National Library of Energy BETA

Sample records for fuel-saving technologies figure

  1. Road to Fuel Savings: GM Technology Ramps Up Engine Efficiency

    Energy.gov [DOE]

    Learn how a new compact technology in the 2014 Chevy Impala is having a big impact on the vehicle's fuel consumption.

  2. Boise Inc. St. Helens Paper Mill Achieves Significant Fuel Savings; Industrial Technologies Program (ITP) Save Energy Now (SEN) Case Study

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Boise Inc. St. Helens mill produces nearly 1,000 tons of pulp and specialty paper per day, including a wide variety of light-to-heavy paper and napkin grade tissues. Boise Inc. St. Helens Paper Mill Achieves Significant Fuel Savings Annual Energy Savings Exceed $1 Million Industrial Technologies Program Case Study Benefits * Achieved annual energy cost savings of more than $1 million * Achieved annual fuel savings of approximately 154,000 MMBtu * Revealed innovative method to save energy *

  3. Fact #916: March 14, 2016 Fuel Savings/Emissions Reduction was the Top Reason Cited by Truck Fleet Management for Adopting Idle Reduction Technologies- Dataset

    Energy.gov [DOE]

    Excel file and dataset for Fuel Savings/Emissions Reduction was the Top Reason Cited by Truck Fleet Management for Adopting Idle Reduction Technologies

  4. Fuel Savings and Emission Reductions from Next-Generation Mobile Air Conditioning Technology in India: Preprint

    SciTech Connect

    Chaney, L.; Thundiyil, K.; Chidambaram, S.; Abbi, Y. P.; Anderson, S.

    2007-05-01

    This paper quantifies the mobile air-conditioning fuel consumption of the typical Indian vehicle, exploring potential fuel savings and emissions reductions these systems for the next generation of vehicles.

  5. Fuel Savings and Emission Reductions from Next-Generation Mobile Air Conditioning Technology in India

    SciTech Connect

    Chaney, L.; Thundiyil, K.; Andersen, S.; Chidambaram, S.; Abbi, Y. P.

    2007-01-01

    Up to 19.4% of vehicle fuel consumption in India is devoted to air conditioning (A/C). Indian A/C fuel consumption is almost four times the fuel penalty in the United States and close to six times that in the European Union because India's temperature and humidity are higher and because road congestion forces vehicles to operate inefficiently. Car A/C efficiency in India is an issue worthy of national attention considering the rate of increase of A/C penetration into the new car market, India's hot climatic conditions and high fuel costs. Car A/C systems originally posed an ozone layer depletion concern. Now that industrialized and many developing countries have moved away from ozone-depleting substances per Montreal Protocol obligations, car A/C impact on climate has captured the attention of policy makers and corporate leaders. Car A/C systems have a climate impact from potent global warming potential gas emissions and from fuel used to power the car A/Cs. This paper focuses on car A/C fuel consumption in the context of the rapidly expanding Indian car market and how new technological improvements can result in significant fuel savings and consequently, emission reductions. A 19.4% fuel penalty is associated with A/C use in the typical Indian passenger car. Car A/C fuel use and associated tailpipe emissions are strong functions of vehicle design, vehicle use, and climate conditions. Several techniques: reducing thermal load, improving vehicle design, improving occupants thermal comfort design, improving equipment, educating consumers on impacts of driver behaviour on MAC fuel use, and others - can lead to reduced A/C fuel consumption.

  6. Industrial Heat Pumps for Steam and Fuel Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Heat Pumps for Steam and Fuel Savings Industrial Heat Pumps for Steam and Fuel Savings This brief introduces heat-pump technology and its application in industrial processes as part of steam systems. The focus is on the most common applications, with guidelines for initial identification and evaluation of the opportunities being provided. Industrial Heat Pumps for Steam and Fuel Savings (June 2003) (445.24 KB) More Documents & Publications This thermoelastic system provides a promising

  7. Alternative Fuels Data Center: Alternative Fuels Save Money in Indy

    Alternative Fuels and Advanced Vehicles Data Center

    Alternative Fuels Save Money in Indy to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Save Money in Indy on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Save Money in Indy on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Save Money in Indy on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Save Money in Indy on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Save Money in Indy on Digg Find

  8. Boise Inc. St. Helens Paper Mill Achieves Significant Fuel Savings...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Boise Inc. St. Helens Paper Mill Achieves Significant Fuel Savings Boise Inc. St. Helens Paper Mill Achieves Significant Fuel Savings This case study describes how the Boise Inc. ...

  9. Fact #916: March 14, 2016 Fuel Savings/Emissions Reduction was the Top

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Reason Cited by Truck Fleet Management for Adopting Idle Reduction Technologies | Department of Energy 6: March 14, 2016 Fuel Savings/Emissions Reduction was the Top Reason Cited by Truck Fleet Management for Adopting Idle Reduction Technologies Fact #916: March 14, 2016 Fuel Savings/Emissions Reduction was the Top Reason Cited by Truck Fleet Management for Adopting Idle Reduction Technologies SUBSCRIBE to the Fact of the Week The 2015 Work Truck Electrification and Idle Management Study

  10. Analyzing Vehicle Fuel Saving Opportunities through Intelligent Driver Feedback

    SciTech Connect

    Gonder, J.; Earleywine, M.; Sparks, W.

    2012-06-01

    Driving style changes, e.g., improving driver efficiency and motivating driver behavior changes, could deliver significant petroleum savings. This project examines eliminating stop-and-go driving and unnecessary idling, and also adjusting acceleration rates and cruising speeds to ideal levels to quantify fuel savings. Such extreme adjustments can result in dramatic fuel savings of over 30%, but would in reality only be achievable through automated control of vehicles and traffic flow. In real-world driving, efficient driving behaviors could reduce fuel use by 20% on aggressively driven cycles and by 5-10% on more moderately driven trips. A literature survey was conducted of driver behavior influences, and pertinent factors from on-road experiments with different driving styles were observed. This effort highlighted important driver influences such as surrounding vehicle behavior, anxiety over trying to get somewhere quickly, and the power/torque available from the vehicle. Existing feedback approaches often deliver efficiency information and instruction. Three recommendations for maximizing fuel savings from potential drive cycle improvement are: (1) leveraging applications with enhanced incentives, (2) using an approach that is easy and widely deployable to motivate drivers, and (3) utilizing connected vehicle and automation technologies to achieve large and widespread efficiency improvements.

  11. EERE Success Story-Filter Sensor Demonstrates that Fuel Savings in New

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    York Diesel Fleet is Ready for Commercialization | Department of Energy Filter Sensor Demonstrates that Fuel Savings in New York Diesel Fleet is Ready for Commercialization EERE Success Story-Filter Sensor Demonstrates that Fuel Savings in New York Diesel Fleet is Ready for Commercialization October 6, 2016 - 12:13pm Addthis Filter Sensing Technologies, Inc. (FST) developed this R&D 100 award winning diesel particulate filter sensor as part of a project supported by EERE’s Vehicle

  12. Boise Inc. St. Helens Paper Mill Achieves Significant Fuel Savings |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Boise Inc. St. Helens Paper Mill Achieves Significant Fuel Savings Boise Inc. St. Helens Paper Mill Achieves Significant Fuel Savings This case study describes how the Boise Inc. paper mill in St. Helens, Oregon, achieved annual savings of approximately 154,000 MMBtu and more than $1 million. This was accomplished after receiving a DOE energy assessment and implementing recommendations to improve the efficiency of its steam system. Boise Inc. St. Helens Paper Mill

  13. Final Report on the Fuel Saving Effectiveness of Various Driver Feedback Approaches

    SciTech Connect

    Gonder, J.; Earleywine, M.; Sparks, W.

    2011-03-01

    This final report quantifies the fuel-savings opportunities from specific driving behavior changes, identifies factors that influence drivers' receptiveness to adopting fuel-saving behaviors, and assesses various driver feedback approaches.

  14. Fuel Savings Potential from Future In-motion Wireless Power Transfer (WPT); NREL (National Renewable Energy Laboratory)

    SciTech Connect

    Burton, E.; Wang, L.; Gonder, J.; Brooker, A.; Konan, A.

    2015-02-10

    This presentation discusses the fuel savings potential from future in-motion wireless power transfer. There is an extensive overlap in road usage apparent across regional vehicle population, which occurs primarily on high-capacity roads--1% of roads are used for 25% of the vehicle miles traveled. Interstates and highways make up between 2.5% and 4% of the total roads within the Consolidated Statistical Areas (CSAs), which represent groupings of metropolitan and/or micropolitan statistical areas. Mileage traveled on the interstates and highways ranges from 54% in California to 24% in Chicago. Road electrification could remove range restrictions of electric vehicles and increase the fuel savings of PHEVs or HEVs if implemented on a large scale. If 1% of the road miles within a geographic area are electrified, 25% of the fuel used by a 'fleet' of vehicles enabled with the technology could be displaced.

  15. Fact #776: April 22, 2013 Fuel Savings from Attempts to Alleviate Traffic

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Congestion | Department of Energy 6: April 22, 2013 Fuel Savings from Attempts to Alleviate Traffic Congestion Fact #776: April 22, 2013 Fuel Savings from Attempts to Alleviate Traffic Congestion Despite the news that traffic congestion wasted nearly 2.9 billion gallons of fuel in 2011, fuel savings were achieved due to efforts to combat congestion. According to the Texas Transportation Institute, public transportation was responsible for a savings of 450 million gallons of fuel in 2011.

  16. Facts, Figures

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Figures Facts, Figures The Lab's mission is to develop and apply science and technology to ensure the safety, security, and reliability of the U.S. nuclear deterrent; reduce global threats; and solve other emerging national security and energy challenges. Facts, Figures for 2016 People Total employees: 10,500, including approximately: Los Alamos National Security, LLC: 6,850 Centerra-LA (Guard Force): 300 Contractors: 400 Students: 1,100 Unionized craft workers: 880 Post doctoral researchers:

  17. Fuel Savings Potential from Future In-motion Wireless Power Transfer...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Fuel Savings Potential from Future In-motion Wireless Power Transfer (WPT) E. Burton, L. ... charge or direct power to the motor o Charging efficiencies at high speed o Metrics ...

  18. Fact #776: April 22, 2013 Fuel Savings from Attempts to Alleviate...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fuel Saved Due to Methods of Alleviating Congestion Year Operational Treatments and High-Occupancy Vehicle Lanes Public Transportation 1982 1 204 1983 4 208 1984 7 219 1985 9 235 ...

  19. NREL Estimates U.S. Hybrid Electric Vehicle Fuel Savings - News...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Estimates U.S. Hybrid Electric Vehicle Fuel Savings June 20, 2007 Hybrid electric vehicles have saved close to 230 million gallons - or 5.5 million barrels - of fuel in the United ...

  20. Gobble Up Fuel Savings on Your Next Road Trip with My Trip Calculator |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Gobble Up Fuel Savings on Your Next Road Trip with My Trip Calculator Gobble Up Fuel Savings on Your Next Road Trip with My Trip Calculator November 19, 2012 - 9:51am Addthis Save time and money on your next road trip with fueleconomy.gov's newest tool, <a href="http://www.fueleconomy.gov/trip/">My Trip Calculator</a>. | Photo courtesy of iStockphoto.com/gioadventures. Save time and money on your next road trip with fueleconomy.gov's newest tool, My

  1. Analyzing Fuel Saving Opportunities through Driver Feedback Mechanisms

    Office of Energy Efficiency and Renewable Energy (EERE)

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  2. Analyzing Fuel Saving Opportunities through Driver Feedback Mechanisms...

    Energy.gov [DOE] (indexed site)

    More Documents & Publications Analysis of maximizing the Synergy between PHEVsEVs and PV Defining Real World Drive Cycles to Support APRF Technology Evaluations Real-World PHEV ...

  3. Market Implications of Synergism Between Low Drag Area and Electric Drive Fuel Savings

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Implications of Synergism Between Low Drag Area and Electric Drive Fuel Savings by Dan Santini, Anant Vyas Center for Transportation Research Argonne National Laboratory Doug Saucedo, Bryan Jungers Electric Power Research Institute Presented at: Light-Duty Vehicle Workshop July 26, 2010 U.S. Department of Energy Washington DC The submitted manuscript has been created by Argonne National Laboratory, a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC, under Contract No.

  4. Fact #793: August 19, 2013 Improvements in Fuel Economy for Low-MPG Vehicles Yield the Greatest Fuel Savings

    Energy.gov [DOE]

    The relationship between gallons used over a given distance and miles per gallon (mpg) is not linear. Thus, an increase in fuel economy by 5 mpg does not translate to a constant fuel savings amount...

  5. Fuel savings and emissions reductions from light duty fuel cell vehicles

    SciTech Connect

    Mark, J; Ohi, J M; Hudson, Jr, D V

    1994-04-01

    Fuel cell vehicles (FCVs) operate efficiently, emit few pollutants, and run on nonpetroleum fuels. Because of these characteristics, the large-scale deployment of FCVs has the potential to lessen US dependence on foreign oil and improve air quality. This study characterizes the benefits of large-scale FCV deployment in the light duty vehicle market. Specifically, the study assesses the potential fuel savings and emissions reductions resulting from large-scale use of these FCVs and identifies the key parameters that affect the scope of the benefits from FCV use. The analysis scenario assumes that FCVs will compete with gasoline-powered light trucks and cars in the new vehicle market for replacement of retired vehicles and will compete for growth in the total market. Analysts concluded that the potential benefits from FCVs, measured in terms of consumer outlays for motor fuel and the value of reduced air emissions, are substantial.

  6. 54.5 MPG and Beyond: New Tire Technology Pumps Up Fuel Savings...

    Energy Saver

    MECHANICS 2012 Breakthrough Awards and named one of the best inventions of 2012 by TIME, Goodyear's self-regulating tire has the potential to revolutionize tire maintenance. ...

  7. Steam Technical Brief: Industrial Heat Pumps for Steam and Fuel Savings

    SciTech Connect

    2010-06-25

    The purpose of this Steam Techcial Brief is to introduce heat-pump technology and its applicaiton in industrial processes.

  8. Cancer Facts & Figures - 2010

    National Nuclear Security Administration (NNSA)

    ... among smokers), certain metals (chromium, cadmium, arsenic), 16 Cancer Facts & Figures 2010 some organic chemicals, radiation, air pollution, and a history of tuberculosis. ...

  9. Advances in Transportation Technologies | Department of Energy

    Office of Environmental Management (EM)

    Transportation Technologies Advances in Transportation Technologies Advances in Transportation Technologies (279.82 KB) More Documents & Publications TEC Working Group Topic Groups Rail Archived Documents Analyzing Fuel Saving Opportunities through Driver Feedback Mechanisms Analysis of maximizing the Synergy between PHEVs/EVs and PV

  10. Comparative Study of Hybrid Powertrains on Fuel Saving, Emissions, and Component Energy Loss in HD Trucks

    SciTech Connect

    Gao, Zhiming; Finney, Charles; Daw, Charles; LaClair, Tim J.; Smith, David

    2014-09-30

    We compared parallel and series hybrid powertrains on fuel economy, component energy loss, and emissions control in Class 8 trucks over both city and highway driving. A comprehensive set of component models describing battery energy, engine fuel efficiency, emissions control, and power demand interactions for heavy duty (HD) hybrids has been integrated with parallel and series hybrid Class 8 trucks in order to identify the technical barriers of these hybrid powertrain technologies. The results show that series hybrid is absolutely negative for fuel economy benefit of long-haul trucks due to an efficiency penalty associated with the dual-step conversions of energy (i.e. mechanical to electric to mechanical). The current parallel hybrid technology combined with 50% auxiliary load reduction could elevate 5-7% fuel economy of long-haul trucks, but a profound improvement of long-haul truck fuel economy requires additional innovative technologies for reducing aerodynamic drag and rolling resistance losses. The simulated emissions control indicates that hybrid trucks reduce more CO and HC emissions than conventional trucks. The simulated results further indicate that the catalyzed DPF played an important role in CO oxidations. Limited NH3 emissions could be slipped from the Urea SCR, but the average NH3 emissions are below 20 ppm. Meanwhile our estimations show 1.5-1.9% of equivalent fuel-cost penalty due to urea consumption in the simulated SCR cases.

  11. Comparative Study of Hybrid Powertrains on Fuel Saving, Emissions, and Component Energy Loss in HD Trucks

    DOE PAGES [OSTI]

    Gao, Zhiming; Finney, Charles; Daw, Charles; LaClair, Tim J.; Smith, David

    2014-09-30

    We compared parallel and series hybrid powertrains on fuel economy, component energy loss, and emissions control in Class 8 trucks over both city and highway driving. A comprehensive set of component models describing battery energy, engine fuel efficiency, emissions control, and power demand interactions for heavy duty (HD) hybrids has been integrated with parallel and series hybrid Class 8 trucks in order to identify the technical barriers of these hybrid powertrain technologies. The results show that series hybrid is absolutely negative for fuel economy benefit of long-haul trucks due to an efficiency penalty associated with the dual-step conversions of energymore » (i.e. mechanical to electric to mechanical). The current parallel hybrid technology combined with 50% auxiliary load reduction could elevate 5-7% fuel economy of long-haul trucks, but a profound improvement of long-haul truck fuel economy requires additional innovative technologies for reducing aerodynamic drag and rolling resistance losses. The simulated emissions control indicates that hybrid trucks reduce more CO and HC emissions than conventional trucks. The simulated results further indicate that the catalyzed DPF played an important role in CO oxidations. Limited NH3 emissions could be slipped from the Urea SCR, but the average NH3 emissions are below 20 ppm. Meanwhile our estimations show 1.5-1.9% of equivalent fuel-cost penalty due to urea consumption in the simulated SCR cases.« less

  12. Comparative Study of Hybrid Powertrains on Fuel Saving, Emissions, and Component Energy Loss in HD Trucks

    SciTech Connect

    Gao, Zhiming; FINNEY, Charles E A; Daw, C Stuart; LaClair, Tim J; Smith, David E

    2014-01-01

    We compared parallel and series hybrid powertrains on fuel economy, component energy loss, and emissions control in Class 8 trucks over both city and highway driving. A comprehensive set of component models describing battery energy, engine fuel efficiency, emissions control, and power demand interactions for heavy duty (HD) hybrids has been integrated with parallel and series hybrid Class 8 trucks in order to identify the technical barriers of these hybrid powertrain technologies. The results show that series hybrid is absolutely negative for fuel economy benefit of long-haul trucks due to an efficiency penalty associated with the dual-step conversions of energy (i.e. mechanical to electric to mechanical). The current parallel hybrid technology combined with 50% auxiliary load reduction could elevate 5-7% fuel economy of long-haul trucks, but a profound improvement of long-haul truck fuel economy requires additional innovative technologies for reducing aerodynamic drag and rolling resistance losses. The simulated emissions control indicates that hybrid trucks reduce more CO and HC emissions than conventional trucks. The simulated results further indicate that the catalyzed DPF played an important role in CO oxidations. Limited NH3 emissions could be slipped from the Urea SCR, but the average NH3 emissions are below 20 ppm. Meanwhile our estimations show 1.5-1.9% of equivalent fuel-cost penalty due to urea consumption in the simulated SCR cases.

  13. Exploring Fuel-Saving Potential of Long-Haul Truck Hybridization

    SciTech Connect

    Gao, Zhiming; LaClair, Tim J.; Smith, David E.; Daw, C. Stuart

    2015-10-01

    We report our comparisons on the simulated fuel economy for parallel, series, and dual-mode hybrid electric long-haul trucks, in addition to a conventional powertrain configuration, powered by a commercial 2010-compliant 15-L diesel engine over a freeway-dominated heavy-duty truck driving cycle. The driving cycle was obtained by measurement during normal driving conditions. The results indicated that both parallel and dual-mode hybrid powertrains were capable of improving fuel economy by 7% to 8%. But there was no significant fuel economy benefit for the series hybrid truck because of internal inefficiencies in energy exchange. When reduced aerodynamic drag and tire rolling resistance were combined with hybridization, there was a synergistic fuel economy benefit for appropriate hybrids that increased the fuel economy benefit to more than 15%. Long-haul hybrid trucks with reduced aerodynamic drag and rolling resistance offered lower peak engine loads, better kinetic energy recovery, and reduced average engine power demand. Therefore, it is expected that hybridization with load reduction technologies offers important potential fuel energy savings for future long-haul trucks.

  14. Exploring Fuel-Saving Potential of Long-Haul Truck Hybridization

    DOE PAGES [OSTI]

    Gao, Zhiming; LaClair, Tim J.; Smith, David E.; Daw, C. Stuart

    2015-10-01

    We report our comparisons on the simulated fuel economy for parallel, series, and dual-mode hybrid electric long-haul trucks, in addition to a conventional powertrain configuration, powered by a commercial 2010-compliant 15-L diesel engine over a freeway-dominated heavy-duty truck driving cycle. The driving cycle was obtained by measurement during normal driving conditions. The results indicated that both parallel and dual-mode hybrid powertrains were capable of improving fuel economy by 7% to 8%. But there was no significant fuel economy benefit for the series hybrid truck because of internal inefficiencies in energy exchange. When reduced aerodynamic drag and tire rolling resistance weremore » combined with hybridization, there was a synergistic fuel economy benefit for appropriate hybrids that increased the fuel economy benefit to more than 15%. Long-haul hybrid trucks with reduced aerodynamic drag and rolling resistance offered lower peak engine loads, better kinetic energy recovery, and reduced average engine power demand. Therefore, it is expected that hybridization with load reduction technologies offers important potential fuel energy savings for future long-haul trucks.« less

  15. Influence of district heating water temperatures on the fuel saving and reduction of ecological cost of the heat generation

    SciTech Connect

    Portacha, J.; Smyk, A.; Zielinski, A.; Misiewicz, L.

    1998-07-01

    Results of examinations carried out on the district heating water temperature influence in the cogeneration plant with respect to both the fuel economy and the ecological cost reduction of heat generation for the purposes of heating and hot service water preparation are presented in this paper. The decrease of water return temperature effectively contributes to the increase of fuel savings in all the examined cases. The quantitative savings depend on the outlet water temperature of the cogeneration plant and on the fuel type combusted at the alternative heat generating plant. A mathematical model and a numerical method for calculations of annual cogeneration plant performance, e.g. annual heat and electrical energy produced in cogeneration mode, and the annual fuel consumption, are also discussed. In the discussed mathematical model, the variable operating conditions of cogeneration plant vs. outside temperature and method of control can be determined. The thermal system of cogeneration plant was decomposed into subsystems so as to set up the mathematical model. The determination of subsystem tasks, including a method of convenient aggregation thereof is an essential element of numerical method for calculations of a specific cogeneration plant thermal system under changing conditions. Costs of heat losses in the environment, resulting from the pollutants emission, being formed in the fuel combustion process in the heat sources, were defined. In addition, the environment quantitative and qualitative pollution characteristics were determined both for the heat generation in a cogeneration plant and for an alternative heat-generating plant. Based on the calculations, a profitable decrease of ecological costs is achieved in the cogeneration economy even if compared with the gas-fired heat generating plant. Ecological costs of coal-fired heat generating plant are almost three time higher than those of the comparable cogeneration plant.

  16. Microsoft Word - figure_21.doc

    Energy Information Administration (EIA) (indexed site)

    5 Figure 21. Average citygate price of natural gas in the United States, 2014 (dollars per thousand cubic feet) U.S. Energy Information Administration | Natural Gas Annual ...

  17. Application of a Tractive Energy Analysis to Quantify the Benefits of Advanced Efficiency Technologies Using Characteristic Drive Cycle Data

    SciTech Connect

    LaClair, Tim J

    2012-01-01

    Accurately predicting the fuel savings that can be achieved with the implementation of various technologies developed for fuel efficiency can be very challenging, particularly when considering combinations of technologies. Differences in the usage of highway vehicles can strongly influence the benefits realized with any given technology, which makes generalizations about fuel savings inappropriate for different vehicle applications. A model has been developed to estimate the potential for reducing fuel consumption when advanced efficiency technologies, or combinations of these technologies, are employed on highway vehicles, particularly medium- and heavy-duty trucks. The approach is based on a tractive energy analysis applied to drive cycles representative of the vehicle usage, and the analysis specifically accounts for individual energy loss factors that characterize the technologies of interest. This tractive energy evaluation is demonstrated by analyzing measured drive cycles from a long-haul trucking fleet and the results of an assessment of the fuel savings potential for combinations of technologies are presented. The results of this research will enable more reliable estimates of the fuel savings benefits that can be realized with particular technologies and technology combinations for individual trucking applications so that decision makers can make informed investment decisions for the implementation of advanced efficiency technologies.

  18. Microsoft Word - figure_25.doc

    Energy Information Administration (EIA) (indexed site)

    1 Figure 25. Average price of natural gas delivered to U.S. electric power consumers, 2014 (dollars per thousand cubic feet) U.S. Energy Information Administration | Natural Gas ...

  19. Microsoft Word - figure_24.doc

    Energy Information Administration (EIA) (indexed site)

    0 Figure 24. Average price of natural gas delivered to U.S. onsystem industrial consumers, 2014 (dollars per thousand cubic feet) U.S. Energy Information Administration | Natural ...

  20. Microsoft Word - figure_22.doc

    Energy Information Administration (EIA) (indexed site)

    8 Figure 22. Average price of natural gas delivered to U.S. residential consumers, 2014 (dollars per thousand cubic feet) U.S. Energy Information Administration | Natural Gas ...

  1. Microsoft Word - figure_23.doc

    Energy Information Administration (EIA) (indexed site)

    9 Figure 23. Average price of natural gas delivered to U.S. commercial consumers, 2014 (dollars per thousand cubic feet) U.S. Energy Information Administration | Natural Gas Annual ...

  2. Microsoft Word - Figure_01.doc

    Energy Information Administration (EIA) (indexed site)

    3 Figure 1. Selected average prices of natural gas in the United States, 2010-2014 0 1 2 3 4 5 6 7 2010 2011 2012 2013 2014 E xports Im ports C itygate dollars per thousand cubic ...

  3. Technology

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Technology A research team at the University of Colorado has developed a novel heat exchanger design and accompanying manufacturing technique for creating low-cost microchannel heat exchangers from plastics, metals, or ceramics. The prototype used laser welding (upper red lines at right). Expansion makes "chessboard" counter flow pattern (lower right). The figure below shows mass production, where sheets are added one at a time and welded with a mask and filament (left) or laser

  4. NREL: Transportation Research - Vehicle Technology Simulation and Analysis

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Tools Vehicle Technology Simulation and Analysis Tools NREL's systems analysis and integration team uses the following NREL-developed modeling, simulation, and analysis tools to investigate novel vehicle technologies with the potential to achieve significant fuel savings and greenhouse gas reductions. NREL conducts technical analyses of promising technologies and explores trade-offs between component sizes and design goals (e.g., fuel economy versus performance) to find cost-competitive

  5. Microsoft Word - Figure_05.doc

    Energy Information Administration (EIA) (indexed site)

    24 0 1 2 3 4 2013 2014 2015 2016 2017 All Storage Fields Other than Salt Caverns Salt Caverns trillion cubic feet Trillion Cubic Feet Figure 5 Note: Geographic coverage is the 50 states and the District of Columbia. Alaska was added to U.S. total as of January 2013. Source: Energy Information Administration (EIA): Form EIA-191, "Monthly Underground Gas Storage Report." Billion Cubic Meters Figure 5. Working gas in underground natural gas storage in the United States, 2013-2016

  6. Working Gas in Underground Storage Figure

    Annual Energy Outlook

    Working Gas in Underground Storage Figure Working Gas in Underground Storage Figure Working Gas in Underground Storage Compared with 5-Year Range Graph....

  7. Working Gas in Underground Storage Figure

    Annual Energy Outlook

    Gas in Underground Storage Figure Working Gas in Underground Storage Compared with 5-Year Range Graph...

  8. Leveraging Intelligent Vehicle Technologies to Maximize Fuel Economy (Presentation)

    SciTech Connect

    Gonder, J.

    2011-11-01

    Advancements in vehicle electronics, along with communication and sensing technologies, have led to a growing number of intelligent vehicle applications. Example systems include those for advanced driver information, route planning and prediction, driver assistance, and crash avoidance. The National Renewable Energy Laboratory is exploring ways to leverage intelligent vehicle systems to achieve fuel savings. This presentation discusses several potential applications, such as providing intelligent feedback to drivers on specific ways to improve their driving efficiency, and using information about upcoming driving to optimize electrified vehicle control strategies for maximum energy efficiency and battery life. The talk also covers the potential of Advanced Driver Assistance Systems (ADAS) and related technologies to deliver significant fuel savings in addition to providing safety and convenience benefits.

  9. Microsoft Word - Figure_02.doc

    Energy Information Administration (EIA) (indexed site)

    6 0.0 0.2 0.4 0.6 0.8 1.0 1.2 2013 2014 2015 2016 2017 Residential Commercial trillion cubic feet Figure 2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 2013 2014 2015 2016 2017 Industrial Electric Power trillion cubic feet Sources: 2013-2015: Energy Information Administration (EIA): Form EIA-857, "Monthly Report of Natural Gas Purchases and Deliveries to Consumers"; Form EIA-923, "Power Plant Operations Report"; EIA computations; and Natural Gas Annual 2015. January 2016 through current

  10. Working Gas in Underground Storage Figure

    Gasoline and Diesel Fuel Update

    Working Gas in Underground Storage Figure Working Gas in Underground Storage Compared with 5-Year Range Graph.

