National Library of Energy BETA

Sample records for forgings metal stampings

  1. Forging and stamping nonferrous metals. Handbook

    SciTech Connect

    Korneyev, N.I.; Arzhakov, V.M.; Barmashenko, B.G.; Yemelyanov, V.B.; Kleymenov, V.Y.

    1984-05-01

    Information on the chemical composition, the physical and mechanical properties, the thermomechanical parameters, and the processes of forging and stamping nonferrous metals is given. Aluminum, magnesium and titanium are among the metals discussed.

  2. Sheet metal stamping die design for warm forming

    DOEpatents

    Ghosh, Amit K.

    2003-04-22

    In metal stamping dies, by taking advantage of improved material flow by selectively warming the die, flat sections of the die can contribute to the flow of material throughout the workpiece. Local surface heating can be accomplished by placing a heating block in the die. Distribution of heating at the flat lower train central regions outside of the bend region allows a softer flow at a lower stress to enable material flow into the thinner, higher strain areas at the bend/s. The heating block is inserted into the die and is powered by a power supply.

  3. FORGE Webinar

    Energy.gov [DOE]

    The Energy Department presented a live webinar on the FORGE funding opportunity announcement (FOA) on Tuesday, August 5, 2014, focusing on the Energy Department’s $31 million funding solicitation,...

  4. Milford, Utah FORGE Logo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Logo Milford, Utah FORGE Logo Milford, Utah FORGE Logo More Documents & Publications Milford, Utah FORGE Logo Milford, Utah FORGE Map Milford, Utah FORGE Logo West Flank FORGE Logo Milford, Utah FORGE Logo Newberry FORGE Logo

  5. FORGE Phase Infographic | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    FORGE Phase Infographic FORGE Phase Infographic FORGE Phase Infographic More Documents & Publications Multimedia FORGE Infographic FORGE Phase Infographic EERE Strategic Plan Infographic

  6. ARM - Instrument - stamp

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    govInstrumentsstamp Documentation STAMP : Handbook ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : Soil Temperature and Moisture Profiles (STAMP) Instrument Categories Surface/Subsurface Properties Output Datastreams stamp : Soil Temperature and Moisture Profiles stamppcp : Soil Temperature and Moisture Profiling system Rain Gauges Primary Measurements The following measurements are those considered

  7. ARM - Datastreams - stamp

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Datastream : STAMP Soil Temperature and Moisture Profiles Active Dates 2016.02.22 - 2016.06.02 Measurement Categories Surface Properties Originating Instrument Soil Temperature and ...

  8. FORGE Home | Department of Energy

    Energy.gov [DOE] (indexed site)

    FORGE Teams Selected FORGE FOA is Closed FORGE FOA Webinar is Available More News Stay Updated Sign up to receive updates on FORGE news and developments as we move into Phase...

  9. Milford, Utah FORGE Map | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Map Milford, Utah FORGE Map Milford, Utah FORGE Map More Documents & Publications Milford, Utah FORGE Map Milford, Utah FORGE Logo University of Utah Phase 1 Report Milford, Utah FORGE Map Newberry FORGE Map

  10. Enhancement of Aluminum Alloy Forgings through Rapid Billet Heating

    SciTech Connect

    Kervick, R.; Blue, C. A.; Kadolkar, P. B.; Ando, T.; Lu, H.; Nakazawa, K.; Mayer, H.; Mochnal, G.

    2006-06-01

    Forging is a manufacturing process in which metal is pressed, pounded or squeezed under great pressure and, often, under high strain rates into high-strength parts known as forgings. The process is typically performed hot by preheating the metal to a desired temperature before it is worked. The forging process can create parts that are stronger than those manufactured by any other metal working process. Forgings are almost always used where reliability and human safety are critical. Forgings are normally component parts contained inside assembled items such airplanes, automobiles, tractors, ships, oil drilling equipment, engines missiles, and all kinds of capital equipment Forgings are stronger than castings and surpass them in predictable strength properties, producing superior strength that is assured, part to part.

  11. FORGE Home | Department of Energy

    Energy Saver

    FORGE Home The Energy Department envisions Frontier Observatory for Research in Geothermal Energy (FORGE) as a dedicated site where scientists and engineers will be able to...

  12. Rapid thermal processing by stamping

    DOEpatents

    Stradins, Pauls; Wang, Qi

    2013-03-05

    A rapid thermal processing device and methods are provided for thermal processing of samples such as semiconductor wafers. The device has components including a stamp (35) having a stamping surface and a heater or cooler (40) to bring it to a selected processing temperature, a sample holder (20) for holding a sample (10) in position for intimate contact with the stamping surface; and positioning components (25) for moving the stamping surface and the stamp (35) in and away from intimate, substantially non-pressured contact. Methods for using and making such devices are also provided. These devices and methods allow inexpensive, efficient, easily controllable thermal processing.

  13. Snake River Geothermal Consortium FORGE Logo | Department of Energy

    Energy.gov [DOE] (indexed site)

    Logo More Documents & Publications Snake River Geothermal Consortium FORGE Logo Snake River Geothermal Consortium FORGE Map Snake River Geothermal Consortium FORGE Logo Milford, Utah FORGE Logo Snake River Geothermal Consortium FORGE Logo West Flank FORGE Logo

  14. Superplastic forging nitride ceramics

    DOEpatents

    Panda, Prakash C.; Seydel, Edgar R.; Raj, Rishi

    1988-03-22

    The invention relates to producing relatively flaw free silicon nitride ceramic shapes requiring little or no machining by superplastic forging This invention herein was made in part under Department of Energy Grant DE-AC01-84ER80167, creating certain rights in the United States Government. The invention was also made in part under New York State Science and Technology Grant SB1R 1985-10.

  15. FORGE Home | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    FORGE Home The Energy Department envisions Frontier Observatory for Research in Geothermal Energy (FORGE) as a dedicated site where scientists and engineers will be able to develop, test, and accelerate breakthroughs in enhanced geothermal system (EGS) technologies and techniques. The Energy Department envisions Frontier Observatory for Research in Geothermal Energy (FORGE) as a dedicated site where scientists and engineers will be able to develop, test, and accelerate breakthroughs in enhanced

  16. FORGE News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    News FORGE News November 18, 2015 Road Tripping through the Geothermal Frontier April 27, 2015 Energy Department Announces Project Selections in First Phase of Cutting-Edge ...

  17. FORGE Home | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    in Geothermal Energy (FORGE) as a dedicated site where scientists and engineers will be able to develop, test, and accelerate breakthroughs in enhanced geothermal system ...

  18. Forging of compressor blades: Temperature and ram velocity effects

    SciTech Connect

    Saigal, A.; Zhen, K.; Chan, T.S.

    1995-07-01

    Forging is one of the most widely used manufacturing process for making high-strength, structurally integrated, impact and creep-resistant Ti-6Al-4V compressor blades for jet engines. In addition, in modern metal forming technology, finite element analysis method and computer modeling are being extensively employed for initial evaluation and optimization of various processes, including forging. In this study, DEFORM, a rigid viscoplastic two-dimensional finite element code was used to study the effects of initial die temperature and initial ram velocity on the forging process. For a given billet, die temperature and ram velocity influence the strain rate, temperature distribution,and thus the flow stress of the material. The die temperature and the ram velocity were varied over the range 300 to 700 F and 15--25 in./sec, respectively, to estimate the maximum forging load and the total energy required to forge compressor blades. The ram velocity was assumed to vary linearly as a function of stroke. Based on the analysis,it was found the increasing the die temperature from 300 to 700 F decreases the forging loads by 19.9 percent and increases the average temperature of the workpiece by 43 F. Similarly, increasing the initial ram velocity from 15 to 25 in./sec decreases the forging loads by 25.2 percent and increases the average temperature of the workpiece by 36 F. The nodal temperature distribution is bimodal in each case. The forging energy required to forge the blades is approximately 18 kips *in./in.

  19. FORGE Background & Updates | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    FORGE Background & Updates FORGE Background & Updates FORGE Background & Updates FORGE's mission is to enable cutting-edge research and drilling and technology testing, as well as to allow scientists to identify a replicable, commercial pathway to EGS. In addition to the site itself, the FORGE effort will include a robust instrumentation, data collection, and data dissemination component to capture and share data and activities occurring at FORGE in real time. The innovative

  20. Valley Forge Corporate Center

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    55 Jefferson Ave. Valley Forge Corporate Center Norristown, PA 19403-2497 Pauline Foley Assistant General Counsel 610.666.8248 | Fax - 610.666.8211 foleyp@pjm.com October 30, 2013 Via Electronic Mail: juliea.smith@hq.doe.gov Christopher.lawrence@hq.doe.gov Julie A. Smith Office of Electricity Delivery and Energy Reliability Mail Code: OE-20 U.S. Department of Energy 1000 Independence Avenue, SW Washington, D.C. 20585 Re: Department of Energy - Improving Performance of Federal Permitting and

  1. Superplastic forging nitride ceramics

    DOEpatents

    Panda, P.C.; Seydel, E.R.; Raj, R.

    1988-03-22

    A process is disclosed for preparing silicon nitride ceramic parts which are relatively flaw free and which need little or no machining, said process comprising the steps of: (a) preparing a starting powder by wet or dry mixing ingredients comprising by weight from about 70% to about 99% silicon nitride, from about 1% to about 30% of liquid phase forming additive and from 1% to about 7% free silicon; (b) cold pressing to obtain a preform of green density ranging from about 30% to about 75% of theoretical density; (c) sintering at atmospheric pressure in a nitrogen atmosphere at a temperature ranging from about 1,400 C to about 2,200 C to obtain a density which ranges from about 50% to about 100% of theoretical density and which is higher than said preform green density, and (d) press forging workpiece resulting from step (c) by isothermally uniaxially pressing said workpiece in an open die without initial contact between said workpiece and die wall perpendicular to the direction of pressing and so that pressed workpiece does not contact die wall perpendicular to the direction of pressing, to substantially final shape in a nitrogen atmosphere utilizing a temperature within the range of from about 1,400 C to essentially 1,750 C and strain rate within the range of about 10[sup [minus]7] to about 10[sup [minus]1] seconds[sup [minus]1], the temperature and strain rate being such that surface cracks do not occur, said pressing being carried out to obtain a shear deformation greater than 30% whereby superplastic forging is effected.

  2. FORGE is an EGS laboratory

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    FORGE is an EGS laboratory where the subsurface scientific community can test and improve ... The injection of fluid into the hot rocks enhances the size and connectivity of fluid ...

  3. Large forging manufacturing process

    DOEpatents

    Thamboo, Samuel V.; Yang, Ling

    2002-01-01

    A process for forging large components of Alloy 718 material so that the components do not exhibit abnormal grain growth includes the steps of: a) providing a billet with an average grain size between ASTM 0 and ASTM 3; b) heating the billet to a temperature of between 1750.degree. F. and 1800.degree. F.; c) upsetting the billet to obtain a component part with a minimum strain of 0.125 in at least selected areas of the part; d) reheating the component part to a temperature between 1750.degree. F. and 1800.degree. F.; e) upsetting the component part to a final configuration such that said selected areas receive no strains between 0.01 and 0.125; f) solution treating the component part at a temperature of between 1725.degree. F. and 1750.degree. F.; and g) aging the component part over predetermined times at different temperatures. A modified process achieves abnormal grain growth in selected areas of a component where desirable.

  4. Snake River Geothermal Consortium FORGE Map | Department of Energy

    Energy.gov [DOE] (indexed site)

    Map More Documents & Publications Snake River Geothermal Consortium FORGE Map Snake River Geothermal Consortium FORGE Logo Idaho National Laboratory Phase 1 Report Snake River Geothermal Consortium FORGE Map Milford, Utah FORGE Map

  5. Research into Oil-based Colloidal-Graphite Lubricants for Forging of Al-based Alloys

    SciTech Connect

    Petrov, A.; Petrov, P.; Petrov, M.

    2011-05-04

    The presented paper describes the topical problem in metal forging production. It deals with the choice of an optimal lubricant for forging of Al-based alloys. Within the scope of the paper, the properties of several oil-based colloidal-graphite lubricants were investigated. The physicochemical and technological properties of these lubricants are presented. It was found that physicochemical properties of lubricant compositions have an influence on friction coefficient value and quality of forgings.The ring compression method was used to estimate the friction coefficient value. Hydraulic press was used for the test. The comparative analysis of the investigated lubricants was carried out. The forging quality was estimated on the basis of production test. The practical recommendations were given to choose an optimal oil-based colloidal-graphite lubricant for isothermal forging of Al-based alloy.

  6. Carbon nanotube substrates and catalyzed hot stamp for polishing and patterning the substrates

    DOEpatents

    Wang, Yuhuang; Hauge, Robert H.; Schmidt, Howard K.; Kim, Myung Jong; Kittrell, W. Carter

    2009-09-08

    The present invention is generally directed to catalyzed hot stamp methods for polishing and/or patterning carbon nanotube-containing substrates. In some embodiments, the substrate, as a carbon nanotube fiber end, is brought into contact with a hot stamp (typically at 200-800.degree. C.), and is kept in contact with the hot stamp until the morphology/patterns on the hot stamp have been transferred to the substrate. In some embodiments, the hot stamp is made of material comprising one or more transition metals (Fe, Ni, Co, Pt, Ag, Au, etc.), which can catalyze the etching reaction of carbon with H.sub.2, CO.sub.2, H.sub.2O, and/or O.sub.2. Such methods can (1) polish the carbon nanotube-containing substrate with a microscopically smooth finish, and/or (2) transfer pre-defined patterns from the hot stamp to the substrate. Such polished or patterned carbon nanotube substrates can find application as carbon nanotube electrodes, field emitters, and field emitter arrays for displays and electron sources.

  7. High-energy rate forgings of wedges :

    SciTech Connect

    Reynolds, Thomas Bither; Everhart, Wesley; Switzner, Nathan T; Balch, Dorian K.; San Marchi, Christopher W.

    2014-05-01

    The wedge geometry is a simple geometry for establishing a relatively constant gradient of strain in a forged part. The geometry is used to establish gradients in microstructure and strength as a function of strain, forging temperature, and quenching time after forging. This geometry has previously been used to benchmark predictions of strength and recrystallization using Sandias materials model for type 304L austenitic stainless steel. In this report, the processing conditions, in particular the times to forge and quench the forged parts, are summarized based on information recorded during forging on June 18, 2013 of the so-called wedge geometry from type 316L and 21Cr-6Ni-9Mn austenitic stainless steels.

  8. FORGE Site FOA | Department of Energy

    Office of Environmental Management (EM)

    Site FOA FORGE Site FOA How to Get Involved Web Phase Graphic - seguoe.png Closed Funding Opportunities The full application material for Frontier Observatory for Research in ...

  9. Enhancement of Aluminum Alloy Forgings Using Rapid Infrared Heating...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    and industry partners, Queen City Forging Company and Infra Red Heating Technologies LLC, have developed a process for forging aluminum parts using infrared (IR) technology. ...

  10. Reactor pressure vessel with forged nozzles

    DOEpatents

    Desai, Dilip R.

    1993-01-01

    Inlet nozzles for a gravity-driven cooling system (GDCS) are forged with a cylindrical reactor pressure vessel (RPV) section to which a support skirt for the RPV is attached. The forging provides enhanced RPV integrity around the nozzle and substantial reduction of in-service inspection costs by eliminating GDCS nozzle-to-RPV welds.

  11. Nitrided Metallic Bipolar Plates

    SciTech Connect

    Brady, Michael P; Toops, Todd J; Tortorelli, Peter F; More, Karren Leslie; Meyer III, Harry M; Pihl, Josh A; Wang, Heli; Turner, John; Garzon, Fernando; Rockward, Tommy; Gervasio, Don; Rakowski, Jim; EstevezGenCell, Francisco

    2010-01-01

    Effort devoted to scale up and demonstration of thin stamped metallic bipolar plates. Overall goal is to demonstrate potential for metallic bipolar plates to meet 5000 h automotive durability goal at a cost of less than $5/kW.

  12. West Flank Cosa, CA FORGE Test Area

    SciTech Connect

    Doug Blankenship

    2015-11-15

    A map with the Coso West Flank FORGE test area outlined, along with regional seismicity, the aeromagnetic data set and the area currently being utilized for the creation of the 3D model.

  13. FORGE: The Next Frontier of Renewable Energy

    Energy.gov [DOE]

    The Energy Department recently announced the teams selected for negotiation for Phase 1 of the Frontier Observatory for Research in Geothermal Energy (FORGE), a dedicated site where researchers can develop and test enhanced geothermal system technologies.

  14. Official Use Only Stamp with Directions | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Official Use Only Stamp with Directions Official Use Only Stamp with Directions The front marking is placed on the front page of unclassified documents that contain Official Use Only information. The document below contains a sample that may be copied and pasted to your electronic file to indicate the document contains OUO information. OUO-Stamp-Form-with-Directions.docx (22.21 KB) More Documents & Publications Presentation, Marking OUO Documents - June 2014 Briefing, DOE's Official Use Only

  15. West Flank Coso FORGE: ArcGIS data

    SciTech Connect

    Doug Blankenship

    2015-12-21

    Geologic ArcGIS data of West Flank Coso, Ca FORGE site from a unpublished map by Rich Whitmarsh. The zip file includes a DEM, hillshade and four shapefiles of the general outlines of FORGE area.

  16. Auto/Steel Partnership: AHSS Stamping, Strain Rate Characterization...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    AHSS Stamping, Strain Rate Characterization, Sheet Steel Fatigue, AHSS Joining AutoSteel ... More Documents & Publications AutoSteel Partnership: Fatigue of AHSS Strain Rate ...

  17. FORGE Notice Of Intent | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    FORGE Notice Of Intent FORGE Notice Of Intent July 17, 2014 - 2:59pm Addthis Open Date: 07/17/2014 Close Date: 11/12/2014 Selection Announcement: 2015-04-27 Funding Organization: Department of Energy Geothermal Technologies Office Funding Number: DE-FOA-0001091 Summary: The U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) intends to issue, on behalf of the Geothermal Technologies Office, DE-FOA-0000890, a Funding Opportunity Announcement (FOA) entitled

  18. Frontier Observatory for Research in Geothermal Energy (FORGE) | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Frontier Observatory for Research in Geothermal Energy (FORGE) Frontier Observatory for Research in Geothermal Energy (FORGE) July 17, 2014 - 2:59pm Addthis Open Date: 07/17/2014 Close Date: 10/01/2014 Funding Organization: U.S. Department of Energy Summary: The objective of this announcement is to establish a dedicated Enhanced Geothermal Systems (EGS) field laboratory called the Frontier Observatory for Research in Geothermal Energy (FORGE). FORGE is envisioned as a dedicated

  19. RAPID FREEFORM SHEET METAL FORMING: TECHNOLOGY DEVELOPMENT AND...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    build, and commissioning of a RApid Freeform sheet metal Forming Technology (RAFFT) that eliminates stamping and forming dies that will enable rapid prototyping for vehicle ...

  20. Geothermal Energy and FORGE Program Current Outlook

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Geothermal Technologies Office Current Outlook Courtesy Ben Phillips Geothermal Resource Council Annual Meeting September 2015 2 Energy Efficiency & Renewable Energy eere.energy.gov GTO Major Initiatives EGS HRC SALT Accelerate EGS * Build upon R&D and demonstration project successes * EGS Integrated R&D FOA * Frontier Observatory for Research in Geothermal Energy (FORGE) FOA kicked off New Geothermal Opportunities * Play Fairway Analysis * Pathway to next-step drilling validation

  1. Energy Department Hosts FORGE Webinar and Resource Reporting Methodology

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Workshop at the Upcoming National Geothermal Summit, August 4-5 | Department of Energy Hosts FORGE Webinar and Resource Reporting Methodology Workshop at the Upcoming National Geothermal Summit, August 4-5 Energy Department Hosts FORGE Webinar and Resource Reporting Methodology Workshop at the Upcoming National Geothermal Summit, August 4-5 July 29, 2014 - 1:34pm Addthis Energy Department Hosts FORGE Webinar and Resource Reporting Methodology Workshop at the Upcoming National Geothermal

  2. Facile stamp patterning method for superhydrophilic/superhydrophobic surfaces

    SciTech Connect

    Lyu, Sungnam Hwang, Woonbong

    2015-11-16

    Patterning techniques are essential to many research fields such as chemistry, biology, medicine, and micro-electromechanical systems. In this letter, we report a simple, fast, and low-cost superhydrophobic patterning method using a superhydrophilic template. The technique is based on the contact stamping of the surface during hydrophobic dip coating. Surface characteristics were measured using scanning electron microscopy and energy-dispersive X-ray spectroscopic analysis. The results showed that the hydrophilic template, which was contacted with the stamp, was not affected by the hydrophobic solution. The resolution study was conducted using a stripe shaped stamp. The patterned line was linearly proportional to the width of the stamp line with a constant narrowing effect. A surface with regions of four different types of wetting was fabricated to demonstrate the patterning performance.

  3. West Flank Coso FORGE: well photos and notes

    SciTech Connect

    Doug Blankenship

    2015-12-21

    Photos and detailed down-hole lithology notes for wells CGEH-1 and 74-2 at the West Flank Coso, Ca FORGE location.

  4. Computer-assisted Rheo-forging Processing of A356 Aluminum Alloys

    SciTech Connect

    Kim, H. H. [Department of Mechanical and Precision Engineering, Pusan National University, Busan 609-735 (Korea, Republic of); Kang, C. G. [School of Mechanical Engineering, Pusan National University, Busan 609-735 (Korea, Republic of)

    2010-06-15

    Die casting process has been used widely for complex automotive products such as the knuckle, arm and etc. Generally, a part fabricated by casting has limited strength due to manufacturing defects by origin such as the dendrite structure and segregation. As an attempt to offer a solution to these problems, forging has been used as an alternative process. However, the forging process provides limited formability for complex shape products. Rheo-forging of metal offers not only superior mechanical strength but also requires significantly lower machine loads than solid forming processes. In order to produce semi-solid materials of the desired microstructure, a stirring process is applied during solidification of A356 aluminum molten state. This paper presents the results of an A356 aluminum alloy sample, which were obtained by experiment and by simulation using DEFORM 3D V6.1. Samples of metal parts were subsequently fabricated by using hydraulic press machinery. In order to compare the influence of loading method, two types of samples were fabricated: (1) samples fabricated under direct loading die sets (2) those fabricated under indirect loading die sets. The formability and defects, which were predicted by FEM simulation, were similar to those of samples used in practice.

  5. West Flank Coso, CA FORGE Seismic Reflection

    DOE Data Explorer

    Doug Blankenship

    2016-05-16

    PDFs of seismic reflection profiles 101,110, 111 local to the West Flank FORGE site. 45 line kilometers of seismic reflection data are processed data collected in 2001 through the use of vibroseis trucks. The initial analysis and interpretation of these data was performed by Unruh et al. (2001). Optim processed these data by inverting the P-wave first arrivals to create a 2-D velocity structure. Kirchhoff images were then created for each line using velocity tomograms (Unruh et al., 2001).

  6. Weldability and mechanical property characterization of weld clad alloy 800H tubesheet forging

    SciTech Connect

    King, J.F.; McCoy, H.E.

    1984-09-01

    The weldability of an alloy 800H forging that simulates a steam generator tubesheet is studied. Weldability was of concern because a wide range of microstructures was present in this forging. The top and portions of the bottom were weld clad with ERNiC-3 weld metal to a thickness of 19 mm similar to that anticipated for HTGR steam generators. Examinations of the clad fusion line in various regions revealed no weldability problems except possibly on the bottom portion, which contained large grains and some as-cast structure. A few microfissures were evident in this region, but no excessive hot cracking tendency was observed. The tensile properties in all areas of the clad forging were reasonable and not influenced greatly by the microstructure. The elevated-temperature tests showed strong tendency for fracture in the heat-affected zone of the alloy 800H. Creep failure at 649/sup 0/C consistently occurred in the heat-affected zone of the alloy 800H, but the creep strength exceeded the expected values for alloy 800H.

  7. Queen City Forging Company Revitalized by Lab Partnership | Department...

    Energy.gov [DOE] (indexed site)

    Director, Manufacturing Demonstration Facility) 1:20- The whole forging story out of Queen City was really born out of basic science. 1:34- we discovered through a rapid heating ...

  8. Forging a New Era-- Recapping the Tribal Energy Summit

    Energy.gov [DOE]

    Forging a new era of Department of Energy and tribal relations, more than 350 people, including representatives from 54 tribes across the continental United States, attended the May 4 and 5 Department of Energy Tribal Summit.

  9. DOE Announces Webinars on Geothermal FORGE Initiative, National Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Literacy Virtual Town Hall, and More | Department of Energy Geothermal FORGE Initiative, National Energy Literacy Virtual Town Hall, and More DOE Announces Webinars on Geothermal FORGE Initiative, National Energy Literacy Virtual Town Hall, and More July 31, 2014 - 9:52am Addthis EERE offers webinars to the public on a range of subjects, from adopting the latest energy efficiency and renewable energy technologies, to training for the clean energy workforce. Webinars are free; however,

  10. Tensile properties of irradiated and unirradiated welds of A533 steel plate and A508 forgings

    SciTech Connect

    Williams, J.A.

    1980-01-01

    The tensile properties of welds of base metals ASTM A533, Grade B, Class 1 steel plate and ASTM A508, Class 1 forgings were evaluated in irradiated (3 to 21 x 10/sup 18/ n/cm/sup 2/) and unirradiated conditions. Yield strength and ultimate strength both increased with increasing fluence, while small ductility losses were generally independent of fluence. Yield strength was found to be more sensitive to irradiation than ultimate strength for all welds. The strength and ductility responses to irradiation varied between the weld materials. These variations were attributed to differences in chemical constituents of the welds.

  11. Springback Reduction in Stamping of Front Side Member with a Response Surface Method

    SciTech Connect

    Song, Jung-Han; Huh, Hoon; Kim, Se-Ho; Park, Sung-Ho

    2005-08-05

    Springback is a common phenomenon in sheet metal forming since the elastic recovery of the internal stresses is induced after removal of the tooling. The numerical analysis of springback is a complicated time-consuming job and its result is greatly effected by a type of the yield function, finite elements used and the constraint condition for eliminating a rigid body motion. In this paper, optimization of the draw-bead force is carried out utilizing the response surface method in order to reduce springback and improve shape accuracy of a deep drawn product. In the optimization process, the tendency of springback is evaluated qualitatively without springback simulation usually done with the implicit solving scheme. Instead of springback simulation, the amount of stress deviation along the thickness direction in the deep drawn product is used as an indicator of springback. The stamping process is analyzed for a front side member formed with advanced high strength steel (AHSS) sheets such as DP60. The analysis procedure fully covers the binder-wrap, stamping, trimming and springback processes with the commercial elasto-plastic finite element code LS-DYNA 3D. The effect of the restraining force of draw-beads is confirmed with the decreased stress deviation. The analysis result shown in the final springback simulation demonstrates that the present analysis provides a guideline for controlling the evolution of springback based on the finite element simulation of complicated auto-body members.

  12. Snake River Plain FORGE Site Characterization Data

    DOE Data Explorer

    Robert Podgorney

    2016-04-18

    The site characterization data used to develop the conceptual geologic model for the Snake River Plain site in Idaho, as part of phase 1 of the Frontier Observatory for Research in Geothermal Energy (FORGE) initiative. This collection includes data on seismic events, groundwater, geomechanical models, gravity surveys, magnetics, resistivity, magnetotellurics (MT), rock physics, stress, the geologic setting, and supporting documentation, including several papers. Also included are 3D models (Petrel and Jewelsuite) of the proposed site. Data for wells INEL-1, WO-2, and USGS-142 have been included as links to separate data collections. These data have been assembled by the Snake River Geothermal Consortium (SRGC), a team of collaborators that includes members from national laboratories, universities, industry, and federal agencies, lead by the Idaho National Laboratory (INL). Other contributors include the National Renewable Energy Laboratory (NREL), Lawrence Livermore National Laboratory (LLNL), the Center for Advanced Energy Studies (CEAS), the University of Idaho, Idaho State University, Boise State University, University of Wyoming, University of Oklahoma, Energy and Geoscience Institute-University of Utah, US Geothermal, Baker Hughes Campbell Scientific Inc., Chena Power, US Geological Survey (USGS), Idaho Department of Water Resources, Idaho Geological Survey, and Mink GeoHydro.

  13. West Flank Coso FORGE Magnetotelluric 3D Data

    DOE Data Explorer

    Doug Blankenship

    2016-01-01

    This is the 3D version of the MT data for the West Flank FORGE area.The Coso geothermal field has had three Magnetotelluric (MT) datasets collected including surveys in 2003, 2006, and 2011. The final collection, in 2011, expanded the survey to the west and covers the West Flank of FORGE area.This most recent data set was collected by Schlumberger/WesternGeco and inverted by the WesternGeco GeoSolutions Integrated EM Center of Excellence in Milan, Italy; the 2003 and 2006 data were integrated for these inversions in the present study.

  14. AHSS Stamping Project … A/SP 050; Nonlinear Strain Paths Project...

    Energy.gov [DOE] (indexed site)

    KB) More Documents & Publications Nonlinear Strain Paths Advanced High-Strength Steel Stamping Characterization of Thermo-Mechanical Behaviors of Advanced High Strength ...

  15. Consideration on the scatter of cod and fatigue crack propagation characteristics of heavy section C-Mn-V forged steel for offshore structure

    SciTech Connect

    Fukuda, T.; Iwadate, T.; Shimazaki, M.

    1982-01-01

    A 197-mm thick C-Mn-V forged steel plate including welds was subjected to mechanical and corrosion-fatigue tests and several engineering data useful for the design of offshore structures were obtained. The chemical and mechanical properties of base metal and welds satisfy typical current requirements in the North Sea projects and the heavy wall forged tubular is proved to be applicable to the offshore structures. The scatter of critical cod in the transition temperature range was studied and a new statistical method was presented for estimating the lowest critical cod value. Corrosion-fatigure tests in seawater were conducted on the base metal and heat affected zone (HAZ) of submerged arc welding at a cyclic frequency corresponding to sea wave frequency. No difference in fatigue crack propagation rate was observed between the base metal and HAZ.

  16. West Flank Coso, CA FORGE ArcGIS data 2

    DOE Data Explorer

    Doug Blankenship

    2016-03-01

    archive of ArcGIS data from the West Flank FORGE site located in Coso, California. Archive contains: 8 shapefiles polygon of the 3D geologic model polylines of the traces 3D modeled faults polylines of the fault traces from Duffield and Bacon, 1980 polygon of the West Flank FORGE site polylines of the traces of the geologic cross-sections (cross-sections in a separate archive in the GDR) polylines of the traces of the seismic reflection profiles through and adjacent to the West Flank site (seismic reflection profiles in a separate archive in the GDR) points of the well collars in and around the West Flank site polylines of the surface expression of the West Flank well paths

  17. Informational Webinar: Frontier Observatory for Research in Geothermal Energy (FORGE) Funding Opportunity Announcement

    Energy.gov [DOE]

    The Energy Department will present a live webinar titled “Frontier Observatory for Research in Geothermal Energy (FORGE) Funding Opportunity Announcement Informational Webinar," focusing on the...

  18. Residual Stresses in 21-6-9 Stainless Steel Warm Forgings

    SciTech Connect

    Everhart, Wesley A.; Lee, Jordan D.; Broecker, Daniel J.; Bartow, John P.; McQueen, Jamie M.; Switzner, Nathan T.; Neidt, Tod M.; Sisneros, Thomas A.; Brown, Donald W.

    2012-11-14

    Forging residual stresses are detrimental to the production and performance of derived machined parts due to machining distortions, corrosion drivers and fatigue crack drivers. Residual strains in a 21-6-9 stainless steel warm High Energy Rate Forging (HERF) were measured via neutron diffraction. The finite element analysis (FEA) method was used to predict the residual stresses that occur during forging and water quenching. The experimentally measured residual strains were used to calibrate simulations of the three-dimensional residual stress state of the forging. ABAQUS simulation tools predicted residual strains that tend to match with experimental results when varying yield strength is considered.

  19. Do you have the correct Visa stamp for getting a SLAC badge?...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    from foreign countries should follow this advice to obtain the correct stamp on their passport in order to obtain a SLAC badge. For more detailed information on SLAC access and...

  20. Quenching and Partitioning Process Development to Replace Hot Stamping of High-Strength Automotive Steel

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Quenching and Partitioning Process ADVANCED MANUFACTURING OFFICE Quenching and Partitioning Process Development to Replace Hot Stamping of High-Strength Automotive Steel Novel Steel Heat Treatment Process to Produce Third Generation AHSS Allowing Room-Temperature Stamping Operations. The automotive industry is meeting the challenge of improving fuel effciency without compromising vehicle safety in part by using lighter-weight materials such as frst-generation Advanced High-Strength Steels

  1. New Independent Analysis Confirms Climate Bill Costs About a Postage Stamp

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    a Day | Department of Energy Independent Analysis Confirms Climate Bill Costs About a Postage Stamp a Day New Independent Analysis Confirms Climate Bill Costs About a Postage Stamp a Day August 4, 2009 - 12:00am Addthis Washington, D.C. - A new analysis by the independent, non-partisan Energy Information Agency confirms findings by earlier reports from the Congressional Budget Office and the Environmental Protection Agency that the Waxman-Markey energy and climate legislation will cost

  2. Friction and wear in hot forging of steels

    SciTech Connect

    Daouben, E.; Dubar, L.; Dubar, M.; Deltombe, R.; Dubois, A.; Truong-Dinh, N.; Lazzarotto, L.

    2007-04-07

    In the field of hot forging of steels, the mastering of wear phenomena enables to save cost production, especially concerning tools. Surfaces of tools are protected thanks to graphite. The existing lubrication processes are not very well known: amount and quality of lubricant, lubrication techniques have to be strongly optimized to delay wear phenomena occurrence. This optimization is linked with hot forging processes, the lubricant layers must be tested according to representative friction conditions. This paper presents the first part of a global study focused on wear phenomena encountered in hot forging of steels. The goal is the identification of reliable parameters, in order to bring knowledge and models of wear. A prototype testing stand developed in the authors' laboratory is involved in this experimental analysis. This test is called Warm and Hot Upsetting Sliding Test (WHUST). The stand is composed of a heating induction system and a servo-hydraulic system. Workpieces taken from production can be heated until 1200 deg. C. A nitrided contactor representing the tool is heated at 200 deg. C. The contactor is then coated with graphite and rubs against the workpiece, leaving a residual track on it. Friction coefficient and surface parameters on the contactor and the workpiece are the most representative test results. The surface parameters are mainly the sliding length before defects occurrence, and the amplitude of surface profile of the contactor. The developed methodology will be first presented followed by the different parts of the experimental prototype. The results of experiment show clearly different levels of performance according to different lubricants.

  3. Advanced steelmaking processes for rotor forgings. Final report

    SciTech Connect

    Steiner, J.E.; Busby, P.E.; Jaffee, R.I.; Murphy, E.L.; Newhouse, D.L.; Wriedt, H.A.

    1983-12-01

    A survey was conducted to assess the current status and trends in advanced steelmaking for the production of large low-alloy steel ingots for large steam-turbine and generator-rotor forgings. The study reviews the essential chemistry of steelmaking and describes the equipment and processes that are state of the art or in development. Pertinent emerging technologies are reviewed. Emphasis is on processes related to steel refining and the casting of large ingots. The advantages and limitations, effects on quality, and economics of the processes are discussed.

  4. Insulation from basaltic stamp sand. Final technical report

    SciTech Connect

    Williams, F. D.

    1981-04-01

    A Midwest Appropriate Technology Grant was awarded to determine the technical and economic feasibility of producing mineral-fiber insulation directly from extensive deposits of basaltic sand produced during former mining and milling operations in the Keweenaw Peninsula region of Michigan's Upper Peninsula. The amounts of local basaltic sands available and representative chemical compositions were determined. The variation of viscosity with temperature and chemical composition was estimated. Samples were melted and either pulled or blown into fiber. In all cases fiber could be made with a reasonable tensile strength to ensure usefulness. It was concluded that it was technically feasible to produce fibers from basaltic stamp sands of the Upper Peninsula of Michigan. A technical feasibility study using published data, a cost and design analysis of a basalt fiber production plant, a market survey of fiber needs, and an economic analysis for investing in a basalt fiber venture was undertaken. These studies concluded that the local production of basaltic insulation was both feasible and economically reasonable. It was suggested that the plant be located in a region of greater population density with lower utility costs. A representative one-third of these studies is included as appendices A, B, C, and D.

  5. HYDROGEN-ASSISTED FRACTURE IN FORGED TYPE 304L AUSTENITIC STAINLESS STEEL

    SciTech Connect

    Switzner, Nathan; Neidt, Ted; Hollenbeck, John; Knutson, J.; Everhart, Wes; Hanlin, R.; Bergen, R.; Balch, D. K.

