National Library of Energy BETA

Sample records for fuels automotive engineering

  1. Automotive HCCI Engine Research | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Automotive HCCI Engine Research Automotive HCCI Engine Research 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting ace006_steeper_2012_o.pdf (6.04 MB) More Documents & Publications Automotive HCCI Engine Research Automotive HCCI Engine Research Automotive HCCI Engine Research

  2. Review of alternate automotive engine fuel economy. Final report January-October 78

    SciTech Connect (OSTI)

    Cole, D.; Bolt, J.A.; Huber, P.; Taylor, T. Jr.

    1980-11-01

    This study assessed the potential of alternate automotive engines to meet the fuel economy goals and emission levels of the 1980-1990 period. As part of NHTSA's continuing research in support of the Department of Transportation fuel economy activities, this study reviewed those developments offering viable substitutes for the current spark ignition engine systems. Categories assessed included stratified charge, diesels, turbo charging, rotary/Wankel engines, and the developmental gas turbine and Stirling cycle engines. Results of past and on-going research through 1978 were reviewed along with the development and production status of various alternate engine technologies proposed for automobiles and light trucks through the 1980s. Assessment was then made of the potential fuel economy improvement as a percentage of 1978 baseline data.

  3. Engine performance comparison associated with carburetor icing during aviation grade fuel and automotive grade fuel operation. Final report Jan-Jul 82

    SciTech Connect (OSTI)

    Cavage, W.; Newcomb, J.; Biehl, K.

    1983-05-01

    A comprehensive sea-level-static test cell data collection and evaluation effort to review operational characteristics of 'off-the-shelf' carburetor ice detection/warning devices for general aviation piston engine aircraft during operation on aviation grade fuel and automotive grade fuel. Presented herein are results, observations and conclusions drawn from over 250 hours of test cell engine operation on 100LL aviation grade fuel, unleaded premium and unleaded regular grade automotive fuel. Sea-level-static test cell engine operations were conducted utilizing a Teledyne Continental Motors 0-200A engine and a Cessna 150 fuel system to review engine operational characteristics of 100LL aviation grade fuel and various blends of automotive grade fuel as well as carburetor ice detectors/warning devices sensitivity/effectiveness during actual carburetor icing. The primary purpose of test cell engine operation was to observe real-time carburetor icing characteristics associated with possible automotive grade fuel utilization by piston-powered light general aviation aircraft. In fulfillment of this task, baseline engine operations were established with 100LL aviation grade fuel followed by various blend of automotive grade fuel prior to imposing carburetor icing conditions and assessing operational characteristics.

  4. Engineering-economic analyses of automotive fuel economy potential in the United States

    SciTech Connect (OSTI)

    Greene, D.L.; DeCicco, J.

    2000-02-01

    Over the past 25 years more than 20 major studies have examined the technological potential to improve the fuel economy of passenger cars and light trucks in the US. The majority has used technology/cost analysis, a combination of analytical methods from the disciplines of economics and automotive engineering. In this paper the authors describe the key elements of this methodology, discuss critical issues responsible for the often widely divergent estimates produced by different studies, review the history of its use, and present results from six recent assessments. Whereas early studies tended to confine their scope to the potential of proven technology over a 10-year time period, more recent studies have focused on advanced technologies, raising questions about how best to include the likelihood of technological change. The paper concludes with recommendations for further research.

  5. Enhanced air/fuel mixing for automotive stirling engine turbulator-type combustors

    DOE Patents [OSTI]

    Riecke, George T.; Stotts, Robert E.

    1992-01-01

    The invention relates to the improved combustion of fuel in a combustion chamber of a stirling engine and the like by dividing combustion into primary and secondary combustion zones through the use of a diverter plate.

  6. Ceramic Automotive Stirling Engine Program

    SciTech Connect (OSTI)

    Not Available

    1986-08-01

    The Ceramic Automotive Stirling Engine Program evaluated the application of advanced ceramic materials to an automotive Stirling engine. The objective of the program was to evaluate the technical feasibility of utilizing advanced ceramics to increase peak engine operating temperature, and to evaluate the performance benefits of such an increase. Manufacturing cost estimates were also developed for various ceramic engine components and compared with conventional metallic engine component costs.

  7. Enhanced air/fuel mixing for automotive Stirling engine turbulator-type combustors

    SciTech Connect (OSTI)

    Riecke, G.T.; Stotts, R.E.

    1992-02-25

    This patent describes a combustor for use in a Stirling engine and the like. It comprises: a combustor chamber; a fuel inlet couple to the chamber to inject fuel therein; a turbulator means disposed in the chambers downstream of the fuel inlet means for injecting combustion air into the chamber, the turbulator means being so positioned to cause a mixing of the combustion air and fuel injected in the chamber; diverter means for dividing the combustion air and creating a primary mixing zone downstream fa the primary mixing zone; and wherein the primary mixing zone comprises a fuel rich zone where combustion initiates and the secondary mixing zone has sufficient combustion air to complete combustion of the fuel.

  8. Automotive Stirling engine: Mod II design report

    SciTech Connect (OSTI)

    Nightingale, N.P.

    1986-10-01

    The design of an automotive Stirling engine that achieves the superior fuel economy potential of the Stirling cycle is described. As the culmination of a 9-yr development program, this engine, designated the Mod II, also nullifies arguments that Stirling engines are heavy, expensive, unreliable, and demonstrate poor performance. Installed in a General Motors 1985 Chevrolet Celebrity car, this engine has a predicted combined fuel economy on unleaded gasoline of 17.5 km/L (41 mi/gal) - a value 50% above the current vehicle fleet average. The Mod II Stirling engine is a four-cylinder V-drive design with a single crankshaft. The engine is also equipped with all the controls and auxiliaries necessary for automotive operation. 35 figs.

  9. Influence of fuel variables on the operation of automotive open and pre-chamber diesel and spark ignited stratified charge engines: a literature study covering petroleum and syncrude derived fuels

    SciTech Connect (OSTI)

    Needham, J.R.

    1980-09-01

    A literature study has been carried out to ascertain the influence of fuels and fuel variables on the operation of automotive diesel and spark ignited stratified charge engines with a view to understanding the impact of future fuels derived from Syncrude. The findings from the search are presented and discussed in detail, conclusions reached and recommendations made.

  10. Automotive Fuel Cell Corporation

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    polymer electrolyte mem- brane, which could be a key factor in realizing a hydrogen car. ... While every car manufacturer, such as GM and Ford, has developed their own hydrogen fuel ...

  11. Influence of fuel variables on the operation of automotive open and pre-chamber diesel and spark ignited stratified charge engines: a literature study covering petroleum and syncrude derived fuels, executive summary

    SciTech Connect (OSTI)

    Needham, J.R.

    1980-09-01

    A literature study was carried out to ascertain the influence of fuels and fuel variables on the operation of automotive diesel and spark ignited stratified charge engines with a view to understanding the impact of future fuels derived from syncrude. The findings from the search were presented and discussed in detail in the main report (Ricardo DP.81/539). In this executive summary, the conclusions and recommendations from the main report are presented.

  12. Emissions comparison of alternative fuels in an advanced automotive diesel engine. Interim report, October 1997--April 1998

    SciTech Connect (OSTI)

    Sirman, M.B.; Owens, E.C.; Whitney, K.A.

    1998-09-01

    Exhaust emissions mappings were conducted for six alternative diesel fuels in a Daimler-Benz (DB) OM6l1 diesel engine. The OM6l 1 engine is a 2.2L, direct-injection diesel with a Bosch, high-pressure, common-rail, fuel-injection system. The engine design closely matches the specifications of the Partnership for a New Generation Vehicle (PNGV) target compression-ignition engine. Triplicate 13-mode, steady-state test sequences were performed for each fuel, with a 2-D control fuel serving as the baseline. No adjustments were made to the engine to compensate for any performance differences resulting from fuel property variations.

  13. Automotive HCCI Engine Research

    Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  14. Automotive HCCI Engine Research

    Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  15. Supercharging system for automotive engines

    SciTech Connect (OSTI)

    Yamada, T.; Yabuhara, H.; Takimoto, F.

    1988-03-15

    A supercharging system for an automotive engine is described comprising: a turbocharger driven by exhaust-gas of the engine; a supercharger; an intake passage connecting the turbocharger and the supercharger in series, for supplying air to the engine; driving means for driving the supercharger by the engine; clutch means provided in the driving means; a first bypass provided around the supercharger; a control valve provided in the first bypass; a second bypass provided around the turbine of the turbocharger; a waste gate valve provided in the second bypass; a first actuator for operating the control valve; a second actuator for operating the waste gate valve; first means for operating the second actuator to open the waste gate valve when supercharging pressure exceeds a predetermined value; an engine speed sensor for detecting speed of the engine; an engine load sensor for detecting load on the engine; and a control unit.

  16. Electrocatalysts for Automotive Fuel Cells: Status and Challenges...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Electrocatalysts for Automotive Fuel Cells: Status and Challenges Electrocatalysts for Automotive Fuel Cells: Status and Challenges Presentation by Nilesh Dale for the 2013 DOE ...

  17. Automotive Fuel Cell Research and Development Needs

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    USCAR / FreedomCAR Fuel Cell Tech Team Industry Members Craig Gittleman, David Masten and Scott Jorgensen General Motors James Waldecker, Shinichi Hirano and Mark Mehall Ford Motor Company Tarek Abdel-Baset Chrysler LLC Automotive Fuel Cell R&D Needs DOE Fuel Cell Pre-Solicitation Workshop March 16, 2010 Golden, CO General Motors - Ford - Chrysler Overview * Purpose: To provide automotive OEM perspective on topics recommended for study in the DOE Fuel Cell Subprogram * Categories described

  18. High Efficiency Full Expansion (FEx) Engine for Automotive Application...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Full Expansion (FEx) Engine for Automotive Applications High Efficiency Full Expansion (FEx) Engine for Automotive Applications Large increases in engine thermal efficiency result ...

  19. 10 Questions for an Automotive Engineer: Thomas Wallner

    Energy.gov [DOE]

    Meet Thomas Wallner – automotive engineer extraordinaire, who hails from Argonne National Laboratory’s Center for Transportation Research. He took some time to answer our 10 Questions and share his insight on advanced engine technologies from dual-fuel to biofuels.

  20. GATE Center for Automotive Fuel Cell Systems at Virginia Tech

    SciTech Connect (OSTI)

    Nelson, Douglas

    2011-09-30

    The Virginia Tech GATE Center for Automotive Fuel Cell Systems (CAFCS) achieved the following objectives in support of the domestic automotive industry: Expanded and updated fuel cell and vehicle technologies education programs; Conducted industry directed research in three thrust areas development and characterization of materials for PEM fuel cells; performance and durability modeling for PEM fuel cells; and fuel cell systems design and optimization, including hybrid and plug-in hybrid fuel cell vehicles; Developed MS and Ph.D. engineers and scientists who are pursuing careers related to fuel cells and automotive applications; Published research results that provide industry with new knowledge which contributes to the advancement of fuel cell and vehicle systems commercialization. With support from the Dept. of Energy, the CAFCS upgraded existing graduate course offerings; introduced a hands-on laboratory component that make use of Virginia Tech's comprehensive laboratory facilities, funded 15 GATE Fellowships over a five year period; and expanded our program of industry interaction to improve student awareness of challenges and opportunities in the automotive industry. GATE Center graduate students have a state-of-the-art research experience preparing them for a career to contribute to the advancement fuel cell and vehicle technologies.

  1. Automotive Stirling Engine Development Program. RESD Summary report

    SciTech Connect (OSTI)

    Not Available

    1984-05-01

    This is the final report compiling a summary of the information presented and discussed at the May 1983 Automotive Stirling Engine (AES) Reference Engine System Design (RESD) review held at the NASA Lewis Research Center. The design of the engine and its auxiliaries and controls is described. Manufacturing costs in production quantity are also presented. Engine system performance predictions are discussed and vehicle integration is developed, along with projected fuel economy levels.

  2. Mod I automotive Stirling engine mechanical development

    SciTech Connect (OSTI)

    Simetkosky, M.

    1984-01-01

    The Mod I Stirling engine was the first automotive Stirling engine designed specifically for automotive application. Testing of these engines has revealed several deficiencies in engine mechanical integrity which have been corrected by redesign or upgrade. The main deficiencies uncovered during the Mod I program lie in the combustion, auxiliary, main seal, and heater head areas. This paper will address each of the major area deficiencies in detail, and describe the corrective actions taken as they apply to the Mod I and the next Stirling-engine design, the Upgraded Mod I (a redesign to incorporate new materials for cost/weight reduction and improved performance).

  3. Electrocatalysts for Automotive Fuel Cells: Status and Challenges

    Energy.gov [DOE]

    Presentation by Nilesh Dale for the 2013 DOE Catalyst Working Group Meeting on electrocatalysts for automotive fuel cells.

  4. Past experiences with automotive external combustion engines

    SciTech Connect (OSTI)

    Amann, C.A.

    1999-07-01

    GMR (General Motors Research Laboratories, now GM R and D Center) has a history of improving the internal combustion engine, especially as it relates to automotive use. During the quarter century from 1950--75, considerable effort was devoted to evaluating alternative powerplants based on thermodynamic cycles different from those on which the established spark-ignition and diesel engines are founded. Two of these, the steam engine and the Stirling engine, incorporated external combustion. Research on those two alternatives is reviewed. Both were judged to fall short of current needs for commercial success as prime movers for conventional automotive vehicles.

  5. Automotive and MHE Fuel Cell System Cost Analysis

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation slides from the Fuel Cell Technologies Office webinar, Automotive and MHE Fuel Cell System Cost Analysis, held April 16, 2013.

  6. University of Illinois at Urbana-Champaign's GATE Center for Advanced Automotive Bio-Fuel Combustion Engines

    Office of Energy Efficiency and Renewable Energy (EERE)

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  7. Membrane Performance and Durability Overview for Automotive Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Membrane Performance and Durability Overview for Automotive Fuel Cell Applications Presented by Tom Greszler of General Motors at the High Temperature Membrane Working Group ...

  8. Sandia Energy - Automotive HCCI Engine

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    because of its potential to rival the high efficiency of diesel engines while keeping NOx and particulate emissions extremely low. However, researchers must overcome several...

  9. Automotive Fuel Cell Research and Development Needs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fuel Cell Research and Development Needs Automotive Fuel Cell Research and Development Needs Presentation by USCAR FreedomCARFuel Cell Tech Team Industry for DOE Fuel Cell Pre-Solicitation Workshop - March 16, 2010 Golden, CO fuelcell_pre-solicitation_wkshop_mar10_gittleman.pdf (235.45 KB) More Documents & Publications Automotive Perspective on Membrane Evaluation Transportation Fuel Cell R&D Needs (Presentation) DOE Fuel Cell Pre-Solicitation Workshop - Breakout Group 2: MEAs,

  10. Automotive Stirling Engine Development Program Mod I Stirling engine development

    SciTech Connect (OSTI)

    Simetkosky, M.A.

    1983-08-01

    The Automotive Stirling Engine (ASE) Development Program was established to enable research and development of alternate propulsion systems. The program was awarded to Mechanical Technology Incorporated (MTI) for the purpose of developing an automotive Stirling engine, and transferring Stirling-engine technology to the United States. MTI has fabricated and tested four Mod I engines that have accumulated over 1900 test hours to date. The engines evaluated in the test cell have achieved an average of 34.5% efficiency at their maximum efficiency point (2000 rpm), and have developed an average maximum output power (power available to the drive train) level of 54.4 kW (73.2 bhp). All engines are still operating, and are being used to develop components and control strategy for the Upgraded Mod I engine design (predicted to increase maximum power output and efficiency while reducing total engine system weight).

  11. Engaging the Next Generation of Automotive Engineers through...

    Energy.gov (indexed) [DOE]

    (GRAs), and Clean Cities University Workforce Development Program (CCUWDP) GATE Center for Automotive Fuel Cell Systems at Virginia Tech EcoCAR 2 Plugging into the Future

  12. LPG fuel supply system. [Patent for automotive

    SciTech Connect (OSTI)

    Pierson, W.V.

    1982-09-07

    A fuel supply system for an internal combustion engine operated on gaseous fuels, for example, liquid petroleum gas (Lpg). The system includes a housing having a chamber for vaporizing liquid gas, including means for heating the vaporizing chamber. Also included in the housing is a mixing chamber for mixing the vaporized gas with incoming air for delivery to the intake manifold of an internal combustion engine through a standard carburetor. The fuel supply system includes means for mounting the system on the carburetor, including means for supporting an air filter circumjacent the mixing chamber.

  13. Next Generation Bipolar Plates for Automotive PEM Fuel Cells | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Next Generation Bipolar Plates for Automotive PEM Fuel Cells Next Generation Bipolar Plates for Automotive PEM Fuel Cells Part of a $100 million fuel cell award announced by DOE Secretary Bodman on Oct. 25, 2006. 4_graftech.pdf (23.01 KB) More Documents & Publications WA_07_040_GRAFTECH_INTERNATIONAL_LTD_Waiver_of_Patent_Rights.pdf Advance Patent Waiver W(A)2008-004 Metallic Bipolar Plates with Composite Coatings

  14. Review and evaluation of automotive fuel conservation technologies. Final report

    SciTech Connect (OSTI)

    Siegel, H.M.; Schwarz, R.; Andon, J.; Kolars, G.; Gerstenberger, T.

    1981-12-01

    To support the Office of Research and Development of the National Highway Traffic Safety Administration with focused studies in areas affecting automotive fuel economy and related safety issues, a series of in-depth studies were carried out: Fuel Consumption Estimates of Stratified Charge Rotary Engines Installed in Five Vehicles; Oldsmobile Omega X Body Baseline Weight Data; GM X Body Material Substitution Weight Reduction/Cost Effectiveness Study; Calspan RSV Restraint System Cost Study; FMVSS No. 208 Extension to Light Trucks, Vans, and MPV's - Cost Lead Time Study; Multipiece Rims for Trucks, Buses, and Trailers; Identifying Design Changes, Cost Impacts and Manufacturing Lead Times to Upgrade FMVSS 114 for Passenger Cars, Trucks, and MPV's; Ford Escort GL Baseline Weight Data.

  15. Membrane Performance and Durability Overview for Automotive Fuel Cell

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Applications | Department of Energy Performance and Durability Overview for Automotive Fuel Cell Applications Membrane Performance and Durability Overview for Automotive Fuel Cell Applications Presented by Tom Greszler of General Motors at the High Temperature Membrane Working Group Meeting, San Francisco, September 14, 2006. htmwg_greszler.pdf (502.69 KB) More Documents & Publications High Temperature Membrane Working Group, Minutes of Meeting on September 14, 2006 Some durability

  16. Automotive

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing ... strategies, and the fundamentals of fuel sprays for these applications. ...

  17. Automotive Stirling Engine Mod I design review report. Volume III

    SciTech Connect (OSTI)

    Not Available

    1982-08-01

    This volume, No. 3, of the Automotive Stirling Engine Mod 1 Design Review Report contains a preliminary parts list and detailed drawings of equipment for the basic Stirling engine and for the following systems: vehicular Stirling Engine System; external heat system; hot and cold engine systems; engine drive; controls and auxiliaries; and vehicle integration. (LCL)

  18. Automotive Fuel Processor Development and Demonstration with Fuel Cell Systems

    SciTech Connect (OSTI)

    Nuvera Fuel Cells

    2005-04-15

    The potential for fuel cell systems to improve energy efficiency and reduce emissions over conventional power systems has generated significant interest in fuel cell technologies. While fuel cells are being investigated for use in many applications such as stationary power generation and small portable devices, transportation applications present some unique challenges for fuel cell technology. Due to their lower operating temperature and non-brittle materials, most transportation work is focusing on fuel cells using proton exchange membrane (PEM) technology. Since PEM fuel cells are fueled by hydrogen, major obstacles to their widespread use are the lack of an available hydrogen fueling infrastructure and hydrogen's relatively low energy storage density, which leads to a much lower driving range than conventional vehicles. One potential solution to the hydrogen infrastructure and storage density issues is to convert a conventional fuel such as gasoline into hydrogen onboard the vehicle using a fuel processor. Figure 2 shows that gasoline stores roughly 7 times more energy per volume than pressurized hydrogen gas at 700 bar and 4 times more than liquid hydrogen. If integrated properly, the fuel processor/fuel cell system would also be more efficient than traditional engines and would give a fuel economy benefit while hydrogen storage and distribution issues are being investigated. Widespread implementation of fuel processor/fuel cell systems requires improvements in several aspects of the technology, including size, startup time, transient response time, and cost. In addition, the ability to operate on a number of hydrocarbon fuels that are available through the existing infrastructure is a key enabler for commercializing these systems. In this program, Nuvera Fuel Cells collaborated with the Department of Energy (DOE) to develop efficient, low-emission, multi-fuel processors for transportation applications. Nuvera's focus was on (1) developing fuel processor

  19. Engineering and Materials for Automotive Thermoelectric Applications...

    Energy.gov (indexed) [DOE]

    More Documents & Publications Develop Thermoelectric Technology for Automotive Waste Heat Recovery Electrical and Thermal Transport Optimization of High Efficient n-type ...

  20. PEM fuel cell stack development for automotive applications

    SciTech Connect (OSTI)

    Ernst, W.D.

    1996-12-31

    Presently, the major challenges to the introduction of fuel cell power systems for automotive applications are to maximize the effective system power density and minimize cost. The material cost, especially for Platinum, had been a significant factor until recent advances by Los Alamos National Laboratory and others in low Platinum loading electrode design has brought these costs within control. Since the initiation of its PEM stack development efforts, MTI has focused on applying its system and mechanical engineering heritage on both increasing power density and reducing cost. In May of 1995, MTI was selected (along with four other companies) as a subcontractor by the Ford Motor Company to participate in Phase I of the DOE Office of Transportation Technology sponsored PNGV Program entitled: {open_quotes}Direct-Hydrogen-Fueled Proton-Exchange-Membrane (PEM) Fuel Cell System for Transportation Applications{close_quotes}. This Program was instituted to: (1) Advance the performance and economic viability of a direct-hydrogen-fueled PEM fuel cell system, (2) Identify the critical problems that must be resolved before system scale-up and vehicle integration, and (3) Integrate the fuel cell power system into a sub-scale vehicle propulsion system. The Phase I objective was to develop and demonstrate a nominal 10 kW stack meeting specific criteria. Figure I is a photograph of the stack used for these demonstrations. After completion of Phase I, MTI was one of only two companies selected to continue into Phase II of the Program. This paper summarizes Phase I stack development and results.

  1. Automotive Stirling reference engine design report

    SciTech Connect (OSTI)

    Not Available

    1981-06-01

    The Reference Stirling Engine System, which was to provide the best possible fuel economy while meeting or exceeding all other program objectives is described. It was designed to meet the requirements of a Reference Vehicle, which is a 1984 GM Pontiac Phoenix (X-body). This design utilizes all new technology that can reasonably be expected to be developed by 1984 and that is judged to provide significant improvement, relative to development risk and cost.

  2. Status and Outlook for the U.S. Non-Automotive Fuel Cell Industry...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    and Outlook for the U.S. Non-Automotive Fuel Cell Industry: Impacts of Government ... ORNLTM-2011101 STATUS AND OUTLOOK FOR THE U.S. NON-AUTOMOTIVE FUEL CELL INDUSTRY: ...

  3. Society of Automotive Engineers World Congress | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Society of Automotive Engineers World Congress Society of Automotive Engineers World Congress April 6, 2006 - 10:12am Addthis Remarks Prepared for Energy Secretary Samuel Bodman Thank you, Greg. It's always a pleasure to be in a room full of engineers. As an engineer myself, I know there is nothing our profession likes better than plain talk and solving problems. So, I'm going to serve you up some plain talk and then some assignments. Our nation faces big challenges in the energy and

  4. ECIS-Automotive Fuel Cell Corporation: Hydrocarbon Membrane Fuels...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ... Sandia researcher Cy Fujimoto demonstrates his new flexible hydrocarbon polymer electrolyte membrane, which could be a key factor in realizing a hydrogen car. Current automotive ...

  5. Automotive stirling engine development program overview and status report

    SciTech Connect (OSTI)

    Nightingale, N.P.

    1983-08-01

    The Automotive Stirling Engine (ASE) Development Program has been under contract (No. DEN3-32) with the Department of Energy (DOE)/National Aeronautics and Space Administration (NASA)-Lewis Research Center since 1978. Four Mod I engines (first-generation automotive Stirling engine) have accumulated more than 2000 test hours, and one engine was installed in a vehicle where its transient characteristics were evaluated, and mileage/emissions data recorded. A design effort to upgrade the Mod I has been completed, and two engines are at test. Major design changes have been made in the Reference Engine System Design (RESD) to reduce manufacturing cost. In support of these design changes, an extensive component development program is underway in combustion, ceramic heat exchangers, seals, and control systems.

  6. Status and Outlook for the U.S. Non-Automotive Fuel Cell Industry: Impacts

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Government Policies and Assessment of Future Opportunities | Department of Energy Status and Outlook for the U.S. Non-Automotive Fuel Cell Industry: Impacts of Government Policies and Assessment of Future Opportunities Status and Outlook for the U.S. Non-Automotive Fuel Cell Industry: Impacts of Government Policies and Assessment of Future Opportunities This report prepared by Oak Ridge National Laboratory examines the progress that has been made in U.S. non-automotive fuel cell

  7. Automotive Stirling engine Mod I design-review report. Volume II

    SciTech Connect (OSTI)

    Not Available

    1982-08-01

    Volume No. 2 of the Automotive Stirling Engine Mod I Design Review Report contains descriptions of the operating principles, performance requirements and design details of the auxiliaries and control systems for the MOD I Stirling engine system. These components and sub-systems have the following main functions: provide the required fuel and air flows for a well controlled combustion process, generating heat to the Stirling cycle; provide a driver acceptable method for controlling the power output of the engine; provide adequate lubrication and cooling water circulation; generate the electric energy required for engine and vehicle operation; provide a driver acceptable method for starting, stopping and monitoring the engine; and provide a guard system, that protects the engine at component or system malfunction.

  8. Sandia Energy - Lyle Pickett Named a Society of Automotive Engineers...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    to the field. His contributions are providing both a new understanding of the fundamentals of fuel sprays and an international collaboration (the Engine Combustion Network)...

  9. Vehicle Technologies Office Merit Review 2014: Automotive Low Temperature Gasoline Combustion Engine Research

    Energy.gov [DOE]

    Presentation given by Sandia National Laboratories at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about automotive low...

  10. Vehicle Technologies Office Merit Review 2015: Automotive Low Temperature Gasoline Combustion Engine Research

    Energy.gov [DOE]

    Presentation given by Sandia National Laboratories at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about automotive low...

  11. Gaseous-fuel engine technology

    SciTech Connect (OSTI)

    1995-12-31

    This publication contains three distinct groups of papers covering gaseous-fuel injection and control, gaseous-fuel engine projects, and gaseous-fuel engine/vehicle applications. Contents include: ultra rapid natural gas port injection; a CNG specific fuel injector using latching solenoid technology; development of an electronically-controlled natural gas-fueled John Deere PowerTech 8.1L engine; adapting a Geo Metro to run on natural gas using fuel-injection technology; behavior of a closed loop controlled air valve type mixer on a natural gas fueled engine under transient operation; and a turbocharged lean-burn 4.3 liter natural gas engine.

  12. Engineered fuel: Renewable fuel of the future?

    SciTech Connect (OSTI)

    Tomczyk, L.

    1997-01-01

    The power generation and municipal solid waste management industries share an interest in the use of process engineered fuel (PEF) comprised mainly of paper and plastics as a supplement to conventional fuels. PEF is often burned in existing boilers, making PEF an alternative to traditional refuse derived fuels (RDF). This paper describes PEF facilities and makes a comparison of PEF and RDF fuels.

  13. Knock-free engine control system for turbocharged automotive engine

    SciTech Connect (OSTI)

    Hirabayashi, Y.

    1985-04-09

    In a turbocharged internal combustion engine, in order to optimize engine torque output spark timing control and boost pressure control are coordinated in such a manner that spark advance angle is adjusted only when the measured boost pressure equals a predetermined value and is allowed to vary only within a specified range advanced from a reference value derived from an empirical memory table on the basis of engine speed and boost pressure. When engine operating conditions are such that spark advance angle would fall outside of the specified range, spark advance angle is then held at the empirical value and boost pressure is adjusted in order to optimize engine torque. The coordinated control system can also be designed to respond to exhaust gas temperature on a first-priority basis, i.e., when exhaust temperature is sensed to be dangerously high, boost pressure is reduced regardless of other engine conditions.

  14. Develop Thermoelectric Technology for Automotive Waste Heat Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Develop thermoelectric technology for waste heat recovery with a 10% fuel economy ... Engineering and Materials for Automotive Thermoelectric Applications Electrical and ...

  15. Technology development goals for automotive fuel cell power systems. Final report

    SciTech Connect (OSTI)

    James, B.D.; Baum, G.N.; Kuhn, I.F. Jr.

    1994-08-01

    This report determines cost and performance requirements for Proton Exchange Membrane (PEM) fuel cell vehicles carrying pure H{sub 2} fuel, to achieve parity with internal combustion engine (ICE) vehicles. A conceptual design of a near term FCEV (fuel cell electric vehicle) is presented. Complete power system weight and cost breakdowns are presented for baseline design. Near term FCEV power system weight is 6% higher than ICE system, mid-term FCEV projected weights are 29% lower than ICE`s. There are no inherently high-cost components in FCE, and at automotive production volumes, near term FCEV cost viability is closer at hand than at first thought. PEM current vs voltage performance is presented for leading PEM manufacturers and researchers. 5 current and proposed onboard hydrogen storage techniques are critically compared: pressurized gas, cryogenic liquid, combined pressurized/cryogenic, rechargeable hydride, adsorption. Battery, capacitor, and motor/controller performance is summarized. Fuel cell power system component weight and cost densities (threshold and goal) are tabulated.

  16. Co-Optimization of Fuels and Engines

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Optimization of Fuels and Engines John Farrell SAE High Efficiency Internal Combustion Engine Symposium April 11, 2016 2 Goal: better fuels and better vehicles sooner Fuel and Engine Co-Optimization o What fuel properties maximize engine performance? o How do engine parameters affect efficiency? o What fuel and engine combinations are sustainable, affordable, and scalable? 3 30% per vehicle petroleum reduction via efficiency and displacement source: EIA 2014 reference case Fuel selection

  17. Utiization of alternate fuels in diesel engines

    SciTech Connect (OSTI)

    Lestz, S.S.

    1980-09-01

    Accomplishments during three years entitled The Utilization of Alternate Fuels in Diesel Engines are summarized. Experiments were designed and test equipment set-up for the purpose of evaluating the use of methanol as a fumigant for light-duty Diesel engine service. The major experimental results were obtained from a multicylinder automotive Diesel engine. However, fundamental studies employing a GC/micro-reactor and a constant volume combustion bomb were also started. The purpose of this work was to measure some of the chemical and physical properties of methanol and methanol-air mixtures. The laminar flame velocity for various mixtures has been measured in the combustion bomb and thermal degradation studies have begun in the GC/micro-reactor. An Oldsmobile 5.7 liter V/8 Diesel engine was fumigated with methanol in amounts up to 40% of the fuel energy. The primary objectives of the study were to determine the effect of methanol fumigation on fuel efficiency, smoke, nitric oxide emission, and the occurrence of severe knock. An assessment of the biological activity for samples of the raw exhaust particulate and its soluble organic extract was also made using boh the Ames Salmonella typhimurium test and the B. subtilis Comptest. Generally, methanol fumigation was found to decrease NO emission for all conditions, to have a slight effect on smoke opacity, and to have a beneficial effect on fuel efficiency at higher loads. Also at higher loads, the methanol was found to induce what was defined as knock limited operation. The biological activity of the raw particulate matter was fond to be less than that of its soluble organic extract. However, for both the fumigation of methanol did enhance the biological activity.

  18. Status and Prospects of the Global Automotive Fuel Cell Industry and Plans for Deployment of Fuel Cell Vehicles and Hydrogen Refueling Infrastructure

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report by Oak Ridge National Laboratory assesses the current status of automotive fuel cell technology and the plans for the deployment of refueling infrastructure.

  19. Automotive Stirling Engine Development Program. Technical progress report for period January 1-March 29, 1980

    SciTech Connect (OSTI)

    Not Available

    1980-06-01

    The activities performed on the Stirling Reference Engine System Design; components and subsystems; P-40 baseline Stirling engine installation and test; the first automotive engine to be built on the program; computer development activities; and technical assistance to the Government are summarized. The overall program philosophy is outlined, and data and results are given.

  20. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications: 2008 Update

    Fuel Cell Technologies Publication and Product Library (EERE)

    This report estimates fuel cell system cost for systems produced in the years 2006, 2010, and 2015, and is the second annual update of a comprehensive automotive fuel cell cost analysis.

  1. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications: 2007 Update

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report estimates fuel cell system cost for systems produced in the years 2007, 2010, and 2015, and is the first annual update of a comprehensive automotive fuel cell cost analysis.

  2. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications. 2008 Update

    SciTech Connect (OSTI)

    James, Brian D.; Kalinoski, Jeffrey A.

    2009-03-26

    This report estimates fuel cell system cost for systems produced in the years 2006, 2010, and 2015, and is the second annual update of a comprehensive automotive fuel cell cost analysis.

  3. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications: 2007 Update

    SciTech Connect (OSTI)

    James, Brian D.; Kalinoski, Jeffrey A.

    2008-02-29

    This report estimates fuel cell system cost for systems produced in the years 2007, 2010, and 2015, and is the first annual update of a comprehensive automotive fuel cell cost analysis.

  4. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications: 2008 Update

    Office of Energy Efficiency and Renewable Energy (EERE)

    Report estimates fuel cell system cost for systems produced in the years 2006, 2010, and 2015, and is the second annual update of a comprehensive automotive fuel cell cost analysis.

  5. Co-Optimization of Fuels and Engines

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Optimization of Fuels and Engines John Farrell BioEnergy 2016 July 14, 2016 Fuel and Engine Co-Optimization o What fuel properties maximize engine performance? o How do engine parameters affect efficiency? o What fuel and engine combinations are sustainable, affordable, and scalable? Goal: better fuels and better vehicles sooner 30% per vehicle petroleum reduction via efficiency and displacement efficiency and displacement Governing Co-Optima hypotheses: There are engine architectures and

  6. Advanced Automotive Fuels Research, Development, and Commercialization Cluster (OH)

    SciTech Connect (OSTI)

    Linkous, Clovis; Hripko, Michael; Abraham, Martin; Balendiran, Ganesaratnam; Hunter, Allen; Lovelace-Cameron, Sherri; Mette, Howard; Price, Douglas; Walker, Gary; Wang, Ruigang

    2013-08-31

    Technical aspects of producing alternative fuels that may eventually supplement or replace conventional the petroleum-derived fuels that are presently used in vehicular transportation have been investigated. The work was centered around three projects: 1) deriving butanol as a fuel additive from bacterial action on sugars produced from decomposition of aqueous suspensions of wood cellulose under elevated temperature and pressure; 2) using highly ordered, openly structured molecules known as metal-organic framework (MOF) compounds as adsorbents for gas separations in fuel processing operations; and 3) developing a photocatalytic membrane for solar-driven water decomposition to generate pure hydrogen fuel. Several departments within the STEM College at YSU contributed to the effort: Chemistry, Biology, and Chemical Engineering. In the butanol project, sawdust was blended with water at variable pH and temperature (150 – 250{degrees}C), and heated inside a pressure vessel for specified periods of time. Analysis of the extracts showed a wide variety of compounds, including simple sugars that bacteria are known to thrive upon. Samples of the cellulose hydrolysate were fed to colonies of Clostridium beijerinckii, which are known to convert sugars to a mixture of compounds, principally butanol. While the bacteria were active toward additions of pure sugar solutions, the cellulose extract appeared to inhibit butanol production, and furthermore encouraged the Clostridium to become dormant. Proteomic analysis showed that the bacteria had changed their genetic code to where it was becoming sporulated, i.e., the bacteria were trying to go dormant. This finding may be an opportunity, as it may be possible to genetically engineer bacteria that resist the butanol-driven triggering mechanism to stop further fuel production. Another way of handling the cellulosic hydrolysates was to simply add the enzymes responsible for butanol synthesis to the hydrolytic extract ex-vivo. These

  7. Automotive Fuels - The Challenge for Sustainable Mobility | Department...

    Energy.gov (indexed) [DOE]

    Overview of challenges and future fuel options deer12warnecke.pdf (1.72 MB) More Documents & ... and Fuels of the Future Verification of Shell GTL Fuel as CARB Alternative Diesel

  8. Fuel quantity modulation in pilot ignited engines

    DOE Patents [OSTI]

    May, Andrew

    2006-05-16

    An engine system includes a first fuel regulator adapted to control an amount of a first fuel supplied to the engine, a second fuel regulator adapted to control an amount of a second fuel supplied to the engine concurrently with the first fuel being supplied to the engine, and a controller coupled to at least the second fuel regulator. The controller is adapted to determine the amount of the second fuel supplied to the engine in a relationship to the amount of the first fuel supplied to the engine to operate in igniting the first fuel at a specified time in steady state engine operation and adapted to determine the amount of the second fuel supplied to the engine in a manner different from the relationship at steady state engine operation in transient engine operation.

  9. Status and Outlook for the U.S. Non-Automotive Fuel Cell Industry: Impacts of Government Policies and Assessment of Future Opportunities

    Fuel Cell Technologies Publication and Product Library (EERE)

    Non-Automotive Fuel Cell Industry, Government Policy and Future Opportunities. Fuel cells (FCs)are considered essential future energy technologies by developed and developing economies alike. Several

  10. Engines and Fuels | Argonne National Laboratory

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Engines and Fuels Engines and Fuels Argonne's Engines and Fuels research focuses on understanding the interactions between fuels and engines in order to maximize the benefits available through optimization as well as to enable multi-fuel capability. Argonne researchers apply their expertise in the areas of combustion chemistry, fuel spray characterization, combustion system design, controls, and in-cylinder sensing as well as emissions control. A team of experts spanning a range of disciplines

  11. Synthesis and Engineering Materials Properties of Fluid Phase Chemical Hydrogen Storage Materials for Automotive Applications

    SciTech Connect (OSTI)

    Choi, Young Joon; Westman, Matthew P.; Karkamkar, Abhijeet J.; Chun, Jaehun; Ronnebro, Ewa

    2015-09-01

    Among candidates for chemical hydrogen storage in PEM fuel cell automotive applications, ammonia borane (AB, NH3BH3) is considered to be one of the most promising materials due to its high practical hydrogen content of 14-16 wt%. This material is selected as a surrogate chemical for a hydrogen storage system. For easier transition to the existing infrastructure, a fluid phase hydrogen storage material is very attractive and thus, we investigated the engineering materials properties of AB in liquid carriers for a chemical hydrogen storage slurry system. Slurries composed of AB and high temperature liquids were prepared by mechanical milling and sonication in order to obtain stable and fluidic properties. Volumetric gas burette system was adopted to observe the kinetics of the H2 release reactions of the AB slurry and neat AB. Viscometry and microscopy were employed to further characterize slurries engineering properties. Using a tip-sonication method we have produced AB/silicone fluid slurries at solid loadings up to 40wt% (6.5wt% H2) with viscosities less than 500cP at 25°C.

  12. Internal combustion engine fuel feed

    SciTech Connect (OSTI)

    Cochard, P.; Guicherd, C.

    1980-02-19

    In a method and apparatus for controlling the fuel feed to a stratified-charge internal combustion engine, from idle up to the position corresponding with the maximum flow of air, the overall richness (Rg) of the combustible mixture is reduced by acting simultaneously upon the flow of fuel feeding the main chamber and upon the flow of fuel injected into the auxiliary chamber. For higher loads the maximum flow of air is kept constant and rg is increased by continuing to act upon both fuel flows. By keeping the richness of the mixture in the auxiliary chamber substantially constant, it is possible to obtain the best compromise between the performance of the engine and the emission of pollutant gases.

  13. GATE Center for Automotive Fuel Cell Systems at Virginia Tech

    Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  14. Diesel engine fuel systems

    SciTech Connect (OSTI)

    1994-12-31

    The film shows the basic structure of diesel systems, including the parts and operation of injectors and fuel pumps. It discusses Bosch, General Motors, and Excello Equipment. This title has been declared obsolete for use within the sponsoring agency, but may have content value for educational use.

  15. Diesel engine fuel systems

    SciTech Connect (OSTI)

    Not Available

    1994-01-01

    The film shows the basic structure of diesel systems, including the parts and operation of injectors and fuel pumps. It discusses Bosch, General Motors, and Excello Equipment. This title has been declared obsolete for use within the sponsoring agency, but may have content value for educational use.

  16. Modeling and cold start in alcohol-fueled engines

    SciTech Connect (OSTI)

    Markel, A.J.; Bailey, B.K.

    1998-05-01

    Neat alcohol fuels offer several benefits over conventional gasoline in automotive applications. However, their low vapor pressure and high heat of vaporization make it difficult to produce a flammable vapor composition from a neat alcohol fuel during a start under cold ambient conditions. Various methods have been introduced to compensate for this deficiency. In this study, the authors applied computer modeling and simulation to evaluate the potential of four cold-start technologies for engines fueled by near-neat alcohol. The four technologies were a rich combustor device, a partial oxidation reactor, a catalytic reformer, and an enhanced ignition system. The authors ranked the competing technologies by their ability to meet two primary criteria for cold starting an engine at {minus}25 deg C and also by several secondary parameters related to commercialization. Their analysis results suggest that of the four technologies evaluated, the enhanced ignition system is the best option for further development.

  17. Automotive Stirling Engine Development Program. Quarterly technical progress report for period June 29-October 3, 1980

    SciTech Connect (OSTI)

    Not Available

    1980-12-01

    Current information on component and subsystems development activities and engine and vehicle testing during July to October 1980 in the Automotive Stirling Engine Development Program is reported. Computer code development progress is also covered. The status of the manufacture of the Mod I is given in some detail. Program engine operating hours through the end of this quarterly period reach a total of 6181 h.

  18. A survey of processes for producing hydrogen fuel from different sources for automotive-propulsion fuel cells

    SciTech Connect (OSTI)

    Brown, L.F.

    1996-03-01

    Seven common fuels are compared for their utility as hydrogen sources for proton-exchange-membrane fuel cells used in automotive propulsion. Methanol, natural gas, gasoline, diesel fuel, aviation jet fuel, ethanol, and hydrogen are the fuels considered. Except for the steam reforming of methanol and using pure hydrogen, all processes for generating hydrogen from these fuels require temperatures over 1000 K at some point. With the same two exceptions, all processes require water-gas shift reactors of significant size. All processes require low-sulfur or zero-sulfur fuels, and this may add cost to some of them. Fuels produced by steam reforming contain {approximately}70-80% hydrogen, those by partial oxidation {approximately}35-45%. The lower percentages may adversely affect cell performance. Theoretical input energies do not differ markedly among the various processes for generating hydrogen from organic-chemical fuels. Pure hydrogen has severe distribution and storage problems. As a result, the steam reforming of methanol is the leading candidate process for on-board generation of hydrogen for automotive propulsion. If methanol unavailability or a high price demands an alternative process, steam reforming appears preferable to partial oxidation for this purpose.