  11. Microsoft Word - figure_14.doc

    Energy Information Administration (EIA) (indexed site)

    42 Figure 14. Net interstate movements, imports, and exports of natural gas in the United States, 2015 (million cubic feet) Norway Trinidad/ Tobago Yemen Norway Egypt Turkey Interstate Movements Not Shown on Map From Volume To From Volume To CT RI MD DC IN MA MD VA MA CT RI MA MA NH VA DC WA MT ID OR W Y ND SD CA NV UT CO NE KS AZ NM OK TX MN WI MI IA IL IN OH MO AR MS AL GA TN KY FL SC NC WV MD DE VA PA NJ NY CT RI MA VT NH ME LA HI AK Mexico Canada Canada Canada Canada Canada Canada Canada

  12. PHOBOS Experiment: Figures and Data

    DOE Data Explorer

    The PHOBOS Collaboration

    PHOBOS consists of many silicon detectors surrounding the interaction region. With these detectors physicists can count the total number of produced particles and study the angular distributions of all the products. Physicists know from other branches of physics that a characteristic of phase transitions are fluctuations in physical observables. With the PHOBOS array they look for unusual events or fluctuations in the number of particles and angular distribution. The articles that have appeared in refereed science journals are listed here with separate links to the supporting data plots, figures, and tables of numeric data.  See also supporting data for articles in technical journals at http://www.phobos.bnl.gov/Publications/Technical/phobos_technical_publications.htm and from conference proceedings at http://www.phobos.bnl.gov/Publications/Proceedings/phobos_proceedings_publications.htm

  13. PHOBOS Experiment: Figures and Data

    DOE Data Explorer

    The PHOBOS Collaboration

    PHOBOS consists of many silicon detectors surrounding the interaction region. With these detectors physicists can count the total number of produced particles and study the angular distributions of all the products. Physicists know from other branches of physics that a characteristic of phase transitions are fluctuations in physical observables. With the PHOBOS array they look for unusual events or fluctuations in the number of particles and angular distribution. The articles that have appeared in refereed science journals are listed here with separate links to the supporting data plots, figures, and tables of numeric data. See also supporting data for articles in technical journals at http://www.phobos.bnl.gov/Publications/Technical/phobos_technical_publications.htm and from conference proceedings at http://www.phobos.bnl.gov/Publications/Proceedings/phobos_proceedings_publications.htm

  14. Figure2.jpg | OSTI, US Dept of Energy Office of Scientific and Technical

    Office of Scientific and Technical Information (OSTI)

    Information Figure2

  15. Figure3.jpg | OSTI, US Dept of Energy Office of Scientific and Technical

    Office of Scientific and Technical Information (OSTI)

    Information Figure3

  16. Figure4.jpg | OSTI, US Dept of Energy Office of Scientific and Technical

    Office of Scientific and Technical Information (OSTI)

    Information Figure4

  17. Microsoft Word - Figure_13_2015.doc

    Energy Information Administration (EIA) (indexed site)

    35 2015 Flow Capacity (million cubic feet per day) Figure 13. Principal Interstate Natural Gas Flow Capacity Summary, 2015 Source: Energy Information Administration, Office of Oil, Gas, and Coal Supply Statistics. = Direction of Flow = Bi-directional 15,000 12,000 9,000 6,000 3,000 0

  18. Microsoft Word - figure_07-2016.doc

    Energy Information Administration (EIA) (indexed site)

    1 Source: Office of Fossil Energy, U.S. Department of Energy, Natural Gas Imports and Exports. Figure 7. U.S. natural gas trade summary, 2011-2015 0 0.5 1 1.5 2 2.5 3 3.5 4 2011 2012 2013 2014 2015 Total Imports Total Exports Net Imports trillion cubic feet

  19. Microsoft Word - figure_09_2016.doc

    Energy Information Administration (EIA) (indexed site)

    3 Canada Mexico Figure 9. Flow of natural gas imports, 2015 (billion cubic feet) Source: Energy Information Administration, based on data from the Office of Fossil Energy, U.S. Department of Energy, Natural Gas Imports and Exports. 12 50 674 190 United States 6 1 Trinidad/Tobago 12 Norway 6 Yemen 535 420 233 11 133 430 12 9 7 71 3

  20. Figure ES1. Map of Northern Alaska

    Energy Information Administration (EIA) (indexed site)

    Figure ES1. Map of Northern Alaska figurees1.jpg (61418 bytes) Source: Edited from U.S. Geological Survey, "The Oil and Gas Resource Potential of the Arctic National Wildlife Refuge 1002 Area, Alaska," Open File Report 98-34, 1999. Return to the Executive Summary.

  1. I.D I VI Figure

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ~press - ,~,.--;~ 3.1 ,,~-.::;:.--- ~ ( 3.1 ( ;-; t\ I.D I VI Figure 9-1. Location of the original Cypress Grove Set-Aside and the Stave Island and Georgia Power replacement Areas. Set-Aside 9: Cypress Grove, Stave Island, and Georgia Power

  2. Figure correction of multilayer coated optics

    DOEpatents

    Chapman; Henry N. , Taylor; John S.

    2010-02-16

    A process is provided for producing near-perfect optical surfaces, for EUV and soft-x-ray optics. The method involves polishing or otherwise figuring the multilayer coating that has been deposited on an optical substrate, in order to correct for errors in the figure of the substrate and coating. A method such as ion-beam milling is used to remove material from the multilayer coating by an amount that varies in a specified way across the substrate. The phase of the EUV light that is reflected from the multilayer will be affected by the amount of multilayer material removed, but this effect will be reduced by a factor of 1-n as compared with height variations of the substrate, where n is the average refractive index of the multilayer.

  3. Figure F8. Coal demand regions

    Gasoline and Diesel Fuel Update

    9 U.S. Energy Information Administration | Annual Energy Outlook 2016 Regional maps Figure F8. Coal demand regions Figure F7. Coal Demand Regions CT,MA,ME,NH,RI,VT OH 1. NE 3. S1 4. S2 5. GF 6. OH 7. EN AL,MS MN,ND,SD IA,NE,MO,KS TX,LA,OK,AR MT,WY,ID CO,UT,NV AZ,NM 9. AM 11. C2 12. WS 13. MT 14. CU 15. ZN WV,MD,DC,DE 2. YP Region Content Region Code NY,PA,NJ VA,NC,SC GA,FL IN,IL,MI,WI Region Content Region Code 14. CU 13. MT 16. PC 15. ZN 12. WS 11. C2 9. AM 5. GF 8. KT 4. S2 7. EN 6. OH 2. YP

  4. Fuel Savings from Hybrid Electric Vehicles

    SciTech Connect

    Bennion, K.; Thornton, M.

    2009-03-01

    NREL's study shows that hybrid electric vehicles can significantly reduce oil imports for use in light-duty vehicles, particularly if drivers switch to smaller, more fuel-efficient vehicles overall.

  5. figure1_solitons.jpg | OSTI, US Dept of Energy Office of Scientific and

    Office of Scientific and Technical Information (OSTI)

    Technical Information figure1_solitons

  6. Figure 1_space.jpg | OSTI, US Dept of Energy Office of Scientific and

    Office of Scientific and Technical Information (OSTI)

    Technical Information Figure 1_space

  7. Sandia National Laboratories: Facts & Figures

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Facts & Figures Sandia's multimission work is represented in a diverse funding portfolio. Budget FY15 Operating $ 2,809.7 million Capital equipment $ 41.0 million Construction $ 29.9 million TOTAL LAB FUNDING $ 2,880.6 million Note: Sandia's fiscal year (FY) runs from October 1 through September 30. Funding by source FY15 NNSA Weapons activities $ 1,576.6 million Defense nuclear nonproliferation $ 143.9 million Other NNSA $ 1.0 million Total NNSA $ 1,721.0 million Non-NNSA DOE Electricity

  8. Microsoft Word - Figure_03_04.doc

    Energy Information Administration (EIA) (indexed site)

    8 0 2 4 6 8 10 12 14 16 18 20 22 2013 2014 2015 2016 2017 Residential Commercial Industrial Electric Power Citygate dollars per thousand cubic feet Figure 3 and 4 0 2 4 6 8 10 12 14 16 18 20 22 2013 2014 2015 2016 2017 NGPL Composite Spot Price NG Spot Price at Henry Hub dollars per thousand cubic feet Note: Prices are in nominal dollars. Sources: 2013-2015: Energy Information Administration (EIA), Natural Gas Annual 2015. January 2016 through current month: Form EIA-857, "Monthly Report of

  9. Figure F2. Electricity market module regions

    Energy Information Administration (EIA) (indexed site)

    F-3 U.S. Energy Information Administration | Annual Energy Outlook 2016 Regional maps Figure F2. Electricity market module regions Source: U.S. Energy Information Administration, Office of Energy Analysis. 1 2 3 4 5 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 6 7 1. ERCT TRE All 2. FRCC FRCC All 3. MROE MRO East 4. MROW MRO West 5. NEWE NPCC New England 6. NYCW NPCC NYC/Westchester 7. NYLI NPCC Long Island 8. NYUP NPCC Upstate NY 9. RFCE RFC East 10. RFCM RFC Michigan 11. RFCW RFC West 12. SRDA

  10. Figure F1. United States Census Divisions

    Gasoline and Diesel Fuel Update

    53 Figure 17. Natural gas delivered to consumers in the United States, 2015 Volumes in Million Cubic Feet Trillion Cubic Feet trillion cubic feet All Other States Wisconsin Indiana Texas Pennsylvania New Jersey Ohio Michigan Illinois California New York 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 Residential All Other States Minnesota Massachusetts Pennsylvania New Jersey Ohio Michigan Texas Illinois California New York 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 Commercial trillion cubic feet Res idential 4,609,670

  11. Figure F7. Coal supply regions

    Gasoline and Diesel Fuel Update

    8 Appendix F Figure F7. Coal supply regions WA ID OR CA NV UT TX OK AR MO LA MS AL GA FL TN SC NC KY VA WV WY CO SD ND MI MN WI IL IN OH MD PA NJ DE CT MA NH VT NY ME RI MT NE IA KS MI AZ NM 500 0 SCALE IN MILES APPALACHIA Northern Appalachia Central Appalachia Southern Appalachia INTERIOR NORTHERN GREAT PLAINS Eastern Interior Western Interior Gulf Lignite Dakota Lignite Western Montana Wyoming, Northern Powder River Basin Wyoming, Southern Powder River Basin Western Wyoming OTHER WEST Rocky

  12. Surface figure control for coated optics

    DOEpatents

    Ray-Chaudhuri, Avijit K.; Spence, Paul A.; Kanouff, Michael P.

    2001-01-01

    A pedestal optical substrate that simultaneously provides high substrate dynamic stiffness, provides low surface figure sensitivity to mechanical mounting hardware inputs, and constrains surface figure changes caused by optical coatings to be primarily spherical in nature. The pedestal optical substrate includes a disk-like optic or substrate section having a top surface that is coated, a disk-like base section that provides location at which the substrate can be mounted, and a connecting cylindrical section between the base and optics or substrate sections. The optic section has an optical section thickness.sup.2 /optical section diameter ratio of between about 5 to 10 mm, and a thickness variation between front and back surfaces of less than about 10%. The connecting cylindrical section may be attached via three spaced legs or members. However, the pedestal optical substrate can be manufactured from a solid piece of material to form a monolith, thus avoiding joints between the sections, or the disk-like base can be formed separately and connected to the connecting section. By way of example, the pedestal optical substrate may be utilized in the fabrication of optics for an extreme ultraviolet (EUV) lithography imaging system, or in any optical system requiring coated optics and substrates with reduced sensitivity to mechanical mounts.

  13. Finding Six-Figure ROI From Energy Efficiency | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Six-Figure ROI From Energy Efficiency Finding Six-Figure ROI From Energy Efficiency September 28, 2010 - 10:20am Addthis Kevin Craft What are the key facts? Recovery Act funded ...

  14. Technologies

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Technologies Technologies Scientists and engineers at Los Alamos have developed a variety of advanced technologies that anticipate-affect, detect, and neutralize & mitigate all types of explosive threats. v Technologies Since its inception in 1943, Los Alamos National Laboratory has been a driving force in explosives science. Scientists and engineers at Los Alamos have developed a variety of advanced technologies that anticipate, detect, and mitigate all types of explosive threats. ANDE:

  15. Technolog

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Research in Science and Technolog y Sandia pushes frontiers of knowledge to meet the nation's needs, today and tomorrow Sandia National Laboratories' fundamental science and technology research leads to greater understanding of how and why things work and is intrinsic to technological advances. Basic research that challenges scientific assumptions enables the nation to push scientific boundaries. Innovations and breakthroughs produced at Sandia allow it to tackle critical issues, from

  16. Technology

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Technology Technology Delivering science to the marketplace through commercialization, spinoffs and industry partnerships. News Releases Science Briefs Photos Picture of the Week Publications Social Media Videos Fact Sheets Gary Grider (second from right) with the 2015 Richard P. Feynman Innovation Prize. Also pictured (left to right): Duncan McBranch, Chief Technology Officer of Los Alamos National Laboratory; Terry Wallace, Program Associate Director for Global Security at Los Alamos; and Lee

  17. Technolog

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Research in Science and Technolog y Sandia pushes frontiers of knowledge to meet the nation's needs, today and tomorrow ... Basic research that challenges scientific assumptions ...

  18. Figure 1. Project Area, Focused Study Area, Potential Access...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Page 4 of 8 Figure 1. Project Area, Focused Study Area, Potential Access Agreement Land, and Land Not Suitable for Conveyance...

  19. Health Effects from Advanced Combustion and Fuel Technologies

    SciTech Connect

    Barone, Teresa L; Parks, II, James E; Lewis Sr, Samuel Arthur; Connatser, Raynella M

    2010-01-01

    This document requires a separate file for the figures. It is for DOE's Office of Vehicle Technologies Annual Report

  20. Nuclear Materials Technology Division/Los Alamos National Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Technical Accomplish- ments for 1994 2 Nuclear Materials Technology DivisionLos Alamos ... Figure 1. Acid recycle and recovery system. 3 Nuclear Materials Technology DivisionLos ...

  1. Figure ES2. Annual Indices of Real Disposable Income, Vehicle...

    Energy Information Administration (EIA) (indexed site)

    ES2 Figure ES2. Annual Indices of Real Disposable Income, Vehicle-Miles Traveled, Consumer Price Index (CPI-U), and Real Average Retail Gasoline Price, 1978-2004, 1985100...

  2. Canada Mexico Figure 11. Flow of natural gas exports, 2014

    Energy Information Administration (EIA) (indexed site)

    8 Canada Mexico Figure 11. Flow of natural gas exports, 2014 (billion cubic feet) Source: Energy Information Administration, based on data from the Office of Fossil Energy, U.S. ...

  3. Figure F5. Oil and gas supply model regions

    Gasoline and Diesel Fuel Update

    6 Appendix F Figure F5. Oil and gas supply model regions Figure F4. Oil and Gas Supply Model Regions Atlantic WA MT WY ID NV UT CO AZ NM TX OK IA KS MO IL IN KY TN MS AL FL GA SC NC WV PA NJ MD DE NY CT ME RI MA NH VA WI MI OH NE SD MN ND AR LA OR CA VT Northeast (1) Gulf of Mexico Gulf Coast (2) Midcontinent (3) Rocky Mountain (5) West Coast (6) Pacific Offshore North Slope AK TX TX NM TX Southwest (4) Onshore North Slope Other Alaska Source: U.S. Energy Information Administration, Office of

  4. Figure F6. Natural gas transmission and distribution model regions

    Gasoline and Diesel Fuel Update

    7 U.S. Energy Information Administration | Annual Energy Outlook 2016 Regional maps Figure F6. Natural gas transmission and distribution model regions 218 U.S. Energy Information Administration / Annual Energy Outlook 2010 Figure F5. Natural Gas Transmission and Distribution Model Regions Pacifi c (9) Moun tain (8) CA (12) AZ/N M (11) W. North Centr al (4) W. South Centr al (7) E. South Centr al (6) E. North Centr al (3) S. Atlan tic (5) FL (10) Mid. Atlan tic (2) New Engl. (1) W. Canad a E.

  5. BILIWG: Consistent "Figures of Merit" (Presentation)

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    BILIWG: Consistent "Figures of Merit" A finite set of results reported in consistent units * To track progress of individual projects on a consistent basis * To enable comparing projects in a transparent manner Potential BILIWG Figures of Merit Key BILI Distributed Reforming Targets * Cost ($/kg of H2): H2A analysis - Distributed reforming station,1000 kg/day ave./daily dispensed, 5000/6250 psi (and 10,000/12,000 psi) dispensing, 500 units/yr. * nth unit vs. 500 units/yr ? * production

  6. A Framework for Geometric Reasoning About Human Figures and Factors in Assembly Processes

    SciTech Connect

    Calton, Terri L.

    1999-07-20

    Automatic assembly sequencing and visualization tools are valuable in determining the best assembly sequences, but without Human Factors and Figure Models (HFFMs) it is difficult to evaluate or visualize human interaction. In industry, accelerating technological advances and shorter market windows have forced companies to turn to an agile manufacturing paradigm. This trend has promoted computerized automation of product design and manufacturing processes, such as automated assembly planning. However, all automated assembly planning software tools assume that the individual components fly into their assembled configuration and generate what appear to be perfectly valid operations, but in reality some operations cannot physically be carried out by a human. For example, the use of a ratchet may be reasoned feasible for an assembly operation; however, when a hand is placed on the tool the operation is no longer feasible, perhaps because of inaccessibility, insufficient strength or human interference with assembly components. Similarly, human figure modeling algorithms may indicate that assembly operations are not feasible and consequently force design modifications, however, if they had the capability to quickly generate alternative assembly sequences, they might have identified a feasible solution. To solve this problem, HFFMs must be integrated with automated assembly planning which allows engineers to quickly verify that assembly operations are possible and to see ways to make the designs even better. This paper presents a framework for integrating geometry-based assembly planning algorithms with commercially available human figure modeling software packages. Experimental results to selected applications along with lessons learned are presented.

  7. The Evaluation of Developing Vehicle Technologies on the Fuel Economy of Long-Haul Trucks

    SciTech Connect

    Gao, Zhiming; Smith, David E.; Daw, C. Stuart; Edwards, Kevin Dean; Kaul, Brian C.; Domingo, Norberto; Parks, II, James E.; Jones, Perry T.

    2015-12-01

    We present fuel savings estimates resulting from the combined implementation of multiple advanced energy management technologies in both conventional and parallel hybrid class 8 diesel trucks. The energy management technologies considered here have been specifically targeted by the 21st Century Truck Partnership (21 CTP) between the U.S. Department of Energy and U.S. industry and include advanced combustion engines, waste heat recovery, and reductions in auxiliary loads, rolling resistance, aerodynamic drag, and gross vehicle weight. Furthermore, we estimated that combined use of all these technologies in hybrid trucks has the potential to improve fuel economy by more than 60% compared to current conventional trucks, but this requires careful system integration to avoid non-optimal interactions. Major factors to be considered in system integration are discussed.

  8. The Evaluation of Developing Vehicle Technologies on the Fuel Economy of Long-Haul Trucks

    DOE PAGES [OSTI]

    Gao, Zhiming; Smith, David E.; Daw, C. Stuart; Edwards, Kevin Dean; Kaul, Brian C.; Domingo, Norberto; Parks, II, James E.; Jones, Perry T.

    2015-12-01

    We present fuel savings estimates resulting from the combined implementation of multiple advanced energy management technologies in both conventional and parallel hybrid class 8 diesel trucks. The energy management technologies considered here have been specifically targeted by the 21st Century Truck Partnership (21 CTP) between the U.S. Department of Energy and U.S. industry and include advanced combustion engines, waste heat recovery, and reductions in auxiliary loads, rolling resistance, aerodynamic drag, and gross vehicle weight. Furthermore, we estimated that combined use of all these technologies in hybrid trucks has the potential to improve fuel economy by more than 60% compared tomore » current conventional trucks, but this requires careful system integration to avoid non-optimal interactions. Major factors to be considered in system integration are discussed.« less

  9. Polarized Ion Beams in Figure-8 Rings of JLab's MEIC

    SciTech Connect

    Derbenev, Yaroslav; Lin, Fanglei; Morozov, Vasiliy; Zhang, Yuhong; Kondratenko, Anatoliy; Kondratenko, M.A.; Filatov, Yury

    2014-07-01

    The Medium-energy Electron-Ion Collider (MEIC) proposed by Jefferson Lab is designed to provide high polarization of both colliding beams. One of the unique features of JLab's MEIC is figure-8 shape of its rings. It allows preservation and control of polarization of all ion species including small-anomalous-magnetic-moment deuterons during their acceleration and storage. The figure-8 design conceptually expands the capability of obtaining polarized high-energy beams in comparison to conventional designs because of its property of having no preferred periodic spin direction. This allows one to control effectively the beam polarization by means of magnetic insertions with small field integrals. We present a complete scheme for preserving the ion polarization during all stages of acceleration and its control in the collider's experimental straights.

  10. NOvA (Fermilab E929) Official Plots and Figures

    DOE Data Explorer

    The NOvA collaboration, consisting of 180 researchers across 28 institutions and managed by the Fermi National Accelerator Laboratory (FNAL), is developing instruments for a neutrino-focused experiment that will attempt to answer three fundamental questions in neutrino physics: 1) Can we observe the oscillation of muon neutrinos to electron neutrinos; 2) What is the ordering of the neutrino masses; and 3) What is the symmetry between matter and antimatter? The collaboration makes various data plots and figures available. These are grouped under five headings, with brief descriptions included for each individual figure: Neutrino Spectra, Detector Overview, Theta12 Mass Hierarchy CP phase, Theta 23 Delta Msqr23, and NuSterile.

  11. Volume_III_App_A_Figures_Chapter2

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Plains & Eastern EIS Figure 2.1-1: Converter Station General Layout 0 50 100 Miles OKLAHOMA ARKANSAS NE W M EX IC O T N COLORADO MISSOURI KANSAS MISSISSIPPI LOUISIANA TEXAS A R Arkansas AC Interconnection Siting Area Oklahoma AC Interconnection Siting Area Future Optima Substation Region 4 Link 3 Variation 2 Lee Creek Variation Oklahoma Converter Station Siting Area Arkansas Converter Station Siting Area Tennessee Converter Station Siting Area Region 1 Region 2 Region 3 Region 4 Region 5

  12. Figure F3. North American Electric Reliability Corporation regions

    Gasoline and Diesel Fuel Update

    3 U.S. Energy Information Administration | Annual Energy Outlook 2016 Regional maps Figure F2. Electricity market module regions Source: U.S. Energy Information Administration, Office of Energy Analysis. 1 2 3 4 5 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 6 7 1. ERCT TRE All 2. FRCC FRCC All 3. MROE MRO East 4. MROW MRO West 5. NEWE NPCC New England 6. NYCW NPCC NYC/Westchester 7. NYLI NPCC Long Island 8. NYUP NPCC Upstate NY 9. RFCE RFC East 10. RFCM RFC Michigan 11. RFCW RFC West 12. SRDA

  13. Fermilab E866 (NuSea) Figures and Data Plots

    DOE Data Explorer

    None

    The NuSea Experiment at Fermilab studied the internal structure of protons, in particular the difference between up quarks and down quarks. This experiment also addressed at least two other physics questions: nuclear effects on the production of charmonia states (bound states of charm and anti-charm quarks) and energy loss of quarks in nuclei from Drell-Yan measurements on nuclei. While much of the NuSea data are available only to the collaboration, figures, data plots, and tables are presented as stand-alone items for viewing or download. They are listed in conjunction with the published papers, theses, or presentations in which they first appeared. The date range is 1998 to 2008. To see these figures and plots, click on E866 publications or go directly to http://p25ext.lanl.gov/e866/papers/papers.html. Theses are at http://p25ext.lanl.gov/e866/papers/e866theses/e866theses.html and the presentations are found at http://p25ext.lanl.gov/e866/papers/e866talks/e866talks.html. Many of the items are postscript files.

  14. On the Road with Fuel Saving Tools | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Driving efficiently can help you save money on gas this summer.| Photo courtesy of iStockphoto.comHelpingHandPhotos Driving efficiently can help you save money on gas this ...

  15. Bike to Work - or Anywhere - for Fuel Savings | Department of...

    Energy.gov [DOE] (indexed site)

    is plan the day around places we can all bike together-biking to the park, a child's soccer game, and dinner all make for a great day of socializing and exercising outdoors. Even...

  16. Road to Fuel Savings: Clean Diesel Trucks Gain Momentum with...

    Energy.gov [DOE] (indexed site)

    ... the engine a step further, testing it in the company's mid-size truck, the Frontier. ... Atherton, President of International Motor Sports Association; pose with the Green ...

  17. Road to Fuel Savings: Ford, Magna Partnership Help Vehicles Shed...

    Energy Saver

    This year at the Detroit Auto Show, Ford Motor Company made waves when it unveiled a new lightweight F-150, knocking nearly 700 pounds off the popular truck. Now the company is one ...

  18. Natural Gas Processing Plants in the United States: 2010 Update / Figure 7

    Gasoline and Diesel Fuel Update

    7. Natural Gas Processing Plants in Alaska, 2009 Figure 7. Natural Gas Processing Plants in Alaska, 2009

  19. 9-D polarized proton transport in the MEIC figure 8 collider ring - first steps

    SciTech Connect

    Meot, F.; Morozov, V. S.

    2015-05-03

    Spin tracking studies in the MEIC figure-8 collider ion ring are presented, based on a very preliminary design of the lattice. They provide numerical illustrations of some of the aspects of the figure-8 concept, including spin-rotator based spin control, and lay out the path towards a complete spin tracking simulation of a figure-8 ring.

  20. 9-D polarized proton transport in the MEIC figure-8 collider ring: first steps

    SciTech Connect

    Meot, F.; Morozov, V. S.

    2014-10-24

    Spin tracking studies in the MEIC figure-8 collider ion ring are presented, based on a very preliminary design of the lattice. They provide numerical illustrations of some of the aspects of the figure-8 concept, including spin-rotator based spin control, and lay out the path towards a complete spin tracking simulation of a figure-8 ring.

  1. STAR (Solenoidal Tracker at RHIC) Figures and Data

    DOE Data Explorer

    The STAR Collaboration

    The primary physics task of STAR is to study the formation and characteristics of the quark-gluon plasma (QGP), a state of matter believed to exist at sufficiently high energy densities. STAR consists of several types of detectors, each specializing in detecting certain types of particles or characterizing their motion. These detectors work together in an advanced data acquisition and subsequent physics analysis that allows final statements to be made about the collision. The STAR Publications page provides access to all published papers by the STAR Collaboration, and many of them have separate links to the figures and data found in or supporting the paper. See also the data-rich summaries of the research at http://www.star.bnl.gov/central/physics/results/. [See also DDE00230

  2. BRAHMS (Broad Range Hadron Magnetic Spectrometer) Figures and Data Archive

    DOE Data Explorer

    The BRAHMS experiment was designed to measure charged hadrons over a wide range of rapidity and transverse momentum to study the reaction mechanisms of the relativistic heavy ion reactions at the Relativistic Heavy Ion Collider at Brookhaven National Laboratory and the properties of the highly excited nuclear matter formed in these reactions. The experiment took its first data during the RHIC 2000 year run and completed data taking in June 2006. The BRAHMS archive makes publications available and also makes data and figures from those publications available as separate items. See also the complete list of publications, multimedia presentations, and related papers at http://www4.rcf.bnl.gov/brahms/WWW/publications.html

  3. 2013 Vehicle Technologies Market Report

    SciTech Connect

    Davis, Stacy Cagle; Williams, Susan E; Boundy, Robert Gary; Moore, Sheila A

    2014-03-01

    This is the fifth edition of this report, which details the major trends in U.S. light-duty vehicle and medium/heavy truck markets as well as the underlying trends that caused them. This report is supported by the U.S. Department of Energy s (DOE) Vehicle Technologies Office (VTO), and, in accord with its mission, pays special attention to the progress of high-efficiency and alternative-fuel technologies. After opening with a discussion of energy and economics, this report features a section each on the light-duty vehicle and heavy/medium truck markets, and concluding with a section each on technology and policy. The first section on Energy and Economics discusses the role of transportation energy and vehicle markets on a national (and even international) scale. For example, Figures 12 through 14 discuss the connections between global oil prices and U.S. GDP, and Figures 21 and 22 show U.S. employment in the automotive sector. The following section examines Light-Duty Vehicle use, markets, manufacture, and supply chains. Figures 24 through 51 offer snapshots of major light-duty vehicle brands in the U.S. and Figures 56 through 64 examine the performance and efficiency characteristics of vehicles sold. The discussion of Medium and Heavy Trucks offers information on truck sales (Figures 73 through 75) and fuel use (Figures 78 through 81). The Technology section offers information on alternative fuel vehicles and infrastructure (Figures 84 through 95), and the Policy section concludes with information on recent, current, and near-future Federal policies like the Corporate Average Fuel Economy standard (Figures 106 through 110). In total, the information contained in this report is intended to communicate a fairly complete understanding of U.S. highway transportation energy through a series of easily digestible nuggets.

  4. Chapter 4: Advancing Clean Electric Power Technologies | Light Water Reactors Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Light Water Reactors Chapter 4: Technology Assessments Past, Present, and Future of the Technology The world's first full-scale nuclear power plant (NPP) devoted exclusively to peacetime uses came online in 1957. Light water reactors (LWRs) are now a mature technology, with over 350 operational LWRs worldwide (Figure 4.M.1) and over 60 under construction (Figure 4.M.2). 1 Note that the Fukushima accident adversely affected nuclear power operations in Japan (and other countries throughout the

  5. Conventional engine technology. volume 3: comparisons and future potential

    SciTech Connect

    Dowdy, M.W.

    1981-12-01

    The status of five conventional automobile engine technologies was assessed and the future potential for increasing fuel economy and reducing exhaust emission was discussed, using the 1980 EPA California emisions standards as a comparative basis. By 1986, the fuel economy of a uniform charge Otto engine with a three-way catalyst is expected to increase 10%, while vehicles with lean burn (fast burn) engines should show a 20% fuel economy increase. Although vehicles with stratified-charge engines and rotary engines are expected to improve, their fuel economy will remain inferior to the other engine types. When adequate NO emissions control methods are implemented to meet the EPA requirements, vehicles with prechamber diesel engines are expected to yield a fuel economy advantage of about 15%. While successful introduction of direct injection diesel engine technology will provide a fuel savings of 30 to 35%, the planned regulation of exhaust particulates could seriously hinder this technology, because it is expected that only the smallest diesel engine vehicles could meet the proposed particulate requirements.

  6. Conventional engine technology. Volume III. Comparisons and future potential

    SciTech Connect

    Dowdey, M.W.

    1981-12-15

    The status of five conventional automobile engine technologies is assessed and the future potential for increasing fuel economy and reducing exhaust emissions is discussed, using the 1980 EPA California emissions standards as a comparative basis. By 1986, the fuel economy of a uniform charge Otto engine with a three-way catalyst is expected to increase 10%, while vehicles with lean burn (fast burn) engines should show a 20% fuel economy increase. Although vehicles with stratified-charge engines and rotary engines are expected to improve, their fuel economy will remain inferior to the other engine types. When adequate NO/sub x/ emissions control methods are implemented to meet the EPA requirements, vehicles with prechamber diesel engines are expected to yield a fuel economy advantage of about 15%. While successful introduction of direct injection diesel engine technology will provide a fuel savings of 30 to 35%, the planned regulation of exhaust particulates could seriously hinder this technology, because it is expected that only the smallest diesel engine vehicles could meet the proposed particulate requirements.

  7. Figure 1. Project Area, Focused Study Area, Potential Access Agreement Land, and Land Not

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Page 4 of 8 Figure 1. Project Area, Focused Study Area, Potential Access Agreement Land, and Land Not Suitable for Conveyance

  8. The application of a figure of merit for nuclear explosive utility...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: The application of a figure of merit for nuclear explosive utility as metric for material attractiveness in a nuclear material theft scenario Citation Details ...

