National Library of Energy BETA

Sample records for fuel cell sofc

  1. Ceramic Fuel Cells (SOFC)

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    H2/FC Manufacturing R&D Workshop J. David Carter, PhD Chemical Sciences and Engineering Argonne National Laboratory Thursday, August 11, 2011 Ceramic Fuel Cells (SOFC) Manufacturing Fuel Cell Manhattan Project: * Joe Bonadies - Delphi * Rick Kerr - Delphi * David Carter - Argonne * Aaron Crumm - AMI * Randy Petri - Versa Power * Jolyon Rawson - Acumentrics * Marc Gietter - Army-CERDEC * Scott Swartz - NexTech Materials * Eric Stanfield - NIST * Mike Ulsh - NREL / DOE * Matt Steinbroner -

  2. Ceramic Fuel Cells (SOFC) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Ceramic Fuel Cells (SOFC) Ceramic Fuel Cells (SOFC) Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop in Washington, DC, August 11-12, 2011. Ceramic Fuel Cells (SOFC) (1.09 MB) More Documents & Publications 2011 NREL/DOE Hydrogen and Fuel Cell Manufacturing R&D Workshop Report Manufacturing Fuel Cell Manhattan Project DOE Fuel Cell Pre-Solicitation Workshop - Breakout Group 3: HIGH TEMP (SOFC) SYSTEM AND BOP

  3. SOFC cells and stacks for complex fuels

    SciTech Connect (OSTI)

    Edward M. Sabolsky; Matthew Seabaugh; Katarzyna Sabolsky; Sergio A. Ibanez; Zhimin Zhong

    2007-07-01

    Reformed hydrocarbon and coal (syngas) fuels present an opportunity to integrate solid oxide fuel cells into the existing fuel infrastructure. However, these fuels often contain impurities or additives that may lead to cell degradation through sulfur poisoning or coking. Achieving high performance and sulfur tolerance in SOFCs operating on these fuels would simplify system balance of plant and sequestration of anode tail gas. NexTech Materials, Ltd., has developed a suite of materials and components (cells, seals, interconnects) designed for operation in sulfur-containing syngas fuels. These materials and component technologies have been integrated into an SOFC stack for testing on simulated propane, logistic fuel reformates and coal syngas. Details of the technical approach, cell and stack performance is reported.

  4. Gas Cleaning for Remote Solid Oxide Fuel Cell (SOFC) Applications

    Energy.gov (indexed) [DOE]

    up for Fuel Cell Applications, Argonne National Lab Fuel (NG, LPG, LFG, ADG, APG, biodiesel) opportunities and impurity issues Gas Cleaning for Remote SOFC Applications Acumentrics ...

  5. Annual Solid Oxide Fuel Cell (SOFC) Workshop Accommodations

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    th Annual Solid Oxide Fuel Cell (SOFC) Workshop Accommodations Pittsburgh Airport Marriott 777 Aten Road Coraopolis, PA 15108 (412)788-8800 The Pittsburgh Airport Marriott Hotel is ...

  6. Solid Oxide Fuel Cell (SOFC) Technology for Greener Airplanes | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy (SOFC) Technology for Greener Airplanes Solid Oxide Fuel Cell (SOFC) Technology for Greener Airplanes Presentation by Larry Chick, Pacific Northwest National Laboratory, at the DOD-DOE Aircraft Petroleum Use Reduction Workshop, September 30, 2010, in Washington, DC. aircraft_9_chick.pdf (2.68 MB) More Documents & Publications Solid Oxide Fuel Cell and Power System Development at PNNL Electrical Generation for More-Electric Aircraft using Solid Oxide Fuel Cells Solid Oxide Fuel

  7. Effect of Sulfur on Solid Oxide Fuel Cell (SOFC) Performance...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Effect of Sulfur on SOFC Performance Using Diesel Reformate R. Kerr March 6-7, 2014 Workshop on Gas Cleanup for Fuel Cell Applications, ANL, March 6-7, 2014 Sulfur Poisoning Effect ...

  8. LG Solid Oxide Fuel Cell (SOFC) Model Development

    SciTech Connect (OSTI)

    Haberman, Ben; Martinez-Baca, Carlos; Rush, Greg

    2013-05-31

    This report presents a summary of the work performed by LG Fuel Cell Systems Inc. during the project LG Solid Oxide Fuel Cell (SOFC) Model Development (DOE Award Number: DE-FE0000773) which commenced on October 1, 2009 and was completed on March 31, 2013. The aim of this project is for LG Fuel Cell Systems Inc. (formerly known as Rolls-Royce Fuel Cell Systems (US) Inc.) (LGFCS) to develop a multi-physics solid oxide fuel cell (SOFC) computer code (MPC) for performance calculations of the LGFCS fuel cell structure to support fuel cell product design and development. A summary of the initial stages of the project is provided which describes the MPC requirements that were developed and the selection of a candidate code, STAR-CCM+ (CD-adapco). This is followed by a detailed description of the subsequent work program including code enhancement and model verification and validation activities. Details of the code enhancements that were implemented to facilitate MPC SOFC simulations are provided along with a description of the models that were built using the MPC and validated against experimental data. The modeling work described in this report represents a level of calculation detail that has not been previously available within LGFCS.

  9. NETL: SOFC Cell Development

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Cell Development Cell Development-Research is focused on the cell-related technologies critical to the commercialization of SOFC technology. The components of the SOFC - the anode, cathode and electrolyte - are the primary research emphasis of this key technology. The electrochemical performance, durability, and reliability of the solid oxide fuel cell are key determinants in establishing the technical and economic viability of SOFC Power Systems. Thus the SOFC Program maintains a diversified

  10. Solid Oxide Fuel Cell (SOFC) Technology for Greener Airplanes

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Cell (SOFC) Technology for Greener Airplanes Larry Chick/Mike Rinker Energy Materials Group Pacific Northwest National Laboratory September 30, 2010 2 2 SOFC Technology Development at PNNL PNNL has been active in SOFC development since 1987. Major participant in SECA Core Technology Program since 2000. SOFC stack electrochemical- thermal modeling Development of electrically conductive coatings to prevent Cr volatility from SS Glycine - nitrate powder synthesis of La 0.7 Ca 0.31 CrO 3 3

  11. Solid Oxide Fuel Cell System (SOFC) Technology R&D Needs (Presentation) |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy System (SOFC) Technology R&D Needs (Presentation) Solid Oxide Fuel Cell System (SOFC) Technology R&D Needs (Presentation) Presented at the DOE Fuel Cell Pre-Solicitation Workshop held January 23-24, 2008 in Golden, Colorado. fuelcell_pre-solicitation_wkshop_jan08_delphi.pdf (1.7 MB) More Documents & Publications DOE Fuel Cell Pre-Solicitation Workshop - Breakout Group 3: HIGH TEMP (SOFC) SYSTEM AND BOP Breakout Group 5: Solid Oxide Fuel Cells DOE Fuel Cell

  12. Extended Durability Testing of an External Fuel Processor for a Solid Oxide Fuel Cell (SOFC)

    SciTech Connect (OSTI)

    Mark Perna; Anant Upadhyayula; Mark Scotto

    2012-11-05

    Durability testing was performed on an external fuel processor (EFP) for a solid oxide fuel cell (SOFC) power plant. The EFP enables the SOFC to reach high system efficiency (electrical efficiency up to 60%) using pipeline natural gas and eliminates the need for large quantities of bottled gases. LG Fuel Cell Systems Inc. (formerly known as Rolls-Royce Fuel Cell Systems (US) Inc.) (LGFCS) is developing natural gas-fired SOFC power plants for stationary power applications. These power plants will greatly benefit the public by reducing the cost of electricity while reducing the amount of gaseous emissions of carbon dioxide, sulfur oxides, and nitrogen oxides compared to conventional power plants. The EFP uses pipeline natural gas and air to provide all the gas streams required by the SOFC power plant; specifically those needed for start-up, normal operation, and shutdown. It includes a natural gas desulfurizer, a synthesis-gas generator and a start-gas generator. The research in this project demonstrated that the EFP could meet its performance and durability targets. The data generated helped assess the impact of long-term operation on system performance and system hardware. The research also showed the negative impact of ambient weather (both hot and cold conditions) on system operation and performance.

  13. Innovative Seals for Solid Oxide Fuel Cells (SOFC)

    SciTech Connect (OSTI)

    Singh, Raj

    2008-06-30

    A functioning SOFC requires different type of seals such as metal-metal, metal-ceramic, and ceramic-ceramic. These seals must function at high temperatures between 600--900{sup o}C and in oxidizing and reducing environments of the fuels and air. Among the different type of seals, the metal-metal seals can be readily fabricated using metal joining, soldering, and brazing techniques. However, the metal-ceramic and ceramic-ceramic seals require significant research and development because the brittle nature of ceramics/glasses can lead to fracture and loss of seal integrity and functionality. Consequently, any seals involving ceramics/glasses require a significant attention and technology development for reliable SOFC operation. This final report is prepared to describe the progress made in the program on the needs, approaches, and performance of high temperature seals for SOFC. In particular, a new concept of self-healing glass seals is pursued for making seals between metal-ceramic material combinations, including some with a significant expansion mismatch.

  14. Solid Oxide Fuel Cells (SOFC) as Military APU Replacements | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Cells (SOFC) as Military APU Replacements Solid Oxide Fuel Cells (SOFC) as Military APU Replacements Presentation by Thomas Reitz, Air Force Research Laboratory, at the DOD-DOE Aircraft Petroleum Use Reduction Workshop, September 30, 2010, in Washington, DC. aircraft_7_reitz.pdf (406.74 KB) More Documents & Publications Report of the DOE-DOE Workshop on Fuel Cells in Aviation: Workshop Summary and Action Plan Manufacturing Cost Analysis of 1 kW and 5 kW Solid Oxide Fuel Cell

  15. Solid Oxide Fuel Cell System (SOFC) Technology R&D Needs (Presentation)

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    SOFC Technology R& D Needs Steven Shaffer Chief Engineer - Fuel Cell Development DOE Pre-Solicitation Workshop January 23 &24, 2008 2 DOE Pre-Solicitation Workshop, Golden CO Field Office Solid Oxide Fuel Cell Market Opportunity US Stationary - APU & CHP Natural Gas, LPG European micro -CHP & CHCP Natural Gas Commercial Power Natural Gas FutureGen Powerplant Coal Gas Recreational Vehicles Diesel, LPG Heavy Duty Truck Diesel Truck and Trailer Refrigeration Diesel US Military JP-8

  16. Solid Oxide Fuel Cells (SOFC) as Military APU Replacements

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    USAF SOFC Systems for Aviation Applications * Focus on smaller, sub-units (<10kW) * Cooperative ArmyUSAF Activities - Air Force UAV, Army Silent Watch * Technical Challenges - ...

  17. Co-flow planar SOFC fuel cell stack

    DOE Patents [OSTI]

    Chung, Brandon W.; Pham, Ai Quoc; Glass, Robert S.

    2004-11-30

    A co-flow planar solid oxide fuel cell stack with an integral, internal manifold and a casing/holder to separately seal the cell. This construction improves sealing and gas flow, and provides for easy manifolding of cell stacks. In addition, the stack construction has the potential for an improved durability and operation with an additional increase in cell efficiency. The co-flow arrangement can be effectively utilized in other electrochemical systems requiring gas-proof separation of gases.

  18. Innovative Self-Healing Seals for Solid Oxide Fuel Cells (SOFC)

    SciTech Connect (OSTI)

    Raj Singh

    2012-06-30

    Solid oxide fuel cell (SOFC) technology is critical to several national initiatives. Solid State Energy Conversion Alliance (SECA) addresses the technology needs through its comprehensive programs on SOFC. A reliable and cost-effective seal that works at high temperatures is essential to the long-term performance of the SOFC for 40,000 hours at 800°C. Consequently, seals remain an area of highest priority for the SECA program and its industry teams. An innovative concept based on self-healing glasses was advanced and successfully demonstrated through seal tests for 3000 hours and 300 thermal cycles to minimize internal stresses under both steady state and thermal transients for making reliable seals for the SECA program. The self-healing concept requires glasses with low viscosity at the SOFC operating temperature of 800°C but this requirement may lead to excessive flow of the glass in areas forming the seal. To address this challenge, a modification to glass properties by addition of particulate fillers is pursued in the project. The underlying idea is that a non-reactive ceramic particulate filler is expected to form glass-ceramic composite and increase the seal viscosity thereby increasing the creep resistance of the glass-composite seals under load. The objectives of the program are to select appropriate filler materials for making glass-composite, fabricate glass-composites, measure thermal expansion behaviors, and determine stability of the glass-composites in air and fuel environments of a SOFC. Self-healing glass-YSZ composites are further developed and tested over a longer time periods under conditions typical of the SOFCs to validate the long-term stability up to 2000 hours. The new concepts of glass-composite seals, developed and nurtured in this program, are expected to be cost-effective as these are based on conventional processing approaches and use of the inexpensive materials.

  19. Solid Oxide Fuel Cell System (SOFC) Technology R&D Needs (Presentation...

    Energy.gov (indexed) [DOE]

    Presented at the DOE Fuel Cell Pre-Solicitation Workshop held January 23-24, 2008 in Golden, Colorado. fuelcellpre-solicitationwkshopjan08delphi.pdf (1.7 MB) More Documents & ...

  20. Program of scientific investigations and development of solid-oxide fuel cells (SOFC) in VIITF proposals on scientific and technical collaboration and SOFC commercialization

    SciTech Connect (OSTI)

    Kleschev, Yu.N.; Chulharev, V.F.

    1996-04-01

    Investigations being performed at VNIITF covers the whole cycle of solid oxide fuel cell manufacturing. This report describes the main directions of investigations in materials, technologies, and commercialization.

  1. Fuel Cells

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    and robust solid oxide fuel cell (SOFC) system. Specific objectives include achieving an efficiency of greater than 60 percent, meeting a stack cost target of 175 per kW, and ...

  2. Program of scientific investigations and development of solid-oxide fuel cells (SOFC) in VNIITF. Proposals on scientific and technical collaboration and SOFC commercialization

    SciTech Connect (OSTI)

    Kleschev, Yu.N.; Chukharev, V.F.

    1996-04-01

    This paper describes proposals on scientific and technical collaborations pertaining to solid oxide fuel cell commercialization. Topics included for discussion are: materials research and manufacture; market estimation and cost; directions of collaboration; and project of proposals on joint enterprise creation.

  3. Effect of pre-oxidation and environmental aging on the seal strength of a novel high-temperature solid oxide fuel cell (SOFC) sealing glass with metallic interconnect

    SciTech Connect (OSTI)

    Chou, Y. S.; Stevenson, Jeffry W.; Singh, Prabhakar

    2008-09-15

    A novel high-temperature alkaline-earth silicate sealing glass was developed for solid oxide fuel cell (SOFC) applications. The glass was used to join two ferritic stainless steel coupons for strength evaluation. The steel coupons were pre-oxidized at elevated temperatures to promote thick oxide layers to simulate long-term exposure conditions. In addition, seals to as-received metal coupons were also tested after aging in oxidizing or reducing environments to simulate the actual SOFC environment. Room temperature tensile testing showed strength degradation when using pre-oxidized coupons, and more extensive degradation after aging in air. Fracture surface and microstructural analysis confirmed that the cause of degradation was formation of SrCrO4 at the outer sealing edges exposed to air.

  4. Thermodynamic analysis of interactions between Ni-based solid oxide fuel cells (SOFC) anodes and trace species in a survey of coal syngas

    SciTech Connect (OSTI)

    Andrew Martinez; Kirk Gerdes; Randall Gemmen; James Postona

    2010-03-20

    A thermodynamic analysis was conducted to characterize the effects of trace contaminants in syngas derived from coal gasification on solid oxide fuel cell (SOFC) anode material. The effluents from 15 different gasification facilities were considered to assess the impact of fuel composition on anode susceptibility to contamination. For each syngas case, the study considers the magnitude of contaminant exposure resulting from operation of a warm gas cleanup unit at two different temperatures and operation of a nickel-based SOFC at three different temperatures. Contaminant elements arsenic (As), phosphorous (P), and antimony (Sb) are predicted to be present in warm gas cleanup effluent and will interact with the nickel (Ni) components of a SOFC anode. Phosphorous is the trace element found in the largest concentration of the three contaminants and is potentially the most detrimental. Poisoning was found to depend on the composition of the syngas as well as system operating conditions. Results for all trace elements tended to show invariance with cleanup operating temperature, but results were sensitive to syngas bulk composition. Synthesis gas with high steam content tended to resist poisoning.

  5. FEEDSTOCK-FLEXIBLE REFORMER SYSTEM (FFRS) FOR SOLID OXIDE FUEL CELL (SOFC)- QUALITY SYNGAS

    SciTech Connect (OSTI)

    Jezierski, Kelly; Tadd, Andrew; Schwank, Johannes; Kibler, Roland; McLean, David; Samineni, Mahesh; Smith, Ryan; Parvathikar, Sameer; Mayne, Joe; Westrich, Tom; Mader, Jerry; Faubert, F. Michael

    2010-07-30

    The U.S. Department of Energy National Energy Technology Laboratory funded this research collaboration effort between NextEnergy and the University of Michigan, who successfully designed, built, and tested a reformer system, which produced highquality syngas for use in SOFC and other applications, and a novel reactor system, which allowed for facile illumination of photocatalysts. Carbon and raw biomass gasification, sulfur tolerance of non-Platinum Group Metals (PGM) based (Ni/CeZrO2) reforming catalysts, photocatalysis reactions based on TiO2, and mild pyrolysis of biomass in ionic liquids (ILs) were investigated at low and medium temperatures (primarily 450 to 850 C) in an attempt to retain some structural value of the starting biomass. Despite a wide range of processes and feedstock composition, a literature survey showed that, gasifier products had narrow variation in composition, a restriction used to develop operating schemes for syngas cleanup. Three distinct reaction conditions were investigated: equilibrium, autothermal reforming of hydrocarbons, and the addition of O2 and steam to match the final (C/H/O) composition. Initial results showed rapid and significant deactivation of Ni/CeZrO2 catalysts upon introduction of thiophene, but both stable and unstable performance in the presence of sulfur were obtained. The key linkage appeared to be the hydrodesulfurization activity of the Ni reforming catalysts. For feed stoichiometries where high H2 production was thermodynamically favored, stable, albeit lower, H2 and CO production were obtained; but lower thermodynamic H2 concentrations resulted in continued catalyst deactivation and eventual poisoning. High H2 levels resulted in thiophene converting to H2S and S surface desorption, leading to stable performance; low H2 levels resulted in unconverted S and loss in H2 and CO production, as well as loss in thiophene conversion. Bimetallic catalysts did not outperform Ni-only catalysts, and small Ni particles were

  6. Development of a New Class of Low Cost, High Frequency Link Direct DC to AC Converters for Solid Oxide Fuel Cells (SOFC)

    SciTech Connect (OSTI)

    Prasad Enjeti; J.W. Howze

    2003-12-01

    This project proposes to design and develop a new class of power converters (direct DC to AC) to drastically improve performance and optimize the cost, size, weight and volume of the DC to AC converter in SOFC systems. The proposed topologies employ a high frequency link; direct DC to AC conversion approach. The direct DC to AC conversion approach is more efficient and operates without an intermediate dc-link stage. The absence of the dc-link, results in the elimination of bulky, aluminum electrolytic capacitors, which in turn leads to a reduction in the cost, volume, size and weight of the power electronic converter. The feasibility of two direct DC to AC converter topologies and their suitability to meet SECA objectives will be investigated. Laboratory proto-type converters (3-5kW) will be designed and tested in Phase-1. A detailed design trade-off study along with the test results will be available in the form of a report for the evaluation of SECA Industrial partners. This project proposes to develop a new and innovative power converter technology suitable for Solid Oxide Fuel Cell (SOFC) power systems in accordance with SECA objectives. The proposed fuel cell inverter (FCI) employs state of the art power electronic devices configured in two unique topologies to achieve direct conversion of DC power (24-48V) available from a SOFC to AC power (120/240V, 60Hz) suitable for utility interface and powering stand alone loads. The primary objective is to realize cost effective fuel cell converter, which operates under a wide input voltage range, and output load swings with high efficiency and improved reliability.

  7. NETL: Solid Oxide Fuel Cells Publications

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Solid Oxide Fuel Cells Technology Program Plan January 2013 The Solid Oxide Fuel Cells Technology Development Program Plan describes the SOFC R&D efforts in 2013 and beyond. SOFC ...

  8. 2007 Fuel Cell Technologies Market Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    power, and transportation -- including data on the range of fuel cell technologies -- polymer electrolyte membrane fuel cell (PEMFC), solid oxide fuel cell (SOFC), alkaline...

  9. Diesel Fueled SOFC for Class 7/Class 8 On-Highway Truck Auxiliary Power

    SciTech Connect (OSTI)

    Vesely, Charles John-Paul; Fuchs, Benjamin S.; Booten, Chuck W.

    2010-03-31

    The following report documents the progress of the Cummins Power Generation (CPG) Diesel Fueled SOFC for Class 7/Class 8 On-Highway Truck Auxiliary Power (SOFC APU) development and final testing under the U.S. Department of Energy (DOE) Energy Efficiency and Renewable Energy (EERE) contract DE-FC36-04GO14318. This report overviews and summarizes CPG and partner development leading to successful demonstration of the SOFC APU objectives and significant progress towards SOFC commercialization. Significant SOFC APU Milestones: Demonstrated: Operation meeting SOFC APU requirements on commercial Ultra Low Sulfur Diesel (ULSD) fuel. SOFC systems operating on dry CPOX reformate. Successful start-up and shut-down of SOFC APU system without inert gas purge. Developed: Low cost balance of plant concepts and compatible systems designs. Identified low cost, high volume components for balance of plant systems. Demonstrated efficient SOFC output power conditioning. Demonstrated SOFC control strategies and tuning methods.

  10. Bio-inspired surfactant assisted nano-catalyst impregnation of Solid-Oxide Fuel Cell (SOFC) electrodes

    SciTech Connect (OSTI)

    Ozmen, Ozcan; Zondlo, John W.; Lee, Shiwoo; Sabolsky, Edward M.

    2015-11-02

    A bio-inspired surfactant was utilized to assist in the efficient impregnation of a nano-CeO₂ catalyst throughout both porous Solid Oxide Fuel Cells (SOFC’s) electrodes simultaneously. The process included the initial modification of electrode pore walls with a polydopamine film. The cell was then submersed into a cerium salt solution. The amount of nano-CeO₂ deposited per impregnation step increased by 3.5 times by utilizing this two-step protocol in comparison to a conventional drip impregnation method. The impregnated cells exhibited a 20% higher power density than a baseline cell without the nano-catalyst at 750°C (using humid H₂ fuel).

  11. Fabrication and characteristics of unit cell for SOFC

    SciTech Connect (OSTI)

    Kim, Gwi-Yeol; Eom, Seung-Wook; Moon, Seong-In

    1996-12-31

    Research and development on solid oxide fuel cells in Korea have been mainly focused on unit cell and small stack. Fuel cell system is called clean generation system which not cause NOx or SOx. It is generation efficiency come to 50-60% in contrast to 40% of combustion generation system. Among the fuel cell system, solid oxide fuel cell is constructed of ceramics, so stack construction is simple, power density is very high, and there are no corrosion problems. The object of this study is to develop various composing material for SOFC generation system, and to test unit cell performance manufactured. So we try to present a guidance for developing mass power generation system. We concentrated on development of manufacturing process for cathode, anode and electrolyte.

  12. Effect of interconnect creep on long-term performance of SOFC of one cell stacks

    SciTech Connect (OSTI)

    Liu, Wenning N.; Sun, Xin; Khaleel, Mohammad A.

    2008-02-01

    Creep deformation becomes relevant for a material when the operating temperature is near or exceeds half of its melting temperature (in degrees of Kelvin). The operating temperatures for most of the solid oxide fuel cells (SOFC) under development in the SECA program are around 1073oK. High temperature ferritic alloys are potential candidates as interconnect (IC) materials and spacers due to their low cost and CTE compatibility with other SOFC components. Since the melting temperature of most stainless steel is around 1800oK, possible creep deformation of IC under the typical cell operating temperature should not be neglected. In this paper, the effects of interconnect creep behavior on stack geometry change and stress redistribution of different cell components are predicted and summarized. The goal of the study is to investigate the performance of the fuel cell stack by obtaining the fuel and air channel geometry changes due to creep of the ferritic stainless steel interconnect, therefore indicating possible SOFC performance change under long term operations. IC creep models were incorporated into SOFC-MP and Mentat FC, and finite element analyses were performed to quantify the deformed configuration of the SOFC stack under the long term steady state operating temperature. It is found that creep behavior of the ferritic stainless steel IC contributes to narrowing of both the fuel and the air flow channels. In addition, stress re-distribution of the cell components suggests the need for a compliant sealing material that also relaxes at operating temperature.

  13. Manufacturing Cost Analysis of 100 and 250 kW Fuel Cell Systems...

    Energy.gov (indexed) [DOE]

    Both polymer electrolyte membrane (PEM) fuel cell stacks and solid oxide fuel cell (SOFC) ... kW Direct Hydrogen Polymer Electrolyte Membrane (PEM) Fuel Cell for Material Handling ...

  14. Reversible Fuel Cells Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    The workshop was divided into two sessions-a PEM reversible fuel cell session and a reversible SOFC... critical issues, materials and systems barriers, and manufacturing issues ...

  15. NETL: Solid Oxide Fuel Cells

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Solid Oxide Fuel Cells Solid oxide fuel cells (SOFC) are electrochemical devices that convert chemical energy of a fuel and oxidant directly into electrical energy. Since SOFCs produce electricity through an electrochemical reaction and not through a combustion process, they are much more efficient and environmentally benign than conventional electric power generation processes. Their inherent characteristics make them uniquely suitable to address the environmental, climate change, and water

  16. Manufacturing Cost Analysis of 1 kW and 5 kW Solid Oxide Fuel Cell (SOFC) for Auxiliary Power Applications

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report provides cost estimates for the manufacture of 1 kW and 5 kW SOFC designed for auxiliary power unit applications.

  17. SOFC seal and cell thermal management

    DOE Patents [OSTI]

    Potnis, Shailesh Vijay; Rehg, Timothy Joseph

    2011-05-17

    The solid oxide fuel cell module includes a manifold, a plate, a cathode electrode, a fuel cell and an anode electrode. The manifold includes an air or oxygen inlet in communication with divergent passages above the periphery of the cell which combine to flow the air or oxygen radially or inwardly for reception in the center of the cathode flow field. The latter has interconnects providing circuitous cooling passages in a generally radial outward direction cooling the fuel cell and which interconnects are formed of different thermal conductivity materials for a preferential cooling.

  18. The ways of SOFC systems efficiency increasing

    SciTech Connect (OSTI)

    Demin, A.K.; Timofeyeva, N.

    1996-04-01

    The efficiency of solid oxide fuel cells (SOFCs) is described. This paper considers methods to lift the fuel utilization and/or the average cell voltage with the goal of increasing the cell efficiency by improved cell designs.

  19. Segregated exhaust SOFC generator with high fuel utilization capability

    DOE Patents [OSTI]

    Draper, Robert; Veyo, Stephen E.; Kothmann, Richard E.

    2003-08-26

    A fuel cell generator contains a plurality of fuel cells (6) in a generator chamber (1) and also contains a depleted fuel reactor or a fuel depletion chamber (2) where oxidant (24,25) and fuel (81) is fed to the generator chamber (1) and the depleted fuel reactor chamber (2), where both fuel and oxidant react, and where all oxidant and fuel passages are separate and do not communicate with each other, so that fuel and oxidant in whatever form do not mix and where a depleted fuel exit (23) is provided for exiting a product gas (19) which consists essentially of carbon dioxide and water for further treatment so that carbon dioxide can be separated and is not vented to the atmosphere.

  20. Advanced Materials for Reversible Solid Oxide Fuel Cell (RSOFC...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    3 Path: 247 Reliability for Renewables: Source: Water The VPS Storage f Wind Fuel Cell f Solar Electrolyzer Continuous SOFC Intermittent Power Power In Out Air, Oxygen Hydrogen ...

  1. Breakout Group 5: Solid Oxide Fuel Cells | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    5: Solid Oxide Fuel Cells Breakout Group 5: Solid Oxide Fuel Cells Report from Breakout Group 5 of the Fuel Cell Pre-Solicitation Workshop, January 23-24, 2008 fc_pre-solicitation_workshop_sofc.pdf (49.47 KB) More Documents & Publications DOE Fuel Cell Pre-Solicitation Workshop Agenda, January 23-24, 2008, Golden, Colorado Breakout Group 2: Membrane Electrode Assemblies Solid Oxide Fuel Cell System (SOFC) Technology R&D Needs (Presentation)

  2. DOE Fuel Cell Pre-Solicitation Workshop - Breakout Group 3: HIGH TEMP

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    (SOFC) SYSTEM AND BOP | Department of Energy 3: HIGH TEMP (SOFC) SYSTEM AND BOP DOE Fuel Cell Pre-Solicitation Workshop - Breakout Group 3: HIGH TEMP (SOFC) SYSTEM AND BOP Report from Breakout Group 3 of the DOE Fuel Cell Pre-Solicitation Workshop, March 16-17, 2010 fuelcell_pre-solicitation_wkshop_hi_temp_sofc.pdf (55.86 KB) More Documents & Publications DOE Fuel Cell Pre-Solicitation Workshop - Breakout Group 5: Long-Term Innovative Technologies Solid Oxide Fuel Cell System (SOFC)

  3. An Introduction to the 2010 Fuel Cell Pre-Solicitation Workshop

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... SOFC S BOP d St k C I i f St ti 3) SOFC System BOP and Stack Component Integration for ... Pete Devlin DOE Fuel Cell Technolog gies, , Manufacturing g R & D Team LOGIN INFORMATION: ...

  4. Oxide-based SOFC Anode Materials - Energy Innovation Portal

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Technology Marketing Summary In a solid-oxide fuel cell (SOFC), the anode facilitates the reaction between hydrogen... materials in manufacturing cost and process Provides for ...

  5. Solid Oxide Fuel Cell Manufacturing Overview | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Manufacturing Overview Solid Oxide Fuel Cell Manufacturing Overview Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop in Washington, DC, August 11-12, 2011. Solid Oxide Fuel Cell Manufacturing Overview (1.16 MB) More Documents & Publications Progress on the Development of Reversible SOFC Stack Technology Reversible Fuel Cells Workshop Summary Report Materials and System Issues with Reversible SOFC

  6. Modeling of On-Cell Reforming Reaction for Planar SOFC Stacks

    SciTech Connect (OSTI)

    Yang, Choongmo; Lim, Hyung-Tae; Hwang, Soon Cheol; Kim, Dohyung; Lai, Canhai; Koeppel, Brian J.; Recknagle, Kurtis P.; Khaleel, Mohammad A.

    2011-05-30

    Planar Solid Oxide Fuel Cell (SOFC) stack is known to suffer thermal problem from high stack temperature during operation to generate high current. On-Cell Reforming (OCR) phenomenon is often used to reduce stack temperature by an endothermic reaction of steam-methane reforming process. RIST conducted single-cell experiment to validate modeling tool to simulate OCR performance including temperature measurement. 2D modeling is used to check reforming rate during OCR using temperature measurement data, and 3D modeling is used to check overall thermal performance including furnace boundary conditions.

  7. SOFC INTERCONNECT DEVELOPMENT

    SciTech Connect (OSTI)

    Diane M. England

    2004-03-16

    An interconnect for an SOFC stack is used to connect fuel cells into a stack. SOFC stacks are expected to run for 40,000 hours and 10 thermal cycles for the stationary application and 10,000 hours and 7000 thermal cycles for the transportation application. The interconnect of a stack must be economical and robust enough to survive the SOFC stack operation temperature of 750 C and must maintain the electrical connection to the fuel cells throughout the lifetime and under thermal cycling conditions. Ferritic and austenitic stainless steels, and nickel-based superalloys were investigated as possible interconnect materials for solid oxide fuel cell (SOFC) stacks. The alloys were thermally cycled in air and in a wet nitrogen-argon-hydrogen (N2-Ar-H2-H2O) atmosphere. Thermogravimetry was used to determine the parabolic oxidation rate constants of the alloys in both atmospheres. The area-specific resistance of the oxide scale and metal substrates were measured using a two-probe technique with platinum contacts. The study identifies two new interconnect designs which can be used with both bonded and compressive stack sealing mechanisms. The new interconnect designs offer a solution to chromium vaporization, which can lead to degradation of some (chromium-sensitive) SOFC cathodes.

  8. Design and performance of tubular flat-plate solid oxide fuel cell

    SciTech Connect (OSTI)

    Matsushima, T.; Ikeda, D.; Kanagawa, H.

    1996-12-31

    With the growing interest in conserving the environmental conditions, much attention is being paid to Solid Oxide Fuel Cell (SOFC), which has high energy-conversion efficiency. Many organizations have conducted studies on tubular and flat type SOFCs. Nippon Telegraph and Telephone Corporation (NTT) has studied a combined tubular flat-plate SOFC, and already presented the I-V characteristics of a single cell. Here, we report the construction of a stack of this SOFC cell and successful generation tests results.

  9. Solid oxide fuel cells for transportation: A clean, efficient alternative for propulsion

    SciTech Connect (OSTI)

    Kumar, R.; Krumpelt, M.; Myles, K.M.

    1993-04-01

    Fuel cells show great promise for providing clean and efficient transportation power. Of the fuel cell propulsion systems under investigation, the solid oxide fuel cell (SOFC) is particularly attractive for heavy duty transportation applications that have a relatively long duty cycle, such as locomotives, trucks, and barges. Advantages of the SOFC include a simple, compact system configuration; inherent fuel flexibility for hydrocarbon and alternative fuels; and minimal water management. The specific advantages of the SOFC for powering a railroad locomotive are examined. Feasibility, practicality, and safety concerns regarding SOFCs in transportation applications are discussed, as am the major R&D issues.

  10. Solid oxide fuel cells for transportation: A clean, efficient alternative for propulsion

    SciTech Connect (OSTI)

    Kumar, R.; Krumpelt, M.; Myles, K.M.

    1993-01-01

    Fuel cells show great promise for providing clean and efficient transportation power. Of the fuel cell propulsion systems under investigation, the solid oxide fuel cell (SOFC) is particularly attractive for heavy duty transportation applications that have a relatively long duty cycle, such as locomotives, trucks, and barges. Advantages of the SOFC include a simple, compact system configuration; inherent fuel flexibility for hydrocarbon and alternative fuels; and minimal water management. The specific advantages of the SOFC for powering a railroad locomotive are examined. Feasibility, practicality, and safety concerns regarding SOFCs in transportation applications are discussed, as am the major R D issues.

  11. Final Progress Report, Renewable and Logistics Fuels for Fuel Cells at the Colorado School of Mines

    SciTech Connect (OSTI)

    Sullivan, Neal P

    2012-08-06

    The objective of this program is to advance the current state of technology of solid-oxide fuel cells (SOFCs) to improve performance when operating on renewable and logistics hydrocarbon fuel streams. Outcomes will include: 1.) new SOFC materials and architectures that address the technical challenges associated with carbon-deposit formation and sulfur poisoning; 2.) new integration strategies for combining fuel reformers with SOFCs; 3.) advanced modeling tools that bridge the scales of fundamental charge-transfer chemistry to system operation and control; and 4.) outreach through creation of the Distinguished Lecturer Series to promote nationwide collaboration with fuel-cell researchers and scientists.

  12. Dynamic Modeling in Solid-Oxide Fuel Cells Controller Design

    SciTech Connect (OSTI)

    Lu, Ning; Li, Qinghe; Sun, Xin; Khaleel, Mohammad A.

    2007-06-28

    In this paper, a dynamic model of the solid-oxide fuel cell (SOFC) power unit is developed for the purpose of designing a controller to regulate fuel flow rate, fuel temperature, air flow rate, and air temperature to maintain the SOFC stack temperature, fuel utilization rate, and voltage within operation limits. A lumped model is used to consider the thermal dynamics and the electro-chemial dynamics inside an SOFC power unit. The fluid dynamics at the fuel and air inlets are considered by using the in-flow ramp-rates.

  13. Fuel cell market applications

    SciTech Connect (OSTI)

    Williams, M.C.

    1995-12-31

    This is a review of the US (and international) fuel cell development for the stationary power generation market. Besides DOE, GRI, and EPRI sponsorship, the US fuel cell program has over 40% cost-sharing from the private sector. Support is provided by user groups with over 75 utility and other end-user members. Objectives are to develop and demonstrate cost-effective fuel cell power generation which can initially be commercialized into various market applications using natural gas fuel by the year 2000. Types of fuel cells being developed include PAFC (phosphoric acid), MCFC (molten carbonate), and SOFC (solid oxide); status of each is reported. Potential international applications are reviewed also. Fuel cells are viewed as a force in dispersed power generation, distributed power, cogeneration, and deregulated industry. Specific fuel cell attributes are discussed: Fuel cells promise to be one of the most reliable power sources; they are now being used in critical uninterruptible power systems. They need hydrogen which can be generated internally from natural gas, coal gas, methanol landfill gas, or other fuels containing hydrocarbons. Finally, fuel cell development and market applications in Japan are reviewed briefly.

  14. Advanced materials for solid oxide fuel cells

    SciTech Connect (OSTI)

    Armstrong, T.; Stevenson, J.

    1995-12-31

    The purpose of this research is to improve the properties of the current state-of-the-art materials used for solid oxide fuel cells (SOFCs). The objectives are to: (1) develop materials based on modifications of the state-of-the-art materials; (2) minimize or eliminate stability problems in the cathode, anode, and interconnect; (3) Electrochemically evaluate (in reproducible and controlled laboratory tests) the current state-of-the-art air electrode materials and cathode/electrolyte interfacial properties; (4) Develop accelerated electrochemical test methods to evaluate the performance of SOFCs under controlled and reproducible conditions; and (5) Develop and test materials for use in low-temperature SOFCs.

  15. Solid Oxide Fuel Cells Operating on Alternative and Renewable Fuels

    SciTech Connect (OSTI)

    Wang, Xiaoxing; Quan, Wenying; Xiao, Jing; Peduzzi, Emanuela; Fujii, Mamoru; Sun, Funxia; Shalaby, Cigdem; Li, Yan; Xie, Chao; Ma, Xiaoliang; Johnson, David; Lee, Jeong; Fedkin, Mark; LaBarbera, Mark; Das, Debanjan; Thompson, David; Lvov, Serguei; Song, Chunshan

    2014-09-30

    This DOE project at the Pennsylvania State University (Penn State) initially involved Siemens Energy, Inc. to (1) develop new fuel processing approaches for using selected alternative and renewable fuels – anaerobic digester gas (ADG) and commercial diesel fuel (with 15 ppm sulfur) – in solid oxide fuel cell (SOFC) power generation systems; and (2) conduct integrated fuel processor – SOFC system tests to evaluate the performance of the fuel processors and overall systems. Siemens Energy Inc. was to provide SOFC system to Penn State for testing. The Siemens work was carried out at Siemens Energy Inc. in Pittsburgh, PA. The unexpected restructuring in Siemens organization, however, led to the elimination of the Siemens Stationary Fuel Cell Division within the company. Unfortunately, this led to the Siemens subcontract with Penn State ending on September 23rd, 2010. SOFC system was never delivered to Penn State. With the assistance of NETL project manager, the Penn State team has since developed a collaborative research with Delphi as the new subcontractor and this work involved the testing of a stack of planar solid oxide fuel cells from Delphi.

  16. Materials issues in solid oxide fuel cell systems

    SciTech Connect (OSTI)

    Ziomek-Moroz, M.

    2007-03-02

    Hydrogen is the main fuel for all types of fuel cells except direct methanol fuel cells. Hydrogen can be generated from all manner of fossil fuels, including coal, natural gas, diesel, gasoline, other hydrocarbons, and oxygenates (e.g., methanol, ethanol, butanol, etc.). The presence of carbon oxides in the fuel can cause significant performance problems resulting in decreasing the cell performance of fuel cells, including solid oxide fuel cells (SOFC). In the SOFC, the high (800-1000C) operating temperature yields advantages (e.g., internal fuel reforming) and disadvantages (e.g., material selection and degradation problems). Significant progress in reducing the operating temperature of the SOFC below ~800 C may allow less expensive metallic materials to be used for interconnects. This presentation provides insight on the material performance of ferritic steels in fuels containing carbon oxides and seeks to quantify the extent of possible degradation due to carbon species in the gas stream.

  17. Recent Development of SOFC Metallic Interconnect

    SciTech Connect (OSTI)

    Wu JW, Liu XB

    2010-04-01

    Interest in solid oxide fuel cells (SOFC) stems from their higher eciencies and lower levels of emitted pollu- tants, compared to traditional power production methods. Interconnects are a critical part in SOFC stacks, which connect cells in series electrically, and also separate air or oxygen at the cathode side from fuel at the anode side. Therefore, the requirements of interconnects are the most demanding, i:e:, to maintain high elec- trical conductivity, good stability in both reducing and oxidizing atmospheres, and close coecient of thermal expansion (CTE) match and good compatibility with other SOFC ceramic components. The paper reviewed the interconnect materials, and coatings for metallic interconnect materials.

  18. FY 2014 Solid Oxide Fuel Cell Project Selections

    Energy.gov [DOE]

    In FY 2014, nine research projects focused on advancing the reliability, robustness, and endurance of solid oxide fuel cells (SOFC) have been selected for funding by Office of Fossil Energy’s...

  19. Solid Oxide Fuel Cell Systems for APU Functions and Beyond |...

    Energy.gov (indexed) [DOE]

    of FreedomCAR and Vehicle Technologies (OFCVT). deer07grieve.pdf (105.13 KB) More Documents & Publications Solid Oxide Fuel Cell System (SOFC) Technology R&D Needs ...

  20. solid oxide fuel cells | netl.doe.gov

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    solid oxide fuel cells sofc.jpg Imagine an efficient, combustion-less, virtually pollution-free power source capable of being sited in urban areas or in remote regions, running...

  1. Solid Oxide Fuel Cell and Power System Development at PNNL |...

    Energy.gov (indexed) [DOE]

    Presented at the DOE-DOD Shipboard APU Workshop on March 29, 2011. apu20119chick.pdf (1.77 MB) More Documents & Publications Solid Oxide Fuel Cell (SOFC) Technology for Greener ...