  19. Status and Prospects of the Global Automotive Fuel Cell Industry...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    The report combines information from interviews with automobile manufacturers leading the development of mass-market fuel cell vehicles in Japan, Korea, Germany, and the United ...

  20. Mass Production Cost Estimation For Direct H2 PEM Fuel Cell Systesm for Automotive Applications: 2010 Update

    Fuel Cell Technologies Publication and Product Library (EERE)

    This report is the fourth annual update of a comprehensive automotive fuel cell cost analysis. It contains estimates for material and manufacturing costs of complete 80 kWnet direct‐hydrogen proton ex

  1. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications: 2009 Update

    Fuel Cell Technologies Publication and Product Library (EERE)

    This report is the third annual update of a comprehensive automotive fuel cell cost analysis. It contains estimates for material and manufacturing cost of complete 80 kWnet direct hydrogen proton exch

  2. Mass Production Cost Estimation For Direct H2 PEM Fuel Cell Systesm for Automotive Applications: 2010 Update

    Fuel Cell Technologies Publication and Product Library (EERE)

    This report is the fourth annual update of a comprehensive automotive fuel cell cost analysis. It contains estimates for material and manufacturing costs of complete 80 kWnet direct?hydrogen proton ex

  3. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Application: 2009 Update

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report is the third annual update of a comprehensive automotive fuel cell cost analysis conducted by Directed Technologies (DTI), under contract to the US Department of Energy (DOE).

  4. Performance and emissions characteristics of alternative fuels in spark ignition engines

    SciTech Connect (OSTI)

    Swain, M.R.; Maxwell, R.L.; Swain, M.N.; Bedsworth, K.; Adt, R.R. Jr.; Pappas, J.M.

    1984-01-01

    A formal ongoing program to characterize the performance and exhaust characteristics of automotive-type powerplants fueled by conventional and alternative fuels is reported. This report contains the information obtained during the past three years when four alternative fuels and two baseline fuels were evaluated in three engines. The four alternative fuels were a simulated gasoline made to represent coal derived gasoline, methyl aryl ethers blended at the 10% level in an unleaded gasoline, gasoline made from methanol, and a blend of Indolene plus methanol and higher alcohols. The two baseline fuels were, Indolene and Gulf unleaded regular gasoline. The engines tested were a pre-mixed carbureted SI (spark ignition) engine, a carbureted three-valve stratified-charge SI engine and a pre-mixed carbureted SI engine with a closed-loop three-way catalyst emission control system.

  5. Materials selection for automotive engines. (Latest citations from Metadex). Published Search

    SciTech Connect (OSTI)

    1995-12-01

    The bibliography contains citations concerning material selection and substitution for automobile engines. Mechanical properties, including dimensional stability, are reviewed. Machined parts, castings, forgings, and extrusions are examined. Citations concerning automotive bodies, frames, and structures are presented in a separate bibliography.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  6. Materials selection for automotive engines. (Latest citations from Metadex). Published Search

    SciTech Connect (OSTI)

    1997-04-01

    The bibliography contains citations concerning material selection and substitution for automobile engines. Mechanical properties, including dimensional stability, are reviewed. Machined parts, castings, forgings, and extrusions are examined. Citations concerning automotive bodies, frames, and structures are presented in a separate bibliography.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  7. Materials selection for automotive engines. (Latest citations from Metadex). NewSearch

    SciTech Connect (OSTI)

    Not Available

    1994-10-01

    The bibliography contains citations concerning material selection and substitution for automobile engines. Mechanical properties, including dimensional stability, are reviewed. Machined parts, castings, forgings, and extrusions are examined. Citations concerning automotive bodies, frames, and structures are presented in a separate bibliography. (Contains a minimum of 165 citations and includes a subject term index and title list.)

  8. Sandia Energy - Optimizing Engines for Alternative Fuels

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Optimizing Engines for Alternative Fuels Home Energy Transportation Energy CRF Facilities News News & Events Research & Capabilities Sensors & Optical Diagnostics Optimizing...

  9. High power density fuel cell stack development for automotive applications

    SciTech Connect (OSTI)

    Pow, R.; Reindl, M.; Tilmetz, W.

    1996-12-31

    This paper describes the joint development by Daimler-Benz and Ballard Power Systems of a high power-density fuel cell stack and its demonstration in a 6-passenger Minivan.

  10. Fuels for Advanced CIDI Engines and Fuel Cells: 2000 Annual Progress...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    FUELS FOR ADVANCED CIDI ENGINES AND FUEL CELLS FUELS FOR ADVANCED CIDI ENGINES AND FUEL CELLS 2000 ANNUAL PROGRESS REPORT FUELS F O R ADVANCED CIDI ENGINES A N D FUEL CELLS A C K N ...

  11. Partial oxidation fuel reforming for automotive power systems.

    SciTech Connect (OSTI)

    Ahmed, S.; Chalk, S.; Krumpelt, M.; Kumar, R.; Milliken, J.

    1999-09-07

    For widespread use of fuel cells to power automobiles in the near future, it is necessary to convert gasoline or other transportation fuels to hydrogen on-board the vehicle. Partial oxidation reforming is particularly suited to this application as it eliminates the need for heat exchange at high temperatures. Such reformers offer rapid start and good dynamic performance. Lowering the temperature of the partial oxidation process, which requires the development of a suitable catalyst, can increase the reforming efficiency. Catalytic partial oxidation (or autothermal) reformers and non-catalytic partial oxidation reformers developed by various organizations are presently undergoing testing and demonstration. This paper summarizes the process chemistries as well as recent test data from several different reformers operating on gasoline, methanol, and other fuels.

  12. Webinar: Automotive and MHE Fuel Cell System Cost Analysis |...

    Energy.gov (indexed) [DOE]

    ... He has a BS and a master's of science degree in aerospace engineering from University of Virginia and Virginia Tech, respectively. With that, I will turn it over to Brian for the ...

  13. EERE Success Story-Michigan: General Motors Optimizes Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ...div> Road to Fuel Savings: GM Technology Ramps Up Engine Efficiency EERE Success Story-Michigan: Universities Train Next Generation of Automotive Engineers EERE Success ...

  14. Michigan: Universities Train Next Generation of Automotive Engineers...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    out Advanced Electric Drive Vehicle Education programs to educate future engineers about electric drive vehicles. All three universities are developing courses for undergraduate...

  15. The Drive for Energy Independence and Fuels of the Future | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference ... Automotive Fuels - The Challenge for Sustainable Mobility Verification of Shell GTL Fuel ...

  16. Next Generation Bipolar Plates for Automotive PEM Fuel Cells

    SciTech Connect (OSTI)

    Orest Adrianowycz; Julian Norley; David J. Stuart; David Flaherty; Ryan Wayne; Warren Williams; Roger Tietze; Yen-Loan H. Nguyen; Tom Zawodzinski; Patrick Pietrasz

    2010-04-15

    The results of a successful U.S. Department of Energy (DoE) funded two-year $2.9 MM program lead by GrafTech International Inc. (GrafTech) are reported and summarized. The program goal was to develop the next generation of high temperature proton exchange membrane (PEM) fuel cell bipolar plates for use in transportation fuel cell applications operating at temperatures up to 120 °C. The bipolar plate composite developed during the program is based on GrafTech’s GRAFCELL resin impregnated flexible graphite technology and makes use of a high temperature Huntsman Advanced Materials resin system which extends the upper use temperature of the composite to the DoE target. High temperature performance of the new composite is achieved with the added benefit of improvements in strength, modulus, and dimensional stability over the incumbent resin systems. Other physical properties, including thermal and electrical conductivity of the new composite are identical to or not adversely affected by the new resin system. Using the new bipolar plate composite system, machined plates were fabricated and tested in high temperature single-cell fuel cells operating at 120 °C for over 1100 hours by Case Western Reserve University. Final verification of performance was done on embossed full-size plates which were fabricated and glued into bipolar plates by GrafTech. Stack testing was done on a 10-cell full-sized stack under a simulated drive cycle protocol by Ballard Power Systems. Freeze-thaw performance was conducted by Ballard on a separate 5-cell stack and shown to be within specification. A third stack was assembled and shipped to Argonne National Laboratory for independent performance verification. Manufacturing cost estimate for the production of the new bipolar plate composite at current and high volume production scenarios was performed by Directed Technologies Inc. (DTI). The production cost estimates were consistent with previous DoE cost estimates performed by DTI for

  17. Fuels and Lubricants to Support Advanced Diesel Engine Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    New Diesel Feedstocks and Future Fuels Future Engine Fluids Technologies: Durable, Fuel-Efficient, and Emissions-Friendly New Feedstocks and Replacement Fuel Diesel Engine ...

  18. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications. 2009 Update

    SciTech Connect (OSTI)

    James, Brian D.; Kalinoski, Jeffrey A.; Baum, Kevin N.

    2010-01-01

    This report is the third annual update of a comprehensive automotive fuel cell cost analysis. It contains estimates for material and manufacturing cost of complete 80 kWnet direct hydrogen proton exchange membrane fuel cell systems suitable for powering light duty automobiles.

  19. Mass Production Cost Estimation For Direct H2 PEM Fuel Cell Systesm for Automotive Applications. 2010 Update

    SciTech Connect (OSTI)

    James, Brian D.; Kalinoski, Jeffrey A.; Baum, Kevin N.

    2010-09-30

    This report is the fourth annual update of a comprehensive automotive fuel cell cost analysis. It contains estimates for material and manufacturing costs of complete 80 kWnet direct-hydrogen proton exchange membrane fuel cell systems suitable for powering light-duty automobiles.

  20. High Efficiency Full Expansion (FEx) Engine for Automotive Applications

    Energy.gov [DOE]

    Large increases in engine thermal efficiency result from a new method of large reductions in both heat energy normally lost to the cooling medium and in heat energy in the exhaust system.

  1. Solid fuel applications to transportation engines

    SciTech Connect (OSTI)

    Rentz, Richard L.; Renner, Roy A.

    1980-06-01

    The utilization of solid fuels as alternatives to liquid fuels for future transportation engines is reviewed. Alternative liquid fuels will not be addressed nor will petroleum/solid fuel blends except for the case of diesel engines. With respect to diesel engines, coal/oil mixtures will be addressed because of the high interest in this specific application as a result of the large number of diesel engines currently in transportation use. Final assessments refer to solid fuels only for diesel engines. The technical assessments of solid fuels utilization for transportation engines is summarized: solid fuel combustion in transportation engines is in a non-developed state; highway transportation is not amenable to solid fuels utilization due to severe environmental, packaging, control, and disposal problems; diesel and open-cycle gas turbines do not appear worthy of further development, although coal/oil mixtures for slow speed diesels may offer some promise as a transition technology; closed-cycle gas turbines show some promise for solid fuels utilization for limited applications as does the Stirling engine for use of cleaner solid fuels; Rankine cycle engines show good potential for limited applications, such as for locomotives and ships; and any development program will require large resources and sophisticated equipment in order to advance the state-of-the-art.

  2. Fuel Performance Experiments on the Atomistic Level, Studying Fuel Through Engineered Single Crystal UO2

    SciTech Connect (OSTI)

    Burgett, Eric; Deo, Chaitanya; Phillpot, Simon

    2015-05-08

    Fuel Performance Experiments on the Atomistic Level, Studying Fuel Through Engineered Single Crystal UO2

  3. Fuel reactivity effects on the efficiency and operational window of dual-fuel compression ignition engines

    SciTech Connect (OSTI)

    Splitter, Derek A; Reitz, Rolf

    2014-01-01

    Fuel reactivity effects on the efficiency and operational window of dual-fuel compression ignition engines

  4. Fuel-Engine Co-Optimization

    Energy.gov [DOE]

    The Fuel-Engine Co-Optimization initiative aims to simultaneously transform both transportation fuels and vehicles in order to maximize performance and energy efficiency, minimize environmental impact, and accelerate widespread adoption of innovative combustion strategies.

  5. Automotive Stirling-Engine Development Program. Semiannual technical progress report, July 1-December 31, 1982

    SciTech Connect (OSTI)

    Nightingale, N.; Ernst, W.; Richey, A.; Simetkosky, M.; Smith, G.

    1983-01-01

    Progress is reported on the following subjects: technology develpment, Mod I engine test program, Mod I engine characterization/analysis, Mod I transient test bed fuel economy, Mod I-A engine performance, reference engine system design (RESD), and downsized RESD study. (MHR)

  6. Reformulated diesel fuel

    DOE Patents [OSTI]

    McAdams, Hiramie T [Carrollton, IL; Crawford, Robert W [Tucson, AZ; Hadder, Gerald R [Oak Ridge, TN; McNutt, Barry D [Arlington, VA

    2006-03-28

    Reformulated diesel fuels for automotive diesel engines which meet the requirements of ASTM 975-02 and provide significantly reduced emissions of nitrogen oxides (NO.sub.x) and particulate matter (PM) relative to commercially available diesel fuels.

  7. Automotive Stirling-Engine Development Program. Semiannual technical progress report, July 1-December 31, 1981

    SciTech Connect (OSTI)

    Ernst, W.; Piller, S.; Richey, A.; Simetkosky, M.

    1982-09-01

    This is the first semiannual technical progress report prepared under the automotive Stirling Engine Development Program; it covers the fourteenth and fifteenth quarters of activity after award of the contract. Quarterly technical progress reports reported program activities from the first quarter through the thirteenth quarter; thereafter, reporting was changed to a semiannual format. This report summarizes activities performed on Mod I engine testing and test results, progress in manufacturing, assembling and testing of a Mod I engine in the United States, P-40 Stirling engine dynamometer and multifuels testing, analog/digital controls system testing, Stirling reference engine manufacturing and reduced size studies, components and subsystems, computer code development activities. The overall program philosophy is outlined, and data and results are presented.

  8. Optical-Engine Study of a Low-Temperature Combustion Strategy...

    Energy.gov (indexed) [DOE]

    An Experimental Investigation of the Origin of Increased NOx Emissions When Fueling a Heavy-Duty Compression-Ignition Engine with Soy Biodiesel Automotive HCCI Engine Research ...

  9. Status and Outlook for the U.S. Non-Automotive Fuel Cell Industry: Impacts of Government Policies and Assessment of Future Opportunities

    SciTech Connect (OSTI)

    Greene, David L.; Duleep, K. G.; Upreti, Girish

    2011-05-15

    Non-Automotive Fuel Cell Industry, Government Policy and Future Opportunities. Fuel cells (FCs)are considered essential future energy technologies by developed and developing economies alike. Several countries, including the United States, Japan, Germany,and South Korea have established publicly funded R&D and market transformation programs to develop viable domestic FC industries for both automotive and nonautomotive applications.

  10. Vaporized alcohol fuel boosts engine efficiency

    SciTech Connect (OSTI)

    Hardenburg, H.O.; Bergmann, H.K.; Metsch, H.I.; Schaefer, A.J.

    1983-02-01

    An effort is being made at Daimler-Benz AG to utilize the special characteristics of vaporized methanol and ethanol in an alcohol-gas spark-ignited engine. Describes laboratory testing which demonstrates that waste heat recovery and very lean air/fuel mixtures improve the efficiency and economy of a spark-ignition engine running on alcohol vapors. Presents graph comparing performance and torque of the alcohol-gas and diesel engines. Finds that the fuel consumption of the methanol-fueled version approaches that of a diesel engine, with other advantages including low engine noise, good acceleration, and favorable exhaust emissions.

  11. Survey Evidence on the Willingness of U.S. Consumers to Pay for Automotive Fuel Economy

    SciTech Connect (OSTI)

    Greene, David L; Evans, David H; Hiestand, John

    2013-01-01

    Prospect theory, which was awarded the Nobel Prize in Economics in 2002, holds that human beings faced with a risky bet will tend to value potential losses about twice as much as potential gains. Previous research has demonstrated that prospect theory could be sufficient to explain an energy paradox in the market for automotive fuel economy. This paper analyzes data from four random sample surveys of 1,000 U.S. households each in 2004, 2011, 2012 and 2013. Households were asked about willingness to pay for future fuel savings as well as the annual fuel savings necessary to justify a given upfront payment. Payback periods inferred from household responses are consistent over time and across different formulations of questions. Mean calculated payback periods are short, about 3 years, but there is substantial dispersion among individual responses. Calculated payback periods do not appear to be correlated with the attributes of respondents. Respondents were able to quantitatively describe their uncertainty about both vehicle fuel economy and future fuel prices. Simulation of loss averse behavior based on this stated uncertainty illustrate how loss aversion could lead consumers to substantially undervalue future fuel savings relative to their expected value.

  12. Automotive Stirling Engine Development Program. Semiannual technical progress report, January 1-June 30, 1983

    SciTech Connect (OSTI)

    Not Available

    1983-08-01

    Activities performed on Mod I engine testing and test results, testing of the Mod I engine in the United States, Mod I engine characterization and analyses, Mod I Transient Test Bed fuel economy, Upgraded Mod I performance and testing, Stirling engine reference engine manufacturing and reduced size studies, components and subsystems, and the study and test of low-cost casting alloys are summarized. The overall program philosophy is outlined, and data and results are presented.

  13. Direct Hydrogen PEMFC Manufacturing Cost Estimation for Automotive Applications: Fuel Cell Tech Team Review

    Office of Energy Efficiency and Renewable Energy (EERE)

    This presentation reports on direct hydrogen PEMFC manufacturing cost estimation for automotive applications.

  14. Costs and benefits of automotive fuel economy improvement: A partial analysis

    SciTech Connect (OSTI)

    Greene, D.L.; Duleep, K.G.

    1992-03-01

    This paper is an exercise in estimating the costs and benefits of technology-based fuel economy improvements for automobiles and light trucks. Benefits quantified include vehicle cots, fuel savings, consumer`s surplus effects, the effect of reduced weight on vehicle safety, impacts on emissions of CO{sub 2} and criteria pollutants, world oil market and energy security benefits, and the transfer of wealth from US consumes to oil producers. A vehicle stock model is used to capture sales, scrappage, and vehicle use effects under three fuel price scenarios. Three alternative fuel economy levels for 2001 are considered, ranging from 32.9 to 36.5 MPG for cars and 24.2 to 27.5 MPG for light trucks. Fuel economy improvements of this size are probably cost-effective. The size of the benefit, and whether there is a benefit, strongly depends on the financial costs of fuel economy improvement and judgments about the values of energy security, emissions, safety, etc. Three sets of values for eight parameters are used to define the sensitivity of costs and benefits to key assumptions. The net present social value (1989$) of costs and benefits ranges from a cost of $11 billion to a benefit of $286 billion. The critical parameters being the discount rate (10% vs. 3%) and the values attached to externalities. The two largest components are always the direct vehicle costs and fuel savings, but these tend to counterbalance each other for the fuel economy levels examined here. Other components are the wealth transfer, oil cost savings, CO{sub 2} emissions reductions, and energy security benefits. Safety impacts, emissions of criteria pollutants, and consumer`s surplus effects are relatively minor components. The critical issues for automotive fuel economy are therefore: (1) the value of present versus future costs and benefits, (2) the values of external costs and benefits, and (3) the financially cost-effective level of MPG achievable by available technology. 53 refs.

  15. Costs and benefits of automotive fuel economy improvement: A partial analysis

    SciTech Connect (OSTI)

    Greene, D.L. ); Duleep, K.G. )

    1992-03-01

    This paper is an exercise in estimating the costs and benefits of technology-based fuel economy improvements for automobiles and light trucks. Benefits quantified include vehicle cots, fuel savings, consumer's surplus effects, the effect of reduced weight on vehicle safety, impacts on emissions of CO{sub 2} and criteria pollutants, world oil market and energy security benefits, and the transfer of wealth from US consumes to oil producers. A vehicle stock model is used to capture sales, scrappage, and vehicle use effects under three fuel price scenarios. Three alternative fuel economy levels for 2001 are considered, ranging from 32.9 to 36.5 MPG for cars and 24.2 to 27.5 MPG for light trucks. Fuel economy improvements of this size are probably cost-effective. The size of the benefit, and whether there is a benefit, strongly depends on the financial costs of fuel economy improvement and judgments about the values of energy security, emissions, safety, etc. Three sets of values for eight parameters are used to define the sensitivity of costs and benefits to key assumptions. The net present social value (1989$) of costs and benefits ranges from a cost of $11 billion to a benefit of $286 billion. The critical parameters being the discount rate (10% vs. 3%) and the values attached to externalities. The two largest components are always the direct vehicle costs and fuel savings, but these tend to counterbalance each other for the fuel economy levels examined here. Other components are the wealth transfer, oil cost savings, CO{sub 2} emissions reductions, and energy security benefits. Safety impacts, emissions of criteria pollutants, and consumer's surplus effects are relatively minor components. The critical issues for automotive fuel economy are therefore: (1) the value of present versus future costs and benefits, (2) the values of external costs and benefits, and (3) the financially cost-effective level of MPG achievable by available technology. 53 refs.

  16. Fuel injector nozzle for internal combustion engine

    SciTech Connect (OSTI)

    Klomp, E.D.; Peters, B.D.

    1990-06-12

    This patent describes a fuel injection nozzle for a combustion chamber of an internal combustion engine. It comprises: a nozzle body with at least one fuel flow opening therethrough for feed fuel to the chamber, a resilient diaphragm normally sealing the opening and having orifice means therein for further atomizing and directing the pulses into the chamber, fastening means for fixing the diaphragm to the body so that diaphragm can deflect by a predetermined amount under low engine load operating conditions so that a wide angle cone of atomized fuel is injected into and generally at one end of the combustion chamber for the stratified charge thereof and deflect by an amount greater than the first amount of deflection under high engine load operating conditions. A narrow spray cone of atomized fuel is injected in a deeper pattern into and throughout the combustion chamber for optimizing the charge thereof and fuel burns under the low and high load engine operating conditions.

  17. Method of combustion for dual fuel engine

    DOE Patents [OSTI]

    Hsu, Bertrand D.; Confer, Gregory L.; Shen, Zujing; Hapeman, Martin J.; Flynn, Paul L.

    1993-12-21

    Apparatus and a method of introducing a primary fuel, which may be a coal water slutty, and a high combustion auxiliary fuel, which may be a conventional diesel oil, into an internal combustion diesel engine comprises detecting the load conditions of the engine, determining the amount of time prior to the top dead center position of the piston to inject the main fuel into the combustion chamber, and determining the relationship of the timing of the injection of the auxiliary fuel into the combustion chamber to achieve a predetermined specific fuel consumption, a predetermined combustion efficiency, and a predetermined peak cylinder firing pressure.

  18. Method of combustion for dual fuel engine

    DOE Patents [OSTI]

    Hsu, B.D.; Confer, G.L.; Zujing Shen; Hapeman, M.J.; Flynn, P.L.

    1993-12-21

    Apparatus and a method of introducing a primary fuel, which may be a coal water slurry, and a high combustion auxiliary fuel, which may be a conventional diesel oil, into an internal combustion diesel engine comprises detecting the load conditions of the engine, determining the amount of time prior to the top dead center position of the piston to inject the main fuel into the combustion chamber, and determining the relationship of the timing of the injection of the auxiliary fuel into the combustion chamber to achieve a predetermined specific fuel consumption, a predetermined combustion efficiency, and a predetermined peak cylinder firing pressure. 19 figures.

  19. Fuel Additive Strategies for Enhancing the Performance of Engines...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Additive Strategies for Enhancing the Performance of Engines and Engine Oils Fuel Additive Strategies for Enhancing the Performance of Engines and Engine Oils 2003 DEER Conference ...

  20. Control studies of an automotive turbocharged diesel engine with variable geometry turbine

    SciTech Connect (OSTI)

    Winterbone, D.E.; Jai In, S.

    1988-01-01

    Major advances are being made in engine hardware, control theories and microcomputer technology. The application of advanced control and monitoring techniques to engines should enable them to meet all the restrictions imposed upon them while they operate to their full potential. Variable geometry turbocharging of automotive diesel engines is a good example of a case where the control implications need to be considered carefully. This paper reports a technique for developing the dynamic characteristics of turbocharged diesel engines with variable geometry turbine and compares the results with measurements obtained on an engine. It is the first step in the design process for a true, dynamic, multivariable controller. Most current systems are simply scheduling devices with little understanding or consideration of possible interactions between various control loops. A non-linear simulation model for a turbocharged diesel engine was used to investigate the performance of the engine. Major features of the program, aspects of constructing a model for control purposes and identification procedures of the engine dynamic are discussed.

  1. Optima: Co-Optimization of Fuels and Engines | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Optima: Co-Optimization of Fuels and Engines Optima: Co-Optimization of Fuels and Engines doeoptimainitiativeoverview.pdf More Documents & Publications Optima Program Overview...

  2. Engine control techniques to account for fuel effects (Patent...

    Office of Scientific and Technical Information (OSTI)

    Patent: Engine control techniques to account for fuel effects Citation Details In-Document Search Title: Engine control techniques to account for fuel effects A technique for ...

  3. Emission Performance of Modern Diesel Engines Fueled with Biodiesel...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Performance of Modern Diesel Engines Fueled with Biodiesel Emission Performance of Modern Diesel Engines Fueled with Biodiesel This study presents full quantification of ...

  4. Bachelor of Science Engineering Technology Hydrogen and Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Bachelor of Science Engineering Technology Hydrogen and Fuel Cell Education Program Concentration Bachelor of Science Engineering Technology Hydrogen and Fuel Cell Education ...

  5. Development and Demonstration of a Fuel-Efficient HD Engine ...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Engine (DOE SuperTruck Program) Development and Demonstration of a Fuel-Efficient HD ... More Documents & Publications Development and Demonstration of a Fuel-Efficient HD Engine

  6. DOE Hydrogen and Fuel Cell Activities Panel Discussion: 2010...

    Energy.gov (indexed) [DOE]

    Presentation by Sunita Satyapal at the 2010 Society of Automotive Engineers (SAE) World Congress in Detroit, Michigan. DOE Hydrogen and Fuel Cell Activities Panel Discussion ...

  7. mMass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Application: 2009 Update

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Mass Production Cost Estimation for Direct H 2 PEM Fuel Cell Systems for Automotive Applications: 2009 Update January 1, 2010 Prepared by: Brian D. James, Jeffrey A. Kalinoski & Kevin N. Baum One Virginia Square 3601 Wilson Boulevard, Suite 650 Arlington, Virginia 22201 703-243-3383 Prepared for: Contract No. GS-10F-0099J to the U.S. Department of Energy Energy Efficiency and Renewable Energy Office Hydrogen, Fuel Cells & Infrastructure Technologies Program ii Directed Technologies, Inc.

  8. Fuels of the Future: Accelerating the Co-Optimization of Fuels and Engines

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    | Department of Energy Fuels of the Future: Accelerating the Co-Optimization of Fuels and Engines Fuels of the Future: Accelerating the Co-Optimization of Fuels and Engines Plenary IV: Fuels of the Future: Accelerating the Co-Optimization of Fuels and Engines Fuels of the Future: Accelerating the Co-Optimization of Fuels and Engines John Eichberger, Vice President of Government Relations, National Association of Convenience Stores/Executive Director, The Fuels Institute

  9. Fuels for Advanced Combustion Engines

    Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  10. Fuels for Advanced Combustion Engines

    Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  11. Co-Optima Initiative Fuels Combustion Engine Efficiency | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Optima Initiative Fuels Combustion Engine Efficiency Co-Optima Initiative Fuels Combustion Engine Efficiency August 2, 2016 - 11:15am Addthis As part of the Co-Optimization of Fuels & Engines initiative, researchers are exploring synergies among new bio-based fuels, engines, powertrains, and fueling infrastructure. | Image by Loren Stacks, Sandia National Laboratories. As part of the Co-Optimization of Fuels & Engines initiative, researchers are exploring synergies among new

  12. Co-Optimization of Fuels & Engines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Research & Development » Demonstration & Market Transformation » Co-Optimization of Fuels & Engines Co-Optimization of Fuels & Engines As part of the Co-Optimization of Fuels & Engines initiative, researchers are exploring synergies among new bio-based fuels, engines, powertrains, and fueling infrastructure. Image by Loren Stacks, Sandia National Laboratories. As part of the Co-Optimization of Fuels & Engines initiative, researchers are exploring synergies among new

  13. Co-Optimization of Fuels & Engines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Research & Development » Demonstration & Market Transformation » Co-Optimization of Fuels & Engines Co-Optimization of Fuels & Engines As part of the Co-Optimization of Fuels & Engines initiative, researchers are exploring synergies among new bio-based fuels, engines, powertrains, and fueling infrastructure. Image by Loren Stacks, Sandia National Laboratories. As part of the Co-Optimization of Fuels & Engines initiative, researchers are exploring synergies among new

  14. Sandia Energy - Engineering Alternative Fuel with Cyanobacteria

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    fatty acid floating on top. She has engineered two strains of cyanobacteria to produce free fatty acids, a precursor to fuels, as she studies the direct conversion of carbon...

  15. Fuel-cell engine stream conditioning system

    DOE Patents [OSTI]

    DuBose, Ronald Arthur

    2002-01-01

    A stream conditioning system for a fuel cell gas management system or fuel cell engine. The stream conditioning system manages species potential in at least one fuel cell reactant stream. A species transfer device is located in the path of at least one reactant stream of a fuel cell's inlet or outlet, which transfer device conditions that stream to improve the efficiency of the fuel cell. The species transfer device incorporates an exchange media and a sorbent. The fuel cell gas management system can include a cathode loop with the stream conditioning system transferring latent and sensible heat from an exhaust stream to the cathode inlet stream of the fuel cell; an anode humidity retention system for maintaining the total enthalpy of the anode stream exiting the fuel cell related to the total enthalpy of the anode inlet stream; and a cooling water management system having segregated deionized water and cooling water loops interconnected by means of a brazed plate heat exchanger.

  16. Co-Optimization of Fuels and Engines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Engines Co-Optimization of Fuels and Engines Co-Optimization of Fuels and Engines presentation for SAE High Efficiency Internal Combustion Engine Symposium on April 10-11, 2016. farrell_co-optimization_sae_heice_ symposium_2016.pdf (14.01 MB) More Documents & Publications Co-Optima: Low Greenhouse Gas Fuels and Properties Vehicle Technologies Office Merit Review 2016: Co-Optimization of Fuels and Engines (Co-Optima)-Fuel Properties and Chemical Kinetics and Thrust I Engine Projects

  17. Co-Optimization of Fuels and Engines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Engines Co-Optimization of Fuels and Engines Breakout Session 3D: Opportunities for Innovation in Fuel-Engine Co-Optimization Co-Optimization of Fuels and Engines John Farrell, Laboratory Program Manager - Vehicles Technology Office, National Renewable Energy Laboratory farrell_bioenergy_2016.pdf (1.98 MB) More Documents & Publications Co-Optimization of Fuels and Engines Vehicle Technologies Office Merit Review 2016: Co-Optimization of Fuels and Engines (Co-Optima) Overview CO-OPTIMIZATION

  18. Status and Prospects of the Global Automotive Fuel Cell Industry and Plans for Deployment of Fuel Cell Vehicles and Hydrogen Refueling Infrastructure

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ORNL/TM-2013/222 Status and Prospects of the Global Automotive Fuel Cell Industry and Plans for Deployment of Fuel Cell Vehicles and Hydrogen Refueling Infrastructure Revised July 2013 1 Prepared by David L. Greene Oak Ridge National Laboratory Gopal Duleep HD Systems 1 This is a revised version of the paper originally published in June 2013. DOCUMENT AVAILABILITY Reports produced after January 1, 1996, are generally available free via the U.S. Department of Energy (DOE) Information Bridge. Web

  19. Fuels for Advanced Combustion Engines (FACE) | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    for Advanced Combustion Engines (FACE) Fuels for Advanced Combustion Engines (FACE) Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER ...

  20. Innovative Drivetrains in Electric Automotive Technology Education...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Drivetrains in Electric Automotive Technology Education (IDEATE) Innovative Drivetrains in Electric Automotive Technology Education (IDEATE) 2012 DOE Hydrogen and Fuel Cells ...

  1. Oscar Automotive Ltd | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Oscar Automotive Ltd Place: London, Greater London, United Kingdom Sector: Hydro, Hydrogen Product: OSCar Automotive is working towards the commercialisation of hydrogen fuel...

  2. Advanced development of rotary stratified charge 750 and 1500 HP military multi-fuel engines at Curtiss-Wright

    SciTech Connect (OSTI)

    Jones, C.

    1984-01-01

    During the period from 1977 to 1982, two and four rotor naturally aspirated Stratified Charge Rotary Combustion engines were under development for the U.S. Marine Corps. These engines are described and highlights of work conducted under the government ''Advanced Development'' contracts are discussed. The basic direct injected and spark ignited stratified charge technology was defined during 1973-1976 for automotive engine applications. It was then demonstrated that the unthrottled naturally aspirated Rotary could match indirect injected diesel fuel consumption, without regard to fuel cetane or octane rating. This same technology was scaled from the 60''/sup 3//rotor automotive engine module to the 350''/sup 3//rotor military engine size. In addition, parallel company-sponsored research efforts were undertaken to explore growth directions. Tests showed significant thermal efficiency improvement at lean air-fuel ratios. When turbocharged, high exhaust energy recovery of this ported engine provided induction airflow sufficient for increased output plus excess for operation at the lean mixture strengths of best combustion efficiency. With additive improvements in mechanical efficiency accruing to higher BMEP operation, the potential for fuel economy in the same range as direct injected diesels was demonstrated. These lightweight, compact, multi-fuel engines are believed to open new possiblities for lightweight, reliable, highly mobile and agile military fighting vehicles of the future.

  3. Sorbent Material Property Requirements for On-Board Hydrogen Storage for Automotive Fuel Cell Systems.

    SciTech Connect (OSTI)

    Ahluwalia, R. K.; Peng, J-K; Hua, T. Q.

    2015-05-25

    Material properties required for on-board hydrogen storage in cryogenic sorbents for use with automotive polymer electrolyte membrane (PEM) fuel cell systems are discussed. Models are formulated for physical, thermodynamic and transport properties, and for the dynamics of H-2 refueling and discharge from a sorbent bed. A conceptual storage configuration with in-bed heat exchanger tubes, a Type-3 containment vessel, vacuum insulation and requisite balance-of-plant components is developed to determine the peak excess sorption capacity and differential enthalpy of adsorption for 5.5 wt% system gravimetric capacity and 55% well-to-tank (WTT) efficiency. The analysis also determines the bulk density to which the material must be compacted for the storage system to reach 40 g.L-1 volumetric capacity. Thermal transport properties and heat transfer enhancement methods are analyzed to estimate the material thermal conductivity needed to achieve 1.5 kg.min(-1) H-2 refueling rate. Operating temperatures and pressures are determined for 55% WTT efficiency and 95% usable H-2. Needs for further improvements in material properties are analyzed that would allow reduction of storage pressure to 50 bar from 100 bar, elevation of storage temperature to 175-200 K from 150 K, and increase of WTT efficiency to 57.5% or higher.

  4. California Fuel Cell Partnership: Alternative Fuels Research

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fuel Cell Partnership - Alternative Fuels Research TNS Automotive Chris White Communications Director cwhite@cafcp.org 2 TNS Automotive for California Fuel Cell Partnership ...

  5. Fuels for Advanced CIDI Engines and Fuel Cells: 2000 Annual Progress Report

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    | Department of Energy Fuels for Advanced CIDI Engines and Fuel Cells: 2000 Annual Progress Report Fuels for Advanced CIDI Engines and Fuel Cells: 2000 Annual Progress Report DOE's Office of Transportation Technologies Fiscal Year 2000 Annual Progress Report for the Fuels for Advanced CIDI Engines and Fuel Cells Program highlights progress achieved during FY 2000. 13.pdf (3.87 MB) More Documents & Publications Cleaner Vehicles, Cleaner Fuel & Cleaner Air Durability of NOx Absorbers

  6. EIS-0203: Spent Nuclear Fuel Management and Idaho National Engineering...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs EIS-0203: Spent Nuclear Fuel Management and Idaho National Engineering Laboratory ...

  7. Fuel Requirements for HCCI Engine Operation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Requirements for HCCI Engine Operation Fuel Requirements for HCCI Engine Operation 2002 DEER Conference Presentation: Southwest Research Institute PDF icon 2002deerryan.pdf More ...

  8. Hydrogen Fuel Cell Engines and Related Technologies Course Manual...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Engines and Related Technologies Course Manual Hydrogen Fuel Cell Engines and Related Technologies Course Manual This course manual features technical information on the use of ...

  9. Engine control techniques to account for fuel effects

    SciTech Connect (OSTI)

    Kumar, Shankar; Frazier, Timothy R.; Stanton, Donald W.; Xu, Yi; Bunting, Bruce G.; Wolf, Leslie R.

    2014-08-26

    A technique for engine control to account for fuel effects including providing an internal combustion engine and a controller to regulate operation thereof, the engine being operable to combust a fuel to produce an exhaust gas; establishing a plurality of fuel property inputs; establishing a plurality of engine performance inputs; generating engine control information as a function of the fuel property inputs and the engine performance inputs; and accessing the engine control information with the controller to regulate at least one engine operating parameter.

  10. Assessment of methane-related fuels for automotive fleet vehicles: technical, supply, and economic assessments

    SciTech Connect (OSTI)

    Not Available

    1982-02-01

    The use of methane-related fuels, derived from a variety of sources, in highway vehicles is assessed. Methane, as used here, includes natural gas (NG) as well as synthetic natural gas (SNG). Methanol is included because it can be produced from NG or the same resources as SNG, and because it is a liquid fuel at normal ambient conditions. Technological, operational, efficiency, petroleum displacement, supply, safety, and economic issues are analyzed. In principle, both NG and methanol allow more efficient engine operation than gasoline. In practice, engines are at present rarely optimized for NG and methanol. On the basis of energy expended from resource extraction to end use, only optimized LNG vehicles are more efficient than their gasoline counterparts. By 1985, up to 16% of total petroleum-based highway vehicle fuel could be displaced by large fleets with central NG fueling depots. Excluding diesel vehicles, which need technology advances to use NG, savings of 8% are projected. Methanol use by large fleets could displace up to 8% of petroleum-based highway vehicle fuel from spark-ignition vehicles and another 9% from diesel vehicles with technology advances. The US NG supply appears adequate to accommodate fleet use. Supply projections, future price differential versus gasoline, and user economics are uncertain. In many cases, attractive paybacks can occur. Compressed NG now costs on average about $0.65 less than gasoline, per energy-equivalent gallon. Methanol supply projections, future prices, and user economics are even more uncertain. Current and projected near-term methanol supplies are far from adequate to support fleet use. Methanol presently costs more than gasoline on an equal-energy basis, but is projected to cost less if produced from coal instead of NG or petroleum.

  11. Final Report for NFE-07-00912: Development of Model Fuels Experimental Engine Data Base & Kinetic Modeling Parameter Sets

    SciTech Connect (OSTI)

    Bunting, Bruce G

    2012-10-01

    The automotive and engine industries are in a period of very rapid change being driven by new emission standards, new types of after treatment, new combustion strategies, the introduction of new fuels, and drive for increased fuel economy and efficiency. The rapid pace of these changes has put more pressure on the need for modeling of engine combustion and performance, in order to shorten product design and introduction cycles. New combustion strategies include homogeneous charge compression ignition (HCCI), partial-premixed combustion compression ignition (PCCI), and dilute low temperature combustion which are being developed for lower emissions and improved fuel economy. New fuels include bio-fuels such as ethanol or bio-diesel, drop-in bio-derived fuels and those derived from new crude oil sources such as gas-to-liquids, coal-to-liquids, oil sands, oil shale, and wet natural gas. Kinetic modeling of the combustion process for these new combustion regimes and fuels is necessary in order to allow modeling and performance assessment for engine design purposes. In this research covered by this CRADA, ORNL developed and supplied experimental data related to engine performance with new fuels and new combustion strategies along with interpretation and analysis of such data and consulting to Reaction Design, Inc. (RD). RD performed additional analysis of this data in order to extract important parameters and to confirm engine and kinetic models. The data generated was generally published to make it available to the engine and automotive design communities and also to the Reaction Design Model Fuels Consortium (MFC).

  12. Fuel-tolerance tests with the Ford PROCO engine

    SciTech Connect (OSTI)

    Choma, M.A.; Havstad, P.H.; Simko, A.O.; Stockhausen, W.F.

    1981-01-01

    A variety of fuel tolerance tests were conducted utilizing Ford's PROCO engine, a direct fuel injection stratified charge engine developed for light duty vehicles. These engine tests were run on the dynamometer and in vehicles. Data indicate an 89 RON octane requirement, relatively low sensitivity to volatility characteristics and good fuel economy, emission control and operability on a certain range of petroleum fuel and alcohol mixes including 100% methanol. Fuels such as JP-4 and Diesel fuel are not at present suitable for this engine. There were no engine modifications tested that might improve the match between the engine and a particular fuel. The 100% methanol test was conducted with a modified fuel injection pump. Durability aspects including compatibility of various fuels with the materials in the fuel system were not addressed.

  13. Fuel system for an internal combustion engine

    SciTech Connect (OSTI)

    Davison, M.J.; Mardell, J.E.; Mowbray, D.F.; Seilly, A.H.

    1982-10-26

    A fuel system for an internal combustion engine includes a pump/injector having an actuating winding to which power is supplied by a first electronic means. A first control signal is supplied by a second electronic means to energize the winding and a second control signal is supplied by a third electronic means to de-energize the winding. The third electronic means calculates the time at which the winding should be de-energized to allow the piston in the pump to draw in the required volume of fuel, the second electronic means causing delivery of fuel when the required volume of fuel has been drawn into the pumping chamber of the pump.

  14. Engine combustion control via fuel reactivity stratification

    DOE Patents [OSTI]

    Reitz, Rolf Deneys; Hanson, Reed M.; Splitter, Derek A.; Kokjohn, Sage L.

    2015-07-14

    A compression ignition engine uses two or more fuel charges having two or more reactivities to control the timing and duration of combustion. In a preferred implementation, a lower-reactivity fuel charge is injected or otherwise introduced into the combustion chamber, preferably sufficiently early that it becomes at least substantially homogeneously dispersed within the chamber before a subsequent injection is made. One or more subsequent injections of higher-reactivity fuel charges are then made, and these preferably distribute the higher-reactivity matter within the lower-reactivity chamber space such that combustion begins in the higher-reactivity regions, and with the lower-reactivity regions following thereafter. By appropriately choosing the reactivities of the charges, their relative amounts, and their timing, combustion can be tailored to achieve optimal power output (and thus fuel efficiency), at controlled temperatures (and thus controlled NOx), and with controlled equivalence ratios (and thus controlled soot).

