National Library of Energy BETA

Sample records for fuel efficiency improvement

  1. Improving Vehicle Fuel Efficiency Through Tire Design, Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    3 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review ... More Documents & Publications Improving Vehicle Fuel Efficiency Through Tire Design, ...

  2. Improving Vehicle Fuel Efficiency Through Tire Design, Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review ... More Documents & Publications Improving Vehicle Fuel Efficiency Through Tire Design, ...

  3. New Tire Technologies Can Improve Fuel Efficiency by More Than...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    by More Than 5% New Tire Technologies Can Improve Fuel Efficiency by More Than 5% Cooper Tire recently developed concept tires that can improve fuel efficiency by 5.5%,...

  4. Petroleum Reduction Strategies to Improve Vehicle Fuel Efficiency

    Energy.gov [DOE]

    For reducing greenhouse gas emissions, the table below describes petroleum reduction strategies to improve vehicle fuel efficiency, as well as guidance and best practices for each strategy.

  5. Improving Vehicle Fuel Efficiency Through Tire Design, Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    To develop a new class of tires in the replacement market that improves fuel efficiency by a minimum of 3% and reduces overall tire weight by 20%. This presentation does...

  6. Vehicle Technologies Office Merit Review 2016: Improved Fuel Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    through Adaptive Radio Frequency Controls and Diagnostics for Advanced Catalyst Systems | Department of Energy Improved Fuel Efficiency through Adaptive Radio Frequency Controls and Diagnostics for Advanced Catalyst Systems Vehicle Technologies Office Merit Review 2016: Improved Fuel Efficiency through Adaptive Radio Frequency Controls and Diagnostics for Advanced Catalyst Systems Presentation given by Filter Sensing Technologies, Inc. at the 2016 DOE Vehicle Technologies Office and Hydrogen

  7. EERE Success Story-New Tire Technologies Can Improve Fuel Efficiency by

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    More Than 5% | Department of Energy New Tire Technologies Can Improve Fuel Efficiency by More Than 5% EERE Success Story-New Tire Technologies Can Improve Fuel Efficiency by More Than 5% January 15, 2016 - 10:17am Addthis EERE Success Story—New Tire Technologies Can Improve Fuel Efficiency by More Than 5% EERE Success Story—New Tire Technologies Can Improve Fuel Efficiency by More Than 5% EERE Success Story-New Tire Technologies Can Improve Fuel Efficiency by More Than 5% EERE

  8. University of Wisconsin-Madison Improves Fuel Efficiency in Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    cars and a 20% increase for trucks without the need for emissions after-treatment-a process that is often required to meet emissions standards but decreases fuel efficiency. To...

  9. Complete Fuel Combustion for Diesel Engines Resulting in Greatly Reduced Emissions and Improved Fuel Efficiency

    Energy.gov [DOE]

    An advanced engine design that is 15 percent more efficient than diesel, pollution free, and uses any fuel.

  10. Improving Efficiency and Load Range of Boosted HCCI using Partial Fuel Stratification with Conventional Gasoline

    Energy.gov [DOE]

    Explores the potential of partial fuel stratification to improve the efficiency of internal combustion engines utilizing the homogeneous charge compression-ignition cycle.

  11. Improving Costs and Efficiency of PEM Fuel Cell Vehicles by Modifying the

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Surface of Stainless Steel Bipolar Plates - Energy Innovation Portal Hydrogen and Fuel Cell Hydrogen and Fuel Cell Find More Like This Return to Search Improving Costs and Efficiency of PEM Fuel Cell Vehicles by Modifying the Surface of Stainless Steel Bipolar Plates National Renewable Energy Laboratory Contact NREL About This Technology Technology Marketing SummaryFuel cell vehicles have the potential to reduce our dependence on foreign oil and lower emissions. Running the vehicle's motor

  12. Lubricants- Pathway to Improving Fuel Efficiency of Legacy Fleet Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE)

    Reviews recent studies on potential for low-viscosity lubricants and low-friction surfaces and additives to reduce fuel consumption, and impact of such approaches on other critical lubricant metrics

  13. Integrated Powertrain and Vehicle Technologies for Fuel Efficiency Improvement and CO2 Reduction

    Energy.gov [DOE]

    Meeting the most stringent emission standards in the world (EPA2002, EPA2007, EPA2010) required the strength of global organizations EPA2002 emission regulation was associated with a significant drop in engine thermal efficiency; DOE support of R&D program helped avoid further efficiency drop in 2007; EPA2010 will lead to simultaneous improvements in emissions and fuel efficiency for most manufacturers

  14. Improving Vehicle Fuel Efficiency Through Tire Design, Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... belt performance. - Investigate construction changes to improve performance. - The belt coat compound is also under development as part of the investigation. 18 Future Work FY14 ...

  15. INL receives GreenGov Presidential Award for fleet fuel efficiency improvements

    ScienceCinema

    None

    2016-07-12

    Idaho National Laboratory has received a 2010 GreenGov Presidential Award for outstanding achievement in fuel efficiency in its bus and automotive fleets. The award was presented today in Washington, D.C., as part of a three-day symposium on improving sustainability and energy efficiency across the federal government. Lots more content like this is available at INL's facebook page http://www.facebook.com/idahonationallaboratory.

  16. INL receives GreenGov Presidential Award for fleet fuel efficiency improvements

    SciTech Connect

    2010-01-01

    Idaho National Laboratory has received a 2010 GreenGov Presidential Award for outstanding achievement in fuel efficiency in its bus and automotive fleets. The award was presented today in Washington, D.C., as part of a three-day symposium on improving sustainability and energy efficiency across the federal government. Lots more content like this is available at INL's facebook page http://www.facebook.com/idahonationallaboratory.

  17. Utilization of Process Off-Gas as a Fuel for Improved Energy Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Advanced Combined Heat and Power (CHP) System Utilizing Off-Gas from Coke Calcination ADVANCED MANUFACTURING OFFICE Utilization of Process Off-Gas as a Fuel for Improved Energy Efficiency Introduction Coke calcination is a process that involves the heating of green petroleum coke in order to remove volatile material and purify the coke for further processing. Calcined coke is vital to the aluminum industry, where it is used to produce carbon anodes for aluminum production. Calcined coke is also

  18. Improving Catalyst Efficiency in Bio-Based Hydrocarbon Fuels; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    2015-06-01

    This article investigates upgrading biomass pyrolysis vapors to form hydrocarbon fuels and chemicals using catalysts with different concentrations of acid sites. It shows that greater separation of acid sites makes catalysts more efficient at producing hydrocarbon fuels and chemicals. The conversion of biomass into liquid transportation fuels has attracted significant attention because of depleting fossil fuel reserves and environmental concerns resulting from the use of fossil fuels. Biomass is a renewable resource, which is abundant worldwide and can potentially be exploited to produce transportation fuels that are less damaging to the environment. This renewable resource consists of cellulose (40–50%), hemicellulose (25–35%), and lignin (16–33%) biopolymers in addition to smaller quantities of inorganic materials such as silica and alkali and alkaline earth metals (calcium and potassium). Fast pyrolysis is an attractive thermochemical technology for converting biomass into precursors for hydrocarbon fuels because it produces up to 75 wt% bio-oil,1 which can be upgraded to feedstocks and/or blendstocks for further refining to finished fuels. Bio-oil that has not been upgraded has limited applications because of the presence of oxygen-containing functional groups, derived from cellulose, hemicellulose and lignin, which gives rise to high acidity, high viscosity, low heating value, immiscibility with hydrocarbons and aging during storage. Ex situ catalytic vapor phase upgrading is a promising approach for improving the properties of bio-oil. The goal of this process is to reject oxygen and produce a bio-oil with improved properties for subsequent downstream conversion to hydrocarbons.

  19. Demonstration of improved vehicle fuel efficiency through innovative tire design, materials, and weight reduction technologies

    SciTech Connect

    Donley, Tim

    2014-12-31

    Cooper completed an investigation into new tire technology using a novel approach to develop and demonstrate a new class of fuel efficient tires using innovative materials technology and tire design concepts. The objective of this work was to develop a new class of fuel efficient tires, focused on the “replacement market” that would improve overall passenger vehicle fuel efficiency by 3% while lowering the overall tire weight by 20%. A further goal of this project was to accomplish the objectives while maintaining the traction and wear performance of the control tire. This program was designed to build on what has already been accomplished in the tire industry for rolling resistance based on the knowledge and general principles developed over the past decades. Cooper’s CS4 (Figure #1) premium broadline tire was chosen as the control tire for this program. For Cooper to achieve the goals of this project, the development of multiple technologies was necessary. Six technologies were chosen that are not currently being used in the tire industry at any significant level, but that showed excellent prospects in preliminary research. This development was divided into two phases. Phase I investigated six different technologies as individual components. Phase II then took a holistic approach by combining all the technologies that showed positive results during phase one development.

  20. Efficiency Improvements

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    efficiency improvements Efficiency Improvements 3D Printing Can Speed Target Production Producing target components for high-energy laser systems like NIF and the OMEGA laser at the University of Rochester is poised to take a big step forward in speed and flexibility, thanks to recent advances in 3D printing. An additive manufacturing process called two-photon polymerization direct laser writing (2PP DLW) is enabling the fabrication of "on-demand" foam reservoir targets used to test

  1. Progress on Fuel Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fuel Efficiency and Market Adoption Introduction The Department of Energy (DOE) launched the SuperTruck initiative in 2009 with the goal of developing and demonstrating a 50 percent improvement in overall freight effciency (expressed in a ton-mile per gallon metric) for a heavy-duty Class 8 tractor-trailer. To date, the industry teams participating in the initiative have successfully met or are on track to exceed this goal, leveraging suites of technologies that hold signifcant potential for

  2. Improved Fuel Efficiency through Adaptive Radio Frequency Controls and Diagnostics for Advanced Catalyst Systems

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fuel Efficiency through Adaptive Radio Frequency Controls and Diagnostics for Advanced Catalyst Systems Alexander Sappok (PI), Paul Ragaller, Leslie Bromberg DOE Merit Review, Washington DC June 2016 This presentation does not contain any proprietary, confidential, or otherwise restricted information ID#: ACE099 Overview Timeline * Project Start: October 2015 * Project End: December 2017 * Percent Complete: 15% Budget * Total Funding: $1,378,292 *DoE Share: $1,101,252 *Contractor Share: $277,040

  3. Efficiency Improvement Opportunities for Light-Duty Natural-Gas-Fueled Vehicles

    SciTech Connect

    Staunton, R.H.; Thomas, J.F.

    1998-12-01

    The purpose of this report is to evaluate and make recommendations concerning technologies that promise to improve the efilciency of compressed natural gas (CNG) light-duty vehicles. Technical targets for CNG automotive technology given in the March 1998 OffIce of Advanced Automotive Technologies research and development plan were used as guidance for this effort. The technical target that necessitates this current study is to validate technologies that enable CNG light vehicles to have at least 10% greater - fuel economy (on a miles per gallon equivalent basis) than equivalent gasoline vehicles by 2006. Other tar- gets important to natural gas (NG) automotive technology and this study are to: (1) increase CNG vehicle range to 380 miles, (2) reduce the incremental vehicle cost (CNG vs gasoline) to $1500, and (3) meet the California ultra low-emission vehicle (ULEV) and Federal Tier 2 emission standards expected to be in effect in 2004.

  4. Improving Vehicle Fuel Efficiency Through Tire Design, Materials, and Reduced Weight

    Office of Energy Efficiency and Renewable Energy (EERE)

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  5. Improving Vehicle Fuel Efficiency Through Tire Design, Materials, and Reduced Weight

    Office of Energy Efficiency and Renewable Energy (EERE)

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  6. Vehicle Technologies Office Merit Review 2015: A Novel Lubricant Formulation Scheme for 2% Fuel Efficiency Improvement

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Northwestern University at 2015 DOE Hydrogen and Fuel Cells Program and vehicle technologies office annual merit review and peer evaluation meeting about a novel lubricant...

  7. Development of an ORC system to improve HD truck fuel efficiency

    Energy.gov [DOE]

    Describes a waste heat recovery system developed for a class 8 truck engine using an organic Rankine cycle (ORC), which promises fuel economy benefits of up to 6% at cruise conditions

  8. Vehicle Technologies Office Merit Review 2016: DOE’s Effort to Improve Heavy Vehicle Fuel Efficiency through Improved Aerodynamics

    Energy.gov [DOE]

    Presentation given by Lawrence Livermore National Laboratory (LLNL) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting...

  9. Alternative Fuels Data Center: Efficient Driving Behaviors to Conserve Fuel

    Alternative Fuels and Advanced Vehicles Data Center

    Efficient Driving Behaviors to Conserve Fuel to someone by E-mail Share Alternative Fuels Data Center: Efficient Driving Behaviors to Conserve Fuel on Facebook Tweet about Alternative Fuels Data Center: Efficient Driving Behaviors to Conserve Fuel on Twitter Bookmark Alternative Fuels Data Center: Efficient Driving Behaviors to Conserve Fuel on Google Bookmark Alternative Fuels Data Center: Efficient Driving Behaviors to Conserve Fuel on Delicious Rank Alternative Fuels Data Center: Efficient

  10. Improving Catalyst Efficiency in Bio-Based Hydrocarbon Fuels (Fact Sheet), NREL Highlights in Science, NREL (National Renewable Energy Laboratory)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    New study determines the effect of catalyst structure on product yields and coking during vapor phase upgrading of biomass pyrolysis products. Converting biomass, an abun- dant and renewable resource, into liquid transportation fuels has attracted significant atten- tion because of depleting fossil fuel reserves and associated environmental concerns. In the quest for sustainable and eco-friendly fuel alternatives, much research is focusing on improving the properties of bio-oil. Scientists at

  11. Tips: Buying and Driving Fuel Efficient and Alternative Fuel...

    Energy.gov [DOE] (indexed site)

    fuel efficient or alternative fuel vehicles. | Photo courtesy of Dennis Schroeder, NREL. Electric vehicles are just one option for buyers interested in fuel efficient or...

  12. Buying and Driving Fuel Efficient and Alternative Fuel Vehicles |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Electricity & Fuel » Vehicles & Fuels » Buying and Driving Fuel Efficient and Alternative Fuel Vehicles Buying and Driving Fuel Efficient and Alternative Fuel Vehicles Electric vehicles are just one option for buyers interested in fuel efficient or alternative fuel vehicles. | Photo courtesy of Dennis Schroeder, NREL. Electric vehicles are just one option for buyers interested in fuel efficient or alternative fuel vehicles. | Photo courtesy of Dennis Schroeder,

  13. Fuel comsumption of heavy-duty trucks : potential effect of future technologies for improving energy efficiency and emission.

    SciTech Connect

    Saricks, C. L.; Vyas, A. D.; Stodolsky, F.; Maples, J. D.; Energy Systems; USDOE

    2003-01-01

    The results of an analysis of heavy-duty truck (Classes 2b through 8) technologies conducted to support the Energy Information Administration's long-term projections for energy use are summarized. Several technology options that have the potential to improve the fuel economy and emissions characteristics of heavy-duty trucks are included in the analysis. The technologies are grouped as those that enhance fuel economy and those that improve emissions. Each technology's potential impact on the fuel economy of heavy-duty trucks is estimated. A rough cost projection is also presented. The extent of technology penetration is estimated on the basis of truck data analyses and technical judgment.

  14. The potential effect of future energy-efficiency and emissions-improving technologies on fuel consumption of heavy trucks.

    SciTech Connect

    Vyas, A.; Saricks, C.; Stodolsky, F.

    2003-03-14

    Researchers at Argonne National Laboratory analyzed heavy-duty truck technologies to support the Energy Information Administration's long-term energy use projections. Researchers conducted an analysis of several technology options that have potential to improve heavy truck fuel economy and emissions characteristics. The technologies are grouped as fuel-economy-enhancing and emissions-improving. Each technology's potential impact on heavy truck fuel economy has been estimated, as has the cost of implementation. The extent of technology penetration is estimated on the basis of truck data analyses and technical judgment.

  15. Durable Low Cost Improved Fuel Cell Membranes | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Polyvinylidene Fluoride-Based Membranes for Direct Methanol Fuel Cell Applications Durable, Low Cost, Improved Fuel Cell Membranes Novel Materials for High Efficiency Direct ...

  16. Materials Approach to Fuel Efficient Tires

    SciTech Connect

    Votruba-Drzal, Peter; Kornish, Brian

    2015-06-30

    The objective of this project was to design, develop, and demonstrate fuel efficient and safety regulation compliant tire filler and barrier coating technologies that will improve overall fuel efficiency by at least 2%. The program developed and validated two complementary approaches to improving fuel efficiency through tire improvements. The first technology was a modified silica-based product that is 15% lower in cost and/or enables a 10% improvement in tread wear while maintaining the already demonstrated minimum of 2% improvement in average fuel efficiency. The second technology was a barrier coating with reduced oxygen transmission rate compared to the state-of-the-art halobutyl rubber inner liners that will provide extended placarded tire pressure retention at significantly reduced material usage. A lower-permeance, thinner inner liner coating which retains tire pressure was expected to deliver the additional 2% reduction in fleet fuel consumption. From the 2006 Transportation Research Board Report1, a 10 percent reduction in rolling resistance can reduce consumer fuel expenditures by 1 to 2 percent for typical vehicles. This savings is equivalent to 6 to 12 gallons per year. A 1 psi drop in inflation pressure increases the tire's rolling resistance by about 1.4 percent.

  17. Global Fuel Economy Initiative Auto Fuel Efficiency ToolSet ...

    OpenEI (Open Energy Information) [EERE & EIA]

    Efficiency ToolSet Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Global Fuel Economy Initiative Auto Fuel Efficiency ToolSet AgencyCompany Organization: FIA...

  18. Improving Efficiency and Load Range of Boosted HCCI using Partial...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fuel Stratification with Conventional Gasoline Improving Efficiency and Load Range of Boosted HCCI using Partial Fuel Stratification with Conventional Gasoline Explores the ...

  19. In-Cylinder Fuel Blending of Gasoline/Diesel for Improved Efficiency and Lowest Possible Emissions on a Multi-Cylinder Light-Duty Diesel Engine

    SciTech Connect

    Curran, Scott; Prikhodko, Vitaly Y; Wagner, Robert M; Parks, II, James E; Cho, Kukwon; Sluder, Scott; Kokjohn, Sage; Reitz, Rolf

    2010-01-01

    In-cylinder fuel blending of gasoline/diesel fuel is investigated on a multi-cylinder light-duty diesel engine as a potential strategy to control in-cylinder fuel reactivity for improved efficiency and lowest possible emissions. This approach was developed and demonstrated at the University of Wisconsin through modeling and single-cylinder engine experiments. The objective of this study is to better understand the potential and challenges of this method on a multi-cylinder engine. More specifically, the effect of cylinder-to-cylinder imbalances, heat rejection, and in-cylinder charge motion as well as the potential limitations imposed by real-world turbo-machinery were investigated on a 1.9-liter four-cylinder engine. This investigation focused on one engine condition, 2300 rpm, 4.2 bar brake mean effective pressure (BMEP). Gasoline was introduced with a port-fuel-injection system. Parameter sweeps included gasoline-to-diesel fuel ratio, intake air mixture temperature, in-cylinder swirl number, and diesel start-of-injection phasing. In addition, engine parameters were trimmed for each cylinder to balance the combustion process for maximum efficiency and lowest emissions. An important observation was the strong influence of intake charge temperature on cylinder pressure rise rate. Experiments were able to show increased thermal efficiency along with dramatic decreases in oxides of nitrogen (NOX) and particulate matter (PM). However, indicated thermal efficiency for the multi-cylinder experiments were less than expected based on modeling and single-cylinder results. The lower indicated thermal efficiency is believed to be due increased heat transfer as compared to the model predictions and suggest a need for improved cylinder-to-cylinder control and increased heat transfer control.

  20. Refines Efficiency Improvement

    SciTech Connect

    WRI

    2002-05-15

    Refinery processes that convert heavy oils to lighter distillate fuels require heating for distillation, hydrogen addition or carbon rejection (coking). Efficiency is limited by the formation of insoluble carbon-rich coke deposits. Heat exchangers and other refinery units must be shut down for mechanical coke removal, resulting in a significant loss of output and revenue. When a residuum is heated above the temperature at which pyrolysis occurs (340 C, 650 F), there is typically an induction period before coke formation begins (Magaril and Aksenova 1968, Wiehe 1993). To avoid fouling, refiners often stop heating a residuum before coke formation begins, using arbitrary criteria. In many cases, this heating is stopped sooner than need be, resulting in less than maximum product yield. Western Research Institute (WRI) has developed innovative Coking Index concepts (patent pending) which can be used for process control by refiners to heat residua to the threshold, but not beyond the point at which coke formation begins when petroleum residua materials are heated at pyrolysis temperatures (Schabron et al. 2001). The development of this universal predictor solves a long standing problem in petroleum refining. These Coking Indexes have great potential value in improving the efficiency of distillation processes. The Coking Indexes were found to apply to residua in a universal manner, and the theoretical basis for the indexes has been established (Schabron et al. 2001a, 2001b, 2001c). For the first time, a few simple measurements indicates how close undesired coke formation is on the coke formation induction time line. The Coking Indexes can lead to new process controls that can improve refinery distillation efficiency by several percentage points. Petroleum residua consist of an ordered continuum of solvated polar materials usually referred to as asphaltenes dispersed in a lower polarity solvent phase held together by intermediate polarity materials usually referred to as

  1. Alternative Fuels Data Center: Transportation System Efficiency

    Alternative Fuels and Advanced Vehicles Data Center

    Transportation System Efficiency to someone by E-mail Share Alternative Fuels Data Center: Transportation System Efficiency on Facebook Tweet about Alternative Fuels Data Center: Transportation System Efficiency on Twitter Bookmark Alternative Fuels Data Center: Transportation System Efficiency on Google Bookmark Alternative Fuels Data Center: Transportation System Efficiency on Delicious Rank Alternative Fuels Data Center: Transportation System Efficiency on Digg Find More places to share

  2. Vehicle Technologies Office Merit Review 2016: Hybrid Ionic-Nano-Additives for Engine Lubrication to Improve Fuel Efficiency

    Energy.gov [DOE]

    Presentation given by University of Tennessee at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Fuel &...

  3. Novel Materials for High Efficiency Direct Methanol Fuel Cells | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Materials for High Efficiency Direct Methanol Fuel Cells Novel Materials for High Efficiency Direct Methanol Fuel Cells Presented at the Department of Energy Fuel Cell Projects Kickoff Meeting, September 1 - October 1, 2009 roger_arkema_kickoff.pdf (394.12 KB) More Documents & Publications Polyvinylidene Fluoride-Based Membranes for Direct Methanol Fuel Cell Applications Advance Patent Waiver W(A)2010-028 Durable, Low Cost, Improved Fuel Cell Membranes

  4. Vaporized alcohol fuel boosts engine efficiency

    SciTech Connect

    Hardenburg, H.O.; Bergmann, H.K.; Metsch, H.I.; Schaefer, A.J.

    1983-02-01

    An effort is being made at Daimler-Benz AG to utilize the special characteristics of vaporized methanol and ethanol in an alcohol-gas spark-ignited engine. Describes laboratory testing which demonstrates that waste heat recovery and very lean air/fuel mixtures improve the efficiency and economy of a spark-ignition engine running on alcohol vapors. Presents graph comparing performance and torque of the alcohol-gas and diesel engines. Finds that the fuel consumption of the methanol-fueled version approaches that of a diesel engine, with other advantages including low engine noise, good acceleration, and favorable exhaust emissions.

  5. Vehicle Technologies Office Merit Review 2014: Improving Vehicle Fuel

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Efficiency Through Tire Design, Materials, and Reduced Weight | Department of Energy Improving Vehicle Fuel Efficiency Through Tire Design, Materials, and Reduced Weight Vehicle Technologies Office Merit Review 2014: Improving Vehicle Fuel Efficiency Through Tire Design, Materials, and Reduced Weight Presentation given by Cooper Tire at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about improving vehicle fuel

  6. Tips: Buying and Driving Fuel Efficient and Alternative Fuel...

    Office of Environmental Management (EM)

    vehicle could cut your fuel costs and help the environment. See FuelEconomy.gov's Find a Car tool for more information on buying a new fuel-efficient car or truck. Learn more about...

  7. Tips: Buying and Driving Fuel Efficient and Alternative Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Check your owner's manual to find out if your vehicle is an FFV. Consider buying a highly fuel-efficient vehicle. A fuel-efficient, hybrid electric, plug-in electric, or other ...

  8. Durable, Low Cost, Improved Fuel Cell Membranes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Durable, Low Cost, Improved Fuel Cell Membranes Durable, Low Cost, Improved Fuel Cell Membranes This presentation, which focuses on fuel cell membranes, was given by Michel Foure of Arkema at a meeting on new fuel cell projects in February 2007. new_fc_foure_arkema.pdf (168.93 KB) More Documents & Publications Polyvinylidene Fluoride-Based Membranes for Direct Methanol Fuel Cell Applications Novel Materials for High Efficiency Direct Methanol Fuel Cells High Temperature Membrane Working

  9. Report: Efficiency, Alternative Fuels to Impact Market Through 2040

    Energy.gov [DOE]

    Fuel efficiency improvements and increased use of alternative fuels, will shrink gasoline's share of the fuel market 14% by 2040, according to a new report based on analysis of the U.S. Energy Information Administration in its Annual Energy Outl

  10. Solid Fuel - Oxygen Fired Combustion for Production of Nodular Reduced Iron to Reduce CO2 Emissions and Improve Energy Efficiencies

    SciTech Connect

    Donald R. Fosnacht; Richard F. Kiesel; David W. Hendrickson; David J. Englund; Iwao Iwasaki; Rodney L. Bleifuss; Mathew A. Mlinar

    2011-12-22

    The current trend in the steel industry is an increase in iron and steel produced in electric arc furnaces (EAF) and a gradual decline in conventional steelmaking from taconite pellets in blast furnaces. In order to expand the opportunities for the existing iron ore mines beyond their blast furnace customer base, a new material is needed to satisfy the market demands of the emerging steel industry while utilizing the existing infrastructure and materials handling capabilities. This demand creates opportunity to convert iron ore or other iron bearing materials to Nodular Reduced Iron (NRI) in a recently designed Linear Hearth Furnace (LHF). NRI is a metallized iron product containing 98.5 to 96.0% iron and 2.5 to 4% C. It is essentially a scrap substitute with little impurity that can be utilized in a variety of steelmaking processes, especially the electric arc furnace. The objective of this project was to focus on reducing the greenhouse gas emissions (GHG) through reducing the energy intensity using specialized combustion systems, increasing production and the use of biomass derived carbon sources in this process. This research examined the use of a solid fuel-oxygen fired combustion system and compared the results from this system with both oxygen-fuel and air-fuel combustion systems. The solid pulverized fuels tested included various coals and a bio-coal produced from woody biomass in a specially constructed pilot scale torrefaction reactor at the Coleraine Minerals Research Laboratory (CMRL). In addition to combustion, the application of bio-coal was also tested as a means to produce a reducing atmosphere during key points in the fusion process, and as a reducing agent for ore conversion to metallic iron to capture the advantage of its inherent reduced carbon footprint. The results from this study indicate that the approaches taken can reduce both greenhouse gas emissions and the associated energy intensity with the Linear Hearth Furnace process for converting

  11. INFOGRAPHIC: The Road to Fuel Efficiency | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    The Road to Fuel Efficiency INFOGRAPHIC: The Road to Fuel Efficiency November 27, 2012 - 11:01am Addthis This infographic takes a look at fuel economy standards and how recent improvements in these standards will benefit consumers and the U.S. economy. | Infographic by <a href="/node/379579">Sarah Gerrity</a>. This infographic takes a look at fuel economy standards and how recent improvements in these standards will benefit consumers and the U.S. economy. | Infographic by

  12. Supertruck - Improving Transportation Efficiency through Integrated

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Vehicle, Engine and Powertrain Research | Department of Energy Supertruck - Improving Transportation Efficiency through Integrated Vehicle, Engine and Powertrain Research Supertruck - Improving Transportation Efficiency through Integrated Vehicle, Engine and Powertrain Research 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting ace058_sisken_2012_o.pdf (1.87 MB) More Documents & Publications SuperTruck Program: Engine

  13. OpenEI Community - fuel efficiency

    OpenEI (Open Energy Information) [EERE & EIA]

    en.openei.orgcommunityblogapps-vehicles-challenge-has-beguncomments contest data fuel efficiency launch Obama Administration OpenEI Vehicles Data Challenge Thu, 13 Dec 2012...

  14. fuel efficiency | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    Apps for Vehicles Challenge has begun contest data fuel efficiency launch Obama Administration OpenEI Vehicles Data Challenge **Update: Visit the Apps for Vehicles page for all...

  15. Novel Materials for High Efficiency Direct Methanol Fuel Cells...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Materials for High Efficiency Direct Methanol Fuel Cells Novel Materials for High Efficiency Direct Methanol Fuel Cells Presented at the Department of Energy Fuel Cell Projects ...

  16. Matching Government Needs with Energy Efficient Fuel Cells |...

    Energy Saver

    Government Needs with Energy Efficient Fuel Cells Matching Government Needs with Energy Efficient Fuel Cells The Fuel Cell Technologies Office, Federal Energy Management Program, ...

  17. Co-Firing Oil Shale with Coal and Other Fuels for Improved Efficiency and Multi-Pollutant Control

    SciTech Connect

    Robert A. Carrington; William C. Hecker; Reed Clayson

    2008-06-01

    Oil shale is an abundant, undeveloped natural resource which has natural sorbent properties, and its ash has natural cementitious properties. Oil shale may be blended with coal, biomass, municipal wastes, waste tires, or other waste feedstock materials to provide the joint benefit of adding energy content while adsorbing and removing sulfur, halides, and volatile metal pollutants, and while also reducing nitrogen oxide pollutants. Oil shale depolymerization-pyrolysis-devolatilization and sorption scoping studies indicate oil shale particle sorption rates and sorption capacity can be comparable to limestone sorbents for capture of SO2 and SO3. Additionally, kerogen released from the shale was shown to have the potential to reduce NOx emissions through the well established “reburning” chemistry similar to natural gas, fuel oil, and micronized coal. Productive mercury adsorption is also possible by the oil shale particles as a result of residual fixed-carbon and other observed mercury capture sorbent properties. Sorption properties were found to be a function particle heating rate, peak particle temperature, residence time, and gas-phase stoichmetry. High surface area sorbents with high calcium reactivity and with some adsorbent fixed/activated carbon can be produced in the corresponding reaction zones that exist in a standard pulverized-coal or in a fluidized-bed combustor.

  18. Gasoline Ultra Fuel Efficient Vehicle

    Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  19. Gasoline Ultra Fuel Efficient Vehicle

    Office of Energy Efficiency and Renewable Energy (EERE)

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  20. Gasoline Ultra Fuel Efficient Vehicle

    Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  1. Improve Your Boiler's Combustion Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE)

    This tip sheet outlines how to improve boiler combustion efficiency as part of an optimized steam system.

  2. Fuel reactivity effects on the efficiency and operational window of dual-fuel compression ignition engines

    SciTech Connect

    Splitter, Derek A; Reitz, Rolf

    2014-01-01

    Fuel reactivity effects on the efficiency and operational window of dual-fuel compression ignition engines

  3. MOLTEN CARBONATE FUEL CELL PRODUCT DESIGN IMPROVEMENT

    SciTech Connect

    H.C. Maru; M. Farooque

    2004-08-01

    The ongoing program is designed to advance the carbonate fuel cell technology from full-size proof-of-concept field test to the commercial design. DOE has been funding Direct FuelCell{reg_sign} (DFC{reg_sign}) development at FuelCell Energy, Inc. (FCE) for stationary power plant applications. The program efforts are focused on technology and system optimization for cost reduction, leading to commercial design development and prototype system field trials. FCE, Danbury, CT, is a world-recognized leader for the development and commercialization of high efficiency fuel cells that can generate clean electricity at power stations, or at distributed locations near the customers such as hospitals, schools, universities, hotels and other commercial and industrial applications. FCE has designed three different fuel cell power plant models (DFC300A, DFC1500 and DFC3000). FCE's power plants are based on its patented DFC{reg_sign} technology, where the fuel is directly fed to the fuel cell and hydrogen is generated internally. These power plants offer significant advantages compared to the existing power generation technologies--higher fuel efficiency, significantly lower emissions, quieter operation, flexible siting and permitting requirements, scalability and potentially lower operating costs. Also, the exhaust heat by-product can be used for cogeneration applications such as high-pressure steam, district heating and air conditioning. Several FCE sub-megawatt power plants are currently operating in Europe, Japan and the US. Because hydrogen is generated directly within the fuel cell module from readily available fuels such as natural gas and waste water treatment gas, DFC power plants are ready today and do not require the creation of a hydrogen infrastructure. Product improvement progress made during the reporting period in the areas of technology, manufacturing processes, cost reduction and balance of plant equipment designs is discussed in this report.

  4. MOLTEN CARBONATE FUEL CELL PRODUCT DESIGN IMPROVEMENT

    SciTech Connect

    H.C. Maru; M. Farooque

    2002-02-01

    generation, industrial cogeneration, marine applications and uninterrupted power for military bases. FuelCell Energy operated a 1.8 MW plant at a utility site in 1996-97, the largest fuel cell power plant ever operated in North America. This proof-of-concept power plant demonstrated high efficiency, low emissions, reactive power control, and unattended operation capabilities. Drawing on the manufacture, field test, and post-test experience of the full-size power plant; FuelCell Energy launched the Product Design Improvement (PDI) program sponsored by government and the private-sector cost-share. The PDI efforts are focused on technology and system optimization for cost reduction, commercial design development, and prototype system field trials. The program was initiated in December 1994. Year 2000 program accomplishments are discussed in this report.

  5. Gasoline Ultra Fuel Efficient Vehicle Program Update

    Energy.gov [DOE]

    Discusses hardware and system development activities to achieve in-vehicle fuel economy and emissions performance improvements compared to a production baseline vehicle.

  6. Improve Your Boiler's Combustion Efficiency

    SciTech Connect

    Not Available

    2006-01-01

    This revised ITP tip sheet on boiler combustion efficiency provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  7. MOLTEN CARBONATE FUEL CELL PRODUCT DESIGN IMPROVEMENT

    SciTech Connect

    H. C. Maru; M. Farooque

    2003-12-19

    The ongoing program is designed to advance the carbonate fuel cell technology from full-size proof-of-concept field test to the commercial design. DOE has been funding Direct FuelCell{reg_sign} (DFC{reg_sign}) development at FuelCell Energy, Inc. (FCE) for stationary power plant applications. The program efforts are focused on technology and system optimization for cost reduction leading to commercial design development and prototype system field trials. FCE, Danbury, CT, is a world-recognized leader for the development and commercialization of high efficiency fuel cells that can generate clean electricity at power stations or in distributed locations near the customer, including hospitals, schools, universities, hotels and other commercial and industrial applications. FuelCell Energy has designed three different fuel cell power plant models (DFC300, DFC1500 and DFC3000). FCE's power plants are based on its patented Direct FuelCell technology, where the fuel is directly fed to fuel cell and hydrogen is generated internally. These power plants offer significant advantages compared to existing power generation technologies--higher fuel efficiency, significantly lower emissions, quieter operation, flexible siting and permitting requirements, scalability and potentially lower operating costs. Also, the exhaust heat by-product can be used for cogeneration applications such as high-pressure steam, district heating, and air conditioning. Several FCE sub-megawatt power plants are currently operating in Europe, Japan and the US. Because hydrogen is generated directly within the fuel cell module from readily available fuels such as natural gas and waste water treatment gas, DFC power plants are ready today and do not require the creation of a hydrogen infrastructure. Product improvement progress made during the reporting period in the areas of technology, manufacturing processes, cost reduction and balance of plant equipment designs is discussed in this report. FCE's DFC

  8. Improving Gas Flooding Efficiency

    SciTech Connect

    Reid Grigg; Robert Svec; Zheng Zeng; Alexander Mikhalin; Yi Lin; Guoqiang Yin; Solomon Ampir; Rashid Kassim

    2008-03-31

    This study focuses on laboratory studies with related analytical and numerical models, as well as work with operators for field tests to enhance our understanding of and capabilities for more efficient enhanced oil recovery (EOR). Much of the work has been performed at reservoir conditions. This includes a bubble chamber and several core flood apparatus developed or modified to measure interfacial tension (IFT), critical micelle concentration (CMC), foam durability, surfactant sorption at reservoir conditions, and pressure and temperature effects on foam systems.Carbon dioxide and N{sub 2} systems have been considered, under both miscible and immiscible conditions. The injection of CO2 into brine-saturated sandstone and carbonate core results in brine saturation reduction in the range of 62 to 82% brine in the tests presented in this paper. In each test, over 90% of the reduction occurred with less than 0.5 PV of CO{sub 2} injected, with very little additional brine production after 0.5 PV of CO{sub 2} injected. Adsorption of all considered surfactant is a significant problem. Most of the effect is reversible, but the amount required for foaming is large in terms of volume and cost for all considered surfactants. Some foams increase resistance to the value beyond what is practical in the reservoir. Sandstone, limestone, and dolomite core samples were tested. Dissolution of reservoir rock and/or cement, especially carbonates, under acid conditions of CO2 injection is a potential problem in CO2 injection into geological formations. Another potential change in reservoir injectivity and productivity will be the precipitation of dissolved carbonates as the brine flows and pressure decreases. The results of this report provide methods for determining surfactant sorption and can be used to aid in the determination of surfactant requirements for reservoir use in a CO{sub 2}-foam flood for mobility control. It also provides data to be used to determine rock permeability

  9. Lean Gasoline System Development for Fuel Efficient Small Car...

    Energy.gov [DOE] (indexed site)

    Lean Gasoline System Development for Fuel Efficient Small Car Lean Gasoline System Development for Fuel Efficient Small Car Vehicle Technologies Office Merit Review 2015: ...

  10. The Role of Lubricant Additives in Fuel Efficiency and Emission...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Lubricant Additives in Fuel Efficiency and Emission Reductions: Viscosity Effects The Role of Lubricant Additives in Fuel Efficiency and Emission Reductions: Viscosity Effects ...

  11. Air Force Achieves Fuel Efficiency through Industry Best Practices...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Force Achieves Fuel Efficiency through Industry Best Practices Air Force Achieves Fuel Efficiency through Industry Best Practices Fact sheet offers an overview of the U.S. Air ...