  2. Solid State Energy Conversion Alliance Delphi SOFC

    SciTech Connect (OSTI)

    Steven Shaffer; Gary Blake; Sean Kelly; Subhasish Mukerjee; Karl Haltiner; Larry Chick; David Schumann; Jeff Weissman; Gail Geiger; Ralphi Dellarocco

    2006-12-31

    The following report details the results under the DOE SECA program for the period July 2006 through December 2006. Developments pertain to the development of a 3 to 5 kW Solid Oxide Fuel Cell power system for a range of fuels and applications. This report details technical results of the work performed under the following tasks for the SOFC Power System: Task 1 SOFC System Development; Task 2 Solid Oxide Fuel Cell Stack Developments; Task 3 Reformer Developments; Task 4 Development of Balance of Plant Components; Task 5 Project Management; and Task 6 System Modeling & Cell Evaluation for High Efficiency Coal-Based Solid Oxide Fuel Cell Gas Turbine Hybrid System.

  3. Method and apparatus for assembling solid oxide fuel cells

    DOE Patents [OSTI]

    Szreders, Bernard E.; Campanella, Nicholas

    1989-01-01

    A plurality of jet air tubes are supported and maintained in a spaced matrix array by a positioning/insertion assembly for insertion in respective tubes of a solid oxide fuel cell (SOFC) in the assembly of an SOFC module. The positioning/insertion assembly includes a plurality of generally planar, elongated, linear vanes which are pivotally mounted at each end thereof to a support frame. The vanes, which each include a plurality of spaced slots along the facing edges thereof, may be pivotally displaced from a generally vertical orientation, wherein each jet air tube is positioned within and engaged by the aligned slots of a plurality of paired upper and lower vanes to facilitate their insertion in respective aligned SOFC tubes arranged in a matrix array, to an inclined orientation, wherein the jet air tubes may be removed from the positioning/insertion assembly after being inserted in the SOFC tubes. A rectangular compression assembly of adjustable size is adapted to receive and squeeze a matrix of SOFC tubes so as to compress the inter-tube nickel felt conductive pads which provide series/parallel electrical connection between adjacent SOFCs, with a series of increasingly larger retainer frames used to maintain larger matrices of SOFC tubes in position. Expansion of the SOFC module housing at the high operating temperatures of the SOFC is accommodated by conductive, flexible, resilient expansion, connector bars which provide support and electrical coupling at the top and bottom of the SOFC module housing.

  4. NETL SOFC: Pressurized Systems

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    SOFC technology suitable for either syngas- or natural-gas-fueled applications. ... diversification but also offers insurance against business environment risk, ...

  5. Compact fuel cell

    DOE Patents [OSTI]

    Jacobson, Craig; DeJonghe, Lutgard C.; Lu, Chun

    2010-10-19

    A novel electrochemical cell which may be a solid oxide fuel cell (SOFC) is disclosed where the cathodes (144, 140) may be exposed to the air and open to the ambient atmosphere without further housing. Current collector (145) extends through a first cathode on one side of a unit and over the unit through the cathode on the other side of the unit and is in electrical contact via lead (146) with housing unit (122 and 124). Electrical insulator (170) prevents electrical contact between two units. Fuel inlet manifold (134) allows fuel to communicate with internal space (138) between the anodes (154 and 156). Electrically insulating members (164 and 166) prevent the current collector from being in electrical contact with the anode.

  6. Prediction of crack propagation paths in the unit cell of SOFC stacks

    SciTech Connect (OSTI)

    Joulaee, N.; Makradi, A.; Ahzi, Said; Khaleel, Mohammad A.; Koeppel, Brian J.

    2009-08-01

    Planar Solid Oxide Fuel Cells (SOFC) stacks are multi-material layered systems with different thermo-mechanical properties. Due to their severe thermal loading, these layers have to meet high demands to preserve their mechanical integrity without initiation and propagation of fracture. Here, we focus on a typical unit cell of the stack which consists of positive electrode-electrolyte-negative electrode (PEN). Based on the mechanical properties of each layer and their interfaces, an energy criterion as a function of crack length is used for the prediction of possible crack extensions in the PEN. This criterion is a pure local criterion, independent of applied loads and geometry of the specimen. An analysis of the competition between crack deflections in the interfaces and crack penetration in layers is presented.

  7. Method and apparatus for assembling solid oxide fuel cells

    DOE Patents [OSTI]

    Szreders, B.E.; Campanella, N.

    1988-05-11

    This invention relates generally to solid oxide fuel power generators and is particularly directed to improvements in the assembly and coupling of solid oxide fuel cell modules. A plurality of jet air tubes are supported and maintained in a spaced matrix array by a positioning/insertion assembly for insertion in respective tubes of a solid oxide fuel cell (SOFC) in the assembly of an SOFC module. The positioning/insertion assembly includes a plurality of generally planar, elongated, linear vanes which are pivotally mounted at each end thereof to a support frame. A rectangular compression assembly of adjustable size is adapted to receive and squeeze a matrix of SOFC tubes so as to compress the inter-tube nickel felt conductive pads which provide series/parallel electrical connection between adjacent SOFCs, with a series of increasingly larger retainer frames used to maintain larger matrices of SOFC tubes in position. Expansion of the SOFC module housing at the high operating temperatures of the SOFC is accommodated by conductive, flexible, resilient expansion, connector bars which provide support and electrical coupling at the top and bottom of the SOFC module housing. 17 figs.

  8. SOFC Interconnect and Compressive Seal Development at PNNL

    SciTech Connect (OSTI)

    Chou, Y S.; Yang, Z Gary; Singh, Prabhakar; Stevenson, Jeffry W.; Xia, Gordon

    2005-11-01

    The development of solid oxide fuel cell (SOFC) technology represents an opportunity to achieve significant improvements in energy conversion efficiency and reduction of undesirable emissions. However, many technical challenges still need to be overcome before the utilization of the advantages of SOFC can take place. These challenges include the need for improved interconnects and seals for planar SOFC stacks. In this paper, we briefly summarize recent progress at PNNL in these two research areas.

  9. Tubular solid oxide fuel cell development program

    SciTech Connect (OSTI)

    Ray, E.R.; Cracraft, C.

    1995-12-31

    This paper presents an overview of the Westinghouse Solid Oxide Fuel Cell (SOFC) development activities and current program status. The Westinghouse goal is to develop a cost effective cell that can operate for 50,000 to 100,000 hours. Progress toward this goal will be discussed and test results presented for multiple single cell tests which have now successfully exceeded 56,000 hours of continuous power operation at temperature. Results of development efforts to reduce cost and increase power output of tubular SOFCs are described.

  10. Durability Prediction of Solid Oxide Fuel Cell Anode Material under Thermo-Mechanical and Fuel Gas Contaminants Effects

    SciTech Connect (OSTI)

    Iqbal, Gulfam; Guo, Hua; Kang , Bruce S.; Marina, Olga A.

    2011-01-10

    Solid Oxide Fuel Cells (SOFCs) operate under harsh environments, which cause deterioration of anode material properties and service life. In addition to electrochemical performance, structural integrity of the SOFC anode is essential for successful long-term operation. The SOFC anode is subjected to stresses at high temperature, thermal/redox cycles, and fuel gas contaminants effects during long-term operation. These mechanisms can alter the anode microstructure and affect its electrochemical and structural properties. In this research, anode material degradation mechanisms are briefly reviewed and an anode material durability model is developed and implemented in finite element analysis. The model takes into account thermo-mechanical and fuel gas contaminants degradation mechanisms for prediction of long-term structural integrity of the SOFC anode. The proposed model is validated experimentally using a NexTech ProbostatTM SOFC button cell test apparatus integrated with a Sagnac optical setup for simultaneously measuring electrochemical performance and in-situ anode surface deformation.

  11. FUEL CELLS Fuel Cell Cars

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    CELLS Fuel Cell Cars Power, performance, and pollution - free Only water from tailpipe More efficient than traditional combustion Only water and heat as byproducts Produce electricity without any combustion Scale up easily to meet many power needs Hydrogen in. Electricity, Heat and Water Out. Share the knowledge #FuelCellsNow #HydrogenNow Learn more: energy.gov/eere/fuelcells Most abundant element in universe Fuel Cell Cars Power, performance, and pollution - free Only water from tailpipe Fuel

  12. U.S. DOE fossil energy fuel cell program

    SciTech Connect (OSTI)

    Wayne Surdoval

    2007-07-01

    The U.S. Department of Energy's Office of Fossil Energy's National Energy Technology Laboratory, in partnership with private industry, educational institutions, and national laboratories, is leading the research, development, and demonstration of high efficiency, fuel flexible solid oxide fuel cells (SOFCs) and coal based SOFC power generation systems for stationary markets. This Fuel Cell Program has three parts: Solid State Energy Conversion Alliance (SECA) cost reduction, SECA fuel cell coal based systems, and advanced SECA systems. The SECA cost reduction goal is to have SOFCs capable of being mass manufactured at $400 per kilowatt by 2010. Concurrently, the scale-up, aggregation, and integration of the technology will progress in parallel leading to prototype validation of megawatt class products by 2012 with potential testing at FutureGen. The SECA coal-based and advanced systems goals are the development of megawatt-class fuel cell power systems that will enable affordable, reliable, efficient, and environmentally-friendly electrical power from coal.

  13. AlliedSignal solid oxide fuel cell technology

    SciTech Connect (OSTI)

    Minh, N.; Barr, K.; Kelly, P.; Montgomery, K.

    1996-12-31

    AlliedSignal has been developing high-performance, lightweight solid oxide fuel cell (SOFC) technology for a broad spectrum of electric power generation applications. This technology is well suited for use in a variety of power systems, ranging from commercial cogeneration to military mobile power sources. The AlliedSignal SOFC is based on stacking high-performance thin-electrolyte cells with lightweight metallic interconnect assemblies to form a compact structure. The fuel cell can be operated at reduced temperatures (600{degrees} to 800{degrees}C). SOFC stacks based on this design has the potential of producing 1 kW/kg and 1 ML. This paper summarizes the technical status of the design, manufacture, and operation of AlliedSignal SOFCs.

  14. Oxygen reduction and transportation mechanisms in solid oxide fuel cell cathodes

    SciTech Connect (OSTI)

    Li YH, Gemmen R, Liu XB

    2010-06-01

    In recent years, various models have been developed for describing the reaction mechanisms in solid oxide fuel cell (SOFC) especially for the cathode electrode. However, many fundamental issues regarding the transport of oxygen and electrode kinetics have not been fully understood. This review tried to summarize the present status of the SOFC cathode modeling efforts, and associated experimental approaches on this topic. In addition, unsolved problems and possible future research directions for SOFC cathode kinetics had been discussed

  15. Cost projections for planar solid oxide fuel cell systems

    SciTech Connect (OSTI)

    Krist, K.; Wright, J.D.; Romero, C.; Chen, Tan Ping

    1996-12-31

    The Gas Research Institute (GRI) is funding fundamental research on solid oxide fuel cells (SOFCs) that operate at reduced temperature. As part of this effort, we have carried out engineering analysis to determine what areas of research can have the greatest effect on the commercialization of SOFCs. Previous papers have evaluated the markets for SOFCs and the amount which a customer will be willing to pay for fuel cell systems or stacks in these markets, the contribution of materials costs to the total stack cost, and the benefits and design requirements associated with reduced temperature operation. In this paper, we describe the cost of fabricating SOFC stacks by different methods. The complete analysis is available in report form.

  16. High power density solid oxide fuel cells

    DOE Patents [OSTI]

    Pham, Ai Quoc; Glass, Robert S.

    2004-10-12

    A method for producing ultra-high power density solid oxide fuel cells (SOFCs). The method involves the formation of a multilayer structure cells wherein a buffer layer of doped-ceria is deposited intermediate a zirconia electrolyte and a cobalt iron based electrode using a colloidal spray deposition (CSD) technique. For example, a cobalt iron based cathode composed of (La,Sr)(Co,Fe)O (LSCF) may be deposited on a zirconia electrolyte via a buffer layer of doped-ceria deposited by the CSD technique. The thus formed SOFC have a power density of 1400 mW/cm.sup.2 at 600.degree. C. and 900 mW/cm.sup.2 at 700.degree. C. which constitutes a 2-3 times increased in power density over conventionally produced SOFCs.

  17. Microstructure degradation of YSZ in Ni/YSZ anodes of SOFC operated in phosphine-containing fuels

    SciTech Connect (OSTI)

    Chen, Yun; Chen, Song; Hackett, Gregory; Finklea, Harry; Zondlod, John; Celik, Ismail; Song, Xueyan; Gerdes, Kirk

    2013-03-07

    The interaction of trace (ppm) phosphine with the nickel/yttria stabilized zirconia (YSZ) anode of commercial solid oxide fuel cells has been investigated and evaluated for both synthesis gas and hydrogen fuels in an effort to examine PY reactions. The Ni poisoning effects reported in literature were confirmed and degradation was examined by electrochemical methods and post-test microstructural and chemical analyses. The results indicate that P-induced degradation rates and mechanisms are fuel dependent and that degradation of cells operated in synthesis gas (syngas) with phosphine is more severe than that of cells operated in hydrogen with phosphine. As reported in published literature, a cell operated in syngas containing 10 ppm phosphine demonstrated significant microstructural degradation within the Ni phase, including formation of NiP phases concentrated on the outer layer of the anode and significant pitting corrosion in the Ni grains. In this research, a previously undetected YPO{sub 4} phase is observed at the YSZ/YSZ/Ni triple grain junctions located at the interface with the YSZ electrolyte. Tetragonal YSZ (t-YSZ) and cubic-YSZ (c-YSZ) domains with sizes of several tens of nanometers are also newly observed along the Ni/YSZ interface. These observations contrast with data obtained for a cell operated in dry hydrogen with phosphine, where no YPO{sub 4} phase is observed and the alternating t-YSZ and c-YSZ domains at the Ni/YSZ interface are smaller with typical sizes of 510 nm. The data imply that electrolyte attack by P is a potentially debilitating mode of degradation in SOFC anodes, and that the associated reaction mechanisms and rates are worthy of further examination.

  18. Small Scale SOFC Demonstration Using Bio-Based and Fossil Fuels

    SciTech Connect (OSTI)

    Petrik, Michael; Ruhl, Robert

    2012-05-01

    Technology Management, Inc. (TMI) of Cleveland, Ohio, has completed the project entitled Small Scale SOFC Demonstration using Bio-based and Fossil Fuels. Under this program, two 1-kW systems were engineered as technology demonstrators of an advanced technology that can operate on either traditional hydrocarbon fuels or renewable biofuels. The systems were demonstrated at Patterson's Fruit Farm of Chesterland, OH and were open to the public during the first quarter of 2012. As a result of the demonstration, TMI received quantitative feedback on operation of the systems as well as qualitative assessments from customers. Based on the test results, TMI believes that > 30% net electrical efficiency at 1 kW on both traditional and renewable fuels with a reasonable entry price is obtainable. The demonstration and analysis provide the confidence that a 1 kW entry-level system offers a viable value proposition, but additional modifications are warranted to reduce sound and increase reliability before full commercial acceptance.

  19. Recovery Act. Solid Oxide Fuel Cell Diesel Auxilliary Power Unit Demonstration

    SciTech Connect (OSTI)

    Geiger, Gail E.

    2013-09-30

    Solid Oxide Fuel Cell Diesel Auxilliary Power Unit Demonstration Project. Summarizing development of Delphi’s next generation SOFC system as the core power plant to prove the viability of the market opportunity for a 3-5 kW diesel SOFC system. Report includes test and demonstration results from testing the diesel APU in a high visibility fleet customer vehicle application.

  20. Performance of composite electrolyte SOFCs

    SciTech Connect (OSTI)

    Khandkar, A.C.; Elangovan, S.; Milliken, C.; Guruswamy, S.

    1994-12-31

    In an effort to minimize the ohmic losses in solid oxide fuel cells (SOFC), especially at lower operating temperatures around 800 C, an alternate electrolyte material such as ceria is often adopted. However, ceria based electrolytes develop mixed conduction, which lowers faradaic efficiency. To alleviate this effect, ceria electrolytes were coated with a thin layer zirconia using high temperature magnetron sputter deposition. This paper discusses the characterization of electrolytes and performance of single cells fabricated from these composite electrolytes.

  1. Solid oxide fuel cell matrix and modules

    DOE Patents [OSTI]

    Riley, Brian (Willimantic, CT)

    1990-01-01

    Porous refractory ceramic blocks arranged in an abutting, stacked configuration and forming a three dimensional array provide a support structure and coupling means for a plurality of solid oxide fuel cells (SOFCs). Each of the blocks includes a square center channel which forms a vertical shaft when the blocks are arranged in a stacked array. Positioned within the channel is a SOFC unit cell such that a plurality of such SOFC units disposed within a vertical shaft form a string of SOFC units coupled in series. A first pair of facing inner walls of each of the blocks each include an interconnecting channel hole cut horizontally and vertically into the block walls to form gas exit channels. A second pair of facing lateral walls of each block further include a pair of inner half circular grooves which form sleeves to accommodate anode fuel and cathode air tubes. The stack of ceramic blocks is self-supporting, with a plurality of such stacked arrays forming a matrix enclosed in an insulating refractory brick structure having an outer steel layer. The necessary connections for air, fuel, burnt gas, and anode and cathode connections are provided through the brick and steel outer shell. The ceramic blocks are so designed with respect to the strings of modules that by simple and logical design the strings could be replaced by hot reloading if one should fail. The hot reloading concept has not been included in any previous designs.

  2. Solid Oxide Fuel Cell Manufacturing Overview

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Cell Manufacturing Overview Hydrogen and Fuel Cell Technologies Manufacturing R&D Workshop August 11-12, 2011 Washington, DC Mark Richards, Eric Tang, Randy Petri Copyright © 2011 Versa Power Systems. All Rights Reserved. 2 Contents  Manufacturing development dependencies  SOFC elements  Cell manufacturing processes - Materials - Forming - Conditioning  Stack assembly  Quality control and testing  VPS projected cost reductions in SECA Copyright © 2011 Versa Power Systems.

  3. The Modeling of a Standalone Solid-Oxide Fuel Cell Auxiliary Power Unit

    SciTech Connect (OSTI)

    Lu, Ning; Li, Qinghe; Sun, Xin; Khaleel, Mohammad A.

    2006-10-27

    In this research, a Simulink model of a standalone vehicular solid-oxide fuel cell (SOFC) auxiliary power unit (APU) is developed. The SOFC APU model consists of three major components: a controller model; a power electronics system model; and an SOFC plant model, including an SOFC stack module; two heat exchanger modules; and a combustor module. This paper discusses the development of the nonlinear dynamic models for the SOFC stacks, the heat exchangers and the combustors. When coupling with a controller model and a power electronic circuit model, the developed SOFC plant model is able to model the thermal dynamics and the electrochemical dynamics inside the SOFC APU components as well as the transient responses to the electric loading changes. It has been shown that having such a model for the SOFC APU will benefit design engineers to adjust design parameters to optimize the performance. The modeling results of the heat-up stage of an SOFC APU and the output voltage response to a sudden load change are presented in the paper. The fuel flow regulation based on fuel utilization is also briefly discussed.

  4. NETL SOFC: Atmospheric Pressure Systems

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    SOFC technology suitable for either syngas- or natural-gas-fueled applications. ... diversification but also offers insurance against business environment risk, ...

  5. Stationary power fuel cell commercialization status worldwide

    SciTech Connect (OSTI)

    Williams, M.C.

    1996-12-31

    Fuel cell technologies for stationary power are set to play a role in power generation applications worldwide. The worldwide fuel cell vision is to provide powerplants for the emerging distributed generation and on-site markets. Progress towards commercialization has occurred in all fuel cell development areas. Around 100 ONSI phosphoric acid fuel cell (PAFC) units have been sold, with significant foreign sales in Europe and Japan. Fuji has apparently overcome its PAFC decay problems. Industry-driven molten carbonate fuel cell (MCFC) programs in Japan and the U.S. are conducting megawatt (MW)-class demonstrations, which are bringing the MCFC to the verge of commercialization. Westinghouse Electric, the acknowledged world leader in tubular solid oxide fuel cell (SOFC) technology, continues to set performance records and has completed construction of a 4-MW/year manufacturing facility in the U.S. Fuel cells have also taken a major step forward with the conceptual development of ultra-high efficiency fuel cell/gas turbine plants. Many SOFC developers in Japan, Europe, and North America continue to make significant advances.

  6. Nanostructured Solid Oxide Fuel Cell Electrodes

    SciTech Connect (OSTI)

    Sholklapper, Tal Zvi

    2007-12-15

    The ability of Solid Oxide Fuel Cells (SOFC) to directly and efficiently convert the chemical energy in hydrocarbon fuels to electricity places the technology in a unique and exciting position to play a significant role in the clean energy revolution. In order to make SOFC technology cost competitive with existing technologies, the operating temperatures have been decreased to the range where costly ceramic components may be substituted with inexpensive metal components within the cell and stack design. However, a number of issues have arisen due to this decrease in temperature: decreased electrolyte ionic conductivity, cathode reaction rate limitations, and a decrease in anode contaminant tolerance. While the decrease in electrolyte ionic conductivities has been countered by decreasing the electrolyte thickness, the electrode limitations have remained a more difficult problem. Nanostructuring SOFC electrodes addresses the major electrode issues. The infiltration method used in this dissertation to produce nanostructure SOFC electrodes creates a connected network of nanoparticles; since the method allows for the incorporation of the nanoparticles after electrode backbone formation, previously incompatible advanced electrocatalysts can be infiltrated providing electronic conductivity and electrocatalysis within well-formed electrolyte backbones. Furthermore, the method is used to significantly enhance the conventional electrode design by adding secondary electrocatalysts. Performance enhancement and improved anode contamination tolerance are demonstrated in each of the electrodes. Additionally, cell processing and the infiltration method developed in conjunction with this dissertation are reviewed.

  7. Porous Anode Model for Coal Syngas Fuelled SOFC: Combined Mass and Energy Transport Normal to Cell Plane

    SciTech Connect (OSTI)

    Gerdes, K.R.; Gemmen, R.S.

    2008-06-01

    Solid oxide fuel cells are being developed for integrated gasification combined cycle hybrid power systems. It is therefore necessary to evaluate the coupled temperature and concentration profiles for SOFC anodes exposed to coal syngas. In this work the SOFC anode was treated as a porous composite of 50/50 (volume) Ni / YSZ. Porous transport was modeled using the dusty gas model (DGM) and included two pore reactions, namely water gas shift and steam reforming of methane. The thermal transport model considered heat exchange by radiation between the interconnect and SOFC surface, convective transfer from bulk gas flow over the anode, heat generation terms due to pore reactions, and heat generation terms at the electrolyte boundary due to electrochemical reactions, ohmic heating, and concentration polarization. Composition profiles throughout the porous anode were considered for the DGM alone and were compared to the DGM including energy (DGME). The cases examined were for current densities ranging from 0.000-0.750 A/cm2 and for pressures from 1-19 atm absolute. Simulation results predict that the average cell operating temperature will increase 10 to 60°C relative to the furnace wall with inclusion of the energy equations. However, the thermal gradients within the anode are small due to the good thermal conductivity of the Ni-based anode. The effect of inclusion of energy transport on the hydrogen concentration profile is mixed depending on the independent parameter considered, with relative insensitivity to changes in the current density, but modest sensitivity to changes in operating pressure. Consideration of the thermal transport is important for determination of the interaction of coal syngas trace species with the anode, but is less critical for material stability.

  8. Status of SOFCo SOFC technology development

    SciTech Connect (OSTI)

    Privette, R.; Perna, M.A.; Kneidel, K.

    1996-12-31

    SOFCo, a Babcock & Wilcox/Ceramatec Research & Development Limited Partnership, is a collaborative research and development venture to develop technologies related to planar, solid-oxide fuel cells (SOFCs). SOFCo has successfully demonstrated a kW-class, solid-oxide fuel cell module operating on pipeline natural gas. The SOFC system design integrates the air preheater and the fuel processor with the fuel cell stacks into a compact test unit; this is the platform for multi-kW modules. The cells, made of tape-cast zirconia electrolyte and conventional electrode materials, exhibit excel lent stability in single-cell tests approaching 40,000 hours of operation. Stack tests using 10-cm and 15-cm cells with ceramic interconnects also show good performance and stability in tests for many thousands of hours.

  9. Tubular solid oxide fuel cell developments

    SciTech Connect (OSTI)

    Bratton, R.J.; Singh, P.

    1995-08-01

    An overview of the tubular solid oxide fuel cell (SOFC) development at Westinghouse is presented in this paper. The basic operating principles of SOFCs, evolution in tubular cell design and performance improvement, selection criteria for cell component materials, and cell processing techniques are discussed. The commercial goal is to develop a cell that can operate for 5 to 10 years. Results of cell test operated for more than 50,000 hours are presented. Since 1986, significant progress has been made in the evolution of cells with higher power, lower cost and improved thermal cyclic capability. Also in this period, successively larger multi-kilowatt electrical generators systems have been built and successfully operated for more than 7000 hours.

  10. Tubular solid oxide fuel cell prospect

    SciTech Connect (OSTI)

    Veyo, S.E.

    1996-05-01

    Driven by technological achievement and rational projection of commercial product cost, expectations for tubular SOFC commercialization are improving. Tubular SOFCs have surpassed 7 yrs operation and have recently demonstrated remarkable toughness in thermal cycling. Customer-owned systems with 25 kW stacks utilizing air electrode supported (AES) cells continue to operate directly on natural gas without degradation after multiple thermal cycles and over 4000 hrs operation. AES cell operation at elevated pressure corroborates theoretical estimates of performance gain without evidence of deleterious effect. Commercial class AES cell of 22 mm dia and 1500 mm length, is now in production for application to 100 kW, 50% efficient (ac/LHV), atmospheric pressure systems. This same cell applied to pressurized systems in combination with conventional turbo machinery (gas turbines) can yield an efficiency approaching 70% for power plants as small as 5 MW. Total installed system cost for commercial 5 MW SOFC/CT units for distributed power generation and on-site cogeneration should approach $1000/kW. A major challenge is formation of funded projects to demonstrate at the turn of the century prototype MW class SOFC/CT combined cycle power plants and to complete the development of commercial fuel cell manufacturing processes.

  11. Diesel-fueled solid oxide fuel cell auxiliary power units for heavy-duty vehicles

    SciTech Connect (OSTI)

    Krause, T.; Kumar, R.; Krumpelt, M.

    2000-05-15

    This paper explores the potential of solid oxide fuel cells (SOFCS) as 3--10 kW auxiliary power units for trucks and military vehicles operating on diesel fuel. It discusses the requirements and specifications for such units, and the advantages, challenges, and development issues for SOFCS used in this application. Based on system design and analysis, such systems should achieve efficiencies approaching 40% (lower heating value), with a relatively simple system configuration. The major components of such a system are the fuel cell stack, a catalytic autothermal reformer, and a spent gas burner/air preheater. Building an SOFC-based auxiliary power unit is not straightforward, however, and the tasks needed to develop a 3--10 kW brassboard demonstration unit are outlined.

  12. Fuel Preprocessor (FPP) for a Solid Oxide Fuel Cell Auxiliary Power Unit

    SciTech Connect (OSTI)

    M. Namazian, S. Sethuraman and G. Venkataraman

    2004-12-31

    Auxiliary Power Units (APUs), driven by truck engines, consume over 800 million gallon of diesel fuel while idling. Use of separate SOFC based APUs are an excellent choice to reduce the cost and pollution associated with producing auxiliary power. However, diesel fuel is a challenging fuel to use in fuel cell systems because it has heavy hydrocarbons that can transform into carbon deposits and gums that can block passages and deactivate fuel reformer and fuel cell reactor elements. The work reported herein addresses the challenges associated with the diesel fuel sulfur and carbon producing contaminants in a Fuel Preprocessor (FPP). FPP processes the diesel fuel onboard and ahead of the reformer to reduce its carbon deposition tendency and its sulfur content, thus producing a fuel suitable for SOFC APU systems. The goal of this DOE supported Invention and Innovation program was to design, develop and test a prototype Fuel Preprocessor (FPP) that efficiently and safely converts the diesel fuel into a clean fuel suitable for a SOFC APU system. The goals were achieved. A 5 kWe FPP was designed, developed and tested. It was demonstrated that FPP removes over 80% of the fuel sulfur and over 90% of its carbon residues and it was demonstrated that FPP performance exceeds the original project goals.

  13. 2007 Fuel Cell Technologies Market Report

    SciTech Connect (OSTI)

    McMurphy, K.

    2009-07-01

    The fuel cell industry, which has experienced continued increases in sales, is an emerging clean energy industry with the potential for significant growth in the stationary, portable, and transportation sectors. Fuel cells produce electricity in a highly efficient electrochemical process from a variety of fuels with low to zero emissions. This report describes data compiled in 2008 on trends in the fuel cell industry for 2007 with some comparison to two previous years. The report begins with a discussion of worldwide trends in units shipped and financing for the fuel cell industry for 2007. It continues by focusing on the North American and U.S. markets. After providing this industry-wide overview, the report identifies trends for each of the major fuel cell applications -- stationary power, portable power, and transportation -- including data on the range of fuel cell technologies -- polymer electrolyte membrane fuel cell (PEMFC), solid oxide fuel cell (SOFC), alkaline fuel cell (AFC), molten carbonate fuel cell (MCFC), phosphoric acid fuel cell (PAFC), and direct-methanol fuel cell (DMFC) -- used for these applications.

  14. BCA Perspective on Fuel Cell APUs

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Joe Breit BCA Perspective on Associate Technical Fellow Fuel Cell APUs Boeing Commercial Airplanes September 30, 2010 DOD-DOE Fuel Cell APU Workshop The following technical data is under the US Export Administration Regulations ECCN: EAR 99 No Export License Required . Page 2 Sept 2005 FCAPU_H2EXPO.ppt 40-45% Efficient (Jet-A to electrical during cruise) Jet-A 1 litre = Future 2015 SOFC APU ≈75% Efficient (Overall system at cruise) 0.6 litre = Jet-A 40% less fuel used In-flight SFC* saving is

  15. Anodic Concentration Polarization in SOFCs

    SciTech Connect (OSTI)

    Williford, Rick E.; Chick, Lawrence A.; Maupin, Gary D.; Simner, Steve P.; Stevenson, Jeffry W.; Khaleel, Mohammad A.; Wachsman, ED, et al

    2003-08-01

    Concentration polarization is important because it determines the maximum power output of a solid oxide fuel cell (SOFC) at high fuel utilization. Anodic concentration polarization occurs when the demand for reactants exceeds the capacity of the porous ceramic anode to supply them by gas diffusion mechanisms. High tortuosities (bulk diffusion resistances) are often assumed to explain this behavior. However, recent experiments show that anodic concentration polarization originates in the immediate vicinity of the reactive triple phase boundary (TPB) sites near the anode/electrolyte interface. A model is proposed to describe how concentration polarization is controlled by two localized phenomena: competitive adsorption of reactants in areas adjacent to the reactive TPB sites, followed by relatively slow surface diffusion to the reactive sites. Results suggest that future SOFC design improvements should focus on optimization of the reactive area, adsorption, and surface diffusion at the anode/electrolyte interface.

  16. Manifold, bus support and coupling arrangement for solid oxide fuel cells

    DOE Patents [OSTI]

    Parry, G.W.

    1988-04-21

    Individual, tubular solid oxide fuel cells (SOFCs) are assembled into bundles called a module within a housing, with a plurality of modules arranged end-to-end in a linear, stacked configuration called a string. A common set of piping comprised of a suitable high temperature resistant material (1) provides fuel and air to each module housing, (2) serves as electrically conducting buses, and (3) provides structural support for a string of SOFC modules. Ceramic collars are used to connect fuel and air inlet piping to each of the electrodes in an SOFC module and provide (1) electrical insulation for the current carrying bus bars and gas manifolds, (2) damping for the fuel and air inlet piping, and (3) proper spacing between the fuel and air inlet piping to prevent contact between these tubes and possible damage to the SOFC. 11 figs.

  17. Fuel cell-fuel cell hybrid system

    DOE Patents [OSTI]

    Geisbrecht, Rodney A.; Williams, Mark C.

    2003-09-23

    A device for converting chemical energy to electricity is provided, the device comprising a high temperature fuel cell with the ability for partially oxidizing and completely reforming fuel, and a low temperature fuel cell juxtaposed to said high temperature fuel cell so as to utilize remaining reformed fuel from the high temperature fuel cell. Also provided is a method for producing electricity comprising directing fuel to a first fuel cell, completely oxidizing a first portion of the fuel and partially oxidizing a second portion of the fuel, directing the second fuel portion to a second fuel cell, allowing the first fuel cell to utilize the first portion of the fuel to produce electricity; and allowing the second fuel cell to utilize the second portion of the fuel to produce electricity.

  18. Refractory Glass Seals for SOFC

    SciTech Connect (OSTI)

    Chou, Y. S.; Stevenson, Jeffry W.

    2011-07-01

    One of the critical challenges facing planar solid oxide fuel cell (SOFC) technology is the need for reliable sealing technology. Seals must exhibit long-term stability and mechanical integrity in the high temperature SOFC environment during normal and transient operation. Several different approaches for sealing SOFC stacks are under development, including glass or glass-ceramic seals, metallic brazes, and compressive seals. Among glass seals, rigid glass-ceramics, self-healing glass, and composite glass approaches have been investigated under the SECA Core Technology Program. The U.S. Department of Energy's Pacific Northwest National Laboratory (PNNL) has developed the refractory glass approach in light of the fact that higher sealing temperatures (e.g., 930-1000 degrees C) may enhance the ultimate in-service bulk strength and electrical conductivity of contact materials, as well as the bonding strength between contact materials and adjacent SOFC components, such as interconnect coatings and electrodes. This report summarizes the thermal, chemical, mechanical, and electrical properties of the refractory sealing glass.

  19. Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fact...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fact Sheet Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fact Sheet Fact sheet produced by the Fuel Cell ...

  20. Tubular solid oxide fuel cell demonstration activities

    SciTech Connect (OSTI)

    Ray, E.R.; Veyo, S.E.

    1995-12-31

    This reports on a solid oxide fuel cell demonstration program in which utilities are provided fully integrated, automatically controlled, packaged solid oxide fuel cell power generation systems. These field units serve to demonstrate to customers first hand the beneficial attributes of the SOFC, to expose deficiencies through experience in order to guide continued development, and to garner real world feedback and data concerning not only cell and stack parameters, but also transportation, installation, permitting and licensing, start-up and shutdown, system alarming, fault detection, fault response, and operator interaction.

  1. Fuel Cell Technologies Overview

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fuel Cell Seminar Orlando, FL Dr. Sunita Satyapal U.S. Department of Energy Fuel Cell Technologies Program Program Manager 1112011 2 | Fuel Cell Technologies Program Source: US ...

  2. Degradation of solid oxide fuel cell metallic interconnects in fuels containing sulfur

    SciTech Connect (OSTI)

    Ziomek-Moroz, M.; Hawk, Jeffrey A.

    2005-01-01

    Hydrogen is the main fuel for all types of fuel cells except direct methanol fuel cells. Hydrogen can be generated from all manner of fossil fuels, including coal, natural gas, diesel, gasoline, other hydrocarbons, and oxygenates (e.g., methanol, ethanol, butanol, etc.). Impurities in the fuel can cause significant performance problems and sulfur, in particular, can decrease the cell performance of fuel cells, including solid oxide fuel cells (SOFC). In the SOFC, the high (800-1000°C) operating temperature yields advantages (e.g., internal fuel reforming) and disadvantages (e.g., material selection and degradation problems). Significant progress in reducing the operating temperature of the SOFC from ~1000 ºC to ~750 ºC may allow less expensive metallic materials to be used for interconnects and as balance of plant (BOP) materials. This paper provides insight on the material performance of nickel, ferritic steels, and nickel-based alloys in fuels containing sulfur, primarily in the form of H2S, and seeks to quantify the extent of possible degradation due to sulfur in the gas stream.

  3. SOFC Project Information - 2016 | netl.doe.gov

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Project Information Cell Development Agreement Number Project Title Performer Research Focus FE0026096 Processing of SOFC Anodes for Enhanced Intermediate Temperature Catalytic Activity at High Fuel Utilization Trustees of Boston University Anode FE0026167 Scalable Nano-Scaffold Architecture on the Internal Surface of SOFC Anode for Direct Hydrocarbon Utilization West Virginia University Anode FE0026192 Enhancing High Temperature Anode Performance with 2° Anchoring Phases Montana State

  4. Fuel Cells and Renewable Gaseous Fuels

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Cell Technologies Office | 1 7142015 Fuel Cells and Renewable Gaseous Fuels Bioenergy 2015: Renewable Gaseous Fuels Breakout Session Sarah Studer, PhD ORISE Fellow Fuel Cell ...

  5. Hydrodesulfurization and prereforming of logistic fuels for use in fuel cell applications

    SciTech Connect (OSTI)

    Piwetz, M.M.; Larsen, J.S.; Christensen, T.S.

    1996-12-31

    Fuel cell development programs have traditionally emphasized the use of natural gas as the primary fuel. However, to meet strategic requirements for fuel cells in military use, the fuel of choice must be accessible throughout the world, easily transported and stored, and compatible with other military uses. The United States military`s logistic fuels (DF-2 diesel or JP-8 jet fuel) meet these requirements. The objectives of this program were to design and construct a fuel processing system (FPS) and by connecting the FPS with a solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC), respectively, to demonstrate that such a system can be used to convert diesel or jet-fuel into a feed stream compatible with the fuel cell.

  6. Solid oxide fuel cell power system development

    SciTech Connect (OSTI)

    Kerr, Rick; Wall, Mark; Sullivan, Neal

    2015-06-26

    This report summarizes the progress made during this contractual period in achieving the goal of developing the solid oxide fuel cell (SOFC) cell and stack technology to be suitable for use in highly-efficient, economically-competitive, commercially deployed electrical power systems. Progress was made in further understanding cell and stack degradation mechanisms in order to increase stack reliability toward achieving a 4+ year lifetime, in cost reduction developments to meet the SECA stack cost target of $175/kW (in 2007 dollars), and in operating the SOFC technology in a multi-stack system in a real-world environment to understand the requirements for reliably designing and operating a large, stationary power system.

  7. Fuel Cells at NASCAR

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation slides from the DOE Fuel Cell Technologies Office webinar "Fuel Cells at NASCAR" held on April 17, 2014.

  8. Effects of Humidity on Solid Oxide Fuel Cell Cathodes

    SciTech Connect (OSTI)

    Hardy, John S.; Stevenson, Jeffry W.; Singh, Prabhakar; Mahapatra, Manoj K.; Wachsman, E. D.; Liu, Meilin; Gerdes, Kirk R.

    2015-03-17

    This report summarizes results from experimental studies performed by a team of researchers assembled on behalf of the Solid-state Energy Conversion Alliance (SECA) Core Technology Program. Team participants employed a variety of techniques to evaluate and mitigate the effects of humidity in solid oxide fuel cell (SOFC) cathode air streams on cathode chemistry, microstructure, and electrochemical performance.

  9. Measurement of Species Distributions in Operating Fuel Cells

    SciTech Connect (OSTI)

    Partridge Jr, William P; Toops, Todd J; Parks, II, James E; Armstrong, Timothy R.

    2004-10-01

    Measurement and understanding of transient species distributions across and within fuel cells is a critical need for advancing fuel cell technology. The Spatially Resolved Capillary Inlet Mass Spectrometer (SpaciMS) instrument has been applied for in-situ measurement of transient species distributions within operating reactors; including diesel catalyst, air-exhaust mixing systems, and non-thermal plasma reactors. The work described here demonstrates the applicability of this tool to proton exchange membrane (PEM) and solid oxide fuel cells (SOFC) research. Specifically, we have demonstrated SpaciMS measurements of (1) transient species dynamics across a PEM fuel cell (FC) associated with load switching, (2) intra-PEM species distributions, and transient species dynamics at SOFC temperatures associated with FC load switching.

  10. Global Failure Criteria for SOFC Positive/Electrolyte/Negative (PEN) Structure

    SciTech Connect (OSTI)

    Liu, Wenning N.; Sun, Xin; Khaleel, Mohammad A.; Qu, Jianmin

    2007-04-01

    Due to the mismatch of thermal expansion coefficients (TEC) of the various layer materials in SOFC, the internal stresses are unavoidable under temperature differential. In order to create the reliable cell and stack of solid oxide fuel cell (SOFC), it is necessary to develop a failure criterion for SOFC PEN structures for the initial failures occurred during cell/stack assembly. In this paper, a global failure criterion is developed for the initial design against mechanical failure of the PEN structure in high temperature SOFCs. The relationship of the critical energy release rate and critical curvature and maximum displacement of the warpage of the cells caused by the temperature differential is established so that the failure reliability of SOFC PEN structures may be determined by the measurement of the curvature and displacement of the warpaged cells.

  11. Manifold, bus support and coupling arrangement for solid oxide fuel cells

    DOE Patents [OSTI]

    Parry, Gareth W.

    1989-01-01

    Individual, tubular solid oxide fuel cells (SOFCs) are assembled into bundles called a module within a housing, with a plurality of modules arranged end-to-end in a linear, stacked configuration called a string. A common set of piping comprised of a suitable high temperture resistant material (1) provides fuel and air to each module housing, (2) serves as electrically conducting buses, and (3) provides structural support for a string of SOFC modules. The piping thus forms a manfold for directing fuel and air to each module in a string and makes electrical contact with the module's anode and cathode to conduct the DC power generated by the SOFC. The piping also provides structureal support for each individual module and maintains each string of modules as a structurally integral unit for ensuring high strength in a large 3-dimensional array of SOFC modules. Ceramic collars are used to connect fuel and air inlet piping to each of the electrodes in an SOFC module and provide (1) electrical insulation for the current carrying bus bars and gas manifolds, (2) damping for the fuel and air inlet piping, and (3) proper spacing between the fuel and air inlet piping to prevent contact between these tubes and possible damage to the SOFC.