  15. Engine combustion control via fuel reactivity stratification

    DOE Patents [OSTI]

    Reitz, Rolf Deneys; Hanson, Reed M; Splitter, Derek A; Kokjohn, Sage L

    2013-12-31

    A compression ignition engine uses two or more fuel charges having two or more reactivities to control the timing and duration of combustion. In a preferred implementation, a lower-reactivity fuel charge is injected or otherwise introduced into the combustion chamber, preferably sufficiently early that it becomes at least substantially homogeneously dispersed within the chamber before a subsequent injection is made. One or more subsequent injections of higher-reactivity fuel charges are then made, and these preferably distribute the higher-reactivity matter within the lower-reactivity chamber space such that combustion begins in the higher-reactivity regions, and with the lower-reactivity regions following thereafter. By appropriately choose the reactivities of the charges, their relative amounts, and their timing, combustion can be tailored to achieve optimal power output (and thus fuel efficiency), at controlled temperatures (and thus controlled NOx), and with controlled equivalence ratios (and thus controlled soot).

  16. Bench-Top Engine System for Fast Screening of Alternative Fuels and Fuel Additives

    Energy.gov [DOE]

    A bench-top engine testing system was used to fast screen the efficiency of fuel additives or fuel blends on NOx reduction

  17. Lightweighting Automotive Materials for Increased Fuel Efficiency and Delivering Advanced Modeling and Simulation Capabilities to U.S. Manufacturers

    SciTech Connect (OSTI)

    Hale, Steve

    2013-09-11

    Abstract The National Center for Manufacturing Sciences (NCMS) worked with the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL), to bring together research and development (R&D) collaborations to develop and accelerate the knowledgebase and infrastructure for lightweighting materials and manufacturing processes for their use in structural and applications in the automotive sector. The purpose/importance of this DOE program: • 2016 CAFÉ standards. • Automotive industry technology that shall adopt the insertion of lightweighting material concepts towards manufacturing of production vehicles. • Development and manufacture of advanced research tools for modeling and simulation (M&S) applications to reduce manufacturing and material costs. • U.S. competitiveness that will help drive the development and manufacture of the next generation of materials. NCMS established a focused portfolio of applied R&D projects utilizing lightweighting materials for manufacture into automotive structures and components. Areas that were targeted in this program: • Functionality of new lightweighting materials to meet present safety requirements. • Manufacturability using new lightweighting materials. • Cost reduction for the development and use of new lightweighting materials. The automotive industry’s future continuously evolves through innovation, and lightweight materials are key in achieving a new era of lighter, more efficient vehicles. Lightweight materials are among the technical advances needed to achieve fuel/energy efficiency and reduce carbon dioxide (CO2) emissions: • Establish design criteria methodology to identify the best materials for lightweighting. • Employ state-of-the-art design tools for optimum material development for their specific applications. • Match new manufacturing technology to production volume. • Address new process variability with new production-ready processes.

  18. Advanced fuel chemistry for advanced engines.

    SciTech Connect (OSTI)

    Taatjes, Craig A.; Jusinski, Leonard E.; Zador, Judit; Fernandes, Ravi X.; Miller, James A.

    2009-09-01

    Autoignition chemistry is central to predictive modeling of many advanced engine designs that combine high efficiency and low inherent pollutant emissions. This chemistry, and especially its pressure dependence, is poorly known for fuels derived from heavy petroleum and for biofuels, both of which are becoming increasingly prominent in the nation's fuel stream. We have investigated the pressure dependence of key ignition reactions for a series of molecules representative of non-traditional and alternative fuels. These investigations combined experimental characterization of hydroxyl radical production in well-controlled photolytically initiated oxidation and a hybrid modeling strategy that linked detailed quantum chemistry and computational kinetics of critical reactions with rate-equation models of the global chemical system. Comprehensive mechanisms for autoignition generally ignore the pressure dependence of branching fractions in the important alkyl + O{sub 2} reaction systems; however we have demonstrated that pressure-dependent 'formally direct' pathways persist at in-cylinder pressures.

  19. Fuel burner and combustor assembly for a gas turbine engine

    DOE Patents [OSTI]

    Leto, Anthony

    1983-01-01

    A fuel burner and combustor assembly for a gas turbine engine has a housing within the casing of the gas turbine engine which housing defines a combustion chamber and at least one fuel burner secured to one end of the housing and extending into the combustion chamber. The other end of the fuel burner is arranged to slidably engage a fuel inlet connector extending radially inwardly from the engine casing so that fuel is supplied, from a source thereof, to the fuel burner. The fuel inlet connector and fuel burner coact to anchor the housing against axial movement relative to the engine casing while allowing relative radial movement between the engine casing and the fuel burner and, at the same time, providing fuel flow to the fuel burner. For dual fuel capability, a fuel injector is provided in said fuel burner with a flexible fuel supply pipe so that the fuel injector and fuel burner form a unitary structure which moves with the fuel burner.

  20. Session Remarks and Supply Chain Analysis: U.S. Clean Energy Hydrogen and Fuel Cell Technologies: A Competitiveness Analysis (PEM Automotive FC)

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Award No. DE-EE-0006935 A Preliminary Status Update Presented to: 2016 Ohio Fuel Cell Symposium DOE Presented by: Patrick Fullenkamp, GLWN 27 September 2016 Clean Energy Supply Chain and Manufacturing Competitiveness Analysis for Hydrogen and Fuel Cell Technologies 1 U.S. Clean Energy Hydrogen and Fuel Cell Technologies: A Competitiveness Analysis (PEM Automotive FC) Department of Energy Award No. DE-EE-0006935 * Preliminary Report Only as of September 27, 2016 * Interviews Conducted: 7 OEM, 23

  1. Hydrogen Fuel Cell Engines and Related Technologies Course | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Hydrogen Fuel Cell Engines and Related Technologies Course Hydrogen Fuel Cell Engines and Related Technologies Course Photo of hydrogen-powered bus. Produced by College of the Desert and SunLine Transit Agency with funding from the U.S. Federal Transit Administration, this course features technical information on the use of hydrogen as a transportation fuel. It covers hydrogen properties, use, and safety as well as fuel cell technologies, systems, engine design, safety, and

  2. Complete Fuel Combustion for Diesel Engines Resulting in Greatly Reduced Emissions and Improved Fuel Efficiency

    Energy.gov [DOE]

    An advanced engine design that is 15 percent more efficient than diesel, pollution free, and uses any fuel.

  3. Alternative Fuels Data Center: College Students Engineer Efficient Vehicles

    Alternative Fuels and Advanced Vehicles Data Center

    in EcoCAR 2 Competition College Students Engineer Efficient Vehicles in EcoCAR 2 Competition to someone by E-mail Share Alternative Fuels Data Center: College Students Engineer Efficient Vehicles in EcoCAR 2 Competition on Facebook Tweet about Alternative Fuels Data Center: College Students Engineer Efficient Vehicles in EcoCAR 2 Competition on Twitter Bookmark Alternative Fuels Data Center: College Students Engineer Efficient Vehicles in EcoCAR 2 Competition on Google Bookmark Alternative

  4. NREL: Transportation Research - Fuel Combustion and Engine Performance

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Fuel Combustion and Engine Performance Photo of a gasoline direct injection piston with injector. NREL studies the effects of new fuel properties on performance and emissions in advanced engine technologies. Photo by Dennis Schroeder, NREL NREL's combustion research and development bridges fundamental chemical kinetics and applied engine research to investigate how new engine technologies can be co-developed with fuels and lubricants to maximize energy-efficient vehicle performance. Through

  5. Hydrogen-fueled internal combustion engines.

    SciTech Connect (OSTI)

    Verhelst, S.; Wallner, T.; Energy Systems; Ghent Univ.

    2009-12-01

    The threat posed by climate change and the striving for security of energy supply are issues high on the political agenda these days. Governments are putting strategic plans in motion to decrease primary energy use, take carbon out of fuels and facilitate modal shifts. Taking a prominent place in these strategic plans is hydrogen as a future energy carrier. A number of manufacturers are now leasing demonstration vehicles to consumers using hydrogen-fueled internal combustion engines (H{sub 2}ICEs) as well as fuel cell vehicles. Developing countries in particular are pushing for H{sub 2}ICEs (powering two- and three-wheelers as well as passenger cars and buses) to decrease local pollution at an affordable cost. This article offers a comprehensive overview of H{sub 2}ICEs. Topics that are discussed include fundamentals of the combustion of hydrogen, details on the different mixture formation strategies and their emissions characteristics, measures to convert existing vehicles, dedicated hydrogen engine features, a state of the art on increasing power output and efficiency while controlling emissions and modeling.

  6. Improving combustion stability in a bi-fuel engine

    SciTech Connect (OSTI)

    1995-06-01

    This article describes how a new strategy for ignition timing control can reduce NOx emissions from engines using CNG and gasoline. Until a proper fueling infrastructure is established, a certain fraction of vehicles powered by compressed natural gas (CNG) must have bi-fuel capability. A bi-fuel engine, enjoying the longer range of gasoline and the cleaner emissions of CNG, can overcome the problem of having few CNG fueling stations. However, bi-fuel engines must be optimized to run on both fuels since low CNG volumetric efficiency causes power losses compared to gasoline.

  7. Co-Optimization of Fuels and Engines (Optima)

    Energy.gov [DOE]

    The Co-Optimization of Fuels and Engines (Optima) initiative seeks to transform the fuels and vehicles that provide mobility for our countrys people, goods, and services. This collaboration between industry stakeholders and the U.S. Department of Energy (DOE) national laboratories builds on decades of advances in both fuels and engines.

  8. Dual fuel control of a high speed turbocharged diesel engine

    SciTech Connect (OSTI)

    Few, P.C.; Sardari, P.

    1987-01-01

    The modification of a Ford 7600 turbocharged diesel engine to a dual fuel engine using methane as the supplementary fuel has been carried out. The paper describes the preliminary work of dual fuel control. Two systems are examined and their behaviour is presented.

  9. Pilot fuel ignited stratified charge rotary combustion engine and fuel injector therefor

    SciTech Connect (OSTI)

    Loyd, R. W.

    1980-02-12

    For a pilot fuel ignited stratified charge rotary, internal combustion engine, the fuel injection system and a fuel injector therefor comprises a fuel injector having plural discharge ports with at least one of the discharge ports located to emit a ''pilot'' fuel charge (relatively rich fuel-air mixture) into a passage in the engine housing, which passage communicates with the engine combustion chambers. An ignition element is located in the passage to ignite the ''pilot'' fuel (a relatively rich fuel-air mixture) flowing through the passage. At least one other discharge port of the fuel injector is in substantially direct communication with the combustion chambers of the engine to emit a main fuel charge into the latter. The ignited ''pilot'' fuelair mixture, when ignited, flashes into the combustion chambers to ignite the main, relatively lean, fuel-air mixture which is in the combustion chambers.

  10. Adapting ethanol fuels to diesel engines

    SciTech Connect (OSTI)

    Not Available

    1981-08-01

    During the 2nd International Alcohol Symposium 1977, Daimler-Benz reported on the advantages and disadvantages of the various methods of using ethanol in originally diesel-operated commercial vehicles, and especially about the first results in the field of adapting the ethanol fuel to the requirements of conventional diesel engines. Investigations to this effect were continued by Daimler-Benz AG, Stuttgart, and Mercedes-Benz of Brasil in coordination with competent Brazilian government departments. The development effort is primarily adapted to Brazilian conditions, since ethanol fuel is intended as a long-term project in this country. This report is presented under headings - auto-ignition; durability tests; remedial measures; the injection systems; ethanol quality.

  11. Fact #868: April 13, 2015 Automotive Technology Has Improved...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    13, 2015 Automotive Technology Has Improved Performance and Fuel Economy of New Light Vehicles - Dataset Fact 868: April 13, 2015 Automotive Technology Has Improved ...

  12. Looking From A Hilltop: Automotive Propulsion System Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Looking From A Hilltop: Automotive Propulsion System Technology Looking From A Hilltop: Automotive Propulsion System Technology Outlook for global fuel economy requirements and ...

  13. A combustion model for IC engine combustion simulations with multi-component fuels

    SciTech Connect (OSTI)

    Ra, Youngchul; Reitz, Rolf D.

    2011-01-15

    Reduced chemical kinetic mechanisms for the oxidation of representative surrogate components of a typical multi-component automotive fuel have been developed and applied to model internal combustion engines. Starting from an existing reduced mechanism for primary reference fuel (PRF) oxidation, further improvement was made by including additional reactions and by optimizing reaction rate constants of selected reactions. Using a similar approach to that used to develop the reduced PRF mechanism, reduced mechanisms for the oxidation of n-tetradecane, toluene, cyclohexane, dimethyl ether (DME), ethanol, and methyl butanoate (MB) were built and combined with the PRF mechanism to form a multi-surrogate fuel chemistry (MultiChem) mechanism. The final version of the MultiChem mechanism consists of 113 species and 487 reactions. Validation of the present MultiChem mechanism was performed with ignition delay time measurements from shock tube tests and predictions by comprehensive mechanisms available in the literature. A combustion model was developed to simulate engine combustion with multi-component fuels using the present MultiChem mechanism, and the model was applied to simulate HCCI and DI engine combustion. The results show that the present multi-component combustion model gives reliable performance for combustion predictions, as well as computational efficiency improvements through the use of reduced mechanism for multi-dimensional CFD simulations. (author)

  14. Development and Demonstration of a Fuel-Efficient HD Engine ...

    Energy.gov (indexed) [DOE]

    heavy-duty truck fuel efficiency. deer12deojeda.pdf (1.53 MB) More Documents & Publications Development and Demonstration of a Fuel-Efficient HD Engine (DOE SuperTruck Program)

  15. Dual fuel combustion in a turbocharged diesel engine

    SciTech Connect (OSTI)

    Few, P.C.; Newlyn, H.A.

    1987-01-01

    The modification of a turbocharged diesel engine to a dual-fuel engine using methane as the supplementary fuel has been carried out. The effect of the gaseous fuel in a turbo-charged diesel engine has been investigated by means of a heat release study and a computer program already developed at Leicester Polytechnic. It is used in order to examine the rate of heat released under any operational condition.

  16. Solid fuel combustion system for gas turbine engine

    DOE Patents [OSTI]

    Wilkes, Colin; Mongia, Hukam C.

    1993-01-01

    A solid fuel, pressurized fluidized bed combustion system for a gas turbine engine includes a carbonizer outside of the engine for gasifying coal to a low Btu fuel gas in a first fraction of compressor discharge, a pressurized fluidized bed outside of the engine for combusting the char residue from the carbonizer in a second fraction of compressor discharge to produce low temperature vitiated air, and a fuel-rich, fuel-lean staged topping combustor inside the engine in a compressed air plenum thereof. Diversion of less than 100% of compressor discharge outside the engine minimizes the expense of fabricating and maintaining conduits for transferring high pressure and high temperature gas and incorporation of the topping combustor in the compressed air plenum of the engine minimizes the expense of modifying otherwise conventional gas turbine engines for solid fuel, pressurized fluidized bed combustion.

  17. Future Directions in Engines and Fuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Future directions in engines and fuels, powertrains and vehicle system review. PDF icon deer10tatur.pdf More Documents & Publications A View from the Bridge Boosting Small Engines...

  18. Future Directions in Engines and Fuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    The vision of the VW group for the future of diesel engines and future fuels is presented. PDF icon deer10sjohnson.pdf More Documents & Publications The Diesel Engine Powering ...

  19. Effects of Biomass Fuels on Engine & System Out Emissions for...

    Energy.gov (indexed) [DOE]

    More Documents & Publications High Fuel Economy Heavy-Duty Truck Engine A European Perspective of EURO 5U.S. 07 Heavy-Duty Engine Technologies and Their Related Consequences ...

  20. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Application

    Energy.gov [DOE]

    This presentation reports on the status of mass production cost estimation for direct hydrogen PEM fuel cell systems.

  1. Develop Thermoelectric Technology for Automotive Waste Heat Recovery...

    Energy.gov (indexed) [DOE]

    More Documents & Publications Develop Thermoelectric Technology for Automotive Waste Heat Recovery Engineering and Materials for Automotive Thermoelectric Applications Solid-State ...

  2. Vehicle Technologies Office: Graduate Automotive Technology Education (GATE)

    Energy.gov [DOE]

    DOE established the Graduate Automotive Technology Education (GATE) Centers of Excellence to provide future generations of engineers and scientists with knowledge and skills in advanced automotive...

  3. Technology development goals for automotive fuel cell power systems. Final report, Appendix B-2

    SciTech Connect (OSTI)

    Thomas, C.E.; James, B.D.

    1995-07-01

    Directed Technologies, Inc. has previously submitted a detailed technical assessment and concept design for a mid-size, five-passenger fuel cell electric vehicle (FCEV), under contract to the Argonne National Laboratory. As a supplement to that contract, DTI has reviewed the literature and conducted a preliminary evaluation of two energy carriers for the FCEV: hydrogen and methanol. This report compares the estimated fuel efficiency, cost of producing and delivering the fuel, and the resultant life cycle costs of the FCEV when fueled directly by hydrogen and when fueled by methanol with on-board reforming to produce the required hydrogen-rich gas for the fuel cell. This work will be supplemented and expanded under the Ford contract with the Department of Energy to develop the FCEV and its fuel infrastructure.

  4. NREL: Transportation Research - Co-Optimization of Fuels and Engines

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    (Co-Optima) Co-Optimization of Fuels and Engines (Co-Optima) Photo of silver sedan in front of silver fuel pump. Co-Optima is simultaneously transforming vehicle fuels and engines to maximize performance and energy efficiency. NREL is collaborating with the U.S. Department of Energy (DOE), eight other national laboratories, and industry on the Co-Optimization of Fuels & Engines (Co-Optima) initiative. This first-of-its-kind effort is focused on combining biofuels and combustion R&D,

  5. Two-stroke engines; Cleaner and meaner

    SciTech Connect (OSTI)

    Siuru, B.

    1990-06-01

    This article discusses how advanced technologies such as direct fuel injection and stratified charge combustion have turned the two-stroke engine into a clean, gasoline conserving powerhouse. The testing of prototype automotive designs is discussed.

  6. Use of alcohol fuel: engine-conversion demonstration. Final report

    SciTech Connect (OSTI)

    Marsh, W.K.

    1982-01-01

    The use of ethanol as a fuel extender when mixed with gasoline, and the use of both hydrated and anhydrous ethanol as a fuel in gasoline and diesel engines are discussed. Required engine modifications for efficient use of ethanol are described, and include engine compression alterations, carburetor adjustments, and arrangement for fuel preheating. In 1981 and 1982 a demonstration of ethanol use in spark ignition engines was conducted at a major public park in South Carolina. The demonstration included a controlled road test with a pick-up truck and a demonstration of ethanol use in small, air cooled gasoline engines. One problem that was identified was that of contaminated fuel that clogged the fuel system after a few days' operation. (LEW)

  7. Hydrogen Fuel Cell Engines and Related Technologies Course Manual

    Office of Energy Efficiency and Renewable Energy (EERE)

    This course manual features technical information on the use of hydrogen as a transportation fuel. It covers hydrogen properties, use, and safety as well as fuel cell technologies, systems, engine design, safety, and maintenance. It also presents the different types of fuel cells and hybrid electric vehicles.

  8. Multiple fuel supply system for an internal combustion engine

    DOE Patents [OSTI]

    Crothers, William T.

    1977-01-01

    A multiple fuel supply or an internal combustion engine wherein phase separation of components is deliberately induced. The resulting separation permits the use of a single fuel tank to supply components of either or both phases to the engine. Specifically, phase separation of a gasoline/methanol blend is induced by the addition of a minor amount of water sufficient to guarantee separation into an upper gasoline phase and a lower methanol/water phase. A single fuel tank holds the two-phase liquid with separate fuel pickups and separate level indicators for each phase. Either gasoline or methanol, or both, can be supplied to the engine as required by predetermined parameters. A fuel supply system for a phase-separated multiple fuel supply contained in a single fuel tank is described.

  9. Engine control system having fuel-based adjustment

    DOE Patents [OSTI]

    Willi, Martin L.; Fiveland, Scott B.; Montgomery, David T.; Gong, Weidong

    2011-03-15

    A control system for an engine having a cylinder is disclosed having an engine valve configured to affect a fluid flow of the cylinder, an actuator configured to move the engine valve, and an in-cylinder sensor configured to generate a signal indicative of a characteristic of fuel entering the cylinder. The control system also has a controller in communication with the actuator and the sensor. The controller is configured to determine the characteristic of the fuel based on the signal and selectively regulate the actuator to adjust a timing of the engine valve based on the characteristic of the fuel.

  10. Opportunities for Innovation in Fuel-Engine Co-Optimization

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Innovation in Fuel-Engine Co-Optimization Paul Miles Co-Optima Advanced Engine Development Team Lead BioEnergy 2016: Mobilizing the BioEconomy through Innovation July 12-14, 2016 Walter E. Washington Convention Center Fuels specifications are Property based SI Fuels (ANSI D4814): * Vapor pressure * Distillation curve (& driveability index) * Distillation residue * Corrosivity * Gum content * Oxidation stability With the exception of sulfur, lead, benzene, and overall O 2 content, details of

  11. Recycled waste oil: A fuel for medium speed diesel engines?

    SciTech Connect (OSTI)

    Cheng, A.B.L.; Poynton, W.A.; Howard, J.G.

    1996-12-31

    This paper describes the exploratory engine trials that Mirrlees Blackstone has undertaken to investigate the effect of fueling an engine using waste oil derived from used lubricants. The effect on the engine`s mechanical components, and thermal performance are examined, and the steps taken to overcome problems are discussed. The proposed engine is sited within the Research and Development facilities, housed separately from the manufacturing plant. The unit is already capable of operating on two different types of fuel with single engine set up. It is a 3 cylinder, 4-stroke turbocharged direct injection engine mounted on an underbase and it operates at 600 rpm, 15.0 bar B.M.E.P. (Brake Mean Effective Pressure). It is a mature engine, built {approximately} 20 years previously, and used for emergency stand-by duties in the company`s powerhouse. The test engine is coupled to an alternator and the electricity generated is fed to the national grid. Initial samples of treated fuel oil, analyzed by an independent oil analysis consultant, indicated that the fuel oil does not correspond to a normal fuel oil. They contained high concentrations of trace elements (i.e. calcium, phosphorus, lead, aluminum and silicon) which was consistent with sourcing from waste lubricating oils. The fuel oil was considered to be too severe for use in an engine.

  12. Status and Outlook for the U.S. Non-Automotive Fuel Cell Industry...

    Energy Savers

    of Future Opportunities (2.4 MB) More Documents & Publications Fuel Cells (DOE CHP Technology Fact Sheet Series) - Fact Sheet, 2016 DOE Updates JOBS and Economic Impacts ...

  13. Compounded turbocharged rotary internal combustion engine fueled with natural gas

    SciTech Connect (OSTI)

    Jenkins, P.E.

    1992-10-15

    This patent describes a compounded engine. It comprises: a first Wankel engine having a housing with a trochoidal inner surface containing a generally triangular shaped rotor, the engine containing a fuel supply system suitable for operating the engine with natural gas as a fuel; a turbocharge compressing air for combustion by the engine, the turbocharger being driven by the exhaust gases which exit from the engine; a combustion chamber in fluid communication with the exhaust from the engine after that exhaust has passed through the turbocharger, the chamber having an ignition device suitable for igniting hydrocarbons in the engine exhaust, whereby the engine timing, and the air and fuel mixture of the engine are controlled so that when the engine exhaust reaches the combustion chamber the exhaust contains a sufficient amount of oxygen and hydrocarbons to enable ignition and combustion of the engine exhaust in the combustion chamber without the addition of fuel or air, and whereby the engine operating conditions are controlled to vary the performance of the secondary combustor; and a controllable ignition device to ignite the exhaust gases in the combustion chamber at predetermined times.

  14. Future Engine Fluids Technologies: Durable, Fuel-Efficient, and

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Emissions-Friendly | Department of Energy Future Engine Fluids Technologies: Durable, Fuel-Efficient, and Emissions-Friendly Future Engine Fluids Technologies: Durable, Fuel-Efficient, and Emissions-Friendly 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005_deer_bardasz.pdf (561.21 KB) More Documents & Publications Controlled Experiments on the Effects of Lubricant/Additive (Low-Ash, Ashless) Characteristics on DPF Degradation Diesel Particulate

  15. Bench-Top Engine System for Fast Screening of Alternative Fuels...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Bench-Top Engine System for Fast Screening of Alternative Fuels and Fuel Additives Bench-Top Engine System for Fast Screening of Alternative Fuels and Fuel Additives A bench-top ...

  16. Evaluation of Sialon internal combustion engine components and fabrication of several ceramic components for automotive applications

    SciTech Connect (OSTI)

    McMurtry, C.H.; Ten Eyck, M.O.

    1992-10-01

    Fabrication development work was carried out on a push-rod tip having a stepped OD design and a 90{degree} shoulder in the transition area. Spray-dried Sialon premix was used in dry press tooling, and components were densified to about 98% of theoretical density using pressureless sintering conditions. Upon evaluation of the sintered components, it was found that afl components showed defects in the transition area. Modifications of the pressing parameters, incorporation of a 45{degree} angle in the shoulder area, and the use of tailored premix did not lead to the fabrication of defect-free parts. From these observations, it was concluded that the original part design could not easily be adapted to high-volume ceramic manufacturing methods. Subsequently, a modification to the desip was implemented. An SiC material with improved toughness (Hexoloy SX) was used for fabricating several test components with a closely machined, straight OD design. Pressureless-sintered and post-hot isostatically pressed (HIPed) Hexoloy SX components were supplied to The American Ceramic Engine Company (ACE) for assembly and testing. Fuel pump push-rod assemblies with Hemoloy SX tips were prepared by ACE, but no testing has been carried out to date.

  17. Evaluation of Sialon internal combustion engine components and fabrication of several ceramic components for automotive applications

    SciTech Connect (OSTI)

    McMurtry, C.H.; Ten Eyck, M.O.

    1992-10-01

    Fabrication development work was carried out on a push-rod tip having a stepped OD design and a 90[degree] shoulder in the transition area. Spray-dried Sialon premix was used in dry press tooling, and components were densified to about 98% of theoretical density using pressureless sintering conditions. Upon evaluation of the sintered components, it was found that afl components showed defects in the transition area. Modifications of the pressing parameters, incorporation of a 45[degree] angle in the shoulder area, and the use of tailored premix did not lead to the fabrication of defect-free parts. From these observations, it was concluded that the original part design could not easily be adapted to high-volume ceramic manufacturing methods. Subsequently, a modification to the desip was implemented. An SiC material with improved toughness (Hexoloy SX) was used for fabricating several test components with a closely machined, straight OD design. Pressureless-sintered and post-hot isostatically pressed (HIPed) Hexoloy SX components were supplied to The American Ceramic Engine Company (ACE) for assembly and testing. Fuel pump push-rod assemblies with Hemoloy SX tips were prepared by ACE, but no testing has been carried out to date.

  18. Fuel vaporization improves fuel economy of alcohol-burning Sl engines

    SciTech Connect (OSTI)

    Hardenberg, H.O.; Metsch, H.I.; Schaefer, A.J.

    1982-10-01

    Fuel vaporization and combustion of the thereby achieved homogeneous mixtures improve the overall efficiency of SI engines in comparison to operation with liquid fuels. The improvements result from a recovery of waste heat and the thus achieved greater usable energy of the fuel, which is increased by the heat of vaporization over the lower calorific value of the liquid fuel, and from the fact that very lean mixtures can be burnt without misfiring. The favorable fuel economy of the air/fuel-vapor mixture-aspirating engine is explained with the aid of engine cycle computation which also enables comparison of different combustion processes. Consideration of common substances shows that methanol is the fuel best suited for this type of SI engine.

  19. DOE Issues Request for Information on Automotive Fuel Cells and Hydrogen Refueling

    Energy.gov [DOE]

    The U.S. Department of Energy’s Fuel Cell Technologies Office has issued a request for information to obtain feedback and opinions from industry, academia, research laboratories, government agencies, and other stakeholders on technical and economic barriers for fuel cell-related technologies.

  20. Deadline Extended: DOE Issues Request for Information on Automotive Fuel Cells and Hydrogen Refueling

    Energy.gov [DOE]

    The U.S. Department of Energy’s Fuel Cell Technologies Office has issued a request for information to obtain feedback and opinions from industry, academia, research laboratories, government agencies, and other stakeholders on technical and economic barriers for fuel cell-related technologies.

  1. Implementing agreement for a program of research and development on high temperature materials for automotive engines. Report for the period April 1981-March 1982. Annex 1: ceramics for automotive gas turbine engines

    SciTech Connect (OSTI)

    Not Available

    1982-12-01

    Several Consulting Committee meetings have been conducted since the last annual report of activities. These included a session on 11 March 1981, held in conjunction with the International Gas Turbine Conference in Houston, TX and a gathering on 27 October 1981, which coincided with the US Department of Energy Contractors Coordination Meeting at Dearborn, Michigan. These various conferences permitted in-depth technical discussions. Regarding information exchange, thus far more than 52 reports have been provided from West German participants to their US counterparts. In response to this data, all available reports from current major United States automotive engine and ceramic component development efforts being conducted by the US DOE have been provided to West Germany. Two types of structural ceramics have been exchanged and subjected to destructive and non-destructive testing. Results from five hundred specimens are currently being evaluated. As far as scientist exchange visits, engineers from the DFVLR, IzfP and Daimler-Benz have visited AMMRC as well as numerous US contractor facilities. Further efforts have been devoted to development of life prediction methodology and both experimental and analytical progress has been made. Calculations of rotor hub transient thermal response have been compared by Ford and Daimler-Benz engineers. In conclusion, during the past year, significant progress has been achieved on all active tasks delineated under the International Energy Agency Implementing Agreement.

  2. Energy Department Announces $7 Million to Accelerate Fuel and Engine

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Co-Optimization Technologies | Department of Energy Million to Accelerate Fuel and Engine Co-Optimization Technologies Energy Department Announces $7 Million to Accelerate Fuel and Engine Co-Optimization Technologies August 1, 2016 - 1:40pm Addthis The U.S Department of Energy (DOE) announced today up to $7 million in project funding to accelerate the introduction of affordable, scalable, and sustainable high-performance fuels for use in high-efficiency, low-emission engines as part of the

  3. Optical-Engine and Surrogate-Fuels Research for an Improved Understand...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Understanding of Fuel Effects on Advanced-Combustion Strategies Optical-Engine and Surrogate-Fuels Research for an Improved Understanding of Fuel Effects on Advanced-Combustion ...

  4. Combustion, Efficiency, and Fuel Effects in a Spark-Assisted HCCI Gasoline Engine

    Energy.gov [DOE]

    2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Oak Ridge National Laboratory, Fuel, Engines, and Emissions Research Center

  5. Engine Materials Compatibility with Alternate Fuels

    Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  6. Flex Fuel Optimized SI and HCCI Engine

    Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  7. Flex Fuel Optimized SI and HCCI Engine

    Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  8. Flex Fuel Optimized SI and HCCI Engine

    Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  9. Engine Materials Compatibility with Alternate Fuels

    Office of Energy Efficiency and Renewable Energy (EERE)

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  10. Automotive Stirling Engine development program: Semiannual technical progress report, January 1--June 30, 1987

    SciTech Connect (OSTI)

    Not Available

    1988-02-01

    During this reporting period, progress was made toward the performance characterization of the Mod II engine, and by the end of the period, the engine hours had increased by 203 hours to a total of 223. Performance evaluation of the Mod II Basic Stirling Engine (BSE) began.

  11. Co-Optimized Fuel-Engine Systems to Transform Our Nation's Vehicles |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Optimized Fuel-Engine Systems to Transform Our Nation's Vehicles Co-Optimized Fuel-Engine Systems to Transform Our Nation's Vehicles May 4, 2016 - 10:57am Addthis As part of the Co-Optimization of Fuels & Engines initiative, researchers are exploring synergies among new bio-based fuels, engines, powertrains, and fueling infrastructure. Image by Loren Stacks, Sandia National Laboratories As part of the Co-Optimization of Fuels & Engines initiative, researchers are

  12. Novel injector techniques for coal-fueled diesel engines

    SciTech Connect (OSTI)

    Badgley, P.R.

    1992-09-01

    This report, entitled Novel Injector Techniques for Coal-Fueled Diesel Engines,'' describes the progress and findings of a research program aimed at development of a dry coal powder fuel injector in conjunction with the Thermal Ignition Combustion System (TICS) concept to achieve autoignition of dry powdered coal in a single-cylinder high speed diesel engine. The basic program consisted of concept selection, analysis and design, bench testing and single cylinder engine testing. The coal injector concept which was selected was a one moving part dry-coal-powder injector utilizing air blast injection. Adiabatics has had previous experience running high speed diesel engines on both direct injected directed coal-water-slurry (CWS) fuel and also with dry coal powder aspirated into the intake air. The Thermal Ignition Combustion System successfully ignited these fuels at all speeds and loads without requiring auxiliary ignition energy such as pilot diesel fuel, heated intake air or glow or spark plugs. Based upon this prior experience, it was shown that the highest efficiency and fastest combustion was with the dry coal, but that the use of aspiration of coal resulted in excessive coal migration into the engine lubrication system. Based upon a desire of DOE to utilize a more modern test engine, the previous naturally-aspirated Caterpillar model 1Y73 single cylinder engine was replaced with a turbocharged (by use of shop air compressor and back pressure control valve) single cylinder version of the Cummins model 855 engine.

  13. ORNL Fuels, Engines, and Emissions Research Center (FEERC)

    SciTech Connect (OSTI)

    2013-04-12

    This video highlights the Vehicle Research Laboratory's capabilities at the Fuels, Engines, and Emissions Research Center (FEERC). FEERC is a Department of Energy user facility located at the Oak Ridge National Laboratory.

  14. ORNL Fuels, Engines, and Emissions Research Center (FEERC)

    ScienceCinema (OSTI)

    None

    2016-07-12

    This video highlights the Vehicle Research Laboratory's capabilities at the Fuels, Engines, and Emissions Research Center (FEERC). FEERC is a Department of Energy user facility located at the Oak Ridge National Laboratory.

  15. Engineered Nano-scale Ceramic Supports for PEM Fuel Cells

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Operated by Los Alamos National Security, LLC for NNSA U N C L A S S I F I E D Engineered Nano-scale Ceramic Supports for PEM Fuel Cells Eric L. Brosha, Anthony Burrell, Neil ...

  16. Opportunities for Innovation in Fuel-Engine Co-Optimization | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Innovation in Fuel-Engine Co-Optimization Opportunities for Innovation in Fuel-Engine Co-Optimization Breakout Session 3D: Opportunities for Innovation in Fuel-Engine Co-Optimization Opportunities for Innovation in Fuel-Engine Co-Optimization Paul Miles, Manager, Engine Combustion Department, Sandia National Laboratories miles_bioenergy_2016.pdf (1.47 MB) More Documents & Publications CO-OPTIMIZATION OF FUELS AND ENGINES FOA INFORMATIONAL WEBINAR PRESENTATION MATERIALS Vehicle

  17. Learn About Introduce a Girl to Engineering Day | Argonne National

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Laboratory Learn About Introduce a Girl to Engineering Day Share Duration 2:30 Browse By - Any - General Argonne Information Energy -Energy efficiency --Vehicles ---Alternative fuels ---Automotive engineering ---Diesel ---Electric drive technology ---Hybrid & electric vehicles ---Hydrogen & fuel cells ---Internal combustion ---Powertrain research --Building design ---Construction --Manufacturing -Energy sources --Renewable energy ---Bioenergy ---Solar energy --Fossil fuels ---Natural

  18. Development of a high-output dual-fuel engine

    SciTech Connect (OSTI)

    Danyluk, P.R. . Fairbanks Morse Engineering Division)

    1993-10-01

    This paper presents the results of a new dual-fuel engine development program. The engine is the largest commercially available in terms of power output (650 hp/cyl) and features very low emissions (1 g/hp-hr NO[sub x]) and excellent fuel consumption (43 percent thermal efficiency). A two-cylinder turbocharged prototype was designed and built for the initial development. Results from testing on 18-cylinder production versions are also reported.

  19. Technologies for Gaseous Fueled Advanced Reciprocating Engine Systems (ARES)

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Technologies for Gaseous Fueled Advanced Reciprocating Engine Systems DE-AC02-06CH 11357 Argonne National Laboratory/ ARES team FY2011 Sreenath Gupta Argonne National Laboratory sgupta@anl.gov; (630) 252 6089 U.S. DOE Industrial Distributed Energy Portfolio Review Meeting Washington, D.C. June 1-2, 2011 Develop technologies to improve efficiency and reduce emissions of reciprocating engines that use natural gas/ opportunity fuels. 1 Distributed Energy Research Center (DERC): * A user facility to

  20. Emissions characteristics of Military Helicopter Engines Fueled with JP-8 and a Fischer-Tropsch Fuel

    SciTech Connect (OSTI)

    Corporan, E.; DeWitt, M.; Klingshirn, Christopher D; Striebich, Richard; Cheng, Mengdawn

    2010-01-01

    The rapid growth in aviation activities and more stringent U.S. Environmental Protection Agency regulations have increased concerns regarding aircraft emissions, due to their harmful health and environmental impacts, especially in the vicinity of airports and military bases. In this study, the gaseous and particulate-matter emissions of two General Electric T701C engines and one T700 engine were evaluated. The T700 series engines power the U.S. Army's Black Hawk and Apache helicopters. The engines were fueled with standard military JP-8 fuel and were tested at three power settings. In addition, one of the T701C engines was operated on a natural-gas-derived Fischer-Tropsch synthetic paraffinic kerosene jet fuel. Test results show that the T701C engine emits significantly lower particulate-matter emissions than the T700 for all conditions tested. Particulate-matter mass emission indices ranged from 0.2-1.4 g/kg fuel for the T700 and 0.2-0.6 g/kg fuel for the T701C. Slightly higher NOx and lower CO emissions were observed for the T701C compared with the T700. Operation of the T701C with the Fischer-Tropsch fuel rendered dramatic reductions in soot emissions relative to operation on JP-8, due primarily to the lack of aromatic compounds in the alternative fuel. The Fischer-Tropsch fuel also produced smaller particles and slight reductions in CO emissions.

  1. High temperature self-lubricating coatings for air lubricated foil bearings for the automotive gas turbine engine

    SciTech Connect (OSTI)

    Bhushan, B.

    1980-04-01

    The objective of this program was to further develop the coating combinations identified in a previous program for compliant surface bearings and journals to be used in an automotive gas turbine engine. The coatings should be able to withstand the sliding start/stops during rotor lifetoff and touchdown and occasional short-time, high speed rubs under representative loading of the engine - 14 kPa and at 35 kPa if possible, and at a maximum temperature of 427 to 650/sup 0/C. Some dozen coating variations of CdO-graphite, Cr/sup 2/O/sub 3/ (by sputtering) and CaF/sub 2/ (plasma sprayed) were identified. The coatings were optimized and they were examined for stoichiometry, metallurgical condition, and adhesion. Sputtered Cr/sub 2/O/sub 3/ was most adherent when optimum parameters were used and it was applied on an annealed (soft) substrate. Metallic binders and interlayers have been used to improve the ductility and the adherence. The following coating combinations have satisfied the above requirements: CdO-graphite-Ag (HL-800-2)/sup TM/ on foil versus det. gun Cr/sub 3/C/sub 2/ good up to 427/sup 0/C and sputtered Cr/sub 2/O/sub 3/ versus det. gun Cr/sub 3/C/sub 2/ good from RT to 427 to 650/sup 0/C.

  2. Surrogate Model Development for Fuels for Advanced Combustion Engines

    SciTech Connect (OSTI)

    Anand, Krishnasamy; Ra, youngchul; Reitz, Rolf; Bunting, Bruce G

    2011-01-01

    The fuels used in internal-combustion engines are complex mixtures of a multitude of different types of hydrocarbon species. Attempting numerical simulations of combustion of real fuels with all of the hydrocarbon species included is highly unrealistic. Thus, a surrogate model approach is generally adopted, which involves choosing a few representative hydrocarbon species whose overall behavior mimics the characteristics of the target fuel. The present study proposes surrogate models for the nine fuels for advanced combustion engines (FACE) that have been developed for studying low-emission, high-efficiency advanced diesel engine concepts. The surrogate compositions for the fuels are arrived at by simulating their distillation profiles to within a maximum absolute error of 4% using a discrete multi-component (DMC) fuel model that has been incorporated in the multi-dimensional computational fluid dynamics (CFD) code, KIVA-ERC-CHEMKIN. The simulated surrogate compositions cover the range and measured concentrations of the various hydrocarbon classes present in the fuels. The fidelity of the surrogate fuel models is judged on the basis of matching their specific gravity, lower heating value, hydrogen/carbon (H/C) ratio, cetane number, and cetane index with the measured data for all nine FACE fuels.

  3. Fuel from Bacteria, CO2, Water, and Solar Energy: Engineering a Bacterial Reverse Fuel Cell

    SciTech Connect (OSTI)

    2010-07-01

    Electrofuels Project: Harvard is engineering a self-contained, scalable Electrofuels production system that can directly generate liquid fuels from bacteria, carbon dioxide (CO2), water, and sunlight. Harvard is genetically engineering bacteria called Shewanella, so the bacteria can sit directly on electrical conductors and absorb electrical current. This current, which is powered by solar panels, gives the bacteria the energy they need to process CO2 into liquid fuels. The Harvard team pumps this CO2 into the system, in addition to water and other nutrients needed to grow the bacteria. Harvard is also engineering the bacteria to produce fuel molecules that have properties similar to gasoline or diesel fuelmaking them easier to incorporate into the existing fuel infrastructure. These molecules are designed to spontaneously separate from the water-based culture that the bacteria live in and to be used directly as fuel without further chemical processing once theyre pumped out of the tank.

  4. Rotary engine with dual spark plugs and fuel injectors

    SciTech Connect (OSTI)

    Abraham, J.; Bracco, F.V.

    1991-06-11

    This patent describes a stratified charge rotary combustion engine having a housing having a running surface surrounding a working chamber, the running surface having a two-lobed profile, the lobes forming a junction in a top-dead-center region of the housing, a rotor mounted for rotation in the working chamber, a fuel injection and ignition system placed in the top-dead center region. It includes a pilot fuel injector fuel into the working chamber; a first spark plug located upstream of the pilot fuel injector for igniting fuel injected by the pilot fuel injector, the pilot fuel injector and the first spark plug being located on a downstream side of the junction; a main fuel injector for injecting fuel into the working chamber, the ignited pilot fuel acting to ignite fuel injected by the main injector; and a second spark plug located upstream of the main fuel injector and located upstream of the junction for igniting fuel/air mixture in the working chamber.

  5. Dual fueling of a Caterpillar 3406 diesel engine

    SciTech Connect (OSTI)

    Bell, S.R.; Midkiff, K.C.; Doughty, G.; Brett, C.E.