  12. Combustion, Efficiency, and Fuel Effects in a Spark-Assisted...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Combustion, Efficiency, and Fuel Effects in a Spark-Assisted HCCI Gasoline Engine Combustion, Efficiency, and Fuel Effects in a Spark-Assisted HCCI Gasoline Engine 2004 Diesel ...

  13. Supertruck - Development and Demonstration of a Fuel-Efficient...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Supertruck - Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer Supertruck - Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer ...

  14. Development and Demonstration of a Fuel-Efficient HD Engine ...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Engine (DOE SuperTruck Program) Development and Demonstration of a Fuel-Efficient HD ... More Documents & Publications Development and Demonstration of a Fuel-Efficient HD Engine

  15. MOLTEN CARBONATE FUEL CELL PRODUCT DESIGN IMPROVEMENT

    SciTech Connect

    H.C. Maru; M. Farooque

    2005-03-01

    The program was designed to advance the carbonate fuel cell technology from full-size proof-of-concept field test to the commercial design. DOE has been funding Direct FuelCell{reg_sign} (DFC{reg_sign}) development at FuelCell Energy, Inc. (FCE, formerly Energy Research Corporation) from an early state of development for stationary power plant applications. The current program efforts were focused on technology and system development, and cost reduction, leading to commercial design development and prototype system field trials. FCE, in Danbury, CT, is a world-recognized leader for the development and commercialization of high efficiency fuel cells that can generate clean electricity at power stations, or at distributed locations near the customers such as hospitals, schools, universities, hotels and other commercial and industrial applications. FCE has designed three different fuel cell power plant models (DFC300A, DFC1500 and DFC3000). FCE's power plants are based on its patented DFC{reg_sign} technology, where a hydrocarbon fuel is directly fed to the fuel cell and hydrogen is generated internally. These power plants offer significant advantages compared to the existing power generation technologies--higher fuel efficiency, significantly lower emissions, quieter operation, flexible siting and permitting requirements, scalability and potentially lower operating costs. Also, the exhaust heat by-product can be used for cogeneration applications such as high-pressure steam, district heating and air conditioning. Several sub-MW power plants based on the DFC design are currently operating in Europe, Japan and the US. Several one-megawatt power plant design was verified by operation on natural gas at FCE. This plant is currently installed at a customer site in King County, WA under another US government program and is currently in operation. Because hydrogen is generated directly within the fuel cell module from readily available fuels such as natural gas and waste

  16. Improved nuclear fuel assembly grid spacer

    DOEpatents

    Marshall, John; Kaplan, Samuel

    1977-01-01

    An improved fuel assembly grid spacer and method of retaining the basic fuel rod support elements in position within the fuel assembly containment channel. The improvement involves attachment of the grids to the hexagonal channel and of forming the basic fuel rod support element into a grid structure, which provides a design which is insensitive to potential channel distortion (ballooning) at high fluence levels. In addition the improved method eliminates problems associated with component fabrication and assembly.

  17. Development of a New Generation, High Efficiency PEM Fuel Cell...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    High Efficiency PEM Fuel Cell Based, CHP System Development of a New Generation, High Efficiency PEM Fuel Cell Based, CHP System Part of a 100 million fuel cell award ...

  18. Microbial fuel cell with improved anode (Patent) | DOEPatents

    Office of Scientific and Technical Information (OSTI)

    Microbial fuel cell with improved anode Title: Microbial fuel cell with improved anode The present invention relates to a method for preparing a microbial fuel cell, wherein the ...

  19. High Efficiency Solar Fuels Reactor Concept | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Solar Fuels Reactor Concept High Efficiency Solar Fuels Reactor Concept This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held ...

  20. Integrated Efficiency Test for Pyrochemical Fuel Cycles

    SciTech Connect

    S. X. Li; D. Vaden; R. W. Benedict; T. A. Johnson; B. R. Westphal; Guy L. Frederickson

    2007-09-01

    An integrated efficiency test was conducted with sodium bonded, spent EBR-II drive fuel elements. The major equipment involved in the test were the element chopper, Mk-IV electrorefiner, cathode processor, and casting furnace. Four electrorefining batches (containing 54.4 kg heavy metal) were processes under the fixed operating parameters that have been developed for this equipment based on over a decades worth of processing experience. A mass balance across this equipment was performed. Actinide dissolution and recovery efficiencies were established based on the mass balance and chemical analytical results of various samples taken from process streams during the integrated efficiency test.

  1. Integrated Efficiency Test for Pyrochemical Fuel Cycles

    SciTech Connect

    Li, S.X.; Vaden, D.; Westphal, B.R.; Fredrickson, G.L.; Benedict, R.W.; Johnson, T.A.

    2007-07-01

    An integrated efficiency test was conducted with sodium bonded, spent EBR-II drive fuel elements. The major equipment involved in the test were the element chopper, Mk-IV electro-refiner, cathode processor, and casting furnace. Four electrorefining batches (containing 54.4 kg heavy metal) were processed under the fixed operating parameters that have been developed for this equipment based on over a decade's worth of processing experience. A mass balance across this equipment was performed. Actinide dissolution and recovery efficiencies were established based on the mass balance and chemical analytical results of various samples taken from process streams during the integrated efficiency test. (authors)

  2. Secretary Chu Announces $187 Million to Improve Vehicle Efficiency for

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Heavy-Duty Trucks and Passenger Vehicles | Department of Energy $187 Million to Improve Vehicle Efficiency for Heavy-Duty Trucks and Passenger Vehicles Secretary Chu Announces $187 Million to Improve Vehicle Efficiency for Heavy-Duty Trucks and Passenger Vehicles January 11, 2010 - 12:00am Addthis Columbus, Ind. - At an event today in Columbus, Indiana, Secretary Chu announced the selection of nine projects totaling more than $187 million to improve fuel efficiency for heavy-duty trucks and

  3. Lean Gasoline System Development for Fuel Efficient Small Car | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Lean Gasoline System Development for Fuel Efficient Small Car Lean Gasoline System Development for Fuel Efficient Small Car 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting ace063_smith_2012_o.pdf (1.91 MB) More Documents & Publications Lean Gasoline System Development for Fuel Efficient Small Car Lean Gasoline System Development for Fuel Efficient Small Car PHEV Engine and Aftertreatment Model Development

  4. Fuel vaporization improves fuel economy of alcohol-burning Sl engines

    SciTech Connect

    Hardenberg, H.O.; Metsch, H.I.; Schaefer, A.J.

    1982-10-01

    Fuel vaporization and combustion of the thereby achieved homogeneous mixtures improve the overall efficiency of SI engines in comparison to operation with liquid fuels. The improvements result from a recovery of waste heat and the thus achieved greater usable energy of the fuel, which is increased by the heat of vaporization over the lower calorific value of the liquid fuel, and from the fact that very lean mixtures can be burnt without misfiring. The favorable fuel economy of the air/fuel-vapor mixture-aspirating engine is explained with the aid of engine cycle computation which also enables comparison of different combustion processes. Consideration of common substances shows that methanol is the fuel best suited for this type of SI engine.

  5. The fuel efficient missile combat crew routing network. Master's thesis

    SciTech Connect

    Jacques, E.O. Jr.; Woolley, M.G.

    1980-06-01

    Missile combat crew vehicles are the highest mileage accumulators within SAC and, in the interest of energy conservation, Vice CINCSAC has initiated a long-term study examining utilization of more fuel efficient crew vehicles. This thesis extends the SAC study by determining if alternate dispatch procedures and routes of travel, using currently assigned vehicles, would result in fuel conservation. A network routing model is used to determine the routes of travel for three deployment strategies and five vehicle types at the Minot AFB, ND test base. Fuel efficiency for these fifteen alternatives, measured as gallons of fuel consumed per passenger, is compared with the existing missile combat crew routing network. This study found that ten of the fifteen vehicle/deployment strategy combinations, when employed over the shortest authorized routes of travel that were developed, provided improvement over the fuel efficiency of the MCC routing system that was in effect as of 31 August 1979. The largest potential savings amounted to 52% or 26,255 gallons of fuel per year.

  6. Gasoline Ultra Efficient Fuel Vehicle with Advanced Low Temperature Combustion

    SciTech Connect

    Confer, Keith

    2014-09-30

    The objective of this program was to develop, implement and demonstrate fuel consumption reduction technologies which are focused on reduction of friction and parasitic losses and on the improvement of thermal efficiency from in-cylinder combustion. The program was executed in two phases. The conclusion of each phase was marked by an on-vehicle technology demonstration. Phase I concentrated on short term goals to achieve technologies to reduce friction and parasitic losses. The duration of Phase I was approximately two years and the target fuel economy improvement over the baseline was 20% for the Phase I demonstration. Phase II was focused on the development and demonstration of a breakthrough low temperature combustion process called Gasoline Direct- Injection Compression Ignition (GDCI). The duration of Phase II was approximately four years and the targeted fuel economy improvement was 35% over the baseline for the Phase II demonstration vehicle. The targeted tailpipe emissions for this demonstration were Tier 2 Bin 2 emissions standards.

  7. Improving pumping system efficiency at coal plants

    SciTech Connect

    Livoti, W.C.; McCandless, S.; Poltorak, R. [Baldor Electric Co. (United States)

    2009-03-15

    The industry must employ ultramodern technologies when building or upgrading power plant pumping systems thereby using fuels more efficiently. The article discusses the uses and efficiencies of positive displacement pumps, centrifugal pumps and multiple screw pumps. 1 ref., 4 figs.

  8. Vehicle Technologies Office Merit Review 2016: Utilizing Alternative Fuel Ignition Properties to Improve Spark-Ignited and Compression-Ignited Engine Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by University of Michigan at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Fuel & Lubricants

  9. How to improve energy efficiency

    SciTech Connect

    Shepard, M. )

    1991-01-01

    Thanks to investments in more efficient vehicles, appliances, and buildings, Americans will spend $100 billion less this year on energy than if they had remained at 1973 levels of energy consumption. Cumulative savings from efficiency improvements since the first Arab oil embargo now total nearly $1 trillion. Yet even more remarkable is the potential for far greater rewards. Estimates of untapped energy savings range widely, but they are all large. The Electric Power Research Institute, the utility industry's research arm, estimates the US electricity demand could be reduced by up to 44 percent by the year 2000 through efficiency gains made with existing technology. The authors and his colleagues at Rocky Mountain Institute believe that the potential cost-effective savings are even larger, conceivably as much as 75 percent of total US energy demand. This article addresses several ways in which these savings may be brought about.

  10. Co-Optima Initiative Fuels Combustion Engine Efficiency | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Optima Initiative Fuels Combustion Engine Efficiency Co-Optima Initiative Fuels Combustion Engine Efficiency August 2, 2016 - 11:15am Addthis As part of the Co-Optimization of Fuels & Engines initiative, researchers are exploring synergies among new bio-based fuels, engines, powertrains, and fueling infrastructure. | Image by Loren Stacks, Sandia National Laboratories. As part of the Co-Optimization of Fuels & Engines initiative, researchers are exploring synergies among new

  11. Industrial Energy Efficiency Projects Improve Competitiveness...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Efficiency Projects Improve Competitiveness and Protect Jobs Industrial Energy Efficiency Projects Improve Competitiveness and Protect Jobs U.S. Department of Energy (DOE) ...

  12. Potential for Data Center Efficiency Improvements | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Data Center Efficiency Improvements Potential for Data Center Efficiency Improvements Document offers an overview of the Federal Energy Management Program's data center activities. ...

  13. Advanced Aerodynamic Technologies for Improving Fuel Economy...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Such non-engine losses can account for about a 45% decrease in efficiency. The need for technologies to reduce these parasitic losses has gained significant attention as fuel costs ...

  14. Development and Demonstration of a Fuel-Efficient HD Engine ...

    Energy.gov [DOE] (indexed site)

    heavy-duty truck fuel efficiency. deer12deojeda.pdf (1.53 MB) More Documents & Publications Development and Demonstration of a Fuel-Efficient HD Engine (DOE SuperTruck Program)

  15. Class 8 Truck Freight Efficiency Improvement Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt080_vss_rotz_2012_o.pdf (2.58 MB) More Documents & Publications Vehicle Technologies Office Merit Review 2014: Class 8 Truck Freight Efficiency Improvement Project Class 8 Truck Freight Efficiency Improvement Project Vehicle Technologies Office Merit Review 2015: Class 8 Truck Freight Efficiency

  16. Class 8 Truck Freight Efficiency Improvement Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    3 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt080_vss_rotz_2013_o.pdf (1.46 MB) More Documents & Publications Vehicle Technologies Office Merit Review 2015: Class 8 Truck Freight Efficiency Improvement Project Vehicle Technologies Office Merit Review 2014: Class 8 Truck Freight Efficiency Improvement Project Class 8 Truck Freight Efficiency

  17. Energy Department Offers $50 Million to Advance Fuel Efficient...

    Energy.gov [DOE] (indexed site)

    Moniz Announces Nearly 50 Million to Advance High-Tech, Fuel Efficient American Autos Energy Department Invests More Than 55 Million to Advance Efficient Vehicle...

  18. Development and Demonstration of a Fuel-Efficient HD Engine (DOE SuperTruck

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Program) | Department of Energy Demonstration of a Fuel-Efficient HD Engine (DOE SuperTruck Program) Development and Demonstration of a Fuel-Efficient HD Engine (DOE SuperTruck Program) Discusses engine efficiency contributions of enhanced fuel injection rematched to new piston geometry, improved charge air system, revised base engine components reduce friction and turbocompounding. deer11_deojeda.pdf (2.06 MB) More Documents & Publications Development and Demonstration of a

  19. The National Fuel End-Use Efficiency Field Test: Energy Savings and Performance of an Improved Energy Conservation Measure Selection Technique

    SciTech Connect

    Ternes, M.P.

    1991-01-01

    -weatherization water-heating energy consumption and 17% of predicted). The overall BCR for the ECMs was 1.24 using the same assumptions followed in the selection technique: no administration cost, residential fuel costs, real discount rate of 0.05, and no fuel escalation. A weatherization program would be cost effective at an administration cost less than $335/house. On average, the indoor temperature increased in the audit houses by 0.5 F following weatherization and decreased in the control houses by 0.1 F. The following conclusions regarding the measure selection technique were drawn from the study: (1) a significant cost-effective level of energy savings resulted, (2) space-heating energy savings and total installation costs were predicted with reasonable accuracy, indicating that the technique's recommendations are justified, (3) effectiveness improved from earlier versions and can continue to be improved, and (4) a wider variety of ECMs were installed compared to most weatherization programs. An additional conclusion of the study was that a significant indoor temperature take-back effect had not occurred.

  20. 2016 Fuel Economy Guide Highlights Fuel-Efficient Vehicles | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy 2016 Fuel Economy Guide Highlights Fuel-Efficient Vehicles 2016 Fuel Economy Guide Highlights Fuel-Efficient Vehicles November 5, 2015 - 1:07am Addthis Photo by Kristy Keel-Blackmon of East Tennessee Clean Fuels Photo by Kristy Keel-Blackmon of East Tennessee Clean Fuels Shannon Brescher Shea Senior Writer/Editor, Office of Science The 2016 Fuel Economy Guide is now available. It provides fuel economy, greenhouse gas emission, and projected fuel cost information on model year 2016

  1. IMPROVED TYPE OF FUEL ELEMENT

    DOEpatents

    Monson, H.O.

    1961-01-24

    A radiator-type fuel block assembly is described. It has a hexagonal body of neutron fissionable material having a plurality of longitudinal equal- spaced coolant channels therein aligned in rows parallel to each face of the hexagonal body. Each of these coolant channels is hexagonally shaped with the corners rounded and enlarged and the assembly has a maximum temperature isothermal line around each channel which is approximately straight and equidistant between adjacent channels.

  2. Improving energy efficiency in the transportation sector

    SciTech Connect

    Plotkin, S.E.

    1994-12-31

    A primary characteristic of transportation in the United States is its high per capita energy consumption. The average US citizen consumes nearly five times as much energy for transportation as the average Japanese and nearly three times as much as the average citizen of France, Britain, or West Germany. The energy efficiency of US transportation has improved substantially over the past two decades (both absolutely and in comparison to Europe), and US travel volume has grown more slowly than in most of the developed world. However, the United States still consumes more than one-third of the world`s transport energy. Also, 96 percent of US transport energy is in the form of oil products. This is more oil than the United States produces, despite its position as one of the world`s largest oil producers. With current problems and expectation of continued growth in travel and energy use, Congress has increasingly turned to transportation energy conservation - in the form of improvements in the technical efficiency of travel, increases in load factors, reductions in travel demand, shifting to alternative fuels, and shifts to more efficient travel modes - as an important policy goal. For example, the Clean Air Amendments of 1990 incorporate transportation demand management as a critical tool in reducing urban air pollution. Legislation proposed in the 102d Congress sought rigorous new automobile and light truck fuel economy standards. With continued increases in U.S. oil imports, urban traffic congestion, and greenhouse gas emissions, and the failure of many urban areas to meet air quality standards, strong congressional interest in new energy conservation initiates is likely to continue.

  3. Technological trends for improving automobile fuel economy

    SciTech Connect

    Katoh, K.

    1984-01-01

    Since the first oil embargo in 1973, energy conservation has been receiving greater attention. In the field of automobiles, the last decade has seen significant improvement in vehicle fuel economy attained by inter-industries comprehensive efforts. Today the theme of ''Age of Unlimited Fuel Economy Competition'' or ''Age of Unlimited MPG Competition'' is often heard and the development of super fuel economy vehicles is being pursued actively. For example, it should be noted that the VW experimental vehicle with a direct-injection diesel engine has already exceeded 80 mpg in the U.S. test cycle. This paper will discuss the recent technological approach, especially from the standpoint of engine design, to achieve further improvements in vehicle fuel economy and its impacts on the properties of fuel and lubricants.

  4. Interactions between residential efficiency standards and fuel choice

    SciTech Connect

    Lee, A.D. )

    1991-08-01

    The home buyer brings to the decision an elaborate set of preferences, perceptions, conditions, and attitudes. The homes from which the buyer can choose offer bundles of attributes including location, price, size, energy efficiency, and age. Programs designed to increase residential energy efficiency alter the mix of attributes offered. Ultimately, the effects and penetration of such programs depend on how the altered mix of attributes interacts with buyers' characteristics. One technique for modeling buyer responses to products with different mixes of attributes is conjoint analysis. This technique has been applied primarily in marketing research studies, usually designed to estimate market shares for new consumer products. This paper presents the results of an application of this technique to a housing market in which residential energy-efficiency programs have been instituted to improve the efficiency of new, electrically heated homes. The conjoint analysis methodology permits the analyst to unbundle'' the characteristics of homes and determine how individual characteristics affect the purchase decision. This unbundling is essential for determining how energy efficiency affects buyer choice, and what penetration rates energy-efficiency programs are likely to achieve. When programs are not fuel-blind, it is especially important to unbundle housing characteristics because the programs may affect not only energy-efficiency choice, but also fuel choice. 4 refs., 3 tabs.

  5. Air Force Achieves Fuel Efficiency through Industry Best Practices |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Force Achieves Fuel Efficiency through Industry Best Practices Air Force Achieves Fuel Efficiency through Industry Best Practices Fact sheet offers an overview of the U.S. Air Force's fuel-efficiency program. Download the U.S. Air Force's fuel-efficiency program fact sheet. (939.66 KB) More Documents & Publications U.S. Air Force Energy Program Presentation National Clean Fleets Partnership Fact Sheet and Progress Update Report of the DOE-DOE Workshop on Fuel Cells

  6. Fuel Cell/Turbine Ultra High Efficiency Power System

    SciTech Connect

    Hossein, Ghezel-Ayagh

    2001-11-06

    FuelCell Energy, INC. (FCE) is currently involved in the design of ultra high efficiency power plants under a cooperative agreement (DE-FC26-00NT40) managed by the National Energy Technology Laboratory (NETL) as part of the DOE's Vision 21 program. Under this project, FCE is developing a fuel cell/turbine hybrid system that integrates the atmospheric pressure Direct FuelCell{reg_sign} (DFC{reg_sign}) with an unfired Brayton cycle utilizing indirect heat recovery from the power plant. Features of the DFC/T{trademark} system include: high efficiency, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, no pressurization of the fuel cell, independent operating pressure of the fuel cell and turbine, and potential cost competitiveness with existing combined cycle power plants at much smaller sizes. Objectives of the Vision 21 Program include developing power plants that will generate electricity with net efficiencies approaching 75 percent (with natural gas), while producing sulfur and nitrogen oxide emissions of less than 0.01 lb/million BTU. These goals are significant improvements over conventional power plants, which are 35-60 percent efficient and produce emissions of 0.07 to 0.3 lb/million BTU of sulfur and nitrogen oxides. The nitrogen oxide and sulfur emissions from the DFC/T system are anticipated to be better than the Vision 21 goals due to the non-combustion features of the DFC/T power plant. The expected high efficiency of the DFC/T will also result in a 40-50 percent reduction in carbon dioxide emissions compared to conventional power plants. To date, the R&D efforts have resulted in significant progress including proof-of-concept tests of a sub-scale power plant built around a state-of-the-art DFC stack integrated with a modified Capstone Model 330 Microturbine. The objectives of this effort are to investigate the integration aspects of the fuel cell and turbine and to obtain design information and operational data that will

  7. Molten carbonate fuel cell product design improvement

    SciTech Connect

    P. Voyentzie; T. Leo; A. Kush; L. Christner; G. Carlson; C. Yuh

    1998-12-20

    Drawing on the manufacture, field test, and post-test experience of the sixteen Santa Clara Demonstration Project (SCDP) stacks, ERC is finalizing the next generation commercial entry product design. The second generation cells are 50% larger in area, 40% lighter on equal geometric area basis, and 30% thinner than the earlier design. These improvements have resulted in doubling of the full-height stack power. A low-cost and high-strength matrix has also been developed for improving product ruggedness. The low-cost advanced cell design incorporating these improvements has been refined through six short stack tests. Power production per cell of two times the SCDP maximum power operation, over ten thermal cycles, and overall operating flexibility with respect to load and thermal changes have been demonstrated in these short stack tests. An internally insulated stack enclosure has been designed and fabricated to eliminate the need for an inert gas environment during operation. ERC has acquired the capability for testing 400kW full-height direct fuel ceil (DFC) stack and balance-of-plant equipment. With the readiness of the power plant test facility, the cell package design, and the stack module, full-height stack testing has begun. The first full- height stack incorporating the post-SCDP second generation design was completed. The stack reached a power level of 253 kW, setting a world record for the highest power production from the advanced fuel cell system. Excellent performance uniformity at this power level affirmed manufacturing reproducibility of the components at the factory. This unoptimized small size test has achieved pipeline natural gas to DC electricity conversion efficiency of 47% (based on lower heating value - LHV) including the parasitic power consumed by the BOP equipment; that should translate to more than 50% efficiency in commercial operation, before employing cogeneration. The power plant system also operated smoothly. With the success of this

  8. Alternative Fuels Data Center: College Students Engineer Efficient Vehicles

    Alternative Fuels and Advanced Vehicles Data Center

    in EcoCAR 2 Competition College Students Engineer Efficient Vehicles in EcoCAR 2 Competition to someone by E-mail Share Alternative Fuels Data Center: College Students Engineer Efficient Vehicles in EcoCAR 2 Competition on Facebook Tweet about Alternative Fuels Data Center: College Students Engineer Efficient Vehicles in EcoCAR 2 Competition on Twitter Bookmark Alternative Fuels Data Center: College Students Engineer Efficient Vehicles in EcoCAR 2 Competition on Google Bookmark Alternative

  9. DOE Expands International Effort to Develop Fuel-Efficient Trucks |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Expands International Effort to Develop Fuel-Efficient Trucks DOE Expands International Effort to Develop Fuel-Efficient Trucks June 30, 2008 - 2:15pm Addthis GOTHENBURG, SWEDEN - U.S. Department of Energy's (DOE) Assistant Secretary for Energy Efficiency and Renewable Energy Alexander Karsner and Volvo Group CEO Leif Johansson today agreed to expand cooperation to develop more fuel-efficient trucks. Once contractual negotiations are complete later this year, the

  10. Vehicle Technologies Office: Improving Biodiesel and Other Fuels...

    Energy Saver

    Improving Biodiesel and Other Fuels' Quality Vehicle Technologies Office: Improving Biodiesel and Other Fuels' Quality For biofuels to succeed in the marketplace, they must be easy ...

  11. Los Alamos improves biomass-to-fuel process

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Biomass-to-fuel Process Improved Los Alamos improves biomass-to-fuel process Los Alamos scientists and collaborators published an article in the scientific journal Nature Chemistry...

  12. Potential of Thermoelectrics forOccupant Comfort and Fuel Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    More Documents & Publications Vehicle Fuel Economy Improvement through Thermoelectric Waste Heat Recovery Caterpillar Diesel Racing: Yesterday & Today Thermoelectric Conversion of ...

  13. Matching Federal Government Energy Needs with Energy Efficient Fuel Cells |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Matching Federal Government Energy Needs with Energy Efficient Fuel Cells Matching Federal Government Energy Needs with Energy Efficient Fuel Cells This presentation by Keith Spitznagel of LOGANEnergy was given at the Fuel Cell Meeting in April 2007. fuel_cell_mtng_spitznagel.pdf (1.42 MB) More Documents & Publications Presentation for Hydrogen State and Regional Workshop, March 30, 2008, Sacramento, CA CleanDistributedGeneration.pdf MCFC and PAFC R&D Workshop

  14. Matching Federal Government Energy Needs with Energy Efficient Fuel Cells

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Matching Federal Government Energy Matching Federal Government Energy Needs with Energy Efficient Fuel Cells Needs with Energy Efficient Fuel Cells Keith A Spitznagel Keith A Spitznagel Senior VP, Marketing Senior VP, Marketing - - LOGANEnergy LOGANEnergy US Fuel Cell Council US Fuel Cell Council Hotel Palomar Hotel Palomar April 26, 2007 April 26, 2007 Micro & Man-Portable * Less Than 100 Watts * Consumer electronics, defense (solder power), speciality applications Portable, Backup, APU *

  15. Transport Studies Enabling Efficiency Optimization of Cost-Competitive Fuel

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Cell Stacks | Department of Energy Studies Enabling Efficiency Optimization of Cost-Competitive Fuel Cell Stacks Transport Studies Enabling Efficiency Optimization of Cost-Competitive Fuel Cell Stacks Presented at the Department of Energy Fuel Cell Projects Kickoff Meeting, September 1 - October 1, 2009 cross_nuvera_transport_kickoff.pdf (952.2 KB) More Documents & Publications Durability of Low Pt Fuel Cells Operating at High Power Density Advanced Cathode Catalysts and Supports for PEM

  16. Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    | Department of Energy Maximizing Alternative Fuel Vehicle Efficiency Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency Besides their energy security and environmental benefits, many alternative fuels such as biodiesel, ethanol, and natural gas have unique chemical properties that offer advantages to drivers. These properties can include higher octane ratings and cetane numbers than conventional petroleum-based fuels, which can help an engine run more smoothly.

  17. Improving Vehicle Efficiency, Reducing Dependence on Foreign Oil (Fact Sheet)

    SciTech Connect

    Not Available

    2012-03-01

    This fact sheet provides an overview of the U.S. Department of Energy's Vehicle Technologies Program. Today, the United States spends about $400 billion each year on imported oil. To realize a secure energy future, America must break its dependence on imported oil and its volatile costs. The transportation sector accounts for about 70% of U.S. oil demand and holds tremendous opportunity to increase America's energy security by reducing oil consumption. That's why the U.S. Department of Energy (DOE) conducts research and development (R and D) on vehicle technologies which can stem America's dependence on oil, strengthen the economy, and protect the environment. Hybrid-electric and plug-in hybrid-electric vehicles can significantly improve fuel economy, displacing petroleum. Researchers are making batteries more affordable and recyclable, while enhancing battery range, performance, and life. This research supports President Obama's goal of putting 1 million electric vehicles on the road by 2015. The program is also working with businesses to develop domestic battery and electric-drive component plants to improve America's economic competitiveness globally. The program facilitates deployment of alternative fuels (ethanol, biodiesel, hydrogen, electricity, propane, and natural gas) and fuel infrastructures by partnering with state and local governments, universities, and industry. Reducing vehicle weight directly improves vehicle efficiency and fuel economy, and can potentially reduce vehicle operating costs. Cost-effective, lightweight, high-strength materials can significantly reduce vehicle weight without compromising safety. Improved combustion technologies and optimized fuel systems can improve near-and mid-term fuel economy by 25% for passenger vehicles and 20% for commercial vehicles by 2015, compared to 2009 vehicles. Reducing the use of oil-based fuels and lubricants in vehicles has more potential to improve the nation's energy security than any other action

  18. Improving fuel-rod performance. [PWR; BWR

    SciTech Connect

    Ocken, H.; Knott, S.

    1981-03-01

    To reduce the risk of fuel-rod failures, utilities operate their nuclear reactors within conservative limits on power increases proposed by nuclear-fuel vendors. Of particular concern to US utilities is that adopting these limits results in an industrywide average plant capacity loss of 3% in BWR designs and 0.3% in PWR designs. To replace lost BWR capacity by other generating means currently costs the utilities $150 million annually, and losses for PWRs are about $20 million. Efforts are therefore being made to identify the factors responsible for Zircaloy degradation under PCI condition and to improve nuclear-fuel-rod design and reactor operation.

  19. Lean Gasoline System Development for Fuel Efficient Small Cars

    SciTech Connect

    Smith, Stuart R.

    2013-11-25

    The General Motors and DOE cooperative agreement program DE-EE0003379 is completed. The program has integrated and demonstrated a lean-stratified gasoline engine, a lean aftertreatment system, a 12V Stop/Start system and an Active Thermal Management system along with the necessary controls that significantly improves fuel efficiency for small cars. The fuel economy objective of an increase of 25% over a 2010 Chevrolet Malibu and the emission objective of EPA T2B2 compliance have been accomplished. A brief review of the program, summarized from the narrative is: The program accelerates development and synergistic integration of four cost competitive technologies to improve fuel economy of a light-duty vehicle by at least 25% while meeting Tier 2 Bin 2 emissions standards. These technologies can be broadly implemented across the U.S. light-duty vehicle product line between 2015 and 2025 and are compatible with future and renewable biofuels. The technologies in this program are: lean combustion, innovative passive selective catalyst reduction lean aftertreatment, 12V stop/start and active thermal management. The technologies will be calibrated in a 2010 Chevrolet Malibu mid-size sedan for final fuel economy demonstration.

  20. Funding for Energy Efficiency Programs for Unregulated Fuels | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Funding for Energy Efficiency Programs for Unregulated Fuels Funding for Energy Efficiency Programs for Unregulated Fuels PDF file of document on Funding for Energy Efficiency Programs for Unregulated Fuels. fundingforenergyefficiencyprogramsforunregulatedfuels.pdf (273.83 KB) More Documents & Publications Microsoft Word - T4_VEIC_TO2_ Sub3_Residential Retrofit Program Design Guide Play Book_TEAM 4 FINAL.docx WAP Memorandum 006: LIHEAP Transmittal # IM-2014-06 Potential Impact

  1. Fuel Efficiency and Emissions Optimization of Heavy-Duty Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    and Emissions Optimization of Heavy-Duty Diesel Engines using Model-Based Transient Calibration Fuel Efficiency and Emissions Optimization of Heavy-Duty Diesel Engines using ...

  2. HD Truck and Engine Fuel Efficiency Opportunities and Challenges...

    Energy.gov [DOE] (indexed site)

    More Documents & Publications Supertruck - Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer Comments of Tendril Networks Inc SuperTruck Development ...

  3. #AskEnergySaver: Fuel Efficiency | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fuel Efficiency #AskEnergySaver: Fuel Efficiency May 26, 2015 - 3:45pm Addthis Our energy expert answered your questions about vehicle fuel efficiency. | Photo courtesy of ©iStockphoto.com/zodebala Our energy expert answered your questions about vehicle fuel efficiency. | Photo courtesy of ©iStockphoto.com/zodebala Paul Lester Paul Lester Digital Content Specialist, Office of Public Affairs LOOKING FOR MORE WAYS TO SAVE ENERGY? Check out Energy Saver for energy-saving tips you can use all

  4. Supertruck - Development and Demonstration of a Fuel-Efficient...

    Energy.gov [DOE] (indexed site)

    More Documents & Publications Supertruck - Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer Supertruck - Development and Demonstration of a ...

  5. EM Safely and Efficiently Manages Spent Nuclear Fuel

    Energy.gov [DOE]

    EM's mission is to safely and efficiently manage its spent nuclear fuel and prepare it for disposal in a geologic repository.

  6. BPA, public utilities fueling the energy efficiency powerhouse

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    public-utilities-fueling-the-energy-efficiency-powerhouse Sign In About | Careers | Contact | Investors | bpa.gov Search News & Us Expand News & Us Projects & Initiatives...

  7. EERE Success Story-University of Wisconsin-Madison Improves Fuel

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Efficiency in Advanced Diesel Engines | Department of Energy Wisconsin-Madison Improves Fuel Efficiency in Advanced Diesel Engines EERE Success Story-University of Wisconsin-Madison Improves Fuel Efficiency in Advanced Diesel Engines April 15, 2013 - 12:00am Addthis In 2012, a team of researchers at the University of Wisconsin-Madison completed an EERE-supported project to develop high-efficiency combustion engines for light- and heavy-duty vehicles. By combining a number of different

  8. Alternative Fuels Data Center: Innovations Improve Electric Vehicle

    Alternative Fuels and Advanced Vehicles Data Center

    Charging Infrastructure Innovations Improve Electric Vehicle Charging Infrastructure to someone by E-mail Share Alternative Fuels Data Center: Innovations Improve Electric Vehicle Charging Infrastructure on Facebook Tweet about Alternative Fuels Data Center: Innovations Improve Electric Vehicle Charging Infrastructure on Twitter Bookmark Alternative Fuels Data Center: Innovations Improve Electric Vehicle Charging Infrastructure on Google Bookmark Alternative Fuels Data Center: Innovations

  9. Engine improvement and efficiency gained by teamwork

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Engine improvement and efficiency gained by teamwork Engine improvement and efficiency gained by teamwork Together, Cummins and LANL have reduced costs and increased efficiency in diesel engines. April 3, 2012 Engine for R&D Research and development (R&D) efforts focus on improving engine efficiency while meeting future federal and state emissions regulations through a combination of: combustion technologies that minimize in-cylinder formation of emissions ...the company realized a more

  10. Volvo SuperTruck - Powertrain Technologies for Efficiency Improvement |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy 2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting ace060_amar_2012_o.pdf (1.54 MB) More Documents & Publications Volvo SuperTruck - Powertrain Technologies for Efficiency Improvement Vehicle Technologies Office Merit Review 2015: Volvo SuperTruck - Powertrain

  11. Volvo SuperTruck - Powertrain Technologies for Efficiency Improvement |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy 3 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting ace060_amar_2013_o.pdf (1.73 MB) More Documents & Publications Vehicle Technologies Office Merit Review 2015: Volvo SuperTruck - Powertrain Technologies for Efficiency Improvement Volvo SuperTruck - Powertrain

  12. Vehicle Mass and Fuel Efficiency Impact Testing

    Office of Energy Efficiency and Renewable Energy (EERE)

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  13. MOLTEN CARBONATE FUEL CELL PRODUCT DESIGN IMPROVEMENT

    SciTech Connect

    H.C. Maru; M. Farooque

    2003-03-01

    The program efforts are focused on technology and system optimization for cost reduction, commercial design development, and prototype system field trials. The program is designed to advance the carbonate fuel cell technology from full-size field test to the commercial design. FuelCell Energy, Inc. (FCE) is in the later stage of the multiyear program for development and verification of carbonate fuel cell based power plants supported by DOE/NETL with additional funding from DOD/DARPA and the FuelCell Energy team. FCE has scaled up the technology to full-size and developed DFC{reg_sign} stack and balance-of-plant (BOP) equipment technology to meet product requirements, and acquired high rate manufacturing capabilities to reduce cost. FCE has designed submegawatt (DFC300A) and megawatt (DFC1500 and DFC3000) class fuel cell products for commercialization of its DFC{reg_sign} technology. A significant progress was made during the reporting period. The reforming unit design was optimized using a three-dimensional stack simulation model. Thermal and flow uniformities of the oxidant-In flow in the stack module were improved using computational fluid dynamics based flow simulation model. The manufacturing capacity was increased. The submegawatt stack module overall cost was reduced by {approx}30% on a per kW basis. An integrated deoxidizer-prereformer design was tested successfully at submegawatt scale using fuels simulating digester gas, coal bed methane gas and peak shave (natural) gas.

  14. Highly Efficient, Scalable Microbial Fuel Cell - Energy Innovation Portal

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Hydrogen and Fuel Cell Hydrogen and Fuel Cell Biomass and Biofuels Biomass and Biofuels Advanced Materials Advanced Materials Find More Like This Return to Search Highly Efficient, Scalable Microbial Fuel Cell University of Colorado Contact CU About This Technology Publications: PDF Document Publication CU2773D (Microbial Fuel Cell) Marketing Summary (129 KB) Technology Marketing Summary With present day environmental and energy concerns rising, the development of environmentally friendly energy

  15. Lean Gasoline System Development for Fuel Efficient Small Car | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation ace063_smith_2011_o.pdf (1.81 MB) More Documents & Publications Lean Gasoline System Development for Fuel Efficient Small Car Lean Gasoline System Development for Fuel Efficient Small Car Vehicle Technologies Office Merit Review 2015: Cummins-ORNL\FEERC Emissions CRADA: NOx Control & Measurement Technology for Heavy-Duty Diesel Engines, Self-Diagnosing

  16. Lean Gasoline System Development for Fuel Efficient Small Car | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy 3 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting ace063_smith_2013_o.pdf (1.19 MB) More Documents & Publications Lean Gasoline System Development for Fuel Efficient Small Car Lean Gasoline System Development for Fuel Efficient Small Car Vehicle Technologies Office Merit Review 2015: Lean Miller Cycle System Development for Light-Duty Vehicles

  17. Impact of Battery Management on Fuel Efficiency Validity | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Battery Management on Fuel Efficiency Validity Impact of Battery Management on Fuel Efficiency Validity 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting vss069_rask_2012_o.pdf (1.45 MB) More Documents & Publications HEV, PHEV, EV Test Standard Development and Validation HEV, PHEV, BEV Test Standard Validation Advanced Technology Vehicle Lab Benchmarking - Level 2 (in-depth)

  18. Wireless Sensors Improve Data Center Efficiency

    Energy.gov [DOE]

    Case study bulletin describes how to improve data center energy efficiency for wireless sensors, and how to use that information to manage the data center.