  9. Natural Gas Processing Plants in the United States: 2010 Update / Figure 2

    Gasoline and Diesel Fuel Update

    2. Processing Plant Capacity and Percent of Total U.S. Capacity, 2009 Figure 2. Processing Plant Capacity and Percent of Total U.S. Capacity, 2009

  10. 2011 Vehicle Technologies Market Report

    SciTech Connect

    Davis, Stacy Cagle; Boundy, Robert Gary; Diegel, Susan W

    2012-02-01

    This report details the major trends in U.S. light-duty vehicle and medium/heavy truck markets as well as the underlying trends that caused them. This report is supported by the U.S. Department of Energy s (DOE) Vehicle Technologies Program (VTP), and, in accord with its mission, pays special attention to the progress of high-efficiency and alternative-fuel technologies. This third edition since this report was started in 2008 offers several marked improvements relative to its predecessors. Most significantly, where earlier editions of this report focused on supplying information through an examination of market drivers, new vehicle trends, and supplier data, this edition uses a different structure. After opening with a discussion of energy and economics, this report features a section each on the light-duty vehicle and heavy/medium truck markets, and concluding with a section each on technology and policy. In addition to making this sectional re-alignment, this year s edition of the report also takes a different approach to communicating information. While previous editions relied heavily on text accompanied by auxiliary figures, this third edition relies primarily on charts and graphs to communicate trends. Any accompanying text serves to introduce the trends communication by the graphic and highlight any particularly salient observations. The opening section on Energy and Economics discusses the role of transportation energy and vehicle markets on a national (and even international) scale. For example, Figures 11 through 13 discuss the connections between global oil prices and U.S. GDP, and Figures 20 and 21 show U.S. employment in the automotive sector. The following section examines Light-Duty Vehicle use, markets, manufacture, and supply chains. Figures 26 through 33 offer snapshots of major light-duty vehicle brands in the U.S. and Figures 38 through 43 examine the performance and efficiency characteristics of vehicles sold. The discussion of Medium and

  11. Final report on testing of ACONF technology for the US Coast Guard National Distress Systems : a study for the DOE Energy Storage Systems Program.

    SciTech Connect

    Storey, Leanne M.; Byrd, Thomas M., Jr.; Murray, Aaron T.; Ginn, Jerry W.; Symons, Philip C.; Corey, Garth P.

    2005-08-01

    This report documents the results of a six month test program of an Alternative Configuration (ACONF) power management system design for a typical United States Coast Guard (USCG) National Distress System (NDS) site. The USCG/USDOE funded work was performed at Sandia National Laboratories to evaluate the effect of a Sandia developed battery management technology known as ACONF on the performance of energy storage systems at NDS sites. This report demonstrates the savings of propane gas, and the improvement of battery performance when utilizing the new ACONF designs. The fuel savings and battery performance improvements resulting from ACONF use would be applicable to all current NDS sites in the field. The inherent savings realized when using the ACONF battery management design was found to be significant when compared to battery replacement and propane refueling at the remote NDS sites.

  12. TECHNOLOGY PROGRAM PLAN

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... OTM Advanced Power Cycle Research Focus Area ............ 51 LIST OF FIGURES Figure 1-1. CCS and Power ...

  13. East Tennessee Technology Park by the Numbers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    East Tennessee Technology Park by the Numbers East Tennessee Technology Park by the Numbers September 13, 2016 - 12:15pm Addthis East Tennessee Technology Park by the Numbers East Tennessee Technology Park by the Numbers East Tennessee Technology Park by the Numbers East Tennessee Technology Park by the Numbers Statistics associated with decontaminating, decommissioning and demolishing the five gaseous diffusion buildings at the East Tennessee Technology Park. Notable figures from the EM

  14. An Analysis of Energy Savings Possible Through Advances in Automotive Tooling Technology

    SciTech Connect

    Rick Schmoyer, RLS

    2004-12-03

    The use of lightweight and highly formable advanced materials in automobile and truck manufacturing has the potential to save fuel. Advances in tooling technology would promote the use of these materials. This report describes an energy savings analysis performed to approximate the potential fuel savings and consequential carbon-emission reductions that would be possible because of advances in tooling in the manufacturing of, in particular, non-powertrain components of passenger cars and heavy trucks. Separate energy analyses are performed for cars and heavy trucks. Heavy trucks are considered to be Class 7 and 8 trucks (trucks rated over 26,000 lbs gross vehicle weight). A critical input to the analysis is a set of estimates of the percentage reductions in weight and drag that could be achieved by the implementation of advanced materials, as a consequence of improved tooling technology, which were obtained by surveying tooling industry experts who attended a DOE Workshop, Tooling Technology for Low-Volume Vehicle Production, held in Seattle and Detroit in October and November 2003. The analysis is also based on 2001 fuel consumption totals and on energy-audit component proportions of fuel use due to drag, rolling resistance, and braking. The consumption proportions are assumed constant over time, but an allowance is made for fleet growth. The savings for a particular component is then the product of total fuel consumption, the percentage reduction of the component, and the energy audit component proportion. Fuel savings estimates for trucks also account for weight-limited versus volume-limited operations. Energy savings are assumed to be of two types: (1) direct energy savings incurred through reduced forces that must be overcome to move the vehicle or to slow it down in braking. and (2) indirect energy savings through reductions in the required engine power, the production and transmission of which incur thermodynamic losses, internal friction, and other

  15. Natural Gas Processing Plants in the United States: 2010 Update / Figure 1

    Gasoline and Diesel Fuel Update

    1. Natural Gas Processing Plants and Production Basins, 2009 Figure 1. Natural Gas Processing Plants and Production Basins, 2009 Source: U.S. Energy Information Administration, GasTran Natural Gas Transportation Information System

  16. Natural Gas Processing Plants in the United States: 2010 Update / Figure 4

    Gasoline and Diesel Fuel Update

    4. Natural Gas Processing Plants, Production Basins, and Plays in the Gulf of Mexico States, 2009 Figure 4. Natural Gas Processing Plants, Production Basins, and Plays in the Gulf of Mexico States,

  17. Natural Gas Processing Plants in the United States: 2010 Update / Figure 5

    Gasoline and Diesel Fuel Update

    5. Natural Gas Processing Plants, Production Basins, and Plays in the Rocky Mountain States and California, 2009 Figure 5. Natural Gas Processing Plants, Production Basins, and Plays in the Rocky Mountain States and California,

  18. Natural Gas Processing Plants in the United States: 2010 Update / Figure 6

    Gasoline and Diesel Fuel Update

    6. Natural Gas Processing Plants, Production Basins, and Plays in the Midwestern and Eastern States, 2009 Figure 6. Natural Gas Processing Plants, Production Basins, and Plays in the Midwestern and Eastern States,

  19. Cost-Benefit Analysis of Plug-in Hybrid Electric Vehicle Technology

    SciTech Connect

    Simpson, A.

    2006-11-01

    This paper presents a comparison of vehicle purchase and energy costs, and fuel-saving benefits of plug-in hybrid electric vehicles relative to hybrid electric and conventional vehicles.

  20. Appendix A: Office Technology Pathway Structure, Bioenergy Technologie...

    Energy.gov [DOE] (indexed site)

    A-1 Last updated: November 2014 Appendix A: Technology Pathway Structure High-level block flow diagrams for each biorefinery pathway are presented in Figures A-1 through A-5....

  1. Development of ion beam figuring system with electrostatic deflection for ultraprecise X-ray reflective optics

    SciTech Connect

    Yamada, Jumpei; Matsuyama, Satoshi Sano, Yasuhisa; Yamauchi, Kazuto

    2015-09-15

    We developed an ion beam figuring system that utilizes electrostatic deflection. The system can produce an arbitrary shape by deterministically scanning the ion beam. The scan of the ion beam, which can be precisely controlled using only an electrical signal, enables us to avoid degradation of the mirror shape caused by imperfect acceleration or deceleration of a mechanically scanning stage. Additionally, this surface figuring method can easily be combined with X-ray metrology because the workpiece remains fixed during the figuring. We evaluated the figuring accuracy of the system by fabricating a plano-elliptical mirror for X-ray focusing. A mirror with a shape error of 1.4 nm root mean square (RMS) with a maximum removal depth of 992 nm, which corresponds to figuring accuracy of 0.14% RMS, was achieved. After the second shape corrections, an elliptical shape with a shape error of approximately 1 nm peak-to-valley, 0.48 nm RMS could be fabricated. Then, the mirror surface was smoothed by a low-energy ion beam. Consequently, a micro-roughness of 0.117 nm RMS, measured by atomic force microscopy, was achieved over an area of 1 × 1 μm{sup 2}.

  2. EERE Success Story-Michigan: General Motors Optimizes Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ...div> Road to Fuel Savings: GM Technology Ramps Up Engine Efficiency EERE Success Story-Michigan: Universities Train Next Generation of Automotive Engineers EERE Success ...

  3. Clean Cities Publishes 2014 Vehicle Buyer's Guide

    Energy.gov [DOE]

    The guide features a full list of 2014 vehicles that run on alternative fuels or use advanced fuel-saving technologies.

  4. Natural Gas Processing Plants in the United States: 2010 Update / Figure 3

    Gasoline and Diesel Fuel Update

    3. Natural Gas Processing Plants Utilization Rates Based on 2008 Flows Figure 3. Natural Gas Processing Plants Utilization Rates Based on 2008 Flows Note: Average utilization rates are based on 2008 flows and 2009 capacity, which were used as a proxy for 2009 and reported 2009 capacity reported on Form EIA-757.

  5. Using Wireless Technology to Reduce Facility Energy Usage | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Wireless Technology to Reduce Facility Energy Usage Using Wireless Technology to Reduce Facility Energy Usage This presentation details the U.S. Department of Energy's TEAM initiative's wireless technologies and their applications. Using Wireless Technology to Reduce Facility Energy Usage (December 4, 2009) (2.57 MB) More Documents & Publications New and Emerging Technologies Figure 1: Chamber experiment to study impact of air movement on thermal comfort using personally

  6. EVALUATION OF THE EFFECTIVENESS OF TRUCK EFFICIENCY TECHNOLOGIES IN CLASS 8 TRACTOR-TRAILERS BASED ON A TRACTIVE ENERGY ANALYSIS USING MEASURED DRIVE CYCLE DATA

    SciTech Connect

    LaClair, Tim J; Gao, Zhiming; Fu, Joshua S.; Calcagno, Jimmy; Yun, Jeongran

    2014-01-01

    Quantifying the fuel savings that can be achieved from different truck fuel efficiency technologies for a fleet s specific usage allows the fleet to select the combination of technologies that will yield the greatest operational efficiency and profitability. This paper presents an analysis of vehicle usage in a commercial vehicle fleet and an assessment of advanced efficiency technologies using an analysis of measured drive cycle data for a class 8 regional commercial shipping fleet. Drive cycle measurements during a period of a full year from six tractor-trailers in normal operations in a less-than-truckload (LTL) carrier were analyzed to develop a characteristic drive cycle that is highly representative of the fleet s usage. The vehicle mass was also estimated to account for the variation of loads that the fleet experienced. The drive cycle and mass data were analyzed using a tractive energy analysis to quantify the fuel efficiency and CO2 emissions benefits that can be achieved on class 8 tractor-trailers when using advanced efficiency technologies, either individually or in combination. Although differences exist among class 8 tractor-trailer fleets, this study provides valuable insight into the energy and emissions reduction potential that various technologies can bring in this important trucking application.

  7. Rare earth-doped materials with enhanced thermoelectric figure of merit

    DOEpatents

    Venkatasubramanian, Rama; Cook, Bruce Allen; Levin, Evgenii M.; Harringa, Joel Lee

    2016-09-06

    A thermoelectric material and a thermoelectric converter using this material. The thermoelectric material has a first component including a semiconductor material and a second component including a rare earth material included in the first component to thereby increase a figure of merit of a composite of the semiconductor material and the rare earth material relative to a figure of merit of the semiconductor material. The thermoelectric converter has a p-type thermoelectric material and a n-type thermoelectric material. At least one of the p-type thermoelectric material and the n-type thermoelectric material includes a rare earth material in at least one of the p-type thermoelectric material or the n-type thermoelectric material.

  8. Long range self-assembly of polythiophene breath figures: Optical and morphological characterization

    DOE PAGES [OSTI]

    Routh, Prahlad K.; Nykypanchuk, Dmytro; Venkatesh, T. A.; Cotlet, Mircea

    2015-09-01

    Large area, device relevant sized microporous thin films are formed with commercially available polythiophenes by the breath figure technique, a water-assisted micro patterning method, with such semitransparent thin films exhibiting periodicity and uniformity dictated by the length of the polymer side chain. Compared to drop casted thin films, the microporous thin films exhibit increased crystallinity due to stronger packing of the polymer inside the honeycomb frame.

  9. Clean Coal Technology Programs: Program Update 2007

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Technical Assistance Project (Tiger Teams) Fleets across the nation have made great progress implementing alternative fuels, advanced vehicles, and fuel-saving measures into their operations. These efforts have saved billions of gallons of petroleum, and earned fleets recognition as sustainability leaders in the process. Yet as the alternative fuels and advanced vehicles landscape evolves, some fleets may encounter issues along the way. To address these challenges, the U.S. Depart- ment of

  10. Fact #805: November 25, 2013 Vehicle Technology Penetration | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy 5: November 25, 2013 Vehicle Technology Penetration Fact #805: November 25, 2013 Vehicle Technology Penetration As new vehicle technologies are introduced into the market their initial and overall adoption rate can vary widely. The figure below shows select technologies and their production share over time since first significant use. Fuel injection was adopted fairly quickly after its introduction nearly 40 years ago and reached 100% of the market share, completely replacing the

  11. Status of Hydrogen Storage Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Status of Hydrogen Storage Technologies Status of Hydrogen Storage Technologies The current status in terms of weight, volume, and cost of various hydrogen storage technologies is shown below. These values are estimates from storage system developers and the R&D community and will be continuously updated by DOE as new technological advancements take place. This figure shows the current status of several hydrogen storage systems in terms of weight and volume. It illustrates the volumetric and

  12. Vehicle Technologies Office: Technologies

    Office of Energy Efficiency and Renewable Energy (EERE)

    To support DOE's goal to provide clean and secure energy, the Vehicle Technologies Office (VTO) invests in research and development that:

  13. Nuclear Detection Figure Of Merit (NDFOM) Version 1.2 User's Guide

    SciTech Connect

    Stroud, Phillip D; Dufresne, Thomas A.

    2012-08-27

    NDFOM is a detector database and detector evaluation system, accessible as a web service. It runs on the same server as the Patriot service, but uses port 8081. In this user's guide, we will use the example case that the patriot service is running on http://patriot.lanl.gov. Then the NDFOM service would be accessible at the URL http://patriot.lanl.gov:8081/ndfom. In addition to local server installations, common server locations are 1) a patriot server running on a virtual machine (use the virtual machine URL with :8081/ndfom), and 2) a patriot server running on a local machine (use http://localhost:8081/ndfom or http://127.0.0.1:8081/ndfom). The home screen provides panels to select detectors, a scenario, and a figure-of-merit. It also has an 'analyze' button, which will evaluate the selected figure-of-merit for the selected detectors, for the scenario selected by the user. The detector effectiveness evaluations are presented through the browser in a ranked list of detectors. The user does not need to log in to perform analysis with pre-supplied detectors, scenarios, and FOMs. The homepage view is shown in Figure 1. The first panel displays a list of the detectors in the current detector database. The user can select one, some, or all detectors to evaluate. On the right of each listed detector, there is a star icon. Clicking that icon will open a panel that displays the details about that detector, such as detector material, dimensions, thresholds, etc. The center panel displays the pre-supplied scenarios that are in the database. A scenario specifies the source of interest, the spectrum of the radiation, the background radiation spectrum, the distance or distance of closest approach, the allowable false positive rate, and the dwell time or speed. Scenario details can be obtained by clicking the star to the right of a scenario. A scenario can be selected by clicking it.

  14. Vehicle technologies program Government Performance and Results Act (GPA) report for fiscal year 2012

    SciTech Connect

    Ward, J.; Stephens, T. S.; Birky, A. K.

    2012-08-10

    The U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy has defined milestones for its Vehicle Technologies Program (VTP). This report provides estimates of the benefits that would accrue from achieving these milestones relative to a base case that represents a future in which there is no VTP-supported vehicle technology development. Improvements in the fuel economy and reductions in the cost of light- and heavy-duty vehicles were estimated by using Argonne National Laboratory's Autonomie powertrain simulation software and doing some additional analysis. Argonne also estimated the fraction of the fuel economy improvements that were attributable to VTP-supported development in four 'subsystem' technology areas: batteries and electric drives, advanced combustion engines, fuels and lubricants, and materials (i.e., reducing vehicle mass, called 'lightweighting'). Oak Ridge National Laboratory's MA{sup 3}T (Market Acceptance of Advanced Automotive Technologies) tool was used to project the market penetration of light-duty vehicles, and TA Engineering's TRUCK tool was used to project the penetrations of medium- and heavy-duty trucks. Argonne's VISION transportation energy accounting model was used to estimate total fuel savings, reductions in primary energy consumption, and reductions in greenhouse gas emissions that would result from achieving VTP milestones. These projections indicate that by 2030, the on-road fuel economy of both light- and heavy-duty vehicles would improve by more than 20%, and that this positive impact would be accompanied by a reduction in oil consumption of nearly 2 million barrels per day and a reduction in greenhouse gas emissions of more than 300 million metric tons of CO{sub 2} equivalent per year. These benefits would have a significant economic value in the U.S. transportation sector and reduce its dependency on oil and its vulnerability to oil price shocks.

  15. High thermoelectric figure of merit in nanocrystalline polyaniline at low temperatures

    SciTech Connect

    Nath, Chandrani; Kumar, Ashok E-mail: okram@csr.res.in; Kuo, Yung-Kang; Okram, Gunadhor Singh E-mail: okram@csr.res.in

    2014-09-29

    Thermoelectric coolers with figure of merit (ZT) close to unity at low temperatures are the need of the hour with new advances in high temperature superconductors, superconducting microelectronic circuits, quantum computers, and photonics. Here, we demonstrate that the conducting polymer polyaniline (Pani) doped with camphor sulfonic acid synthesized in semi-crystalline nanostructures, possesses a giant Seebeck effect at low temperatures. The resulting enormously large Seebeck coefficient (up to 0.6 V/K) combined with an intrinsically low electrical conductivity and thermal conductivity give rise to a ZT = 0.77 at 45 K and ZT = 2.17 at 17 K.

  16. Resin Wafer Electrodeionization Technology Reduces the Cost of Clean

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy, Chemicals, and Industrial Process Water - Energy Innovation Portal Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search Resin Wafer Electrodeionization Technology Reduces the Cost of Clean Energy, Chemicals, and Industrial Process Water Argonne National Laboratory Contact ANL About This Technology Figure 1. Argonne&#39;s patented resin wafer electrodeionization technology allows for the continuous removal of charged products like organic acids from

  17. Method and system for optical figuring by imagewise heating of a solvent

    DOEpatents

    Rushford, Michael C.

    2005-08-30

    A method and system of imagewise etching the surface of a substrate, such as thin glass, in a parallel process. The substrate surface is placed in contact with an etchant solution which increases in etch rate with temperature. A local thermal gradient is then generated in each of a plurality of selected local regions of a boundary layer of the etchant solution to imagewise etch the substrate surface in a parallel process. In one embodiment, the local thermal gradient is a local heating gradient produced at selected addresses chosen from an indexed array of addresses. The activation of each of the selected addresses is independently controlled by a computer processor so as to imagewise etch the substrate surface at region-specific etch rates. Moreover, etching progress is preferably concurrently monitored in real time over the entire surface area by an interferometer so as to deterministically control the computer processor to image-wise figure the substrate surface where needed.

  18. Gamma and neutron detection modeling in the nuclear detection figure of merit (NDFOM) portal

    SciTech Connect

    Stroud, Phillip D [Los Alamos National Laboratory; Saeger, Kevin J [Los Alamos National Laboratory

    2009-01-01

    The Nuclear Detection Figure Of Merit (NDFOM) portal is a database of objects and algorithms for evaluating the performance of radiation detectors to detect nuclear material. This paper describes the algorithms used to model the physics and mathematics of radiation detection. As a first-principles end-to-end analysis system, it starts with the representation of the gamma and neutron spectral fluxes, which are computed with the particle and radiation transport code MCNPX. The gamma spectra emitted by uranium, plutonium, and several other materials of interest are described. The impact of shielding and other intervening material is computed by the method of build-up factors. The interaction of radiation with the detector material is computed by a detector response function approach. The construction of detector response function matrices based on MCNPX simulation runs is described in detail. Neutron fluxes are represented in a three group formulation to treat differences in detector sensitivities to thermal, epithermal, and fast neutrons.

  19. PHENIX (Pioneering High Energy Nuclear Interaction eXperiment): Data Tables and Figures from Published Papers

    DOE Data Explorer

    The PHENIX Experiment is the largest of the four experiments currently taking data at the Relativistic Heavy Ion Collider. PHENIX, the Pioneering High Energy Nuclear Interaction eXperiment, is an exploratory experiment for the investigation of high energy collisions of heavy ions and protons. PHENIX is designed specifically to measure direct probes of the collisions such as electrons, muons, and photons. The primary goal of PHENIX is to discover and study a new state of matter called the Quark-Gluon Plasma. More than 60 published papers and preprints are listed here with links to the full text and separate links to the supporting PHENIX data in plain text tables and to EPS and GIF figures from the papers.

  20. Road to Fuel Savings: Clean Diesel Trucks Gain Momentum with Nissan and Cummins Collaboration

    Office of Energy Efficiency and Renewable Energy (EERE)

    Learn how a new clean diesel engine could improve the fuel economy of full-sized pickup trucks by 40 percent while meeting new emissions standards.

  1. Market Implications of Synergism Between Low Drag Area and Electric Drive Fuel Savings

    Energy.gov [DOE]

    Presented at the U.S. Department of Energy Light Duty Vehicle Workshop in Washington, D.C. on July 26, 2010.

  2. Fact #684: July 18, 2011 Fuel Economy versus Fuel Savings | Department...

    Energy.gov [DOE] (indexed site)

    Thus, trading a low-mpg car or truck for one with just slightly better mpg will save more fuel than trading a high-mpg car or truck for one that is even higher. For example, trading a ...

  3. Industrial Heat Pumps for Steam and Fuel Savings: A BestPractices...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... Compression, blowdown Open cycle Miscellaneous Manufacturing of drinking water Desalination of sea water Mechanical Vapor Compression, Open cycle Steam-stripping of waste ...

  4. Demonstration of a fuel-saving system for paint-curing ovens

    SciTech Connect

    Jensen, W P

    1980-12-01

    Two curing ovens at Roll Coater, Inc. (the Greenfield, Indiana plant) were retrofitted to save fuel and cost. Included in the fuel conserving retrofit was the design, fabrication, and installation of an afterburner for each of the two ovens, piping their combustion products to each of two commonly housed waste heat boilers before discharge from those units to the atmosphere at about 450 F. Depending on the product being run and the coating applied, natural gas requirements have been reduced by 45 to 65% with operation of the zone incinerators only and by as much as 65 to 85% including the effects of both the zone incineration and heat recovery by means of the afterburners and waste heat boilers. A demonstration program on conversion work at the No. 3 line at Greenfield and results are described in Section 2. Section 3 describes the retrofit design and the system construction. System performance (tests and measurements, qualitative performance, maintenance factors, and economic performance) is described in Section 4. Conclusions and recommendations are summarized.

  5. Potential benefits of solar reflective car shells: cooler cabins, fuel savings and emission reductions

    SciTech Connect

    Levinson, Ronnen; Pan, Heng; Ban-Weiss, George; Rosado, Pablo; Paolini, Riccardo; Akbari, Hashem

    2011-05-11

    Abstract: Vehicle thermal loads and air conditioning ancillary loads are strongly influenced by the absorption of solar energy. The adoption of solar reflective coatings for opaque surfaces of the vehicle shell can decrease the ?soak? temperature of the air in the cabin of a vehicle parked in the sun, potentially reducing the vehicle?s ancillary load and improving its fuel economy by permitting the use of a smaller air conditioner. An experimental comparison of otherwise identical black and silver compact sedans indicated that increasing the solar reflectance (?) of the car?s shell by about 0.5 lowered the soak temperature of breath-level air by about 5?6?C. Thermal analysis predicts that the air conditioning capacity required to cool the cabin air in the silver car to 25?C within 30min is 13percent less than that required in the black car. Assuming that potential reductions in AC capacity and engine ancillary load scale linearly with increase in shell solar reflectance, ADVISOR simulations of the SC03 driving cycle indicate that substituting a typical cool-colored shell (?=0.35) for a black shell (?=0.05) would reduce fuel consumption by 0.12L per 100km (1.1percent), increasing fuel economy by 0.10kmL?1 [0.24mpg] (1.1percent). It would also decrease carbon dioxide (CO2) emissions by 2.7gkm?1 (1.1percent), nitrogen oxide (NOx) emissions by 5.4mgkm?1 (0.44percent), carbon monoxide (CO) emissions by 17mgkm?1 (0.43percent), and hydrocarbon (HC) emissions by 4.1mgkm?1 (0.37percent). Selecting a typical white or silver shell (?=0.60) instead of a black shell would lower fuel consumption by 0.21L per 100km (1.9percent), raising fuel economy by 0.19kmL?1 [0.44mpg] (2.0percent). It would also decrease CO2 emissions by 4.9gkm?1 (1.9percent), NOx emissions by 9.9mgkm?1 (0.80percent), CO emissions by 31mgkm?1 (0.79percent), and HC emissions by 7.4mgkm?1 (0.67percent). Our simulations may underestimate emission reductions because emissions in standardized driving cycles are typically lower than those in real-world driving.

  6. Fact #916: March 14, 2016 Fuel Savings/Emissions Reduction was...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    These systems provide power for cab heating and cooling, powering lifts, welding equipment, power tools, laptops and other equipment while the main truck engine is shut down. Fact ...

  7. Energy Technologies

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Our Vision National User Facilities Research Areas In Focus Global Solutions Energy Technologies Area (ETA) Building Technology & Urban Systems Energy Analysis & Environmental...

  8. Multiple-Filled Skutterudites: High Thermoelectric Figure of Merit through Separately Optimizing Electrical and Thermal Transports

    SciTech Connect

    Zhang, Weiqing; Yang, Jiong; Yang, Jihui; Wang, Hsin; Salvador, James R.; Shi, Xun; Chi, Miaofang; Cho, Jung Y; Bai, Shengqiang; Chen, Lidong

    2011-01-01

    Skutterudites CoSb{sub 3} with multiple cofillers Ba, La, and Yb were synthesized and very high thermoelectric figure of merit ZT = 1.7 at 850 K was realized. X-ray diffraction of the densified multiple-filled bulk samples reveals all samples are phase pure. High-resolution scanning transmission electron microscopy (STEM) and energy dispersive X-ray spectroscopy (EDS) analysis confirm that multiple guest fillers occupy the nanoscale-cages in the skutterudites. The fillers are further shown to be uniformly distributed and the Co-Sb skutterudite framework is virtually unperturbed from atomic scale to a few micrometers. Our results firmly show that high power factors can be realized by adjusting the total filling fraction of fillers with different charge states to reach the optimum carrier density, at the same time, lattice thermal conductivity can also be significantly reduced, to values near the glass limit of these materials, through combining filler species of different rattling frequencies to achieve broad-frequency phonon scattering. Therefore, partially filled skutterudites with multiple fillers of different chemical nature render unique structural characteristics for optimizing electrical and thermal transports in a relatively independent way, leading to continually enhanced ZT values from single- to double-, and finally to multiple-filled skutterudites. The idea of combining multiple fillers with different charge states and rattling frequencies for performance optimization is also expected to be valid for other caged TE compounds.

  9. Phase transition enhanced thermoelectric figure-of-merit in copper chalcogenides

    SciTech Connect

    Brown, David R.; Day, Tristan; Snyder, G. Jeffrey; Borup, Kasper A.; Christensen, Sebastian; Iversen, Bo B.

    2013-11-01

    While thermoelectric materials can be used for solid state cooling, waste heat recovery, and solar electricity generation, low values of the thermoelectric figure of merit, zT, have led to an efficiency too low for widespread use. Thermoelectric effects are characterized by the Seebeck coefficient or thermopower, which is related to the entropy associated with charge transport. For example, coupling spin entropy with the presence of charge carriers has enabled the enhancement of zT in cobalt oxides. We demonstrate that the coupling of a continuous phase transition to carrier transport in Cu{sub 2}Se over a broad (360–410 K) temperature range results in a dramatic peak in thermopower, an increase in phonon and electron scattering, and a corresponding doubling of zT (to 0.7 at 406 K), and a similar but larger increase over a wider temperature range in the zT of Cu{sub 1.97}Ag{sub .03}Se (almost 1.0 at 400 K). The use of structural entropy for enhanced thermopower could lead to new engineering approaches for thermoelectric materials with high zT and new green applications for thermoelectrics.

  10. Exploration Technologies - Technology Needs Assessment

    SciTech Connect

    Greene, Amanda I.; Thorsteinsson, Hildigunnur; Reinhardt, Tim; Solomon, Samantha; James, Mallory

    2011-06-01

    This assessment is a critical component of ongoing technology roadmapping efforts, and will be used to guide the Geothermal Technology Program's research and development.

  11. High Impact Technology Catalyst: Technology Deployment Strategies...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Catalyst: Technology Deployment Strategies High Impact Technology Catalyst: Technology Deployment Strategies The Energy Department released the High Impact Technology Catalyst: ...

  12. Vehicle Technologies Office: Graduate Automotive Technology Education...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Education & Workforce Development Vehicle Technologies Office: Graduate Automotive Technology Education (GATE) Vehicle Technologies Office: Graduate Automotive Technology ...

  13. NREL: Technology Transfer - Technology Partnership Agreements

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Ombuds. Printable Version Technology Transfer Home About Technology Transfer Technology Partnership Agreements Agreements for Commercializing Technology CRADAs Work for...

  14. NREL: Technology Transfer - Technologies Available for Licensing

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Ombuds. Printable Version Technology Transfer Home About Technology Transfer Technology Partnership Agreements Licensing Agreements Technologies Available for Licensing...