    2012-09-06

    Austenitic stainless steels generally have good resistance to hydrogen-assisted fracture; however, structural designs for high-pressure gaseous hydrogen are constrained by the low strength of this class of material. Forging is used to increase the low strength of austenitic stainless steels, thus improving the efficiency of structural designs. Hydrogen-assisted racture, however, depends on microstructural details associated with manufacturing. In this study, hydrogen-assisted fracture of forged type 304L austenitic stainless steel is investigated. Microstructural variation in multi-step forged 304L was achieved by forging at different rates and temperatures, and by process annealing. High internal hydrogen content in forged type 304L austenitic stainless steel is achieved by thermal precharging in gaseous hydrogen and results in as much as 50% reduction of tensile ductility.

  6. Snake River Plain FORGE Well Data for WO-2

    DOE Data Explorer

    Robert Podgorney

    1991-07-29

    Well data for the WO-2 well located in eastern Snake River Plain, Idaho. This data collection includes lithology reports, borehole logs, temperature at depth data, neutron density and gamma data, and rock strength parameters for the WO-2 well. This collection of data has been assembled as part of the site characterization data used to develop the conceptual geologic model for the Snake River Plain site in Idaho, as part of phase 1 of the Frontier Observatory for Research in Geothermal Energy (FORGE) initiative. They were assembled by the Snake River Geothermal Consortium (SRGC), a team of collaborators that includes members from national laboratories, universities, industry, and federal agencies, lead by the Idaho National Laboratory (INL).

  7. Snake River Plain FORGE Well Data for INEL-1

    DOE Data Explorer

    Robert Podgorney

    1979-03-01

    Well data for the INEL-1 well located in eastern Snake River Plain, Idaho. This data collection includes caliper logs, lithology reports, borehole logs, temperature at depth data, neutron density and gamma data, full color logs, fracture analysis, photos, and rock strength parameters for the INEL-1 well. This collection of data has been assembled as part of the site characterization data used to develop the conceptual geologic model for the Snake River Plain site in Idaho, as part of phase 1 of the Frontier Observatory for Research in Geothermal Energy (FORGE) initiative. They were assembled by the Snake River Geothermal Consortium (SRGC), a team of collaborators that includes members from national laboratories, universities, industry, and federal agencies, lead by the Idaho National Laboratory (INL).

  8. Hot Superplastic Powder Forging for Transparent nanocrystalline Ceramics

    SciTech Connect

    Cannon, W. Roger

    2006-05-22

    The program explored a completely new, economical method of manufacturing nanocrystalline ceramics, Hot Superplastic Powder Forging (HSPF). The goal of the work was the development of nanocrystalline/low porosity optically transparent zirconia/alumina. The high optical transparency should result from lack of grain boundary scattering since grains will be smaller than one tenth the wavelength of light and from elimination of porosity. An important technological potential for this process is manufacturing of envelopes for high-pressure sodium vapor lamps. The technique for fabricating monolithic nanocrystalline material does not begin with powder whose particle diameter is <100 nm as is commonly done. Instead it begins with powder whose particle diameter is on the order of 10-100 microns but contains nanocrystalline crystallites <<100 nm. Spherical particles are quenched from a melt and heat treated to achieve the desired microstructure. Under a moderate pressure within a die or a mold at temperatures of 1100C to 1300C densification is by plastic flow of superplastic particles. A nanocrystalline microstructure results, though some features are greater than 100nm. It was found, for instance, that in the fully dense Al2O3-ZrO2 eutectic specimens that a bicontinuous microstructure exists containing <100 nm ZrO2 particles in a matrix of Al2O3 grains extending over 1-2 microns. Crystallization, growth, phase development and creep during hot pressing and forging were studied for several compositions and so provided some details on development of polycrystalline microstructure from heating quenched ceramics.

  9. Blue Lake Rancheria-Forging a Path toward Climate Resiliency | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Rancheria-Forging a Path toward Climate Resiliency Blue Lake Rancheria-Forging a Path toward Climate Resiliency January 22, 2015 - 4:14pm Addthis Blue Lake Rancheria—Forging a Path toward Climate Resiliency The Blue Lake Rancheria Tribe is one of 16 communities selected as Climate Action Champions by the Obama Administration in December for exceptional work in response to climate change. To date, the Tribe has reduced energy consumption by 35%, completed dozens of energy

  10. Numerical simulation of temperature field, microstructure evolution and mechanical properties of HSS during hot stamping

    SciTech Connect

    Shi, Dongyong; Liu, Wenquan [Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian, 116024, P.R. (China); Ying, Liang, E-mail: pinghu@dlut.edu.cn; Hu, Ping, E-mail: pinghu@dlut.edu.cn; Shen, Guozhe [Key Laboratory of Structural Analysis for Industrial Equipment, School of Automotive Engineering, Dalian University of Technology, Dalian, 116024, P.R. (China)

    2013-12-16

    The hot stamping of boron steels is widely used to produce ultra high strength automobile components without any spring back. The ultra high strength of final products is attributed to the fully martensitic microstructure that is obtained through the simultaneous forming and quenching of the hot blanks after austenization. In the present study, a mathematical model incorporating both heat transfer and the transformation of austenite is presented. A FORTRAN program based on finite element technique has been developed which permits the temperature distribution and microstructure evolution of high strength steel during hot stamping process. Two empirical diffusion-dependent transformation models under isothermal conditions were employed respectively, and the prediction capability on mechanical properties of the models were compared with the hot stamping experiment of an automobile B-pillar part.

  11. Nitrided Metallic Bipolar Plates

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Nitrided Metallic Bipolar Plates M.P. Brady (project lead) P. F. Tortorelli Oak Ridge National Laboratory Oak Ridge, TN 37831-6115 Feb 14, 2007 Kick-Off Meeting OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY 1 Effort Devoted to Scale Up and Demonstration of Thin Stamped Metallic Bipolar Plates Timeline Barriers * Start- April, 2006 * A. Durability (estimated) * Finish- April, 2008 * B. Cost (estimated) * Targets (2010) - resistivity < 10 mohm-cm 2 - corrosion < 1 x10 -6 A/cm 2

  12. CRADA Boom Sets Records, Forges Ties at Sandia Labs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    CRADA Boom Sets Records, Forges Ties at Sandia Labs CRADA Boom Sets Records, Forges Ties at Sandia Labs April 22, 2016 - 9:46am Addthis News release from Sandia National Laboratories, April 21, 2016 ALBUQUERQUE, N.M. - Sandia National Laboratories entered into a vast array of new Cooperative Research and Development Agreements (CRADA) in the past three years, bringing dozens of new partners to the labs. "This is a great mechanism for getting national laboratory technology into the private

  13. Manufacturing and Performance Assessment of Stamped, Laser Welded, and Nitrided FeCrV Stainless Steel Bipolar Plates for Proton Exchange Membrane Fuel Cells

    SciTech Connect

    Brady, Michael P; Abdelhamid, Mahmoud; Dadheech, G; Bradley, J; Toops, Todd J; Meyer III, Harry M; Tortorelli, Peter F

    2013-01-01

    A manufacturing and single-cell fuel cell performance study of stamped, laser welded, and gas nitrided ferritic stainless steel foils in an advanced automotive bipolar plate assembly design was performed. Two developmental foil compositions were studied: Fee20Cre4V and Fee23Cre4V wt.%. Foils 0.1 mm thick were stamped and then laser welded together to create single bipolar plate assemblies with cooling channels. The plates were then surface treated by pre-oxidation and nitridation in N2e4H2 based gas mixtures using either a conventional furnace or a short-cycle quartz lamp infrared heating system. Single-cell fuel cell testing was performed at 80 C for 500 h at 0.3 A/cm2 using 100% humidification and a 100%/40% humidification cycle that stresses the membrane and enhances release of the fluoride ion and promotes a more corrosive environment for the bipolar plates. Periodic high frequency resistance potential-current scans during the 500 h fuel cell test and posttest analysis of the membrane indicated no resistance increase of the plates and only trace levels of metal ion contamination.

  14. Evaluation of Die Chilling Effects during Forging of Nimonic-80A Superalloy

    SciTech Connect

    Shahriari, D.; Sadeghi, M. H.; Amiri, A.; Cheraghzadeh, M.

    2010-06-15

    Nimonic-80A is a kind of nickel-based superalloys which is used in high temperature components of land gas turbines. In this paper, the influence of four design factors: die temperature, strain rate, friction coefficient and geometry size of ring sample over the variation of internal diameters (VID) and forging load (FL) was studied. It was done by means of design methodology based on DOE-designated full factorial and FE simulations. FEM and experimental results showed that the variation of internal diameters and forging load had inverse proportion to the die temperature. Regression models were developed by using the response surface methodology (RSM) for VID and FL. Rate of the dynamic recrystallization varied depending on different amounts of die temperature. The results can be used in the semi-isothermal forging of complex part of the Nimonic-80A.

  15. Forging the way with vision and foresight | OSTI, US Dept of Energy Office

    Office of Scientific and Technical Information (OSTI)

    of Scientific and Technical Information Forging the way with vision and foresight Back to the OSTI News Listing for 2012 OSTI launched the Information Bridge in 1998 as a free public access database containing full-text DOE research reports. OSTI envisioned there would be a dramatic increase in access to DOE research reports in the coming years. Sure enough ... (read more

  16. Metal Compression Forming of aluminum alloys and metal matrix composites

    SciTech Connect

    Viswanathan, S.; Ren, W.; Porter, W.D.; Brinkman, C.R.; Sabau, A.S.; Purgert, R.M.

    2000-02-01

    Metal Compression Forming (MCF) is a variant of the squeeze casting process, in which molten metal is allowed to solidify under pressure in order to close porosity and form a sound part. However, the MCF process applies pressure on the entire mold face, thereby directing pressure on all regions of the casting and producing a uniformly sound part. The process is capable of producing parts with properties close to those of forgings, while retaining the near net shape, complexity in geometry, and relatively low cost of the casting process.

  17. Plutonium metal and oxide container weld development and qualification

    SciTech Connect

    Fernandez, R.; Horrell, D.R.; Hoth, C.W.; Pierce, S.W.; Rink, N.A.; Rivera, Y.M.; Sandoval, V.D.

    1996-01-01

    Welds were qualified for a container system to be used for long-term storage of plutonium metal and oxide. Inner and outer containers are formed of standard tubing with stamped end pieces gas-tungsten-arc (GTA) welded onto both ends. The weld qualification identified GTA parameters to produce a robust weld that meets the requirements of the Department of Energy standard DOE-STD-3013-94, ``Criteria for the Safe Storage of Plutonium Metals and Oxides.``

  18. Current forgings and their properties for steam generator of nuclear plant

    SciTech Connect

    Tsukada, Hisashi; Suzuki, Komei; Kusuhashi, Mikio; Sato, Ikuo

    1997-12-31

    Current steel forgings for steam generator (SG) of PWR plant are reviewed in the aspect of design and material improvement. The following three items are introduced. The use of integral type steel forgings for the fabrication of steam generator enhances the structural integrity and makes easier fabrication and inspection including in-service inspection. The following examples of current integral type forgings developed by the Japan Steel Works, Ltd. (JSW) are introduced: (1) primary head integrated with nozzles, manways and supports; (2) steam drum head integrated with nozzle and handhole; (3) conical shell integrated with cylindrical sections and handholes. In order to decrease the weight of steam generator, the high strength materials such as SA508, Cl.3a steel have been adopted in some cases. The properties of this steel are introduced and the chemistry and heat treatment condition are discussed. As one of the methods to minimize the macro- and micro-segregations, the use of vacuum carbon deoxidation (VCD), i.e. deoxidization of steel by gaseous CO reaction, with addition of Al for grain refining was investigated. The properties of SA508, Cl.3 steels with Low Si content are compared with those of conventional one.

  19. Weld Repair of a Stamped Pressure Vessel in a Radiologically Controlled Zone

    SciTech Connect

    Cannell, Gary L.; Huth, Ralph J.; Hallum, Randall T.

    2013-08-26

    In September 2012 an ASME B&PVC Section VIII stamped pressure vessel located at the DOE Hanford Site Effluent Treatment Facility (ETF) developed a through-wall leak. The vessel, a steam/brine heat exchanger, operated in a radiologically controlled zone (by the CH2MHill PRC or CHPRC), had been in service for approximately 17 years. The heat exchanger is part of a single train evaporator process and its failure caused the entire system to be shut down, significantly impacting facility operations. This paper describes the activities associated with failure characterization, technical decision making/planning for repair by welding, logistical challenges associated with performing work in a radiologically controlled zone, performing the repair, and administrative considerations related to ASME code requirements.

  20. Final Technical Report: Intensive Quenching Technology for Heat Treating and Forging Industries

    SciTech Connect

    Aronov, Michael A.

    2005-12-21

    Intensive quenching (IQ) process is an alternative way of hardening (quenching) steel parts through the use of highly agitated water and then still air. It was developed by IQ Technologies, Inc. (IQT) of Akron, Ohio. While conventional quenching is usually performed in environmentally unfriendly oil or water/polymer solutions, the IQ process uses highly agitated environmentally friendly water or low concentration water/mineral salt solutions. The IQ method is characterized by extremely high cooling rates of steel parts. In contrast to conventional quenching, where parts cool down to the quenchant temperature and usually have tensile or neutral residual surface stresses at the end of quenching. The IQ process is interrupted when the part core is still hot and when there are maximum compressive stresses deep into the parts, thereby providing hard, ductile, better wear resistant parts. The project goal was to advance the patented IQ process from feasibility to commercialization in the heat-treating and forging industries to reduce significantly energy consumption and environmental impact, to increase productivity and to enhance economic competitiveness of these industries as well as Steel, Metal Casting and Mining industries. To introduce successfully the IQ technology in the U.S. metal working industry, the project team has completed the following work over the course of this project: A total of 33 manufacturers of steel products provided steel parts for IQ trails. IQT conducted IQ demonstrations for 34 different steel parts. Our customers tested intensively quenched parts in actual field conditions to evaluate the product service life and performance improvement. The data obtained from the field showed the following: Service life (number of holes punched) of cold-work punches (provided by EHT customer and made of S5 shock-resisting steel) was improved by two to eight times. Aluminum extrusion dies provided by GAM and made of hot work H-13 steel outperformed the

  1. FORGE Infographic

    Education - Teach & Learn

    Energy Department geothermal portfolio, strategic thrust of Geothermal Technologies Office, enhanced geothermal systems.

  2. Beyond a series of security nets: Applying STAMP & STPA to port security

    DOE PAGES [OSTI]

    Williams, Adam D.

    2015-11-17

    Port security is an increasing concern considering the significant role of ports in global commerce and today’s increasingly complex threat environment. Current approaches to port security mirror traditional models of accident causality -- ‘a series of security nets’ based on component reliability and probabilistic assumptions. Traditional port security frameworks result in isolated and inconsistent improvement strategies. Recent work in engineered safety combines the ideas of hierarchy, emergence, control and communication into a new paradigm for understanding port security as an emergent complex system property. The ‘System-Theoretic Accident Model and Process (STAMP)’ is a new model of causality based on systemsmore »and control theory. The associated analysis process -- System Theoretic Process Analysis (STPA) -- identifies specific technical or procedural security requirements designed to work in coordination with (and be traceable to) overall port objectives. This process yields port security design specifications that can mitigate (if not eliminate) port security vulnerabilities related to an emphasis on component reliability, lack of coordination between port security stakeholders or economic pressures endemic in the maritime industry. As a result, this article aims to demonstrate how STAMP’s broader view of causality and complexity can better address the dynamic and interactive behaviors of social, organizational and technical components of port security.« less

  3. Friction Stir Spot Welding of DP780 and Hot-Stamp Boron Steels

    SciTech Connect

    Santella, Michael L.; Frederick, Alan; Hovanski, Yuri; Grant, Glenn J.

    2008-05-16

    Friction stir spot welds were made in two high-strength steels: DP780, and a hot-stamp-boron steel with tensile strength of 1500 MPa. The spot welds were made at either 800 or 1600 rpm using either of two polycrystalline boron nitride tools. One stir tool, BN77, had the relatively common pin-tool shape. The second tool, BN46, had a convex rather than a concave shoulder profile and a much wider and shorter pin. The tools were plunged to preprogrammed depths either at a continuous rate (1-step schedule) or in two segments consisting of a relatively high rate followed by a slower rate. In all cases, the welds were completed in 4s. The range of lap-shear values were compared to values required for resistance spot welds on the same steels. The minimum value of 10.3 kN was exceeded for friction stir spot welding of DP780 using a 2-step schedule and either the BN77- or the BN46-type stir tool. The respective minimum value of 12 kN was also exceeded for the HSB steel using the 2-step process and the BN46 stir tool.

  4. Beyond a series of security nets: Applying STAMP & STPA to port security

    SciTech Connect

    Williams, Adam D.

    2015-11-17

    Port security is an increasing concern considering the significant role of ports in global commerce and today’s increasingly complex threat environment. Current approaches to port security mirror traditional models of accident causality -- ‘a series of security nets’ based on component reliability and probabilistic assumptions. Traditional port security frameworks result in isolated and inconsistent improvement strategies. Recent work in engineered safety combines the ideas of hierarchy, emergence, control and communication into a new paradigm for understanding port security as an emergent complex system property. The ‘System-Theoretic Accident Model and Process (STAMP)’ is a new model of causality based on systems and control theory. The associated analysis process -- System Theoretic Process Analysis (STPA) -- identifies specific technical or procedural security requirements designed to work in coordination with (and be traceable to) overall port objectives. This process yields port security design specifications that can mitigate (if not eliminate) port security vulnerabilities related to an emphasis on component reliability, lack of coordination between port security stakeholders or economic pressures endemic in the maritime industry. As a result, this article aims to demonstrate how STAMP’s broader view of causality and complexity can better address the dynamic and interactive behaviors of social, organizational and technical components of port security.

  5. Beyond a series of security nets: Applying STAMP & STPA to port security

    DOE PAGES [OSTI]

    Williams, Adam D.

    2015-11-17

    Port security is an increasing concern considering the significant role of ports in global commerce and today’s increasingly complex threat environment. Current approaches to port security mirror traditional models of accident causality -- ‘a series of security nets’ based on component reliability and probabilistic assumptions. Traditional port security frameworks result in isolated and inconsistent improvement strategies. Recent work in engineered safety combines the ideas of hierarchy, emergence, control and communication into a new paradigm for understanding port security as an emergent complex system property. The ‘System-Theoretic Accident Model and Process (STAMP)’ is a new model of causality based on systemsmore » and control theory. The associated analysis process -- System Theoretic Process Analysis (STPA) -- identifies specific technical or procedural security requirements designed to work in coordination with (and be traceable to) overall port objectives. This process yields port security design specifications that can mitigate (if not eliminate) port security vulnerabilities related to an emphasis on component reliability, lack of coordination between port security stakeholders or economic pressures endemic in the maritime industry. As a result, this article aims to demonstrate how STAMP’s broader view of causality and complexity can better address the dynamic and interactive behaviors of social, organizational and technical components of port security.« less

  6. Environmental effect on room-temperature ductility of isothermally forged TiAl-base alloys

    SciTech Connect

    Nakamura, Morihiko; Hashimoto, Kenki (National Research Inst. for Metals, Tokyo (Japan)); Itoh, Naoyuki (Nippon Steel Corp., Chiba (Japan)); Tsujimoto, Tokuzo (Ibaraki Univ. (Japan). Faculty of Engineering); Suzuki, Toshiyuki (Kougakuin Univ., Tokyo (Japan))

    1994-02-01

    Isothermally forged TiAl-base alloy (Al-rich, Mn-containing, and Cr-containing TiAl) were heat-treated in various conditions, and equiaxed grain structures consisting of [gamma] and [alpha][sub 2] or [beta] phases were obtained. The heat-treated alloys were tensile tested in vacuum and air at room temperature, and the environmental effect on tensile elongation was studied. The ductility of the alloys consisting of equiaxed [gamma] grains and a large amount of [alpha][sub 2] grains was not largely affecting by laboratory air, and a decrease in the amount of [alpha][sub 2] grains resulted in a large reduction of ductility in air. The [beta] phase in the Cr-containing alloy improved the ductility in vacuum, but it resulted in a large reduction of ductility in air.

  7. Corrosion fatigue crack growth in clad low-alloy steels. Part 1: Medium sulfur forging steel

    SciTech Connect

    James, L.A.; Poskie, T.J.; Auten, T.A.; Cullen, W.H.

    1997-08-01

    Corrosion fatigue crack propagation tests were conducted on a medium-sulfur ASTM A508-2 forging steel overlaid with weld-deposited alloy EN82H cladding. The specimens featured semi-elliptical surface cracks penetrating approximately 6.3 mm of cladding into the underlying steel. The initial crack sizes were relatively large with surface lengths of 30.3--38.3 mm, and depths of 13.1--16.8 mm. The experiments were conducted in a quasi-stagnant low-oxygen (O{sub 2} < 10 ppb) aqueous environment at 243 C, under loading conditions ({Delta}K, R, and cyclic frequency) conducive to environmentally assisted cracking (EAC) in higher-sulfur steels under quasi-stagnant conditions. Earlier experiments on unclad compact tension specimens of this heat of steel did not exhibit EAC, and the present experiments on semi-elliptical surface cracks penetrating cladding also did not exhibit EAC.

  8. Evaluation of test methods for dynamic toughness characterization of duplex stainless steel forgings

    SciTech Connect

    Natishan, M.E.; Tregoning, R.L.

    1995-12-31

    Ferralium is a dual-phase stainless steel which consists of roughly equal amounts of ferrite and austenite. Conventional Charpy V-notch impact tests were performed on specimens taken from several locations in three orientations from a forged Ferralium plate to quantify the materials dynamic fracture performance. The Charpy tests were compared with 2.54 cm thick (1T) single edge bend (SE(B)) specimens that were tested in a drop tower to measure dynamic fracture initiation toughness (K{sub Id}). SE(B) specimens were removed from three plate locations and tested in a single orientation. Charpy and K{sub Id} tests were performed over the entire fracture mode transition temperature range, but the bulk of testing was concentrated at a single temperature {minus}2 C to provide a statistically significant number of tests at a representative point in the ferritic fracture mode transition region. Charpy impact energy varied consistently with both orientation and location within the forged plate even though large scatter was present in the results. This large scatter precluded an accurate assessment of the materials fracture performance within the transition region. The scatter in the drop tower (SE(B)) results was much less and indicated that plate location had a minimal affect on performance. The reduced scatter in the SE(B) specimens is attributed to two factors. First, the microstructure of Ferralium, while macroscopically homogeneous, contains ferritic and austenitic phase sizes that approach the dimensions of the standard Charpy specimen. Second, the Charpy testing technique causes more variation than the standard SE(B) K{sub Id} tests within the transition region.

  9. SU-D-9A-03: STAMP: Simulator for Texture Analysis in MRI/PET

    SciTech Connect

    Laberge, S; Vallieres, M; Levesque, I R.; El Naqa, I

    2014-06-01

    Purpose: To develop a convenient simulation platform to facilitate PET/MR image analysis with the prospect of gaining a better understanding of the influence of acquisition parameters on PET/MRI textural features. The simulation platform is demonstrated by showing textural variations of a representative case study using different image acquisition parameters. Methods: The simulation platform is composed of MRI simulators JEMRIS and SIMRI to achieve simulations of customized MRI sequences on sample tumor models. The PET simulator GATE is used to get 2D and 3D Monte Carlo acquisitions of voxelized PET sources using a phantom geometry and a customized scanner architecture. The platform incorporates a series of graphical user interfaces written in Matlab. Two GUIs are used to facilitate communication with the simulation executables installed on a computer cluster. A third GUI is used to collect and display the clinical and simulated images, as well as fused PET/MRI images, and perform computation of textural features.To illustrate the capabilities of this platform, one FDG-PET and T1-weighted (T1w) digitized tumor models were generated from clinical images of a soft-tissue sarcoma patient. Numerically simulated MR images were produced using 3 different echo times (TE) and 5 different repetition times (TR). PET 2D images were simulated using an OSEM algorithm with 1 to 32 iterations and a post-reconstruction Gaussian filter of 0, 2, 4 or 6 mm width. Results: STAMP was successfully used to produce numerically simulated FDG-PET and MRI images, and to calculate their corresponding textures. Three typical textures (GLCM-Contrast, GLSZM-ZSV and NGTDM-Coarseness) were found to vary by a range of 45% on average compared to reference scanning conditions in the case of FDG-PET, and by a range of 40% in the case of T1w MRI. Conclusion: We have successfully developed a Matlab-based simulation platform to facilitate PET/MRI texture image analysis for outcome prediction.

  10. Microstructure characterization and mechanical behaviors of a hot forged high Nb containing PM-TiAl alloy

    SciTech Connect

    Li, Jianbo; Liu, Yong; Liu, Bin; Wang, Yan; Liang, Xiaopeng; He, Yuehui

    2014-09-15

    In this work, the effects of deformation on the microstructure and mechanical behaviors of TiAl alloy were investigated. Deformed microstructure observation was characterized by scanning electron microscopy, electron back scattered diffraction technique, transmission electron microscopy and DEFORM-3D software. Results indicated that the core area of the TiAl pancake was characterized by completely dynamically recrystallized microstructures, however some residual lamellar colonies can be observed near the edge area, which are primarily caused by a temperature drop and inhomogenous plastic flow. The main softening mechanism is dynamic recrystallization of γ grains. The as-forged alloy exhibited excellent mechanical properties at both room temperature and high temperature. Tensile test results showed that the ultimate tensile strength of the alloy increased from 832 MPa at room temperature to 853 MPa at 700 °C, while the elongation increased from 2.7% to 17.8%. Even at the temperature of 850 °C, the ultimate tensile strength maintained 404 MPa, and the elongation increased to 75%. The as-forged alloy also exhibited remarkable low-temperature superplasticity at 850 °C, with an elongation of 120%. - Highlights: • The core area of the TiAl pancake was characterized by DRX microstructure. • The elongation at RT is higher than that of other high Nb-containing TiAl alloys. • The forged alloy exhibited low-temperature superplasticity at 850 °C.

  11. Processing and properties of superclean ASTM A508 Cl. 4 forgings

    SciTech Connect

    Hinkel, A.V.; Handerhan, K.J.; Manzo, G.J.; Simkins, G.P.

    1988-12-31

    Steels with improved resistance to temper embrittlement are now being produced using ``superclean`` steelmaking technology. This technology involves the use of scrap control, proper electric arc furnace and ladle refining furnace practices to produce steel with very low Mn, Si, P, S and other residual impurities such as Sn, As and Sb. This technology has been applied on a production basis to modified ASTM A508 Cl- 4 material intended for high temperature pressure vessel forgings. Processing and properties of this superclean material are reviewed. In addition, the cleanliness and mechanical properties are compared to conventionally melted A508 Cl. 4 material. The ``superclean`` A508 Cl. 4 mod. was found to meet all specification requirements. In addition, the superclean material was found to possess superior upper shelf CVN properties, a lower FATT{sub 50} and NDTT, along with superior microcleanliness compared to conventional material. Finally, the superclean material was found to be immune to temper embrittlement based on the short-term embrittlement treatments examined.

  12. Rapid heating tensile tests of hydrogen-charged high-energy-rate-forged 316L stainless steel

    SciTech Connect

    Mosley, W.C.

    1989-05-19

    316L stainless steel is a candidate material for construction of equipment that will be exposed to tritium. Proper design of the equipment will require an understanding of how tritium and its decay product helium affect mechanical properties. This memorandum describes results of rapid heating tensile testing of hydrogen-charged specimens of high-energy-rate-forged (HERF) 316L stainless steel. These results provide a data base for comparison with uncharged and tritium-charged-and-aged specimens to distinguish the effects of hydrogen and helium. Details of the experimental equipment and procedures and results for uncharged specimens were reported previously. 3 refs., 10 figs.

  13. Application of the metal compression forming process for the production of an aluminum alloy component

    SciTech Connect

    Viswanathan, S.; Porter, W.D.; Ren, W.; Purgert, R.M.

    1997-01-01

    Metal Compression Forming (MCF) is a variant of the squeeze casting process, in which molten metal is allowed to solidify under pressure in order to close porosity and form a sound part. MCF applies pressure on the entire mold face, thereby directing pressure on all regions of the casting. It also enhances the solidification rate of the metal, promoting a very fine grain structure which results in improved properties. Consequently, the process is capable of producing parts with properties close to that of forgings, while retaining the near net shape, complex geometry, and relatively low cost of the casting process.

  14. High-cycle fatigue behavior of Ti-5Al-2.5Sn ELI alloy forging at low temperatures

    SciTech Connect

    Ono, Yoshinori; Yuri, Tetsumi; Ogata, Toshio; Demura, Masahiko; Matsuoka, Saburo; Sunakawa, Hideo

    2014-01-27

    High-cycle fatigue properties of Ti-5Al-2.5Sn Extra Low Interstitial (ELI) alloy forging were investigated at low temperatures. The high-cycle fatigue strength at low temperatures of this alloy was relatively low compared with that at ambient temperature. The crystallographic orientation of a facet formed at a fatigue crack initiation site was determined by electron backscatter diffraction (EBSD) method in scanning electron microscope (SEM) to understand the fatigue crack initiation mechanism and discuss on the low fatigue strength at low temperature. Furthermore, in terms of the practical use of this alloy, the effect of the stress ratio (or mean stress) on the high-cycle fatigue properties was evaluated using the modified Goodman diagram.

  15. Corrosion fatigue crack growth in clad low-alloy steels: Part 1, medium-sulfur forging steel

    SciTech Connect

    James, L.A.; Poskie, T.J.; Auten, T.A; Cullen, W.H.

    1996-04-01

    Corrosion fatigue crack propagation tests were conducted on a medium- sulfur ASTM A508-2 forging steel overlaid with weld-deposited Alloy EN82H cladding. The specimens featured semi-elliptical surface cracks penetrating approximately 6.3 mm of cladding into the underlying steel. The initial crack sizes were relatively large with surface lengths of 30.3--38.3 mm, and depths of 13.1--16.8 mm. The experiments were conducted in a quasi-stagnant low-oxygen (O{sub 2} < 10 ppb) aqueous environment at 243{degrees}C, under loading conditions ({Delta}K, R, and cyclic frequency) conductive to environmentally-assisted cracking (EAC) in higher-sulfur steels under quasi-stagnant conditions. Earlier experiments on unclad compact tension specimens of this heat of steel did not exhibit EAC, and the present experiments on semi-elliptical surface cracks penetrating cladding also did not exhibit EAC.

  16. Optimization of the blankholder force distribution with application to the stamping of a car front door panel (Numisheet'99)

    SciTech Connect

    Ayed, L. Ben; Delameziere, A.; Batoz, J.L.; Knopf-Lenoir, C.

    2005-08-05

    New materials such as dual phase steel or aluminium and complex geometries of industrial parts increase the difficulties to obtain a defect free part by stamping. One way of solution is a better regulation of the blankholder pressures. Our work is based on an original idea of Siegert, Haeussermann and Haller. The goal is to control the movement of the blank under the blankholder. Thanks to a deformable flexible blankholder, it is possible to create some independent zones. In each zone, a blankholder force can be applied on the sheet, so that a strong force can hold the blank in a zone, and a smaller one can let it move in another zone. The methodology is presented as well as some results dealing with the optimization of the blankholder force considering the drawing of a front door panel (Numisheet'99 benchmark test). The numerical simulations are performed using ABAQUS Explicit. The parameters of the finite element model (mesh density, speed of punch) are set to achieve a good prediction with a minimum simulation time. The objective function is defined to minimize the work of the punch. Three inequality constraints functions were defined to avoid necking and wrinkling. To avoid necking, the major stress of the blank is limited to a value, which is determined by using the modified maximum force criterion (MMFC). To avoid wrinkling, under the blankholder, the angle between the blankholder surface and an element of the blank is limited to a value set by the user, as proposed by Gelin and Labergere. However, in the useful part of the workpiece, the major stress is limited to a value, which was proposed by Brunet, Batoz and Bouabdallah. For the localization of the optimum, we use a response surface method computed with a diffuse approximation and coupled with an adaptative strategy to update the research space.

  17. Utilities Reduction: Stamping NNAS

    SciTech Connect

    2010-04-19

    Presentation from the Save Energy Now LEADER Industrial Sustainability and Energy Management Showcase.

  18. Metal aminoboranes

    DOEpatents

    Burrell, Anthony K.; Davis, Benjamin J.; Thorn, David L.; Gordon, John C.; Baker, R. Thomas; Semelsberger, Troy Allen; Tumas, William; Diyabalanage, Himashinie Vichalya Kaviraj; Shrestha, Roshan P.

    2010-05-11

    Metal aminoboranes of the formula M(NH.sub.2BH.sub.3).sub.n have been synthesized. Metal aminoboranes are hydrogen storage materials. Metal aminoboranes are also precursors for synthesizing other metal aminoboranes. Metal aminoboranes can be dehydrogenated to form hydrogen and a reaction product. The reaction product can react with hydrogen to form a hydrogen storage material. Metal aminoboranes can be included in a kit.

  19. Gradient study of a large weld joining two forged A 508 shells of the Midland reactor vessel

    SciTech Connect

    Irwin, G.R.; Zhang, X.J.

    1992-06-01

    Results of the study the welds of the Forged A 508 shells are presented in this document. The low-carbon welds (WF67 and WF70) in the slab examined contained no abnormalities that would indicate fracture behavior different from that observed in bulk-material fracture tests. The A 508 material in the HAZ region, very close to the welds, contains small ({approximately}3 mm) regions adjacent to each layer of weld runs where grain coarsening and hardness elevation suggest reduction of cleavage initiation toughness. The degree of severity is largest where this local region coincides with a local elevation of carbide density in the A 508 material. The A 508 HAZ region adjacent to the topmost weld run may be the region most likely to assist cleavage-fracture initiation because of its location: close to a free surface, small cracks, and the HAZ region beneath the cladding. It was noted that the small cracks under the cladding have the appearance of prior austenite grain boundary separations that connect to austenite grain boundaries in the cladding. The extreme hardness of a narrow layer of cladding a the fusion boundary may be of interest in further studies of cladding toughness.

  20. Metal inks

    DOEpatents

    Ginley, David S; Curtis, Calvin J; Miedaner, Alex; van Hest, Marinus Franciscus Antonius Maria; Kaydanova, Tatiana

    2014-02-04

    Self-reducing metal inks and systems and methods for producing and using the same are disclosed. In an exemplary embodiment, a method may comprise selecting metal-organic (MO) precursor, selecting a reducing agent, and dissolving the MO precursor and the reducing agent in an organic solvent to produce a metal ink that remains in a liquid phase at room temperature. Metal inks, including self-reducing and fire-through metal inks, are also disclosed, as are various applications of the metal inks.

  1. METAL PHTHALOCYANINES

    DOEpatents

    Frigerio, N.A.

    1962-03-27

    A process is given for preparing heavy metal phthalocyanines, sulfonated or not. The process comprises mixing an inorganic metal salt with dimethyl formamide or methyl sulfoxide; separating the metal complex formed from the solution; mixing the complex with an equimolar amount of sodium, potassium, lithium, magnesium, or beryllium sulfonated or unsulfonated phthalocyanine whereby heavy-metal phthalocyanine crystals are formed; and separating the crystals from the solution. Uranyl, thorium, lead, hafnium, and lanthanide rare earth phthalocyanines can be produced by the process. (AEC)

  2. Silicone metalization

    DOEpatents

    Maghribi, Mariam N.; Krulevitch, Peter; Hamilton, Julie

    2008-12-09

    A system for providing metal features on silicone comprising providing a silicone layer on a matrix and providing a metal layer on the silicone layer. An electronic apparatus can be produced by the system. The electronic apparatus comprises a silicone body and metal features on the silicone body that provide an electronic device.

  3. Silicone metalization

    DOEpatents

    Maghribi, Mariam N.; Krulevitch, Peter; Hamilton, Julie

    2006-12-05

    A system for providing metal features on silicone comprising providing a silicone layer on a matrix and providing a metal layer on the silicone layer. An electronic apparatus can be produced by the system. The electronic apparatus comprises a silicone body and metal features on the silicone body that provide an electronic device.

  4. Valley Forge Corporate Center

    Energy Saver

    ... West Virginia, Kentucky, Ohio, Michigan, Indiana, Illinois and the District of Columbia. ... MW of wind resources and 1,100 MW of solar resources presently in the PJM ...

  5. FORGING THE FUTURE

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    was featured in the news. More... Staff Accomplishments Alicia Gorton Named a 2015 New Face of Civil Engineering Professional honoree by the American Society of Civil...