    1996-05-01

    A Caterpillar 3406 turbocharged diesel engine was converted to operate in a dual-fuel mode and was evaluated for performance and emission characteristics for both diesel and natural gas operation. Full load power was achieved with dual fueling without knock. Similar fuel efficiencies were obtained with dual fueling a high loads, but efficiencies were lower for low loads. Bosch smoke numbers were reduced by over 50% with dual fueling for all cases investigated. NO{sub x} emissions were found to be lower at low loads and at high speeds under high load. CO emissions were significantly increased for dual fueling while CO{sub 2} concentrations in the exhaust were reduced for dual fueling.

  6. Study of Fuel Property Effects Using Future Low Emissions Heavy Duty Truck Engine Hardware

    SciTech Connect (OSTI)

    Li, Sharon

    2000-08-20

    Fuel properties have had substantial impact on engine emissions. Fuel impact varies with engine technology. An assessment of fuel impact on future low emission designs was needed as part of an EMAEPA-API study effort

  7. Efficient Use of Natural Gas Based Fuels in Heavy-Duty Engines...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Use of Natural Gas Based Fuels in Heavy-Duty Engines Efficient Use of Natural Gas Based Fuels in Heavy-Duty Engines Natural gas and other liquid feedstocks for transportation fuels ...

  8. Can regenerataive braking be applied to a Stirling engine (Stirling-powered regenerative-retarding propulsion system for automotive application)

    SciTech Connect (OSTI)

    Walker, G.

    1980-07-01

    A recently completed University of Calgary study has shown that regenerative retarding (the storage and later use of energy normally dissipated as heat by friction brakes) can be applied to vehicles powered by Stirling-cycle engines. Changes in the valving arrangement of a multiple-cylinder Stirling powerplant can convert the engine to a heat pump capable of recovering energy that would ordinarily be wasted during a vehicle's downhill travel and of transferring the energy through a liquid-metal heat pipe to storage in a thermal battery for later reuse in the vehicle's externally heated propulsion system. Up to 60% of the fuel needed to drive a truck uphill could be saved by regenerative braking downhill. When petroleum-based diesel fuel and gasoline are no longer available at low cost, the energy sources for Stirling-engine propulsion will include electricity, natural gas, coal, and various organic wastes. The thermal battery/Stirling engine combination will then be competitive; the battery will be charged overnight by electrical-resistance heating or the combustion of nonpetroleum fuels. The system would be most appropriate for urban or nonurban vehicles in stop-and-go applications, e.g., buses and delivery vehicles.

  9. FUEL INTERCHANGEABILITY FOR LEAN PREMIXED COMBUSTION IN GAS TURBINE ENGINES

    SciTech Connect (OSTI)

    Don Ferguson; Geo. A. Richard; Doug Straub

    2008-06-13

    In response to environmental concerns of NOx emissions, gas turbine manufacturers have developed engines that operate under lean, pre-mixed fuel and air conditions. While this has proven to reduce NOx emissions by lowering peak flame temperatures, it is not without its limitations as engines utilizing this technology are more susceptible to combustion dynamics. Although dependent on a number of mechanisms, changes in fuel composition can alter the dynamic response of a given combustion system. This is of particular interest as increases in demand of domestic natural gas have fueled efforts to utilize alternatives such as coal derived syngas, imported liquefied natural gas and hydrogen or hydrogen augmented fuels. However, prior to changing the fuel supply end-users need to understand how their system will respond. A variety of historical parameters have been utilized to determine fuel interchangeability such as Wobbe and Weaver Indices, however these parameters were never optimized for todays engines operating under lean pre-mixed combustion. This paper provides a discussion of currently available parameters to describe fuel interchangeability. Through the analysis of the dynamic response of a lab-scale Rijke tube combustor operating on various fuel blends, it is shown that commonly used indices are inadequate for describing combustion specific phenomena.

  10. Sandia Energy - HCCI/SCCI Engine Fundamentals

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    HCCISCCI Engine Fundamentals Home Transportation Energy Predictive Simulation of Engines Engine Combustion Automotive HCCISCCI Engine Fundamentals HCCISCCI Engine...

  11. Engaging the Next Generation of Automotive Engineers through Advanced Vehicle Technology Competition

    Energy.gov [DOE]

    The Advanced Vehicle Technology Competition (AVTC) program is an engineering education program managed by Argonne National Laboratory for the U.S. Department of Energy in partnership with Natural Resources Canada and the U.S. and Canadian auto industries.

  12. Rapid engine test to measure injector fouling in diesel engines using vegetable oil fuels

    SciTech Connect (OSTI)

    Korus, R.A.; Jaiduk, J.; Peterson, C.L.

    1985-11-01

    Short engine tests were used to determine the rate of carbon deposition on direct injection diesel nozzles. Winter rape, high-oleic and high-linoleic safflower blends with 50% diesel were tested for carbon deposit and compared to that with D-2 Diesel Control Fuel. Deposits were greatest with the most unsaturated fuel, high-linoleic safflower, and least with winter rape. All vegetable oil blends developed power similar to diesel fueled engines with a 6 to 8% greater fuel consumption. 8 references.

  13. Slurry-Based Chemical Hydrogen Storage Systems for Automotive Fuel Cell Applications

    SciTech Connect (OSTI)

    Brooks, Kriston P.; Semelsberger, Troy; Simmons, Kevin L.; Van Hassel, Bart A.

    2014-05-30

    In this paper, the system designs for hydrogen storage using chemical hydrogen materials in an 80 kWe fuel cell, light-duty vehicle are described. Ammonia borane and alane are used for these designs to represent the general classes of exothermic and endothermic materials. The designs are then compared to the USDRIVE/DOE developed set of system level targets for on-board storage. While most of the DOE targets are predicted to be achieved based on the modeling, the system gravimetric and volumetric densities were more challenging and became the focus of this work. The resulting system evaluation determined that the slurry is majority of the system mass. Only modest reductions in the system mass can be expected with improvements in the balance of plant components. Most of the gravimetric improvements will require developing materials with higher inherent storage capacity or by increasing the solids loading of the chemical hydrogen storage material in the slurry.

  14. Development of a Hybrid Compressor/Expander Module for Automotive Fuel Cell Applications

    SciTech Connect (OSTI)

    McTaggart, Paul

    2004-12-31

    In this program TIAX LLC conducted the development of an advanced technology compressor/expander for supplying compressed air to Proton Exchange Membrane (PEM) fuel cells in transportation applications. The overall objective of this program was to develop a hybrid compressor/expander module, based on both scroll and high-speed turbomachinery technologies, which will combine the strengths of each technology to create a concept with superior performance at minimal size and cost. The resulting system was expected to have efficiency and pressure delivery capability comparable to that of a scroll-only machine, at significantly reduced system size and weight when compared to scroll-only designs. Based on the results of detailed designs and analyses of the critical system elements, the Hybrid Compressor/Expander Module concept was projected to deliver significant improvements in weight, volume and manufacturing cost relative to previous generation systems.

  15. Stratified charge injection for gas-fueled rotary engines

    SciTech Connect (OSTI)

    King, S.R.

    1992-03-10

    This patent describes a stratified charge injection for gas-fueled rotary engines having an air intake stroke, a compression stroke, a power stroke, and an exhaust stroke. It comprises a rotor housing, the housing including an air intake port and an exhaust port, and an outer perimeter, a rotor rotatable in the housing, a gaseous fuel injector supplying all of the fuel is connected to the housing between 270{degrees} and 360{degrees} of the rotor rotation after compression top dead center and downstream of the air intake port, the injector providing gaseous fuel at a pressure less than peak compression pressure, the injector located in the middle of the width of the outer perimeter of the housing, spark ignition means in the housing downstream of the injector, and means connected to the fuel injector responsive to the compression pressure for controlling the rate and duration of fuel injection.

  16. Flex Fuel Optimized SI and HCCI Engine

    SciTech Connect (OSTI)

    Zhu, Guoming; Schock, Harold; Yang, Xiaojian; Huisjen, Andrew; Stuecken, Tom; Moran, Kevin; Zhen, Ron; Zhang, Shupeng

    2013-09-30

    The central objective of the proposed work is to demonstrate an HCCI (homogeneous charge compression ignition) capable SI (spark ignited) engine that is capable of fast and smooth mode transition between SI and HCCI combustion modes. The model-based control technique was used to develop and validate the proposed control strategy for the fast and smooth combustion mode transition based upon the developed control-oriented engine; and an HCCI capable SI engine was designed and constructed using production ready two-step valve-train with electrical variable valve timing actuating system. Finally, smooth combustion mode transition was demonstrated on a metal engine within eight engine cycles. The Chrysler turbocharged 2.0L I4 direct injection engine was selected as the base engine for the project and the engine was modified to fit the two-step valve with electrical variable valve timing actuating system. To develop the model-based control strategy for stable HCCI combustion and smooth combustion mode transition between SI and HCCI combustion, a control-oriented real-time engine model was developed and implemented into the MSU HIL (hardware-in-the-loop) simulation environment. The developed model was used to study the engine actuating system requirement for the smooth and fast combustion mode transition and to develop the proposed mode transition control strategy. Finally, a single cylinder optical engine was designed and fabricated for studying the HCCI combustion characteristics. Optical engine combustion tests were conducted in both SI and HCCI combustion modes and the test results were used to calibrate the developed control-oriented engine model. Intensive GT-Power simulations were conducted to determine the optimal valve lift (high and low) and the cam phasing range. Delphi was selected to be the supplier for the two-step valve-train and Denso to be the electrical variable valve timing system supplier. A test bench was constructed to develop control strategies for

  17. 40 kW Stirling engine for solid fuel

    SciTech Connect (OSTI)

    Carlsen, H.; Ammundsen, N.; Traerup, J.

    1996-12-31

    The external combustion in a Stirling engine makes it very attractive for utilization of solid fuels in decentralized combined heat and power (CHP) plants. Only few projects have concentrated on the development of Stirling engines specifically for biomass. In this project a Stirling engine has been designed primarily for utilization of wood chips. Maximum shaft power is 40 kW corresponding to an electric output of 36 kW. Biomass needs more space in the combustion chamber compared to gas and liquid fuels, and a large heat transfer area is necessary. The design of the new Stirling engine has been adapted to the special demands of combustion of wood chips, resulting in a large engine compared to engines for gas or liquid fuels. The engine has four-cylinders arranged in a square. The design is made as a hermetic unit, where the alternator is built into the pressurized crankcase so that dynamic seals are avoided. Grease lubricated bearings are used in a special designed crank mechanism, which eliminates guiding forces on the pistons Helium is used as working gas at 4 MPa mean pressure. The first test of the 40 kW engine with natural gas as fuel has been made in the laboratory, and the results are in agreement with predicted results from simulation programs. The wood chips combustion system has been tested for some time with very promising results. When the laboratory test of the engine is finished, the test of the complete system will be initiated. The paper describes the engine and results from the test program. Expectations to maintenance and operation problems are also discussed.

  18. Engine Materials Compatibility with Alternate Fuels

    SciTech Connect (OSTI)

    Thomson, Jeffery K; Pawel, Steven J; Wilson, Dane F

    2013-05-01

    The compatibility of aluminum and aluminum alloys with synthetic fuel blends comprised of ethanol and reference fuel C (a 50/50 mix of toluene and iso-octane) was examined as a function of water content and temperature. Commercially pure wrought aluminum and several cast aluminum alloys were observed to be similarly susceptible to substantial corrosion in dry (< 50 ppm water) ethanol. Corrosion rates of all the aluminum materials examined were accelerated by increased temperature and ethanol content in the fuel mixture, but inhibited by increased water content. Pretreatments designed to stabilize passive films on aluminum increased the incubation time for onset of corrosion, suggesting film stability is a significant factor in the mechanism of corrosion.

  19. Engine Materials Compatability with Alternative Fuels

    SciTech Connect (OSTI)

    Pawel, Steve; Moore, D.

    2013-04-05

    The compatibility of aluminum and aluminum alloys with synthetic fuel blends comprised of ethanol and reference fuel C (a 50/50 mix of toluene and iso-octane) was examined as a function of water content and temperature. Commercially pure wrought aluminum and several cast aluminum alloys were observed to be similarly susceptible to substantial corrosion in dry (< 50 ppm water) ethanol. Corrosion rates of all the aluminum materials examined were accelerated by increased temperature and ethanol content in the fuel mixture, but inhibited by increased water content. Pretreatments designed to stabilize passive films on aluminum increased the incubation time for onset of corrosion, suggesting film stability is a significant factor in the mechanism of corrosion.

  20. Engine control system having fuel-based timing

    DOE Patents [OSTI]

    Willi, Martin L.; Fiveland, Scott B.; Montgomery, David T.; Gong, Weidong

    2012-04-03

    A control system for an engine having a cylinder is disclosed having an engine valve movable to regulate a fluid flow of the cylinder and an actuator associated with the engine valve. The control system also has a sensor configured to generate a signal indicative of an amount of an air/fuel mixture remaining within the cylinder after completion of a first combustion event and a controller in communication with the actuator and the sensor. The controller may be configured to compare the amount with a desired amount, and to selectively regulate the actuator to adjust a timing of the engine valve associated with a subsequent combustion event based on the comparison.

  1. On the effect of pulsating flow on surge margin of small centrifugal compressors for automotive engines

    SciTech Connect (OSTI)

    Galindo, J.; Climent, H.; Guardiola, C.; Tiseira, A.

    2009-11-15

    Surge is becoming a limiting factor in the design of boosting systems of downsized diesel engines. Although standard compressor flowcharts are used for the selection of those machines for a given application, on-engine conditions widely differ from steady flow conditions, thus affecting compressor behaviour and consequently surge phenomenon. In this paper the effect of pulsating flow is investigated by means of a steady gas-stand that has been modified to produce engine-like pulsating flow. The effect of pressure pulses' amplitude and frequency on the compressor surge line location has been checked. Results show that pulsating flow in the 40-67 Hz range (corresponding to characteristic pulsation when boosting an internal combustion engine) increases surge margin. This increased margin is similar for all the tested frequencies but depends on pulsation amplitude. In a further step, a non-steady compressor model is used for modelling the tests, thus allowing a deeper analysis of the involved phenomena. Model results widely agree with experimental results. (author)

  2. Status and Outlook for the U.S. Non-Automotive Fuel Cell Industry: Impacts of Government Policies and Assessment of Future Opportunities

    SciTech Connect (OSTI)

    Greene, David L; Duleep, K. G.; Upreti, Girish

    2011-06-01

    Fuel cells (FCs) are considered essential future energy technologies by developed and developing economies alike. Several countries, including the United States, Japan, Germany, and South Korea have established publicly funded R&D and market transformation programs to develop viable domestic FC industries for both automotive and non-automotive applications. Important non-automotive applications include large scale and small scale distributed combined heat and electrical power, backup and uninterruptible power, material handling and auxiliary power units. The U.S. FC industry is in the early stages of development, and is working to establish sustainable markets in all these areas. To be successful, manufacturers must reduce costs, improve performance, and overcome market barriers to new technologies. U.S. policies are assisting via research and development, tax credits and government-only and government-assisted procurements. Over the past three years, the industry has made remarkable progress, bringing both stack and system costs down by more than a factor of two while improving durability and efficiency, thanks in part to government support. Today, FCs are still not yet able to compete in these markets without continued policy support. However, continuation or enhancement of current policies, such as the investment tax credit and government procurements, together with continued progress by the industry, appears likely to establish a viable domestic industry within the next decade.

  3. Coal-fueled diesel technology development: Nozzle development for coal-fueled diesel engines

    SciTech Connect (OSTI)

    Johnson, R.N.; Lee, M.; White, R.A.

    1994-01-01

    Direct injection of a micronized coal water mixture fuel into the combustion chambers of a diesel engine requires atomizing an abrasive slurry fuel with accurately sized orifices. Five injector orifice materials were evaluated: diamond compacts, chemical vapor deposited diamond tubes, thermally stabilized diamond, tungsten carbide with cobalt binder, and tungsten carbide with nickel binder with brazed and mechanically mounted orifice inserts. Nozzle bodies were fabricated of Armco 17-4 precipitation hardening stainless steel and Stellite 6B in order to withstand cyclic injection pressures and elevated temperatures. Based on a total of approximately 200 cylinder hours of engine operation with coal water mixture fuel diamond compacts were chosen for the orifice material.

  4. Engineered Biosynthesis of Alternative Biodiesel Fuel - Energy Innovation

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Portal Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search Engineered Biosynthesis of Alternative Biodiesel Fuel Lawrence Berkeley National Laboratory Contact LBL About This Technology Technology Marketing SummaryResearchers at the Joint BioEnergy Institute (JBEI) have invented a method of producing isoprenyl alkanoates that can be hydrogenated and blended into gasoline or diesel fuel. This invention also includes the design and manipulation of biosynthetic

  5. Automotive Thermoelectric Generator Design Issues | Department...

    Energy.gov (indexed) [DOE]

    Mechanical, electrical, thermal engineering, and durability issues related to use of TEGs in the challenging automotive environment need to be resolved as they affect warranty cost ...

  6. FY2015 Annual Report for Alternative Fuels DISI Engine Research.

    SciTech Connect (OSTI)

    Sjöberg, Carl-Magnus G.

    2016-01-01

    Climate change and the need to secure energy supplies are two reasons for a growing interest in engine efficiency and alternative fuels. This project contributes to the science-base needed by industry to develop highly efficient DISI engines that also beneficially exploit the different properties of alternative fuels. Our emphasis is on lean operation, which can provide higher efficiencies than traditional non-dilute stoichiometric operation. Since lean operation can lead to issues with ignition stability, slow flame propagation and low combustion efficiency, we focus on techniques that can overcome these challenges. Specifically, fuel stratification is used to ensure ignition and completeness of combustion but has soot- and NOx- emissions challenges. For ultralean well-mixed operation, turbulent deflagration can be combined with controlled end-gas auto-ignition to render mixed-mode combustion that facilitates high combustion efficiency. However, the response of both combustion and exhaust emissions to these techniques depends on the fuel properties. Therefore, to achieve optimal fuel-economy gains, the engine combustion-control strategies must be adapted to the fuel being utilized.

  7. Annual Report FY2014 Alternative Fuels DISI Engine Research.

    SciTech Connect (OSTI)

    Sjoberg, Carl-Magnus G.

    2015-01-01

    Due to concerns about future petroleum supply and accelerating climate change, increased engine efficiency and alternative fuels are of interest. This project contributes to the science-base needed by industry to develop highly efficient DISI engines that also beneficially exploit the different properties of alternative fuels. Lean operation is studied since it can provide higher efficiencies than traditional non-dilute stoichiometric operation. Since lean operation can lead to issues with ignition stability, slow flame propagation and low combustion efficiency, focus is on techniques that can overcome these challenges. Specifically, fuel stratification can be used to ensure ignition and completeness of combustion, but may lead to soot and NOx emissions challenges. Advanced ignition system and intake air preheating both promote ignition stability. Controlled end-gas autoignition can be used maintain high combustion efficiency for ultra-lean well-mixed conditions. However, the response of both combustion and exhaust emission to these techniques depends on the fuel properties. Therefore, to achieve optimal fuel-economy gains, the combustion-control strategies of the engine must adopt to the fuel being utilized.

  8. Fuels

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing ... Heavy Duty Fuels DISI Combustion HCCISCCI Fundamentals Spray Combustion Modeling ...

  9. A small scale biomass fueled gas turbine engine

    SciTech Connect (OSTI)

    Craig, J.D.; Purvis, C.R.

    1999-01-01

    A new generation of small scale (less than 20 MWd) biomass fueled, power plants are being developed based on a gas turbine (Brayton cycle) prime mover. These power plants are expected to increase the efficiency and lower the cost of generating power from fuels such as wood. The new power plants are also expected to economically utilize annual plant growth materials (such as rice hulls, cotton gin trash, nut shells, and various straws, grasses, and animal manures) that are not normally considered as fuel for power plants. This paper summarizes the new power generation concept with emphasis on the engineering challenges presented by the gas turbine component.

  10. Fuels for Advanced Combustion Engines Research Diesel Fuels: Analysis of Physical and Chemical Properties

    SciTech Connect (OSTI)

    Gallant, Tom; Franz, Jim; Alnajjar, Mikhail; Storey, John Morse; Lewis Sr, Samuel Arthur; Sluder, Scott; Cannella, William C; Fairbridge, Craig; Hager, Darcy; Dettman, Heather; Luecke, Jon; Ratcliff, Matthew A.; Zigler, Brad

    2009-01-01

    The CRC Fuels for Advanced Combustion Engines working group has worked to identify a matrix of research diesel fuels for use in advanced combustion research applications. Nine fuels were specified and formulated to investigate the effects of cetane number aromatic content and 90% distillation fraction. Standard ASTM analyses were performed on the fuels as well as GC/MS and /u1H//u1/u3C NMR analyses and thermodynamic characterizations. Details of the actual results of the fuel formulations compared with the design values are presented, as well as results from standard analyses, such as heating value, viscosity and density. Cetane number characterizations were accomplished by using both the engine method and the Ignition Quality Tester (IQT/sT) apparatus.

  11. The Prospective Role of JAEA Nuclear Fuel Cycle Engineering Laboratories

    SciTech Connect (OSTI)

    Ojima, Hisao; Dojiri, Shigeru; Tanaka, Kazuhiko; Takeda, Seiichiro; Nomura, Shigeo

    2007-07-01

    JAEA Nuclear Fuel Cycle Engineering Laboratories was established in 2005 to take over the activities of the JNC Tokai Works. Many kinds of development activities have been carried out since 1959. Among these, the results on the centrifuge for U enrichment, LWR spent fuel reprocessing and MOX fuel fabrication have already provided the foundation of the fuel cycle industry in Japan. R and D on the treatment and disposal of high-level waste and FBR fuel reprocessing has also been carried out. Through such activities, radioactive material release to the environment has been appropriately controlled and all nuclear materials have been placed under IAEA safeguards. The Laboratories has sufficient experience and ability to establish the next generation closed cycle and strives to become a world-class Center Of Excellence (COE). (authors)

  12. Aldehyde and unburned fuel emission measurements from a methanol-fueled Texaco stratified charge engine

    SciTech Connect (OSTI)

    Kim, C.; Foster, D.E.

    1985-04-01

    A Texaco L-163S TCCS (Texaco Controlled Combustion System) engine was operated with pure methanol to investigate the origin of unburned fuel (UBF) and formaldehyde emissions. Both continuous and time-resolved exhaust gas sampling methods were used to measure UBF and formaldehyde concentrations. Fuel impingement is believed to be an additional source of UBF emissions from this methanol-fueled TCCS engine. At increased load we believe that it is the primary source of the UBF emissions. Formaldehyde emissions were found to originate in the cylinder gases, especially at low load. However the formation of aldehydes in the exhaust port after leaving the cylinder does occur and becomes more important as the load increases. Increasing the engine load resulted in a decrease in UBF emissions but in most cases increased the formaldehyde emissions. Increased engine speed resulted in slightly increased UBF and formaldehyde emissions.

  13. Bachelor of Science-Engineering Technology Program and Fuel Cell Education Program Concentration

    SciTech Connect (OSTI)

    Block, David L.; Sleiti, Ahmad

    2011-09-19

    The Hydrogen and Fuel Cell Technology education project has addressed DOE goals by supplying readily available, objective, technical, and accurate information that is available to students, industry and the public. In addition, the program has supplied educated trainers and training opportunities for the next generation workforce needed for research, development, and demonstration activities in government, industry, and academia. The project has successfully developed courses and associated laboratories, taught the new courses and labs and integrated the HFCT option into the accredited engineering technology and mechanical engineering programs at the University of North Carolina at Charlotte (UNCC). The project has also established ongoing collaborations with the UNCC energy related centers of the Energy Production & Infrastructure Center (EPIC), the NC Motorsports and Automotive Research Center (NCMARC) and the Infrastructure, Design, Environment and Sustainability Center (IDEAS). The results of the project activities are presented as two major areas – (1) course and laboratory development, offerings and delivery, and (2) program recruitment, promotions and collaborations. Over the project period, the primary activity has been the development and offering of 11 HFCT courses and accompanying laboratories. This process has taken three years with the courses first being developed and then offered each year over the timeframe.

  14. Statistical Overview of 5 Years of HCCI Fuel and Engine Data...

    Energy.gov (indexed) [DOE]

    Results show single fuel model could not represent all fuels studied but engine performance could be predicted with a grouped approach using cetane with secondary effects from ...

  15. Experiments and modelling of surge in small centrifugal compressor for automotive engines

    SciTech Connect (OSTI)

    Galindo, J.; Serrano, J.R.; Climent, H.; Tiseira, A.

    2008-01-15

    In this paper the surge phenomenon in small centrifugal compressors used for turbocharging internal combustion engines is analyzed. The experimental work was focused on the measurement of compressor behaviour within the surge zone by means of a specifically designed facility. The presented model is based on the introduction of a fluid inertia term that accounts for the non quasi steady effects and the use of a compressor map extended to the surge and negative flows zone obtained from experimental tests. The compressor model was implemented in a one-dimensional gas-dynamic model. The comparison of the modelled and measured evolution of instantaneous pressure during deep surge operation shows good agreement. Furthermore, the model is also able to predict the amplitude and frequency of pressure pulses when the compressor operates in surge with different outlet duct lengths. (author)

  16. Fuel Effects on Advanced Combustion: Heavy-Duty Optical-Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Advanced Combustion: Heavy-Duty Optical-Engine Research Fuel Effects on Advanced Combustion: Heavy-Duty Optical-Engine Research 2009 DOE Hydrogen Program and Vehicle Technologies ...

  17. Demonstrating Fuel Consumption and Emissions Reductions with Next Generation Model-Based Diesel Engine Control

    Energy.gov [DOE]

    Presents a next generation model-based engine controller that incorporates real-time fuel efficiency optimization and tested under fully transient engine and vehicle operating conditions.

  18. Development of an SI DI Ethanol Optimized Flex Fuel Engine Using...

    Energy.gov (indexed) [DOE]

    More Documents & Publications E85 Optimized Engine through Boosting, Spray Optimized GDi, VCR and Variable Valvetrain Flex Fuel Optimized SI and HCCI Engine A University Consortium ...

  19. Advanced Combustion Engine R&D and Fuels Technology Merit Review...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Advanced Combustion Engine R&D and Fuels Technology Merit Review Advanced Combustion Engine R&D and Fuels Technology Merit Review Merit review of DOE FCVT combustion, emission ...

  20. Development of Dual-Fuel Engine for Class 8 Applications | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Dual-Fuel Engine for Class 8 Applications Development of Dual-Fuel Engine for Class 8 Applications Highlights roadmap towards 55% brake thermal efficiency and progress to meet ...

  1. Fuel Effects on Low Temperature Combustion in a Light-Duty Diesel Engine

    Energy.gov [DOE]

    Six different fuels were investigated to study the influence of fuel properties on engine out emissions and performance of low temperature premixed compression ignition combustion light-duty HSDI engines

  2. Development of Kinetic Mechanisms for Next-Generation Fuels and CFD Simulation of Advanced Combustion Engines

    SciTech Connect (OSTI)

    Pitz, William J.; McNenly, Matt J.; Whitesides, Russell; Mehl, Marco; Killingsworth, Nick J.; Westbrook, Charles K.

    2015-12-17

    Predictive chemical kinetic models are needed to represent next-generation fuel components and their mixtures with conventional gasoline and diesel fuels. These kinetic models will allow the prediction of the effect of alternative fuel blends in CFD simulations of advanced spark-ignition and compression-ignition engines. Enabled by kinetic models, CFD simulations can be used to optimize fuel formulations for advanced combustion engines so that maximum engine efficiency, fossil fuel displacement goals, and low pollutant emission goals can be achieved.

  3. Illuminating the Path towards Co-Optimized Fuels and Engines through

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Analysis of Sustainability, Scale, Economics, Risk, and Trade | Department of Energy Illuminating the Path towards Co-Optimized Fuels and Engines through Analysis of Sustainability, Scale, Economics, Risk, and Trade Illuminating the Path towards Co-Optimized Fuels and Engines through Analysis of Sustainability, Scale, Economics, Risk, and Trade Breakout Session 3D: Opportunities for Innovation in Fuel-Engine Co-Optimization Illuminating the Path towards Co-Optimized Fuels and Engines through

  4. Characterization of Particulate Emissions from GDI Engine Combustion with Alcohol-blended Fuels

    Office of Energy Efficiency and Renewable Energy (EERE)

    Analysis showed that gasoline direct injection engine particulates from alcohol-blended fuels are significantly different in morphology and nanostructures

  5. Statistical Overview of 5 Years of HCCI Fuel and Engine Data from ORNL

    Energy.gov [DOE]

    Results show single fuel model could not represent all fuels studied but engine performance could be predicted with a grouped approach using cetane with secondary effects from volatility or heavy fuel components

  6. Impact of Fuel Properties on Light-Duty Engine Performance and Emissions

    Energy.gov [DOE]

    Describes the effects of seven fuels with significantly different fuel properties on a state-of-the-art light-duty diesel engine. Cetane numbers range between 26 and 76 for the investigated fuels.

  7. Fact #868: April 13, 2015 Automotive Technology Has Improved Performance

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    and Fuel Economy of New Light Vehicles - Dataset | Department of Energy 8: April 13, 2015 Automotive Technology Has Improved Performance and Fuel Economy of New Light Vehicles - Dataset Fact #868: April 13, 2015 Automotive Technology Has Improved Performance and Fuel Economy of New Light Vehicles - Dataset Excel file and dataset for Automotive Technology Has Improved Performance and Fuel Economy of New Light Vehicles fotw#868_web.xlsx (23.21 KB) More Documents & Publications Project

  8. Feedback air-fuel control system for Stirling engines

    SciTech Connect (OSTI)

    Monahan, R.

    1991-11-19

    This patent describes improvement in combination with a Stirling engine having an air-fuel ratio control and an exhaust gas emission outlet. The improvement comprises an oxygen sensor in communication with the exhaust gas emission outlet for generating an output signal representative of the oxygen content in the outlet; a sensor signal conditioning unit for adapting the output signal to a conditioned input signal for a microprocessor; and a microprocessor controlled pilot for adjusting the air-fuel control in response to the control input signal.

  9. Engineered Nanostructured MEA Technology for Low Temperature Fuel Cells

    SciTech Connect (OSTI)

    Zhu, Yimin

    2009-07-16

    The objective of this project is to develop a novel catalyst support technology based on unique engineered nanostructures for low temperature fuel cells which: (1) Achieves high catalyst activity and performance; (2) Improves catalyst durability over current technologies; and (3) Reduces catalyst cost. This project is directed at the development of durable catalysts supported by novel support that improves the catalyst utilization and hence reduce the catalyst loading. This project will develop a solid fundamental knowledge base necessary for the synthetic effort while at the same time demonstrating the catalyst advantages in Direct Methanol Fuel Cells (DMFCs).

  10. Electrometallurgical treatment of oxide spent fuel - engineering-scale development.

    SciTech Connect (OSTI)

    Karell, E. J.

    1998-04-22

    Argonne National Laboratory (ANL) has developed the electrometallurgical treatment process for conditioning various Department of Energy (DOE) spent fuel types for long-term storage or disposal. This process uses electrorefining to separate the constituents of spent fuel into three product streams: metallic uranium, a metal waste form containing the cladding and noble metal fission products, and a ceramic waste form containing the transuranics, and rare earth, alkali, and alkaline earth fission products. While metallic fuels can be directly introduced into the electrorefiner, the actinide components of oxide fuels must first be reduced to the metallic form. The Chemical Technology Division of AFT has developed a process to reduce the actinide oxides that uses lithium at 650 C in the presence of molten LiCl, yielding the actinide metals and Li{sub 2}O. A significant amount of work has already been accomplished to investigate the basic chemistry of the lithium reduction process and to demonstrate its applicability to the treatment of light-water reactor- (LWR-) type spent fuel. The success of this work has led to conceptual plans to construct a pilot-scale oxide reduction facility at ANL's Idaho site. In support of the design effort, a series of laboratory- and engineering-scale experiments is being conducted using simulated fuel. These experiments have focused on the engineering issues associated with scaling-up the process and proving compatibility between the reduction and electrorefining steps. Specific areas of investigation included reduction reaction kinetics, evaluation of various fuel basket designs, and issues related to electrorefining the reduced product. This paper summarizes the results of these experiments and outlines plans for future work.

  11. A Comparison of Combustion and Emissions of Diesel Fuels and Oxygenated Fuels in a Modern DI Diesel Engine

    Energy.gov [DOE]

    A single-cylinder engine was used to study how selected oxygenated fuels affect combustion and emissions in a modern diesel engine during conventional combustion and low-temperature combustion (LTC).

  12. Co-Optimization of Fuels and Engines (Co-Optima) -- Fuel Properties and Chemical Kinetics and Thrust I Engine Projects

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    This presentation does not contain any proprietary, confidential, or otherwise restricted information #$%&'"(")*+,"!" Co-Optimization of Fuels and Engines Fuel Property Team -./0+,"12"345.+67489 ! "!"#$%&"'('#") * %+",%-./0"12) 3 %4",%5$/1) 6 %7$89%:"9;1) <% :$=%:>?;#9/) @ %5"99%7"2.) @ %+'#%A8;>B;) * %:$=%C$2>9"D) * %5($E%F"G9;() * %->'=%!'9E10'('8GH I % *J!

  13. Engine combustion control at low loads via fuel reactivity stratification

    DOE Patents [OSTI]

    Reitz, Rolf Deneys; Hanson, Reed M; Splitter, Derek A; Kokjohn, Sage L

    2014-10-07

    A compression ignition (diesel) engine uses two or more fuel charges during a combustion cycle, with the fuel charges having two or more reactivities (e.g., different cetane numbers), in order to control the timing and duration of combustion. By appropriately choosing the reactivities of the charges, their relative amounts, and their timing, combustion can be tailored to achieve optimal power output (and thus fuel efficiency), at controlled temperatures (and thus controlled NOx), and with controlled equivalence ratios (and thus controlled soot). At low load and no load (idling) conditions, the aforementioned results are attained by restricting airflow to the combustion chamber during the intake stroke (as by throttling the incoming air at or prior to the combustion chamber's intake port) so that the cylinder air pressure is below ambient pressure at the start of the compression stroke.

  14. Automotive HCCI Engine Research

    Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  15. Automotive HCCI Engine Research

    Energy.gov [DOE]

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  16. DOE Technical Targets for Fuel Cell Systems for Transportation...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    which includes automotive and energy companies, specifically the Fuel Cell Technical Team. ... Technical Targets for Automotive Applications: 80-kWe (net) Integrated Transportation Fuel ...

  17. [Fuel substitution of vehicles by natural gas: Summaries of four final technical reports

    SciTech Connect (OSTI)

    1996-05-01

    This report contains summary information on three meetings and highlights of a fourth meeting held by the Society of Automotive Engineers on natural gas fueled vehicles. The meetings covered the following: Natural gas engine and vehicle technology; Safety aspects of alternately fueled vehicles; Catalysts and emission control--Meeting the legislative standards; and LNG--Strengthening the links.

  18. Reformulated diesel fuel and method

    DOE Patents [OSTI]

    McAdams, Hiramie T [Carrollton, IL; Crawford, Robert W [Tucson, AZ; Hadder, Gerald R [Oak Ridge, TN; McNutt, Barry D [Arlington, VA

    2006-08-22

    A method for mathematically identifying at least one diesel fuel suitable for combustion in an automotive diesel engine with significantly reduced emissions and producible from known petroleum blendstocks using known refining processes, including the use of cetane additives (ignition improvers) and oxygenated compounds.

  19. Development and Demonstration of a Fuel-Efficient HD Engine (DOE SuperTruck

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Program) | Department of Energy Demonstration of a Fuel-Efficient HD Engine (DOE SuperTruck Program) Development and Demonstration of a Fuel-Efficient HD Engine (DOE SuperTruck Program) Discusses engine efficiency contributions of enhanced fuel injection rematched to new piston geometry, improved charge air system, revised base engine components reduce friction and turbocompounding. deer11_deojeda.pdf (2.06 MB) More Documents & Publications Development and Demonstration of a

  20. Effects of fuel stability upon injection-nozzle deposit formation in road-tested diesel engines

    SciTech Connect (OSTI)

    Fortnagel, M.; Herrbrich, B.

    1985-01-01

    The properties of diesel fuels have changed distinctly, especially in the United States. Fuel-related problems-one of which is the injector-nozzle coking in passenger-car diesel engines-have arisen due to deteriorated fuel qualities. Extended investigations of road-tested diesel engines suggest a link between fuel stability and the coke-deposit mechanism. Stabilizing poor-quality fuels by a chemical-additive package resulted in troublefree operation over extended mileage. Thus fuel stability, which evidently has to be secured at the refinery, shows up as an important property for satisfactory engine operation.

  1. Fuel mixture stratification as a method for improving homogeneous charge compression ignition engine operation

    DOE Patents [OSTI]

    Dec, John E.; Sjoberg, Carl-Magnus G.

    2006-10-31

    A method for slowing the heat-release rate in homogeneous charge compression ignition ("HCCI") engines that allows operation without excessive knock at higher engine loads than are possible with conventional HCCI. This method comprises injecting a fuel charge in a manner that creates a stratified fuel charge in the engine cylinder to provide a range of fuel concentrations in the in-cylinder gases (typically with enough oxygen for complete combustion) using a fuel with two-stage ignition fuel having appropriate cool-flame chemistry so that regions of different fuel concentrations autoignite sequentially.

  2. Performance Evaluation and Optimization of Diesel Fuel Properties and Chemistry in an HCCI Engine

    SciTech Connect (OSTI)

    Bunting, Bruce G; Eaton, Scott J; Crawford, Robert W

    2009-01-01

    The nine CRC fuels for advanced combustion engines (FACE fuels) have been evaluated in a simple, premixed HCCI engine under varying conditions of fuel rate, air-fuel ratio, and intake temperature. Engine performance was found to vary mainly as a function of combustion phasing as affected by fuel cetane and engine control variables. The data was modeled using statistical techniques involving eigenvector representation of the fuel properties and engine control variables, to define engine response and allow optimization across the fuels for best fuel efficiency. In general, the independent manipulation of intake temperature and air-fuel ratio provided some opportunity for improving combustion efficiency of a specific fuel beyond the direct effect of targeting the optimum combustion phasing of the engine (near 5 CAD ATDC). High cetane fuels suffer performance loss due to easier ignition, resulting in lower intake temperatures, which increase HC and CO emissions and result in the need for more advanced combustion phasing. The FACE fuels also varied in T90 temperature and % aromatics, independent of cetane number. T90 temperature was found to have an effect on engine performance when combined with high centane, but % aromatics did not, when evaluated independently of cetane and T90.

  3. Development of Thermoelectric Technology for Automotive Waste Heat Recovery

    Energy.gov [DOE]

    Overview and status of project to develop thermoelectric generator for automotive waste heat recovery and achieve at least 10% fuel economy improvement.

  4. Fuel injector for use in a gas turbine engine

    DOE Patents [OSTI]

    Wiebe, David J.

    2012-10-09

    A fuel injector in a combustor apparatus of a gas turbine engine. An outer wall of the injector defines an interior volume in which an intermediate wall is disposed. A first gap is formed between the outer wall and the intermediate wall. The intermediate wall defines an internal volume in which an inner wall is disposed. A second gap is formed between the intermediate wall and the inner wall. The second gap receives cooling fluid that cools the injector. The cooling fluid provides convective cooling to the intermediate wall as it flows within the second gap. The cooling fluid also flows through apertures in the intermediate wall into the first gap where it provides impingement cooling to the outer wall and provides convective cooling to the outer wall. The inner wall defines a passageway that delivers fuel into a liner downstream from a main combustion zone.

  5. Mod II Stirling engine overviews

    SciTech Connect (OSTI)

    Farrell, R.A.

    1988-01-01

    The Mod II engine is a second-generation automotive Stirling engine (ASE) optimized for part-power operation. It has been designed specifically to meet the fuel economy and exhaust emissions objectives of the ASE development program. The design, test experience, performance, and comparison of data to analytical performance estimates of the Mod II engine to date are reviewed. Estimates of Mod II performance in its final configuration are also given. 12 references.

  6. Integrating Gasifiers and Reciprocating Engine Generators to Utilize Biomass-Based Fuel

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Adapting On-site Electrical Generation Platforms for Producer Gas ADVANCED MANUFACTURING OFFICE Integrating Gasifiers and Reciprocating Engine Generators to Utilize Biomass- Based Fuel This project integrated a biomass gasifer and a reciprocating engine generator set into a combined platform, enabling electricity generation from waste biomass while reducing diesel fuel consumption and greenhouse gas (GHG) emissions. Introduction Internal combustion reciprocating engine generators (gensets) are

  7. Air fuel ratio control apparatus and method for an internal combustion engine with a turbocharger

    SciTech Connect (OSTI)

    Sawamoto, K.; Ikeura, K.; Morita, T.; Yamaguchi, H.

    1984-05-29

    Normally, an air-fuel ratio is controlled in accordance with the engine speed and the intake air quantity of an internal combustion engine with a turbocharger. When the output pressure of the turbocharger increases excessively, an intake relief valve opens to decrease the intake air quantity. In this case, the fuel injection quantity is controlled solely in accordance with the engine speed.

  8. Direct fired reciprocating engine and bottoming high temperature fuel cell hybrid

    DOE Patents [OSTI]

    Geisbrecht, Rodney A.; Holcombe, Norman T.

    2006-02-07

    A system of a fuel cell bottoming an internal combustion engine. The engine exhaust gas may be combined in varying degrees with air and fed as input to a fuel cell. Reformer and oxidizers may be combined with heat exchangers to accommodate rich and lean burn conditions in the engine in peaking and base load conditions without producing high concentrations of harmful emissions.

  9. Table II: Technical Targets for Membranes: Automotive | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy II: Technical Targets for Membranes: Automotive Table II: Technical Targets for Membranes: Automotive Technical targets for fuel cell membranes in automotive applications defined by the High Temperature Working Group (February 2003). technical_targets_membr_auto.pdf (99.62 KB) More Documents & Publications Table IV: Technical Targets for Membranes: Stationary Table I: Technical Targets for Catalyst Coated Membranes (CCMs): Automotive R&D Plan for the High Temperature Membrane

  10. Automotive Perspective on PEM Evaluation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    PEM Evaluation Automotive Perspective on PEM Evaluation Presented at the 2009 High Temperature Membrane Working Group Meeting held May 18, 2009, in Arlington, Virginia htmwg_may09_automotive_perspective.pdf (2.8 MB) More Documents & Publications Automotive Perspective on Membrane Evaluation Membrane Performance and Durability Overview for Automotive Fuel Cell Applications Lead Research and Development Activity for High Temperature, Low Relative Humidity Membrane Program

  11. High Energy Novel Cathode / Alloy Automotive Cell | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Novel Cathode / Alloy Automotive Cell High Energy Novel Cathode / Alloy Automotive Cell 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting es131_choi_2012_p.pdf (1.19 MB) More Documents & Publications High Energy Novel Cathode / Alloy Automotive Cell Vehicle Technologies Office Merit Review 2014: High Energy Novel Cathode / Alloy Automotive Cell Vehicle Technologies Office Merit Review 2016: Advanced High Energy

  12. Reducing fuel consumption on the field, by continuously measuring fuel quality on electronically fuel injected engines.