  19. Industrial Energy Efficiency Projects Improve Competitiveness...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Rapids, Wisconsin. Photo courtesy of NewPage Wisconsin Systems Inc. Industrial Energy Efficiency Projects Improve Competitiveness and Protect Jobs Recovery Act Funding Supports ...

  20. Improving Light Water Reactor Fuel Reliability Via Flow-Induced...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Improving Light Water Reactor Fuel Reliability Via Flow-Indu... Failures of the fuel rod elements used to power U.S. nuclear ... and a recognized bottleneck to optimal fuel utilization. ...

  1. Alternative Fuels Data Center: Staples Delivers on Fuel Efficiency

    Alternative Fuels and Advanced Vehicles Data Center

    But analysis by Staples found that driving time increased by only seven minutes per day. Furthermore, the extra time on the road was offset by less frequent trips to the fuel pump. ...

  2. Georgia Power- Energy Efficiency Home Improvement Rebates

    Energy.gov [DOE]

    Georgia Power offers up to $2,575 in rebates to customers who choose to improve home performance with whole building BPI certified efficiency measures or up to $700 for individual improvements from...

  3. Make Your Next Road Trip Fuel Efficient | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Make Your Next Road Trip Fuel Efficient Make Your Next Road Trip Fuel Efficient June 29, 2015 - 3:02pm Addthis Enjoy the open road while keeping your fuel costs low! | Photo courtesy of istockphoto.com/lisegagne Enjoy the open road while keeping your fuel costs low! | Photo courtesy of istockphoto.com/lisegagne Christina Stowers Communications Specialist in the Weatherization and Intergovernmental Programs Office What does this mean for me? You don't have to break the bank on your summer travels

  4. Method for improving fuel cell performance

    DOEpatents

    Uribe, Francisco A.; Zawodzinski, Thomas

    2003-10-21

    A method is provided for operating a fuel cell at high voltage for sustained periods of time. The cathode is switched to an output load effective to reduce the cell voltage at a pulse width effective to reverse performance degradation from OH adsorption onto cathode catalyst surfaces. The voltage is stepped to a value of less than about 0.6 V to obtain the improved and sustained performance.

  5. Alternative Fuels Data Center: Electric Ice Resurfacers Improve Air Quality

    Alternative Fuels and Advanced Vehicles Data Center

    in Minnesota Electric Ice Resurfacers Improve Air Quality in Minnesota to someone by E-mail Share Alternative Fuels Data Center: Electric Ice Resurfacers Improve Air Quality in Minnesota on Facebook Tweet about Alternative Fuels Data Center: Electric Ice Resurfacers Improve Air Quality in Minnesota on Twitter Bookmark Alternative Fuels Data Center: Electric Ice Resurfacers Improve Air Quality in Minnesota on Google Bookmark Alternative Fuels Data Center: Electric Ice Resurfacers Improve Air

  6. National Fuel (Gas)- Residential Energy Efficiency Rebates

    Energy.gov [DOE]

    All measures must be installed by a licensed contractor. New construction is not eligible for rebates. Low-income customers may be eligible for free weatherization assistance, and National Fuel...

  7. High Efficiency Fuel Reactivity Controlled Compression Ignition...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    An optimized dual-fuel PCCI concept, RCCI, is proposed. deer10reitz.pdf (960.46 KB) More Documents & Publications Effect of Compression Ratio and Piston Geometry on RCCI load ...

  8. Improving Fuel Economy When the Weather's Cold | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Improving Fuel Economy When the Weather's Cold Improving Fuel Economy When the Weather's Cold February 25, 2014 - 9:49am Addthis Make sure your car is ready for spring snowstorms....

  9. Improve Overall Plant Efficiency and Fuel Use

    SciTech Connect

    2005-05-01

    The CHP tool is a software tool that evaluates the feasibility of using gas turbines to generate power and the turbine exhaust gasses to supply heat to industrial heating systems.

  10. Effect of separation efficiency on repository loading values in fuel cycle scenario analysis codes

    SciTech Connect

    Radel, T.E.; Wilson, P.P.H.; Grady, R.M.; Bauer, T.H.

    2007-07-01

    Fuel cycle scenario analysis codes are valuable tools for investigating the effects of various decisions on the performance of the nuclear fuel cycle as a whole. Until recently, repository metrics in such codes were based on mass and were independent of the isotopic composition of the waste. A methodology has been developed for determining peak repository loading for an arbitrary set of isotopics based on the heat load restrictions and current geometry specifications for the Yucca Mountain repository. This model was implemented in the VISION fuel cycle scenario analysis code and is used here to study the effects of separation efficiencies on repository loading for various AFCI fuel cycle scenarios. Improved separations efficiencies are shown to have continuing technical benefit in fuel cycles that recycle Am and Cm, but a substantial benefit can be achieved with modest separation efficiencies. (authors)

  11. Air Force Achieves Fuel Efficiency through Industry Best Practices

    SciTech Connect

    2012-12-01

    The U.S. Air Force’s Air Mobility Command (AMC) is changing the way it does business. It is saving energy and money through an aircraft fleet fuel-efficiency program inspired by private industry best practices and ideas resulting from the empowered fuel savings culture.

  12. INFOGRAPHIC: The Road to Fuel Efficiency | Department of Energy

    Energy.gov [DOE] (indexed site)

    money at the pump, all while reducing our dependence on foreign oil and growing the U.S. economy. Learn more in the 54.5 MPG and Beyond: Fueling Energy-Efficient Vehicles blog...

  13. Recovery Act--Class 8 Truck Freight Efficiency Improvement Project

    SciTech Connect

    Trucks, Daimler

    2015-07-26

    Daimler Trucks North America completed a five year, $79.6M project to develop and demonstrate a concept vehicle with at least 50% freight efficiency improvement over a weighted average of several drive cycles relative to a 2009 best-in-class baseline vehicle. DTNA chose a very fuel efficient baseline vehicle, the 2009 Freightliner Cascadia with a DD15 engine, yet successfully demonstrated a 115% freight efficiency improvement. DTNA learned a great deal about the various technologies that were incorporated into Super Truck and those that, through down-selection, were discarded. Some of the technologies competed with each other for efficiency, and notably some of the technologies complemented each other. For example, we found that Super Truck’s improved aerodynamic drag resulted in improved fuel savings from eCoast, relative to a similar vehicle with worse aerodynamic drag. However, some technologies were in direct competition with each other, namely the predictive technologies which use GPS and 3D digital maps to efficiently manage the vehicles kinetic energy through controls and software, versus hybrid which is a much costlier technology that essentially targets the same inefficiency. Furthermore, the benefits of a comprehensive, integrated powertrain/vehicle approach was proven, in which vast improvements in vehicle efficiency (e.g. lower aero drag and driveline losses) enabled engine strategies such as downrating and downspeeding. The joint engine and vehicle developments proved to be a multiplier-effect which resulted in large freight efficiency improvements. Although a large number of technologies made the selection process and were used on the Super Truck demonstrator vehicle, some of the technologies proved not feasible for series production.

  14. Berkeley Lab's Ashok Gadgil Takes Fuel Efficient Cookstoves to Ethiopia |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Lab's Ashok Gadgil Takes Fuel Efficient Cookstoves to Ethiopia Berkeley Lab's Ashok Gadgil Takes Fuel Efficient Cookstoves to Ethiopia February 8, 2011 - 1:21pm Addthis Darfuri woman using a Berkeley-Darfur cookstove | Courtesy of darfurstoves.org Darfuri woman using a Berkeley-Darfur cookstove | Courtesy of darfurstoves.org April Saylor April Saylor Former Digital Outreach Strategist, Office of Public Affairs What does this mean for me? Clean-burning cookstoves reduce

  15. Energy Department Awards Nearly $55 Million to Advance Fuel Efficient

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Vehicle Technologies in Support of EV Everywhere and SuperTruck | Department of Energy 55 Million to Advance Fuel Efficient Vehicle Technologies in Support of EV Everywhere and SuperTruck Energy Department Awards Nearly $55 Million to Advance Fuel Efficient Vehicle Technologies in Support of EV Everywhere and SuperTruck September 17, 2015 - 2:49pm Addthis NEWS MEDIA CONTACT (202) 586-4940 As part of the Obama Administration's strategy to increase energy productivity, reduce America's

  16. Future Engine Fluids Technologies: Durable, Fuel-Efficient, and

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Emissions-Friendly | Department of Energy Future Engine Fluids Technologies: Durable, Fuel-Efficient, and Emissions-Friendly Future Engine Fluids Technologies: Durable, Fuel-Efficient, and Emissions-Friendly 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005_deer_bardasz.pdf (561.21 KB) More Documents & Publications Controlled Experiments on the Effects of Lubricant/Additive (Low-Ash, Ashless) Characteristics on DPF Degradation Diesel Particulate

  17. Testimonials- Partnerships in Fuel Efficiency- Cummins Inc.

    Energy.gov [DOE]

    Wayne Eckerle, VP of Corporate Research and Technology at Cummins Inc., talks about how its partnership with EERE has helped move waste heat recovery advances for vehicles into production and will help them reach fuel consumption reductions of 20-30% over the next decade.

  18. Electric and Gasoline Vehicle Fuel Efficiency Analysis

    Energy Science and Technology Software Center

    1995-05-24

    EAGLES1.1 is PC-based interactive software for analyzing performance (e.g., maximum range) of electric vehicles (EVs) or fuel economy (e.g., miles/gallon) of gasoline vehicles (GVs). The EV model provides a second by second simulation of battery voltage and current for any specified vehicle velocity/time or power/time profile. It takes into account the effects of battery depth-of-discharge (DOD) and regenerative braking. The GV fuel economy model which relates fuel economy, vehicle parameters, and driving cycle characteristics, canmore » be used to investigate the effects of changes in vehicle parameters and driving patterns on fuel economy. For both types of vehicles, effects of heating/cooling loads on vehicle performance can be studied. Alternatively, the software can be used to determine the size of battery needed to satisfy given vehicle mission requirements (e.g., maximum range and driving patterns). Options are available to estimate the time necessary for a vehicle to reach a certain speed with the application of a specified constant power and to compute the fraction of time and/or distance in a drivng cycle for speeds exceeding a given value.« less

  19. Carbonaceous fuel combustion with improved desulfurization

    DOEpatents

    Yang, Ralph T. (Middle Island, NY); Shen, Ming-shing (Rocky Point, NY)

    1980-01-01

    Lime utilization for sulfurous oxides adsorption in fluidized combustion of carbonaceous fuels is improved by impregnation of porous lime particulates with iron oxide. The impregnation is achieved by spraying an aqueous solution of mixed iron sulfate and sulfite on the limestone before transfer to the fluidized bed combustor, whereby the iron compounds react with the limestone substrate to form iron oxide at the limestone surface. The iron oxide present in the spent limestone is found to catalyze the regeneration rate of the spent limestone in a reducing environment. Thus both the calcium and iron components may be recycled.

  20. Better Buildings Challenge is Expanding, Improving Energy Efficiency...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Better Buildings Challenge is Expanding, Improving Energy Efficiency Throughout America Better Buildings Challenge is Expanding, Improving Energy Efficiency Throughout America ...

  1. Fuels and Combustion Strategies for High-Efficiency Clean-Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Combustion Strategies for High-Efficiency Clean-Combustion Engines Fuels and Combustion Strategies for High-Efficiency Clean-Combustion Engines 2012 DOE Hydrogen and Fuel Cells ...

  2. Fuel Efficiency of New European HD Vehicles

    Energy.gov [DOE]

    Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  3. Improving Fuel Economy When the Weather's Cold | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fuel Economy When the Weather's Cold Improving Fuel Economy When the Weather's Cold February 25, 2014 - 9:49am Addthis Make sure your car is ready for spring snowstorms. | Photo...

  4. Control apparatus and method for efficiently heating a fuel processor in a fuel cell system

    DOEpatents

    Doan, Tien M.; Clingerman, Bruce J.

    2003-08-05

    A control apparatus and method for efficiently controlling the amount of heat generated by a fuel cell processor in a fuel cell system by determining a temperature error between actual and desired fuel processor temperatures. The temperature error is converted to a combustor fuel injector command signal or a heat dump valve position command signal depending upon the type of temperature error. Logic controls are responsive to the combustor fuel injector command signals and the heat dump valve position command signal to prevent the combustor fuel injector command signal from being generated if the heat dump valve is opened or, alternately, from preventing the heat dump valve position command signal from being generated if the combustor fuel injector is opened.

  5. EERE Success Story-Heavy Vehicle Fuel Efficiency is no Drag | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Heavy Vehicle Fuel Efficiency is no Drag EERE Success Story-Heavy Vehicle Fuel Efficiency is no Drag March 28, 2016 - 3:17pm Addthis Tractor belly pan helps to improve under-body flow. Tractor belly pan helps to improve under-body flow. History of technology Traveling down any U.S. highway, a driver is bound to see as many big rigs as they do other vehicles. But in 10 years' time, they could see a futuristic sleek, streamlined big rig that looks like something out of a sci-fi

  6. Fact #881: July 13, 2015 Powertrain Efficiency Improvements, 2005 to 2013 |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy 1: July 13, 2015 Powertrain Efficiency Improvements, 2005 to 2013 Fact #881: July 13, 2015 Powertrain Efficiency Improvements, 2005 to 2013 Powertrain efficiency in a recent study was defined as the ratio of tractive work (integrated power) needed for a vehicle to complete a drive cycle divided by the fuel energy consumed. In short, this is a measure of how good the powertrain is at getting fuel energy to the road. Many cars have a fuel economy advantage over light

  7. Los Alamos improves biomass-to-fuel process

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Biomass-to-fuel Process Improved Los Alamos improves biomass-to-fuel process Los Alamos scientists and collaborators published an article in the scientific journal Nature Chemistry this week that could offer a big step on the path to renewable energy. April 26, 2013 Los Alamos research better converts energy from fields into fuel tanks. Los Alamos research better converts energy from fields into fuel tanks. Contact Nancy Ambrosiano Communications Office (505) 667-0471 Email This work describes a

  8. High Efficiency Direct Carbon and Hydrogen Fuel Cells for Fossil Fuel Power Generation

    SciTech Connect

    Steinberg, M; Cooper, J F; Cherepy, N

    2002-01-02

    Hydrogen he1 cells have been under development for a number of years and are now nearing commercial applications. Direct carbon fuel cells, heretofore, have not reached practical stages of development because of problems in fuel reactivity and cell configuration. The carbon/air fuel cell reaction (C + O{sub 2} = CO{sub 2}) has the advantage of having a nearly zero entropy change. This allows a theoretical efficiency of 100 % at 700-800 C. The activities of the C fuel and CO{sub 2} product do not change during consumption of the fuel. Consequently, the EMF is invariant; this raises the possibility of 100% fuel utilization in a single pass. (In contrast, the high-temperature hydrogen fuel cell has a theoretical efficiency of and changes in fuel activity limit practical utilizations to 75-85%.) A direct carbon fuel cell is currently being developed that utilizes reactive carbon particulates wetted by a molten carbonate electrolyte. Pure COZ is evolved at the anode and oxygen from air is consumed at the cathode. Electrochemical data is reported here for the carbon/air cell utilizing carbons derived from he1 oil pyrolysis, purified coal, purified bio-char and petroleum coke. At 800 O C, a voltage efficiency of 80% was measured at power densities of 0.5-1 kW/m2. Carbon and hydrogen fuels may be produced simultaneously at lugh efficiency from: (1) natural gas, by thermal decomposition, (2) petroleum, by coking or pyrolysis of distillates, (3) coal, by sequential hydrogasification to methane and thermal pyrolysis of the methane, with recycle of the hydrogen, and (4) biomass, similarly by sequential hydrogenation and thermal pyrolysis. Fuel production data may be combined with direct C and H2 fuel cell operating data for power cycle estimates. Thermal to electric efficiencies indicate 80% HHV [85% LHV] for petroleum, 75.5% HHV [83.4% LHV] for natural gas and 68.3% HHV [70.8% LHV] for lignite coal. Possible benefits of integrated carbon and hydrogen fuel cell power

  9. Novel Materials for High Efficiency Direct Methanol Fuel Cells

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Number: Arkema Inc. (1281) This presentation does not contain any proprietary, confidential, or otherwise restricted information Novel Materials for High Efficiency Direct Methanol Fuel Cells Chris Roger and David Mountz October 1, 2009 2009 Fuel Cell Projects Kickoff Meeting Announcement Number: DE-PS36-08GO98009 Project Objectives z Develop ultra-thin membranes having extremely low methanol crossover, high conductivity, durability, and low cost. z Develop cathode catalysts that can operate

  10. Improve Your Boiler's Combustion Efficiency | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Improve Your Boiler's Combustion Efficiency This tip sheet outlines how to improve boiler combustion efficiency as part of an optimized steam system. STEAM TIP SHEET 4 Improve...

  11. Improving combustion stability in a bi-fuel engine

    SciTech Connect

    1995-06-01

    This article describes how a new strategy for ignition timing control can reduce NOx emissions from engines using CNG and gasoline. Until a proper fueling infrastructure is established, a certain fraction of vehicles powered by compressed natural gas (CNG) must have bi-fuel capability. A bi-fuel engine, enjoying the longer range of gasoline and the cleaner emissions of CNG, can overcome the problem of having few CNG fueling stations. However, bi-fuel engines must be optimized to run on both fuels since low CNG volumetric efficiency causes power losses compared to gasoline.

  12. U.S. HDV GHG and Fuel Efficiency Final Rule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    U.S. HDV GHG and Fuel Efficiency Final Rule Reviews medium- and heavy-duty truck fuel efficiency and greenhouse gas emissions standards and reducing fuel consumption in a diverse ...

  13. Potentials and policy implications of energy and material efficiency improvement

    SciTech Connect

    Worrell, Ernst; Levine, Mark; Price, Lynn; Martin, Nathan; van den Broek, Richard; Block, Kornelis

    1997-01-01

    There is a growing awareness of the serious problems associated with the provision of sufficient energy to meet human needs and to fuel economic growth world-wide. This has pointed to the need for energy and material efficiency, which would reduce air, water and thermal pollution, as well as waste production. Increasing energy and material efficiency also have the benefits of increased employment, improved balance of imports and exports, increased security of energy supply, and adopting environmentally advantageous energy supply. A large potential exists for energy savings through energy and material efficiency improvements. Technologies are not now, nor will they be, in the foreseeable future, the limiting factors with regard to continuing energy efficiency improvements. There are serious barriers to energy efficiency improvement, including unwillingness to invest, lack of available and accessible information, economic disincentives and organizational barriers. A wide range of policy instruments, as well as innovative approaches have been tried in some countries in order to achieve the desired energy efficiency approaches. These include: regulation and guidelines; economic instruments and incentives; voluntary agreements and actions, information, education and training; and research, development and demonstration. An area that requires particular attention is that of improved international co-operation to develop policy instruments and technologies to meet the needs of developing countries. Material efficiency has not received the attention that it deserves. Consequently, there is a dearth of data on the qualities and quantities for final consumption, thus, making it difficult to formulate policies. Available data, however, suggest that there is a large potential for improved use of many materials in industrialized countries.

  14. Fuel Flexible Combustion Systems for High-Efficiency Utilization of Opportunity Fuels in Gas Turbines

    SciTech Connect

    Venkatesan, Krishna

    2011-11-30

    The purpose of this program was to develop low-emissions, efficient fuel-flexible combustion technology which enables operation of a given gas turbine on a wider range of opportunity fuels that lie outside of current natural gas-centered fuel specifications. The program encompasses a selection of important, representative fuels of opportunity for gas turbines with widely varying fundamental properties of combustion. The research program covers conceptual and detailed combustor design, fabrication, and testing of retrofitable and/or novel fuel-flexible gas turbine combustor hardware, specifically advanced fuel nozzle technology, at full-scale gas turbine combustor conditions. This project was performed over the period of October 2008 through September 2011 under Cooperative Agreement DE-FC26-08NT05868 for the U.S. Department of Energy/National Energy Technology Laboratory (USDOE/NETL) entitled "Fuel Flexible Combustion Systems for High-Efficiency Utilization of Opportunity Fuels in Gas Turbines". The overall objective of this program was met with great success. GE was able to successfully demonstrate the operability of two fuel-flexible combustion nozzles over a wide range of opportunity fuels at heavy-duty gas turbine conditions while meeting emissions goals. The GE MS6000B ("6B") gas turbine engine was chosen as the target platform for new fuel-flexible premixer development. Comprehensive conceptual design and analysis of new fuel-flexible premixing nozzles were undertaken. Gas turbine cycle models and detailed flow network models of the combustor provide the premixer conditions (temperature, pressure, pressure drops, velocities, and air flow splits) and illustrate the impact of widely varying fuel flow rates on the combustor. Detailed chemical kinetic mechanisms were employed to compare some fundamental combustion characteristics of the target fuels, including flame speeds and lean blow-out behavior. Perfectly premixed combustion experiments were conducted to

  15. Reduce NOx and Improve Energy Efficiency

    SciTech Connect

    2005-05-01

    The U.S. Department of Energy's NOx and Energy Assessment Tool (NxEAT) is available at no charge to help the petroleum refining and chemicals industries develop a cost-effective, plant-wide strategy for NOx reduction and energy efficiency improvements.

  16. Vehicle Technologies Office: Improving Biodiesel and Other Fuels' Quality

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    | Department of Energy Improving Biodiesel and Other Fuels' Quality Vehicle Technologies Office: Improving Biodiesel and Other Fuels' Quality For biofuels to succeed in the marketplace, they must be easy to use with a minimum of problems. The Vehicle Technologies Office has collaborated with industry to test biofuel samples and improve both their quality and consistency over time. Unfortunately, in the mid-2000s, a substantial percentage of biodiesel sold did not meet fuel quality

  17. Improved System Performance and Reduced Cost of a Fuel Reformer...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Emissions Useful Life Requirement Improved System Performance and Reduced Cost of a Fuel Reformer, LNT, and SCR Aftertreatment System Meeting Emissions Useful Life Requirement An ...

  18. Solid Oxide Fuel Cell Technologies: Improved Electrode-Electrode...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Solid Oxide Fuel Cell Technologies: Improved Electrode-Electrode Structures for Solid State Electrochemical Devices Lawrence Berkeley National Laboratory Contact LBL About This ...

  19. NREL, Sandia Team to Improve Hydrogen Fueling Infrastructure - News

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Releases | NREL NREL, Sandia Team to Improve Hydrogen Fueling Infrastructure April 30, 2014 A new project led by the Energy Department's National Renewable Energy Laboratory (NREL) and Sandia National Laboratories will support H2USA, a public-private partnership co-launched by industry and the Energy Department, and will work to ensure that hydrogen fuel cell vehicle owners have a positive fueling experience as fuel cell electric vehicles are introduced starting in 2014-2015. By tackling the

  20. Using Fuel Cell Membranes to Improve Power

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... This technology can be applied to a variety of markets including electrodialysis, alkaline fuel cells, electrolysis, and the automotive industry. Partnership Opportunities Sandia ...

  1. Idaho Chemical Processing Plant Process Efficiency improvements

    SciTech Connect

    Griebenow, B.

    1996-03-01

    In response to decreasing funding levels available to support activities at the Idaho Chemical Processing Plant (ICPP) and a desire to be cost competitive, the Department of Energy Idaho Operations Office (DOE-ID) and Lockheed Idaho Technologies Company have increased their emphasis on cost-saving measures. The ICPP Effectiveness Improvement Initiative involves many activities to improve cost effectiveness and competitiveness. This report documents the methodology and results of one of those cost cutting measures, the Process Efficiency Improvement Activity. The Process Efficiency Improvement Activity performed a systematic review of major work processes at the ICPP to increase productivity and to identify nonvalue-added requirements. A two-phase approach was selected for the activity to allow for near-term implementation of relatively easy process modifications in the first phase while obtaining long-term continuous improvement in the second phase and beyond. Phase I of the initiative included a concentrated review of processes that had a high potential for cost savings with the intent of realizing savings in Fiscal Year 1996 (FY-96.) Phase II consists of implementing long-term strategies too complex for Phase I implementation and evaluation of processes not targeted for Phase I review. The Phase II effort is targeted for realizing cost savings in FY-97 and beyond.

  2. Class 8 Truck Freight Efficiency Improvement Project

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Daimler Trucks and Buses 1 Super Truck Program: Vehicle Project Review Recovery Act -Class 8 Truck Freight Efficiency Improvement Project Project ID: ARRAVT080 This presentation does not contain any proprietary, confidential, or otherwise restricted information Derek Rotz (PI & Presenter) Dr. Maik Ziegler Daimler Truck North America LLC June 19 th , 2014 Daimler Trucks and Buses 2 Overview * Project start: April 2010 * Project end: March 2015 * Percent complete: 80% * Resolve thermal &

  3. Secretary Chu Announces $47 Million to Improve Efficiency in...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    7 Million to Improve Efficiency in Information Technology and Communications Sectors Secretary Chu Announces 47 Million to Improve Efficiency in Information Technology and ...

  4. DOE Issues Notice of Proposed Rulemaking to Improve Energy Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Notice of Proposed Rulemaking to Improve Energy Efficiency Enforcement Process DOE Issues Notice of Proposed Rulemaking to Improve Energy Efficiency Enforcement Process September ...

  5. Improve Your Boiler's Combustion Efficiency, Energy Tips: STEAM...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Improve Your Boiler's Combustion Efficiency Combustion Efficiency Operating your boiler with an optimum amount of excess air will minimize heat loss up the stack and improve ...

  6. Case Study: Opportunities to Improve Energy Efficiency in Three...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Opportunities to Improve Energy Efficiency in Three Federal Data Centers Case Study: Opportunities to Improve Energy Efficiency in Three Federal Data Centers Study details three ...

  7. Water Efficiency Improvements at Various U.S. Environmental Protection...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Water Efficiency Improvements at Various U.S. Environmental Protection Agency Sites Water Efficiency Improvements at Various U.S. Environmental Protection Agency Sites Water...

  8. Opportunities for Efficiency Improvements in the U.S. Natural...

    Office of Environmental Management (EM)

    Opportunities for Efficiency Improvements in the U.S. Natural Gas Transmission, Storage and Distribution System Opportunities for Efficiency Improvements in the U.S. Natural Gas ...

  9. Erosion-Resistant Nanocoatings for Improved Energy Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Erosion-Resistant Nanocoatings for Improved Energy Efficiency in Gas Turbine Engines Erosion-Resistant Nanocoatings for Improved Energy Efficiency in Gas Turbine Engines ...

  10. Future Diesel Engine Thermal Efficiency Improvement andn Emissions...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Diesel Engine Thermal Efficiency Improvement andn Emissions Control Technology Future Diesel Engine Thermal Efficiency Improvement andn Emissions Control Technology 2005 Diesel ...

  11. CEQ Releases Two Handbooks on Improving Efficiency of Federal...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Releases Two Handbooks on Improving Efficiency of Federal Environmental Reviews CEQ Releases Two Handbooks on Improving Efficiency of Federal Environmental Reviews March 5, 2013 - ...

  12. The Role of Advanced Combustion in Improving Thermal Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Advanced Combustion in Improving Thermal Efficiency The Role of Advanced Combustion in Improving Thermal Efficiency Combustion plays an important role in enabling high thermal ...

  13. Improving Energy Efficiency and Creating Jobs Through Weatherization...

    Energy Saver

    Improving Energy Efficiency and Creating Jobs Through Weatherization Improving Energy Efficiency and Creating Jobs Through Weatherization December 9, 2013 - 12:00am Addthis Since ...

  14. Off-Highway Heavy Vehicle Diesel Efficiency Improvement and Emissions...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Off-Highway Heavy Vehicle Diesel Efficiency Improvement and Emissions Reduction Off-Highway Heavy Vehicle Diesel Efficiency Improvement and Emissions Reduction 2005 Diesel Engine ...

  15. Reducing Cost Barriers to Energy Efficiency Improvements (201...

    Energy Saver

    Reducing Cost Barriers to Energy Efficiency Improvements (201) Reducing Cost Barriers to Energy Efficiency Improvements (201) Better Buildings Residential Network Peer Exchange ...

  16. Water Efficiency Improvements at Various U.S. Environmental Protection...

    Energy Saver

    Water Efficiency Improvements at Various U.S. Environmental Protection Agency Sites Water Efficiency Improvements at Various U.S. Environmental Protection Agency Sites Water ...

  17. Idaho Waste Treatment Facility Improves Worker Safety and Efficiency...

    Office of Environmental Management (EM)

    Waste Treatment Facility Improves Worker Safety and Efficiency, Saves Taxpayer Dollars Idaho Waste Treatment Facility Improves Worker Safety and Efficiency, Saves Taxpayer Dollars ...

  18. Development and Demonstration of a Fuel-Efficient Class 8 Highway...

    Energy Saver

    Development and Demonstration of a Fuel-Efficient Class 8 Highway Vehicle 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer ...

  19. Barriers to improvements in energy efficiency

    SciTech Connect

    Reddy, A.K.N.

    1991-10-01

    To promote energy-efficiency improvements, actions may be required at one or more levels -- from the lowest level of the consumer (residential, commercial, industrial, etc.) through the highest level of the global agencies. But barriers to the implementation of energy-efficiency improvements exist or can arise at all these levels. Taking up each one of these barriers in turn, the paper discusses specific measures that can contribute to overcoming the barriers. However, a one-barrier-one-measure approach must be avoided. Single barriers may in fact involve several sub-barriers. Also, combinations of measures are much more effective in overcoming barriers. In particular, combinations of measures that simultaneously overcome several barriers are most successful. The paper discusses the typology of barriers, explores their origin and suggests measures that by themselves or in combination with other measures, will overcome these barriers. Since most of the barriers dealt with can be found in the ``barriers`` literature, any originality in the paper lies in its systematic organization, synoptic view and holistic treatment of this issue. This paper is intended to initiate a comprehensive treatment of barriers, their origins and the measures that contribute to overcoming them. Hopefully, such a treatment will facilitate the implementation of energy-efficiency improvements involving a wide diversity of ever-changing energy end uses and consumer preferences.

  20. Barriers to improvements in energy efficiency

    SciTech Connect

    Reddy, A.K.N.

    1991-10-01

    To promote energy-efficiency improvements, actions may be required at one or more levels -- from the lowest level of the consumer (residential, commercial, industrial, etc.) through the highest level of the global agencies. But barriers to the implementation of energy-efficiency improvements exist or can arise at all these levels. Taking up each one of these barriers in turn, the paper discusses specific measures that can contribute to overcoming the barriers. However, a one-barrier-one-measure approach must be avoided. Single barriers may in fact involve several sub-barriers. Also, combinations of measures are much more effective in overcoming barriers. In particular, combinations of measures that simultaneously overcome several barriers are most successful. The paper discusses the typology of barriers, explores their origin and suggests measures that by themselves or in combination with other measures, will overcome these barriers. Since most of the barriers dealt with can be found in the barriers'' literature, any originality in the paper lies in its systematic organization, synoptic view and holistic treatment of this issue. This paper is intended to initiate a comprehensive treatment of barriers, their origins and the measures that contribute to overcoming them. Hopefully, such a treatment will facilitate the implementation of energy-efficiency improvements involving a wide diversity of ever-changing energy end uses and consumer preferences.

  1. Alternative Fuels Data Center: Natural Gas Street Sweepers Improve...

    Alternative Fuels and Advanced Vehicles Data Center

    Natural Gas Street Sweepers Improve Air Quality in New York to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Street Sweepers Improve Air Quality in New York on ...

  2. A Materials Approach to Fuel-Efficient Tires | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    A Materials Approach to Fuel-Efficient Tires A Materials Approach to Fuel-Efficient Tires 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting vss084_okel_2012_o.pdf (628.13 KB) More Documents & Publications Vehicle Technologies Office Merit Review 2014: A Materials Approach to Fuel-Efficient Tires Vehicle Technologies Office Merit Review 2015: Advanced Bus and Truck Radial Materials for Fuel Efficiency Vehicle Technologies

  3. Nuclear reactor fuel element having improved heat transfer

    DOEpatents

    Garnier, J.E.; Begej, S.; Williford, R.E.; Christensen, J.A.

    1982-03-03

    A nuclear reactor fuel element having improved heat transfer between fuel material and cladding is described. The element consists of an outer cladding tube divided into an upper fuel section containing a central core of fissionable or mixed fissionable and fertile fuel material, slightly smaller in diameter than the inner surface of the cladding tube and a small lower accumulator section, the cladding tube being which is filled with a low molecular weight gas to transfer heat from fuel material to cladding during irradiation. A plurality of essentially vertical grooves in the fuel section extend downward and communicate with the accumulator section. The radial depth of the grooves is sufficient to provide a thermal gradient between the hot fuel surface and the relatively cooler cladding surface to allow thermal segregation to take place between the low molecular weight heat transfer gas and high molecular weight fission product gases produced by the fuel material during irradiation.

  4. Improved Direct Methanol Fuel Cell Stack

    SciTech Connect

    Wilson, Mahlon S.; Ramsey, John C.

    2005-03-08

    A stack of direct methanol fuel cells exhibiting a circular footprint. A cathode and anode manifold, tie-bolt penetrations and tie-bolts are located within the circular footprint. Each fuel cell uses two graphite-based plates. One plate includes a cathode active area that is defined by serpentine channels connecting the inlet and outlet cathode manifold. The other plate includes an anode active area defined by serpentine channels connecting the inlet and outlet of the anode manifold, where the serpentine channels of the anode are orthogonal to the serpentine channels of the cathode. Located between the two plates is the fuel cell active region.

  5. Composition and methods for improved fuel production

    DOEpatents

    Steele, Philip H.; Tanneru, Sathishkumar; Gajjela, Sanjeev K.

    2015-12-29

    Certain embodiments of the present invention are configured to produce boiler and transportation fuels. A first phase of the method may include oxidation and/or hyper-acidification of bio-oil to produce an intermediate product. A second phase of the method may include catalytic deoxygenation, esterification, or olefination/esterification of the intermediate product under pressurized syngas. The composition of the resulting product--e.g., a boiler fuel--produced by these methods may be used directly or further upgraded to a transportation fuel. Certain embodiments of the present invention also include catalytic compositions configured for use in the method embodiments.

  6. Vehicle Technologies Office 2013 Merit Review: A MultiAir / MultiFuel Approach to Enhancing Engine System Efficiency

    Energy.gov [DOE]

    A presentation given by Chrysler at the 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting on its project to research a multi-air and multi-fuel approach to improving engine efficiency.

  7. Class 8 Truck Freight Efficiency Improvement Project

    Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  8. Prospects on fuel economy improvements for hydrogen powered vehicles.

    SciTech Connect

    Rousseau, A.; Wallner, T.; Pagerit, S.; Lohse-Bush, H.

    2008-01-01

    Fuel cell vehicles are the subject of extensive research and development because of their potential for high efficiency and low emissions. Because fuel cell vehicles remain expensive and the demand for hydrogen is therefore limited, very few fueling stations are being built. To try to accelerate the development of a hydrogen economy, some original equipment manufacturers (OEM) in the automotive industry have been working on a hydrogen-fueled internal combustion engine (ICE) as an intermediate step. Despite its lower cost, the hydrogen-fueled ICE offers, for a similar amount of onboard hydrogen, a lower driving range because of its lower efficiency. This paper compares the fuel economy potential of hydrogen-fueled vehicles to their conventional gasoline counterparts. To take uncertainties into account, the current and future status of both technologies were considered. Although complete data related to port fuel injection were provided from engine testing, the map for the direct-injection engine was developed from single-cylinder data. The fuel cell system data represent the status of the current technology and the goals of FreedomCAR. For both port-injected and direct-injected hydrogen engine technologies, power split and series Hybrid Electric Vehicle (HEV) configurations were considered. For the fuel cell system, only a series HEV configuration was simulated.

  9. Step change in Fuel Efficiency:Eaton's perspective | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Step change in Fuel Efficiency:Eaton's perspective Step change in Fuel Efficiency:Eaton's perspective Perspective on truck fuel efficiency challenges and approaches to increasing fuel efficiency deer12_stover.pdf (1.1 MB) More Documents & Publications Model-Based Transient Calibration Optimization for Next Generation Diesel Engines Compact, electro-hydraulic, variable valve actuation system providing variable lift, timing and duration to enable high efficiency engine combustion control Bosch

  10. Efficient Use of Natural Gas Based Fuels in Heavy-Duty Engines...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Use of Natural Gas Based Fuels in Heavy-Duty Engines Efficient Use of Natural Gas Based Fuels in Heavy-Duty Engines Natural gas and other liquid feedstocks for transportation fuels ...

  11. City of Medford Improves Community Through Energy Efficiency

    SciTech Connect

    2003-08-01

    A fact sheet that explains how Medford, Massachusetts, improved the energy efficiency of its municipal buildings.

  12. NREL: Transportation Research - Driverless Cars and Fuel Efficiency

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Spotlighted in Scientific American Driverless Cars and Fuel Efficiency Spotlighted in Scientific American January 25, 2016 The potential to slow pollution through deployment of automated vehicles is gaining more and more traction in the news. In a recent Scientific American article, reporter Camille von Kaenel asked NREL's Jeff Gonder for a transportation researcher's thoughts on both the sustainability benefits and uncertainties that will accompany an increase in driverless cars. "The

  13. Funding for Energy Efficiency Programs for Unregulated Fuels

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Technical Assistance Program Funding for Energy Efficiency Programs for Unregulated Fuels April 2011 1 This work has been performed by Energy Futures Group and Vermont Energy Investment Corporation under the Contract No. 4200000341 with Oak Ridge National Laboratory which is managed by UTBattelle, LLC under Contract with the US Department of Energy No. DE-AC05- 00OR22725. This document was prepared in collaboration with a partnership of companies under this contract. The partnership is led by

  14. HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER

    SciTech Connect

    BROWN,LC; BESENBRUCH,GE; LENTSCH,RD; SCHULTZ,KR; FUNK,JF; PICKARD,PS; MARSHALL,AC; SHOWALTER,SK

    2003-06-01

    OAK B202 HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER. Combustion of fossil fuels, used to power transportation, generate electricity, heat homes and fuel industry provides 86% of the world's energy. Drawbacks to fossil fuel utilization include limited supply, pollution, and carbon dioxide emissions. Carbon dioxide emissions, thought to be responsible for global warming, are now the subject of international treaties. Together, these drawbacks argue for the replacement of fossil fuels with a less-polluting potentially renewable primary energy such as nuclear energy. Conventional nuclear plants readily generate electric power but fossil fuels are firmly entrenched in the transportation sector. Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. Hydrogen will be particularly advantageous when coupled with fuel cells. Fuel cells have higher efficiency than conventional battery/internal combustion engine combinations and do not produce nitrogen oxides during low-temperature operation. Contemporary hydrogen production is primarily based on fossil fuels and most specifically on natural gas. When hydrogen is produced using energy derived from fossil fuels, there is little or no environmental advantage. There is currently no large scale, cost-effective, environmentally attractive hydrogen production process available for commercialization, nor has such a process been identified. The objective of this work is to find an economically feasible process for the production of hydrogen, by nuclear means, using an advanced high-temperature nuclear reactor as the primary energy source. Hydrogen production by thermochemical water-splitting (Appendix A), a chemical process that accomplishes the decomposition of water into hydrogen and oxygen using only heat or, in the case of a hybrid thermochemical process, by a combination of heat and electrolysis, could meet these goals. Hydrogen produced from fossil

  15. Optical-Engine and Surrogate-Fuels Research for an Improved Understand...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Understanding of Fuel Effects on Advanced-Combustion Strategies Optical-Engine and Surrogate-Fuels Research for an Improved Understanding of Fuel Effects on Advanced-Combustion ...