  12. DOE Selects Research Projects to Advance Solid Oxide Fuel Cell Technology |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Research Projects to Advance Solid Oxide Fuel Cell Technology DOE Selects Research Projects to Advance Solid Oxide Fuel Cell Technology July 13, 2015 - 10:00am Addthis The Department of Energy's (DOE) National Energy Technology Laboratory (NETL) has selected for funding 16 solid oxide fuel cell (SOFC) technology research projects. Fuel cells are a modular, efficient, and virtually pollution-free power generation technology. In Fiscal Year (FY) 2015, NETL issued two

  13. Creep resistant, metal-coated LiFeO[sub 2] anodes for molten carbonated fuel cells

    DOE Patents [OSTI]

    Khandkar, A.C.

    1994-08-23

    A porous, creep-resistant, metal-coated, LiFeO[sub 2] ceramic electrode for fuel cells is disclosed. The electrode is particularly useful for molten carbonate fuel cells (MCFC) although it may have utilities in solid oxide fuel cells (SOFC) as well. 11 figs.

  14. Creep resistant, metal-coated LiFeO.sub.2 anodes for molten carbonated fuel cells

    DOE Patents [OSTI]

    Khandkar, Ashok C. (Salt Lake City, UT)

    1994-01-01

    A porous, creep-resistant, metal-coated, LiFeO.sub.2 ceramic electrode for fuel cells is disclosed. The electrode is particularly useful for molten carbonate fuel cells (MCFC) although it may have utilities in solid oxide fuel cells (SOFC) as well.

  15. Hydrogen Fuel Cell Development in Columbia (SC)

    SciTech Connect (OSTI)

    Reifsnider, Kenneth; Chen, Fanglin; Popov, Branko; Chao, Yuh; Xue, Xingjian

    2012-09-15

    This is an update to the final report filed after the extension of this program to May of 2011. The activities of the present program contributed to the goals and objectives of the Fuel Cell element of the Hydrogen, Fuel Cells and Infrastructure Technologies Program of the Department of Energy through five sub-projects. Three of these projects have focused on PEM cells, addressing the creation of carbon-based metal-free catalysts, the development of durable seals, and an effort to understand contaminant adsorption/reaction/transport/performance relationships at low contaminant levels in PEM cells. Two programs addressed barriers in SOFCs; an effort to create a new symmetrical and direct hydrocarbon fuel SOFC designs with greatly increased durability, efficiency, and ease of manufacturing, and an effort to create a multiphysics engineering durability model based on electrochemical impedance spectroscopy interpretations that associate the micro-details of how a fuel cell is made and their history of (individual) use with specific prognosis for long term performance, resulting in attendant reductions in design, manufacturing, and maintenance costs and increases in reliability and durability.

  16. Hydrogen Fuel Cell Development in Columbia (SC)

    SciTech Connect (OSTI)

    Reifsnider, Kenneth

    2011-07-31

    This is an update to the final report filed after the extension of this program to May of 2011. The activities of the present program contributed to the goals and objectives of the Fuel Cell element of the Hydrogen, Fuel Cells and Infrastructure Technologies Program of the Department of Energy through five sub-projects. Three of these projects have focused on PEM cells, addressing the creation of carbon-based metal-free catalysts, the development of durable seals, and an effort to understand contaminant adsorption/reaction/transport/performance relationships at low contaminant levels in PEM cells. Two programs addressed barriers in SOFCs; an effort to create a new symmetrical and direct hydrocarbon fuel SOFC designs with greatly increased durability, efficiency, and ease of manufacturing, and an effort to create a multiphysics engineering durability model based on electrochemical impedance spectroscopy interpretations that associate the micro-details of how a fuel cell is made and their history of (individual) use with specific prognosis for long term performance, resulting in attendant reductions in design, manufacturing, and maintenance costs and increases in reliability and durability.

  17. PRESSURIZED SOLID OXIDE FUEL CELL/GAS TURBINE POWER SYSTEM

    SciTech Connect (OSTI)

    W.L. Lundberg; G.A. Israelson; R.R. Moritz; S.E. Veyo; R.A. Holmes; P.R. Zafred; J.E. King; R.E. Kothmann

    2000-02-01

    Power systems based on the simplest direct integration of a pressurized solid oxide fuel cell (SOFC) generator and a gas turbine (GT) are capable of converting natural gas fuel energy to electric power with efficiencies of approximately 60% (net AC/LHV), and more complex SOFC and gas turbine arrangements can be devised for achieving even higher efficiencies. The results of a project are discussed that focused on the development of a conceptual design for a pressurized SOFC/GT power system that was intended to generate 20 MWe with at least 70% efficiency. The power system operates baseloaded in a distributed-generation application. To achieve high efficiency, the system integrates an intercooled, recuperated, reheated gas turbine with two SOFC generator stages--one operating at high pressure, and generating power, as well as providing all heat needed by the high-pressure turbine, while the second SOFC generator operates at a lower pressure, generates power, and provides all heat for the low-pressure reheat turbine. The system cycle is described, major system components are sized, the system installed-cost is estimated, and the physical arrangement of system components is discussed. Estimates of system power output, efficiency, and emissions at the design point are also presented, and the system cost of electricity estimate is developed.

  18. Fuel Cell Technologies Overview

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fuel Cell Technologies Overview Flow Cell Workshop Washington, DC Dr. Sunita Satyapal & Dr. Dimitrios Papageorgopoulos U.S. Department of Energy Fuel Cell Technologies Program 37...

  19. An Introduction to the 2010 Fuel Cell Pre-Solicitation Workshop |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy An Introduction to the 2010 Fuel Cell Pre-Solicitation Workshop An Introduction to the 2010 Fuel Cell Pre-Solicitation Workshop Presentation by Team Lead of Fuel Cells - US DOE Fuel Cell Technologies Program fuelcell_pre-solicitation_wkshop_mar10_papageorgopoulos.pdf (804.79 KB) More Documents & Publications Solid Oxide Fuel Cell System (SOFC) Technology R&D Needs (Presentation) DOE Fuel Cell Pre-Solicitation Workshop - Breakout Group 4: Low Temperature Fuel Cell

  20. Fuel Cells Fact Sheet

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fuel cells are the most energy efficient devices for extracting power from fuels. Capable of running on a variety of fuels, including hydrogen, natural gas, and biogas, fuel cells ...

  1. Solid Oxide Fuel Cell Balance of Plant and Stack Component Integration |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Balance of Plant and Stack Component Integration Solid Oxide Fuel Cell Balance of Plant and Stack Component Integration Presentation by Acumentrics Corporation for Solid Oxide Fuel Cell Balance of Plant and Stack Component Integration March 16, 2010 fuelcell_pre-solicitation_wkshop_mar10_bessette.pdf (1.75 MB) More Documents & Publications The Micro-CHP Technologies Roadmap, December 2003 High Temperature BOP and Fuel Processing Ceramic Fuel Cells (SOFC)

  2. Generation and Solid Oxide Fuel Cell Carbon Sequestration in Northwest Indiana

    SciTech Connect (OSTI)

    Kevin Peavey; Norm Bessette

    2007-09-30

    The objective of the project is to develop the technology capable of capturing all carbon monoxide and carbon dioxide from natural gas fueled Solid Oxide Fuel Cell (SOFC) system. In addition, the technology to electrochemically oxidize any remaining carbon monoxide to carbon dioxide will be developed. Success of this R&D program would allow for the generation of electrical power and thermal power from a fossil fuel driven SOFC system without the carbon emissions resulting from any other fossil fueled power generationg system.

  3. FRACTURE FAILURE CRITERIA OF SOFC PEN STRUCTURE

    SciTech Connect (OSTI)

    Liu, Wenning N.; Sun, Xin; Khaleel, Mohammad A.; Qu, Jianmin

    2007-04-30

    Thermal stresses and warpage of the PEN are unavoidable due to the temperature changes from the stress-free sintering temperature to room temperature and mismatch of the coefficients of thermal expansion (CTE) of various layers in the PEN structures of solid oxide fuel cells (SOFC) during the PEN manufacturing process. In the meantime, additional mechanical stresses will also be created by mechanical flattening during the stack assembly process. The porous nature of anode and cathode in the PEN structures determines presence of the initial flaws and crack on the interfaces of anode/electrolyte/cathode and in the interior of the materials. The sintering/assembling induced stresses may cause the fracture failure of PEN structure. Therefore, fracture failure criteria for SOFC PEN structures is developed in order to ensure the structural integrity of the cell and stack of SOFC. In this paper, the fracture criteria based on the relationship between the critical energy release rate and critical curvature and maximum displacement of the warped cells caused by the temperature changes as well as mechanical flattening process is established so that possible failure of SOFC PEN structures may be predicted deterministically by the measurement of the curvature and displacement of the warped cells.

  4. Ohio Fuel Cell Initiative

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Top 5 Fuel Cell States: Why Local Policies Mean Green Growth Jun 21 st , 2011 2 * Ohio Fuel Cell Initiative * Ohio Fuel Cell Coalition * Accomplishments * Ohio Successes Discussion Areas 3 Ohio's Fuel Cell Initiative * Announced on 5/9/02 * Part of Ohio Third Frontier Initiative * $85 million investment to date * Core focus areas: 1) Expand the state's research capabilities; 2) Participate in demonstration projects; and 3) Expand the fuel cell industry in Ohio 4 OHIO'S FUEL CELL INITIATIVE

  5. Hydrogen and Fuel Cell Technologies Update: 2010 Fuel Cell Seminar...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Update: 2010 Fuel Cell Seminar and Exposition Hydrogen and Fuel Cell Technologies Update: 2010 Fuel Cell Seminar and Exposition Presentation by Sunita Satyapal at the 2010 Fuel ...

  6. Fuel Cell Case Study

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Building & Energy Initiatives * Solar 20 new; 30 total, ... * Alternative Energy-Fuel Cells, waste to electricity, ... History of Fuel Cell Contemplation * Back in 2006, UTC Power ...

  7. Hydrogen Fuel Cell Demonstration ...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Hydrogen fuel cells have a long track record of supplying efficient, emissions-free power ... power, by demonstrating a hydrogen fuel cell deployment in a commercial port setting. ...

  8. Fuel Cell Technologies Overview

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    States Energy Advisory Board (STEAB) Washington, DC Dr. Sunita Satyapal U.S. Department of Energy Fuel Cell Technologies Program Program Manager 3142012 2 | Fuel Cell ...

  9. Fuel Cell Technologies Overview

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fuel Cell Technologies Overview States Energy Advisory Board (STEAB) Washington, DC Dr. Sunita Satyapal U.S. Department of Energy Fuel Cell Technologies Program Program Manager 3...

  10. Fuel Cell Development Status

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    60% of Sales are in building technologies Transportation Stationary Fuel Cells Space & Defense * Fuel cell technology leader since 1958 * 550 employees * 768+ Active U.S. ...

  11. California Fuel Cell Partnership: Alternative Fuels Research

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fuel Cell Partnership - Alternative Fuels Research TNS Automotive Chris White Communications Director cwhite@cafcp.org 2 TNS Automotive for California Fuel Cell Partnership ...

  12. Filled glass composites for sealing of solid oxide fuel cells.

    SciTech Connect (OSTI)

    Tandon, Rajan; Widgeon, Scarlett Joyce; Garino, Terry J.; Brochu, Mathieu; Gauntt, Bryan D.; Corral, Erica L.; Loehman, Ronald E.

    2009-04-01

    Glasses filled with ceramic or metallic powders have been developed for use as seals for solid oxide fuel cells (SOFC's) as part of the U.S. Department of Energy's Solid State Energy Conversion Alliance (SECA) Program. The composites of glass (alkaline earth-alumina-borate) and powders ({approx}20 vol% of yttria-stabilized zirconia or silver) were shown to form seals with SOFC materials at or below 900 C. The type and amount of powder were adjusted to optimize thermal expansion to match the SOFC materials and viscosity. Wetting studies indicated good wetting was achieved on the micro-scale and reaction studies indicated that the degree of reaction between the filled glasses and SOFC materials, including spinel-coated 441 stainless steel, at 750 C is acceptable. A test rig was developed for measuring strengths of seals cycled between room temperature and typical SOFC operating temperatures. Our measurements showed that many of the 410 SS to 410 SS seals, made using silver-filled glass composites, were hermetic at 0.2 MPa (2 atm.) of pressure and that seals that leaked could be resealed by briefly heating them to 900 C. Seal strength measurements at elevated temperature (up to 950 C), measured using a second apparatus that we developed, indicated that seals maintained 0.02 MPa (0.2 atm.) overpressures for 30 min at 750 C with no leakage. Finally, the volatility of the borate component of sealing glasses under SOFC operational conditions was studied using weight loss measurements and found by extrapolation to be less than 5% for the projected SOFC lifetime.

  13. Novel Fuel Cells for Coal Based Systems

    SciTech Connect (OSTI)

    Thomas Tao

    2011-12-31

    The goal of this project was to acquire experimental data required to assess the feasibility of a Direct Coal power plant based upon an Electrochemical Looping (ECL) of Liquid Tin Anode Solid Oxide Fuel Cell (LTA-SOFC). The objective of Phase 1 was to experimentally characterize the interaction between the tin anode, coal fuel and cell component electrolyte, the fate of coal contaminants in a molten tin reactor (via chemistry) and their impact upon the YSZ electrolyte (via electrochemistry). The results of this work will provided the basis for further study in Phase 2. The objective of Phase 2 was to extend the study of coal impurities impact on fuel cell components other than electrolyte, more specifically to the anode current collector which is made of an electrically conducting ceramic jacket and broad based coal tin reduction. This work provided a basic proof-of-concept feasibility demonstration of the direct coal concept.

  14. Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation

    SciTech Connect (OSTI)

    David Deangelis; Rich Depuy; Debashis Dey; Georgia Karvountzi; Nguyen Minh; Max Peter; Faress Rahman; Pavel Sokolov; Deliang Yang

    2004-09-30

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the April to October 2004 reporting period in Task 2.3 (SOFC Scaleup for Hybrid and Fuel Cell Systems) under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL), entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. This study analyzes the performance and economics of power generation systems for central power generation application based on Solid Oxide Fuel Cell (SOFC) technology and fueled by natural gas. The main objective of this task is to develop credible scale up strategies for large solid oxide fuel cell-gas turbine systems. System concepts that integrate a SOFC with a gas turbine were developed and analyzed for plant sizes in excess of 20 MW. A 25 MW plant configuration was selected with projected system efficiency of over 65% and a factory cost of under $400/kW. The plant design is modular and can be scaled to both higher and lower plant power ratings. Technology gaps and required engineering development efforts were identified and evaluated.

  15. Solid polymer MEMS-based fuel cells

    DOE Patents [OSTI]

    Jankowski, Alan F.; Morse, Jeffrey D.

    2008-04-22

    A micro-electro-mechanical systems (MEMS) based thin-film fuel cells for electrical power applications. The MEMS-based fuel cell may be of a solid oxide type (SOFC), a solid polymer type (SPFC), or a proton exchange membrane type (PEMFC), and each fuel cell basically consists of an anode and a cathode separated by an electrolyte layer. The electrolyte layer can consist of either a solid oxide or solid polymer material, or proton exchange membrane electrolyte materials may be used. Additionally catalyst layers can also separate the electrodes (cathode and anode) from the electrolyte. Gas manifolds are utilized to transport the fuel and oxidant to each cell and provide a path for exhaust gases. The electrical current generated from each cell is drawn away with an interconnect and support structure integrated with the gas manifold. The fuel cells utilize integrated resistive heaters for efficient heating of the materials. By combining MEMS technology with thin-film deposition technology, thin-film fuel cells having microflow channels and full-integrated circuitry can be produced that will lower the operating temperature an will yield an order of magnitude greater power density than the currently known fuel cells.

  16. Solid oxide MEMS-based fuel cells

    DOE Patents [OSTI]

    Jankowksi, Alan F.; Morse, Jeffrey D.

    2007-03-13

    A micro-electro-mechanical systems (MEMS) based thin-film fuel cells for electrical power applications. The MEMS-based fuel cell may be of a solid oxide type (SOFC), a solid polymer type (SPFC), or a proton exchange membrane type (PEMFC), and each fuel cell basically consists of an anode and a cathode separated by an electrolyte layer. The electrolyte layer can consist of either a solid oxide or solid polymer material, or proton exchange membrane electrolyte materials may be used. Additionally catalyst layers can also separate the electrodes (cathode and anode) from the electrolyte. Gas manifolds are utilized to transport the fuel and oxidant to each cell and provide a path for exhaust gases. The electrical current generated from each cell is drawn away with an interconnect and support structure integrated with the gas manifold. The fuel cells utilize integrated resistive heaters for efficient heating of the materials. By combining MEMS technology with thin-film deposition technology, thin-film fuel cells having microflow channels and full-integrated circuitry can be produced that will lower the operating temperature an will yield an order of magnitude greater power density than the currently known fuel cells.

  17. Lessons Learned from SOFC/SOEC Development

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Systems Research, Inc. 1 Lessons Learned from SOFC/SOEC Development Greg Gege Tao and Anil V. Virkar Materials and Systems Research Inc., Salt Lake City, Utah Presented at NREL/DOE 2011 REVERSIBLE FUEL CELLS Workshop Crystal City, Virginia April 19, 2011 Materials and Systems Research, Inc. 2 * * EIA Annual Energy Outlook AEO2011 Early Release, December 2010 U.S. Electricity Generation - present & future by year 2035:  80% of America's electricity from clean energy sources: wind, solar,

  18. Fuel quality issues in stationary fuel cell systems.

    SciTech Connect (OSTI)

    Papadias, D.; Ahmed, S.; Kumar, R.

    2012-02-07

    Fuel cell systems are being deployed in stationary applications for the generation of electricity, heat, and hydrogen. These systems use a variety of fuel cell types, ranging from the low temperature polymer electrolyte fuel cell (PEFC) to the high temperature solid oxide fuel cell (SOFC). Depending on the application and location, these systems are being designed to operate on reformate or syngas produced from various fuels that include natural gas, biogas, coal gas, etc. All of these fuels contain species that can potentially damage the fuel cell anode or other unit operations and processes that precede the fuel cell stack. These detrimental effects include loss in performance or durability, and attenuating these effects requires additional components to reduce the impurity concentrations to tolerable levels, if not eliminate the impurity entirely. These impurity management components increase the complexity of the fuel cell system, and they add to the system's capital and operating costs (such as regeneration, replacement and disposal of spent material and maintenance). This project reviewed the public domain information available on the impurities encountered in stationary fuel cell systems, and the effects of the impurities on the fuel cells. A database has been set up that classifies the impurities, especially in renewable fuels, such as landfill gas and anaerobic digester gas. It documents the known deleterious effects on fuel cells, and the maximum allowable concentrations of select impurities suggested by manufacturers and researchers. The literature review helped to identify the impurity removal strategies that are available, and their effectiveness, capacity, and cost. A generic model of a stationary fuel-cell based power plant operating on digester and landfill gas has been developed; it includes a gas processing unit, followed by a fuel cell system. The model includes the key impurity removal steps to enable predictions of impurity breakthrough

  19. An Investigation to Resolve the Interaction Between Fuel Cell, Power Conditioning System and Application Loads

    SciTech Connect (OSTI)

    Sudip K. Mazumder

    2005-12-31

    Development of high-performance and durable solidoxide fuel cells (SOFCs) and a SOFC power-generating system requires knowledge of the feedback effects from the power-conditioning electronics and from application-electrical-power circuits that may pass through or excite the power-electronics subsystem (PES). Therefore, it is important to develop analytical models and methodologies, which can be used to investigate and mitigate the effects of the electrical feedbacks from the PES and the application loads (ALs) on the reliability and performance of SOFC systems for stationary and non-stationary applications. However, any such attempt to resolve the electrical impacts of the PES on the SOFC would be incomplete unless one utilizes a comprehensive analysis, which takes into account the interactions of SOFC, PES, balance-of-plant system (BOPS), and ALs as a whole. SOFCs respond quickly to changes in load and exhibit high part- and full-load efficiencies due to its rapid electrochemistry, which is not true for the thermal and mechanical time constants of the BOPS, where load-following time constants are, typically, several orders of magnitude higher. This dichotomy can affect the lifetime and durability of the SOFCSs and limit the applicability of SOFC systems for load-varying stationary and transportation applications. Furthermore, without validated analytical models and investigative design and optimization methodologies, realizations of cost-effective, reliable, and optimal PESs (and power-management controls), in particular, and SOFC systems, in general, are difficult. On the whole, the research effort can lead to (a) cost-constrained optimal PES design for high-performance SOFCS and high energy efficiency and power density, (b) effective SOFC power-system design, analyses, and optimization, and (c) controllers and modulation schemes for mitigation of electrical impacts and wider-stability margin and enhanced system efficiency.

  20. Phosphorus, Sulfur, and Chlorine in Fuel Gases: Impact on High Temperature Fuel Cell Performance and Clean-Up Options

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Phosphorus, Sulfur, and Chlorine in Fuel Gases: Impact on High Temperature Fuel Cell Performance and Clean-Up Options OLGA A MARINA Pacific Northwest National Laboratory Workshop on Gas Clean-Up for Fuel Cell Applications March 6-7, 2014 57% net electrical efficiency on methane 8 SOFC cells per furnace with independent gas flow Multi-cell MCFC test stand 2 High Temperature Fuel Cell R&D at PNNL; Impurities Overview OA Marina Selected Impurities in Biogas/Landfill Gas: Cell/stack/system

  1. A Damage Model for Degradation in the Electrodes of solid oxide fuel cells: Modeling the effects of sulfur and antimony in the anode

    SciTech Connect (OSTI)

    Ryan, Emily M.; Xu, Wei; Sun, Xin; Khaleel, Mohammad A.

    2012-07-15

    Over their designed lifetime, high temperature electrochemical devices, such as solid oxide fuel cells (SOFCs), can experience degradation in their electrochemical performance due to environmental conditions, operating conditions, contaminants, and other factors. Understanding the different degradation mechanisms in SOFCs and other electrochemical devices is essential to reducing performance degradation and increasing the lifetime of these devices. In this paper SOFC degradation mechanisms are discussed and a damage model is presented which describes performance degradation in SOFCs due to damage or degradation in the electrodes of the SOFC. A degradation classification scheme is presented that divides the various SOFC electrode degradation mechanisms into categories based on their physical effects on the SOFC. The application of the damage model and the classification method is applied to sulfur poisoning and antimony poisoning which occur in the anode of SOFCs. For sulfur poisoning the model is able to predict the degradation in SOFC performance based on the operating temperature and voltage of the fuel cell and the concentration of gaseous sulfur species in the anode. For antimony poisoning the effects of nickel removal from the anode matrix is investigated.

  2. Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fact Sheet |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fact Sheet Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fact Sheet Fact sheet produced by the Fuel Cell Technologies Program describing hydrogen fuel cell technology. Fuel Cells Fact Sheet (545.14 KB) More Documents & Publications Comparison of Fuel Cell Technologies: Fact Sheet Fuel Cells Fact Sheet 2011 Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies

  3. Current status of Westinghouse tubular solid oxide fuel cell program

    SciTech Connect (OSTI)

    Parker, W.G.

    1996-04-01

    In the last ten years the solid oxide fuel cell (SOFC) development program at Westinghouse has evolved from a focus on basic material science to the engineering of fully integrated electric power systems. Our endurance for this cell is 5 to 10 years. To date we have successfully operated at power for over six years. For power plants it is our goal to have operated before the end of this decade a MW class power plant. Progress toward these goals is described.

  4. Probabilistic Based Design Methodology for Solid Oxide Fuel Cell Stacks

    SciTech Connect (OSTI)

    Sun, Xin; Tartakovsky, Alexandre M.; Khaleel, Mohammad A.

    2009-05-01

    A probabilistic-based component design methodology is developed for solid oxide fuel cell (SOFC) stack. This method takes into account the randomness in SOFC material properties as well as the stresses arising from different manufacturing and operating conditions. The purpose of this work is to provide the SOFC designers a design methodology such that desired level of component reliability can be achieved with deterministic design functions using an equivalent safety factor to account for the uncertainties in material properties and structural stresses. Multi-physics-based finite element analyses were used to predict the electrochemical and thermal mechanical responses of SOFC stacks with different geometric variations and under different operating conditions. Failures in the anode and the seal were used as design examples. The predicted maximum principal stresses in the anode and the seal were compared with the experimentally determined strength characteristics for the anode and the seal respectively. Component failure probabilities for the current design were then calculated under different operating conditions. It was found that anode failure probability is very low under all conditions examined. The seal failure probability is relatively high, particularly for high fuel utilization rate under low average cell temperature. Next, the procedures for calculating the equivalent safety factors for anode and seal were demonstrated such that uniform failure probability of the anode and seal can be achieved. Analysis procedures were also included for non-normal distributed random variables such that more realistic distributions of strength and stress can be analyzed using the proposed design methodology.

  5. Seven Projects That Will Advance Solid Oxide Fuel Cell Research Selected by

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    DOE for Further Development | Department of Energy Seven Projects That Will Advance Solid Oxide Fuel Cell Research Selected by DOE for Further Development Seven Projects That Will Advance Solid Oxide Fuel Cell Research Selected by DOE for Further Development July 27, 2012 - 1:00pm Addthis Washington, D.C. - Seven projects that will help develop low-cost solid oxide fuel cell (SOFC) technology for environmentally responsible central power generation from the Nation's abundant fossil energy

  6. 17th Annual Solid Oxide Fuel Cell Project Review Meeting | netl.doe.gov

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    17th Annual Solid Oxide Fuel Cell Project Review Meeting SOFC-logo Workshop Summary Additional materials will be added when they are received from the author. PRESENTATIONS Tuesday, July 19, 2016 NETL's Fuel Cell Program Overview Shailesh Vora, Technology Manager for Fuel Cells U.S. Department of Energy, National Energy Technology Laboratory ARPA-E's REBELS Program Overview Paul Albertus and Grigorii Soloveichik, Program Directors for REBELS U.S. Department of Energy, ARPA-E System Analysis of

  7. Fuel Cell 101

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Don Hoffman Ship Systems & Engineering Research Division March 2011 Distribution Statement A: Approved for public release; distribution is unlimited. Fuel Cell Operation * A Fuel ...

  8. Pressurized solid oxide fuel cell/gas turbine combined cycle systems

    SciTech Connect (OSTI)

    George, R.A.

    1997-12-31

    Over the last 10 years, Westinghouse Electric Corporation has made great strides in advancing tubular solid oxide fuel cell (SOFC) technology towards commercialization by the year 2001. In 1993, Westinghouse initiated a program to develop pressurized solid oxide fuel cell/gas turbine (PSOFC/GT) combined cycle power systems because of the ultra-high electrical efficiencies, 60-75% (net AC/LHV CH4), inherent with these systems. This paper will discuss SOFC technology advancements in recent years, and the final phase development program which will focus on the development and demonstration of PSOFC/GT power systems for distributed power applications.

  9. Stationary market applications potential of solid oxide and solid polymer fuel cell systems

    SciTech Connect (OSTI)

    Baker, J.N.; Fletcher, W.H.

    1996-12-31

    The UK DTI`s Advanced Fuel Cells Programme currently focuses on two main fuel cell technologies, namely the solid oxide and solid polymer systems (SOFC and SPFC), respectively. The provision of accurate and timely market data is regarded as an important part of the overall programme objectives, such as to assist both Government and industry in their appraisals of the technologies. The present study was therefore commissioned against this background, with a complementary study addressing transportation and mobile applications. The results reported herein relate to the stationary market applications potential of both SOFC and SPFC systems.

  10. SOLID OXIDE FUEL CELL HYBRID SYSTEM FOR DISTRIBUTED POWER GENERATION

    SciTech Connect (OSTI)

    Kurt Montgomery; Nguyen Minh

    2003-08-01

    This report summarizes the work performed by Honeywell during the October 2001 to December 2001 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a turbogenerator. The conceptual and demonstration system designs were proposed and analyzed, and these systems have been modeled in Aspen Plus. Work has also started on the assembly of dynamic component models and the development of the top-level controls requirements for the system. SOFC stacks have been fabricated and performance mapping initiated.

  11. Fuel Cell Technologies Overview: 2011 Fuel Cell Seminar | Department...

    Energy.gov (indexed) [DOE]

    Fuel Cell Seminar on November 1, 2011. Fuel Cell Technologies Overview (4.38 MB) More Documents & Publications Fuel Cell Technologies Overview: March 2012 State Energy Advisory ...

  12. DOE Fuel Cell Technologies Office: 2013 Fuel Cell Seminar and...

    Energy.gov (indexed) [DOE]

    Overview of DOE's Fuel Cell Technologies Office presented by Sunita Satyapal at the 2013 Fuel Cell Seminar and Energy Exposition in Columbus, Ohio. DOE Fuel Cell Technologies ...

  13. Fuel Cells for Supermarkets: Cleaner Energy with Fuel Cell Combined...

    Energy.gov (indexed) [DOE]

    smith.pdf (0 B) More Documents & Publications Fuel Cells at Supermarkets: NYSERDA's Perspective Fuel Cell Case Study Hydrogen Production and Storage for Fuel Cells: Current Status

  14. Fuel Cells

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Cells - Sandia Energy Energy Search Icon Sandia Home ... Energy Conversion Efficiency Solar Energy Wind Energy Water ... EnergyWater Nexus EnergyWater History Water Monitoring & ...

  15. Experimental characterization of glass-ceramic seal properties and their constitutive implementation in solid oxide fuel cell stack models

    SciTech Connect (OSTI)

    Stephens, Elizabeth V.; Vetrano, John S.; Koeppel, Brian J.; Chou, Y. S.; Sun, Xin; Khaleel, Mohammad A.

    2009-09-05

    This paper discusses experimental determination of solid oxide fuel cell (SOFC) glass-ceramic seal material properties and seal/interconnect interfacial properties to support development and optimization of SOFC designs through modeling. Material property experiments such as dynamic resonance, dilatometry, flexure, creep, tensile, and shear tests were performed on PNNLs glass-ceramic sealant material, designated as G18, to obtain property data essential to constitutive and numerical model development. Characterization methods for the physical, mechanical, and interfacial properties of the sealing material, results, and their application to the constitutive implementation in SOFC stack modeling are described.

  16. Synthesis and Stability of a Nanoparticle-Infiltrated Solid OxideFuel Cell Electrode

    SciTech Connect (OSTI)

    Sholklapper, Tal Z.; Radmilovic, Velimir; Jacobson, Craig P.; Visco, Steven J.; De Jonghe, Lutgard C.

    2006-11-20

    Nanoparticulate catalysts infiltrated into SOFC (Solid OxideFUel Cell) electrodes can significantly enhance the cell performance, butthe stability of these electrodes has been an open issue. An infiltrationprocedure is reported that leads to a stable scandia-stablized zirconia(SSZ) cathode electrode performance.

  17. Upcoming Webinar April 17: Fuel Cells at NASCAR | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Upcoming Webinar April 17: Fuel Cells at NASCAR Upcoming Webinar April 17: Fuel Cells at NASCAR April 11, 2014 - 2:00pm Addthis On April 17 from 12:00 to 1:00 p.m. Eastern Daylight Time, the Fuel Cell Technologies Office will present a webinar on fuel cell use at NASCAR Green. Presented by NASCAR and Acumentrics, this webinar will focus on the use of solid oxide fuel cell (SOFC) generators for use in powering broadcast cameras for NASCAR. Recently, Acumentrics Corporation completed a field test

  18. Cost Study for Manufacturing of Solid Oxide Fuel Cell Power Systems

    SciTech Connect (OSTI)

    Weimar, Mark R.; Chick, Lawrence A.; Gotthold, David W.; Whyatt, Greg A.

    2013-09-30

    Solid oxide fuel cell (SOFC) power systems can be designed to produce electricity from fossil fuels at extremely high net efficiencies, approaching 70%. However, in order to penetrate commercial markets to an extent that significantly impacts world fuel consumption, their cost will need to be competitive with alternative generating systems, such as gas turbines. This report discusses a cost model developed at PNNL to estimate the manufacturing cost of SOFC power systems sized for ground-based distributed generation. The power system design was developed at PNNL in a study on the feasibility of using SOFC power systems on more electric aircraft to replace the main engine-mounted electrical generators [Whyatt and Chick, 2012]. We chose to study that design because the projected efficiency was high (70%) and the generating capacity was suitable for ground-based distributed generation (270 kW).

  19. Fuel Cells in the States

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    in the Fuel Cells in the States States State and Regional State and Regional Initiatives ... Jennifer Gangi Jennifer Gangi Program Director Program Director Fuel Cells 2000 Fuel Cells ...

  20. EERE Fuel Cell Technologies Program

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    AudienceEvent Date EERE Fuel Cell Technologies Program Sunita Satyapal Acting Program Manager U.S. Department of Energy Fuel Cell Technologies Program Fuel Cell Project Kickoff ...

  1. DOE Fuel Cell Technologies Office

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    DOE Fuel Cell Technologies Office Fuel Cell Seminar & Energy Exposition Columbus, Ohio Dr. Sunita Satyapal Director Fuel Cell Technologies Office Energy Efficiency and Renewable ...

  2. Fuel Cell Bus Workshop

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ec o o es o a Energy Efficiency & Renewable Energy Fuel Cell Bus Workshop Overview and Purp pose Dimitrios Papageorgopoulos Fuel Cell Technolog gies Prog gram DOE and DOT Joint ...

  3. Intra-Fuel Cell Stack Measurements of Transient Concentration Distributions

    SciTech Connect (OSTI)

    Partridge Jr, William P; Toops, Todd J; Green Jr, Johney Boyd; Armstrong, Timothy R.

    2006-01-01

    Intra-fuel-cell measurements are required to understand detailed fuel-cell chemistry and physics, validate models, optimize system design and control, and realize enhanced efficiency regimes; in comparison, conventional integrated fuel-cell supply and effluent measurements are fundamentally limited in value. Intra-reactor measurements are needed for all fuel cell types. This paper demonstrates the ability of a capillary-inlet mass spectrometer to resolve transient species distributions within operating polymer-electrolyte-membrane (PEM) fuel cells and at temperatures typical of solid-oxide fuel cells (SOFC). This is the first such demonstration of a diagnostic that is sufficiently minimally invasive as to allow measurements throughout an operating fuel cell stack. Measurements of transient water, hydrogen, oxygen and diluent concentration dynamics associated with fuel-cell load switching suggest oxygen-limited chemistry. Intra-PEM fuel cell measurements of oxygen distribution at various fuel-cell loads are used to demonstrate concentration gradients, non-uniformities, and anomalous fuel cell operation.

  4. Fuel cell arrangement

    DOE Patents [OSTI]

    Isenberg, A.O.

    1987-05-12

    A fuel cell arrangement is provided wherein cylindrical cells of the solid oxide electrolyte type are arranged in planar arrays where the cells within a plane are parallel. Planes of cells are stacked with cells of adjacent planes perpendicular to one another. Air is provided to the interior of the cells through feed tubes which pass through a preheat chamber. Fuel is provided to the fuel cells through a channel in the center of the cell stack; the fuel then passes the exterior of the cells and combines with the oxygen-depleted air in the preheat chamber. 3 figs.

  5. Fuel cell arrangement

    DOE Patents [OSTI]

    Isenberg, Arnold O.

    1987-05-12

    A fuel cell arrangement is provided wherein cylindrical cells of the solid oxide electrolyte type are arranged in planar arrays where the cells within a plane are parallel. Planes of cells are stacked with cells of adjacent planes perpendicular to one another. Air is provided to the interior of the cells through feed tubes which pass through a preheat chamber. Fuel is provided to the fuel cells through a channel in the center of the cell stack; the fuel then passes the exterior of the cells and combines with the oxygen-depleted air in the preheat chamber.

  6. Micro fuel cell

    SciTech Connect (OSTI)

    Zook, L.A.; Vanderborgh, N.E. [Los Alamos National Lab., NM (United States); Hockaday, R. [Energy Related Devices Inc., Los Alamos, NM (United States)

    1998-12-31

    An ambient temperature, liquid feed, direct methanol fuel cell device is under development. A metal barrier layer was used to block methanol crossover from the anode to the cathode side while still allowing for the transport of protons from the anode to the cathode. A direct methanol fuel cell (DMFC) is an electrochemical engine that converts chemical energy into clean electrical power by the direct oxidation of methanol at the fuel cell anode. This direct use of a liquid fuel eliminates the need for a reformer to convert the fuel to hydrogen before it is fed into the fuel cell.

  7. Silicon Based Solid Oxide Fuel Cell Chip for Portable Consumer Electronics -- Final Technical Report

    SciTech Connect (OSTI)

    Alan Ludwiszewski

    2009-06-29

    LSIs fuel cell uses efficient Solid Oxide Fuel Cell (SOFC) technology, is manufactured using Micro Electrical Mechanical System (MEMS) fabrication methods, and runs on high energy fuels, such as butane and ethanol. The companys Fuel Cell on a Chip technology enables a form-factor battery replacement for portable electronic devices that has the potential to provide an order-of-magnitude run-time improvement over current batteries. Further, the technology is clean and environmentally-friendly. This Department of Energy funded project focused on accelerating the commercialization and market introduction of this technology through improvements in fuel cell chip power output, lifetime, and manufacturability.

  8. Advanced Fuel Reformer Development: Putting the 'Fuel' in Fuel Cells |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Fuel Reformer Development: Putting the 'Fuel' in Fuel Cells Advanced Fuel Reformer Development: Putting the 'Fuel' in Fuel Cells Presented at the DOE-DOD Shipboard APU Workshop on March 29, 2011. apu2011_6_roychoudhury.pdf (4.83 MB) More Documents & Publications System Design - Lessons Learned, Generic Concepts, Characteristics & Impacts Fuel Cells For Transportation - 1999 Annual Progress Report Energy Conversion Team Fuel Cell Systems Annual Progress Report

  9. Fuel Cells & Alternative Fuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Cells & Alternative Fuels Fuel Cells & Alternative Fuels Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and ...

  10. SECA Coal-Based Systems - FuelCell Energy, Inc.

    SciTech Connect (OSTI)

    Ayagh, Hossein

    2014-01-31

    The overall goal of this U.S. Department of Energy (DOE) sponsored project is the development of solid oxide fuel cell (SOFC) cell and stack technology suitable for use in highly-efficient, economically-competitive central generation power plant facilities fueled by coal synthesis gas (syngas). This program incorporates the following supporting objectives: • Reduce SOFC-based electrical power generation system cost to $700 or less (2007 dollars) for a greater than 100 MW Integrated Gasification Fuel Cell (IGFC) power plant, exclusive of coal gasification and CO2 separation subsystem costs. • Achieve an overall IGFC power plant efficiency of at least 50%, from coal (higher heating value or HHV) to AC power (exclusive of CO2 compression power requirement). • Reduce the release of CO2 to the environment in an IGFC power plant to no more than 10% of the carbon in the syngas. • Increase SOFC stack reliability to achieve a design life of greater than 40,000 hours. At the inception of the project, the efforts were focused on research, design and testing of prototype planar SOFC power generators for stationary applications. FuelCell Energy, Inc. successfully completed the initial stage of the project by meeting the program metrics, culminating in delivery and testing of a 3 kW system at National Energy Technology Laboratory (NETL). Subsequently, the project was re-aligned into a three phase effort with the main goal to develop SOFC technology for application in coal-fueled power plants with >90% carbon capture. Phase I of the Coal-based efforts focused on cell and stack size scale-up with concurrent enhancement of performance, life, cost, and manufacturing characteristics. Also in Phase I, design and analysis of the baseline (greater than 100 MW) power plant system—including concept identification, system definition, and cost analysis—was conducted. Phase II efforts focused on development of a ≥25 kW SOFC stack tower incorporating

  11. Liquid Tin Anode Direct Coal Fuel Cell Final Program Report

    SciTech Connect (OSTI)

    Tao, Thomas

    2012-01-26

    This SBIR program will result in improved LTA cell technology which is the fundamental building block of the Direct Coal ECL concept. As described below, ECL can make enormous efficiency and cost contributions to utility scale coal power. This program will improve LTA cells for small scale power generation. As described in the Commercialization section, there are important intermediate military and commercial markets for LTA generators that will provide an important bridge to the coal power application. The specific technical information from this program relating to YSZ electrolyte durability will be broadly applicable SOFC developers working on coal based SOFC generally. This is an area about which very little is currently known and will be critical for successfully applying fuel cells to coal power generation.

  12. Solid oxide fuel cell matrix and modules

    DOE Patents [OSTI]

    Riley, B.

    1988-04-22

    Porous refractory ceramic blocks arranged in an abutting, stacked configuration and forming a three dimensional array provide a support structure and coupling means for a plurality of solid oxide fuel cells (SOFCs). The stack of ceramic blocks is self-supporting, with a plurality of such stacked arrays forming a matrix enclosed in an insulating refractory brick structure having an outer steel layer. The necessary connections for air, fuel, burnt gas, and anode and cathode connections are provided through the brick and steel outer shell. The ceramic blocks are so designed with respect to the strings of modules that by simple and logical design the strings could be replaced by hot reloading if one should fail. The hot reloading concept has not been included in any previous designs. 11 figs.

  13. Verification test of a 25kW class SOFC cogeneration system

    SciTech Connect (OSTI)

    Yokoyama, H.; Miyahara, A.; Veyo, S.E.

    1997-12-31

    Osaka Gas and Tokyo Gas have high expectations for natural-gas-fueled Solid Oxide Fuel Cell (SOFC) cogeneration systems. SOFC offers many advantages for on-site cogeneration systems, such as high electrical efficiency, high quality by-product heat and low emissions. They are now executing a joint development program with Westinghouse Electric Corporation (hereinafter called as WELCO). This program is aimed to verify a 25kW class SOFC cogeneration system. This system, which was modified by replacing previous zirconia porous support tube cells (PST cells) with newly designed air electrode supported cells (AES cells), commenced operation on March 21, 1995. The system has been successfully operated for 13,100 hours as of February 7, 1997. This paper presents the performance evaluation of the new AES cells and the results of system operation at WELCO.

  14. Direct hydrocarbon fuel cells

    DOE Patents [OSTI]

    Barnett, Scott A.; Lai, Tammy; Liu, Jiang

    2010-05-04

    The direct electrochemical oxidation of hydrocarbons in solid oxide fuel cells, to generate greater power densities at lower temperatures without carbon deposition. The performance obtained is comparable to that of fuel cells used for hydrogen, and is achieved by using novel anode composites at low operating temperatures. Such solid oxide fuel cells, regardless of fuel source or operation, can be configured advantageously using the structural geometries of this invention.