  15. New Airborne Technology Measures Ocean Surface Currents for Offshore Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Production and Emergency Rescue Missions | Department of Energy Airborne Technology Measures Ocean Surface Currents for Offshore Energy Production and Emergency Rescue Missions New Airborne Technology Measures Ocean Surface Currents for Offshore Energy Production and Emergency Rescue Missions April 11, 2016 - 10:40am Addthis Ocean surface current velocities on image of sea surface temperatures, March 29, 2015. Figure from “Real Time Observing and Forecasting of Loop Currents in

  16. Summary of beryllium electrorefining technology developed by KBI Division of Cabot Berylco Inc

    SciTech Connect

    Pistole, C.O.

    1983-05-27

    Proprietary beryllium electrorefining technology has been purchased from the KBI Division of Cabot Berylco Inc. by Rockwell International, Rocky Flats Plant, as part of a DOE beryllium option study. This technology has been reviewed and is summarized. 12 figures, 7 tables.

  17. Vehicle Technologies Office - Materials Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Vehicle Technologies Office Materials Technologies Ed Owens Jerry Gibbs Will Joost eere.energy.gov 2 | Vehicle Technologies Program Materials Technologies Materials Technologies $36.9 M Lightweight Materials $28.0 M Values are FY14 enacted Propulsion Materials $8.9 M Properties and Manufacturing Multi-Material Enabling Modeling & Computational Mat. Sci. Engine Materials, Cast Al & Fe High Temp Alloys Exhaust Sys. Materials, Low T Catalysts Lightweight Propulsion FY13 Enacted $27.5 M

  18. Chapter 4: Advancing Clean Electric Power Technologies | Nuclear Fuel Cycles Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Nuclear Fuel Cycles Chapter 4: Technology Assessments Introduction and Background The Nuclear Fuel Cycle (NFC) is defined as the total set of operations required to produce fission energy and manage the associated nuclear materials. It can have different attributes, including the extension of natural resources, or the minimization of waste disposal requirements. The NFC, as depicted in Figure 4.O.1, is comprised of a set of operations that include the extraction of uranium (U) resources from the

  19. 2014 Vehicle Technologies Market Report

    SciTech Connect

    Davis, Stacy Cagle; Diegel, Susan W; Boundy, Robert Gary; Moore, Sheila A

    2015-03-01

    This is the sixth edition of this report, which details the major trends in U.S. light-duty vehicle and medium/heavy truck markets as well as the underlying trends that caused them. This report is supported by the U.S. Department of Energy s (DOE) Vehicle Technologies Office (VTO), and, in accord with its mission, pays special attention to the progress of high-efficiency and alternative-fuel technologies. After opening with a discussion of energy and economics, this report features a section each on the light-duty vehicle and heavy/medium truck markets, and concluding with a section each on technology and policy. The first section on Energy and Economics discusses the role of transportation energy and vehicle markets on a national (and even international) scale. The following section examines Light-Duty Vehicle use, markets, manufacture, and supply chains. The discussion of Medium and Heavy Trucks offers information on truck sales and technologies specific to heavy trucks. The Technology section offers information on alternative fuel vehicles and infrastructure, and the Policy section concludes with information on recent, current, and near-future Federal policies like the Corporate Average Fuel Economy standards. In total, the information contained in this report is intended to communicate a fairly complete understanding of U.S. highway transportation energy through a series of easily digestible tables and figures.

  20. Development of a Short-Duration Drive Cycle to Represent Long-Term Measured Drive Cycle Data: Evaluation of Truck Efficiency Technologies in Class 8 Tractor Trailers

    SciTech Connect

    LaClair, Tim; Gao, Zhiming; Fu, Joshua; Calcagno, Jimmy; Yun, Jeongran

    2014-12-01

    Quantifying the fuel savings and emissions reductions that can be achieved from truck fuel efficiency technologies for a fleet's specific usage allows the fleet to select a combination of technologies that will yield the greatest operational efficiency and profitability. An accurate characterization of usage for the fleet is critical for such an evaluation; however, short-term measured drive cycle data do not generally reflect overall usage very effectively. This study presents a detailed analysis of vehicle usage in a commercial vehicle fleet and demonstrates the development of a short-duration synthetic drive cycle with measured drive cycle data collected over an extended period of time. The approach matched statistical measures of the vehicle speed with acceleration history and integrated measured grade data to develop a compressed drive cycle that accurately represents total usage. Drive cycle measurements obtained during a full year from six tractor trailers in normal operations in a less-than-truckload carrier were analyzed to develop a synthetic drive cycle. The vehicle mass was also estimated to account for the variation of loads that the fleet experienced. These drive cycle and mass data were analyzed with a tractive energy analysis to quantify the benefits in terms of fuel efficiency and reduced carbon dioxide emissions that can be achieved on Class 8 tractor trailers by using advanced efficiency technologies, either individually or in combination. Although differences exist between Class 8 tractor trailer fleets, this study provides valuable insight into the energy and emissions reduction potential that various technologies can bring in this important trucking application. Finally, the methodology employed for generating the synthetic drive cycle serves as a rigorous approach to develop an accurate usage characterization that can be used to effectively compress large quantities of drive cycle data.

  1. Development of a Short-Duration Drive Cycle to Represent Long-Term Measured Drive Cycle Data: Evaluation of Truck Efficiency Technologies in Class 8 Tractor Trailers

    DOE PAGES [OSTI]

    LaClair, Tim; Gao, Zhiming; Fu, Joshua; Calcagno, Jimmy; Yun, Jeongran

    2014-12-01

    Quantifying the fuel savings and emissions reductions that can be achieved from truck fuel efficiency technologies for a fleet's specific usage allows the fleet to select a combination of technologies that will yield the greatest operational efficiency and profitability. An accurate characterization of usage for the fleet is critical for such an evaluation; however, short-term measured drive cycle data do not generally reflect overall usage very effectively. This study presents a detailed analysis of vehicle usage in a commercial vehicle fleet and demonstrates the development of a short-duration synthetic drive cycle with measured drive cycle data collected over an extendedmore » period of time. The approach matched statistical measures of the vehicle speed with acceleration history and integrated measured grade data to develop a compressed drive cycle that accurately represents total usage. Drive cycle measurements obtained during a full year from six tractor trailers in normal operations in a less-than-truckload carrier were analyzed to develop a synthetic drive cycle. The vehicle mass was also estimated to account for the variation of loads that the fleet experienced. These drive cycle and mass data were analyzed with a tractive energy analysis to quantify the benefits in terms of fuel efficiency and reduced carbon dioxide emissions that can be achieved on Class 8 tractor trailers by using advanced efficiency technologies, either individually or in combination. Although differences exist between Class 8 tractor trailer fleets, this study provides valuable insight into the energy and emissions reduction potential that various technologies can bring in this important trucking application. Finally, the methodology employed for generating the synthetic drive cycle serves as a rigorous approach to develop an accurate usage characterization that can be used to effectively compress large quantities of drive cycle data.« less

  2. Available Technologies

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    application. Search Our Technologies submit Advanced Materials Advanced Materials Biotechnology Biotechnology Chemistry Chemistry Energy Energy High Performance Computing:...

  3. Technology Opportunities

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Intellectual Property » Technology Opportunities Technology Opportunities We deliver innovation through an integrated portfolio of R&D work across our key national security sponsoring agencies, enhanced by the ideas developed through our strategic internal investments. Contact Business Development Team Richard P. Feynman Center for Innovation (505) 665-9090 Email Periodically, the Laboratory notifies the public of technologies and capabilities that may be of interest. These technologies may

  4. Licensing Technology

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Licensing Technology Licensing Technology The primary function of Los Alamos Licensing Program is to move Los Alamos technology to the marketplace for the benefit of the U.S. economy. Our intellectual property may be licensed for commercial use, research applications, and U.S. government use. Contact thumbnail of Marcus Lucero Head of Licensing Marcus Lucero Richard P. Feynman Center for Innovation (505) 665-6569 Email Although Los Alamos's primary mission is national security, our technologies

  5. Locomotive Emission and Engine Idle Reduction Technology Demonstration Project

    SciTech Connect

    John R. Archer

    2005-03-14

    In response to a United States Department of Energy (DOE) solicitation, the Maryland Energy Administration (MEA), in partnership with CSX Transportation, Inc. (CSXT), submitted a proposal to DOE to support the demonstration of Auxiliary Power Unit (APU) technology on fifty-six CSXT locomotives. The project purpose was to demonstrate the idle fuel savings, the Nitrous Oxide (NOX) emissions reduction and the noise reduction capabilities of the APU. Fifty-six CSXT Baltimore Division locomotives were equipped with APUs, Engine Run Managers (ERM) and communications equipment to permit GPS tracking and data collection from the locomotives. Throughout the report there is mention of the percent time spent in the State of Maryland. The fifty-six locomotives spent most of their time inside the borders of Maryland and some spent all their time inside the state borders. Usually when a locomotive traveled beyond the Maryland State border it was into an adjoining state. They were divided into four groups according to assignment: (1) Power Unit/Switcher Mate units, (2) Remote Control units, (3) SD50 Pusher units and (4) Other units. The primary data of interest were idle data plus the status of the locomotive--stationary or moving. Also collected were main engine off, idling or working. Idle data were collected by county location, by locomotive status (stationary or moving) and type of idle (Idle 1, main engine idling, APU off; Idle 2, main engine off, APU on; Idle 3, main engine off, APU off; Idle 4, main engine idle, APU on). Desirable main engine idle states are main engine off and APU off or main engine off and APU on. Measuring the time the main engine spends in these desirable states versus the total time it could spend in an engine idling state allows the calculation of Percent Idle Management Effectiveness (%IME). IME is the result of the operation of the APU plus the implementation of CSXT's Warm Weather Shutdown Policy. It is difficult to separate the two. The units

  6. Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    - FOR OFFICIAL USE ONLY - DRAFT 1 Advanced Composites Materials and their Manufacture 1 Technology Assessment 2 Contents 3 1. Introduction to the Technology/System ................................................................................................ 2 4 2. Technology Potential and Assessment .................................................................................................. 4 5 2.1 The Potential for Advanced Composites for Clean Energy Application Areas

  7. RSP Tooling Technology

    SciTech Connect

    2001-11-20

    RSP Tooling{trademark} is a spray forming technology tailored for producing molds and dies. The approach combines rapid solidification processing and net-shape materials processing in a single step. The general concept involves converting a mold design described by a CAD file to a tooling master using a suitable rapid prototyping (RP) technology such as stereolithography. A pattern transfer is made to a castable ceramic, typically alumina or fused silica (Figure 1). This is followed by spray forming a thick deposit of a tooling alloy on the pattern to capture the desired shape, surface texture, and detail. The resultant metal block is cooled to room temperature and separated from the pattern. The deposit's exterior walls are machined square, allowing it to be used as an insert in a standard mold base. The overall turnaround time for tooling is about 3 to 5 days, starting with a master. Molds and dies produced in this way have been used in high volume production runs in plastic injection molding and die casting. A Cooperative Research and Development Agreement (CRADA) between the Idaho National Engineering and Environmental Laboratory (INEEL) and Grupo Vitro has been established to evaluate the feasibility of using RSP Tooling technology for producing molds and dies of interest to Vitro. This report summarizes results from Phase I of this agreement, and describes work scope and budget for Phase I1 activities. The main objective in Phase I was to demonstrate the feasibility of applying the Rapid Solidification Process (RSP) Tooling method to produce molds for the manufacture of glass and other components of interest to Vitro. This objective was successfully achieved.

  8. Targeted Technology Transfer to US Independents

    SciTech Connect

    Donald F. Duttlinger; E. Lance Cole

    2006-09-29

    The Petroleum Technology Transfer Council (PTTC) was established by domestic crude oil and natural gas producers in 1994 as a national not-for-profit organization to address the increasingly urgent need to improve the technology-transfer process in the U.S. upstream petroleum industry. Coordinated from a Headquarters (HQ) office in Houston, PTTC maintains an active grassroots program executed by 10 Regional Lead Organizations (RLOs) and two satellite offices (Figure 1). Regional Directors interact with domestic oil and gas producers through technology workshops, resource centers, websites, newsletters, technical publications and cooperative outreach efforts. HQ facilitates inter-regional technology transfer and implements a comprehensive communications program. Active volunteers on the National Board and in Producer Advisory Groups (PAGs) in each of the 10 regions focus effort in areas that will create the most impact for domestic producers. Focused effort by dedicated individuals across the country has enabled PTTC to achieve the milestones outlined in Appendix A.

  9. Ceramic technology for advanced heat engines project

    SciTech Connect

    Not Available

    1990-09-01

    The Ceramic Technology for Advanced Heat Engines Project was developed by the Department of Energy's Office of Transportation Systems in Conservation and Renewable Energy. This project was developed to meet the ceramic technology requirements of the OTT's automotive technology programs. This project is managed by ORNL and is closely coordinated with complementary ceramics tasks funded by other DOE offices, NASA, DoD, and industry. Research is discussed under the following topics; Turbomilling of SiC Whiskers; microwave sintering of silicon nitride; and milling characterization; processing of monolithics; silicon nitride matrix; oxide matrix; silicate matrix; thermal and wear coatings; joining; design; contact interfaces; time-dependent behavior; environmental effects; fracture mechanics; nondestructive evaluation; and technology transfer. References, figures, and tables are included with each topic.

  10. Technology '90

    SciTech Connect

    Not Available

    1991-01-01

    The US Department of Energy (DOE) laboratories have a long history of excellence in performing research and development in a number of areas, including the basic sciences, applied-energy technology, and weapons-related technology. Although technology transfer has always been an element of DOE and laboratory activities, it has received increasing emphasis in recent years as US industrial competitiveness has eroded and efforts have increased to better utilize the research and development resources the laboratories provide. This document, Technology '90, is the latest in a series that is intended to communicate some of the many opportunities available for US industry and universities to work with the DOE and its laboratories in the vital activity of improving technology transfer to meet national needs. Technology '90 is divided into three sections: Overview, Technologies, and Laboratories. The Overview section describes the activities and accomplishments of the DOE research and development program offices. The Technologies section provides descriptions of new technologies developed at the DOE laboratories. The Laboratories section presents information on the missions, programs, and facilities of each laboratory, along with a name and telephone number of a technology transfer contact for additional information. Separate papers were prepared for appropriate sections of this report.

  11. NREL: Technology Transfer - Agreements for Commercializing Technology

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    303-384-7353. Printable Version Technology Transfer Home About Technology Transfer Technology Partnership Agreements Agreements for Commercializing Technology CRADAs Work for...

  12. Vehicle Technologies Office: 2015 Electric Drive Technologies...

    Office of Environmental Management (EM)

    Electric Drive Technologies Annual R&D Progress Report Vehicle Technologies Office: 2015 Electric Drive Technologies Annual R&D Progress Report The Electric Drive Technologies ...

  13. Huazhong Science Technology University Yongtai Science Technology...

    OpenEI (Open Energy Information) [EERE & EIA]

    Huazhong Science Technology University Yongtai Science Technology Co Ltd Jump to: navigation, search Name: Huazhong Science & Technology University Yongtai Science & Technology Co...

  14. Technology Transfer

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    technology transfer Technology Transfer Since 1974, the Federal Laboratory Consortium (FLC) Award for Excellence in Technology Transfer has recognized scientists and engineers at federal government and research centers for their "uncommon creativity and initiative in conveying innovations from their facilities to industry and local government." Scientists and engineers from more than 650 federal government laboratories and research centers compete for the 30 awards presented each year.

  15. Technology Partnering

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Transfer and Related Technology Partnering Activities at the National Laboratories and Other Facilities Fiscal Years 2009-2013 Report to Congress May 2015 United States Department of Energy Washington, DC 20585 Message from the Secretary The Report on Technology Transfer and Related Partnering Activities at the National Laboratories and Other Facilities for Fiscal Year 2009-2013 is prepared in accordance with the requirements of the Technology Transfer and Commercialization Act of 2000: It is

  16. Technology Opportunities

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    by the U.S. Department of Energy and Office of Science - ... feedstock-to-fuel conversion, coproduct production, ... Patents Software Tools Technology Opportunities Penta Charts

  17. Technology Validation

    Energy.gov [DOE]

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  18. CSP technology

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    technology - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy ...

  19. TECHNOLOGY FORUM

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    TECHNOLOGY FORUM The 2014 SunShot Grand Challenge Summit and Peer Review is hosting a Technology Forum showcasing innovative and cutting-edge technologies that are helping to drive down the cost of solar energy. The Forum features a wide range of solar industry exhibitors showcasing software and hardware products and solutions, as well as nearly 300 SunShot awardees displaying their work and answering questions about their projects. TECHNOLOGY FORUM HOURS * May 19 from 4:00-7:00 PM * May 20

  20. Thermally activated technologies: Technology Roadmap

    SciTech Connect

    None, None

    2003-05-01

    The purpose of this Technology Roadmap is to outline a set of actions for government and industry to develop thermally activated technologies for converting America’s wasted heat resources into a reservoir of pollution-free energy for electric power, heating, cooling, refrigeration, and humidity control. Fuel flexibility is important. The actions also cover thermally activated technologies that use fossil fuels, biomass, and ultimately hydrogen, along with waste heat.

  1. NREL: Technology Deployment - Technology Acceleration

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Technology Acceleration NREL offers technology-specific assistance to federal and private industry to help address market barriers to sustainable energy technologies. Learn more about NREL's work in the following areas: Biopower and Waste-to-Energy Biopower and Waste-to-Energy Buildings Buildings Fuels, Vehicles, & Transportation Fuels, Vehicles, and Transportation Microgrid Design Microgrid Design Solar Solar Wind Wind Contact Us For more information on NREL's market transformation work,

  2. Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Roll to Roll (R2R) Processing 1 Technology Assessment 2 3 Contents 4 1. Introduction to the Technology/System ............................................................................................... 2 5 1.1. Introduction to R2R Processing..................................................................................................... 2 6 1.2. R2R Processing Mechanisms ......................................................................................................... 3 7 2.

  3. Technology Commercialization Showcase 2008 Vehicle Technologies Program

    SciTech Connect

    Davis, Patrick B.

    2009-06-19

    Presentation illustrating various technology commercialization opportunities and unexploited investment gaps for the Vehicle Technologies Program.

  4. Test procedures and protocols: Their relevance to the figure of merit for thermal distribution systems. Volume 1: Informal report

    SciTech Connect

    Andrews, J.W.

    1993-09-01

    A conceptual framework is developed that categorizes measurement protocols for forced-air thermal distribution systems in small buildings. This framework is based on the distinction between two generic approaches. The {open_quote}system-comparison{close_quote} approach seeks to determine, via a pair of whole-house energy-use measurements, the difference in energy use between the house with the as-found duct system and the same house with no energy losses attributable to the thermal distribution system. The {open_quote}component loss-factor{close_quote} approach identifies and measures the individual causes of duct losses, and then builds up a value for the net overall duct efficiency, usually with the help of computer simulation. Examples of each approach are analyzed and related to a proposed Figure of Merit for thermal distribution systems. This Figure of Merit would serve as the basis for a Standard Method of Test analogous to those already in place for furnaces, boilers, air conditioners, and heat pumps.

  5. Fact #725: April 30, 2012 Cylinder Deactivation is More Prevalent...

    Energy.gov [DOE] (indexed site)

    Cylinder deactivation is a fuel-saving technology that allows a vehicle to shut down some of its cylinders when extra power is not needed like when cruising down the highway at a ...

  6. Fact #725: April 30, 2012 Cylinder Deactivation is More Prevalent in Light Trucks than Cars

    Energy.gov [DOE]

    Cylinder deactivation is a fuel-saving technology that allows a vehicle to shut down some of its cylinders when extra power is not needed like when cruising down the highway at a constant speed....

  7. Tag: technology

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Tags

    technology<...

  8. Technology Validation

    Energy.gov [DOE]

    To reduce solar technology risks, DOE and its partners evaluate the performance and reliability of novel photovoltaic (PV) hardware and systems through laboratory and field testing. The focus of...

  9. HEMISPHERIC CENTER FOR ENVIRONMENTAL TECHNOLOGY

    SciTech Connect

    M.A. Ebadian

    1999-09-30

    The Princeton Plasma Physics Laboratory (PPPL) demonstration of the diamond wire cutting technology on the surrogate of the Tokamak Fusion Test Reactor (TFTR), Figure 1, was performed from August 23-September 3, 1999. The plated diamond wire, Figure 2, was successful in cutting through all components of the TFTR surrogate including stainless steel, inconel and graphite. The demonstration tested three different void fill materials (mortar with sand, Rheocell-15, and foam) and three cooling systems (water, air, and liquid nitrogen). The optimum combination was determined to be the use of the low-density concrete void fill, Rheocell-15 with an average density of 52 lbs/ft{sup 3}, using a water coolant. However, the liquid nitrogen performed better than expected with only minor problems and was considered to be a successful demonstration of the Bluegrass Concrete Cutting, Inc. proprietary liquid-nitrogen coolant system. Data from the demonstration is being calculated and a summary of the technology demonstration will be included in the October monthly report. An ITSR will be written comparing the diamond wire saw to the plasma arc (baseline) technology. The MTR Chemical Protective Suit, a proprietary new suit from Kimberly Clark, was evaluated from 8/9/99 to 8/12/99 at Beaver, WV. This particular suit was tested on subjects performing three different tasks: climbing through a horizontal confined space, vertical confined space (pit), and loading and unloading material using a wheel barrow. Multiple test subjects performed each task for 20 minutes each. Performance of the innovative suit was compared to two commonly used types of protective clothing. Vital statistics, including body temperature and heart rate, were continuously monitored and recorded by an authorized physician. A summary of the demonstration will be included in the October monthly report. Along with the MTR Chemical Protective Suit, the VitalSense{trademark} Telemetric Monitoring System from Mini Mitter

  10. Technology Roadmap Analysis 2013: Assessing Automotive Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Roadmap Analysis 2013: Assessing Automotive Technology R&D Relevant to DOE Power Electronics Cost Targets Technology Roadmap Analysis 2013: Assessing Automotive Technology R&D ...

  11. Extracting grain-orientation-dependent data from in situ time-of-flight neutron diffraction. I. Inverse pole figures

    DOE PAGES [OSTI]

    Stoica, Grigoreta M.; Stoica, Alexandru Dan; An, Ke; Ma, Dong; Vogel, S. C.; Carpenter, J. S.; Wang, Xun-Li

    2014-11-28

    The problem of calculating the inverse pole figure (IPF) is analyzed from the perspective of the application of time-of flight neutron diffraction toin situmonitoring of the thermomechanical behavior of engineering materials. On the basis of a quasi-Monte Carlo (QMC) method, a consistent set of grain orientations is generated and used to compute the weighting factors for IPF normalization. The weighting factors are instrument dependent and were calculated for the engineering materials diffractometer VULCAN (Spallation Neutron Source, Oak Ridge National Laboratory). The QMC method is applied to face-centered cubic structures and can be easily extended to other crystallographic symmetries. Examples includemore » 316LN stainless steelin situloaded in tension at room temperature and an Al–2%Mg alloy, substantially deformed by cold rolling and in situannealed up to 653 K.« less

  12. Building Technologies Office Overview

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Roland Risser Director, Building Technologies Office Building Technologies Office Energy Efficiency Starts Here. 2 Building Technologies Office Integrated Approach: Improving ...

  13. Review of AVLIS technology for production-scale LIS systems and construction

    SciTech Connect

    Davis, J.I.; Moses, E.I.

    1983-12-01

    The use of lasers for uranium and/or plutonium isotope separation is expected to be the first application of lasers utilizing specific atomic processes for large-scale materials processing. Specific accomplishments toward the development of production-scale technology for LIS systems will be presented, along with the status of major construction projects. 24 figures.

  14. Manufacturing technologies

    SciTech Connect

    1995-09-01

    The Manufacturing Technologies Center is an integral part of Sandia National Laboratories, a multiprogram engineering and science laboratory, operated for the Department of Energy (DOE) with major facilities at Albuquerque, New Mexico, and Livermore, California. Our Center is at the core of Sandia`s Advanced Manufacturing effort which spans the entire product realization process.

  15. (Environmental technology)

    SciTech Connect

    Boston, H.L.

    1990-10-12

    The traveler participated in a conference on environmental technology in Paris, sponsored by the US Embassy-Paris, US Environmental Protection Agency (EPA), the French Environmental Ministry, and others. The traveler sat on a panel for environmental aspects of energy technology and made a presentation on the potential contributions of Oak Ridge National Laboratory (ORNL) to a planned French-American Environmental Technologies Institute in Chattanooga, Tennessee, and Evry, France. This institute would provide opportunities for international cooperation on environmental issues and technology transfer related to environmental protection, monitoring, and restoration at US Department of Energy (DOE) facilities. The traveler also attended the Fourth International Conference on Environmental Contamination in Barcelona. Conference topics included environmental chemistry, land disposal of wastes, treatment of toxic wastes, micropollutants, trace organics, artificial radionuclides in the environment, and the use biomonitoring and biosystems for environmental assessment. The traveler presented a paper on The Fate of Radionuclides in Sewage Sludge Applied to Land.'' Those findings corresponded well with results from studies addressing the fate of fallout radionuclides from the Chernobyl nuclear accident. There was an exchange of new information on a number of topics of interest to DOE waste management and environmental restoration needs.

  16. Plasma technology

    SciTech Connect

    Herlitz, H.G.

    1986-11-01

    This paper describes the uses of plasma technology for the thermal destruction of hazardous wastes such as PCBs, dioxins, hydrocarbons, military chemicals and biological materials; for metals recovery from steel making dusts. One advantage of the process is that destruction of wastes can be carried out on site. Systems in several countries use the excess thermal energy for district heating.

  17. 21st Century Locomotive Technology: Quarterly Technical Status Report 8 DOE/AL68284-TSR08

    SciTech Connect

    Lembit Salasoo; Jennifer Topinka; Anthony Furman; Raj Bharadwaj

    2005-02-16

    Completed high pressure common rail system performance mapping at notch 8 to establish advanced fuel injection fuel savings entitlement. Investigated performance differences of several abradable coatings between full-scale tests and rub test coupons using post-run micrographic analysis. Demonstrated implementation of advanced energy management controls on hybrid locomotive. Began advanced energy storage detailed design; continued life-cycle subscale energy storage testing. Formulated trip optimization problem with hybrid locomotive, and evaluated first implementation to produce an optimal driving plan.

  18. MECS Fuel Oil Figures

    Energy Information Administration (EIA) (indexed site)

    Energy Consumption Survey (MECS): Consumption of Energy; U.S. Department of Commerce, Bureau of the Census, Annual Survey of Manufactures (ASM): Statistics for Industry...

  19. Software Technology

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Software Software Technology Enabling a new era of computational and scientific capabilities by advancing high-performance computing on an exponential scale. Contacts Galen Shipman Applied Computer Science (505) 665-4021 Email Michael Lang Computer, Computational, and Statistical Sciences (505) 500-2993 Email James Ahrens Applied Computer Science (505) 667-5797 Email Video thumbnail image for ExaSky software 3:21 ExaSky: Next-generation dark matter cosmology simulations (demonstration) The

  20. Building Technologies Office Overview

    SciTech Connect

    2013-04-01

    Building Technologies Office Overview Presentation for the 2013 Building Technologies Office's Program Peer Review

  1. Emerging technologies

    SciTech Connect

    Lu, Shin-yee

    1993-03-01

    The mission of the Emerging Technologies thrust area at Lawrence Livermore National Laboratory is to help individuals establish technology areas that have national and commercial impact, and are outside the scope of the existing thrust areas. We continue to encourage innovative ideas that bring quality results to existing programs. We also take as our mission the encouragement of investment in new technology areas that are important to the economic competitiveness of this nation. In fiscal year 1992, we have focused on nine projects, summarized in this report: (1) Tire, Accident, Handling, and Roadway Safety; (2) EXTRANSYT: An Expert System for Advanced Traffic Management; (3) Odin: A High-Power, Underwater, Acoustic Transmitter for Surveillance Applications; (4) Passive Seismic Reservoir Monitoring: Signal Processing Innovations; (5) Paste Extrudable Explosive Aft Charge for Multi-Stage Munitions; (6) A Continuum Model for Reinforced Concrete at High Pressures and Strain Rates: Interim Report; (7) Benchmarking of the Criticality Evaluation Code COG; (8) Fast Algorithm for Large-Scale Consensus DNA Sequence Assembly; and (9) Using Electrical Heating to Enhance the Extraction of Volatile Organic Compounds from Soil.

  2. Technology disrupted

    SciTech Connect

    Papatheodorou, Y.

    2007-02-15

    Three years ago, the author presented a report on power generation technologies which in summary said 'no technology available today has the potential of becoming transformational or disruptive in the next five to ten years'. In 2006 the company completed another strategic view research report covering the electric power, oil, gas and unconventional energy industries and manufacturing industry. This article summarises the strategic view findings and then revisits some of the scenarios presented in 2003. The cost per megawatt-hour of the alternatives is given for plants ordered in 2005 and then in 2025. The issue of greenhouse gas regulation is dealt with through carbon sequestration and carbon allowances or an equivalent carbon tax. Results reveal substantial variability through nuclear power, hydro, wind, geothermal and biomass remain competitive through every scenario. Greenhouse gas scenario analysis shows coal still be viable, albeit less competitive against nuclear and renewable technologies. A carbon tax or allowance at $24 per metric ton has the same effect on IGCC cost as a sequestration mandate. However, the latter would hurt gas plants much more than a tax or allowance. Sequestering CO{sub 2} from a gas plant is almost as costly per megawatt-hour as for coal. 5 refs., 5 figs., 5 tabs.

  3. Enhancement of thermoelectric figure of merit in β-Zn{sub 4}Sb{sub 3} by indium doping control

    SciTech Connect

    Wei, Pai-Chun E-mail: cheny2@phys.sinica.edu.tw; Hsu, Chia-Hao; Chang, Chung-Chieh; Chen, Cheng-Lung; Wu, Maw-Kuen; Chen, Yang-Yuan E-mail: cheny2@phys.sinica.edu.tw; Yang, Chun-Chuen; Chen, Jeng-Lung; Sankar, Raman; Chou, Fang-Cheng; Chen, Chi-Liang; Dong, Chung-Li; Chen, Kuei-Hsien

    2015-09-21

    We demonstrate the control of phase composition in Bridgman-grown β-Zn{sub 4}Sb{sub 3} crystals by indium doping, an effective way to overcome the difficulty of growing very pure β-Zn{sub 4}Sb{sub 3} thermoelectric material. The crystal structures are characterized by Rietveld refinement with synchrotron X-ray diffraction data. The results show an anisotropic lattice expansion in In-doped β-Zn{sub 4}Sb{sub 3} wherein the zinc atoms are partially substituted by indium ones at 36f site of R-3c symmetry. Through the elimination of ZnSb phase, all the three individual thermoelectric properties are simultaneously improved, i.e., increasing electrical conductivity and Seebeck coefficient while reducing thermal conductivity. Under an optimal In concentration (x = 0.05), pure phase β-Zn{sub 4}Sb{sub 3} crystal can be obtained, which possesses a high figure of merit (ZT) of 1.4 at 700 K.