  16. Industrial energy-efficiency-improvement program

    SciTech Connect

    Not Available

    1980-12-01

    Progress made by industry toward attaining the voluntary 1980 energy efficiency improvement targets is reported. The mandatory reporting population has been expanded from ten original industries to include ten additional non-targeted industries and all corporations using over one trillion Btu's annually in any manufacturing industry. The ten most energy intensive industries have been involved in the reporting program since the signing of the Energy Policy and Conservation Act and as industrial energy efficiency improvement overview, based primarily on information from these industries (chemicals and allied products; primary metal industry; petroleum and coal products; stone, clay, and glass products; paper and allied products; food and kindred products; fabricated metal products; transportation equipment; machinery, except electrical; and textile mill products), is presented. Reports from industries, now required to report, are included for rubber and miscellaneous plastics; electrical and electronic equipment; lumber and wood; and tobacco products. Additional data from voluntary submissions are included for American Gas Association; American Hotel and Motel Association; General Telephone and Electronics Corporation; and American Telephone and Telegraph Company. (MCW)

  17. EcoCAR 3: Collegiate Teams to Pump up Fuel Efficiency of Iconic...

    Energy Saver

    up Fuel Efficiency of Iconic American Muscle Car EcoCAR 3: Collegiate Teams to Pump up Fuel Efficiency of Iconic American Muscle Car May 7, 2014 - 5:03pm Addthis Energy Secretary ...

  18. SuperTruck … Development and Demonstration of a Fuel-Efficient...

    Energy Saver

    SuperTruck Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer SuperTruck Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer ...

  19. FUEL PERFORMANCE IMPROVEMENT PROGRAM Thermal Conductivity of Sphere-Pac Fuel

    SciTech Connect

    Ades, M. J.

    1981-07-01

    Progress in understanding the thermal conductivity of sphere-pac fuel beds has been made both at Oregon State University and Exxon Nuclear Company supported by the Fuel Performance Improvement Program (FPIP). FPIP is sponsored by the U. S. Department of Energy and is being performed by Consumers Power Company, Exxon Nuclear Company, and Pacific Northwest Laboratory. The purpose of the program is to test and demonstrate improved li9ht water reactor fuel concepts that are more resistant to failure from pellet-cladding interaction during power increases than standard pellet fuel.

  20. Improvement of Sweep Efficiency in Gasflooding

    SciTech Connect

    Kishore Mohanty

    2008-12-31

    Miscible and near-miscible gasflooding has proven to be one of the few cost effective enhance oil recovery techniques in the past twenty years. As the scope of gas flooding is being expanded to medium viscosity oils in shallow sands in Alaska and shallower reservoirs in the lower 48, there are questions about sweep efficiency in near-miscible regions. The goal of this research is to evaluate sweep efficiency of various gas flooding processes in a laboratory model and develop numerical tools to estimate their effectiveness in the field-scale. Quarter 5-spot experiments were conducted at reservoir pressure to evaluate the sweep efficiency of gas, WAG and foam floods. The quarter 5-spot model was used to model vapor extraction (VAPEX) experiments at the lab scale. A streamline-based compositional simulator and a commercial simulator (GEM) were used to model laboratory scale miscible floods and field-scale pattern floods. An equimolar mixture of NGL and lean gas is multicontact miscible with oil A at 1500 psi; ethane is a multicontact miscible solvent for oil B at pressures higher than 607 psi. WAG improves the microscopic displacement efficiency over continuous gas injection followed by waterflood in corefloods. WAG improves the oil recovery in the quarter 5-spot over the continuous gas injection followed by waterflood. As the WAG ratio increases from 1:2 to 2:1, the sweep efficiency in the 5-spot increases, from 39.6% to 65.9%. A decrease in the solvent amount lowers the oil recovery in WAG floods, but significantly higher amount of oil can be recovered with just 0.1 PV solvent injection over just waterflood. Use of a horizontal production well lowers the oil recovery over the vertical production well during WAG injection phase in this homogeneous 5-spot model. Estimated sweep efficiency decreases from 61.5% to 50.5%. In foam floods, as surfactant to gas slug size ratio increases from 1:10 to 1:1, oil recovery increases. In continuous gasflood VAPEX processes, as the

  1. Use of a Diesel Fuel Processor for Rapid and Efficient Regeneration...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Efficient Regeneration of Single Leg NOx Adsorber Systems Use of a Diesel Fuel Processor for Rapid and Efficient Regeneration of Single Leg NOx Adsorber Systems 2003 DEER ...

  2. The Road to Improved Heavy Duty Fuel Economy | Department of...

    Energy.gov [DOE] (indexed site)

    Heavy duty diesel engine fuel economy is improved by lowering the viscosity of engine lubricant, especially when engine speed is increased or load is decreased, as in long distance ...

  3. Matching National Laboratory Needs with Energy Efficient Fuel Cells

    Energy.gov [DOE]

    The Fuel Cell Technologies Office, Federal Energy Management Program, and U.S. Fuel Cell Council hosted a fuel cell meeting on September 20–21, 2007.

  4. Microbial fuel cell with improved anode

    DOEpatents

    Borole, Abhijeet P.

    2010-04-13

    The present invention relates to a method for preparing a microbial fuel cell, wherein the method includes: (i) inoculating an anodic liquid medium in contact with an anode of the microbial fuel cell with one or more types of microorganisms capable of functioning by an exoelectrogenic mechanism; (ii) establishing a biofilm of the microorganisms on and/or within the anode along with a substantial absence of planktonic forms of the microorganisms by substantial removal of the planktonic microorganisms during forced flow and recirculation conditions of the anodic liquid medium; and (iii) subjecting the microorganisms of the biofilm to a growth stage by incorporating one or more carbon-containing nutritive compounds in the anodic liquid medium during biofilm formation or after biofilm formation on the anode has been established.

  5. Research Shows Ventilated Auto Seats Improve Fuel Economy, Comfort - News

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Releases | NREL Research Shows Ventilated Auto Seats Improve Fuel Economy, Comfort March 2, 2006 Golden, Colo. - The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) has demonstrated that ventilated automotive seats not only can improve passenger comfort but also a vehicle's fuel economy. That's because ventilated seats keep drivers and passengers cooler, so they need less air conditioning to be comfortable. NREL's Vehicle Ancillary Loads Reduction team has been

  6. Improving Data Center Efficiency with Rack or Row Cooling Devices |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Improving Data Center Efficiency with Rack or Row Cooling Devices Improving Data Center Efficiency with Rack or Row Cooling Devices Brochure describes the results of "Chill-Off 2" comparative testing and improving data center efficiency with rack or row cooling devices. Download the Improving Data Center Efficiency with Rack or Row Cooling Devices brochure. (815.8 KB) More Documents & Publications Top ECMs for Labs and Data Centers Energy Efficiency

  7. Final Guidance on Improving the Process for Preparing Efficient...

    Office of Environmental Management (EM)

    Efficient and Timely Environmental Reviews Under the National Environmental Policy Act (CEQ, 2012) Final Guidance on Improving the Process for Preparing Efficient and ...

  8. Supertruck - Improving Transportation Efficiency through Integrated...

    Energy.gov [DOE] (indexed site)

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting ace058sisken2012o.pdf (1.87 MB) More Documents & ...

  9. Solid oxide fuel cell systems with hot zones having improved reactant distribution

    DOEpatents

    Poshusta, Joseph C; Booten, Charles W; Martin, Jerry L

    2013-12-24

    A Solid Oxide Fuel Cell (SOFC) system having a hot zone with a center cathode air feed tube for improved reactant distribution, a CPOX reactor attached at the anode feed end of the hot zone with a tail gas combustor at the opposing end for more uniform heat distribution, and a counter-flow heat exchanger for efficient heat retention.

  10. Solid oxide fuel cell systems with hot zones having improved reactant distribution

    DOEpatents

    Poshusta, Joseph C.; Booten, Charles W.; Martin, Jerry L.

    2012-11-06

    A Solid Oxide Fuel Cell (SOFC) system having a hot zone with a center cathode air feed tube for improved reactant distribution, a CPOX reactor attached at the anode feed end of the hot zone with a tail gas combustor at the opposing end for more uniform heat distribution, and a counter-flow heat exchanger for efficient heat retention.

  11. Erosion-Resistant Nanocoatings for Improved Energy Efficiency in Gas Turbine Engines

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Erosion-Resistant Nanocoatings for Improved Energy Efficiency in Gas Turbine Engines Nanocoatings Offer Low-Cost Method to Reduce Fuel Use and Increase Engine Lifetime Optimizing the operation of gas turbine engines used in the transportation and energy sectors will result in signifcant annual fuel costs savings and reductions in these systems' environ- mental impact. Applying erosion-resistant nanocoatings to compressor airfoils that can extend component life is one means of reaching this goal.

  12. SuperTruck … Development and Demonstration of a Fuel-Efficient Class 8

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Tractor & Trailer | Department of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation vss064_jadin_2011_o.pdf (1020.57 KB) More Documents & Publications SuperTruck … Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer Supertruck - Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer Supertruck - Development and Demonstration of a Fuel-Efficient Class 8 Tractor

  13. Supertruck - Development and Demonstration of a Fuel-Efficient Class 8

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Tractor & Trailer | Department of Energy Supertruck - Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer Supertruck - Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting ace059_jadin_2012_o.pdf (1.56 MB) More Documents & Publications Supertruck - Development and Demonstration of a Fuel-Efficient Class 8

  14. On-Bill Financing for Energy Efficiency Improvements: A Review...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Improvements: A Review of Current Program Challenges, Opportunities, and Best Practices On-Bill Financing for Energy Efficiency Improvements: A Review of Current Program ...

  15. MOLTEN CARBONATE FUEL CELL PRODUCT DESIGN IMPROVEMENT

    SciTech Connect

    Unknown

    2000-01-01

    The FCE PDI program is designed to advance the carbonate fuel cell technology from the current full-size field test to the commercial design. The specific objectives selected to attain the overall program goal are: Define power plant requirements and specifications; Establish the design for a multifuel, low-cost, modular, market-responsive power plant; Resolve power plant manufacturing issues and define the design for the commercial-scale manufacturing facility; Define the stack and balance-of-plant (BOP) equipment packaging arrangement, and module designs; Acquire capability to support developmental testing of stacks and critical BOP equipment to prepare for commercial design; and Resolve stack and BOP equipment technology issues, and design, build and field test a modular prototype power plant to demonstrate readiness for commercial entry.

  16. Efficiency improvement of thermal coal power plants

    SciTech Connect

    Hourfar, D.

    1996-12-31

    The discussion concerning an increase of the natural greenhouse effect by anthropogenic changes in the composition of the atmosphere has increased over the past years. The greenhouse effect has become an issue of worldwide debate. Carbon dioxide is the most serious emission of the greenhouse gases. Fossil-fired power plants have in the recent past been responsible for almost 30 % of the total CO{sub 2} emissions in Germany. Against this background the paper will describe the present development of CO{sub 2} emissions from power stations and present actual and future opportunities for CO{sub 2} reduction. The significance attached to hard coal as one of today`s prime sources of energy with the largest reserves worldwide, and, consequently, its importance for use in power generation, is certain to increase in the years to come. The further development of conventional power plant technology, therefore, is vital, and must be carried out on the basis of proven operational experience. The main incentive behind the development work completed so far has been, and continues to be, the achievement of cost reductions and environmental benefits in the generation of electricity by increasing plant efficiency, and this means that, in both the short and the long term, power plants with improved conventional technology will be used for environmentally acceptable coal-fired power generation.

  17. Reducing Cost Barriers to Energy Efficiency Improvements (201)

    Energy.gov [DOE]

    Better Buildings Residential Network Peer Exchange Call Series: On Bill Financing: Reducing Cost Barriers to Energy Efficiency Improvements (201)

  18. Federal Fuel Cell Tax Incentives: An Investment in Clean and Efficient

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Technologies | Department of Energy Fuel Cell Tax Incentives: An Investment in Clean and Efficient Technologies Federal Fuel Cell Tax Incentives: An Investment in Clean and Efficient Technologies A brief created by the US Fuel Cell Council that covers federal fuel cell tax incentives 200810_itc.pdf (126.3 KB) More Documents & Publications Fuel Cell Financing for Tax-Exempt Entities Fuel Cell Tax Incentives: How Monetization Lowers the Government Outlay ITC Role in U.S. Fuel Cell Projects

  19. Implications of Low Particulate Matter Emissions on System Fuel Efficiency for High Efficiency Clean Combustion

    SciTech Connect

    Parks, II, James E; Prikhodko, Vitaly Y

    2009-01-01

    Advanced diesel combustion regimes such as High Efficiency Clean Combustion (HECC) offer the benefits of reduced engine out NOX and particulate matter (PM) emissions. Lower PM emissions during advanced combustion reduce the demand on diesel particulate filters (DPFs) and can, thereby, reduce the fuel penalty associated with DPF regeneration. In this study, a SiC DPF was loaded and regenerated on a 1.7-liter 4-cylinder diesel engine operated in conventional and advanced combustion modes at different speed and load conditions. A diesel oxidation catalyst (DOC) and a lean NOX trap (LNT) were also installed in the exhaust stream. Five steady-state speed and load conditions were weighted to estimate Federal Test Procedure (FTP) fuel efficiency. The DPF was loaded using lean-rich cycling with frequencies that resulted in similar levels of NOX emissions downstream of the LNT. The pressure drop across the DPF was measured at a standard point (1500 rpm, 5.0 bar) before and after loading, and a P rise rate was determined for comparison between conventional and advanced combustion modes. Higher PM emissions in conventional combustion resulted in a higher rate of backpressure rise across the DPF at all of the load points leading to more frequent DPF regenerations and higher fuel penalty. The fuel penalty during conventional combustion was 4.2% compared with 3.1% for a mixture of conventional and advanced modes.

  20. Krakow clean fossil fuels and energy efficiency project

    SciTech Connect

    Butcher, T.A.; Pierce, B.L.

    1995-11-01

    The Support for Eastern European Democracy (SEED) Act of 1989 directed the U.S. Department of Energy (DOE) to undertake an equipment assessment project aimed at developing the capability within Poland to manufacture or modify industrial-scale combustion equipment to utilize fossil fuels cleanly. This project is being implemented in the city of Krakow as the `Krakow Clean Fossil Fuels and Energy Efficiency Project.` Funding is provided through the U.S. Agency for International Development (AID). The project is being conducted in a manner that can be generalized to all of Poland and to the rest of Eastern Europe. The historic city of Krakow has a population of 750,000. Almost half of the heating energy used in Krakow is supplied by low-efficiency boilerhouses and home coal stoves. Within the town, there are more than 1,300 local boilerhouses and 100,000 home stoves. These are collectively referred to as the `low emission sources` and they are the primary sources of particulates and hydrocarbon emissions in the city and major contributors of sulfur dioxide and carbon monoxide.

  1. Secretary Chu Announces $187 Million to Improve Vehicle Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... Ford Motor Company - 15,000,000 - Dearborn, Michigan - Achieve a 25 percent fuel economy improvement with a gasoline engine in a 2010 mid- to large-size sedan using technologies ...

  2. Developing Low-Cost, Highly Efficient Heat Recovery for Fuel...

    Energy.gov [DOE] (indexed site)

    Illustration courtesy of FuelCell Energy, Inc. Project Description The goal of this ... It is now be- ing incorporated into FuelCell Energy's commercial Direct FuelCell ...

  3. Ames Lab 101: Improving Solar Cell Efficiency

    ScienceCinema

    Biswas, Rana

    2016-07-12

    Rana Biswas, a scientist with the Ames Laboratory, discusses his team's research in creating more efficient solar cells and working with Iowa Thin Film to produce these cells.

  4. DPF-"Hydrated EGR" Fuel Saver System

    Office of Energy Efficiency and Renewable Energy (EERE)

    GreenPower muffler uses hydrated exhaust gas recirculation to reduce NOx and improve fuel efficiency

  5. Energy Department Announces Advanced Fuel-Efficient Vehicle Technologi...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    One specific topic is focused on the development of alternative fuel vehicle (AFV) workplace safety programs. Gaseous alternative fuels have unique and unusual safety aspects that ...

  6. Funding for Energy Efficiency Programs for Unregulated Fuels

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... For many northern states, however, important heating fuels (fuel oil, propane, kerosene, etc.) are not generally regulated. Programs designed to reduce consumption of such fossil ...

  7. Air Force Achieves Fuel Efficiency through Industry Best Practices...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    highest potential to save aviation fuel. All MAF personnel are encouraged to propose fuel savings ideas. These ideas are then processed as initiatives, assigned a primary point of ...

  8. Basic Research Needs for Clean and Efficient Combustion of 21st Century Transportation Fuels

    SciTech Connect

    McIlroy, A.; McRae, G.; Sick, V.; Siebers, D. L.; Westbrook, C. K.; Smith, P. J.; Taatjes, C.; Trouve, A.; Wagner, A. F.; Rohlfing, E.; Manley, D.; Tully, F.; Hilderbrandt, R.; Green, W.; Marceau, D.; O'Neal, J.; Lyday, M.; Cebulski, F.; Garcia, T. R.; Strong, D.

    2006-11-01

    To identify basic research needs and opportunities underlying utilization of evolving transportation fuels, with a focus on new or emerging science challenges that have the potential for significant long-term impact on fuel efficiency and emissions.

  9. Hydrogen Learning Demonstration Project: Fuel Cell Efficiency and Initial Durability (Presentation)

    SciTech Connect

    Wipke, K.; Welch, C.; Thomas, H.; Sprik, S.; Gronich, S.; Garbak, J.

    2006-11-15

    This presentation by NREL's Keith Wipke at the 2006 Fuel Cell Seminar provides information about the Hydrogen Learning Demonstration Project, with a focus on fuel cell efficiency and durability.

  10. Improving Efficiency of Tube Drawing Bench | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Efficiency of Tube Drawing Bench Improving Efficiency of Tube Drawing Bench Greenville Tube Company, a manufacturer of high-precision, small-diameter stainless steel tubing, conducted an in-house system performance optimization project to improve the efficiency of its No. 6 tube drawing bench. This four-page case study summarizes their experience. Improving Efficiency of Tube Drawing Bench (February 1997) (147.96 KB) More Documents & Publications Impacts of IPv6 on Infrastructure Control

  11. Improving Energy Efficiency and Creating Jobs Through Weatherization |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Improving Energy Efficiency and Creating Jobs Through Weatherization Improving Energy Efficiency and Creating Jobs Through Weatherization December 9, 2013 - 9:37am Addthis Improving Energy Efficiency and Creating Jobs Through Weatherization David Danielson Former Assistant Secretary for the Office of Energy Efficiency and Renewable Energy KEY FACTS Since 2009, more than 1.1 million homes throughout the country have been weatherized More than 15,000 additional workers

  12. Research Leads to Improved Fuel Yields from Smaller Antenna Algae |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Research Leads to Improved Fuel Yields from Smaller Antenna Algae Research Leads to Improved Fuel Yields from Smaller Antenna Algae May 13, 2014 - 12:06pm Addthis Tasios Melis (center) shows plates with tla3 algae and its parent strain to Katie Randolph (left) and Sunita Satyapal during a site visit to his lab at the University of California, Berkeley. Tasios Melis (center) shows plates with tla3 algae and its parent strain to Katie Randolph (left) and Sunita Satyapal

  13. Development of a New Generation, High Efficiency PEM Fuel Cell Based, CHP

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    System | Department of Energy a New Generation, High Efficiency PEM Fuel Cell Based, CHP System Development of a New Generation, High Efficiency PEM Fuel Cell Based, CHP System Part of a $100 million fuel cell award announced by DOE Secretary Bodman on Oct. 25, 2006. 7_intelligent.pdf (22.28 KB) More Documents & Publications 2012 Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program 2011 Pathways to Commercial Success: Technologies and

  14. Comparison of emissions and efficiency of a turbocharged lean-burn natural gas and Hythane-fueled engine

    SciTech Connect

    Larsen, J.F.; Wallace, J.S.

    1997-01-01

    An experiment was conducted to evaluate the potential for reduced exhaust emissions and improved efficiency, by way of lean-burn engine fueling with hydrogen supplemented natural gas (Hythane). The emissions and efficiency of the Hythane fuel (15% hydrogen, 85% natural gas by volume), were compared to the emissions and efficiency of pure natural gas using a turbocharged, spark ignition, 3.1 L, V-6 engine. The feasibility of heavy duty engine fueling with Hythane was assessed through testing conducted at engine speed and load combinations typical of heavy-duty engine operation. Comparison of the efficiency and emissions at MBT spark timing revealed that Hythane fueling of the test engine resulted in consistently lower brake specific energy consumption and emissions of total hydrocarbons (THC), carbon monoxide (CO), and carbon dioxide (CO{sub 2}), at a given equivalence ratio. There was no clear trend with respect to MBT oxides of nitrogen (NO{sub x}) emissions. It was also discovered that an improved NO{sub x}-THC tradeoff resulted when Hythane was used to fuel the test engine. Consequently, Hythane engine operating parameters can be adjusted to achieve a concurrent reduction in NO{sub x} and THC emissions relative to natural gas fueling.

  15. Innovative Approaches to Improving Engine Efficiency

    Energy.gov [DOE]

    Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  16. 54.5 MPG and Beyond: Fueling Energy-Efficient Vehicles | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Fueling Energy-Efficient Vehicles 54.5 MPG and Beyond: Fueling Energy-Efficient Vehicles November 27, 2012 - 11:08am Addthis This infographic looks how new fuel economy standards will save Americans money at the pump, reduce our dependence on foreign oil and grow the U.S. economy. <a href="/articles/road-fuel-efficiency">Click here</a> to view the full infographic. | Infographic by Sarah Gerrity. This infographic looks how new fuel economy standards will save

  17. Class 8 Truck Freight Efficiency Improvement Project

    Energy.gov [DOE] (indexed site)

    Derek Rotz (PI & Presenter) Dr. Maik Ziegler Daimler Truck ... controls integration (aux, hybrid, powertrain, waste heat, ... 20% improvement through a heavy-duty diesel engine capable ...

  18. IMHEX fuel cell repeat component manufacturing continuous improvement accomplishments

    SciTech Connect

    Jakaitis, L.A.; Petraglia, V.J.; Bryson, E.S.

    1996-12-31

    M-C Power is taking a power generation technology that has been proven in the laboratory and is making it a commercially competitive product. There are many areas in which this technology required scale up and refinement to reach the market entry goals for the IMHEX{reg_sign} molten carbonate fuel cell power plant. One of the primary areas that needed to be addressed was the manufacturing of the fuel cell stack. Up to this point, the fuel cell stack and associated components were virtually hand made for each system to be tested. M-C Power has now continuously manufactured the repeat components for three 250 kW stacks. M-C Power`s manufacturing strategy integrated both evolutionary and revolutionary improvements into its comprehensive commercialization effort. M-C Power`s objectives were to analyze and continuously improve stack component manufacturing and assembly techniques consistent with established specifications and commercial scale production requirements. Evolutionary improvements are those which naturally occur as the production rates are increased and experience is gained. Examples of evolutionary (learning curve) improvements included reducing scrap rates and decreasing raw material costs by buying in large quantities. Revolutionary improvements result in significant design and process changes to meet cost and performance requirements of the market entry system. Revolutionary changes often involve identifying new methods and developing designs to accommodate the new process. Based upon our accomplishments, M-C Power was able to reduce the cost of continuously manufactured fuel cell repeat components from the first to third 250 kW stack by 63%. This paper documents the continuous improvement accomplishments realized by M-C Power during IMHEX{reg_sign} fuel cell repeat component manufacturing.

  19. An Analysis of the Impact of Selected Fuel Thermochemical Properties on Internal Combustion Engine Efficiency

    SciTech Connect

    Szybist, James P; Chakravathy, Kalyana; Daw, C Stuart

    2012-01-01

    In this study we model the effects of 23 different fuels on First and Second Law thermodynamic efficiency of an adiabatic internal combustion engine. First Law efficiency is calculated using lower heating value (LHV) while Second Law efficiency is calculated with exergy, which represents the inherent chemical energy available to produce propulsion. We find that First Law efficiency can deviate by as much as nine percentage points between fuels while Second Law efficiency exhibits a much smaller degree of variability. We also find that First and Second Law efficiency can be nearly the same for some fuels (methane and ethane) but differ substantially for other fuels (hydrogen and ethanol). The differences in First and Second Law efficiency are due to differences in LHV and exergy for a given fuel. In order to explain First Law efficiency differences between fuels as well as the differences between LHV and exergy, we introduce a new term: the molar expansion ratio (MER), defined as the ratio of product moles to reactant moles for complete stoichiometric combustion. We find that the MER is a useful expression for providing a physical explanation for fuel-specific efficiency differences as well as differences between First and Second Law efficiency. First and Second Law efficiency are affected by a number of other fuel-specific thermochemical properties, such as the ratio of specific heat and dissociation of combustion products.

  20. SuperTruck … Development and Demonstration of a Fuel-Efficient...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    More Documents & Publications SuperTruck Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer SuperTruck Development and Demonstration of a ...

  1. Development and Demonstration of a Fuel-Efficient Class 8 Highway...

    Energy Saver

    More Documents & Publications Vehicle Technologies Office Merit Review 2015: Volvo SuperTruck Development and Demonstration of a Fuel-Efficient Class 8 Highway Vehicle Vehicle ...

  2. SuperTruck … Development and Demonstration of a Fuel-Efficient...

    Energy.gov [DOE] (indexed site)

    More Documents & Publications SuperTruck Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer Supertruck - Development and Demonstration of a ...

  3. Vehicle Technologies Office: Report on Adoption of New Fuel-Efficient...

    Energy Saver

    are already making market inroads, particularly in the areas of aerodynamics and enginedrivetrain integration. ... Phase 1 greenhouse gas and fuel efficiency ...

  4. Vehicle Technologies Office: Fact sheet on Adoption of New Fuel-Efficient

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Technologies from SuperTruck | Department of Energy Office: Fact sheet on Adoption of New Fuel-Efficient Technologies from SuperTruck Vehicle Technologies Office: Fact sheet on Adoption of New Fuel-Efficient Technologies from SuperTruck The Vehicle Technologies Office has released "Adoption of New Fuel-Efficient Technologies from SuperTruck," a report on the industry's adoption rates of new fuel efficient technologies from the SuperTruck program into its manufacturing lines. This

  5. Vehicle Technologies Office: Report on Adoption of New Fuel-Efficient

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Technologies from SuperTruck | Department of Energy Report on Adoption of New Fuel-Efficient Technologies from SuperTruck Vehicle Technologies Office: Report on Adoption of New Fuel-Efficient Technologies from SuperTruck The Vehicle Technologies Office has released "Adoption of New Fuel-Efficient Technologies from SuperTruck," a report on the industry's adoption rates of new fuel efficient technologies from the SuperTruck program into its manufacturing lines. For a summary of the

  6. Could TEG Improve Your Car's Efficiency?

    Energy.gov [DOE]

    Did you know that more than half of the gas we buy -- and the money we spend on it -- is wasted? Even the most efficient drivers are at the mercy of their vehicles' internal combustion engines, which lose an average of 60 percent of their energy as heat from the tailpipe and radiator.

  7. Improved Membrane Materials for PEM Fuel Cell Application

    SciTech Connect

    Kenneth A. Mauritz; Robert B. Moore

    2008-06-30

    The overall goal of this project is to collect and integrate critical structure/property information in order to develop methods that lead to significant improvements in the durability and performance of polymer electrolyte membrane fuel cell (PEMFC) materials. This project is focused on the fundamental improvement of PEMFC membrane materials with respect to chemical, mechanical and morphological durability as well as the development of new inorganically-modified membranes.

  8. Local Option- Energy-Efficiency Improvement Loans

    Energy.gov [DOE]

    Property-Assessed Clean Energy (PACE) financing effectively allows property owners to borrow money to pay for energy improvements. The amount borrowed is typically repaid via a special assessment...

  9. Class 8 Truck Freight Efficiency Improvement Project

    Energy.gov [DOE] (indexed site)

    least 20% improvement through a heavy-duty diesel engine capable of ... Tractor Trailer 16.5% 2.4% (incl. hybrid) NEXT STEP: build the truck Approach Daimler Trucks and Buses ...

  10. Improving Energy Efficiency and Creating Jobs Through Weatherization |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Improving Energy Efficiency and Creating Jobs Through Weatherization Improving Energy Efficiency and Creating Jobs Through Weatherization December 9, 2013 - 12:00am Addthis Since 2009, when the Energy Department seized a major opportunity to invest $5 billion through our Weatherization Assistance Program (WAP) to stimulate job growth and help families affected by the economic recession, we have improved the energy efficiency, comfort and health of more than 1.1 million

  11. DOE Adopts Rules to Improve Energy Efficiency Enforcement | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Adopts Rules to Improve Energy Efficiency Enforcement DOE Adopts Rules to Improve Energy Efficiency Enforcement February 7, 2011 - 5:50pm Addthis Today, the Department of Energy adopted final rules to improve the enforcement of DOE's efficiency requirements for appliances, lighting and other products. Overhauling the certification and enforcement process, the new rules are designed to encourage compliance and prevent manufacturers who break the law from gaining a competitive advantage

  12. Case Study: Opportunities to Improve Energy Efficiency in Three Federal

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Data Centers | Department of Energy Opportunities to Improve Energy Efficiency in Three Federal Data Centers Case Study: Opportunities to Improve Energy Efficiency in Three Federal Data Centers Study details three data centers Lawrence Berkley National Laboratory evaluated for potential energy-efficiency improvements. These three data centers represent a broad cross section of the Federal data center space. Download the case study. (1.32 MB) More Documents & Publications Energy

  13. Energy Department Invests $19 Million to Improve Efficiency of Nation's

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Buildings | Department of Energy Invests $19 Million to Improve Efficiency of Nation's Buildings Energy Department Invests $19 Million to Improve Efficiency of Nation's Buildings July 15, 2016 - 1:06pm Addthis News Media Contact 202-586-4940 DOENews@hq.doe.gov WASHINGTON - The Energy Department announced today it is investing $19 million to improve the efficiency of our nation's homes, offices, schools, hospitals, restaurants and stores. These projects will develop advanced building

  14. Super Truck-- 50% Improvement In Class 8 Freight Efficiency

    Energy.gov [DOE]

    Presents first year highlights from Detroit Diesel Corporation and Daimler Trucks, NA joint SuperTruck engine and vehicle project to demonstrate a 50 percent freight efficiency improvement

  15. DOE Requests Information to Improve Energy Efficiency Enforcement Process

    Energy.gov [DOE]

    Today, the Department of Energy issued a request for information to help it improve its energy efficiency certification and enforcement regulations. In its new Request for Information Regarding...

  16. New Compressor Concept Improves Efficiency and Operation Range

    Energy.gov [DOE]

    Advanced turbocharger compressor design with active casing treatment and advanced mixed flow turbine design provided improved performance and efficiency over the base turbocharger

  17. MARBIDCO Rural Business Energy Efficiency Improvement Loan Fund

    Energy.gov [DOE]

    Maryland Agricultural & Resource-Based Industry Development Corporation (MARBIDCO) offers low interest loan to help improve energy efficiency of agricultural operations and other resource based...

  18. SuperTruck Team Achieves 115% Freight Efficiency Improvement...

    Energy.gov [DOE] (indexed site)

    While the original SuperTruck goal was to improve freight efficiency by 50 percent compared to a baseline vehicle, Daimler Trucks North America (DTNA) announced that their ...

  19. New Compressor Concept Improves Efficiency and Operation Range...

    Energy.gov [DOE] (indexed site)

    design provided improved performance and efficiency over the base turbocharger deer12sun.pdf (1.15 MB) More Documents & Publications Advanced Boost System Development for Diesel ...

  20. Opportunities for Energy Efficiency Improvements in the U.S....

    Energy.gov [DOE] (indexed site)

    This report describes sources of energy loss in the transmission and distribution of electricity, and ... Strategies to improve energy efficiency on the grid include upgrades in ...

  1. Volvo SuperTruck - Powertrain Technologies for Efficiency Improvement...

    Energy.gov [DOE] (indexed site)

    More Documents & Publications Volvo SuperTruck - Powertrain Technologies for Efficiency Improvement Vehicle Technologies Office Merit Review 2015: Volvo SuperTruck - Powertrain ...

  2. Efficiency Improvement in an Over the Road Diesel Powered Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Thermoelectric Systems Implemented in a Hybrid Configuration Efficiency Improvement in an Over the Road Diesel Powered Engine System by the Application of Advanced Thermoelectric ...

  3. Improving Energy Efficiency by Developing Components for Distributed...

    Energy.gov [DOE] (indexed site)

    ...Heating with Thermoelectric Devices Improving Energy Efficiency by Developing Components for Distributed Cooling and Heating Based on Thermal Comfort Modeling Thermoelectric ...

  4. Improving Energy Efficiency by Developing Components for Distributed...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    on Thermal Comfort Modeling Improving Energy Efficiency by Developing Components for Distributed Cooling and Heating Based on Thermal Comfort Modeling Thermoelectric (TE) HVAC

  5. Improving Energy Efficiency by Developing Components for Distributed...

    Energy.gov [DOE] (indexed site)

    Components for Distributed Cooling and Heating Based on Thermal Comfort Modeling Thermoelectric (TE) HVAC Improving Energy Efficiency by Developing Components for Distributed ...

  6. Improving Energy Efficiency by Developing Components for Distributed...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Improving Energy Efficiency by Developing Components for Distributed Cooling and Heating Based on Thermal Comfort Modeling 2009 DOE Hydrogen Program and Vehicle Technologies ...

  7. Thermal Efficiency Improvement While Meeting Emissions of 2007...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Thermal Efficiency Improvement While Meeting Emissions of 2007, 2010 and Beyond 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters PDF icon...

  8. Waste Heat Reduction and Recovery for Improving Furnace Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Waste Heat Reduction and Recovery for Improving Furnace Efficiency, Productivity and Emissions Performance: A BestPractices Process Heating Technical Brief Waste Heat Reduction and ...

  9. A Materials Approach to Fuel-Efficient Tires

    Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  10. Method of improving fuel cell performance by removing at least one metal oxide contaminant from a fuel cell electrode

    DOEpatents

    Kim, Yu Seung; Choi, Jong-Ho; Zelenay, Piotr

    2009-08-18

    A method of removing contaminants from a fuel cell catalyst electrode. The method includes providing a getter electrode and a fuel cell catalyst electrode having at least one contaminant to a bath and applying a voltage sufficient to drive the contaminant from the fuel cell catalyst electrode to the getter electrode. Methods of removing contaminants from a membrane electrode assembly of a fuel cell and of improving performance of a fuel cell are also provided.

  11. Cheyenne Light, Fuel and Power (Gas)- Residential Energy Efficiency Rebate Program

    Energy.gov [DOE]

    Cheyenne Light, Fuel and Power offers incentives to gas customers who construct new energy efficient homes or install energy efficient equipment in existing homes. Incentives are available for:

  12. Rail versus truck fuel efficiency: The relative fuel efficiency of truck-competitive rail freight and truck operations compared in a range of corridors. Final report

    SciTech Connect

    Not Available

    1991-04-01

    The report summarizes the findings of a study to evaluate the fuel efficiency of rail freight operations relative to competing truckload service. The objective of the study was to identify the circumstances in which rail freight service offers a fuel efficiency advantage over alternative truckload options, and to estimate the fuel savings associated with using rail service. The findings are based on computer simulations of rail and truck freight movements between the same origins and destinations. The simulation input assumptions and data are based on actual rail and truck operations. Input data was provided by U.S. regional and Class I railroads and by large truck fleet operators.

  13. A MultiAir / MultiFuel Approach to Enhancing Engine System Efficiency |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy A MultiAir / MultiFuel Approach to Enhancing Engine System Efficiency A MultiAir / MultiFuel Approach to Enhancing Engine System Efficiency 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting ace062_reese_2012_o.pdf (2.44 MB) More Documents & Publications Vehicle Technologies Office 2013 Merit Review: A MultiAir / MultiFuel Approach to Enhancing Engine System Efficiency Vehicle Technologies Office

  14. SuperTruck … Development and Demonstration of a Fuel-Efficient Class 8

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Tractor & Trailer | Department of Energy SuperTruck … Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer SuperTruck … Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting vss064_jadin_2012_o.pdf (2.16 MB) More Documents & Publications SuperTruck … Development and Demonstration of a Fuel-Efficient Class 8

  15. Berkeley Lab Sheds Light on Improving Solar Cell Efficiency

    SciTech Connect

    Lawrence Berkeley National Laboratory

    2007-07-20

    Typical manufacturing methods produce solar cells with an efficiency of 12-15%; and 14% efficiency is the bare minimum for achieving a profit. In work performed at the Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley, CA, 5 10-486-577 1)--a US Department of Energy national laboratory that conducts unclassified scientific research and is managed by the University of California--scientist Scott McHugo has obtained keen insights into the impaired performance of solar cells manufactured from polycrystalline silicon. The solar cell market is potentially vast, according to Berkeley Lab. Lightweight solar panels are highly beneficial for providing electrical power to remote locations in developing nations, since there is no need to build transmission lines or truck-in generator fuel. Moreover, industrial nations confronted with diminishing resources have active programs aimed at producing improved, less expensive solar cells. 'In a solar cell, there is a junction between p-type silicon and an n-type layer, such as diffused-in phosphorous', explained McHugo, who is now with Berkeley Lab's Accelerator and Fusion Research Division. 'When sunlight is absorbed, it frees electrons, which start migrating in a random-walk fashion toward that junction. If the electrons make it to the junction; they contribute to the cell's output of electric current. Often, however, before they reach the junction, they recombine at specific sites in the crystal' (and, therefore, cannot contribute to current output). McHugo scrutinized a map of a silicon wafer in which sites of high recombination appeared as dark regions. Previously, researchers had shown that such phenomena occurred not primarily at grain boundaries in the polycrystalline material, as might be expected, but more often at dislocations in the crystal. However, the dislocations themselves were not the problem. Using a unique heat treatment technique, McHugo performed electrical measurements to investigate the material

  16. DOE Science Showcase - Fuel Cells Research | OSTI, US Dept of...

    Office of Scientific and Technical Information (OSTI)

    Fuels Used in the Cell Fuel Cell Improvements Environmental Effects Market Needs More Reading - What Exactly Is a Fuel Cell? DOE Office of Energy Efficiency and Renewable Energy ...