  15. Fuel cells and fuel cell catalysts

    DOE Patents [OSTI]

    Masel, Richard I.; Rice, Cynthia A.; Waszczuk, Piotr; Wieckowski, Andrzej

    2006-11-07

    A direct organic fuel cell includes a formic acid fuel solution having between about 10% and about 95% formic acid. The formic acid is oxidized at an anode. The anode may include a Pt/Pd catalyst that promotes the direct oxidation of the formic acid via a direct reaction path that does not include formation of a CO intermediate.

  16. Development of planar solid oxide fuel cells for power generation applications

    SciTech Connect (OSTI)

    Minh, N.Q.

    1996-04-01

    Planar solid oxide fuel cells (SOFCs) are presently being developed for a variety of electric power generation application. The planar design offers simple cell geometry, high power density, and multiple fabrication and gas manifolding options. Planar SOFC technology has received much attention recently, and significant progress has been made in this area. Recent effort at AlliedSignal has focused on the development of high-performance, lightweight planar SOFCs, having thin-electrolyte films, that can be operated efficiently at reduced temperatures (< 1000{degrees}C). The advantages of reduced-temperature operation include wider material choice (including use of metallic interconnects), expected longer cell life, reduced thermal stress, improved reliability, and reduced fuel cell cost. The key aspect in the development of thin-film SIFCs is to incorporate the thin electrolyte layer into the desired structure of cells in a manner that yields the required characteristics. AlliedSignal has developed a simple and cost-effective method based on tape calendering for the fabrication of thin-electrolyte SOFCs. Thin-electrolyte cells made by tape calendering have shown extraordinary performance, e.g., producing more than 500mW/cm{sup 2} at 700{degrees}C and 800mW/cm{sup 2} at 800{degrees}C with hydrogen as fuel and air is oxidant. thin-electrolyte single cells have been incorporated into a compliant metallic stack structure and operated at reduced and operated at reduced-temperature conditions.

  17. DOE Fuel Cell Subprogram (Presentation)

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    most relevant fuel cell research, development, and ... available at www.hydrogen.energy.gov) Product Non-purpose * ... c Fuel Cell Seminar Abstracts, 2004, p. 290. 13 Fuel ...

  18. Fuel cell generator

    DOE Patents [OSTI]

    Isenberg, Arnold O.

    1983-01-01

    High temperature solid oxide electrolyte fuel cell generators which allow controlled leakage among plural chambers in a sealed housing. Depleted oxidant and fuel are directly reacted in one chamber to combust remaining fuel and preheat incoming reactants. The cells are preferably electrically arranged in a series-parallel configuration.

  19. Solid Oxide Fuel Cell Successfully Powers Truck Cab and Sleeper in DOE-Sponsored Test

    Energy.gov [DOE]

    In a test sponsored by the U.S. Department of Energy, a Delphi auxiliary power unit employing a solid oxide fuel cell (SOFC) successfully operated the electrical system and air conditioning of a Peterbilt Model 386 truck under conditions simulating idling conditions for 10 hours.

  20. Solid oxide fuel cell systems with hot zones having improved reactant distribution

    DOE Patents [OSTI]

    Poshusta, Joseph C; Booten, Charles W; Martin, Jerry L

    2013-12-24

    A Solid Oxide Fuel Cell (SOFC) system having a hot zone with a center cathode air feed tube for improved reactant distribution, a CPOX reactor attached at the anode feed end of the hot zone with a tail gas combustor at the opposing end for more uniform heat distribution, and a counter-flow heat exchanger for efficient heat retention.

  1. Solid oxide fuel cell systems with hot zones having improved reactant distribution

    DOE Patents [OSTI]

    Poshusta, Joseph C.; Booten, Charles W.; Martin, Jerry L.

    2012-11-06

    A Solid Oxide Fuel Cell (SOFC) system having a hot zone with a center cathode air feed tube for improved reactant distribution, a CPOX reactor attached at the anode feed end of the hot zone with a tail gas combustor at the opposing end for more uniform heat distribution, and a counter-flow heat exchanger for efficient heat retention.

  2. Reforming of fuel inside fuel cell generator

    DOE Patents [OSTI]

    Grimble, R.E.

    1988-03-08

    Disclosed is an improved method of reforming a gaseous reformable fuel within a solid oxide fuel cell generator, wherein the solid oxide fuel cell generator has a plurality of individual fuel cells in a refractory container, the fuel cells generating a partially spent fuel stream and a partially spent oxidant stream. The partially spent fuel stream is divided into two streams, spent fuel stream 1 and spent fuel stream 2. Spent fuel stream 1 is burned with the partially spent oxidant stream inside the refractory container to produce an exhaust stream. The exhaust stream is divided into two streams, exhaust stream 1 and exhaust stream 2, and exhaust stream 1 is vented. Exhaust stream 2 is mixed with spent fuel stream 2 to form a recycle stream. The recycle stream is mixed with the gaseous reformable fuel within the refractory container to form a fuel stream which is supplied to the fuel cells. Also disclosed is an improved apparatus which permits the reforming of a reformable gaseous fuel within such a solid oxide fuel cell generator. The apparatus comprises a mixing chamber within the refractory container, means for diverting a portion of the partially spent fuel stream to the mixing chamber, means for diverting a portion of exhaust gas to the mixing chamber where it is mixed with the portion of the partially spent fuel stream to form a recycle stream, means for injecting the reformable gaseous fuel into the recycle stream, and means for circulating the recycle stream back to the fuel cells. 1 fig.

  3. Reforming of fuel inside fuel cell generator

    DOE Patents [OSTI]

    Grimble, Ralph E.

    1988-01-01

    Disclosed is an improved method of reforming a gaseous reformable fuel within a solid oxide fuel cell generator, wherein the solid oxide fuel cell generator has a plurality of individual fuel cells in a refractory container, the fuel cells generating a partially spent fuel stream and a partially spent oxidant stream. The partially spent fuel stream is divided into two streams, spent fuel stream I and spent fuel stream II. Spent fuel stream I is burned with the partially spent oxidant stream inside the refractory container to produce an exhaust stream. The exhaust stream is divided into two streams, exhaust stream I and exhaust stream II, and exhaust stream I is vented. Exhaust stream II is mixed with spent fuel stream II to form a recycle stream. The recycle stream is mixed with the gaseous reformable fuel within the refractory container to form a fuel stream which is supplied to the fuel cells. Also disclosed is an improved apparatus which permits the reforming of a reformable gaseous fuel within such a solid oxide fuel cell generator. The apparatus comprises a mixing chamber within the refractory container, means for diverting a portion of the partially spent fuel stream to the mixing chamber, means for diverting a portion of exhaust gas to the mixing chamber where it is mixed with the portion of the partially spent fuel stream to form a recycle stream, means for injecting the reformable gaseous fuel into the recycle stream, and means for circulating the recycle stream back to the fuel cells.

  4. Optimization design of electrodes for anode-supported solid oxide fuel cells via genetic algorithm

    SciTech Connect (OSTI)

    Shi, J.; Xue, X.

    2011-01-01

    Porous electrode is the critical component of solid-oxide fuel cells (SOFCs) and provides a functional material backbone for multi-physicochemical processes. Model based electrode designs could significantly improve SOFC performance. This task is usually performed via parameter studies for simple case and assumed property distributions for graded electrodes. When nonlinearly coupled multiparameters of electrodes are considered, it could be very difficult for the model based parameter study method to effectively and systematically search the design space. In this research, the optimization approach with a genetic algorithm is demonstrated for this purpose. An anode-supported proton conducting SOFC integrated with a fuel supply system is utilized as a physical base for the model development and the optimization design. The optimization results are presented, which are difficult to obtain for parametric study method.

  5. California Fuel Cell Partnership: Alternative Fuels Research...

    Energy.gov (indexed) [DOE]

    This presentation by Chris White of the California Fuel Cell Partnership provides information about alternative fuels research. cafcpinitiativescall.pdf (133.97 KB) More ...

  6. Improvement of capabilities of the Distributed Electrochemistry Modeling Tool for investigating SOFC long term performance

    SciTech Connect (OSTI)

    Gonzalez Galdamez, Rinaldo A.; Recknagle, Kurtis P.

    2012-04-30

    This report provides an overview of the work performed for Solid Oxide Fuel Cell (SOFC) modeling during the 2012 Winter/Spring Science Undergraduate Laboratory Internship at Pacific Northwest National Laboratory (PNNL). A brief introduction on the concept, operation basics and applications of fuel cells is given for the general audience. Further details are given regarding the modifications and improvements of the Distributed Electrochemistry (DEC) Modeling tool developed by PNNL engineers to model SOFC long term performance. Within this analysis, a literature review on anode degradation mechanisms is explained and future plans of implementing these into the DEC modeling tool are also proposed.

  7. On the State of the Art of Metal Interconnects for SOFC Application

    SciTech Connect (OSTI)

    Jablonski@netl.doe.gov

    2011-02-27

    One of the recent developments for Solid Oxide Fuel Cells (SOFC) is oxide component materials capable of operating at lower temperatures such as 700-800C. This lower temperature range has provided for the consideration of metallic interconnects which have several advantages over ceramic interconnects: low cost, ease in manufacturing, and high conductivity. Most metals and alloys will oxidize under both the anode and cathode conditions within an SOFC, thus a chief requirement is that the base metal oxide scale must be electrically conductive since this constitutes the majority of the electrical resistance in a metallic interconnect. Common high temperature alloys form scales that contain chrome, silicon and aluminum oxides among others. Under SOFC operating conditions chrome oxide is a semi-conductor while silicon and aluminum oxides are insulators. In this talk we will review the evolution in candidate alloys and surface modifications which constitute an engineered solution for SOFC interconnect applications.

  8. Molten carbonate fuel cell

    DOE Patents [OSTI]

    Kaun, Thomas D.; Smith, James L.

    1987-01-01

    A molten electrolyte fuel cell with an array of stacked cells and cell enclosures isolating each cell except for access to gas manifolds for the supply of fuel or oxidant gas or the removal of waste gas, the cell enclosures collectively providing an enclosure for the array and effectively avoiding the problems of electrolyte migration and the previous need for compression of stack components, the fuel cell further including an inner housing about and in cooperation with the array enclosure to provide a manifold system with isolated chambers for the supply and removal of gases. An external insulated housing about the inner housing provides thermal isolation to the cell components.

  9. Molten carbonate fuel cell

    DOE Patents [OSTI]

    Kaun, T.D.; Smith, J.L.

    1986-07-08

    A molten electrolyte fuel cell is disclosed with an array of stacked cells and cell enclosures isolating each cell except for access to gas manifolds for the supply of fuel or oxidant gas or the removal of waste gas. The cell enclosures collectively provide an enclosure for the array and effectively avoid the problems of electrolyte migration and the previous need for compression of stack components. The fuel cell further includes an inner housing about and in cooperation with the array enclosure to provide a manifold system with isolated chambers for the supply and removal of gases. An external insulated housing about the inner housing provides thermal isolation to the cell components.

  10. Final Report, Validation of Novel Planar Cell Design for MW-Scale SOFC Power Systems

    SciTech Connect (OSTI)

    Swartz, Dr Scott L.; Thrun, Dr Lora B.; Arkenberg, Mr Gene B.; Chenault, Ms Kellie M.

    2012-01-03

    This report describes the work completed by NexTech Materials, Ltd. during a three-year project to validate an electrolyte-supported planar solid oxide fuel cell design, termed the FlexCell, for coal-based, megawatt-scale power generation systems. This project was focused on the fabrication and testing of electrolyte-supported FlexCells with yttria-stabilized zirconia (YSZ) as the electrolyte material. YSZ based FlexCells were made with sizes ranging from 100 to 500 cm2. Single-cell testing was performed to confirm high electrochemical performance, both with diluted hydrogen and simulated coal gas as fuels. Finite element analysis modeling was performed at The Ohio State University was performed to establish FlexCell architectures with optimum mechanical robustness. A manufacturing cost analysis was completed, which confirmed that manufacturing costs of less than $50/kW are achievable at high volumes (500 MW/year).

  11. Validation of Novel Planar Cell Design for MW-Scale SOFC Power Systems

    SciTech Connect (OSTI)

    Scott Swartz; Lora Thrun; Gene Arkenberg; Kellie Chenault

    2011-09-30

    This report describes the work completed by NexTech Materials, Ltd. during a three-year project to validate an electrolyte-supported planar solid oxide fuel cell design, termed the FlexCell, for coal-based, megawatt-scale power generation systems. This project was focused on the fabrication and testing of electrolyte-supported FlexCells with yttria-stabilized zirconia (YSZ) as the electrolyte material. YSZ based FlexCells were made with sizes ranging from 100 to 500 cm{sup 2}. Single-cell testing was performed to confirm high electrochemical performance, both with diluted hydrogen and simulated coal gas as fuels. Finite element analysis modeling was performed at The Ohio State University was performed to establish FlexCell architectures with optimum mechanical robustness. A manufacturing cost analysis was completed, which confirmed that manufacturing costs of less than $50/kW are achievable at high volumes (500 MW/year). DISCLAIMER

  12. Integrating catalytic coal gasifiers with solid oxide fuel cells

    SciTech Connect (OSTI)

    Siefert, N.; Shamsi, A.; Shekhawat, D.; Berry, D.

    2010-01-01

    A review was conducted for coal gasification technologies that integrate with solid oxide fuel cells (SOFC) to achieve system efficiencies near 60% while capturing and sequestering >90% of the carbon dioxide [1-2]. The overall system efficiency can reach 60% when a) the coal gasifier produces a syngas with a methane composition of roughly 25% on a dry volume basis, b) the carbon dioxide is separated from the methane-rich synthesis gas, c) the methane-rich syngas is sent to a SOFC, and d) the off-gases from the SOFC are recycled back to coal gasifier. The thermodynamics of this process will be reviewed and compared to conventional processes in order to highlight where available work (i.e. exergy) is lost in entrained-flow, high-temperature gasification, and where exergy is lost in hydrogen oxidation within the SOFC. The main advantage of steam gasification of coal to methane and carbon dioxide is that the amount of exergy consumed in the gasifier is small compared to conventional, high temperature, oxygen-blown gasifiers. However, the goal of limiting the amount of exergy destruction in the gasifier has the effect of limiting the rates of chemical reactions. Thus, one of the main advantages of steam gasification leads to one of its main problems: slow reaction kinetics. While conventional entrained-flow, high-temperature gasifiers consume a sizable portion of the available work in the coal oxidation, the consumed exergy speeds up the rates of reactions. And while the rates of steam gasification reactions can be increased through the use of catalysts, only a few catalysts can meet cost requirements because there is often significant deactivation due to chemical reactions between the inorganic species in the coal and the catalyst. Previous research into increasing the kinetics of steam gasification will be reviewed. The goal of this paper is to highlight both the challenges and advantages of integrating catalytic coal gasifiers with SOFCs.

  13. Fuel Cell Technologies Budget

    SciTech Connect (OSTI)

    EERE

    2012-03-16

    The Fuel Cell Technologies Office receives appropriations from Energy and Water Development. The offices's major activities and budget are outlined in this Web page.

  14. Opportunities with Fuel Cells

    Reports and Publications

    1994-01-01

    The concept for fuel cells was discovered in the nineteenth century. Today, units incorporating this technology are becoming commercially available for cogeneration applications.

  15. Fuel Cell Case Study

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presented at the Clean Energy States Alliance and U.S. Department of Energy Webinar: Fuel Cells for Supermarkets, April 4, 2011.

  16. Hydrogen Fuel Cells

    Fuel Cell Technologies Publication and Product Library (EERE)

    The fuel cell an energy conversion device that can efficiently capture and use the power of hydrogen is the key to making it happen.

  17. Hydrogen Fuel Cells

    Fuel Cell Technologies Publication and Product Library (EERE)

    The fuel cell — an energy conversion device that can efficiently capture and use the power of hydrogen — is the key to making it happen.

  18. NETL: SOFC Core Technology

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Core Technology Core Technology-This key technology conducts applied research and development on technologies - exclusive of the cell components - that improve the cost, performance, robustness, reliability, and endurance of SOFC stack or balance-of-plant (BOP) technology. Projects in the Core Technology portfolio focus on interconnects and seals, identify and mitigate stack-related degradation, develop computational tools and models, and conduct laboratory- and bench-scale testing to improve

  19. Solid Oxide Fuel Cell Systems PVL Line

    SciTech Connect (OSTI)

    Susan Shearer - Stark State College; Gregory Rush - Rolls-Royce Fuel Cell Systems

    2012-05-01

    In July 2010, Stark State College (SSC), received Grant DE-EE0003229 from the U.S. Department of Energy (DOE), Golden Field Office, for the development of the electrical and control systems, and mechanical commissioning of a unique 20kW scale high-pressure, high temperature, natural gas fueled Stack Block Test System (SBTS). SSC worked closely with subcontractor, Rolls-Royce Fuel Cell Systems (US) Inc. (RRFCS) over a 13 month period to successfully complete the project activities. This system will be utilized by RRFCS for pre-commercial technology development and training of SSC student interns. In the longer term, when RRFCS is producing commercial products, SSC will utilize the equipment for workforce training. In addition to DOE Hydrogen, Fuel Cells, and Infrastructure Technologies program funding, RRFCS internal funds, funds from the state of Ohio, and funding from the DOE Solid State Energy Conversion Alliance (SECA) program have been utilized to design, develop and commission this equipment. Construction of the SBTS (mechanical components) was performed under a Grant from the State of Ohio through Ohio's Third Frontier program (Grant TECH 08-053). This Ohio program supported development of a system that uses natural gas as a fuel. Funding was provided under the Department of Energy (DOE) Solid-state Energy Conversion Alliance (SECA) program for modifications required to test on coal synthesis gas. The subject DOE program provided funding for the electrical build, control system development and mechanical commissioning. Performance testing, which includes electrical commissioning, was subsequently performed under the DOE SECA program. Rolls-Royce Fuel Cell Systems is developing a megawatt-scale solid oxide fuel cell (SOFC) stationary power generation system. This system, based on RRFCS proprietary technology, is fueled with natural gas, and operates at elevated pressure. A critical success factor for development of the full scale system is the capability to

  20. Fuel Cell Demonstration Program

    SciTech Connect (OSTI)

    Gerald Brun

    2006-09-15

    In an effort to promote clean energy projects and aid in the commercialization of new fuel cell technologies the Long Island Power Authority (LIPA) initiated a Fuel Cell Demonstration Program in 1999 with six month deployments of Proton Exchange Membrane (PEM) non-commercial Beta model systems at partnering sites throughout Long Island. These projects facilitated significant developments in the technology, providing operating experience that allowed the manufacturer to produce fuel cells that were half the size of the Beta units and suitable for outdoor installations. In 2001, LIPA embarked on a large-scale effort to identify and develop measures that could improve the reliability and performance of future fuel cell technologies for electric utility applications and the concept to establish a fuel cell farm (Farm) of 75 units was developed. By the end of October of 2001, 75 Lorax 2.0 fuel cells had been installed at the West Babylon substation on Long Island, making it the first fuel cell demonstration of its kind and size anywhere in the world at the time. Designed to help LIPA study the feasibility of using fuel cells to operate in parallel with LIPA's electric grid system, the Farm operated 120 fuel cells over its lifetime of over 3 years including 3 generations of Plug Power fuel cells (Lorax 2.0, Lorax 3.0, Lorax 4.5). Of these 120 fuel cells, 20 Lorax 3.0 units operated under this Award from June 2002 to September 2004. In parallel with the operation of the Farm, LIPA recruited government and commercial/industrial customers to demonstrate fuel cells as on-site distributed generation. From December 2002 to February 2005, 17 fuel cells were tested and monitored at various customer sites throughout Long Island. The 37 fuel cells operated under this Award produced a total of 712,635 kWh. As fuel cell technology became more mature, performance improvements included a 1% increase in system efficiency. Including equipment, design, fuel, maintenance, installation

  1. Westinghouse 100 kWe SOFC demonstration status

    SciTech Connect (OSTI)

    Veyo, S.

    1996-12-31

    The world`s first 100 kWe class Solid Oxide Fuel Cell (SOFC) power generation system is being supplied by Westinghouse and is sponsored by EDB/ELSAM, a consortium of Dutch and Danish utilities. This natural gas fueled experimental field unit will be installed near Arnhem, The Netherlands, at an auxiliary district heating plant. The module utilizes tubular Air Electrode Supported SOFCs. The system will achieve an electrical generation efficiency of 49%, and this combined with recovery of heat for district heating can yield an overall fuel effectiveness approaching 80%. Significant progress toward reduction of CO{sub 2}, a greenhouse gas, will be obtained, and the system will be environmentally benign.

  2. Fabrication of solid oxide fuel cell by electrochemical vapor deposition

    DOE Patents [OSTI]

    Brian, Riley; Szreders, Bernard E.

    1989-01-01

    In a high temperature solid oxide fuel cell (SOFC), the deposition of an impervious high density thin layer of electrically conductive interconnector material, such as magnesium doped lanthanum chromite, and of an electrolyte material, such as yttria stabilized zirconia, onto a porous support/air electrode substrate surface is carried out at high temperatures (approximately 1100.degree.-1300.degree. C.) by a process of electrochemical vapor deposition. In this process, the mixed chlorides of the specific metals involved react in the gaseous state with water vapor resulting in the deposit of an impervious thin oxide layer on the support tube/air electrode substrate of between 20-50 microns in thickness. An internal heater, such as a heat pipe, is placed within the support tube/air electrode substrate and induces a uniform temperature profile therein so as to afford precise and uniform oxide deposition kinetics in an arrangement which is particularly adapted for large scale, commercial fabrication of SOFCs.

  3. Fabrication of solid oxide fuel cell by electrochemical vapor deposition

    DOE Patents [OSTI]

    Riley, B.; Szreders, B.E.

    1988-04-26

    In a high temperature solid oxide fuel cell (SOFC), the deposition of an impervious high density thin layer of electrically conductive interconnector material, such as magnesium doped lanthanum chromite, and of an electrolyte material, such as yttria stabilized zirconia, onto a porous support/air electrode substrate surface is carried out at high temperatures (/approximately/1100/degree/ /minus/ 1300/degree/C) by a process of electrochemical vapor deposition. In this process, the mixed chlorides of the specific metals involved react in the gaseous state with water vapor resulting in the deposit of an impervious thin oxide layer on the support tube/air electrode substrate of between 20--50 microns in thickness. An internal heater, such as a heat pipe, is placed within the support tube/air electrode substrate and induces a uniform temperature profile therein so as to afford precise and uniform oxide deposition kinetics in an arrangement which is particularly adapted for large scale, commercial fabrication of SOFCs.

  4. Miniature ceramic fuel cell

    DOE Patents [OSTI]

    Lessing, Paul A.; Zuppero, Anthony C.

    1997-06-24

    A miniature power source assembly capable of providing portable electricity is provided. A preferred embodiment of the power source assembly employing a fuel tank, fuel pump and control, air pump, heat management system, power chamber, power conditioning and power storage. The power chamber utilizes a ceramic fuel cell to produce the electricity. Incoming hydro carbon fuel is automatically reformed within the power chamber. Electrochemical combustion of hydrogen then produces electricity.

  5. Method of Fabrication of High Power Density Solid Oxide Fuel Cells

    DOE Patents [OSTI]

    Pham, Ai Quoc; Glass, Robert S.

    2008-09-09

    A method for producing ultra-high power density solid oxide fuel cells (SOFCs). The method involves the formation of a multilayer structure cells wherein a buffer layer of doped-ceria is deposited intermediate a zirconia electrolyte and a cobalt iron based electrode using a colloidal spray deposition (CSD) technique. For example, a cobalt iron based cathode composed of (La,Sr)(Co,Fe)O(LSCF) may be deposited on a zirconia electrolyte via a buffer layer of doped-ceria deposited by the CSD technique. The thus formed SOFC have a power density of 1400 mW/cm.sup.2 at 600.degree. C. and 900 mW/cm.sup.2 at 700.degree. C. which constitutes a 2-3 times increased in power density over conventionally produced SOFCs.

  6. Direct Carbon Fuel Cell System Utilizing Solid Carbonaceous Fuels

    SciTech Connect (OSTI)

    Turgut Gur

    2010-04-30

    This 1-year project has achieved most of its objective and successfully demonstrated the viability of the fluidized bed direct carbon fuel cell (FB-DCFC) approach under development by Direct Carbon technologies, LLC, that utilizes solid carbonaceous fuels for power generation. This unique electrochemical technology offers high conversion efficiencies, produces proportionately less CO{sub 2} in capture-ready form, and does not consume or require water for gasification. FB-DCFC employs a specialized solid oxide fuel cell (SOFC) arrangement coupled to a Boudouard gasifier where the solid fuel particles are fluidized and reacted by the anode recycle gas CO{sub 2}. The resulting CO is electrochemically oxidized at the anode. Anode supported SOFC structures employed a porous Ni cermet anode layer, a dense yttria stabilized zirconia membrane, and a mixed conducting porous perovskite cathode film. Several kinds of untreated solid fuels (carbon and coal) were tested in bench scale FBDCFC prototypes for electrochemical performance and stability testing. Single cells of tubular geometry with active areas up to 24 cm{sup 2} were fabricated. The cells achieved high power densities up to 450 mW/cm{sup 2} at 850 C using a low sulfur Alaska coal char. This represents the highest power density reported in the open literature for coal based DCFC. Similarly, power densities up to 175 mW/cm{sup 2} at 850 C were demonstrated with carbon. Electrical conversion efficiencies for coal char were experimentally determined to be 48%. Long-term stability of cell performance was measured under galvanostatic conditions for 375 hours in CO with no degradation whatsoever, indicating that carbon deposition (or coking) does not pose any problems. Similar cell stability results were obtained in coal char tested for 24 hours under galvanostatic conditions with no sign of sulfur poisoning. Moreover, a 50-cell planar stack targeted for 1 kW output was fabricated and tested in 95% CO (balance CO{sub 2

  7. The main directions in technology investigation of soid oxide fuel cell in Russian Federal Research Center Institute of Physics & Power Engineering (IPPE)

    SciTech Connect (OSTI)

    Ievleva, J.I.; Kolesnikov, V.P.; Mezhertisky, G.S.

    1996-04-01

    The main direction of science investigations for creation of efficient solid oxide fuel cells (SOFC) in IPPE are considered in this work. The development program of planar SOFC with thin-film electrolyte is shown. General design schemes of experimental SOFC units are presented. The flow design schemes of processes for initial materials and electrodes fabrication are shown. The results of investigations for creation thin-film solid oxide electrolyte at porous cathode by magnetron sputtering from complex metal target in oxidative environment are presented.

  8. A Total Cost of Ownership Model for Solid Oxide Fuel Cells in Combined Heat and Power and Power-Only Applications

    Energy.gov [DOE]

    This report prepared by Lawrence Berkeley National Laboratory describes a total cost of ownership model for emerging applications in stationary fuel cell systems. Solid oxide fuel cell systems (SOFC) for use in combined heat and power (CHP) and power-only applications from 1 to 250 kilowatts-electric are considered.

  9. Solid oxide fuel cell generator

    DOE Patents [OSTI]

    Di Croce, A.M.; Draper, R.

    1993-11-02

    A solid oxide fuel cell generator has a plenum containing at least two rows of spaced apart, annular, axially elongated fuel cells. An electrical conductor extending between adjacent rows of fuel cells connects the fuel cells of one row in parallel with each other and in series with the fuel cells of the adjacent row. 5 figures.

  10. Solid oxide fuel cell generator

    DOE Patents [OSTI]

    Di Croce, A. Michael; Draper, Robert

    1993-11-02

    A solid oxide fuel cell generator has a plenum containing at least two rows of spaced apart, annular, axially elongated fuel cells. An electrical conductor extending between adjacent rows of fuel cells connects the fuel cells of one row in parallel with each other and in series with the fuel cells of the adjacent row.

  11. Tilted fuel cell apparatus

    DOE Patents [OSTI]

    Cooper, John F.; Cherepy, Nerine; Krueger, Roger L.

    2005-04-12

    Bipolar, tilted embodiments of high temperature, molten electrolyte electrochemical cells capable of directly converting carbon fuel to electrical energy are disclosed herein. The bipolar, tilted configurations minimize the electrical resistance between one cell and others connected in electrical series. The tilted configuration also allows continuous refueling of carbon fuel.

  12. Characterization and Quantification of Electronic and Ionic Ohmic Overpotential and Heat Generation in a Solid Oxide Fuel Cell Anode

    SciTech Connect (OSTI)

    Grew, Kyle N.; Izzo, Jr., John R.; Chiu, W. K. S.

    2011-01-01

    The development of a solid oxide fuel cell (SOFC) with a higher efficiency and power density requires an improved understanding and treatment of the irreversibilities. Losses due to the electronic and ionic resistances, which are also known as ohmic losses in the form of Joule heating, can hinder the SOFCs performance. Ohmic losses can result from the bulk material resistivities as well as the complexities introduced by the cells microstructure. In this work, two-dimensional (2D), electronic and ionic transport models are used to develop a method of quantification of the ohmic losses within the SOFC anode microstructure. This quantification is completed as a function of properties determined from a detailed microstructure characterization, namely, the tortuosity of the electronic and ionic phases, phase volume fraction, contiguity, and mean free path. A direct modeling approach at the level of the pore-scale microstructure is achieved through the use of a representative volume element (RVE) method. The correlation of these ohmic losses with the quantification of the SOFC anode microstructure are examined. It is found with this analysis that the contributions of the SOFC anode microstructure on ohmic losses can be correlated with the volume fraction, contiguity, and mean free path.

  13. NREL: Hydrogen and Fuel Cells Research - Early Fuel Cell Market

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Demonstrations Early Fuel Cell Market Demonstrations Photo of fuel cell backup power system in outdoor setting. Photo of fuel cell forklifts in warehouse setting. Fuel cell backup power systems offer longer continuous runtimes and greater durability than traditional batteries in harsh outdoor environments. For specialty vehicles such as forklifts, fuel cells can be a cost-competitive alternative to traditional lead-acid batteries. Learn More Subscribe to the biannual Fuel Cell and Hydrogen

  14. Fuel Cells Fact Sheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fact Sheet Fact sheet produced by the Fuel Cell Technologies Office describing hydrogen fuel cell technology. Fuel Cells More Documents & Publications Hydrogen and Fuel Cell...

  15. NETL: SOFC Systems Development

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    for either syngas- or natural gas fueled applications. ... of the fuel cells, integration of cells hardware ... commercialization of the technology, and market penetration. ...

  16. Modeling and Performance of Anode-Supported SOFC

    SciTech Connect (OSTI)

    Chick, Lawrence A.; Stevenson, Jeffry W.; Meinhardt, Kerry D.; Simner, Steven P.; Jaffe, John E.; Williford, Rick E.

    2001-02-28

    A "one-dimensional", steady-state model of an SOFC stack was needed to support the design of balance-of-plant components for a 5 kW mobile SOFC system. This "stack module" was required to predict appropriate stack voltage responses to changes in fuel composition, fuel flow rate, stack temperature and current demand, with response characteristics that were adjustable to changes in stack component materials and dimensions as well as to electrode porosity. The spreadsheet-based stack module was derived from the work by Kim, Virkar et al (see J. Electrochem. Soc. 146(1) 69-78 (1999)), with modifications suggested by Riess and Schoonman, p291 in CRC Handbook of Electrochemistry (1997) CRC Press. The usual overpotential terms account for ohmic resistance of the cell components, losses due to charge transfer at the electrodes, and losses due to diffusion of reactants into and products out of the porous electrodes. Response of the module is compared to published cell and stack data. After fitting adjustable parameters to match particular cell performance characteristics, the module responds reasonably well to changes in temperature and fuel concentration. The module is used to analyze the performance of anode-supported cells that were fabricated at PNNL (see abstract submitted by Stevenson, Meinhardt, Simner, Habeger and Canfield, "Fabrication and Testing of Anode-Supported SOFC").

  17. Fuel Cell Animation- Fuel Cell Stack (Text Version)

    Energy.gov [DOE]

    This text version of the fuel cell animation demonstrates how a fuel cell uses hydrogen to produce electricity, with only water and heat as byproducts.

  18. Fuel Cell Animation- Fuel Cell Components (Text Version)

    Energy.gov [DOE]

    This text version of the fuel cell animation demonstrates how a fuel cell uses hydrogen to produce electricity, with only water and heat as byproducts.

  19. DOE Fuel Cell Technologies Office Record 14014: Fuel Cell System...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    14014 Date: September 25, 2014 Title: Fuel Cell System Cost - 2014 Update to: Record 14012 ... polymer electrolyte membrane (PEM) fuel cell system based on next-generation ...

  20. NREL: Hydrogen and Fuel Cells Research - Stationary Fuel Cell...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Stationary Fuel Cell Units Greater Than 100 kW Achieve 2015 Target for Electrical ... Center (NFCTEC) has validated the electrical efficiency of stationary fuel cells for ...

  1. Microbial fuel cell treatment of fuel process wastewater (Patent...

    Office of Scientific and Technical Information (OSTI)

    Microbial fuel cell treatment of fuel process wastewater Title: Microbial fuel cell treatment of fuel process wastewater The present invention is directed to a method for cleansing ...

  2. Microbial fuel cell treatment of fuel process wastewater (Patent...

    Office of Scientific and Technical Information (OSTI)

    Microbial fuel cell treatment of fuel process wastewater Title: Microbial fuel cell treatment of fuel process wastewater You are accessing a document from the Department of ...

  3. Hydrogen Fueling for Current and Anticipated Fuel Cell Electric...

    Energy.gov (indexed) [DOE]

    Hydrogen Fueling for Current and Anticipated Fuel Cell Electric Vehicles (FCEVs)" held on June 24, 2014. Hydrogen Fueling for Current and Anticipated Fuel Cell Electric Vehicles ...

  4. DOE Hydrogen & Fuel Cell Overview

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    t t 1 | Fuel Cell Technologies Program eere.energy.gov Fuel Cell Technologies Program DOE Hydrogen & Fuel Cell Overview Dr. Sunita Satyapal Program Manager U S D f E Overview U.S. ...

  5. Fuel cell stack arrangements

    DOE Patents [OSTI]

    Kothmann, Richard E.; Somers, Edward V.

    1982-01-01

    Arrangements of stacks of fuel cells and ducts, for fuel cells operating with separate fuel, oxidant and coolant streams. An even number of stacks are arranged generally end-to-end in a loop. Ducts located at the juncture of consecutive stacks of the loop feed oxidant or fuel to or from the two consecutive stacks, each individual duct communicating with two stacks. A coolant fluid flows from outside the loop, into and through cooling channels of the stack, and is discharged into an enclosure duct formed within the loop by the stacks and seals at the junctures at the stacks.

  6. Fuel Transformer Solid Oxide Fuel Cell

    SciTech Connect (OSTI)

    Norman Bessette; Douglas S. Schmidt; Jolyon Rawson; Rhys Foster; Anthony Litka

    2006-07-27

    The following report documents the technical approach and conclusions made by Acumentrics Corporation during latest budget period toward the development of a low cost 10kW tubular SOFC power system. The present program, guided under direction from the National Energy Technology Laboratory of the US DOE, is a nine-year cost shared Cooperative Agreement totaling close to $74M funded both by the US DOE as well as Acumentrics Corporation and its partners. The latest budget period ran from January of 2006 through June 2006. Work focused on cell technology enhancements as well as BOP and power electronics improvements and overall system design. Significant progress was made in increasing cell power enhancements as well as decreasing material cost in a drive to meet the SECA cost targets. The following report documents these accomplishments in detail as well as the layout plans for further progress in next budget period.

  7. FUEL TRANSFORMER SOLID OXIDE FUEL CELL

    SciTech Connect (OSTI)

    Norman Bessette; Douglas S. Schmidt; Jolyon Rawson; Lars Allfather; Anthony Litka

    2005-03-24

    The following report documents the technical approach and conclusions made by Acumentrics Corporation during latest budget period toward the development of a low cost 10kW tubular SOFC power system. The present program, guided under direction from the National Energy Technology Laboratory of the US DOE, is a nine-year cost shared Cooperative Agreement totaling close to $74M funded both by the US DOE as well as Acumentrics Corporation and its partners. The latest budget period ran from July of 2004 through January 2004. Work was focused on cell technology enhancements as well as BOP and power electronics improvements and overall system design. Significant progress was made in increasing cell power enhancements as well as decreasing material cost in a drive to meet the SECA cost targets. The following report documents these accomplishments in detail as well as the lay out plans for further progress in next budget period.

  8. Fuel Transformer Solid Oxide Fuel Cell

    SciTech Connect (OSTI)

    Norman Bessette; Douglas S. Schmidt; Jolyon Rawson; Lars Allfather; Anthony Litka

    2005-08-01

    The following report documents the technical approach and conclusions made by Acumentrics Corporation during latest budget period toward the development of a low cost 10kW tubular SOFC power system. The present program, guided under direction from the National Energy Technology Laboratory of the US DOE, is a nine-year cost shared Cooperative Agreement totaling close to $74M funded both by the US DOE as well as Acumentrics Corporation and its partners. The latest budget period ran from January of 2005 through June 2005. Work focused on cell technology enhancements as well as BOP and power electronics improvements and overall system design. Significant progress was made in increasing cell power enhancements as well as decreasing material cost in a drive to meet the SECA cost targets. The following report documents these accomplishments in detail as well as the layout plans for further progress in next budget period.

  9. Fuel cell water transport

    DOE Patents [OSTI]

    Vanderborgh, Nicholas E.; Hedstrom, James C.

    1990-01-01

    The moisture content and temperature of hydrogen and oxygen gases is regulated throughout traverse of the gases in a fuel cell incorporating a solid polymer membrane. At least one of the gases traverses a first flow field adjacent the solid polymer membrane, where chemical reactions occur to generate an electrical current. A second flow field is located sequential with the first flow field and incorporates a membrane for effective water transport. A control fluid is then circulated adjacent the second membrane on the face opposite the fuel cell gas wherein moisture is either transported from the control fluid to humidify a fuel gas, e.g., hydrogen, or to the control fluid to prevent excess water buildup in the oxidizer gas, e.g., oxygen. Evaporation of water into the control gas and the control gas temperature act to control the fuel cell gas temperatures throughout the traverse of the fuel cell by the gases.

  10. A solid oxide fuel cell power system: 1992--1993 field operation

    SciTech Connect (OSTI)

    Veyo, S.E.; Kusunoki, A.; Takeuchi, S.; Kaneko, S.; Yokoyama, H.

    1994-05-01

    Westinghouse has deployed fully integrated, automatically controlled, packaged solid oxide fuel cell (SOFC) power generation systems in order to obtain useful customer feedback. Recently, Westinghouse has deployed 20 kW class natural gas fueled SOFC generator modules integrated into two 25 kW SOFC systems, the first with The UTILITIES, a Japanese consortium. The UTILITIES 25 kW SOFC system is the focus of this paper. The unit was shipped to the Rokko Island Test Center for Advanced Energy Systems (near Kobe, Japan) operated by Kansai Electric Power Co.; testing was initiated February 1992. Module A operated for 2601 hours at an ave output 16.6 kW dc; final shutdown was induced by current stability problems with dissipator (restart not possible because of damaged cells). Module B operated for 1579 hours at ave output 17.8 kWdc. The unit was damaged by operation at excessively high fuel utilization > 91%. It was rebuilt and returned to Rokko Island. This module B2 operated for 1843 hours on PNG; shutdown was cuased by air supply failure. After a new blower and motor were installed July 1993, the system was restarted August 5, 1993 and operated continuously until November 10, 1993, when an automatic shutdown was induced as part of a MITI licensing inspection. After restart, the unit passed 6000 hours of operation on desulfurized PNG on January 25, 1994. Westinghouse`s future plans are outlined.

  11. Fuel Cell Technologies Program Overview

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    CSD Workshop Washington, DC Fuel Cell Technologies Program Overview Dr. Sunita Satyapal Director, Fuel Cell Technologies Office Energy Efficiency and Renewable Energy U.S. Department of Energy 3/20/2012 2 | Fuel Cell Technologies Program eere.energy.gov Overview Fuel Cells - An Emerging Global Industry Clean Energy Patent Growth Index [1] shows that fuel cell patents lead in the clean energy field with over 950 fuel cell patents issued in 2011. * Nearly double the second place holder, solar,

  12. Fuel Cell Technologies Program Overview

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Non-Metallic Materials Meeting Washington, DC Fuel Cell Technologies Program Overview Dr. Sunita Satyapal U.S. Department of Energy Fuel Cell Technologies Program Program Manager 10/17/2012 2 | Fuel Cell Technologies Program eere.energy.gov Overview Fuel Cells - An Emerging Global Industry Clean Energy Patent Growth Index [1] shows that fuel cell patents lead in the clean energy field with over 950 fuel cell patents issued in 2011. * Nearly double the second place holder, solar, which has ~540

  13. Internet Fuel Cells Forum

    SciTech Connect (OSTI)

    Sudhoff, Frederick A.

    1996-08-01

    The rapid development and integration of the Internet into the mainstream of professional life provides the fuel cell industry with the opportunity to share new ideas with unprecedented capabilities. The U.S. Department of Energy's (DOE's) Morgantown Energy Technology Center (METC) has undertaken the task to maintain a Fuel Cell Forum on the Internet. Here, members can exchange ideas and information pertaining to fuel cell technologies. The purpose of this forum is to promote a better understanding of fuel cell concepts, terminology, processes, and issues relating to commercialization of fuel cell power technology. The Forum was developed by METC to provide those interested with fuel cell conference information for its current concept of exchanging ideas and information pertaining to fuel cells. Last August, the Forum expanded to an on-line and world-wide network. There are 250 members, and membership is growing at a rate of several new subscribers per week. The forum currently provides updated conference information and interactive information exchange. Forum membership is encouraged from utilities, industry, universities, and government. Because of the public nature of the internet, business sensitive, confidential, or proprietary information should not be placed on this system. The Forum is unmoderated; therefore, the views and opinions of authors expressed in the forum do not necessarily state or reflect those of the U.S. government or METC.