  6. Valley Forge Corporate Center

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    April 29, 2013 Ms. Brenda Edwards US Department of Energy Buildings Technologies Program Mail Stop EE-2J 1000 Independence Ave, SW Washington, DC 20585-0121 Re: Energy Conservation Program: Notice of Proposed Rulemaking for Energy Conservation Standards for Residential Water Heaters, Docket Number: EERE-2012-BT- STD-0022, RIN Number: 1904-AC78 Dear Ms. Edwards: PJM provides these supplemental comments to underscore, from the perspective of the independent grid operator, the need for the

  7. Expandable Metal Liner For Downhole Components

    DOEpatents

    Hall, David R.; Fox, Joe R.

    2004-10-05

    A liner for an annular downhole component is comprised of an expandable metal tube having indentations along its surface. The indentations are formed in the wall of the tube either by drawing the tube through a die, by hydroforming, by stamping, or roll forming and may extend axially, radially, or spirally along its wall. The indentations accommodate radial and axial expansion of the tube within the downhole component. The tube is inserted into the annular component and deformed to match an inside surface of the component. The tube may be expanded using a hydroforming process or by drawing a mandrel through the tube. The tube may be expanded in such a manner so as to place it in compression against the inside wall of the component. The tube is useful for improving component hydraulics, shielding components from contamination, inhibiting corrosion, and preventing wear to the downhole component during use. It may also be useful for positioning conduit and insulated conductors within the component. An insulating material may be disposed between the tube and the component in order to prevent galvanic corrosion of the downhole component.

  8. Metal oxide films on metal

    DOEpatents

    Wu, Xin D. (Los Alamos, NM); Tiwari, Prabhat (Los Alamos, NM)

    1995-01-01

    A structure including a thin film of a conductive alkaline earth metal oxide selected from the group consisting of strontium ruthenium trioxide, calcium ruthenium trioxide, barium ruthenium trioxide, lanthanum-strontium cobalt oxide or mixed alkaline earth ruthenium trioxides thereof upon a thin film of a noble metal such as platinum is provided.

  9. Metals 2000

    SciTech Connect

    Allison, S.W.; Rogers, L.C.; Slaughter, G.; Boensch, F.D.; Claus, R.O.; de Vries, M.

    1993-05-01

    This strategic planning exercise identified and characterized new and emerging advanced metallic technologies in the context of the drastic changes in global politics and decreasing fiscal resources. In consideration of a hierarchy of technology thrusts stated by various Department of Defense (DOD) spokesmen, and the need to find new and creative ways to acquire and organize programs within an evolving Wright Laboratory, five major candidate programs identified are: C-17 Flap, Transport Fuselage, Mach 5 Aircraft, 4.Fighter Structures, and 5. Missile Structures. These results were formed by extensive discussion with selected major contractors and other experts, and a survey of advanced metallic structure materials. Candidate structural applications with detailed metal structure descriptions bracket a wide variety of uses which warrant consideration for the suggested programs. An analysis on implementing smart skins and structures concepts is given from a metal structures perspective.

  10. Metal Hydrides

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Metal Hydrides Theodore Motyka Savannah River National Laboratory Metal Hydride System Architect Jose-Miguel Pasini, & Bart van Hassel UTRC Claudio Corgnale & Bruce Hardy SRNL Kevin Simmons and Mark Weimar PNNL Darsh Kumar GM, Matthew Thornton NREL, Kevin Drost OSU DOE Materials-Based Hydrogen Storage Summit Defining Pathways for Onboard Automotive Applications 2 Outline * Background and MH History * MH HSECoE Results * Material Operating Requirements * Modeling and Analyses * BOP and

  11. Dendritic metal nanostructures

    DOEpatents

    Shelnutt, John A.; Song, Yujiang; Pereira, Eulalia F.; Medforth, Craig J.

    2010-08-31

    Dendritic metal nanostructures made using a surfactant structure template, a metal salt, and electron donor species.

  12. Metal hydrides

    SciTech Connect

    Carnes, J.R.; Kherani, N.P.

    1987-11-01

    Metal hydride information is not available for most hydrides in a consolidated quick-reference source. This report's objective is to fill the need for such a document providing basic thermodynamic data for as many metal hydrides as possible. We conduced a computerized library search to access as many sources as possible and screened each source for such thermodynamic data as pressure-temperature graphs, van't Hoff curves, and impurity effects. We included any other relevant information and commented on it. A primary concern to be investigated in the future is the behavior of metal tritides. This would be important in the area of emergency tritium cleanup systems. The hydride graphs are useful, however, as tritides may be expected in most cases to behave similarly and at least follow trends of their respective hydrides. 42 refs., 40 figs., 5 tabs.

  13. METAL COMPOSITIONS

    DOEpatents

    Seybolt, A.U.

    1959-02-01

    Alloys of uranium which are strong, hard, and machinable are presented, These alloys of uranium contain bctween 0.1 to 5.0% by weight of at least one noble metal such as rhodium, palladium, and gold. The alloys may be heat treated to obtain a product with iniproved tensile and compression strengths,

  14. Composite metal membrane

    DOEpatents

    Peachey, Nathaniel M.; Dye, Robert C.; Snow, Ronny C.; Birdsell, Stephan A.

    1998-01-01

    A composite metal membrane including a first metal layer of Group IVB met or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof is provided together with a process for the recovery of hydrogen from a gaseous mixture including contacting a hydrogen-containing gaseous mixture with a first side of a nonporous composite metal membrane including a first metal of Group IVB metals or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof, and, separating hydrogen from a second side of the nonporous composite metal membrane.

  15. Composite metal membrane

    DOEpatents

    Peachey, N.M.; Dye, R.C.; Snow, R.C.; Birdsell, S.A.

    1998-04-14

    A composite metal membrane including a first metal layer of Group IVB met or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof is provided together with a process for the recovery of hydrogen from a gaseous mixture including contacting a hydrogen-containing gaseous mixture with a first side of a nonporous composite metal membrane including a first metal of Group IVB metals or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof, and, separating hydrogen from a second side of the nonporous composite metal membrane.

  16. Composites comprising silicon carbide fibers dispersed in magnesia-aluminate matrix and fabrication thereof and of other composites by sinter forging

    DOEpatents

    Panda, Prakash C.; Seydel, Edgar R.; Raj, Rishi

    1989-10-03

    A novel ceramic-ceramic composite of a uniform dispersion of silicon carbide fibers in a matrix of MgO.multidot.nAl.sub.2 O.sub.3 wherein n ranges from about 1 to about 4.5, said composite comprising by volume from 1 to 50% silicon carbide fibers and from 99 to 50% MgO.multidot.nAl.sub.2 O.sub.3. The composite is readily fabricated by forming a powder comprising a uniform dispersion of silicon carbide fibers in poorly crystalline phase comprising MgO and Al.sub.2 O.sub.3 in a mole ratio of n and either (a) hot pressing or preferably (b) cold pressing to form a preform and then forging utilizing a temperature in the range of 1100.degree. C. to 1900.degree. C. and a strain rate ranging from about 10.sup.-5 seconds .sup.-1 to about 1 seconds .sup.-1 so that surfaces cracks do not appear to obtain a shear deformation greater than 30%.

  17. Metal dusting

    SciTech Connect

    Edited by K. Natesan

    2004-01-01

    This workshop was held soon after the September 11th incident under a climate of sorrow and uncertainty among the people of the world, in particular the Workshop participants and their host organizations. With considerable help from the partiicpants, the Workshop was conducted as planed and we had excellent participation in spite of the circumstances. A good fraction of the attendees in the Workshop were from abroad and from several industries, indicating the importance and relevance of the subject for the chemical process industry. Degradation of structural metallic alloys by metal dusting has been an issue for over 40 years in the chemical, petrochemical, syngas, and iron ore reduction plants. However, the fundamental scientific reasons for the degradation of complex alloys in high carbon activity environments are not clear. one of the major parameters of importance is the variation in gas chemistry in both the laboratory experiments and in the plant-service environments. the industry has questioned the applicability of the laboratory test data, obtained in low steam environments, in assessment and life prediction for the materials in plant service where the environments contain 25-35% steam. Several other variables such as system pressure, gas flow velocity, incubation time, alloy chemistry, surface finish, and weldments, were also identified in the literature as to having an effect on the initiatino and propagation of metal dusting attack. It is the purpose of this Workshop to establish a forum in which the researchers from scientific and industrial laboratories, alloy manufacturers, end users, and research and development sponsors can exchange information, discuss different points of view, prioritize the issues, and to elaborate on the trends in industry for the future. We believe that we accomplished these goals successfully and sincerely thank the participants for their contributions.

  18. Mechanochemical processing for metals and metal alloys

    DOEpatents

    Froes, Francis H.; Eranezhuth, Baburaj G.; Prisbrey, Keith

    2001-01-01

    A set of processes for preparing metal powders, including metal alloy powders, by ambient temperature reduction of a reducible metal compound by a reactive metal or metal hydride through mechanochemical processing. The reduction process includes milling reactants to induce and complete the reduction reaction. The preferred reducing agents include magnesium and calcium hydride powders. A process of pre-milling magnesium as a reducing agent to increase the activity of the magnesium has been established as one part of the invention.

  19. Metal filled porous carbon

    DOEpatents

    Gross, Adam F.; Vajo, John J.; Cumberland, Robert W.; Liu, Ping; Salguero, Tina T.

    2011-03-22

    A porous carbon scaffold with a surface and pores, the porous carbon scaffold containing a primary metal and a secondary metal, where the primary metal is a metal that does not wet the surface of the pores of the carbon scaffold but wets the surface of the secondary metal, and the secondary metal is interspersed between the surface of the pores of the carbon scaffold and the primary metal.

  20. Extracting metals directly from metal oxides

    DOEpatents

    Wai, C.M.; Smart, N.G.; Phelps, C.

    1997-02-25

    A method of extracting metals directly from metal oxides by exposing the oxide to a supercritical fluid solvent containing a chelating agent is described. Preferably, the metal is an actinide or a lanthanide. More preferably, the metal is uranium, thorium or plutonium. The chelating agent forms chelates that are soluble in the supercritical fluid, thereby allowing direct removal of the metal from the metal oxide. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is selected from the group consisting of {beta}-diketones, halogenated {beta}-diketones, phosphinic acids, halogenated phosphinic acids, carboxylic acids, halogenated carboxylic acids, and mixtures thereof. In especially preferred embodiments, at least one of the chelating agents is fluorinated. The method provides an environmentally benign process for removing metals from metal oxides without using acids or biologically harmful solvents. The chelate and supercritical fluid can be regenerated, and the metal recovered, to provide an economic, efficient process. 4 figs.

  1. Extracting metals directly from metal oxides

    DOEpatents

    Wai, Chien M.; Smart, Neil G.; Phelps, Cindy

    1997-01-01

    A method of extracting metals directly from metal oxides by exposing the oxide to a supercritical fluid solvent containing a chelating agent is described. Preferably, the metal is an actinide or a lanthanide. More preferably, the metal is uranium, thorium or plutonium. The chelating agent forms chelates that are soluble in the supercritical fluid, thereby allowing direct removal of the metal from the metal oxide. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is selected from the group consisting of .beta.-diketones, halogenated .beta.-diketones, phosphinic acids, halogenated phosphinic acids, carboxylic acids, halogenated carboxylic acids, and mixtures thereof. In especially preferred embodiments, at least one of the chelating agents is fluorinated. The method provides an environmentally benign process for removing metals from metal oxides without using acids or biologically harmful solvents. The chelate and supercritical fluid can be regenerated, and the metal recovered, to provide an economic, efficient process.

  2. Metal-phosphate binders

    DOEpatents

    Howe, Beth Ann [Lewistown, IL; Chaps-Cabrera, Jesus Guadalupe [Coahuila, MX

    2009-05-12

    A metal-phosphate binder is provided. The binder may include an aqueous phosphoric acid solution, a metal-cation donor including a metal other than aluminum, an aluminum-cation donor, and a non-carbohydrate electron donor.

  3. Trending: Metal Oxo Bonds

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    and technical applications in a variety of disciplines, including materials science, chemistry, and biology. Highly covalent metal-oxygen multiple bonds (metal oxos) are the...

  4. REFRACTORY METAL TUBE DRAWING

    DOEpatents

    Bean, C.H.; Karasek, F.J.

    1963-01-29

    A lubricant for drawing Zr and other refractory metals is described. Metallic Cu powder is added to a solution of acrylic resin in chlorinated hydrocarbon solvent. (AEC)

  5. METAL PRODUCTION AND CASTING

    DOEpatents

    Magel, T.T.

    1958-03-01

    This patent covers a method and apparatus for collecting the molten metal produced by high temperature metal salt reduction. It consists essentially of subjecting the reaction vessel to centrifugal force in order to force the liberatcd molten metal into a coherent molten mass, and allowing it to solidify there. The apparatus is particularly suitable for use with small quantities of rare metals.

  6. Ceramic to metal seal

    DOEpatents

    Snow, Gary S.; Wilcox, Paul D.

    1976-01-01

    Providing a high strength, hermetic ceramic to metal seal by essentially heating a wire-like metal gasket and a ceramic member, which have been chemically cleaned, while simultaneously deforming from about 50 to 95 percent the metal gasket against the ceramic member at a temperature of about 30 to 75 percent of the melting temperature of the metal gasket.

  7. Heavy metal biosensor

    DOEpatents

    Hillson, Nathan J; Shapiro, Lucille; Hu, Ping; Andersen, Gary L

    2014-04-15

    Compositions and methods are provided for detection of certain heavy metals using bacterial whole cell biosensors.

  8. FORGE Teams | Department of Energy

    Energy.gov [DOE] (indexed site)

    Ormat Technologies Inc., and Itasca Consulting Group University of Utah Location: Milford City, Utah Key Partners: Utah Geological Survey, Murphy-Brown LLC, Idaho National...

  9. About FORGE | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    The innovative research, coupled with an equally-innovative collaboration and management ... This critical knowledge will be used to design and test a methodology for developing ...

  10. FORGE Events | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Under Secretary for Science and Energy Lynn Orr annouced the cutting-edge enhanced geothermal system efforts at a stakeholder round table event held at the Nevada Museum of Art. ...

  11. FORGE, 2015 Peer Review Plenary

    Energy.gov [DOE]

    Geothermal energy potential could climb to more than 100 gigawatts - one tenth of America's energy demand - with next-generation EGS technologies. Now, an Energy Department subsurface laboratory will undertake transformative science that could unlock the earth's potential and harness a commercial pathway for this clean, domestic energy source.

  12. Amorphous metal composites

    DOEpatents

    Byrne, Martin A. (Troy, NY); Lupinski, John H. (Scotia, NY)

    1984-01-01

    An improved amorphous metal composite and process of making the composite. The amorphous metal composite comprises amorphous metal (e.g. iron) and a low molecular weight thermosetting polymer binder. The process comprises placing an amorphous metal in particulate form and a thermosetting polymer binder powder into a container, mixing these materials, and applying heat and pressure to convert the mixture into an amorphous metal composite.

  13. Metal halogen electrochemical cell

    SciTech Connect

    Walsh, F.M.

    1986-06-03

    An electrochemical cell is described having a metal anode selected from the group consisting of zinc and cadmium; a bromine cathode; and, an aqueous electrolyte containing a metal bromide, the metal having the same metal as the metal of the anode, the improvement comprising: a bromine complexing agent in the aqueous metal bromide electrolyte consisting solely of a tetraorgano substituted ammonium salt, which salt is soluble of water and forms and substantially water immiscible liquid bromine complex at temperatures in the range of about 10/sup 0/C. to about 60/sup 0/C. and wherein the tetraorgano substituted ammonium salt is selected from asymmetric quaternary ammonium compounds.

  14. Alkali metal nitrate purification

    DOEpatents

    Fiorucci, Louis C. (Hamden, CT); Morgan, Michael J. (Guilford, CT)

    1986-02-04

    A process is disclosed for removing contaminants from impure alkali metal nitrates containing them. The process comprises heating the impure alkali metal nitrates in solution form or molten form at a temperature and for a time sufficient to effect precipitation of solid impurities and separating the solid impurities from the resulting purified alkali metal nitrates. The resulting purified alkali metal nitrates in solution form may be heated to evaporate water therefrom to produce purified molten alkali metal nitrates suitable for use as a heat transfer medium. If desired, the purified molten form may be granulated and cooled to form discrete solid particles of purified alkali metal nitrates.

  15. Metal-Air Batteries

    SciTech Connect

    Zhang, Jiguang; Bruce, Peter G.; Zhang, Gregory

    2011-08-01

    Metal-air batteries have much higher specific energies than most currently available primary and rechargeable batteries. Recent advances in electrode materials and electrolytes, as well as new designs on metal-air batteries, have attracted intensive effort in recent years, especially in the development of lithium-air batteries. The general principle in metal-air batteries will be reviewed in this chapter. The materials, preparation methods, and performances of metal-air batteries will be discussed. Two main metal-air batteries, Zn-air and Li-air batteries will be discussed in detail. Other type of metal-air batteries will also be described.

  16. Method of manufacturing metallic products such as sheet by cold working and flash anealing

    DOEpatents

    Hajaligol, Mohammad R.; Sikka, Vinod K.

    2001-01-01

    A metallic alloy composition is manufactured into products such as press formed or stamped products or rolled products such as sheet, strip, rod, wire or band by one or more cold working steps with intermediate or final flash annealing. The method can include cold rolling an iron, nickel or titanium aluminide alloy and annealing the cold worked product in a furnace by infrared heating. The flash annealing is preferably carried out by rapidly heating the cold worked product to an elevated temperature for less than one minute. The flash annealing is effective to reduce surface hardness of the cold worked product sufficiently to allow further cold working. The product to be cold worked can be prepared by casting the alloy or by a powder metallurgical technique such as tape casting a mixture of metal powder and a binder, roll compacting a mixture of the powder and a binder or plasma spraying the powder onto a substrate. In the case of tape casting or roll compaction, the initial powder product can be heated to a temperature sufficient to remove volatile components. The method can be used to form a cold rolled sheet which is formed into an electrical resistance heating element capable of heating to 900.degree. C. in less than 1 second when a voltage up to 10 volts and up to 6 amps is passed through the heating element.

  17. Method of manufacturing metallic products such as sheet by cold working and flash annealing

    DOEpatents

    Hajaligol, Mohammad R.; Sikka, Vinod K.

    2000-01-01

    A metallic alloy composition is manufactured into products such as press formed or stamped products or rolled products such as sheet, strip, rod, wire or band by one or more cold working steps with intermediate or final flash annealing. The method can include cold rolling an iron, nickel or titanium aluminide alloy and annealing the cold worked product in a furnace by infrared heating. The flash annealing is preferably carried out by rapidly heating the cold worked product to an elevated temperature for less than one minute. The flash annealing is effective to reduce surface hardness of the cold worked product sufficiently to allow further cold working. The product to be cold worked can be prepared by casting the alloy or by a powder metallurgical technique such as tape casting a mixture of metal powder and a binder, roll compacting a mixture of the powder and a binder or plasma spraying the powder onto a substrate. In the case of tape casting or roll compaction, the initial powder product can be heated to a temperature sufficient to remove volatile components. The method can be used to form a cold rolled sheet which is formed into an electrical resistance heating element capable of heating to 900.degree. C. in less than 1 second when a voltage up to 10 volts and up to 6 amps is passed through the heating element.

  18. Metal phthalocyanine catalysts

    DOEpatents

    Ellis, Jr., Paul E.; Lyons, James E.

    1994-01-01

    As a new composition of matter, alkali metal or ammonium or tetraalkylammonium diazidoperfluorophthalocyanatoferrate. Other embodiments of the invention comprise compositions wherein the metal of the coordination complex is cobalt, manganese and chromium.

  19. Metal phthalocyanine catalysts

    DOEpatents

    Ellis, P.E. Jr.; Lyons, J.E.

    1994-10-11

    A new composition of matter is described which is an alkali metal or ammonium or tetraalkylammonium diazidoperfluorophthalocyanatoferrate. Other embodiments of the invention comprise compositions wherein the metal of the coordination complex is cobalt, manganese and chromium.

  20. Metal to semiconductor transition in metallic transition metal dichalcogenides

    SciTech Connect

    Li, Yan; Kang, Jun; Li, Jingbo; Tongay, Sefaattin; Wu, Junqiao; Yue, Qu

    2013-11-07

    We report on tuning the electronic and magnetic properties of metallic transition metal dichalcogenides (mTMDCs) by 2D to 1D size confinement. The stability of the mTMDC monolayers and nanoribbons is demonstrated by the larger binding energy compared to the experimentally available semiconducting TMDCs. The 2D MX{sub 2} (M?=?Nb, Ta; X?=?S, Se) monolayers are non-ferromagnetic metals and mechanically softer compared to their semiconducting TMDCs counterparts. Interestingly, mTMDCs undergo metal-to-semiconductor transition when the ribbon width approaches to ?13? and ?7? for zigzag and armchair edge terminations, respectively; then these ribbons convert back to metal when the ribbon widths further decrease. Zigzag terminated nanoribbons are ferromagnetic semiconductors, and their magnetic properties can also be tuned by hydrogen edge passivation, whereas the armchair nanoribbons are non-ferromagnetic semiconductors. Our results display that the mTMDCs offer a broad range of physical properties spanning from metallic to semiconducting and non-ferromagnetic to ferromagnetic that is ideal for applications where stable narrow bandgap semiconductors with different magnetic properties are desired.

  1. Fractographic and microstructural analysis of stress corrosion cracking of A533 Grade B Class 1 plate and A508 Class 2 forging in pressurized reactor-grade water at 93 degrees C

    SciTech Connect

    Provenzano, V.; Torronen, K.; Sturm, D.; Cullen, W.H.

    1980-01-25

    Stress corrosion cracking (SCC) studies were conducted in two commonly used pressure vessel steels: A533 Grade B Class 1 (A533-B-1) plate and an equivalent A508 Class 2 (A508-2) forging. The purpose of these studies was to determine the response of the materials in simulated pressurized water reactor environment. Round tensile specimens, 32 mm (1.25 in.) along the gage section and 9.5 mm (0.375 in.) in diameter, were bolt-loaded to 75 to 80 percent of yield and left in the water at 93C for 2000 hr. At the end of this period, the specimens were taken out of the water, unloaded, and examined by scanning electron microscopy (SEM) and by energy dispersive x-ray analysis.

  2. Durable metallized polymer mirror

    DOEpatents

    Schissel, P.O.; Kennedy, C.E.; Jorgensen, G.J.; Shinton, Y.D.; Goggin, R.M.

    1994-11-01

    A metallized polymer mirror construction is disclosed having improved durability against delamination and tunneling, comprising: an outer layer of polymeric material; a metal oxide layer underlying the outer layer of polymeric material; a silver reflective layer underneath the metal oxide layer; and a layer of adhesive attaching the silver layer to a substrate. 6 figs.

  3. Durable metallized polymer mirror

    DOEpatents

    Schissel, Paul O.; Kennedy, Cheryl E.; Jorgensen, Gary J.; Shinton, Yvonne D.; Goggin, Rita M.

    1994-01-01

    A metallized polymer mirror construction having improved durability against delamination and tunneling, comprising: an outer layer of polymeric material; a metal oxide layer underlying the outer layer of polymeric material; a silver reflective layer underneath the metal oxide layer; and a layer of adhesive attaching the silver layer to a substrate.

  4. Electrolytic purification of metals

    DOEpatents

    Bowman, Kenneth A.

    1980-01-01

    A method of electrolytically separating metal from impurities comprises providing the metal and impurities in a molten state in a container having a porous membrane therein, the membrane having a thickness in the range of about 0.01 to 0.1 inch, being capable of containing the molten metal in the container, and being permeable by a molten electrolyte. The metal is electrolytically transferred through the membrane to a cathode in the presence of the electrolyte for purposes of separating or removing impurities from the metal.

  5. Extraction process for removing metallic impurities from alkalide metals

    DOEpatents

    Royer, L.T.

    1987-03-20

    A development is described for removing metallic impurities from alkali metals by employing an extraction process wherein the metallic impurities are extracted from a molten alkali metal into molten lithium metal due to the immiscibility of the alkali metals in lithium and the miscibility of the metallic contaminants or impurities in the lithium. The purified alkali metal may be readily separated from the contaminant-containing lithium metal by simple decanting due to the differences in densities and melting temperatures of the alkali metals as compared to lithium.

  6. Metals Processing Laboratory Users (MPLUS) Facility Annual Report FY 2002 (October 1, 2001-September 30, 2002)

    SciTech Connect

    Angelini, P

    2004-04-27

    The Metals Processing Laboratory Users Facility (MPLUS) is a Department of Energy (DOE), Energy Efficiency and Renewable Energy, Industrial Technologies Program, user facility designated to assist researchers in key industries, universities, and federal laboratories in improving energy efficiency, improving environmental aspects, and increasing competitiveness. The goal of MPLUS is to provide access to the specialized technical expertise and equipment needed to solve metals processing issues that limit the development and implementation of emerging metals processing technologies. The scope of work can also extend to other types of materials. MPLUS has four primary user centers: (1) Processing--casting, powder metallurgy, deformation processing (including extrusion, forging, rolling), melting, thermomechanical processing, and high-density infrared processing; (2) Joining--welding, monitoring and control, solidification, brazing, and bonding; (3) Characterization--corrosion, mechanical properties, fracture mechanics, microstructure, nondestructive examination, computer-controlled dilatometry, and emissivity; and (4) Materials/Process Modeling--mathematical design and analyses, high-performance computing, process modeling, solidification/deformation, microstructure evolution, thermodynamic and kinetic, and materials databases A fully integrated approach provides researchers with unique opportunities to address technologically related issues to solve metals processing problems and probe new technologies. Access is also available to 16 additional Oak Ridge National Laboratory (ORNL) user facilities ranging from state-of-the-art materials characterization capabilities, and high-performance computing to manufacturing technologies. MPLUS can be accessed through a standardized user-submitted proposal and a user agreement. Nonproprietary (open) or proprietary proposals can be submitted. For open research and development, access to capabilities is provided free of charge

  7. Metals Processing Laboratory Users (MPLUS) Facility Annual Report: October 1, 2000 through September 30, 2001

    SciTech Connect

    Angelini, P

    2004-04-27

    The Metals Processing Laboratory Users Facility (MPLUS) is a Department of Energy (DOE), Energy Efficiency and Renewable Energy, Industrial Technologies Program user facility designated to assist researchers in key industries, universities, and federal laboratories in improving energy efficiency, improving environmental aspects, and increasing competitiveness. The goal of MPLUS is to provide access to the specialized technical expertise and equipment needed to solve metals processing issues that limit the development and implementation of emerging metals processing technologies. The scope of work can also extend to other types of materials. MPLUS has four primary User Centers including: (1) Processing--casting, powder metallurgy, deformation processing including (extrusion, forging, rolling), melting, thermomechanical processing, high density infrared processing; (2) Joining--welding, monitoring and control, solidification, brazing, bonding; (3) Characterization--corrosion, mechanical properties, fracture mechanics, microstructure, nondestructive examination, computer-controlled dilatometry, and emissivity; (4) Materials/Process Modeling--mathematical design and analyses, high performance computing, process modeling, solidification/deformation, microstructure evolution, thermodynamic and kinetic, and materials data bases. A fully integrated approach provides researchers with unique opportunities to address technologically related issues to solve metals processing problems and probe new technologies. Access is also available to 16 additional Oak Ridge National Laboratory (ORNL) user facilities ranging from state of the art materials characterization capabilities, high performance computing, to manufacturing technologies. MPLUS can be accessed through a standardized User-submitted Proposal and a User Agreement. Nonproprietary (open) or proprietary proposals can be submitted. For open research and development, access to capabilities is provides free of charge while

  8. FORMING PROTECTIVE FILMS ON METAL

    DOEpatents

    Gurinsky, D.H.; Kammerer, O.F.; Sadofsky, J.; Weeks, J.R.

    1958-12-16

    Methods are described of inhibiting the corrosion of ferrous metal by contact with heavy liquid metals such as bismuth and gallium at temperatures above 500 icient laborato C generally by bringing nltrogen and either the metal zirconium, hafnium, or titanium into reactlve contact with the ferrous metal to form a thin adherent layer of the nitride of the metal and thereafter maintaining a fractional percentage of the metal absorbed in the heavy liquid metal in contact with the ferrous metal container. The general purpose for uslng such high boiling liquid metals in ferrous contalners would be as heat transfer agents in liquid-metal-fueled nuclear reactors.

  9. Light metal production

    DOEpatents

    Fan, Qinbai

    2016-04-19

    An electrochemical process for the production of light metals, particularly aluminum. Such a process involves contacting a light metal source material with an inorganic acid to form a solution containing the light metal ions in high concentration. The solution is fed to an electrochemical reactor assembly having an anode side containing an anode and a cathode side containing a cathode, with anode side and the cathode side separated by a bipolar membrane, with the solution being fed to the anode side. Light metal ions are electrochemically transferred through the bipolar membrane to the cathode side. The process further involves reducing the light metal ions to light metal powder. An associated processing system is also provided.

  10. Closed cell metal foam method

    DOEpatents

    Patten, James W.

    1978-01-01

    Foamed metals and metal alloys which have a closed cellular structure are prepared by heating a metal body containing entrapped inert gas uniformly distributed throughout to a temperature above the melting point of the metal and maintaining the body at this temperature a period of time sufficient to permit the entrapped gas to expand, forming individual cells within the molten metal, thus expanding and foaming the molten metal. After cell formation has reached the desired amount, the foamed molten metal body is cooled to below the melting temperature of the metal. The void area or density of the foamed metal is controlled by predetermining the amount of inert gas entrapped in the metal body and by the period of time the metal body is maintained in the molten state. This method is useful for preparing foamed metals and metal alloys from any metal or other material of which a body containing entrapped inert gas can be prepared.

  11. Metal atomization spray nozzle

    DOEpatents

    Huxford, Theodore J.

    1993-01-01

    A spray nozzle for a magnetohydrodynamic atomization apparatus has a feed passage for molten metal and a pair of spray electrodes mounted in the feed passage. The electrodes, diverging surfaces which define a nozzle throat and diverge at an acute angle from the throat. Current passes through molten metal when fed through the throat which creates the Lorentz force necessary to provide atomization of the molten metal.

  12. Probing metal solidification nondestructively

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Probing metal solidification nondestructively Probing metal solidification nondestructively This is the first time that high-energy protons have been used to nondestructively image a large metal sample during melting and solidification. April 11, 2014 An x-ray image of a 200 micron thick aluminum-14 atomic percent copper alloy during directional solidification, highlighting the growth of an aluminum-rich branched structure (dendrite) and the advancing solid-liquid (planar) interface. The

  13. Metal atom oxidation laser

    DOEpatents

    Jensen, R.J.; Rice, W.W.; Beattie, W.H.

    1975-10-28

    A chemical laser which operates by formation of metal or carbon atoms and reaction of such atoms with a gaseous oxidizer in an optical resonant cavity is described. The lasing species are diatomic or polyatomic in nature and are readily produced by exchange or other abstraction reactions between the metal or carbon atoms and the oxidizer. The lasing molecules may be metal or carbon monohalides or monoxides. (auth)

  14. Metal atom oxidation laser

    DOEpatents

    Jensen, R.J.; Rice, W.W.; Beattie, W.H.

    1975-10-28

    A chemical laser which operates by formation of metal or carbon atoms and reaction of such atoms with a gaseous oxidizer in an optical resonant cavity is described. The lasing species are diatomic or polyatomic in nature and are readily produced by exchange or other abstraction reactions between the metal or carbon atoms and the oxidizer. The lasing molecules may be metal or carbon monohalides or monoxides.

  15. Metal atomization spray nozzle

    DOEpatents

    Huxford, T.J.

    1993-11-16

    A spray nozzle for a magnetohydrodynamic atomization apparatus has a feed passage for molten metal and a pair of spray electrodes mounted in the feed passage. The electrodes, diverging surfaces which define a nozzle throat and diverge at an acute angle from the throat. Current passes through molten metal when fed through the throat which creates the Lorentz force necessary to provide atomization of the molten metal. 6 figures.

  16. Supported metal alloy catalysts

    DOEpatents

    Barrera, Joseph; Smith, David C.

    2000-01-01

    A process of preparing a Group IV, V, or VI metal carbonitride including reacting a Group IV, V, or VI metal amide complex with ammonia to obtain an intermediate product; and, heating the intermediate product to temperatures and for times sufficient to form a Group IV, V, or VI metal carbonitride is provided together with the product of the process and a process of reforming an n-alkane by use of the product.

  17. Trending: Metal Oxo Bonds

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    in both in technological and biological processes that are often governed by careful control over the physical and chemical properties of metal-oxygen bonds. For example,...

  18. Method of producing homogeneous mixed metal oxides and metal-metal oxide mixtures

    DOEpatents

    Quinby, Thomas C.

    1978-01-01

    Metal powders, metal oxide powders, and mixtures thereof of controlled particle size are provided by reacting an aqueous solution containing dissolved metal values with excess urea. Upon heating, urea reacts with water from the solution leaving a molten urea solution containing the metal values. The molten urea solution is heated to above about 180.degree. C. whereupon metal values precipitate homogeneously as a powder. The powder is reduced to metal or calcined to form oxide particles. One or more metal oxides in a mixture can be selectively reduced to produce metal particles or a mixture of metal and metal oxide particles.

  19. Silicon metal-semiconductor-metal photodetector

    DOEpatents

    Brueck, Steven R. J.; Myers, David R.; Sharma, Ashwani K.

    1997-01-01

    Silicon MSM photodiodes sensitive to radiation in the visible to near infrared spectral range are produced by altering the absorption characteristics of crystalline Si by ion implantation. The implantation produces a defected region below the surface of the silicon with the highest concentration of defects at its base which acts to reduce the contribution of charge carriers formed below the defected layer. The charge carriers generated by the radiation in the upper regions of the defected layer are very quickly collected between biased Schottky barrier electrodes which form a metal-semiconductor-metal structure for the photodiode.

  20. Silicon metal-semiconductor-metal photodetector

    DOEpatents

    Brueck, Steven R. J.; Myers, David R.; Sharma, Ashwani K.

    1995-01-01

    Silicon MSM photodiodes sensitive to radiation in the visible to near infrared spectral range are produced by altering the absorption characteristics of crystalline Si by ion implantation. The implantation produces a defected region below the surface of the silicon with the highest concentration of defects at its base which acts to reduce the contribution of charge carriers formed below the defected layer. The charge carriers generated by the radiation in the upper regions of the defected layer are very quickly collected between biased Schottky barrier electrodes which form a metal-semiconductor-metal structure for the photodiode.

  1. PRODUCTION OF PLUTONIUM METAL

    DOEpatents

    Lyon, W.L.; Moore, R.H.

    1961-01-17

    A process is given for producing plutonium metal by the reduction of plutonium chloride, dissolved in alkali metal chloride plus or minus aluminum chloride, with magnesium or a magnesium-aluminum alloy at between 700 and 800 deg C and separating the plutonium or plutonium-aluminum alloy formed from the salt.

  2. METAL SURFACE TREATMENT

    DOEpatents

    Eubank, L.D.

    1958-08-12

    Improved flux baths are described for use in conjunction with hot dipped coatings for uranium. The flux bath consists of molten alkali metal, or alkaline earth metal halides. One preferred embodiment comprises a bath containing molten KCl, NaCl, and LiCl in proportions approximating the triple eutectic.

  3. Porous metallic bodies

    DOEpatents

    Landingham, R.L.

    1984-03-13

    Porous metallic bodies having a substantially uniform pore size of less than about 200 microns and a density of less than about 25 percent theoretical, as well as the method for making them, are disclosed. Group IIA, IIIB, IVB, VB, and rare earth metal hydrides a

  4. Metallic nanowire networks

    DOEpatents

    Song, Yujiang; Shelnutt, John A.

    2012-11-06

    A metallic nanowire network synthesized using chemical reduction of a metal ion source by a reducing agent in the presence of a soft template comprising a tubular inverse micellar network. The network of interconnected polycrystalline nanowires has a very high surface-area/volume ratio, which makes it highly suitable for use in catalytic applications.

  5. Production of magnesium metal

    DOEpatents

    Blencoe, James G. [Harriman, TN; Anovitz, Lawrence M. [Knoxville, TN; Palmer, Donald A. [Oliver Springs, TN; Beard, James S. [Martinsville, VA

    2010-02-23

    A process of producing magnesium metal includes providing magnesium carbonate, and reacting the magnesium carbonate to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The carbon dioxide is used as a reactant in a second process. In another embodiment of the process, a magnesium silicate is reacted with a caustic material to produce magnesium hydroxide. The magnesium hydroxide is reacted with a source of carbon dioxide to produce magnesium carbonate. The magnesium carbonate is reacted to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The invention further relates to a process for production of magnesium metal or a magnesium compound where an external source of carbon dioxide is not used in any of the reactions of the process. The invention also relates to the magnesium metal produced by the processes described herein.

