (ITER) Siting Decision June 28, 2005 - 1:45pm Addthis WASHINGTON, DC - Today in Moscow, Russia, the ministers representing the six ITER parties, including Dr. Raymond L. Orbach, Director of the U.S. Department of Energy's Office of Science, announced the ITER international fusion reactor will be located at the EU site in Cadarache, France. Below are

  4. New Science for a Secure and Sustainable Energy Future

    SciTech Connect

    2008-12-01

    Over the past five years, the Department of Energy's Office of Basic Energy Sciences has engaged thousands of scientists around the world to study the current status, limiting factors and specific fundamental scientific bottlenecks blocking the widespread implementation of alternate energy technologies. The reports from the foundational BESAC workshop, the ten 'Basic Research Needs' workshops and the panel on Grand Challenge science detail the necessary research steps (http://www.sc.doe.gov/bes/reports/list.html). This report responds to a charge from the Director of the Office of Science to the Basic Energy Sciences Advisory Committee to conduct a study with two primary goals: (1) to assimilate the scientific research directions that emerged from these workshop reports into a comprehensive set of science themes, and (2) to identify the new implementation strategies and tools required to accomplish the science. From these efforts it becomes clear that the magnitude of the challenge is so immense that existing approaches - even with improvements from advanced engineering and improved technology based on known concepts - will not be enough to secure our energy future. Instead, meeting the challenge will require fundamental understanding and scientific breakthroughs in new materials and chemical processes to make possible new energy technologies and performance levels far beyond what is now possible.

  5. #SpaceWeek: Science of the Cosmos | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of the Cosmos #SpaceWeek: Science of the Cosmos June 16, 2015 - 10:57am Addthis #SpaceWeek: Science of the Cosmos Pat Adams Pat Adams Digital Content Specialist, Office of Public Affairs How can I participate? Missed the "Energy of Star Wars" Google+ Hangout? You can watch the whole event here. And take a look at all of our other #SpaceWeek content. #SpaceWeek: Science of the Cosmos During #SpaceWeek we covered the Department of Energy's space expertise, from nuclear-powered spacecraft

  6. DOE Science Showcase - Geothermal Energy | OSTI, US Dept of Energy...

    Office of Scientific and Technical Information (OSTI)

    Geothermal Energy oldfaithful.png Old Faithful geyser at Yellowstone National Park in Wyoming. Image credit: DOE National Renewable Energy Laboratory Geothermal energy is a ...

  7. Strategic Energy Science Plan for Research, Education, and Extension

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Agriculture Research, Education, and Economics Mission Area TRATEGIC ENERGY SCIENCE PLAN FOR RESEARCH, EDUCATION, AND EXTENSION March 2008 Role: Lead Research, Education, and Extension programs for sustainable production of agriculture-based and natural resource-based renewable energy and effi cient use and conservation of energy - for the benefit of rural communities and the Nation S Vision: "Growing a clean, efficient, sustainable energy future for America" We have a

  8. Investigation of radial wire arrays for inertial confinement fusion and radiation effects science.

    SciTech Connect

    Serrano, Jason Dimitri; Bland, Simon Nicholas; McBride, Ryan D.; Chittenden, Jeremy Paul; Suzuki-Vidal, Francisco Andres; Jennings, Christopher A.; Hall, Gareth Neville; Ampleford, David J.; Peyton, Bradley Philip; Lebedev, Sergey V.; Cleveland, Monica; Rogers, Thomas John; Cuneo, Michael Edward; Coverdale, Christine Anne; Jones, Brent Manley; Jones, Michael C.

    2010-02-01

    Radial wire arrays provide an alternative x-ray source for Z-pinch driven Inertial Confinement Fusion. These arrays, where wires are positioned radially outwards from a central cathode to a concentric anode, have the potential to drive a more compact ICF hohlraum. A number of experiments were performed on the 7MA Saturn Generator. These experiments studied a number of potential risks in scaling radial wire arrays up from the 1MA level, where they have been shown to provide similar x-ray outputs to larger diameter cylindrical arrays, to the higher current levels required for ICF. Data indicates that at 7MA radial arrays can obtain higher power densities than cylindrical wire arrays, so may be of use for x-ray driven ICF on future facilities. Even at the 7MA level, data using Saturn's short pulse mode indicates that a radial array should be able to drive a compact hohlraum to temperatures {approx}92eV, which may be of interest for opacity experiments. These arrays are also shown to have applications to jet production for laboratory astrophysics. MHD simulations require additional physics to match the observed behavior.