  14. Manufacturing Fuel Cell Manhattan Project

    Office of Energy Efficiency and Renewable Energy (EERE)

    This document communicates the major fuel cell manufacturing cost drivers, gaps, and industry best practices, as well as recommends manufacturing projects to advance fuel cell manufacturing.

  15. Hydrogen and Fuel Cell Activities

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Activities Mr. Pete Devlin U.S. Department of Energy Fuel Cell Technologies Program Market Transformation Manager Stationary Fuel Cell Applications First National Bank of Omaha...

  16. Fuel Cell Technologies Office: Publications

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fuel Cell Technologies Office EERE Fuel Cell Technologies Office Share this resource Publications Advanced Search Browse by Topic Mail Requests Help Feature featured product...

  17. Comparison of Fuel Cell Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    More Information More information on the Fuel Cell Technologies Offce is available at http:www.hydrogenandfuelcells.energy.gov. Fuel Cell Type Common Electrolyte Operating ...

  18. Fuel Cell Technologies Program Overview

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    IEA HIA Hydrogen Safety Stakeholder Workshop Bethesda, Maryland Fuel Cell Technologies Program Overview Dr. Sunita Satyapal U.S. Department of Energy Fuel Cell Technologies Program ...

  19. Manufacturing Fuel Cell Manhattan Project

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Manufacturing Fuel Cell Manhattan Project Presented by the Benchmarking and Best Practices ... in providing valued information on affordable and implementable fuel cell technology. ...

  20. Fuel Cell Technologies Program Overview

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    The Administration's Clean Energy Goals 2 3 Fuel Cells Address Our Key Energy Challenges Increasing Energy Efficiency and Resource Diversity Fuel cells offer a highly efficient ...

  1. DOE Fuel Cell Technology Office

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Fuel Cell Technology Office - Sandia Energy Energy Search Icon Sandia Home Locations ... SunShot Grand Challenge: Regional Test Centers DOE Fuel Cell Technology Office Home...

  2. Fundamental researches of SOFC in Russia

    SciTech Connect (OSTI)

    Demin, A.K.; Neuimin, A.D.; Perfiliev, M.V.

    1996-04-01

    The main results of research on ZrO{sub 2}-based solid electrolytes, electrodes and interconnects are reviewed. The mathematical models of the processes in SOFC are considered. Two types of SOFC stacks composed of tubular and block cells, as well the results of their tests are described.

  3. Direct Internal Reformation and Mass Transport in the Solid Oxide Fuel Cell Anode: A Pore-Scale Lattice Boltzmann Study with Detailed Reaction Kinetics

    SciTech Connect (OSTI)

    Grew, Kyle N.; Joshi, Abhijit S.; Chiu, W. K. S.

    2010-11-30

    The solid oxide fuel cell (SOFC) allows the conversion of chemical energy that is stored in a given fuel, including light hydrocarbons, to electrical power. Hydrocarbon fuels, such as methane, are logistically favourable and provide high energy densities. However, the use of these fuels often results in a decreased efficiency and life. An improved understanding of the reactive flow in the SOFC anode can help address these issues. In this study, the transport and heterogeneous internal reformation of a methane based fuel is addressed. The effect of the SOFC anode's complex structure on transport and reactions is shown to exhibit a complicated interplay between the local molar concentrations and the anode structure. Strong coupling between the phenomenological microstructures and local reformation reaction rates are recognised in this study, suggesting the extension to actual microstructures may provide new insights into the reformation processes.

  4. Bipolar fuel cell

    DOE Patents [OSTI]

    McElroy, James F.

    1989-01-01

    The present invention discloses an improved fuel cell utilizing an ion transporting membrane having a catalytic anode and a catalytic cathode bonded to opposite sides of the membrane, a wet-proofed carbon sheet in contact with the cathode surface opposite that bonded to the membrane and a bipolar separator positioned in electrical contact with the carbon sheet and the anode of the adjacent fuel cell. Said bipolar separator and carbon sheet forming an oxidant flowpath, wherein the improvement comprises an electrically conductive screen between and in contact with the wet-proofed carbon sheet and the bipolar separator improving the product water removal system of the fuel cell.

  5. MEMS-based thin-film fuel cells

    DOE Patents [OSTI]

    Jankowksi, Alan F.; Morse, Jeffrey D.

    2003-10-28

    A micro-electro-mechanical systems (MEMS) based thin-film fuel cells for electrical power applications. The MEMS-based fuel cell may be of a solid oxide type (SOFC), a solid polymer type (SPFC), or a proton exchange membrane type (PEMFC), and each fuel cell basically consists of an anode and a cathode separated by an electrolyte layer. Additionally catalyst layers can also separate the electrodes (cathode and anode) from the electrolyte. Gas manifolds are utilized to transport the fuel and oxidant to each cell and provide a path for exhaust gases. The electrical current generated from each cell is drawn away with an interconnect and support structure integrated with the gas manifold. The fuel cells utilize integrated resistive heaters for efficient heating of the materials. By combining MEMS technology with thin-film deposition technology, thin-film fuel cells having microflow channels and full-integrated circuitry can be produced that will lower the operating temperature an will yield an order of magnitude greater power density than the currently known fuel cells.

  6. Solid Oxide Fuel Cells FAQs

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Solid Oxide Fuel Cells FAQs faq-header-big.jpg SOLID OXIDE FUEL CELLS - BASICS Q: What is a fuel cell? A: A fuel cell is a power generation device that converts the chemical energy of a fuel and oxidant directly into electrical energy, with heat and water as byproducts. Since fuel cells produce electricity through an electrochemical reaction and not through a combustion process, they are inherently more efficient and environmentally friendly than conventional electric power generation processes.

  7. Electrode Performance in Reversible Solid Oxide Fuel Cells

    SciTech Connect (OSTI)

    Marina, Olga A.; Pederson, Larry R.; Williams, Mark C.; Coffey, Greg W.; Meinhardt, Kerry D.; Nguyen, Carolyn D.; Thomsen, Ed C.

    2007-03-22

    The performance of several negative (fuel) and positive (air) electrode compositions for use in reversible solid oxide fuel cells (SOFC) that are capable of operating both as a fuel cell and as an electrolyzer was investigated in half-cell and full-cell tests. Negative electrode compositions studied were a nickel/zirconia cermet (Ni/YSZ) and lanthanum-substituted strontium titanate/ceria composite, whereas positive electrode compositions examined included mixed ion and electron-conducting lanthanum strontium ferrite (LSF), lanthanum strontium copper ferrite (LSCuF), lanthanum strontium cobalt ferrite (LSCoF), and lanthanum strontium manganite (LSM). While titanate/ceria and Ni/YSZ electrodes performed similarly in the fuel cell mode in half-cell tests, losses associated with electrolysis were lower for the titanate/ceria electrode. Positive electrodes all gave higher losses in the electrolysis mode when compared to the fuel cell mode. This behavior was most apparent for mixed-conducting LSF, LSCuF, and LSCoF electrodes, and discernible but smaller for LSM; observations are consistent with expected trends in the interfacial oxygen vacancy concentration under anodic and cathodic polarization. Full-cell tests conducted for cells with a thin electrolyte (7 um YSZ) similarly showed higher polarization losses in the electrolysis than fuel cell direction.

  8. Fuel cell generator energy dissipator

    DOE Patents [OSTI]

    Veyo, Stephen Emery; Dederer, Jeffrey Todd; Gordon, John Thomas; Shockling, Larry Anthony

    2000-01-01

    An apparatus and method are disclosed for eliminating the chemical energy of fuel remaining in a fuel cell generator when the electrical power output of the fuel cell generator is terminated. During a generator shut down condition, electrically resistive elements are automatically connected across the fuel cell generator terminals in order to draw current, thereby depleting the fuel

  9. DOE Fuel Cell Technologies Program Record, Record # 11003, Fuel...

    Energy Savers

    Program Record, Record 11003, Fuel Cell Stack Durability DOE Fuel Cell Technologies Program Record, Record 11003, Fuel Cell Stack Durability Dated May 3, 2012, this program ...

  10. Combined Theoretical and Experimental Investigation and Design of H2S Tolerant Anode for Solid Oxide Fuel Cells

    SciTech Connect (OSTI)

    Gerardine G. Botte; Damilola Daramola; Madhivanan Muthuvel

    2009-01-07

    A solid oxide fuel cell (SOFC) is a high temperature fuel cell and it normally operates in the range of 850 to 1000 C. Coal syngas has been considered for use in SOFC systems to produce electric power, due to its high temperature and high hydrogen and carbon monoxide content. However, coal syngas also has contaminants like carbon dioxide (CO{sub 2}) and hydrogen sulfide (H{sub 2}S). Among these contaminants, H{sub 2}S is detrimental to electrode material in SOFC. Commonly used anode material in SOFC system is nickel-yttria stabilized zirconia (Ni-YSZ). The presence of H{sub 2}S in the hydrogen stream will damage the Ni anode and hinder the performance of SOFC. In the present study, an attempt was made to understand the mechanism of anode (Ni-YSZ) deterioration by H{sub 2}S. The study used computation methods such as quantum chemistry calculations and molecular dynamics to predict the model for anode destruction by H{sub 2}S. This was done using binding energies to predict the thermodynamics and Raman spectroscopy to predict molecular vibrations and surface interactions. On the experimental side, a test stand has been built with the ability to analyze button cells at high temperature under syngas conditions.

  11. Hydrogen Fuel Cell Demonstration ...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Brothers, Ltd., at their facility in the Port of Honolulu. The pilot hydrogen fuel cell unit will be used in place of a diesel generator currently used to provide power for...

  12. Rapidly refuelable fuel cell

    DOE Patents [OSTI]

    Joy, Richard W. (Santa Clara, CA)

    1983-01-01

    This invention is directed to a metal-air fuel cell where the consumable metal anode is movably positioned in the cell and an expandable enclosure, or bladder, is used to press the anode into contact with separating spacers between the cell electrodes. The bladder may be depressurized to allow replacement of the anode when consumed.

  13. Financing Fuel Cells

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    organized by: ◦ US Department of Energy Fuel Cell Technologies Program ◦ Clean Energy States Alliance ◦ Technology Transition Corporation  Also briefing papers and materials for state policymakers and others on the Hydrogen and Fuel Cells Project page at www.cleanenergystates.org 2  A nonprofit coalition of state and sub-national clean energy funds and programs working together to develop and promote clean energy technologies and markets. www.cleanenergystates.org 3  For more

  14. Fuel Cells at NASCAR

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fuel Cells at NASCAR Ned Stetson U.S. Department of Energy Fuel Cell Technologies Office Catherine Kummer - NASCAR Green Norm Bessette - Acumentrics Question and Answer * Please type your question into the question box hydrogenandfuelcells.energy.gov 3 Selected Milestone Accomplishments * 5 years of NASCAR Green with now most impactful sustainability platform in history of U.S. based on numbers; most impactful in sports * 75% of avid NASCAR fans are now aware of NASCAR green and believe the

  15. Fuel Cells in Telecommunications

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fuel Cells Simply Powerful Fuel Cells in Telecommunications J. Blanchard December 2011 - ~ ReliOn Overview Markets Backup, grid supplement, and off grid power systems for critical communications infrastructure spanning telecom, transportation, government, utility, and OEM customers throughout the world. Products Purpose designed product portfolio of 175W to 2.5kW building blocks providing solutions up to 30kW for target markets. Broad range of hydrogen storage solutions supported by major

  16. Compliant fuel cell system

    DOE Patents [OSTI]

    Bourgeois, Richard Scott; Gudlavalleti, Sauri

    2009-12-15

    A fuel cell assembly comprising at least one metallic component, at least one ceramic component and a structure disposed between the metallic component and the ceramic component. The structure is configured to have a lower stiffness compared to at least one of the metallic component and the ceramic component, to accommodate a difference in strain between the metallic component and the ceramic component of the fuel cell assembly.

  17. Composite fuel cell membranes

    DOE Patents [OSTI]

    Plowman, Keith R. (Lake Jackson, TX); Rehg, Timothy J. (Lake Jackson, TX); Davis, Larry W. (West Columbia, TX); Carl, William P. (Marble Falls, TX); Cisar, Alan J. (Cypress, TX); Eastland, Charles S. (West Columbia, TX)

    1997-01-01

    A bilayer or trilayer composite ion exchange membrane suitable for use in a fuel cell. The composite membrane has a high equivalent weight thick layer in order to provide sufficient strength and low equivalent weight surface layers for improved electrical performance in a fuel cell. In use, the composite membrane is provided with electrode surface layers. The composite membrane can be composed of a sulfonic fluoropolymer in both core and surface layers.

  18. Composite fuel cell membranes

    DOE Patents [OSTI]

    Plowman, K.R.; Rehg, T.J.; Davis, L.W.; Carl, W.P.; Cisar, A.J.; Eastland, C.S.

    1997-08-05

    A bilayer or trilayer composite ion exchange membrane is described suitable for use in a fuel cell. The composite membrane has a high equivalent weight thick layer in order to provide sufficient strength and low equivalent weight surface layers for improved electrical performance in a fuel cell. In use, the composite membrane is provided with electrode surface layers. The composite membrane can be composed of a sulfonic fluoropolymer in both core and surface layers.

  19. Maritime Hydrogen Fuel Cell project

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ... SunShot Grand Challenge: Regional Test Centers Maritime Hydrogen Fuel Cell project HomeTag:Maritime Hydrogen Fuel Cell project - Pete Devlin, of the Department of Energy's Fuel ...

  20. Fuel Cells | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fuel Cells Fuel Cells A fuel cell uses the chemical energy of hydrogen or another fuel to cleanly and efficiently produce electricity. If hydrogen is the fuel, electricity, water, and heat are the only products. Fuel cells are unique in terms of the variety of their potential applications; they can provide power for systems as large as a utility power station and as small as a laptop computer. Why Study Fuel Cells Fuel cells can be used in a wide range of applications, including transportation,

  1. Fuel dissipater for pressurized fuel cell generators

    DOE Patents [OSTI]

    Basel, Richard A.; King, John E.

    2003-11-04

    An apparatus and method are disclosed for eliminating the chemical energy of fuel remaining in a pressurized fuel cell generator (10) when the electrical power output of the fuel cell generator is terminated during transient operation, such as a shutdown; where, two electrically resistive elements (two of 28, 53, 54, 55) at least one of which is connected in parallel, in association with contactors (26, 57, 58, 59), a multi-point settable sensor relay (23) and a circuit breaker (24), are automatically connected across the fuel cell generator terminals (21, 22) at two or more contact points, in order to draw current, thereby depleting the fuel inventory in the generator.

  2. Creep Behavior of Glass/Ceramic Sealant and its Effect on Long-term Performance of Solid Oxide Fuel Cells

    SciTech Connect (OSTI)

    Liu, Wenning N.; Sun, Xin; Koeppel, Brian J.; Stephens, Elizabeth V.; Khaleel, Mohammad A.

    2009-10-14

    The creep behavior of glass or glass-ceramic sealant materials used in solid oxide fuel cells (SOFCs) becomes relevant under SOFC operating temperatures. In this paper, the creep of glass-ceramic sealants was experimentally examined, and a standard linear solid model was applied to capture the creep behavior of glass ceramic sealant materials developed for planar SOFCs at high temperatures. The parameters of this model were determined based on the creep test results. Furthermore, the creep model was incorporated into finite-element software programs SOFC-MP and Mentat-FC developed at Pacific Northwest National Laboratory for multi-physics simulation of SOFCs. The effect of creep of glass ceramic sealant materials on the long-term performance of SOFC stacks was investigated by studying the stability of the flow channels and the stress redistribution in the glass seal and on the various interfaces of the glass seal with other layers. Finite element analyses were performed to quantify the stresses in various parts. The stresses in glass seals were released because of creep behavior during operations.

  3. Characterization of Cr poisoning in a solid oxide fuel cell cathode using a high-energy x-ray microbeam.

    SciTech Connect (OSTI)

    Liu, D. J.; Almer, J.; Cruse, T.

    2010-01-01

    A key feature of planar solid oxide fuel cells (SOFCs) is the feasibility of using metallic interconnects made of high temperature ferritic stainless steels, which reduce system cost while providing excellent electric conductivity. Such interconnects, however, contain high levels of chromium, which has been found to be associated with SOFC cathode performance degradation at SOFC operating temperatures; a phenomenon known as Cr poisoning. Here, we demonstrate an accurate measurement of the phase and concentration distributions of Cr species in a degraded SOFC, as well as related properties including deviatoric strain, integrated porosity, and lattice parameter variation, using high energy microbeam X-ray diffraction and radiography. We unambiguously identify (MnCr){sub 3}O{sub 4} and Cr{sub 2}O{sub 3} as the two main contaminant phases and find that their concentrations correlate strongly with the cathode layer composition. Cr{sub 2}O{sub 3} deposition within the active cathode region reduces porosity and produces compressive residual strains, which hinders the reactant gas percolation and can cause structural breakdown of the SOFC cathode. The information obtained through this study can be used to better understand the Cr-poisoning mechanism and improve SOFC design.

  4. Fuel Cells and Renewable Gaseous Fuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fuel Cells and Renewable Gaseous Fuels Fuel Cells and Renewable Gaseous Fuels Breakout Session 3-C: Renewable Gaseous Fuels Fuel Cells and Renewable Gaseous Fuels Sarah Studer, ORISE Fellow-Fuel Cell Technologies Office, U.S. Department of Energy studer_bioenergy_2015.pdf (2 MB) More Documents & Publications Workshop on Gas Clean-Up for Fuel Cell Applications U.S Department of Energy Fuel Cell Technologies Office Overview: 2015 Smithsonian Science Education Academies for Teachers Novel

  5. 2009 Fuel Cell Market Report

    SciTech Connect (OSTI)

    Vincent, Bill; Gangi, Jennifer; Curtin, Sandra; Delmont, Elizabeth

    2010-11-01

    Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of fuel is supplied. Moreover, fuel cells do not burn fuel, making the process quiet, pollution-free and two to three times more efficient than combustion. Fuel cell systems can be a truly zero-emission source of electricity, if the hydrogen is produced from non-polluting sources. Global concerns about climate change, energy security, and air pollution are driving demand for fuel cell technology. More than 630 companies and laboratories in the United States are investing $1 billion a year in fuel cells or fuel cell component technologies. This report provides an overview of trends in the fuel cell industry and markets, including product shipments, market development, and corporate performance. It also provides snapshots of select fuel cell companies, including general.

  6. Zero Emission Power Plants Using Solid Oxide Fuel Cells and Oxygen Transport Membranes

    SciTech Connect (OSTI)

    Shockling, Larry A.; Huang, Keqin; Gilboy, Thomas E.; Christie, G. Maxwell; Raybold, Troy M.

    2001-11-06

    Siemens Westinghouse Power Corp. (SWPC) is engaged in the development of Solid Oxide Fuel Cell stationary power systems. SWPC has combined DOE Developmental funds with commercial customer funding to establish a record of successful SOFC field demonstration power systems of increasing size. SWPC will soon deploy the first unit of a newly developed 250 kWe Combined Heat Power System. It will generate electrical power at greater than 45% electrical efficiency. The SWPC SOFC power systems are equipped to operate on lower number hydrocarbon fuels such as pipeline natural gas, which is desulfurized within the SOFC power system. Because the system operates with a relatively high electrical efficiency, the CO2 emissions, {approx}1.0 lb CO2/ kW-hr, are low. Within the SOFC module the desulfurized fuel is utilized electrochemically and oxidized below the temperature for NOx generation. Therefore the NOx and SOx emissions for the SOFC power generation system are near negligible. The byproducts of the power generation from hydrocarbon fuels that are released into the environment are CO2 and water vapor. This forward looking DOE sponsored Vision 21 program is supporting the development of methods to capture and sequester the CO2, resulting in a Zero Emission power generation system. To accomplish this, SWPC is developing a SOFC module design, to be demonstrated in operating hardware, that will maintain separation of the fuel cell anode gas, consisting of H2, CO, H2O and CO2, from the vitiated air. That anode gas, the depleted fuel stream, containing less than 18% (H2 + CO), will be directed to an Oxygen Transport Membrane (OTM) Afterburner that is being developed by Praxair, Inc.. The OTM is supplied air and the depleted fuel. The OTM will selectively transport oxygen across the membrane to oxidize the remaining H2 and CO. The water vapor is then condensed from the totally 1.5.DOC oxidized fuel stream exiting the afterburner, leaving only the CO2 in gaseous form. That CO2 can

  7. Seventh Edition Fuel Cell Handbook

    SciTech Connect (OSTI)

    NETL

    2004-11-01

    Provides an overview of fuel cell technology and research projects. Discusses the basic workings of fuel cells and their system components, main fuel cell types, their characteristics, and their development status, as well as a discussion of potential fuel cell applications.

  8. Breakthrough Vehicle Development - Fuel Cells

    Fuel Cell Technologies Publication and Product Library (EERE)

    Document describing research and development program for fuel cell power systems for transportation applications.

  9. ZTEK`s ultra-high efficiency fuel cell/gas turbine system for distributed generation

    SciTech Connect (OSTI)

    Hsu, M.; Nathanson, D.; Bradshaw, D.T.

    1996-12-31

    Ztek`s Planar Solid Oxide Fuel Cell (SOFC) system has exceptional potential for utility electric power generation because of: simplicity of components construction, capability for low cost manufacturing, efficient recovery of very high quality by-product heat (up to 1000{degrees}C), and system integration simplicity. Utility applications of the Solid Oxide Fuel Cell are varied and include distributed generation units (sub-MW to 30MW capacity), repowering existing power plants (i.e. 30MW to 100MW), and multi-megawatt central power plants. A TVA/EPRI collaboration program involved functional testing of the advanced solid oxide fuel cell stacks and design scale-up for distributed power generation applications. The emphasis is on the engineering design of the utility modules which will be the building blocks for up to megawatt scale power plants. The program has two distinctive subprograms: Verification test on a 1 kW stack and 25kW module for utility demonstration. A 1 kW Planar SOFC stack was successfully operated for 15,000 hours as of December, 1995. Ztek began work on a 25kW SOFC Power System for TVA, which plans to install the 25kW SOFC at a host site for demonstration in 1997. The 25kW module is Ztek`s intended building block for the commercial use of the Planar SOFC. Systems of up to megawatt capacity can be obtained by packaging the modules in 2-dimensional or 3-dimensional arrays.

  10. Development of Ceramic Interconnect Materials for SOFC

    SciTech Connect (OSTI)

    Yoon, Kyung J.; Stevenson, Jeffry W.; Marina, Olga A.

    2010-08-05

    Currently, acceptor-doped lanthanum chromite is the state-of-the-art ceramic interconnect material for high temperature solid oxide fuel cells (SOFCs) due to its fairly good electronic conductivity and chemical stability in both oxidizing and reducing atmospheres, and thermal compatibility with other cell components. The major challenge for acceptor-doped lanthanum chromite for SOFC interconnect applications is its inferior sintering behavior in air, which has been attributed to the development of a thin layer of Cr2O3 at the interparticle necks during the initial stages of sintering. In addition, lanthanum chromite is reactive with YSZ electrolyte at high temperatures, forming a highly resistive lanthanum zirconate phase (La2Zr2O7), which further complicates co-firing processes. Acceptor-doped yttrium chromite is considered to be one of the promising alternatives to acceptor-doped lanthanum chromite because it is more stable with respect to the formation of hydroxides in SOFC operating conditions, and the formation of impurity phases can be effectively avoided at co-firing temperatures. In addition, calcium-doped yttrium chromite exhibits higher mechanical strength than lanthanum chromite-based materials. The major drawback of yttrium chromite is considered to be its lower electrical conductivity than lanthanum chromite. The properties of yttrium chromites could possibly be improved and optimized by partial substitution of chromium with various transition metals. During FY10, PNNL investigated the effect of various transition metal doping on chemical stability, sintering and thermal expansion behavior, microstructure, electronic and ionic conductivity, and chemical compatibility with other cell components to develop the optimized ceramic interconnect material.

  11. Aid for electrical contacting of high-temperature fuel cells and method for production thereof

    DOE Patents [OSTI]

    Becker, Ines; Schillig, Cora

    2014-03-18

    A double-sided adhesive metal-based tape for use as contacting aid for SOFC fuel cells is provided. The double-sided metal-based adhesive tape is suitable for simplifying the construction of cell bundles. The double-sided metal-based adhesive tape is used for electrical contacting of the cell connector with the anode and for electrical contacting of the interconnector of the fuel cells with the cell connector. A method for producing the double-sided adhesive metal-base tape is also provided.

  12. Global Failure Criteria for Positive/Electrolyte/Negative Structure of Planar Solid Oxide Fuel Cell

    SciTech Connect (OSTI)

    Liu, Wenning N.; Sun, Xin; Khaleel, Mohammad A.; Qu, Jianmin

    2009-07-15

    Due to mismatch of the coefficients of thermal expansion of various layers in the positive/electrolyte/negative (PEN) structures of solid oxide fuel cells (SOFC), thermal stresses and warpage on the PEN are unavoidable due to the temperature changes from the stress-free sintering temperature to room temperature during the PEN manufacturing process. In the meantime, additional mechanical stresses will also be created by mechanical flattening during the stack assembly process. In order to ensure the structural integrity of the cell and stack of SOFC, it is necessary to develop failure criteria for SOFC PEN structures based on the initial flaws occurred during cell sintering and stack assembly. In this paper, the global relationship between the critical energy release rate and critical curvature and maximum displacement of the warped cells caused by the temperature changes as well as mechanical flattening process is established so that possible failure of SOFC PEN structures may be predicted deterministically by the measurement of the curvature and displacement of the warped cells.

  13. Comparison of SOFC Cathode Microstructure Quantified using X-ray Nanotomography and Focused Ioni Beam-scanning Electron Microscopy

    SciTech Connect (OSTI)

    G Nelson; W Harris; J Lombardo; J Izzo Jr.; W Chiu; P Tanasini; M Cantoni; J Van herle; C Comninellis; et al.

    2011-12-31

    X-ray nanotomography and focused ion beam scanning electron microscopy (FIB-SEM) have been applied to investigate the complex 3D microstructure of solid oxide fuel cell (SOFC) electrodes at spatial resolutions of 45 nm and below. The application of near edge differential absorption for x-ray nanotomography and energy selected backscatter detection for FIB-SEM enable elemental mapping within the microstructure. Using these methods, non-destructive 3D x-ray imaging and FIB-SEM serial sectioning have been applied to compare three-dimensional elemental mapping of the LSM, YSZ, and pore phases in the SOFC cathode microstructure. The microstructural characterization of an SOFC cathode is reported based on these measurements. The results presented demonstrate the viability of x-ray nanotomography as a quantitative characterization technique and provide key insights into the SOFC cathode microstructure.

  14. Comparison of SOFC Cathode Microstructure Quantified using X-ray Nanotomography and Focused Ion Beam - Scanning Electron Microscopy

    SciTech Connect (OSTI)

    Nelson, George J.; Harris, William H.; Lombardo, Jeffrey J.; Izzo, Jr., John R.; Chiu, W. K. S.; Tanasini, Pietro; Cantoni, Marco; Van herle, Jan; Comninellis, Christos; Andrews, Joy C.; Liu, Yijin; Pianetta, Piero; Chu, Yong

    2011-03-24

    X-ray nanotomography and focused ion beam scanning electron microscopy (FIB-SEM) have been applied to investigate the complex 3D microstructure of solid oxide fuel cell (SOFC) electrodes at spatial resolutions of 45 nm and below. The application of near edge differential absorption for x-ray nanotomography and energy selected backscatter detection for FIBSEM enable elemental mapping within the microstructure. Using these methods, non-destructive 3D x-ray imaging and FIBSEM serial sectioning have been applied to compare three-dimensional elemental mapping of the LSM, YSZ, and pore phases in the SOFC cathode microstructure. The microstructural characterization of an SOFC cathode is reported based on these measurements. The results presented demonstrate the viability of x-ray nanotomography as a quantitative characterization technique and provide key insights into the SOFC cathode microstructure.

  15. Fuel Processors for PEM Fuel Cells

    SciTech Connect (OSTI)

    Levi T. Thompson

    2008-08-08

    Fuel cells are being developed to power cleaner, more fuel efficient automobiles. The fuel cell technology favored by many automobile manufacturers is PEM fuel cells operating with H2 from liquid fuels like gasoline and diesel. A key challenge to the commercialization of PEM fuel cell based powertrains is the lack of sufficiently small and inexpensive fuel processors. Improving the performance and cost of the fuel processor will require the development of better performing catalysts, new reactor designs and better integration of the various fuel processing components. These components and systems could also find use in natural gas fuel processing for stationary, distributed generation applications. Prototype fuel processors were produced, and evaluated against the Department of Energy technical targets. Significant advances were made by integrating low-cost microreactor systems, high activity catalysts, π-complexation adsorbents, and high efficiency microcombustor/microvaporizers developed at the University of Michigan. The microreactor system allowed (1) more efficient thermal coupling of the fuel processor operations thereby minimizing heat exchanger requirements, (2) improved catalyst performance due to optimal reactor temperature profiles and increased heat and mass transport rates, and (3) better cold-start and transient responses.

  16. Fuel Cell Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Cells » Fuel Cell Systems Fuel Cell Systems The design of fuel cell systems is complex, and can vary significantly depending upon fuel cell type and application. However, several basic components are found in many fuel cell systems: Fuel cell stack Fuel processor Power conditioners Air compressors Humidifiers Fuel Cell Stack The fuel cell stack is the heart of a fuel cell power system. It generates electricity in the form of direct current (DC) from electro-chemical reactions that take place in

  17. Fuel cell system

    DOE Patents [OSTI]

    Early, Jack; Kaufman, Arthur; Stawsky, Alfred

    1982-01-01

    A fuel cell system is comprised of a fuel cell module including sub-stacks of series-connected fuel cells, the sub-stacks being held together in a stacked arrangement with cold plates of a cooling means located between the sub-stacks to function as electrical terminals. The anode and cathode terminals of the sub-stacks are connected in parallel by means of the coolant manifolds which electrically connect selected cold plates. The system may comprise a plurality of the fuel cell modules connected in series. The sub-stacks are designed to provide a voltage output equivalent to the desired voltage demand of a low voltage, high current DC load such as an electrolytic cell to be driven by the fuel cell system. This arrangement in conjunction with switching means can be used to drive a DC electrical load with a total voltage output selected to match that of the load being driven. This arrangement eliminates the need for expensive voltage regulation equipment.

  18. Fuel processor for fuel cell power system

    DOE Patents [OSTI]

    Vanderborgh, Nicholas E.; Springer, Thomas E.; Huff, James R.

    1987-01-01

    A catalytic organic fuel processing apparatus, which can be used in a fuel cell power system, contains within a housing a catalyst chamber, a variable speed fan, and a combustion chamber. Vaporized organic fuel is circulated by the fan past the combustion chamber with which it is in indirect heat exchange relationship. The heated vaporized organic fuel enters a catalyst bed where it is converted into a desired product such as hydrogen needed to power the fuel cell. During periods of high demand, air is injected upstream of the combustion chamber and organic fuel injection means to burn with some of the organic fuel on the outside of the combustion chamber, and thus be in direct heat exchange relation with the organic fuel going into the catalyst bed.

  19. NREL: Hydrogen and Fuel Cells Research - Fuel Cells

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Cells Photo of scientific equipment in a laboratory setting. NREL scientist applies catalyst layer to a fuel cell through a spray process that delivers a more even distribution of material, improving performance. Photo by Dennis Schroeder, NREL What is a fuel cell? A single fuel cell consists of an electrolyte sandwiched between two electrodes. Bipolar plates on either side of the cell help distribute gases and serve as current collectors. Depending on the application, a fuel cell stack may

  20. Energy 101: Fuel Cell Technology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fuel Cell Technology Energy 101: Fuel Cell Technology

  1. Characterization of ceria-based SOFCs

    SciTech Connect (OSTI)

    Doshi, R.; Routbort, J.; Krumpelt, M.

    1996-12-31

    Solid Oxide Fuel Cells (SOFCs) operating at low temperatures (500-700{degrees}C) offer many advantages over the conventional zirconia-based fuel cells operating at higher temperatures. Reduced operating temperatures result in: (1) Application of metallic interconnects with reduced oxidation problems (2) Reduced time for start-up and lower energy consumption to reach operating temperatures (3) Increased thermal cycle ability for the cell structure due to lower thermal stresses of expansion mismatches. While this type of fuel cell may be applied to stationary applications, mobile applications require the ability for rapid start-up and frequent thermal cycling. Ceria-based fuel cells are currently being developed in the U.K. at Imperial College, Netherlands at ECN, and U.S.A. at Ceramatec. The cells in each case are made from a doped ceria electrolyte and a La{sub 1-x}Sr{sub x}Co{sub 1-y}Fe{sub y}O{sub 3} cathode.

  2. Fuel cell system combustor

    DOE Patents [OSTI]

    Pettit, William Henry

    2001-01-01

    A fuel cell system including a fuel reformer heated by a catalytic combustor fired by anode and cathode effluents. The combustor includes a turbulator section at its input end for intimately mixing the anode and cathode effluents before they contact the combustors primary catalyst bed. The turbulator comprises at least one porous bed of mixing media that provides a tortuous path therethrough for creating turbulent flow and intimate mixing of the anode and cathode effluents therein.

  3. Fuel cell system configurations

    DOE Patents [OSTI]

    Kothmann, Richard E.; Cyphers, Joseph A.

    1981-01-01

    Fuel cell stack configurations having elongated polygonal cross-sectional shapes and gaskets at the peripheral faces to which flow manifolds are sealingly affixed. Process channels convey a fuel and an oxidant through longer channels, and a cooling fluid is conveyed through relatively shorter cooling passages. The polygonal structure preferably includes at least two right angles, and the faces of the stack are arranged in opposite parallel pairs.

  4. DOE Hydrogen & Fuel Cell Overview

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    20 active fuel cell buses 60 fueling stations In the U.S., there are currently: 9 ... NAS study, "Transitions to Alternative Transportation Technologies: A Focus ...

  5. Basic properties of a liquidt in anode solid oxide fuel cell

    SciTech Connect (OSTI)

    Harry Abernathy; RandallGemmen; KirkGerdes; Mark Koslowske; ThomasTao

    2010-12-17

    An unconventional high temperature fuel cell system, the liquidt in anode solid oxide fuel cell(LTA-SOFC), is discussed. A thermodynamic analysis of a solid oxide fuel cell with a liquid metal anode is developed. Pertinent thermo chemical and thermo physical properties of liquid tin in particular are detailed. An experimental setup for analysis of LTA-SOFC anode kinetics is described, and data for a planar cell under hydrogen indicated an effective oxygen diffusion coefficient of 5.310?5 cm2 s?1 at 800 ?C and 8.910?5 cm2 s?1 at 900 ?C. This value is similar to previously reported literature values for liquid tin. The oxygen conductivity through the tin, calculated from measured diffusion coefficients and theoretical oxygen solubility limits, is found to be on the same order of thatofyttria-stabilizedzirconia(YSZ), a traditional SOFC electrolyte material. As such,the ohmicloss due to oxygen transport through the tin layer must be considered in practical system cell design since the tin layer will usually be at least as thick as the electrolyte.

  6. Performance of solid oxide fuel cells operated with coal syngas provided directly from a gasification process

    SciTech Connect (OSTI)

    Hackett, Gregory A.; Gerdes, Kirk R.; Song, Xueyan; Chen, Yun; Shutthanandan, V.; Engelhard, Mark H.; Zhu, Zihua; Thevuthasan, Suntharampillai; Gemmen, Randall

    2012-09-15

    Solid oxide fuel cells (SOFCs) are presently being developed for gasification integrated power plants that generate electricity from coal at 50+% efficiency. The interaction of trace metals in coal syngas with the Ni-based SOFC anodes is being investigated through thermodynamic analyses and in laboratory experiments, but direct test data from coal syngas exposure are sparsely available. This research effort evaluates the significance of SOFC performance losses associated with exposure of a SOFC anode to direct coal syngas. SOFC specimen of industrially relevant composition are operated in a unique mobile test skid that was deployed to the research gasifier at the National Carbon Capture Center (NCCC) in Wilsonville, AL. The mobile test skid interfaces with a gasifier slipstream to deliver hot syngas (up to 300C) directly to a parallel array of 12 button cell specimen, each of which possesses an active area of approximately 2 cm2. During the 500 hour test period, all twelve cells were monitored for performance at four discrete operating current densities, and all cells maintained contact with a data acquisition system. Of these twelve, nine demonstrated good performance throughout the test, while three of the cells were partially compromised. Degradation associated with the properly functioning cells was attributed to syngas exposure and trace material attack on the anode structure that was accelerated at increasing current densities. Cells that were operated at 0 and 125 mA/cm degraded at 9.1 and 10.7% per 1000 hours, respectively, while cells operated at 250 and 375 mA/cm degraded at 18.9 and 16.2% per 1000 hours, respectively. Post-trial spectroscopic analysis of the anodes showed carbon, sulfur, and phosphorus deposits; no secondary Ni-metal phases were found.

  7. Internal reforming fuel cell assembly with simplified fuel feed

    SciTech Connect (OSTI)

    Farooque, Mohammad; Novacco, Lawrence J.; Allen, Jeffrey P.

    2001-01-01

    A fuel cell assembly in which fuel cells adapted to internally reform fuel and fuel reformers for reforming fuel are arranged in a fuel cell stack. The fuel inlet ports of the fuel cells and the fuel inlet ports and reformed fuel outlet ports of the fuel reformers are arranged on one face of the fuel cell stack. A manifold sealing encloses this face of the stack and a reformer fuel delivery system is arranged entirely within the region between the manifold and the one face of the stack. The fuel reformer has a foil wrapping and a cover member forming with the foil wrapping an enclosed structure.

  8. Development of PEM fuel cell technology at international fuel cells

    SciTech Connect (OSTI)

    Wheeler, D.J.

    1996-04-01

    The PEM technology has not developed to the level of phosphoric acid fuel cells. Several factors have held the technology development back such as high membrane cost, sensitivity of PEM fuel cells to low level of carbon monoxide impurities, the requirement to maintain full humidification of the cell, and the need to pressurize the fuel cell in order to achieve the performance targets. International Fuel Cells has identified a hydrogen fueled PEM fuel cell concept that leverages recent research advances to overcome major economic and technical obstacles.

  9. Careers in Fuel Cell Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Careers In Fuel Cell Technologies Existing and emerging fuel cell applications hold large job growth potential. Fuel cells are among the promising technologies that are expected to transform our energy sector. They represent highly efficient and fuel- flexible technologies that offer diverse benefits. For example, fuel cells can be used in a wide range of applications- from portable electronics, to combined heat and power (CHP) units used for distributed electricity generation, to passenger

  10. Fuel cell programs in the United States for stationary power applications

    SciTech Connect (OSTI)

    Singer, M.

    1996-04-01

    The Department of Energy (DOE), Office of Fossil Energy, is participating with the private sector in sponsoring the development of molten carbonate fuel cell (MCFC) and solid oxide fuel cell (SOFC) technologies for application in the utility, commercial and industrial sectors. Phosphoric acid fuel cell (PAFC) development was sponsored by the Office of Fossil Energy in previous years and is now being commercialized by the private sector. Private sector participants with the Department of Energy include the Electric Power Research Institute (EPRI), the Gas Research institute (GRI), electric and gas utilities, universities, manufacturing companies and their suppliers. through continued government and private sector support, fuel cell systems are emerging power generation technologies which are expected to have significant worldwide impacts. An industry with annual sales of over a billion dollars is envisioned early in the 21st century. PAFC power plants have begun to enter the marketplace and MCFC and SOFC power plants are expected to be ready to enter the marketplace in the late 1990s. In support of the efficient and effective use of our natural resources, the fuel cell program seeks to increase energy efficiency and economic effectiveness of power generation. This is to be accomplished through effectiveness of power generation. This is accomplished through the development and commercialization of cost-effective, efficient and environmentally desirable fuel cell systems which will operate on fossil fuels in multiple and end use sectors.

  11. California Fuel Cell Partnership: Alternative Fuels Research | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Fuel Cell Partnership: Alternative Fuels Research California Fuel Cell Partnership: Alternative Fuels Research This presentation by Chris White of the California Fuel Cell Partnership provides information about alternative fuels research. cafcp_initiatives_call.pdf (133.97 KB) More Documents & Publications The Department of Energy Hydrogen and Fuel Cells Program Plan Vehicle Technologies Office Merit Review 2015: Alternative Fuel Station Locator Fuel Cell Buses in U.S. Transit

  12. Fuel Cells Go Live

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    green h y d r o g e n f u e l i n g POWer Fuel Cells Go live A closer look at the requirements to create a hydrogen-based warehouse M anagers of distribution centers are always on the lookout for new ways to gain competitive advantage through increased operational efficiency, productivity and worker safety. Around North America, some are finding success by integrating commercially available hydrogen fuel cell systems into their lift truck fleets. For operations with large fleets of electric lift

  13. "Analysis of SOFCs using reference electrodes?

    SciTech Connect (OSTI)

    Finklea, Harry; Chen,Xiaoke; Gerdes,Kirk; Pakalapati, Suryanarayana; Celik, Ismail

    2013-07-01

    Reference electrodes are frequently applied to isolate the performance of one electrode in a solid oxide fuel cell. However, reference electrode simulations raise doubt to veracity of data collected using reference electrodes. The simulations predict that the reported performance for the one electrode will frequently contain performance of both electrodes. Nonetheless, recent reports persistently treat data so collected as ideally isolated. This work confirms the predictions of the reference electrode simulations on two SOFC designs, and to provides a method of validating the data measured in the 3-electrode configuration. Validation is based on the assumption that a change in gas composition to one electrode does not affect the impedance of the other electrode at open circuit voltage. This assumption is supported by a full physics simulation of the SOFC. Three configurations of reference electrode and cell design are experimentally examined using various gas flows and two temperatures. Impedance data are subjected to deconvolution analysis and equivalent circuit fitting and approximate polarization resistances of the cathode and anode are determined. The results demonstrate that the utility of reference electrodes is limited and often wholly inappropriate. Reported impedances and single electrode polarization values must be scrutinized on this basis.

  14. Treatment of Fuel Process Wastewater Using Fuel Cells - Energy...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Hydrogen and Fuel Cell Hydrogen and Fuel Cell Find More Like This Return to Search Treatment of Fuel Process Wastewater Using Fuel Cells Oak Ridge National Laboratory Contact ORNL ...