  6. Metallization of electronic insulators

    DOEpatents

    Gottesfeld, Shimshon (Los Alamos, NM); Uribe, Francisco A. (Los Alamos, NM)

    1994-01-01

    An electroplated element is formed to include an insulating substrate, a conducting polymer polymerized in situ on the substrate, and a metal layer deposited on the conducting polymer. In one application a circuit board is formed by polymerizing pyrrole on an epoxy-fiberglass substrate in a single step process and then electrodepositing a metal over the resulting polypyrrole polymer. No chemical deposition of the metal is required prior to electroplating and the resulting layer of substrate-polymer-metal has excellent adhesion characteristics. The metal deposition is surprisingly smooth and uniform over the relatively high resistance film of polypyrrole. A continuous manufacturing process is obtained by filtering the solution between successive substrates to remove polymer formed in the solution, by maintaining the solution oxidizing potential within selected limits, and by adding a strong oxidant, such as KMnO.sub.4 at periodic intervals to maintain a low sheet resistivity in the resulting conducting polymer film.

  7. Work Functions of the transition Metals and Metal Silicides ...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Work Functions of the transition Metals and Metal Silicides Citation Details In-Document Search ... Publication Date: 1999-02-15 OSTI Identifier: 3597 Report ...

  8. Synthesis of metal silicide at metal/silicon oxide interface...

    Office of Scientific and Technical Information (OSTI)

    Synthesis of metal silicide at metalsilicon oxide interface by electronic excitation Citation Details In-Document Search Title: Synthesis of metal silicide at metalsilicon oxide ...

  9. Metal nanodisks using bicellar templates

    DOEpatents

    Song, Yujiang; Shelnutt, John A

    2013-12-03

    Metallic nanodisks and a method of making them. The metallic nanodisks are wheel-shaped structures that that provide large surface areas for catalytic applications. The metallic nanodisks are grown within bicelles (disk-like micelles) that template the growth of the metal in the form of approximately circular dendritic sheets. The zero-valent metal forming the nanodisks is formed by reduction of a metal ion using a suitable electron donor species.

  10. Metal Aminoboranes - Energy Innovation Portal

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Advanced Materials Advanced Materials Find More Like This Return to Search Metal Aminoboranes Los Alamos National Laboratory Contact LANL About This Technology Technology Marketing Summary Metal aminoboranes of the formula M(NH.sub.2BH.sub.3).sub.n have been synthesized. Metal aminoboranes are hydrogen storage materials. Metal aminoboranes are also precursors for synthesizing other metal aminoboranes. Metal aminoboranes can be dehydrogenated to form hydrogen and a reaction product. The reaction

  11. Precious Metals | The Ames Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Precious Metals General Information: The Materials Handling group provides Precious Metals receiving and documentation (PM's) for research programs funded by the Department of Energy (DOE). Precious metals are obtained from the DOE's Business Center for Precious Metals Sales and Recovery (BCPMSR). The return of scrap and excess precious metals to the BCPMSR is also provided by this group. Metals under this control are: GOLD - SILVER - PLATINUM - RHODIUM - PALLADIUM - IRIDIUM - OSMIUM - RUTHENIUM

  12. Method for producing metallic microparticles

    DOEpatents

    Phillips, Jonathan; Perry, William L.; Kroenke, William J.

    2004-06-29

    Method for producing metallic particles. The method converts metallic nanoparticles into larger, spherical metallic particles. An aerosol of solid metallic nanoparticles and a non-oxidizing plasma having a portion sufficiently hot to melt the nanoparticles are generated. The aerosol is directed into the plasma where the metallic nanoparticles melt, collide, join, and spheroidize. The molten spherical metallic particles are directed away from the plasma and enter the afterglow where they cool and solidify.

  13. Method for producing metallic nanoparticles

    DOEpatents

    Phillips, Jonathan; Perry, William L.; Kroenke, William J.

    2004-02-10

    Method for producing metallic nanoparticles. The method includes generating an aerosol of solid metallic microparticles, generating non-oxidizing plasma with a plasma hot zone at a temperature sufficiently high to vaporize the microparticles into metal vapor, and directing the aerosol into the hot zone of the plasma. The microparticles vaporize in the hot zone to metal vapor. The metal vapor is directed away from the hot zone and to the plasma afterglow where it cools and condenses to form solid metallic nanoparticles.

  14. Preparation of uniform nanoparticles of ultra-high purity metal oxides, mixed metal oxides, metals, and metal alloys

    DOEpatents

    Woodfield, Brian F.; Liu, Shengfeng; Boerio-Goates, Juliana; Liu, Qingyuan; Smith, Stacey Janel

    2012-07-03

    In preferred embodiments, metal nanoparticles, mixed-metal (alloy) nanoparticles, metal oxide nanoparticles and mixed-metal oxide nanoparticles are provided. According to embodiments, the nanoparticles may possess narrow size distributions and high purities. In certain preferred embodiments, methods of preparing metal nanoparticles, mixed-metal nanoparticles, metal oxide nanoparticles and mixed-metal nanoparticles are provided. These methods may provide tight control of particle size, size distribution, and oxidation state. Other preferred embodiments relate to a precursor material that may be used to form nanoparticles. In addition, products prepared from such nanoparticles are disclosed.

  15. (Bi, Pb){sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub x} superconductor and method of making same utilizing sinter-forging

    DOEpatents

    Chen, N.; Goretta, K.C.; Lanagan, M.T.

    1998-10-13

    A (BiPb){sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub x}(Bi223) superconductor with high J{sub c}, phase purity, density and mechanical strength is formed from Bi2223 powder which is synthesized from a mixture of Bi{sub 2}O{sub 3}, PbO, SrCO{sub 3}, CaCo{sub 3} and CuO. The mixture is milled, then dried and calcined to synthesize the Bi2223 powder with the desired phase purity. The calcination is performed by heating the dried mixture for 50 hours at 840 C. The partially synthesized powder is then milled for 1--4 hours before calcining further for another 50 hours at 855 C to complete the synthesis. After calcination, the Bi2223 powder is cold pressed to a predetermined density and sinter forged under controlled temperature and time to form a Bi2223 superconductor with the desired superconducting properties. 5 figs.

  16. (Bi, Pb).sub.2, Sr.sub.2 Ca.sub.2 Cu.sub.3 O.sub.x superconductor and method of making same utilizing sinter-forging

    DOEpatents

    Chen, Nan; Goretta, Kenneth C.; Lanagan, Michael T.

    1998-01-01

    A (BiPb).sub.2 Sr.sub.2 Ca.sub.2 Cu.sub.3 O.sub.x (Bi223) superconductor with high J.sub.c, phase purity, density and mechanical strength is formed from Bi2223 powder which is synthesized from a mixture of Bi.sub.2 O.sub.3, PbO, SrCO.sub.3, CaCo.sub.3 and CuO. The mixture is milled, then dried and calcined to synthesize the Bi2223 powder with the desired phase purity. The calcination is performed by heating the dried mixture for 50 hours at 840.degree. C. The partially synthesized powder is then milled for 1-4 hours before calcining further for another 50 hours at 855.degree. C. to complete the synthesis. After calcination, the Bi2223 powder is cold pressed to a predetermined density and sinter forged under controlled temperature and time to form a Bi2223 superconductor with the desired superconducting properties.

  17. Transition Metal Switchable Mirror

    ScienceCinema

    None

    2013-05-29

    The switchable-mirrors technology was developed by Tom Richardson and Jonathan Slack of Berkeley Lab's Environmental Energy Technologies Division. By using transition metals rather than the rare earth metals used in the first metal-hydride switchable mirrors, Richardson and Slack were able to lower the cost and simplify the manufacturing process. Energy performance is improved as well, because the new windows can reflect or transmit both visible and infrared light. Besides windows for offices and homes, possible applications include automobile sunroofs, signs and displays, aircraft windows, and spacecraft. More information at: http://windows.lbl.gov/materials/chromogenics/default.htm

  18. Transition Metal Switchable Mirror

    ScienceCinema

    None

    2010-01-08

    The switchable-mirrors technology was developed by Tom Richardson and Jonathan Slack of Berkeley Lab's Environmental Energy Technologies Division. By using transition metals rather than the rare earth metals used in the first metal-hydride switchable mirrors, Richardson and Slack were able to lower the cost and simplify the manufacturing process. Energy performance is improved as well, because the new windows can reflect or transmit both visible and infrared light. Besides windows for offices and homes, possible applications include automobile sunroofs, signs and displays, aircraft windows, and spacecraft.

  19. EXELFS of Metallic Glasses

    SciTech Connect

    Ito, Y.; Alamgir, F.M.; Schwarz, R.B.; Jain, H.; Williams, D.B.

    1999-11-30

    The feasibility of using extended energy-loss fine structure (EXELFS) obtained from {approximately}1 nm regions of metallic glasses to study their short-range order has been examined. Ionization edges of the metallic glasses in the electron energy-loss spectrum (EELS) have been obtained from PdNiP bulk metallic glass and Ni{sub 2}P polycrystalline powder in a transmission electron microscope. The complexity of EXELFS analysis of L- and M-ionization edges of heavy elements (Z>22, i.e. Ni and Pd) is addressed by theoretical calculations using an ab initio computer code, and its results are compared with the experimental data.

  20. Liquid metal electric pump

    DOEpatents

    Abbin, J.P.; Andraka, C.E.; Lukens, L.L.; Moreno, J.B.

    1992-01-14

    An electrical pump for pumping liquid metals to high pressures in high temperature environments without the use of magnets or moving mechanical parts. The pump employs a non-porous solid electrolyte membrane, typically ceramic, specific to the liquid metal to be pumped. A DC voltage is applied across the thickness of the membrane causing ions to form and enter the membrane on the electrically positive surface, with the ions being neutralized on the opposite surface. This action provides pumping of the liquid metal from one side of the non-porous solid electrolyte membrane to the other. 3 figs.

  1. Actinide metal processing

    DOEpatents

    Sauer, N.N.; Watkin, J.G.

    1992-03-24

    A process for converting an actinide metal such as thorium, uranium, or plutonium to an actinide oxide material by admixing the actinide metal in an aqueous medium with a hypochlorite as an oxidizing agent for sufficient time to form the actinide oxide material and recovering the actinide oxide material is described together with a low temperature process for preparing an actinide oxide nitrate such as uranyl nitrate. Additionally, a composition of matter comprising the reaction product of uranium metal and sodium hypochlorite is provided, the reaction product being an essentially insoluble uranium oxide material suitable for disposal or long term storage.

  2. Actinide metal processing

    DOEpatents

    Sauer, Nancy N.; Watkin, John G.

    1992-01-01

    A process of converting an actinide metal such as thorium, uranium, or plnium to an actinide oxide material by admixing the actinide metal in an aqueous medium with a hypochlorite as an oxidizing agent for sufficient time to form the actinide oxide material and recovering the actinide oxide material is provided together with a low temperature process of preparing an actinide oxide nitrate such as uranyl nitrte. Additionally, a composition of matter comprising the reaction product of uranium metal and sodium hypochlorite is provided, the reaction product being an essentially insoluble uranium oxide material suitable for disposal or long term storage.

  3. Liquid metal electric pump

    DOEpatents

    Abbin, Joseph P.; Andraka, Charles E.; Lukens, Laurance L.; Moreno, James B.

    1992-01-01

    An electrical pump for pumping liquid metals to high pressures in high temperature environments without the use of magnets or moving mechanical parts. The pump employs a non-porous solid electrolyte membrane, typically ceramic, specific to the liquid metal to be pumped. A DC voltage is applied across the thickness of the membrane causing ions to form and enter the membrane on the electrically positive surface, with the ions being neutralized on the opposite surface. This action provides pumping of the liquid metal from one side of the non-porous solid electrolyte membrane to the other.

  4. Oligocyclopentadienyl transition metal complexes

    SciTech Connect

    de Azevedo, Cristina G.; Vollhardt, K. Peter C.

    2002-01-18

    Synthesis, characterization, and reactivity studies of oligocyclopentadienyl transition metal complexes, namely those of fulvalene, tercyclopentadienyl, quatercyclopentadienyl, and pentacyclopentadienyl(cyclopentadienyl) are the subject of this account. Thermal-, photo-, and redox chemistries of homo- and heteropolynuclear complexes are described.

  5. Production of magnesium metal

    DOEpatents

    Blencoe, James G.; Anovitz, Lawrence M.; Palmer, Donald A.; Beard, James S.

    2012-04-10

    A process of producing magnesium metal includes providing magnesium carbonate, and reacting the magnesium carbonate to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The carbon dioxide is used as a reactant in a second process. In another embodiment of the process, a magnesium silicate is reacted with a caustic material to produce magnesium hydroxide. The magnesium hydroxide is reacted with a source of carbon dioxide to produce magnesium carbonate. The magnesium carbonate is reacted to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The invention also relates to the magnesium metal produced by the processes described herein.

  6. METALS DESIGN HANDBOOK DISCLAIMER

    Office of Scientific and Technical Information (OSTI)

    otherwise does not necessarily constitute o r imply its endorsement, rccom- mendation, or ... : Enclosed f o r your useinformation is DOE-HTGR-88106, Rev. 0, "Metals Design Handbook". ...

  7. Molten metal reactors

    DOEpatents

    Bingham, Dennis N; Klingler, Kerry M; Turner, Terry D; Wilding, Bruce M

    2013-11-05

    A molten metal reactor for converting a carbon material and steam into a gas comprising hydrogen, carbon monoxide, and carbon dioxide is disclosed. The reactor includes an interior crucible having a portion contained within an exterior crucible. The interior crucible includes an inlet and an outlet; the outlet leads to the exterior crucible and may comprise a diffuser. The exterior crucible may contain a molten alkaline metal compound. Contained between the exterior crucible and the interior crucible is at least one baffle.

  8. Lithium metal reduction of plutonium oxide to produce plutonium metal

    DOEpatents

    Coops, Melvin S.

    1992-01-01

    A method is described for the chemical reduction of plutonium oxides to plutonium metal by the use of pure lithium metal. Lithium metal is used to reduce plutonium oxide to alpha plutonium metal (alpha-Pu). The lithium oxide by-product is reclaimed by sublimation and converted to the chloride salt, and after electrolysis, is removed as lithium metal. Zinc may be used as a solvent metal to improve thermodynamics of the reduction reaction at lower temperatures. Lithium metal reduction enables plutonium oxide reduction without the production of huge quantities of CaO--CaCl.sub.2 residues normally produced in conventional direct oxide reduction processes.

  9. Microsoft Word - Stamp_CV.doc

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    o Regional electric generation and transmission utilities (2002) o Municipal water utilities (2001-2002) o Hydroelectric dams (1999-2003) o Petroleum storage (1999) * ...

  10. Advanced High-Strength Steel Stamping

    Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  11. Electrochemical nitridation of metal surfaces

    DOEpatents

    Wang, Heli; Turner, John A.

    2015-06-30

    Electrochemical nitridation of metals and the produced metals are disclosed. An exemplary method of electrochemical nitridation of metals comprises providing an electrochemical solution at low temperature. The method also comprises providing a three-electrode potentiostat system. The method also comprises stabilizing the three-electrode potentiostat system at open circuit potential. The method also comprises applying a cathodic potential to a metal.

  12. Thermally tolerant multilayer metal membrane

    DOEpatents

    Dye, Robert C.; Snow, Ronny C.

    2001-01-01

    A composite metal membrane including a first metal layer of a Group IVB or Group VB metal sandwiched between two layers of a Group VIIIB metal selected from the group consisting of palladium, platinum, nickel, rhodium, iridium, cobalt, and alloys thereof, and a non-continuous layer of a metal chalcogenide upon one layer of the Group VIIIB metal is disclosed together with a process for the recovery of hydrogen from a gaseous mixture using such a composite membrane and a process for forming such a composite metal membrane.

  13. Peroxotitanates for Biodelivery of Metals

    SciTech Connect

    Hobbs, David; Elvington, M.

    2009-02-11

    Metal-based drugs are largely undeveloped in pharmacology. One limiting factor is the systemic toxicity of metal-based compounds. A solid-phase, sequestratable delivery agent for local delivery of metals could reduce systemic toxicity, facilitating new drug development in this nascent area. Amorphous peroxotitanates (APT) are ion exchange materials with high affinity for several heavy metal ions, and have been proposed to deliver or sequester metal ions in biological contexts. In the current study, we tested a hypothesis that APT are able to deliver metals or metal compounds to cells. We exposed fibroblasts (L929) or monocytes (THP1) to metal-APT materials for 72 h in vitro, then measured cellular mitochondrial activity (SDH-MTT method) to assess the biological impact of the metal-APT materials vs. metals or APT alone. APT alone did not significantly affect cellular mitochondrial activity, but all metal-APT materials suppressed the mitochondrial activity of fibroblasts (by 30-65% of controls). The concentration of metal-APT materials required to suppress cellular mitochondrial activity was below that required for metals alone, suggesting that simple extracellular release of the metals from the metal-APT materials was not the primary mechanism of mitochondrial suppression. In contrast to fibroblasts, no metal-APT material had a measurable effect on THP1 monocyte mitochondrial activity, despite potent suppression by metals alone. This latter result suggested that 'biodelivery' by metal-APT materials may be cell type-specific. Therefore, it appears that APT are plausible solid phase delivery agents of metals or metal compounds to some types of cells for potential therapeutic effect.

  14. Method for forming metal contacts

    DOEpatents

    Reddington, Erik; Sutter, Thomas C; Bu, Lujia; Cannon, Alexandra; Habas, Susan E; Curtis, Calvin J; Miedaner, Alexander; Ginley, David S; Van Hest, Marinus Franciscus Antonius Maria

    2013-09-17

    Methods of forming metal contacts with metal inks in the manufacture of photovoltaic devices are disclosed. The metal inks are selectively deposited on semiconductor coatings by inkjet and aerosol apparatus. The composite is heated to selective temperatures where the metal inks burn through the coating to form an electrical contact with the semiconductor. Metal layers are then deposited on the electrical contacts by light induced or light assisted plating.

  15. Liquid metal thermal electric converter

    DOEpatents

    Abbin, Joseph P.; Andraka, Charles E.; Lukens, Laurance L.; Moreno, James B.

    1989-01-01

    A liquid metal thermal electric converter which converts heat energy to electrical energy. The design of the liquid metal thermal electric converter incorporates a unique configuration which directs the metal fluid pressure to the outside of the tube which results in the structural loads in the tube to be compressive. A liquid metal thermal electric converter refluxing boiler with series connection of tubes and a multiple cell liquid metal thermal electric converter are also provided.

  16. Alkali metal ionization detector

    DOEpatents

    Bauerle, James E.; Reed, William H.; Berkey, Edgar

    1978-01-01

    Variations in the conventional filament and collector electrodes of an alkali metal ionization detector, including the substitution of helical electrode configurations for either the conventional wire filament or flat plate collector; or, the substitution of a plurality of discrete filament electrodes providing an in situ capability for transferring from an operationally defective filament electrode to a previously unused filament electrode without removing the alkali metal ionization detector from the monitored environment. In particular, the helical collector arrangement which is coaxially disposed about the filament electrode, i.e. the thermal ionizer, provides an improved collection of positive ions developed by the filament electrode. The helical filament design, on the other hand, provides the advantage of an increased surface area for ionization of alkali metal-bearing species in a monitored gas environment as well as providing a relatively strong electric field for collecting the ions at the collector electrode about which the helical filament electrode is coaxially positioned. Alternatively, both the filament and collector electrodes can be helical. Furthermore, the operation of the conventional alkali metal ionization detector as a leak detector can be simplified as to cost and complexity, by operating the detector at a reduced collector potential while maintaining the sensitivity of the alkali metal ionization detector adequate for the relatively low concentration of alkali vapor and aerosol typically encountered in leak detection applications.

  17. ITP Metal Casting: A Vision for the U.S. Metal Casting Industry...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    KB) More Documents & Publications ITP Metal Casting: Metalcasting Industry Technology Roadmap ITP Metal Casting: Implementation of Metal Casting Best Practices ITP Metal Casting: ...

  18. METAL RESISTIVITY MEASURING DEVICE

    DOEpatents

    Renken, J. Jr.; Myers, R.G.

    1960-12-20

    An eddy current device is offered for detecting discontinuities in metal samples. Alternate short and long duration pulses are inductively applied to a metal sample via the outer coil of a probe. The long pulses give a resultant signal from the metal sample responsive to probe-tosample spacing and discontinuities within the sample and the shont pulses give a resultant signal responsive only to probe -to-sample spacing. The inner coil of the probe detects the two resultant signals and transmits them to a separation network where the two signals are separated. The two separated signals are then transmitted to a compensation network where the detected signals due to the short pulses are used to compensate for variations due to probe-to-sample spacing contained in the detected signals from the long pulses. Thus, a resultant signal is obtained responsive to discontinuities within the sample and independent of probe-to- sample spacing.

  19. Metal Resistivity Measuring Device

    DOEpatents

    Renken, Jr, C. J.; Myers, R. G.

    1960-12-20

    An eddy current device is designed for detecting discontinuities in metal samples. Alternate short and long duration pulses are inductively applied to a metal sample via the outer coil of a probe. The lorg pulses give a resultant signal from the metal sample responsive to probe-tosample spacing and discontinuities with the sample, and the short pulses give a resultant signal responsive only to probe-to-sample spacing. The inner coil of the probe detects the two resultant signals and transmits them to a separation network where the two signals are separated. The two separated signals are then transmitted to a compensation network where the detected signals due to the short pulses are used to compensate for variations due to probeto-sample spacing contained in the detected signals from the long pulses. Thus a resultant signal is obtained responsive to discontinuities within the sample and independent of probe-to- sample spacing.

  20. LEVELING METAL COATINGS

    DOEpatents

    Gage, H.A.

    1959-02-10

    A method is described for applying metallic coatings to a cylinder of uranium. An aluminum-silicon coat is applied by a process consisting of first cleaning the article by immersion for 5 minutes in 50% nitric acid at 65 C. The article then is dipped through a flux, prepared by adding 10% sodium fluoride to 90% of a flux comprising 53% potassium chloride, 42% lithium chloride, and 5% sodium chloride at 560 for 2 minutes and then directly into a molten metal bath comprising 99% aluminun and 12% silicon at 620 C for 3 minutes. While the coating is yet molten the article is transferred to a pair of steel rollers and rolled until the coating solidifies. By varying the composition of the flux other metals such as zinc, lead or the like may be coated on uranium in a similar manner.

  1. Method for locating metallic nitride inclusions in metallic alloy ingots

    DOEpatents

    White, Jack C.; Traut, Davis E.; Oden, Laurance L.; Schmitt, Roman A.

    1992-01-01

    A method of determining the location and history of metallic nitride and/or oxynitride inclusions in metallic melts. The method includes the steps of labeling metallic nitride and/or oxynitride inclusions by making a coreduced metallic-hafnium sponge from a mixture of hafnium chloride and the chloride of a metal, reducing the mixed chlorides with magnesium, nitriding the hafnium-labeled metallic-hafnium sponge, and seeding the sponge to be melted with hafnium-labeled nitride inclusions. The ingots are neutron activated and the hafnium is located by radiometric means. Hafnium possesses exactly the proper metallurgical and radiochemical properties for this use.

  2. Modernizing furnaces with recuperative burners in the metal industry

    SciTech Connect

    Berdoulay, F.; Drewery, P.

    1982-01-01

    Industrial burners equipped with means of preheating the combustion air with the hot combustion products offer significant savings in heat-processing energy consumption. As evidence in some forging furnaces recently outfitted with recuperative burners, reductions in energy consumption range from 30 to 60%. Such burners are particularly well-suited for high-temperature, direct-heating furnaces.

  3. Metallic carbon materials

    DOEpatents

    Cohen, Marvin Lou; Crespi, Vincent Henry; Louie, Steven Gwon Sheng; Zettl, Alexander Karlwalter

    1999-01-01

    Novel metallic forms of planar carbon are described, as well as methods of designing and making them. Nonhexagonal arrangements of carbon are introduced into a graphite carbon network essentially without destroying the planar structure. Specifically a form of carbon comprising primarily pentagons and heptagons, and having a large density of states at the Fermi level is described. Other arrangements of pentagons and heptagons that include some hexagons, and structures incorporating squares and octagons are additionally disclosed. Reducing the bond angle symmetry associated with a hexagonal arrangement of carbons increases the likelihood that the carbon material will have a metallic electron structure.

  4. Hard metal composition

    DOEpatents

    Sheinberg, H.

    1983-07-26

    A composition of matter having a Rockwell A hardness of at least 85 is formed from a precursor mixture comprising between 3 and 10 wt % boron carbide and the remainder a metal mixture comprising from 70 to 90% tungsten or molybdenum, with the remainder of the metal mixture comprising nickel and iron or a mixture thereof. The composition has a relatively low density of between 7 and 14 g/cc. The precursor is preferably hot pressed to yield a composition having greater than 100% of theoretical density.

  5. Metal-smelting facility

    SciTech Connect

    Kellogg, D.R.; Mack, J.E.; Thompson, W.T.; Williams, L.C.

    1982-01-01

    Currently there are 90,000 tons of contaminated ferrous and nonferrous scrap metal stored in aboveground scrap yards at the Department of Energy's Uranium Enrichment Facilities in Tennessee, Kentucky, and Ohio. This scrap is primarily contaminated with 100 to 500 ppM uranium at an average enrichment of 1 to 1.5% /sup 235/U. A study was performed that evaluated smelting of the ORGDP metal in a reference facility located at Oak Ridge. The study defined the process systems and baseline requirements, evaluated alternatives to smelting, and provided capital and operating costs for the reference facility. A review of the results and recommendations of this study are presented.

  6. Metal alloy identifier

    DOEpatents

    Riley, William D. (Avondale, MD); Brown, Jr., Robert D. (Avondale, MD)

    1987-01-01

    To identify the composition of a metal alloy, sparks generated from the alloy are optically observed and spectrographically analyzed. The spectrographic data, in the form of a full-spectrum plot of intensity versus wavelength, provide the "signature" of the metal alloy. This signature can be compared with similar plots for alloys of known composition to establish the unknown composition by a positive match with a known alloy. An alternative method is to form intensity ratios for pairs of predetermined wavelengths within the observed spectrum and to then compare the values of such ratios with similar values for known alloy compositions, thereby to positively identify the unknown alloy composition.

  7. Liquid metal pump

    DOEpatents

    Pennell, William E.

    1982-01-01

    The liquid metal pump comprises floating seal rings and attachment of the pump diffuser to the pump bowl for isolating structural deflections from the pump shaft bearings. The seal rings also eliminate precision machining on large assemblies by eliminating the need for a close tolerance fit between the mounting surfaces of the pump and the seals. The liquid metal pump also comprises a shaft support structure that is isolated from the pump housing for better preservation of alignment of shaft bearings. The shaft support structure also allows for complete removal of pump internals for inspection and repair.

  8. Hard metal composition

    DOEpatents

    Sheinberg, Haskell

    1986-01-01

    A composition of matter having a Rockwell A hardness of at least 85 is formed from a precursor mixture comprising between 3 and 10 weight percent boron carbide and the remainder a metal mixture comprising from 70 to 90 percent tungsten or molybdenum, with the remainder of the metal mixture comprising nickel and iron or a mixture thereof. The composition has a relatively low density of between 7 to 14 g/cc. The precursor is preferably hot pressed to yield a composition having greater than 100% of theoretical density.

  9. Wick for metal vapor laser

    DOEpatents

    Duncan, David B. (Livermore, CA)

    1992-01-01

    An improved wick for a metal vapor laser is made of a refractory metal cylinder, preferably molybdenum or tungsten for a copper laser, which provides the wicking surface. Alternately, the inside surface of the ceramic laser tube can be metalized to form the wicking surface. Capillary action is enhanced by using wire screen, porous foam metal, or grooved surfaces. Graphite or carbon, in the form of chunks, strips, fibers or particles, is placed on the inside surface of the wick to reduce water, reduce metal oxides and form metal carbides.

  10. Metal Insertion in a Microporous Metal-Organic Framework Lined...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Metal Insertion in a Microporous Metal-Organic Framework Lined with 2,2 '-Bipyridine Previous Next List E. D. Bloch, D. Britt, C. Lee, C. J. Doonan, F. J. Uribe-Romo, H. Furukawa, ...

  11. Serpentine metal gasket

    DOEpatents

    Rothgeb, Timothy Moore; Reece, Charles Edwin

    2009-06-02

    A metallic seal or gasket for use in the joining of cryogenic fluid conduits, the seal or gasket having a generally planar and serpentine periphery defining a central aperture. According to a preferred embodiment, the periphery has at least two opposing elongated serpentine sides and two opposing arcuate ends joining the opposing elongated serpentine sides and is of a hexagonal cross-section.

  12. Metal working lubricant compositions

    SciTech Connect

    Andress, H.J.; Davis, R.H.; Schick, J.W.

    1981-08-11

    A lubricant concentrate for use in metal processing comprises a sulfur compound such as a sulfurized olefin or sulfurized mineral oil and an ester prepared from a fatty acid having 12 to 40 carbon atoms or the dimer thereof or a polyalkenylsuccinic acid or anhydride and a hydroxyl-containing amine.

  13. STRIPPING METAL COATINGS

    DOEpatents

    Siefen, H.T.; Campbell, J.M.

    1959-02-01

    A method is described for removing aluminumuranium-silicon alloy bonded to metallic U comprising subjecting the Al-U -Si alloy to treatment with hot concentrated HNO/sun 3/ to partially dissolve and embrittle the alloy and shot- blasting the embrittled alloy to loosen it from the U.

  14. Metal halogen electrochemical cell

    DOEpatents

    Bellows, Richard J.; Kantner, Edward

    1988-08-23

    It has now been discovered that reduction in the coulombic efficiency of metal halogen cells can be minimized if the microporous separator employed in such cells is selected from one which is preferably wet by the aqueous electrolyte and is not wet substantially by the cathodic halogen.

  15. Ductile transplutonium metal alloys

    DOEpatents

    Conner, W.V.

    1981-10-09

    Alloys of Ce with transplutonium metals such as Am, Cm, Bk and Cf have properties making them highly suitable as souces of the transplutonium element, e.g., for use in radiation detector technology or as radiation sources. The alloys are ductile, homogeneous, easy to prepare and have a fairly high density.

  16. Ductile transplutonium metal alloys

    DOEpatents

    Conner, William V.

    1983-01-01

    Alloys of Ce with transplutonium metals such as Am, Cm, Bk and Cf have properties making them highly suitable as sources of the transplutonium element, e.g., for use in radiation detector technology or as radiation sources. The alloys are ductile, homogeneous, easy to prepare and have a fairly high density.

  17. Method of producing adherent metal oxide coatings on metallic surfaces

    DOEpatents

    Lane, Michael H.; Varrin, Jr., Robert D.

    2001-01-01

    Provided is a process of producing an adherent synthetic corrosion product (sludge) coating on metallic surfaces. The method involves a chemical reaction between a dry solid powder mixture of at least one reactive metal oxide with orthophosphoric acid to produce a coating in which the particles are bound together and the matrix is adherent to the metallic surface.

  18. Rare Earth Metals & Alloys | The Ames Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Rare Earth Metals & Alloys Quantities of high-purity rare earth metals and alloys in ... storage, cutting and cleaning and SDS information for the rare earth elements (metals).

  19. Metal recovery from porous materials (Patent) | DOEPatents

    Office of Scientific and Technical Information (OSTI)

    Metal recovery from porous materials Title: Metal recovery from porous materials The present invention relates to recovery of metals. More specifically, the present invention ...

  20. Purification of alkali metal nitrates

    DOEpatents

    Fiorucci, Louis C.; Gregory, Kevin M.

    1985-05-14

    A process is disclosed for removing heavy metal contaminants from impure alkali metal nitrates containing them. The process comprises mixing the impure nitrates with sufficient water to form a concentrated aqueous solution of the impure nitrates, adjusting the pH of the resulting solution to within the range of between about 2 and about 7, adding sufficient reducing agent to react with heavy metal contaminants within said solution, adjusting the pH of the solution containing reducing agent to effect precipitation of heavy metal impurities and separating the solid impurities from the resulting purified aqueous solution of alkali metal nitrates. The resulting purified solution of alkali metal nitrates may be heated to evaporate water therefrom to produce purified molten alkali metal nitrate suitable for use as a heat transfer medium. If desired, the purified molten form may be granulated and cooled to form discrete solid particles of alkali metal nitrates.

  1. Electroless metal plating of plastics

    DOEpatents

    Krause, Lawrence J.

    1984-01-01

    Process for plating main group metals on aromatic polymers is carried out by the use of a nonaqueous solution of a salt of an alkali metal in a positive valence state and a main group metal in a negative valence state with contact between the solution and polymer providing a redox reaction causing the deposition of the main group metal and the reduction of the polymer. Products from the process exhibit useful decorative and electrical properties.

  2. Electroless metal plating of plastics

    DOEpatents

    Krause, Lawrence J.

    1986-01-01

    Process for plating main group metals on aromatic polymers is carried out by the use of a nonaqueous solution of a salt of an alkali metal in a positive valence state and a main group metal in a negative valence state with contact between the solution and polymer providing a redox reaction causing the deposition of the main group metal and the reduction of the polymer. Products from the process exhibit useful decorative and electrical properties.

  3. Electroless metal plating of plastics

    DOEpatents

    Krause, L.J.

    1982-09-20

    Process for plating main group metals on aromatic polymers is carried out by the use of a nonaqueous solution of a salt of an alkali metal in a positive valence state and a main group metal in a negative valence state with contact between the solution and polymer providing a redox reaction causing the deposition of the main group metal and the reduction of the polymer. Products from the process exhibit useful decorative and electrical properties.

  4. Methods of recovering alkali metals

    SciTech Connect

    Krumhansl, James L; Rigali, Mark J

    2014-03-04

    Approaches for alkali metal extraction, sequestration and recovery are described. For example, a method of recovering alkali metals includes providing a CST or CST-like (e.g., small pore zeolite) material. The alkali metal species is scavenged from the liquid mixture by the CST or CST-like material. The alkali metal species is extracted from the CST or CST-like material.

  5. SURFACE TREATMENT OF METALLIC URANIUM

    DOEpatents

    Gray, A.G.; Schweikher, E.W.

    1958-05-27

    The treatment of metallic uranium to provide a surface to which adherent electroplates can be applied is described. Metallic uranium is subjected to an etchant treatment in aqueous concentrated hydrochloric acid, and the etched metal is then treated to dissolve the resulting black oxide and/or chloride film without destroying the etched metal surface. The oxide or chloride removal is effected by means of moderately concentrated nitric acid in 3 to 20 seconds.

  6. Upgrading platform using alkali metals

    SciTech Connect

    Gordon, John Howard

    2014-09-09

    A process for removing sulfur, nitrogen or metals from an oil feedstock (such as heavy oil, bitumen, shale oil, etc.) The method involves reacting the oil feedstock with an alkali metal and a radical capping substance. The alkali metal reacts with the metal, sulfur or nitrogen content to form one or more inorganic products and the radical capping substance reacts with the carbon and hydrogen content to form a hydrocarbon phase. The inorganic products may then be separated out from the hydrocarbon phase.

  7. Metals processing control by counting molten metal droplets

    DOEpatents

    Schlienger, Eric; Robertson, Joanna M.; Melgaard, David; Shelmidine, Gregory J.; Van Den Avyle, James A.

    2000-01-01

    Apparatus and method for controlling metals processing (e.g., ESR) by melting a metal ingot and counting molten metal droplets during melting. An approximate amount of metal in each droplet is determined, and a melt rate is computed therefrom. Impedance of the melting circuit is monitored, such as by calculating by root mean square a voltage and current of the circuit and dividing the calculated current into the calculated voltage. Analysis of the impedance signal is performed to look for a trace characteristic of formation of a molten metal droplet, such as by examining skew rate, curvature, or a higher moment.

  8. Inert electrode containing metal oxides, copper and noble metal

    DOEpatents

    Ray, Siba P.; Woods, Robert W.; Dawless, Robert K.; Hosler, Robert B.

    2001-01-01

    A cermet composite material is made by treating at an elevated temperature a mixture comprising a compound of iron and a compound of at least one other metal, together with an alloy or mixture of copper and a noble metal. The alloy or mixture preferably comprises particles having an interior portion containing more copper than noble metal and an exterior portion containing more noble metal than copper. The noble metal is preferably silver. The cermet composite material preferably includes alloy phase portions and a ceramic phase portion. At least part of the ceramic phase portion preferably has a spinel structure.

  9. Inert electrode containing metal oxides, copper and noble metal

    DOEpatents

    Ray, Siba P.; Woods, Robert W.; Dawless, Robert K.; Hosler, Robert B.