  4. Testing technology

    SciTech Connect

    Not Available

    1993-10-01

    This bulletin from Sandia National Laboratories presents current research highlights in testing technology. Ion microscopy offers new nondestructive testing technique that detects high resolution invisible defects. An inexpensive thin-film gauge checks detonators on centrifuge. Laser trackers ride the range and track helicopters at low-level flights that could not be detected by radar. Radiation transport software predicts electron/photon effects via cascade simulation. Acoustic research in noise abatement will lead to quieter travelling for Bay Area Rapid Transport (BART) commuters.

  5. TECHNOLOGY TRANSFER

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    404-NOV. 1, 2000 TECHNOLOGY TRANSFER COMMERCIALIZATION ACT OF 2000 VerDate 11-MAY-2000 04:52 Nov 16, 2000 Jkt 089139 PO 00000 Frm 00001 Fmt 6579 Sfmt 6579 E:\PUBLAW\PUBL404.106 APPS27 PsN: PUBL404 114 STAT. 1742 PUBLIC LAW 106-404-NOV. 1, 2000 Public Law 106-404 106th Congress An Act To improve the ability of Federal agencies to license federally owned inventions. Be it enacted by the Senate and House of Representatives of the United States of America in Congress assembled, SECTION 1. SHORT

  6. Technology Name

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Tech Fact Sheet Site Project & Identifier Tech Stage: Development DE-EM0000598 D&D KM-IT For the deployment of Information Technology for D&D knowledge management Page 1 of 2 Florida International University Florida D&D Knowledge Management Information Tool Challenge Deactivation and decommissioning (D&D) work is a high priority across the DOE Complex. The D&D community associated with the various DOE sites has gained extensive knowledge and experience over the years. To

  7. Building Technologies Office Window and Envelope Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Building Technologies Office Window and Envelope Technologies Emerging Technologies R&D Program Karma Sawyer, Ph.D. karma.sawyer@ee.doe.gov BTO Goal Reduce building energy use by ...

  8. NETL Technologies Recognized for Technology Development, Transfer |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Recognized for Technology Development, Transfer NETL Technologies Recognized for Technology Development, Transfer October 25, 2013 - 1:31pm Addthis Did you know? The Federal Laboratory Consortium for Technology Transfer is the nationwide network of federal laboratories that provides the forum to develop strategies and opportunities for linking laboratory mission technologies and expertise with the marketplace. In consonance with the Federal Technology Transfer Act of

  9. High Impact Technology Catalyst: Technology Deployment Strategies |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Catalyst: Technology Deployment Strategies High Impact Technology Catalyst: Technology Deployment Strategies The Energy Department released the High Impact Technology Catalyst: Technology Deployment Strategies to serve as an overview of the HIT Catalyst program activities, including a summary of the selection process undertaken to identify, evaluate and prioritize the current HITs, descriptions of the technologies and markets for each HIT, and plans for deployment. High

  10. Nuclear Science & Technology

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Nuclear Science & Technology Nuclear Science & Technology1354608000000Nuclear Science & TechnologySome of these resources are LANL-only and will require Remote Access. No...

  11. NREL: Technology Transfer - Ombuds

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Technology Transfer Ombuds NREL's Technology Transfer Ombuds offers an informal process to help resolve issues and concerns regarding the laboratory's technology partnership,...

  12. Hydrogen Technologies Group

    SciTech Connect

    Not Available

    2008-03-01

    The Hydrogen Technologies Group at the National Renewable Energy Laboratory advances the Hydrogen Technologies and Systems Center's mission by researching a variety of hydrogen technologies.

  13. Distributed Energy Technology Characterization (Desiccant Technologies...

    Energy.gov [DOE] (indexed site)

    desiccant technology and applications, and to show how these technologies can be designed to utilize the available thermal energy from a combined heat and power (CHP) system. ...

  14. Vehicle Technologies Office: 2009 Advanced Vehicle Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Well-to-Wheels Analysis of Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles Vehicle Technologies Office: 2008 Advanced Vehicle Technology Analysis and ...

  15. Vehicle Technologies Office: 2014 Electric Drive Technologies...

    Energy.gov [DOE] (indexed site)

    Electric Drive Technologies research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge ...

  16. 2016 Annual Technology Baseline

    DOE Data Explorer

    Hand, Maureen; Kurup, Parthiv

    2016-09-15

    Current and future cost and performance data for electricity generating technologies, including both renewable and conventional technologies.

  17. Ion-beam technologies

    SciTech Connect

    Fenske, G.R.

    1993-01-01

    This compilation of figures and diagrams reviews processes for depositing diamond/diamond-like carbon films. Processes addressed are chemical vapor deposition (HFCVD, PACVD, etc.), plasma vapor deposition (plasma sputtering, ion beam sputtering, evaporation, etc.), low-energy ion implantation, and hybrid processes (biased sputtering, IBAD, biased HFCVD, etc.). The tribological performance of coatings produced by different means is discussed.

  18. Technology Partnership Agreements | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Technology Investment Agreements Technology Investment Agreements Guidance Policy Flash 2006-31 - Technology Investment Agreements Financial Assistance Letter 2006-03 - Guidance for Awarding Technology Investment Agreements Final Rule - Financial Assistance Regulations - Technology Investment Agreements Templates Company Template (Expenditure-Based) Consortium Template (Expenditure-Based) Company Template (Fixed Support) Consortium Support (Fixed Support) Training Technology Investment

  19. Figures and Data Plots from the Published Papers of the BELLE Experiment at the KEK - B Factory

    DOE Data Explorer

    This resource provides more than 300 citations to preprints and papers with the figures from each one pulled out separately for easy access and downloading. These are physics publications. Be sure to also see the page of Technical Journal publications at http://belle.kek.jp/belle/bellenim/index.htm and the lists of conference presentations from 2000 through 2009. Belle is a high-energy physics (HEP) experiment that began in 1999 at the KEK B-factory in Japan under the direction of the international Belle Collaboration. The original Letter of Intent from the Collaboration stated their scientific goal as follows:

    The laws of nature have a high degree of symmetry between matter and antimatter; violations of this symmetry, the so-called CP violations, are only seen as a small effect in the decays of neutral K mesons. Although experimental evidence for CP violation was first observed 30 years ago, we still do not understand how they occur. In 1973, Kobayashi and Maskawa (KM) noted that CP violation could be accommodated in the Standard Model only if there were at least six quark flavors, twice the number of quark flavors known at that time. The KM model for CP violation is now considered to be an essential part of the Standard Model. In 1980, Sanda and Carter pointed out that the KM model contained the possibility of rather sizable CP violating asymmetries in certain decay modes of the B meson. The subsequent observation of a long b quark lifetime and a large amount of mixing in the neutral B meson system indicated that it would be feasible to carry out decisive tests of the KM model by studying B meson decays. Our collaboration has been formed around the common interest of clarifying the long standing physics puzzle of CP violation. Our goal is to make a definitive test of the Standard ModelÆs predictions for CP violations in the decays of B mesons. [Copied, with editing, from Letter of Intent (KEK-Report94-2, April 1994); see http

  20. Figures and Data Plots from the Published Papers of the BELLE Experiment at the KEK - B Factory

    DOE Data Explorer

    This resource provides more than 300 citations to preprints and papers with the figures from each one pulled out separately for easy access and downloading. These are physics publications. Be sure to also see the page of Technical Journal publications at http://belle.kek.jp/belle/bellenim/index.htm and the lists of conference presentations from 2000 through 2009. Belle is a high-energy physics (HEP) experiment that began in 1999 at the KEK B-factory in Japan under the direction of the international Belle Collaboration. The original Letter of Intent from the Collaboration stated their scientific goal as follows:

    The laws of nature have a high degree of symmetry between matter and antimatter; violations of this symmetry, the so-called CP violations, are only seen as a small effect in the decays of neutral K mesons. Although experimental evidence for CP violation was first observed 30 years ago, we still do not understand how they occur. In 1973, Kobayashi and Maskawa (KM) noted that CP violation could be accommodated in the Standard Model only if there were at least six quark flavors, twice the number of quark flavors known at that time. The KM model for CP violation is now considered to be an essential part of the Standard Model. In 1980, Sanda and Carter pointed out that the KM model contained the possibility of rather sizable CP violating asymmetries in certain decay modes of the B meson. The subsequent observation of a long b quark lifetime and a large amount of mixing in the neutral B meson system indicated that it would be feasible to carry out decisive tests of the KM model by studying B meson decays. Our collaboration has been formed around the common interest of clarifying the long standing physics puzzle of CP violation. Our goal is to make a definitive test of the Standard Models predictions for CP violations in the decays of B mesons. [Copied, with editing, from Letter of Intent (KEK-Report94-2, April 1994); see http

  1. Vehicle Technologies Office Propulsion Materials Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Vehicle Technologies Office Propulsion Materials Technologies Jerry Gibbs eere.energy.gov 2 | Vehicle Technologies Program Materials Technologies Materials Technologies $35.6 M Lightweight Materials $28.5 M Values are FY15 enacted Propulsion Materials $7.1 M Properties and Manufacturing Multi-Material Enabling Modeling & Computational Mat. Sci. Engine Materials, Cast Al & Fe High Temp Alloys Exhaust Sys. Materials, Low T Catalysts Lightweight Propulsion FY13 Enacted $27.5 M $11.9 M FY14

  2. A Critical Examination of Figure of Merit (FOM). Assessing the Goodness-of-Fit in Gamma/X-ray Peak Analysis

    SciTech Connect

    Croft, S.; Favalli, Andrea; Weaver, Brian Phillip; Williams, Brian J.; Burr, Thomas Lee; Henzlova, Daniela; McElroy, R. D.

    2015-10-06

    In this paper we develop and investigate several criteria for assessing how well a proposed spectral form fits observed spectra. We consider the classical improved figure of merit (FOM) along with several modifications, as well as criteria motivated by Poisson regression from the statistical literature. We also develop a new FOM that is based on the statistical idea of the bootstrap. A spectral simulator has been developed to assess the performance of these different criteria under multiple data configurations.

  3. Record figure of merit values of highly stoichiometric Sb2Te3 porous bulk synthesized from tailor-made molecular precursors in ionic liquids

    DOE PAGES [OSTI]

    Heimann, Stefan; Schulz, Stephan; Schaumann, Julian; Mudring, Anja; Stötzel, Julia; Maculewicz, Franziska; Schierning, Gabi

    2015-08-06

    We report on the synthesis of Sb2Te3 nanoparticles with record-high figure of merit values of up to 1.5. The central thermoelectric parameters, electrical conductivity, thermal conductivity and Seebeck coefficient, were independently optimized. Critical influence of porosity for the fabrication of highly efficient thermoelectric materials is firstly demonstrated, giving a strong guidance for the optimization of other thermoelectric materials.

  4. Innovative Technologies for Bioenergy Technologies Incubator...

    Energy.gov [DOE] (indexed site)

    00PM EDT Online The Innovative Technologies for Bioenergy Technologies Incubator 2 FOA Informational Webinar will be held Wednesday, September 2, 1:00 p.m.-2:00 p.m. ET. Standard...

  5. Plasma technology directory

    SciTech Connect

    Ward, P.P.; Dybwad, G.L.

    1995-03-01

    The Plasma Technology Directory has two main goals: (1) promote, coordinate, and share plasma technology experience and equipment within the Department of Energy; and (2) facilitate technology transfer to the commercial sector where appropriate. Personnel are averaged first by Laboratory and next by technology area. The technology areas are accelerators, cleaning and etching deposition, diagnostics, and modeling.

  6. Forest products technologies

    SciTech Connect

    None, None

    2006-07-18

    Report highlights DOE Industrial Technology Program co-funded R&D resulting in commercial energy-efficient technologies and emerging technologies helping the forest products industry save energy.

  7. Jefferson Lab - Technology Transfer

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Welcome to Technology Transfer What is Technology Transfer at Jefferson Lab? Technology transfer and technology partnering are significant mechanisms for DOE laboratories and facilities to engage non-Federal entities to advance technology development and commercialization. Fundamental and applied research at the DOE laboratories have been conduits for technology transfer, collaborating with university and industry colleagues to develop and commercialize products and processes for commercial use.

  8. NETL: SOFC Core Technology

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Core Technology Core Technology-This key technology conducts applied research and development on technologies - exclusive of the cell components - that improve the cost, performance, robustness, reliability, and endurance of SOFC stack or balance-of-plant (BOP) technology. Projects in the Core Technology portfolio focus on interconnects and seals, identify and mitigate stack-related degradation, develop computational tools and models, and conduct laboratory- and bench-scale testing to improve

  9. Morgantown Energy Technology Center, technology summary

    SciTech Connect

    Not Available

    1994-06-01

    This document has been prepared by the DOE Environmental Management (EM) Office of Technology Development (OTD) to highlight its research, development, demonstration, testing, and evaluation activities funded through the Morgantown Energy Technology Center (METC). Technologies and processes described have the potential to enhance DOE`s cleanup and waste management efforts, as well as improve US industry`s competitiveness in global environmental markets. METC`s R&D programs are focused on commercialization of technologies that will be carried out in the private sector. META has solicited two PRDAs for EM. The first, in the area of groundwater and soil technologies, resulted in twenty-one contact awards to private sector and university technology developers. The second PRDA solicited novel decontamination and decommissioning technologies and resulted in eighteen contract awards. In addition to the PRDAs, METC solicited the first EM ROA in 1993. The ROA solicited research in a broad range of EM-related topics including in situ remediation, characterization, sensors, and monitoring technologies, efficient separation technologies, mixed waste treatment technologies, and robotics. This document describes these technology development activities.

  10. Green Purchasing & Green Technology

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Purchasing & Technology Goals 6 & 7: Green Purchasing & Green Technology Our goal is to purchase and use environmentally sustainable products whenever possible and to implement...

  11. CBI Technology Impact Framework

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    CBI Technology Impact Framework 2014 Building Technologies Office Peer Review Images courtesy CREE, True Manufacturing, A.O. Smith, Bernstein Associates, Cambridge Engineering, ...

  12. Promising Technologies List

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    about promising new and underutilized energy-saving technologies available for Federal and commercial building sector deployment. To identify promising technologies,...

  13. NREL: Technology Transfer - Contacts

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    you may have about NREL's technology transfer opportunities. Partnering with NREL Anne Miller, 303-384-7353 Licensing NREL Technologies Eric Payne, 303-275-3166 Printable Version...

  14. Technology Selection Process

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    technologies, including Technical Advisory Groups and the Energy Efficiency Technology Roadmap. Technical Advisory Groups E3T engages stakeholders of electric power industries in...

  15. Hydropower Program Technology Overview

    SciTech Connect

    Not Available

    2001-10-01

    New fact sheets for the DOE Office of Power Technologies (OPT) that provide technology overviews, description of DOE programs, and market potential for each OPT program area.

  16. Science & Technology - 2016

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    technology 2016 july Science & Technology - 2016 July 3D Printing Could Revolutionize ... Talk about being responsive to the needs of your customers. The NIF & Photon Science team ...

  17. Vehicle Technologies Office: News

    Energy.gov [DOE]

    EERE intends to issue, on behalf of its Fuel Cell Technologies Office, a Funding Opportunity Announcement (FOA) entitled "Fuel Cell Technologies Incubator: Innovations in Fuel Cell and Hydrogen...

  18. Fuel Cell Technologies Overview

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fuel Cell Technologies Overview Flow Cell Workshop Washington, DC Dr. Sunita Satyapal & Dr. Dimitrios Papageorgopoulos U.S. Department of Energy Fuel Cell Technologies Program 37...

  19. Fuel Cell Technologies Overview

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fuel Cell Seminar Orlando, FL Dr. Sunita Satyapal U.S. Department of Energy Fuel Cell Technologies Program Program Manager 1112011 2 | Fuel Cell Technologies Program Source: US ...

  20. Fuel Cell Technologies Overview

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fuel Cell Technologies Overview States Energy Advisory Board (STEAB) Washington, DC Dr. Sunita Satyapal U.S. Department of Energy Fuel Cell Technologies Program Program Manager 3...

  1. Sun Materials Technology aka Shanyang Technology | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Technology aka Shanyang Technology Jump to: navigation, search Name: Sun Materials Technology (aka Shanyang Technology) Place: Yilan County, Taiwan Product: A US-Taiwan JV company...

  2. GT Solar Technologies formerly GT Equipment Technologies | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Technologies formerly GT Equipment Technologies Jump to: navigation, search Name: GT Solar Technologies (formerly GT Equipment Technologies) Place: Merrimack, New Hampshire...

  3. Quantum Fuel Systems Technologies Worldwide Inc Quantum Technologies...

    OpenEI (Open Energy Information) [EERE & EIA]

    Fuel Systems Technologies Worldwide Inc Quantum Technologies Jump to: navigation, search Name: Quantum Fuel Systems Technologies Worldwide Inc (Quantum Technologies) Place: Irvine,...

  4. Blue Spark Technologies formerly Thin Battery Technologies Inc...

    OpenEI (Open Energy Information) [EERE & EIA]

    Spark Technologies formerly Thin Battery Technologies Inc Jump to: navigation, search Name: Blue Spark Technologies (formerly Thin Battery Technologies Inc.) Place: Westlake, Ohio...

  5. DOE Vehicle Technologies Program 2009 Merit Review Report - Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Technology Integration and Education DOE Vehicle Technologies Program 2009 Merit Review Report - Technology Integration and Education Merit review of DOE Vehicle Technologies ...

  6. 2010 DOE EERE Vehicle Technologies Program Merit Review … Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Technology Integration 2010 DOE EERE Vehicle Technologies Program Merit Review Technology Integration Technology integration merit review results PDF icon 2010amr08.pdf ...

  7. NREL: Technology Transfer - Commercialization Programs

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    303-275-3051. Printable Version Technology Transfer Home About Technology Transfer Technology Partnership Agreements Licensing Agreements Nondisclosure Agreements...

  8. TARGETED TECHNOLOGY TRANSFER TO US INDEPENDENTS

    SciTech Connect

    Donald F. Duttlinger; E. Lance Cole

    2005-01-01

    The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of assisting U.S. independent oil and gas producers with timely, informed technology decisions during Fiscal Year 2004 (FY04). PTTC has active grassroots programs through its 10 Regional Lead Organizations (RLOs) and 2 satellite offices. They bring research and academia to the table via their association with geological surveys and engineering departments. The regional directors interact with independent oil and gas producers through technology workshops, resource centers, websites, newsletters, technical publications and other cooperative outreach efforts. PTTC's Headquarters (HQ) staff receives direction from a National Board of Directors predominantly comprised of American natural gas and oil producers to plan and manage the overall technology transfer program. PTTC HQ implements a comprehensive communications program by interconnecting the talents of the National Board, 10 Regional Producer Advisory Groups (PAG) and the RLOs with industry across the U.S. PTTC effectively combines federal funding through the Department of Energy's (DOE) Office of Fossil Energy, namely the Strategic Center for Natural Gas and Oil with state and industry contributions to share application of upstream technologies. Ultimately, these efforts factor in to provide a safe, secure and reliable energy supply for American consumers. This integrated resource base, combined with industry volunteers guiding PTTC's activities and the dedication of national and regional staff, are achieving notable results regarding domestic production figures. PTTC is increasingly recognized as a critical resource for information and access to technologies by providing direct contact with research, development and demonstration (RD&D) results. A key to the program is demonstrating proven technologies that can be applied broadly and rapidly. This technical progress report summarizes PTTC's accomplishments during FY04. Activities

  9. Hydrogen delivery technology roadmap

    SciTech Connect

    None, None

    2005-11-15

    Document describing plan for research into and development of hydrogen delivery technology for transportation applications.

  10. Innovative Process Technologies

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Innovative Process Technologies Research Team Members Key Contacts Innovative Process Technologies Innovative Process Technologies is concerned with the development of innovative costeffective technologies that promote efficiency, environmental performance, availability of advanced energy systems, and the development of computational tools that shorten development timelines of advanced energy systems. NETL, working with members of the NETL-Regional University Alliance (NETL-RUA), will focus on

  11. Soil washing technology evaluation

    SciTech Connect

    Suer, A.

    1995-04-01

    Environmental Restoration Engineering (ERE) continues to review innovative, efficient, and cost effective technologies for SRS soil and/or groundwater remediation. As part of this effort, this technical evaluation provides review and the latest information on the technology for SRS soil remediation. Additional technology evaluation reports will be issued periodically to update these reports. The purpose of this report is to review the soil washing technology and its potential application to SRS soil remediation. To assess whether the Soil Washing technology is a viable option for SRS soil remediation, it is necessary to review the technology/process, technology advantages/limitations, performance, applications, and cost analysis.

  12. NATIONAL ENERGY TECHNOLOGY LABORATORY Technology Transfer

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    The unique technology allows operators to optimize the processing to improve material yield, decrease energy use, and improve safety systems. Specialty metals, such as titanium or ...

  13. Thermally Activated Technologies Technology Roadmap, May 2003...

    Energy.gov [DOE] (indexed site)

    technologies for converting America's wasted heat resources into a reservoir of pollution-free energy for electric power, heating, cooling, refrigeration, and humidity control. ...

  14. NATIONAL ENERGY TECHNOLOGY LABORATORY Technology Transfer Novel...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Novel PlatinumChromium Alloy for the Manufacture of Improved Coronary Stents Success Story NETL Technology Transfer Group techtransfer@netl.doe.gov Contact Partners A coronary...

  15. National Energy Technology Laboratory Technologies Available...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels ...

  16. Control technology for radioactive emissions to the atmosphere at US Department of Energy facilities

    SciTech Connect

    Moore, E.B.

    1984-10-01

    The purpose of this report is to provide information to the US Environmental Protection agency (EPA) on existing technology for the control of radionuclide emissions into the air from US Department of Energy (DOE) facilities, and to provide EPA with information on possible additional control technologies that could be used to further reduce these emissions. Included in this report are generic discussions of emission control technologies for particulates, iodine, rare gases, and tritium. Also included are specific discussions of existing emission control technologies at 25 DOE facilities. Potential additional emission control technologies are discussed for 14 of these facilities. The facilities discussed were selected by EPA on the basis of preliminary radiation pathway analyses. 170 references, 131 figures, 104 tables.

  17. TECHNOLOGY TRANSFER COORDINATORS

    Office of Energy Efficiency and Renewable Energy (EERE)

    Mark Hartney, Director of the Office of Strategic Planning, SLAC, discussed technology transfer at SLAC. Bob Hwang, Director, Transportation Energy Center, Combustion Research Facility, SNL presented on technology transfer at SNL. Elsie Quaite-Randall, Chief Technology Transfer Officer, Innovation and Partnerships Office, LBNL, presented on technology transfer at LBNL. Richard A. Rankin, Director, Industrial Partnerships Office and Economic Development Office (Interim), LLNL, presented on technology transfer at LLNL.

  18. Materials Science and Technology

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    PADSTE » ADEPS » MST Materials Science and Technology Providing world-leading, innovative, and agile materials science and technology solutions for national security missions. MST is metallurgy. The Materials Science and Technology Division provides scientific and technical leadership in materials science and technology for Los Alamos National Laboratory. READ MORE MST is engineered materials. The Materials Science and Technology Division provides scientific and technical leadership in

  19. NATIONAL ENERGY TECHNOLOGY LABORATORY Technology Transfer NETL Technology for Safer,

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Technology for Safer, Cleaner Corrosion-Protecting Metal Coatings Licensed by Pittsburgh Start-Up Success Story Corrosion-related issues cost the U.S. economy $276 billion a year. The Energy Department's National Energy Technology Laboratory (NETL) teamed up with Carnegie Mellon University (CMU) to create a revolutionary, cost-effective technology to reduce that impact-work that resulted in the creation of a new CMU/NETL spin-off that signed a licensing agreement with the laboratory in June. The

  20. SHARED TECHNOLOGY TRANSFER PROGRAM

    SciTech Connect

    GRIFFIN, JOHN M. HAUT, RICHARD C.

    2008-03-07

    The program established a collaborative process with domestic industries for the purpose of sharing Navy-developed technology. Private sector businesses were educated so as to increase their awareness of the vast amount of technologies that are available, with an initial focus on technology applications that are related to the Hydrogen, Fuel Cells and Infrastructure Technologies (Hydrogen) Program of the U.S. Department of Energy. Specifically, the project worked to increase industry awareness of the vast technology resources available to them that have been developed with taxpayer funding. NAVSEA-Carderock and the Houston Advanced Research Center teamed with Nicholls State University to catalog NAVSEA-Carderock unclassified technologies, rated the level of readiness of the technologies and established a web based catalog of the technologies. In particular, the catalog contains technology descriptions, including testing summaries and overviews of related presentations.

  1. Marine and Hydrokinetic Technology Glossary

    Office of Energy Efficiency and Renewable Energy (EERE)

    Learn about the basic technologies and key terms used to describe marine and hydrokinetic technologies.

  2. FY04 Engineering Technology Reports Technology Base

    SciTech Connect

    Sharpe, R M

    2005-01-27

    Lawrence Livermore National Laboratory's Engineering Directorate has two primary discretionary avenues for its investment in technologies: the Laboratory Directed Research and Development (LDRD) program and the ''Tech Base'' program. This volume summarizes progress on the projects funded for technology-base efforts in FY2004. The Engineering Technical Reports exemplify Engineering's more than 50-year history of researching and developing (LDRD), and reducing to practice (technology-base) the engineering technologies needed to support the Laboratory's missions. Engineering has been a partner in every major program and project at the Laboratory throughout its existence, and has prepared for this role with a skilled workforce and technical resources. This accomplishment is well summarized by Engineering's mission: ''Enable program success today and ensure the Laboratory's vitality tomorrow''. LDRD is the vehicle for creating those technologies and competencies that are cutting edge. These require a significant level of research or contain some unknown that needs to be fully understood. Tech Base is used to apply those technologies, or adapt them to a Laboratory need. The term commonly used for Tech Base projects is ''reduction to practice''. Tech Base projects effect the natural transition to reduction-to-practice of scientific or engineering methods that are well understood and established. They represent discipline-oriented, core competency activities that are multi-programmatic in application, nature, and scope. The objectives of technology-base funding include: (1) the development and enhancement of tools and processes to provide Engineering support capability, such as code maintenance and improved fabrication methods; (2) support of Engineering science and technology infrastructure, such as the installation or integration of a new capability; (3) support for technical and administrative leadership through our technology Centers; and (4) the initial scoping and

  3. Vehicle Technologies Program Implementation

    SciTech Connect

    none,

    2009-06-19

    The Vehicle Technologies Program takes a systematic approach to Program implementation. Elements of this approach include the evaluation of new technologies, competitive selection of projects and partners, review of Program and project improvement, project tracking, and portfolio management and adjustment.

  4. Photovoltaics: A Diverse Technology

    Office of Energy Efficiency and Renewable Energy (EERE)

    This video illustrates the diversity of photovoltaic (PV) technology, which is due to innovations in PV materials, reductions in manufacturing costs, and expanding uses of the technology. A brief...

  5. SSL TECHNOLOGY DEVELOPMENT WORKSHOP

    Energy.gov [DOE]

    Rapid advances in SSL technology make it easy to forget that this technology is still at a relatively early stage of development, and much of its potential remains untapped. The 10th annual DOE SSL...

  6. SSL Technology Development Workshop

    Energy.gov [DOE]

    Rapid advances make it easy to forget that SSL technology is still at a relatively early stage of development, and much of its potential remains untapped. The 10th annual DOE SSL Technology...

  7. Technology Readiness Assessment Guide

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    2011-09-15

    The Guide assists individuals and teams involved in conducting Technology Readiness Assessments (TRAs) and developing Technology Maturation Plans (TMPs) for the DOE capital asset projects subject to DOE O 413.3B. Supersedes DOE G 413.3-4.

  8. Technology Deployment Case Studies

    Energy.gov [DOE]

    Find technology deployment case studies below. Click on each individual project link to see the full case study. You can also view a map of technology deployment case studies.

  9. Technology Transfer Ombudsman Program

    Energy.gov [DOE]

    The Technology Transfer Commercialization Act of 2000, Public Law 106-404 (PDF) was enacted in November 2000.  Pursuant to Section 11, Technology Partnerships Ombudsman, each DOE national...

  10. Tag: technology transfer

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    17all en CNS, UT chemical sensing technology wins R&D 100 Award http:www.y12.doe.govnewspress-releasescns-ut-chemical-sensing-technology-wins-rd-100-award

  11. Benchmarking of Competitive Technologies

    Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  12. Information Technology | Jefferson Lab

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Information Technology The Information Technology Division uses cutting-edge technology to provide high-quality services and capabilities that enable the lab to pursue its research mission in support of the nation's scientific agenda. Leading the division is the chief information officer. The CIO is responsible for providing information from the labs information technology systems to Jefferson Lab management, the overall IT vision, the information architecture for computing and IT, and oversight

  13. TECHNOLOGY READINESS ASSESSMENT

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    DECEMBER 2012 Pathway for readying the next generation of affordable clean energy technology -Carbon Capture, Utilization, and Storage (CCUS) 2012 TECHNOLOGY READINESS ASSESSMENT -OVERVIEW 2 2012 TECHNOLOGY READINESS ASSESSMENT-OVERVIEW 2012 TECHNOLOGY READINESS ASSESSMENT-OVERVIEW 3 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any

  14. Robert Jilek: Pellion Technologies

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Robert Jilek: Pellion Technologies Alumni Link: Opportunities, News and Resources for Former Employees Latest Issue:September 2015 all issues All Issues » submit Robert Jilek: Pellion Technologies Senior research scientist at eastern energy storage startup September 3, 2014 Robert Jilek Robert Jilek Contact Linda Anderman Email Robert Jilek Jilek is currently with Pellion Technologies Bob Jilek is currently spending part of his time in a management role at Pellion Technologies in the Cambridge

  15. Technology Integration Overview

    Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  16. Technology Transfer | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Technology Transfer Through partnerships and licensing of its intellectual property rights, NREL seeks to reduce private sector risk in early stage technologies, enable investment in the adoption of renewable energy and energy efficiency technologies, reduce U.S. reliance on foreign energy sources, reduce carbon emissions, and increase U.S. industrial competitiveness. Text Version View a summary of our Fiscal Year 2015 technology partnership agreements. Learn more about our partnership

  17. Consumer Vehicle Technology Data

    Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  18. Advanced Propulsion Technology Strategy

    Energy.gov [DOE]

    GM is also developing new classes of electrically driven vehicles, leveraging technology first used in their hybrids.