  15. Hydrogen and Fuel Cell Activities

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    5/2011 eere.energy.gov 5 th International Conference on Polymer Batteries & Fuel Cells Argonne, Illinois Hydrogen and Fuel Cell Activities Dr. Sunita Satyapal U.S. Department of Energy Fuel Cell Technologies Program Program Manager August 4, 2011 2 | Fuel Cell Technologies Program Source: US DOE 8/5/2011 eere.energy.gov Fuel Cells: Benefits & Market Potential The Role of Fuel Cells Key Benefits Very High Efficiency Reduced CO 2 Emissions * 35-50%+ reductions for CHP systems (>80% with

  16. Measurement of residual stresses in deposited films of SOFC component materials

    SciTech Connect (OSTI)

    Kato, T.; Momma, A.; Nagata, S.; Kasuga, Y.

    1996-12-31

    The stress induced in Solid oxide fuel cells (SOFC)s has important influence on the lifetime of SOFC. But the data on stress in SOFC and mechanical properties of SOW component materials have not been accumulated enough to manufacture SOFC. Especially, the data of La{sub 1-x}Sr{sub x}MnO{sub 3} cathode and La{sub 1-x}Sr{sub x}CrO{sub 3} interconnection have been extremely limited. We have estimated numerically the dependences of residual stress in SOFC on the material properties, the cell structure and the fabrication temperatures of the components, but these unknown factors have caused obstruction to simulate the accurate behavior of residual stress. Therefore, the residual stresses in deposited La{sub 1-x}Sr{sub x}MnO{sub 3} and La{sub 1-x}Sr{sub x}CrO{sub 3} films are researched by the observation of the bending behavior of the substrate strips. The films of SOFC component materials were prepared by the RF sputtering method, because: (1) It can fabricate dense films of poor sinterable material such as La{sub 1-x}Sr{sub x}CrO{sub 3} compared with sintering or plasma spray method. (2) For the complicated material such as perovskite materials, the difference between the composition of a film and that of a target material is generally small. (3) It can fabricate a thick ceramics film by improving of the deposition rate. For example, Al{sub 2}O{sub 3} thick films of 50{mu}m can be fabricated with the deposition rate of approximately 5{mu}m/h industrially. In this paper, the dependence of residual stress on the deposition conditions is defined and mechanical properties of these materials are estimated from the results of the experiments.

  17. Effect of Creep of Ferritic Interconnect on Long-Term Performance of Solid Oxide Fuel Cell Stacks

    SciTech Connect (OSTI)

    Liu, Wenning N.; Sun, Xin; Khaleel, Mohammad A.

    2010-08-01

    High-temperature ferritic alloys are potential candidates as interconnect (IC) materials and spacers due to their low cost and coefficient of thermal expansion (CTE) compatibility with other components for most of the solid oxide fuel cells (SOFCs) . However, creep deformation becomes relevant for a material when the operating temperature exceeds or even is less than half of its melting temperature (in degrees of Kelvin). The operating temperatures for most of the SOFCs under development are around 1,073 K. With around 1,800 K of the melting temperature for most stainless steel, possible creep deformation of ferritic IC under the typical cell operating temperature should not be neglected. In this paper, the effects of IC creep behavior on stack geometry change and the stress redistribution of different cell components are predicted and summarized. The goal of the study is to investigate the performance of the fuel cell stack by obtaining the changes in fuel- and air-channel geometry due to creep of the ferritic stainless steel IC, therefore indicating possible changes in SOFC performance under long-term operations. The ferritic IC creep model was incorporated into software SOFC-MP and Mentat-FC, and finite element analyses were performed to quantify the deformed configuration of the SOFC stack under the long-term steady-state operating temperature. It was found that the creep behavior of the ferritic stainless steel IC contributes to narrowing of both the fuel- and the air-flow channels. In addition, stress re-distribution of the cell components suggests the need for a compliant sealing material that also relaxes at operating temperature.

  18. Gore Fuel Cell Technologies | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Gore Fuel Cell Technologies Jump to: navigation, search Name: Gore Fuel Cell Technologies Place: Elkton, Maryland Zip: 21922-1488 Product: Gore Fuel Cell Technologies supplies the...

  19. Hydra Fuel Cell Corporation | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Fuel Cell Corporation Jump to: navigation, search Name: Hydra Fuel Cell Corporation Place: Beaverton, Oregon Product: Holding company for American Security Resources' fuel cell...

  20. Cornell Fuel Cell Institute | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Cornell Fuel Cell Institute Jump to: navigation, search Name: Cornell Fuel Cell Institute Place: Ithaca, New York Zip: 14850 Product: The Cornell Fuel Cell Institute (CFCI)...

  1. Fuel Cell Power | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Fuel Cell Power Place: United Kingdom Product: Information provider of fuel cells and their supporting infrastructure. References: Fuel Cell Power1 This article is a stub. You...

  2. US Fuel Cell Council | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    US Fuel Cell Council Place: Washington DC, Washington, DC Zip: Washington Product: US Fuel Cell Council is a membership association of fuel cell industry dedicated to fostering the...

  3. Cabot Fuel Cells | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Cabot Fuel Cells Jump to: navigation, search Name: Cabot Fuel Cells Place: Albuquerque, New Mexico Zip: 87113 Product: Cabot develops and manufactures advanced fuel cell...

  4. Hydrogen and Fuel Cells Success Stories

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    71 Hydrogen and Fuel Cells Success Stories en Doosan Fuel Cell Takes Closed Plant to Full Production http:energy.goveeresuccess-storiesarticlesdoosan-fuel-cell-takes-closed-p...

  5. Financing Fuel Cells | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fuel Cells Financing Fuel Cells Presented at the Clean Energy States Alliance and U.S. Department of Energy Webinar: Financing Fuel Cell Installations, August 30, 2011. ...

  6. Canadian Fuel Cell Commercialization Roadmap Update: Progress...

    Open Energy Information (Open El) [EERE & EIA]

    Fuel Cell Commercialization Roadmap Update: Progress of Canada's Hydrogen and Fuel Cell Industry Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Canadian Fuel Cell...

  7. DOE Hydrogen and Fuel Cell Overview

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fuel Cell Technologies Program DOE Hydrogen & Fuel Cell Overview Dr. Sunita Satyapal Program Manager U.S. Department of Energy Fuel Cell Technologies Program January 5, 2011 2 | ...

  8. DOE Hydrogen and Fuel Cell Overview

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    DOE Hydrogen & Fuel Cell Overview Dr. Sunita Satyapal Program Manager U.S. Department of Energy Fuel Cell Technologies Program DOECESATTC Hydrogen and Fuel Cells Webinar December ...

  9. Overview of Hydrogen & Fuel Cell Activities

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Source: US DOE 2252011 eere.energy.gov Overview of Hydrogen & Fuel Cell Activities FUEL CELL TECHNOLOGIES PROGRAM IPHE - Stationary Fuel Cell Workshop Rick Farmer U.S. ...

  10. Air Breathing Direct Methanol Fuel Cell

    DOE Patents [OSTI]

    Ren; Xiaoming

    2003-07-22

    A method for activating a membrane electrode assembly for a direct methanol fuel cell is disclosed. The method comprises operating the fuel cell with humidified hydrogen as the fuel followed by running the fuel cell with methanol as the fuel.

  11. Fuel cell generator

    DOE Patents [OSTI]

    Makiel, Joseph M.

    1985-01-01

    A high temperature solid electrolyte fuel cell generator comprising a housing means defining a plurality of chambers including a generator chamber and a combustion products chamber, a porous barrier separating the generator and combustion product chambers, a plurality of elongated annular fuel cells each having a closed end and an open end with the open ends disposed within the combustion product chamber, the cells extending from the open end through the porous barrier and into the generator chamber, a conduit for each cell, each conduit extending into a portion of each cell disposed within the generator chamber, each conduit having means for discharging a first gaseous reactant within each fuel cell, exhaust means for exhausting the combustion product chamber, manifolding means for supplying the first gaseous reactant to the conduits with the manifolding means disposed within the combustion product chamber between the porous barrier and the exhaust means and the manifolding means further comprising support and bypass means for providing support of the manifolding means within the housing while allowing combustion products from the first and a second gaseous reactant to flow past the manifolding means to the exhaust means, and means for flowing the second gaseous reactant into the generator chamber.

  12. INTEGRATED GASIFICATION COMBINED CYCLE PROJECT 2 MW FUEL CELL DEMONSTRATION

    SciTech Connect (OSTI)

    FuelCell Energy

    2005-05-16

    treatment/instrument air, and power conditioning/controls were built and shipped to the site. The two fuel cell modules, each rated at 1 MW on natural gas, were fabricated by FuelCell Energy in its Torrington, CT manufacturing facility. The fuel cell modules were conditioned and tested at FuelCell Energy in Danbury and shipped to the site. Installation of the power plant and connection to all required utilities and syngas was completed. Pre-operation checkout of the entire power plant was conducted and the plant was ready to operate in July 2004. However, fuel gas (natural gas or syngas) was not available at the WREL site due to technical difficulties with the gasifier and other issues. The fuel cell power plant was therefore not operated, and subsequently removed by October of 2005. The WREL fuel cell site was restored to the satisfaction of WREL. FuelCell Energy continues to market carbonate fuel cells for natural gas and digester gas applications. A fuel cell/turbine hybrid is being developed and tested that provides higher efficiency with potential to reach the DOE goal of 60% HHV on coal gas. A system study was conducted for a 40 MW direct fuel cell/turbine hybrid (DFC/T) with potential for future coal gas applications. In addition, FCE is developing Solid Oxide Fuel Cell (SOFC) power plants with Versa Power Systems (VPS) as part of the Solid State Energy Conversion Alliance (SECA) program and has an on-going program for co-production of hydrogen. Future development in these technologies can lead to future coal gas fuel cell applications.

  13. Organic fuel cells and fuel cell conducting sheets

    DOE Patents [OSTI]

    Masel, Richard I.; Ha, Su; Adams, Brian

    2007-10-16

    A passive direct organic fuel cell includes an organic fuel solution and is operative to produce at least 15 mW/cm.sup.2 when operating at room temperature. In additional aspects of the invention, fuel cells can include a gas remover configured to promote circulation of an organic fuel solution when gas passes through the solution, a modified carbon cloth, one or more sealants, and a replaceable fuel cartridge.

  14. Modeling the Electrochemistry of an SOFC through the Electrodes and Electrolyte

    SciTech Connect (OSTI)

    Ryan, Emily M.; Recknagle, Kurtis P.; Khaleel, Mohammad A.

    2011-12-01

    This paper describes a distributed electrochemistry model of the solid oxide fuel cell (SOFC) electrodes and electrolyte. The distributed electrochemistry (DEC) model solves the transport, reactions, and electric potential through the thickness of the SOFC electrodes. The DEC model allows the local conditions within the electrodes to be studied and allows for a better understanding of how electrochemical and microstructural parameters affect the electrodes. In this paper the governing equations and implementation of the DEC model are presented along with several case studies which are used to investigate the sensitivity of the cathode to the microstructural and electrochemical parameters of the model and to explore methods of improving the electrochemical performance of the SOFC cathode.

  15. Characterization and Quantification of Electronic and Ionic Ohmic Overpotential and Heat Generation in a Solid Oxide Fuel Cell Anode

    SciTech Connect (OSTI)

    Grew, Kyle N.; Izzo, John R.; Chiu, Wilson K.S.

    2011-08-16

    The development of a solid oxide fuel cell (SOFC) with a higher efficiency and power density requires an improved understanding and treatment of the irreversibilities. Losses due to the electronic and ionic resistances, which are also known as ohmic losses in the form of Joule heating, can hinder the SOFC's performance. Ohmic losses can result from the bulk material resistivities as well as the complexities introduced by the cell's microstructure. In this work, two-dimensional (2D), electronic and ionic transport models are used to develop a method of quantification of the ohmic losses within the SOFC anode microstructure. This quantification is completed as a function of properties determined from a detailed microstructure characterization, namely, the tortuosity of the electronic and ionic phases, phase volume fraction, contiguity, and mean free path. A direct modeling approach at the level of the pore-scale microstructure is achieved through the use of a representative volume element (RVE) method. The correlation of these ohmic losses with the quantification of the SOFC anode microstructure are examined. It is found with this analysis that the contributions of the SOFC anode microstructure on ohmic losses can be correlated with the volume fraction, contiguity, and mean free path.

  16. Fuel Cell Projects Kickoff Meeting

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Nancy Garland Acting Fuel Cells Team Leader DOE Hydrogen Program nancy.garland@ee.doe.gov February 13-14, 2007 Washington, DC Overview 9 Key Personnel 9 Fuel Cell Program 9 Key ...

  17. Fuel Cells & Renewable Portfolio Standards

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    by 2025. o Non solar renewable energy - 12% o Solar energy - 0.5% o Advanced energy - 12.5% History of Ohio RPS Why fuel cells and RPS * Ohio's robust fuel cell industry in 2008 ...

  18. 2009 Fuel Cell Market Report

    Fuel Cell Technologies Publication and Product Library (EERE)

    Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of

  19. Fuel Cell Technical Team Roadmap

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Hydrogen Storage Technologies Roadmap Fuel Cell Technical Team Roadmap June 2013 This ... The Fuel Cell Technical Team is one of 12 U.S. DRIVE technical teams ("tech teams") whose ...

  20. Fuel Cell Technologies Program Overview

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fuel Cell Technologies Program Overview Program Overview Richard Farmer Richard Farmer ... 2 t t F l ll ff hi hl ffi i di f l d Fuel Cells Address Our Key Energy Challenges ...

  1. Fuel Cell Technical Team Roadmap

    SciTech Connect (OSTI)

    2013-06-01

    The Fuel Cell Technical Team promotes the development of a fuel cell power system for an automotive powertrain that meets the U.S. DRIVE Partnership (United States Driving Research and Innovation for Vehicle efficiency and Energy sustainability) goals.

  2. Operation of a solid oxide fuel cell on biodiesel with a partial oxidation reformer

    SciTech Connect (OSTI)

    Siefert, N, Shekhawat, D.; Gemmen, R.; Berry, D.

    2010-01-01

    The National Energy Technology Laboratory’s Office of Research & Development (NETL/ORD) has successfully demonstrated the operation of a solid oxide fuel cell (SOFC) using reformed biodiesel. The biodiesel for the project was produced and characterized by West Virginia State University (WVSU). This project had two main aspects: 1) demonstrate a catalyst formulation on monolith for biodiesel fuel reforming; and 2) establish SOFC stack test stand capabilities. Both aspects have been completed successfully. For the first aspect, in–house patented catalyst specifications were developed, fabricated and tested. Parametric reforming studies of biofuels provided data on fuel composition, catalyst degradation, syngas composition, and operating parameters required for successful reforming and integration with the SOFC test stand. For the second aspect, a stack test fixture (STF) for standardized testing, developed by Pacific Northwest National Laboratory (PNNL) and Lawrence Berkeley National Laboratory (LBNL) for the Solid Energy Conversion Alliance (SECA) Program, was engineered and constructed at NETL. To facilitate the demonstration of the STF, NETL employed H.C. Starck Ceramics GmbH & Co. (Germany) anode supported solid oxide cells. In addition, anode supported cells, SS441 end plates, and cell frames were transferred from PNNL to NETL. The stack assembly and conditioning procedures, including stack welding and sealing, contact paste application, binder burn-out, seal-setting, hot standby, and other stack assembly and conditioning methods were transferred to NETL. In the future, fuel cell stacks provided by SECA or other developers could be tested at the STF to validate SOFC performance on various fuels. The STF operated on hydrogen for over 1000 hrs before switching over to reformed biodiesel for 100 hrs of operation. Combining these first two aspects led to demonstrating the biodiesel syngas in the STF. A reformer was built and used to convert 0.5 ml/min of

  3. AN INVESTIGATION TO RESOLVE THE INTERACTION BETWEEN FUEL CELL, POWER CONDITIONING SYSTEM AND APPLICATION LOADS

    SciTech Connect (OSTI)

    Sudip K. Mazumder; Chuck McKintyre; Dan Herbison; Doug Nelson; Comas Haynes; Michael von Spakovsky; Joseph Hartvigsen; S. Elangovan

    2003-11-03

    Solid-Oxide Fuel Cell (SOFC) stacks respond quickly to changes in load and exhibit high part- and full-load efficiencies due to its rapid electrochemistry. However, this is not true for the thermal, mechanical, and chemical balance-of-plant subsystem (BOPS), where load-following time constants are, typically, several orders of magnitude higher. This dichotomy diminishes the reliability and performance of the electrode with increasing demand of load. Because these unwanted phenomena are not well understood, the manufacturers of SOFC use conservative schemes (such as, delayed load-following to compensate for slow BOPS response or expensive inductor filtering) to control stack responses to load variations. This limits the applicability of SOFC systems for load-varying stationary and transportation applications from a cost standpoint. Thus, a need exists for the synthesis of component- and system-level models of SOFC power-conditioning systems and the development of methodologies for investigating the system-interaction issues (which reduce the lifetime and efficiency of a SOFC) and optimizing the responses of each subsystem, leading to optimal designs of power-conditioning electronics and optimal control strategies, which mitigate the electrical-feedback effects. Equally important are ''multiresolution'' finite-element modeling and simulation studies, which can predict the impact of changes in system-level variables (e.g., current ripple and load-transients) on the local current densities, voltages, and temperature (these parameters are very difficult or cumbersome, if not impossible to obtain) within a SOFC cell. Towards that end, for phase I of this project, sponsored by the U.S. DOE (NETL), we investigate the interactions among fuel cell, power-conditioning system, and application loads and their effects on SOFC reliability (durability) and performance. A number of methodologies have been used in Phase I to develop the steady-state and transient nonlinear models of

  4. Manufacturing Fuel Cell Manhattan Project

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    to DOE Fuel Cell Manufacturing Workshop 2011 John Christensen, PE NREL Consultant DOE Fuel Cell Market Transformation Support August 11, 2011 Manufacturing Fuel Cell Manhattan Project √ Identify manufacturing cost drivers to achieve affordability √ Identify best practices in fuel cell manufacturing technology √ Identify manufacturing technology gaps √ Identify FC projects to address these gaps MFCMP Objectives Completed Final Report due out Nov 2010 B2PCOE Montana Tech SME's Industry

  5. Hydrogen & Fuel Cells Program Overview

    Office of Energy Efficiency and Renewable Energy (EERE)

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Joint Plenary

  6. HIGH-TEMPERATURE TUBULAR SOLID OXIDE FUEL CELL GENERATOR DEVELOPMENT

    SciTech Connect (OSTI)

    S.E. Veyo

    1998-09-01

    During the Westinghouse/USDOE Cooperative Agreement period of November 1, 1990 through November 30, 1997, the Westinghouse solid oxide fuel cell has evolved from a 16 mm diameter, 50 cm length cell with a peak power of 1.27 watts/cm to the 22 mm diameter, 150 cm length dimensions of today's commercial prototype cell with a peak power of 1.40 watts/cm. Accompanying the increase in size and power density was the elimination of an expensive EVD step in the manufacturing process. Demonstrated performance of Westinghouse's tubular SOFC includes a lifetime cell test which ran for a period in excess of 69,000 hours, and a fully integrated 25 kWe-class system field test which operated for over 13,000 hours at 90% availability with less than 2% performance degradation over the entire period. Concluding the agreement period, a 100 kW SOFC system successfully passed its factory acceptance test in October 1997 and was delivered in November to its demonstration site in Westervoort, The Netherlands.

  7. NETL: SOFC Systems Analysis

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    systems analysis and policy support capabilities. Systems analysis support of the SOFC Program consists of conducting various energy analyses that provide input to decisions...

  8. Fuel cell membrane humidification

    DOE Patents [OSTI]

    Wilson, Mahlon S.

    1999-01-01

    A polymer electrolyte membrane fuel cell assembly has an anode side and a cathode side separated by the membrane and generating electrical current by electrochemical reactions between a fuel gas and an oxidant. The anode side comprises a hydrophobic gas diffusion backing contacting one side of the membrane and having hydrophilic areas therein for providing liquid water directly to the one side of the membrane through the hydrophilic areas of the gas diffusion backing. In a preferred embodiment, the hydrophilic areas of the gas diffusion backing are formed by sewing a hydrophilic thread through the backing. Liquid water is distributed over the gas diffusion backing in distribution channels that are separate from the fuel distribution channels.

  9. Fuel cell report to congress

    SciTech Connect (OSTI)

    None, None

    2003-02-28

    This report describes the status of fuel cells for Congressional committees. It focuses on the technical and economic barriers to the use of fuel cells in transportation, portable power, stationary, and distributed power generation applications, and describes the need for public-private cooperative programs to demonstrate the use of fuel cells in commercial-scale applications by 2012. (Department of Energy, February 2003).

  10. Fuel cell sub-assembly

    DOE Patents [OSTI]

    Chi, Chang V.

    1983-01-01

    A fuel cell sub-assembly comprising a plurality of fuel cells, a first section of a cooling means disposed at an end of the assembly and means for connecting the fuel cells and first section together to form a unitary structure.

  11. Annual Report: Advanced Energy Systems Fuel Cells (30 September 2013)

    SciTech Connect (OSTI)

    Gerdes, Kirk; Richards, George

    2014-04-16

    The comprehensive research plan for Fuel Cells focused on Solid State Energy Conversion Alliance (SECA) programmatic targets and included objectives in two primary and focused areas: (1) investigation of degradation modes exhibited by the anode/electrolyte/cathode (AEC), development of computational models describing the associated degradation rates, and generation of a modeling tool predicting long term AEC degradation response; and (2) generation of novel electrode materials and microstructures and implementation of the improved electrode technology to enhance performance. In these areas, the National Energy Technology Laboratory (NETL) Regional University Alliance (RUA) team has completed and reported research that is significant to the SECA program, and SECA continued to engage all SECA core and SECA industry teams. Examination of degradation in an operational solid oxide fuel cell (SOFC) requires a logical organization of research effort into activities such as fundamental data gathering, tool development, theoretical framework construction, computational modeling, and experimental data collection and validation. Discrete research activity in each of these categories was completed throughout the year and documented in quarterly reports, and researchers established a framework to assemble component research activities into a single operational modeling tool. The modeling framework describes a scheme for categorizing the component processes affecting the temporal evolution of cell performance, and provides a taxonomical structure of known degradation processes. The framework is an organizational tool that can be populated by existing studies, new research completed in conjunction with SECA, or independently obtained. The Fuel Cell Team also leveraged multiple tools to create cell performance and degradation predictions that illustrate the combined utility of the discrete modeling activity. Researchers first generated 800 continuous hours of SOFC experimental

  12. Fuel Cell Handbook, Fifth Edition

    SciTech Connect (OSTI)

    Energy and Environmental Solutions

    2000-10-31

    Progress continues in fuel cell technology since the previous edition of the Fuel Cell Handbook was published in November 1998. Uppermost, polymer electrolyte fuel cells, molten carbonate fuel cells, and solid oxide fuel cells have been demonstrated at commercial size in power plants. The previously demonstrated phosphoric acid fuel cells have entered the marketplace with more than 220 power plants delivered. Highlighting this commercial entry, the phosphoric acid power plant fleet has demonstrated 95+% availability and several units have passed 40,000 hours of operation. One unit has operated over 49,000 hours. Early expectations of very low emissions and relatively high efficiencies have been met in power plants with each type of fuel cell. Fuel flexibility has been demonstrated using natural gas, propane, landfill gas, anaerobic digester gas, military logistic fuels, and coal gas, greatly expanding market opportunities. Transportation markets worldwide have shown remarkable interest in fuel cells; nearly every major vehicle manufacturer in the U.S., Europe, and the Far East is supporting development. This Handbook provides a foundation in fuel cells for persons wanting a better understanding of the technology, its benefits, and the systems issues that influence its application. Trends in technology are discussed, including next-generation concepts that promise ultrahigh efficiency and low cost, while providing exceptionally clean power plant systems. Section 1 summarizes fuel cell progress since the last edition and includes existing power plant nameplate data. Section 2 addresses the thermodynamics of fuel cells to provide an understanding of fuel cell operation at two levels (basic and advanced). Sections 3 through 8 describe the six major fuel cell types and their performance based on cell operating conditions. Alkaline and intermediate solid state fuel cells were added to this edition of the Handbook. New information indicates that manufacturers have stayed

  13. Cassettes for solid-oxide fuel cell stacks and methods of making the same

    DOE Patents [OSTI]

    Weil, K. Scott; Meinhardt, Kerry D; Sprenkle, Vincent L

    2012-10-23

    Solid-oxide fuel cell (SOFC) stack assembly designs are consistently investigated to develop an assembly that provides optimal performance, and durability, within desired cost parameters. A new design includes a repeat unit having a SOFC cassette and being characterized by a three-component construct. The three components include an oxidation-resistant, metal window frame hermetically joined to an electrolyte layer of a multi-layer, anode-supported ceramic cell and a pre-cassette including a separator plate having a plurality of vias that provide electrical contact between an anode-side collector within the pre-cassette and a cathode-side current collector of an adjacent cell. The third component is a cathode-side seal, which includes a standoff that supports a cathode channel spacing between each of the cassettes in a stack. Cassettes are formed by joining the pre-cassette and the window frame.

  14. Development of Osaka gas type planar SOFC

    SciTech Connect (OSTI)

    Iha, M.; Shiratori, A.; Chikagawa, O.

    1996-12-31

    Osaka Gas Co. has been developing a planar type SOFC (OG type SOFC) which has a suitable structure for stacking. Murata Mfg. Co. has begun to develop the OG type SOFC stack through joint program since 1993. Figure 1 shows OG type cell structure. Because each cell is sustained by cell holders acting air manifold, the load of upper cell is not put on the lower cells. Single cell is composed of 3-layered membrane and LaCrO{sub 3} separator. 5 single cells are mounted on the cell holder, connected with Ni felt electrically, and bonded by glassy material sealant. We call the 5-cell stack a unit. Stacking 13 units, we succeeded 870 W generation in 1993. But the power density was low, 0.11 Wcm{sup -2} because of crack in the electrolyte and gas leakage at some cells.

  15. Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Electric...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Printable Version Share this resource Send a link to Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Electric Availability to someone by E-mail Share Alternative Fuels ...

  16. Fuel Cells Fact Sheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fact Sheet Fuel Cells Fact Sheet Fact sheet produced by the Fuel Cell Technologies Office describing fuel cell technologies. Fuel Cells Fact Sheet (545.14 KB) More Documents & ...

  17. Fuel cell generator with fuel electrodes that control on-cell fuel reformation

    DOE Patents [OSTI]

    Ruka, Roswell J.; Basel, Richard A.; Zhang, Gong

    2011-10-25

    A fuel cell for a fuel cell generator including a housing including a gas flow path for receiving a fuel from a fuel source and directing the fuel across the fuel cell. The fuel cell includes an elongate member including opposing first and second ends and defining an interior cathode portion and an exterior anode portion. The interior cathode portion includes an electrode in contact with an oxidant flow path. The exterior anode portion includes an electrode in contact with the fuel in the gas flow path. The anode portion includes a catalyst material for effecting fuel reformation along the fuel cell between the opposing ends. A fuel reformation control layer is applied over the catalyst material for reducing a rate of fuel reformation on the fuel cell. The control layer effects a variable reformation rate along the length of the fuel cell.

  18. Tubular SOFC and SOFC/Gas Turbine combined cycles-status and prospects

    SciTech Connect (OSTI)

    Veyo, S.E.; Lundberg, W.L.

    1996-12-31

    Presently under fabrication at Westinghouse for EDB/ELSAM, a consortium of Dutch and Danish utilities, is the world`s first 100 kWe Solid Oxide Fuel Cell (SOFC) power generation system. This natural gas fueled experimental field unit will be installed near Arnhem, The Netherlands, at an auxiliary district heating plant (Hulp Warmte Centrale) at the Rivierweg in Westervoort, a site provided by NUON, one of the Dutch participants, and will supply ac power to the utility grid and hot water to the district heating system serving the Duiven/Westervoort area. The electrical generation efficiency of this simple cycle atmospheric pressure system will approach 50%. The analysis of conceptual designs for larger capacity systems indicates that the horizon for the efficiency of simple cycle atmospheric pressure units is about 55%.

  19. Fuel cell CO sensor

    DOE Patents [OSTI]

    Grot, Stephen Andreas; Meltser, Mark Alexander; Gutowski, Stanley; Neutzler, Jay Kevin; Borup, Rodney Lynn; Weisbrod, Kirk

    1999-12-14

    The CO concentration in the H.sub.2 feed stream to a PEM fuel cell stack is monitored by measuring current and/or voltage behavior patterns from a PEM-probe communicating with the reformate feed stream. Pattern recognition software may be used to compare the current and voltage patterns from the PEM-probe to current and voltage telltale outputs determined from a reference cell similar to the PEM-probe and operated under controlled conditions over a wide range of CO concentrations in the H.sub.2 fuel stream. A CO sensor includes the PEM-probe, an electrical discharge circuit for discharging the PEM-probe to monitor the CO concentration, and an electrical purging circuit to intermittently raise the anode potential of the PEM-probe's anode to at least about 0.8 V (RHE) to electrochemically oxidize any CO adsorbed on the probe's anode catalyst.

  20. Fuel Cell Financing Options

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    UTC Power Corporation 195 Governor's Highway South Windsor, CT Fuel Cell Financing Options (CESA/DOE Webinar - August 30, 2011) Paul J. Rescsanski, Manager, Business Finance Paul J. Rescsanski, Manager, Business Finance The UTC Power Advantage Strained Utility Grid, unreliable power * Significant Energy savings through: - 80 - 90% system efficiency - Combined heat and power * Payback in 3-5 years Sustainability and carbon reduction Rising energy costs * Assured power generated on-site: -

  1. Carbonate fuel cell matrix

    DOE Patents [OSTI]

    Farooque, Mohammad; Yuh, Chao-Yi

    1996-01-01

    A carbonate fuel cell matrix comprising support particles and crack attenuator particles which are made platelet in shape to increase the resistance of the matrix to through cracking. Also disclosed is a matrix having porous crack attenuator particles and a matrix whose crack attenuator particles have a thermal coefficient of expansion which is significantly different from that of the support particles, and a method of making platelet-shaped crack attenuator particles.

  2. Fuel cell oxygen electrode

    DOE Patents [OSTI]

    Shanks, H.R.; Bevolo, A.J.; Danielson, G.C.; Weber, M.F.

    An oxygen electrode for a fuel cell utilizing an acid electrolyte has a substrate of an alkali metal tungsten bronze of the formula: A/sub x/WO/sub 3/ where A is an alkali metal and x is at least 0.2, which is covered with a thin layer of platinum tungsten bronze of the formula: Pt/sub y/WO/sub 3/ where y is at least 0.8.

  3. Fuel cell oxygen electrode

    DOE Patents [OSTI]

    Shanks, Howard R.; Bevolo, Albert J.; Danielson, Gordon C.; Weber, Michael F.

    1980-11-04

    An oxygen electrode for a fuel cell utilizing an acid electrolyte has a substrate of an alkali metal tungsten bronze of the formula: A.sub.x WO.sub.3 where A is an alkali metal and x is at least 0.2, which is covered with a thin layer of platinum tungsten bronze of the formula: Pt.sub.y WO.sub.3 where y is at least 0.8.

  4. Fuel cell current collector

    DOE Patents [OSTI]

    Katz, Murray; Bonk, Stanley P.; Maricle, Donald L.; Abrams, Martin

    1991-01-01

    A fuel cell has a current collector plate (22) located between an electrode (20) and a separate plate (25). The collector plate has a plurality of arches (26, 28) deformed from a single flat plate in a checkerboard pattern. The arches are of sufficient height (30) to provide sufficient reactant flow area. Each arch is formed with sufficient stiffness to accept compressive load and sufficient resiliently to distribute the load and maintain electrical contact.

  5. Carbonate fuel cell matrix

    DOE Patents [OSTI]

    Farooque, M.; Yuh, C.Y.

    1996-12-03

    A carbonate fuel cell matrix is described comprising support particles and crack attenuator particles which are made platelet in shape to increase the resistance of the matrix to through cracking. Also disclosed is a matrix having porous crack attenuator particles and a matrix whose crack attenuator particles have a thermal coefficient of expansion which is significantly different from that of the support particles, and a method of making platelet-shaped crack attenuator particles. 8 figs.

  6. Electrocatalysts for Fuel Cells

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Electrocatalysts for Fuel Cells June 2012 BROOKHAVEN NATIONAL LABORATORY Technology Description * Core-shell nanoparticles with a palladium or palladium alloy core coated by a monolayer of platinum * All platinum atoms on surface and participate in catalysis * Lattice contraction improves catalytic activity of platinum * Reduction of platinum reduces overall precious metal cost 2 BROOKHAVEN NATIONAL LABORATORY Technology Opportunity * One version of the platinum monolayer core-shell

  7. Advanced Electrocatalysts for PEM Fuel Cells

    Energy.gov [DOE]

    Presentation slides from the DOE Fuel Cell Technologies Office webinar, Advanced Electrocatalysts for PEM Fuel Cells, held February 12, 2013.

  8. NREL: Hydrogen and Fuel Cells Research - Fuel Cell Manufacturing

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Cell Manufacturing Photo of scientific equipment in laboratory setting. NREL's in-line diagnostics help industry identify defects in fuel cell components. This small-scale manufacturing line at NREL's Energy Systems Integration Facility can convey fuel cell component materials at speeds of 100 feet per minute. NREL's fuel cell manufacturing R&D focuses on improving quality-inspection practices for high-volume manufacturing processes to enable higher production volumes, increased reliability,

  9. High Temperature Fuel Cell Performance High Temperature Fuel Cell

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Performance of of Sulfonated Sulfonated Poly(phenylene Poly(phenylene) Proton) Proton Conducting Conducting Polymers | Department of Energy Cell Performance High Temperature Fuel Cell Performance of of Sulfonated Sulfonated Poly(phenylene Poly(phenylene) Proton) Proton Conducting Conducting Polymers High Temperature Fuel Cell Performance High Temperature Fuel Cell Performance of of Sulfonated Sulfonated Poly(phenylene Poly(phenylene) Proton) Proton Conducting Conducting Polymers Presentation

  10. Fuel Cell Power Plant Experience Naval Applications

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    clean Fuel Cell Power Plant Experience Naval Applications US Department of Energy/ Office of Naval Research Shipboard Fuel Cell Workshop Washington, DC March 29, 2011 FuelCell Energy, the FuelCell Energy logo, Direct FuelCell and "DFC" are all registered trademarks (®) of FuelCell Energy, Inc. *FuelCell Energy, Inc. *Renewable and Liquid Fuels Experience *HTPEM Fuel Cell Stack for Shipboard APU *Solid Oxide Experience and Applications DOE-ONR Workshop FuelCell Energy, the FuelCell

  11. Fuel Cell Technical Publications | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Technical Publications » Fuel Cell Technical Publications Fuel Cell Technical Publications Technical information about fuel cells published in technical reports, conference proceedings, journal articles, and websites is provided here. General Transportation Stationary/Distributed Power Auxiliary and Portable Power Manufacturing Material Handling Equipment General 2015 Fuel Cell Technologies Market Report (Fuel Cell Technologies Office, October 2016) The Business Case for Fuel Cells 2015:

  12. Ambient pressure fuel cell system

    DOE Patents [OSTI]

    Wilson, Mahlon S.

    2000-01-01

    An ambient pressure fuel cell system is provided with a fuel cell stack formed from a plurality of fuel cells having membrane/electrode assemblies (MEAs) that are hydrated with liquid water and bipolar plates with anode and cathode sides for distributing hydrogen fuel gas and water to a first side of each one of the MEAs and air with reactant oxygen gas to a second side of each one of the MEAs. A pump supplies liquid water to the fuel cells. A recirculating system may be used to return unused hydrogen fuel gas to the stack. A near-ambient pressure blower blows air through the fuel cell stack in excess of reaction stoichiometric amounts to react with the hydrogen fuel gas.

  13. Demonstration of a Highly Efficient Solid Oxide Fuel Cell Power System Using Adiabatic Steam Reforming and Anode Gas Recirculation

    SciTech Connect (OSTI)

    Powell, Michael R.; Meinhardt, Kerry D.; Sprenkle, Vincent L.; Chick, Lawrence A.; Mcvay, Gary L.

    2012-05-01

    Solid oxide fuel cells (SOFC) are currently being developed for a wide variety of applications because of their high efficiency at multiple power levels. Applications for SOFCs encompass a large range of power levels including 1-2 kW residential combined heat and power applications, 100-250 kW sized systems for distributed generation and grid extension, and MW-scale power plants utilizing coal. This paper reports on the development of a highly efficient, small-scale SOFC power system operating on methane. The system uses adiabatic steam reforming of methane and anode gas recirculation to achieve high net electrical efficiency. The anode exit gas is recirculated and all of the heat and water required for the endothermic reforming reaction are provided by the anode gas emerging from the SOFC stack. Although the single-pass fuel utilization is only about 55%, because of the anode gas recirculation the overall fuel utilization is up to 93%. The demonstrated system achieved gross power output of 1650 to 2150 watts with a maximum net LHV efficiency of 56.7% at 1720 watts. Overall system efficiency could be further improved to over 60% with use of properly sized blowers.

  14. HIGH EFFICIENCY, LOW EMISSIONS, SOLID OXIDE FUEL CELL SYSTEMS FOR MULTIPLE APPLICATIONS

    SciTech Connect (OSTI)

    Sara Ward; Michael A. Petrik

    2004-07-28

    Technology Management Inc. (TMI), teamed with the Ohio Office of Energy Efficiency and Renewable Energy, has engineered, constructed, and demonstrated a stationary, low power, multi-module solid oxide fuel cell (SOFC) prototype system operating on propane and natural gas. Under Phase I, TMI successfully operated two systems in parallel, in conjunction with a single DC-AC inverter and battery bus, and produced net AC electricity. Phase II testing expanded to include alternative and renewable fuels typically available in rural regions of Ohio. The commercial system is expected to have ultra-low pollution, high efficiency, and low noise. The TMI SOFC uses a solid ceramic electrolyte operating at high temperature (800-1000 C) which electrochemically converts gaseous fuels (hydrogen or mixed gases) and oxygen into electricity. The TMI system design oxidizes fuel primarily via electrochemical reactions and uses no burners (which pollute and consume fuel)--resulting in extremely clean exhaust. The use of proprietary sulfur tolerant materials developed by TMI allows system operation without additional fuel pre-processing or sulfur removal. Further, the combination of high operating temperatures and solid state operation increases the potential for higher reliability and efficiencies compared to other types of fuel cells. Applications for the TMI SOFC system cover a wide range of transportation, building, industrial, and military market sectors. A generic technology, fuel cells have the potential to be embodied into multiple products specific to Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) program areas including: Fuel Cells and Microturbines, School Buildings, Transportation, and Bioenergy. This program focused on low power stationary applications using a multi-module system operating on a range of common fuels. By producing clean electricity more efficiently (thus using less fuel), fuel cells have the triple effect of cleaning up the

  15. Fuel Cell Power Plants Renewable and Waste Fuels | Department...

    Energy.gov (indexed) [DOE]

    Presentation by Frank Wolak, Fuel Cell Energy, at the Waste-to-Energy using Fuel Cells Workshop held Jan. 13, 2011 wastewolak.pdf (1.99 MB) More Documents & Publications Fuel Cell ...

  16. Exergy & Economic Analysis of Catalytic Coal Gasifiers Coupled with Solid Oxide Fuel Cells

    SciTech Connect (OSTI)

    Siefert, Nicholas; Litster, Shawn

    2012-01-01

    The National Energy Technology Laboratory (NETL) has undertaken a review of coal gasification technologies that integrate with solid oxide fuel cells (SOFC) to achieve system efficiencies near 60% while capturing and sequestering >90% of the carbon dioxide. One way to achieve an overall system efficiency of greater than 60% is in a power plant in which a catalytic coal gasifier produces a syngas with a methane composition of roughly 25% on a dry volume basis and this is sent to a SOFC, with CO{sub 2} capture occurring either before or after the SOFC. Integration of a catalytic gasifier with a SOFC, as opposed to a conventional entrained flow gasifier, is improved due to (a) decreased exergy destruction inside a catalytic, steam-coal gasifier producing a high-methane content syngas, and (b) decreased exergy destruction in the SOFC due to the ability to operate at lower air stoichiometric flow ratios. For example, thermal management of the SOFC is greatly improved due to the steam-methane reforming in the anode of the fuel cell. This paper has two main goals. First, we converted the levelized cost of electricity (LCOE) estimates of various research groups into an average internal rate of return on investment (IRR) in order to make comparisons between their results, and to underscore the increased rate of return on investment for advanced integrated gasification fuel cell systems with carbon capture & sequestration (IGFC-CCS) compared with conventional integrated gasification combined cycle (IGCC-CCS) systems and pulverized coal combustion (PCC-CCS) systems. Using capital, labor, and fuel costs from previous researchers and using an average price of baseload electricity generation of $61.50 / MW-hr, we calculated inflation-adjusted IRR values of up to 13%/yr for catalytic gasification with pressurized fuel cell and carbon dioxide capture and storage (CCS), whereas we calculate an IRR of ∼4%/yr and ∼2%/yr for new, conventional IGCC-CCS and PCC-CCS, respectively. If

  17. Study on durability for thermal cycle of planar SOFC

    SciTech Connect (OSTI)

    Ando, Motoo; Nakata, Kei-ichi; Wakayama, Sin-ichi

    1996-12-31

    TONEN CORPORATION has developed planar type SOFC since 1986. We demonstrated the output of 1.3 kW in 1991 and 5.1 kW in 1995. Simultaneously we have studied how to raise electric efficiency and reliability utilizing hydrogen and propane as fuel. Durability for thermal cycle is one of the most important problems of planar SOFC to make it more practical. The planar type SOFC is made up of separator, zirconia electrolyte and glass sealant. The thermal expansion of these components are expected to be the same value, however, they still possess small differences. In this situation, a thermal cycle causes a thermal stress due to the difference of the cell components and is often followed by a rupture in cell components, therefore, the analysis of the thermal stress should give us much useful information. The thermal cycle process consists of a heating up and cooling down procedure. Zirconia electrolyte is not bonded to the separator under the condition of the initial heating up procedure, and glass sealant becomes soft or melts and glass seals spaces between the zirconia and separator. The glass sealant becomes harder with the cooling down procedure. Moreover, zirconia is tightly bonded with separator below a temperature which is defined as a constraint temperature and thermal stress also occurs. This indicates that the heating up process relaxes the thermal stress and the cooling down increases it. In this paper, we simulated dependence of the stress on the sealing configuration, thermal expansion of sealant and constraint temperature of sealant glass. Furthermore, we presented SOFC electrical properties after a thermal cycle.