  17. CEQ Releases Two Handbooks on Improving Efficiency of Federal Environmental

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Reviews | Department of Energy Releases Two Handbooks on Improving Efficiency of Federal Environmental Reviews CEQ Releases Two Handbooks on Improving Efficiency of Federal Environmental Reviews March 5, 2013 - 4:43pm Addthis The Council on Environmental Quality (CEQ) today released two new handbooks that encourage more efficient environmental reviews under the National Environmental Policy Act (NEPA). The first handbook, created by CEQ and the Advisory Council on Historic Preservation

  18. CNG in OKC: Improving Efficiency at the Pump and on the Road | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy CNG in OKC: Improving Efficiency at the Pump and on the Road CNG in OKC: Improving Efficiency at the Pump and on the Road March 8, 2012 - 4:02pm Addthis Andy Mitchell, Public Works Project Manager for the City of Oklahoma City, refills a vehicle at the new fast-fill CNG fueling station located at the city's main maintenance facility. | Courtesy of the City of Oklahoma City. Andy Mitchell, Public Works Project Manager for the City of Oklahoma City, refills a vehicle at the new

  19. Cummins Improving Pick-Up Truck Engine Efficiency with DOE and...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    year, the company continues to pursue new ways to improve diesel engines' fuel economy. ... The new engine demonstrated a 53 percent increase in fuel economy, while maintaining ...

  20. Road to Fuel Savings: GM Technology Ramps Up Engine Efficiency

    Energy.gov [DOE]

    Learn how a new compact technology in the 2014 Chevy Impala is having a big impact on the vehicle's fuel consumption.

  1. Lean Gasoline System Development for Fuel Efficient Small Car...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon ace063smith2013o.pdf More Documents & Publications Lean Gasoline System Development for Fuel ...

  2. Boiler efficiency calculation for multiple fuel burning boilers

    SciTech Connect

    Khodabakhsh, F.; Munukutla, S.; Clary, A.T.

    1996-12-31

    A rigorous method based on the output/loss approach is developed for calculating the coal flow rate for multiple fuel burning boilers. It is assumed that the ultimate analyses of all the fuels are known. In addition, it is assumed that the flow rates of all the fuels with the exception of coal are known. The calculations are performed iteratively, with the first iteration taking into consideration coal as the only fuel. The results converge to the correct answer after a few number of iterations, typically four or five.

  3. Report: Efficiency, Alternative Fuels to Impact Market Through...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    analyzes projections made by the U.S. Energy Information Administration in its Annual Energy Outlook 2014. Liquid fuelsgasoline, diesel fuel, and E85, which can...

  4. Future Engine Fluids Technologies: Durable, Fuel-Efficient, and...

    Energy Saver

    Market Introducution in Europe Characteristics and Effects of Lubricant Additive Chemistry and Exhaust Conditions on Diesel Particulate Filter Service Life and Vehicle Fuel ...

  5. Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE)

    Besides their energy security and environmental benefits, many alternative fuels such as biodiesel, ethanol, and natural gas have unique chemical properties that offer advantages to drivers. These...

  6. Drive cycle simulation of high efficiency combustions on fuel economy and exhaust properties in light-duty vehicles

    DOE PAGES [OSTI]

    Gao, Zhiming; Curran, Scott J.; Parks, James E.; Smith, David E.; Wagner, Robert M.; Daw, C. Stuart; Edwards, K. Dean; Thomas, John F.

    2015-04-06

    We present fuel economy and engine-out emissions for light-duty (LD) conventional and hybrid vehicles powered by conventional and high-efficiency combustion engines. Engine technologies include port fuel-injected (PFI), direct gasoline injection (GDI), reactivity controlled compression ignition (RCCI) and conventional diesel combustion (CDC). In the case of RCCI, the engine utilized CDC combustion at speed/load points not feasible with RCCI. The results, without emissions considered, show that the best fuel economies can be achieved with CDC/RCCI, with CDC/RCCI, CDC-only, and lean GDI all surpassing PFI fuel economy significantly. In all cases, hybridization significantly improved fuel economy. The engine-out hydrocarbon (HC), carbon monoxidemore » (CO), nitrogen oxides (NOx), and particulate matter (PM) emissions varied remarkably with combustion mode. The simulated engine-out CO and HC emissions from RCCI are significantly higher than CDC, but RCCI makes less NOx and PM emissions. Hybridization can improve lean GDI and RCCI cases by increasing time percentage for these more fuel efficient modes. Moreover, hybridization can dramatically decreases the lean GDI and RCCI engine out emissions. Importantly, lean GDI and RCCI combustion modes decrease exhaust temperatures, especially for RCCI, which limits aftertreatment performance to control tailpipe emissions. Overall, the combination of engine and hybrid drivetrain selected greatly affects the emissions challenges required to meet emission regulations.« less

  7. Drive cycle simulation of high efficiency combustions on fuel economy and exhaust properties in light-duty vehicles

    SciTech Connect

    Gao, Zhiming; Curran, Scott J.; Parks, James E.; Smith, David E.; Wagner, Robert M.; Daw, C. Stuart; Edwards, K. Dean; Thomas, John F.

    2015-04-06

    We present fuel economy and engine-out emissions for light-duty (LD) conventional and hybrid vehicles powered by conventional and high-efficiency combustion engines. Engine technologies include port fuel-injected (PFI), direct gasoline injection (GDI), reactivity controlled compression ignition (RCCI) and conventional diesel combustion (CDC). In the case of RCCI, the engine utilized CDC combustion at speed/load points not feasible with RCCI. The results, without emissions considered, show that the best fuel economies can be achieved with CDC/RCCI, with CDC/RCCI, CDC-only, and lean GDI all surpassing PFI fuel economy significantly. In all cases, hybridization significantly improved fuel economy. The engine-out hydrocarbon (HC), carbon monoxide (CO), nitrogen oxides (NOx), and particulate matter (PM) emissions varied remarkably with combustion mode. The simulated engine-out CO and HC emissions from RCCI are significantly higher than CDC, but RCCI makes less NOx and PM emissions. Hybridization can improve lean GDI and RCCI cases by increasing time percentage for these more fuel efficient modes. Moreover, hybridization can dramatically decreases the lean GDI and RCCI engine out emissions. Importantly, lean GDI and RCCI combustion modes decrease exhaust temperatures, especially for RCCI, which limits aftertreatment performance to control tailpipe emissions. Overall, the combination of engine and hybrid drivetrain selected greatly affects the emissions challenges required to meet emission regulations.

  8. Truck Essential Power Systems Efficiency Improvements for Medium-Duty Trucks

    SciTech Connect

    Larry Slone; Jeffery Birkel

    2007-12-31

    With a variety of hybrid vehicles available in the passenger car market, electric technologies and components of that scale are becoming readily available. Commercial vehicle segments have lagged behind passenger car markets, leaving opportunities for component and system development. Escalating fuel prices impact all markets and provide motivation for OEMs, suppliers, customers, and end-users to seek new techniques and technologies to deliver reduced fuel consumption. The research presented here specifically targets the medium-duty (MD), Class 4-7, truck market with technologies aimed at reducing fuel consumption. These technologies could facilitate not only idle, but also parasitic load reductions. The development efforts here build upon the success of the More Electric Truck (MET) demonstration program at Caterpillar Inc. Employing a variety of electric accessories, the MET demonstrated the improvement seen with such technologies on a Class 8 truck. The Truck Essential Power Systems Efficiency Improvements for Medium-Duty Trucks (TEPS) team scaled the concepts and successes of MET to a MD chassis. The team designed an integrated starter/generator (ISG) package and energy storage system (ESS), explored ways to replace belt and gear-driven accessory systems, and developed supervisory control algorithms to direct the usage of the generated electricity and system behavior on the vehicle. All of these systems needed to fit within the footprint of a MD vehicle and be compatible with the existing conventional systems to the largest extent possible. The overall goal of this effort was to demonstrate a reduction in fuel consumption across the drive cycle, including during idle periods, through truck electrification. Furthermore, the team sought to evaluate the benefits of charging the energy storage system during vehicle braking. The vehicle features an array of electric accessories facilitating on-demand, variable actuation. Removal of these accessories from the belt or

  9. #AskEnergySaver: Answering Your Fuel Efficiency Questions | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Answering Your Fuel Efficiency Questions #AskEnergySaver: Answering Your Fuel Efficiency Questions May 11, 2015 - 2:52pm Q&A Have questions about vehicle efficiency? Submit them here and our expert will answer them next week! Ask Us Now Addthis Now's your chance to ask Energy Department experts your questions about saving energy. This month, we're answering your questions about vehicle fuel efficiency. | Photo courtesy of ©iStockphoto.com/eyecrave Now's your chance to ask

  10. Steam Pressure-Reducing Station Safety and Energy Efficiency Improvement Project

    SciTech Connect

    Lower, Mark D; Christopher, Timothy W; Oland, C Barry

    2011-06-01

    The Facilities and Operations (F&O) Directorate is sponsoring a continuous process improvement (CPI) program. Its purpose is to stimulate, promote, and sustain a culture of improvement throughout all levels of the organization. The CPI program ensures that a scientific and repeatable process exists for improving the delivery of F&O products and services in support of Oak Ridge National Laboratory (ORNL) Management Systems. Strategic objectives of the CPI program include achieving excellence in laboratory operations in the areas of safety, health, and the environment. Identifying and promoting opportunities for achieving the following critical outcomes are important business goals of the CPI program: improved safety performance; process focused on consumer needs; modern and secure campus; flexibility to respond to changing laboratory needs; bench strength for the future; and elimination of legacy issues. The Steam Pressure-Reducing Station (SPRS) Safety and Energy Efficiency Improvement Project, which is under the CPI program, focuses on maintaining and upgrading SPRSs that are part of the ORNL steam distribution network. This steam pipe network transports steam produced at the ORNL steam plant to many buildings in the main campus site. The SPRS Safety and Energy Efficiency Improvement Project promotes excellence in laboratory operations by (1) improving personnel safety, (2) decreasing fuel consumption through improved steam system energy efficiency, and (3) achieving compliance with applicable worker health and safety requirements. The SPRS Safety and Energy Efficiency Improvement Project being performed by F&O is helping ORNL improve both energy efficiency and worker safety by modifying, maintaining, and repairing SPRSs. Since work began in 2006, numerous energy-wasting steam leaks have been eliminated, heat losses from uninsulated steam pipe surfaces have been reduced, and deficient pressure retaining components have been replaced. These improvements helped ORNL

  11. Transportation Energy Futures Series. Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector

    SciTech Connect

    Vyas, A. D.; Patel, D. M.; Bertram, K. M.

    2013-02-01

    Considerable research has focused on energy efficiency and fuel substitution options for light-duty vehicles, while much less attention has been given to medium- and heavy-duty trucks, buses, aircraft, marine vessels, trains, pipeline, and off-road equipment. This report brings together the salient findings from an extensive review of literature on future energy efficiency options for these non-light-duty modes. Projected activity increases to 2050 are combined with forecasts of overall fuel efficiency improvement potential to estimate the future total petroleum and greenhouse gas (GHG) emissions relative to current levels. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  12. Transportation Energy Futures Series: Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector

    SciTech Connect

    Vyas, A. D.; Patel, D. M.; Bertram, K. M.

    2013-03-01

    Considerable research has focused on energy efficiency and fuel substitution options for light-duty vehicles, while much less attention has been given to medium- and heavy-duty trucks, buses, aircraft, marine vessels, trains, pipeline, and off-road equipment. This report brings together the salient findings from an extensive review of literature on future energy efficiency options for these non-light-duty modes. Projected activity increases to 2050 are combined with forecasts of overall fuel efficiency improvement potential to estimate the future total petroleum and greenhouse gas (GHG) emissions relative to current levels. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  13. Industrial Energy-Efficiency Improvement Program. Annual report to the Congress and the President 1979

    SciTech Connect

    Not Available

    1980-12-01

    The industrial energy efficiency improvement program to accelerate market penetration of new and emerging industrial technologies and practices which will improve energy efficiency; encourage substitution of more plentiful domestic fuels; and enhance recovery of energy and materials from industrial waste streams is described. The role of research, development, and demonstration; technology implementation; the reporting program; and progress are covered. Specific reports from the chemicals and allied products; primary metals; petroleum and coal products; stone, clay, and glass, paper and allied products; food and kindred products; fabricated metals; transportation equipment; machinery (except electrical); textile mill products; rubber and miscellaneous plastics; electrical and electronic equipment; lumber and wood; and tobacco products are discussed. Additional data from voluntary submissions, a summary on progress in the utilization of recovered materials, and an analysis of industrial fuel mix are briefly presented. (MCW)

  14. Fact #925: May 16, 2016 Improvements in Fuel Economy for Low...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fact 925: May 16, 2016 Improvements in Fuel Economy for Low-MPG Vehicles Yield the Greatest Savings - Dataset Excel file and dataset for Improvements in Fuel Economy for Low-MPG ...

  15. Multi-Mode RCCI Has Great Potential to Improve Fuel Economy in...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Mode RCCI Has Great Potential to Improve Fuel Economy in Light-Duty Diesel Engines Multi-Mode RCCI Has Great Potential to Improve Fuel Economy in Light-Duty Diesel Engines February ...

  16. Innovation that Improves Safety, Efficiency of Energy Plant Operations Nets

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    R&D 100 Award for NETL, WVU and Schneider Electric Researchers | Department of Energy Innovation that Improves Safety, Efficiency of Energy Plant Operations Nets R&D 100 Award for NETL, WVU and Schneider Electric Researchers Innovation that Improves Safety, Efficiency of Energy Plant Operations Nets R&D 100 Award for NETL, WVU and Schneider Electric Researchers November 20, 2015 - 8:28am Addthis Innovation that Improves Safety, Efficiency of Energy Plant Operations Nets R&D

  17. Superefficient Refrigerators: Opportunities and Challenges for Efficiency Improvement Globally

    SciTech Connect

    Shah, Nihar; Park, Won Young; Bojda, Nicholas; McNeil, Michael A.

    2014-08-01

    As an energy-intensive mainstream product, residential refrigerators present a significant opportunity to reduce electricity consumption through energy efficiency improvements. Refrigerators expend a considerable amount of electricity during normal use, typically consuming between 100 to 1,000 kWh of electricity per annum. This paper presents the results of a technical analysis done for refrigerators in support of the Super-efficient Equipment and Appliance Deployment (SEAD) initiative. Beginning from a base case representative of the average unit sold in India, we analyze efficiency improvement options and their corresponding costs to build a cost-versus-efficiency relationship. We then consider design improvement options that are known to be the most cost effective and that can improve efficiency given current design configurations. We also analyze and present additional super-efficient options, such as vacuum-insulated panels. We estimate the cost of conserved electricity for the various options, allowing flexible program design for market transformation programs toward higher efficiency. We estimate ~;;160TWh/year of energy savings are cost effective in 2030, indicating significant potential for efficiency improvement in refrigerators in SEAD economies and China.

  18. Solid oxide fuel cells for transportation: A clean, efficient alternative for propulsion

    SciTech Connect

    Kumar, R.; Krumpelt, M.; Myles, K.M.

    1993-04-01

    Fuel cells show great promise for providing clean and efficient transportation power. Of the fuel cell propulsion systems under investigation, the solid oxide fuel cell (SOFC) is particularly attractive for heavy duty transportation applications that have a relatively long duty cycle, such as locomotives, trucks, and barges. Advantages of the SOFC include a simple, compact system configuration; inherent fuel flexibility for hydrocarbon and alternative fuels; and minimal water management. The specific advantages of the SOFC for powering a railroad locomotive are examined. Feasibility, practicality, and safety concerns regarding SOFCs in transportation applications are discussed, as am the major R&D issues.

  19. Solid oxide fuel cells for transportation: A clean, efficient alternative for propulsion

    SciTech Connect

    Kumar, R.; Krumpelt, M.; Myles, K.M.

    1993-01-01

    Fuel cells show great promise for providing clean and efficient transportation power. Of the fuel cell propulsion systems under investigation, the solid oxide fuel cell (SOFC) is particularly attractive for heavy duty transportation applications that have a relatively long duty cycle, such as locomotives, trucks, and barges. Advantages of the SOFC include a simple, compact system configuration; inherent fuel flexibility for hydrocarbon and alternative fuels; and minimal water management. The specific advantages of the SOFC for powering a railroad locomotive are examined. Feasibility, practicality, and safety concerns regarding SOFCs in transportation applications are discussed, as am the major R D issues.

  20. Fossil fuels -- future fuels

    SciTech Connect

    1998-03-01

    Fossil fuels -- coal, oil, and natural gas -- built America`s historic economic strength. Today, coal supplies more than 55% of the electricity, oil more than 97% of the transportation needs, and natural gas 24% of the primary energy used in the US. Even taking into account increased use of renewable fuels and vastly improved powerplant efficiencies, 90% of national energy needs will still be met by fossil fuels in 2020. If advanced technologies that boost efficiency and environmental performance can be successfully developed and deployed, the US can continue to depend upon its rich resources of fossil fuels.

  1. Primer on Motor Fuel Excise Taxes and the Role of Alternative Fuels and Energy Efficient Vehicles

    SciTech Connect

    Schroeder, Alex

    2015-08-26

    Motor fuel taxes were established to finance our nation’s transportation infrastructure, yet evolving economic, political, and technological influences are constraining this ability. At the federal level, the Highway Trust Fund (HTF), which is primarily funded by motor fuel taxes, has become increasingly dependent on general fund contributions and short-term reauthorizations to prevent insolvency. As a result, there are discussions at both the federal and state levels in which stakeholders are examining the future of motor fuel excise taxes as well as the role of electric and alternative fuel vehicles in that future. On July 1, 2015, six states increased their motor fuel tax rates.

  2. Improving the Efficiency of Spark Ignited, Stoichiometric Natural...

    Energy.gov [DOE] (indexed site)

    This work focused on using camless engine technology to improve the efficiency of a natural gas engine. Late intake close timing and cylinder deactivation were utilized to meet a ...

  3. Improving Efficiency of Tube Drawing Bench | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    small-diameter stainless steel tubing, conducted an in-house system performance optimization project to improve the efficiency of its No. 6 tube drawing bench. This four-page...

  4. Energy Department Announces $9 Million to Improve Energy Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of market-ready solutions across the U.S. to improve commercial building energy efficiency, with a goal of demonstrating 20 percent savings or more across a variety...

  5. Improving the Efficiency of Spark Ignited, Stoichiometric Natural Gas Engines

    Energy.gov [DOE]

    This work focused on using camless engine technology to improve the efficiency of a natural gas engine. Late intake close timing and cylinder deactivation were utilized to meet a peak BTE > 40%.

  6. Measuring, Analyzing and Improving Airline Efficiency | GE Global...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Measuring, Analyzing and Improving Airline Efficiency Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new ...

  7. Memorandum of Understanding on Improving the Energy Efficiency...

    Energy Saver

    Memorandum of Understanding on Improving the Energy Efficiency of Products and Buildings between the U.S. Environmental Protection Agency and the U.S. Department of Energy, dated...

  8. Secretary Chu Announces $47 Million to Improve Efficiency in Information

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Technology and Communications Sectors | Department of Energy 7 Million to Improve Efficiency in Information Technology and Communications Sectors Secretary Chu Announces $47 Million to Improve Efficiency in Information Technology and Communications Sectors January 6, 2010 - 12:00am Addthis WASHINGTON, DC - Energy Secretary Steven Chu announced today that the Department of Energy is awarding $47 million for 14 projects across the country to support the development of new technologies that can

  9. Better Buildings Challenge is Expanding, Improving Energy Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Throughout America | Department of Energy Challenge is Expanding, Improving Energy Efficiency Throughout America Better Buildings Challenge is Expanding, Improving Energy Efficiency Throughout America December 5, 2013 - 4:36pm Addthis Industry and government officials discuss the Better Buildings Challenge expansion at the White House earlier this week. | Photo courtesy of Department of Housing and Urban Development Industry and government officials discuss the Better Buildings Challenge

  10. Improving the Energy Efficiency of Existing Windows | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Improving the Energy Efficiency of Existing Windows Improving the Energy Efficiency of Existing Windows October 15, 2008 - 10:56am Addthis Jen Carter What does this mean for me? There are several solutions to energy inefficient windows whether you're starting from scratch or simply making upgrades. But, soft! What light through yonder window breaks? It is the east, and Juliet is the sun. - William Shakespeare, Romeo and Juliet No one would dispute the undeniable beauty of soft, dappled light

  11. Researchers use Edison to Improve Performance, Energy Efficiency of

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Bioinformatics Application Researchers use Edison to Improve Performance, Energy Efficiency of Bioinformatics Application Researchers use Edison to Improve Performance, Energy Efficiency of Bioinformatics Application September 13, 2016 Contact: Jon Bashor, jbashor@lbl.gov, 510-486-5849 wheat pasture grazing A team of computer scientists and geneticists from Iowa State University, the University of Maryland and the University of Arkansas have demonstrated significant speedups of the epiSNP

  12. Waste Heat Reduction and Recovery for Improving Furnace Efficiency,

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Productivity and Emissions Performance: A BestPractices Process Heating Technical Brief | Department of Energy Waste Heat Reduction and Recovery for Improving Furnace Efficiency, Productivity and Emissions Performance: A BestPractices Process Heating Technical Brief Waste Heat Reduction and Recovery for Improving Furnace Efficiency, Productivity and Emissions Performance: A BestPractices Process Heating Technical Brief This technical brief is a guide to help plant operators reduce waste heat

  13. Case Study - The Challenge: Improving Ventilation System Energy Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    in a Textile Plant | Department of Energy Ventilation System Energy Efficiency in a Textile Plant Case Study - The Challenge: Improving Ventilation System Energy Efficiency in a Textile Plant This case study examines how Nisshinbo California, Inc. (NCI) worked with ADI Control Techniques Drives (ADI-CT) of Hayward, California, to improve ventilation system performance in its Fresno, California, textile plant. The company retrofitted 15 of the system's fan motors with variable frequency

  14. The Challenge: Improving the Efficiency of a Tube Drawing Bench

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    CHALLENGE: IMPROVING THE EFFICIENCY OF A TUBE DRAWING BENCH Showcase Demonstration Greenville Tube Production Facility CASE STUDY Industry: Process: System: Technology: Project Profile Summary Greenville Tube Company (GT), a manufacturer of high-precision, small-diameter stainless steel tubing, conducted an in-house system performance optimization project to improve the efficiency of its No. 6 tube drawing bench. This tube drawing bench plays an integral role in the production process, but

  15. Refractories for Industrial Processing. Opportunities for Improved Energy Efficiency

    SciTech Connect

    Hemrick, James G.; Hayden, H. Wayne; Angelini, Peter; Moore, Robert E.; Headrick, William L.

    2005-01-01

    Refractories are a class of materials of critical importance to manufacturing industries with high-temperature unit processes. This study describes industrial refractory applications and identifies refractory performance barriers to energy efficiency for processing. The report provides recommendations for R&D pathways leading to improved refractories for energy-efficient manufacturing and processing.

  16. Improved Accelerated Stress Tests Based on Fuel Cell Vehicle Data

    SciTech Connect

    Patterson, Timothy; Motupally, Sathya

    2012-06-01

    UTC will led a top-tier team of industry and national laboratory participants to update and improve DOE’s Accelerated Stress Tests (AST’s) for hydrogen fuel cells. This in-depth investigation will focused on critical fuel cell components (e.g. membrane electrode assemblies - MEA) whose durability represented barriers for widespread commercialization of hydrogen fuel cell technology. UTC had access to MEA materials that had accrued significant load time under real-world conditions in PureMotion® 120 power plant used in transit buses. These materials are referred to as end-of-life (EOL) components in the rest of this document. Advanced characterization techniques were used to evaluate degradation mode progress using these critical cell components extracted from both bus power plants and corresponding materials tested using the DOE AST’s. These techniques were applied to samples at beginning-of-life (BOL) to serve as a baseline. These comparisons advised the progress of the various failure modes that these critical components were subjected to, such as membrane degradation, catalyst support corrosion, platinum group metal dissolution, and others. Gaps in the existing ASTs predicted the degradation observed in the field in terms of these modes were outlined. Using the gaps, new AST’s were recommended and tested to better reflect the degradation modes seen in field operation. Also, BOL components were degraded in a test vehicle at UTC designed to accelerate the bus field operation.

  17. Fuel cell collector plates with improved mass transfer channels

    DOEpatents

    Gurau, Vladimir; Barbir, Frano; Neutzler, Jay K.

    2003-04-22

    A fuel cell collector plate can be provided with one or more various channel constructions for the transport of reactants to the gas diffusion layer and the removal of water therefrom. The outlet channel can be arranged to have a reduced volume compared to the inlet channel, in both interdigitated and discontinuous spiral applications. The land width between an inlet channel and outlet channel can be reduced to improved mass flow rate in regions of deleted reactant concentrations. Additionally or alternatively, the depth of the inlet channel can be reduced in the direction of flow to reduce the diffusion path as the concentration of reactant is reduced.

  18. A MultiAir®/MultiFuel Approach to Enhancing Engine System Efficiency

    SciTech Connect

    Reese, Ronald

    2015-05-20

    FCA US LLC (formally known as Chrysler Group LLC, and hereinafter “Chrysler”) was awarded an American Recovery and Reinvestment Act (ARRA) funded project by the Department of Energy (DOE) titled “A MultiAir®/MultiFuel Approach to Enhancing Engine System Efficiency” (hereinafter “project”). This award was issued after Chrysler submitted a proposal for Funding Opportunity Announcement DE-FOA- 0000079, “Systems Level Technology Development, Integration, and Demonstration for Efficient Class 8 Trucks (SuperTruck) and Advanced Technology Powertrains for Light-Duty Vehicles (ATP-LD).” Chrysler started work on this project on June 01, 2010 and completed testing activities on August 30, 2014. Overall objectives of this project were; Demonstrate a 25% improvement in combined Federal Test Procedure (FTP) City and Highway fuel economy over a 2009 Chrysler minivan; Accelerate the development of highly efficient engine and powertrain systems for light-duty vehicles, while meeting future emissions standards; and Create and retain jobs in accordance with the American Recovery and Reinvestment Act of 2009

  19. The Challenge: Improving the Energy Efficiency of Buildings Across the

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Nation | Department of Energy The Challenge: Improving the Energy Efficiency of Buildings Across the Nation The Challenge: Improving the Energy Efficiency of Buildings Across the Nation June 20, 2012 - 1:49pm Addthis Eric Barendsen Energy Technology Program Specialist, Office of Energy Efficiency and Renewable Energy On the Energy Savers Blog, we talk a lot about what people can do at home to save money on their energy bills so they can use it on other things that enrich their lives. But

  20. Potential for Energy Efficiency Improvement Beyond the Light-Duty Sector

    Energy.gov [DOE]

    While there has been considerable research focusing on energy efficiency and fuel substitution options for LDVs, much less attention has been given to non-LDV modes, even though they constitute close to half of the energy used in the transportation sector. We conducted an extensive literature review of the non-LDV modes, and in this report we bring together the salient findings concerning future energy efficiency options in the time period up to 2050. The studies reviewed provided potential energy savings for individual technologies within each mode, as well as an overall energy savings representing the case where all possible improvements are implemented.

  1. Costs and benefits of energy efficiency improvements in ceiling fans

    SciTech Connect

    Shah, Nihar; Sathaye, Nakul; Phadke, Amol; Letschert, Virginie

    2013-10-15

    Ceiling fans contribute significantly to residential electricity consumption, especially in developing countries with warm climates. The paper provides analysis of costs and benefits of several options to improve the efficiency of ceiling fans to assess the global potential for electricity savings and green house gas (GHG) emission reductions. Ceiling fan efficiency can be cost-effectively improved by at least 50% using commercially available technology. If these efficiency improvements are implemented in all ceiling fans sold by 2020, 70 terawatt hours per year could be saved and 25 million metric tons of carbon dioxide equivalent (CO2-e) emissions per year could be avoided, globally. We assess how policies and programs such as standards, labels, and financial incentives can be used to accelerate the adoption of efficient ceiling fans in order to realize potential savings.

  2. Native Village of Teller Addresses Heating Fuel Shortage, Improves...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    utility, which runs its own diesel fuel bulk storage facility for the diesel generators. However, residential heating oil and fuel for all public buildings except the...

  3. Cheyenne Light, Fuel and Power (Electric)- Residential Energy Efficiency Rebate Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Cheyenne Light, Fuel and Power offers incentives to electric customers who wish to install energy efficient equipment in participating homes. Incentives are available for CFL and LED light bulbs,...

  4. Cheyenne Light, Fuel and Power (Electric)- Commercial and Industrial Efficiency Rebate Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Cheyenne Light, Fuel and Power offers incentives to commercial and industrial electric customers who wish to install energy efficient equipment and measures in eligible facilities. Incentives are...

  5. Cheyenne Light, Fuel and Power (Gas)- Commercial and Industrial Efficiency Rebate Program

    Energy.gov [DOE]

    Cheyenne Light, Fuel and Power (CLFP) offers incentives to commercial and industrial gas customers who install energy efficient equipment in existing buildings. Incentives are available for boilers...

  6. Fact #764: January 28, 2013 Model Year 2013 Brings More Fuel Efficient Choices for Consumers

    Energy.gov [DOE]

    Over the last six years, manufacturers have made more fuel efficient choices available to consumers in several size classes. For a consumer purchasing a new large car in 2008, the highest combined...

  7. Development and Demonstration of a Fuel-Efficient Class 8 Highway...

    Energy.gov [DOE] (indexed site)

    SuperTruck Development and Demonstration of a Fuel-Efficient Class 8 Highway Vehicle Vehicle Systems DOE Contract: DE-EE0004232 P.I.: Pascal Amar, Volvo Technology of America 2012 ...

  8. Energy Department Announces $58 Million to Advance Fuel-Efficient Vehicle

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Technologies | Department of Energy 58 Million to Advance Fuel-Efficient Vehicle Technologies Energy Department Announces $58 Million to Advance Fuel-Efficient Vehicle Technologies January 21, 2016 - 9:54am Addthis News Media Contact 202-586-4940 DOENews@hq.doe.gov WASHINGTON - U.S. Department of Energy Secretary Ernest Moniz announced more than $58 million in funding for vehicle technology advancements and released a report highlighting the successes of DOE's Advanced Technology Vehicles

  9. HIGH EFFICIENCY, LOW EMISSIONS, SOLID OXIDE FUEL CELL SYSTEMS FOR MULTIPLE APPLICATIONS

    SciTech Connect

    Sara Ward; Michael A. Petrik

    2004-07-28

    Technology Management Inc. (TMI), teamed with the Ohio Office of Energy Efficiency and Renewable Energy, has engineered, constructed, and demonstrated a stationary, low power, multi-module solid oxide fuel cell (SOFC) prototype system operating on propane and natural gas. Under Phase I, TMI successfully operated two systems in parallel, in conjunction with a single DC-AC inverter and battery bus, and produced net AC electricity. Phase II testing expanded to include alternative and renewable fuels typically available in rural regions of Ohio. The commercial system is expected to have ultra-low pollution, high efficiency, and low noise. The TMI SOFC uses a solid ceramic electrolyte operating at high temperature (800-1000 C) which electrochemically converts gaseous fuels (hydrogen or mixed gases) and oxygen into electricity. The TMI system design oxidizes fuel primarily via electrochemical reactions and uses no burners (which pollute and consume fuel)--resulting in extremely clean exhaust. The use of proprietary sulfur tolerant materials developed by TMI allows system operation without additional fuel pre-processing or sulfur removal. Further, the combination of high operating temperatures and solid state operation increases the potential for higher reliability and efficiencies compared to other types of fuel cells. Applications for the TMI SOFC system cover a wide range of transportation, building, industrial, and military market sectors. A generic technology, fuel cells have the potential to be embodied into multiple products specific to Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) program areas including: Fuel Cells and Microturbines, School Buildings, Transportation, and Bioenergy. This program focused on low power stationary applications using a multi-module system operating on a range of common fuels. By producing clean electricity more efficiently (thus using less fuel), fuel cells have the triple effect of cleaning up the

  10. Improving Vehicle Fuel Efficiency Through Tire Design, Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fiber-filled engineered plastic alternatives Re-design a lighter, more compact steel bead * Milestones - Status Identify alternate materials that provide comparable...

  11. Automotive Fuel Efficiency Improvement via Exhaust Gas Waste...

    Energy.gov [DOE] (indexed site)

    Working to expand the usage of thermoelectric technology beyond seat heating and cooling ... to Power Program Development of a 500 Watt High Temperature Thermoelectric Generator

  12. Lubricants - Pathway to Improving Fuel Efficiency of Legacy Fleet...

    Energy.gov [DOE] (indexed site)

    More Documents & Publications Lubricants Activities Vehicle Technologies Office Merit Review 2014: DOEDOD Parasitic Energy Loss Collaboration DOEDOD Parasitic Energy Loss ...

  13. SuperTruck … Development and Demonstration of a Fuel-Efficient Class 8

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Tractor & Trailer | Department of Energy 3 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting vss064_oehlerking_2013_o.pdf (2.41 MB) More Documents & Publications SuperTruck … Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer SuperTruck … Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer Vehicle Technologies Office Merit Review 2015: SuperTruck - Development

  14. Fuel Efficient Diesel Particulate Filter (DPF) Modeling and Development

    SciTech Connect

    Stewart, Mark L.; Gallant, Thomas R.; Kim, Do Heui; Maupin, Gary D.; Zelenyuk, Alla

    2010-08-01

    The project described in this report seeks to promote effective diesel particulate filter technology with minimum fuel penalty by enhancing fundamental understanding of filtration mechanisms through targeted experiments and computer simulations. The overall backpressure of a filtration system depends upon complex interactions of particulate matter and ash with the microscopic pores in filter media. Better characterization of these phenomena is essential for exhaust system optimization. The acicular mullite (ACM) diesel particulate filter substrate is under continuing development by Dow Automotive. ACM is made up of long mullite crystals which intersect to form filter wall framework and protrude from the wall surface into the DPF channels. ACM filters have been demonstrated to effectively remove diesel exhaust particles while maintaining relatively low backpressure. Modeling approaches developed for more conventional ceramic filter materials, such as silicon carbide and cordierite, have been difficult to apply to ACM because of properties arising from its unique microstructure. Penetration of soot into the high-porosity region of projecting crystal structures leads to a somewhat extended depth filtration mode, but with less dramatic increases in pressure drop than are normally observed during depth filtration in cordierite or silicon carbide filters. Another consequence is greater contact between the soot and solid surfaces, which may enhance the action of some catalyst coatings in filter regeneration. The projecting crystals appear to provide a two-fold benefit for maintaining low backpressures during filter loading: they help prevent soot from being forced into the throats of pores in the lower porosity region of the filter wall, and they also tend to support the forming filter cake, resulting in lower average cake density and higher permeability. Other simulations suggest that soot deposits may also tend to form at the tips of projecting crystals due to the axial

  15. Fuel Efficiency Potential of Hydrogen Vehicles | Department of...

    Energy.gov [DOE] (indexed site)

    Optimization of Direct-Injection H2 Combustion Engine Performance, Efficiency, and Emissions E85 Optimized Engine Vehicle Technologies Office Merit Review 2015: Impacts of Advanced ...

  16. Improving Desulfurization to Enable Fuel Cell Utilization of Digester Gases

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Desulfurization to Enable Fuel Cell Utilization of Digester Gases Introduction With their clean and quiet operation, fuel cells represent a promising means of implementing small-scale distributed power generation. Waste heat from the fuel cell can be harnessed for heating, creating an effcient combined heat and power (CHP) system. If the fuel cell is fueled from a renewable source, its use has the potential to reduce greenhouse gas emissions and natural gas consumption. Derived from

  17. Alternative Fuel and Advanced Technology Commercial Lawn Equipment (Brochure), Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    Alternative Fuels and Advanced Vehicles Data Center

    Powering commercial lawn equipment with alternative fuels or advanced engine technology is an effective way to reduce U.S. dependence on petro- leum, reduce harmful emissions, and lessen the environmental impacts of commercial lawn mowing. Numer- ous alternative fuel and fuel-efficient advanced technology mowers are available. Owners turn to these mow- ers because they may save on fuel and maintenance costs, extend mower life, reduce fuel spillage and fuel theft, and demonstrate their commitment

  18. Alternative Fuel and Advanced Technology Commercial Lawn Equipment (Spanish version); Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    SciTech Connect

    Nelson, Erik

    2015-06-01

    Powering commercial lawn equipment with alternative fuels or advanced engine technology is an effective way to reduce U.S. dependence on petroleum, reduce harmful emissions, and lessen the environmental impacts of commercial lawn mowing. Numerous alternative fuel and fuel-efficient advanced technology mowers are available. Owners turn to these mowers because they may save on fuel and maintenance costs, extend mower life, reduce fuel spillage and fuel theft, and demonstrate their commitment to sustainability.

  19. Linking quality improvement and energy efficiency/waste reduction

    SciTech Connect

    Lewis, R.E.; Moore, N.L.

    1995-04-01

    For some time industry has recognized the importance of both energy efficiency/waste reduction (ee/wr) and quality/manufacturing improvement. However, industry has not particularly recognized that manufacturing efficiency is, in part, the result of a more efficient use of energy. For that reason, the energy efficiency efforts of most companies have involved admonishing employees to save energy. Few organizations have invested resources in training programs aimed at increasing energy efficiency and reducing waste. This describes a program to demonstrate how existing utility and government training and incentive programs can be leveraged to increase ee/wr and benefit both industry and consumers. Fortunately, there are a variety of training tools and resources that can be applied to educating workers on the benefits of energy efficiency and waste reduction. What is lacking is a method of integrating ee/wr training with other important organizational needs. The key, therefore, is to leverage ee/wr investments with other organizational improvement programs. There are significant strides to be made by training industry to recognize fully the contribution that energy efficiency gains make to the bottom line. The federal government stands in the unique position of being able to leverage the investments already made by states, utilities, and manufacturing associations by coordinating training programs and defining the contribution of energy-efficiency practices. These aims can be accomplished by: developing better measures of energy efficiency and waste reduction; promoting methods of leveraging manufacturing efficiency programs with energy efficiency concepts; helping industry understand how ee/wr investments can increase profits; promoting research on the needs of, and most effective ways to, reach the small and medium-sized businesses that so often lack the time, information, and finances to effectively use the hardware and training technologies available.