    Office of Energy Efficiency and Renewable Energy (EERE)

    Poster presented at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010.

  13. Fuel injector nozzle for an internal combustion engine

    DOE Patents [OSTI]

    Cavanagh, Mark S.; Urven, Jr., Roger L.; Lawrence, Keith E.

    2008-11-04

    A direct injection fuel injector includes a nozzle tip having a plurality of passages allowing fluid communication between an inner nozzle tip surface portion and an outer nozzle tip surface portion and directly into a combustion chamber of an internal combustion engine. A first group of the passages have inner surface apertures located substantially in a first common plane. A second group of the passages have inner surface apertures located substantially in at least a second common plane substantially parallel to the first common plane. The second group has more passages than the first group.

  14. Fuel injector nozzle for an internal combustion engine

    DOE Patents [OSTI]

    Cavanagh, Mark S.; Urven, Jr., Roger L.; Lawrence, Keith E.

    2007-11-06

    A direct injection fuel injector includes a nozzle tip having a plurality of passages allowing fluid communication between an inner nozzle tip surface portion and an outer nozzle tip surface portion and directly into a combustion chamber of an internal combustion engine. A first group of the passages have inner surface apertures located substantially in a first common plane. A second group of the passages have inner surface apertures located substantially in at least a second common plane substantially parallel to the first common plane. The second group has more passages than the first group.

  15. Fuel injector nozzle for an internal combustion engine

    DOE Patents [OSTI]

    Cavanagh, Mark S.; Urven, Jr., Roger L.; Lawrence, Keith E.

    2011-03-22

    A direct injection fuel injector includes a nozzle tip having a plurality of passages allowing fluid communication between an inner nozzle tip surface portion and an outer nozzle tip surface portion and directly into a combustion chamber of an internal combustion engine. A first group of the passages have inner surface apertures located substantially in a first common plane. A second group of the passages have inner surface apertures located substantially in at least a second common plane substantially parallel to the first common plane. The second group has more passages than the first group.

  16. Fuel Injector Nozzle For An Internal Combustion Engine

    DOE Patents [OSTI]

    Cavanagh, Mark S.; Urven, Jr.; Roger L.; Lawrence, Keith E.

    2006-04-25

    A direct injection fuel injector includes a nozzle tip having a plurality of passages allowing fluid communication between an inner nozzle tip surface portion and an outer nozzle tip surface portion and directly into a combustion chamber of an internal combustion engine. A first group of the passages have inner surface apertures located substantially in a first common plane. A second group of the passages have inner surface apertures located substantially in at least a second common plane substantially parallel to the first common plane. The second group has more passages than the first group.

  17. Characteristics of isopentanol as a fuel for HCCI engines.

    SciTech Connect (OSTI)

    Simmons, Blake Alexander; Dec, John E.; Yang, Yi; Dronniou, Nicolas

    2010-05-01

    Long chain alcohols possess major advantages over the currently used ethanol as bio-components for gasoline, including higher energy content, better engine compatibility, and less water solubility. The rapid developments in biofuel technology have made it possible to produce C{sub 4}-C{sub 5} alcohols cost effectively. These higher alcohols could significantly expand the biofuel content and potentially substitute ethanol in future gasoline mixtures. This study characterizes some fundamental properties of a C{sub 5} alcohol, isopentanol, as a fuel for HCCI engines. Wide ranges of engine speed, intake temperature, intake pressure, and equivalence ratio are investigated. Results are presented in comparison with gasoline or ethanol data previously reported. For a given combustion phasing, isopentanol requires lower intake temperatures than gasoline or ethanol at all tested speeds, indicating a higher HCCI reactivity. Similar to ethanol but unlike gasoline, isopentanol does not show two-stage ignition even at very low engine speed (350 rpm) or with considerable intake pressure boost (200 kPa abs.). However, isopentanol does show considerable intermediate temperature heat release (ITHR) that is comparable to gasoline. Our previous work has found that ITHR is critical for maintaining combustion stability at the retarded combustion phasings required to achieve high loads without knock. The stronger ITHR causes the combustion phasing of isopentanol to be less sensitive to intake temperature variations than ethanol. With the capability to retard combustion phasing, a maximum IMEP{sub g} of 5.4 and 11.6 bar was achieved with isopentanol at 100 and 200 kPa intake pressure, respectively. These loads are even slightly higher than those achieved with gasoline. The ITHR of isopentanol depends on operating conditions and is enhanced by simultaneously increasing pressures and reducing temperatures. However, increasing the temperature seems to have little effect on ITHR at

  18. Internal combustion engines for alcohol motor fuels: a compilation of background technical information

    SciTech Connect (OSTI)

    Blaser, Richard

    1980-11-01

    This compilation, a draft training manual containing technical background information on internal combustion engines and alcohol motor fuel technologies, is presented in 3 parts. The first is a compilation of facts from the state of the art on internal combustion engine fuels and their characteristics and requisites and provides an overview of fuel sources, fuels technology and future projections for availability and alternatives. Part two compiles facts about alcohol chemistry, alcohol identification, production, and use, examines ethanol as spirit and as fuel, and provides an overview of modern evaluation of alcohols as motor fuels and of the characteristics of alcohol fuels. The final section compiles cross references on the handling and combustion of fuels for I.C. engines, presents basic evaluations of events leading to the use of alcohols as motor fuels, reviews current applications of alcohols as motor fuels, describes the formulation of alcohol fuels for engines and engine and fuel handling hardware modifications for using alcohol fuels, and introduces the multifuel engines concept. (LCL)

  19. Engineered Nano-scale Ceramic Supports for PEM Fuel Cells | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Engineered Nano-scale Ceramic Supports for PEM Fuel Cells Engineered Nano-scale Ceramic Supports for PEM Fuel Cells Presented at the Department of Energy Fuel Cell Projects Kickoff Meeting, September 1 - October 1, 2009 brosha_lanl_kickoff.pdf (672.5 KB) More Documents & Publications Long Term Innovative Technologies The Science And Engineering of Duralbe Ultralow PGM Catalysts DOE Durability Working Group October 2010 Meeting Minutes

  20. High Fuel Economy Heavy-Duty Truck Engine | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fuel Economy Heavy-Duty Truck Engine High Fuel Economy Heavy-Duty Truck Engine 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation ace060_tai_2011_o.pdf (434.09 KB) More Documents & Publications Volvo SuperTruck - Powertrain Technologies for Efficiency Improvement Vehicle Technologies Office Merit Review 2016: Volvo SuperTruck - Powertrain Technologies for Efficiency Improvement SuperTruck Program: Engine Project Review

  1. Fuel injection system and method of operating the same for an engine

    DOE Patents [OSTI]

    Topinka, Jennifer Ann; DeLancey, James Peter; Primus, Roy James; Pintgen, Florian Peter

    2011-02-15

    A fuel injector is coupled to an engine. The fuel injector includes an injection opening configured to vary in cross-section between a open state and a fully closed state. The fuel injector is configured to provide a plurality of discrete commanded fuel injections into an engine cylinder by modulating the size of the injection opening without completely closing the opening to the fully closed state.

  2. LWRS Fuels Pathway: Engineering Design and Fuels Pathway Initial Testing of the Hot Water Corrosion System

    SciTech Connect (OSTI)

    Dr. John Garnier; Dr. Kevin McHugh

    2012-09-01

    The Advanced LWR Nuclear Fuel Development R&D pathway performs strategic research focused on cladding designs leading to improved reactor core economics and safety margins. The research performed is to demonstrate the nuclear fuel technology advancements while satisfying safety and regulatory limits. These goals are met through rigorous testing and analysis. The nuclear fuel technology developed will assist in moving existing nuclear fuel technology to an improved level that would not be practical by industry acting independently. Strategic mission goals are to improve the scientific knowledge basis for understanding and predicting fundamental nuclear fuel and cladding performance in nuclear power plants, and to apply this information in the development of high-performance, high burn-up fuels. These will result in improved safety, cladding, integrity, and nuclear fuel cycle economics. To achieve these goals various methods for non-irradiated characterization testing of advanced cladding systems are needed. One such new test system is the Hot Water Corrosion System (HWCS) designed to develop new data for cladding performance assessment and material behavior under simulated off-normal reactor conditions. The HWCS is capable of exposing prototype rodlets to heated, high velocity water at elevated pressure for long periods of time (days, weeks, months). Water chemistry (dissolved oxygen, conductivity and pH) is continuously monitored. In addition, internal rodlet heaters inserted into cladding tubes are used to evaluate repeated thermal stressing and heat transfer characteristics of the prototype rodlets. In summary, the HWCS provides rapid ex-reactor evaluation of cladding designs in normal (flowing hot water) and off-normal (induced cladding stress), enabling engineering and manufacturing improvements to cladding designs before initiation of the more expensive and time consuming in-reactor irradiation testing.

  3. Hydrogen engine performance analysis project. First quarterly report, March 1980

    SciTech Connect (OSTI)

    Adt, Jr, R R; Swain, M R; Pappas, J M

    1980-01-01

    Progress in a program aimed at obtaining operational and performance data on a prototype pre intake valve closing fuel ingestion (PreIVC) hydrogen-fueled automotive engine is reported. Information is included on the construction and testing of an unthrottled hydrogen delivery system and on flashback during starting. It was determined that the flashback was caused by runaway surface ignition. (LCL)

  4. Final Report for NFE-07-00912: Development of Model Fuels Experimental

    Office of Scientific and Technical Information (OSTI)

    Engine Data Base & Kinetic Modeling Parameter Sets (Technical Report) | SciTech Connect Final Report for NFE-07-00912: Development of Model Fuels Experimental Engine Data Base & Kinetic Modeling Parameter Sets Citation Details In-Document Search Title: Final Report for NFE-07-00912: Development of Model Fuels Experimental Engine Data Base & Kinetic Modeling Parameter Sets The automotive and engine industries are in a period of very rapid change being driven by new emission

  5. A Stirling engine for use with lower quality fuels (Journal Article...

    Office of Scientific and Technical Information (OSTI)

    A Stirling engine for use with lower quality fuels This content will become publicly available on June 21, 2017 Prev Next Title: A Stirling engine for use with lower quality ...

  6. Fact #868: April 13, 2015 Automotive Technology Has Improved Performance and Fuel Economy of New Light Vehicles

    Energy.gov [DOE]

    Despite a 124% increase in horsepower and 47% decrease in 0-60 time from 1980 to 2014, the fuel economy of vehicles improved 27%. All of these data series are sales-weighted averages. The weight of...

  7. Coal-fueled high-speed diesel engine development: Task 2, Market assessment and economic analysis

    SciTech Connect (OSTI)

    Kakwani, R. M.; Wilson, Jr., R. P.; Winsor, R. E.

    1991-12-01

    Based on the preliminary coal engine design developed, this task was conducted to identify the best opportunity(s) to enter the market with the future coal-fueled, high-speed diesel engine. The results of this market and economic feasibility assessment will be used to determine what specific heavy duty engine application(s) are most attractive for coal fuel, and also define basic economic targets for the engine to be competitive.

  8. Apparatus and method for operating internal combustion engines from variable mixtures of gaseous fuels

    SciTech Connect (OSTI)

    Heffel, James W.; Scott, Paul B.; Park, Chan Seung

    2011-11-01

    An apparatus and method for utilizing any arbitrary mixture ratio of multiple fuel gases having differing combustion characteristics, such as natural gas and hydrogen gas, within an internal combustion engine. The gaseous fuel composition ratio is first sensed, such as by thermal conductivity, infrared signature, sound propagation speed, or equivalent mixture differentiation mechanisms and combinations thereof which are utilized as input(s) to a "multiple map" engine control module which modulates selected operating parameters of the engine, such as fuel injection and ignition timing, in response to the proportions of fuel gases available so that the engine operates correctly and at high efficiency irrespective of the gas mixture ratio being utilized. As a result, an engine configured according to the teachings of the present invention may be fueled from at least two different fuel sources without admixing constraints.

  9. Apparatus and method for operating internal combustion engines from variable mixtures of gaseous fuels

    DOE Patents [OSTI]

    Heffel, James W.; Scott, Paul B.

    2003-09-02

    An apparatus and method for utilizing any arbitrary mixture ratio of multiple fuel gases having differing combustion characteristics, such as natural gas and hydrogen gas, within an internal combustion engine. The gaseous fuel composition ratio is first sensed, such as by thermal conductivity, infrared signature, sound propagation speed, or equivalent mixture differentiation mechanisms and combinations thereof which are utilized as input(s) to a "multiple map" engine control module which modulates selected operating parameters of the engine, such as fuel injection and ignition timing, in response to the proportions of fuel gases available so that the engine operates correctly and at high efficiency irrespective of the gas mixture ratio being utilized. As a result, an engine configured according to the teachings of the present invention may be fueled from at least two different fuel sources without admixing constraints.

  10. Final report: U.S. competitive position in automotive technologies

    SciTech Connect (OSTI)

    Albert, Michael B.; Cheney, Margaret; Thomas, Patrick; Kroll, Peter

    2002-09-30

    Patent data are presented and analyzed to assess the U.S. competitive position in eleven advanced automotive technology categories, including automotive fuel cells, hydrogen storage, advanced batteries, hybrid electric vehicles and others. Inventive activity in most of the technologies is found to be growing at a rapid pace, particularly in advanced batteries, automotive fuel cells and ultracapacitors. The U.S. is the clear leader in automotive fuel cells, on-board hydrogen storage and light weight materials. Japan leads in advanced batteries, hybrid electric vehicles, ultracapacitors, and appears to be close to overtaking the U.S. in other areas of power electronics.

  11. Vehicle Technologies Office Merit Review 2016: ICME Guided Development of Advanced Cast Aluminum Alloys for Automotive Engine Applications

    Energy.gov [DOE]

    Presentation given by Ford at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Propulsion Materials

  12. Air/fuel supply system for use in a gas turbine engine

    DOE Patents [OSTI]

    Fox, Timothy A; Schilp, Reinhard; Gambacorta, Domenico

    2014-06-17

    A fuel injector for use in a gas turbine engine combustor assembly. The fuel injector includes a main body and a fuel supply structure. The main body has an inlet end and an outlet end and defines a longitudinal axis extending between the outlet and inlet ends. The main body comprises a plurality of air/fuel passages extending therethrough, each air/fuel passage including an inlet that receives air from a source of air and an outlet. The fuel supply structure communicates with and supplies fuel to the air/fuel passages for providing an air/fuel mixture within each air/fuel passage. The air/fuel mixtures exit the main body through respective air/fuel passage outlets.

  13. Automotive Perspective on Membrane Evaluation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Membrane Evaluation Automotive Perspective on Membrane Evaluation Presentation at the 2008 High Temperature Membrane Working Group Meeting held June 9, 2008, in Washington, DC waldecker_htmwg_2008.pdf (86.19 KB) More Documents & Publications Transportation Fuel Cell R&D Needs (Presentation) Automotive Fuel Cell Research and Development Needs Analysis of the Durability of PEM FC Membrane Electrode Assemblies in Automotive Applications

  14. Development of Computer-Aided Design Tools for Automotive Batteries...

    Energy.gov (indexed) [DOE]

    Engineering for Electric Drive Vehicle Batteries (CAEBAT) Vehicle Technologies Office Merit Review 2014: Development of Computer-Aided Design Tools for Automotive Batteries

  15. Development of Computer-Aided Design Tools for Automotive Batteries...

    Energy.gov (indexed) [DOE]

    Progress of Computer-Aided Engineering of Batteries (CAEBAT) Vehicle Technologies Office Merit Review 2014: Development of Computer-Aided Design Tools for Automotive Batteries ...

  16. TRISO-Fuel Element Performance Modeling for the Hybrid LIFE Engine with Pu Fuel Blanket

    SciTech Connect (OSTI)

    DeMange, P; Marian, J; Caro, M; Caro, A

    2010-02-18

    A TRISO-coated fuel thermo-mechanical performance study is performed for the hybrid LIFE engine to test the viability of TRISO particles to achieve ultra-high burnup of a weapons-grade Pu blanket. Our methodology includes full elastic anisotropy, time and temperature varying material properties for all TRISO layers, and a procedure to remap the elastic solutions in order to achieve fast fluences up to 30 x 10{sup 25} n {center_dot} m{sup -2} (E > 0.18 MeV). In order to model fast fluences in the range of {approx} 7 {approx} 30 x 10{sup 25} n {center_dot} m{sup -2}, for which no data exist, careful scalings and extrapolations of the known TRISO material properties are carried out under a number of potential scenarios. A number of findings can be extracted from our study. First, failure of the internal pyrolytic carbon (PyC) layer occurs within the first two months of operation. Then, the particles behave as BISO-coated particles, with the internal pressure being withstood directly by the SiC layer. Later, after 1.6 years, the remaining PyC crumbles due to void swelling and the fuel particle becomes a single-SiC-layer particle. Unrestrained by the PyC layers, and at the temperatures and fluences in the LIFE engine, the SiC layer maintains reasonably-low tensile stresses until the end-of-life. Second, the PyC creep constant, K, has a striking influence on the fuel performance of TRISO-coated particles, whose stresses scale almost inversely proportional to K. Obtaining more reliable measurements, especially at higher fluences, is an imperative for the fidelity of our models. Finally, varying the geometry of the TRISO-coated fuel particles results in little differences in the scope of fuel performance. The mechanical integrity of 2-cm graphite pebbles that act as fuel matrix has also been studied and it is concluded that they can reliable serve the entire LIFE burnup cycle without failure.

  17. Development of OTM Syngas Process and Testing of Syngas Derived Ultra-clean Fuels in Diesel Engines and Fuel Cells

    SciTech Connect (OSTI)

    E.T. Robinson; James P. Meagher; Prasad Apte; Xingun Gui; Tytus R. Bulicz; Siv Aasland; Charles Besecker; Jack Chen Bart A. van Hassel; Olga Polevaya; Rafey Khan; Piyush Pilaniwalla

    2002-12-31

    This topical report summarizes work accomplished for the Program from November 1, 2001 to December 31, 2002 in the following task areas: Task 1: Materials Development; Task 2: Composite Development; Task 4: Reactor Design and Process Optimization; Task 8: Fuels and Engine Testing; 8.1 International Diesel Engine Program; 8.2 Nuvera Fuel Cell Program; and Task 10: Program Management. Major progress has been made towards developing high temperature, high performance, robust, oxygen transport elements. In addition, a novel reactor design has been proposed that co-produces hydrogen, lowers cost and improves system operability. Fuel and engine testing is progressing well, but was delayed somewhat due to the hiatus in program funding in 2002. The Nuvera fuel cell portion of the program was completed on schedule and delivered promising results regarding low emission fuels for transportation fuel cells. The evaluation of ultra-clean diesel fuels continues in single cylinder (SCTE) and multiple cylinder (MCTE) test rigs at International Truck and Engine. FT diesel and a BP oxygenate showed significant emissions reductions in comparison to baseline petroleum diesel fuels. Overall through the end of 2002 the program remains under budget, but behind schedule in some areas.

  18. Evaluation of the hydrogen-fueled rotary engine for hybrid vehicle applications

    SciTech Connect (OSTI)

    Salanki, P.A.; Wallace, J.S.

    1996-09-01

    The hydrogen-fueled engine has been identified as a viable power unit for ultra-low emission series-hybrid vehicles. The Wankel engine is particularly well suited to the use of hydrogen fuel, since its design minimizes most of the combustion difficulties. In order to evaluate the possibilities offered by the hydrogen fueled rotary engine, dynamometer tests were conducted with a small (2.2 kW) Wankel engine fueled with hydrogen. Preliminary results show an absence of the combustion difficulties present with hydrogen-fueled homogeneous charge piston engines. The engine was operated unthrottled and power output was controlled by quality governing, i.e. by varying the fuel-air equivalence ratio on the lean side of stoichiometric. The ability to operate with quality governing is made possible by the wide flammability limits of hydrogen-air mixtures. NO{sub x} emissions are on the order of 5 ppm for power outputs up to 70% of the maximum attainable on hydrogen fuel. Thus, by operating with very lean mixtures, which effectively derates the engine, very low NO{sub x} emissions can be achieved. Since the rotary engine has a characteristically high power to weight ratio and a small volume per unit power compared to the piston engine, operating a rotary engine on hydrogen and derating the power output could yield an engine with extremely low emissions which still has weight and volume characteristics comparable to a gasoline-fueled piston engine. Finally, since engine weight and volume affect vehicle design, and consequently in-use vehicle power requirements, those factors, as well as engine efficiency, must be taken into account in evaluating overall hybrid vehicle efficiency.

  19. Chemical Kinetic Modeling of Advanced Transportation Fuels

    SciTech Connect (OSTI)

    PItz, W J; Westbrook, C K; Herbinet, O

    2009-01-20

    Development of detailed chemical kinetic models for advanced petroleum-based and nonpetroleum based fuels is a difficult challenge because of the hundreds to thousands of different components in these fuels and because some of these fuels contain components that have not been considered in the past. It is important to develop detailed chemical kinetic models for these fuels since the models can be put into engine simulation codes used for optimizing engine design for maximum efficiency and minimal pollutant emissions. For example, these chemistry-enabled engine codes can be used to optimize combustion chamber shape and fuel injection timing. They also allow insight into how the composition of advanced petroleum-based and non-petroleum based fuels affect engine performance characteristics. Additionally, chemical kinetic models can be used separately to interpret important in-cylinder experimental data and gain insight into advanced engine combustion processes such as HCCI and lean burn engines. The objectives are: (1) Develop detailed chemical kinetic reaction models for components of advanced petroleum-based and non-petroleum based fuels. These fuels models include components from vegetable-oil-derived biodiesel, oil-sand derived fuel, alcohol fuels and other advanced bio-based and alternative fuels. (2) Develop detailed chemical kinetic reaction models for mixtures of non-petroleum and petroleum-based components to represent real fuels and lead to efficient reduced combustion models needed for engine modeling codes. (3) Characterize the role of fuel composition on efficiency and pollutant emissions from practical automotive engines.

  20. Landi-Hartog U. S. A. adjusts to the U. S. market. [Marketing of LPG carburetor systems for using propane as an automotive fuel

    SciTech Connect (OSTI)

    Not Available

    1980-10-01

    Landi-Hartog U.S.A. has adjusted to the U.S. market in providing LPG carburetor systems for passenger cars. Landi-Hartog (LH) had to completely redesign the components on the system to be compatible with U.S. 300-525 cu in. engines. The company has California Air Resources Board approval for 300 cu in. engines and above in dual-fuel service. However, the U.S. market will remain severely restricted unless basic distribution (and the political) changes are made. The U.S. is st

  1. A MultiAir / MultiFuel Approach to Enhancing Engine System Efficiency |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy A MultiAir / MultiFuel Approach to Enhancing Engine System Efficiency A MultiAir / MultiFuel Approach to Enhancing Engine System Efficiency 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting ace062_reese_2012_o.pdf (2.44 MB) More Documents & Publications Vehicle Technologies Office 2013 Merit Review: A MultiAir / MultiFuel Approach to Enhancing Engine System Efficiency Vehicle Technologies Office

  2. Evaluation of alternate-fuels performance in an external combustion system. Final report

    SciTech Connect (OSTI)

    Battista, R.A.; Connelly, M.

    1985-12-01

    As the economic attractiveness of many alternate fuels increases relative to gasoline, the viability of any future automotive power plant may soon depend on the ease with which these alternate fuels can be utilized. It is generally assumed that external-combustion engines are more tolerant of alternate fuels than internal-combustion engines. This study attempted to verify that assumption. The purpose of the Alternate-Fuels Performance Evaluation Program was to evaluate and compare the impact of burning six different liquids fuels in an external-combustion system. Testing was conducted in the automotive Stirling engine (ASE) combustion performance rig, which duplicates the external heat system (EHS) of a Stirling engine. The program expanded the range of fuels evaluated over previous studies conducted at Mechanical Technology Incorporated (MTI). The specific objective was to determine the optimal combustion stoichiometry considering the performance parameters of combustion efficiency, temperature profile, exhaust emissions, and burner wall temperature. 14 refs., 34 figs., 6 tabs.

  3. Vehicle Technologies Office Merit Review 2015: ICME Guided Development of Advanced Cast Aluminum Alloys for Automotive Engine Applications

    Energy.gov [DOE]

    Presentation given by Ford Motor Company at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about ICME guided development of...

  4. Vehicle Technologies Office Merit Review 2014: ICME Guided Development of Advanced Cast Aluminum Alloys For Automotive Engine Applications

    Energy.gov [DOE]

    Presentation given by Ford at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about ICME guided development of advanced cast...

  5. Advanced Combustion Engine R&D and Fuels Technology Merit Review |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Advanced Combustion Engine R&D and Fuels Technology Merit Review Advanced Combustion Engine R&D and Fuels Technology Merit Review Merit review of DOE FCVT combustion, emission control, health impacts, and fuels research. Annual Progress Report (5.6 MB) More Documents & Publications Heavy Vehicle Systems Optimization Peer Review 2008 Annual Merit Review Results Summary - 7. Combustion Research 2012 Annual Merit Review Results Report - Advanced Combustion

  6. New Feedstocks and Replacement Fuel Diesel Engine Challenges...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    More Documents & Publications BiodieselFuelManagementBestPracticesReport.pdf Vehicle Technologies Office: 2008-2009 Fuels Technologies R&D Progress Report Biodiesel Basics ...

  7. New Vehicle Initiative Aims to Make Fuel and Engines Work Together More Efficiently

    Energy.gov [DOE]

    Recently I had the pleasure of briefing members of Congress on EERE’s groundbreaking fuel-engine co-optimization initiative. The new, multi-year project combines previously independent areas of biofuels and engine combustion research and development (R&D) to design new fuels and engines that are co-optimized—designed in tandem to both maximize vehicle performance and carbon efficiency.

  8. Engineered nano-scale ceramic supports for PEM fuel cells

    SciTech Connect (OSTI)

    Brosha, Eric L; Blackmore, Karen J; Burrell, Anthony K; Henson, Neil J; Phillips, Jonathan

    2010-01-01

    cell conditions must also exhibit high surface area as a necessary adjunct to obtaining high Pt dispersions and Pt utilization targets. Our goal in this work is to identify new synthesis approaches together with materials that will lead to ceramic supports with high surface areas and high Pt dispersions. Several strong candidates for use as PEMFC catalyst supports include: transition metal nitrides and substoichiometric titanium oxides, which hither to now have been prepared by other researcher groups with relatively low surface areas (ca. 1-50 m{sup 2}/g typical). To achieve our goals of engineering high surface area, conductive ceramic support for utilization in PEMFCs, a multi-institutional and multi-disciplinary team with experience synthesizing and investigating these materials has been assembled. This team is headed by Los Alamos National Laboratory and includes Oak Ridge National Laboratory and the University of New Mexico. This report describes our fiscal year 2010 technical progress related to applying advanced synthetiC methods towards the development of new ceramic supports for Pt catalysts for PEM fuel cells.

  9. A Comparison of HCCI Engine Performance Data and Kinetic Modeling Results over a Wide Rangeof Gasoline Range Surrogate Fuel Blends

    Energy.gov [DOE]

    Kinetic models of fuels are needed to allow the simulation of engine performance for research, design, or verification purposes.

  10. Fuel injection for internal combustion engines. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect (OSTI)

    1996-08-01

    The bibliography contains citations concerning research and development of fuel injection systems applied to internal combustion engines and turbines. Gasoline, diesel, synthetic fuels, and liquid gas systems are discussed relative to systems` variations and performances. Fuel injection atomization and combustion are considered in theory, and fuel injection relative to emission control is included.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  11. Fuel injection for internal combustion engines. (Latest citations from the NTIS Bibliographic database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1993-09-01

    The bibliography contains citations concerning research and development of fuel injection systems applied to internal combustion engines and turbines. Gasoline, diesel, synthetic fuels, and liquid gas systems are discussed relative to systems' variations and performances. Fuel injection atomization and combustion are considered in theory, and fuel injection relative to emission control is included. (Contains a minimum of 223 citations and includes a subject term index and title list.)

  12. Series 50 propane-fueled Nova bus: Engine development, installation, and field trials

    SciTech Connect (OSTI)

    Smith, B.

    1999-01-01

    The report describes a project to develop the Detroit Diesel series 50 liquefied propane gas (LPG) heavy-duty engine and to conduct demonstrations of LPG-fuelled buses at selected sites (Halifax Regional Municipality and three sites in the United States). The project included five main elements: Engine development and certification, chassis re-engineering and engine installation, field demonstration, LPG fuel testing, and LPG fuel variability testing. Lessons learned with regard to engine design and other issues are discussed, and recommendations are made for further development and testing.

  13. Automotive Stirling Engine Market and Industrial Readiness Program (MIRP). Final report for Phase IA, September 15, 1982-July 31, 1984

    SciTech Connect (OSTI)

    Not Available

    1984-08-01

    A brief history of the project is presented. Included in appendices are the scope of work, management and cost plans, major milestones, and the digital engine control spare parts' list. (MHR)

  14. Fuel nozzle for a combustor of a gas turbine engine

    DOE Patents [OSTI]

    Belsom, Keith Cletus; McMahan, Kevin Weston; Thomas, Larry Lou

    2016-03-22

    A fuel nozzle for a gas turbine generally includes a main body having an upstream end axially separated from a downstream end. The main body at least partially defines a fuel supply passage that extends through the upstream end and at least partially through the main body. A fuel distribution manifold is disposed at the downstream end of the main body. The fuel distribution manifold includes a plurality of axially extending passages that extend through the fuel distribution manifold. A plurality of fuel injection ports defines a flow path between the fuel supply passage and each of the plurality of axially extending passages.

  15. Development of a bench scale test to evaluate lubricants for use with methanol-fueled engines

    SciTech Connect (OSTI)

    Shah, R.; Klaus, E.; Duda, J.L.

    1996-10-01

    In methanol-fueled diesel engines, the crankcase lubricant is used to lubricate both the engine and the fuel injector system. Crankcase lubricants including some designed for methanol-fueled engines are not completely compatible with the methanol fuel. In order to test the effect of methanol extraction on diesel engine lubricant performance, two extraction protocols were developed: one to simulate the fuel injector (1000 parts of methanol to one part of lubricant) and the other to simulate an extreme case of methanol contamination in the crank-case (one part of methanol to five parts of lubricant). The extracted samples of the lubricant were stripped to remove the methanol. The samples were then evaluated for changes in oxidative stability and lubricity. 12 refs., 3 figs., 8 tabs.

  16. Methanol with dimethyl ether ignition promotor as fuel for compression ignition engines

    SciTech Connect (OSTI)

    Brook, D.L.; Cipolat, D.; Rallis, C.J.

    1984-08-01

    Reduction of the world dependence upon crude oil necessitates the use of long term alternative fuels for internal combustion engines. Alcohols appear to offer a solution as in the short term they can be manufactured from natural gas and coal, while ultimately they may be produced from agricultural products. A fair measure of success has been achieved in using alcohols in spark ignition engines. However the more widely used compression ignition engines cannot utilize unmodified pure alcohols. The current techniques for using alcohol fuels in compression ignition engines all have a number of shortcomings. This paper describes a novel technique where an ignition promotor, dimethyl ether (DME), is used to increase the cetane rating of methanol. The systems particular advantage is that the DME can be catalyzed from the methanol base fuel, in situ. This fuel system matches the performance characteristics of diesel oil fuel.

  17. Method and apparatus for controlling fuel/air mixture in a lean burn engine

    DOE Patents [OSTI]

    Kubesh, John Thomas; Dodge, Lee Gene; Podnar, Daniel James

    1998-04-07

    The system for controlling the fuel/air mixture supplied to a lean burn engine when operating on natural gas, gasoline, hydrogen, alcohol, propane, butane, diesel or any other fuel as desired. As specific humidity of air supplied to the lean burn engine increases, the oxygen concentration of exhaust gas discharged by the engine for a given equivalence ratio will decrease. Closed loop fuel control systems typically attempt to maintain a constant exhaust gas oxygen concentration. Therefore, the decrease in the exhaust gas oxygen concentration resulting from increased specific humidity will often be improperly attributed to an excessive supply of fuel and the control system will incorrectly reduce the amount of fuel supplied to the engine. Also, the minimum fuel/air equivalence ratio for a lean burn engine to avoid misfiring will increase as specific humidity increases. A relative humidity sensor to allow the control system to provide a more enriched fuel/air mixture at high specific humidity levels. The level of specific humidity may be used to compensate an output signal from a universal exhaust gas oxygen sensor for changing oxygen concentrations at a desired equivalence ratio due to variation in specific humidity specific humidity. As a result, the control system will maintain the desired efficiency, low exhaust emissions and power level for the associated lean burn engine regardless of the specific humidity level of intake air supplied to the lean burn engine.

  18. Fuel Effects on Ignition and Their Impact on Advanced Combustion Engines (Poster)

    SciTech Connect (OSTI)

    Taylor, J.; Li, H.; Neill, S.

    2006-08-01

    The objective of this report is to develop a pathway to use easily measured ignition properties as metrics for characterizing fuels in advanced combustion engine research--correlate IQT{trademark} measured parameters with engine data. In HCCL engines, ignition timing depends on the reaction rates throughout compression stroke: need to understand sensitivity to T, P, and [O{sub 2}]; need to rank fuels based on more than one set of conditions; and need to understand how fuel composition (molecular species) affect ignition properties.

  19. BETO Seeks Stakeholder Input on the Co-Optimization of Fuels and Engines |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Seeks Stakeholder Input on the Co-Optimization of Fuels and Engines BETO Seeks Stakeholder Input on the Co-Optimization of Fuels and Engines December 17, 2015 - 9:48am Addthis The U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy's (EERE) Bioenergy Technologies Office (BETO) and Vehicle Technologies Office (VTO) have released a request for information (RFI) titled "Co-Optimization of Fuels and Engines" (Optima). BETO and VTO are

  20. Co-Optimization of Fuels and Engines (Co-Optima)-National Lab Project

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Overview Webinar | Department of Energy Co-Optimization of Fuels and Engines (Co-Optima)-National Lab Project Overview Webinar Co-Optimization of Fuels and Engines (Co-Optima)-National Lab Project Overview Webinar September 14, 2016 2:30PM to 4:30PM EDT Online As part of the Co-Optimization of Fuels and Engines initiative, the Energy Department's Bioenergy Technologies Office invites you to join a webinar on Wednesday, September 14, from 2:30 p.m.-4:30 p.m. Eastern Time. The

  1. CO-OPTIMIZATION OF FUELS AND ENGINES FOA INFORMATIONAL WEBINAR | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy CO-OPTIMIZATION OF FUELS AND ENGINES FOA INFORMATIONAL WEBINAR CO-OPTIMIZATION OF FUELS AND ENGINES FOA INFORMATIONAL WEBINAR August 17, 2016 1:00PM to 3:00PM EDT Online In an effort to accelerate the introduction of affordable, scalable, and sustainable high-performance fuels for use in high-efficiency, low-emission engines, the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy's (EERE's) Bioenergy Technologies Office and Vehicle Technologies Office

  2. Green Racing Series Revs Engines with Renewable Fuel from INEOS Bio |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Racing Series Revs Engines with Renewable Fuel from INEOS Bio Green Racing Series Revs Engines with Renewable Fuel from INEOS Bio March 17, 2014 - 2:55pm Addthis A racecar heads into the pits for refueling during the 12 Hours of Sebring in Florida on Saturday. Integrated biorefinery INEOS Bio now supplies cellulosic ethanol to VP Racing Fuels, which fuels the action at TUDOR United SportsCar Championship series races. | Photo by Natalie Committee, Energy Department A

  3. Future Directions in Engines and Fuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    More Documents & Publications Vehicle Technologies Office Merit Review 2015: SuperTruck Program: Engine Project Review SuperTruck Program: Engine Project Review View from the ...

  4. Investigation of Bio-Diesel Fueled Engines under Low-Temperature Combustion Strategies

    SciTech Connect (OSTI)

    Chia-fon F. Lee; Alan C. Hansen

    2010-09-30

    In accordance with meeting DOE technical targets this research was aimed at developing and optimizing new fuel injection technologies and strategies for the combustion of clean burning renewable fuels in diesel engines. In addition a simultaneous minimum 20% improvement in fuel economy was targeted with the aid of this novel advanced combustion system. Biodiesel and other renewable fuels have unique properties that can be leveraged to reduce emissions and increase engine efficiency. This research is an investigation into the combustion characteristics of biodiesel and its impacts on the performance of a Low Temperature Combustion (LTC) engine, which is a novel engine configuration that incorporates technologies and strategies for simultaneously reducing NOx and particulate emissions while increasing engine efficiency. Generating fundamental knowledge about the properties of biodiesel and blends with petroleum-derived diesel and their impact on in-cylinder fuel atomization and combustion processes was an important initial step to being able to optimize fuel injection strategies as well as introduce new technologies. With the benefit of this knowledge experiments were performed on both optical and metal LTC engines in which combustion and emissions could be observed and measured under realistic conditions. With the aid these experiments and detailed combustion models strategies were identified and applied in order to improve fuel economy and simultaneously reduce emissions.

  5. Emission Performance of Modern Diesel Engines Fueled with Biodiesel

    Office of Energy Efficiency and Renewable Energy (EERE)

    This study presents full quantification of biodiesel's impact on emissions and fuel economy with the inclusion of DPF regeneration events.

  6. Design and development of the Waukesha Custom Engine Control Air/Fuel Module

    SciTech Connect (OSTI)

    Moss, D.W.

    1996-12-31

    The Waukesha Custom Engine Control Air/Fuel Module (AFM) is designed to control the air-fuel ratio for all Waukesha carbureted, gaseous fueled, industrial engine. The AFM is programmed with a personal computer to run in one of four control modes: catalyst, best power, best economy, or lean-burn. One system can control naturally aspirated, turbocharged, in-line or vee engines. The basic system consists of an oxygen sensing system, intake manifold pressure transducer, electronic control module, actuator and exhaust thermocouple. The system permits correct operation of Waukesha engines in spite of changes in fuel pressure or temperature, engine load or speed, and fuel composition. The system utilizes closed loop control and is centered about oxygen sensing technology. An innovative approach to applying oxygen sensors to industrial engines provides very good performance, greatly prolongs sensor life, and maintains sensor accuracy. Design considerations and operating results are given for application of the system to stationary, industrial engines operating on fuel gases of greatly varying composition.

  7. Fourth annual report to Congress on the Automotive Technology Development Program

    SciTech Connect (OSTI)

    Not Available

    1983-11-01

    Program implementation and management are described. The status of conventional power-train technology is described with respect to uniform charge reciprocating Otto engine, stratified charge reciprocating Otto engine, rotary Otto engine, diesel engine, and transmissions. The three tasks of the Automotive Technology Development Program are discussed as follows; automotive gas turbine project, automotive Stirling engine development project, and the heavy duty transport technology project.

  8. Development of OTM Syngas Process and Testing of Syngas Derived Ultra-clean Fuels in Diesel Engines and Fuel Cells

    SciTech Connect (OSTI)

    E.T. Robinson; John Sirman; Prasad Apte; Xingun Gui; Tytus R. Bulicz; Dan Corgard; John Hemmings

    2005-05-01

    This final report summarizes work accomplished in the Program from January 1, 2001 through December 31, 2004. Most of the key technical objectives for this program were achieved. A breakthrough material system has lead to the development of an OTM (oxygen transport membrane) compact planar reactor design capable of producing either syngas or hydrogen. The planar reactor shows significant advantages in thermal efficiency and a step change reduction in costs compared to either autothermal reforming or steam methane reforming with CO{sub 2} recovery. Syngas derived ultra-clean transportation fuels were tested in the Nuvera fuel cell modular pressurized reactor and in International Truck and Engine single cylinder test engines. The studies compared emission and engine performance of conventional base fuels to various formulations of ultra-clean gasoline or diesel fuels. A proprietary BP oxygenate showed significant advantage in both applications for reducing emissions with minimal impact on performance. In addition, a study to evaluate new fuel formulations for an HCCI engine was completed.

  9. Thermoelectrics Partnership: Automotive Thermoelectric Modules...

    Energy.gov (indexed) [DOE]

    Novel Nanostructured Interface Solution for Automotive Thermoelectric Modules Application Thermoelectrics Partnership: Automotive Thermoelectric Modules with Scalable Thermo- and ...

  10. Thermoelectrics Partnership: Automotive Thermoelectric Modules...

    Energy.gov (indexed) [DOE]

    Partnership: Automotive Thermoelectric Modules with Scalable Thermo- and Electro-Mechanical Interfaces Novel Nanostructured Interface Solution for Automotive Thermoelectric ...

  11. Plasmatron Fuel Reformer Development and Internal Combustion Engine Vehicle Applications

    Energy.gov [DOE]

    2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Massachusetts Institute of Technology

  12. Effect of GTL Diesel Fuels on Emissions and Engine Performance

    Office of Energy Efficiency and Renewable Energy (EERE)

    2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: DaimlerChrysler Research and Technology

  13. Table I: Technical Targets for Catalyst Coated Membranes (CCMs): Automotive

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    | Department of Energy I: Technical Targets for Catalyst Coated Membranes (CCMs): Automotive Table I: Technical Targets for Catalyst Coated Membranes (CCMs): Automotive Technical targets for fuel cell CCMs in automotive applications defined by the High Temperature Working Group (February 2003). technical_targets_ccms_auto.pdf (117.61 KB) More Documents & Publications Table III: Technical Targets for Catalyst Coated Membranes (CCMs): Stationary R&D Plan for the High Temperature

  14. Vehicle Technologies Office Merit Review 2015: 88 Kilowatt Automotive

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Inverter with New 900 Volt Silicon Carbide MOSFET Technology | Department of Energy 88 Kilowatt Automotive Inverter with New 900 Volt Silicon Carbide MOSFET Technology Vehicle Technologies Office Merit Review 2015: 88 Kilowatt Automotive Inverter with New 900 Volt Silicon Carbide MOSFET Technology Presentation given by Cree at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about 88 kilowatt automotive inverter with new

  15. Vertically Integrated Mass Production of Automotive Class Lithium Ion

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Batteries | Department of Energy Vertically Integrated Mass Production of Automotive Class Lithium Ion Batteries Vertically Integrated Mass Production of Automotive Class Lithium Ion Batteries 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt018_es_alvarez_2012_p.pdf (244.54 KB) More Documents & Publications Vertically Integrated Mass Production of Automotive Class Lithium Ion Batteries Vertically Integrated

  16. Emissions from Buses with DDC 6V92 Engines Using Synthetic Diesel Fuel

    SciTech Connect (OSTI)

    Paul Norton; Keith Vertin; Nigel N. Clark; Donald W. Lyons; Mridul Gautam; Stephen Goguen; James Eberhardt

    1999-05-03

    Synthetic diesel fuel can be made from a variety of feedstocks, including coal, natural gas and biomass. Synthetic diesel fuels can have very low sulfur and aromatic content, and excellent autoignition characteristics. Moreover, synthetic diesel fuels may also economically competitive with California diesel fuel if .roduced in large volumes. Previous engine laboratory and field tests using a heavy-duty chassis dynamometer indicate that synthetic diesel fuel made using the Fischer-Tropsch (F-T) catalytic conversion process is a promising alternative fuel, because it can be used in unmodified diesel engines, and can reduce exhaust emissions substantially. The objective of this study was a preliminary assessment of the emissions from older model transit operated on Mossgas synthetic diesel fuel. The study compared emissions from transit buses operating on Federal no. 2 Diesel fuel, Mossgas synthetic diesel (MGSD), and a 50/50 blend of the two fuels. The buses were equipped with unmodified Detroit Diesel 6V92 2-stroke diesel engines. Six 40-foot buses were tested. Three of the buses had recently rebuilt engines and were equipped with an oxidation catalytic converter. Vehicle emissions measurements were performed using West Virginia University's unique transportable chassis dynamometer. The emissions were measured over the Central Business District (CBD) driving cycle. The buses performed well on both neat and blended MGSD fuel. Three buses without catalytic converters were tested. Compared to their emissions when operating on Federal no. 2 diesel fuel, these buses emitted an average of 5% lower oxides of nitrogen (NOx) and 20% lower particulate matter (PM) when operating on neat MGSD fuel. Catalyst equipped buses emitted an average of 8% lower NOx and 31% lower PM when operating on MGSD than when operating on Federal no. 2 diesel fuel.