    2000-01-01

    A cermet composite material is made by treating at an elevated temperature a mixture comprising a compound of iron and a compound of at least one other metal, together with an alloy or mixture of copper and a noble metal. The alloy or mixture preferably comprises particles having an interior portion containing more copper than noble metal and an exterior portion containing more noble metal than copper. The noble metal is preferably silver. The cermet composite material preferably includes alloy phase portions and a ceramic phase portion. At least part of the ceramic phase portion preferably has a spinel structure.

  10. Integrated decontamination process for metals

    DOEpatents

    Snyder, Thomas S.; Whitlow, Graham A.

    1991-01-01

    An integrated process for decontamination of metals, particularly metals that are used in the nuclear energy industry contaminated with radioactive material. The process combines the processes of electrorefining and melt refining to purify metals that can be decontaminated using either electrorefining or melt refining processes.

  11. METHOD OF PURIFYING URANIUM METAL

    DOEpatents

    Blanco, R.E.; Morrison, B.H.

    1958-12-23

    The removal of lmpurities from uranlum metal can be done by a process conslstlng of contacting the metal with liquid mercury at 300 icient laborato C, separating the impunitycontalnlng slag formed, cooling the slag-free liquld substantlally below the point at which uranlum mercurlde sollds form, removlng the mercury from the solids, and recovering metallic uranium by heating the solids.

  12. Fabrication of metallic glass structures

    DOEpatents

    Cline, C.F.

    1983-10-20

    Amorphous metal powders or ribbons are fabricated into solid shapes of appreciable thickness by the application of compaction energy. The temperature regime wherein the amorphous metal deforms by viscous flow is measured. The metal powders or ribbons are compacted within the temperature regime.

  13. FLUIDIC: Metal Air Recharged

    SciTech Connect

    Friesen, Cody

    2014-03-07

    Fluidic, with the help of ARPA-E funding, has developed and deployed the world's first proven high cycle life metal air battery. Metal air technology, often used in smaller scale devices like hearing aids, has the lowest cost per electron of any rechargeable battery storage in existence. Deploying these batteries for grid reliability is competitive with pumped hydro installations while having the advantages of a small footprint. Fluidic's battery technology allows utilities and other end users to store intermittent energy generated from solar and wind, as well as maintain reliable electrical delivery during power outages. The batteries are manufactured in the US and currently deployed to customers in emerging markets for cell tower reliability. As they continue to add customers, they've gained experience and real world data that will soon be leveraged for US grid reliability.

  14. FLUIDIC: Metal Air Recharged

    ScienceCinema

    Friesen, Cody

    2014-04-02

    Fluidic, with the help of ARPA-E funding, has developed and deployed the world's first proven high cycle life metal air battery. Metal air technology, often used in smaller scale devices like hearing aids, has the lowest cost per electron of any rechargeable battery storage in existence. Deploying these batteries for grid reliability is competitive with pumped hydro installations while having the advantages of a small footprint. Fluidic's battery technology allows utilities and other end users to store intermittent energy generated from solar and wind, as well as maintain reliable electrical delivery during power outages. The batteries are manufactured in the US and currently deployed to customers in emerging markets for cell tower reliability. As they continue to add customers, they've gained experience and real world data that will soon be leveraged for US grid reliability.

  15. Fabrication of metal shells

    SciTech Connect

    O'Holleran, T.P.; Henderson, T.M.; Downs, R.L.; Nolen, R.L.

    1980-01-01

    Small hollow metal spheres are needed as targets for particle-beam fusion experiments and as the inner fuel container for multi-shell targets. For the multishell application, shells fabricated of materials with high atomic numbers, e.g., gold, are of particular interest because they may effectively reduce preheating of the fuel. Because the shells must also contain the fuel mixture (deuterium and tritium) at high pressures, high strength materials, e.g., iron, are also of considerable interest. With the objective of proof of principle we have investigated several techniques of fabricating shells of metal or materials containing large fractions of high atomic number elements. These techniques, our experimental results and their evaluation are presented.

  16. PRODUCTION OF ACTINIDE METAL

    DOEpatents

    Knighton, J.B.

    1963-11-01

    A process of reducing actinide oxide to the metal with magnesium-zinc alloy in a flux of 5 mole% of magnesium fluoride and 95 mole% of magnesium chloride plus lithium, sodium, potassium, calcium, strontium, or barium chloride is presented. The flux contains at least 14 mole% of magnesium cation at 600-- 900 deg C in air. The formed magnesium-zinc-actinide alloy is separated from the magnesium-oxide-containing flux. (AEC)

  17. METAL COATING BATHS

    DOEpatents

    Robinson, J.W.

    1958-08-26

    A method is presented for restoring the effectiveness of bronze coating baths used for hot dip coating of uranium. Such baths, containing a high proportion of copper, lose their ability to wet uranium surfaces after a period of use. The ability of such a bath to wet uranium can be restored by adding a small amount of metallic aluminum to the bath, and skimming the resultant hard alloy from the surface.

  18. Amorphous metal alloy

    DOEpatents

    Wang, R.; Merz, M.D.

    1980-04-09

    Amorphous metal alloys of the iron-chromium and nickel-chromium type have excellent corrosion resistance and high temperature stability and are suitable for use as a protective coating on less corrosion resistant substrates. The alloys are stabilized in the amorphous state by one or more elements of titanium, zirconium, hafnium, niobium, tantalum, molybdenum, and tungsten. The alloy is preferably prepared by sputter deposition.

  19. Non-Metals Workshop

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Non-metals workshop Aaron Harris, SNL/CA Installation Codes and Standards - Automotive Automotive Tank Hydrogen Pressure System SAE J2579 SAE J2615 - System Performance SAE J2572 - Fuel Consumption Measurement SAE J2574 - General Vehicle Safety SAE J2617 - Stack Performance SAE J2574 - Design for Recycling PEM stacks Fuel Cell System Components Refueling Guidelines SAE J2601 Interface Standards HGV 4.3 - Temperature Comp. CAFCP Standard H2 Quality Measurement Weight and Measures Generator NFPA 2

  20. Spray casting of metallic preforms

    DOEpatents

    Flinn, John E.; Burch, Joseph V.; Sears, James W.

    2000-01-01

    A metal alloy is melted in a crucible and ejected from the bottom of the crucible as a descending stream of molten metal. The descending stream is impacted with a plurality of primary inert gas jets surrounding the molten metal stream to produce a plume of atomized molten metal droplets. An inert gas is blown onto a lower portion of the plume with a plurality of auxiliary inert gas jets to deflect the plume into a more restricted pattern of high droplet density, thereby substantially eliminating unwanted overspray and resulting wasted material. The plume is projected onto a moving substrate to form a monolithic metallic product having generally parallel sides.

  1. Hydrothermal alkali metal recovery process

    DOEpatents

    Wolfs, Denise Y.; Clavenna, Le Roy R.; Eakman, James M.; Kalina, Theodore

    1980-01-01

    In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles by treating them with a calcium or magnesium-containing compound in the presence of water at a temperature between about 250.degree. F. and about 700.degree. F. and in the presence of an added base to establish a pH during the treatment step that is higher than would otherwise be possible without the addition of the base. During the treating process the relatively high pH facilitates the conversion of water-insoluble alkali metal compounds in the alkali metal residues into water-soluble alkali metal constituents. The resultant aqueous solution containing water-soluble alkali metal constituents is then separated from the residue solids, which consist of the treated particles and any insoluble materials formed during the treatment step, and recycled to the gasification process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst. Preferably, the base that is added during the treatment step is an alkali metal hydroxide obtained by water washing the residue solids produced during the treatment step.

  2. Dimensionally stable metallic hydride composition

    DOEpatents

    Heung, Leung K.

    1994-01-01

    A stable, metallic hydride composition and a process for making such a composition. The composition comprises a uniformly blended mixture of a metal hydride, kieselguhr, and a ballast metal, all in the form of particles. The composition is made by subjecting a metal hydride to one or more hydrogen absorption/desorption cycles to disintegrate the hydride particles to less than approximately 100 microns in size. The particles are partly oxidized, then blended with the ballast metal and the kieselguhr to form a uniform mixture. The mixture is compressed into pellets and calcined. Preferably, the mixture includes approximately 10 vol. % or more kieselguhr and approximately 50 vol. % or more ballast. Metal hydrides that can be used in the composition include Zr, Ti, V, Nb, Pd, as well as binary, tertiary, and more complex alloys of La, Al, Cu, Ti, Co, Ni, Fe, Zr, Mg, Ca, Mn, and mixtures and other combinations thereof. Ballast metals include Al, Cu and Ni.

  3. Reduction of Metal Oxide to Metal using Ionic Liquids

    SciTech Connect

    Dr. Ramana Reddy

    2012-04-12

    A novel pathway for the high efficiency production of metal from metal oxide means of electrolysis in ionic liquids at low temperature was investigated. The main emphasis was to eliminate the use of carbon and high temperature application in the reduction of metal oxides to metals. The emphasis of this research was to produce metals such as Zn, and Pb that are normally produced by the application of very high temperatures. The reduction of zinc oxide to zinc and lead oxide to lead were investigated. This study involved three steps in accomplishing the final goal of reduction of metal oxide to metal using ionic liquids: 1) Dissolution of metal oxide in an ionic liquid, 2) Determination of reduction potential using cyclic voltammetry (CV) and 3) Reduction of the dissolved metal oxide. Ionic liquids provide additional advantage by offering a wide potential range for the deposition. In each and every step of the process, more than one process variable has been examined. Experimental results for electrochemical extraction of Zn from ZnO and Pb from PbO using eutectic mixtures of Urea ((NH2)2CO) and Choline chloride (HOC2H4N(CH3)3+Cl-) or (ChCl) in a molar ratio 2:1, varying voltage and temperatures were carried out. Fourier Transform Infra-Red (FTIR) spectroscopy studies of ionic liquids with and without metal oxide additions were conducted. FTIR and induction coupled plasma spectroscopy (ICPS) was used in the characterization of the metal oxide dissolved ionic liquid. Electrochemical experiments were conducted using EG&G potentiostat/galvanostat with three electrode cell systems. Cyclic voltammetry was used in the determination of reduction potentials for the deposition of metals. Chronoamperometric experiments were carried out in the potential range of -0.6V to -1.9V for lead and -1.4V to -1.9V for zinc. The deposits were characterized using XRD and SEM-EDS for phase, morphological and elemental analysis. The results showed that pure metal was deposited on the cathode

  4. Corrosion protective coating for metallic materials

    DOEpatents

    Buchheit, R.G.; Martinez, M.A.

    1998-05-26

    Corrosion protective coatings for metallic materials, particularly aluminum and aluminum alloys, produced with simple, low-cost equipment and materials other than toxic metals or metal salts, or metal cyanides is disclosed. The metallic material is cleaned, degreased, and deoxidized, the surface is converted to a substantially alkaline condition, and the surface is chemically sealed with inorganic metal compounds. 1 fig.

  5. Corrosion protective coating for metallic materials

    DOEpatents

    Buchheit, Rudolph G.; Martinez, Michael A.

    1998-01-01

    Corrosion protective coatings for metallic materials, particularly aluminum and aluminum alloys, produced with simple, low-cost equipment and materials other than toxic metals or metal salts, or metal cyanides. The metallic material is cleaned, degreased, and deoxidized, the surface is converted to a substantially alkaline condition, and the surface is chemically sealed with inorganic metal compounds.

  6. Newberry FORGE Map | Department of Energy

    Energy.gov [DOE] (indexed site)

    in Energy Innovations | Department of Energy The Building America Program is hosting a free webinar that will provide an overview of new Code Compliance Brief content on the Building America Solution Center. These briefs help builders understand and meet code requirements while helping code officials apply codes to new and emerging innovations. The Code Compliance Briefs provide code-related information about Building America's research, best practices, and new innovations to describe how

  7. West Flank FORGE Map | Department of Energy

    Energy.gov [DOE] (indexed site)

    Department of Energy GTP Annual Peer Review presentation by Ava Coy gtp_2012peerreview_opening_acoy.pdf (164.51 KB) More Documents & Publications 2014 Advanced Grid Modeling Program Peer Review 2012 Smart Grid Peer Review 2013 Peer Review Agenda

    Presented at the R&D Strategies for Compressed, Cryo-Compressed and Cryo-Sorbent Hydrogen Storage Technologies Workshops on February 14 and 15, 2011. compressed_hydrogen2011_1_stetson.pdf (681.01 KB) More Documents & Publications DOE

  8. FORGE Events & News | Department of Energy

    Energy Saver

    Phase 1 deliverables were provided by all five participating Phase 1 teams for review. November 18, 2015 Road Tripping through the Geothermal Frontier April 27, 2015 Energy ...

  9. Fallon FORGE Map | Department of Energy

    Energy.gov [DOE] (indexed site)

    Energy The Savannah River Site in Aiken, South Carolina has been able to create/save thousands of jobs through the Recovery Act. These are the stories of just a few of their new hires. Andy Oare Andy Oare Former New Media Strategist, Office of Public Affairs Hear from some of the Recovery Act hires at the Energy Department's Savannah River Site in Aiken, South Carolina. These are just a few of the jobs funded by the Recovery Act to accelerate the cleanup of the former nuclear weapons

  10. Indian Wells Valley FORGE Aeromagnetic Data

    DOE Data Explorer

    Doug Blankenship

    1994-11-01

    Aeromagnetic data was collected over the Indian Wells Valley, CA in November 1994. It consisted of 9,033 line-kilometers covering ~4,150 square kilometers, flown at a 250 meter drape with principal line spacing of 0.54 kilometers and 10% cross-lines. The principal orientation is N65E.

  11. FORGE Informational Flier | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Conference of the Geothermal Resources Council in September Calpine Staff Run Tests at The Geysers Geothermal Power Plant in California Enhanced Geothermal System (EGS) Infographic...

  12. What is FORGE? | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    dedicated field site of its kind for testing targeted ... site for transformative science that will create a ... to compete for locating the new federal observatory. *NEW* ...

  13. FORGE Informational Flyer | Department of Energy

    Energy.gov [DOE] (indexed site)

    of the Geothermal Resources Council in September EGS Infographic Calpine Staff Run Tests at The Geysers Geothermal Power Plant in California Enhanced Geothermal System (EGS)

  14. Novel Photocatalytic Metal Oxides

    SciTech Connect

    Smith, Robert W.; Mei, Wai-Ning; Sabirianov, Renat; Wang, Lu

    2012-08-31

    The principal short-term objective is to develop improved solid-state photocatalysts for the decomposition of water into hydrogen gas using ultraviolet and visible solar radiation. We will pursue our objective by modeling candidate metal oxides through computer simulations followed by synthesis of promising candidates. We will characterize samples through standard experimental techniques. The long-term objective is to provide a more efficient source of hydrogen gas for fixed-site hydrogen fuel cells, particularly for energy users in remote locations.

  15. Metal nanoparticle inks

    DOEpatents

    Lewis, Jennifer A.; Ahn, Bok Yeop; Duoss, Eric B.

    2011-04-12

    Stabilized silver particles comprise particles comprising silver, a short-chain capping agent adsorbed on the particles, and a long-chain capping agent adsorbed on the particles. The short-chain capping agent is a first anionic polyelectrolyte having a molecular weight (Mw) of at most 10,000, and the long-chain capping agent is a second anionic polyelectrolyte having a molecular weight (Mw) of at least 25,000. The stabilized silver particles have a solid loading of metallic silver of at least 50 wt %.

  16. ITP Metal Casting: Implementation of Metal Casting Best Practices

    Energy.gov [DOE]

    The project examined cases where metal casters had implemented ITP research results and detailed the benefits they received due to that implementation.

  17. Sumitomo Metal Industries Ltd Sumitomo Metals | Open Energy Informatio...

    OpenEI (Open Energy Information) [EERE & EIA]

    Industries Ltd (Sumitomo Metals) Place: Osaka-shi, Osaka, Japan Zip: 540-0041 Sector: Solar Product: Engaged in the steel, engineering, and electronics businesses; works on...

  18. Degenerate doping of metallic anodes

    SciTech Connect

    Friesen, Cody A; Zeller, Robert A; Johnson, Paul B; Switzer, Elise E

    2015-05-12

    Embodiments of the invention relate to an electrochemical cell comprising: (i) a fuel electrode comprising a metal fuel, (ii) a positive electrode, (iii) an ionically conductive medium, and (iv) a dopant; the electrodes being operable in a discharge mode wherein the metal fuel is oxidized at the fuel electrode and the dopant increases the conductivity of the metal fuel oxidation product. In an embodiment, the oxidation product comprises an oxide of the metal fuel which is doped degenerately. In an embodiment, the positive electrode is an air electrode that absorbs gaseous oxygen, wherein during discharge mode, oxygen is reduced at the air electrode. Embodiments of the invention also relate to methods of producing an electrode comprising a metal and a doped metal oxidation product.

  19. Metals removal from spent salts

    DOEpatents

    Hsu, Peter C.; Von Holtz, Erica H.; Hipple, David L.; Summers, Leslie J.; Brummond, William A.; Adamson, Martyn G.

    2002-01-01

    A method and apparatus for removing metal contaminants from the spent salt of a molten salt oxidation (MSO) reactor is described. Spent salt is removed from the reactor and analyzed to determine the contaminants present and the carbonate concentration. The salt is dissolved in water, and one or more reagents may be added to precipitate the metal oxide and/or the metal as either metal oxide, metal hydroxide, or as a salt. The precipitated materials are filtered, dried and packaged for disposal as waste or can be immobilized as ceramic pellets. More than about 90% of the metals and mineral residues (ashes) present are removed by filtration. After filtration, salt solutions having a carbonate concentration >20% can be spray-dried and returned to the reactor for re-use. Salt solutions containing a carbonate concentration <20% require further clean-up using an ion exchange column, which yields salt solutions that contain less than 1.0 ppm of contaminants.

  20. Metal to ceramic sealed joint

    DOEpatents

    Lasecki, J.V.; Novak, R.F.; McBride, J.R.

    1991-08-27

    A metal to ceramic sealed joint which can withstand wide variations in temperature and maintain a good seal is provided for use in a device adapted to withstand thermal cycling from about 20 to about 1000 degrees C. The sealed joint includes a metal member, a ceramic member having an end portion, and an active metal braze forming a joint to seal the metal member to the ceramic member. The joint is positioned remote from the end portion of the ceramic member to avoid stresses at the ends or edges of the ceramic member. The sealed joint is particularly suited for use to form sealed metal to ceramic joints in a thermoelectric generator such as a sodium heat engine where a solid ceramic electrolyte is joined to metal parts in the system. 11 figures.

  1. Metal to ceramic sealed joint

    DOEpatents

    Lasecki, John V.; Novak, Robert F.; McBride, James R.

    1991-01-01

    A metal to ceramic sealed joint which can withstand wide variations in temperature and maintain a good seal is provided for use in a device adapted to withstand thermal cycling from about 20 to about 1000 degrees C. The sealed joint includes a metal member, a ceramic member having an end portion, and an active metal braze forming a joint to seal the metal member to the ceramic member. The joint is positioned remote from the end portion of the ceramic member to avoid stresses at the ends or edges of the ceramic member. The sealed joint is particularly suited for use to form sealed metal to ceramic joints in a thermoelectric generator such as a sodium heat engine where a solid ceramic electrolyte is joined to metal parts in the system.

  2. Supported molten-metal catalysts

    DOEpatents

    Datta, Ravindra; Singh, Ajeet; Halasz, Istvan; Serban, Manuela

    2001-01-01

    An entirely new class of catalysts called supported molten-metal catalysts, SMMC, which can replace some of the existing precious metal catalysts used in the production of fuels, commodity chemicals, and fine chemicals, as well as in combating pollution. SMMC are based on supporting ultra-thin films or micro-droplets of the relatively low-melting (<600.degree. C.), inexpensive, and abundant metals and semimetals from groups 1, 12, 13, 14, 15 and 16, of the periodic table, or their alloys and intermetallic compounds, on porous refractory supports, much like supported microcrystallites of the traditional solid metal catalysts. It thus provides orders of magnitude higher surface area than is obtainable in conventional reactors containing molten metals in pool form and also avoids corrosion. These have so far been the chief stumbling blocks in the application of molten metal catalysts.

  3. Clean Metal Casting

    SciTech Connect

    Makhlouf M. Makhlouf; Diran Apelian

    2002-02-05

    The objective of this project is to develop a technology for clean metal processing that is capable of consistently providing a metal cleanliness level that is fit for a given application. The program has five tasks: Development of melt cleanliness assessment technology, development of melt contamination avoidance technology, development of high temperature phase separation technology, establishment of a correlation between the level of melt cleanliness and as cast mechanical properties, and transfer of technology to the industrial sector. Within the context of the first task, WPI has developed a standardized Reduced Pressure Test that has been endorsed by AFS as a recommended practice. In addition, within the context of task1, WPI has developed a melt cleanliness sensor based on the principles of electromagnetic separation. An industrial partner is commercializing the sensor. Within the context of the second task, WPI has developed environmentally friendly fluxes that do not contain fluorine. Within the context of the third task, WPI modeled the process of rotary degassing and verified the model predictions with experimental data. This model may be used to optimize the performance of industrial rotary degassers. Within the context of the fourth task, WPI has correlated the level of melt cleanliness at various foundries, including a sand casting foundry, a permanent mold casting foundry, and a die casting foundry, to the casting process and the resultant mechanical properties. This is useful in tailoring the melt cleansing operations at foundries to the particular casting process and the desired properties of cast components.

  4. Metal-ceramic joint assembly

    DOEpatents

    Li, Jian

    2002-01-01

    A metal-ceramic joint assembly in which a brazing alloy is situated between metallic and ceramic members. The metallic member is either an aluminum-containing stainless steel, a high chromium-content ferritic stainless steel or an iron nickel alloy with a corrosion protection coating. The brazing alloy, in turn, is either an Au-based or Ni-based alloy with a brazing temperature in the range of 9500 to 1200.degree. C.

  5. Electronic structure of metallic glasses

    SciTech Connect

    Oelhafen, P.; Lapka, R.; Gubler, U.; Krieg, J.; DasGupta, A.; Guentherodt, H.J.; Mizoguchi, T.; Hague, C.; Kuebler, J.; Nagel, S.R.

    1981-01-01

    This paper is organized in six sections and deals with (1) the glassy transition metal alloys, their d-band structure, the d-band shifts on alloying and their relation to the alloy heat of formation (..delta..H) and the glass forming ability, (2) the glass to crystal phase transition viewed by valence band spectroscopy, (3) band structure calculations, (4) metallic glasses prepared by laser glazing, (5) glassy normal metal alloys, and (6) glassy hydrides.

  6. Corrosion-resistant metal surfaces

    DOEpatents

    Sugama, Toshifumi

    2009-03-24

    The present invention relates to metal surfaces having thereon an ultrathin (e.g., less than ten nanometer thickness) corrosion-resistant film, thereby rendering the metal surfaces corrosion-resistant. The corrosion-resistant film includes an at least partially crosslinked amido-functionalized silanol component in combination with rare-earth metal oxide nanoparticles. The invention also relates to methods for producing such corrosion-resistant films.

  7. Metals extraction from sea water

    SciTech Connect

    Chryssostomidis, C.; Larue, G.J.; Morgan, D.T.

    1981-10-06

    A method and system for continuously extracting metals from sea water by deploying adsorber sheets in a suitable current of sea water, recovering the adsorber sheets after they become loaded with metal and eluting the metal from the recovered sheets. The system involves the use of hollow, perforated bobbins on which the sheets are rolled as they are recovered and through which elutant is introduced.

  8. Metal-ion recycle technology for metal electroplating waste waters

    SciTech Connect

    Sauer, N.N.; Smith, B.F.

    1993-06-01

    As a result of a collaboration with Boeing Aerospace, the authors have begun a program to identify suitable treatments or to develop new treatments for electroplating baths. The target baths are mixed-metal or alloy baths that are being integrated into the Boeing electroplating complex. These baths, which are designed to replace highly toxic chromium and cadmium baths, contain mixtures of two metals, either nickel-tungsten, nickel-zinc, or zinc-tin. This report reviews the literature and details currently available on emerging technologies that could affect recovery of metals from electroplating baths under development by Boeing Aerospace. This literature survey summarizes technologies relevant to the recovery of metals from electroplating processes. The authors expanded the scope to investigate single metal ion recovery technologies that could be applied to metal ion recovery from alloy baths. This review clearly showed that the electroplating industry has traditionally relied on precipitation and more recently on electrowinning as its waste treatment methods. Despite the almost ubiquitous use of precipitation to remove contaminant metal ions from waste electroplating baths and rinse waters, this technology is clearly no longer feasible for the electroplating industry for several reasons. First, disposal of unstabilized sludge is no longer allowed by law. Second, these methods are no longer adequate as metal-removal techniques because they cannot meet stringent new metal discharge limits. Third, precious resources are being wasted or discarded because these methods do not readily permit recovery of the target metal ions. As a result, emerging technologies for metal recovery are beginning to see application to electroplating waste recycle. This report summarizes current research in these areas. Included are descriptions of various membrane technologies, such as reverse osmosis and ultrafiltration, ion exchange and chelating polymer technology, and electrodialysis.

  9. EERE Success Story-ORNL Revitalizes Heating Process for Queen City

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Forging | Department of Energy ORNL Revitalizes Heating Process for Queen City Forging EERE Success Story-ORNL Revitalizes Heating Process for Queen City Forging August 10, 2016 - 11:25am Addthis Oak Ridge National Laboratory, with support from the U.S. Department of Energy, teamed up with Queen City Forging, the U.S. Forging Industry, and Infrared Heating Technologies to develop a rapid-infrared heating furnace to produce aluminum turbochargers. As president of Queen City Forging, a metal

  10. Metal-Ion-Mediated Reactions

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Researchers from Patras (Greece), Nicosia (Cyprus), Karlsruhe (Germany), Zaragoza (Spain), and the ALS at Berkeley Lab have studied metal-ion-mediated reactions of...

  11. SOLDERING OF ALUMINUM BASE METALS

    DOEpatents

    Erickson, G.F.

    1958-02-25

    This patent deals with the soldering of aluminum to metals of different types, such as copper, brass, and iron. This is accomplished by heating the aluminum metal to be soldered to slightly above 30 deg C, rubbing a small amount of metallic gallium into the part of the surface to be soldered, whereby an aluminum--gallium alloy forms on the surface, and then heating the aluminum piece to the melting point of lead--tin soft solder, applying lead--tin soft solder to this alloyed surface, and combining the aluminum with the other metal to which it is to be soldered.

  12. Properties of aged metal tritides

    SciTech Connect

    McConville, G.T,; Menke, D.A.; West, D.S.; Woods, C.M.

    1994-06-22

    The interaction of tritium with metals is made complex by two phenomena. The first is that the beta decay in the metal produces {sup 3}He. The helium moves to form bubbles. This report shows that growth of the bubbles produces a two-stage swelling of the metal that comes first from the appearance of the helium and second from the relaxation of the lattice disorder. The second phenomena is the steady state ion and free radical concentration in the tritium over gas that interacts with impurities on the metal surface. This report shows that the reaction rates are much faster than for normal hydrogen cleaning.

  13. Metal deposition using seed layers

    DOEpatents

    Feng, Hsein-Ping; Chen, Gang; Bo, Yu; Ren, Zhifeng; Chen, Shuo; Poudel, Bed

    2013-11-12

    Methods of forming a conductive metal layers on substrates are disclosed which employ a seed layer to enhance bonding, especially to smooth, low-roughness or hydrophobic substrates. In one aspect of the invention, the seed layer can be formed by applying nanoparticles onto a surface of the substrate; and the metallization is achieved by electroplating an electrically conducting metal onto the seed layer, whereby the nanoparticles serve as nucleation sites for metal deposition. In another approach, the seed layer can be formed by a self-assembling linker material, such as a sulfur-containing silane material.

  14. Alkali metal ion battery with bimetallic electrode

    DOEpatents

    Boysen, Dane A; Bradwell, David J; Jiang, Kai; Kim, Hojong; Ortiz, Luis A; Sadoway, Donald R; Tomaszowska, Alina A; Wei, Weifeng; Wang, Kangli

    2015-04-07

    Electrochemical cells having molten electrodes having an alkali metal provide receipt and delivery of power by transporting atoms of the alkali metal between electrode environments of disparate chemical potentials through an electrochemical pathway comprising a salt of the alkali metal. The chemical potential of the alkali metal is decreased when combined with one or more non-alkali metals, thus producing a voltage between an electrode comprising the molten the alkali metal and the electrode comprising the combined alkali/non-alkali metals.

  15. Method for preparing porous metal hydride compacts

    DOEpatents

    Ron, Moshe; Gruen, Dieter M.; Mendelsohn, Marshall H.; Sheft, Irving

    1981-01-01

    A method for preparing porous metallic-matrix hydride compacts which can be repeatedly hydrided and dehydrided without disintegration. A mixture of a finely divided metal hydride and a finely divided matrix metal is contacted with a poison which prevents the metal hydride from dehydriding at room temperature and atmospheric pressure. The mixture of matrix metal and poisoned metal hydride is then compacted under pressure at room temperature to form porous metallic-matrix hydride compacts.

  16. Metal decontamination for waste minimization using liquid metal refining technology

    SciTech Connect

    Joyce, E.L. Jr.; Lally, B.; Ozturk, B.; Fruehan, R.J.

    1993-09-01

    The current Department of Energy Mixed Waste Treatment Project flowsheet indicates that no conventional technology, other than surface decontamination, exists for metal processing. Current Department of Energy guidelines require retrievable storage of all metallic wastes containing transuranic elements above a certain concentration. This project is in support of the National Mixed Low Level Waste Treatment Program. Because of the high cost of disposal, it is important to develop an effective decontamination and volume reduction method for low-level contaminated metals. It is important to be able to decontaminate complex shapes where surfaces are hidden or inaccessible to surface decontamination processes and destruction of organic contamination. These goals can be achieved by adapting commercial metal refining processes to handle radioactive and organic contaminated metal. The radioactive components are concentrated in the slag, which is subsequently vitrified; hazardous organics are destroyed by the intense heat of the bath. The metal, after having been melted and purified, could be recycled for use within the DOE complex. In this project, we evaluated current state-of-the-art technologies for metal refining, with special reference to the removal of radioactive contaminants and the destruction of hazardous organics. This evaluation was based on literature reports, industrial experience, plant visits, thermodynamic calculations, and engineering aspects of the various processes. The key issues addressed included radioactive partitioning between the metal and slag phases, minimization of secondary wastes, operability of the process subject to widely varying feed chemistry, and the ability to seal the candidate process to prevent the release of hazardous species.

  17. Heavy metal movement in metal-contaminated soil profiles

    SciTech Connect

    Li, Zhenbin; Shuman, L.M.

    1996-10-01

    Heavy metal movement in soil profiles is a major environmental concern because even slow transport through the soil may eventually lead to deterioration of groundwater quality. In this study, three metal-contaminated soil (Fuquay, Dothan, and Clarendon) were selected from cropland were a high-metal flue dust had been applied annually for 6 years to raise soil pH, with application ending 4 years before sampling. One uncontaminated soil (Tifton) from the same physiographic area was also sampled as a control. Soil samples were collected in 15-cm increments from the surface to 105 cm in depth. Total contents of Zn, Cd, and Pb in the soils samples were determined. To better understand metal movement in relation to metal fractions in the soil profile, soil samples were also extracted sequentially for exchangeable (EXC), organic matter (OM), Mn oxide (MNO), amorphous Fe oxide (AFEO), crystalline Fe oxide (CFEO), and residual (RES) fractions. 35 refs., 6 figs., 2 tabs.

  18. Catalytic production of metal carbonyls from metal oxides

    DOEpatents

    Sapienza, Richard S.; Slegeir, William A.; Foran, Michael T.

    1984-01-01

    This invention relates to the formation of metal carbonyls from metal oxides and specially the formation of molybdenum carbonyl and iron carbonyl from their respective oxides. Copper is used here in admixed form or used in chemically combined form as copper molybdate. The copper/metal oxide combination or combined copper is utilized with a solvent, such as toluene and subjected to carbon monoxide pressure of 25 atmospheres or greater at about 150.degree.-260.degree. C. The reducing metal copper is employed in catalytic concentrations or combined concentrations as CuMoO.sub.4 and both hydrogen and water present serve as promoters. It has been found that the yields by this process have been salutary and that additionally the catalytic metal may be reused in the process to good effect.

  19. Catalytic production of metal carbonyls from metal oxides

    DOEpatents

    Sapienza, R.S.; Slegeir, W.A.; Foran, M.T.

    1984-01-06

    This invention relates to the formation of metal carbonyls from metal oxides and specially the formation of molybdenum carbonyl and iron carbonyl from their respective oxides. Copper is used here in admixed form or used in chemically combined form as copper molybdate. The copper/metal oxide combination or combined copper is utilized with a solvent, such as toluene and subjected to carbon monoxide pressure of 25 atmospheres or greater at about 150 to 260/sup 0/C. The reducing metal copper is employed in catalytic concentrations or combined concentrations as CuMoO/sub 4/ and both hydrogen and water present serve as promoters. It has been found that the yields by this process have been salutary and that additionally the catalytic metal may be reused in the process to good effect. 3 tables.

  20. Metal sulfide initiators for metal oxide sorbent regeneration

    DOEpatents

    Turk, Brian S.; Gupta, Raghubir P.

    2001-01-01

    A process of regenerating a sulfided sorbent is provided. According to the process of the invention, a substantial portion of the energy necessary to initiate the regeneration reaction is provided by the combustion of a particulate metal sulfide additive. In using the particulate metal sulfide additive, the oxygen-containing gas used to regenerate the sulfided sorbent can be fed to the regeneration zone without heating or at a lower temperature than used in conventional processes wherein the regeneration reaction is initiated only by heating the oxygen-containing gas. The particulate metal sulfide additive is preferably an inexpensive mineral ore such as iron pyrite which does not adversely affect the regeneration or corresponding desulfurization reactions. The invention further includes a sorbent composition comprising the particulate metal sulfide additive in admixture with an active metal oxide sorbent capable of removing one or more sulfur compounds from a sulfur-containing gas stream.

  1. Metal sulfide initiators for metal oxide sorbent regeneration

    DOEpatents

    Turk, B.S.; Gupta, R.P.

    1999-06-22

    A process of regenerating a sulfided sorbent is provided. According to the process of the invention, a substantial portion of the energy necessary to initiate the regeneration reaction is provided by the combustion of a particulate metal sulfide additive. In using the particulate metal sulfide additive, the oxygen-containing gas used to regenerate the sulfided sorbent can be fed to the regeneration zone without heating or at a lower temperature than used in conventional processes wherein the regeneration reaction is initiated only by heating the oxygen-containing gas. The particulate metal sulfide additive is preferably an inexpensive mineral ore such as iron pyrite which does not adversely affect the regeneration or corresponding desulfurization reactions. The invention further includes a sorbent composition comprising the particulate metal sulfide additive in admixture with an active metal oxide sorbent capable of removing one or more sulfur compounds from a sulfur-containing gas stream. 1 fig.

  2. Metal sulfide initiators for metal oxide sorbent regeneration

    DOEpatents

    Turk, Brian S.; Gupta, Raghubir P.

    1999-01-01

    A process of regenerating a sulfided sorbent is provided. According to the process of the invention, a substantial portion of the energy necessary to initiate the regeneration reaction is provided by the combustion of a particulate metal sulfide additive. In using the particulate metal sulfide additive, the oxygen-containing gas used to regenerate the sulfided sorbent can be fed to the regeneration zone without heating or at a lower temperature than used in conventional processes wherein the regeneration reaction is initiated only by heating the oxygen-containing. The particulate metal sulfide additive is preferably an inexpensive mineral ore such as iron pyrite which does not adversely affect the regeneration or corresponding desulfurization reactions. The invention further includes a sorbent composition comprising the particulate metal sulfide additive in admixture with an active metal oxide sorbent capable of removing one or more sulfur compounds from a sulfur-containing gas stream.

  3. Method and apparatus for forming billets from metallic chip scraps

    DOEpatents

    Girshov, Vladimir Leonidovich; Treschevskiy, Arnold Nikolayevich; Kochkin, Victor Georgievich; Abramov, Alexey Alexandrovich; Sidenko, Natalja Semenovna

    2006-05-02

    After recycled titanium alloy chips are crushed and cleaned, they are pressed into cylindrically briquettes with a relative density of 0.6, and placed into capsules. The capsules are heated and placed into a preheated pressing rig. The pressing rig repetitively applies axial force to the capsule, resulting in a relative density of at least 0.95. The product billets are used for consumable electrodes, secondary casting alloys, forgings, extruded semi-finished products and the like.

  4. Expanding hollow metal rings

    DOEpatents

    Peacock, Harold B.; Imrich, Kenneth J.