  18. Fuel cell system with interconnect

    DOE Patents [OSTI]

    Liu, Zhien; Goettler, Richard; Delaforce, Philip Mark

    2016-03-08

    The present invention includes a fuel cell system having an interconnect that reduces or eliminates diffusion (leakage) of fuel and oxidant by providing an increased densification, by forming the interconnect as a ceramic/metal composite.

  19. Overview of SOFC Anode Interactions with Coal Gas Impurities

    SciTech Connect (OSTI)

    Marina, Olga A.; Pederson, Larry R.; Gemmen, Randall; Gerdes, Kirk; Finklea, Harry; Celik, Ismail B.

    2009-08-11

    Efficiencies greater than 50 percent (higher heating value) have been projected for solid oxide fuel cell (SOFC) systems fueled with gasified coal, even with carbon sequestration. Multiple minor and trace components are present in coal that could affect fuel cell performance, however, which vary widely depending on coal origin and type. Minor and trace components have been classified into three groups: elements with low volatility that are likely to remain in the ash, elements that will partition between solid and gas phases, and highly volatile elements that are unlikely to condense. Those in the second group are of most concern. In the following, an overview of the results of SOFC anode interactions with phosphorus, arsenic, selenium, sulfur, antimony, and hydrogen chloride as single contaminants or in combinations is discussed. Tests were performed using both anode- and electrolyte-supported cells in synthetic coal gas. The ultimate purpose of this work is to establish maximum permissible concentrations for impurities in coal gas, to aid in the selection of appropriate coal gas clean-up technologies.

  20. Development of 10kW SOFC module

    SciTech Connect (OSTI)

    Hisatome, N.; Nagata, K.; Kakigami, S.

    1996-12-31

    Mitsubishi Heavy industries, Ltd. (MHI) has been developing tubular type Solid Oxide Fuel Cells (SOFC) since 1984. A 1 kW module of SOFC has been continuously operated for 3,000 hours with 2 scheduled thermal cycles at Electric Power Development Co., Inc. (EPDC) Wakamatsu Power Station in 1993. We have obtained of 34% (HHV as H{sub 2}) module efficiency and deterioration rate of 2% Per 1,000 hours in this field test. As for next step, we have developed 10 kW module in 1995. The 10 kW module has been operated for 5,000 hours continuously. This module does not need heating support to maintain the operation temperature, and the module efficiency was 34% (HHV as H{sub 2}). On the other hand, we have started developing the technology of pressurized SOFC. In 1996, pressurized MW module has been tested at MHI Nagasaki Shipyard & Machinery, Works. We are now planning the development of pressurized 10 kW module.

  1. NREL: Hydrogen and Fuel Cells Research - Fuel Cell Electric Vehicle

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Evaluations Fuel Cell Electric Vehicle Evaluations NREL's technology validation team analyzes hydrogen fuel cell electric vehicles (FCEVs) operating in a real-world setting to identify the current status of the technology, compare it to Department of Energy (DOE) performance and durability targets, and evaluate progress between multiple generations of technology, some of which will include commercial FCEVs for the first time. Current fuel cell electric vehicle evaluations build on the

  2. NREL: Hydrogen and Fuel Cells Research - National Fuel Cell Technology

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Evaluation Center National Fuel Cell Technology Evaluation Center The National Fuel Cell Technology Evaluation Center (NFCTEC) at NREL's Energy Systems Integration Facility (ESIF) plays a crucial role in NREL's independent, third-party analysis of hydrogen fuel cell technologies in real-world operation. The NFCTEC is designed for secure management, storage, and processing of proprietary data from industry. Access to the off-network NFCTEC is limited to NREL's Technology Validation Team,

  3. NREL: Hydrogen and Fuel Cells Research - Stationary Fuel Cell Systems

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Analysis Stationary Fuel Cell Systems Analysis NREL's technology validation team analyzes the performance of stationary fuel cell systems operating in real-world conditions and reports on the technology's performance, progress, and challenges. This analysis includes multiple fuel cell types-proton exchange membrane, solid oxide, phosphoric acid, and molten carbonate-with system sizes ranging from 5 kW to 2.8 MW. Overview Composite Data Products Publications Learn More Contacts Photo of

  4. Digital Manufacturing of Gradient Meshed SOFC Sealing Composites with Self-Healing Capabilities

    SciTech Connect (OSTI)

    Kathy Lu; Christopher Story; W.T. Reynolds

    2007-12-21

    Solid oxide fuel cells (SOFC) hold great promise for clean power generation. However, high temperature stability and long term durability of the SOFC components have presented serious problems in SOFC technological advancement and commercialization. The seals of the fuel cells are the most challenging area to address. A high temperature gas seal is highly needed which is durable against cracking and gas leakage during thermal cycling and extended operation. This project investigates a novel composite seal by integrating 3D printed shape memory alloy (SMA) wires into a glass matrix. The SMA we use is TiNiHf and the glass matrix we use is SrO-La{sub 2}O{sub 3}-Al{sub 2}O{sub 3}-B{sub 2}O{sub 3}-SiO{sub 2} (SLABS). Dilatometry shows to be an extremely useful tool in providing the CTEs. It pinpoints regions of different CTEs under simulated SOFC thermal cycles for the same glass. For the studied SLABS glass system, the region with the greatest CTE mismatch between the glass seal and the adjacent components is 40-500 C, the typical heating and cooling regions for SOFCs. Even for low temperature SOFC development, this region is still present and needs to be addressed. We have demonstrated that the proposed SLABS glass has great potential in mitigating the thermal expansion mismatch issues that are limiting the operation life of SOFCs. TiNiHf alloy has been successfully synthesized with the desired particle size for the 3DP process. The TiNiHf SMA shape memory effect very desirably overlaps with the problematic low CTE region of the glass. This supports the design intent that the gradient structure transition, phase transformation toughening, and self-healing of the SMA can be utilized to mitigate/eliminate the seal problem. For the 3DP process, a new binder has been identified to match with the specific chemistry of the SMA particles. This enables us to directly print SMA particles. Neutron diffraction shows to be an extremely useful tool in providing information

  5. NREL: Hydrogen and Fuel Cells Research - Hydrogen Fuel Cell Electric...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Fuel Cell Electric Vehicle Learning Demonstration Delve deeper into real-world performance data with our Interactive Composite Data Product demo Graphical thumbnail of the ...

  6. Carbonate fuel cell anodes

    DOE Patents [OSTI]

    Donado, R.A.; Hrdina, K.E.; Remick, R.J.

    1993-04-27

    A molten alkali metal carbonates fuel cell porous anode of lithium ferrite and a metal or metal alloy of nickel, cobalt, nickel/iron, cobalt/iron, nickel/iron/aluminum, cobalt/iron/aluminum and mixtures thereof wherein the total iron content including ferrite and iron of the composite is about 25 to about 80 percent, based upon the total anode, provided aluminum when present is less than about 5 weight percent of the anode. A process is described for production of the lithium ferrite containing anode by slipcasting.

  7. Fuel cell having electrolyte

    DOE Patents [OSTI]

    Wright, Maynard K. (Bethel Park, PA)

    1989-01-01

    A fuel cell having an electrolyte control volume includes a pair of porous opposed electrodes. A maxtrix is positioned between the pair of electrodes for containing an electrolyte. A first layer of backing paper is positioned adjacent to one of the electrodes. A portion of the paper is substantially previous to the acceptance of the electrolyte so as to absorb electrolyte when there is an excess in the matrix and to desorb electrolyte when there is a shortage in the matrix. A second layer of backing paper is positioned adjacent to the first layer of paper and is substantially impervious to the acceptance of electrolyte.

  8. Carbonate fuel cell anodes

    DOE Patents [OSTI]

    Donado, Rafael A. (Chicago, IL); Hrdina, Kenneth E. (Glenview, IL); Remick, Robert J. (Bolingbrook, IL)

    1993-01-01

    A molten alkali metal carbonates fuel cell porous anode of lithium ferrite and a metal or metal alloy of nickel, cobalt, nickel/iron, cobalt/iron, nickel/iron/aluminum, cobalt/iron/aluminum and mixtures thereof wherein the total iron content including ferrite and iron of the composite is about 25 to about 80 percent, based upon the total anode, provided aluminum when present is less than about 5 weight percent of the anode. A process for production of the lithium ferrite containing anode by slipcasting.

  9. High Temperature Solid Oxide Fuel Cell Generator Development

    SciTech Connect (OSTI)

    Joseph Pierre

    2007-09-30

    This report describes the results of the tubular SOFC development program from August 22, 1997 to September 30, 2007 under the Siemens/U.S. Department of Energy Cooperative Agreement. The technical areas discussed include cell manufacturing development, cell power enhancement, SOFC module and system cost reduction and technology advancement, and our field unit test program. Whereas significant progress has been made toward commercialization, significant effort remains to achieve our cost, performance and reliability targets for successful commercialization.

  10. Final Technical Report, Oct 2004 - Nov. 2006, High Performance Flexible Reversible Solid Oxide Fuel Cell

    SciTech Connect (OSTI)

    Guan, Jie; Minh, Nguyen

    2007-02-21

    This report summarizes the work performed for the program entitled “High Performance Flexible Reversible Solid Oxide Fuel Cell” under Cooperative Agreement DE-FC36-04GO14351 for the U. S. Department of Energy. The overall objective of this project is to demonstrate a single modular stack that generates electricity from a variety of fuels (hydrogen and other fuels such as biomass, distributed natural gas, etc.) and when operated in the reverse mode, produces hydrogen from steam. This project has evaluated and selected baseline cell materials, developed a set of materials for oxygen and hydrogen electrodes, and optimized electrode microstructures for reversible solid oxide fuel cells (RSOFCs); and demonstrated the feasibility and operation of a RSOFC multi-cell stack. A 10-cell reversible SOFC stack was operated over 1000 hours alternating between fuel cell (with hydrogen and methane as fuel) and steam electrolysis modes. The stack ran very successfully with high power density of 480 mW/cm2 at 0.7V and 80% fuel utilization in fuel cell mode and >6 SLPM hydrogen production in steam electrolysis mode using about 1.1 kW electrical power. The hydrogen generation is equivalent to a specific capability of 2.59 Nm3/m2 with electrical energy demand of 3 kWh/Nm3. The performance stability in electrolysis mode was improved vastly during the program with a degradation rate reduction from 8000 to 200 mohm-cm2/1000 hrs. This was accomplished by increasing the activity and improving microstructure of the oxygen electrode. Both cost estimate and technology assessment were conducted. Besides the flexibility running under both fuel cell mode and electrolysis mode, the reversible SOFC system has the potentials for low cost and high efficient hydrogen production through steam electrolysis. The cost for hydrogen production at large scale was estimated at ~$2.7/kg H2, comparing favorably with other electrolysis techology.

  11. Fuel Cell Power Plants Renewable and Waste Fuels

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Cell Power Plants Fuel Cell Power Plants Renewable and Waste Fuels DOE-DOD Workshop Washington, DC. January 13, 2011 reliable, efficient, ultra-clean FuelCell Energy, Inc. * Premier developer of stationary fuel Premier developer of stationary fuel cell technology - founded in 1969 * Over 50 installations in North America, Europe, and Asia * Industrial, commercial, utility products products * 300 KW to 50 MW and beyond FuelCell Energy, the FuelCell Energy logo, Direct FuelCell and "DFC"

  12. Hybrid Fuel Cell Technology Overview

    SciTech Connect (OSTI)

    None available

    2001-05-31

    For the purpose of this STI product and unless otherwise stated, hybrid fuel cell systems are power generation systems in which a high temperature fuel cell is combined with another power generating technology. The resulting system exhibits a synergism in which the combination performs with an efficiency far greater than can be provided by either system alone. Hybrid fuel cell designs under development include fuel cell with gas turbine, fuel cell with reciprocating (piston) engine, and designs that combine different fuel cell technologies. Hybrid systems have been extensively analyzed and studied over the past five years by the Department of Energy (DOE), industry, and others. These efforts have revealed that this combination is capable of providing remarkably high efficiencies. This attribute, combined with an inherent low level of pollutant emission, suggests that hybrid systems are likely to serve as the next generation of advanced power generation systems.

  13. Power generation characteristics of tubular type SOFC by wet process

    SciTech Connect (OSTI)

    Tajiri, H.; Nakayama, T.; Kuroishi, M.

    1996-12-31

    The development of a practical solid oxide fuel cell requires improvement of a cell performance and a cell manufacturing technology suitable for the mass production. In particular tubular type SOFC is thought to be superior in its reliability because its configuration can avoid the high temperature sealing and reduce the thermal stress resulting from the contact between cells. The authors have fabricated a tubular cell with an air electrode support by a wet processing technique, which is suitable for mass production in improving a power density. To enhance the power output of the module, the Integrated Tubular-Type (ITT) cell has been developed. This paper reports the performance of the single cells with various active anode areas and the bundle with series-connected 9-ITT cells with an active anode area of 840 cm{sup 2}.

  14. Fuel Cell Technologies Office Overview

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Biological Hydrogen Production Workshop Sara Dillich U.S Department of Energy Office of Energy Efficiency & Renewable Energy Fuel Cell Technologies Office National Renewable Energy Laboratory Golden, Colorado September 24, 2013 2 Hydrogen and Fuel Cells Program Overview Nearly 300 projects currently funded at companies, national labs, and universities/institutes Mission: Enable widespread commercialization of a portfolio of hydrogen and fuel cell technologies through applied research,

  15. Fuel cell design and assembly

    DOE Patents [OSTI]

    Myerhoff, Alfred

    1984-01-01

    The present invention is directed to a novel bipolar cooling plate, fuel cell design and method of assembly of fuel cells. The bipolar cooling plate used in the fuel cell design and method of assembly has discrete opposite edge and means carried by the plate defining a plurality of channels extending along the surface of the plate toward the opposite edges. At least one edge of the channels terminates short of the edge of the plate defining a recess for receiving a fastener.

  16. Fuel cell gas management system

    DOE Patents [OSTI]

    DuBose, Ronald Arthur

    2000-01-11

    A fuel cell gas management system including a cathode humidification system for transferring latent and sensible heat from an exhaust stream to the cathode inlet stream of the fuel cell; an anode humidity retention system for maintaining the total enthalpy of the anode stream exiting the fuel cell equal to the total enthalpy of the anode inlet stream; and a cooling water management system having segregated deionized water and cooling water loops interconnected by means of a brazed plate heat exchanger.

  17. Fuel Cells Related Links | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fuel Cells » Fuel Cells Related Links Fuel Cells Related Links The following resources provide details about U.S. Department of Energy (DOE)-funded fuel cell activities, research plans and roadmaps, partnerships, and additional related links. DOE-Funded Fuel Cell Activities Each year, hydrogen and fuel cell projects funded by DOE's Hydrogen and Fuel Cells Program are reviewed for their merit during an Annual Merit Review and Peer Evaluation Meeting. View posters and presentations from the

  18. Manufacture of SOFC electrodes by wet powder spraying

    SciTech Connect (OSTI)

    Wilkenhoener, R.; Mallener, W.; Buchkremer, H.P.

    1996-12-31

    The reproducible and commercial manufacturing of electrodes with enhanced electrochemical performance is of central importance for a successful technical realization of Solid Oxide Fuel Cell (SOFC) systems. The route of electrode fabrication for the SOFC by Wet Powder Spraying (WPS) is presented. Stabilized suspensions of the powder materials for the electrodes were sprayed onto a substrate by employing a spray gun. After drying of the layers, binder removal and sintering are performed in one step. The major advantage of this process is its applicability for a large variety of materials and its flexibility with regard to layer shape and thickness. Above all, flat or curved substrates of any size can be coated, thus opening up the possibility of {open_quotes}up-scaling{close_quotes} SOFC technology. Electrodes with an enhanced electrochemical performance were developed by gradually optimizing the different process steps. For example an optimized SOFC cathode of the composition La{sub 0.65}Sr{sub 0.3}MnO{sub 3} with 40% 8YSZ showed a mean overpotential of about -50 mV at a current density of -0.8 A/cm{sup 2}, with a standard deviation amounting to 16 mV (950{degrees}C, air). Such optimized electrodes can be manufactured with a high degree of reproducibility, as a result of employing a computer-controlled X-Y system for moving the spray gun. Several hundred sintered composites, comprising the substrate anode and the electrolyte, of 100x 100 mm{sup 2} were coated with the cathode by WPS and used for stack integration. The largest manufactured electrodes were 240x240 mm{sup 2}, and data concerning their thickness homogeneity and electrochemical performance are given.

  19. Formation of thin walled ceramic solid oxide fuel cells

    DOE Patents [OSTI]

    Claar, Terry D.; Busch, Donald E.; Picciolo, John J.

    1989-01-01

    To reduce thermal stress and improve bonding in a high temperature monolithic solid oxide fuel cell (SOFC), intermediate layers are provided between the SOFC's electrodes and electrolyte which are of different compositions. The intermediate layers are comprised of a blend of some of the materials used in the electrode and electrolyte compositions. Particle size is controlled to reduce problems involving differential shrinkage rates of the various layers when the entire structure is fired at a single temperature, while pore formers are provided in the electrolyte layers to be removed during firing for the formation of desired pores in the electrode layers. Each layer includes a binder in the form of a thermosetting acrylic which during initial processing is cured to provide a self-supporting structure with the ceramic components in the green state. A self-supporting corrugated structure is thus formed prior to firing, which the organic components of the binder and plasticizer removed during firing to provide a high strength, high temperature resistant ceramic structure of low weight and density.

  20. Fuel Cells & Renewable Portfolio Standards

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presented at the Clean Energy States Alliance and U.S. Department of Energy Webinar: Fuel Cells and Renewable Portfolio Standards, June 9, 2011.

  1. Molten carbonate fuel cell separator

    DOE Patents [OSTI]

    Nickols, Richard C.

    1986-09-02

    In a stacked array of molten carbonate fuel cells, a fuel cell separator is positioned between adjacent fuel cells to provide isolation as well as a conductive path therebetween. The center portion of the fuel cell separator includes a generally rectangular, flat, electrical conductor. Around the periphery of the flat portion of the separator are positioned a plurality of elongated resilient flanges which form a gas-tight seal around the edges of the fuel cell. With one elongated flange resiliently engaging a respective edge of the center portion of the separator, the sealing flanges, which are preferably comprised of a noncorrosive material such as an alloy of yttrium, iron, aluminum or chromium, form a tight-fitting wet seal for confining the corrosive elements of the fuel cell therein. This arrangement permits a good conductive material which may be highly subject to corrosion and dissolution to be used in combination with a corrosion-resistant material in the fuel cell separator of a molten carbonate fuel cell for improved fuel cell conductivity and a gas-tight wet seal.

  2. Molten carbonate fuel cell separator

    DOE Patents [OSTI]

    Nickols, R.C.

    1984-10-17

    In a stacked array of molten carbonate fuel cells, a fuel cell separator is positioned between adjacent fuel cells to provide isolation as well as a conductive path therebetween. The center portion of the fuel cell separator includes a generally rectangular, flat, electrical conductor. Around the periphery of the flat portion of the separator are positioned a plurality of elongated resilient flanges which form a gas-tight seal around the edges of the fuel cell. With one elongated flange resiliently engaging a respective edge of the center portion of the separator, the sealing flanges, which are preferably comprised of a noncorrosive material such as an alloy of yttrium, iron, aluminum or chromium, form a tight-fitting wet seal for confining the corrosive elements of the fuel cell therein. This arrangement permits a good conductive material which may be highly subject to corrosion and dissolution to be used in combination with a corrosion-resistant material in the fuel cell separator of a molten carbonate fuel cell for improved fuel cell conductivity and a gas-tight wet seal.

  3. LADWP FUEL CELL DEMONSTRATION PROJECT

    SciTech Connect (OSTI)

    Thai Ta

    2003-09-12

    Los Angeles Department of Water and Power (LADWP) is currently one of the most active power utility companies in researching fuel cell technology. Fuel cells offer many benefits and are now used as an alternative to traditional internal combustion engines in power generation. In continuing it's role as the leader in fuel cell research, LADWP has installed a pre-commercial molten carbonate fuel cell on August 2001 at its headquarter, the John Ferraro Building (JFB). The goal of this project is to learn more about the actual behavior of the fuel cell running under real world conditions. The fuel cell ran smoothly through the first year of operation with very high efficiency, but with some minor setbacks. The JFB fuel cell project is funded by the City of Los Angeles Department of Water and Power with partial grant funding from the Department of Defense's Climate Change Fuel Cell Buydown Program. The technical evaluation and the benefit-cost evaluation of the JFB fuel cell are both examined in this report.

  4. CLIMATE CHANGE FUEL CELL PROGRAM

    SciTech Connect (OSTI)

    Steven A. Gabrielle

    2004-12-03

    This report discusses the first year of operation of a fuel cell power plant located at the Sheraton Edison Hotel, Edison, New Jersey. PPL EnergyPlus, LLC installed the plant under a contract with the Starwood Hotels & Resorts Worldwide, Inc. A DFC{reg_sign}300 fuel cell, manufactured by FuelCell Energy, Inc. of Danbury, CT was selected for the project. The fuel cell successfully operated from June 2003 to May 2004. This report discusses the performance of the plant during this period.

  5. Maritime Hydrogen Fuel Cell Project

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Fuel Cell Project - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us ... Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ...

  6. economic hydrogen fuel cell vehicles

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    economic hydrogen fuel cell vehicles - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future ...

  7. Fuel Cell Vehicle Basics | NREL

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    electricity for propulsion as well as for a car's electric and electronic equipment. ... and containing the words "hydrogen fuel cell electric" across the front and rear doors. ...

  8. Hydrogen and Fuel Cell Technologies Update: 2010 Fuel Cell Seminar and

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Exposition | Department of Energy Update: 2010 Fuel Cell Seminar and Exposition Hydrogen and Fuel Cell Technologies Update: 2010 Fuel Cell Seminar and Exposition Presentation by Sunita Satyapal at the 2010 Fuel Cell Seminar and Exposition on October 19, 2010. Hydrogen and Fuel Cell Technologies Update (4.81 MB) More Documents & Publications DOE Hydrogen and Fuel Cell Overview: 2011 Waste-to-Energy Using Fuel Cells Workshop 2010 Fuel Cell Project Kick-off Welcome DOE Hydrogen and Fuel

  9. Fuel Quality Issues in Stationary Fuel Cell Systems

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Quality Issues in Stationary Fuel Cell Systems ANLCSEFCTFQ-2011-11 Chemical Sciences ... Fuel Quality Issues in Stationary Fuel Cell Systems prepared by D.D. Papadias, S. Ahmed, ...

  10. Performance of solid oxide fuel cells operaated with coal syngas provided directly from a gasification process

    SciTech Connect (OSTI)

    Hackett, G.; Gerdes, K.; Song, X.; Chen, Y.; Shutthanandan, V.; Englehard, M.; Zhu, Z.; Thevuthasan, S.; Gemmen, R.

    2012-01-01

    Solid oxide fuel cells (SOFCs) are being developed for integrated gasification power plants that generate electricity from coal at 50% efficiency. The interaction of trace metals in coal syngas with Ni-based SOFC anodes is being investigated through thermodynamic analyses and in laboratory experiments, but test data from direct coal syngas exposure are sparsely available. This effort evaluates the significance of performance losses associated with exposure to direct coal syngas. Specimen are operated in a unique mobile test skid that is deployed to the research gasifier at NCCC in Wilsonville, AL. The test skid interfaces with a gasifier slipstream to deliver hot syngas to a parallel array of twelve SOFCs. During the 500 h test period, all twelve cells are monitored for performance at four current densities. Degradation is attributed to syngas exposure and trace material attack on the anode structure that is accelerated at increasing current densities. Cells that are operated at 0 and 125 mA cm{sup 2} degrade at 9.1 and 10.7% per 1000 h, respectively, while cells operated at 250 and 375 mA cm{sup 2} degrade at 18.9 and 16.2% per 1000 h, respectively. Spectroscopic analysis of the anodes showed carbon, sulfur, and phosphorus deposits; no secondary Ni-metal phases were found.

  11. Fuel Cell Powered Lift Truck

    SciTech Connect (OSTI)

    Moulden, Steve

    2015-08-20

    This project, entitled “Recovery Act: Fuel Cell-Powered Lift Truck Sysco (Houston) Fleet Deployment”, was in response to DOE funding opportunity announcement DE-PS36-08GO98009, Topic 7B, which promotes the deployment of fuel cell powered material handling equipment in large, multi-shift distribution centers. This project promoted large-volume commercialdeployments and helped to create a market pull for material handling equipment (MHE) powered fuel cell systems. Specific outcomes and benefits involved the proliferation of fuel cell systems in 5-to 20-kW lift trucks at a high-profile, real-world site that demonstrated the benefits of fuel cell technology and served as a focal point for other nascent customers. The project allowed for the creation of expertise in providing service and support for MHE fuel cell powered systems, growth of existing product manufacturing expertise, and promoted existing fuel cell system and component companies. The project also stimulated other MHE fleet conversions helping to speed the adoption of fuel cell systems and hydrogen fueling technology. This document also contains the lessons learned during the project in order to communicate the successes and difficulties experienced, which could potentially assist others planning similar projects.

  12. On the applicability of probabilistic analyses to assess the structural reliability of materials and components for solid-oxide fuel cells

    SciTech Connect (OSTI)

    Lara-Curzio, Edgar; Radovic, Miladin; Luttrell, Claire R

    2016-01-01

    The applicability of probabilistic analyses to assess the structural reliability of materials and components for solid-oxide fuel cells (SOFC) is investigated by measuring the failure rate of Ni-YSZ when subjected to a temperature gradient and comparing it with that predicted using the Ceramics Analysis and Reliability Evaluation of Structures (CARES) code. The use of a temperature gradient to induce stresses was chosen because temperature gradients resulting from gas flow patterns generate stresses during SOFC operation that are the likely to control the structural reliability of cell components The magnitude of the predicted failure rate was found to be comparable to that determined experimentally, which suggests that such probabilistic analyses are appropriate for predicting the structural reliability of materials and components for SOFCs. Considerations for performing more comprehensive studies are discussed.

  13. 1986 fuel cell seminar: Program and abstracts

    SciTech Connect (OSTI)

    1986-10-01

    Ninety nine brief papers are arranged under the following session headings: gas industry's 40 kw program, solid oxide fuel cell technology, phosphoric acid fuel cell technology, molten carbonate fuel cell technology, phosphoric acid fuel cell systems, power plants technology, fuel cell power plant designs, unconventional fuels, fuel cell application and economic assessments, and plans for commerical development. The papers are processed separately for the data base. (DLC)

  14. Fundamental research in the area of high temperature fuel cells in Russia

    SciTech Connect (OSTI)

    Dyomin, A.K.

    1996-04-01

    Research in the area of molten carbonate and solid oxide fuel cells has been conducted in Russia since the late 60`s. Institute of High Temperature Electrochemistry is the lead organisation in this area. Research in the area of materials used in fuel cells has allowed us to identify compositions of electrolytes, electrodes, current paths and transmitting, sealing and structural materials appropriate for long-term fuel cell applications. Studies of electrode processes resulted in better understanding of basic patterns of electrode reactions and in the development of a foundation for electrode structure optimization. We have developed methods to increase electrode activity levels that allowed us to reach current density levels of up to 1 amper/cm{sup 2}. Development of mathematical models of processes in high temperature fuel cells has allowed us to optimize their structure. The results of fundamental studies have been tested on laboratory mockups. MCFC mockups with up to 100 W capacity and SOFC mockups with up to 1 kW capacity have been manufactured and tested at IHTE. There are three SOFC structural options: tube, plate and modular.

  15. Types of Fuel Cells | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fuel Cells » Types of Fuel Cells Types of Fuel Cells Fuel cells are classified primarily by the kind of electrolyte they employ. This classification determines the kind of electro-chemical reactions that take place in the cell, the kind of catalysts required, the temperature range in which the cell operates, the fuel required, and other factors. These characteristics, in turn, affect the applications for which these cells are most suitable. There are several types of fuel cells currently under

  16. Development of planar geometry solid oxide fuel cell technology. Phase II-C. Final report, May 1991-April 1992

    SciTech Connect (OSTI)

    Khandkar, A.; Elangovan, S.; Hartvigsen, J.; Prouse, D.; Milliken, C.

    1992-08-01

    The report describes the progress made in planar solid oxide fuel cell stack technology. The work builds on the technology developed in the earlier phases where the feasibility of low cost ceramics fabrication technology to fabricate stacks was established. The effort focused on three technology areas: qualification of the advanced interconnection material in stack tests, stack performance diagnostics, and manifold design and seal development. Long term testing of single cells and stacks were conducted. Additionally, progress was made in electrode optimization. This resulted in demonstration of high fuel utilization (80%) in single cells. A rigorous quality improvement approach was undertaken in all aspects of Solid Oxide Fuel Cell (SOFC) development in recognition of the need to scale up technology for the eventual commercial manufacture of SOFC stacks and systems. Manufacturing tolerances were studied and, via a statistical design of experiments approach, methods defined to improve tolerances and process yields. Finally, as a result of the stack and module engineering design activity, advancements have been made to seal and module manifold development. Seal tests conducted on new manifold concepts have shown a 100 fold decrease in reactant gas leak rates at temperature, pointing to the possibility of developing high efficiency planar SOFC stacks.

  17. Fuel cell electric power production

    DOE Patents [OSTI]

    Hwang, Herng-Shinn; Heck, Ronald M.; Yarrington, Robert M.

    1985-01-01

    A process for generating electricity from a fuel cell includes generating a hydrogen-rich gas as the fuel for the fuel cell by treating a hydrocarbon feed, which may be a normally liquid feed, in an autothermal reformer utilizing a first monolithic catalyst zone having palladium and platinum catalytic components therein and a second, platinum group metal steam reforming catalyst. Air is used as the oxidant in the hydrocarbon reforming zone and a low oxygen to carbon ratio is maintained to control the amount of dilution of the hydrogen-rich gas with nitrogen of the air without sustaining an insupportable amount of carbon deposition on the catalyst. Anode vent gas may be utilized as the fuel to preheat the inlet stream to the reformer. The fuel cell and the reformer are preferably operated at elevated pressures, up to about a pressure of 150 psia for the fuel cell.

  18. Solid oxide fuel cell generator

    DOE Patents [OSTI]

    Draper, Robert; George, Raymond A.; Shockling, Larry A.

    1993-01-01

    A solid oxide fuel cell generator has a pair of spaced apart tubesheets in a housing. At least two intermediate barrier walls are between the tubesheets and define a generator chamber between two intermediate buffer chambers. An array of fuel cells have tubes with open ends engaging the tubesheets. Tubular, axially elongated electrochemical cells are supported on the tubes in the generator chamber. Fuel gas and oxidant gas are preheated in the intermediate chambers by the gases flowing on the other side of the tubes. Gas leakage around the tubes through the tubesheets is permitted. The buffer chambers reentrain the leaked fuel gas for reintroduction to the generator chamber.

  19. Solid oxide fuel cell generator

    DOE Patents [OSTI]

    Draper, R.; George, R.A.; Shockling, L.A.

    1993-04-06

    A solid oxide fuel cell generator has a pair of spaced apart tubesheets in a housing. At least two intermediate barrier walls are between the tubesheets and define a generator chamber between two intermediate buffer chambers. An array of fuel cells have tubes with open ends engaging the tubesheets. Tubular, axially elongated electrochemical cells are supported on the tubes in the generator chamber. Fuel gas and oxidant gas are preheated in the intermediate chambers by the gases flowing on the other side of the tubes. Gas leakage around the tubes through the tubesheets is permitted. The buffer chambers reentrain the leaked fuel gas for reintroduction to the generator chamber.

  20. Fuel Cell Animation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Animation Fuel Cell Animation This fuel cell animation demonstrates how a fuel cell uses hydrogen to produce electricity, with only water and heat as byproducts. Hydrogen fuel cell vehicles emit approximately the same amount of water per mile as conventional vehicles powered by internal combustion engines. Learn more about water emissions from fuel cell vehicles. View text version of animation.

  1. Microbial fuel cells

    DOE Patents [OSTI]

    Nealson, Kenneth H; Pirbazari, Massoud; Hsu, Lewis

    2013-04-09

    A microbial fuel cell includes an anode compartment with an anode and an anode biocatalyst and a cathode compartment with a cathode and a cathode biocatalyst, with a membrane positioned between the anode compartment and the cathode compartment, and an electrical pathway between the anode and the cathode. The anode biocatalyst is capable of catalyzing oxidation of an organic substance, and the cathode biocatalyst is capable of catalyzing reduction of an inorganic substance. The reduced organic substance can form a precipitate, thereby removing the inorganic substance from solution. In some cases, the anode biocatalyst is capable of catalyzing oxidation of an inorganic substance, and the cathode biocatalyst is capable of catalyzing reduction of an organic or inorganic substance.

  2. Comparison of Fuel Cell Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fuel Cell Technologies Fuel Cell Type Common Electrolyte Operating Temperature Typical Stack Size Electrical Efficiency (LHV) Applications Advantages Challenges Polymer Electrolyte Membrane (PEM) Perfluorosulfonic acid <120°C <1 kW - 100 kW 60% direct H 2 ; i 40% reformed fuel ii * Backup power * Portable power * Distributed generation * Transportation * Specialty vehicles * Solid electrolyte reduces corrosion & electrolyte management problems * Low temperature * Quick start-up and

  3. Microbial fuel cell treatment of fuel process wastewater (Patent) |

    Office of Scientific and Technical Information (OSTI)

    DOEPatents Microbial fuel cell treatment of fuel process wastewater Title: Microbial fuel cell treatment of fuel process wastewater The present invention is directed to a method for cleansing fuel processing effluent containing carbonaceous compounds and inorganic salts, the method comprising contacting the fuel processing effluent with an anode of a microbial fuel ell, the anode containing microbes thereon which oxidatively degrade one or more of the carbonaceous compounds while producing

  4. Heated transportable fuel cell cartridges

    DOE Patents [OSTI]

    Lance, Joseph R. (N. Huntingdon, PA); Spurrier, Francis R. (Whitehall, PA)

    1985-01-01

    A fuel cell stack protective system is made where a plurality of fuel cells, each containing liquid electrolyte subject to crystallization, is enclosed by a containing vessel, and where at least one electric heater is placed in the containing vessel and is capable of preventing electrolyte crystallization.

  5. Energy 101: Fuel Cell Technology

    SciTech Connect (OSTI)

    2014-03-11

    Learn how fuel cell technology generates clean electricity from hydrogen to power our buildings and transportation-while emitting nothing but water. This video illustrates the fundamentals of fuel cell technology and its potential to supply our homes, offices, industries, and vehicles with sustainable, reliable energy.

  6. Bonded polyimide fuel cell package

    DOE Patents [OSTI]

    Morse, Jeffrey D.; Jankowski, Alan; Graff, Robert T.; Bettencourt, Kerry

    2010-06-08

    Described herein are processes for fabricating microfluidic fuel cell systems with embedded components in which micron-scale features are formed by bonding layers of DuPont Kapton.TM. polyimide laminate. A microfluidic fuel cell system fabricated using this process is also described.

  7. Energy 101: Fuel Cell Technology

    ScienceCinema (OSTI)

    None

    2016-07-12

    Learn how fuel cell technology generates clean electricity from hydrogen to power our buildings and transportation-while emitting nothing but water. This video illustrates the fundamentals of fuel cell technology and its potential to supply our homes, offices, industries, and vehicles with sustainable, reliable energy.

  8. Bronx Zoo Fuel Cell Project

    SciTech Connect (OSTI)

    Hoang Pham

    2007-09-30

    A 200 kW Fuel Cell has been installed in the Lion House, Bronx Zoo, NY. The Fuel Cell is a 200 kW phosphoric acid type manufactured by United Technologies Corporation (UTC) and will provide thermal energy at 725,000 Btu/hr.

  9. Oxidation resistance of novel ferritic stainless steels alloyed with titanium for SOFC interconnect applications

    SciTech Connect (OSTI)

    Jablonski, P.D.; Alman, D.E.

    2008-05-15

    Chromia (Cr2O3) forming ferritic stainless steels are being developed for interconnect application in Solid Oxide Fuel Cells (SOFC). A problem with these alloys is that in the SOFC environment chrome in the surface oxide can evaporate and deposit on the electrochemically active sites within the fuel cell. This poisons and degrades the performance of the fuel cell. The development of steels that can form conductive outer protective oxide layers other than Cr2O3 or (CrMn)3O4 such as TiO2 may be attractive for SOFC application. This study was undertaken to assess the oxidation behavior of ferritic stainless steel containing 1 weight percent (wt.%) Ti, in an effort to develop alloys that form protective outer TiO2 scales. The effect of Cr content (622 wt.%) and the application of a Ce-based surface treatment on the oxidation behavior (at 800 C in air+3% H2O) of the alloys was investigated. The alloys themselves failed to form an outer TiO2 scale even though the large negative {delta}G of this compound favors its formation over other species. It was found that in conjunction with the Ce-surface treatment, a continuous outer TiO2 oxide layer could be formed on the alloys, and in fact the alloy with 12 wt.% Cr behaved in an identical manner as the alloy with 22 wt.% Cr.

  10. Fuel Cell Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Renewable Energy » Hydrogen & Fuel Cells » Fuel Cell Basics Fuel Cell Basics August 14, 2013 - 2:09pm Addthis Text Version Photo of two hydrogen fuel cells. Fuel cells can provide heat and electricity for buildings and electrical power for vehicles and electronic devices. HOW FUEL CELLS WORK Fuel cells work like batteries, but they do not run down or need recharging. They produce electricity and heat as long as fuel is supplied. A fuel cell consists of two electrodes-a negative electrode

  11. Fuel cell system with interconnect

    SciTech Connect (OSTI)

    Liu, Zhien; Goettler, Richard

    2015-09-29

    The present invention includes a fuel cell system having a plurality of adjacent electrochemical cells formed of an anode layer, a cathode layer spaced apart from the anode layer, and an electrolyte layer disposed between the anode layer and the cathode layer. The fuel cell system also includes at least one interconnect, the interconnect being structured to conduct free electrons between adjacent electrochemical cells. Each interconnect includes a primary conductor embedded within the electrolyte layer and structured to conduct the free electrons.

  12. Fuel cell system with interconnect

    SciTech Connect (OSTI)

    Goettler, Richard; Liu, Zhien

    2015-08-11

    The present invention includes a fuel cell system having a plurality of adjacent electrochemical cells formed of an anode layer, a cathode layer spaced apart from the anode layer, and an electrolyte layer disposed between the anode layer and the cathode layer. The fuel cell system also includes at least one interconnect, the interconnect being structured to conduct free electrons between adjacent electrochemical cells. Each interconnect includes a primary conductor embedded within the electrolyte layer and structured to conduct the free electrons.

  13. Fuel cell system with interconnect

    SciTech Connect (OSTI)

    Goettler, Richard; Liu, Zhien

    2015-03-10

    The present invention includes a fuel cell system having a plurality of adjacent electrochemical cells formed of an anode layer, a cathode layer spaced apart from the anode layer, and an electrolyte layer disposed between the anode layer and the cathode layer. The fuel cell system also includes at least one interconnect, the interconnect being structured to conduct free electrons between adjacent electrochemical cells. Each interconnect includes a primary conductor embedded within the electrolyte layer and structured to conduct the free electrons.

  14. Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Fuel Cell Electric Vehicle Hydrogen Fueling Protocol Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol Download the webinar slides from the U.S. Department of Energy Fuel Cell Technologies Office webinar, "Hydrogen Refueling Protocols," held February 22, 2013. Hydrogen Refueling Protocols Webinar Slides (3.49 MB) More Documents & Publications Introduction to SAE Hydrogen Fueling Standardization Developing SAE Safety Standards for Hydrogen and

  15. Webinar: Hydrogen Fueling for Current and Anticipated Fuel Cell Electric

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Vehicles (FCEVs) | Department of Energy Fueling for Current and Anticipated Fuel Cell Electric Vehicles (FCEVs) Webinar: Hydrogen Fueling for Current and Anticipated Fuel Cell Electric Vehicles (FCEVs) Below is the text version of the webinar titled "Hydrogen Fueling for Current and Anticipated Fuel Cell Electric Vehicles (FCEVs)," originally presented on June 24, 2014. In addition to this text version of the audio, you can access the presentation slides. Alli Aman: [Audio starts

  16. DOE Hydrogen and Fuel Cells Program Record, Record # 13008: Industry Deployed Fuel Cell Powered Lift Trucks

    Energy.gov [DOE]

    This program record from the DOE Hydrogen and Fuel Cells Program focuses on deployments of fuel cell powered lift trucks.

  17. SunLine Expands Horizons with Fuel Cell Bus Demo. Hydrogen, Fuel Cells &

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Infrastructure Technologies Program, Fuel Cell Bus Demonstration Projects (Fact Sheet). | Department of Energy Expands Horizons with Fuel Cell Bus Demo. Hydrogen, Fuel Cells & Infrastructure Technologies Program, Fuel Cell Bus Demonstration Projects (Fact Sheet). SunLine Expands Horizons with Fuel Cell Bus Demo. Hydrogen, Fuel Cells & Infrastructure Technologies Program, Fuel Cell Bus Demonstration Projects (Fact Sheet). Fact sheet describes the study being conducted on fuel cell

  18. Water Emissions from Fuel Cell Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fuel Cells Water Emissions from Fuel Cell Vehicles Water Emissions from Fuel Cell Vehicles Hydrogen fuel cell vehicles (FCVs) emit approximately the same amount of water per ...

  19. INFOGRAPHIC: The Fuel Cell Electric Vehicle | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    INFOGRAPHIC: The Fuel Cell Electric Vehicle INFOGRAPHIC: The Fuel Cell Electric Vehicle INFOGRAPHIC: The Fuel Cell Electric Vehicle This infographic shows how fuel cell electric ...