  17. Novel injector techniques for coal-fueled diesel engines. Final report

    SciTech Connect (OSTI)

    Badgley, P.R.

    1992-09-01

    This report, entitled ``Novel Injector Techniques for Coal-Fueled Diesel Engines,`` describes the progress and findings of a research program aimed at development of a dry coal powder fuel injector in conjunction with the Thermal Ignition Combustion System (TICS) concept to achieve autoignition of dry powdered coal in a single-cylinder high speed diesel engine. The basic program consisted of concept selection, analysis and design, bench testing and single cylinder engine testing. The coal injector concept which was selected was a one moving part dry-coal-powder injector utilizing air blast injection. Adiabatics has had previous experience running high speed diesel engines on both direct injected directed coal-water-slurry (CWS) fuel and also with dry coal powder aspirated into the intake air. The Thermal Ignition Combustion System successfully ignited these fuels at all speeds and loads without requiring auxiliary ignition energy such as pilot diesel fuel, heated intake air or glow or spark plugs. Based upon this prior experience, it was shown that the highest efficiency and fastest combustion was with the dry coal, but that the use of aspiration of coal resulted in excessive coal migration into the engine lubrication system. Based upon a desire of DOE to utilize a more modern test engine, the previous naturally-aspirated Caterpillar model 1Y73 single cylinder engine was replaced with a turbocharged (by use of shop air compressor and back pressure control valve) single cylinder version of the Cummins model 855 engine.

  18. Thermoelectric Generator (TEG) Fuel Displacement Potential using Engine-in-the-Loop and Simulation

    Energy.gov [DOE]

    Assessment of fuel savings with thermoelectric generators (TEGs) using detailed model of GM-developed TEG as part of the engine connected to a dynamometer that emulates the rest of the vehicle

  19. Impacts of Biodiesel Fuel Blends Oil Dilution on Light-Duty Diesel Engine Operation

    SciTech Connect (OSTI)

    Thornton, M. J.; Alleman, T. L.; Luecke, J.; McCormick, R. L.

    2009-08-01

    Assesses oil dilution impacts on a diesel engine operating with a diesel particle filter, NOx storage, a selective catalytic reduction emission control system, and a soy-based 20% biodiesel fuel blend.

  20. Co-Optimization of Fuels and Engines FOA—National Lab Project Overview Webinar

    Energy.gov [DOE]

    Presentations from the Co-Optimization of Fuels and Engines FOA—National Lab Project Overview Webinar, hosted by the U.S. Department of Energy's Bioenergy Technologies Office on September 14, 2016.

  1. Spent Nuclear Fuel project systems engineering management plan

    SciTech Connect (OSTI)

    Womack, J.C.

    1995-10-03

    The purpose of the WHC Systems Engineering Management Plan (SEMP) is to describe the systems engineering approach and methods that will be integrated with established WHC engineering practices to enhance the WHC engineering management of the SNF Project. The scope of the SEMP encompasses the efforts needed to manage the WHC implementation of systems engineering on the SNF Project. This implementation applies to, and is tailored to the needs of the SNF project and all its subprojects, including all current and future subprojects

  2. Computational Study of Cycle--to--Cycle Variation in Dual--Fuel Engines

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    | Argonne Leadership Computing Facility Study of Cycle--to--Cycle Variation in Dual--Fuel Engines PI Name: Ravichandra Jupudi PI Email: ravichandra.js@ge.com Institution: General Electric Global Research Allocation Program: ALCC Allocation Hours at ALCF: 25 Million Year: 2016 Research Domain: Engineering Premixed staged combustion (PSC), where fuel is burned in stages, is a new technology that has the potential to improve efficiency while reducing pollutant formation in combustion turbine

  3. A Stirling engine for use with lower quality fuels (Journal Article) | DOE

    Office of Scientific and Technical Information (OSTI)

    PAGES A Stirling engine for use with lower quality fuels Title: A Stirling engine for use with lower quality fuels Authors: Paul, Christopher J. ; Engeda, Abraham Publication Date: 2015-05-01 OSTI Identifier: 1247853 Grant/Contract Number: ER-2215 Type: Publisher's Accepted Manuscript Journal Name: Energy (Oxford) Additional Journal Information: Journal Name: Energy (Oxford); Journal Volume: 84; Journal Issue: C; Related Information: CHORUS Timestamp: 2016-09-28 21:24:20; Journal ID: ISSN

  4. The Use of Exhaust Gas Recirculation to Optimize Fuel Economy and Minimize Emission in Engines Operating on E85 Fuel

    SciTech Connect (OSTI)

    Wu, Ko-Jen

    2011-12-31

    This report summarizes activities conducted for the project “The Use of Exhaust Gas Recirculation to Optimized Fuel Economy and Minimize Emissions in Engines Operating on E85 Fuel” under COOPERATIVE AGREEMENT NUMBER DE-FC26-07NT43271, which are as outlined in the STATEMENT OF PROJECT OBJECTIVES (SOPO) dated March 2007 and in the supplemental SOPO dated October 2010. The project objective was to develop and demonstrate an internal combustion engine that is optimized for E85 (85% ethanol and 15% gasoline) fuel operation to achieve substantially improved fuel economy while operating with E85 fuel and that is also production viable in the near- to medium-term. The key engine technology selected for research and development was turbocharging, which is known to improve fuel economy thru downsizing and is in particular capable of exploiting ethanol fuel’s characteristics of high octane number and high latent heat of vaporization. The engine further integrated synergistic efficiency improving technologies of cooled exhaust gas recirculation (EGR), direct fuel injection and dual continuously variable intake and exhaust cam phasers. On the vehicle level, fuel economy was furthered thru powertrain system optimization by mating a state-of-the-art six-speed automatic transmission to the engine. In order to achieve the project’s objective of near- to medium-term production viability, it was essential to develop the engine to be flex-fuel capable of operating with fuels ranging from E0 (0% ethanol and 100% gasoline) to E85 and to use three-way type of catalyst technology for exhaust aftertreatment. Within these scopes, various technologies were developed through systems approach to focus on ways to help accelerate catalyst light-off. Significant amount of development took place during the course of the project within General Motors, LLC. Many prototype flex-fuel engines were designed, built and developed with various hardware configurations selected to achieve the project

  5. Engine with hydraulic fuel injection and ABS circuit using a single high pressure pump

    DOE Patents [OSTI]

    Bartley, Bradley E.; Blass, James R.; Gibson, Dennis H.

    2001-01-01

    An engine system comprises a hydraulically actuated fuel injection system and an ABS circuit connected via a fluid flow passage that provides hydraulic fluid to both the fuel injection system and to the ABS circuit. The hydraulically actuated system includes a high pressure pump. The fluid control passage is in fluid communication with an outlet from the high pressure pump.

  6. AZ Automotive: Presentation

    Energy.gov [DOE]

    The role of midsize automotive module suppliers in meeting the goals of the Energy Independence and Security act of 2007

  7. Wear mechanism and wear prevention in coal-fueled diesel engines. Task 7, Extended wear testing

    SciTech Connect (OSTI)

    Wakenell, J.F.; Fritz, S.G.; Schwalb, J.A.

    1991-07-01

    Over the past several years, interest has arisen in the development of coal-fired diesel engines for the purpose of efficiently utilizing the extensive coal reserves in the United States, and therefore reducing dependence on foreign oil. One process, which is being considered for use in producing clean coal fuel products involves mild gasification. This process produces by-products which can be further refined and, when blended with neat diesel fuel, used as an engine fuel. The purpose of this task was to test a blend of this coal liquid and diesel fuel (referred to as coal-lite) in an engine, and determine if any detrimental results were observed. This was done by performing a back-to-back performance and emission test of neat diesel fuel and the coal-lite fuel, followed by a 500-hour test of the coal-lite fuel, and completed by a back-to-back performance and emission test of the coal-lite fuel and neat diesel fuel.

  8. Wear mechanism and wear prevention in coal-fueled diesel engines

    SciTech Connect (OSTI)

    Wakenell, J.F.; Fritz, S.G.; Schwalb, J.A.

    1991-07-01

    Over the past several years, interest has arisen in the development of coal-fired diesel engines for the purpose of efficiently utilizing the extensive coal reserves in the United States, and therefore reducing dependence on foreign oil. One process, which is being considered for use in producing clean coal fuel products involves mild gasification. This process produces by-products which can be further refined and, when blended with neat diesel fuel, used as an engine fuel. The purpose of this task was to test a blend of this coal liquid and diesel fuel (referred to as coal-lite) in an engine, and determine if any detrimental results were observed. This was done by performing a back-to-back performance and emission test of neat diesel fuel and the coal-lite fuel, followed by a 500-hour test of the coal-lite fuel, and completed by a back-to-back performance and emission test of the coal-lite fuel and neat diesel fuel.

  9. Road to Fuel Savings: GM Technology Ramps Up Engine Efficiency

    Energy.gov [DOE]

    Learn how a new compact technology in the 2014 Chevy Impala is having a big impact on the vehicle's fuel consumption.

  10. Sandia Energy - Optima: Co-Optimization of Fuels and Engines

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    stakeholder and consumer value. The initiative will accelerate the widespread deployment of significantly improved fuels and vehicles (passenger to light truck to heavy-duty...

  11. HD Truck and Engine Fuel Efficiency Opportunities and Challenges...

    Energy.gov (indexed) [DOE]

    More Documents & Publications Supertruck - Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer Comments of Tendril Networks Inc SuperTruck Development ...

  12. Future Engine Fluids Technologies: Durable, Fuel-Efficient, and...

    Energy Savers

    Market Introducution in Europe Characteristics and Effects of Lubricant Additive Chemistry and Exhaust Conditions on Diesel Particulate Filter Service Life and Vehicle Fuel ...

  13. Automotive vehicle sensors

    SciTech Connect (OSTI)

    Sheen, S.H.; Raptis, A.C.; Moscynski, M.J.

    1995-09-01

    This report is an introduction to the field of automotive vehicle sensors. It contains a prototype data base for companies working in automotive vehicle sensors, as well as a prototype data base for automotive vehicle sensors. A market analysis is also included.

  14. Status and Prospects of the Global Automotive Fuel Cell Industry and Plans for Deployment of Fuel Cell Vehicles and Hydrogen Refueling Infrastructure

    SciTech Connect (OSTI)

    Greene, David L; Duleep, Gopal

    2013-06-01

    Automobile manufacturers leading the development of mass-market fuel cell vehicles (FCVs) were interviewed in Japan, Korea, Germany and the United States. There is general agreement that the performance of FCVs with respect to durability, cold start, packaging, acceleration, refueling time and range has progressed to the point where vehicles that could be brought to market in 2015 will satisfy customer expectations. However, cost and the lack of refueling infrastructure remain significant barriers. Costs have been dramatically reduced over the past decade, yet are still about twice what appears to be needed for sustainable market success. While all four countries have plans for the early deployment of hydrogen refueling infrastructure, the roles of government, industry and the public in creating a viable hydrogen refueling infrastructure remain unresolved. The existence of an adequate refueling infrastructure and supporting government policies are likely to be the critical factors that determine when and where hydrogen FCVs are brought to market.

  15. Thermoelectric Technology for Automotive Waste Heat Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Technology for Automotive Waste Heat Recovery Thermoelectric Technology for Automotive ... More Documents & Publications Develop Thermoelectric Technology for Automotive Waste Heat ...

  16. Accurate Predictions of Fuel Effects on Combustion and Emissions in Engines Using CFD Simulations With Detailed Fuel Chemistry

    Energy.gov [DOE]

    Accurate fuel models with hundreds of species in advanced CFD with reasonable simulation times. Reaction workbench used for surrogate blend formulation and model reduction. FORTE CFD used for HCCI and LTC diesel engine and validated for PRF-ethanol and diesel

  17. Alternative fuel capabilities of the Mod II Stirling vehicle

    SciTech Connect (OSTI)

    Grandin, A.W.; Ernst, W.D.

    1988-01-01

    The Stirling engine's characteristics make it a prime candidate for both multifuel and alternative fuel uses. In this paper, the relevant engine characteristics of the Mod II Stirling engine are examined, including the external heat system and basic operation. Adaptation of the Stirling to multifuel operation is addressed, and its experience with alternative fuels in automotive applications is summarized. The results of the U.S. Air Force review of the Stirling's multifuel capability are described, and the Stirling's advantages with liquid, gaseous, and solid fuels are discussed.

  18. Permanent Magnet Development for Automotive Traction Motors | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy 2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting ape015_anderson_2012_o.pdf (4.77 MB) More Documents & Publications Permanent Magnet Development for Automotive Traction Motors Permanent Magnet Development for Automotive Traction Motors Vehicle Technologies Office Merit Review 2014: Permanent Magnet Development for

  19. Integrated Advanced Reciprocating Internal Combustion Engine System for Increased Utilization of Gaseous Opportunity Fuels

    SciTech Connect (OSTI)

    Pratapas, John; Zelepouga, Serguei; Gnatenko, Vitaliy; Saveliev, Alexei; Jangale, Vilas; Li, Hailin; Getz, Timothy; Mather, Daniel

    2013-08-31

    The project is addressing barriers to or opportunities for increasing distributed generation (DG)/combined heat and power (CHP) use in industrial applications using renewable/opportunity fuels. This project brings together novel gas quality sensor (GQS) technology with engine management for opportunity fuels such as landfill gas, digester gas and coal bed methane. By providing the capability for near real-time monitoring of the composition of these opportunity fuels, the GQS output can be used to improve the performance, increase efficiency, raise system reliability, and provide improved project economics and reduced emissions for engines used in distributed generation and combined heat and power.

  20. Fuel-air mixing and combustion in a two-dimensional Wankel engine

    SciTech Connect (OSTI)

    Shih, T.I.P.; Schock, H.J.; Ramos, J.I.

    1987-01-01

    The effects of mixture stratification at the intake port and gaseous fuel injection on the flow field and fuel-air mixing in a two-dimensional rotary engine model have been investigated by means of a two-equation model of turbulence, an algebraic grid generation method and an approximate factorization time-linearized numerical technique. It is shown that the fuel distribution in the combustion chamber is a function of the air-fuel mixture fluctuations at the intake port. The fuel is advected by the flow field induced by the rotor and is concentrated near the leading apex during the intake stroke. During compression, the fuel concentration is highest near the trailing apex and lowest near the rotor. The penetration of gaseous fuel injected into the combustion chamber during the compression stroke increases with the injection velocity.

  1. Methylal and Methylal-Diesel Blended Fuels from Use In Compression-Ignition Engines

    SciTech Connect (OSTI)

    Keith D. Vertin; James M. Ohi; David W. Naegeli; Kenneth H. Childress; Gary P. Hagen; Chris I. McCarthy; Adelbert S. Cheng; Robert W. Dibble

    1999-05-05

    Gas-to-liquids catalytic conversion technologies show promise for liberating stranded natural gas reserves and for achieving energy diversity worldwide. Some gas-to-liquids products are used as transportation fuels and as blendstocks for upgrading crude derived fuels. Methylal (CH{sub 3}-O-CH{sub 2}-O-CH{sub 3}) also known as dimethoxymethane or DMM, is a gas-to-liquid chemical that has been evaluated for use as a diesel fuel component. Methylal contains 42% oxygen by weight and is soluble in diesel fuel. The physical and chemical properties of neat methylal and for blends of methylal in conventional diesel fuel are presented. Methylal was found to be more volatile than diesel fuel, and special precautions for distribution and fuel tank storage are discussed. Steady state engine tests were also performed using an unmodified Cummins 85.9 turbocharged diesel engine to examine the effect of methylal blend concentration on performance and emissions. Substantial reductions of particulate matter emissions h ave been demonstrated 3r IO to 30% blends of methylal in diesel fuel. This research indicates that methylal may be an effective blendstock for diesel fuel provided design changes are made to vehicle fuel handling systems.

  2. Simulation studies of diesel engine performance with oxygen enriched air and water emulsified fuels

    SciTech Connect (OSTI)

    Assanis, D.N.; Baker, D. ); Sekar, R.R.; Siambekos, C.T.; Cole, R.L.; Marciniak, T.J. )

    1990-01-01

    A computer simulation code of a turbocharged, turbocompound diesel engine was modified to study the effects of using oxygen-enriched combustion air and water-emulsified diesel fuels. Oxygen levels of 21 percent to 40 percent by volume in the combustion air were studied. Water content in the fuel was varied from 0 percent to 50 percent mass. Simulation studies and a review and analysis of previous work in this area led to the following conclusions about expected engine performance and emissions: the power density of the engine is significantly increased by oxygen enrichment. Ignition delay and particulate emissions are reduced. Combustion temperatures and No{sub x} emissions are increased with oxygen enrichment but could be brought back to the base levels by introducing water in the fuel. The peak cylinder pressure which increases with the power output level might result in mechanical problems with engine components. Oxygen enrichment also provides an opportunity to use cheaper fuel such as No. 6 diesel fuel. Overall, the adverse effects of oxygen enrichment could be countered by the addition of water and it appears that an optimum combination of water content, oxygen level, and base diesel fuel quality may exist. This could yield improved performance and emissions characteristics compared to a state-of-the-art diesel engine. 9 refs., 8 figs.

  3. KINETIC MODELING OF FUEL EFFECTS OVER A WIDE RANGE OF CHEMISTRY...

    Office of Scientific and Technical Information (OSTI)

    Methodologies needed for studying fuel effects include development of fuel kinetic ... Resource Relation: Conference: International Conference on Sustainable Automotive ...

  4. Fuel injection characteristics and combustion behavior of a direct-injection stratified-charge engine

    SciTech Connect (OSTI)

    Balles, E.N.; Ekchian, J.A.; Heywood, J.B.

    1984-01-01

    High levels of hydrocarbon emissions during light load operation keep the direct injection stratified charge engine from commercial application. Previous analytical work has identified several possible hydrocarbon emissions mechanisms which can result from poor in-cylinder fuel distribution. Poor fuel distribution can be caused by erratic fuel injection. Experiments conducted on a single cylinder disc engine show a dramatic increase in the cycle to cycle variation in injection characteristics as engine load decreases. This is accompanied by an increase in cycle to cycle variation in combustion behavior suggesting that degradation in combustion results from the degradation in the quality of the injection event. Examination of combustion and injection characteristics on a cycle by cycle basis shows that, at light load, IMEP and heat release do not correlate with the amount of fuel injected into the cylinder. There are strong indications that individual cycles undergo partial or complete misfire.

  5. Study of fuel consumption and cooling system in low heat rejection turbocharged diesel engines

    SciTech Connect (OSTI)

    Taymaz, I.; Gur, M.; Cally, I.; Mimaroglu, A.

    1998-07-01

    In a conventional internal combustion engine, approximately one-third of total fuel input energy is converted to useful work. Since the working gas in a practical engine cycle is not exhausted at ambient temperature, a major part of the energy is lost with the exhaust gases. In addition another major part of energy input is rejected in the form of heat via the cooling system. If the energy normally rejected to the coolant could be recovered instead on the crankshaft as useful work, then a substantial improvement in fuel economy would result. At the same time, the cooling water, antifreeze, thermostat, radiator, water pump, cooling fan, and associated hoses and clamps could be eliminated. A new trend in the field of internal combustion engines is to insulate the heat transfer surfaces such as the combustion chamber, cylinder wall, cylinder head, piston and valves by ceramic insulating materials for the improvement of engine performance and elimination of cooling system. In this study, the effect of insulated heat transfer surfaces on direct injected and turbocharged diesel engine fuel consumption and cooling system were investigated. The research engine was a four-stroke, direct injected, six cylinder, turbocharged and intercooled diesel engine. This engine was tested at different speeds and loads conditions without coating. Then, combustion chamber surfaces, cylinder head, valves and piston crown faces was coated with ceramic materials. Ceramic layers were made of CaZrO{sub 3} and MgZrO{sub 3} and plasma coated onto base of the NiCrAl bond coat. The ceramic coated research engine was tested at the same operation conditions as the standard (without coating) engine. The results indicate a reduction in fuel consumption and heat losses to engine cooling system of the ceramic coated engine.

  6. Performance and emissions of non-petroleum fuels in a direct-injection stratified charge Sl engine

    SciTech Connect (OSTI)

    Freeman, L.E.; Chui, G.K.; Roby, R.J.

    1982-10-01

    Seven fuels derived from coal and shale resources were evaluated using a direct-injection stratified charge engine. The fuels were refined to different degrees which ranged from those typical of gasoline blending components to those similar to current gasoline. Results showed that fuels refined to have properties similar to gasoline performed like gasoline. The less refined fuels were limited in performance. The total carbon monoxide and the hydrocarbon emissions varied with the volatility of the fuels. Most fuels with a higher overall distillation curve generally gave higher hydrocarbon and carbon monoxide emissions. The NOx emissions increased with the percent aromatics in the fuels. The hydrocarbon emissions were found to increase with fuel viscosity. Within the range of engine operation, nearly all the fuels evaluated gave satisfactory performance. With some modifications, even the less refined fuels can be potentially suitable for use in this engine.

  7. Co-Optimization of Fuels and Engines (Co-Optima) -- Thrust II Engine Projects, Sprays, and Emissions Control Research

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    FT039 - Part 1 Co-Optimization of Fuels and Engines Advanced Engine Development Team Paul Miles, 4 Magnus Sjöberg, 4 John Dec, 4 Steve Ciatti, 1 Chris Kolodziej, 1 Scott Curran, 3 Mark Musculus, 4 Charles Mueller 4 1. Argonne National Laboratory 2. National Renewable Energy Laboratory 3. Oak Ridge National Laboratory 4. Sandia National Laboratories Co-Optima DOE VTO Management Team: Kevin Stork, Gurpreet Singh, & Leo Breton Thrust II engine projects June 9 th , 2016 Overview: Thrust II

  8. Breaking down the barriers to commercialization of fuel cells in transportation through Government - industry R&D programs

    SciTech Connect (OSTI)

    Chalk, S.G.; Venkateswaran, S.R.

    1996-12-31

    PEM fuel cell technology is rapidly emerging as a viable propulsion alternative to the internal combustion engine. Fuel cells offer the advantages of low emissions, high efficiency, fuel flexibility, quiet and continuous operation, and modularity. Over the last decade, dramatic advances have been achieved in the performance and cost of PEM fuel cell technologies for automotive applications. However, significant technical barriers remain to making fuel cell propulsion systems viable alternatives to the internal combustion engine. This paper focuses on the progress achieved and remaining technical barriers while highlighting Government-industry R&D efforts that are accelerating fuel cell technology toward commercialization.

  9. Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels

    SciTech Connect (OSTI)

    Kuk Lee, Sung; Chou, Howard; Ham, Timothy S.; Soon Lee, Taek; Keasling, Jay D.

    2009-12-02

    The ability to generate microorganisms that can produce biofuels similar to petroleum-based transportation fuels would allow the use of existing engines and infrastructure and would save an enormous amount of capital required for replacing the current infrastructure to accommodate biofuels that have properties significantly different from petroleum-based fuels. Several groups have demonstrated the feasibility of manipulating microbes to produce molecules similar to petroleum-derived products, albeit at relatively low productivity (e.g. maximum butanol production is around 20 g/L). For cost-effective production of biofuels, the fuel-producing hosts and pathways must be engineered and optimized. Advances in metabolic engineering and synthetic biology will provide new tools for metabolic engineers to better understand how to rewire the cell in order to create the desired phenotypes for the production of economically viable biofuels.

  10. Recent Accomplishments in the Irradiation Testing of Engineering-Scale Monolithic Fuel Specimens

    SciTech Connect (OSTI)

    N.E. Woolstenhulme; D.M. Wachs; M.K. Meyer; H.W. Glunz; R.B. Nielson

    2012-10-01

    The US fuel development team is focused on qualification and demonstration of the uranium-molybdenum monolithic fuel including irradiation testing of engineering-scale specimens. The team has recently accomplished the successful irradiation of the first monolithic multi-plate fuel element assembly within the AFIP-7 campaign. The AFIP-6 MKII campaign, while somewhat truncated by hardware challenges, exhibited successful irradiation of a large-scale monolithic specimen under extreme irradiation conditions. The channel gap and ultrasonic data are presented for AFIP-7 and AFIP-6 MKII, respectively. Finally, design concepts are summarized for future irradiations such as the base fuel demonstration and design demonstration experiment campaigns.

  11. Fuels of the Future: Accelerating the Co-Optimization of Fuels and Engines

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Store, 58% Store Ownership 127,588 C-stores sell fuel >74,000 are one store companies Source: Nielsen TDLinx; NACS-CSX Fuel, 39.50% Store, 60.50% 2014 Profit Fuels, 69.20% Store, 30.80% 2014 Sales

  12. Fuel nozzle assembly for use as structural support for a duct structure in a combustor of a gas turbine engine

    SciTech Connect (OSTI)

    Wiebe, David J; Fox, Timothy A

    2015-03-31

    A fuel nozzle assembly for use in a combustor apparatus of a gas turbine engine. An outer housing of the fuel nozzle assembly includes an inner volume and provides a direct structural connection between a duct structure and a fuel manifold. The duct structure defines a flow passage for combustion gases flowing within the combustor apparatus. The fuel manifold defines a fuel supply channel therein in fluid communication with a source of fuel. A fuel injector of the fuel nozzle assembly is provided in the inner volume of the outer housing and defines a fuel passage therein. The fuel passage is in fluid communication with the fuel supply channel of the fuel manifold for distributing the fuel from the fuel supply channel into the flow passage of the duct structure.

  13. Operation of a Four-Cylinder 1.9L Propane Fueled HCCI Engine

    SciTech Connect (OSTI)

    Flowers, D; Aceves, S M; Martinez-Frias, J; Smith, J R; Au, M; Girard, J; Dibble, R

    2001-03-15

    A four-cylinder 1.9 Volkswagen TDI Engine has been converted to run in Homogeneous Charge Compression Ignition (HCCI) mode. The stock configuration is a turbocharged direct injection Diesel engine. The combustion chamber has been modified by discarding the in-cylinder Diesel fuel injectors and replacing them with blank inserts (which contain pressure transducers). The stock pistons contain a reentrant bowl and have been retained for the tests reported here. The intake and exhaust manifolds have also been retained, but the turbocharger has been removed. A heater has been installed upstream of the intake manifold and fuel is added just downstream of this heater. The performance of this engine in naturally aspirated HCCI operation, subject to variable intake temperature and fuel flow rate, has been studied. The engine has been run with propane fuel at a constant speed of 1800 rpm. This work is intended to characterize the HCCI operation of the engine in this configuration that has been minimally modified from the base Diesel engine. The performance (BMEP, IMEP, efficiency, etc) and emissions (THC, CO, NOx) of the engine are presented, as are combustion process results based on heat release analysis of the pressure traces from each cylinder.

  14. Wear mechanism and wear prevention in coal-fueled diesel engines

    SciTech Connect (OSTI)

    Schwalb, J.A.; Ryan, T.W.

    1991-10-01

    Coal fueled diesel engines present unique wear problems in the piston ring/cylinder liner area because of their tendency to contaminate the lube-oil with high concentrations of highly abrasive particles. This program involved a series of bench-scale wear tests and engine tests designed to investigate various aspects of the ring/liner wear problem and to make specific recommendations to engine manufacturers as to how to alleviate these problems. The program was organized into tasks, designed to accomplish the following objectives: (1) define the predominant wear mechanisms causing accelerated wear in the ring/liner area; (2) investigate the effectiveness of traditional approaches to wear prevention to prevent wear in coal-fueled engines; (3) further refine information on the most promising approaches to wear prevention; (4) present detailed information and recommendations to engine manufacturers on the most promising approach to wear prevention; (5) present a final report covering the entire program; (6)complete engine tests with a coal-derived liquid fuel, and investigate the effects of the fuel on engine wear and emissions.

  15. Conventional engine technology. Volume I. Status of OTTO cycle engine technology

    SciTech Connect (OSTI)

    Dowdy, M.W.

    1981-12-15

    Federally-mandated emissions standards have led to mator changes in automotive technology during the last decade. Efforts to satisfy the new standards have been directed more toward the use of add-on devices, such as catalytic converters, turbochargers, and improved fuel metering, than toward complete engine redesign. The resulting changes are described in this volume, and the improvements brought about by them in fuel economy and emissions levels are fully documented. Four specific categories of gasoline-powered internal combustion engines, i.e., uniform charge engines with and without fuel injection, stratified charge engines, and rotary engines, are covered, including subsystem and total engine development. Also included are the results of fuel economy and exhaust emissions tests performed on representative vehicles from each category.

  16. New Feedstocks and Replacement Fuel Diesel Engine Challenges

    Energy.gov [DOE]

    Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs.

  17. A Model Fuels Consortium to Promote Engine Modeling

    Energy.gov [DOE]

    Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs.

  18. Diesel fuel component contribution to engine emissions and performance. Final report

    SciTech Connect (OSTI)

    Erwin, J.; Ryan, T.W. III; Moulton, D.S.

    1994-11-01

    Contemporary diesel fuel is a blend of several refinery streams chosen to meet specifications. The need to increase yield of transportation fuel from crude oil has resulted in converting increased proportions of residual oil to lighter products. This conversion is accomplished by thermal, catalytic, and hydrocracking of high molecular weight materials rich in aromatic compounds. The current efforts to reformulate California diesel fuel for reduced emissions from existing engines is an example of another driving force affecting refining practice: regulations designed to reduce exhaust emissions. Although derived from petroleum crude oil, reformulated diesel fuel is an alternative to current specification-grade diesel fuel, and this alternative presents opportunities and questions to be resolved by fuel and engine research. Various concerned parties have argued that regulations for fuel reformulation have not been based on an adequate data base. Despite numerous studies, much ambiguity remains about the relationship of exhaust parameters to fuel composition, particularly for diesel fuel. In an effort to gather pertinent data, the automobile industry and the oil refiners have joined forces in the Air Quality Improvement Research Program (AUTO/OIL) to address this question for gasoline. The objective of that work is to define the relationship between gasoline composition and the magnitude and composition of the exhaust emissions. The results of the AUTO/OEL program will also be used, along with other data bases, to define the EPA {open_quotes}complex model{close_quotes} for reformulated gasolines. Valuable insights have been gained for compression ignition engines in the Coordinating Research Council`s VE-1 program, but no program similar to AUTO/OIL has been started for diesel fuel reformulation. A more detailed understanding of the fuel/performance relationship is a readily apparent need.

  19. A comparison of unburned fuel and aldehyde emissions from a methanol-fueled stratified charge and homogeneous charge engine

    SciTech Connect (OSTI)

    Foster, D.E.; Kim, C.; Scull, N.

    1987-03-01

    This paper presents the results of an experimental program in which a Texaco L-163S engine was fueled with methanol and operated in its traditional stratified charge mode and then modified to run as a homogeneous charge spark ignited engine. The primary data taken were the aldehyde and unburned fuel emissions (UBF). Those data were taken using a continuous time-averaging sampling probe at the exhaust tank and at the exhaust port and with a rotary time-resolving sampling valve located at the exhaust port. The data are for two loads, 138.1 kPa (20 psi) and 207.1 kPa (30 psi) BMEP and three speeds, 1000, 1400 and 1800 rpm. The data indicate that both the stratified charge and the homogeneous charge modes of operation formaldehyde was the only aldehyde detected in the exhaust and it primarily originated in the exhaust and it primarily originated in the cylinder. Over the load and speed ranges tested, the unburned fuel emission were higher and the formaldehyde emission lower when comparing the stratified charge to the homogeneous charge operation. Time resolved data at the exhaust port for the two modes of operation are compared. The homogeneous charge operation had a uniform concentration of both unburned fuel and formaldehyde over the exhaust stroke. The stratified charge data shows large changes in the unburned fuel and moderate changes in the aldehyde concentrations during the exhaust stroke.

  20. Characterization of coal-water slurry fuel sprays from diesel engine injectors

    SciTech Connect (OSTI)

    Caton, J.A.; Kihm, K.D.

    1993-06-01

    Experiments were conducted to characterize coal-water slurry fuel sprays from diesel engine injectors. Since the combustion event is a strong function of the fuel spray, full characterization of the spray is a necessity for successful engine design and for modeling of the combustion process. Two experimental facilities were used at TAMU to study the injection of coal slurry fuels. The first experimental facility incorporates General Electric locomotive engine components (injection pump, fuel line, and nozzle) and a specially designed diaphragm to separate the abrasive coal slurry fuel from the moving parts of the pump. The second experimental facility is based on an accumulator injector from General Electric. Instrumentation includes instantaneous needle lift and fuel line pressure. A pressurized visualization chamber was used to provide a spray environment which simulated the engine gas density and permitted the use of spray diagnostic techniques. The study was divided into two phases: (1) overall characterization of the spray, and (2) detailed droplet size and size distribution characterization. In addition to this overall characterization of the spray, the second phase of this study characterized the details of the atomization quality.

  1. Detailed Chemical Kinetic Modeling of Surrogate Fuels for Gasoline and Application to an HCCI Engine

    SciTech Connect (OSTI)

    Naik, C V; Pitz, W J; Sj?berg, M; Dec, J E; Orme, J; Curran, H J; Simmie, J M; Westbrook, C K

    2005-01-07

    Gasoline consists of many different classes of hydrocarbons, such as paraffins, olefins, aromatics, and cycloalkanes. In this study, a surrogate gasoline reaction mechanism is developed, and it has one representative fuel constituent from each of these classes. These selected constituents are iso-octane, n-heptane, 1-pentene, toluene, and methyl-cyclohexane. The mechanism was developed in a step-wise fashion, adding submechanisms to treat each fuel component. Reactions important for low temperature oxidation (<1000K) and cross-reactions among different fuels are incorporated into the mechanism. The mechanism consists of 1214 species and 5401 reactions. A single-zone engine model is used to evaluate how well the mechanism captures autoignition behavior for conditions corresponding to homogeneous charge compression ignition (HCCI) engine operation. Experimental data are available for both how the combustion phasing changes with fueling at a constant intake temperature, and also how the intake temperature has to be changed with pressure in order to maintain combustion phasing for a fixed equivalence ratio. Three different surrogate fuel mixtures are used for the modeling. Predictions are in reasonably good agreement with the engine data. In addition, the heat release rate is calculated and compared to the data from experiments. The model predicts less low-temperature heat release than that measured. It is found that the low temperature heat-release rate depends strongly on engine speed, reactions of RO{sub 2}+HO{sub 2}, fuel composition, and pressure boost.

  2. Closed loop engine control for regulating NOx emissions, using a two-dimensional fuel-air curve

    DOE Patents [OSTI]

    Bourn, Gary D.; Smith, Jack A.; Gingrich, Jess W.

    2007-01-30

    An engine control strategy that ensures that NOx emissions from the engine will be maintained at an acceptable level. The control strategy is based on a two-dimensional fuel-air curve, in which air manifold pressure (AMP) is a function of fuel header pressure and engine speed. The control strategy provides for closed loop NOx adjustment to a base AMP value derived from the fuel-air curve.

  3. Fuel supply and control for turbocharged engines. (Latest citations from the Patent Bibliographic Database with Exemplary Claims). Published Search

    SciTech Connect (OSTI)

    Not Available

    1993-09-01

    The bibliography contains citations of selected patents concerning means for supplying a fuel air charge to turbocharged internal combustion engines. Adjustments and control techniques vary the fuel supply with changes in charge pressure and operating conditions. The citations generally refer to diesel and gasoline engines, but a few reference multi-fuels, such as alcohol and hydrogen additions to the primary fuel. (Contains a minimum of 137 citations and includes a subject term index and title list.)

  4. UC Davis Fuel Cell, Hydrogen, and Hybrid Vehicle (FCH2V) GATE Center of Excellence

    SciTech Connect (OSTI)

    Erickson, Paul

    2012-05-31

    This is the final report of the UC Davis Fuel Cell, Hydrogen, and Hybrid Vehicle (FCH2V) GATE Center of Excellence which spanned from 2005-2012. The U.S. Department of Energy (DOE) established the Graduate Automotive Technology Education (GATE) Program, to provide a new generation of engineers and scientists with knowledge and skills to create advanced automotive technologies. The UC Davis Fuel Cell, Hydrogen, and Hybrid Vehicle (FCH2V) GATE Center of Excellence established in 2005 is focused on research, education, industrial collaboration and outreach within automotive technology. UC Davis has had two independent GATE centers with separate well-defined objectives and research programs from 1998. The Fuel Cell Center, administered by ITS-Davis, has focused on fuel cell technology. The Hybrid-Electric Vehicle Design Center (HEV Center), administered by the Department of Mechanical and Aeronautical Engineering, has focused on the development of plug-in hybrid technology using internal combustion engines. The merger of these two centers in 2005 has broadened the scope of research and lead to higher visibility of the activity. UC Davis's existing GATE centers have become the campus's research focal points on fuel cells and hybrid-electric vehicles, and the home for graduate students who are studying advanced automotive technologies. The centers have been highly successful in attracting, training, and placing top-notch students into fuel cell and hybrid programs in both industry and government.

  5. Automotive Accessibility and Efficiency Meet in the Innovative MV-1 |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Automotive Accessibility and Efficiency Meet in the Innovative MV-1 Automotive Accessibility and Efficiency Meet in the Innovative MV-1 March 11, 2011 - 4:03pm Addthis The MV-1, a new wheelchair accessible, fuel-efficient vehicle | Photo Courtesy of Vehicle Production Group The MV-1, a new wheelchair accessible, fuel-efficient vehicle | Photo Courtesy of Vehicle Production Group Daniel B. Poneman Daniel B. Poneman Former Deputy Secretary of Energy Yesterday, the

  6. Impact of Real Field Diesel Quality Variability on Engine Emissions and Fuel Consumption Solutions for Onboard Optimisation

    Office of Energy Efficiency and Renewable Energy (EERE)

    A matrix of 10 diesel fuels was prepared and tested to establish an optimized ECU setting and a compensating algorithm for the engine.

  7. Spent nuclear fuel project systems engineering management plan

    SciTech Connect (OSTI)

    Womack, J.C., Westinghouse Hanford

    1996-07-19

    The purpose of this document is to describe the systems engineering approach and methods that will be integrated with established WHC engineering practices. The methodology promotes and ensures sound management of the SNF Project. The scope of the document encompasses the efforts needed to manage the WHC implementation of systems engineering on the SNF Project including risk management process, design authority/design agent concept, and documentation responsibilities. This implementation applies to, and is tailored to the needs of the SNF Project and all its Subprojects, including all current and future Subprojects.

  8. Fuels for Advanced CIDI Engines and Fuel Cells: 2000 Annual Progress...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    during FY 2000. PDF icon 13.pdf More Documents & Publications Cleaner Vehicles, Cleaner Fuel & Cleaner Air Durability of NOx Absorbers Review of Diesel Emission Control Technology

  9. Hydrogen as a Supplemental Fuel in Diesel Engines

    Energy.gov [DOE]

    Poster presentation from the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  10. Comparison of unburned fuel and aldehyde emissions from a methanol-fueled stratified charge and homogeneous charge engine

    SciTech Connect (OSTI)

    Scull, N.; Kim, C.; Foster, D.E.

    1986-01-01

    This paper presents the results of an experimental program in which a Texaco L-163S engine was fueled with methanol and operated in its traditional stratified charge mode and then modified to run as a homogenous charge spark ignited engine. The primary data taken were the aldehyde and unburned fuel emissions (UBF). These data were taken using a continuous time-averaging sampling probe at the exhaust tank and at the exhaust port and with a rotary time-resolving sampling valve located at the exhaust port. The data indicate that for both the stratified charge and the homogeneous charge modes of operation formaldehyde was the only aldehyde detected in the exhaust and it primarily originated in the cylinder.

  11. Maintaining low exhaust emissions with turbocharged gas engines using a feedback air-fuel ratio control system

    SciTech Connect (OSTI)

    Eckard, D.W.; Serve, J.V.

    1987-10-01

    Maintaining low exhaust emissions on a turbocharged, natural gas engine through the speed and load range requires precise control of the air-fuel ratio. Changes in ambient conditions or fuel heating value will cause the air-fuel ratio to change substantially. By combining air-gas pressure with preturbine temperature control, the air-fuel ratio can be maintained regardless of changes in the ambient conditions or the fuel's heating value. Design conditions and operating results are presented for an air-fuel controller for a turbocharged engine.

  12. Lean-burn hydrogen spark-ignited engines: the mechanical equivalent to the fuel cell

    SciTech Connect (OSTI)

    Aceves, S.M.; Smith, J.R.

    1996-10-01

    Fuel cells are considered as the ideal power source for future vehicles, due to their high efficiency and low emissions. However, extensive use of fuel cells in light-duty vehicles is likely to be years away, due to their high manufacturing cost. Hydrogen-fueled, spark-ignited, homogeneous-charge engines offer a near-term alternative to fuel cells. Hydrogen in a spark-ignited engine can be burned at very low equivalence ratios, so that NO[sub x] emissions can be reduced to less than 10 ppm without catalyst. HC and CO emissions may result from oxidation of engine oil, but by proper design are negligible (a few ppm). Lean operation also results in increased indicated efficiency due to the thermodynamic properties of the gaseous mixture contained in the cylinder. The high effective octane number of hydrogen allows the use of a high compression ratio, further increasing engine efficiency. In this paper, a simplified engine model is used for predicting hydrogen engine efficiency and emissions. The model uses basic thermodynamic equations for the compression and expansion processes, along with an empirical correlation for heat transfer, to predict engine indicated efficiency. A friction correlation and a supercharger/turbocharger model are then used to calculate brake thermal efficiency. The model is validated with many 1345 experimental points obtained in a recent evaluation of a hydrogen research engine. The experimental data are used to adjust the empirical constants in the heat release rate and heat transfer correlation. The adjusted engine model predicts pressure traces, indicated efficiency and NO,, emissions with good accuracy over the range of speed, equivalence ratio and manifold pressure experimentally covered.