  20. Direct Carbon Conversion: Application to the Efficient Conversion of Fossil Fuels to Electricity

    SciTech Connect

    Cooper, J F; Cherepy, N; Berry, G; Pasternak, A; Surles, T; Steinberg, M

    2001-03-07

    We introduce a concept for efficient conversion of fossil fuels to electricity that entails the decomposition of fossil-derived hydrocarbons into carbon and hydrogen, and electrochemical conversion of these fuels in separate fuel cells. Carbon/air fuel cells have the advantages of near zero entropy change and associated heat production (allowing 100% theoretical conversion efficiency). The activities of the C fuel and CO{sub 2} product are invariant, allowing constant EMF and full utilization of fuel in single pass mode of operation. System efficiency estimates were conducted for several routes involving sequential extraction of a hydrocarbon from the fossil resource by (hydro) pyrolysis followed by thermal decomposition. The total energy conversion efficiencies of the processes were estimated to be (1) 80% for direct conversion of petroleum coke; (2) 67% HHV for CH{sub 4}; (3) 72% HHV for heavy oil (modeled using properties of decane); (4) 75.5% HHV (83% LHV) for natural gas conversion with a Rankine bottoming cycle for the H{sub 2} portion; and (5) 69% HHV for conversion of low rank coals and lignite through hydrogenation and pyrolysis of the CH{sub 4} intermediate. The cost of carbon fuel is roughly $7/GJ, based on the cost of the pyrolysis step in the industrial furnace black process. Cell hardware costs are estimated to be less than $500/kW.

  1. Fact #925: May 16, 2016 Improvements in Fuel Economy for Low...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Trading a low-mpg car or truck for one with just slightly better mpg will save more fuel than trading a high-mpg car or truck for one that is even higher. An improvement in fuel economy ...

  2. EA-1573-S1: Proposed Renewable Fuel Heat Plant Improvements at...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ...S1: Proposed Renewable Fuel Heat Plant Improvements at the National Renewable Energy Laboratory South Table Mountain Site, Golden, CO EA-1573-S1: Proposed Renewable Fuel Heat Plant ...

  3. Vehicle Technologies Office Merit Review 2015: Improve Fuel Economy through Formulation Design and Modeling

    Energy.gov [DOE]

    Presentation given by Ashland Inc. at 2015 DOE Hydrogen and Fuel Cells Program and vehicle technologies office annual merit review and peer evaluation meeting about improve fuel economy through...

  4. Demonstration of a Highly Efficient Solid Oxide Fuel Cell Power System Using Adiabatic Steam Reforming and Anode Gas Recirculation

    SciTech Connect

    Powell, Michael R.; Meinhardt, Kerry D.; Sprenkle, Vincent L.; Chick, Lawrence A.; Mcvay, Gary L.

    2012-05-01

    Solid oxide fuel cells (SOFC) are currently being developed for a wide variety of applications because of their high efficiency at multiple power levels. Applications for SOFCs encompass a large range of power levels including 1-2 kW residential combined heat and power applications, 100-250 kW sized systems for distributed generation and grid extension, and MW-scale power plants utilizing coal. This paper reports on the development of a highly efficient, small-scale SOFC power system operating on methane. The system uses adiabatic steam reforming of methane and anode gas recirculation to achieve high net electrical efficiency. The anode exit gas is recirculated and all of the heat and water required for the endothermic reforming reaction are provided by the anode gas emerging from the SOFC stack. Although the single-pass fuel utilization is only about 55%, because of the anode gas recirculation the overall fuel utilization is up to 93%. The demonstrated system achieved gross power output of 1650 to 2150 watts with a maximum net LHV efficiency of 56.7% at 1720 watts. Overall system efficiency could be further improved to over 60% with use of properly sized blowers.

  5. A Survey of Architectural Techniques For Improving Cache Power Efficiency

    SciTech Connect

    Mittal, Sparsh

    2013-01-01

    Modern processors are using increasingly larger sized on-chip caches. Also, with each CMOS technology generation, there has been a significant increase in their leakage energy consumption. For this reason, cache power management has become a crucial research issue in modern processor design. To address this challenge and also meet the goals of sustainable computing, researchers have proposed several techniques for improving energy efficiency of cache architectures. This paper surveys recent architectural techniques for improving cache power efficiency and also presents a classification of these techniques based on their characteristics. For providing an application perspective, this paper also reviews several real-world processor chips that employ cache energy saving techniques. The aim of this survey is to enable engineers and researchers to get insights into the techniques for improving cache power efficiency and motivate them to invent novel solutions for enabling low-power operation of caches.

  6. Substrate CdTe Efficiency Improvements - Energy Innovation Portal

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Substrate CdTe Efficiency Improvements National Renewable Energy Laboratory Contact NREL About This Technology Publications: PDF Document Publication 11-28PCT Application as-published (984 KB) Technology Marketing Summary Thin film solar cells have been the focus of many research facilities in recent years that are working to decrease manufacturing costs and increase cell efficiency. Cadmium telluride (CdTe) has been well recognized as a promising photovoltaic material for thin film solar cells

  7. Improved Magnetic Field Generation Efficiency and Higher Temperature Spheromak Plasmas

    SciTech Connect

    Wood, R D; Hill, D N; McLean, H S; Hooper, E B; Hudson, B F; Moller, J M; Romero-Talamas, C A

    2008-09-15

    New understanding of the mechanisms governing the observed magnetic field generation limits on the sustained spheromak physics experiment has been obtained. Extending the duration of magnetic helicity injection during the formation of a spheromak and optimizing the ratio of injected current to bias flux produce higher magnetic field plasmas with record spheromak electron temperatures. To explore magnetic field buildup efficiency limits, the confinement region geometry was varied resulting in improved field buildup efficiencies.

  8. Energy-efficient alcohol-fuel production. Technical final report

    SciTech Connect

    Not Available

    1982-01-01

    The proposed utilization schedule for the alcohol fuel plant and methane generator is to produce 180 proof ethanol during the spring, summer, and fall (April to October). The ethanol will be used in the farm tractors and trucks during the planting, growing, and harvesting seasons. Some alcohol can be stored for use during the winter. The still will not be operated during the winter (November to March) when the methane from the digester will be used to replace fuel oil for heating a swine farrowing building. There are tentative plans to develop a larger methane generator, which will utilize all of the manure (dairy, beef, horses, and swine) produced on the ISU farm. If this project is completed, there will be enough methane to produce all of the alcohol fuel needed to operate all of the farm equipment, heat the buildings, and possibly generate electricity for the farm. The methane generating system developed is working so well that there is a great deal of interest in expanding the project to where it could utilize all of the livestock waste on the farm for methane production.

  9. Electric motor systems in developing countries: Opportunities for efficiency improvement

    SciTech Connect

    Meyers, S.; Monahan, P.; Lewis, P.; Greenberg, S.; Nadel, S.

    1993-08-01

    This report presents an overview of the current status and efficiency improvement potential of industrial motor systems in developing countries. Better management of electric motor systems is of particular relevance in developing countries, where improved efficiency can lead to increased productivity and slower growth in electricity demand. Motor systems currently consume some 65--80% of the industrial electricity in developing countries. Drawing on studies from Thailand, India, Brazil, China, Pakistan, and Costa Rica, we describe potential efficiency gains in various parts of the motor system, from the electricity delivery system through the motor to the point where useful work is performed. We report evidence of a significant electricity conservation potential. Most of the efficiency improvement methods we examine are very cost-effective from a societal viewpoint, but are generally not implemented due to various barriers that deter their adoption. Drawing on experiences in North America, we discuss a range of policies to overcome these barriers, including education, training, minimum efficiency standards, motor efficiency testing protocols, technical assistance programs, and financial incentives.

  10. Memorandum of Understanding on Improving the Energy Efficiency of Products

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    and Buildings between the U.S. Environmental Protection Agency and the U.S. Department of Energy, dated September 30, 2009 | Department of Energy Memorandum of Understanding on Improving the Energy Efficiency of Products and Buildings between the U.S. Environmental Protection Agency and the U.S. Department of Energy, dated September 30, 2009 Memorandum of Understanding on Improving the Energy Efficiency of Products and Buildings between the U.S. Environmental Protection Agency and the U.S.

  11. How Much Can You REALLY Save with Energy Efficient Improvements? |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy How Much Can You REALLY Save with Energy Efficient Improvements? How Much Can You REALLY Save with Energy Efficient Improvements? October 7, 2016 - 11:47am Addthis Replace your home's five most frequently used light fixtures or bulbs with ENERGY STAR models to save $75 per year.| Photo courtesy of Thomas Kelsey/U.S. Department of Energy Solar Decathlon Replace your home's five most frequently used light fixtures or bulbs with ENERGY STAR models to save $75 per year.|

  12. TV Energy Consumption Trends and Energy-Efficiency Improvement Options

    SciTech Connect

    Park, Won Young; Phadke, Amol; Shah, Nihar; Letschert, Virginie

    2011-07-01

    The SEAD initiative aims to transform the global market by increasing the penetration of highly efficient equipment and appliances. SEAD is a government initiative whose activities and projects engage the private sector to realize the large global energy savings potential from improved appliance and equipment efficiency. SEAD seeks to enable high-level global action by informing the Clean Energy Ministerial dialogue as one of the initiatives in the Global Energy Efficiency Challenge. In keeping with its goal of achieving global energy savings through efficiency, SEAD was approved as a task within the International Partnership for Energy Efficiency Cooperation (IPEEC) in January 2010. SEAD partners work together in voluntary activities to: (1) ?raise the efficiency ceiling? by pulling super-efficient appliances and equipment into the market through cooperation on measures like incentives, procurement, awards, and research and development (R&D) investments; (2) ?raise the efficiency floor? by working together to bolster national or regional policies like minimum efficiency standards; and (3) ?strengthen the efficiency foundations? of programs by coordinating technical work to support these activities. Although not all SEAD partners may decide to participate in every SEAD activity, SEAD partners have agreed to engage actively in their particular areas of interest through commitment of financing, staff, consultant experts, and other resources. In addition, all SEAD partners are committed to share information, e.g., on implementation schedules for and the technical detail of minimum efficiency standards and other efficiency programs. Information collected and created through SEAD activities will be shared among all SEAD partners and, to the extent appropriate, with the global public.As of April 2011, the governments participating in SEAD are: Australia, Brazil, Canada, the European Commission, France, Germany, India, Japan, Korea, Mexico, Russia, South Africa, Sweden

  13. Methods to improve lubricity of fuels and lubricants

    DOEpatents

    Erdemir, Ali

    2009-06-16

    A method for providing lubricity in fuels and lubricants includes adding a boron compound to a fuel or lubricant to provide a boron-containing fuel or lubricant. The fuel or lubricant may contain a boron compound at a concentration between about 30 ppm and about 3,000 ppm and a sulfur concentration of less than about 500 ppm. A method of powering an engine to minimize wear, by burning a fuel containing boron compounds. The boron compounds include compound that provide boric acid and/or BO.sub.3 ions or monomers to the fuel or lubricant.

  14. Improving machining efficiency | Y-12 National Security Complex

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Improving machining ... Improving machining efficiency Posted: February 11, 2013 - 3:13pm | Y-12 Report | Volume 9, Issue 2 | 2013 Machinists are held to exacting standards. After a part is produced, each angle, cut or groove must be measured to see if it meets the design drawing's specifications. However, combined factors such as fluctuating background temperatures and the whims of vintage equipment can cause just enough variation to disturb the precise shapes desired. Still, the goal is to

  15. Energy Efficiency First Fuel Requirement (Gas and Electric)

    Office of Energy Efficiency and Renewable Energy (EERE)

    Note: The Massachusetts Energy Efficiency Advisory Council and the Department of Public Utilities are in the process of developing the next three-year plan, for the years 2016-2018. To follow this...

  16. Novel Materials for High Efficiency Direct Methanol Fuel Cells

    SciTech Connect

    Carson, Stephen; Mountz, David; He, Wensheng; Zhang, Tao

    2013-12-31

    Direct methanol fuel cell membranes were developed using blends of different polyelectrolytes with PVDF. The membranes showed complex relationships between polyelectrolyte chemistry, morphology, and processing. Although the PVDF grade was found to have little effect on the membrane permselectivity, it does impact membrane conductivity and methanol permeation values. Other factors, such as varying the polyelectrolyte polarity, using varying crosslinking agents, and adjusting the equivalent weight of the membranes impacted methanol permeation, permselectivity, and areal resistance. We now understand, within the scope of the project work completed, how these inter-related performance properties can be tailored to achieve a balance of performance.

  17. Thermally efficient melting and fuel reforming for glass making

    DOEpatents

    Chen, M.S.; Painter, C.F.; Pastore, S.P.; Roth, G.S.; Winchester, D.C.

    1991-10-15

    An integrated process is described for utilizing waste heat from a glass making furnace. The hot off-gas from the furnace is initially partially cooled, then fed to a reformer. In the reformer, the partially cooled off-gas is further cooled against a hydrocarbon which is thus reformed into a synthesis gas, which is then fed into the glass making furnace as a fuel. The further cooled off-gas is then recycled back to absorb the heat from the hot off-gas to perform the initial cooling. 2 figures.

  18. Thermally efficient melting and fuel reforming for glass making

    DOEpatents

    Chen, Michael S.; Painter, Corning F.; Pastore, Steven P.; Roth, Gary S.; Winchester, David C.

    1991-01-01

    An integrated process for utilizing waste heat from a glass making furnace. The hot off-gas from the furnace is initially partially cooled, then fed to a reformer. In the reformer, the partially cooled off-gas is further cooled against a hydrocarbon which is thus reformed into a synthesis gas, which is then fed into the glass making furnace as a fuel. The further cooled off-gas is then recycled back to absorb the heat from the hot off-gas to perform the initial cooling.

  19. Maximizing Efficiency in Two-step Solar-thermochemical Fuel Production

    SciTech Connect

    Ermanoski, I.

    2015-05-01

    Widespread solar fuel production depends on its economic viability, largely driven by the solar-to-fuel conversion efficiency. Herein, the material and energy requirements in two-step solar-thermochemical cyclesare considered.The need for advanced redox active materials is demonstrated, by considering the oxide mass flow requirements at a large scale. Two approaches are also identified for maximizing the efficiency: optimizing reaction temperatures, and minimizing the pressure in the thermal reduction step by staged thermal reduction. The results show that each approach individually, and especially the two in conjunction, result in significant efficiency gains.

  20. EcoCAR 3: Collegiate Teams to Pump up Fuel Efficiency of Iconic American

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Muscle Car | Department of Energy 3: Collegiate Teams to Pump up Fuel Efficiency of Iconic American Muscle Car EcoCAR 3: Collegiate Teams to Pump up Fuel Efficiency of Iconic American Muscle Car May 7, 2014 - 5:03pm Addthis Energy Secretary Ernest Moniz (far right) watches as Assistant Secretary for Energy Efficiency and Renewable Energy David Danielson speaks during the EcoCAR 3 competition launch event in Washington, D.C. on April 24. Student teams from throughout the country will put

  1. USDA Renewable Energy Systems and Energy Efficiency Improvement Grants

    Office of Energy Efficiency and Renewable Energy (EERE)

    USDA's Rural Business Cooperative-Service Agency, under the Rural Energy for America Program, is accepting applications for Renewable Energy Systems and Energy Efficiency Improvement grants of $20,000 or less to establish programs to assist agricultural producers and rural small businesses with evaluating the potential to incorporate renewable energy technologies into their operations.

  2. Best Practices Implementation for Hydropower Efficiency and Utilization Improvement

    SciTech Connect

    Smith, Brennan T; Zhang, Qin Fen; March, Patrick; Cones, Marvin; Dham, Rajesh; Spray, Michael

    2012-01-01

    By using best practices to manage unit and plant efficiency, hydro owner/operators can achieve significant improvements in overall plant performance, resulting in increased generation and profitability and, frequently, reduced maintenance costs. The Hydropower Advancement Project (HAP) was initiated by the Wind and Hydropower Technologies Program within the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy to develop and implement a systematic process with standard methodology, based on the best practices of operations, maintenance and upgrades; to identify the improvement opportunities at existing hydropower facilities; and to predict and trend the overall condition and improvement opportunity within the U.S. hydropower fleet. The HAP facility assessment includes both quantitative condition ratings and data-based performance analyses. However, this paper, as an overview document for the HAP, addresses the general concepts, project scope and objectives, best practices for unit and plant efficiency, and process and methodology for best practices implementation for hydropower efficiency and utilization improvement.

  3. Energy Department Revises NEPA Regulations to Improve Efficiency...

    Office of Environmental Management (EM)

    These categorical exclusions address actions such as stormwater runoff control, alternative fuel vehicle fueling stations and electric vehicle charging stations, and small-scale ...

  4. Study Reveals Fuel Injection Timing Impact on Particle Number Emissions (Fact Sheet)

    SciTech Connect

    Not Available

    2012-12-01

    Start of injection can improve environmental performance of fuel-efficient gasoline direct injection engines.

  5. Energy Efficiency Improvement Opportunities for the Cement Industry

    SciTech Connect

    Price, Lynn; Worrell, Ernst; Galitsky, Christina; Price, Lynn

    2008-01-31

    This report provides information on the energy savings, costs, and carbon dioxide emissions reductions associated with implementation of a number of technologies and measures applicable to the cement industry. The technologies and measures include both state-of-the-art measures that are currently in use in cement enterprises worldwide as well as advanced measures that are either only in limited use or are near commercialization. This report focuses mainly on retrofit measures using commercially available technologies, but many of these technologies are applicable for new plants as well. Where possible, for each technology or measure, costs and energy savings per tonne of cement produced are estimated and then carbon dioxide emissions reductions are calculated based on the fuels used at the process step to which the technology or measure is applied. The analysis of cement kiln energy-efficiency opportunities is divided into technologies and measures that are applicable to the different stages of production and various kiln types used in China: raw materials (and fuel) preparation; clinker making (applicable to all kilns, rotary kilns only, vertical shaft kilns only); and finish grinding; as well as plant wide measures and product and feedstock changes that will reduce energy consumption for clinker making. Table 1 lists all measures in this report by process to which they apply, including plant wide measures and product or feedstock changes. Tables 2 through 8 provide the following information for each technology: fuel and electricity savings per tonne of cement; annual operating and capital costs per tonne of cement or estimated payback period; and, carbon dioxide emissions reductions for each measure applied to the production of cement. This information was originally collected for a report on the U.S. cement industry (Worrell and Galitsky, 2004) and a report on opportunities for China's cement kilns (Price and Galitsky, in press). The information provided in this

  6. New Vehicle Initiative Aims to Make Fuel and Engines Work Together More Efficiently

    Energy.gov [DOE]

    Recently I had the pleasure of briefing members of Congress on EERE’s groundbreaking fuel-engine co-optimization initiative. The new, multi-year project combines previously independent areas of biofuels and engine combustion research and development (R&D) to design new fuels and engines that are co-optimized—designed in tandem to both maximize vehicle performance and carbon efficiency.

  7. BWR Spent Nuclear Fuel Interfacial Bonding Efficiency Study

    SciTech Connect

    Wang, Jy-An John; Jiang, Hao

    2015-04-30

    The objective of this project is to perform a systematic study of spent nuclear fuel (SNF, also known as “used nuclear fuel” [UNF]) integrity under simulated transportation environments using the Cyclic Integrated Reversible-Bending Fatigue Tester (CIRFT) hot-cell testing technology developed at Oak Ridge National Laboratory (ORNL) in August 2013. Under Nuclear Regulatory Commission (NRC) sponsorship, ORNL completed four benchmark tests, four static tests, and twelve dynamic or cycle tests on H. B. Robinson (HBR) high burn-up (HBU) fuel. The clad of the HBR fuels was made of Zircaloy-4. Testing was continued in fiscal year (FY) 2014 using Department of Energy (DOE) funds. Additional CIRFT testing was conducted on three HBR rods; two specimens failed, and one specimen was tested to over 2.23 × 107 cycles without failing. The data analysis on all the HBR SNF rods demonstrated that it is necessary to characterize the fatigue life of the SNF rods in terms of (1) the curvature amplitude and (2) the maximum absolute of curvature extremes. The maximum extremes are significant because they signify the maximum tensile stress for the outer fiber of the bending rod. CIRFT testing has also addressed a large variation in hydrogen content on the HBR rods. While the load amplitude is the dominant factor that controls the fatigue life of bending rods, the hydrogen content also has an important effect on the lifetime attained at each load range tested. In FY 15, eleven SNF rod segments from the Limerick BWR were tested using the ORNL CIRFT equipment; one test under static conditions and ten tests under dynamic loading conditions. Under static unidirectional loading, a moment of 85 N·m was obtained at a maximum curvature of 4.0 m-1. The specimen did not show any sign of failure during three repeated loading cycles to a similar maximum curvature. Ten cyclic tests were conducted with amplitudes varying from 15.2 to 7.1 N·m. Failure was observed in nine of

  8. Improving Energy Efficiency in Pharmaceutical ManufacturingOperations -- Part I: Motors, Drives and Compressed Air Systems

    SciTech Connect

    Galitsky, Christina; Chang, Sheng-chien; Worrell, Ernst; Masanet,Eric

    2006-04-01

    In Part I of this two-part series, we focus on efficient use of motors, drives and pumps, both for process equipment and compressed air systems. Pharmaceutical manufacturing plants in the U.S. spend nearly $1 billion each year for the fuel and electricity they need to keep their facilities running (Figure 1, below). That total that can increase dramatically when fuel supplies tighten and oil prices rise, as they did last year. Improving energy efficiency should be a strategic goal for any plant manager or manufacturing professional working in the drug industry today. Not only can energy efficiency reduce overall manufacturing costs, it usually reduces environmental emissions, establishing a strong foundation for a corporate greenhouse-gas-management program. For most pharmaceutical manufacturing plants, Heating, Ventilation and Air Conditioning (HVAC) is typically the largest consumer of energy, as shown in Table 1 below. This two-part series will examine energy use within pharmaceutical facilities, summarize best practices and examine potential savings and return on investment. In this first article, we will focus on efficient use of motors, drives and pumps, both for process equipment and compressed air systems. Part 2, to be published in May, will focus on overall HVAC systems, building management and boilers.

  9. Fuel Additivies for Improved Performance of Diesel Aftertreatment...

    Energy.gov [DOE] (indexed site)

    2 DEER Conference Presentation: Ethyl 2002deerhuman.pdf (167.51 KB) More Documents & Publications Impact of Fuel-Borne Catalysts on Diesel Aftertreatment Diesel Particulate ...

  10. SuperTruck Making Leaps in Fuel Efficiency | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    SuperTruck Making Leaps in Fuel Efficiency SuperTruck Making Leaps in Fuel Efficiency February 19, 2014 - 12:37pm Addthis This Class 8 tractor-trailer by heavy-duty manufacturers Cummins and Peterbilt reaches more than 10 miles per gallon under real world driving conditions. The truck was on display at the Energy Department today. | Photo by <a href="http://www.energy.gov/contributors/sarah-gerrity">Sarah Gerrity</a>, Energy Department This Class 8 tractor-trailer by

  11. Efficient Pt catalysts for polymer electrolyte fuel cells

    SciTech Connect

    Fournier, J.; Gaubert, G.; Tilquin, J.Y.

    1996-12-31

    Commercialization of polymer electrolyte fuel cells (PEFCs) requires an important decrease in their production cost. Cost reduction for the electrodes principally concerns the decrease in the amount of Pt catalyst necessary for the functioning of the PEFC without affecting cell performance. The first PEFCs used in the Gemini Space Program had a loading of 4-10 mg pt/cm{sup 2}. The cost of the electrodes was drastically reduced when pure colloidal Pt was replaced by Pt supported on carbon (Pt/C) with a Pt content of 0.4 Mg/cm{sup 2}. Since the occurrence of that breakthrough, many studies have been aimed at further lowering the Pt loading. Today, the lowest loadings reported for oxygen reduction are of the order of 0.05 mg pt/cm{sup 2}. The carbon support of commercial catalysts is Vulcan XC-72 from Cabot, a carbon black with a specific area of 254 m{sup 2}/g. Graphites with specific areas ranging from 20 to 305 m{sup 2}/g are now available from Lonza. The first aim of the present study was to determine the catalytic properties for 02 reduction of Pt supported on these high specific area graphites. The second aim was to use Pt inclusion synthesis on these high area graphites, and to measure the catalytic performances of these materials. Lastly, this same Pt-inclusion synthesis was extended even for use with Vulcan and Black Pearls as substrates (two carbon blacks from Cabot). All these catalysts have been labelled Pt-included materials to distinguish them from the Pt-supported ones. It will be shown that the reduced Pt content Pt-included materials obtained with high specific area substrates a are excellent catalysts for oxygen reduction, especially at high currents. Therefore, Pt inclusion synthesis appears to be a new method to decrease the cathodic Pt loading.

  12. Energy-Efficiency Improvement Opportunities for the Textile Industry

    SciTech Connect

    China Energy Group; Hasanbeigi, Ali

    2010-09-29

    The textile industry is one of the most complicated manufacturing industries because it is a fragmented and heterogeneous sector dominated by small and medium enterprises (SMEs). Energy is one of the main cost factors in the textile industry. Especially in times of high energy price volatility, improving energy efficiency should be a primary concern for textile plants. There are various energy-efficiency opportunities that exist in every textile plant, many of which are cost-effective. However, even cost-effective options often are not implemented in textile plants mostly because of limited information on how to implement energy-efficiency measures, especially given the fact that a majority of textile plants are categorized as SMEs and hence they have limited resources to acquire this information. Know-how on energy-efficiency technologies and practices should, therefore, be prepared and disseminated to textile plants. This guidebook provides information on energy-efficiency technologies and measures applicable to the textile industry. The guidebook includes case studies from textile plants around the world and includes energy savings and cost information when available. First, the guidebook gives a brief overview of the textile industry around the world, with an explanation of major textile processes. An analysis of the type and the share of energy used in different textile processes is also included in the guidebook. Subsequently, energy-efficiency improvement opportunities available within some of the major textile sub-sectors are given with a brief explanation of each measure. The conclusion includes a short section dedicated to highlighting a few emerging technologies in the textile industry as well as the potential for the use of renewable energy in the textile industry.

  13. Improving the Energy Efficiency of Pumped-Storage Power Plants

    SciTech Connect

    Artyukh, S. F.; Galat, V. V.; Kuz’min, V. V.; Chervonenko, I. I.; Shakaryan, Yu. G.; Sokur, P. V.

    2015-01-15

    Possible ways to improve the energy efficiency of hydroelectric generating sets of pumped-storage power plants (PSPPs) are studied. The Kiev PSPP is used as an example to show how its generating sets can be upgraded. It is concluded based on studies conducted that synchronous motor-generators should be replaced with asynchronized motor-generators. The feasibility of changing over the turbine to variable-speed operation is shown.

  14. Improved Solar Power Plant Efficiency: Low Cost Solar Irradiance Sensor -

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy Innovation Portal Solar Photovoltaic Solar Photovoltaic Industrial Technologies Industrial Technologies Electricity Transmission Electricity Transmission Find More Like This Return to Search Improved Solar Power Plant Efficiency: Low Cost Solar Irradiance Sensor University of Colorado Contact CU About This Technology Publications: PDF Document Publication CU3117D (Irradiance Sensor) Marketing Summary.pdf (149 KB) Technology Marketing Summary A University of Colorado research group led

  15. High Performance Healthcare Buildings: A Roadmap to Improved Energy Efficiency

    SciTech Connect

    Singer, Brett C.; Tschudi, William F.

    2009-09-08

    This document presents a road map for improving the energy efficiency of hospitals and other healthcare facilities. The report compiles input from a broad array of experts in healthcare facility design and operations. The initial section lists challenges and barriers to efficiency improvements in healthcare. Opportunities are organized around the following ten themes: understanding and benchmarking energy use; best practices and training; codes and standards; improved utilization of existing HVAC designs and technology; innovation in HVAC design and technology; electrical system design; lighting; medical equipment and process loads; economic and organizational issues; and the design of next generation sustainable hospitals. Achieving energy efficiency will require a broad set of activities including research, development, deployment, demonstration, training, etc., organized around 48 specific objectives. Specific activities are prioritized in consideration of potential impact, likelihood of near- or mid-term feasibility and anticipated cost-effectiveness. This document is intended to be broad in consideration though not exhaustive. Opportunities and needs are identified and described with the goal of focusing efforts and resources.

  16. Achieving the Best of Both Worlds-Improved Vehicle Performance with Fuel

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    that's Better for the Environment | Department of Energy Achieving the Best of Both Worlds-Improved Vehicle Performance with Fuel that's Better for the Environment Achieving the Best of Both Worlds-Improved Vehicle Performance with Fuel that's Better for the Environment November 10, 2016 - 3:58pm Addthis Researchers at Oak Ridge National Laboratory conducted biobased, high-octane fuel experiments using this modified turbocharged Cadillac. | Photo courtesy of Oak Ridge National Laboratory.

  17. Condensing economizers for thermal efficiency improvements and emissions control

    SciTech Connect

    Heaphy, J.P.; Carbonara, J.; Litzke, W.; Butcher, T.A.

    1993-12-31

    Flue gas condensing economizers improve the thermal efficiency of boilers by recovering sensible heat and water vapor latent heat from flue gas exhaust. In addition to improving thermal efficiency, condensing economizers also have the potential to act as control devices for emissions of particulates, SO{sub x}, and air toxics. Both Consolidated Edison of New York and Brookhaven National LaborAtory are currently working on condensing economizer technology with an emphasis on developing their potential for emissions control. Con Edison is currently conducting a condensing economizer demonstration at their oil-fired 74th Street Station in New York. Since installing this equipment in February of 1992 a heat rate improvement of 800 Btu/kWh has been seen. At another location, Ravenswood Station, a two stage condensing economizer has been installed in a pilot test. In this advanced configuration -the ``Integrated Flue Gas Treatment or IFGT system- two heat exchanger sections are installed and sprays of water with and without SO{sub 2} sorbents are included. Detailed studies of the removal of particulates, SO{sub 2}, SO{sub 3}, and selected air toxics have been done for a variety of operating conditions. Removal efficiencies for SO{sub 2} have been over 98% and for SO{sub 3} over 65%. Brookhaven National Laboratory`s studies involve predicting and enhancing particulate capture in condensing economizers with an emphasis on small, coal-fired applications. This work is funded by the Pittsburgh Energy Technology Center of the Department of Energy. Flyash capture efficiencies as high as 97% have been achieved to date with a single stage economizer.

  18. Volvo SuperTruck - Powertrain Technologies for Efficiency Improvement

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    2) * Innovative engine architectures * Alternative combustion cycles * Fueling Optimization * Demonstrate in Simulation and Single Cylinder Scoping 50% BTE Powertrain...

  19. Turning Bacteria into Fuel: Cyanobacteria Designed for Solar-Powered Highly Efficient Production of Biofuels

    SciTech Connect

    2010-01-01

    Broad Funding Opportunity Announcement Project: ASU is engineering a type of photosynthetic bacteria that efficiently produce fatty acidsa fuel precursor for biofuels. This type of bacteria, called Synechocystis, is already good at converting solar energy and carbon dioxide (CO2) into a type of fatty acid called lauric acid. ASU has modified the organism so it continuously converts sunlight and CO2 into fatty acidsoverriding its natural tendency to use solar energy solely for cell growth and maximizing the solar-to-fuel conversion process. ASUs approach is different because most biofuels research focuses on increasing cellular biomass and not on excreting fatty acids. The project has also identified a unique way to convert the harvested lauric acid into a fuel that can be easily blended with existing transportation fuels.

  20. Improved Flow-Field Structures for Direct Methanol Fuel Cells

    SciTech Connect

    Gurau, Bogdan

    2013-05-31

    The direct methanol fuel cell (DMFC) is ideal if high energy-density liquid fuels are required. Liquid fuels have advantages over compressed hydrogen including higher energy density and ease of handling. Although state-of-the-art DMFCs exhibit manageable degradation rates, excessive fuel crossover diminishes system energy and power density. Although use of dilute methanol mitigates crossover, the concomitant lowering of the gross fuel energy density (GFED) demands a complex balance-of-plant (BOP) that includes higher flow rates, external exhaust recirculation, etc. An alternative approach is redesign of the fuel delivery system to accommodate concentrated methanol. NuVant Systems Inc. (NuVant) will maximize the GFED by design and assembly of a DMFC that uses near neat methanol. The approach is to tune the diffusion of highly concentrated methanol (to the anode catalytic layer) to the back-diffusion of water formed at the cathode (i.e. in situ generation of dilute methanol at the anode layer). Crossover will be minimized without compromising the GFED by innovative integration of the anode flow-field and the diffusion layer. The integrated flow-field-diffusion-layers (IFDLs) will widen the current and potential DMFC operating ranges and enable the use of cathodes optimized for hydrogen-air fuel cells.

  1. Sustainable Transportation: Accelerating Widespread Adoption of Energy Efficient Vehicles & Fuels (Brochure)

    SciTech Connect

    Not Available

    2014-12-01

    While energy efficient transportation strategies have the potential to simultaneously slash oil consumption and reduce greenhouse gas (GHG) emissions, a truly sustainable solution will require more than just putting drivers behind the wheels of new fuel-efficient cars. As the only national laboratory dedicated 100% to renewable energy and energy efficiency, the National Renewable Energy Laboratory (NREL) accelerates widespread adoption of high-performance, low-emission, energy-efficient passenger and freight vehicles, as well as alternative fuels and related infrastructure. Researchers collaborate closely with industry, government, and research partners, using a whole-systems approach to design better batteries, drivetrains, and engines, as well as thermal management, energy storage, power electronic, climate control, alternative fuel, combustion, and emission systems. NREL's sustainable transportation research, development, and deployment (RD&D) efforts are not limited to vehicles, roads, and fueling stations. The lab also explores ways to save energy and reduce GHGs by integrating transportation technology advancements with renewable energy generation, power grids and building systems, urban planning and policy, and fleet operations.

  2. Improving EM&V for Energy Efficiency Programs (Fact Sheet)

    SciTech Connect

    Not Available

    2012-07-01

    This fact sheet describes the objectives of the U.S. Department of Energy Uniform Methods Project to bring consistency to energy savings calculations in U.S. energy efficiency programs. The U.S. Department of Energy (DOE) is developing a framework and a set of protocols for determining gross energy savings from energy efficiency measures and programs. The protocols represent a refinement of the body of knowledge supporting energy efficiency evaluation, measurement, and verification (EM&V) activities. They have been written by technical experts within the field and reviewed by industry experts. Current EM&V practice allows for multiple methods for calculating energy savings. These methods were developed to meet the needs of energy efficiency program administrators and regulators. Although they served their original objectives well, they have resulted in inconsistent and incomparable savings results - even for identical measures. The goal of the Uniform Methods Project is to strengthen the credibility of energy savings determinations by improving EM&V, increasing the consistency and transparency of how energy savings are determined.

  3. Fuel Performance Improvement Program. Semiannual progress report, October 1979-March 1980. [PWR; BWR

    SciTech Connect

    Not Available

    1980-04-01

    Progress on the Fuel Performance Improvement Program's fuel design tests and demonstration irradiations for October 1979 through March 1980 is reported. Included are the results of out-of-reactor experiments with Zircaloy cladding using a device that simulates the interaction between fuel and cladding. Also included are reports on the irradiation of the advanced LWR fuel designs in the Halden Boiling Water Reactor and in Consumers Power Company's Big Rock Point Reactor. The establishment of the technical bases and licensing requirements for the advanced fuel concepts are also described.

  4. Energy Efficiency Improvement in the Petroleum RefiningIndustry

    SciTech Connect

    Worrell, Ernst; Galitsky, Christina

    2005-05-01

    Information has proven to be an important barrier inindustrial energy efficiency improvement. Voluntary government programsaim to assist industry to improve energy efficiency by supplyinginformation on opportunities. ENERGY STAR(R) supports the development ofstrong strategic corporate energy management programs, by providingenergy management information tools and strategies. This paper summarizesENERGY STAR research conducted to develop an Energy Guide for thePetroleum Refining industry. Petroleum refining in the United States isthe largest in the world, providing inputs to virtually every economicsector, including the transport sector and the chemical industry.Refineries spend typically 50 percent of the cash operating costs (e.g.,excluding capital costs and depreciation) on energy, making energy amajor cost factor and also an important opportunity for cost reduction.The petroleum refining industry consumes about 3.1 Quads of primaryenergy, making it the single largest industrial energy user in the UnitedStates. Typically, refineries can economically improve energy efficiencyby 20 percent. The findings suggest that given available resources andtechnology, there are substantial opportunities to reduce energyconsumption cost-effectively in the petroleum refining industry whilemaintaining the quality of the products manufactured.

  5. IMPROVING CO2 EFFICIENCY FOR RECOVERING OIL IN HETEROGENEOUS RESERVOIRS

    SciTech Connect

    Reid B. Grigg; Robert K. Svec; Zheng-Wen Zeng; Liu Yi; Baojun Bai

    2003-05-01

    A three-year contract for the project, DOE Contract No. DE-FG26-01BC15364, ''Improving CO{sub 2} Efficiency for Recovering Oil in Heterogeneous Reservoirs,'' was awarded and started on September 28, 2001. This project examines three major areas in which CO2 flooding can be improved: fluid and matrix interactions, conformance control/sweep efficiency, and reservoir simulation for improved oil recovery. This report discusses the activity during the six-month period covering October 1, 2002 through March 31, 2003 that covers the first and second fiscal quarters of the project's second year. During these two quarters of the project we have been working in several areas: reservoir fluid/rock interactions and their relationships to changing injectivity, and surfactant adsorption on quarried core and pure component granules, foam stability, and high flow rate effects. We also had a very productive project review in Midland, Texas. A paper on CO{sub 2}-brine-reservoir rock interaction was presented and included in the proceedings of the SPE International Symposium on Oilfield Chemistry, Houston, 5-8 February, 2003. Papers have been accepted for the Second Annual Conference on Carbon Sequestration in Alexandria, VA in May, the Society of Core Analysis meeting in Pau, France in September, and two papers for the SPE Annual Meeting in Denver, CO in October.