  9. Bayesian data fusion for spatial prediction of categorical variables in environmental sciences

    SciTech Connect

    Gengler, Sarah Bogaert, Patrick

    2014-12-05

    First developed to predict continuous variables, Bayesian Maximum Entropy (BME) has become a complete framework in the context of space-time prediction since it has been extended to predict categorical variables and mixed random fields. This method proposes solutions to combine several sources of data whatever the nature of the information. However, the various attempts that were made for adapting the BME methodology to categorical variables and mixed random fields faced some limitations, as a high computational burden. The main objective of this paper is to overcome this limitation by generalizing the Bayesian Data Fusion (BDF) theoretical framework to categorical variables, which is somehow a simplification of the BME method through the convenient conditional independence hypothesis. The BDF methodology for categorical variables is first described and then applied to a practical case study: the estimation of soil drainage classes using a soil map and point observations in the sandy area of Flanders around the city of Mechelen (Belgium). The BDF approach is compared to BME along with more classical approaches, as Indicator CoKringing (ICK) and logistic regression. Estimators are compared using various indicators, namely the Percentage of Correctly Classified locations (PCC) and the Average Highest Probability (AHP). Although BDF methodology for categorical variables is somehow a simplification of BME approach, both methods lead to similar results and have strong advantages compared to ICK and logistic regression.

  10. Accelerator and Fusion Research Division: summary of activities, 1983

    SciTech Connect

    Not Available

    1984-08-01

    The activities described in this summary of the Accelerator and Fusion Research Division are diverse, yet united by a common theme: it is our purpose to explore technologically advanced techniques for the production, acceleration, or transport of high-energy beams. These beams may be the heavy ions of interest in nuclear science, medical research, and heavy-ion inertial-confinement fusion; they may be beams of deuterium and hydrogen atoms, used to heat and confine plasmas in magnetic fusion experiments; they may be ultrahigh-energy protons for the next high-energy hadron collider; or they may be high-brilliance, highly coherent, picosecond pulses of synchrotron radiation.

  11. Survey of Laser Markets Relevant to Inertial Fusion Energy Drivers, information for National Research Council

    SciTech Connect

    Bayramian, A J; Deri, R J; Erlandson, A C

    2011-02-24

    Development of a new technology for commercial application can be significantly accelerated by leveraging related technologies used in other markets. Synergies across multiple application domains attract research and development (R and D) talent - widening the innovation pipeline - and increases the market demand in common components and subsystems to provide performance improvements and cost reductions. For these reasons, driver development plans for inertial fusion energy (IFE) should consider the non-fusion technology base that can be lveraged for application to IFE. At this time, two laser driver technologies are being proposed for IFE: solid-state lasers (SSLs) and KrF gas (excimer) lasers. This document provides a brief survey of organizations actively engaged in these technologies. This is intended to facilitate comparison of the opportunities for leveraging the larger technical community for IFE laser driver development. They have included tables that summarize the commercial organizations selling solid-state and KrF lasers, and a brief summary of organizations actively engaged in R and D on these technologies.

  12. Integrated process modeling for the laser inertial fusion Energy (LIFE) generation system

    SciTech Connect

    Meier, W R; Anklam, T M; Erlandson, A C; Miles, R R; Simon, A J; Sawicki, R; Storm, E

    2009-10-22

    A concept for a new fusion-fission hybrid technology is being developed at Lawrence Livermore National Laboratory. The primary application of this technology is base-load electrical power generation. However, variants of the baseline technology can be used to 'burn' spent nuclear fuel from light water reactors or to perform selective transmutation of problematic fission products. The use of a fusion driver allows very high burn-up of the fission fuel, limited only by the radiation resistance of the fuel form and system structures. As a part of this process, integrated process models have been developed to aid in concept definition. Several models have been developed. A cost scaling model allows quick assessment of design changes or technology improvements on cost of electricity. System design models are being used to better understand system interactions and to do design trade-off and optimization studies. Here we describe the different systems models and present systems analysis results. Different market entry strategies are discussed along with potential benefits to US energy security and nuclear waste disposal. Advanced technology options are evaluated and potential benefits from additional R&D targeted at the different options is quantified.