  13. University of Illinois at Urbana-Champaigns GATE Center for Advanced Automotive Bio-Fuel Combustion Engines

    Energy.gov [DOE]

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  14. Diesel engine performance and emissions using different fuel/additive combinations

    SciTech Connect (OSTI)

    Sutton, D.L.; Rush, M.W.; Richards, P.

    1988-01-01

    It is probable that diesel fuel quality in Europe will fall as the need to blend conversion components into the diesel pool increases. In particular diesel ignition quality and stability could decrease and carbon residue and aromatic content increase. This paper discusses the effects of worsening fuel quality on combustion, injection characteristics and emissions and the efficacy of appropriate additives in overcoming these effects. Both direct injection and indirect injection engines were used in the investigations.

  15. Liquid Fuel From Bacteria: Engineering Ralstonia eutropha for Production of Isobutanol (IBT) Motor Fuel from CO2, Hydrogen, and Oxygen

    SciTech Connect (OSTI)

    2010-07-15

    Electrofuels Project: MIT is using solar-derived hydrogen and common soil bacteria called Ralstonia eutropha to turn carbon dioxide (CO2) directly into biofuel. This bacteria already has the natural ability to use hydrogen and CO2 for growth. MIT is engineering the bacteria to use hydrogen to convert CO2 directly into liquid transportation fuels. Hydrogen is a flammable gas, so the MIT team is building an innovative reactor system that will safely house the bacteria and gas mixture during the fuel-creation process. The system will pump in precise mixtures of hydrogen, oxygen, and CO2, and the online fuel-recovery system will continuously capture and remove the biofuel product.

  16. Fuel cells - from the laboratory to the road

    SciTech Connect (OSTI)

    Fronk, M.H.

    1996-12-31

    The polymer electrolyte membrane (PEM) Fuel Cell faces stiff competition from existing automotive powerplants and other Hybrid APUs. To be successful, the Fuel Cell will have to demonstrate real customer advantages such as fuel economy and emissions. The PEM technology has an inherent advantage over other powerplants in both thermal efficiency and emission performance, and as such fits in very well with the future regulations that strive to clean up the environment. In addition, it will need to be cost competitive and provide acceptable performance. The majority of development activity on PEM Fuel Cells to date has concentrated primarily in the area of Stack refinement and optimization with improvements coming in higher power densities and higher specific power. To make the Fuel Cell compatible with an automotive environment the entire system will need to be analyzed, understood, and then engineered to work together in an efficient manner.

  17. Analysis of Ignition Behavior in a Turbocharged Direct Injection Dual Fuel Engine Using Propane and Methane as Primary Fuels

    SciTech Connect (OSTI)

    Polk, A. C.; Gibson, C. M.; Shoemaker, N. T.; Srinivasan, K. K.; Krishnan, S. R.

    2013-05-24

    This paper presents experimental analyses of the ignition delay (ID) behavior for diesel-ignited propane and diesel-ignited methane dual fuel combustion. Two sets of experiments were performed at a constant speed (1800 rev/min) using a 4-cylinder direct injection diesel engine with the stock ECU and a wastegated turbocharger. First, the effects of fuel-air equivalence ratios (© pilot ¼ 0.2-0.6 and © overall ¼ 0.2-0.9) on IDs were quantified. Second, the effects of gaseous fuel percent energy substitution (PES) and brake mean effective pressure (BMEP) (from 2.5 to 10 bar) on IDs were investigated. With constant © pilot (> 0.5), increasing © overall with propane initially decreased ID but eventually led to premature propane autoignition; however, the corresponding effects with methane were relatively minor. Cyclic variations in the start of combustion (SOC) increased with increasing © overall (at constant © pilot), more significantly for propane than for methane. With increasing PES at constant BMEP, the ID showed a nonlinear (initially increasing and later decreasing) trend at low BMEPs for propane but a linearly decreasing trend at high BMEPs. For methane, increasing PES only increased IDs at all BMEPs. At low BMEPs, increasing PES led to significantly higher cyclic SOC variations and SOC advancement for both propane and methane. Finally, the engine ignition delay (EID) was also shown to be a useful metric to understand the influence of ID on dual fuel combustion.

  18. Intermediate Alcohol-Gasoline Blends, Fuels for Enabling Increased Engine Efficiency and Powertrain Possibilities

    SciTech Connect (OSTI)

    Splitter, Derek A; Szybist, James P

    2014-01-01

    The present study experimentally investigates spark-ignited combustion with 87 AKI E0 gasoline in its neat form and in mid-level alcohol-gasoline blends with 24% vol./vol. iso-butanol-gasoline (IB24) and 30% vol./vol. ethanol-gasoline (E30). A single-cylinder research engine is used with a low and high compression ratio of 9.2:1 and 11.85:1 respectively. The engine is equipped with hydraulically actuated valves, laboratory intake air, and is capable of external exhaust gas recirculation (EGR). All fuels are operated to full-load conditions with =1, using both 0% and 15% external cooled EGR. The results demonstrate that higher octane number bio-fuels better utilize higher compression ratios with high stoichiometric torque capability. Specifically, the unique properties of ethanol enabled a doubling of the stoichiometric torque capability with the 11.85:1 compression ratio using E30 as compared to 87 AKI, up to 20 bar IMEPg at =1 (with 15% EGR, 18.5 bar with 0% EGR). EGR was shown to provide thermodynamic advantages with all fuels. The results demonstrate that E30 may further the downsizing and downspeeding of engines by achieving increased low speed torque, even with high compression ratios. The results suggest that at mid-level alcohol-gasoline blends, engine and vehicle optimization can offset the reduced fuel energy content of alcohol-gasoline blends, and likely reduce vehicle fuel consumption and tailpipe CO2 emissions.

  19. Comparison of Propane and Methane Performance and Emissions in a Turbocharged Direct Injection Dual Fuel Engine

    SciTech Connect (OSTI)

    Gibson, C. M.; Polk, A. C.; Shoemaker, N. T.; Srinivasan, K. K.; Krishnan, S. R.

    2011-01-01

    With increasingly restrictive NO x and particulate matter emissions standards, the recent discovery of new natural gas reserves, and the possibility of producing propane efficiently from biomass sources, dual fueling strategies have become more attractive. This paper presents experimental results from dual fuel operation of a four-cylinder turbocharged direct injection (DI) diesel engine with propane or methane (a natural gas surrogate) as the primary fuel and diesel as the ignition source. Experiments were performed with the stock engine control unit at a constant speed of 1800 rpm, and a wide range of brake mean effective pressures (BMEPs) (2.7-11.6 bars) and percent energy substitutions (PESs) of C 3 H 8 and CH 4. Brake thermal efficiencies (BTEs) and emissions (NO x, smoke, total hydrocarbons (THCs), CO, and CO 2) were measured. Maximum PES levels of about 80-95% with CH 4 and 40-92% with C 3 H 8 were achieved. Maximum PES was limited by poor combustion efficiencies and engine misfire at low loads for both C 3 H 8 and CH 4, and the onset of knock above 9 bar BMEP for C 3 H 8. While dual fuel BTEs were lower than straight diesel BTEs at low loads, they approached diesel BTE values at high loads. For dual fuel operation, NO x and smoke reductions (from diesel values) were as high as 66-68% and 97%, respectively, but CO and THC emissions were significantly higher with increasing PES at all engine loads

  20. CO-OPTIMIZATION OF FUELS AND ENGINES FOA INFORMATIONAL WEBINAR PRESENTATION

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    MATERIALS | Department of Energy CO-OPTIMIZATION OF FUELS AND ENGINES FOA INFORMATIONAL WEBINAR PRESENTATION MATERIALS CO-OPTIMIZATION OF FUELS AND ENGINES FOA INFORMATIONAL WEBINAR PRESENTATION MATERIALS Bioenergy 2016 Co-Optima Session 3-D Sustainable Transportation Summit 2016 Co-Optima Track dunn_bioenergy_2016.pdf (588.76 KB) farrell_bioenergy_2016.pdf (1.98 MB) gaspar_bioenergy_2016.pdf (930.28 KB) miles_bioenergy_2016.pdf (1.47 MB) farrell_sts_2016.pdf (3.47 MB) gaspar_sts_2016.pdf

  1. Air-fuel ratio controller for a turbocharged internal combustion engine

    SciTech Connect (OSTI)

    Serve, J.V.; Eckard, D.W.

    1988-09-13

    This patent describes an air-fuel ratio controller for a gaseous-fueled, turbo-charged engine having an air manifold, a gas manifold, and a turbine inlet. The controller consists of: means for controlling air manifold pressure, comprising means for providing an air manifold pressure set point signal based on gas manifold pressure and engine RPM's and at least one constant input; and means for controlling turbine inlet temperature, the means comprising means for modulating the slope of the set point signal for the air manifold pressure controller.

  2. CO-OPTIMIZATION OF FUELS AND ENGINES FOA INFORMATIONAL WEBINAR PRESENTATION

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    MATERIALS | Department of Energy CO-OPTIMIZATION OF FUELS AND ENGINES FOA INFORMATIONAL WEBINAR PRESENTATION MATERIALS CO-OPTIMIZATION OF FUELS AND ENGINES FOA INFORMATIONAL WEBINAR PRESENTATION MATERIALS Bioenergy 2016 Co-Optima Session 3-D dunn_bioenergy_2016.pdf farrell_bioenergy_2016.pdf gaspar_bioenergy_2016.pdf miles_bioenergy_2016.pdf Sustainable Transportation Summit 2016 Co-Optima Track farrell_sts_2016.pdf gaspar_sts_2016.pdf harmon_sts_2016.pdf machiele_sts_2016.pdf

  3. Compression ignition engine having fuel system for non-sooting combustion and method

    DOE Patents [OSTI]

    Bazyn, Timothy; Gehrke, Christopher

    2014-10-28

    A direct injection compression ignition internal combustion engine includes a fuel system having a nozzle extending into a cylinder of the engine and a plurality of spray orifices formed in the nozzle. Each of the spray orifices has an inner diameter dimension of about 0.09 mm or less, and define inter-orifice angles between adjacent spray orifice center axes of about 36.degree. or greater such that spray plumes of injected fuel from each of the spray orifices combust within the cylinder according to a non-sooting lifted flame and gas entrainment combustion pattern. Related methodology is also disclosed.

  4. Fuel injection assembly for use in turbine engines and method of assembling same

    SciTech Connect (OSTI)

    Berry, Jonathan Dwight; Johnson, Thomas Edward; York, William David; Uhm, Jong Ho

    2015-12-15

    A fuel injection assembly for use in a turbine engine is provided. The fuel injection assembly includes an end cover, an endcap assembly, a fluid supply chamber, and a plurality of tube assemblies positioned at the endcap assembly. Each of the tube assemblies includes housing having a fuel plenum and a cooling fluid plenum. The cooling fluid plenum is positioned downstream from the fuel plenum and separated from the fuel plenum by an intermediate wall. The plurality of tube assemblies also include a plurality of tubes that extends through the housing. Each of the plurality of tubes is coupled in flow communication with the fluid supply chamber and a combustion chamber positioned downstream from the tube assembly. The plurality of tube assemblies further includes an aft plate at a downstream end of the cooling fluid plenum. The plate includes at least one aperture.

  5. Emissions of Volatile Particulate Components from Turboshaft Engines running JP-8 and Fischer-Tropsch Fuels

    SciTech Connect (OSTI)

    Cheng, Mengdawn; Corporan, E.; DeWitt, M.; Landgraf, Bradley J

    2009-01-01

    Rotating-wing aircraft or helicopters are heavily used by the US military and also a wide range of commercial applications around the world, but emissions data for this class of engines are limited. In this study, we focus on emissions from T700-GE-700 and T700-GE-701C engines; T700 engine was run with military JP-8 and T701C run with both JP-8 and Fischer-Tropsch (FT) fuels. Each engine was run at three engine power settings from the idle to maximum power in sequence. Exhaust particles measured at the engine exhaust plane (EEP) have a peak mobility diameter less than 50nm in all engine power settings. At a 4-m downstream location, sulfate/sulfur measurements indicate all particulate sulfur exists practically as sulfate, and the particulate sulfur and sulfate contents increased as the engine power increased. The conversion of sulfur to sulfate was found not to be dependent on engine power setting. Analysis also showed that conversion of sulfur to sulfate was not by the adsorption of sulfur dioxide gas on the soot particles and then subsequently oxidized to form sulfate, but by gas-phase conversion of SO2 via OH or O then subsequently forming H2SO4 and condensing on soot particles. Without the sulfur and aromatic components, use of the FT fuel led to significant reduction of soot emissions as compared to that of the JP-8 fuel producing less number of particles than that of the JP-8 fuel; however, the FT fuel produced much higher number concentrations of particles smaller than 7nm than that of JP-8 in all engine power settings. This indicates non-aromatics components in the FT fuel could have contributed to the enhancement of emissions of particles smaller than 7nm. These small particles are volatile, not observed at the EEP, and may be important in playing a role for the formation of secondary particles in the atmosphere or serving as a site for effective cloud nuclei condensation to occur.

  6. Fabrication of small-orifice fuel injectors for diesel engines.

    SciTech Connect (OSTI)

    Woodford, J. B.; Fenske, G. R.

    2005-04-08

    Diesel fuel injector nozzles with spray hole diameters of 50-75 {micro}m have been fabricated via electroless nickel plating of conventionally made nozzles. Thick layers of nickel are deposited onto the orifice interior surfaces, reducing the diameter from {approx}200 {micro}m to the target diameter. The nickel plate is hard, smooth, and adherent, and covers the orifice interior surfaces uniformly.

  7. Coda Automotive | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Coda Automotive Place: Santa Monica, California Zip: 90403 Product: California-based electric vehicle company which builds its cars in China. References: Coda Automotive1...

  8. Development of Cell/Pack Level Models for Automotive Li-Ion Batteries...

    Energy.gov (indexed) [DOE]

    Level Models for Automotive Li-Ion Batteries with Experimental Validation Computer-Aided Engineering for Electric Drive Vehicle Batteries (CAEBAT) Vehicle Technologies Office ...

  9. Fuel Composition Effects at Constant RON and MON in an HCCI Engine Operated with Negative Valve Overlap

    SciTech Connect (OSTI)

    Bunting, Bruce G; Farrell, John T

    2006-01-01

    The effects of fuel properties on gasoline HCCI operation have been investigated in a single cylinder, 500 cc, 11.3 CR port fuel injected research engine, operated at lambda=1 and equipped with hydraulic valve actuation. HCCI is promoted by early exhaust valve closing to retain hot exhaust in the cylinder, thereby increasing the cylinder gas temperature. Test fuels were formulated with pure components to have the same RON, MON, and octane sensitivity as an indolene reference fuel, but with a wide range of fuel composition differences. Experiments have been carried out to determine if fuel composition plays a role in HCCI combustion properties, independent of octane numbers. Fuel economy, emissions, and combustion parameters have been measured at several fixed speed/load conditions over a range of exhaust valve closing angles. When the data are compared at constant combustion phasing, fuel effects on emissions and other combustion properties are small. However, when compared at constant exhaust valve closing angle, fuel composition effects are more pronounced, specifically regarding ignition. Operability range differences are also related to fuel composition. An all-paraffinic (normal, iso, and cycloparaffins) fuel exhibited distinctly earlier combustion phasing, increased rate of cylinder pressure rise, and increased rate of maximum heat release compared to the indolene reference fuel. Conversely, olefin-containing fuels exhibited retarded combustion phasing. The fuels with the most advanced ignition showed a wider operating range in terms of engine speed and load, irrespective of exhaust closing angle. These ignition differences reflect contributions from both fuel and EGR kinetics, the effects of which are discussed. The fuel composition variables are somewhat inter-correlated, which makes the experimental separation their effects imprecise with this small set of fuels, though clear trends are evident. The overall effects of fuel composition on engine performance

  10. Cyclic Combustion Variations in Dual Fuel Partially Premixed Pilot-Ignited Natural Gas Engines

    SciTech Connect (OSTI)

    Srinivasan, K. K.; Krishnan, S. R.; Qi, Y.

    2012-05-09

    Dual fuel pilot ignited natural gas engines are identified as an efficient and viable alternative to conventional diesel engines. This paper examines cyclic combustion fluctuations in conventional dual fuel and in dual fuel partially premixed low temperature combustion (LTC). Conventional dual fueling with 95% (energy basis) natural gas (NG) substitution reduces NOx emissions by almost 90%t relative to straight diesel operation; however, this is accompanied by 98% increase in HC emissions, 10 percentage points reduction in fuel conversion efficiency (FCE) and 12 percentage points increase in COVimep. Dual fuel LTC is achieved by injection of a small amount of diesel fuel (2-3 percent on an energy basis) to ignite a premixed natural gas₋air mixture to attain very low NOx emissions (less than 0.2 g/kWh). Cyclic variations in both combustion modes were analyzed by observing the cyclic fluctuations in start of combustion (SOC), peak cylinder pressures (Pmax), combustion phasing (Ca50), and the separation between the diesel injection event and Ca50 (termed "relative combustion phasing" ). For conventional dual fueling, as % NG increases, Pmax decreases, SOC and Ca50 are delayed, and cyclic variations increase. For dual fuel LTC, as diesel injection timing is advanced from 20° to 60° BTDC, the relative combustion phasing is identified as an important combustion parameter along with SoC, Pmax, and CaPmax. For both combustion modes, cyclic variations were characterized by alternating slow and fast burn cycles, especially at high %NG and advanced injection timings. Finally, heat release return maps were analyzed to demonstrate thermal management strategies as an effective tool to mitigate cyclic combustion variations, especially in dual fuel LTC.

  11. Design and Testing of a Liquid Nitrous Oxide and Ethanol Fueled Rocket Engine

    SciTech Connect (OSTI)

    Youngblood, Stewart

    2015-08-01

    A small-scale, bi-propellant, liquid fueled rocket engine and supporting test infrastructure were designed and constructed at the Energetic Materials Research and Testing Center (EMRTC). This facility was used to evaluate liquid nitrous oxide and ethanol as potential rocket propellants. Thrust and pressure measurements along with high-speed digital imaging of the rocket exhaust plume were made. This experimental data was used for validation of a computational model developed of the rocket engine tested. The developed computational model was utilized to analyze rocket engine performance across a range of operating pressures, fuel-oxidizer mixture ratios, and outlet nozzle configurations. A comparative study of the modeling of a liquid rocket engine was performed using NASA CEA and Cantera, an opensource equilibrium code capable of being interfaced with MATLAB. One goal of this modeling was to demonstrate the ability of Cantera to accurately model the basic chemical equilibrium, thermodynamics, and transport properties for varied fuel and oxidizer operating conditions. Once validated for basic equilibrium, an expanded MATLAB code, referencing Cantera, was advanced beyond CEAs capabilities to predict rocket engine performance as a function of supplied propellant flow rate and rocket engine nozzle dimensions. Cantera was found to comparable favorably to CEA for making equilibrium calculations, supporting its use as an alternative to CEA. The developed rocket engine performs as predicted, demonstrating the developedMATLAB rocket engine model was successful in predicting real world rocket engine performance. Finally, nitrous oxide and ethanol were shown to perform well as rocket propellants, with specific impulses experimentally recorded in the range of 250 to 260 seconds.

  12. Emission Characteristics of a Diesel Engine Operating with In-Cylinder Gasoline and Diesel Fuel Blending

    SciTech Connect (OSTI)

    Prikhodko, Vitaly Y; Curran, Scott; Barone, Teresa L; Lewis Sr, Samuel Arthur; Storey, John Morse; Cho, Kukwon; Wagner, Robert M; Parks, II, James E

    2010-01-01

    Advanced combustion regimes such as homogeneous charge compression ignition (HCCI) and premixed charge compression ignition (PCCI) offer benefits of reduced nitrogen oxides (NOx) and particulate matter (PM) emissions. However, these combustion strategies often generate higher carbon monoxide (CO) and hydrocarbon (HC) emissions. In addition, aldehydes and ketone emissions can increase in these modes. In this study, the engine-out emissions of a compression-ignition engine operating in a fuel reactivity- controlled PCCI combustion mode using in-cylinder blending of gasoline and diesel fuel have been characterized. The work was performed on a 1.9-liter, 4-cylinder diesel engine outfitted with a port fuel injection system to deliver gasoline to the engine. The engine was operated at 2300 rpm and 4.2 bar brake mean effective pressure (BMEP) with the ratio of gasoline to diesel fuel that gave the highest engine efficiency and lowest emissions. Engine-out emissions for aldehydes, ketones and PM were compared with emissions from conventional diesel combustion. Sampling and analysis was carried out following micro-tunnel dilution of the exhaust. Particle geometric mean diameter, number-size distribution, and total number concentration were measured by a scanning mobility particle sizer (SMPS). For the particle mass measurements, samples were collected on Teflon-coated quartz-fiber filters and analyzed gravimetrically. Gaseous aldehydes and ketones were sampled using dinitrophenylhydrazine-coated solid phase extraction cartridges and the extracts were analyzed by liquid chromatography/mass spectrometry (LC/MS). In addition, emissions after a diesel oxidation catalyst (DOC) were also measured to investigate the destruction of CO, HC and formaldehydes by the catalyst.

  13. Monovalve with integrated fuel injector and port control valve, and engine using same

    DOE Patents [OSTI]

    Milam, David M.

    2002-01-01

    Each cylinder of an internal combustion engine includes a combined gas exchange valve and fuel injector with a port control valve. The port control valve operates to open either an intake passage or an exhaust passage. The operation of the combined device is controlled by a pair of electrical actuators. The device is hydraulically actuated.

  14. An Analysis of the Impact of Selected Fuel Thermochemical Properties on Internal Combustion Engine Efficiency

    SciTech Connect (OSTI)

    Szybist, James P; Chakravathy, Kalyana; Daw, C Stuart

    2012-01-01

    In this study we model the effects of 23 different fuels on First and Second Law thermodynamic efficiency of an adiabatic internal combustion engine. First Law efficiency is calculated using lower heating value (LHV) while Second Law efficiency is calculated with exergy, which represents the inherent chemical energy available to produce propulsion. We find that First Law efficiency can deviate by as much as nine percentage points between fuels while Second Law efficiency exhibits a much smaller degree of variability. We also find that First and Second Law efficiency can be nearly the same for some fuels (methane and ethane) but differ substantially for other fuels (hydrogen and ethanol). The differences in First and Second Law efficiency are due to differences in LHV and exergy for a given fuel. In order to explain First Law efficiency differences between fuels as well as the differences between LHV and exergy, we introduce a new term: the molar expansion ratio (MER), defined as the ratio of product moles to reactant moles for complete stoichiometric combustion. We find that the MER is a useful expression for providing a physical explanation for fuel-specific efficiency differences as well as differences between First and Second Law efficiency. First and Second Law efficiency are affected by a number of other fuel-specific thermochemical properties, such as the ratio of specific heat and dissociation of combustion products.

  15. An experimental study of fuel injection strategies in CAI gasoline engine

    SciTech Connect (OSTI)

    Hunicz, J.; Kordos, P.

    2011-01-15

    Combustion of gasoline in a direct injection controlled auto-ignition (CAI) single-cylinder research engine was studied. CAI operation was achieved with the use of the negative valve overlap (NVO) technique and internal exhaust gas re-circulation (EGR). Experiments were performed at single injection and split injection, where some amount of fuel was injected close to top dead centre (TDC) during NVO interval, and the second injection was applied with variable timing. Additionally, combustion at variable fuel-rail pressure was examined. Investigation showed that at fuel injection into recompressed exhaust fuel reforming took place. This process was identified via an analysis of the exhaust-fuel mixture composition after NVO interval. It was found that at single fuel injection in NVO phase, its advance determined the heat release rate and auto-ignition timing, and had a strong influence on NO{sub X} emission. However, a delay of single injection to intake stroke resulted in deterioration of cycle-to-cycle variability. Application of split injection showed benefits of this strategy versus single injection. Examinations of different fuel mass split ratios and variable second injection timing resulted in further optimisation of mixture formation. At equal share of the fuel mass injected in the first injection during NVO and in the second injection at the beginning of compression, the lowest emission level and cyclic variability improvement were observed. (author)

  16. Stratified charge combustion system and method for gaseous fuel internal combustion engines

    SciTech Connect (OSTI)

    Rhoades, W.A. Jr.

    1986-03-11

    This patent describes a stratified charge combustion system for use in a gaseous fuel internal combustion engine. This system consists of: (a) a combustion chamber; (b) an ignition; (c) a gaseous fuel injection valve assembly in communication with the combustion chamber and in spaced relationship from the ignition source with a portion of the inside surfaces extending between the fuel injection valve assembly and the ignition source. The fuel valve assembly defines an entry port for the entrance of gaseous fuel, the entry port is recessed outside of a fixed inside surface. (d) means for pressuring the gaseous fuel prior to injection; and (e) a curved transitional surface extending from the entry port toward the portion of the inside surfaces extending between the fuel injection valve assembly and the ignition source. The curved transitional surface curves away from the direction of the entry port. The curved transitional surface has a curvature for the particular direction and configuration of the entry port. The particular configuration of the portion of the inside surfaces extends between the injection valve assembly and the ignition source. The particular arrangment of the fuel injection valve assembly in the combustion chamber, and for the particular pressure of the gaseous fuel is to produce the Coanda Effect in the injected gaseous fuel flow after it passes through the entry port and follows the curved transitional surface under the Coanda Effect. As the curved transitional surface curves away from the direction of the entry port, a flow is produced of the gaseous fuel that clings to and follows the particular configuration of the inside surfaces to the ignition source.

  17. Investigation of Fuel Quality Impact on the Combustion and Exhaust Emissions of a Turbo-Charged SI Engine Operated on Low BTU Gases

    Energy.gov [DOE]

    Research results validate an engine simulation model and provide guidelines for the improved control of combustion stability of SI engines operated on low-BTU gaseous fuels.

  18. Diesel engine experiments with oxygen enrichment, water addition and lower-grade fuel

    SciTech Connect (OSTI)

    Sekar, R.R.; Marr, W.W.; Cole, R.L.; Marciniak, T.J. ); Schaus, J.E. )

    1990-01-01

    The concept of oxygen enriched air applied to reciprocating engines is getting renewed attention in the context of the progress made in the enrichment methods and the tougher emissions regulations imposed on diesel and gasoline engines. An experimental project was completed in which a direct injection diesel engine was tested with intake oxygen levels of 21% -- 35%. Since an earlier study indicated that it is necessary to use a cheaper fuel to make the concept economically attractive, a less refined fuel was included in the test series. Since a major objection to the use of oxygen enriched combustion air had been the increase in NO{sub x} emissions, a method must be found to reduce NO{sub x}. Introduction of water into the engine combustion process was included in the tests for this purpose. Fuel emulsification with water was the means used here even though other methods could also be used. The teat data indicated a large increase in engine power density, slight improvement in thermal efficiency, significant reductions in smoke and particulate emissions and NO{sub x} emissions controllable with the addition of water. 15 refs., 10 figs., 2 tabs.

  19. Fuel nozzle assembly for use in turbine engines and methods of assembling same

    DOE Patents [OSTI]

    Uhm, Jong Ho; Johnson, Thomas Edward

    2015-02-03

    A fuel nozzle for use with a turbine engine is described herein. The fuel nozzle includes a housing that is coupled to a combustor liner defining a combustion chamber. The housing includes an endwall that at least partially defines the combustion chamber. A plurality of mixing tubes extends through the housing for channeling fuel to the combustion chamber. Each mixing tube of the plurality of mixing tubes includes an inner surface that extends between an inlet portion and an outlet portion. The outlet portion is oriented adjacent the housing endwall. At least one of the plurality of mixing tubes includes a plurality of projections that extend outwardly from the outlet portion. Adjacent projections are spaced a circumferential distance apart such that a groove is defined between each pair of circumferentially-apart projections to facilitate enhanced mixing of fuel in the combustion chamber.

  20. Fuel Options

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Hydrogen Production Market Transformation Fuel Cells Predictive Simulation of Engines ... Twitter Google + Vimeo Newsletter Signup SlideShare Fuel Options HomeCapabilitiesFuel ...

  1. Development of ADECS to Meet 2010 Emission Levels: Optimization of NOx, NH3 and Fuel Consumption Using High and Low Engine-Out NOx Calibrations

    Office of Energy Efficiency and Renewable Energy (EERE)

    Development and validation of a simple strategy-based technique using four engine parameters to minimize emissions and fuel consumption

  2. Engineering Bacteria for Efficient Fuel Production: Novel Biological Conversion of Hydrogen and Carbon Dioxide Directly into Free Fatty Acids

    SciTech Connect (OSTI)

    2010-07-12

    Electrofuels Project: OPX Biotechnologies is engineering a microorganism currently used in industrial biotechnology to directly produce a liquid fuel from hydrogen and carbon dioxide (CO2). The microorganism has the natural ability to use hydrogen and CO2 for growth. OPX Biotechnologies is modifying the microorganism to divert energy and carbon away from growth and towards the production of liquid fuels in larger, commercially viable quantities. The microbial system will produce a fuel precursor that can be chemically upgraded to various hydrocarbon fuels.

  3. Assessment of a multi-stage underwater vehicle concept using a fossil-fuel Stirling engine

    SciTech Connect (OSTI)

    Reader, G.T.; Potter, I.J.

    1995-12-31

    The Stirling Engine because of its inherent closed-cycle operation can be readily modified to work in an airless environment even if the primary source of energy is a fossil fuel. Thus, Stirling engines are well suited for use in the underwater environment and have been operated successfully in manned military submarines since the early 1980s. In recent years fossil fueled Stirling systems have been also proposed for use in small unmanned underwater vehicles (UUVs). However, in this case the need to carry an onboard oxygen supply in a very confined space has presented a number of design difficulties. These are identified in the paper. However, if the oxidant supply to the engine is provided by the membrane extraction of dissolved oxygen from seawater and/or disposable fuel/oxidant pods are used then the UUV Stirling system becomes more attractive. If this latter concept is extended to include multi-stage vehicles then it can be shown that fossil fueled Stirlings could also be put to effective use in long range-long endurance underwater vehicular operations.

  4. Abrasive wear by coal-fueled diesel engine and related particles

    SciTech Connect (OSTI)

    Ives, L.K.

    1992-09-01

    The development of commercially viable diesel engines that operate directly on pulverized coal-fuels will require solution to the problem of severe abrasive wear. The purpose of the work described in this report was to investigate the nature of the abrasive wear problem. Analytical studies were carried out to determine the characteristics of the coal-fuel and associated combustion particles responsible for abrasion. Laboratory pinon-disk wear tests were conducted on oil-particle mixtures to determine the relationship between wear rate and a number of different particle characteristics, contact parameters, specimen materials properties, and other relevant variables.

  5. Nuclear Engineering Computer Models for In-Core Fuel Management Analysis.

    Energy Science and Technology Software Center (OSTI)

    1992-06-12

    Version 00 VPI-NECM is a nuclear engineering computer system of modules for in-core fuel management analysis. The system consists of 6 independent programs designed to calculate: (1) FARCON - neutron slowing down and epithermal group constants, (2) SLOCON - thermal neutron spectrum and group constants, (3) DISFAC - slow neutron disadvantage factors, (4) ODOG - solution of a one group neutron diffusion equation, (5) ODMUG - three group criticality problem, (6) FUELBURN - fuel burnupmore » in slow neutron fission reactors.« less

  6. Methanol as a fuel for a lean turbocharged spark ignition engine

    SciTech Connect (OSTI)

    Pannone, G.M.; Johnson, R.T.

    1989-01-01

    Lean turbocharged operation with methanol was characterized using a single-cylinder spark, ignition engine. Efficiency, exhaust emissions, and combustion properties were measured over a range of air/fuel ratios at two naturally-aspirated and three turbocharged conditions. When compared to stoichiometric, naturally-aspirated operation, the lean turbocharged conditions improved efficiency while reducing carbon monoxide and oxides of nitrogen emissions. However, unburned fuel and aldehyde emissions increased. If used in conjunction with an oxidizing catalyst and appropriate feedback controls, lean turbocharged operation has the potential of improving efficiency and exhaust emissions performance over a stoichiometric, three-way catalyst system.

  7. United States Automotive Materials Partnership LLC (USAMP)

    SciTech Connect (OSTI)

    United States Automotive Materials Partnership

    2011-01-31

    The United States Automotive Materials Partnership LLC (USAMP) was formed in 1993 as a partnership between Chrysler Corporation, Ford Motor Company, and General Motors Corporation. Since then the U.S. Department of Energy (DOE) has supported its activities with funding and technical support. The mission of the USAMP is to conduct vehicle-oriented research and development in materials and materials processing to improve the competitiveness of the U.S. Auto Industry. Its specific goals are: (1) To conduct joint research to further the development of lightweight materials for improved automotive fuel economy; and (2) To work with the Federal government to explore opportunities for cooperative programs with the national laboratories, Federal agencies such as the DOE and universities. As a major component of the DOE's Office of FreedomCAR and Vehicle Technologies Program (FCVT) collaboration with the USAMP, the Automotive Lightweighting Materials (ALM) program focuses on the development and validation of advanced materials and manufacturing technologies to significantly reduce automotive vehicle body and chassis weight without compromising other attributes such as safety, performance, recyclability, and cost. The FCVT was announced in FY 2002 and implemented in FY 2003, as a successor of the Partnership for a New Generation of Vehicles (PNGV), largely addressed under the first Cooperative Agreement. This second USAMP Cooperative Agreement with the DOE has expanded a unique and valuable framework for collaboratively directing industry and government research efforts toward the development of technologies capable of solving important societal problems related to automobile transportation. USAMP efforts are conducted by the domestic automobile manufacturers, in collaboration with materials and manufacturing suppliers, national laboratories, universities, and other technology or trade organizations. These interactions provide a direct route for implementing newly developed

  8. Comparison of emissions and efficiency of a turbocharged lean-burn natural gas and Hythane-fueled engine

    SciTech Connect (OSTI)

    Larsen, J.F.; Wallace, J.S.

    1997-01-01

    An experiment was conducted to evaluate the potential for reduced exhaust emissions and improved efficiency, by way of lean-burn engine fueling with hydrogen supplemented natural gas (Hythane). The emissions and efficiency of the Hythane fuel (15% hydrogen, 85% natural gas by volume), were compared to the emissions and efficiency of pure natural gas using a turbocharged, spark ignition, 3.1 L, V-6 engine. The feasibility of heavy duty engine fueling with Hythane was assessed through testing conducted at engine speed and load combinations typical of heavy-duty engine operation. Comparison of the efficiency and emissions at MBT spark timing revealed that Hythane fueling of the test engine resulted in consistently lower brake specific energy consumption and emissions of total hydrocarbons (THC), carbon monoxide (CO), and carbon dioxide (CO{sub 2}), at a given equivalence ratio. There was no clear trend with respect to MBT oxides of nitrogen (NO{sub x}) emissions. It was also discovered that an improved NO{sub x}-THC tradeoff resulted when Hythane was used to fuel the test engine. Consequently, Hythane engine operating parameters can be adjusted to achieve a concurrent reduction in NO{sub x} and THC emissions relative to natural gas fueling.

  9. Vehicle Technologies Office Merit Review 2016: 88 Kilowatt Automotive

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Inverter with New 900 Volt Silicon Carbide MOSFET Technology | Department of Energy 88 Kilowatt Automotive Inverter with New 900 Volt Silicon Carbide MOSFET Technology Vehicle Technologies Office Merit Review 2016: 88 Kilowatt Automotive Inverter with New 900 Volt Silicon Carbide MOSFET Technology Presentation given by Cree at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Electric Drive Systems

  10. Impact of Fuel Interchangeability on dynamic Instabilities in Gas Turbine Engines

    SciTech Connect (OSTI)

    Ferguson, D.H.; Straub, D.L.; Richards, G.A.; Robey, E.H.

    2007-03-01

    Modern, low NOx emitting gas turbines typically utilize lean pre-mixed (LPM) combustion as a means of achieving target emissions goals. As stable combustion in LPM systems is somewhat intolerant to changes in operating conditions, precise engine tuning on a prescribed range of fuel properties is commonly performed to avoid dynamic instabilities. This has raised concerns regarding the use of imported liquefied natural gas (LNG) and natural gas liquids (NGL’s) to offset a reduction in the domestic natural gas supply, which when introduced into the pipeline could alter the fuel BTU content and subsequently exacerbate problems such as combustion instabilities. The intent of this study is to investigate the sensitivity of dynamically unstable test rigs to changes in fuel composition and heat content. Fuel Wobbe number was controlled by blending methane and natural gas with various amounts of ethane, propane and nitrogen. Changes in combustion instabilities were observed, in both atmospheric and pressurized test rigs, for fuels containing high concentrations of propane (> 62% by vol). However, pressure oscillations measured while operating on typical “LNG like” fuels did not appear to deviate significantly from natural gas and methane flame responses. Mechanisms thought to produce changes in the dynamic response are discussed.

  11. Enabling High Efficiency Ethanol Engines

    SciTech Connect (OSTI)

    Szybist, J.; Confer, K.

    2011-03-01

    Delphi Automotive Systems and ORNL established this CRADA to explore the potential to improve the energy efficiency of spark-ignited engines operating on ethanol-gasoline blends. By taking advantage of the fuel properties of ethanol, such as high compression ratio and high latent heat of vaporization, it is possible to increase efficiency with ethanol blends. Increasing the efficiency with ethanol-containing blends aims to remove a market barrier of reduced fuel economy with E85 fuel blends, which is currently about 30% lower than with petroleum-derived gasoline. The same or higher engine efficiency is achieved with E85, and the reduction in fuel economy is due to the lower energy density of E85. By making ethanol-blends more efficient, the fuel economy gap between gasoline and E85 can be reduced. In the partnership between Delphi and ORNL, each organization brought a unique and complementary set of skills to the project. Delphi has extensive knowledge and experience in powertrain components and subsystems as well as overcoming real-world implementation barriers. ORNL has extensive knowledge and expertise in non-traditional fuels and improving engine system efficiency for the next generation of internal combustion engines. Partnering to combine these knowledge bases was essential towards making progress to reducing the fuel economy gap between gasoline and E85. ORNL and Delphi maintained strong collaboration throughout the project. Meetings were held regularly, usually on a bi-weekly basis, with additional reports, presentations, and meetings as necessary to maintain progress. Delphi provided substantial hardware support to the project by providing components for the single-cylinder engine experiments, engineering support for hardware modifications, guidance for operational strategies on engine research, and hardware support by providing a flexible multi-cylinder engine to be used for optimizing engine efficiency with ethanol-containing fuels.

  12. A Multicomponent Blend as a Diesel Fuel Surrogate for Compression Ignition Engine Applications

    SciTech Connect (OSTI)

    Pei, Yuanjiang; Mehl, Marco; Liu, Wei; Lu, Tianfeng; Pitz, William J.; Som, Sibendu

    2015-05-12

    A mixture of n-dodecane and m-xylene is investigated as a diesel fuel surrogate for compression ignition engine applications. Compared to neat n-dodecane, this binary mixture is more representative of diesel fuel because it contains an alkyl-benzene which represents an important chemical class present in diesel fuels. A detailed multi-component mechanism for n-dodecane and m-xylene was developed by combining a previously developed n-dodecane mechanism with a recently developed mechanism for xylenes. The xylene mechanism is shown to reproduce experimental ignition data from a rapid compression machine and shock tube, speciation data from the jet stirred reactor and flame speed data. This combined mechanism was validated by comparing predictions from the model with experimental data for ignition in shock tubes and for reactivity in a flow reactor. The combined mechanism, consisting of 2885 species and 11754 reactions, was reduced to a skeletal mechanism consisting 163 species and 887 reactions for 3D diesel engine simulations. The mechanism reduction was performed using directed relation graph (DRG) with expert knowledge (DRG-X) and DRG-aided sensitivity analysis (DRGASA) at a fixed fuel composition of 77% of n-dodecane and 23% m-xylene by volume. The sample space for the reduction covered pressure of 1 – 80 bar, equivalence ratio of 0.5 – 2.0, and initial temperature of 700 – 1600 K for ignition. The skeletal mechanism was compared with the detailed mechanism for ignition and flow reactor predictions. Finally, the skeletal mechanism was validated against a spray flame dataset under diesel engine conditions documented on the Engine Combustion Network (ECN) website. These multi-dimensional simulations were performed using a Representative Interactive Flame (RIF) turbulent combustion model. Encouraging results were obtained compared to the experiments with regards to the predictions of ignition delay and lift-off length at different ambient temperatures.

  13. Internal combustion engine cylinder-to-cylinder balancing with balanced air-fuel ratios

    DOE Patents [OSTI]

    Harris, Ralph E.; Bourn, Gary D.; Smalley, Anthony J.

    2006-01-03

    A method of balancing combustion among cylinders of an internal combustion engine. For each cylinder, a normalized peak firing pressure is calculated as the ratio of its peak firing pressure to its combustion pressure. Each cylinder's normalized peak firing pressure is compared to a target value for normalized peak firing pressure. The fuel flow is adjusted to any cylinder whose normalized peak firing pressure is not substantially equal to the target value.

  14. Heat-Loving Microbe Engineered to Produce Bioalcohols for Fuel | U.S. DOE

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Office of Science (SC) Heat-Loving Microbe Engineered to Produce Bioalcohols for Fuel Biological and Environmental Research (BER) BER Home About Research Facilities Science Highlights Searchable Archive of BER Highlights External link Benefits of BER Funding Opportunities Biological & Environmental Research Advisory Committee (BERAC) Community Resources Contact Information Biological and Environmental Research U.S. Department of Energy SC-23/Germantown Building 1000 Independence Ave., SW

  15. Performance of a diesel engine operating on raw coal-diesel fuel and solvent refined coal-diesel fuel slurries. Final report

    SciTech Connect (OSTI)

    Marshall, H.P.

    1980-03-01

    Performance tests using an 11 kW single cylinder diesel engine were made to determine the effects of three different micronized coal-fuel oil slurries being considered as alternative fuels. Slurries containing 20, 32, and 40%-wt micronized raw coal in No. 2 fuel oil were used. Results are presented indicating the changes in the concentrations of SO/sub X/ and NO/sub X/ in the exhaust, exhaust opacity, power and efficiency, and in wear rates relative to operation on fuel oil No. 2. The engine was operated for 10 h at full load and 1400 rpm on al fuels except the 40%-wt slurry. This test was discontinued because of extremely poor performance.

  16. New Fuel Cell Design Powered by Graphene-Wrapped Nanoparticles

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Fuel Cell Design Powered by Graphene-Wrapped Nanoparticles Print Interest in hydrogen fuel for automotive applications ... a simple, scalable, and cost-effective "one-pan" ...

  17. Requirements for status for volume fuel cell manufacturing |...

    Energy.gov (indexed) [DOE]

    Backup Power Applications Direct Hydrogen PEMFC Manufacturing Cost Estimation for Automotive Applications: Fuel Cell Tech Team Review Fuel Cell Manufacturing: American Energy and ...