    2009-03-17

    A sealing device that may expand more planar dimensions due to internal thermal expansion of a filler material. The sealing material is of a composition such that when desired environment temperatures and internal actuating pressures are reached, the sealing materials undergoes a permanent deformation. For metallic compounds, this permanent deformation occurs when the material enters the plastic deformation phase. Polymers, and other materials, may be using a sealing mechanism depending on the temperatures and corrosivity of the use. Internal pressures are generated by either rapid thermal expansion or material phase change and may include either liquid or solid to gas phase change, or in the gaseous state with significant pressure generation in accordance with the gas laws. Sealing material thickness and material composition may be used to selectively control geometric expansion of the seal such that expansion is limited to a specific facing and or geometric plane.

  5. Creating bulk nanocrystalline metal.

    SciTech Connect

    Fredenburg, D. Anthony; Saldana, Christopher J.; Gill, David D.; Hall, Aaron Christopher; Roemer, Timothy John; Vogler, Tracy John; Yang, Pin

    2008-10-01

    Nanocrystalline and nanostructured materials offer unique microstructure-dependent properties that are superior to coarse-grained materials. These materials have been shown to have very high hardness, strength, and wear resistance. However, most current methods of producing nanostructured materials in weapons-relevant materials create powdered metal that must be consolidated into bulk form to be useful. Conventional consolidation methods are not appropriate due to the need to maintain the nanocrystalline structure. This research investigated new ways of creating nanocrystalline material, new methods of consolidating nanocrystalline material, and an analysis of these different methods of creation and consolidation to evaluate their applicability to mesoscale weapons applications where part features are often under 100 {micro}m wide and the material's microstructure must be very small to give homogeneous properties across the feature.

  6. METAL EXTRACTION PROCESS

    DOEpatents

    Lewis, G.W. Jr.; Rhodes, D.E.

    1957-11-01

    An improved method for extracting uranium from aqueous solutions by solvent extraction is presented. A difficulty encountered in solvent extraction operations using an organic extractant (e.g., tributyl phosphate dissolved in kerosene or carbon tetrachloride) is that emulsions sometimes form, and phase separation is difficult or impossible. This difficulty is overcome by dissolving the organic extractant in a molten wax which is a solid at operating temperatures. After cooling, the wax which now contains the extractant, is broken into small particles (preferably flakes) and this wax complex'' is used to contact the uranium bearing solutions and extract the metal therefrom. Microcrystalline petroleum wax and certain ethylene polymers have been found suitable for this purpose.

  7. Liquid metal thermoacoustic engine

    SciTech Connect

    Swift, G.W.; Migliori, A.; Wheatley, J.C.

    1986-01-01

    We are studying a liquid metal thermoacoustic engine both theoretically and experimentally. This type of engine promises to produce large quantities of electrical energy from heat at modest efficiency with no moving parts. A sound wave is usually thought of as consisting of pressure oscillations, but always attendant to the pressure oscillation are temperature oscillations. The combination produces a rich variety of ''thermoacoustic'' effects. These effects are usually so small that they are never noticed in everyday life; nevertheless under the right circumstances they can be harnessed to produce powerful heat engines, heat pumps, and refrigerators. In our liquid metal thermoacoustic engine, heat flow from a high temperature source to a low temperature sink generates a high-amplitude standing acoustic wave in liquid sodium. This acoustic power is converted to electric power by a simple magnetohydrodynamic effect at the acoustic oscillation frequency. We have developed a detailed thermoacoustic theory applicable to this engine, and find that a reasonably designed liquid sodium engine operating between 700/sup 0/C and 100/sup 0/C should generate about 60 W/cm/sup 2/ of acoustic power at about 1/3 of Carnot's efficiency. Construction of a 3000 W-thermal laboratory model engine has just been completed, and we have exciting preliminary experimental results as of the time of preparation of this manuscript showing, basically, that the engine works. We have also designed and built a 1 kHz liquid sodium magnetohydrodynamic generator and have extensive measurements on it. It is now very well characterized both experimentally and theoretically. The first generator of its kind, it already converts acoustic power to electric power with 40% efficiency. 16 refs., 5 figs.

  8. Synthesis metal nanoparticle

    DOEpatents

    Bunge, Scott D.; Boyle, Timothy J.

    2005-08-16

    A method for providing an anhydrous route for the synthesis of amine capped coinage-metal (copper, silver, and gold) nanoparticles (NPs) using the coinage-metal mesityl (mesityl=C.sub.6 H.sub.2 (CH.sub.3).sub.3 -2,4,6) derivatives. In this method, a solution of (Cu(C.sub.6 H.sub.2 (CH.sub.3).sub.3).sub.5, (Ag(C.sub.6 H.sub.2 (CH.sub.3).sub.3).sub.4, or (Au(C.sub.6 H.sub.2 (CH.sub.3).sub.3).sub.5 is dissolved in a coordinating solvent, such as a primary, secondary, or tertiary amine; primary, secondary, or tertiary phosphine, or alkyl thiol, to produce a mesityl precursor solution. This solution is subsequently injected into an organic solvent that is heated to a temperature greater than approximately 100.degree. C. After washing with an organic solvent, such as an alcohol (including methanol, ethanol, propanol, and higher molecular-weight alcohols), oxide free coinage NP are prepared that could be extracted with a solvent, such as an aromatic solvent (including, for example, toluene, benzene, and pyridine) or an alkane (including, for example, pentane, hexane, and heptane). Characterization by UV-Vis spectroscopy and transmission electron microscopy showed that the NPs were approximately 9.2.+-.2.3 nm in size for Cu.degree., (no surface oxide present), approximately 8.5.+-.1.1 nm Ag.degree. spheres, and approximately 8-80 nm for Au.degree..

  9. Metal tritides helium emission

    SciTech Connect

    Beavis, L.C.

    1980-02-01

    Over the past several years, we have been measuring the release of helium from metal tritides (primarily erbium tritide). We find that qualitatively all tritides of interest to us behave the same. When they are first formed, the helium is released at a low rate that appears to be related to the amount of surface area which has access to the outside of the material (either film or bulk). For example, erbium tritide films initially release about 0.3% of the helium generated. Most tritide films emit helium at about this rate initially. At some later time, which depends upon the amount of helium generated, the parent occluding element and the degree of tritium saturation of the dihydride phase the helium emission changes to a new mode in which it is released at approximately the rate at which it is generated (for example, we measure this value to be approx. = .31 He/Er for ErT/sub 1/./sub 9/ films). If erbium ditritide is saturated beyond 1.9 T/Er, the critical helium/metal ratio decreases. For example, in bulk powders ErT/sub 2/./sub 15/ reaches critical release concentration at approx. = 0.03. Moderate elevation of temperature above room temperature has little impact on the helium release rate. It appears that the process may have approx. = 2 kcal/mol activation energy. The first helium formed is well bound. As the tritide ages, the helium is found in higher energy sites. Similar but less extensive measurements on scandium, titanium, and zirconium tritides are also described. Finally, the thermal desorption of erbium tritides of various ages from 50 days to 3154 days is discussed. Significant helium is desorbed along with the tritium in all but the youngest samples during thermodesorption.

  10. Method of foaming a liquid metal

    DOEpatents

    Fischer, Albert K.; Johnson, Carl E.

    1980-01-01

    The addition of a small quantity of barium to liquid metal NaK or sodium has been found to promote foam formation and improve bubble retention in the liquid metal. A stable liquid metal foam will provide a more homogeneous liquid metal flow through the channel of a two-phase liquid metal MHD power generator to improve operating efficiency.

  11. MECS 2006 - Fabricated Metals | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fabricated Metals MECS 2006 - Fabricated Metals Manufacturing Energy and Carbon Footprint for Fabricated Metals (NAICS 332) Sector with Total Energy Input, October 2012 (MECS 2006) All available footprints and supporting documents Manufacturing Energy and Carbon Footprint Fabricated Metals (120.19 KB) More Documents & Publications Fabricated Metals (2010 MECS) MECS 2006 - Cement MECS 2006 - Glass

  12. Thin film hydrous metal oxide catalysts

    DOEpatents

    Dosch, Robert G. (Albuquerque, NM); Stephens, Howard P. (Albuquerque, NM)

    1995-01-01

    Thin film (<100 nm) hydrous metal oxide catalysts are prepared by 1) synthesis of a hydrous metal oxide, 2) deposition of the hydrous metal oxide upon an inert support surface, 3) ion exchange with catalytically active metals, and 4) activating the hydrous metal oxide catalysts.

  13. Nanostructured metal-polyaniline composites

    DOEpatents

    Wang, Hsing-Lin; Li, Wenguang; Bailey, James A.; Gao, Yuan

    2010-08-31

    Metal-polyaniline (PANI) composites are provided together with a process of preparing such composites by an electrodeless process. The metal of the composite can have nanoscale structural features and the composites can be used in applications such as catalysis for hydrogenation reactions and for analytical detection methods employing SERS.

  14. PROCESS OF RECOVERING ALKALI METALS

    DOEpatents

    Wolkoff, J.

    1961-08-15

    A process is described of recovering alkali metal vapor by sorption on activated alumina, activated carbon, dehydrated zeolite, activated magnesia, or Fuller's earth preheated above the vaporization temperature of the alkali metal and subsequent desorption by heating the solvent under vacuum. (AEC)

  15. Metal recovery from porous materials

    DOEpatents

    Sturcken, E.F.

    1991-01-01

    The present invention relates to recovery of metals. More specifically, the present invention relates to the recovery of plutonium and other metals from porous materials using microwaves. The United States Government has rights in this invention pursuant to Contract No. DE-AC09-89SR18035 between the US Department of Energy and Westinghouse Savannah River Company.

  16. Durability of metals from archaeological objects, metal meteorites, and native metals

    SciTech Connect

    Johnson, A.B. Jr.; Francis, B.

    1980-01-01

    Metal durability is an important consideration in the multi-barrier nuclear waste storage concept. This study summarizes the ancient metals, the environments, and factors which appear to have contributed to metal longevity. Archaeological and radiochemical dating suggest that human use of metals began in the period 6000 to 7000 BC. Gold is clearly the most durable, but many objects fashioned from silver, copper, bronze, iron, lead, and tin have survived for several thousand years. Dry environments, such as tombs, appear to be optimum for metal preservation, but some metals have survived in shipwrecks for over a thousand years. The metal meteorites are Fe-base alloys with 5 to 60 wt% Ni and minor amounts of Co, I, and S. Some meteoritic masses with ages estimated to be 5,000 to 20,000 years have weathered very little, while other masses from the same meteorites are in advanced stages of weathering. Native metals are natural metallic ores. Approximately five million tonnes were mined from native copper deposits in Michigan. Copper masses from the Michigan deposits were transported by the Pleistocene glaciers. Areas on the copper surfaces which appear to represent glacial abrasion show minimal corrosion. Dry cooling tower technology has demonstrated that in pollution-free moist environments, metals fare better at temperatures above than below the dewpoint. Thus, in moderate temperature regimes, elevated temperatures may be useful rather than detrimental for exposures of metal to air. In liquid environments, relatively complex radiolysis reactions can occur, particularly where multiple species are present. A dry environment largely obviates radiolysis effects.

  17. Working with SRNL - Our Facilities - Metal Hydride Laboratories

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Metal Hydride Laboratories Working with SRNL Our Facilities - Metal Hydride Laboratories The Metal Hydride Laboratories are used for research and development on metal hydride...

  18. Method for preparing metal powder, device for preparing metal powder, method for processing spent nuclear fuel

    DOEpatents

    Park, Jong-Hee (Clarendon Hills, IL)

    2011-11-29

    A method for producing metal powder is provided the comprising supplying a molten bath containing a reducing agent, contacting a metal oxide with the molten bath for a time and at a temperature sufficient to reduce the metal in the metal oxide to elemental metal and produce free oxygen; and isolating the elemental metal from the molten bath.

  19. Method for controlled hydrogen charging of metals

    DOEpatents

    Cheng, Bo-Ching (Fremont, CA); Adamson, Ronald B. (Fremont, CA)

    1984-05-29

    A method for controlling hydrogen charging of hydride forming metals through a window of a superimposed layer of a non-hydriding metal overlying the portion of the hydride forming metals to be charged.

  20. 3-D Metals | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Metals Jump to: navigation, search Name 3-D Metals Facility 3-D Metals Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Location Valley City OH...

  1. Catalysis using hydrous metal oxide ion exchanges

    DOEpatents

    Dosch, Robert G.; Stephens, Howard P.; Stohl, Frances V.

    1985-01-01

    In a process which is catalyzed by a catalyst comprising an active metal on a carrier, said metal being active as a catalyst for the process, an improvement is provided wherein the catalyst is a hydrous, alkali metal or alkaline earth metal titanate, zirconate, niobate or tantalate wherein alkali or alkaline earth metal cations have been exchanged with a catalytically effective amount of cations of said metal.

  2. Catalysis using hydrous metal oxide ion exchangers

    DOEpatents

    Dosch, R.G.; Stephens, H.P.; Stohl, F.V.

    1983-07-21

    In a process which is catalyzed by a catalyst comprising an active metal on a carrier, said metal being active as a catalyst for the process, an improvement is provided wherein the catalyst is a hydrous, alkali metal or alkaline earth metal titanate, zirconate, niobate or tantalate wherein alkali or alkaline earth metal cations have been exchanged with a catalytically effective amount of cations of said metal.

  3. Metal-doped organic foam

    DOEpatents

    Rinde, James A.

    1982-01-01

    Organic foams having a low density and very small cell size and method for producing same in either a metal-loaded or unloaded (nonmetal loaded) form are described. Metal-doped foams are produced by soaking a polymer gel in an aqueous solution of desired metal salt, soaking the gel successively in a solvent series of decreasing polarity to remove water from the gel and replace it with a solvent of lower polarity with each successive solvent in the series being miscible with the solvents on each side and being saturated with the desired metal salt, and removing the last of the solvents from the gel to produce the desired metal-doped foam having desired density cell size, and metal loading. The unloaded or metal-doped foams can be utilized in a variety of applications requiring low density, small cell size foam. For example, rubidium-doped foam made in accordance with the invention has utility in special applications, such as in x-ray lasers.

  4. Method of coating metal surfaces to form protective metal coating thereon

    DOEpatents

    Krikorian, Oscar H.; Curtis, Paul G.

    1992-01-01

    A process is disclosed for forming a protective metal coating on a metal surface using a flux consisting of an alkali metal fluoride, an alkaline earth metal fluoride, an alkali metal fluoaluminate, an alkali metal fluosilicate, and mixtures thereof. The flux, in particulate form, is mixed with particles of a metal coating material which may comprise aluminum, chromium, mixtures thereof, and alloys containing at least 50 wt. % aluminum and the particulate mixture is applied to the metal surface in a single step, followed by heating the coated metal surface to a temperature sufficient to cause the metal coating material to react with the metal surface to form a protective reaction product in the form of a metal coating bonded to the metal surface. The metal surface which reacts with the metal coating material to form the protective coating may comprise Fe, Co, Ni, Ti, V, Cr, Mn, Zr, Nb, Mo, Tc, Hf, Ta, W, Re and alloys thereof.

  5. Method of coating metal surfaces to form protective metal coating thereon

    DOEpatents

    Krikorian, O.H.; Curtis, P.G.

    1992-03-31

    A process is disclosed for forming a protective metal coating on a metal surface using a flux consisting of an alkali metal fluoride, an alkaline earth metal fluoride, an alkali metal fluoaluminate, an alkali metal fluosilicate, and mixtures thereof. The flux, in particulate form, is mixed with particles of a metal coating material which may comprise aluminum, chromium, mixtures thereof, and alloys containing at least 50 wt. % aluminum and the particulate mixture is applied to the metal surface in a single step, followed by heating the coated metal surface to a temperature sufficient to cause the metal coating material to react with the metal surface to form a protective reaction product in the form of a metal coating bonded to the metal surface. The metal surface which reacts with the metal coating material to form the protective coating may comprise Fe, Co, Ni, Ti, V, Cr, Mn, Zr, Nb, Mo, Tc, Hf, Ta, W, Re and alloys thereof. 1 figure.

  6. Quinary metallic glass alloys

    DOEpatents

    Lin, X.; Johnson, W.L.

    1998-04-07

    At least quinary alloys form metallic glass upon cooling below the glass transition temperature at a rate less than 10{sup 3}K/s. Such alloys comprise zirconium and/or hafnium in the range of 45 to 65 atomic percent, titanium and/or niobium in the range of 4 to 7.5 atomic percent, and aluminum and/or zinc in the range of 5 to 15 atomic percent. The balance of the alloy compositions comprise copper, iron, and cobalt and/or nickel. The composition is constrained such that the atomic percentage of iron is less than 10 percent. Further, the ratio of copper to nickel and/or cobalt is in the range of from 1:2 to 2:1. The alloy composition formula is: (Zr,Hf){sub a}(Al,Zn){sub b}(Ti,Nb){sub c}(Cu{sub x}Fe{sub y}(Ni,Co){sub z}){sub d} wherein the constraints upon the formula are: a ranges from 45 to 65 atomic percent, b ranges from 5 to 15 atomic percent, c ranges from 4 to 7.5 atomic percent, d comprises the balance, d{hor_ellipsis}y is less than 10 atomic percent, and x/z ranges from 0.5 to 2.

  7. Quinary metallic glass alloys

    DOEpatents

    Lin, Xianghong; Johnson, William L.

    1998-01-01

    At least quinary alloys form metallic glass upon cooling below the glass transition temperature at a rate less than 10.sup.3 K/s. Such alloys comprise zirconium and/or hafnium in the range of 45 to 65 atomic percent, titanium and/or niobium in the range of 4 to 7.5 atomic percent, and aluminum and/or zinc in the range of 5 to 15 atomic percent. The balance of the alloy compositions comprise copper, iron, and cobalt and/or nickel. The composition is constrained such that the atomic percentage of iron is less than 10 percent. Further, the ratio of copper to nickel and/or cobalt is in the range of from 1:2 to 2:1. The alloy composition formula is: (Zr,Hf).sub.a (Al,Zn).sub.b (Ti,Nb).sub.c (Cu.sub.x Fe.sub.y (Ni,Co).sub.z).sub.d wherein the constraints upon the formula are: a ranges from 45 to 65 atomic percent, b ranges from 5 to 15 atomic percent, c ranges from 4 to 7.5 atomic percent, d comprises the balance, d.multidot.y is less than 10 atomic percent, and x/z ranges from 0.5 to 2.

  8. Metal-bonded graphite foam composites

    SciTech Connect

    Menchhofer, Paul A; Klett, James W

    2015-04-28

    A metal-bonded graphite foam composite includes a ductile metal continuous phase and a dispersed phase that includes graphite foam particles.

  9. Metal Hydride Hydrogen Storage Research and Development

    Energy.gov [DOE]

    DOE's research on complex metal hydrides targets the development of advanced metal hydride materials including light-weight complex hydrides, destabilized binary hydrides, intermetallic hydrides,...

  10. Computationally Optimized Homogenization Heat Treatment of Metal...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Return to Search Computationally Optimized Homogenization Heat Treatment of Metal Alloys ... PDF Document Publication Computationally Optimized Homogenization Heat Treatment of Metal ...

  11. Controlled Metal Photodeposition - Energy Innovation Portal

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    semiconductor-metal hybrid heterostructures High yields of site-selective nanoparticles Simple, scalable method for metal photodeposition Applications and Industries The...

  12. Metallic Membrane Materials Development for Hydrogen Production...

    Office of Scientific and Technical Information (OSTI)

    Metallic Membrane Materials Development for Hydrogen Production from Coal Derived Syngas Citation Details In-Document Search Title: Metallic Membrane Materials Development for...

  13. Light metal explosives and propellants

    DOEpatents

    Wood, Lowell L.; Ishikawa, Muriel Y.; Nuckolls, John H.; Pagoria, Phillip F.; Viecelli, James A.

    2005-04-05

    Disclosed herein are light metal explosives, pyrotechnics and propellants (LME&Ps) comprising a light metal component such as Li, B, Be or their hydrides or intermetallic compounds and alloys containing them and an oxidizer component containing a classic explosive, such as CL-20, or a non-explosive oxidizer, such as lithium perchlorate, or combinations thereof. LME&P formulations may have light metal particles and oxidizer particles ranging in size from 0.01 .mu.m to 1000 .mu.m.

  14. Liquid metal cooled nuclear reactors

    SciTech Connect

    Barnes, S.

    1980-10-07

    The vault of a liquid metal cooled nuclear reactor is lined with thermal insulation. The insulation is in two layers, a first layer cladding the vault surface is of solid ceramic material while a second layer cladding the first layer is of fibrous or metallic material. In the event of a breach of the vessel leakage of liquid metal is absorbed by the second layer providing a conduction path to the first layer thereby enhancing heat loss to the concrete of the vault and maintaining the internal temperature at a safe limit.

  15. EXPERIMENTAL LIQUID METAL FUEL REACTOR

    DOEpatents

    Happell, J.J.; Thomas, G.R.; Denise, R.P.; Bunts, J.L. Jr.

    1962-01-23

    A liquid metal fuel nuclear fission reactor is designed in which the fissionable material is dissolved or suspended in a liquid metal moderator and coolant. The liquid suspension flows into a chamber in which a critical amount of fissionable material is obtained. The fluid leaves the chamber and the heat of fission is extracted for power or other utilization. The improvement is in the support arrangement for a segrnented graphite core to permit dif ferential thermal expansion, effective sealing between main and blanket liquid metal flows, and avoidance of excessive stress development in the graphite segments. (AEC)

  16. CORROSION RESISTANT JACKETED METAL BODY

    DOEpatents

    Brugmann, E.W.

    1958-08-26

    S>Metal jacketed metallic bodies of the type used as feel elements fer nuclear reactors are presented. The fuel element is comprised of a plurality of jacketed cylindrical bodies joined in end to end abutting relationship. The abutting ends of the internal fissionable bodies are provided with a mating screw and thread means for joining the two together. The jacket material is of a corrosion resistant metal and overlaps the abutting ends of the internal bodies, thereby effectively sealing these bodies from contact with exteral reactive gases and liquids.

  17. Synthesis of Metal-Metal Oxide Catalysts and Electrocatalysts - Energy

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Innovation Portal Synthesis of Metal-Metal Oxide Catalysts and Electrocatalysts Brookhaven National Laboratory Contact BNL About This Technology Publications: PDF Document Publication Electrodeposition of Pt onto RuO2 (110) Single-Crystal Surface (437 KB) Scanning tunneling micrograph showing atoms of platinum on an oxide surface. Scanning tunneling micrograph showing atoms of platinum on an oxide surface. Technology Marketing Summary Platinum is the most efficient electrocatalyst for

  18. Nanostructured Metal Oxide Anodes (Presentation)

    SciTech Connect

    Dillon, A. C.; Riley, L. A.; Lee, S.-H.; Kim, Y.-H.; Ban, C.; Gillaspie, D. T.; Pesaran, A.

    2009-05-01

    This summarizes NREL's FY09 battery materials research activity in developing metal oxide nanostructured anodes to enable high-energy, durable and affordable li-ion batteries for HEVs and PHEVs.

  19. Time domain electromagnetic metal detectors

    SciTech Connect

    Hoekstra, P.

    1996-04-01

    This presentation focuses on illustrating by case histories the range of applications and limitations of time domain electromagnetic (TDEM) systems for buried metal detection. Advantages claimed for TDEM metal detectors are: independent of instrument response (Geonics EM61) to surrounding soil and rock type; simple anomaly shape; mitigation of interference by ambient electromagnetic noise; and responsive to both ferrous and non-ferrous metallic targets. The data in all case histories to be presented were acquired with the Geonics EM61 TDEM system. Case histories are a test bed site on Molokai, Hawaii; Fort Monroe, Virginia; and USDOE, Rocky Flats Plant. The present limitations of this technology are: discrimination capabilities in terms of type of ordnance, and depth of burial is limited, and ability of resolving targets with small metallic ambient needs to be improved.

  20. Method of producing metallic materials

    DOEpatents

    Branagan, Daniel J.

    2004-02-10

    The invention includes a method of producing a hard metallic material by forming a mixture containing at least 55% iron and at least one of B, C, Si and P. The mixture is formed into an alloy and cooled to form a metallic material having a hardness greater than about 9.2 GPa. The invention includes a method of forming a wire by combining a metal strip and a powder. The strip and the powder are rolled to form a wire containing at least 55% iron and from 2-7 additional elements including at least one of C, Si and B. The invention also includes a method of forming a hardened surface on a substrate by processing a solid mass to form a powder, applying the powder to a surface to form a layer containing metallic glass, and converting the glass to a crystalline material having a nanocrystalline grain size.

  1. PRETREATING URANIUM FOR METAL PLATING

    DOEpatents

    Wehrmann, R.F.

    1961-05-01

    A process is given for anodically treating the surface of uranium articles, prior to metal plating. The metal is electrolyzed in an aqueous solution of about 10% polycarboxylic acid, preferably oxalic acid, from 1 to 5% by weight of glycerine and from 1 to 5% by weight of hydrochloric acid at from 20 to 75 deg C for from 30 seconds to 15 minutes. A current density of from 60 to 100 amperes per square foot is used.

  2. LIQUID METAL COMPOSITIONS CONTAINING URANIUM

    DOEpatents

    Teitel, R.J.

    1959-04-21

    Liquid metal compositions containing a solid uranium compound dispersed therein is described. Uranium combines with tin to form the intermetallic compound USn/sub 3/. It has been found that this compound may be incorporated into a liquid bath containing bismuth and lead-bismuth components, if a relatively small percentage of tin is also included in the bath. The composition has a low thermal neutron cross section which makes it suitable for use in a liquid metal fueled nuclear reactor.

  3. METHOD OF DISSOLVING URANIUM METAL

    DOEpatents

    Slotin, L.A.

    1958-02-18

    This patent relates to an economicai means of dissolving metallic uranium. It has been found that the addition of a small amount of perchloric acid to the concentrated nitric acid in which the uranium is being dissolved greatly shortens the time necessary for dissolution of the metal. Thus the use of about 1 or 2 percent of perchioric acid based on the weight of the nitric acid used, reduces the time of dissolution of uranium by a factor of about 100.

  4. SUSTAINABLE MANUFACTURING VIA MULTI-SCALE PHYSICS-BASED PROCESS...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    build, and commissioning of a RApid Freeform sheet metal Forming Technology (RAFFT) that eliminates stamping and forming dies that will enable rapid prototyping for vehicle ...

  5. CX-011987: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    tooling required to stamp and assemble sheet metal components, as well as automation tooling to transport parts from station to station, assembly tooling and fixtures, ...

  6. CX-011986: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    tooling required to stamp and assemble sheet metal components, as well as automation tooling to transport parts from station to station, assembly tooling and fixtures, ...

  7. Metal detector technology data base

    SciTech Connect

    Porter, L.K.; Gallo, L.R.; Murray, D.W.

    1990-08-01

    The tests described in this report were conducted to obtain information on the effects target characteristics have on portal type metal detector response. A second purpose of the tests was to determine the effect of detector type and settings on the detection of the targets. Although in some cases comparison performance of different types and makes of metal detectors is found herein, that is not the primary purpose of the report. Further, because of the many variables that affect metal detector performance, the information presented can be used only in a general way. The results of these tests can show general trends in metal detection, but do little for making accurate predictions as to metal detector response to a target with a complex shape such as a handgun. The shape of an object and its specific metal content (both type and treatment) can have a significant influence on detection. Thus it should not be surprising that levels of detection for a small 100g stainless steel handgun are considerably different than for detection of the 100g stainless steel right circular cylinder that was used in these tests. 7 figs., 1 tab.

  8. Titanium metal: extraction to application

    SciTech Connect

    Gambogi, Joseph; Gerdemann, Stephen J.

    2002-09-01

    In 1998, approximately 57,000 tons of titanium metal was consumed in the form of mill products (1). Only about 5% of the 4 million tons of titanium minerals consumed each year is used to produce titanium metal, with the remainder primarily used to produce titanium dioxide pigment. Titanium metal production is primarily based on the direct chlorination of rutile to produce titanium tetrachloride, which is then reduced to metal using the Kroll magnesium reduction process. The use of titanium is tied to its high strength-to-weight ratio and corrosion resistance. Aerospace is the largest application for titanium. In this paper, we discuss all aspects of the titanium industry from ore deposits through extraction to present and future applications. The methods of both primary (mining of ore, extraction, and purification) and secondary (forming and machining) operations will be analyzed. The chemical and physical properties of titanium metal will be briefly examined. Present and future applications for titanium will be discussed. Finally, the economics of titanium metal production also are analyzed as well as the advantages and disadvantages of various alternative extraction methods.

  9. Metal oxide nanostructures with hierarchical morphology

    DOEpatents

    Ren, Zhifeng; Lao, Jing Yu; Banerjee, Debasish

    2007-11-13

    The present invention relates generally to metal oxide materials with varied symmetrical nanostructure morphologies. In particular, the present invention provides metal oxide materials comprising one or more metallic oxides with three-dimensionally ordered nanostructural morphologies, including hierarchical morphologies. The present invention also provides methods for producing such metal oxide materials.

  10. Metal salt catalysts for enhancing hydrogen spillover

    DOEpatents

    Yang, Ralph T; Wang, Yuhe

    2013-04-23

    A composition for hydrogen storage includes a receptor, a hydrogen dissociating metal doped on the receptor, and a metal salt doped on the receptor. The hydrogen dissociating metal is configured to spill over hydrogen to the receptor, and the metal salt is configured to increase a rate of the spill over of the hydrogen to the receptor.

  11. Metal nanoparticles as a conductive catalyst

    SciTech Connect

    Coker, Eric N.

    2010-08-03

    A metal nanocluster composite material for use as a conductive catalyst. The metal nanocluster composite material has metal nanoclusters on a carbon substrate formed within a porous zeolitic material, forming stable metal nanoclusters with a size distribution between 0.6-10 nm and, more particularly, nanoclusters with a size distribution in a range as low as 0.6-0.9 nm.

  12. Horizontal electromagnetic casting of thin metal sheets

    DOEpatents

    Hull, John R.; Lari, Robert J.; Praeg, Walter F.; Turner, Larry R.

    1987-01-01

    Thin metal sheets are cast by magnetically suspending molten metal deposited within a ferromagnetic yoke and between AC conducting coils and linearly displacing the magnetically levitated liquid metal while it is being cooled to form a solid metal sheet. Magnetic flux increases as the molten metal sheet moves downward and decreases as the molten metal sheet moves upward to stabilize the sheet and maintain it in equilibrium as it is linearly displaced and solidified by cooling gases. A conducting shield is electrically coupled to the molten metal sheet by means of either metal sheet engaging rollers or brushes on the solidified metal, and by means of an electrode in the vessel containing the molten metal thereby providing a return path for the eddy currents induced in the metal sheet by the AC coil generated magnetic flux. Variation in the geometry of the conducting shield allows the magnetic flux between the metal sheet and the conducting shield to be varied and the thickness in surface quality of the metal sheet to be controlled. Side guards provide lateral containment for the molten metal sheet and stabilize and shape the magnetic field while a leader sheet having electromagnetic characteristics similar to those of the metal sheet is used to start the casting process and precedes the molten metal sheet through the magnet and forms a continuous sheet therewith. The magnet may be either U-shaped with a single racetrack coil or may be rectangular with a pair of facing bedstead coils.

  13. Horizontal electromagnetic casting of thin metal sheets

    DOEpatents

    Hull, John R.; Lari, Robert J.; Praeg, Walter F.; Turner, Larry R.

    1988-01-01

    Thin metal sheets are cast by magnetically suspending molten metal deposited within a ferromagnetic yoke and between AC conducting coils and linearly displacing the magnetically levitated liquid metal while it is being cooled to form a solid metal sheet. Magnetic flux increases as the molten metal sheet moves downward and decreases as the molten metal sheet moves upward to stabilize the sheet and maintain it in equilibrium as it is linearly displaced and solidified by cooling gases. A conducting shield is electrically coupled to the molten metal sheet by means of either metal sheet engaging rollers or brushes on the solidified metal, and by means of an electrode in the vessel containing the molten metal thereby providing a return path for the eddy currents induced in the metal sheet by the AC coil generated magnetic flux. Variation in the geometry of the conducting shield allows the magnetic flux between the metal sheet and the conducting shield to be varied and the thickness in surface quality of the metal sheet to be controlled. Side guards provide lateral containment for the molten metal sheet and stabilize and shape the magnetic field while a leader sheet having electromagnetic characteristics similar to those of the metal sheet is used to start the casting process and precedes the molten metal sheet through the magnet and forms a continuous sheet therewith. The magnet may be either U-shaped with a single racetrack coil or may be rectangular with a pair of facing bedstead coils.

  14. Dispersion enhanced metal/zeolite catalysts

    DOEpatents

    Sachtler, Wolfgang M. H.; Tzou, Ming-Shin; Jiang, Hui-Jong

    1987-01-01

    Dispersion stabilized zeolite supported metal catalysts are provided as bimetallic catalyst combinations. The catalyst metal is in a reduced zero valent form while the dispersion stabilizer metal is in an unreduced ionic form. Representative catalysts are prepared from platinum or nickel as the catalyst metal and iron or chromium dispersion stabilizer.

  15. Maskless laser writing of microscopic metallic interconnects

    DOEpatents

    Maya, Leon

    1995-01-01

    A method of forming a metal pattern on a substrate. The method includes depositing an insulative nitride film on a substrate and irradiating a laser beam onto the nitride film, thus decomposing the metal nitride into a metal constituent and a gaseous constituent, the metal constituent remaining in the nitride film as a conductive pattern.

  16. Maskless laser writing of microscopic metallic interconnects

    DOEpatents

    Maya, L.

    1995-10-17

    A method of forming a metal pattern on a substrate is disclosed. The method includes depositing an insulative nitride film on a substrate and irradiating a laser beam onto the nitride film, thus decomposing the metal nitride into a metal constituent and a gaseous constituent, the metal constituent remaining in the nitride film as a conductive pattern. 4 figs.

  17. Dispersion enhanced metal/zeolite catalysts

    DOEpatents

    Sachtler, W.M.H.; Tzou, M.S.; Jiang, H.J.

    1987-03-31

    Dispersion stabilized zeolite supported metal catalysts are provided as bimetallic catalyst combinations. The catalyst metal is in a reduced zero valent form while the dispersion stabilizer metal is in an unreduced ionic form. Representative catalysts are prepared from platinum or nickel as the catalyst metal and iron or chromium dispersion stabilizer.

  18. Anaerobic microbial remobilization of coprecipitated metals

    DOEpatents

    Francis, A.J.; Dodge, C.J.

    1994-10-11

    A process is provided for solubilizing coprecipitated metals. Metals in waste streams are concentrated by treatment with an iron oxide coprecipitating agent. The coprecipitated metals are solubilized by contacting the coprecipitate with a bacterial culture of a Clostridium species ATCC 53464. The remobilized metals can then be recovered and recycled. 4 figs.

  19. Anaerobic microbial remobilization of coprecipitated metals

    DOEpatents

    Francis, Arokiasamy J.; Dodge, Cleveland J.

    1994-10-11

    A process is provided for solubilizing coprecipitated metals. Metals in wastestreams are concentrated by treatment with an iron oxide coprecipitating agent. The coprecipitated metals are solubilized by contacting the coprecipitate with a bacterial culture of a Clostridium species ATCC 53464. The remobilized metals can then be recovered and recycled.

  20. Molten metal injector system and method

    DOEpatents

    Meyer, Thomas N.; Kinosz, Michael J.; Bigler, Nicolas; Arnaud, Guy

    2003-04-01

    Disclosed is a molten metal injector system including a holder furnace, a casting mold supported above the holder furnace, and a molten metal injector supported from a bottom side of the mold. The holder furnace contains a supply of molten metal having a metal oxide film surface. The bottom side of the mold faces the holder furnace. The mold defines a mold cavity for receiving the molten metal from the holder furnace. The injector projects into the holder furnace and is in fluid communication with the mold cavity. The injector includes a piston positioned within a piston cavity defined by a cylinder for pumping the molten metal upward from the holder furnace and injecting the molten metal into the mold cavity under pressure. The piston and cylinder are at least partially submerged in the molten metal when the holder furnace contains the molten metal. The cylinder further includes a molten metal intake for receiving the molten metal into the piston cavity. The molten metal intake is located below the metal oxide film surface of the molten metal when the holder furnace contains the molten metal. A method of injecting molten metal into a mold cavity of a casting mold is also disclosed.

  1. Metal sponge for cryosorption pumping applications

    DOEpatents

    Myneni, Ganapati R.; Kneisel, Peter

    1995-01-01

    A system has been developed for adsorbing gases at high vacuum in a closed area. The system utilizes large surface clean anodized metal surfaces at low temperatures to adsorb the gases. The large surface clean anodized metal is referred to as a metal sponge. The metal sponge generates or maintains the high vacuum by increasing the available active cryosorbing surface area.