  19. Membrane Technology Workshop

    Energy.gov [DOE]

    Presentation by Charles Page (Air Products & Chemicals, Inc.) for the Membrane Technology Workshop held July 24, 2012

  20. Benchmarking of Competitive Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Laboratory * National Renewable Energy Laboratory * ORNL Team Members - Steve Campbell, Chester Coomer - Andy Wereszczak, Materials Science and Technology Division Partners ...

  1. Geothermal Energy & Drilling Technology

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy & Drilling Technology - Sandia Energy Energy Search Icon Sandia Home Locations ... Atmospheric Radiation Measurement Climate Reasearch Facility Geomechanics and Drilling ...

  2. Building Technologies Program Presentation

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Renewable Energy Building Technologies Program Jerry Dion Acting Program Manager Building Technologies Program State Energy Advisory Board Meeting October 17, 2007 The investment in Buildings R&D yielded an ROI of 15:1 from 1978 to 2000 The Buildings Technologies Program researches and Energy Efficiency & deploys new technologies to make homes and Renewable Energy commercial buildings more affordable, energy efficient, and better performing The investment in Buildings R&D yielded an

  3. Technology Performance Exchange

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... Meeting * Open invitation for peer review 12 | Building Technologies Office ... data flows with Building Component Library * Seamless information flow from ...

  4. Geothermal Technologies Program Overview

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Jay Nathwani Acting Program Manager Geothermal Technologies Program Office of Energy Efficiency and Renewable Energy The Geothermal Technologies Program Overview May 18 2010 Energy Efficiency & Renewable Energy eere.energy.gov Geothermal Technologies Program (GTP) Program Topic Areas *Low Temperature, Geopressured and Coproduced Resources *Innovative Exploration Technologies National Goals *Economy Putting people to work in the near- term, and in the future *Security Developing and expanding

  5. Carbon Fiber Technology Facility

    Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  6. Biogas Production Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Production Technologies Ruihong Zhang, Professor Biological and Agricultural Engineering University of California, Davis Email: rhzhang@ucdavis.edu Biogas and Fuel Cell Workshop National Renewable Energy Laboratory June 12, 2012 Presentation Outline * Status of anaerobic digestion technologies and opportunities for further development * New UC Davis solid waste digestion technologies applied to commercial projects Anaerobic Digestion Biogas Digester Effluent (residual solids and water) Organic

  7. Technology Performance Exchange

    SciTech Connect

    2015-09-01

    To address the need for accessible, high-quality data, the Department of Energy has developed the Technology Performance Exchange (TPEx). TPEx enables technology suppliers, third-party testing laboratories, and other entities to share product performance data. These data are automatically transformed into a format that technology evaluators can easily use in their energy modeling assessments to inform procurement decisions.

  8. Compression Technology and Needs

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    M ohawk Innovative Technology, Inc. HYDROGEN TRANSMISSION AND DISTRIBUTION WORKSHOP NATIONAL RENEWABLE ENERGY LABORATORY GOLDEN, COLORADO COMPRESSION TECHNOLOGY AND NEEDS Hooshang Heshmat, PH.D. February 25 TH , 2014 ® M ohawk Innovative Technology, Inc. * Overall pipeline delivery steps, production to file up * Different types of compressors * Pipeline compressor development steps and accomplishments * Need for Forecourt Compression system * Other major components: drive, sealing, pipeline,

  9. High Impact Technology Hub

    Energy.gov [DOE]

    The High Impact Technology Hub is a one stop shop for information associated with technology demonstrations in occupied, operational buildings. Resources posted to Hub should accelerate the selection and evaluation of technology demonstration projects and enable transparency into DOEs market stimulation and tech to market activities.

  10. Vehicle Technologies Office

    Energy.gov [DOE]

    The Vehicle Technologies Office is developing more energy efficient and environmentally friendly highway transportation technologies that will enable America to use less petroleum. The long-term aim is to develop "leap frog" technologies that will provide Americans with greater freedom of mobility and energy security, while lowering costs and reducing impacts on the environment.

  11. Vehicle Technologies Office: 2008 Advanced Vehicle Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles Vehicle Technologies Office: 2010 Vehicle and Systems Simulation and Testing R&D Annual Progress Report

  12. Surfactant-Free Synthesis of Bi2Te3-Te Micro-Nano Heterostructure with Enhanced Thermoelectric Figure of Merit

    SciTech Connect

    Zhang, Yichi; Wang, Heng; Kraemer, Stephan; Shi, Yifeng; Zhang, Fan; Snedaker, Matt; Ding, Kunlun; Moskovits, Martin; Snyder, G. Jeffrey; Stucky, Galen D.

    2011-03-21

    An ideal thermoelectric material would be a semiconductor with high electrical conductivity and relatively low thermal conductivity: an “electron crystal, phonon glass”. Introducing nanoscale heterostructures into the bulk TE matrix is one way of achieving this intuitively anomalous electron/phonon transport behavior. The heterostructured interfaces are expected to play a significant role in phonon scattering to reduce thermal conductivity and in the energy-dependent scattering of electrical carriers to improve the Seebeck coefficient. A nanoparticle building block assembly approach is plausible to fabricate three-dimensional heterostructured materials on a bulk commercial scale. However, a key problem in applying this strategy is the possible negative impact on TE performance of organic residue from the nanoparticle capping ligands. Herein, we report a wet chemical, surfactant-free, low-temperature, and easily up-scalable strategy for the synthesis of nanoscale heterophase Bi₂Te₃-Te via a galvanic replacement reaction. The micro-nano heterostructured material is fabricated bottom-up, by mixing the heterophase with commercial Bi₂Te₃. This unique structure shows an enhanced zT value of ~0.4 at room temperature. This heterostructure has one of the highest figures of merit among bismuth telluride systems yet achieved by a wet chemical bottom-up assembly. In addition, it shows a 40% enhancement of the figure of merit over our lab-made material without nanoscale heterostructures. This enhancement is mainly due to the decrease in the thermal conductivity while maintaining the power factor. Overall, this cost-efficient and room-temperature synthesis methodology provides the potential for further improvement and large-scale thermoelectric applications.

  13. Vehicle Technologies Office Merit Review 2014: Carbon Fiber Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Carbon Fiber Technology Facility Vehicle Technologies Office Merit Review 2014: Carbon Fiber Technology Facility Presentation given by Oak Ridge National Laboratory at 2014 DOE ...

  14. Fuel Cell Technologies Office: Technology Validation Fact Sheet

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    The Fuel Cell Technologies (FCT) Office, through its Technology Validation program, provides a crucial step in the transition of a technology from the lab to commercialization. ...

  15. Technology Readiness Assessment (TRA)/Technology Maturation Plan...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Readiness Assessment (TRA)Technology Maturation Plan (TMP) Process Guide Technology Readiness ... More Documents & Publications Technology Readiness Assessment Report Small Column Ion ...

  16. Vehicle Technologies Office Merit Review 2015: Vehicle Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Vehicle Technologies Office Overview Vehicle Technologies Office Merit Review 2015: Vehicle Technologies Office Overview Presentation given by U.S. Department of Energy at 2015 DOE ...

  17. Vehicle Technologies Office Merit Review 2015: Advanced Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Advanced Technology Vehicle Lab Benchmarking (L1&L2) Vehicle Technologies Office Merit Review 2015: Advanced Technology Vehicle Lab Benchmarking (L1&L2) Presentation given by Argonne ...

  18. Vehicle Technologies Office: 2008 Oak Ridge Transportation Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Oak Ridge Transportation Technology Program Annual Report Vehicle Technologies Office: 2008 Oak Ridge Transportation Technology Program Annual Report ornlttpreportfy08.pdf (4.58 ...

  19. Reduce Radiation Losses from Heating Equipment; Industrial Technologies Program (ITP) Energy Tips - Process Heating Tip Sheet #7 (Fact Sheet).

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    7 * January 2006 Industrial Technologies Program Reduce Radiation Losses from Heating Equipment Heating equipment, such as furnaces and ovens, can experience significant radiation losses when operating at temperatures above 1,000°F. Hot surfaces radiate energy to colder surfaces in their line of sight, and the rate of heat transfer increases with the fourth power of the surface's absolute temperature. Figure 1 shows radiation heat flux from a heat source at a given temperature to 60°F ambient.

  20. Technology reviews: Shading systems

    SciTech Connect

    Schuman, J.; Rubinstein, F.; Papamichael, K.; Beltran, L.; Lee, E.S.; Selkowitz, S.

    1992-09-01

    We present a representative review of existing, emerging, and future technology options in each of five hardware and systems areas in envelope and lighting technologies: lighting systems, glazing systems, shading systems, daylighting optical systems, and dynamic curtain wall systems. The term technology is used here to describe any design choice for energy efficiency, ranging from individual components to more complex systems to general design strategies. The purpose of this task is to characterize the state of the art in envelope and lighting technologies in order to identify those with promise for advanced integrated systems, with an emphasis on California commercial buildings. For each technology category, the following activities have been attempted to the extent possible: Identify key performance characteristics and criteria for each technology. Determine the performance range of available technologies. Identify the most promising technologies and promising trends in technology advances. Examine market forces and market trends. Develop a continuously growing in-house database to be used throughout the project. A variety of information sources have been used in these technology characterizations, including miscellaneous periodicals, manufacturer catalogs and cut sheets, other research documents, and data from previous computer simulations. We include these different sources in order to best show the type and variety of data available, however publication here does not imply our guarantee of these data. Within each category, several broad classes are identified, and within each class we examine the generic individual technologies that fall into that class.

  1. Gerar Technology | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Gerar Technology Jump to: navigation, search Name: Gerar Technology Place: Rio de Janeiro, Brazil Product: Developer of new technology for production of biodiesel from vegetable...

  2. EKB Technology | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    EKB Technology Jump to: navigation, search Name: EKB Technology Place: Oxfordshire, United Kingdom Product: Developer of a new bioprocessing technology. Coordinates: 51.813938,...

  3. Rubicon Technology | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Rubicon Technology Jump to: navigation, search Name: Rubicon Technology Place: Franklin Park, Illinois Zip: 60131 Product: Rubicon Technology makes a sapphire substrates for use in...

  4. High Impact Technology Hub- Results

    Energy.gov [DOE]

    Highlights, outcomes and activities to support the adoption of High Impact Technologies. Technology Highlights preview early results from current technology demonstrations. Case Studies overview...

  5. Shorepower Technologies | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Shorepower Technologies Jump to: navigation, search Logo: Shorepower Technologies Name: Shorepower Technologies Address: 2351 NW York St. Place: Portland, Oregon Zip: 97210 Region:...

  6. PCN Technology | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    PCN Technology Jump to: navigation, search Name: PCN Technology Place: San Diego, California Zip: CA 92127 Product: California-based smart grid technology developer. References:...

  7. Briza Technologies | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Briza Technologies Jump to: navigation, search Name: Briza Technologies Place: Hillsborough, New Jersey Zip: 8844 Sector: Wind energy Product: Developing wind turbine technology....

  8. Konarka Technologies | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Technologies Jump to: navigation, search Name: Konarka Technologies Place: Lowell, MA Website: www.konarkatechnologies.com References: Konarka Technologies1 Information About...

  9. Minerals Technologies | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Technologies Jump to: navigation, search Name: Minerals Technologies Place: Bethlehem, PA Website: www.mineralstechnologies.com References: Minerals Technologies1 Information...

  10. Topanga Technologies | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Technologies Place: Canoga Park, California Zip: 91303 Product: Stealth-mode high-intensity discharge (HID) lighting technology developer. References: Topanga Technologies1...

  11. Technology transfer 1994

    SciTech Connect

    Not Available

    1994-01-01

    This document, Technology Transfer 94, is intended to communicate that there are many opportunities available to US industry and academic institutions to work with DOE and its laboratories and facilities in the vital activity of improving technology transfer to meet national needs. It has seven major sections: Introduction, Technology Transfer Activities, Access to Laboratories and Facilities, Laboratories and Facilities, DOE Office, Technologies, and an Index. Technology Transfer Activities highlights DOE`s recent developments in technology transfer and describes plans for the future. Access to Laboratories and Facilities describes the many avenues for cooperative interaction between DOE laboratories or facilities and industry, academia, and other government agencies. Laboratories and Facilities profiles the DOE laboratories and facilities involved in technology transfer and presents information on their missions, programs, expertise, facilities, and equipment, along with data on whom to contact for additional information on technology transfer. DOE Offices summarizes the major research and development programs within DOE. It also contains information on how to access DOE scientific and technical information. Technologies provides descriptions of some of the new technologies developed at DOE laboratories and facilities.

  12. Exploration Technologies Technology Needs Assessment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Technologies Technology Needs Assessment Exploration Technologies Technology Needs Assessment The Exploration Technologies Needs Assessment is a critical component of ongoing technology roadmapping efforts, and will be used to guide the program's research and development. iet_needs_assessment_06-2011.pdf (5.04 MB) More Documents & Publications Draft Innovative Exploration Technologies Needs Assessment Geothermal Technologies Program Annual Peer Review Presentation By Doug Hollett

  13. Laser dye technology

    SciTech Connect

    Hammond, P R

    1999-09-01

    The author has worked with laser dyes for a number of years. A first interest was in the Navy blue-green program where a flashlamp pumped dye laser was used as an underwater communication and detection device. It made use of the optical window of sea-water--blue for deep ocean, green for coastal water. A major activity however has been with the Atomic Vapor Laser Isotope Separation Program (AVLIS) at the Lawrence Livermore National Laboratory. The aim here has been enriching isotopes for the nuclear fuel cycle. The tunability of the dye laser is utilized to selectively excite one isotope in uranium vapor, and this isotope is collected electrostatically as shown in Figure 1. The interests in the AVLIS program have been in the near ultra-violet, violet, red and deep-red.

  14. Transportation (technology 86)

    SciTech Connect

    Caplan, G.

    1986-01-01

    As railroads strive to cut operating and maintenance costs in an increasingly competitive transportation industry, AC propulsion and microprocessors figure prominently in their plans. New generations of locomotives and cars incorporating AC propulsion and microprocessors entered service last year, and the trend is destined to continue. Electronics is also making possible freight trains that rely on a telemetry unit at the rear to monitor airbrake pressure, instead of a manned caboose. AC is gaining acceptance because it permits simpler motors with fewer parts to wear and replace, and it saves energy by allowing the traction motors to work as generators during braking. Microprocessors are being used in locomotives not only to reduce energy waste through better regulation of traction motor currents and auxiliary devices such as cooling fans, but also to control engine speed, braking, and other functions.

  15. Environmental Technology Verification of Mobile Sources Control...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Environmental Technology Verification of Mobile Sources Control Technologies Environmental Technology Verification of Mobile Sources Control Technologies 2005 Diesel Engine...

  16. Vehicle Technologies Office: Laboratory Facilities and Collaborative...

    Energy Saver

    Electric Drive Technologies Vehicle Technologies Office: Laboratory Facilities and Collaborative Research for Electric Drive Technologies The Vehicle Technologies Office (VTO) ...

  17. Geothermal Technologies Office - Webmaster | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    - Webmaster Geothermal Technologies Office - Webmaster

  18. Geothermal innovative technologies catalog

    SciTech Connect

    Kenkeremath, D.

    1988-09-01

    The technology items in this report were selected on the basis of technological readiness and applicability to current technology transfer thrusts. The items include technologies that are considered to be within 2 to 3 years of being transferred. While the catalog does not profess to be entirely complete, it does represent an initial attempt at archiving innovative geothermal technologies with ample room for additions as they occur. The catalog itself is divided into five major functional areas: Exploration; Drilling, Well Completion, and Reservoir Production; Materials and Brine Chemistry; Direct Use; and Economics. Within these major divisions are sub-categories identifying specific types of technological advances: Hardware; Software; Data Base; Process/Procedure; Test Facility; and Handbook.

  19. Completed Deepwater Technology Projects

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Deepwater Technology Projects Active Projects | Completed Projects Completed Offshore Deepwater Technology Projects Project Number Project Name Primary Performer 12121-6503-01 Development of Best Practices and Risk Mitigation Measures for Deepwater Cementing in SBM and OBM CSI Technologies 11121-5101-01 Trident: A Human Factors Decision Aid Integrating Deepwater Drilling Tasks, Incidents, and Literature Review Pacific Science & Engineering Group 11121-5503-01 Intelligent BOP RAM Actuation

  20. TECHNOLOGY READINESS ASSESSMENT

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ASSESSMENT JANUARY 2015 -A CHECKPOINT ALONG A CHALLENGING JOURNEY DOE/NETL-2015/1710 U.S. Department of Energy 2014 TECHNOLOGY READINESS ASSESSMENT-CLEAN COAL RESEARCH PROGRAM 2 2014 TECHNOLOGY READINESS ASSESSMENT-CLEAN COAL RESEARCH PROGRAM Office of Fossil Energy | National Energy Technology Laboratory DISCLAIMER 3 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor

  1. 2013 DOE Bioenergy Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Bioenergy Technologies Office (BETO) Project Peer Review Catalytic Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels (2 3 1 12) Technology Area Review: Biochemical Conversion 1 | Bioenergy Technologies Office eere.energy.gov Hydrocarbon Fuels (2.3.1.12) May 22, 2013 Mike Lilga This presentation does not contain any proprietary, confidential, or otherwise restricted information Conversion Organization: PNNL Goal Statement Goals: * There is a need to make a balanced f el composition

  2. Technologies | Argonne National Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Technologies Available for Licensing Energy Storage Industrial & Manufacturing Processes Instrumentation & Devices Licensable Software Life Sciences Materials Transportation Fact Sheets and Forms Licensable Technologies Argonne's researchers have developed a wide and diverse range of technologies that have worldwide impact in a variety of fields. Argonne grants licenses for lab-developed intellectual property to existing and start-up companies that are technically and financially capable

  3. Digital Sensor Technology

    SciTech Connect

    Ted Quinn; Jerry Mauck; Richard Bockhorst; Ken Thomas

    2013-07-01

    The nuclear industry has been slow to incorporate digital sensor technology into nuclear plant designs due to concerns with digital qualification issues. However, the benefits of digital sensor technology for nuclear plant instrumentation are substantial in terms of accuracy, reliability, availability, and maintainability. This report demonstrates these benefits in direct comparisons of digital and analog sensor applications. It also addresses the qualification issues that must be addressed in the application of digital sensor technology.

  4. Bioenergy Technologies Presentation

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Technologies State Energy Advisory Board Meeting October 18, 2007 ORNL Jonathan R, Mielenz ORNL Biomass Program Manager & Bioconversion Science and Technology President's State of the Union Address January 2006 Keeping America competitive requires affordable energy. And here we have a serious problem: America is addicted to oil, which is often imported from unstable parts of the world. The best way to break this addiction is through technology.... and we are on the threshold of incredible

  5. Technology Transfer Execution Plan

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Transfer Execution Plan 2016 - 2018 Report to Congress October 2016 United States Department of Energy Washington, DC 20585 Department of Energy | October 2016 Technology Transfer Execution Plan 2016-2018 | Page ii Message from the Secretary On behalf of the U.S. Department of Energy (DOE), I am pleased to present the Department's Technology Transfer Execution Plan (TTEP). This plan is intended to guide DOE, particularly it's Office of Technology Transitions (OTT), in promoting scientific and

  6. Technology Transfer - JCAP

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    PAZ0004_v2.jpg Technology Transfer Who We Are JCAP Mission JCAP At A Glance Fact Sheets Organizational Chart Recent Science Technology Transfer Awards & Honors Senior Management Scientific Leadership Researchers Governance & Advisory Boards Operations & Administration Who we are Overview JCAP Mission JCAP At A Glance Fact Sheets Organizational Chart Our Achievements Recent Science Technology Transfer Awards & Honors Our People Senior Management Scientific Leadership Researchers

  7. Technology Transfer Partnership Ombuds

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Tech Transfer Ombuds Technology Transfer Partnership Ombuds The mission of the Ombuds Office is to enhance communication and mitigate conflict at the Laboratory. Contact (505) 665-2837 Email Anonymous Helpline (505) 667-9370 Technology transfer dispute resolution The Ombuds Program offers dispute resolution assistance to the Laboratory's external stakeholders in areas of technology transfer and other community-based affairs that is consistent with Ombuds Standards of practice. Scope To serve as

  8. Jefferson Lab - Technology Transfer

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Technology Review Committee The Technology Review Committee was established by Jefferson Lab's Director's Council to oversee the intellectual property of the Laboratory. The Committee, composed of representatives of all Divisions, is charged with facilitating the transfer of technology and inventions, developed at the Laboratory, to the private sector. This activity takes on a variety of forms, from establishing Memoranda of Understanding (MOUs), Cooperative Research and Development Agreements

  9. Technology Pathway Selection Effort

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    BIOMASS PROGRAM Technology Pathway Selection Effort Alicia Lindauer 27 November 2012 2 | Biomass Program eere.energy.gov * Setting R&D priorities * Benchmarking * Informing multi-sectoral analytical activities * Track Program R&D progress against goals * Identify technology process routes and prioritize funding * Program direction decisions: * Are we spending our money on the right technology pathways? * Within a pathway: Are we focusing our funding on the highest priority activities?

  10. Geothermal Technologies Office March

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Report Geothermal Technologies Office March 2015 The 2014 Annual Report of the Geothermal Technologies Office is a product of the United States Department of Energy, Office of Energy Efficiency and Renewable Energy. DOE/EERE-1160 * March 2015 This report spans calendar year 2014 achievements. Photographs are accredited herein. back cover photo: Geothermal heat at Pilgrim Hot Springs, Alaska. Source: C. Pike at the Alaska Center for Energy and Power 2014 Annual Report Geothermal Technologies

  11. EIS_Summary_TextandFigures

    Energy Saver

    ... (kV) high voltage direct current (HVDC) electric transmission system and ... an approximate 720-mile, 600kV HVDC transmission line; an alternating current ...

  12. Microsoft Word - figure_04.doc

    Energy Information Administration (EIA) (indexed site)

    11 0 1 2 3 4 5 6 7 8 T e x a s P e n n s y l v a n i a O k l a h o m a L o u i s i a n a W y o m i n g C o l o r a d o G u l f o f M e x i c o N e w M e x i c o A r k a n s a s W e ...

  13. Microsoft Word - figure_03.doc

    Energy Information Administration (EIA) (indexed site)

    Oil and Gas Reserves"; PointLogic Energy; Ventyx; and the Bureau of Safety and Environmental Enforcement, and predecessor agencies. IN OH TN WV VA KY MD PA NY VT NH MA CT ME RI ...

  14. Microsoft Word - figure_02.doc

    Energy Information Administration (EIA) (indexed site)

    Additions Withdrawals Gas Industry Use Residential Commercial Industrial Vehicle Fuel Electric Power 32.9 0.5 0.3 3.4 2.625 0.071 1.054 0.701 27.1 1.7 3.7 3.2 2.3 3.2 7.5 ...

  15. Figure2b.eps

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... except the bare Coulomb interaction is replaced by the screened Coulomb interac- tion: W GG ' (q ; ) -1 GG ' (q ; )v(q + G ' ) where v is the bare Coulomb interaction. ...

  16. Microsoft Word - Figure_01.doc

    Energy Information Administration (EIA) (indexed site)

    May 2016 U.S. Energy Information Administration | Natural Gas Monthly 4 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 2013 2014 2015 2016 2017 ...

  17. Microsoft Word - figure_16.doc

    Energy Information Administration (EIA) (indexed site)

    2 4 6 8 10 2010 2011 2012 2013 2014 Residential Commercial Industrial Electric Po wer Sources: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and ...

  18. Sandia National Laboratories: Facts & Figures

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Total DOE Funding 1,917.0 million Strategic Partnership Projects (Work for Others) DoD 730.9 million DHS 56.9 million Other federal agencies 103.9 million Non-federal ...

  19. Marine & Hydrokinetic Technologies

    SciTech Connect

    2011-07-01

    This fact sheet describes the Wind and Water Power Program's current approach to supporting the development and deployment of marine and hydrokinetic technologies.

  20. Benchmarking of Competitive Technologies

    Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  1. Fuel Cell Technologies Budget

    SciTech Connect

    EERE

    2012-03-16

    The Fuel Cell Technologies Office receives appropriations from Energy and Water Development. The offices's major activities and budget are outlined in this Web page.

  2. Overview of biomass technologies

    SciTech Connect

    None, None

    2009-01-18

    The biomass overview of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  3. Information Sciences and Technology

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    file systems Bioinformatics Infectious disease surveillance Climate change and energy security Smart grids Learn more about our Information Science and Technology capabilities

  4. Supervisory Information Technology Specialist

    Energy.gov [DOE]

    A successful candidate in this position will be responsible for providing Information Technology (IT) infrastructure, capabilities and technical support to the Department of Energy (DOE),...

  5. Emerging Technologies (ET)

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... Appliance and Equipment Standards * ENERGY STAR Theory of Impact: Deployment programs utilize reports as technology baseline. Theory of Impact: Supports performance and cost ...

  6. Technology Demonstration Partnership Policy

    Energy.gov [DOE]

    This City Council memorandum establishes a framework for engaging in and evaluating demonstration partnerships with the goal of developing, testing, and demonstrating emerging technologies, product, and service innovations.

  7. Information Technology Specialist (Security)

    Energy.gov [DOE]

    A successful candidate in this position will serve as an Information Technology Specialist (Security) responsible for providing technical support in the information security environment which...

  8. 2016 Technology Innovation Projects

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Projects FY 2016 Technology Innovation Project Briefs Demand Response TIP 292: Advanced Heat Pump Water Heater Research TIP 336: Scaled Deployment and Demonstration of Demand...

  9. Scaled Wind Farm Technology

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Scaled Wind Farm Technology - Sandia Energy Energy Search Icon Sandia Home Locations ... Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ...

  10. Consumer Vehicle Technology Data

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    technologies Relevance: An informed understanding of the consumer allows VTO to achieve petroleum-use reduction goals through: * Robust assumptions for consumer modeling,...

  11. Consumer Vehicle Technology Data

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    technologies. Relevance: An informed understanding of the consumer allows VTO to achieve petroleum-use reduction goals through: * Robust assumptions for consumer modeling,...

  12. TECHNOLOGY PROGRAM PLAN

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... against business environment risk, reducing program dependency on a single developer. ... U.S. DEPARTMENT OF ENERGY TECHNOLOGY PROGRAM PLAN CHAPTER 2: SOLID OXIDE FUEL CELLS ...

  13. ocean energy technologies

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... Tribal Energy Program Intellectual Property Current EC Partnerships How to Partner Small ... SunShot Grand Challenge: Regional Test Centers ocean energy technologies HomeTag:ocean ...

  14. Benchmarking of Competitive Technologies

    Energy.gov [DOE]

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  15. ENERGY EFFICIENCY TECHNOLOGY ROADMAP

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    managed the overall development and maturation of this Energy Efficiency Technology Roadmap, the effort would not have been possible without the active engagement of a diverse...

  16. Collaborative Transmission Technology Roadmap

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Addendum to the Collaborative Transmission Technology Roadmap March 2014 Bonneville Power Administration Enhanced PDF Functionality Functionality of the PDF version of this...

  17. Sandia Science & Technology Park

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Laboratories. More Info Liquid Common SS&TP welcomes Liquid Common Liquid Common is a digital marketing company now located in the Park. More Info Sandia Science & Technology...

  18. Technology Integration Overview

    Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  19. Renewable energy technology characterizations

    SciTech Connect

    None, None

    1997-12-01

    The Renewable Energy Technology Characterizations describe the technical and economic status of the major emerging renewable energy options for electricity supply.

  20. Information Science & Technology Institute

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ISTI Information Science & Technology Institute Providing connection to program management for capability needs, as well as IS&T integration and support for mission-critical...

  1. Advanced Optical Technologies

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    The Advanced Optical Components and Technologies program develops, creates and provides critical optical components for laser-based missions at LLNL. Past projects focused on ...

  2. Quadrennial Technology Review Glossary

    Office of Environmental Management (EM)

    ... converter A technology based on semiconductor devices ... in hot rock to allow the extraction of heat to drive power generation. enhanced oil recovery Techniques that use water, ...

  3. Window Industry Technology Roadmap

    SciTech Connect

    None, None

    2000-04-01

    The Window Industry Technology Roadmap looks at the trends in window design and installation in 2000 and projects trends for the future.

  4. Information Technology Specialist

    Energy.gov [DOE]

    The Information Technology Services Office (ITSO) is an office within the Office of Business Operations (BO) that provides administrative support to the Office of Energy Efficiency and Renewable...

  5. Solar Energy Technologies Office

    Office of Energy Efficiency and Renewable Energy (EERE)

    In 2011, the Energy Department's Solar Energy Technologies Office (SETO) became the SunShot Initiative, a collaborative national effort that aggressively drives innovation to make solar energy...

  6. Summary - Caustic Recovery Technology

    Office of Environmental Management (EM)

    The Ceramatec Sodium (Na), Super fast Ionic CONductors (NaSICON) membrane has shown ... process utilizes a novel inorganic membrane technology to recover concentrated ...

  7. Director, Geothermal Technologies Office

    Energy.gov [DOE]

    The mission of the Geothermal Technologies Office (GTO) is to accelerate the development and deployment of clean, domestic geothermal resources that will promote a stronger, more productive economy...

  8. Sorption Storage Technology Summary

    Energy.gov [DOE]

    Presented at the R&D Strategies for Compressed, Cryo-Compressed and Cryo-Sorbent Hydrogen Storage Technologies Workshops on February 14 and 15, 2011.

  9. Energy Technology Program Specialist

    Energy.gov [DOE]

    The Office of Energy Efficiency and Renewable Energy is the lead Federal government organization for energy efficiency and renewable energy technology research and development. Its mission is to...

  10. Overview of wind technologies

    SciTech Connect

    None, None

    2009-01-18

    The wind overview section of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  11. Recycling Technology Validation

    Energy.gov [DOE]

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  12. Mobile Technology Management

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    2013-11-21

    The directive will ensure that federal organizations and employees within the Department can use mobile technology to support mission requirements in a safe and secure manner.

  13. Massachusetts Institute of Technology

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    of Technology Short baseline neutrino workshop, Fermilab, Batavia, IL, May 13, 2011 Test of Lorentz and CPT violation with neutrinos Outline 1. Why Lorentz violation is...

  14. Science & Technology Review Articles

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    NIF & Photon Science News Press Releases Experimental Highlights Efficiency Improvements Science & Technology Meetings and Workshops Papers and Presentations NIF&PS People In the ...

  15. Fuel Cell Technologies Overview

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    States Energy Advisory Board (STEAB) Washington, DC Dr. Sunita Satyapal U.S. Department of Energy Fuel Cell Technologies Program Program Manager 3142012 2 | Fuel Cell ...