  18. Mass Production Cost Estimation of Direct Hydrogen PEM Fuel Cell...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    vehicles that are tethered to petroleum fuels. ... wind, hydroelectric, solar, and biomass. Thus, fuel cell vehicles offer an ... for automotive vs. 160kW electricnet ...

  19. EERE Success Story-Dynalene Fuel Cell Coolants Achieve Commercial...

    Energy.gov (indexed) [DOE]

    several automotive and fuel cell manufacturers on using the coolants in their PEM fuel cells, hybrid electric, electric vehicles and back-up power systems. Location Whitehall, PA ...

  20. Application of High Performance Computing for Simulating Cycle-to-Cycle Variation in Dual-Fuel Combustion Engines

    DOE PAGES-Beta [OSTI]

    Jupudi, Ravichandra S.; Finney, Charles E.A.; Primus, Roy; Wijeyakulasuriya, Sameera; Klingbeil, Adam E.; Tamma, Bhaskar; Stoyanov, Miroslav K.

    2016-04-05

    Interest in operational cost reduction is driving engine manufacturers to consider lower-cost fuel substitution in heavy-duty diesel engines. These dual-fuel (DF) engines could be operated either in diesel-only mode or operated with premixed natural gas (NG) ignited by a pilot flame of compression-ignited direct-injected diesel fuel. One promising application is that of large-bore, medium-speed engines such as those used in locomotives. With realistic natural gas substitution levels in the fleet of locomotives currently in service, such fuel substitution could result in billions of dollars of savings annually in the US alone. However, under certain conditions, dual-fuel operation can result inmore » increased cycle-to-cycle variability (CCV) during combustion, resulting in variations in cylinder pressure and work extraction. In certain situations, the CCV of dual-fuel operation can be notably higher than that of diesel-only combustion under similar operating conditions. Excessive CCV can limit the NG substitution rate and operating range of a dual-fuel engine by increasing emissions and reducing engine stability, reliability and fuel efficiency via incomplete natural-gas combustion. Running multiple engine cycles in series to simulate CCV can be quite time consuming. Hence innovative modelling techniques and large computing resources are needed to investigate the factors affecting CCV in dual-fuel engines. This paper discusses the use of the High Performance Computing resource Titan, at the Oak Ridge Leadership Computing Facility at Oak Ridge National Laboratory, to investigate cycle-to-cycle combustion variability of a dual-fuel engine. The CONVERGE CFD software was used to simulate multiple, parallel single cycles of dual-fuel combustion with perturbed operating parameters and boundary conditions. These perturbations are imposed according to a sparse grids sampling of the parameter space. The sampling scheme chosen is similar to a design of experiments method

  1. Effects of Fuel Composition on EGR Dilution Tolerance in Spark Ignited Engines

    SciTech Connect (OSTI)

    Szybist, James P

    2016-01-01

    Fuel-specific differences in exhaust gas recirculation (EGR) dilution tolerance are studied in a modern, direct-injection single-cylinder research engine. A total of 6 model fuel blends are examined at a constant research octane number (RON) of 95 using n-heptane, iso-octane, toluene, and ethanol. Laminar flame speeds for these mixtures, which were calculated two different methods (an energy fraction mixing rule and a detailed kinetic simulation), spanned a range of about 6 cm/s. A constant fueling nominal load of 350 kPa IMEPg at 2000 rpm was operated with varying CA50 from 8-20 CAD aTDCf, and with EGR increasing until a COV of IMEP of 5% is reached. The results illustrate that flame speed affects EGR dilution tolerance; fuels with increased flame speeds increase EGR tolerance. Specifically, flame speed correlates most closely to the initial flame kernel growth, measured as the time of ignition to 5% mass fraction burned. The effect of the latent heat of vaporization on the flame speed is taken into account for the ethanol-containing fuels. At a 30 vol% blend level, the increased enthalpy of vaporization of ethanol compared to conventional hydrocarbons can decrease the temperature at the time of ignition by a maximum of 15 C, which can account for up to a 3.5 cm/s decrease in flame speed. The ethanol-containing fuels, however, still exhibit a flame speed advantage, and a dilution tolerance advantage over the slower flame-speed fuels. The fuel-specific differences in dilution tolerance are significant at the condition examined, allowing for a 50% relative increase in EGR (4% absolute difference in EGR) at a constant COV of IMEP of 3%.

  2. Friction of Materials for Automotive Applications

    SciTech Connect (OSTI)

    Blau, Peter Julian

    2013-01-01

    This brief overview of friction-related issues in materials for automobiles is invited for a special issue on automotive materials in the ASM journal AM&P. It describes a range of areas in a ground vehicle in which friction must be controlled or minimized. Applications range from piston rings to tires, and from brakes to fuel injector components. A perspective on new materials and lubricants, and the need for validation testing is presented.

  3. Vehicle Technologies Office: Graduate Automotive Technology Education...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Education & Workforce Development Vehicle Technologies Office: Graduate Automotive Technology Education (GATE) Vehicle Technologies Office: Graduate Automotive Technology ...

  4. Thermoelectric Generator Development for Automotive Waste Heat...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Generator Development for Automotive Waste Heat Recovery Thermoelectric Generator ... More Documents & Publications Develop Thermoelectric Technology for Automotive Waste Heat ...

  5. Novel Nanostructured Interface Solution for Automotive Thermoelectric...

    Energy.gov (indexed) [DOE]

    Thermoelectrics Partnership: Automotive Thermoelectric Modules with Scalable Thermo- and Electro-Mechanical Interfaces Thermoelectrics Partnership: Automotive Thermoelectric ...

  6. Conversion of a diesel engine to a spark ignition natural gas engine

    SciTech Connect (OSTI)

    1996-09-01

    Requirements for alternatives to diesel-fueled vehicles are developing, particularly in urban centers not in compliance with mandated air quality standards. An operator of fleets of diesel- powered vehicles may be forced to either purchase new vehicles or equip some of the existing fleets with engines designed or modified to run on alternative fuels. In converting existing vehicles, the operator can either replace the existing engine or modify it to burn an alternative fuel. Work described in this report addresses the problem of modifying an existing diesel engine to operate on natural gas. Tecogen has developed a technique for converting turbocharged automotive diesel engines to operate as dedicated spark-ignition engines with natural gas fuel. The engine cycle is converted to a more-complete-expansion cycle in which the expansion ratio of the original engine is unchanged while the effective compression ratio is lowered, so that engine detonation is avoided. The converted natural gas engine, with an expansion ratio higher than in conventional spark- ignition natural gas engines, offers thermal efficiency at wide-open- throttle conditions comparable to its diesel counterpart. This allows field conversion of existing engines. Low exhaust emissions can be achieved when the engine is operated with precise control of the fuel air mixture at stoichiometry with a 3-way catalyst. A Navistar DTA- 466 diesel engine with an expansion ratio of 16.5 to 1 was converted in this way, modifying the cam profiles, increasing the turbocharger boost pressure, incorporating an aftercooler if not already present, and adding a spark-ignition system, natural gas fuel management system, throttle body for load control, and an electronic engine control system. The proof-of-concept engine achieved a power level comparable to that of the diesel engine without detonation. A conversion system was developed for the Navistar DT 466 engine. NOx emissions of 1.5 g/bhp-h have been obtained.

  7. Soybean and Coconut Biodiesel Fuel Effects on Combustion Characteristics in a Light-Duty Diesel Engine

    SciTech Connect (OSTI)

    Han, Manbae; Cho, Kukwon; Sluder, Scott; Wagner, Robert M

    2008-01-01

    This study investigated the effects of soybean- and coconut-derived biodiesel fuels on combustion characteristics in a 1.7-liter direct injection, common rail diesel engine. Five sets of fuels were studied: 2007 ultra-low sulfur diesel (ULSD), 5% and 20% volumetric blends of soybean biodiesel with ULSD (soybean B5 and B20), and 5% and 20% volumetric blends of coconut biodiesel with ULSD (coconut B5 and B20). In conventional diesel combustion mode, particulate matter (PM) and nitrogen oxides (NO/dx) emissions were similar for all fuels studied except soybean B20. Soybean B20 produced the lowest PM but the highest NO/dx emissions. Compared with conventional diesel combustion mode, high efficiency clean combustion (HECC) mode, achieved by increased EGR and combustion phasing, significantly reduced both PM and NO/dx emissions for all fuels studied at the expense of higher hydrocarbon (HC) and carbon monoxide (CO) emissions and an increase in fuel consumption (less than 4%). ULSD, soybean B5, and coconut B5 showed no difference in exhaust emissions. However, PM emissions increased slightly for soybean B20 and coconut B20. NO/dx emissions increased significantly for soybean B20, while those for coconut B20 were comparable to ULSD. Differences in the chemical and physical properties of soybean and coconut biodiesel fuels compared with ULSD, such as higher fuel-borne oxygen, greater viscosity, and higher boiling temperatures, play a key role in combustion processes and, therefore, exhaust emissions. Furthermore, the highly unsaturated ester composition in soybean biodiesel can be another factor in the increase of NO/dx emissions.

  8. Engine Waste Heat Recovery Concept Demonstration | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    in a Small Engine Test Cell for Enhanced Kinetic Engine Modeling Accuracy A Thermoelectric Generator with an Intermediate Heat Exchanger for Automotive Waste Heat Recovery ...

  9. Vehicle Technologies Office 2013 Merit Review: A MultiAir / MultiFuel Approach to Enhancing Engine System Efficiency

    Energy.gov [DOE]

    A presentation given by Chrysler at the 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting on its project to research a multi-air and multi-fuel approach to improving engine efficiency.

  10. Evaluation of improved materials for stationary diesel engines operating on residual and coal based fuels. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    Experimental results to date from an on-going research program on improved materials for stationary diesel engines using residual or coal-based fuels are presented with little discussion of conclusions about these results. Information is included on ring and liner wear, fuel oil qualities, ceramic materials, coatings, test procedures and equipment, and tribology test results. (LCL)

  11. Engineering development of advanced physical fine coal cleaning for premium fuel applications. Task 6 -- Selective agglomeration laboratory research and engineering development for premium fuels

    SciTech Connect (OSTI)

    Moro, N.; Jha, M.C.

    1997-06-27

    The primary goal of this project is the engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. The project scope included laboratory research and benchscale testing on six coals to optimize these processes, followed by the design, construction, and operation of a 2 t/hr process development unit (PDU). The project began in October, 1992, and is scheduled for completion by September 1997. This report represents the findings of Subtask 6.5 Selective Agglomeration Bench-Scale Testing and Process Scale-up. During this work, six project coals, namely Winifrede, Elkhorn No. 3, Sunnyside, Taggart, Indiana VII, and Hiawatha were processed in a 25 lb/hr continuous selective agglomeration bench-scale test unit.

  12. Fuel Effects on Combustion and Emissions of a Direct-Inection Diesel Engine Operating at Moderate to High Engine Speed and Load

    SciTech Connect (OSTI)

    Szybist, James P; Szymkowicz, Patrick G.; Northrop, William F

    2012-01-01

    It is advantageous to increase the specific power output of diesel engines and to operate them at higher load for a greater portion of a driving cycle to achieve better thermal efficiency and thus reduce vehicle fuel consumption. Such operation is limited by excessive smoke formation at retarded injection timing and high rates of cylinder pressure rise at more advanced timing. Given this window of operation, it is desired to understand the influence of fuel properties such that optimum combustion performance and emissions can be retained over the range of fuels commonly available in the marketplace. It has been shown in previous studies that varying cetane number (CN) of diesel fuel has little effect on ignition delay at high engine load due to the domination of high cylinder temperature on ignition kinetics. The work here experimentally confirms that finding but also shows that emissions and combustion performance vary according to fuel reactivity. Data are examined from a direct-injection single cylinder research engine for eight common diesel fuels including soy-based biodiesel blends at two high load operating points with no exhaust gas recirculation (EGR) and at a moderate load with four levels of EGR. It is shown in the work that at high engine load where combustion is controlled by mixing processes, CN and other fuel properties have little effect on engine performance, although lower CN fuels produce a small increase in noise, smoke and CO emissions. Biodiesel blends increase NOX emissions and decreases CO and smoke emissions at high load, but otherwise have little effect on performance. At moderate load, higher CN fuels are more tolerant to EGR due to their better chemical reactivity at retarded injection timing, but all fuels produce comparable thermal efficiency at advanced combustion phasing regardless of EGR. In contrast to the high load conditions, there was no increase in NOX emissions for biodiesel at the moderate load condition. It is concluded that

  13. PEM fuel cell stack performance using dilute hydrogen mixture. Implications on electrochemical engine system performance and design

    SciTech Connect (OSTI)

    Inbody, M.A.; Vanderborgh, N.E.; Hedstrom, J.C.; Tafoya, J.I.

    1996-12-31

    Onboard fuel processing to generate a hydrogen-rich fuel for PEM fuel cells is being considered as an alternative to stored hydrogen fuel for transportation applications. If successful, this approach, contrasted to operating with onboard hydrogen, utilizes the existing fuels infrastructure and provides required vehicle range. One attractive, commercial liquid fuels option is steam reforming of methanol. However, expanding the liquid methanol infrastructure will take both time and capital. Consequently technology is also being developed to utilize existing transportation fuels, such as gasoline or diesel, to power PEM fuel cell systems. Steam reforming of methanol generates a mixture with a dry gas composition of 75% hydrogen and 25% carbon dioxide. Steam reforming, autothermal reforming, and partial oxidation reforming of C{sub 2} and larger hydrocarbons produces a mixture with a more dilute hydrogen concentration (65%-40%) along with carbon dioxide ({approx}20%) and nitrogen ({approx}10%-40%). Performance of PEM fuel cell stacks on these dilute hydrogen mixtures will affect the overall electrochemical engine system design as well as the overall efficiency. The Los Alamos Fuel Cell Stack Test facility was used to access the performance of a PEM Fuel cell stack over the range of gas compositions chosen to replicate anode feeds from various fuel processing options for hydrocarbon and alcohol fuels. The focus of the experiments was on the anode performance with dilute hydrogen mixtures with carbon dioxide and nitrogen diluents. Performance with other anode feed contaminants, such as carbon monoxide, are not reported here.

  14. Turbocharging of small internal combustion engine as a means of improving engine/application system fuel economy-further turbocharger improvements. Final report Oct 80-Feb 82

    SciTech Connect (OSTI)

    Arvin, J.R.

    1982-04-01

    Improvements to a small diesel engine turbocharger were made based on data gathered during a previous Army contract. The improved turbocharger was fabricated and tested on a small, four cylinder, 239 CID diesel engine. Engine dynamometer test data revealed a 2 to 9 percent reduction in fuel consumption at all points over the operating envelope. A turbocharger was operated for 1011 hours at speeds between 70000 and 78000 rpm without incident. The ball bearings were in excellent condition at the end of the test. A math model of the engine and turbocharger was generated. The model was used to estimate 13 Mode Federal Diesel Emissions Cycle, the LA4 driving cycle and the application of the variable area turbine nozzle (VATN) turbocharger to a diesel engine driven generator set. A recommendation was made to build a gen set demo unit. A fuel savings of 8 to 10 percent was estimated for a 30KW DED generator set.

  15. Coal-fueled high-speed diesel engine development. Final report, September 28, 1990--November 30, 1993

    SciTech Connect (OSTI)

    Kakwani, R.M.; Winsor, R.E.; Ryan, T.W. III; Schwalb, J.A.; Wahiduzzaman, S.; Wilson, R.P. Jr.

    1993-09-01

    The goal of this program was to study the feasibility of operating a Detroit Diesel Series 149 engine at high speeds using a Coal-Water-Slurry (CWS) fuel. The CWS-fueled 149 engine is proposed for the mine-haul off-highway truck and work boat marine markets. Economic analysis studies indicate that, for these markets, the use of CWS fuel could have sufficient operating cost savings, depending upon the future diesel fuel price, emission control system capital and operating costs, and maintenance and overhaul costs. A major portion of the maintenance costs is expected to be due to lower life and higher cost of the CWS injectors. Injection and combustion systems were specially designed for CWS, and were installed in one cylinder of a Detroit Diesel 8V-149TI engine for testing. The objective was to achieve engine operation for sustained periods at speeds up to 1,900 rpm with reasonable fuel economy and coal burnout rate. A computer simulation predicted autoignition of coal fuel at 1,900 rpm would require an average droplet size of 18 microns and 19:1 compression ratio, so the injection system, and pistons were designed accordingly. The injection system was capable of supplying the required volume of CWS/injection with a duration of approximately 25 crank angle degrees and peak pressures on the order of 100 mpa. In addition to the high compression ratio, the combustion system also utilized hot residual gases in the cylinder, warm inlet air admission and ceramic insulated engine components to enhance combustion. Autoignition of CWS fuel was achieved at 1900 rpm, at loads ranging from 20--80 percent of the rated load of diesel-fuel powered cylinders. Limited emissions data indicates coal burnout rates in excess of 99 percent. NO{sub x} levels were significantly lower, while unburned hydrocarbon levels were higher for the CWS fueled cylinder than for corresponding diesel-fuel powered cylinders.

  16. Uncertainty and sensitivity analysis of fission gas behavior in engineering-scale fuel modeling

    SciTech Connect (OSTI)

    Pastore, Giovanni; Swiler, L. P.; Hales, Jason D.; Novascone, Stephen R.; Perez, Danielle M.; Spencer, Benjamin W.; Luzzi, Lelio; Uffelen, Paul Van; Williamson, Richard L.

    2014-10-12

    The role of uncertainties in fission gas behavior calculations as part of engineering-scale nuclear fuel modeling is investigated using the BISON fuel performance code and a recently implemented physics-based model for the coupled fission gas release and swelling. Through the integration of BISON with the DAKOTA software, a sensitivity analysis of the results to selected model parameters is carried out based on UO2 single-pellet simulations covering different power regimes. The parameters are varied within ranges representative of the relative uncertainties and consistent with the information from the open literature. The study leads to an initial quantitative assessment of the uncertainty in fission gas behavior modeling with the parameter characterization presently available. Also, the relative importance of the single parameters is evaluated. Moreover, a sensitivity analysis is carried out based on simulations of a fuel rod irradiation experiment, pointing out a significant impact of the considered uncertainties on the calculated fission gas release and cladding diametral strain. The results of the study indicate that the commonly accepted deviation between calculated and measured fission gas release by a factor of 2 approximately corresponds to the inherent modeling uncertainty at high fission gas release. Nevertheless, higher deviations may be expected for values around 10% and lower. Implications are discussed in terms of directions of research for the improved modeling of fission gas behavior for engineering purposes.

  17. Uncertainty and sensitivity analysis of fission gas behavior in engineering-scale fuel modeling

    DOE PAGES-Beta [OSTI]

    Pastore, Giovanni; Swiler, L. P.; Hales, Jason D.; Novascone, Stephen R.; Perez, Danielle M.; Spencer, Benjamin W.; Luzzi, Lelio; Uffelen, Paul Van; Williamson, Richard L.

    2014-10-12

    The role of uncertainties in fission gas behavior calculations as part of engineering-scale nuclear fuel modeling is investigated using the BISON fuel performance code and a recently implemented physics-based model for the coupled fission gas release and swelling. Through the integration of BISON with the DAKOTA software, a sensitivity analysis of the results to selected model parameters is carried out based on UO2 single-pellet simulations covering different power regimes. The parameters are varied within ranges representative of the relative uncertainties and consistent with the information from the open literature. The study leads to an initial quantitative assessment of the uncertaintymore » in fission gas behavior modeling with the parameter characterization presently available. Also, the relative importance of the single parameters is evaluated. Moreover, a sensitivity analysis is carried out based on simulations of a fuel rod irradiation experiment, pointing out a significant impact of the considered uncertainties on the calculated fission gas release and cladding diametral strain. The results of the study indicate that the commonly accepted deviation between calculated and measured fission gas release by a factor of 2 approximately corresponds to the inherent modeling uncertainty at high fission gas release. Nevertheless, higher deviations may be expected for values around 10% and lower. Implications are discussed in terms of directions of research for the improved modeling of fission gas behavior for engineering purposes.« less

  18. Uncertainty and sensitivity analysis of fission gas behavior in engineering-scale fuel modeling

    SciTech Connect (OSTI)

    G. Pastore; L.P. Swiler; J.D. Hales; S.R. Novascone; D.M. Perez; B.W. Spencer; L. Luzzi; P. Van Uffelen; R.L. Williamson

    2014-10-01

    The role of uncertainties in fission gas behavior calculations as part of engineering-scale nuclear fuel modeling is investigated using the BISON fuel performance code and a recently implemented physics-based model for the coupled fission gas release and swelling. Through the integration of BISON with the DAKOTA software, a sensitivity analysis of the results to selected model parameters is carried out based on UO2 single-pellet simulations covering different power regimes. The parameters are varied within ranges representative of the relative uncertainties and consistent with the information from the open literature. The study leads to an initial quantitative assessment of the uncertainty in fission gas behavior modeling with the parameter characterization presently available. Also, the relative importance of the single parameters is evaluated. Moreover, a sensitivity analysis is carried out based on simulations of a fuel rod irradiation experiment, pointing out a significant impact of the considered uncertainties on the calculated fission gas release and cladding diametral strain. The results of the study indicate that the commonly accepted deviation between calculated and measured fission gas release by a factor of 2 approximately corresponds to the inherent modeling uncertainty at high fission gas release. Nevertheless, higher deviations may be expected for values around 10% and lower. Implications are discussed in terms of directions of research for the improved modeling of fission gas behavior for engineering purposes.

  19. Emissions From Various Biodiesel Sources Compared to a Range of Diesel Fuels in DPF Equipped Diesel Engines

    SciTech Connect (OSTI)

    Williams, A.; Burton, J.; Christensen, E.; McCormick, R. L.; Tester, J.

    2011-01-01

    The purpose of this study was to measure the impact of various sources of petroleum-based and bio-based diesel fuels on regulated emissions and fuel economy in diesel particulate filter (DPF) equipped diesel engines. Two model year 2008 diesel engines were tested with nine fuels including a certification ultra-low sulfur diesel (ULSD), local ULSD, high aromatic ULSD, low aromatic ULSD, and twenty percent blends of biodiesel derived from algae, camelina, soy, tallow, and yellow grease. Regulated emissions were measured over the heavy duty diesel transient test cycle. Measurements were also made of DPF-out particle size distribution and total particle count from a 13-mode steady state test using a fast mobility particle sizer. Test engines were a 2008 Cummins ISB and a 2008 International Maxx Force 10, both equipped with actively regenerated DPFs. Fuel consumption was roughly 2% greater over the transient test cycle for the B20 blends versus certification ULSD in both engines, consistent with the slightly lower energy content of biodiesel. Unlike studies conducted on older model engines, these engines equipped with diesel oxidation catalysts and DPFs showed small or no measurable fuel effect on the tailpipe emissions of total hydrocarbons (THC), carbon monoxide (CO) and particulate matter (PM). No differences in particle size distribution or total particle count were seen in a comparison of certification ULSD and B20 soy, with the exception of engine idling conditions where B20 produced a small reduction in the number of nucleation mode particles. In the Cummins engine, B20 prepared from algae, camelina, soy, and tallow resulted in an approximately 2.5% increase in nitrogen oxides (NO{sub x}) compared to the base fuel. The International engine demonstrated a higher degree of variability for NO{sub x} emissions, and fuel effects could not be resolved (p > 0.05). The group of petroleum diesel test fuels produced a range of NO{sub x} emissions very similar to that

  20. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center

    ... million in 2008. Section 757 Biodiesel Engine Testing Program Directs DOE to work with engine and fuel injection manufacturers to test biodiesel in advanced diesel fuel engines, ...

  1. Development of a Rapid-Start On-Board Automotive Steam Reformer

    SciTech Connect (OSTI)

    Whyatt, Greg A.; Fischer, Christopher M.; Davis, James M.

    2004-04-29

    The paper reports on the status of efforts to engineer a microchannel steam reforming system to enable a rapid cold start capability. The steam reformer is intended to be coupled with a WGS and PROX reactor to provide reformate to a PEM fuel cell for an automotive propulsion application. A compact and efficient microchannel steam reformer was previously developed that required ~15 minutes to accomplish a cold start. The objective of the current work was to reduce this start time to <30 seconds without sacrificing steady-state efficiency. The paper describes the changes made in the reforming system to enable cold start capability and presents data on reformate flow and temperature transients during cold start testing. The results demonstrate that the system is capable of producing reformate within 22 seconds after a cold start. A strategy for integrating the system with a WGS and PROX reactor to provide a rapid start fuel processing system is described.

  2. Reduction of Nitrogen Oxide Emissions for lean Burn Engine Technology

    SciTech Connect (OSTI)

    McGill, R.N.

    1998-08-04

    Lean-burn engines offer the potential for significant fuel economy improvements in cars and trucks, perhaps the next great breakthrough in automotive technology that will enable greater savings in imported petroleum. The development of lean-burn engines, however, has been an elusive goal among automakers because of the emissions challenges associated with lead-burn engine technology. Presently, cars operate with sophisticated emissions control systems that require the engine's air-fuel ratio to be carefully controlled around the stoichiometric point (chemically correct mixture). Catalysts in these systems are called "three-way" catalysts because they can reduce hydrocarbon, carbon monoxide, and nitrogen oxide emissions simultaneously, but only because of the tight control of the air-fuel ratio. The purpose of this cooperative effort is to develop advanced catalyst systems, materials, and necessary engine control algorithms for reducing NOX emissions in oxygen-rich automotive exhaust (as with lean-burn engine technology) to meet current and near-future mandated Clean Air Act standards. These developments will represent a breakthrough in both emission control technology and automobile efficiency. The total project is a joint effort among five national laboratories, together with US CAR. The role of Lockheed-Martin Energy Systems in the total project is two fold: characterization of catalyst performance through laboratory evaluations from bench-scale flow reactor tests to engine laboratory tests of full-scale prototype catalysts, and microstructural characterization of catalyst material before and after test stand and/or engine testing.

  3. Fuel Cell Technical Team Roadmap

    SciTech Connect (OSTI)

    2013-06-01

    The Fuel Cell Technical Team promotes the development of a fuel cell power system for an automotive powertrain that meets the U.S. DRIVE Partnership (United States Driving Research and Innovation for Vehicle efficiency and Energy sustainability) goals.

  4. Development of OTM Syngas Process and Testing of Syngas Derived Ulta-clean Fuels in Diesel Engines and Fuel Cells Budget Period 3

    SciTech Connect (OSTI)

    E.T. Robinson; John Sirman; Prasad Apte; Xingun Gui; Tytus R. Bulicz; Dan Corgard; Siv Aasland; Kjersti Kleveland; Ann Hooper; Leo Bonnell; John Hemmings; Jack Chen; Bart A. Van Hassel

    2004-12-31

    This topical report summarizes work accomplished for the Program from January 1, 2003 through December 31,2004 in the following task areas: Task 1--Materials Development; Task 2--Composite Development; Task 4--Reactor Design and Process Optimization; Task 8--Fuels and Engine Testing; 8.1 International Diesel Engine Program; and Task IO: Program Management. Most of the key technical objectives for this budget period were achieved. Only partial success was achieved relative to cycle testing under pressure Major improvements in material performance and element reliability have been achieved. A breakthrough material system has driven the development of a compact planar reactor design capable of producing either hydrogen or syngas. The planar reactor shows significant advantages in thermal efficiency and costs compared to either steam methane reforming with CO{sub 2} recovery or autothermal reforming. The fuel and engine testing program is complete The single cylinder test engine evaluation of UCTF fuels begun in Budget Period 2 was finished this budget period. In addition, a study to evaluate new fuel formulations for an HCCl engine was completed.

  5. Fuel injection assembly for use in turbine engines and method of assembling same

    DOE Patents [OSTI]

    Uhm, Jong Ho; Johnson, Thomas Edward

    2015-03-24

    A fuel injection assembly for use in a turbine engine is provided. The fuel injection assembly includes a plurality of tube assemblies, wherein each of the tube assemblies includes an upstream portion and a downstream portion. Each tube assembly includes a plurality of tubes that extend from the upstream portion to the downstream portion or from the upstream portion through the downstream portion. At least one injection system is coupled to at least one tube assembly of the plurality of tube assemblies. The injection system includes a fluid supply member that extends from a fluid source to the downstream portion of the tube assembly. The fluid supply member includes a first end portion located in the downstream portion of the tube assembly, wherein the first end portion has at least one first opening for channeling fluid through the tube assembly to facilitate reducing a temperature therein.

  6. Engineering-Scale Development of Injection Casting Technology for Metal Fuel Cycle

    SciTech Connect (OSTI)

    Ogata, Takanari; Tsukada, Takeshi

    2007-07-01

    Engineering-scale injection casting tests were conducted in order to demonstrate the applicability of injection casting technology to the commercialized fast reactor fuel cycle. The uranium-zirconium alloy slugs produced in the tests were examined with reference to the practical slug specifications: average diameter tolerance {+-} 0.05 mm, local diameter tolerance {+-} 0.1 mm, density range 15.3 to 16.1 g/cm{sup 3}, zirconium content range 10 {+-} 1 wt% and total impurity (C, N, O, Si) <2000 ppm, which were provisionally determined. Most of the slugs satisfied these specifications, except for zirconium content. The impurity level was sufficiently low even though the residual and scrapped alloys were repeatedly recycled. The weight ratio of injected metal to charged metal was sufficiently high for a high process throughput. The injection casting technology will be applicable to the commercialized fuel cycle when the issue of zirconium content variation is resolved. (authors)

  7. Development and Validation of a Reduced Reaction Mechanism for Biodiesel-Fueled Engine Simulations- SAE 2008-01-1378

    SciTech Connect (OSTI)

    Brakora, Jessica L; Ra, Youngchul; Reitz, Rolf; McFarlane, Joanna; Daw, C Stuart

    2008-01-01

    In the present study a skeletal chemical reaction mechanism for biodiesel surrogate fuel was developed and validated for multi-dimensional engine combustion simulations. The reduced mechanism was generated from an existing detailed methyl butanoate oxidation mechanism containing 264 species and 1219 reactions. The reduction process included flux analysis, ignition sensitivity analysis, and optimization of reaction rate constants under constant volume conditions. The current reduced mechanism consists of 41 species and 150 reactions and gives predictions in excellent agreement with those of the comprehensive mechanism. In order to validate the mechanism under biodiesel-fueled engine conditions, it was combined with another skeletal mechanism for n-heptane oxidation. This combined reaction mechanism, ERC-Bio, contains 53 species and 156 reactions, which can be used for diesel/biodiesel blend engine simulations. Biodiesel-fueled engine operation was successfully simulated using the ERC-Bio mechanism.

  8. The use of dimethyl ether as a starting aid for methanol-fueled SI engines at low temperatures

    SciTech Connect (OSTI)

    Kozole, K.H.; Wallace, J.S

    1988-01-01

    Methanol-fueled SI engines have proven to be difficult to start at ambient temperatures below approximately 10/sup 0/C. The use of dimethyl ether (DME) is proposed to improve the cold starting performance of methanol-fueled SI engines. Tests to evaluate this idea were carried out with a modified single-cylinder CFR research engine having a compression ratio of 12:1. The engine was fueled with combinations of gaseous dimethyl ether and liquid methanol having DME mass fractions of 30%, 40%, 60% and 70%. For comparison, tests were also carried out with 100% methanol and with winter grade premium unleaded gasoline. Overall stoichiometric mixtures were used in all tests.

  9. Performance of winter rape (Brassica napus) based fuel mixtures in diesel engines

    SciTech Connect (OSTI)

    Wagner, G.L.; Peterson, C.L.

    1982-01-01

    Winter rape is well adapted to the Palouse region of Northern Idaho and Eastern Washington. Nearly all of the current US production is grown in this region. Yields of 2200 to 2700 kg/ha with 45 percent oil content are common. Even though present production only 2000 to 2500 ha per year, the long history of production and good yields of oil make winter rape the best potential fuel vegetable oil crop for the region. Winter rape oil is more viscous than sunflower oil (50 cSt at 40/sup 0/C for winter rape and 35 cSt at 40/sup 0/C for sunflower oil) and about 17 times more viscous than diesel. The viscosity of the pure oil has been found too high for operation in typical diesel injector systems. Mixtures and/or additives are essential if the oil is to be a satisfactory fuel. Conversely, the fatty acid composition of witer rape oils is such that it is potentially a more favorable fuel because of reduced rates of oxidation and thermal polymerization. This paper will report on results of short and long term engine tests using winter rape, diesel, and commercial additives as the components. Selection of mixtures for long term screening tests was based on laboratory studies which included high temperature oxidation studies and temperature-viscosity data. Fuel temperature has been monitored at the outlet of the injector nozzle on operating engines so that viscosity comparisons at the actual injector temperature can be made. 1 figure, 3 tables.

  10. Co-Optimization of Fuels and Engines (Co-Optima) --Simulation Toolkit Team

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Co-Optimization of Fuels and Engines (Co-Optima) - Simulation Toolkit Team This presentation does not contain any proprietary, confidential, or otherwise restricted information #$%&%" '("')*+,-./ ! "0("012/ 3 "!"#$%&&'()*+(, - #"."#!"#/01%&02, 3# 4"#5&+6*, 7# 8"#.+0%9%2%:, ;# 5"#<%=%>?, @# 8"# A?B?:?'(, @ #C"#C%:, ; #D"#4%E, ; #F"#D%(#!%E, ; #8"#G%*?&2, - #%(0#4"#GH'*?2'0?2 I#

  11. Engineering development of advanced physical fine coal cleaning for premium fuel applications

    SciTech Connect (OSTI)

    Smit, F.J.; Jha, M.C.; Phillips, D.I.; Yoon, R.H.

    1997-04-25

    The goal of this project is engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. Its scope includes laboratory research and bench-scale testing on six coals to optimize these processes, followed by design and construction of a 2 t/h process development unit (PDU). Large lots of clean coal are to be produced in the PDU from three project coals. Investigation of the near-term applicability of the two advanced fine coal cleaning processes in an existing coal preparation plant is another goal of the project and is the subject of this report.

  12. Prospects on fuel economy improvements for hydrogen powered vehicles.

    SciTech Connect (OSTI)

    Rousseau, A.; Wallner, T.; Pagerit, S.; Lohse-Bush, H.

    2008-01-01

    Fuel cell vehicles are the subject of extensive research and development because of their potential for high efficiency and low emissions. Because fuel cell vehicles remain expensive and the demand for hydrogen is therefore limited, very few fueling stations are being built. To try to accelerate the development of a hydrogen economy, some original equipment manufacturers (OEM) in the automotive industry have been working on a hydrogen-fueled internal combustion engine (ICE) as an intermediate step. Despite its lower cost, the hydrogen-fueled ICE offers, for a similar amount of onboard hydrogen, a lower driving range because of its lower efficiency. This paper compares the fuel economy potential of hydrogen-fueled vehicles to their conventional gasoline counterparts. To take uncertainties into account, the current and future status of both technologies were considered. Although complete data related to port fuel injection were provided from engine testing, the map for the direct-injection engine was developed from single-cylinder data. The fuel cell system data represent the status of the current technology and the goals of FreedomCAR. For both port-injected and direct-injected hydrogen engine technologies, power split and series Hybrid Electric Vehicle (HEV) configurations were considered. For the fuel cell system, only a series HEV configuration was simulated.

  13. Coal-water slurry fuel internal combustion engine and method for operating same

    DOE Patents [OSTI]

    McMillian, Michael H.

    1992-01-01

    An internal combustion engine fueled with a coal-water slurry is described. About 90 percent of the coal-water slurry charge utilized in the power cycle of the engine is directly injected into the main combustion chamber where it is ignited by a hot stream of combustion gases discharged from a pilot combustion chamber of a size less than about 10 percent of the total clearance volume of main combustion chamber with the piston at top dead center. The stream of hot combustion gases is provided by injecting less than about 10 percent of the total coal-water slurry charge into the pilot combustion chamber and using a portion of the air from the main combustion chamber that has been heated by the walls defining the pilot combustion chamber as the ignition source for the coal-water slurry injected into the pilot combustion chamber.

  14. Using Fuel Cell Membranes to Improve Power

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ... This technology can be applied to a variety of markets including electrodialysis, alkaline fuel cells, electrolysis, and the automotive industry. Partnership Opportunities Sandia ...

  15. Rebirth of the stirling engine

    SciTech Connect (OSTI)

    Sternlicht, B.

    1983-01-01

    Revived interest in external combustion is attributed to such advantages as ability to use a variety of energy sources, high system efficiency and low pollution. A relatively high weight-power ratio, which is undesirable in propulsion applications, and manufacturing costs that have not yet been refined are the two remaining technological challenges. A diagram explaining the Stirling cycle is presened. It is revealed that the first-generation automotive engine (MOD I), which is now being tested, has efficiency in most of the operating ranges that exceeds the analytical predictions that were incorporated into the design. The engine's power density has been improved by 35%. MOD II, which is the second-generation engine and represents the conclusion of the program in 1985, is expected to have 50% fuel economy improvement. This is considerably greater than the 30% currently specified, and the engine weight is expected to be about 5 lb/hp, which is comparable to the weight of diesel engines. It is also expected to meet or surpass both the emission and noise standards. It is concluded that whether the automotive industry will choose the Stirling engine or the gas turbine as its prime mover will depend on a variety of factors, of which technology is only one.

  16. Lightweight Steel Solutions for Automotive Industry

    SciTech Connect (OSTI)

    Lee, Hong Woo; Kim, Gyosung; Park, Sung Ho

    2010-06-15

    Recently, improvement in fuel efficiency and safety has become the biggest issue in worldwide automotive industry. Although the regulation of environment and safety has been tightened up more and more, the majority of vehicle bodies are still manufactured from stamped steel components. This means that the optimized steel solutions enable to demonstrate its ability to reduce body weight with high crashworthiness performance instead of expensive light weight materials such as Al, Mg and composites. To provide the innovative steel solutions for automotive industry, POSCO has developed AHSS and its application technologies, which is directly connected to EVI activities. EVI is a technical cooperation program with customer covering all stages of new car project from design to mass production. Integrated light weight solutions through new forming technologies such as TWB, hydroforming and HPF are continuously developed and provided for EVI activities. This paper will discuss the detailed status of these technologies especially light weight steel solutions based on innovative technologies.

  17. Optical-Engine Study of a Low-Temperature Combustion Strategy Employing a Dual-Row, Narrow-Included-Angle Nozzle and Early, Direct Injection of Diesel Fuel

    Energy.gov [DOE]

    Insight into mechanisms causing observed sharp emissions increase with diesel fuel injection is gained through experiments in an optical engine employing a similar low-temperature combustion strategy of early, direct injection of diesel fuel.

  18. Modeling of autoignition and NO sensitization for the oxidation of IC engine surrogate fuels

    SciTech Connect (OSTI)

    Anderlohr, J.M. |; Bounaceur, R.; Battin-Leclerc, F.; Pires Da Cruz, A.

    2009-02-15

    This paper presents an approach for modeling with one single kinetic mechanism the chemistry of the autoignition and combustion processes inside an internal combustion engine, as well as the chemical kinetics governing the postoxidation of unburned hydrocarbons in engine exhaust gases. Therefore a new kinetic model was developed, valid over a wide range of temperatures including the negative temperature coefficient regime. The model simulates the autoignition and the oxidation of engine surrogate fuels composed of n-heptane, iso-octane, and toluene, which are sensitized by the presence of nitric oxides. The new model was obtained from previously published mechanisms for the oxidation of alkanes and toluene where the coupling reactions describing interactions between hydrocarbons and NO{sub x} were added. The mechanism was validated against a wide range of experimental data obtained in jet-stirred reactors, rapid compression machines, shock tubes, and homogeneous charge compression ignition engines. Flow rate and sensitivity analysis were performed in order to explain the low temperature chemical kinetics, especially the impact of NO{sub x} on hydrocarbon oxidation. (author)

  19. Production and Engineering of Hydrogenase as a Biocatalyst for Hydrogen Fuel

    SciTech Connect (OSTI)

    Wang, Guangyi

    2010-04-09

    Hydrogenases are fascinating redox proteins, showing tremendous promise in the utilization of hydrogen fuel as a bioelectrocatalyst. They play critical roles in both biohydrogen production and hydrogen oxidation. Specifically, the recently-established comparability of the oxidative activity of the [NiFe]-hydrogenase active site to that of the fuel cell catalyst platinum marks a significant milestone for the potential application of hydrogenase in hydrogen fuel cells to replace platinum. However, the ability of producing hydrogenase in heterologous expression hosts and the sensitivity of hydrogenases to oxygen and carbon monoxide, etc. have seriously limited the viable macroscale utilization and production of hydrogen from the renewable source. A new technology for the production of up-take hydrogenase is being developed for the utilization of hydrogenase as a hydrogen catalyst. The development of this new technology integrates knowledge of structural biology, molecular biology, and principles of metabolic engineering to produce and engineer a stable hydrogenase as a hydrogen bioelectrocatalyst. It contributes to the critical issues of expensive noble metal catalysts (i.e., platinum) and their limited reserves threatening the long-term sustainability of a hydrogen economy. It also provides a model to design natural materials and enzyme catalyst for efficient and cost-effective technologies for a clean and sustainable energy in 21st century. This new technology includes 3 major components. The first component is the synthetic operons, which carry hydrogenase maturation pathways of Ralstonia eutropha. These synthetic operons are engineered to produce RH hydrogenase in the Escherichia coli strains based on our current molecular and genetic information of hydrogenase maturation mechanisms and pathways of R. eutropha. It presents the first example of producing hydrogenase in the conventional expression host using synthetic biology principles and tool kits. For the

  20. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs draft environmental impact statement. Volume 1, Appendix B: Idaho National Engineering Laboratory Spent Nuclear Fuel Management Program

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    The US Department of Energy (DOE) has prepared this report to assist its management in making two decisions. The first decision, which is programmatic, is to determine the management program for DOE spent nuclear fuel. The second decision is on the future direction of environmental restoration, waste management, and spent nuclear fuel management activities at the Idaho National Engineering Laboratory. Volume 1 of the EIS, which supports the programmatic decision, considers the effects of spent nuclear fuel management on the quality of the human and natural environment for planning years 1995 through 2035. DOE has derived the information and analysis results in Volume 1 from several site-specific appendixes. Volume 2 of the EIS, which supports the INEL-specific decision, describes environmental impacts for various environmental restoration, waste management, and spent nuclear fuel management alternatives for planning years 1995 through 2005. This Appendix B to Volume 1 considers the impacts on the INEL environment of the implementation of various DOE-wide spent nuclear fuel management alternatives. The Naval Nuclear Propulsion Program, which is a joint Navy/DOE program, is responsible for spent naval nuclear fuel examination at the INEL. For this appendix, naval fuel that has been examined at the Naval Reactors Facility and turned over to DOE for storage is termed naval-type fuel. This appendix evaluates the management of DOE spent nuclear fuel including naval-type fuel.