  6. High resolution PET breast imager with improved detection efficiency

    DOEpatents

    Majewski, Stanislaw

    2010-06-08

    A highly efficient PET breast imager for detecting lesions in the entire breast including those located close to the patient's chest wall. The breast imager includes a ring of imaging modules surrounding the imaged breast. Each imaging module includes a slant imaging light guide inserted between a gamma radiation sensor and a photodetector. The slant light guide permits the gamma radiation sensors to be placed in close proximity to the skin of the chest wall thereby extending the sensitive region of the imager to the base of the breast. Several types of photodetectors are proposed for use in the detector modules, with compact silicon photomultipliers as the preferred choice, due to its high compactness. The geometry of the detector heads and the arrangement of the detector ring significantly reduce dead regions thereby improving detection efficiency for lesions located close to the chest wall.

  7. Technologies and Policies to Improve Energy Efficiency in Industry

    SciTech Connect

    Price, Lynn; Price, Lynn

    2008-03-01

    The industrial sector consumes nearly 40% of annual global primary energy use and is responsible for a similar share of global energy-related carbon dioxide (CO2) emissions. Many studies and actual experience indicate that there is considerable potential to reduce the amount of energy used to manufacture most commodities, concurrently reducing CO2 emissions. With the support of strong policies and programs, energy-efficient technologies and measures can be implemented that will reduce global CO2 emissions. A number of countries, including the Netherlands, the UK, and China, have experience implementing aggressive programs to improve energy efficiency and reduce related CO2 emissions from industry. Even so, there is no silver bullet and all options must be pursued if greenhouse gas emissions are to be constrained to the level required to avoid significant negative impacts from global climate change.

  8. A Surface Treatment for Improving Fuel-Cell Cathodes

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Unlike batteries, fuel cells don't run down when exhausted, ... be anything from solar-produced hydrogen to gassified coal. ... usually made of a perovskite oxide, under operating ...

  9. Automated Boiler Combustion Controls for Emission Reduction and Efficiency Improvement

    SciTech Connect

    None, None

    1998-12-02

    In the late 1980s, then President Bush visited Krakow, Poland. The terrible air quality theremotivated him to initiate a USAID-funded program, managed by DOE, entitled "Krakow Clean Fossil Fuels and Energy Efficiency Program." The primary objective of this program was to encourage the formation of commercial ventures between U.S. and Polish firms to provide equipment and/or services to reduce pollution from low-emission sources in Krakow, Poland. This program led to the award of a number of cooperative agreements, including one to Control Techtronics International. The technical objective of CTI's cooperative agreement is to apply combustion controls to existing boiler plants in Krakow and transfer knowledge and technology through a joint U.S. and Polish commercial venture. CTI installed automatic combustion controls on five coal boilers for the district heating system in Krakow. Three of these were for domestic hot-water boilers, and two were for steam for industrial boilers. The following results have occurred due to the addition of CTI's combustion controls on these five existing boilers: ! 25% energy savings ! 85% reduction in particulate emissions The joint venture company CTI-Polska was then established. Eleven additional technical and costing proposals were initiated to upgrade other coal boilers in Krakow. To date, no co-financing has been made available on the Polish side. CTI-Polska continues in operation, serving customers in Russia and Ukraine. Should the market in Poland materialize, the joint venture company is established there to provide equipment and service.

  10. Energy efficiency improvement and cost saving opportunities forpetroleum refineries

    SciTech Connect

    Worrell, Ernst; Galitsky, Christina

    2005-02-15

    The petroleum refining industry in the United States is the largest in the world, providing inputs to virtually any economic sector,including the transport sector and the chemical industry. The industry operates 146 refineries (as of January 2004) around the country,employing over 65,000 employees. The refining industry produces a mix of products with a total value exceeding $151 billion. Refineries spend typically 50 percent of cash operating costs (i.e., excluding capital costs and depreciation) on energy, making energy a major cost factor and also an important opportunity for cost reduction. Energy use is also a major source of emissions in the refinery industry making energy efficiency improvement an attractive opportunity to reduce emissions and operating costs. Voluntary government programs aim to assist industry to improve competitiveness through increased energy efficiency and reduced environmental impact. ENERGY STAR (R), a voluntary program managed by the U.S. Environmental Protection Agency, stresses the need for strong and strategic corporate energy management programs. ENERGY STAR provides energy management tools and strategies for successful corporate energy management programs. This Energy Guide describes research conducted to support ENERGY STAR and its work with the petroleum refining industry.This research provides information on potential energy efficiency opportunities for petroleum refineries. This Energy Guide introduces energy efficiency opportunities available for petroleum refineries. It begins with descriptions of the trends, structure, and production of the refining industry and the energy used in the refining and conversion processes. Specific energy savings for each energy efficiency measure based on case studies of plants and references to technical literature are provided. If available, typical payback periods are also listed. The Energy Guide draws upon the experiences with energy efficiency measures of petroleum refineries worldwide

  11. Fast reactor core concepts to improve transmutation efficiency

    SciTech Connect

    Fujimura, Koji; Kawashima, Katsuyuki; Itooka, Satoshi

    2015-12-31

    Fast Reactor (FR) core concepts to improve transmutation efficiency were conducted. A heterogeneous MA loaded core was designed based on the 1000MWe-ABR breakeven core. The heterogeneous MA loaded core with Zr-H loaded moderated targets had a better transmutation performance than the MA homogeneous loaded core. The annular pellet rod design was proposed as one of the possible design options for the MA target. It was shown that using annular pellet MA rods mitigates the self-shielding effect in the moderated target so as to enhance the transmutation rate.

  12. Improving the Efficient of Ernie Turner Center. Final Progress Report

    SciTech Connect

    Fredeen, Amy

    2011-03-21

    The objective of this project was to complete the specifications and drawings for a variable speed kitchen exhaust system and the boiler heating system which when implemented will improve the heating efficiency of the building. The design work was focused in two key areas: kitchen ventilation and heating for the Ernie Turner Center building (ETC). RSA completed design work and issued a set of 100% drawings. RSA also worked with a cost estimator to put together a detailed cost estimate for the project. The design components are summarized.

  13. PPPL scientists help test innovative device to improve efficiency of

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    tokamaks | Princeton Plasma Physics Lab PPPL scientists help test innovative device to improve efficiency of tokamaks By Raphael Rosen April 6, 2016 Tweet Widget Google Plus One Share on Facebook Photo of white-hot limiter glowing in contact with the plasma during an EAST discharge. (Photo by J.S. Hu) Photo of white-hot limiter glowing in contact with the plasma during an EAST discharge. Scientists at the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL) have helped

  14. PPPL scientists help test innovative device to improve efficiency of

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    tokamaks | Princeton Plasma Physics Lab PPPL scientists help test innovative device to improve efficiency of tokamaks By Raphael Rosen April 6, 2016 Tweet Widget Google Plus One Share on Facebook Photo of white-hot limiter glowing in contact with the plasma during an EAST discharge. (Photo by J.S. Hu ) Photo of white-hot limiter glowing in contact with the plasma during an EAST discharge. Scientists at the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL) have helped

  15. Progress on Enabling an Interactive Conversation Between Commercial Building Occupants and Their Building To Improve Comfort and Energy Efficiency: Preprint

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Office of Advanced Automotive Technologies 1000 Independence Avenue, S.W. Washington, DC 20585-0121 FY 1999 FY 1999 FY 1999 FY 1999 Progress Report for Advanced Automotive Fuels Progress Report for Advanced Automotive Fuels Progress Report for Advanced Automotive Fuels Progress Report for Advanced Automotive Fuels Energy Efficiency and Renewable Energy Energy Efficiency and Renewable Energy Energy Efficiency and Renewable Energy Energy Efficiency and Renewable Energy Office of Transportation

  16. Efficient incorporation of silver to improve superconducting fibers

    DOEpatents

    Gleixner, Richard A.; LaCount, Dale F.; Finnemore, Douglas K.

    1994-04-26

    An improved method for the efficient incorporation of a metal such as silver in a superconducting material includes blending the metal with a high temperature superconductor or precursor powder and consolidating the same into pellets. The pellets are charged directly into a heating assembly where it is melted and heated sufficiently to a uniform temperature prior to fiberization. Droplets of the melted blend fall through a collar into a nozzle where they are subjected to a high velocity gas to break the melted material into ligaments which solidify into improved flexible fibers having the metal homogeneously dis This invention was made with Government support under a contract with the Department of Energy (DOE) and Ames Laboratory, Contract No. SC-91-225, our reference No. CRD-1272. The Government has certain rights in this invention.

  17. High efficiency direct fuel cell hybrid power cycle for near term application

    SciTech Connect

    Steinfeld, G.; Maru, H.C.; Sanderson, R.A.

    1996-12-31

    Direct carbonate fuel cells being developed by Energy Research Corporation can generate power at an efficiency approaching 60% LHV. This unique fuel cell technology can consume natural gas and other hydrocarbon based fuels directly without requiring an external reformer, thus providing a simpler and inherently efficient power generation system. A 2 MW power plant demonstration of this technology has been initiated at an installation in the city of Santa Clara in California. A 2.85 MW commercial configuration shown in Figure 1 is presently being developed. The complete plant includes the carbonate fuel cell modules, an inverter, transformer and switchgear, a heat recovery unit and supporting instrument air and water treatment systems. The emission levels for this 2.85 MW plant are projected to be orders of magnitude below existing or proposed standards. The 30 year levelized cost of electricity, without inflation, is projected to be approximately 5{cents}/kW-h assuming capital cost for the carbonate fuel cell system of $1000/kW.

  18. The Waukesha Turbocharger Control Module: A tool for improved engine efficiency and response

    SciTech Connect

    Zurlo, J.R.; Reinbold, E.O.; Mueller, J.

    1996-12-31

    The Waukesha Turbocharger Control Module allows optimum control of turbochargers on lean burn gaseous fueled engines. The Turbocharger Control Module is user programmed to provide either maximum engine efficiency or best engine response to load changes. In addition, the Turbocharger Control Module prevents undesirable turbocharger surge. The Turbocharger Control Module consists of an electronic control box, engine speed, intake manifold pressure, ambient temperature sensors, and electric actuators driving compressor bypass and wastegate valves. The Turbocharger Control Module expands the steady state operational environment of the Waukesha AT27GL natural gas engine from sea level to 1,525 m altitude with one turbocharger match and improves the engine speed turn down by 80 RPM. Finally, the Turbocharger Control Module improves engine response to load changes.

  19. Evaluation and demonstration of methods for improved fuel utilization. First semi-annual progress report, September 1979-March 1980

    SciTech Connect

    Decher, U.

    1980-06-25

    Demonstrations of improved fuel management and burnup are being performed in the Fort Calhoun reactor. More efficient fuel management will be achieved through the implementation of a low leakage concept called SAVFUEL (Shimmed And Very Flexible Uranium Element Loading), which is expected to reduce uranium requirements by 2 to 4%. The burnup will be increased sufficiently to reduce uranium requirements by 5 to 15%. Four fuel assemblies scheduled to demonstrate the SAVFUEL duty cycle and loaded into the core in December 1978 were inspected visually prior to their second exposure cycle. In addition, seventeen fuel assemblies were inspected after their fourth exposure cycle having achieved assembly average burnup up to 36 GWD/T. One assembly has been reinserted into Cycle 6 for a fifth exposure cycle. The preliminary results of all visual fuel inspections which appear to show excellent fuel rod performance are presented in this report. This report also contains the results of a licensing activity which was performed to allow insertion of a highly burned assembly into the reactor for a fifth irradiation cycle.

  20. Modifying woody plants for efficient conversion to liquid and gaseous fuels

    SciTech Connect

    Dinus, R.J.; Dimmel, D.R.; Feirer, R.P.; Johnson, M.A.; Malcolm, E.W. )

    1990-07-01

    The Short Rotation Woody Crop Program (SRWCP), Department of Energy, is developing woody plant species as sources of renewable energy. Much progress has been made in identifying useful species, and testing site adaptability, stand densities, coppicing abilities, rotation lengths, and harvesting systems. Conventional plant breeding and intensive cultural practices have been used to increase above-ground biomass yields. Given these and foreseeable accomplishments, program leaders are now shifting attention to prospects for altering biomass physical and chemical characteristics, and to ways for improving the efficiency with which biomass can be converted to gaseous and liquid fuels. This report provides a review and synthesis of literature concerning the quantity and quality of such characteristics and constituents, and opportunities for manipulating them via conventional selection and breeding and/or molecular biology. Species now used by SRWCP are emphasized, with supporting information drawn from others as needed. Little information was found on silver maple (Acer saccharinum), but general comparisons (Isenberg 1981) suggest composition and behavior similar to those of the other species. Where possible, conclusions concerning means for and feasibility of manipulation are given, along with expected impacts on conversion efficiency. Information is also provided on relationships to other traits, genotype X environment interactions, and potential trade-offs or limitations. Biomass productivity per se is not addressed, except in terms of effects that may by caused by changes in constituent quality and/or quantity. Such effects are noted to the extent they are known or can be estimated. Likely impacts of changes, however effected, on suitability or other uses, e.g., pulp and paper manufacture, are notes. 311 refs., 4 figs., 9 tabs.

  1. Improving computational efficiency of Monte Carlo simulations with variance reduction

    SciTech Connect

    Turner, A.

    2013-07-01

    CCFE perform Monte-Carlo transport simulations on large and complex tokamak models such as ITER. Such simulations are challenging since streaming and deep penetration effects are equally important. In order to make such simulations tractable, both variance reduction (VR) techniques and parallel computing are used. It has been found that the application of VR techniques in such models significantly reduces the efficiency of parallel computation due to 'long histories'. VR in MCNP can be accomplished using energy-dependent weight windows. The weight window represents an 'average behaviour' of particles, and large deviations in the arriving weight of a particle give rise to extreme amounts of splitting being performed and a long history. When running on parallel clusters, a long history can have a detrimental effect on the parallel efficiency - if one process is computing the long history, the other CPUs complete their batch of histories and wait idle. Furthermore some long histories have been found to be effectively intractable. To combat this effect, CCFE has developed an adaptation of MCNP which dynamically adjusts the WW where a large weight deviation is encountered. The method effectively 'de-optimises' the WW, reducing the VR performance but this is offset by a significant increase in parallel efficiency. Testing with a simple geometry has shown the method does not bias the result. This 'long history method' has enabled CCFE to significantly improve the performance of MCNP calculations for ITER on parallel clusters, and will be beneficial for any geometry combining streaming and deep penetration effects. (authors)

  2. EA-1573-S1: Proposed Renewable Fuel Heat Plant Improvements at the National

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Renewable Energy Laboratory South Table Mountain Site, Golden, CO | Department of Energy 3-S1: Proposed Renewable Fuel Heat Plant Improvements at the National Renewable Energy Laboratory South Table Mountain Site, Golden, CO EA-1573-S1: Proposed Renewable Fuel Heat Plant Improvements at the National Renewable Energy Laboratory South Table Mountain Site, Golden, CO DOE's Golden Field Office has prepared a draft Supplemental Environmental Assessment (SEA) for proposed improvements to the

  3. How Have You Improved the Efficiency of Your Windows? | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Have You Improved the Efficiency of Your Windows? How Have You Improved the Efficiency of Your Windows? March 18, 2010 - 7:57pm Addthis This week, John told you about his experience with window shades that improve the energy efficiency of his windows. There are several things you can do to improve the efficiency of existing windows, including adding storm windows, caulking or weatherstripping, or using window treatments. How have you improved the efficiency of your windows? Each

  4. System for adding sulfur to a fuel cell stack system for improved fuel cell stability

    DOEpatents

    Mukerjee, Subhasish; Haltiner, Jr., Karl J; Weissman, Jeffrey G

    2013-08-13

    A system for adding sulfur to a reformate stream feeding a fuel cell stack, having a sulfur source for providing sulfur to the reformate stream and a metering device in fluid connection with the sulfur source and the reformate stream. The metering device injects sulfur from the sulfur source to the reformate stream at a predetermined rate, thereby providing a conditioned reformate stream to the fuel cell stack. The system provides a conditioned reformate stream having a predetermined sulfur concentration that gives an acceptable balance of minimal drop in initial power with the desired maximum stability of operation over prolonged periods for the fuel cell stack.

  5. EERE Success Story-FCA and Partners Achieve 25% Fuel Economy Improvement

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    in Light-Duty Advanced Technology Powertrain | Department of Energy FCA and Partners Achieve 25% Fuel Economy Improvement in Light-Duty Advanced Technology Powertrain EERE Success Story-FCA and Partners Achieve 25% Fuel Economy Improvement in Light-Duty Advanced Technology Powertrain March 7, 2016 - 10:57am Addthis EERE Success Story—FCA and Partners Achieve 25% Fuel Economy Improvement in Light-Duty Advanced Technology Powertrain EERE Success Story—FCA and Partners Achieve 25%

  6. EERE Success Story-Multi-Mode RCCI Has Great Potential to Improve Fuel

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Economy in Light-Duty Diesel Engines | Department of Energy Multi-Mode RCCI Has Great Potential to Improve Fuel Economy in Light-Duty Diesel Engines EERE Success Story-Multi-Mode RCCI Has Great Potential to Improve Fuel Economy in Light-Duty Diesel Engines February 26, 2015 - 11:47am Addthis Multi-mode RCCI (Reactivity-Controlled Compression Ignition), a promising advanced combustion process, has the potential to improve fuel economy of passenger cars by at least 15%, according to a recent

  7. Fact #925: May 16, 2016 Improvements in Fuel Economy for Low-MPG Vehicles Yield the Greatest Savings- Dataset

    Energy.gov [DOE]

    Excel file and dataset for Improvements in Fuel Economy for Low-MPG Vehicles Yield the Greatest Savings

  8. Improvement of the thermal margins in the Swedish Ringhals-3 PWR by introducing new fuel assemblies with thorium

    SciTech Connect

    Lau, C. W.; Demaziere, C.; Nylen, H.; Sandberg, U.

    2012-07-01

    Thorium is a fertile material and most of the past research has focused on breeding thorium to fissile material. In this paper, the focus is on using thorium to improve the thermal margins by homogeneously distributing thorium in the fuel pellets. A proposed uranium-thorium-based fuel assembly is simulated for the Swedish Ringhals-3 PWR core in a realistic demonstration. All the key safety parameters, such as isothermal temperature coefficient of reactivity, Doppler temperature of reactivity, boron worth, shutdown margins and fraction of delayed neutrons are studied in this paper, and are within safety limits for the new core design using the uranium-thorium-based fuel assemblies. The calculations were performed by the two-dimensional transport code CASMO-4E and the two group steady-state three dimensional nodal code SIMULATE-3 from Studsvik Scandpower. The results showed that the uranium-thorium-based fuel assembly improves the thermal margins, both in the pin peak power and the local power (Fq). The improved thermal margins would allow more flexible core designs with less neutron leakage or could be used in power uprates to offer efficient safety margins. (authors)

  9. Good Samaritan Hospital`s energy efficiency improvements

    SciTech Connect

    Sterrett, R.; Dobberpuhl, W.; Gernet, B.; O`Brien, T.

    1995-06-01

    Arizona Public Service (APS) encourages its customers to use energy wisely by providing incentives to install energy efficient systems. APS provided an incentive to the Good Samaritan Hospital, located in Phoenix, Arizona, to install a Waste Heat Recovery Unit and an Economizer Cooling System to improve the performance of the hospital`s central plant. Waste heat recovered from the boilers stacks is used to preheat combustion air and boiler feed water. The Economizer Cooling System uses a plate and frame heat exchanger to cool the hospital with cold water produced by the cooling tower rather than an electrical chiller. To determine the effectiveness of these two systems APS initiated a project to monitor their performance. Alternative Energy Systems Consulting, Inc. (AESC) has installed instrumentation to monitor the performance of the above systems and will document their energy savings and effectiveness at reducing energy costs.

  10. (Energy efficiency improvement studies for Costa Rica and Guatemala)

    SciTech Connect

    Waddle, D.B.

    1990-05-30

    I travelled to San Jose, Cost Rica, on May 20, 1990 to report on the progress of the Integrated Power Sector Efficiency Analysis Project to the Instituto Costarrincense de Electricidad, and to USAID/San Jose. I also discussed the progress and plans for the CONELECTRICAS Small Hydroelectric Project supported by ORNL through the Renewable Energy Applications and Training Project. Both projects are proceeding on schedule. ORNL will complete further supply side analysis after comments are submitted by ICE, with respect to the information provided on this visit. The CONELECTRICAS project will require further ORNL input to assist in optimization of equipment selection and to perform the required financial and economic cost analyses. I travelled to Guatemala City on May 22, 1990. I met with Instituto Nacional de Electricacion (INDE) to discuss the findings and recommendations of the Electric Power Utility Efficiency Improvement Study undertaken in February, 1990. I also met with Mario Funes to discuss future ORNL assistance to ROCAP in support of the CARES project as well as other ROCAP energy initiatives.

  11. Creating a Transactive Energy Framework: Improving Reliability and Efficiency

    SciTech Connect

    Melton, Ronald B.

    2013-11-01

    The use of demand response and other flexible distributed resources over the past decade for market efficiency and grid reliability has grown dramatically. Federal and state policy objectives point to an important role for customer loads, generation and storage in the management of an increasingly unpredictable power system. As we consider the need to substantially scale the use of flexible distributed energy resources, there has been growing attention to the need to address not only the economics, but also the control system implications to ensure grid reliability. This has led to a focus on an area of activity called “Transactive Energy.” Transactive Energy refers to the combination of economic and control techniques that improve grid reliability and efficiency. These techniques may also be used to optimize operations within a customer’s facility. The Department of Energy has supported the GridWise® Architecture Council (“the Council”) to develop a framework to provide opportunity for collaboration among the many stakeholders involved in the transformation of the power system.

  12. Improving Energy Efficiency by Developing Components for Distributed...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Based on Thermal Comfort Modeling Thermoelectric (TE) HVAC Energy Efficient HVAC System for Distributed CoolingHeating with Thermoelectric Devices Energy Efficient HVAC System ...

  13. Efficiency Improvement through Reduction in Friction and Wear in Powertrain Systems

    SciTech Connect

    Michael Killian

    2009-09-30

    exhibited durability issues, stripping away under conditions less demanding than 750,000 miles in service on the road. Failed coatings compound the problem by contaminating the lubricant with hard particles. Under the most severe conditions, super finished surfaces may polish further, reaching a surface roughness unable to support the critical oil film thickness. Low viscosity and low friction lubricants may not protect the gears and bearings adequately leading to excessive pitting, wear and noise. Additives in low friction oils may not stay in solution or suspended thus settling to the bottom and unavailable when they are needed most. Technical barriers and risks can be overcome through engineering, but two barriers remain formidable: (1) cost of the technology and (2) convincing fleet owners that the technology provides a tangible benefit. Dry sumps lower lubricant operating temperatures so the removal of heat exchangers and hoses and reduced demand on engine cooling systems justify their use. The benefits of surface texturing are varied and remain unproven. Lubricant costs seem manageable, but the cost of super finishing and gear coating are high. These are issues of scale and processing technology. Going across the board with gear super finishing and coating will reduce costs. Pushing the envelope to applications with higher torque and higher power density should drive the adoption of these technologies. Fleet owners are an educated and seasoned lot. Only technology measureable in dollars returned is used on truck fleets. To convince fleet owners of the benefit of these technologies, new precision in measuring fuel efficiency must be introduced. Legislation for a minimum standard in truck miles per gallon would also enable the use of these technologies. Improving the efficiency of truck transmissions and axle will make a noticeable impact on the fuel consumption by heavy vehicles in the United States. However, the greatest benefit will come when all the individual

  14. Co-Optimization of Fuels & Engines for Tomorrow's Energy-Efficient Vehicles (Fact Sheet), U.S. Department of Energy (DOE), Energy Efficiency & Renewable Energy (EERE)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Optimization of Fuels & Engines FOR TOMORROW'S ENERGY-EFFICIENT VEHICLES CO-OPTIMIZATION FOR NEAR- AND LONG-TERM TRANSPORTATION SOLUTIONS A new U.S. Department of Energy (DOE) initiative is accelerating the introduction of affordable, scalable, and sustainable biofuels and high-efficiency, low-emission vehicle engines. The simultaneous fuels and vehicles research and development (R&D) is designed to deliver maximum energy savings, emissions reduction, and on-road vehicle performance.

  15. Improved encapsulated fuel unit and method of forming same

    DOEpatents

    Groh, E.F.; Cassidy, D.A.; Lewandowski, E.

    1982-09-07

    This invention teaches an encapsulated fuel unit for a nuclear reactor, such as for an enriched uranium fuel plate of thin cross section of the order of 1/64 or 1/8 of an inch and otherwise of rectangular shape 1 to 2 inches wide and 2 to 4 inches long. The case is formed from (a) two similar channel-shaped half sections extended lengthwise of the elongated plate and having side edges butted and welded together to define an open ended tube-like structure and from (b) porous end caps welded across the open ends of the tube-like structure. The half sections are preferably of stainless steel between 0.002 and 0.01 of an inch thick, and are beam welded together over and within machined and hardened tool steel chill blocks. The porous end caps preferably are of T-316-L stainless steel having pores of approximately 3 to 10 microns size.

  16. POTENTIAL IMPACT OF INTERFACIAL BONDING EFFICIENCY ON USED NUCLEAR FUEL VIBRATION INTEGRITY DURING NORMAL TRANSPORTATION

    SciTech Connect

    Jiang, Hao; Wang, Jy-An John; Wang, Hong

    2014-01-01

    Finite element analysis (FEA) was used to investigate the impacts of interfacial bonding efficiency at pellet pellet and pellet clad interfaces on surrogate of used nuclear fuel (UNF) vibration integrity. The FEA simulation results were also validated and benchmarked with reversible bending fatigue test results on surrogate rods consisting of stainless steel (SS) tubes with alumina-pellet inserts. Bending moments (M) are applied to the FEA models to evaluate the system responses of the surrogate rods. From the induced curvature, , the flexural rigidity EI can be estimated as EI=M/ . The impacts of interfacial bonding efficiency include the moment carrying capacity distribution between pellets and clad and cohesion influence on the flexural rigidity of the surrogate rod system. The result also indicates that the immediate consequences of interfacial de-bonding are a load carrying capacity shift from the fuel pellets to the clad and a reduction of the composite rod flexural rigidity. Therefore, the flexural rigidity of the surrogate rod and the bending moment bearing capacity between the clad and fuel pellets are strongly dependent on the efficiency of interfacial bonding at the pellet pellet and pellet clad interfaces. FEA models will be further used to study UNF vibration integrity.

  17. Volvo SuperTruck - Powertrain Technologies for Efficiency Improvement...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    3 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon ace060amar2013o.pdf More Documents & Publications...

  18. System for adding sulfur to a fuel cell stack system for improved fuel cell stability

    DOEpatents

    Mukerjee, Subhasish; Haltiner, Jr., Karl J; Weissman, Jeffrey G.

    2012-03-06

    A system for adding sulfur to a fuel cell stack, having a reformer adapted to reform a hydrocarbon fuel stream containing sulfur contaminants, thereby providing a reformate stream having sulfur; a sulfur trap fluidly coupled downstream of the reformer for removing sulfur from the reformate stream, thereby providing a desulfurized reformate stream; and a metering device in fluid communication with the reformate stream upstream of the sulfur trap and with the desulfurized reformate stream downstream of the sulfur trap. The metering device is adapted to bypass a portion of the reformate stream to mix with the desulfurized reformate stream, thereby producing a conditioned reformate stream having a predetermined sulfur concentration that gives an acceptable balance of minimal drop in initial power with the desired maximum stability of operation over prolonged periods for the fuel cell stack.

  19. Fact #925: May 16, 2016 Improvements in Fuel Economy for Low-MPG Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Yield the Greatest Savings | Department of Energy 5: May 16, 2016 Improvements in Fuel Economy for Low-MPG Vehicles Yield the Greatest Savings Fact #925: May 16, 2016 Improvements in Fuel Economy for Low-MPG Vehicles Yield the Greatest Savings SUBSCRIBE to the Fact of the Week The relationship between gallons used over a given distance and miles per gallon (mpg) is not linear. Trading a low-mpg car or truck for one with just slightly better mpg will save more fuel than trading a high-mpg car

  20. Coal-fired boiler houses in Cracow present state and possibilities to improve their efficiency

    SciTech Connect

    Cyklis, P.; Butcher, T.A.

    1995-12-31

    A significant amount of heat energy both for heating and process purposes is generated in Cracow, Poland in small-and medium size local boiler houses. The operating procedure of these boiler houses is most often economically and ecologically ineffective because of the bad condition of boilers and lack of funds to install automation, control and measurement equipment. Within the Polish-American Program of Elimination of Low Emission Sources financed by the US Department of Energy, the ENERGOEKSPERT Co., Ltd. investigated chosen boiler houses in Cracow, commissioned by the Cracow Development Office. The results of these investigations were subject of engineering analysis carried out at the Institute of Industrial Equipment and Power Engineering, Technical University, Cracow. The analysis proved that the low-cost improvement of economic efficiency and reduction of air pollutant emission is feasible for combustion of coal fuels.

  1. The ways of SOFC systems efficiency increasing

    SciTech Connect

    Demin, A.K.; Timofeyeva, N.

    1996-04-01

    The efficiency of solid oxide fuel cells (SOFCs) is described. This paper considers methods to lift the fuel utilization and/or the average cell voltage with the goal of increasing the cell efficiency by improved cell designs.

  2. IMPROVING CO2 EFFICIENCY FOR RECOVERING OIL IN HETEROGENEOUS RESERVOIRS

    SciTech Connect

    Reid B. Grigg; Robert K. Svec

    2002-12-20

    This document is the First Annual Report for the U.S. Department of Energy under contract No., a three-year contract entitled: ''Improving CO{sub 2} Efficiency for Recovering Oil in Heterogeneous Reservoirs.'' The research improved our knowledge and understanding of CO{sub 2} flooding and includes work in the areas of injectivity and mobility control. The bulk of this work has been performed by the New Mexico Petroleum Recovery Research Center, a research division of New Mexico Institute of Mining and Technology. This report covers the reporting period of September 28, 2001 and September 27, 2002. Injectivity continues to be a concern to the industry. During this period we have contacted most of the CO{sub 2} operators in the Permian Basin and talked again about their problems in this area. This report has a summary of what we found. It is a given that carbonate mineral dissolution and deposition occur in a formation in geologic time and are expected to some degree in carbon dioxide (CO{sub 2}) floods. Water-alternating-gas (WAG) core flood experiments conducted on limestone and dolomite core plugs confirm that these processes can occur over relatively short time periods (hours to days) and in close proximity to each other. Results from laboratory CO{sub 2}-brine flow experiments performed in rock core were used to calibrate a reactive transport simulator. The calibrated model is being used to estimate in situ effects of a range of possible sequestration options in depleted oil/gas reservoirs. The code applied in this study is a combination of the well known TOUGH2 simulator, for coupled groundwater/brine and heat flow, with the chemistry code TRANS for chemically reactive transport. Variability in response among rock types suggests that CO{sub 2} injection will induce ranges of transient and spatially dependent changes in intrinsic rock permeability and porosity. Determining the effect of matrix changes on CO{sub 2} mobility is crucial in evaluating the efficacy

  3. CERAMIC MEMBRANE ENABLING TECHNOLOGY FOR IMPROVED IGCC EFFICIENCY

    SciTech Connect

    Ravi Prasad

    2000-04-01

    The objective of this program is to conduct a technology development program to advance the state-of-the-art in ceramic Oxygen Transport Membranes (OTM) to the level required to produce step change improvements in process economics, efficiency, and environmental benefits for commercial IGCC systems and other applications. The IGCC program is focused on addressing key issues in materials, processing, manufacturing, engineering and system development that will make the OTM a commercial reality. The objective of the OTM materials development task is to identify a suitable material that can be formed into a thin film to produce the target oxygen flux. This requires that the material have an adequate permeation rate, and thermo-mechanical and thermo-chemical properties such that the material is able to be supported on the desired substrate and sufficient mechanical strength to survive the stresses involved in operation. The objective of the composite OTM development task is to develop the architecture and fabrication techniques necessary to construct stable, high performance, thin film OTMs supported on suitable porous, load bearing substrates. The objective of the process development task of this program to demonstrate the program objectives on a single OTM tube under test conditions simulating those of the optimum process cycle for the power plant. Good progress has been made towards achieving the DOE-IGCC program objectives. Two promising candidates for OTM materials have been identified and extensive characterization will continue. New compositions are being produced and tested which will determine if the material can be further improved in terms of flux, thermo-mechanical and thermo-chemical properties. Process protocols for the composite OTM development of high quality films on porous supports continues to be optimized. Dense and uniform PSO1 films were successfully applied on porous disc and tubular substrates with good bonding between the films and substrates

  4. 2014-05-08 Issuance: Energy Efficiency Improvements in ANSI/ASHRAE...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Improvements in ANSIASHRAEIES Standard 90.1-2013; Preliminary Determination 2014-05-08 Issuance: Energy Efficiency Improvements in ANSIASHRAEIES Standard 90.1-2013; ...

  5. Energy Efficiency Improvement and Cost Saving Oportunities for the Concrete Industry

    SciTech Connect

    Kermeli, Katerina; Worrell, Ernst; Masanet, Eric

    2011-12-01

    The U.S. concrete industry is the main consumer of U.S.-produced cement. The manufacturing of ready mixed concrete accounts for more than 75% of the U.S. concrete production following the manufacturing of precast concrete and masonry units. The most significant expenditure is the cost of materials accounting for more than 50% of total concrete production costs - cement only accounts for nearly 24%. In 2009, energy costs of the U.S. concrete industry were over $610 million. Hence, energy efficiency improvements along with efficient use of materials without negatively affecting product quality and yield, especially in times of increased fuel and material costs, can significantly reduce production costs and increase competitiveness. The Energy Guide starts with an overview of the U.S. concrete industry’s structure and energy use, a description of the various manufacturing processes, and identification of the major energy consuming areas in the different industry segments. This is followed by a description of general and process related energy- and cost-efficiency measures applicable to the concrete industry. Specific energy and cost savings and a typical payback period are included based on literature and case studies, when available. The Energy Guide intends to provide information on cost reduction opportunities to energy and plant managers in the U.S. concrete industry. Every cost saving opportunity should be assessed carefully prior to implementation in individual plants, as the economics and the potential energy and material savings may differ.

  6. EERE Success Story- Chrysler and Partners Achieve 25% Fuel Economy Improvement in Light-Duty Advanced Technology Powertrain

    Energy.gov [DOE]

    Internal combustion engines have the potential to become substantially more efficient, with laboratory tests indicating that new technologies could increase passenger vehicle fuel economy by more...

  7. CERAMIC MEMBRANE ENABLING TECHNOLOGY FOR IMPROVED IGCC EFFICIENCY

    SciTech Connect

    Ravi Prasad

    2000-04-01

    The objective of this program is to conduct a technology development program to advance the state-of-the-art in ceramic Oxygen Transport Membranes (OTM) to the level required to produce step change improvements in process economics, efficiency, and environmental benefits for commercial IGCC systems and other applications. The IGCC program is focused on addressing key issues in materials, processing, manufacturing, engineering and system development that will make the OTM a commercial reality. The objective of the OTM materials development task is to identify a suitable material that can be formed into a thin film to produce the target oxygen flux. This requires that the material have an adequate permeation rate, and thermo-mechanical and thermo-chemical properties such that the material is able to be supported on the desired substrate and sufficient mechanical strength to survive the stresses involved in operation. The objective of the composite OTM development task is to develop the architecture and fabrication techniques necessary to construct stable, high performance, thin film OTMs supported on suitable porous, load bearing substrates. The objective of the process development task of this program to demonstrate the program objectives on a single OTM tube under test conditions simulating those of the optimum process cycle for the power plant.

  8. A Retrofit Tool for Improving Energy Efficiency of Commercial Buildings

    SciTech Connect

    Levine, Mark; Feng, Wei; Ke, Jing; Hong, Tianzhen; Zhou, Nan

    2013-06-06

    Existing buildings will dominate energy use in commercial buildings in the United States for three decades or longer and even in China for the about two decades. Retrofitting these buildings to improve energy efficiency and reduce energy use is thus critical to achieving the target of reducing energy use in the buildings sector. However there are few evaluation tools that can quickly identify and evaluate energy savings and cost effectiveness of energy conservation measures (ECMs) for retrofits, especially for buildings in China. This paper discusses methods used to develop such a tool and demonstrates an application of the tool for a retrofit analysis. The tool builds on a building performance database with pre-calculated energy consumption of ECMs for selected commercial prototype buildings using the EnergyPlus program. The tool allows users to evaluate individual ECMs or a package of ECMs. It covers building envelope, lighting and daylighting, HVAC, plug loads, service hot water, and renewable energy. The prototype building can be customized to represent an actual building with some limitations. Energy consumption from utility bills can be entered into the tool to compare and calibrate the energy use of the prototype building. The tool currently can evaluate energy savings and payback of ECMs for shopping malls in China. We have used the tool to assess energy and cost savings for retrofit of the prototype shopping mall in Shanghai. Future work on the tool will simplify its use and expand it to cover other commercial building types and other countries.

  9. Simulation of High Efficiency Clean Combustion Engines and Detailed...

    Energy.gov [DOE] (indexed site)

    ongoing work exploring fuel chemistry, analysis of and improving simulation methodologies for high efficiency clean combustion regimes, and computational performance ...