  20. Hydrogen and Fuel Cells Program Overview: 2013 Annual Merit Review...

    Energy.gov (indexed) [DOE]

    DOE Fuel Cell Technologies Office: 2013 Fuel Cell Seminar and Energy Exposition Fuel Cell Technologies Program - DOD-DOE Workshop: Shipboard APUs Overview Hydrogen and Fuel Cells ...

  1. Techno-Economic Feasibility of Highly Efficient Cost-Effective Thermoelectric-SOFC Hybrid Power Generation Systems

    SciTech Connect (OSTI)

    Jifeng Zhang; Jean Yamanis

    2007-09-30

    Solid oxide fuel cell (SOFC) systems have the potential to generate exhaust gas streams of high temperature, ranging from 400 to 800 C. These high temperature gas streams can be used for additional power generation with bottoming cycle technologies to achieve higher system power efficiency. One of the potential candidate bottoming cycles is power generation by means of thermoelectric (TE) devices, which have the inherent advantages of low noise, low maintenance and long life. This study was to analyze the feasibility of combining coal gas based SOFC and TE through system performance and cost techno-economic modeling in the context of multi-MW power plants, with 200 kW SOFC-TE module as building blocks. System and component concepts were generated for combining SOFC and TE covering electro-thermo-chemical system integration, power conditioning system (PCS) and component designs. SOFC cost and performance models previously developed at United Technologies Research Center were modified and used in overall system analysis. The TE model was validated and provided by BSST. The optimum system in terms of energy conversion efficiency was found to be a pressurized SOFC-TE, with system efficiency of 65.3% and cost of $390/kW of manufacturing cost. The pressurization ratio was approximately 4 and the assumed ZT of the TE was 2.5. System and component specifications were generated based on the modeling study. The major technology and cost barriers for maturing the system include pressurized SOFC stack using coal gas, the high temperature recycle blowers, and system control design. Finally, a 4-step development roadmap is proposed for future technology development, the first step being a 1 kW proof-of-concept demonstration unit.

  2. Hybrid deposition of thin film solid oxide fuel cells and electrolyzers

    DOE Patents [OSTI]

    Jankowski, Alan F.; Makowiecki, Daniel M.; Rambach, Glenn D.; Randich, Erik

    1999-01-01

    The use of vapor deposition techniques enables synthesis of the basic components of a solid oxide fuel cell (SOFC); namely, the electrolyte layer, the two electrodes, and the electrolyte-electrode interfaces. Such vapor deposition techniques provide solutions to each of the three critical steps of material synthesis to produce a thin film solid oxide fuel cell (TFSOFC). The electrolyte is formed by reactive deposition of essentially any ion conducting oxide, such as defect free, yttria stabilized zirconia (YSZ) by planar magnetron sputtering. The electrodes are formed from ceramic powders sputter coated with an appropriate metal and sintered to a porous compact. The electrolyte-electrode interface is formed by chemical vapor deposition of zirconia compounds onto the porous electrodes to provide a dense, smooth surface on which to continue the growth of the defect-free electrolyte, whereby a single fuel cell or multiple cells may be fabricated.

  3. Hybrid deposition of thin film solid oxide fuel cells and electrolyzers

    DOE Patents [OSTI]

    Jankowski, A.F.; Makowiecki, D.M.; Rambach, G.D.; Randich, E.

    1998-05-19

    The use of vapor deposition techniques enables synthesis of the basic components of a solid oxide fuel cell (SOFC); namely, the electrolyte layer, the two electrodes, and the electrolyte-electrode interfaces. Such vapor deposition techniques provide solutions to each of the three critical steps of material synthesis to produce a thin film solid oxide fuel cell (TFSOFC). The electrolyte is formed by reactive deposition of essentially any ion conducting oxide, such as defect free, yttria stabilized zirconia (YSZ) by planar magnetron sputtering. The electrodes are formed from ceramic powders sputter coated with an appropriate metal and sintered to a porous compact. The electrolyte-electrode interface is formed by chemical vapor deposition of zirconia compounds onto the porous electrodes to provide a dense, smooth surface on which to continue the growth of the defect-free electrolyte, whereby a single fuel cell or multiple cells may be fabricated. 8 figs.

  4. Hybrid deposition of thin film solid oxide fuel cells and electrolyzers

    DOE Patents [OSTI]

    Jankowski, Alan F.; Makowiecki, Daniel M.; Rambach, Glenn D.; Randich, Erik

    1998-01-01

    The use of vapor deposition techniques enables synthesis of the basic components of a solid oxide fuel cell (SOFC); namely, the electrolyte layer, the two electrodes, and the electrolyte-electrode interfaces. Such vapor deposition techniques provide solutions to each of the three critical steps of material synthesis to produce a thin film solid oxide fuel cell (TFSOFC). The electrolyte is formed by reactive deposition of essentially any ion conducting oxide, such as defect free, yttria stabilized zirconia (YSZ) by planar magnetron sputtering. The electrodes are formed from ceramic powders sputter coated with an appropriate metal and sintered to a porous compact. The electrolyte-electrode interface is formed by chemical vapor deposition of zirconia compounds onto the porous electrodes to provide a dense, smooth surface on which to continue the growth of the defect-free electrolyte, whereby a single fuel cell or multiple cells may be fabricated.

  5. Alternative Fuels Data Center: How Do Fuel Cell Electric Cars...

    Alternative Fuels and Advanced Vehicles Data Center

    Fuel tank (hydrogen): Stores hydrogen on board the vehicle until it's needed by the fuel cell. Power electronics controller: This unit manages the flow of electrical energy ...

  6. Evaluation of Stationary Fuel Cell Deployments, Costs, and Fuels (Presentation)

    SciTech Connect (OSTI)

    Ainscough, C.; Kurtz, J.; Peters, M.; Saur, G.

    2013-10-01

    This presentation summarizes NREL's technology validation of stationary fuel cell systems and presents data on number of deployments, system costs, and fuel types.

  7. Webinar: Hydrogen Fueling for Current and Anticipated Fuel Cell...

    Energy.gov (indexed) [DOE]

    Below is the text version of the webinar titled "Hydrogen Fueling for Current and ... what's going on in the world of hydrogen and fuel cells and especially what's ...

  8. A Distributed Electrochemistry Modeling Tool for Simulating SOFC Performance and Degradation

    SciTech Connect (OSTI)

    Recknagle, Kurtis P.; Ryan, Emily M.; Khaleel, Mohammad A.

    2011-10-13

    This report presents a distributed electrochemistry (DEC) model capable of investigating the electrochemistry and local conditions with the SOFC MEA based on the local microstructure and multi-physics. The DEC model can calculate the global current-voltage (I-V) performance of the cell as determined by the spatially varying local conditions through the thickness of the electrodes and electrolyte. The simulation tool is able to investigate the electrochemical performance based on characteristics of the electrode microstructure, such as particle size, pore size, electrolyte and electrode phase volume fractions, and triple-phase-boundary length. It can also investigate performance as affected by fuel and oxidant gas flow distributions and other environmental/experimental conditions such as temperature and fuel gas composition. The long-term objective for the DEC modeling tool is to investigate factors that cause electrode degradation and the decay of SOFC performance which decrease longevity.

  9. Testing of a Catalytic Partial Oxidation Diesel Reformer with a Solid Oxide Fuel Cell System

    SciTech Connect (OSTI)

    Lyman Frost; Bob Carrington; Rodger McKain; Dennis Witmer

    2005-03-01

    Rural Alaska currently uses diesel generator sets to produce much of its power. The high energy content of diesel (i.e. ~140,000 BTU per gallon) makes it the fuel of choice because this reduces the volume of fuel that must be transported, stored, and consumed in generating the power. There is an existing investment in infrastructure for the distribution and use of diesel fuel. Problems do exist, however, in that diesel generators are not very efficient in their use of diesel, maintenance levels can be rather high as systems age, and the environmental issues related to present diesel generators are of concern. The Arctic Energy Technology Development Laboratory at the University of Alaska -- Fairbanks is sponsoring a project to address the issues mentioned above. The project takes two successful systems, a diesel reformer and a tubular solid oxide fuel cell unit, and jointly tests those systems with the objective of producing a for-purpose diesel fueled solid oxide fuel cell system that can be deployed in rural Alaska. The reformer will convert the diesel to a mixture of carbon monoxide and hydrogen that can be used as a fuel by the fuel cell. The high temperature nature of the solid oxide fuel cell (SOFC is capable of using this mixture to generate electricity and provide usable heat with higher efficiency and lower emissions. The high temperature nature of the SOFC is more compatible with the arctic climate than are low temperature technologies such as the proton exchange membrane fuel cells. This paper will look at the interaction of a SOFC system that is designed to internally reform methane and a catalytic partial oxidation (CPOX) diesel reformer. The diesel reformer produces a reformate that is approximately 140 BTU per scf (after removal of much of the reformate water) as compared to a methane based reformate that is over twice that value in BTU content. The project also considers the effect of altitude since the test location will be at 4800 feet with the

  10. Fuel Cell Buses | Department of Energy

    Energy.gov (indexed) [DOE]

    Download presentation slides from the DOE Fuel Cell Technologies Office webinar "Fuel Cell Buses" held on September 12, 2013. Fuel Cell Buses Webinar Slides (2.44 MB) More ...

  11. fuel cell | OpenEI Community

    Open Energy Information (Open El) [EERE & EIA]

    fuel cell Home Dc's picture Submitted by Dc(266) Contributor 19 February, 2015 - 15:08 2016 Toyota Mirai Fuel Cell Car First Drive - HybridCars.com Review 2016 car fuel cell hybrid...

  12. Fuel Cell Europe | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Name: Fuel Cell Europe Place: FrankfurtM, Germany Zip: D-60313 Product: Fuel Cell Europe was set up to promote the commercial application of fuel cell across Europe. Coordinates:...

  13. EPG Fuel Cell LLc | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    EPG Fuel Cell LLc Jump to: navigation, search Name: EPG Fuel Cell LLc Place: Maryland Product: 50-50 JV between Catamount Energy and Elemental Power. References: EPG Fuel Cell...

  14. Dupont Fuel Cells | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Dupont Fuel Cells Jump to: navigation, search Name: Dupont Fuel Cells Place: Wilmington, Delaware Zip: DE 19880-0 Product: A subsidiary of Dupont which specializes in fuel cell...

  15. CMR Fuel Cells Ltd | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    CMR Fuel Cells Ltd Jump to: navigation, search Name: CMR Fuel Cells Ltd Place: Cambridge, England, United Kingdom Zip: CB2 5GG Product: Cambridge-based firm developing fuel cell...

  16. Ohio Fuel Cell Initiative | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    (400.77 KB) More Documents & Publications Raising H2 and Fuel Cell Awareness in Ohio Fuel Cells & Renewable Portfolio Standards State of the States: Fuel Cells in America 2014

  17. Fuel Cells for Critical Communications Backup Power

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    6, 2008 APCO Annual Conference and Expo 2 2 Fuel cells use hydrogen to create electricity, with only water and heat as byproducts Fuel Cell Overview * An individual fuel cell ...

  18. Solid oxide fuel cell with internal reforming, catalyzed interconnect for use therewith, and methods

    DOE Patents [OSTI]

    Liu, Di-Jia; Guan, Jie; Minh, Nguyen

    2010-06-08

    A catalyzed interconnect for an SOFC electrically connects an anode and an anodic current collector and comprises a metallic substrate, which provides space between the anode and anodic current collector for fuel gas flow over at least a portion of the anode, and a catalytic coating on the metallic substrate comprising a catalyst for catalyzing hydrocarbon fuel in the fuel gas to hydrogen rich reformate. An SOFC including the catalyzed anodic inter-connect, a method for operating an SOFC, and a method for making a catalyzed anodic interconnect are also disclosed.

  19. Navy fuel cell demonstration project.

    SciTech Connect (OSTI)

    Black, Billy D.; Akhil, Abbas Ali

    2008-08-01

    This is the final report on a field evaluation by the Department of the Navy of twenty 5-kW PEM fuel cells carried out during 2004 and 2005 at five Navy sites located in New York, California, and Hawaii. The key objective of the effort was to obtain an engineering assessment of their military applications. Particular issues of interest were fuel cell cost, performance, reliability, and the readiness of commercial fuel cells for use as a standalone (grid-independent) power option. Two corollary objectives of the demonstration were to promote technological advances and to improve fuel performance and reliability. From a cost perspective, the capital cost of PEM fuel cells at this stage of their development is high compared to other power generation technologies. Sandia National Laboratories technical recommendation to the Navy is to remain involved in evaluating successive generations of this technology, particularly in locations with greater environmental extremes, and it encourages their increased use by the Navy.

  20. Recent progress in tubular solid oxide fuel cell technology

    SciTech Connect (OSTI)

    Singhal, S.C.

    1997-12-31

    The tubular design of solid oxide fuel cells (SOFCs) and the materials used therein have been validated by successful, continuous electrical testing over 69,000 h of early technology cells built on a calcia-stabilized zirconia porous support tube (PST). In the latest technology cells, the PST has been eliminated and replaced by a doped lanthanum manganite air electrode tube. These air electrode supported (AES) cells have shown a power density increase of about 33% with a significantly improved performance stability over the previously used PST type cells. These cells have also demonstrated the ability to thermally cycle over 100 times without any mechanical damage or performance loss. In addition, recent changes in processes used to fabricate these cells have resulted in significant cost reduction. This paper reviews the fabrication and performance of the state-of-the-art AES tubular cells. It also describes the materials and processing studies that are underway to further reduce the cell cost, and summarizes the recently built power generation systems that employed state-of-the-art AES cells.

  1. Fuel Cells at Supermarkets: NYSERDA's Perspective

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    at Supermarkets: NYSERDA's Perspective Scott Larsen, Project Manager On-Site Power Team 2 NYSERDA Programs to Install Fuel Cells * Distributed Generation as Combined Heat and Power - 14 Fuel Cell as CHP Systems Installed Since 2002 * Renewable Portfolio Standard (RPS) Customer Sited Tier (CST)Fuel Cell Program - $21.6 Million through 2015 - 1 Large Fuel Cell System and 23 Small Fuel Cell Systems Since 2007 3 Benefits of Fuel Cells * Efficient Means of Electric Generation (~40-50%) * High Quality

  2. National Fuel Cell Technology Evaluation Center (NFCTEC)

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    National Fuel Cell Technology Evaluation Center (NFCTEC) Jim Alkire U.S. Department of Energy Fuel Cell Technologies Office Jennifer Kurtz & Sam Sprik National Renewable Energy Laboratory 2 Outline * About NFCTEC * Benefits to the Hydrogen & Fuel Cell Community * New Fuel Cell Cost/Price Aggregation Project About NFCTEC 4 National Fuel Cell Technology Evaluation Center a national resource for hydrogen and fuel cell stakeholders supported through Energy Efficiency and Renewable Energy's

  3. Hydrogen and Fuel Cells Program Plenary Presentation

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    U.S. Department of Energy Hydrogen & Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting Dr. Sunita Satyapal Director Fuel Cell Technologies Office U.S. Department of Energy June 2014 2 | Fuel Cell Technologies Office eere.energy.gov Fuel Cell Market Market Growth Fuel cell markets continue to grow * >25% increase in global MWs shipped since 2012 * 35% increase in revenues from fuel cell systems shipped over last year * Consistent ~30% annual growth in global systems

  4. Fuel cell with internal flow control

    DOE Patents [OSTI]

    Haltiner, Jr., Karl J.; Venkiteswaran, Arun

    2012-06-12

    A fuel cell stack is provided with a plurality of fuel cell cassettes where each fuel cell cassette has a fuel cell with an anode and cathode. The fuel cell stack includes an anode supply chimney for supplying fuel to the anode of each fuel cell cassette, an anode return chimney for removing anode exhaust from the anode of each fuel cell cassette, a cathode supply chimney for supplying oxidant to the cathode of each fuel cell cassette, and a cathode return chimney for removing cathode exhaust from the cathode of each fuel cell cassette. A first fuel cell cassette includes a flow control member disposed between the anode supply chimney and the anode return chimney or between the cathode supply chimney and the cathode return chimney such that the flow control member provides a flow restriction different from at least one other fuel cell cassettes.

  5. Corrosion resistant PEM fuel cell

    DOE Patents [OSTI]

    Li, Y.; Meng, W.J.; Swathirajan, S.; Harris, S.J.; Doll, G.L.

    1997-04-29

    The present invention contemplates a PEM fuel cell having electrical contact elements (including bipolar plates/septums) comprising a titanium nitride coated light weight metal (e.g., Al or Ti) core, having a passivating, protective metal layer intermediate the core and the titanium nitride. The protective layer forms a barrier to further oxidation/corrosion when exposed to the fuel cell`s operating environment. Stainless steels rich in Cr, Ni, and Mo are particularly effective protective interlayers. 6 figs.

  6. Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    DOE Webinar Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol U.S. DOE WEBINAR ON H2 FUELING PROTOCOLS: PARTICIPANTS Rob Burgess Moderator Jesse Schneider TIR J2601, ...

  7. Fuel Cell Financing Options | Department of Energy

    Energy.gov (indexed) [DOE]

    Department of Energy Webinar: Financing Fuel Cell Installations, August 30, 2011. ... Case for Fuel Cells 2011: Energizing America's Top Companies PAFC Cost Challenges

  8. Pacific Fuel Cell Corporation | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Fuel Cell Corporation Jump to: navigation, search Name: Pacific Fuel Cell Corporation Address: 26985 Lakeland Blvd. Place: Euclid, Ohio Zip: 44132 Sector: Buildings, Efficiency,...

  9. Advanced Fuel Cell Systems | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Fuel Cell Systems Jump to: navigation, search Name: Advanced Fuel Cell Systems Place: Amherst, New York Zip: 14228 Product: Collaboration of three companies (ATSI Engineering,...

  10. Durable Fuel Cell Membrane Electrode Assembly (MEA)

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Durable Fuel Cell Membrane Electrode Assembly (MEA) Durable Fuel Cell Membrane Electrode Assembly (MEA) A revolutionary method of building a membrane electrode assembly (MEA) for...

  11. Nuvera Fuel Cells Inc | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Place: Billerica, Massachusetts Zip: 1821 Product: US-based developer of bipolar fuel cell stack plates to develop Proton Exchange Membrane (PEM) fuel cells. Coordinates:...

  12. Fuel Cell Technologies Office | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Transportation Fuel Cell Technologies Office Fuel Cell Technologies Office Sustainable Transportation Summit: July 11-12 Sustainable Transportation Summit: July 11-12 Read more ...

  13. Hoku Fuel Cells | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Hoku Fuel Cells Jump to: navigation, search Name: Hoku Fuel Cells Place: Honolulu, Hawaii Zip: 96814 Product: Hawaii-based, subsidiary of Hoku Scientific Inc, developer,...

  14. Fuel Cells America LLC | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    LLC Jump to: navigation, search Name: Fuel Cells America LLC Place: Mount Horeb, Wisconsin Zip: 53572 Product: Consulting service and commissioned fuel cell sales division....

  15. Fuel Cells 2000 | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Fuel Cells 2000 Place: Washington DC, Washington, DC Zip: 20005 Product: A non-profit project providing educational informaiton on fuel cells to the general public and private...

  16. Fuel Cell Animation- Chemical Process (Text Version)

    Energy.gov [DOE]

    This text version of the fuel cell animation demonstrates how a fuel cell uses hydrogen to produce electricity, with only water and heat as byproducts.

  17. Fuel Cells News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    | Photos by Sarah Gerrity, Energy Department EERE Energy Impacts: You Can Now Drive a Fuel Cell Electric Vehicle Fuel cell electric vehicles (FCEVs) are now commercially...

  18. National Hydrogen and Fuel Cell Day

    Office of Energy Efficiency and Renewable Energy (EERE)

    Join us on Thursday, October 8, in celebrating the first National Hydrogen and Fuel Cell Day! In 2013, auto manufacturers started announcing fuel cell electric vehicle (FCEV) commercialization...

  19. Fuel Cell Store Inc | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Name: Fuel Cell Store, Inc Place: San Diego, California Zip: 92154 Sector: Hydro, Hydrogen Product: San Diego-based firm selling fuel cell stacks, components, and hydrogen...

  20. Overview of Hydrogen and Fuel Cells

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    H2-Fuel Cell Systems vs Batteries At DOEUSABC Targets * A ... Adapted from GM 4 | Fuel Cell Technologies Program Source: ... carbon renewable electricity includes wind, solar, etc. ...

  1. Overview of Hydrogen Fuel Cell Budget

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Budget FUEL CELL TECHNOLOGIES PROGRAM Stakeholders Webinar - Budget Briefing Sunita Satyapal U.S. Department of Energy Fuel Cell Technologies Program Program Manager February 24, ...

  2. 2015 Fuel Cell Technologies Market Report

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    FUEL CELL TECHNOLOGIES MARKET REPORT 2015 Authors This report was compiled and written by Sandra Curtin and Jennifer Gangi of the Fuel Cell and Hydrogen Energy Association, in ...

  3. Fuel Cell School Buses: Report to Congress

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Activities, Progress, and Plans: Report to Congress ii December 2008 Fuel Cell School Buses Report to Congress Fuel Cell School Buses: Report to Congress Preface This Department of ...

  4. DOE Hydrogen and Fuel Cell Overview

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Sustainability, Washington, DC DOE Hydrogen and Fuel Cell Overview Dr. Sunita Satyapal U.S. Department of Energy Fuel Cell Technologies Program Program Manager August 8, ...

  5. hydrogen-fuel-cell-powered generator

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    hydrogen-fuel-cell-powered generator - Sandia Energy Energy Search Icon Sandia Home ... SunShot Grand Challenge: Regional Test Centers hydrogen-fuel-cell-powered generator Home...

  6. EERE Announces Notice of Intent to Issue Fuel Cell Technologies Incubator: Innovations in Fuel Cell and Hydrogen Fuels Technologies FOA

    Energy.gov [DOE]

    EERE intends to issue, on behalf of its Fuel Cell Technologies Office, a Funding Opportunity Announcement (FOA) entitled "Fuel Cell Technologies Incubator: Innovations in Fuel Cell and Hydrogen Fuels Technologies."

  7. Oxidation Resistant, Cr Retaining, Electrically Conductive Coatings on Metallic Alloys for SOFC Interconnects

    SciTech Connect (OSTI)

    Vladimir Gorokhovsky

    2008-03-31

    This report describes significant results from an on-going, collaborative effort to enable the use of inexpensive metallic alloys as interconnects in planar solid oxide fuel cells (SOFCs) through the use of advanced coating technologies. Arcomac Surface Engineering, LLC, under the leadership of Dr. Vladimir Gorokhovsky, is investigating filtered-arc and filtered-arc plasma-assisted hybrid coating deposition technologies to promote oxidation resistance, eliminate Cr volatility, and stabilize the electrical conductivity of both standard and specialty steel alloys of interest for SOFC metallic interconnect (IC) applications. Arcomac has successfully developed technologies and processes to deposit coatings with excellent adhesion, which have demonstrated a substantial increase in high temperature oxidation resistance, stabilization of low Area Specific Resistance values and significantly decrease Cr volatility. An extensive matrix of deposition processes, coating compositions and architectures was evaluated. Technical performance of coated and uncoated sample coupons during exposures to SOFC interconnect-relevant conditions is discussed, and promising future directions are considered. Cost analyses have been prepared based on assessment of plasma processing parameters, which demonstrate the feasibility of the proposed surface engineering process for SOFC metallic IC applications.

  8. Fuel Cell Research

    SciTech Connect (OSTI)

    Weber, Peter M.

    2014-03-30

    Executive Summary In conjunction with the Brown Energy Initiative, research Projects selected for the fuel cell research grant were selected on the following criteria: They should be fundamental research that has the potential to significantly impact the nation’s energy infrastructure. They should be scientifically exciting and sound. They should synthesize new materials, lead to greater insights, explore new phenomena, or design new devices or processes that are of relevance to solving the energy problems. They involve top-caliper senior scientists with a record of accomplishment, or junior faculty with outstanding promise of achievement. They should promise to yield at least preliminary results within the given funding period, which would warrant further research development. They should fit into the overall mission of the Brown Energy Initiative, and the investigators should contribute as partners to an intellectually stimulating environment focused on energy science. Based on these criteria, fourteen faculty across three disciplines (Chemistry, Physics and Engineering) and the Charles Stark Draper Laboratory were selected to participate in this effort.1 In total, there were 30 people supported, at some level, on these projects. This report highlights the findings and research outcomes of the participating researchers.

  9. NREL: Hydrogen and Fuel Cells Research - Fuel Cell System Contaminants

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Material Screening Data System Contaminants Material Screening Data NREL designed this interactive material selector tool to help fuel cell developers and material suppliers explore the results of fuel cell system contaminants studies, which were performed in collaboration with General Motors, the University of South Carolina, and the Colorado School of Mines. Select from the drop-down lists of materials to see the screening data collected from multiple methods. You can also view the data

  10. Water reactive hydrogen fuel cell power system

    SciTech Connect (OSTI)

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-11-25

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into the fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  11. Water reactive hydrogen fuel cell power system

    DOE Patents [OSTI]

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-01-21

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into a fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  12. Hydrogen & Fuel Cells | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Efficiency » Vehicles » Hydrogen & Fuel Cells Hydrogen & Fuel Cells Watch this video to find out how fuel cell technology generates clean electricity from hydrogen to power our buildings and transportation-while emitting nothing but water. Learn more about hydrogen and fuel cell technology basics. Fuel cells produce electricity from a number of domestic fuels, including hydrogen and renewables, and can provide power for virtually any application -- from cars and buses to commercial

  13. Nanoparticle scaffolds for syngas-fed solid oxide fuel cells

    DOE PAGES-Beta [OSTI]

    Boldrin, Paul; Ruiz-Trejo, Enrique; Yu, Jingwen; Gruar, Robert I.; Tighe, Christopher J.; Chang, Kee-Chul; Ilavsky, Jan; Darr, Jawwad A.; Brandon, Nigel

    2014-12-17

    Incorporation of nanoparticles into devices such as solid oxide fuel cells (SOFCs) may provide benefits such as higher surface areas or finer control over microstructure. However, their use with traditional fabrication techniques such as screen-printing is problematic. Here, we show that mixing larger commercial particles with nanoparticles allows traditional ink formulation and screen-printing to be used while still providing benefits of nanoparticles such as increased porosity and lower sintering temperatures. SOFC anodes were produced by impregnating ceria–gadolinia (CGO) scaffolds with nickel nitrate solution. The scaffolds were produced from inks containing a mixture of hydrothermally-synthesised nanoparticle CGO, commercial CGO and polymericmore » pore formers. The scaffolds were heat-treated at either 1000 or 1300 °C, and were mechanically stable. In situ ultra-small X-ray scattering (USAXS) shows that the nanoparticles begin sintering around 900–1000 °C. Analysis by USAXS and scanning electron microscopy (SEM) revealed that the low temperature heat-treated scaffolds possessed higher porosity. Impregnated scaffolds were used to produce symmetrical cells, with the lower temperature heat-treated scaffolds showing improved gas diffusion, but poorer charge transfer. Using these scaffolds, lower temperature heat-treated cells of Ni–CGO/200 μm YSZ/CGO-LSCF performed better at 700 °C (and below) in hydrogen, and performed better at all temperatures using syngas, with power densities of up to 0.15 W cm-2 at 800 °C. This approach has the potential to allow the use of a wider range of materials and finer control over microstructure.« less

  14. Nanoparticle scaffolds for syngas-fed solid oxide fuel cells

    SciTech Connect (OSTI)

    Boldrin, Paul; Ruiz-Trejo, Enrique; Yu, Jingwen; Gruar, Robert I.; Tighe, Christopher J.; Chang, Kee-Chul; Ilavsky, Jan; Darr, Jawwad A.; Brandon, Nigel

    2014-12-17

    Incorporation of nanoparticles into devices such as solid oxide fuel cells (SOFCs) may provide benefits such as higher surface areas or finer control over microstructure. However, their use with traditional fabrication techniques such as screen-printing is problematic. Here, we show that mixing larger commercial particles with nanoparticles allows traditional ink formulation and screen-printing to be used while still providing benefits of nanoparticles such as increased porosity and lower sintering temperatures. SOFC anodes were produced by impregnating ceria–gadolinia (CGO) scaffolds with nickel nitrate solution. The scaffolds were produced from inks containing a mixture of hydrothermally-synthesised nanoparticle CGO, commercial CGO and polymeric pore formers. The scaffolds were heat-treated at either 1000 or 1300 °C, and were mechanically stable. In situ ultra-small X-ray scattering (USAXS) shows that the nanoparticles begin sintering around 900–1000 °C. Analysis by USAXS and scanning electron microscopy (SEM) revealed that the low temperature heat-treated scaffolds possessed higher porosity. Impregnated scaffolds were used to produce symmetrical cells, with the lower temperature heat-treated scaffolds showing improved gas diffusion, but poorer charge transfer. Using these scaffolds, lower temperature heat-treated cells of Ni–CGO/200 μm YSZ/CGO-LSCF performed better at 700 °C (and below) in hydrogen, and performed better at all temperatures using syngas, with power densities of up to 0.15 W cm-2 at 800 °C. This approach has the potential to allow the use of a wider range of materials and finer control over microstructure.

  15. Calling All Fuel Cells | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Calling All Fuel Cells Calling All Fuel Cells December 7, 2012 - 4:31pm Addthis Altergy had more than 60 fuel cells in the immediate Hurricane Sandy disaster area that acted as backup power for cell phone towers. | Photo courtesy of Altergy. Altergy had more than 60 fuel cells in the immediate Hurricane Sandy disaster area that acted as backup power for cell phone towers. | Photo courtesy of Altergy. Sunita Satyapal Director, Fuel Cell Technologies Office What is a fuel cell? A fuel cell is a

  16. Overview of DOE Hydrogen and Fuel Cell Activities: 2010 Gordon...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    DOE Hydrogen and Fuel Cell Activities: 2010 Gordon Research Conference on Fuel Cells Overview of DOE Hydrogen and Fuel Cell Activities: 2010 Gordon Research Conference on Fuel ...

  17. Moving toward a commercial market for hydrogen fuel cell vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Moving toward a commercial market for hydrogen fuel cell vehicles Moving toward a commercial market for hydrogen fuel cell vehicles Fuel cell vehicles and fueling stations PDF icon ...

  18. DAVID Fuel Cell Components SL | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    manufacture and marketing of components and devices for PEM fuel cells, direct methanol fuel cells (DMFC) and fuel reformers. References: DAVID Fuel Cell Components SL1...

  19. Double interconnection fuel cell array

    DOE Patents [OSTI]

    Draper, R.; Zymboly, G.E.

    1993-12-28

    A fuel cell array is made, containing number of tubular, elongated fuel cells which are placed next to each other in rows (A, B, C, D), where each cell contains inner electrodes and outer electrodes, with solid electrolyte between the electrodes, where the electrolyte and outer electrode are discontinuous, having two portions, and providing at least two opposed discontinuities which contain at least two oppositely opposed interconnections contacting the inner electrode, each cell having only three metallic felt electrical connectors which contact surrounding cells, where each row is electrically connected to the other. 5 figures.

  20. Double interconnection fuel cell array

    DOE Patents [OSTI]

    Draper, Robert; Zymboly, Gregory E.

    1993-01-01

    A fuel cell array (10) is made, containing number of tubular, elongated fuel cells (12) which are placed next to each other in rows (A, B, C, D), where each cell contains inner electrodes (14) and outer electrodes (18 and 18'), with solid electrolyte (16 and 16') between the electrodes, where the electrolyte and outer electrode are discontinuous, having two portions, and providing at least two opposed discontinuities which contain at least two oppositely opposed interconnections (20 and 20') contacting the inner electrode (14), each cell (12) having only three metallic felt electrical connectors (22) which contact surrounding cells, where each row is electrically connected to the other.

  1. PEM/SPE fuel cell

    DOE Patents [OSTI]

    Grot, Stephen Andreas

    1998-01-01

    A PEM/SPE fuel cell including a membrane-electrode assembly (MEA) having a plurality of oriented filament embedded the face thereof for supporting the MEA and conducting current therefrom to contiguous electrode plates.

  2. Metrology for Fuel Cell Manufacturing

    SciTech Connect (OSTI)

    Stocker, Michael; Stanfield, Eric

    2015-02-04

    The project was divided into three subprojects. The first subproject is Fuel Cell Manufacturing Variability and Its Impact on Performance. The objective was to determine if flow field channel dimensional variability has an impact on fuel cell performance. The second subproject is Non-contact Sensor Evaluation for Bipolar Plate Manufacturing Process Control and Smart Assembly of Fuel Cell Stacks. The objective was to enable cost reduction in the manufacture of fuel cell plates by providing a rapid non-contact measurement system for in-line process control. The third subproject is Optical Scatterfield Metrology for Online Catalyst Coating Inspection of PEM Soft Goods. The objective was to evaluate the suitability of Optical Scatterfield Microscopy as a viable measurement tool for in situ process control of catalyst coatings.

  3. CLIMATE CHANGE FUEL CELL PROGRAM

    SciTech Connect (OSTI)

    Mike Walneuski

    2004-09-16

    ChevronTexaco has successfully operated a 200 kW PC25C phosphoric acid fuel cell power plant at the corporate data center in San Ramon, California for the past two years and seven months following installation in December 2001. This site was chosen based on the ability to utilize the combined heat (hot water) and power generation capability of this modular fuel cell power plant in an office park setting . In addition, this project also represents one of the first commercial applications of a stationary fuel cell for a mission critical data center to assess power reliability benefits. This fuel cell power plant system has demonstrated outstanding reliability and performance relative to other comparably sized cogeneration systems.

  4. PEM/SPE fuel cell

    DOE Patents [OSTI]

    Grot, S.A.

    1998-01-13

    A PEM/SPE fuel cell is described including a membrane-electrode assembly (MEA) having a plurality of oriented filament embedded the face thereof for supporting the MEA and conducting current therefrom to contiguous electrode plates. 4 figs.

  5. Additive Manufacturing for Fuel Cells

    Energy.gov [DOE]

    Blake Marshall, AMO's lead for Additive Manufacturing Technologies, will provide an overview of current R&D activities in additive manufacturing and its application to fuel cell prototyping and...

  6. FUNDAMENTAL STUDIES OF THE DURABILITY OF MATERIALS FOR INTERCONNECTS IN SOLID OXIDE FUEL CELLS

    SciTech Connect (OSTI)

    Frederick S. Pettit; Gerald H. Meier

    2003-06-30

    This report describes the result of the first eight months of effort on a project directed at improving metallic interconnect materials for solid oxide fuel cells (SOFCs). The results include cyclic oxidation studies of a group of ferritic alloys, which are candidate interconnect materials. The exposures have been carried out in simulated fuel cell atmospheres. The oxidation morphologies have been characterized and the ASR has been measured for the oxide scales. The effect of fuel cell electric current density on chromia growth rates has been considered The thermomechanical behavior of the scales has been investigated by stress measurements using x-ray diffraction and interfacial fracture toughness measurements using indentation. The ultimate goal of this thrust is to use knowledge of changes in oxide thickness, stress and adhesion to develop accelerated testing methods for evaluating SOFC interconnect alloys. Finally a theoretical assessment of the potential for use of ''new'' metallic materials as interconnect materials has been conducted and is presented in this report. Alloys being considered include materials based on pure nickel, materials based on the ''Invar'' concept, and coated materials to optimize properties in both the anode and cathode gases.

  7. Hydrogen and Fuel Cells Program Overview: Hydrogen and Fuel Cells 2011

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    International Conference | Department of Energy Hydrogen and Fuel Cells 2011 International Conference Hydrogen and Fuel Cells Program Overview: Hydrogen and Fuel Cells 2011 International Conference Presentation by Sunita Satyapal at the Hydrogen and Fuel Cells 2011 International Conference on May 17, 2011. Hydrogen and Fuel Cells Program Overview (3.21 MB) More Documents & Publications Fuel Cell Technologies Program - DOD-DOE Workshop: Shipboard APUs Overview DOE Fuel Cell Technologies

  8. Fuel Cell Hybrid Bus Lands at Hickam AFB: Hydrogen Fuel Cell &

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Infrastructure Technologies Program, Fuel Cell Bus Demonstration Project (Fact Sheet) | Department of Energy Hybrid Bus Lands at Hickam AFB: Hydrogen Fuel Cell & Infrastructure Technologies Program, Fuel Cell Bus Demonstration Project (Fact Sheet) Fuel Cell Hybrid Bus Lands at Hickam AFB: Hydrogen Fuel Cell & Infrastructure Technologies Program, Fuel Cell Bus Demonstration Project (Fact Sheet) Fact sheet describes the initiation of NREL's evaluation of a fuel cell hybrid electric bus

  9. DOE Fuel Cell Technologies Program Record, Record # 11003, Fuel Cell Stack

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Durability | Department of Energy Program Record, Record # 11003, Fuel Cell Stack Durability DOE Fuel Cell Technologies Program Record, Record # 11003, Fuel Cell Stack Durability Dated May 3, 2012, this program record from the U.S. Department of Energy focuses on fuel cell stack durability. 11003_fuel_cell_stack_durability.pdf (256.72 KB) More Documents & Publications US DRIVE Fuel Cell Technical Team Roadmap Advanced Cathode Catalysts and Supports for PEM Fuel Cells Overview of DOE

  10. Fuel Cell Power (FCPower) Model

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    (FCPower) Model (National Renewable Energy Laboratory) Objectives Serve as a financial tool for analyzing high-temperature, fuel cell-based tri- generation systems. 1 Key Attributes & Strengths Evaluates integration of building electricity and heat energy flows with hydrogen production. Performs hourly energy analysis and detailed grid time of use cost evaluations, which then feed into a discounted cash flow evaluation. Ability to analyze several fuel cell technologies: molten carbonate,

  11. Stationary Fuel Cell Evaluation (Presentation)

    SciTech Connect (OSTI)

    Kurtz, J.; Wipke, K.; Sprik, S.; Ramsden, T.; Ainscough, C.

    2012-05-01

    This powerpoint presentation discusses its objectives: real world operation data from the field and state-of-the-art lab; collection; analysis for independent technology validation; collaboration with industry and end users operating stationary fuel cell systems and reporting on technology status, progress and technical challenges. The approach and accomplishments are: A quarterly data analysis and publication of first technical stationary fuel cell composite data products (data through June 2012).

  12. Variable area fuel cell cooling

    DOE Patents [OSTI]

    Kothmann, Richard E.

    1982-01-01

    A fuel cell arrangement having cooling fluid flow passages which vary in surface area from the inlet to the outlet of the passages. A smaller surface area is provided at the passage inlet, which increases toward the passage outlet, so as to provide more uniform cooling of the entire fuel cell. The cooling passages can also be spaced from one another in an uneven fashion.

  13. Supplier Perspectives: Fuel Cell Future

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Commercial Confidential Fuel Cell Future September 27 th 2016 Christopher.Johnson@Ballard.com Page 2 Commercial Confidential Agenda * Ballard Overview * Market Leadership * Growing Demand for FC buses * Working Together * Conclusions Page 3 Commercial Confidential Commercial Confidential We Are Ballard Power Systems We are Ballard Power making a meaningful difference with our fuel cell technology that will continue long into the future... * 37 years of experience * 21 years listed on NASDAQ *

  14. Corrosion resistant PEM fuel cell

    DOE Patents [OSTI]

    Li, Yang; Meng, Wen-Jin; Swathirajan, Swathy; Harris, Stephen Joel; Doll, Gary Lynn

    2001-07-17

    The present invention contemplates a PEM fuel cell having electrical contact elements (including bipolar plates/septums) comprising a titanium nitride coated light weight metal (e.g., Al or Ti) core, having a passivating, protective metal layer intermediate the core and the titanium nitride. The protective layer forms a barrier to further oxidation/corrosion when exposed to the fuel cell's operating environment. Stainless steels rich in CR, Ni, and Mo are particularly effective protective interlayers.

  15. Corrosion resistant PEM fuel cell

    DOE Patents [OSTI]

    Li, Yang; Meng, Wen-Jin; Swathirajan, Swathy; Harris, Stephen J.; Doll, Gary L.

    1997-01-01

    The present invention contemplates a PEM fuel cell having electrical contact elements (including bipolar plates/septums) comprising a titanium nitride coated light weight metal (e.g., Al or Ti) core, having a passivating, protective metal layer intermediate the core and the titanium nitride. The protective layer forms a barrier to further oxidation/corrosion when exposed to the fuel cell's operating environment. Stainless steels rich in CR, Ni, and Mo are particularly effective protective interlayers.

  16. Corrosion resistant PEM fuel cell

    DOE Patents [OSTI]

    Li, Yang; Meng, Wen-Jin; Swathirajan, Swathy; Harris, Stephen Joel; Doll, Gary Lynn

    2002-01-01

    The present invention contemplates a PEM fuel cell having electrical contact elements (including bipolar plates/septums) comprising a titanium nitride coated light weight metal (e.g., Al or Ti) core, having a passivating, protective metal layer intermediate the core and the titanium nitride. The protective layer forms a barrier to further oxidation/corrosion when exposed to the fuel cell's operating environment. Stainless steels rich in CR, Ni, and Mo are particularly effective protective interlayers.

  17. How Fuel Cells Work | Department of Energy

    Energy.gov (indexed) [DOE]

    0 likes How Fuel Cells Work Fuel cells produce electrical power without any combustion and operate on fuels like hydrogen, natural gas and propane. This clean energy technology can ...

  18. Fuel Cell Today | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Today Jump to: navigation, search Name: Fuel Cell Today Place: London, United Kingdom Zip: EC1N 8EE Product: Fuel Cell Today is a online information service for the global fuel...

  19. Say hello to cheaper hydrogen fuel cells

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Say hello to cheaper hydrogen fuel cells Say hello to cheaper hydrogen fuel cells Laboratory scientists have developed a way to avoid the use of expensive platinum in hydrogen fuel ...

  20. BCS Fuel Cells | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    BCS Fuel Cells Jump to: navigation, search Name: BCS Fuel Cells Place: Bryan, Texas Zip: TX 77801 Product: A privately held corporation from Texas, BCS is a developer of PEM fuel...