  16. Appendix C - Industrial technologies

    SciTech Connect

    None, None

    2002-12-20

    This report describes the results, calculations, and assumptions underlying the GPRA 2004 Quality Metrics results for all Planning Units within the Office of Industrial Technologies.

  17. Overview of geothermal technologies

    SciTech Connect

    None, None

    2009-01-18

    The geothermal overview section of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  18. Ocean Energy Technology Overview

    SciTech Connect

    none,

    2009-08-05

    Introduction to and overview of ocean renewable energy resources and technologies prepared for the U.S. Department of Energy Federal Energy management Program.

  19. Bioconversion Technologies | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    to: navigation, search Name: Bioconversion Technologies Place: United Kingdom Sector: Biofuels Product: Second-generation biofuels technology developer References: Bioconversion...

  20. Hydrocarbon Technologies | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Technologies Jump to: navigation, search Name: Hydrocarbon Technologies Place: Lawrenceville, New Jersey Zip: 8648 Sector: Efficiency Product: String representation...

  1. National Algal Biofuels Technology Review

    Office of Energy Efficiency and Renewable Energy (EERE)

    Plenary V: National Algal Biofuels Technology Review National Algal Biofuels Technology Review Matthew Posewitz, Professor, Colorado School of Mines

  2. Robotics Technology Crosscutting Program. Technology summary

    SciTech Connect

    1995-06-01

    The Robotics Technology Development Program (RTDP) is a needs-driven effort. A length series of presentations and discussions at DOE sites considered critical to DOE`s Environmental Restoration and Waste Management (EM) Programs resulted in a clear understanding of needed robotics applications toward resolving definitive problems at the sites. A detailed analysis of the resulting robotics needs assessment revealed several common threads running through the sites: Tank Waste Retrieval (TWR), Contaminant Analysis Automation (CAA), Mixed Waste Operations (MWO), and Decontamination and Dismantlement (D and D). The RTDP Group also realized that some of the technology development in these four areas had common (Cross Cutting-CC) needs, for example, computer control and sensor interface protocols. Further, the OTD approach to the Research, Development, Demonstration, Testing, and Evaluation (RDDT and E) process urged an additional organizational breakdown between short-term (1--3 years) and long-term (3--5 years) efforts (Advanced Technology-AT). These factors lead to the formation of the fifth application area for Crosscutting and Advanced Technology (CC and AT) development. The RTDP is thus organized around these application areas -- TWR, CAA, MWO, D and D, and CC and AT -- with the first four developing short-term applied robotics. An RTDP Five-Year Plan was developed for organizing the Program to meet the needs in these application areas.

  3. Emerging Technologies - Capturing Innovation with Technology

    SciTech Connect

    2012-12-01

    ET team research results are critical to achieving 50% energy savings across U.S. buildings within the next two decades. The ET team focuses on supporting research, development, and tech-to-market opportunities of high impact technologies, or those that demonstrate potential for achieving significant energy savings cost effectively.

  4. Assistive Technology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Assistive Technology Assistive Technology Assistive technology word cloud. Assistive technology word cloud. The DOE Headquarters Accommodation Program was established to provide reasonable computer and related telecommunications accommodations for employees with disabilities. Since implementation of the Assistive Technologies program in 1993, accommodations have increased from an initial 26 to an approximately 700 individual accommodations. The Assistive Technologies program complies with

  5. Digital Actuator Technology

    SciTech Connect

    Ken Thomas; Ted Quinn; Jerry Mauck; Richard Bockhorst

    2014-09-01

    There are significant developments underway in new types of actuators for power plant active components. Many of these make use of digital technology to provide a wide array of benefits in performance of the actuators and in reduced burden to maintain them. These new product offerings have gained considerable acceptance in use in process plants. In addition, they have been used in conventional power generation very successfully. This technology has been proven to deliver the benefits promised and substantiate the claims of improved performance. The nuclear industry has been reluctant to incorporate digital actuator technology into nuclear plant designs due to concerns due to a number of concerns. These could be summarized as cost, regulatory uncertainty, and a certain comfort factor with legacy analog technology. The replacement opportunity for these types of components represents a decision point for whether to invest in more modern technology that would provide superior operational and maintenance benefits. Yet, the application of digital technology has been problematic for the nuclear industry, due to qualification and regulatory issues. With some notable exceptions, the result has been a continuing reluctance to undertake the risks and uncertainties of implementing digital actuator technology when replacement opportunities present themselves. Rather, utilities would typically prefer to accept the performance limitations of the legacy analog actuator technologies to avoid impacts to project costs and schedules. The purpose of this report is to demonstrate that the benefits of digital actuator technology can be significant in terms of plant performance and that it is worthwhile to address the barriers currently holding back the widespread development and use of this technology. It addresses two important objectives in pursuit of the beneficial use of digital actuator technology for nuclear power plants: 1. To demonstrate the benefits of digital actuator

  6. Technology Catalogue. First edition

    SciTech Connect

    Not Available

    1994-02-01

    The Department of Energy`s Office of Environmental Restoration and Waste Management (EM) is responsible for remediating its contaminated sites and managing its waste inventory in a safe and efficient manner. EM`s Office of Technology Development (OTD) supports applied research and demonstration efforts to develop and transfer innovative, cost-effective technologies to its site clean-up and waste management programs within EM`s Office of Environmental Restoration and Office of Waste Management. The purpose of the Technology Catalogue is to provide performance data on OTD-developed technologies to scientists and engineers assessing and recommending technical solutions within the Department`s clean-up and waste management programs, as well as to industry, other federal and state agencies, and the academic community. OTD`s applied research and demonstration activities are conducted in programs referred to as Integrated Demonstrations (IDs) and Integrated Programs (IPs). The IDs test and evaluate.systems, consisting of coupled technologies, at specific sites to address generic problems, such as the sensing, treatment, and disposal of buried waste containers. The IPs support applied research activities in specific applications areas, such as in situ remediation, efficient separations processes, and site characterization. The Technology Catalogue is a means for communicating the status. of the development of these innovative technologies. The FY93 Technology Catalogue features technologies successfully demonstrated in the field through IDs and sufficiently mature to be used in the near-term. Technologies from the following IDs are featured in the FY93 Technology Catalogue: Buried Waste ID (Idaho National Engineering Laboratory, Idaho); Mixed Waste Landfill ID (Sandia National Laboratories, New Mexico); Underground Storage Tank ID (Hanford, Washington); Volatile organic compound (VOC) Arid ID (Richland, Washington); and VOC Non-Arid ID (Savannah River Site, South Carolina).

  7. Clean Cities 2015 Vehicle Buyer's Guide

    SciTech Connect

    2015-02-11

    Drivers and fleets are increasingly turning to the hundreds of light-duty, alternative fuel, and advanced technology vehicle models that reduce petroleum use, save on fuel costs, and cut emissions. This guide provides a comprehensive list of the 2015 light-duty models that use alternative fuels or advanced fuel-saving technologies.

  8. 2015 Vehicle Buyer's Guide (Brochure)

    SciTech Connect

    Not Available

    2015-02-01

    Drivers and fleets are increasingly turning to the hundreds of light-duty, alternative fuel, and advanced technology vehicle models that reduce petroleum use, save on fuel costs, and cut emissions. This guide provides a comprehensive list of the 2015 light-duty models that use alternative fuels or advanced fuel-saving technologies.

  9. Advanced uranium enrichment technologies

    SciTech Connect

    Merriman, R.

    1983-03-10

    The Advanced Gas Centrifuge and Atomic Vapor Laser Isotope Separation methods are described. The status and potential of the technologies are summarized, the programs outlined, and the economic incentives are noted. How the advanced technologies, once demonstrated, might be deployed so that SWV costs in the 1990s can be significantly reduced is described.

  10. Gasification: A Cornerstone Technology

    ScienceCinema

    Gary Stiegel

    2016-07-12

    NETL is a leader in the science and technology of gasification - a process for the conversion of carbon-based materials such as coal into synthesis gas (syngas) that can be used to produce clean electrical energy, transportation fuels, and chemicals efficiently and cost-effectively using domestic fuel resources. Gasification is a cornerstone technology of 21st century zero emissions powerplants

  11. Gasification: A Cornerstone Technology

    SciTech Connect

    Gary Stiegel

    2008-03-26

    NETL is a leader in the science and technology of gasification - a process for the conversion of carbon-based materials such as coal into synthesis gas (syngas) that can be used to produce clean electrical energy, transportation fuels, and chemicals efficiently and cost-effectively using domestic fuel resources. Gasification is a cornerstone technology of 21st century zero emissions powerplants

  12. Additive Manufacturing Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Additive Manufacturing 1 Technology Assessment 2 1. Contents 3 1. Introduction to the Technology/System ............................................................................................... 2 4 1.1 Introduction to Additive Manufacturing ....................................................................................... 2 5 1.2 Additive Manufacturing Processes ............................................................................................... 2 6 1.3 Benefits of Additive

  13. Technology Readiness Assessment Guide

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    2011-09-15

    This document was developed to assist individuals and teams that will be involved in conducting Technology Readiness Assessments (TRAs) and developing Technology Maturation Plans (TMPs) for the Department of Energy (DOE) capital acquisition assets subjects to DOE O 413.3B.

  14. Science and Technology of Future Light Sources

    SciTech Connect

    Dierker,S.; Bergmann, U.; Corlett, J.; Dierker, S.; Falcone, R.; Galayda, J.; Gibson, M.; Hastings, J.; Hettel, B.; Hill, J.; Hussain, Z.; Kao, C.-C.; Kirx, J.; Long, G.; McCurdy, B.; Raubenheimer, T.; Sannibale, F.; Seeman, J.; Shen, Z.-X.; Shenoy, g.; Schoenlein, B.; Shen, Q.; Stephenson, B.; Stohr, J.; Zholents, A.

    2008-12-01

    Many of the important challenges facing humanity, including developing alternative sources of energy and improving health, are being addressed by advances that demand the improved understanding and control of matter. While the visualization, exploration, and manipulation of macroscopic matter have long been technological goals, scientific developments in the twentieth century have focused attention on understanding matter on the atomic scale through the underlying framework of quantum mechanics. Of special interest is matter that consists of natural or artificial nanoscale building blocks defined either by atomic structural arrangements or by electron or spin formations created by collective correlation effects. The essence of the challenge to the scientific community has been expressed in five grand challenges for directing matter and energy recently formulated by the Basic Energy Sciences Advisory Committee [1]. These challenges focus on increasing our understanding of, and ultimately control of, matter at the level of atoms, electrons. and spins, as illustrated in Figure 1.1, and serve the entire range of science from advanced materials to life sciences. Meeting these challenges will require new tools that extend our reach into regions of higher spatial, temporal, and energy resolution. X-rays with energies above 10 keV offer capabilities extending beyond the nanoworld shown in Figure 1.1 due to their ability to penetrate into optically opaque or thick objects. This opens the door to combining atomic level information from scattering studies with 3D information on longer length scales from real space imaging with a resolution approaching 1 nm. The investigation of multiple length scales is important in hierarchical structures, providing knowledge about function of living organisms, the atomistic origin of materials failure, the optimization of industrial synthesis, or the working of devices. Since the fundamental interaction that holds matter together is of

  15. Science and Technology of Future Light Sources

    SciTech Connect

    Bergmann, Uwe; Corlett, John; Dierker, Steve; Falcone, Roger; Galayda, John; Gibson, Murray; Hastings, Jerry; Hettel, Bob; Hill, John; Hussain, Zahid; Kao, Chi-Chang; Kirz, Janos; Long, Danielle; McCurdy, Bill; Raubenheimer, Tor; Sannibale, Fernando; Seeman, John; Shen, Z. -X.; Schenoy, Gopal; Schoenlein, Bob; Shen, Qun; Stephenson, Brian; Stohr, Joachim; Zholents, Alexander

    2009-01-28

    Many of the important challenges facing humanity, including developing alternative sources of energy and improving health, are being addressed by advances that demand the improved understanding and control of matter. While the visualization, exploration, and manipulation of macroscopic matter have long been technological goals, scientific developments in the twentieth century have focused attention on understanding matter on the atomic scale through the underlying framework of quantum mechanics. Of special interest is matter that consists of natural or artificial nanoscale building blocks defined either by atomic structural arrangements or by electron or spin formations created by collective correlation effects The essence of the challenge to the scientific community has been expressed in five grand challenges for directing matter and energy recently formulated by the Basic Energy Sciences Advisory Committee. These challenges focus on increasing our understanding of, and ultimately control of, matter at the level of atoms, electrons. and spins, as illustrated in Figure 1.1, and serve the entire range of science from advanced materials to life sciences. Meeting these challenges will require new tools that extend our reach into regions of higher spatial, temporal, and energy resolution. X-rays with energies above 10 keV offer capabilities extending beyond the nanoworld shown in Figure 1.1 due to their ability to penetrate into optically opaque or thick objects. This opens the door to combining atomic level information from scattering studies with 3D information on longer length scales from real space imaging with a resolution approaching 1 nm. The investigation of multiple length scales is important in hierarchical structures, providing knowledge about function of living organisms, the atomistic origin of materials failure, the optimization of industrial synthesis, or the working of devices. Since the fundamental interaction that holds matter together is of

  16. All-optical logic gate based on transient grating from disperse red 1 doped organic-inorganic hybrid films with an improved figure of merit

    SciTech Connect

    Gao, Tianxi; Que, Wenxiu Shao, Jinyou; Wang, Yushu

    2015-10-21

    Azobenzene dyes have large refractive index near their main resonance, but the poor figure of merit (FOM) limits their potential for all-optical applications. To improve this situation, disperse red 1 (DR1) molecules were dispersed in a sol-gel germanium/Ormosil organic-inorganic hybrid matrix. Z-scan measurement results showed a good compatibility between the dopant and the matrix, and also, an improved FOM was obtained as compared to the DR1/polymer films reported previously. To demonstrate the all-optical signal processing effect, a cw Nd:YAG laser emitting at 532 nm and a He-Ne laser emitting at 632.8 nm were used as pump and probe beams, respectively. DR1 acts as an initiator of the photo-induced transient holographic grating, which is attributed to the trans-cis-trans photoisomerization. Thus, a three inputs AND all-optical logic gate was achieved by using choppers with different frequencies. The detailed mechanism of operation is discussed. These results indicate that the DR1 doped germanium/Ormosil organic-inorganic hybrid film with an improved FOM has a great potential in all-optical devices around its main resonance.

  17. Technology Readiness Assessment (TRA)/Technology Maturation Plan (TMP)

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Process Guide | Department of Energy Readiness Assessment (TRA)/Technology Maturation Plan (TMP) Process Guide Technology Readiness Assessment (TRA)/Technology Maturation Plan (TMP) Process Guide This document is a guide for those involved in conducting TRAs and developing TMPs for DOE-EM. Technology Readiness Assessment (TRA)/Technology Maturation Plan (TMP) Process Guide (1.19 MB) More Documents & Publications Technology Readiness Assessment Report Small Column Ion Exchange Technology

  18. Accelerating Spectrum Sharing Technologies

    SciTech Connect

    Juan D. Deaton; Lynda L. Brighton; Rangam Subramanian; Hussein Moradi; Jose Loera

    2013-09-01

    Spectrum sharing potentially holds the promise of solving the emerging spectrum crisis. However, technology innovators face the conundrum of developing spectrum sharing technologies without the ability to experiment and test with real incumbent systems. Interference with operational incumbents can prevent critical services, and the cost of deploying and operating an incumbent system can be prohibitive. Thus, the lack of incumbent systems and frequency authorization for technology incubation and demonstration has stymied spectrum sharing research. To this end, industry, academia, and regulators all require a test facility for validating hypotheses and demonstrating functionality without affecting operational incumbent systems. This article proposes a four-phase program supported by our spectrum accountability architecture. We propose that our comprehensive experimentation and testing approach for technology incubation and demonstration will accelerate the development of spectrum sharing technologies.

  19. Advanced membrane separation technology for biosolvents. Final CRADA report.

    SciTech Connect

    Snyder, S. W.; Energy Systems

    2010-02-08

    Argonne and Vertec Biosolvents investigated the stability and perfonnance for a number of membrane systems to drive the 'direct process' for pervaporation-assisted esterification to produce lactate esters. As outlined in Figure 1, the target is to produce ammonium lactate by fennentation. After purification and concentration, ammonium lactate is reacted with ethanol to produce the ester. Esterification is a reversible reaction so to drive the reaction forward, the produced ammonia and water must be rapidly separated from the product. The project focused on selecting pervaporation membranes with (1) acid functionality to facilitate ammonia separation and (2) temperature stability to be able to perform that reaction at as high a temperature as possible (Figure 2). Several classes of commercial membrane materials and functionalized membrane materials were surveyed. The most promising materials were evaluated for scale-up to a pre-commercial application. Over 4 million metric tons per year of solvents are consumed in the U.S. for a wide variety of applications. Worldwide the usage exceeds 10 million metric tons per year. Many of these, such as the chlorinated solvents, are environmentally unfriendly; others, such as the ethylene glycol ethers and N Methyl Pyrrolidone (NMP), are toxic or teratogenic, and many other petroleum-derived solvents are coming under increasing regulatory restrictions. High performance, environmentally friendly solvents derived from renewable biological resources have the potential to replace many of the chlorinated and petrochemical derived solvents. Some of these solvents, such as ethyl lactate; d-limonene, soy methyl esters, and blends ofthese, can give excellent price/perfonnance in addition to the environmental and regulatory compliance benefits. Advancement of membrane technologies, particularly those based on pervaporation and electrodialysis, will lead to very efficient, non-waste producing, and economical manufacturing technologies for

  20. Robotics Technology Development Program. Technology summary

    SciTech Connect

    Not Available

    1994-02-01

    The Robotics Technology Development Program (RTDP) is a ``needs-driven`` effort. A lengthy series of presentations and discussions at DOE sites considered critical to DOE`s Environmental Restoration and Waste Management (EM) Programs resulted in a clear understanding of needed robotics applications toward resolving definitive problems at the sites. A detailed analysis of the Tank Waste Retrieval (TWR), Contaminant Analysis Automation (CAA), Mixed Waste Operations (MWO), and Decontamination & Dismantlement (D&D). The RTDP Group realized that much of the technology development was common (Cross Cutting-CC) to each of these robotics application areas, for example, computer control and sensor interface protocols. Further, the OTD approach to the Research, Development, Demonstration, Testing, and Evaluation (RDDT&E) process urged an additional organizational break-out between short-term (1--3 years) and long-term (3--5 years) efforts (Advanced Technology-AT). The RDTP is thus organized around these application areas -- TWR, CAA, MWO, D&D and CC&AT -- with the first four developing short-term applied robotics. An RTDP Five-Year Plan was developed for organizing the Program to meet the needs in these application areas.

  1. Technology Convergence and National Security

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Technology Commercialization Fund Technology Commercialization Fund A core responsibility of the Office of Technology Transitions, and the Technology Transfer Coordinator, is to oversee the expenditure of DOE technology transfer funds. The office is responsible for implementing the Technology Commercialization Fund (TCF) authorized in section 1001 of the Energy Policy Act of 2005. It states, as amended: "The Secretary shall establish an Energy Technology Commercialization Fund, using 0.9%

  2. Taking technology to market

    SciTech Connect

    Ford, D.; Ryan, C.

    1981-03-01

    For many years, the concept of the product life cycle has helped managers maximize their return on product sales. But according to the authors of this article, using a technology solely in product sales is no longer enough. Today, companies face high R and D costs, competitive pressures from low-cost producers, capacity limitations, antitrust laws, financial difficulties, and foreign trade barriers. This means that they must improve the rate of return on their technology investments by marketing their technology as completely as possible during all phases of its life cycle. The technology life cycle - derived from the product life cycle - pinpoints the changing decisions companies face in selling their know-how. The authors also discuss both the competitive dangers of transferring technology to low-cost foreign producers and the growing role of intermediaries in technology sales. They stress the importance of having a highly specialized staff to plan a company's technology marketing, a responsibility that should be assigned neither to the part-time attention of top management nor simply to marketers or strategic planners.

  3. Science & Technology - 2016

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    technology / 2016 / august Science & Technology - 2016 August Take a Virtual Tour of NIF NIF Ultrathin Polymer Film Is an R&D 100 Finalist A robust, scalable method of fabricating freestanding polymer films that are larger, stronger and thinner than conventionally produced films has been named a 2016 R&D 100 finalist. R&D 100 awards recognize the most revolutionary technologies introduced to the market in a given year. This year's R&D 100 winners will be announced at an

  4. Agricultural Equipment Technology Conference

    Energy.gov [DOE]

    The 20th Agricultural Equipment Technology Conference will be held Feb. 8–10, 2016, in Louisville, Kentucky. The conference will bring together professionals and experts in the agricultural and biological engineering fields. Bioenergy Technologies Office (BETO) Terrestrial Feedstocks Technology Manager Sam Tagore will be in attendance. Mr. Tagore will moderate a technical session titled “Ash Reduction Strategies for Improving Biomass Feedstock Quality.” The session will include presentations by researchers from Idaho National Laboratory and Oak Ridge National Laboratory supporting BETO, as well as from university and industry.

  5. OHVT technology roadmap [2000

    SciTech Connect

    Bradley, R.A.

    2000-02-01

    The OHVT Technology Roadmap for 2000 presents the multiyear program plan of the U.S. DOE's Office of Heavy Vehicle Technologies (OHVT). It is an update of the 1997 plan, reflecting changes in regulations and ongoing discussions with DOE's heavy vehicle customers. The technical plan covers three classes of trucks: (1) class 7-8 (large, on-highway trucks); (2) class 3-6 (medium duty trucks); (3) class 1-2 (pickups, vans, and sport utility vehicles) as well as enabling and supporting technologies. The Roadmap documents program goals, schedules, and milestones.

  6. Annual Technology Baseline

    Energy.gov [DOE]

    The National Renewable Energy Laboratory is conducting a study sponsored by the U.S. Department of Energy DOE, Office of Energy Efficiency and Renewable Energy (EERE), that aims to document and implement an annual process designed to identify a realistic and timely set of input assumptions (e.g., technology cost and performance, fuel costs), and a diverse set of potential futures (standard scenarios), initially for electric sector analysis. This primary product of the Annual Technology Baseline (ATB) project component includes detailed cost and performance data (both current and projected) for both renewable and conventional technologies. This data is presented in MS Excel.

  7. Science & Technology - 2014

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    august Science & Technology - 2014 August First Multi-bunch ... for the first time the generation of two nearly-identical ... emission, fuel motion, and mix levels in the hot-spot at ...

  8. Energy Technology Engineering Center

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Energy Technology Engineering Center (ETEC) is located within Area IV of the Santa Susana Field Laboratory. The ETEC occupies 90-acres within the 290 acre site. The Santa Susana Field...

  9. Technologies Taking Us There

    SciTech Connect

    Cotrell, Jason; Veers, Paul

    2015-09-29

    Keynote presentation at the Iowa State Wind Energy Symposium. This presentation examines several cutting-edge technologies and research being performed by the National Renewable Energy Laboratory that is helping achieve the U.S. Department of Energy's Wind Vision.

  10. Desalination technology evaluation

    SciTech Connect

    Del Bene, J.V.; Loh, G.T.; Schleicher, R.W.; Sgammato, T.A.; Sinha, A.K. )

    1992-12-01

    The shortage of potable water has hindered economic development in South Florida and other areas of the United States. This project, cosponsored with Florida Power Light (FPL), examines the economics of colocation of a water desalination plant with an electric power plant to take advantage of shared facilities, personnel, and equipments well as existing intake and outfall structures. In combination, these factors should reduce the cost of desalinated water. The first step in determining the viability of colocation is identification of desalination technologies best suited for dual-purpose applications in retrofits at existing fossil plants. Based on energy efficiency and commercial maturity, reverse osmosis (RO) and low-temperature multieffect distillation (LT-MED) technologies appear to be the best candidates for such application. In fact, RO provides the best economics for the plants and conditions studied. Of the emerging technologies evaluated, sodium molecular pumping and solvent extraction technologies should be further investigated for their potential in significantly reducing desalination costs.

  11. Drilling technology/GDO

    SciTech Connect

    Kelsey, J.R.

    1985-01-01

    The Geothermal Technology Division of the US Department of Energy is sponsoring two programs related to drilling technology. The first is aimed at development of technology that will lead to reduced costs of drilling, completion, and logging of geothermal wells. This program has the official title ''Hard Rock Penetration Mechanics.'' The second program is intended to share with private industry the cost of development of technology that will result in solutions to the near term geothermal well problems. This program is referred to as the ''Geothermal Drilling Organization''. The Hard Rock Penetration Mechanics Program was funded at $2.65M in FY85 and the GDO was funded at $1.0M in FY85. This paper details the past year's activities and accomplishments and projects the plans for FY86 for these two programs.

  12. NREL: Technology Transfer - Webmaster

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Webmaster To report any problems on or ask a question about the NREL Technology Transfer Web site, you may contact the Webmaster using the online form below. If you have a question...

  13. ENERGY EFFICIENCY TECHNOLOGY ROADMAP

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    n E n v e l o p e This document is one component of the Energy Efficiency Technology Roadmap (EE Roadmap), published by the Bonneville Power Administration (BPA) on behalf of...

  14. ENERGY EFFICIENCY TECHNOLOGY ROADMAP

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    3 : L i g h t i n g This document is one component of the Energy Efficiency Technology Roadmap (EE Roadmap), published by the Bonneville Power Administration (BPA) on behalf of...

  15. Quadrennial Technology Review 2015

    Energy.gov [DOE] (indexed site)

    program supported improvements in this technology, such as the use of nano-clay for next-generation HVDC cables. A research emphasis is also needed on superconducting HVDC cables,...

  16. TEAM Technologies, Inc.

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Business Pulsed Power Support TEAM Technologies Inc. opened its doors in 1985 as a one-man operation in support of Sandia's Z Machine, a mainstay of the Lab's Pulsed Power...

  17. Science & Technology - 2015

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    New ARC Front End Proves Its Mettle July Two NIF&PS Technologies Named R&D 100 Finalists ELI Beamlines Officials Tour HAPLS Project June Measuring NIF Implosions with a Bang Dante: ...

  18. Renewable energy technology characterizations

    SciTech Connect

    None, None

    1997-12-01

    The Renewable Energy Technology Characterizations front matter lists the chapters and tables that support this report on the technical and economic status of the major emerging renewable energy options for electricity supply.

  19. Science & Technology - 2015

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    and finally compressed to a short pulse and highest peak power in large compressor vessels. The new front-end technology is based on a short-pulse optical-parametric...

  20. Technology catalogue. Second edition

    SciTech Connect

    1995-04-01

    The Department of Energy`s (DOE`s) Office of Environmental Management (EM) is responsible for remediating DOE contaminated sites and managing the DOE waste inventory in a safe and efficient manner. EM`s Office of Technology Development (OTD) supports applied research and demonstration efforts to develop and transfer innovative, cost-effective technologies to its site clean-up and waste-management programs within EM. The purpose of the Technology Catalogue is to: (a) provide performance data on OTD-developed technologies to scientists and engineers responsible for preparing Remedial Investigation/Feasibility Studies (RI/FSs) and other compliance documents for the DOE`s clean-up and waste-management programs; and (b) identify partnering and commercialization opportunities with industry, other federal and state agencies, and the academic community.

  1. Membrane Technology Workshop

    Energy.gov [DOE]

    At the Membrane Technology Workshop (held July 24, 2012, in Rosemont, IL), stakeholders from industry and academia explored the status of membrane research and development (R&D). Participants ...

  2. Geothermal Technologies Newsletter Archives

    Energy.gov [DOE]

    Here you'll find past issues of the U.S. Department of Energy's (DOE) Geothermal Technologies program newsletter, which features information about its geothermal research and development efforts....

  3. Director, Building Technologies Office

    Energy.gov [DOE]

    This position is located in the Building Technologies Office (BTO) of the Office of Energy Efficiency and Renewable Energy (EERE). The mission of EERE is to create and sustain American leadership...

  4. Massachusetts Institute of Technology

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    of Technology U-Maryland NuclearHEP seminar, College Park, ... 1. Introduction 2. Neutrino beam 3. Events in the detector ... observed excess of anti-electron neutrino events in the ...

  5. Vehicle Technologies Program Overview

    SciTech Connect

    none,

    2006-09-05

    Overview of the Vehicle Technologies Program including external assessment and market view; internal assessment, program history and progress; program justification and federal role; program vision, mission, approach, strategic goals, outputs, and outcomes; and performance goals.

  6. Genome Science/Technologies

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Genome Genome Science/Technologies Los Alamos using cutting-edge sequencing, finishing, and analysis, impact valuable genomic data. Srinivas Iyer Bioscience Group Leader Email Get Expertise David Bruce Bioscience Deputy Group Leader Email Momchilo Vuyisich Scientist Email Rebecca McDonald Bioscience Communications Email State-of-the art technology and extensive genomics expertise Protein research Read caption + Los Alamos National Laboratory graduate student, Patricia Langan, changes the

  7. Technology Commercialization Program 1991

    SciTech Connect

    Not Available

    1991-11-01

    This reference compilation describes the Technology Commercialization Program of the Department of Energy, Defense Programs. The compilation consists of two sections. Section 1, Plans and Procedures, describes the plans and procedures of the Defense Programs Technology Commercialization Program. The second section, Legislation and Policy, identifies legislation and policy related to the Program. The procedures for implementing statutory and regulatory requirements are evolving with time. This document will be periodically updated to reflect changes and new material.