  10. Performance, Efficiency, and Emissions Characterization of Reciprocating Internal Combustion Engines Fueled with Hydrogen/Natural Gas Blends

    SciTech Connect

    Kirby S. Chapman; Amar Patil

    2007-06-30

    Hydrogen is an attractive fuel source not only because it is abundant and renewable but also because it produces almost zero regulated emissions. Internal combustion engines fueled by compressed natural gas (CNG) are operated throughout a variety of industries in a number of mobile and stationary applications. While CNG engines offer many advantages over conventional gasoline and diesel combustion engines, CNG engine performance can be substantially improved in the lean operating region. Lean operation has a number of benefits, the most notable of which is reduced emissions. However, the extremely low flame propagation velocities of CNG greatly restrict the lean operating limits of CNG engines. Hydrogen, however, has a high flame speed and a wide operating limit that extends into the lean region. The addition of hydrogen to a CNG engine makes it a viable and economical method to significantly extend the lean operating limit and thereby improve performance and reduce emissions. Drawbacks of hydrogen as a fuel source, however, include lower power density due to a lower heating value per unit volume as compared to CNG, and susceptibility to pre-ignition and engine knock due to wide flammability limits and low minimum ignition energy. Combining hydrogen with CNG, however, overcomes the drawbacks inherent in each fuel type. Objectives of the current study were to evaluate the feasibility of using blends of hydrogen and natural gas as a fuel for conventional natural gas engines. The experiment and data analysis included evaluation of engine performance, efficiency, and emissions along with detailed in-cylinder measurements of key physical parameters. This provided a detailed knowledge base of the impact of using hydrogen/natural gas blends. A four-stroke, 4.2 L, V-6 naturally aspirated natural gas engine coupled to an eddy current dynamometer was used to measure the impact of hydrogen/natural gas blends on performance, thermodynamic efficiency and exhaust gas emissions

  11. On-Bill Financing for Energy Efficiency Improvements Toolkit

    Energy.gov [DOE]

    Provides some benefits and barriers to on-bill programs. Author: American Counsel for Energy-Efficient Economy

  12. Use of Solid Hydride Fuel for Improved long-Life LWR Core Designs

    SciTech Connect

    Greenspan, E

    2006-04-30

    The primary objective of this project was to assess the feasibility of improving the performance of PWR and BWR cores by using solid hydride fuels instead of the commonly used oxide fuel. The primary measure of performance considered is the bus-bar cost of electricity (COE). Additional performance measures considered are safety, fuel bundle design simplicity – in particular for BWR’s, and plutonium incineration capability. It was found that hydride fuel can safely operate in PWR’s and BWR’s without restricting the linear heat generation rate of these reactors relative to that attainable with oxide fuel. A couple of promising applications of hydride fuel in PWR’s and BWR’s were identified: (1) Eliminating dedicated water moderator volumes in BWR cores thus enabling to significantly increase the cooled fuel rods surface area as well as the coolant flow cross section area in a given volume fuel bundle while significantly reducing the heterogeneity of BWR fuel bundles thus achieving flatter pin-by-pin power distribution. The net result is a possibility to significantly increase the core power density – on the order of 30% and, possibly, more, while greatly simplifying the fuel bundle design. Implementation of the above modifications is, though, not straightforward; it requires a design of completely different control system that could probably be implemented only in newly designed plants. It also requires increasing the coolant pressure drop across the core. (2) Recycling plutonium in PWR’s more effectively than is possible with oxide fuel by virtue of a couple of unique features of hydride fuel – reduced inventory of U-238 and increased inventory of hydrogen. As a result, the hydride fuelled core achieves nearly double the average discharge burnup and the fraction of the loaded Pu it incinerates in one pass is double that of the MOX fuel. The fissile fraction of the Pu in the discharged hydride fuel is only ~2/3 that of the MOX fuel and the

  13. Energy Efficiency Improvement and Cost Saving Opportunities for Cement Making. An ENERGY STAR Guide for Energy and Plant Managers

    SciTech Connect

    Galitsky, Christina; Worrell, Ernst; Galitsky, Christina

    2008-01-01

    The cost of energy as part of the total production costs in the cement industry is significant, warranting attention for energy efficiency to improve the bottom line. Historically, energy intensity has declined, although more recently energy intensity seems to have stabilized with the gains. Coal and coke are currently the primary fuels for the sector, supplanting the dominance of natural gas in the 1970s. Most recently, there is a slight increase in the use of waste fuels, including tires. Between 1970 and 1999, primary physical energy intensity for cement production dropped 1 percent/year from 7.3 MBtu/short ton to 5.3 MBtu/short ton. Carbon dioxide intensity due to fuel consumption and raw material calcination dropped 16 percent, from 609 lb. C/ton of cement (0.31 tC/tonne) to 510 lb. C/ton cement (0.26 tC/tonne). Despite the historic progress, there is ample room for energy efficiency improvement. The relatively high share of wet-process plants (25 percent of clinker production in 1999 in the U.S.) suggests the existence of a considerable potential, when compared to other industrialized countries. We examined over 40 energy efficient technologies and measures and estimated energy savings, carbon dioxide savings, investment costs, and operation and maintenance costs for each of the measures. The report describes the measures and experiences of cement plants around the wold with these practices and technologies. Substantial potential for energy efficiency improvement exists in the cement industry and in individual plants. A portion of this potential will be achieved as part of (natural) modernization and expansion of existing facilities, as well as construction of new plants in particular regions. Still, a relatively large potential for improved energy management practices exists.

  14. An improved characterization method for international accountancy measurements of fresh and irradiated mixed oxide (MOX) fuel: helping achieve continual monitoring and safeguards through the fuel cycle

    SciTech Connect

    Evans, Louise G; Croft, Stephen; Swinhoe, Martyn T; Tobin, S. J.; Boyer, B. D.; Menlove, H. O.; Schear, M. A.; Worrall, Andrew

    2010-11-24

    Nuclear fuel accountancy measurements are conducted at several points through the nuclear fuel cycle to ensure continuity of knowledge (CofK) of special nuclear material (SNM). Non-destructive assay (NDA) measurements are performed on fresh fuel (prior to irradiation in a reactor) and spent nuclear fuel (SNF) post-irradiation. We have developed a fuel assembly characterization system, based on the novel concept of 'neutron fingerprinting' with multiplicity signatures to ensure detailed CofK of nuclear fuel through the entire fuel cycle. The neutron fingerprint in this case is determined by the measurement of the various correlated neutron signatures, specific to fuel isotopic composition, and therefore offers greater sensitivity to variations in fissile content among fuel assemblies than other techniques such as gross neutron counting. This neutron fingerprint could be measured at the point of fuel dispatch (e.g. from a fuel fabrication plant prior to irradiation, or from a reactor site post-irradiation), monitored during transportation of the fuel assembly, and measured at a subsequent receiving site (e.g. at the reactor site prior to irradiation, or reprocessing facility post-irradiation); this would confirm that no unexpected changes to the fuel composition or amount have taken place during transportation and/or reactor operations. Changes may indicate an attempt to divert material for example. Here, we present the current state of the practice of fuel measurements for both fresh mixed oxide (MOX) fuel and SNF (both MOX and uranium dioxide). This is presented in the framework of international safeguards perspectives from the US and UK. We also postulate as to how the neutron fingerprinting concept could lead to improved fuel characterization (both fresh MOX and SNF) resulting in: (a) assured CofK of fuel across the nuclear fuel cycle, (b) improved detection of SNM diversion, and (c) greater confidence in safeguards of SNF transportation.

  15. An improved characterization method for international accountancy measurements of fresh and irradiated mixed oxide (MOX) fuel: helping achieve continual monitoring and safeguards through the fuel cycle

    SciTech Connect

    Evans, Louise G; Croft, Stephen; Swinhoe, Martyn T; Tobin, S. J.; Menlove, H. O.; Schear, M. A.; Worrall, Andrew

    2011-01-13

    Nuclear fuel accountancy measurements are conducted at several points through the nuclear fuel cycle to ensure continuity of knowledge (CofK) of special nuclear material (SNM). Non-destructive assay (NDA) measurements are performed on fresh fuel (prior to irradiation in a reactor) and spent nuclear fuel (SNF) post-irradiation. We have developed a fuel assembly characterization system, based on the novel concept of 'neutron fingerprinting' with multiplicity signatures to ensure detailed CofK of nuclear fuel through the entire fuel cycle. The neutron fingerprint in this case is determined by the measurement of the various correlated neutron signatures, specific to fuel isotopic composition, and therefore offers greater sensitivity to variations in fissile content among fuel assemblies than other techniques such as gross neutron counting. This neutron fingerprint could be measured at the point of fuel dispatch (e.g. from a fuel fabrication plant prior to irradiation, or from a reactor site post-irradiation), monitored during transportation of the fuel assembly, and measured at a subsequent receiving site (e.g. at the reactor site prior to irradiation, or reprocessing facility post-irradiation); this would confirm that no unexpected changes to the fuel composition or amount have taken place during transportation and/ or reactor operations. Changes may indicate an attempt to divert material for example. Here, we present the current state of the practice of fuel measurements for both fresh mixed oxide (MOX) fuel and SNF (both MOX and uranium dioxide). This is presented in the framework of international safeguards perspectives from the US and UK. We also postulate as to how the neutron fingerprinting concept could lead to improved fuel characterization (both fresh MOX and SNF) resulting in: (a) assured CofK of fuel across the nuclear fuel cycle, (b) improved detection of SNM diversion, and (c) greater confidence in safeguards of SNF transportation.

  16. Energy-efficient air pollution controls for fossil-fueled plants: Technology assessment

    SciTech Connect

    Sayer, J.H.

    1995-06-01

    The 1990 Clean Air Act Amendments require most fossil-fuel fired power plants to reduce sulfur dioxide, nitrogen oxides, and particulate emissions. While emission-control equipment is available to help most of New York State`s 91 utility units in 31 power plants comply with the new regulations, technologies currently available consume energy, increase carbon dioxide emissions, reduce operating efficiency, and may produce large amounts of solid and/or semisolid byproducts that use additional energy for processing and disposal. This report discribes several pollution-control technologies that are more energy efficient compared to traditional technologies for controlling sulfur dioxide, nitrogen oxide, and particulates, that may have application in New York State. These technologies are either in commercial use, under development, or in the demonstration phase; This report also presents operating characteristics for these technologies and discusses solutions to dispose of pollution-control system byproducts. Estimated energy consumption for emission-control systems relative to a plant`s gross generating capacity is 3 to 5 for reducing up to 90% sulfur dioxide emissions from coal-fired plants. 0.5 to 2.5% for reducing nitrogen oxide emissions by up to 80% from all fossil-fuel fired plants; and 0.5 to 1.5 % for controlling particulate emissions from oil- and coal-fired plants. While fuel switching and/or cofiring with natural gas are options to reduce emissions, these techniques are not considered in this report; the discussion is limited to fossil-fueled steam-generating plants.

  17. Vehicle Technologies Office: Improving Biodiesel and Other Fuels' Quality

    Energy.gov [DOE]

    For biofuels to succeed in the marketplace, they must be easy to use with a minimum of problems. The Vehicle Technologies Office has collaborated with industry to test biofuel samples and improve...

  18. SuperTruck … Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Technologies 1 SuperTruck - Development and Demonstration of a Fuel Efficient Class 8 Tractor & Trailer DE-EE0003303 This presentation does not contain any proprietary, confidential, or otherwise restricted information SuperTruck - Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer Vehicle Systems DOE Contract: DE-EE0003303 NETL Project Manager: Ralph Nine Program Investigator : Dennis W. Jadin, Navistar DOE MERIT REVIEW WASHINGTON, D.C. May 17th, 2012 National

  19. Costs and benefits of automotive fuel economy improvement: A partial analysis

    SciTech Connect

    Greene, D.L.; Duleep, K.G.

    1992-03-01

    This paper is an exercise in estimating the costs and benefits of technology-based fuel economy improvements for automobiles and light trucks. Benefits quantified include vehicle cots, fuel savings, consumer`s surplus effects, the effect of reduced weight on vehicle safety, impacts on emissions of CO{sub 2} and criteria pollutants, world oil market and energy security benefits, and the transfer of wealth from US consumes to oil producers. A vehicle stock model is used to capture sales, scrappage, and vehicle use effects under three fuel price scenarios. Three alternative fuel economy levels for 2001 are considered, ranging from 32.9 to 36.5 MPG for cars and 24.2 to 27.5 MPG for light trucks. Fuel economy improvements of this size are probably cost-effective. The size of the benefit, and whether there is a benefit, strongly depends on the financial costs of fuel economy improvement and judgments about the values of energy security, emissions, safety, etc. Three sets of values for eight parameters are used to define the sensitivity of costs and benefits to key assumptions. The net present social value (1989$) of costs and benefits ranges from a cost of $11 billion to a benefit of $286 billion. The critical parameters being the discount rate (10% vs. 3%) and the values attached to externalities. The two largest components are always the direct vehicle costs and fuel savings, but these tend to counterbalance each other for the fuel economy levels examined here. Other components are the wealth transfer, oil cost savings, CO{sub 2} emissions reductions, and energy security benefits. Safety impacts, emissions of criteria pollutants, and consumer`s surplus effects are relatively minor components. The critical issues for automotive fuel economy are therefore: (1) the value of present versus future costs and benefits, (2) the values of external costs and benefits, and (3) the financially cost-effective level of MPG achievable by available technology. 53 refs.

  20. Costs and benefits of automotive fuel economy improvement: A partial analysis

    SciTech Connect

    Greene, D.L. ); Duleep, K.G. )

    1992-03-01

    This paper is an exercise in estimating the costs and benefits of technology-based fuel economy improvements for automobiles and light trucks. Benefits quantified include vehicle cots, fuel savings, consumer's surplus effects, the effect of reduced weight on vehicle safety, impacts on emissions of CO{sub 2} and criteria pollutants, world oil market and energy security benefits, and the transfer of wealth from US consumes to oil producers. A vehicle stock model is used to capture sales, scrappage, and vehicle use effects under three fuel price scenarios. Three alternative fuel economy levels for 2001 are considered, ranging from 32.9 to 36.5 MPG for cars and 24.2 to 27.5 MPG for light trucks. Fuel economy improvements of this size are probably cost-effective. The size of the benefit, and whether there is a benefit, strongly depends on the financial costs of fuel economy improvement and judgments about the values of energy security, emissions, safety, etc. Three sets of values for eight parameters are used to define the sensitivity of costs and benefits to key assumptions. The net present social value (1989$) of costs and benefits ranges from a cost of $11 billion to a benefit of $286 billion. The critical parameters being the discount rate (10% vs. 3%) and the values attached to externalities. The two largest components are always the direct vehicle costs and fuel savings, but these tend to counterbalance each other for the fuel economy levels examined here. Other components are the wealth transfer, oil cost savings, CO{sub 2} emissions reductions, and energy security benefits. Safety impacts, emissions of criteria pollutants, and consumer's surplus effects are relatively minor components. The critical issues for automotive fuel economy are therefore: (1) the value of present versus future costs and benefits, (2) the values of external costs and benefits, and (3) the financially cost-effective level of MPG achievable by available technology. 53 refs.

  1. Comparison of model predictions with measurements using the improved spent fuel attribute tester

    SciTech Connect

    Dupree, S.A.; Laub, T.W.; Arlt, R.

    1994-08-01

    Design improvements for the International Atomic Energy Agency`s Spent Fuel Attribute Tester, recommended on the basis of an optimization study, were incorporated into a new instrument fabricated under the Finnish Support Programme. The new instrument was tested at a spent fuel storage pool on September 8 and 9, 1993. The result of two of the measurements have been compared with calculations. In both cases the calculated and measured pulse height spectra in good agreement and the {sup 137}Cs gamma peak signature from the target spent fuel element is present.

  2. NREL: Transportation Research - Alternative Fuels Characterization

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Alternative Fuels Characterization Find out about other biomass research projects at NREL. NREL alternative fuels projects help overcome technical barriers and expand markets for renewable, biodegradable vehicle fuels. These liquid fuels include higher-level ethanol blends, butanol, biodiesel, renewable diesel, other biomass-derived fuels, and natural gas. By studying the fuel chemistry as well as combustion and emissions impacts of alternative fuels, NREL helps improve engine efficiency, reduce

  3. CEQ Issues Guidance on Improving NEPA Process Efficiency | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    by reference; expediting responses to comments; and clear timelines for NEPA reviews. ... Efficiency CEQ Issues Revised Draft NEPA Guidance on GHG Emissions and Climate Change

  4. SuperTruck Initiative Partner Improves Class 8 Truck Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    their efficiency is essential to increasing energy security and reducing carbon pollution. ... highway transportation technologies that cut carbon pollution and drive economic growth. ...

  5. Industrial Energy Efficiency Projects Improve Competitiveness and Protect Jobs

    Energy.gov [DOE]

    Case study summarizing CleanTech Partners and Focus on Energy's success in deploying "shovel ready" energy-efficiency technologies at nine industrial plants in Wisconsin

  6. Magnetism reflectometer study shows LiF layers improve efficiency...

    Office of Scientific and Technical Information (OSTI)

    New, more efficient materials for spin valves - a device ... be on the way based on research using the magnetism ... Resource Type: Journal Article Resource Relation: ...

  7. Further experience for environmental improvement in fossil fuel combustion

    SciTech Connect

    Lazzeri, L.; Santis, R. de

    1998-12-31

    Reburning is a technology which has proven, by plant demonstration, capable of providing compliance with very stringent regulatory emissions requests (less than 90 ppm NO{sub x} firing oil and gas and less than 160--170 ppm firing coal). Designing a Reburn System requires a contemporary control of many parameters like flow rates, local stoichiometries residence times, etc.; it also requires the availability and capability of using complex and sophisticated numerical modeling. Although the system can be adapted to any already installed hardware it should be noted that the availability of reliable LNB`s and of specifically designed OFA`s and Reburn fuel injectors can greatly enhance the system performance. Design of OFA system is a subcase of a Reburn System design, as it implies same concepts of mixing and residence times which are the basis of Reburn System. As shown in the cases previously presented Reburning always provides additional margins to OFA operation specifically when very low emission limits are pursued. Finally it should be noted that the use of Reburning may create problems of unburned specifically when very low local stoichiometries and when very low sulfur oils are used which are often characterized by asphaltene instability especially when STZ oil is the result of blending high and low sulfur oils. A specific know-how has been jointly developed by Ansaldo and ENEL to solve these problems acting on both atomizer type selection and operation.

  8. Novel Material for Efficient and Low-cost Separation of Gases for Fuels and Plastics

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Novel Material for Efficient and Low-Cost Separation of Gases for Fuels and Plastics Work was performed at University of California and supported by the Center for Gas Separations Relevant to Clean Energy Technologies EFRC. Bloch, E. D.; Queen, W. L.; Krishna, R.; Zadrozny, J. M.; Brown, C. M.; Long, J. R. Science 2012, 335, 1606-1610 Left: Crystal structure of Fe 2 (dobdc)-ethylene showing Fe (orange), O(red), C(gray), and D(blue) atoms. The view along the [001] direction shows an ethylene

  9. Development and Demonstration of a New Generation High Efficiency 10kW Stationary Fuel Cell System

    SciTech Connect

    Howell, Thomas Russell

    2013-04-30

    The overall project objective is to develop and demonstrate a polymer electrolyte membrane fuel cell combined heat and power (PEMFC CHP) system that provides the foundation for commercial, mass produced units which achieve over 40% electrical efficiency (fuel to electric conversion) from 50-100% load, greater than 70% overall efficiency (fuel to electric energy + usable waste heat energy conversion), have the potential to achieve 40,000 hours durability on all major process components, and can be produced in high volumes at under $400/kW (revised to $750/kW per 2011 DOE estimates) capital cost.

  10. Fact #881: July 13, 2015 Powertrain Efficiency Improvements, 2005 to 2013

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    - Dataset | Department of Energy 81: July 13, 2015 Powertrain Efficiency Improvements, 2005 to 2013 - Dataset Fact #881: July 13, 2015 Powertrain Efficiency Improvements, 2005 to 2013 - Dataset Excel file and dataset for Powertrain Efficiency Improvements, 2005 to 2013 fotw#881_web.xlsx (18.38 KB) More Documents & Publications Fact #883: July 27, 2015 Hybrid Powertrains are More Efficient than Conventional Counterparts - Dataset Fact #847: November 17, 2014 Cars were Over 50% of Light

  11. Fuel Processors for PEM Fuel Cells

    SciTech Connect

    Levi T. Thompson

    2008-08-08

    Fuel cells are being developed to power cleaner, more fuel efficient automobiles. The fuel cell technology favored by many automobile manufacturers is PEM fuel cells operating with H2 from liquid fuels like gasoline and diesel. A key challenge to the commercialization of PEM fuel cell based powertrains is the lack of sufficiently small and inexpensive fuel processors. Improving the performance and cost of the fuel processor will require the development of better performing catalysts, new reactor designs and better integration of the various fuel processing components. These components and systems could also find use in natural gas fuel processing for stationary, distributed generation applications. Prototype fuel processors were produced, and evaluated against the Department of Energy technical targets. Significant advances were made by integrating low-cost microreactor systems, high activity catalysts, π-complexation adsorbents, and high efficiency microcombustor/microvaporizers developed at the University of Michigan. The microreactor system allowed (1) more efficient thermal coupling of the fuel processor operations thereby minimizing heat exchanger requirements, (2) improved catalyst performance due to optimal reactor temperature profiles and increased heat and mass transport rates, and (3) better cold-start and transient responses.

  12. Improving Diesel Engine Sweet-spot Efficiency and Adapting it...

    Energy.gov [DOE] (indexed site)

    Poster presented at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010. p-18yan.pdf (213.42 KB) More Documents ...

  13. Improving the Understanding of Intake and Charge Effects for Increasing RCCI Engine Efficiency

    SciTech Connect

    Splitter, Derek A; Reitz, Rolf; Wissink, martin; DelVescovo, Dan

    2014-01-01

    The present experimental engine efficiency study explores the effects of intake pressure and temperature, and premixed and global equivalence ratios on gross thermal efficiency (GTE) using the reactivity controlled compression ignition (RCCI) combustion strategy. Experiments were conducted in a heavy-duty single-cylinder engine at constant net load (IMEPn) of 8.45 bar, 1300 rev/min engine speed, with 0% EGR, and a 50% mass fraction burned combustion phasing (CA50) of 0.5 CA ATDC. The engine was port fueled with E85 for the low reactivity fuel and direct injected with 3.5% 2-ethylhexyl nitrate (EHN) doped into 91 anti-knock index (AKI) gasoline for the high-reactivity fuel. The resulting reactivity of the enhanced fuel corresponds to an AKI of approximately 56 and a cetane number of approximately 28. The engine was operated with a wide range of intake pressures and temperatures, and the ratio of low- to high-reactivity fuel was adjusted to maintain a fixed speed-phasing-load condition. This allowed for the investigation of several combinations of intake temperature, intake pressure, and charge stratification at otherwise constant thermodynamic conditions. The results show that sources of engine inefficiency compete as functions of premixed and global equivalence ratios. Losses are minimized through proper balancing of intake pressure and temperature, such that the global equivalence ratio ( global) is as lean as possible without overly lean regions of the stratified charge causing an increase in incomplete combustion. The explored speed-load-phasing combination shows that losses are minimized at conditions where approximately 2/3 of the fuel is fully premixed. The results exhibit a pathway for achieving simultaneous increases in combustion and fuel efficiency through proper fuel reactivity and initial condition management.

  14. Home Improvement Catalyst: Bringing Energy Efficiency to More...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    The home improvement market represents 150 billion in annual investment, with more than 14 million projects that involve replacement or upgrades of heating and cooling systems, ...

  15. Pixelligent Improves the Light-Extraction Efficiency of OLED Panels

    Energy.gov [DOE]

    With the help of DOE funding, Pixelligent Technologies is partnering with OLED panel manufacturer OLEDWorks to accelerate the commercial viability of OLED lighting by improving the extraction...

  16. Impact of Vehicle Efficiency Improvements on Powertrain Design

    Office of Energy Efficiency and Renewable Energy (EERE)

    Explores how various chassis and complete vehicle improvements offer opportunities for energy recuperation on long-haul truck duty cycle, and how they impact powertrain requirements

  17. High Efficiency Generation of Hydrogen Fuels using Nuclear Power Annual Report August, 2000 - July 2001

    SciTech Connect

    Brown, L.C.

    2002-11-01

    OAK B188 High Efficiency Generation of Hydrogen Fuels using Nuclear Power Annual Report August 2000 - July 2001. Currently no large scale, cost-effective, environmentally attractive hydrogen production process is available for commercialization nor has such a process been identified. Hydrogen is a promising energy carrier, which potentially could replace the fossil fuels used in the transportation sector of our economy. Carbon dioxide emissions from fossil fuel combustion are thought to be responsible for global warming. The purpose of this work is to determine the potential for efficient, cost-effective, large-scale production of hydrogen utilizing high temperature heat from an advanced nuclear power station. The benefits of this work will include the generation of a low-polluting transportable energy feedstock in an efficient method that has little or no implication for greenhouse gas emissions from a primary energy source whose availability and sources are domestically controlled. This will help to ensure energy for a future transportation/energy infrastructure that is not influenced/controlled by foreign governments. This report describes work accomplished during the second year (Phase 2) of a three year project whose objective is to ''define an economically feasible concept for production of hydrogen, by nuclear means, using an advanced high temperature nuclear reactor as the energy source.'' The emphasis of the first year (Phase 1) was to evaluate thermochemical processes which offer the potential for efficient, cost-effective, large-scale production of hydrogen from water, in which the primary energy input is high temperature heat from an advanced nuclear reactor and to select one (or, at most, three) for further detailed consideration. Phase 1 met its goals and did select one process, the sulfur-iodine process, for investigation in Phases 2 and 3. The combined goals of Phases 2 and 3 were to select the advanced nuclear reactor best suited to driving the

  18. Innovative financing for energy-efficiency improvements. Phase I report

    SciTech Connect

    Klepper, M.; Schwartz, H.K.; Feder, J.M.; Smith, D.C.; Green, R.H.; Williams, J.; Sherman, J.L.; Carroll, M.

    1982-01-01

    The use of utility-assisted financing, tax-exempt financing, bank financing, leasing, and joint venture financing to promote energy efficiency investments for each of three different categories of buildings (multifamily, commercial, and industrial) is discussed in separate chapters. (MCW)

  19. Improving CO2 Efficiency for Recovering Oil in Heterogeneous Reservoirs

    SciTech Connect

    Grigg, Reid B.; Svec, Robert K.

    2003-03-10

    The work strived to improve industry understanding of CO2 flooding mechanisms with the ultimate goal of economically recovering more of the U.S. oil reserves. The principle interests are in the related fields of mobility control and injectivity.

  20. CERAMIC MEMBRANE ENABLING TECHNOLGOY FOR IMPROVED IGCC EFFICIENCY

    SciTech Connect

    Ravi Prasad

    2003-07-01

    This quarterly technical progress report will summarize work accomplished for Phase 2 Program during the quarter April to June 2003. In task 1 OTM development has led to improved flux and strength performance. In task 2, robust PSO1d elements have been fabricated for testing in the pilot reactor. In task 3, the lab-scale pilot reactor has been operated for 1000 hours with improved success. In task 7, economic models substantial benefit of OTM IGCC over CRYO based oxygen production.

  1. Kitchen Appliance Upgrades Improve Water Efficiency at U.S. Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Defense Exchange Facilities | Department of Energy Kitchen Appliance Upgrades Improve Water Efficiency at U.S. Department of Defense Exchange Facilities Kitchen Appliance Upgrades Improve Water Efficiency at U.S. Department of Defense Exchange Facilities Kitchen Appliance Upgrades Improve Water Efficiency at U.S. Department of Defense Exchange Facilities Case study details the U.S. Department of Defense (DOD) Exchange (formerly the Army and Air Force Exchange Service), which took a

  2. fuel

    National Nuclear Security Administration (NNSA)

    4%2A en Cheaper catalyst may lower fuel costs for hydrogen-powered cars http:www.nnsa.energy.govblogcheaper-catalyst-may-lower-fuel-costs-hydrogen-powered-cars

  3. fuel

    National Nuclear Security Administration (NNSA)

    4%2A en Cheaper catalyst may lower fuel costs for hydrogen-powered cars http:nnsa.energy.govblogcheaper-catalyst-may-lower-fuel-costs-hydrogen-powered-cars

  4. Fuels

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing ... Heavy Duty Fuels DISI Combustion HCCISCCI Fundamentals Spray Combustion Modeling ...

  5. Vehicle Technologies Program - Improving Vehicle Efficiency, Reducing Dependence on Foreign Oil

    SciTech Connect

    2011-08-01

    R&D drives innovation while lowering technology costs, which then enables the private sector to accelerate clean technology deployment. Along with R&D, DOE's Vehicles Technologies Program deploys clean, efficient vehicle technologies and renewable fuels, which reduce U.S. demand for petroleum products.

  6. DOE Issues Notice of Proposed Rulemaking to Improve Energy Efficiency Enforcement Process

    Energy.gov [DOE]

    Today, the Department of Energy announced a Notice of Proposed Rulemaking seeking comment on proposed reforms designed to improve its energy efficiency certification and enforcement regulations.

  7. Reduce NOx and Improve Energy Efficiency, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)

    SciTech Connect

    Not Available

    2008-12-01

    This fact sheet describes how the Industrial Technologies Program NOx and Energy Assessment Tool (NxEAT) can help petroleum refining and chemical plants improve energy efficiency.

  8. Improving the Efficiency of Light-Duty Vehicle HVAC Systems using...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Light-Duty Vehicle HVAC Systems using Zonal Thermoelectric Devices and Comfort Modeling Improving the Efficiency of Light-Duty Vehicle HVAC Systems using Zonal Thermoelectric ...

  9. Identification and Evaluation of Near-term Opportunities for Efficiency Improvement

    Energy.gov [DOE]

    First- and Second-Law thermodynamic evaluation of experimental engine data and detailed modeling of engine and components provide new insight into strategies for improving efficiency.

  10. Simulated comparisons of emissions and fuel efficiency of diesel and gasoline hybrid electric vehicles

    SciTech Connect

    Gao, Zhiming; Chakravarthy, Veerathu K; Daw, C Stuart

    2011-01-01

    This paper presents details and results of hybrid and plug-in hybrid electric passenger vehicle (HEV and PHEV) simulations that account for the interaction of thermal transients from drive cycle demands and engine start/stop events with aftertreatment devices and their associated fuel penalties. The simulations were conducted using the Powertrain Systems Analysis Toolkit (PSAT) software developed by Argonne National Laboratory (ANL) combined with aftertreatment component models developed at Oak Ridge National Lab (ORNL). A three-way catalyst model is used in simulations of gasoline powered vehicles while a lean NOx trap model in used to simulated NOx reduction in diesel powered vehicles. Both cases also use a previously reported methodology for simulating the temperature and species transients associated with the intermittent engine operation and typical drive cycle transients which are a significant departure from the usual experimental steady-state engine-map based approach adopted often in vehicle system simulations. Comparative simulations indicate a higher efficiency for diesel powered vehicles but the advantage is lowered by about a third (for both HEVs and PHEVs) when the fuel penalty associated with operating a lean NOx trap is included and may be reduced even more when fuel penalty associated with a particulate filter is included in diesel vehicle simulations. Through these preliminary studies, it is clearly demonstrated how accurate engine and exhaust systems models that can account for highly intermittent and transient engine operation in hybrid vehicles can be used to account for impact of emissions in comparative vehicle systems studies. Future plans with models for other devices such as particulate filters, diesel oxidation and selective reduction catalysts are also discussed.

  11. ZTEK`s ultra-high efficiency fuel cell/gas turbine system for distributed generation

    SciTech Connect

    Hsu, M.; Nathanson, D.; Bradshaw, D.T.

    1996-12-31

    Ztek`s Planar Solid Oxide Fuel Cell (SOFC) system has exceptional potential for utility electric power generation because of: simplicity of components construction, capability for low cost manufacturing, efficient recovery of very high quality by-product heat (up to 1000{degrees}C), and system integration simplicity. Utility applications of the Solid Oxide Fuel Cell are varied and include distributed generation units (sub-MW to 30MW capacity), repowering existing power plants (i.e. 30MW to 100MW), and multi-megawatt central power plants. A TVA/EPRI collaboration program involved functional testing of the advanced solid oxide fuel cell stacks and design scale-up for distributed power generation applications. The emphasis is on the engineering design of the utility modules which will be the building blocks for up to megawatt scale power plants. The program has two distinctive subprograms: Verification test on a 1 kW stack and 25kW module for utility demonstration. A 1 kW Planar SOFC stack was successfully operated for 15,000 hours as of December, 1995. Ztek began work on a 25kW SOFC Power System for TVA, which plans to install the 25kW SOFC at a host site for demonstration in 1997. The 25kW module is Ztek`s intended building block for the commercial use of the Planar SOFC. Systems of up to megawatt capacity can be obtained by packaging the modules in 2-dimensional or 3-dimensional arrays.

  12. Uranium resource utilization improvements in the once-through PWR fuel cycle

    SciTech Connect

    Matzie, R A

    1980-04-01

    In support of the Nonproliferation Alternative Systems Assessment Program (NASAP), Combustion Engineering, Inc. performed a comprehensive analytical study of potential uranium utilization improvement options that can be backfit into existing PWRs operating on the once-through uranium fuel cycle. A large number of potential improvement options were examined as part of a preliminary survey of candidate options. The most attractive of these, from the standpoint of uranium utilization improvement, economic viability, and ease of implementation, were then selected for detailed analysis and were included in a single composite improvement case. This composite case represents an estimate of the total savings in U/sub 3/O/sub 8/ consumption that can be achieved in current-design PWRs by implementing improvements which can be developed and demonstrated in the near term. The improvement options which were evaluated in detail and included in the composite case were a new five-batch, extended-burnup fuel management scheme, low-leakage fuel management, modified lattice designs, axial blankets, reinsertion of initial core batches, and end-of-cycle stretchout.

  13. USE OF A DIESEL FUEL PROCESSOR FOR RAPID AND EFFICIENT REGENERATION OF SINGLE LEG NOX ADSORBER SYSTEMS

    SciTech Connect

    Betta, R; Cizeron, J; Sheridan, D; Davis, T

    2003-08-24

    Lean NOx adsorber systems are one of the primary candidate technologies for the control of NOx from diesel engines to meet the 2007-2010 US emissions regulations, which require a 90% reduction of NOx from the 2004 regulations. Several of the technical challenges facing this technology are regeneration at low exhaust temperatures and the efficient use of diesel fuel to minimize fuel penalty. A diesel processor system has been developed and tested in a single leg NOx adsorber configuration on a diesel engine test stand. During NOx adsorber regeneration, this fuel processor system performs reduces the exhaust O2 level to zero and efficiently processes the diesel fuel to H2 and CO. Combined with a Nox adsorber catalyst, this system has demonstrated NOx reduction above 90%, regeneration of the NOx adsorber H2/CO pulses as short as 1 second and fuel penalties in the 3 to 4% range at 50% load. This fuel processor system can also be used to provide the desulfation cycle required with sulfur containing fuels as well as providing thermal management for PM filter regeneration.

  14. CERAMIC MEMBRANE ENABLING TECHNOLOGY FOR IMPROVED IGCC EFFICIENCY

    SciTech Connect

    Ravi Prasad

    2004-03-31

    This quarterly technical progress report will summarize work accomplished for Phase 2 Program during the quarter January to March 2004. In task 1 OTM development has led to improved strength and composite design for lower temperatures. In task 2, the measurement system of OTM element dimensions was improved. In task 3, a 10-cycle test of a three-tube submodule was reproduced successfully. In task 5, sizing of several potential heat recovery systems was initiated. In task 7, advanced OTM and cryogenic IGCC cases for near-term integration were developed.

  15. Improved global efficiency in industrial applications with cogeneration steam turbines

    SciTech Connect

    Hassan, A.; Alsthom, G.

    1998-07-01

    This paper focuses on medium steam turbine in the range of 10--80 MW and their application in cogeneration plants. The author summarizes the different steps which have led to the TM concept: good efficiency; competitive price; short delivery time; operation flexibility; ease of integration in a cogeneration process. The second part of the document shows two examples of integration of these turbines in cogeneration processes; one for acrilonitril (ACN) and polypropylene plant in Spain and the second for a textile plant in Taiwan.

  16. Diphosphonic acid complexants for improved separation efficiency of transuranic elements

    SciTech Connect

    Nash, K.L.

    1994-08-01

    A study was made of the thermodynamics of protonation and complexation of Eu(III), Th(IV), and U(VI) by a series of simple diphosphonic acid chelating agents to assess the potential for application in actinide waste processing. It was found that the strongest complexes are formed with ligands having two phosphonate binding groups on the same C atom (1,1-diphosphonates) and that the water-soluble complexes are formed with protonated ligand species. More efficient separation/recovery processes could be designed using these ligands.

  17. CERAMIC MEMBRANE ENABLING TECHNOLOGY FOR IMPROVED IGCC EFFICIENCY

    SciTech Connect

    Ravi Prasad

    2002-05-01

    This quarterly technical progress report will summarize work accomplished for Phase 1 Program during the quarter January to March 2002. In task 1 improvements to the membrane material have shown increased flux, and high temperature mechanical properties are being measured. In task 2, composite development has shown that alternative fabrication routes of the substrate can improve membrane performance under certain conditions. In task 3, scale-up issues associated with manufacturing large tubes have been identified and are being addressed. The work in task 4 has demonstrated that composite OTM elements can produce oxygen at greater than 95% purity for more than 1000 hours of the target flux under simulated IGCC operating conditions. In task 5 the multi-tube OTM reactor has been operated and produced oxygen.

  18. CERAMIC MEMBRANE ENABLING TECHNOLOGY FOR IMPROVED IGCC EFFICIENCY

    SciTech Connect

    Ravi Prasad

    2003-11-01

    This quarterly technical progress report will summarize work accomplished for Phase 2 Program during the quarter July to September 2003. In task 1 OTM development has led to improved strength and composite design. In task 2, the manufacture of robust PSO1d elements has been scaled up. In task 3, operational improvements in the lab-scale pilot reactor have reduced turn-around time and increased product purity. In task 7, economic models show substantial benefit of OTM IGCC over CRYO based oxygen production. The objectives of the first year of phase 2 of the program are to construct and operate an engineering pilot reactor for OTM oxygen. Work to support this objective is being undertaken in the following areas in this quarter: Element reliability; Element fabrication; Systems technology; Power recovery; and IGCC process analysis and economics. The major accomplishments this quarter were Element production at Praxair's manufacturing facility is being scaled up and Substantial improvements to the OTM high temperature strength have been made.

  19. Vehicle Technologies Office Merit Review 2014: DOE's Effort to Improve

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Heavy Vehicle Fuel Efficiency through Improved Aerodynamics | Department of Energy DOE's Effort to Improve Heavy Vehicle Fuel Efficiency through Improved Aerodynamics Vehicle Technologies Office Merit Review 2014: DOE's Effort to Improve Heavy Vehicle Fuel Efficiency through Improved Aerodynamics Presentation given by Lawrence Livermore National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about DOE's

  20. Vehicle Technologies Office Merit Review 2015: DOE's Effort to Improve

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Heavy Vehicle Fuel Efficiency through Improved Aerodynamics | Department of Energy DOE's Effort to Improve Heavy Vehicle Fuel Efficiency through Improved Aerodynamics Vehicle Technologies Office Merit Review 2015: DOE's Effort to Improve Heavy Vehicle Fuel Efficiency through Improved Aerodynamics Presentation given by Lawrence Livermore National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about DOE's