  2. Metal sponge for cryosorption pumping applications

    DOEpatents

    Myneni, G.R.; Kneisel, P.

    1995-12-26

    A system has been developed for adsorbing gases at high vacuum in a closed area. The system utilizes large surface clean anodized metal surfaces at low temperatures to adsorb the gases. The large surface clean anodized metal is referred to as a metal sponge. The metal sponge generates or maintains the high vacuum by increasing the available active cryosorbing surface area. 4 figs.

  3. Q&A: FORGE-ing Ahead to Clean, Low-Cost Geothermal Energy | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Based on a foundation of collaboration and knowledge-sharing, ... - designed to allow efficient heat extraction when water flows through them - anywhere we find accessible hot rock. ...

  4. Inert anode containing base metal and noble metal useful for the electrolytic production of aluminum

    DOEpatents

    Ray, Siba P.; Liu, Xinghua

    2000-01-01

    An inert anode for production of metals such as aluminum is disclosed. The inert anode comprises a base metal selected from Cu and Ag, and at least one noble metal selected from Ag, Pd, Pt, Au, Rh, Ru, Ir and Os. The inert anode may optionally be formed of sintered particles having interior portions containing more base metal than noble metal and exterior portions containing more noble metal than base metal. In a preferred embodiment, the base metal comprises Cu, and the noble metal comprises Ag, Pd or a combination thereof.

  5. Coated metal articles and method of making

    DOEpatents

    Boller, Ernest R. (Van Buren Township, IN); Eubank, Lowell D. (Wilmington, DE)

    2004-07-06

    The method of protectively coating metallic uranium which comprises dipping the metallic uranium in a molten alloy comprising about 20-75% of copper and about 80-25% of tin, dipping the coated uranium promptly into molten tin, withdrawing it from the molten tin and removing excess molten metal, thereupon dipping it into a molten metal bath comprising aluminum until it is coated with this metal, then promptly withdrawing it from the bath.

  6. Method of bonding metals to ceramics

    DOEpatents

    Maroni, V.A.

    1991-04-23

    A ceramic or glass having a thin layer of silver, gold or alloys thereof at the surface thereof is disclosed. A first metal is bonded to the thin layer and a second metal is bonded to the first metal. The first metal is selected from the class consisting of In, Ga, Sn, Bi, Zn, Cd, Pb, Tl and alloys thereof, and the second metal is selected from the class consisting of Cu, Al, Pb, Au and alloys thereof. 3 figures.

  7. Fabricated Metals (2010 MECS) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fabricated Metals (2010 MECS) Fabricated Metals (2010 MECS) Manufacturing Energy and Carbon Footprint for Fabricated Metals Sector (NAICS 332) Energy use data source: 2010 EIA MECS (with adjustments) Footprint Last Revised: February 2014 View footprints for other sectors here. Manufacturing Energy and Carbon Footprint Fabricated Metals (124.58 KB) More Documents & Publications MECS 2006 - Fabricated Metals Cement (2010 MECS) Glass and Glass Products (2010 MECS) Manufacturing Energy Sankey

  8. Method of bonding metals to ceramics

    DOEpatents

    Maroni, Victor A.

    1991-01-01

    A ceramic or glass having a thin layer of silver, gold or alloys thereof at the surface thereof. A first metal is bonded to the thin layer and a second metal is bonded to the first metal. The first metal is selected from the class consisting of In, Ga, Sn, Bi, Zn, Cd, Pb, Tl and alloys thereof, and the second metal is selected from the class consisting of Cu, Al, Pb, An and alloys thereof.

  9. Reversible photodeposition and dissolution of metal ions

    DOEpatents

    Foster, Nancy S.; Koval, Carl A.; Noble, Richard D.

    1994-01-01

    A cyclic photocatalytic process for treating waste water containing metal and organic contaminants. In one embodiment of the method, metal ions are photoreduced onto the photocatalyst and the metal concentrated by resolubilization in a smaller volume. In another embodiment of the method, contaminant organics are first oxidized, then metal ions removed by photoreductive deposition. The present invention allows the photocatalyst to be recycled until nearly complete removal of metal ions and organic contaminants is achieved.

  10. Mesoporous metal oxide graphene nanocomposite materials

    DOEpatents

    Liu, Jun; Aksay, Ilhan A.; Kou, Rong; Wang, Donghai

    2016-05-24

    A nanocomposite material formed of graphene and a mesoporous metal oxide having a demonstrated specific capacity of more than 200 F/g with particular utility when employed in supercapacitor applications. A method for making these nanocomposite materials by first forming a mixture of graphene, a surfactant, and a metal oxide precursor, precipitating the metal oxide precursor with the surfactant from the mixture to form a mesoporous metal oxide. The mesoporous metal oxide is then deposited onto a surface of the graphene.

  11. Coated Metal Articles and Method of Making

    DOEpatents

    Boller, Ernest R.; Eubank, Lowell D.

    2004-07-06

    The method of protectively coating metallic uranium which comprises dipping the metallic uranium in a molten alloy comprising about 20-75% of copper and about 80-25% of tin, dipping the coated uranium promptly into molten tin, withdrawing it from the molten tin and removing excess molten metal, thereupon dipping it into a molten metal bath comprising aluminum until it is coated with this metal, then promptly withdrawing it from the bath.

  12. Semiconductor assisted metal deposition for nanolithography applications

    SciTech Connect

    Rajh, Tijana; Meshkov, Natalia; Nedelijkovic, Jovan M.; Skubal, Laura R.; Tiede, David M.; Thurnauer, Marion

    2001-01-01

    An article of manufacture and method of forming nanoparticle sized material components. A semiconductor oxide substrate includes nanoparticles of semiconductor oxide. A modifier is deposited onto the nanoparticles, and a source of metal ions are deposited in association with the semiconductor and the modifier, the modifier enabling electronic hole scavenging and chelation of the metal ions. The metal ions and modifier are illuminated to cause reduction of the metal ions to metal onto the semiconductor nanoparticles.

  13. Semiconductor assisted metal deposition for nanolithography applications

    SciTech Connect

    Rajh, Tijana; Meshkov, Natalia; Nedelijkovic, Jovan M.; Skubal, Laura R.; Tiede, David M.; Thurnauer, Marion

    2002-01-01

    An article of manufacture and method of forming nanoparticle sized material components. A semiconductor oxide substrate includes nanoparticles of semiconductor oxide. A modifier is deposited onto the nanoparticles, and a source of metal ions are deposited in association with the semiconductor and the modifier, the modifier enabling electronic hole scavenging and chelation of the metal ions. The metal ions and modifier are illuminated to cause reduction of the metal ions to metal onto the semiconductor nanoparticles.

  14. Metal alkoxides and methods of making same

    DOEpatents

    Hentges, Patrick J.; Greene, Laura H.; Pafford, Margaret Mary; Westwood, Glenn; Klemperer, Walter G.

    2005-01-04

    A method of making a superconducting structure includes depositing a metal alkoxide on a surface of a metal and hydrolyzing the metal alkoxide on the surface to form a pinhole-free film. The metal is a superconductor. The metal alkoxide may be a compound of formula (I): where M is zirconium or hafnium, and the purity of the compound is at least 97% as measured by NMR spectroscopy.

  15. Process Of Bonding A Metal Brush Structure To A Planar Surface Of A Metal Substrate

    DOEpatents

    Slattery, Kevin T.; Driemeyer, Daniel E.; Wille; Gerald W.

    1999-11-02

    Process for bonding a metal brush structure to a planar surface of a metal substrate in which an array of metal rods are retained and immobilized at their tips by a common retention layer formed of metal, and the brush structure is then joined to a planar surface of a metal substrate via the retention layer.

  16. Recycling of rare earth metals from rare earth-transition metal alloy scrap by liquid metal extraction

    DOEpatents

    Ellis, T.W.; Schmidt, F.A.

    1995-08-01

    A method is described for treating rare earth metal-bearing scrap, waste or other material (e.g. Nd--Fe--B or Dy--Tb--Fe scrap) to recover the rare earth metal comprising melting the rare earth metal-bearing material, melting a Group IIA metal extractant, such as Mg, Ca, or Ba, in which the rare earth is soluble in the molten state, and contacting the melted material and melted extractant at a temperature and for a time effective to extract the rare earth from the melted material into the melted extractant. The rare earth metal is separated from the extractant metal by vacuum sublimation or distillation. 2 figs.

  17. Recycling of rare earth metals from rare earth-transition metal alloy scrap by liquid metal extraction

    DOEpatents

    Ellis, Timothy W.; Schmidt, Frederick A.

    1995-08-01

    Method of treating rare earth metal-bearing scrap, waste or other material (e.g. Nd--Fe--B or Dy--Tb--Fe scrap) to recover the rare earth metal comprising melting the rare earth metal-bearing material, melting a Group IIA metal extractant, such as Mg, Ca, or Ba, in which the rare earth is soluble in the molten state, and contacting the melted material and melted extractant at a temperature and for a time effective to extract the rare earth from the melted material into the melted extractant. The rare earth metal is separated from the extractant metal by vacuum sublimation or distillation.

  18. Methods for reducing the loss of metal in a metal vapor laser

    DOEpatents

    Duncan, David B. (Auburn, CA); Alger, Terry W. (Tracy, CA)

    1990-01-01

    Methods are provided for reducing loss of metal from a metal vapor laser by collecting metal present outside the hot zone of the laser and introducing or confining it in the hot zone.

  19. Functionally Graded Materials for Manufacturing Tools and Dies...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    New Material Processes Improve the Performance and Lifetime of Tools and Dies Tools, dies, and process equipment currently used in the metal casting, forging, and glass ...

  20. Metallization and insulization during impact

    SciTech Connect

    Gilman, J.J.

    1992-10-01

    It is pointed out that the large strains produced by hypervelocity impacts can be expected to produce dramatic changes in the chemical bonding (electronic structures) of materials. This will change the mechanical behavior towards increased ductility when a semiconductor is compressed until it becomes metallic; and towards increased brittleness when a transition metal is expanded so as to localize its d-band electrons. Both isotropic compression (expansion) and shear strains can cause these transformations. Critical deformation criteria are given based on the observed cubic to tetragonal transformations in compressed semiconductors.

  1. Photobiomolecular metallic particles and films

    DOEpatents

    Hu, Zhong-Cheng

    2003-05-06

    The method of the invention is based on the unique electron-carrying function of a photocatalytic unit such as the photosynthesis system I (PSI) reaction center of the protein-chlorophyll complex isolated from chloroplasts. The method employs a photo-biomolecular metal deposition technique for precisely controlled nucleation and growth of metallic clusters/particles, e.g., platinum, palladium, and their alloys, etc., as well as for thin-film formation above the surface of a solid substrate. The photochemically mediated technique offers numerous advantages over traditional deposition methods including quantitative atom deposition control, high energy efficiency, and mild operating condition requirements.

  2. Rapid Freeform Sheet Metal Forming

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Vij Kiridena, Ford Motor Company U.S. DOE Advanced Manufacturing Office Program Review Meeting Washington, D.C. June 14, 2016 This presentation does not contain any proprietary, confidential, or otherwise restricted information. Project Objective  Develop a transformational RApid Freeform sheet metal Forming Technology (RAFFT) to deliver:  A sheet metal parts (up to 2.0 m x 1.5 m)  Dimensional accuracy (± 1.0 mm) & surface finish (Ra < 30 µm)  3-day art to part total time

  3. METHOD OF PRODUCING NIOBIUM METAL

    DOEpatents

    Wilhelm, H.A.; Stevens, E.R.

    1960-05-24

    A process is given for preparing ductile niobium metal by the reduction of niobium pentoxide with carbon. The invention resides in the addition, to the reaction mass, of from 0.05 to 0.4 atom of titanium (in the form of metallic titanium, titanium carbide, and/or titanium oxide) per one mole of niobium pentoxide. The mixture is heated under subatmospheric pressure to above 1300 deg C but below the melting point of niobium, and the carbon- and oxygen-free niobium sponge obtained is cooled under reduced pressure.

  4. METHOD OF CLEANING METAL SURFACES

    DOEpatents

    Winkler, H.W.; Morfitt, J.W.; Little, T.H.

    1959-05-19

    Cleaning fluids for removing deposits from metal surfaces are described. The cleaning agents of the invention consist of aqueous nitric acid and an amhydrous nitrate salt of a metal which is lower in the electromotive series than the element of the deposit to be removed. In general, the salt content of thc cleaning agents ranged from 10 to 90%, preferably from 10 to 40% by weight; and the balance of the composition comprises nitric acid of any strength from extremely dilute up to concentrated strength.

  5. CORROSION RESISTANT JACKETED METAL BODY

    DOEpatents

    Brugmann, E.W.

    1958-08-26

    Jacketed metal bodies of the type used as fuel elements for nuclear reactors, which contain an internal elongated body of fissionable material jacketed in a corrosion resistant metal are described. The ends of the internal bodies are provided with screw threads having a tapered outer end. The jacket material overlaps the ends and extends into the tapered section of the screw threaded opening. Screw caps with a mating tapered section are screwed into the ends of the body to compress the jacket material in the tapered sections to provtde an effective seal against corrosive gases and liquids.

  6. Thin films of mixed metal compounds

    DOEpatents

    Mickelsen, R.A.; Chen, W.S.

    1985-06-11

    Disclosed is a thin film heterojunction solar cell, said heterojunction comprising a p-type I-III-IV[sub 2] chalcopyrite substrate and an overlying layer of an n-type ternary mixed metal compound wherein said ternary mixed metal compound is applied to said substrate by introducing the vapor of a first metal compound to a vessel containing said substrate from a first vapor source while simultaneously introducing a vapor of a second metal compound from a second vapor source of said vessel, said first and second metals comprising the metal components of said mixed metal compound; independently controlling the vaporization rate of said first and second vapor sources; reducing the mean free path between vapor particles in said vessel, said gas being present in an amount sufficient to induce homogeneity of said vapor mixture; and depositing said mixed metal compound on said substrate in the form of a uniform composition polycrystalline mixed metal compound. 5 figs.

  7. Composite Metal-hydrogen Electrodes for Metal-Hydrogen Batteries

    SciTech Connect

    Ruckman, M W; Wiesmann, H; Strongin, M; Young, K; Fetcenko, M

    1997-04-01

    The purpose of this project is to develop and conduct a feasibility study of metallic thin films (multilayered and alloy composition) produced by advanced sputtering techniques for use as anodes in Ni-metal hydrogen batteries. The anodes could be incorporated in thin film solid state Ni-metal hydrogen batteries that would be deposited as distinct anode, electrolyte and cathode layers in thin film devices. The materials could also be incorporated in secondary consumer batteries (i.e. type AF(4/3 or 4/5)) which use electrodes in the form of tapes. The project was based on pioneering studies of hydrogen uptake by ultra-thin Pd-capped metal-hydrogen ratios exceeding and fast hydrogen charging and Nb films, these studies suggested that materials with those of commercially available metal hydride materials discharging kinetics could be produced. The project initially concentrated on gas phase and electrochemical studies of Pd-capped niobium films in laboratory-scale NiMH cells. This extended the pioneering work to the wet electrochemical environment of NiMH batteries and exploited advanced synchrotron radiation techniques not available during the earlier work to conduct in-situ studies of such materials during hydrogen charging and discharging. Although batteries with fast charging kinetics and hydrogen-metal ratios approaching unity could be fabricated, it was found that oxidation, cracking and corrosion in aqueous solutions made pure Nb films-and multiiayers poor candidates for battery application. The project emphasis shifted to alloy films based on known elemental materials used for NiMH batteries. Although commercial NiMH anode materials contain many metals, it was found that 0.24 µm thick sputtered Zr-Ni films cycled at least 50 times with charging efficiencies exceeding 95% and [H]/[M] ratios of 0.7-1.0. Multilayered or thicker Zr-Ni films could be candidates for a thin film NiMH battery that may have practical applications as an integrated power source for

  8. Thermal barrier and overlay coating systems comprising composite metal/metal oxide bond coating layers

    DOEpatents

    Goedjen, John G.; Sabol, Stephen M.; Sloan, Kelly M.; Vance, Steven J.

    2001-01-01

    The present invention generally describes multilayer coating systems comprising a composite metal/metal oxide bond coat layer. The coating systems may be used in gas turbines.

  9. Metal oxide and metal fluoride nanostructures and methods of making same

    DOEpatents

    Wong, Stanislaus S.; Mao, Yuanbing

    2009-08-18

    The present invention includes pure single-crystalline metal oxide and metal fluoride nanostructures, and methods of making same. These nanostructures include nanorods and nanoarrays.

  10. Water Adsorption in Metal-Organic Frameworks with Open-Metal...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Water Adsorption in Metal-Organic Frameworks with Open-Metal Sites Previous Next List Xuan ... frameworks (MOFs) by using molecular simulations with different water models. ...

  11. Corrosion control of metals by organic coatings

    SciTech Connect

    Ooij, W.J. van; Bierwagen, G.P.; Skerry, B.S.; Mills, D.

    1999-01-01

    The authors present a comprehensive treatment of the entire field of corrosion control of metals, from mechanisms and testing procedures to modification of metal surfaces and interfaces by silanes and plasma techniques. They discuss the new, sophisticated analytical tools, such as Time-of-Flight SIMS and electrochemical impedance spectroscopy, and all materials -- metals, pretreatments, and paint systems. The contents include: (1) Corrosion under organic coatings; (2) Mechanisms of corrosion control by organic coatings; (3) Metal pretreatments; (4) Techniques to study organic coating-metal interfaces; (5) Modification of metal surfaces and interfaces; (6) corrosion testing; (7) Adhesion testing; (8) Paint systems; (9) Conclusions and prospects references.

  12. Method for producing metal oxide nanoparticles

    DOEpatents

    Phillips, Jonathan; Mendoza, Daniel; Chen, Chun-Ku

    2008-04-15

    Method for producing metal oxide nanoparticles. The method includes generating an aerosol of solid metallic microparticles, generating plasma with a plasma hot zone at a temperature sufficiently high to vaporize the microparticles into metal vapor, and directing the aerosol into the hot zone of the plasma. The microparticles vaporize in the hot zone into metal vapor. The metal vapor is directed away from the hot zone and into the cooler plasma afterglow where it oxidizes, cools and condenses to form solid metal oxide nanoparticles.

  13. Transition metal sulfide loaded catalyst

    DOEpatents

    Maroni, Victor A.; Iton, Lennox E.; Pasterczyk, James W.; Winterer, Markus; Krause, Theodore R.

    1994-01-01

    A zeolite based catalyst for activation and conversion of methane. A zeolite support includes a transition metal (Mo, Cr or W) sulfide disposed within the micropores of the zeolite. The catalyst allows activation and conversion of methane to C.sub.2 + hydrocarbons in a reducing atmosphere, thereby avoiding formation of oxides of carbon.

  14. Transition metal sulfide loaded catalyst

    DOEpatents

    Maroni, V.A.; Iton, L.E.; Pasterczyk, J.W.; Winterer, M.; Krause, T.R.

    1994-04-26

    A zeolite-based catalyst is described for activation and conversion of methane. A zeolite support includes a transition metal (Mo, Cr or W) sulfide disposed within the micropores of the zeolite. The catalyst allows activation and conversion of methane to C[sub 2]+ hydrocarbons in a reducing atmosphere, thereby avoiding formation of oxides of carbon.

  15. Corrosion resistant metallic bipolar plate

    DOEpatents

    Brady, Michael P.; Schneibel, Joachim H.; Pint, Bruce A.; Maziasz, Philip J.

    2007-05-01

    A corrosion resistant, electrically conductive component such as a bipolar plate for a PEM fuel cell includes 20 55% Cr, balance base metal such as Ni, Fe, or Co, the component having thereon a substantially external, continuous layer of chromium nitride.

  16. Hydrothermal alkali metal catalyst recovery process

    DOEpatents

    Eakman, James M.; Clavenna, LeRoy R.

    1979-01-01

    In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles primarily in the form of water soluble alkali metal formates by treating the particles with a calcium or magnesium-containing compound in the presence of water at a temperature between about 250.degree. F. and about 700.degree. F. and in the presence of added carbon monoxide. During the treating process the water insoluble alkali metal compounds comprising the insoluble alkali metal residues are converted into water soluble alkali metal formates. The resultant aqueous solution containing water soluble alkali metal formates is then separated from the treated particles and any insoluble materials formed during the treatment process, and recycled to the gasification process where the alkali metal formates serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst. This process permits increased recovery of alkali metal constituents, thereby decreasing the overall cost of the gasification process by reducing the amount of makeup alkali metal compounds necessary.

  17. Heavy metals in the environment

    SciTech Connect

    Storm, G.L.; Fosmire, G.J.; Bellis, E.D.

    1994-05-01

    Concentration (Cd, Pb, Zn, and Cu) in soil and wildlife at the Palmerton zinc smelter site in eastern Pennsylvania were determined 6 yr after zinc smelting was terminated in 1980. Levels of the four metals were higher in litter (01 and 02 horizon) than in soil (A1 horizon), and the metals were at or near levels when the smelters were still in operation. Levels of metals in sod weft highest at sites close to the smelters and decreased as distances from the smelters increased. The relation of decreasing amounts of metals in body tissues with increasing distance from the smelters also held true for amphibians and mammals. An exception to this relation was higher level of Cu in red-lacked salamanders (Plethodon cinereus) captured {approx}17 km downwind than those captured {approx}12 km downwind. Levels of Zn, Pb, and Co in liver, kidney, and muscle tissue of white-footed mice (Peromyscus leucopus) were not different (P >0.05) among sites. Cadmium in kidneys in white-footed mice exceeded 10 mg&& which is reportedly considered an indication of environmental contamination. Levels of Cd in kidneys and liver of white-tailed deer (Odocoileus virginianus) at Palmerton were five times higher than those for white-tailed deer collected 180 km southwest of Palmerton in southcentral Pennsylvania. The abnormal amounts of metals in the tissues of terrestrial vertebrates, and the absence or low abundance of wildlife at Palmerton indicated that ecological processes within 5 km of the smelters were markedly influenced 6 yr after zinc smelting was discontinued. 41 refs., 5 figs., 4 tabs.

  18. Gas adsorption on metal-organic frameworks

    DOEpatents

    Willis, Richard R.; Low, John J. , Faheem, Syed A.; Benin, Annabelle I.; Snurr, Randall Q.; Yazaydin, Ahmet Ozgur

    2012-07-24

    The present invention involves the use of certain metal organic frameworks that have been treated with water or another metal titrant in the storage of carbon dioxide. The capacity of these frameworks is significantly increased through this treatment.

  19. Radiopure Metal-Loaded Liquid Scintillator

    SciTech Connect

    Rosero, Richard; Yeh, Minfang

    2015-03-18

    Metal-loaded liquid scintillator plays a key role in particle and nuclear physics experiments. The applications of metal ions in various neutrino experiments and the purification methods for different scintillator components are discussed in this paper.

  20. Warm Hydroforming of Lightweight Metal Sheets

    SciTech Connect

    Aginagalde, A.; Orus, A.; Esnaola, J. A.; Torca, I.; Galdos, L.; Garcia, C.

    2007-05-17

    Hydroforming is well known in steel applications for automotive industry, where complicated shapes can be get with high strength to weight ratios. Nevertheless, the poor formability of light alloys at room temperature has limited the application of hydroforming technology for aluminum and magnesium parts. Increasing the temperature of these materials allows substantially greater elongation without fracture. Warm forming strategy is applied in conventional processes, such as rolling and forging, in order to get complex shapes, but still rare in hydroforming technology. This is the technical base of this research project: the development of the hydroforming process at warm working temperatures. The main tasks of the initial phases of the research were the material characterization, and the heated fluid and tooling system design and set up for warm hydroforming of lightweight alloys. Once these goals were accomplished the present paper shows the obtained results. The uniaxial tensile deformation of 5754H111, 6082-T6, 6082-O and AZ31B at the temperature range of 25 deg. C - 250 deg. C is presented as the output of the material characterization task. Both the system features and the results obtained for a bulge test geometry carried out with a warm hydroforming system are also presented. The selected alloys show an improvement in formability at the studied temperature range under both uniaxial and biaxial state of stress.

  1. Method for plating with metal oxides

    DOEpatents

    Silver, Gary L.; Martin, Frank S.

    1994-08-23

    A method of plating hydrous metal oxides on at least one substrate, which method is indifferent to the electrochemical properties of the substrate, and comprises reacting metallic ions in aqueous solution with an appropriate oxidizing agent such as sodium hypochlorite or calcium sulfite with oxygen under suitable conditions of pH and concentration such that oxidation and precipitation of metal oxide are sufficiently slow to allow satisfactory plating of metal oxide on the substrate.

  2. NREL: Awards and Honors - Electroexploded Metal Nanopowders

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Metal Nanopowders include catalysis, batteries, microelectronic contacts, lubrication, sinteringwelding, coating substrates for wear or corrosion resistance, and more...

  3. Sintering and ripening resistant noble metal nanostructures

    DOEpatents

    van Swol, Frank B; Song, Yujiang; Shelnutt, John A; Miller, James E; Challa, Sivakumar R

    2013-09-24

    Durable porous metal nanostructures comprising thin metal nanosheets that are metastable under some conditions that commonly produce rapid reduction in surface area due to sintering and/or Ostwald ripening. The invention further comprises the method for making such durable porous metal nanostructures. Durable, high-surface area nanostructures result from the formation of persistent durable holes or pores in metal nanosheets formed from dendritic nanosheets.

  4. Preparation of metal-triazolate frameworks

    DOEpatents

    Yaghi, Omar M; Uribe-Romo, Fernando J; Gandara-Barragan, Felipe; Britt, David K

    2014-10-07

    The disclosure provides for novel metal-triazolate frameworks, methods of use thereof, and devices comprising the frameworks thereof.

  5. Method for plating with metal oxides

    DOEpatents

    Silver, G.L.; Martin, F.S.

    1994-08-23

    A method is disclosed of plating hydrous metal oxides on at least one substrate, which method is indifferent to the electrochemical properties of the substrate, and comprises reacting metallic ions in aqueous solution with an appropriate oxidizing agent such as sodium hypochlorite or calcium sulfite with oxygen under suitable conditions of pH and concentration such that oxidation and precipitation of metal oxide are sufficiently slow to allow satisfactory plating of metal oxide on the substrate. 1 fig.

  6. TREATMENT OF METALS PRIOR TO ELECTROPLATING

    DOEpatents

    Huddle, R.A.U.; Flint, O.

    1958-05-20

    The preparation of certain metal surfaces to receive electrodeposits is described. Surfaces of the metals are subjected to shot blasting by ferrous metal shot, and the surfaces then are given a coating of copper by displacement from a copper salt solution. The method applies to U, Zr, Ti, Ta, Ni, Mo, W, and V.

  7. Method for decontamination of radioactive metal surfaces

    DOEpatents

    Bray, L.A.

    1996-08-13

    Disclosed is a method for removing radioactive contaminants from metal surfaces by applying steam containing an inorganic acid and cerium IV. Cerium IV is applied to contaminated metal surfaces by introducing cerium IV in solution into a steam spray directed at contaminated metal surfaces. Cerium IV solution is converted to an essentially atomized or vapor phase by the steam.

  8. METHOD OF PRODUCING DENSE CONSOLIDATED METALLIC REGULUS

    DOEpatents

    Magel, T.T.

    1959-08-11

    A methcd is presented for reducing dense metal compositions while simultaneously separating impurities from the reduced dense metal and casting the reduced parified dense metal, such as uranium, into well consolidated metal ingots. The reduction is accomplished by heating the dense metallic salt in the presence of a reducing agent, such as an alkali metal or alkaline earth metal in a bomb type reacting chamber, while applying centrifugal force on the reacting materials. Separation of the metal from the impurities is accomplished essentially by the incorporation of a constricted passageway at the vertex of a conical reacting chamber which is in direct communication with a collecting chamber. When a centrifugal force is applled to the molten metal and slag from the reduction in a direction collinear with the axis of the constricted passage, the dense molten metal is forced therethrough while the less dense slag is retained within the reaction chamber, resulting in a simultaneous separation of the reduced molten metal from the slag and a compacting of the reduced metal in a homogeneous mass.

  9. Method for the melting of metals

    DOEpatents

    White, Jack C.; Traut, Davis E.

    1992-01-01

    A method of quantitatively determining the molten pool configuration in melting of metals. The method includes the steps of introducing hafnium metal seeds into a molten metal pool at intervals to form ingots, neutron activating the ingots and determining the hafnium location by radiometric means. Hafnium possesses exactly the proper metallurgical and radiochemical properties for this use.

  10. Method for decontamination of radioactive metal surfaces

    DOEpatents

    Bray, Lane A.

    1996-01-01

    Disclosed is a method for removing radioactive contaminants from metal surfaces by applying steam containing an inorganic acid and cerium IV. Cerium IV is applied to contaminated metal surfaces by introducing cerium IV in solution into a steam spray directed at contaminated metal surfaces. Cerium IV solution is converted to an essentially atomized or vapor phase by the steam.

  11. Ammonia release method for depositing metal oxides

    DOEpatents

    Silver, G.L.; Martin, F.S.

    1994-12-13

    A method is described for depositing metal oxides on substrates which is indifferent to the electrochemical properties of the substrates and which comprises forming ammine complexes containing metal ions and thereafter effecting removal of ammonia from the ammine complexes so as to permit slow precipitation and deposition of metal oxide on the substrates. 1 figure.

  12. Ammonia release method for depositing metal oxides

    DOEpatents

    Silver, Gary L.; Martin, Frank S.

    1994-12-13

    A method of depositing metal oxides on substrates which is indifferent to the electrochemical properties of the substrates and which comprises forming ammine complexes containing metal ions and thereafter effecting removal of ammonia from the ammine complexes so as to permit slow precipitation and deposition of metal oxide on the substrates.

  13. Nanostructured Metal Oxide Anodes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Metal Oxide Anodes Nanostructured Metal Oxide Anodes 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. es_35_dillon.pdf (2.5 MB) More Documents & Publications Nanostructured Metal Oxide Anodes Development of Industrially Viable Battery Electrode Coatings Development of Industrially Viable Battery Electrode Coatings

  14. Thin films of mixed metal compounds

    SciTech Connect

    Mickelsen, Reid A.; Chen, Wen S.

    1985-01-01

    A compositionally uniform thin film of a mixed metal compound is formed by simultaneously evaporating a first metal compound and a second metal compound from independent sources. The mean free path between the vapor particles is reduced by a gas and the mixed vapors are deposited uniformly. The invention finds particular utility in forming thin film heterojunction solar cells.

  15. Process for making transition metal nitride whiskers

    DOEpatents

    Bamberger, C.E.

    1988-04-12

    A process for making metal nitrides, particularly titanium nitride whiskers, using a cyanide salt as a reducing agent for a metal compound in the presence of an alkali metal oxide. Sodium cyanide, various titanates and titanium oxide mixed with sodium oxide react to provide titanium nitride whiskers that can be used as reinforcement to ceramic composites. 1 fig., 1 tab.

  16. Process for making transition metal nitride whiskers

    DOEpatents

    Bamberger, Carlos E.

    1989-01-01

    A process for making metal nitrides, particularly titanium nitride whiskers, using a cyanide salt as a reducing agent for a metal compound in the presence of an alkali metal oxide. Sodium cyanide, various titanates and titanium oxide mixed with sodium oxide react to provide titanium nitride whiskers that can be used as reinforcement to ceramic composites.

  17. Reclaiming metallic material from an article comprising a non-metallic friable substrate

    DOEpatents

    Bohland, John Raphael; Anisimov, Igor Ivanovich; Dapkus, Todd James; Sasala, Richard Anthony; Smigielski, Ken Alan; Kamm, Kristin Danielle

    2000-01-01

    A method for reclaiming a metallic material from a article including a non-metallic friable substrate. The method comprising crushing the article into a plurality of pieces. An acidic solution capable of dissolving the metallic material is provided dissolving the metallic material in the acidic material to form an etchant effluent. The etchant effluent is separated from the friable substrate. A precipitation agent, capable of precipitating the metallic material, is added to the etchant effluent to precipitate out the metallic material from the etchant effluent. The metallic material is then recovered.

  18. Synthesis of transition metal carbonitrides

    DOEpatents

    Munir, Zuhair A. R.; Eslamloo-Grami, Maryam

    1994-01-01

    Transition metal carbonitrides (in particular, titanium carbonitride, TiC.sub.0.5 N.sub.0.5) are synthesized by a self-propagating reaction between the metal (e.g., titanium) and carbon in a nitrogen atmosphere. Complete conversion to the carbonitride phase is achieved with the addition of TiN as diluent and with a nitrogen pressure .gtoreq.0.6 MPa. Thermodynamic phase-stability calculations and experimental characterizations of quenched samples provided revealed that the mechanism of formation of the carbonitride is a two-step process. The first step involves the formation of the nonstoichiometric carbide, TiC.sub.0.5, and is followed by the formation of the product by the incorporation of nitrogen in the defect-structure carbide.

  19. PROCESS FOR PREPARING URANIUM METAL

    DOEpatents

    Prescott, C.H. Jr.; Reynolds, F.L.

    1959-01-13

    A process is presented for producing oxygen-free uranium metal comprising contacting iodine vapor with crude uranium in a reaction zone maintained at 400 to 800 C to produce a vaporous mixture of UI/sub 4/ and iodine. Also disposed within the maction zone is a tungsten filament which is heated to about 1600 C. The UI/sub 4/, upon contacting the hot filament, is decomposed to molten uranium substantially free of oxygen.

  20. Amorphous metal alloy and composite

    DOEpatents

    Wang, Rong; Merz, Martin D.

    1985-01-01

    Amorphous metal alloys of the iron-chromium and nickel-chromium type have excellent corrosion resistance and high temperature stability and are suitable for use as a protective coating on less corrosion resistant substrates. The alloys are stabilized in the amorphous state by one or more elements of titanium, zirconium, hafnium, niobium, tantalum, molybdenum, and tungsten. The alloy is preferably prepared by sputter deposition.

  1. Alkali metal/sulfur battery

    DOEpatents

    Anand, Joginder N.

    1978-01-01

    Alkali metal/sulfur batteries in which the electrolyte-separator is a relatively fragile membrane are improved by providing means for separating the molten sulfur/sulfide catholyte from contact with the membrane prior to cooling the cell to temperatures at which the catholyte will solidify. If the catholyte is permitted to solidify while in contact with the membrane, the latter may be damaged. The improvement permits such batteries to be prefilled with catholyte and shipped, at ordinary temperatures.

  2. ELECTROLYTIC PROCESS FOR PRODUCING METALS

    DOEpatents

    Kopelman, B.; Holden, R.B.

    1961-06-01

    A method is described for reducing beryllium halides to beryllium. The beryllfum halide fs placed in an eutectic mixture of alkali halides and alkaline earth halides. The constituents of this eutectic bath are so chosen that it has a melting point less than the boiling point of mercury, which acts as a cathode for the system. The beryllium metal is then deposited in the mercury upon electrolysis.

  3. Submicron patterned metal hole etching

    DOEpatents

    McCarthy, Anthony M.; Contolini, Robert J.; Liberman, Vladimir; Morse, Jeffrey

    2000-01-01

    A wet chemical process for etching submicron patterned holes in thin metal layers using electrochemical etching with the aid of a wetting agent. In this process, the processed wafer to be etched is immersed in a wetting agent, such as methanol, for a few seconds prior to inserting the processed wafer into an electrochemical etching setup, with the wafer maintained horizontal during transfer to maintain a film of methanol covering the patterned areas. The electrochemical etching setup includes a tube which seals the edges of the wafer preventing loss of the methanol. An electrolyte composed of 4:1 water: sulfuric is poured into the tube and the electrolyte replaces the wetting agent in the patterned holes. A working electrode is attached to a metal layer of the wafer, with reference and counter electrodes inserted in the electrolyte with all electrodes connected to a potentiostat. A single pulse on the counter electrode, such as a 100 ms pulse at +10.2 volts, is used to excite the electrochemical circuit and perform the etch. The process produces uniform etching of the patterned holes in the metal layers, such as chromium and molybdenum of the wafer without adversely effecting the patterned mask.

  4. Direct metal brazing to cermet feedthroughs

    DOEpatents

    Not Available

    1982-07-29

    An improved method for brazing metallic components to a cermet surface in an alumina substrate eliminates the prior art metallized layer over the cermet via and adjoining alumina surfaces. Instead, a nickel layer is applied over the cermet surface only and metallic components are brazed directly to this nickel coated cermet surface. As a result, heretofore unachievable tensile strength joints are produced. In addition, cermet vias with their brazed metal components can be spaced more closely in the alumina substrate because of the elimination of the prior art metallized alumina surfaces.

  5. Direct metal brazing to cermet feedthroughs

    DOEpatents

    Hopper, Jr., Albert C.