  8. Geothermal Technologies Office April

    Energy Saver

    Geothermal Data Repository Reaches 500 Submissions Geothermal Data Repository Reaches 500 Submissions August 25, 2015 - 2:41pm Addthis Geothermal Data Repository Reaches 500 Submissions Arlene Anderson Technology Development Manager, Geothermal Technologies Program A map of the United States highlighting the locations of GDR users. Critical data about the subsurface is added to the GDR from sites all across the country. Credit: Jon Weers, NREL. July 15 marked an important milestone for the

  9. Science, Technology & Engineering

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Alan Bishop selected to lead LANL Science, Technology & Engineering directorate August 17, 2012 LOS ALAMOS, NEW MEXICO, August 17, 2012-Los Alamos National Laboratory Director Charles McMillan announced today that after a yearlong, nationwide search, Alan Bishop has been selected to be the Laboratory's next Principal Associate Director for Science, Technology, and Engineering (PADSTE). Bishop has been acting in that role - 2 - since Aug. 29, 2011.Over the course of a distinguished 30-year

  10. 1 | Bioenergy Technologies Office

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    11.2.2.4 Techno-Economic Analysis of Innovative Technology Concepts May 20, 2013 Analysis & Sustainability Corinne Valkenburg (PNNL), Guiping Hu (ISU) Pacific Northwest National Laboratory, Iowa State University This presentation does not contain any proprietary, confidential, or otherwise restricted information 2 | Bioenergy Technologies Office eere.energy.gov Goal Statement * Provide analytical basis for BETO's Research and Development Thrusts: - Initial technical and economic screening of

  11. NREL: Geothermal Technologies - Capabilities

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Capabilities The NREL geothermal team leverages its capabilities in several different areas to enhance the visibility of geothermal technologies. These areas include low-temperature resources; enhanced geothermal systems; strategic planning, analysis, and modeling; and project assessment. Low-Temperature Geothermal Resources NREL works to develop and deploy innovative new technologies that will help the geothermal community achieve widespread adoption of under-utilized low-temperature resources

  12. NREL: Geothermal Technologies - Projects

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Projects The NREL geothermal team is involved in various projects to help accelerate the development and deployment of clean, renewable geothermal technologies, including low-temperature resources; enhanced geothermal systems; strategic planning, analysis, and modeling; and project assessment. Low-Temperature Geothermal Resources NREL supports the U.S. Department of Energy's (DOE) Geothermal Technologies Office (GTO) through various collaborations that evaluate the levelized cost of electricity

  13. NREL: Technology Deployment - News

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    News The following news items represent work being done by the National Renewable Energy Laboratory (NREL) to apply renewable energy and energy efficiency technologies worldwide. Subscribe to the RSS feed RSS . Learn about RSS. Market Impact Newsletter Features news on NREL's partnerships and their impact on real-world applications of clean energy technologies Subscribe May 16, 2016 NREL Helping the Bureau of Land Management Dive Further into Hot Water Geothermal program boosted by greater

  14. JLab Cryogenic Technology

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Cryogenic Technology Cryogenic Technology Thomas Jefferson National Accelerator Facility Operated by the Southeastern Universities Research Association for the U.S. Department of Energy Jlab Cryogenic Systems Focus Operated by the Southeastern Universities Research Association for the U.S. Department of Energy Thomas Jefferson National Accelerator Facility Page 2 ILC Presentation Nov 8, 2005 * Provide unsurpassed reliability and availability for 2.1K and 4K multi plant operation. (>99.5%

  15. Jefferson Lab - Technology Transfer

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    General Procedure for Licensing Jefferson Lab Technology Jefferson Lab has a number of inventions in various stages of patenting. Any organization expressing interest in licensing technology developed by Jefferson Lab is required to complete a Jefferson Lab Non-Disclosure Form, after which, more relevant information will be provided. In some cases, Jefferson Lab will host a pre-proposal conference to which interested parties will be invited. If, after reviewing provided information,

  16. Crosscutting Technology Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Crosscutting Technology Research The Crosscutting Technology Research program serves as a bridge between basic and applied research by fostering R&D in sensors and controls, modeling and simulation, and high performance materials. These activities target enhanced availability and cost reduction for advanced power systems. The Crosscutting program facilitates its R&D efforts through collaboration with other government agencies, large and small businesses, and universities. The

  17. Life-cycle Analysis of Geothermal Technologies; 2010 Geothermal Technology

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Program Peer Review Report | Department of Energy cycle Analysis of Geothermal Technologies; 2010 Geothermal Technology Program Peer Review Report Life-cycle Analysis of Geothermal Technologies; 2010 Geothermal Technology Program Peer Review Report DOE 2010 Geothermal Technologies Program Peer Review adse_005_wang.pdf (192.84 KB) More Documents & Publications Detecting Fractures Using Technology at High Temperatures and Depths - Geothermal Ultrasonic Fracture Imager (GUFI); 2010

  18. Vehicle Technologies Office Merit Review 2015: Vehicle Technologies Office

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Overview | Department of Energy Vehicle Technologies Office Overview Vehicle Technologies Office Merit Review 2015: Vehicle Technologies Office Overview Presentation given by U.S. Department of Energy at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation meeting about Vehicle Technologies Office overview. 02_howell_plenary_2015_amr.pdf (3.45 MB) More Documents & Publications Vehicle Technologies Office Merit Review 2016:

  19. Vehicle Technologies Office: 2014 Electric Drive Technologies Annual

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Progress Report | Department of Energy Electric Drive Technologies Annual Progress Report Vehicle Technologies Office: 2014 Electric Drive Technologies Annual Progress Report The Electric Drive Technologies research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research is focused on developing power electronics (PE), electric motor, and traction drive system

  20. Technology Maturation Plan (TMP) Wet Air Oxidation (WAO) Technology for

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Tank 48H Treatment Project (TTP) | Department of Energy Wet Air Oxidation (WAO) Technology for Tank 48H Treatment Project (TTP) Technology Maturation Plan (TMP) Wet Air Oxidation (WAO) Technology for Tank 48H Treatment Project (TTP) This assessment determines the technology maturity level of the candidate Tank 48H treatment technologies that are being considered for implementation at DOE's SRS - specifically Wet Air Oxidation. Technology Maturation Plan (TMP) Wet Air Oxidation (WAO)

  1. Vehicle Technologies Office Merit Review 2015: Consumer Vehicle Technology

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Data | Department of Energy Consumer Vehicle Technology Data Vehicle Technologies Office Merit Review 2015: Consumer Vehicle Technology Data Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about consumer vehicle technology data. van003_singer_2015_o.pdf (546.73 KB) More Documents & Publications Vehicle Technologies Office Merit Review 2014: Consumer

  2. Information technology resources assessment

    SciTech Connect

    Stevens, D.F.

    1992-01-01

    This year`s Information Technology Resources Assessment (ITRA) is something of a departure from traditional practice. Past assessments have concentrated on developments in fundamental technology, particularly with respect to hardware. They form an impressive chronicle of decreasing cycle times, increasing densities, decreasing costs (or, equivalently, increasing capacity and capability per dollar spent), and new system architectures, with a leavening of operating systems and languages. Past assessments have aimed -- and succeeded -- at putting information technology squarely in the spotlight; by contrast, in the first part of this assessment, we would like to move it to the background, and encourage the reader to reflect less on the continuing technological miracles of miniaturization in space and time and more on the second- and third-order implications of some possible workplace applications of these miracles. This Information Technology Resources Assessment is intended to provide a sense of technological direction for planners in projecting the hardware, software, and human resources necessary to support the diverse IT requirements of the various components of the DOE community. It is also intended to provide a sense of our new understanding of the place of IT in our organizations.

  3. Information technology resources assessment

    SciTech Connect

    Stevens, D.F.

    1992-01-01

    This year's Information Technology Resources Assessment (ITRA) is something of a departure from traditional practice. Past assessments have concentrated on developments in fundamental technology, particularly with respect to hardware. They form an impressive chronicle of decreasing cycle times, increasing densities, decreasing costs (or, equivalently, increasing capacity and capability per dollar spent), and new system architectures, with a leavening of operating systems and languages. Past assessments have aimed -- and succeeded -- at putting information technology squarely in the spotlight; by contrast, in the first part of this assessment, we would like to move it to the background, and encourage the reader to reflect less on the continuing technological miracles of miniaturization in space and time and more on the second- and third-order implications of some possible workplace applications of these miracles. This Information Technology Resources Assessment is intended to provide a sense of technological direction for planners in projecting the hardware, software, and human resources necessary to support the diverse IT requirements of the various components of the DOE community. It is also intended to provide a sense of our new understanding of the place of IT in our organizations.

  4. Technology's Impact on Production

    SciTech Connect

    Rachel Amann; Ellis Deweese; Deborah Shipman

    2009-06-30

    As part of a cooperative agreement with the United States Department of Energy (DOE) - entitled Technology's Impact on Production: Developing Environmental Solutions at the State and National Level - the Interstate Oil and Gas Compact Commission (IOGCC) has been tasked with assisting state governments in the effective, efficient, and environmentally sound regulation of the exploration and production of natural gas and crude oil, specifically in relation to orphaned and abandoned wells and wells nearing the end of productive life. Project goals include: (1) Developing (a) a model framework for prioritization and ranking of orphaned or abandoned well sites; (b) a model framework for disbursement of Energy Policy Act of 2005 funding; and (c) a research study regarding the current status of orphaned wells in the nation. (2) Researching the impact of new technologies on environmental protection from a regulatory perspective. Research will identify and document (a) state reactions to changing technology and knowledge; (b) how those reactions support state environmental conservation and public health; and (c) the impact of those reactions on oil and natural gas production. (3) Assessing emergent technology issues associated with wells nearing the end of productive life. Including: (a) location of orphaned and abandoned well sites; (b) well site remediation; (c) plugging materials; (d) plug placement; (e) the current regulatory environment; and (f) the identification of emergent technologies affecting end of life wells. New Energy Technologies - Regulating Change, is the result of research performed for Tasks 2 and 3.

  5. Information technology resources assessment

    SciTech Connect

    Loken, S.C.

    1993-01-01

    The emphasis in Information Technology (IT) development has shifted from technology management to information management, and the tools of information management are increasingly at the disposal of end-users, people who deal with information. Moreover, the interactive capabilities of technologies such as hypertext, scientific visualization, virtual reality, video conferencing, and even database management systems have placed in the hands of users a significant amount of discretion over how these resources will be used. The emergence of high-performance networks, as well as network operating systems, improved interoperability, and platform independence of applications will eliminate technical barriers to the use of data, increase the power and range of resources that can be used cooperatively, and open up a wealth of possibilities for new applications. The very scope of these prospects for the immediate future is a problem for the IT planner or administrator. Technology procurement and implementation, integration of new technologies into the existing infrastructure, cost recovery and usage of networks and networked resources, training issues, and security concerns such as data protection and access to experiments are just some of the issues that need to be considered in the emerging IT environment. As managers we must use technology to improve competitiveness. When procuring new systems, we must take advantage of scalable resources. New resources such as distributed file systems can improve access to and efficiency of existing operating systems. In addition, we must assess opportunities to improve information worker productivity and information management through tedmologies such as distributed computational visualization and teleseminar applications.

  6. Turbine imaging technology assessment

    SciTech Connect

    Moursund, R. A.; Carlson, T. J.

    2004-12-01

    The goal of this project was to identify and evaluate imaging technologies for observing juvenile fish within a Kaplan turbine, and specifically that would enable scientists to determine mechanisms of fish injury within an operating turbine unit. This report documents the opportunities and constraints for observing juvenile fish at specific locations during turbine passage. These observations were used to make modifications to dam structures and operations to improve conditions for fish passage while maintaining or improving hydropower production. The physical and hydraulic environment that fish experience as they pass through the hydroelectric plants were studied and the regions with the greatest potential for injury were defined. Biological response data were also studied to determine the probable types of injuries sustained in the turbine intake and what types of injuries are detectable with imaging technologies. The study grouped injury-causing mechanisms into two categories: fluid (pressure/cavitation, shear, turbulence) and mechanical (strike/collision, grinding/pinching, scraping). The physical constraints of the environment, together with the likely types of injuries to fish, provided the parameters needed for a rigorous imaging technology evaluation. Types of technology evaluated included both tracking and imaging systems using acoustic technologies (such as sonar and acoustic tags) and optic technologies (such as pulsed-laser videography, which is high-speed videography using a laser as the flash). Criteria for determining image data quality such as frame rate, target detectability, and resolution were used to quantify the minimum requirements of an imaging sensor.

  7. Nuclear Reactors and Technology

    SciTech Connect

    Cason, D.L.; Hicks, S.C.

    1992-01-01

    This publication Nuclear Reactors and Technology (NRT) announces on a monthly basis the current worldwide information available from the open literature on nuclear reactors and technology, including all aspects of power reactors, components and accessories, fuel elements, control systems, and materials. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency`s Energy Technology Data Exchange or government-to-government agreements. The digests in NRT and other citations to information on nuclear reactors back to 1948 are available for online searching and retrieval on the Energy Science and Technology Database and Nuclear Science Abstracts (NSA) database. Current information, added daily to the Energy Science and Technology Database, is available to DOE and its contractors through the DOE Integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user`s needs.

  8. Office of Technology Transitions

    Energy.gov [DOE]

    DOE's Technology Commercialization activities in 2009-13 have involved three broad areas of focus. The primary focus of technology commercialization has continued to be through new technologies developed at the National Laboratories and Facilities. As a second focus, to support and streamline commercialization of these DOE technologies, DOE has carried out a number of new initiatives and pilot projects. Finally, DOE's Department-wide commitment to using commercialization as one mechanism to support U.S. economic growth has led to new cross-cutting programs. U.S. Department of Energy researchers won 31 of the 100 awards in 2014, 36 awards in each of 2013, 2012 and 2011, and 46 in 2010, for a total of 185 over the period of 2009-13. A subset of these awards and other DOE developed technologies are described in Appendix E. These represent a spectrum of commercial areas including DOE mission areas of energy, efficiency, environment and security, as well as spin-off applications in the agricultural, aeronautical, medical, semiconductor and information technology industries, and broad applications in cyber security and sensing/control systems.

  9. Science and Technology in the Physics and Advanced Technologies Directorate

    SciTech Connect

    Wootton, A J

    2004-11-16

    A compendium of LLNL Science and Technology Review articles involving scientist and engineers from the Physics and Advanced Technologies Directorate, from January 2002 to the present.

  10. MHK Technologies/CETO Wave Energy Technology | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Type Click here Point Absorber Technology Readiness Level Click here TRL 78: Open Water System Testing & Demonstration & Operation Technology Description The CETO system...

  11. MHK Technologies/Oregon State University Columbia Power Technologies...

    OpenEI (Open Energy Information) [EERE & EIA]

    here Point Absorber Technology Readiness Level Click here TRL 1-3: Discovery Concept Definition Early Stage Development & Design & Engineering Technology Description When...

  12. Kilowatt Reactor Using Stirling TechnologY (KRUSTY) Demonstration...

    Office of Scientific and Technical Information (OSTI)

    Kilowatt Reactor Using Stirling TechnologY (KRUSTY) Demonstration. CEDT Phase 1 Preliminary Design Documentation Citation Details In-Document Search Title: Kilowatt Reactor Using ...

  13. Vehicle Technologies Office: 2014 Fuel and Lubricant Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Vehicle Technologies Office: 2014 Fuel and Lubricant Technologies R&D Annual Progress Report This report describes the progress made on the research and development projects funded ...

  14. Vehicle Technologies Office: 2013 Fuel and Lubricant Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Vehicle Technologies Office: 2013 Fuel and Lubricant Technologies R&D Annual Progress Report This report describes the progress made on the research and development projects funded ...

  15. Wind Technologies & Evolving Opportunities (Presentation)

    SciTech Connect

    Robichaud, R.

    2014-07-01

    This presentation covers opportunities for wind technology; wind energy market trends; an overview of the National Wind Technology Center near Boulder, Colorado; wind energy price and cost trends; wind turbine technology improvements; and wind resource characterization improvements.

  16. Industrial Process Heating - Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Industrial Process Heating - Technology Assessment 1 2 Contents 3 4 1. Introduction to the Technology/System ............................................................................................... 2 5 1.1. Industrial Process Heating Overview ............................................................................................ 2 6 2. Technology Assessment and Potential ................................................................................................. 6 7 2.1. Status

  17. Trusted Computing Technologies, Intel Trusted Execution Technology.

    SciTech Connect

    Guise, Max Joseph; Wendt, Jeremy Daniel

    2011-01-01

    We describe the current state-of-the-art in Trusted Computing Technologies - focusing mainly on Intel's Trusted Execution Technology (TXT). This document is based on existing documentation and tests of two existing TXT-based systems: Intel's Trusted Boot and Invisible Things Lab's Qubes OS. We describe what features are lacking in current implementations, describe what a mature system could provide, and present a list of developments to watch. Critical systems perform operation-critical computations on high importance data. In such systems, the inputs, computation steps, and outputs may be highly sensitive. Sensitive components must be protected from both unauthorized release, and unauthorized alteration: Unauthorized users should not access the sensitive input and sensitive output data, nor be able to alter them; the computation contains intermediate data with the same requirements, and executes algorithms that the unauthorized should not be able to know or alter. Due to various system requirements, such critical systems are frequently built from commercial hardware, employ commercial software, and require network access. These hardware, software, and network system components increase the risk that sensitive input data, computation, and output data may be compromised.

  18. Ceramic Technology Project

    SciTech Connect

    Not Available

    1992-03-01

    The Ceramic Technology Project was developed by the USDOE Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the USDOE and NASA advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. These programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. A five-year project plan was developed with extensive input from private industry. In July 1990 the original plan was updated through the estimated completion of development in 1993. The objective is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. To facilitate the rapid transfer of this technology to US industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities.

  19. Apex Technology | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Technology Jump to: navigation, search Name: Apex Technology Address: 2703 Merrywood Drive Place: Edison, NJ Zip: 08817 Website: www.apextgi.com Coordinates: 40.5288539,...

  20. Danen Technology | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Danen Technology Jump to: navigation, search Name: Danen Technology Place: Guanyin, Taiwan Product: PV ingot and wafer maker based in northern Taiwan. Coordinates: 25.032009,...

  1. Clearpower Technology | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Clearpower Technology Jump to: navigation, search Name: Clearpower Technology Place: Belfast, Northern Ireland, United Kingdom Zip: BT3 9DT Sector: Wind energy Product: Clearpower...

  2. Unimicron Technology | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Unimicron Technology Jump to: navigation, search Name: Unimicron Technology Place: Taoyuan, Taiwan Sector: Solar Product: Unimicron established solar venture jointly with United...

  3. Greenbox Technology | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Greenbox Technology Jump to: navigation, search Name: Greenbox Technology Place: San Bruno, California Zip: 94066 Sector: Carbon Product: California-based, interactive energy...

  4. Shenmao Technology | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Shenmao Technology Jump to: navigation, search Name: Shenmao Technology Place: Taoyuan, Taiwan Zip: 328 Product: Maker of solder paste and PV ribbons. Coordinates: 25.001909,...

  5. Technology Partners | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Partners Jump to: navigation, search Logo: Technology Partners Name: Technology Partners Address: 550 University Avenue Place: Palo Alto, California Zip: 94301 Region: Bay Area...

  6. Evince Technology | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Evince Technology Jump to: navigation, search Name: Evince Technology Place: United Kingdom Sector: Efficiency, Wind energy Product: String representation "Evince has pion ... ing...

  7. Greenward Technologies | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Technologies Jump to: navigation, search Name: Greenward Technologies Address: PO Box 203814 Place: Austin, Texas Zip: 78720 Region: Texas Area Sector: Wind energy Product:...

  8. Video Resources on Geothermal Technologies

    Energy.gov [DOE]

    Geothermal video offerings at the Department of Energy include simple interactive illustrations of geothermal power technologies and interviews on initiatives in the Geothermal Technologies Office.

  9. Budasolar Technologies | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Jump to: navigation, search Name: Budasolar Technologies Place: Budapest, Hungary Zip: H - 1121 Sector: Solar Product: BudaSolar is a developer of thin film technologies and...

  10. Ardica Technologies | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Ardica Technologies Place: San Francisco, California Zip: 94107 Product: Micro fuel cell company focused on customer-centric applications of fuel cell technologies. References:...

  11. Energy Technologies | Department of Energy

    Office of Environmental Management (EM)

    Technologies Image of industrial pipes. District energy technologies-such as combined heat and power and microgrids-can help state, local, and tribal governments effectively...

  12. Technology Reports | Department of Energy

    Energy.gov [DOE] (indexed site)

    with HVAC&R joining technologies for the Building Technologies Office (BTO) to pursue. ... developed at Sandia National Laboratories (SNL), known as the Radial Sandia Cooler. ...

  13. Fuel Cell Technologies Office: Publications

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fuel Cell Technologies Office EERE Fuel Cell Technologies Office Share this resource Publications Advanced Search Browse by Topic Mail Requests Help Feature featured product...

  14. MAK Technologies | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    MAK Technologies Jump to: navigation, search Name: MAK Technologies Place: Lebanon, New Jersey Zip: 8833 Sector: Solar Product: Designs and installs solar electric and solar...

  15. Vehicle Technologies Office: Information Resources

    Energy.gov [DOE]

    From here you can access additional information on advanced transportation technologies; view programmatic publications and technical information; learn the basics of hybrid vehicle technology;...

  16. Geothermal Technologies | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Geothermal Technologies Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Geothermal Technologies Geothermal energy can be utilized for electricity or heating...

  17. Conservation Technologies | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    by expanding it. Conservation Technologies is a company located in Duluth, Minnesota. Conservation Technologies specializes in energy efficiency in building construction, and...

  18. Mears Technology | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Waltham, Massachusetts Zip: 2451 Sector: Solar Product: Waltham-based developer of manufacturing technology for semiconductor chip producers. The firm's MEARS Silicon Technology...

  19. Wakonda Technologies | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Logo: Wakonda Technologies Name: Wakonda Technologies Address: 2A Gill Street Place: Woburn, Massachusetts Zip: 01801 Region: Greater Boston Area Sector: Solar Product: High...

  20. Statpower Technologies | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Jump to: navigation, search Name: Statpower Technologies Place: British Columbia, Canada Zip: V5A 4B5 Product: Statpower Technologies develops and markets mobile and backup...

  1. Fuel Cell Technologies Program Overview

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    IEA HIA Hydrogen Safety Stakeholder Workshop Bethesda, Maryland Fuel Cell Technologies Program Overview Dr. Sunita Satyapal U.S. Department of Energy Fuel Cell Technologies Program ...

  2. EERE Fuel Cell Technologies Program

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    AudienceEvent Date EERE Fuel Cell Technologies Program Sunita Satyapal Acting Program Manager U.S. Department of Energy Fuel Cell Technologies Program Fuel Cell Project Kickoff ...

  3. DOE Fuel Cell Technologies Office

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    DOE Fuel Cell Technologies Office Fuel Cell Seminar & Energy Exposition Columbus, Ohio Dr. Sunita Satyapal Director Fuel Cell Technologies Office Energy Efficiency and Renewable ...

  4. DOE Fuel Cell Technology Office

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Fuel Cell Technology Office - Sandia Energy Energy Search Icon Sandia Home Locations ... SunShot Grand Challenge: Regional Test Centers DOE Fuel Cell Technology Office Home...

  5. Technology Integration | Department of Energy

    Energy.gov [DOE] (indexed site)

    Program Annual Merit Review and Peer Evaluation Vehicle Technologies Plenary vtpn02smithti2011o.pdf (814.37 KB) More Documents & Publications Technology Integration Overview ...

  6. IPower Technologies | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Place: Andersen, Indiana Zip: 46013 Product: iPower Technologies provides advanced technologies and systems integration capabilities for the distributed generation market....

  7. Stirling technology development status

    SciTech Connect

    Dochat, G.R. ); Dudenhoefer, J.E. )

    1993-01-15

    Free-piston Stirling power converters have the potential to meet the many future space power requirements for a wide variety of applications with less mass, better efficiency, and less total area (collector and radiator) than other power converter options. These benefits result in significant dollar savings over the projected mission lifetime. The National Aeronautics and Space Administration (NASA)---Lewis Research Center (LeRC), which has the responsibility to evaluate and develop power technologies that can satisfy anticipated future space mission power requirements, has been developing free-piston Stirling power converters and is bringing the Stirling technology to readiness. As the principal contractor to NASA-LeRC, Mechanical Technology Incorporated (MTI) is under contract to develop the necessary space Stirling technology but also demonstrate the readiness of the technology in two generations of full-scale power converters. The first generation Stirling power converter, the component test power converter (CTPC), initiated cold end testing at the end of 1991, with hot testing scheduled during 1992. This paper reviews test progress of the CTPC including the initial hot engine test results. Modifications incorporated into the CTPC from the earlier space power demonstrator engine are reviewed as well.

  8. Mobil lube dewaxing technologies

    SciTech Connect

    Baker, C.L.; McGuiness, M.P.

    1995-09-01

    Currently, the lube refining industry is in a period of transition, with both hydroprocessing and catalytic dewaxing gathering momentum as replacements for solvent extraction and solvent dewaxing. In addition, lube product quality requirements have been increasing, both in the US and abroad. Mobil has developed a broad array of dewaxing catalytic technologies which can serve refiners throughout the stages of this transition. In the future, lube feedstocks which vary in source and wax content will become increasingly important, requiring an optimized system for highest performance. The Mobil Lube Dewaxing (MLDW) process is the work-horse of the catalytic dewaxing technologies, being a robust, low cost technology suitable for both solvent extracted and hydrocracked feeds. The Mobil Selective Dewaxing (MSDW) process has been recently introduced in response to the growth of hydroprocessing. MSDW requires either severely hydrotreated or hydrocracked feeds and provides improved lube yields and VI. For refiners with hydrocrackers and solvent dewaxing units, Mobil Wax Isomerization (MWI) technology can make higher VI base stocks to meet the growing demand for very high quality lube products. A review of these three technologies is presented in this paper.

  9. Testing technology. A Sandia Technology Bulletin

    SciTech Connect

    Goetsch, B.; Floyd, H.L.; Doran, L.

    1994-02-01

    This Sandia publication seeks to facilitate technology exchange with industries, universities, and government agencies. It presents brief highlights of four projects. First is a project to simulate the use of airbags to soften the landing of a probe on Mars. Second is the use of a computer simulation system to facilitate the testing of designs for different experiments, both for experimental layout and results analysis. Third is the development of a system for in-house testing of batteries and capacitive energy storage systems, for deployment at the manufacturing sites, as opposed to final use areas. Finally is information on a noncontact measurement system which can be used to determine axes on objects of different shapes, with high precision.

  10. Candidate for solar power : a novel desalination technology for coal bed methane produced water.

    SciTech Connect

    Hanley, Charles J.; Andelman, Marc; Hightower, Michael M.; Sattler, Allan Richard

    2005-03-01

    Laboratory and field developments are underway to use solar energy to power a desalination technology - capacitive deionization - for water produced by remote Coal Bed Methane (CBM) natural gas wells. Due to the physical remoteness of many CBM wells throughout the Southwestern U.S., as shown in Figure 1, this approach may offer promise. This promise is not only from its effectiveness in removing salt from CBM water and allowing it to be utilized for various applications, but also for its potentially lower energy consumption compared to other technologies, such as reverse osmosis. This, coupled with the remoteness (Figure 1) of thousands of these wells, makes them more feasible for use with photovoltaic (solar, electric, PV) systems. Concurrent laboratory activities are providing information about the effectiveness and energy requirements of each technology under various produced water qualities and water reuse applications, such as salinity concentrations and water flows. These parameters are being used to driving the design of integrated PV-powered treatment systems. Full-scale field implementations are planned, with data collection and analysis designed to optimize the system design for practical remote applications. Early laboratory studies of capacitive deionization have shown promise that at common CBM salinity levels, the technology may require less energy, is less susceptible to fouling, and is more compact than equivalent reverse osmosis (RO) systems. The technology uses positively and negatively charged electrodes to attract charged ions in a liquid, such as dissolved salts, metals, and some organics, to the electrodes. This concentrates the ions at the electrodes and reduces the ion concentrations in the liquid. This paper discusses the results of these laboratory studies and extends these results to energy consumption and design considerations for field implementation of produced water treatment using photovoltaic systems.

  11. Technology transfer 1995

    SciTech Connect

    Not Available

    1995-01-01

    Technology Transfer 1995 is intended to inform the US industrial and academic sectors about the many opportunities they have to form partnerships with the US Department of Energy (DOE) for the mutual advantage of the individual institutions, DOE, and the nation as a whole. It also describes some of the growing number of remarkable achievements resulting from such partnerships. These partnership success stories offer ample evidence that Americans are learning how to work together to secure major benefits for the nation--by combining the technological, scientific, and human resources resident in national laboratories with those in industry and academia. The benefits include more and better jobs for Americans, improved productivity and global competitiveness for technology-based industries, and a more efficient government laboratory system.

  12. Glovebox decontamination technology comparison

    SciTech Connect

    Quintana, D.M.; Rodriguez, J.B.; Cournoyer, M.E.

    1999-09-26

    Reconfiguration of the CMR Building and TA-55 Plutonium Facility for mission requirements will require the disposal or recycle of 200--300 gloveboxes or open front hoods. These gloveboxes and open front hoods must be decontaminated to meet discharge limits for Low Level Waste. Gloveboxes and open front hoods at CMR have been painted. One of the deliverables on this project is to identify the best method for stripping the paint from large numbers of gloveboxes. Four methods being considered are the following: conventional paint stripping, dry ice pellets, strippable coatings, and high pressure water technology. The advantages of each technology will be discussed. Last, cost comparisons between the technologies will be presented.

  13. Deepwater seismic acquisition technology

    SciTech Connect

    Caldwell, J.

    1996-09-01

    Although truly new technology is not required for successful acquisition of seismic data in deep Gulf of Mexico waters, it is helpful to review some basic aspects of these seismic surveys. Additionally, such surveys are likely to see early use of some emerging new technology which can improve data quality. Because such items as depth imaging, borehole seismic, 4-D and marine 3-component recording were mentioned in the May 1996 issue of World Oil, they are not discussed again here. However, these technologies will also play some role in the deepwater seismic activities. What is covered in this paper are some new considerations for: (1) longer data records needed in deeper water, (2) some pros and cons of very long steamer use, and (3) two new commercial systems for quantifying data quality.

  14. Utilization Technology Institute | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Utilization Technology Institute Jump to: navigation, search Name: Utilization Technology Institute Place: Des Plaines, IL References: Utilization Technology Institute1...

  15. Sandia Energy - Conventional Water Power: Technology Development

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Technology Development Home Stationary Power Energy Conversion Efficiency Water Power Conventional Water Power: Technology Development Conventional Water Power: Technology...

  16. Stanford Geothermal Workshop - Geothermal Technologies Office...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    - Geothermal Technologies Office Stanford Geothermal Workshop - Geothermal Technologies Office Presentation by Geothermal Technologies Director Doug Hollett at the Stanford ...

  17. SMU Geothermal Conference 2011 - Geothermal Technologies Program...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    SMU Geothermal Conference 2011 - Geothermal Technologies Program SMU Geothermal Conference 2011 - Geothermal Technologies Program DOE Geothermal Technologies Program presentation ...

  18. Microearthquake Technology for EGS Fracture Characterization...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Microearthquake Technology for EGS Fracture Characterization; 2010 Geothermal Technology Program Peer Review Report Microearthquake Technology for EGS Fracture Characterization; ...

  19. Quadrennial Technology Review Workshops | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Quadrennial Technology Review Workshops Quadrennial Technology Review Workshops PDF icon Department of Energy Quadrennial Technology Review Building & Industrial Efficiency ...

  20. Thermoelectric Technology for Automotive Waste Heat Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Technology for Automotive Waste Heat Recovery Thermoelectric Technology for Automotive ... More Documents & Publications Develop Thermoelectric Technology for Automotive Waste Heat ...