  13. Assessment of the basic energy sciences program. Volume II. Appendices

    SciTech Connect

    Not Available

    1982-03-01

    A list of experts reviewing the Basic Energy Sciences (BES) program and their organizations are given. The assessment plan is explained; the program examined the following: quality of science being conducted in the program, quality of performers supported by the Basic Energy Sciences (BES) program, and the impact of the research on mission oriented needs. The intent of the assessment is to provide an indication of general status relative to these questions for the BES divisions. The approach to the assessment is described. The sampling plan which was used as a guide in determining the sample size and selecting the sample to evaluate the research program of the Office of Basic Energy Sciences are discussed. Special analyses were conducted on the dispersion of reviewers' ratings, the ratings of the lower funded projects, and the amount of time the principal investigator devoted to the project. These are presented in the final appendix together with histograms for individual rating variables for each program area. (MCW)

  14. DOE Science Showcase - Green Energy | OSTI, US Dept of Energy...

    Office of Scientific and Technical Information (OSTI)

    and energy conservation, including solar, wind, bioenergy, hydroelectric, ... Photovoltaic Manufacturing Wind Turbines Energy Efficiency Hybrid Propulsion Systems Solar ...

  15. COLLOQUIUM: The Many Faces of Fusion | Princeton Plasma Physics Lab

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    April 14, 2014, 4:00pm to 5:30pm Colloquia MBG Auditorium COLLOQUIUM: The Many Faces of Fusion Mr. Dan Clery Science Magazine Dan Clery, a veteran journalist for Science magazine and author of "A Piece of the Sun," a wide-ranging account of the quest for fusion energy, will provide a whirlwind tour of the history of fusion from the 1850s to the present day and the people who made it happen. The journey will take in atom spies, superpower summits, hijackings by Palestinian terrorists,

  16. Fusion Energy Division annual progress report, period ending December 31, 1988

    SciTech Connect

    Sheffield, J.; Berry, L.A.; Saltmarsh, M.J.

    1990-02-01

    This report discusses the following topics on fusion research: toroidal confinement activities; atomic physics and plasma diagnostics development; fusion theory and computation; plasma technology; superconducting magnet development; advanced systems program; fusion materials research; neutron transport; and management services, quality assurance, and safety.

  17. SRNL Science and Innovation - Clean Energy

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Renewable Energy Research The Savannah River National Laboratory (SRNL) has the experience, credibility, extensive capabilities and expertise that are relevant for the execution of the ongoing and emerging missions of the U.S. Department of Energy's (DOE) Savannah River Site (SRS) and other DOE programs. SRNL experienced staff and world class expertise have built a very strong foundation with international, national, state and local customers that are key to both national energy security needs

  18. The Science of Small | Department of Energy

    Office of Environmental Management (EM)

    transmit data, capture carbon, save energy and construct materials. As scientists at the National Labs continue to make breakthroughs in nanoscience, we can expect big results ...

  19. Sandia Energy Earth Sciences Research Center

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Participate in 46th Annual American Geophysical Union (AGU) Conference http:energy.sandia.govsandians-participate-in-46th-annual-american-geophysical-union-agu-conference...

  20. Science & Technology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Technology Science & Technology This is a computer simulation of a Class 1a supernova. Argonne National Laboratory's Mira will have enough computing power to help researchers run simulations of exploding stars, specifically, of the turbulent nuclear combustion that sets off type 1a supernovae. | Photo courtesy of Argonne National Laboratory This is a computer simulation of a Class 1a supernova. Argonne National Laboratory's Mira will have enough computing power to help researchers run