    1984-12-18

    An improved method for brazing metallic components to a cermet surface in an alumina substrate eliminates the prior art metallized layer over the cermet via and adjoining alumina surfaces. Instead, a nickel layer is applied over the cermet surface only and metallic components are brazed directly to this nickel coated cermet surface. As a result, heretofore unachievable tensile strength joints are produced. In addition, cermet vias with their brazed metal components can be spaced more closely in the alumina substrate because of the elimination of the prior art metallized alumina surfaces.

  6. Direct electrochemical reduction of metal-oxides

    DOEpatents

    Redey, Laszlo I.; Gourishankar, Karthick

    2003-01-01

    A method of controlling the direct electrolytic reduction of a metal oxide or mixtures of metal oxides to the corresponding metal or metals. A non-consumable anode and a cathode and a salt electrolyte with a first reference electrode near the non-consumable anode and a second reference electrode near the cathode are used. Oxygen gas is produced and removed from the cell. The anode potential is compared to the first reference electrode to prevent anode dissolution and gas evolution other than oxygen, and the cathode potential is compared to the second reference electrode to prevent production of reductant metal from ions in the electrolyte.

  7. Directly susceptible, noncarbon metal ceramic composite crucible

    DOEpatents

    Holcombe, Jr., Cressie E.; Kiggans, Jr., James O.; Morrow, S. Marvin; Rexford, Donald

    1999-01-01

    A sintered metal ceramic crucible suitable for high temperature induction melting of reactive metals without appreciable carbon or silicon contamination of the melt. The crucible comprises a cast matrix of a thermally conductive ceramic material; a perforated metal sleeve, which serves as a susceptor for induction heating of the crucible, embedded within the ceramic cast matrix; and a thermal-shock-absorber barrier interposed between the metal sleeve and the ceramic cast matrix to allow for differential thermal expansions between the matrix and the metal sleeve and to act as a thermal-shock-absorber which moderates the effects of rapid changes of sleeve temperature on the matrix.

  8. Liquid metal Flow Meter - Final Report

    SciTech Connect

    Andersen, C.; Hoogendoom, S.; Hudson, B.; Prince, J.; Teichert, K.; Wood, J.; Chase, K.

    2007-01-30

    Measuring the flow of liquid metal presents serious challenges. Current commercially-available flow meters use ultrasonic, electromagnetic, and other technologies to measure flow, but are inadequate for liquid metal flow measurement because of the high temperatures required by most liquid metals. As a result of the reactivity and high temperatures of most liquid metals, corrosion and leakage become very serious safety concerns. The purpose of this project is to develop a flow meter for Lockheed Martin that measures the flow rate of molten metal in a conduit.

  9. Dose Rates from Plutonium Metal and Beryllium Metal in a 9975 Shipping Container

    SciTech Connect

    Nathan, S.J.

    2002-02-04

    A parametric study was performed of the radiation dose rates that might be produced if plutonium metal and beryllium metal were shipped in the 9975 shipping package. These materials consist of heterogeneous combinations plutonium metal and beryllium. The plutonium metal content varies up to 4.4 kilograms while the beryllium metal varies up to 4 kilograms. This paper presents the results of that study.

  10. Method for gas-metal arc deposition

    DOEpatents

    Buhrmaster, C.L.; Clark, D.E.; Smartt, H.B.

    1990-11-13

    Method and apparatus for gas-metal arc deposition of metal, metal alloys, and metal matrix composites are disclosed. The apparatus contains an arc chamber for confining a D.C. electrical arc discharge, the arc chamber containing an outlet orifice in fluid communication with a deposition chamber having a deposition opening in alignment with the orifice for depositing metal droplets on a coatable substrate. Metal wire is passed continuously into the arc chamber in alignment with the orifice. Electric arcing between the metal wire anode and the orifice cathode produces droplets of molten metal from the wire which pass through the orifice and into the deposition chamber for coating a substrate exposed at the deposition opening. When producing metal matrix composites, a suspension of particulates in an inert gas enters the deposition chamber via a plurality of feed openings below and around the orifice so that reinforcing particulates join the metal droplets to produce a uniform mixture which then coats the exposed substrate with a uniform metal matrix composite. 1 fig.

  11. Apparatus for gas-metal arc deposition

    DOEpatents

    Buhrmaster, Carol L.; Clark, Denis E.; Smartt, Herschel B.

    1991-01-01

    Apparatus for gas-metal arc deposition of metal, metal alloys, and metal matrix composites. The apparatus contains an arc chamber for confining a D.C. electrical arc discharge, the arc chamber containing an outlet orifice in fluid communication with a deposition chamber having a deposition opening in alignment with the orifice for depositing metal droplets on a coatable substrate. Metal wire is passed continuously into the arc chamber in alignment with the orifice. Electric arcing between the metal wire anode and the orifice cathode produces droplets of molten metal from the wire which pass through the orifice and into the deposition chamber for coating a substrate exposed at the deposition opening. When producing metal matrix composites, a suspenion of particulates in an inert gas enters the deposition chamber via a plurality of feed openings below and around the orifice so that reinforcing particulates join the metal droplets to produce a uniform mixture which then coats the exposed substrate with a uniform metal matrix composite.

  12. Method for gas-metal arc deposition

    DOEpatents

    Buhrmaster, Carol L.; Clark, Denis E.; Smartt, Herschel B.

    1990-01-01

    Method and apparatus for gas-metal arc deposition of metal, metal alloys, and metal matrix composites. The apparatus contains an arc chamber for confining a D.C. electrical arc discharge, the arc chamber containing an outlet orifice in fluid communication with a deposition chamber having a deposition opening in alignment wiht the orifice for depositing metal droplets on a coatable substrate. Metal wire is passed continuously into the arc chamber in alignment with the orifice. Electric arcing between the metal wire anode and the orifice cathode produces droplets of molten metal from the wire which pass through the orifice and into the deposition chamber for coating a substrate exposed at the deposition opening. When producing metal matrix composites, a suspension of particulates in an inert gas enters the deposition chamber via a plurality of feed openings below and around the orifice so that reinforcing particulates join the metal droplets to produce a uniform mixture which then coats the exposed substrate with a uniform metal matrix composite.

  13. Metal resistance sequences and transgenic plants

    DOEpatents

    Meagher, Richard Brian; Summers, Anne O.; Rugh, Clayton L.

    1999-10-12

    The present invention provides nucleic acid sequences encoding a metal ion resistance protein, which are expressible in plant cells. The metal resistance protein provides for the enzymatic reduction of metal ions including but not limited to divalent Cu, divalent mercury, trivalent gold, divalent cadmium, lead ions and monovalent silver ions. Transgenic plants which express these coding sequences exhibit increased resistance to metal ions in the environment as compared with plants which have not been so genetically modified. Transgenic plants with improved resistance to organometals including alkylmercury compounds, among others, are provided by the further inclusion of plant-expressible organometal lyase coding sequences, as specifically exemplified by the plant-expressible merB coding sequence. Furthermore, these transgenic plants which have been genetically modified to express the metal resistance coding sequences of the present invention can participate in the bioremediation of metal contamination via the enzymatic reduction of metal ions. Transgenic plants resistant to organometals can further mediate remediation of organic metal compounds, for example, alkylmetal compounds including but not limited to methyl mercury, methyl lead compounds, methyl cadmium and methyl arsenic compounds, in the environment by causing the freeing of mercuric or other metal ions and the reduction of the ionic mercury or other metal ions to the less toxic elemental mercury or other metals.

  14. Method of nitriding refractory metal articles

    DOEpatents

    Tiegs, T.N.; Holcombe, C.E.; Dykes, N.L.; Omatete, O.O.; Young, A.C.

    1994-03-15

    A method of nitriding a refractory-nitride forming metal or metalloid articles and composite articles. A consolidated metal or metalloid article or composite is placed inside a microwave oven and nitrogen containing gas is introduced into the microwave oven. The metal or metalloid article or composite is heated to a temperature sufficient to react the metal or metalloid with the nitrogen by applying a microwave energy within the microwave oven. The metal or metalloid article or composite is maintained at that temperature for a period of time sufficient to convert the article of metal or metalloid or composite to an article or composite of refractory nitride. In addition, a method of applying a coating, such as a coating of an oxide, a carbide, or a carbo-nitride, to an article of metal or metalloid by microwave heating.

  15. Induction slag reduction process for purifying metals

    DOEpatents

    Traut, Davis E.; Fisher, II, George T.; Hansen, Dennis A.

    1991-01-01

    A continuous method is provided for purifying and recovering transition metals such as neodymium and zirconium that become reactive at temperatures above about 500.degree. C. that comprises the steps of contacting the metal ore with an appropriate fluorinating agent such as an alkaline earth metal fluosilicate to form a fluometallic compound, and reducing the fluometallic compound with a suitable alkaline earth or alkali metal compound under molten conditions, such as provided in an induction slag metal furnace. The method of the invention is advantageous in that it is simpler and less expensive than methods used previously to recover pure metals, and it may be employed with a wide range of transition metals that were reactive with enclosures used in the prior art methods and were hard to obtain in uncontaminated form.

  16. Method For Characterizing Residual Stress In Metals

    DOEpatents

    Jacobson, Loren A.; Michel, David J.; Wyatt, Jeffrey R.

    2002-12-03

    A method is provided for measuring the residual stress in metals. The method includes the steps of drilling one or more holes in a metal workpiece to a preselected depth and mounting one or more acoustic sensors on the metal workpiece and connecting the sensors to an electronic detecting and recording device. A liquid metal capable of penetrating into the metal workpiece placed at the bottom of the hole or holes. A recording is made over a period of time (typically within about two hours) of the magnitude and number of noise events which occur as the liquid metal penetrates into the metal workpiece. The magnitude and number of noise events are then correlated to the internal stress in the region of the workpiece at the bottom of the hole.

  17. Methods of selectively incorporating metals onto substrates

    DOEpatents

    Ernst; Richard D. , Eyring; Edward M. , Turpin; Gregory C. , Dunn; Brian C.

    2008-09-30

    A method for forming multi-metallic sites on a substrate is disclosed and described. A substrate including active groups such as hydroxyl can be reacted with a pretarget metal complex. The target metal attached to the active group can then be reacted with a secondary metal complex such that an oxidation-reduction (redox) reaction occurs to form a multi-metallic species. The substrate can be a highly porous material such as aerogels, xerogels, zeolites, and similar materials. Additional metal complexes can be reacted to increase catalyst loading or control co-catalyst content. The resulting compounds can be oxidized to form oxides or reduced to form metals in the ground state which are suitable for practical use.

  18. Method of nitriding refractory metal articles

    DOEpatents

    Tiegs, Terry N.; Holcombe, Cressie E.; Dykes, Norman L.; Omatete, Ogbemi O.; Young, Albert C.

    1994-01-01

    A method of nitriding a refractory-nitride forming metal or metalloid articles and composite articles. A consolidated metal or metalloid article or composite is placed inside a microwave oven and nitrogen containing gas is introduced into the microwave oven. The metal or metalloid article or composite is heated to a temperature sufficient to react the metal or metalloid with the nitrogen by applying a microwave energy within the microwave oven. The metal or metalloid article or composite is maintained at that temperature for a period of time sufficient to convert the article of metal or metalloid or composite to an article or composite of refractory nitride. In addition, a method of applying a coating, such as a coating of an oxide, a carbide, or a carbo-nitride, to an article of metal or metalloid by microwave heating.

  19. A method for making dendritic metal nanostructures using a surfactant structure template, a metal salt, and electron donor species.

    DOEpatents

    Shelnutt, John A.; Song, Yujiang; Pereira, Eulalia F.; Medforth, Craig J.

    2008-05-20

    A method for making dendritic metal nanostructures using a surfactant structure template, a metal salt, and electron donor species.

  20. Method and apparatus for dissociating metals from metal compounds extracted into supercritical fluids

    DOEpatents

    Wai, Chien M.; Hunt, Fred H.; Smart, Neil G.; Lin, Yuehe

    2000-01-01

    A method for dissociating metal-ligand complexes in a supercritical fluid by treating the metal-ligand complex with heat and/or reducing or oxidizing agents is described. Once the metal-ligand complex is dissociated, the resulting metal and/or metal oxide form fine particles of substantially uniform size. In preferred embodiments, the solvent is supercritical carbon dioxide and the ligand is a .beta.-diketone such as hexafluoroacetylacetone or dibutyldiacetate. In other preferred embodiments, the metals in the metal-ligand complex are copper, silver, gold, tungsten, titanium, tantalum, tin, or mixtures thereof. In preferred embodiments, the reducing agent is hydrogen. The method provides an efficient process for dissociating metal-ligand complexes and produces easily-collected metal particles free from hydrocarbon solvent impurities. The ligand and the supercritical fluid can be regenerated to provide an economic, efficient process.

  1. Polymer quenched prealloyed metal powder

    DOEpatents

    Hajaligol, Mohammad R.; Fleischhauer, Grier; German, Randall M.

    2001-01-01

    A powder metallurgical process of preparing a sheet from a powder having an intermetallic alloy composition such as an iron, nickel or titanium aluminide. The sheet can be manufactured into electrical resistance heating elements having improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The iron aluminide has an entirely ferritic microstructure which is free of austenite and can include, in weight %, 4 to 32% Al, and optional additions such as .ltoreq.1% Cr, .gtoreq.0.05% Zr .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Ni, .ltoreq.0.75% C, .ltoreq.0.1% B, .ltoreq.1% submicron oxide particles and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, and/or .ltoreq.3 % Cu. The process includes forming a non-densified metal sheet by consolidating a powder having an intermetallic alloy composition such as by roll compaction, tape casting or plasma spraying, forming a cold rolled sheet by cold rolling the non-densified metal sheet so as to increase the density and reduce the thickness thereof and annealing the cold rolled sheet. The powder can be a water, polymer or gas atomized powder which is subjecting to sieving and/or blending with a binder prior to the consolidation step. After the consolidation step, the sheet can be partially sintered. The cold rolling and/or annealing steps can be repeated to achieve the desired sheet thickness and properties. The annealing can be carried out in a vacuum furnace with a vacuum or inert atmosphere. During final annealing, the cold rolled sheet recrystallizes to an average grain size of about 10 to 30 .mu.m. Final stress relief annealing can be carried out in the B2 phase temperature range.

  2. Clamshell closure for metal drum

    DOEpatents

    Blanton, Paul S

    2014-09-30

    Closure ring to retain a lid in contact with a metal drum in central C-section conforming to the contact area between a lid and the rim of a drum and further having a radially inwardly directed flange and a vertically downwardly directed flange attached to the opposite ends of the C-section. The additional flanges reinforce the top of the drum by reducing deformation when the drum is dropped and maintain the lid in contact with the drum. The invention is particularly valuable in transportation and storage of fissile material.

  3. Metal recovery from porous materials

    DOEpatents

    Sturcken, Edward F.

    1992-01-01

    A method for recovering plutonium and other metals from materials by leaching comprising the steps of incinerating the materials to form a porous matrix as the residue of incineration, immersing the matrix into acid in a microwave-transparent pressure vessel, sealing the pressure vessel, and applying microwaves so that the temperature and the pressure in the pressure vessel increase. The acid for recovering plutonium can be a mixture of HBF.sub.4 and HNO.sub.3 and preferably the pressure is increased to at least 100 PSI and the temperature to at least 200.degree. C. The porous material can be pulverized before immersion to further increase the leach rate.

  4. Bearing for liquid metal pump

    DOEpatents

    Dickinson, Robert J.; Wasko, John; Pennell, William E.

    1984-01-01

    A liquid metal pump bearing support comprises a series of tangentially oriented spokes that connect the bearing cylinder to the pump internals structure. The spokes may be arranged in a plurality of planes extending from the bearing cylinder to the pump internals with the spokes in one plane being arranged alternately with those in the next plane. The bearing support structure provides the pump with sufficient lateral support for the bearing structure together with the capability of accommodating differential thermal expansion without adversely affecting pump performance.

  5. DISPERSION HARDENING OF URANIUM METAL

    DOEpatents

    Arbiter, W.

    1963-01-15

    A method of hardening U metal involves the forming of a fine dispersion of UO/sub 2/. This method consists of first hydriding the U to form a finely divided powder and then exposing the powder to a very dilute O gas in an inert atmosphere under such pressure and temperature conditions as to cause a thin oxide film to coat each particle of the U hydride, The oxide skin prevents agglomeration of the particles as the remaining H is removed, thus preserving the small particle size. The oxide skin coatings remain as an oxide dispersion. The resulting product may be workhardened to improve its physical characteristics. (AEC)

  6. The First ASME Code Stamped Cryomodule at SNS

    SciTech Connect

    Howell, M P; Crofford, M T; Douglas, D L; Kim, S -H; Steward, S T; Strong, W H; Afanador, R; Hannah, B S; Saunders, J; Mammosser, J D

    2012-07-01

    The first spare cryomodule for the Spallation Neutron Source (SNS) has been designed, fabricated, and tested by SNS personnel. The approach to design for this cryomodule was to hold critical design features identical to the original design such as bayonet positions, coupler positions, cold mass assembly, and overall footprint. However, this is the first SNS cryomodule that meets the pressure requirements put forth in the 10 CFR 851: Worker Safety and Health Program. The most significant difference is that Section VIII of the ASME Boiler and Pressure Vessel Code was applied to the vacuum vessel of this cryomodule. Applying the pressure code to the helium vessels within the cryomodule was considered. However, it was determined to be schedule prohibitive because it required a code case for materials that are not currently covered by the code. Good engineering practice was applied to the internal components to verify the quality and integrity of the entire cryomodule. The design of the cryomodule, fabrication effort, and cryogenic test results will be reported in this paper.

  7. Process Development for Stamping Á-Pillar Covers with Aluminum

    SciTech Connect

    Choi, Jung-Pyung; Rohatgi, Aashish; Smith, Mark T.; Lavender, Curt A.

    2015-02-20

    In this work, performed in close collaboration with PACCAR and Magna International, a 6XXX series aluminum alloy was used for the development of A-Pillar cover for the cab of a typical heavy-duty Class-8 truck. The use of Al alloy for the A-pillar cover represents an approximately 40% weight savings over its steel or molded fiberglass composite counterpart. For the selected Al alloy, a small amount of cold work (5% tensile strain), following prior hot-forming, was found to significantly improve the subsequent age-hardening response. The role of solutionizing temperature and rate of cooling on the age-hardening response after paint-bake treatment were investigated. For the temperature range selected in this work, higher solutionizing temperature correlated with greater subsequent age-hardening and vice-versa. However, the age-hardening response was insensitive to the mode of cooling (water quench vs. air cooling). Finally, a two-step forming process was developed where, in the first step, the blank was heated to solutionizing temperature, quenched, and then partially formed at room temperature. For the second step, the pre-form was re-heated and quenched as in the first step, and the forming was completed at room temperature. The resulting A-pillars had sufficient residual ductility to be compatible with hemming and riveting

  8. LED Traffic Lights Get Buy American Stamp | Department of Energy

    Energy.gov [DOE] (indexed site)

    Red. Yellow. Green. What LED traffic signals don't say: Made in USA. That is changing. ... Lindsey Gsell is a Staff Writer for Energy Empowers. Addthis Related Articles LED traffic ...

  9. LED Traffic Lights Get Buy American Stamp | Department of Energy

    Energy.gov [DOE] (indexed site)

    To date, Dialight has manufactured nearly 4 million LED signals-which include red, green and yellow traffic balls, traffic arrows and pedestrian crosswalk signals. Many major U.S. ...

  10. Soil Temperature and Moisture Profile (STAMP) System Handbook

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Soil Cleanup at Upper Los Alamos Canyon Soil Cleanup at Upper Los Alamos Canyon Addthis The cleanup site was carefully surveyed using state of the art landscape survey instruments prior to soil removal. 1 of 8 The cleanup site was carefully surveyed using state of the art landscape survey instruments prior to soil removal. Before beginning soil excavation, workers prepared the site and staged equipment. 2 of 8 Before beginning soil excavation, workers prepared the site and staged equipment. The

  11. Methods of producing adsorption media including a metal oxide

    SciTech Connect

    Mann, Nicholas R; Tranter, Troy J

    2014-03-04

    Methods of producing a metal oxide are disclosed. The method comprises dissolving a metal salt in a reaction solvent to form a metal salt/reaction solvent solution. The metal salt is converted to a metal oxide and a caustic solution is added to the metal oxide/reaction solvent solution to adjust the pH of the metal oxide/reaction solvent solution to less than approximately 7.0. The metal oxide is precipitated and recovered. A method of producing adsorption media including the metal oxide is also disclosed, as is a precursor of an active component including particles of a metal oxide.

  12. Surface protected lithium-metal-oxide electrodes

    DOEpatents

    Thackeray, Michael M.; Kang, Sun-Ho

    2016-04-05

    A lithium-metal-oxide positive electrode having a layered or spinel structure for a non-aqueous lithium electrochemical cell and battery is disclosed comprising electrode particles that are protected at the surface from undesirable effects, such as electrolyte oxidation, oxygen loss or dissolution by one or more lithium-metal-polyanionic compounds, such as a lithium-metal-phosphate or a lithium-metal-silicate material that can act as a solid electrolyte at or above the operating potential of the lithium-metal-oxide electrode. The surface protection significantly enhances the surface stability, rate capability and cycling stability of the lithium-metal-oxide electrodes, particularly when charged to high potentials.

  13. Removal of metal ions from aqueous solution

    DOEpatents

    Jackson, Paul J.; Delhaize, Emmanuel; Robinson, Nigel J.; Unkefer, Clifford J.; Furlong, Clement

    1990-01-01

    A method of removing heavy metals from aqueous solution, a composition of matter used in effecting said removal, and apparatus used in effecting said removal. One or more of the polypeptides, poly (.gamma.-glutamylcysteinyl)glycines, is immobilized on an inert material in particulate form. Upon contact with an aqueous solution containing heavy metals, the polypeptides sequester the metals, removing them from the solution. There is selectivity of poly (.gamma.-glutamylcysteinyl)glycines having a particular number of monomer repeat units for particular metals. The polypeptides are easily regenerated by contact with a small amount of an organic acid, so that they can be used again to remove heavy metals from solution. This also results in the removal of the metals from the column in a concentrated form.

  14. Removal of metal ions from aqueous solution

    DOEpatents

    Jackson, Paul J.; Delhaize, Emmanuel; Robinson, Nigel J.; Unkefer, Clifford J.; Furlong, Clement

    1990-11-13

    A method of removing heavy metals from aqueous solution, a composition of matter used in effecting said removal, and apparatus used in effecting said removal. One or more of the polypeptides, poly (.gamma.-glutamylcysteinyl)glycines, is immobilized on an inert material in particulate form. Upon contact with an aqueous solution containing heavy metals, the polypeptides sequester the metals, removing them from the solution. There is selectivity of poly (.gamma.-glutamylcysteinyl)glycines having a particular number of monomer repeat unit for particular metals. The polypeptides are easily regenerated by contact with a small amount of an organic acid, so that they can be used again to remove heayv metals from solution. This also results in the removal of the metals from the column in a concentrated form.

  15. Contour forming of metals by laser peening

    DOEpatents

    Hackel, Lloyd; Harris, Fritz

    2002-01-01

    A method and apparatus are provided for forming shapes and contours in metal sections by generating laser induced compressive stress on the surface of the metal workpiece. The laser process can generate deep compressive stresses to shape even thick components without inducing unwanted tensile stress at the metal surface. The precision of the laser-induced stress enables exact prediction and subsequent contouring of parts. A light beam of 10 to 100 J/pulse is imaged to create an energy fluence of 60 to 200 J/cm.sup.2 on an absorptive layer applied over a metal surface. A tamping layer of water is flowed over the absorptive layer. The absorption of laser light causes a plasma to form and consequently creates a shock wave that induces a deep residual compressive stress into the metal. The metal responds to this residual stress by bending.

  16. Safe disposal of metal values in slag

    SciTech Connect

    Halpin, P.T.; Zarur, G.L.

    1982-10-26

    The method of safely disposing of sludge containing metal values capable of displaying toxic ecological properties includes the steps of deriving from an organic or inorganic sludge an intermediate product such as a dewatered sludge or an incinerated ash, and adding this intermediate product to a metal smelting step of a type producing a slag such that most of the metal values become encapsulated in the slag. Some precious metal values may be recovered with the metal being smelted, and may be subsequently separated therefrom by appropriate metal winning steps. The sludge product brings to the smelting process certain additives needed therein such as silica and phosphates for the slag, alumina and magnesium to lower the viscosity of the molten slag, and organic matter serving as reducing agents.

  17. Nanostructured metal foams: synthesis and applications

    SciTech Connect

    Luther, Erik P; Tappan, Bryce; Mueller, Alex; Mihaila, Bogdan; Volz, Heather; Cardenas, Andreas; Papin, Pallas; Veauthier, Jackie; Stan, Marius

    2009-01-01

    Fabrication of monolithic metallic nanoporous materials is difficult using conventional methodology. Here they report a relatively simple method of synthesizing monolithic, ultralow density, nanostructured metal foams utilizing self-propagating combustion synthesis of novel metal complexes containing high nitrogen energetic ligands. Nanostructured metal foams are formed in a post flame-front dynamic assembly with densities as low as 0.011 g/cc and surface areas as high as 270 m{sup 2}/g. They have produced metal foams via this method of titanium, iron, cobalt, nickel, zirconium, copper, palladium, silver, hafnium, platinum and gold. Microstructural features vary as a function of composition and process parameters. Applications for the metal foams are discussed including hydrogen absorption in palladium foams. A model for the sorption kinetics of hydrogen in the foams is presented.

  18. Separations of actinides, lanthanides and other metals

    DOEpatents

    Smith, Barbara F.; Jarvinen, Gordon D.; Ensor, Dale D.

    1995-01-01

    An organic extracting solution comprised of a bis(acylpyrazolone or a substituted bis(acylpyrazolone) and an extraction method useful for separating certain elements of the actinide series of the periodic table having a valence of four from one other, and also from one or more of the substances in a group consisting of hexavalent actinides, trivalent actinides, trivalent lanthanides, trivalent iron, trivalent aluminum, divalent metals, and monovalent metals and also from one or more of the substances in a group consisting of hexavalent actinides, trivalent actinides, trivalent lanthanides, trivalent iron, trivalent aluminum, divalent metals, and monovalent metals and also useful for separating hexavalent actinides from one or more of the substances in a group consisting of trivalent actinides, trivalent lanthanides, trivalent iron, trivalent aluminum, divalent metals, and monovalent metals.

  19. The Hardest Superconducting Metal Nitride

    DOE PAGES [OSTI]

    Wang, Shanmin; Antonio, Daniel; Yu, Xiaohui; Zhang, Jianzhong; Cornelius, Andrew L.; He, Duanwei; Zhao, Yusheng

    2015-09-03

    Transitionmetal (TM) nitrides are a class of compounds with a wide range of properties and applications. Hard superconducting nitrides are of particular interest for electronic applications under working conditions such as coating and high stress (e.g., electromechanical systems). However, most of the known TM nitrides crystallize in the rocksalt structure, a structure that is unfavorable to resist shear strain, and they exhibit relatively low indentation hardness, typically in the range of 1020 GPa. Here, we report highpressure synthesis of hexagonal ?MoN and cubic ?MoN through an ionexchange reaction at 3.5 GPa. The final products are in the bulk form withmorecrystallite sizes of 50 80 ?m. Based on indentation testing on single crystals, hexagonal ?MoN exhibits excellent hardness of ~30 GPa, which is 30% higher than cubic ?MoN (~23 GPa) and is so far the hardest among the known metal nitrides. The hardness enhancement in hexagonal phase is attributed to extended covalently bonded MoN network than that in cubic phase. The measured superconducting transition temperatures for ?MoN and cubic ?MoN are 13.8 and 5.5 K, respectively, in good agreement with previous measurements.less

  20. The Hardest Superconducting Metal Nitride

    SciTech Connect

    Wang, Shanmin; Antonio, Daniel; Yu, Xiaohui; Zhang, Jianzhong; Cornelius, Andrew L.; He, Duanwei; Zhao, Yusheng

    2015-09-03

    Transition–metal (TM) nitrides are a class of compounds with a wide range of properties and applications. Hard superconducting nitrides are of particular interest for electronic applications under working conditions such as coating and high stress (e.g., electromechanical systems). However, most of the known TM nitrides crystallize in the rock–salt structure, a structure that is unfavorable to resist shear strain, and they exhibit relatively low indentation hardness, typically in the range of 10–20 GPa. Here, we report high–pressure synthesis of hexagonal δ–MoN and cubic γ–MoN through an ion–exchange reaction at 3.5 GPa. The final products are in the bulk form with crystallite sizes of 50 – 80 μm. Based on indentation testing on single crystals, hexagonal δ–MoN exhibits excellent hardness of ~30 GPa, which is 30% higher than cubic γ–MoN (~23 GPa) and is so far the hardest among the known metal nitrides. The hardness enhancement in hexagonal phase is attributed to extended covalently bonded Mo–N network than that in cubic phase. The measured superconducting transition temperatures for δ–MoN and cubic γ–MoN are 13.8 and 5.5 K, respectively, in good agreement with previous measurements.

  1. The Hardest Superconducting Metal Nitride

    DOE PAGES [OSTI]

    Wang, Shanmin; Antonio, Daniel; Yu, Xiaohui; Zhang, Jianzhong; Cornelius, Andrew L.; He, Duanwei; Zhao, Yusheng

    2015-09-03

    Transition–metal (TM) nitrides are a class of compounds with a wide range of properties and applications. Hard superconducting nitrides are of particular interest for electronic applications under working conditions such as coating and high stress (e.g., electromechanical systems). However, most of the known TM nitrides crystallize in the rock–salt structure, a structure that is unfavorable to resist shear strain, and they exhibit relatively low indentation hardness, typically in the range of 10–20 GPa. Here, we report high–pressure synthesis of hexagonal δ–MoN and cubic γ–MoN through an ion–exchange reaction at 3.5 GPa. The final products are in the bulk form withmore » crystallite sizes of 50 – 80 μm. Based on indentation testing on single crystals, hexagonal δ–MoN exhibits excellent hardness of ~30 GPa, which is 30% higher than cubic γ–MoN (~23 GPa) and is so far the hardest among the known metal nitrides. The hardness enhancement in hexagonal phase is attributed to extended covalently bonded Mo–N network than that in cubic phase. The measured superconducting transition temperatures for δ–MoN and cubic γ–MoN are 13.8 and 5.5 K, respectively, in good agreement with previous measurements.« less

  2. Fusion welding of refractory metals

    SciTech Connect

    Robino, C.V.

    1991-01-01

    The refractory metals of Groups 5B and 6B and their alloys display a variety of unique physical and mechanical characteristics in addition to their high melting points. In turn, these characteristics make these materials strong candidates for severe service and specialized applications. However, these materials also present a variety of challenges with respect to both fabrication weldability and the in-service behavior of weldments, many of which are related to the dominant effects of interstitial impurities. This work reviews current understanding of the physical and joining metallurgy of these metals and their alloys with emphasis on fusion welding. Of specific interest are the role of impurities and alloy chemistry in fabrication and service weldability, the material processing route, eg. vacuum melting vs. powder metallurgy, the importance of welding process procedures and variables, weldment mechanical properties, and fracture behavior. Specific examples from the various alloy systems are used to illustrate general metallurgical and joining characteristics of this class of materials. 34 refs., 14 figs., 3 tabs.

  3. Method for making monolithic metal oxide aerogels

    DOEpatents

    Coronado, Paul R. (Livermore, CA)

    1999-01-01

    Transparent, monolithic metal oxide aerogels of varying densities are produced using a method in which a metal alkoxide solution and a catalyst solution are prepared separately and reacted. The resulting hydrolyzed-condensed colloidal solution is gelled, and the wet gel is contained within a sealed, but gas permeable, containment vessel during supercritical extraction of the solvent. The containment vessel is enclosed within an aqueous atmosphere that is above the supercritical temperature and pressure of the solvent of the metal alkoxide solution.

  4. Method for making monolithic metal oxide aerogels

    DOEpatents

    Droege, M.W.; Coronado, P.R.; Hair, L.M.

    1995-03-07

    Transparent, monolithic metal oxide aerogels of varying densities are produced using a method in which a metal alkoxide solution and a catalyst solution are prepared separately and reacted. The resulting hydrolyzed-condensed colloidal solution is gelled, and the wet gel is contained within a sealed, but gas permeable, containment vessel during supercritical extraction of the solvent. The present invention is especially advantageous for making metal oxides other than silica that are prone to forming opaque, cracked aerogels. 6 figs.

  5. DEPOSITION OF METAL ON NONMETAL FILAMENT

    DOEpatents

    Magel, T.T.

    1959-02-10

    A method is described for purifying metallic uranium by passing a halogen vapor continuously over the impure uranium to form uranium halide vapor and immediately passing the halide vapor into contact with a nonmetallic refractory surface which is at a temperature above the melting point of uranium metal. The halide is decomposed at the heated surface depositing molten metal, which collects and falls into a receiver below.

  6. Metals removal and recovery from municipal sludge

    SciTech Connect

    Jenkins, R.L.; Scheybeler, B.J.; Smith, M.L.; Baird, R.; Lo, M.P.; Haug, R.T.

    1981-01-01

    The feasibility of metals removal from municipal sludges that may be disposed of on agricultural land was studied. Heavy metal accumulation in such vegetables as lettuce and heavy metal toxicity to such crops as oats, beans, corn, and radishes is of concern. The purpose of the study was to assess metal removal systems for sludges obtained from the Joint Water Pollution Control Plant, Carson, Calif. Primary sludge, waste activated sludge, and their anaerobically digested counterparts were dosed with sulfuric acid and the chelating agent, ethylenediaminetetraacetic acid (EDTA), to effect metal solubilization. Seven metals were examined for removal from sludge: Cd, Cr, Cu, Fe, Pb, Ni, and Zn. Recovery of metals from the sludges was also examined. Using an acid dosage to effect pH decrease to pH 2 and a-stirring time of 24 hours, the removal efficiencies for Fe, Zn, Ni, and Cr were found to be upwards of 75%. Removal efficiencies for Pb and Cd were less, at about 30 to 70%. At less than 10%, Cu was hardly removed. Metal extraction using EDTA gave slightly higher removal efficiencies for Cd, Pb, and Cu. The recovery of solubilized metals from solution with lime was very successful at greater than 90% efficiencies. Examination of the dewaterability of the acid-treated sludge found no significant difference between treated and untreated. Preliminary estimates indicated that about 0.5 metric ton of acid would be required for each dry metric ton of sludge solids to effect significant metal removal of better than 50% of the cadmium and 33% of the lead. To precipitate the metals from the acid filtrate, 1 metric ton of lime per dry metric ton of sludge would be needed. Considering the chemical costs and metal removal efficiency by sludge acidification, it would seem that industrial source control would be a more practical approach, although its full economic impact on the industries has not been estimated.

  7. Method of stripping metals from organic solvents

    DOEpatents

    Todd, Terry A.; Law, Jack D.; Herbst, R. Scott; Romanovskiy, Valeriy N.; Smirnov, Igor V.; Babain, Vasily A.; Esimantovski, Vyatcheslav M.

    2009-02-24

    A new method to strip metals from organic solvents in a manner that allows for the recycle of the stripping agent. The method utilizes carbonate solutions of organic amines with complexants, in low concentrations, to strip metals from organic solvents. The method allows for the distillation and reuse of organic amines. The concentrated metal/complexant fraction from distillation is more amenable to immobilization than solutions resulting from current practice.

  8. Internal gettering by metal alloy clusters

    DOEpatents

    Buonassisi, Anthony; Heuer, Matthias; Istratov, Andrei A.; Pickett, Matthew D.; Marcus, Mathew A.; Weber, Eicke R.

    2010-07-27

    The present invention relates to the internal gettering of impurities in semiconductors by metal alloy clusters. In particular, intermetallic clusters are formed within silicon, such clusters containing two or more transition metal species. Such clusters have melting temperatures below that of the host material and are shown to be particularly effective in gettering impurities within the silicon and collecting them into isolated, less harmful locations. Novel compositions for some of the metal alloy clusters are also described.

  9. Coupling apparatus for a metal vapor laser

    DOEpatents

    Ball, Don G.; Miller, John L.

    1993-01-01

    Coupling apparatus for a large bore metal vapor laser is disclosed. The coupling apparatus provides for coupling high voltage pulses (approximately 40 KV) to a metal vapor laser with a high repetition rate (approximately 5 KHz). The coupling apparatus utilizes existing thyratron circuits and provides suitable power input to a large bore metal vapor laser while maintaining satisfactory operating lifetimes for the existing thyratron circuits.

  10. Liquid metal cooled nuclear reactor plant system

    DOEpatents

    Hunsbedt, Anstein; Boardman, Charles E.

    1993-01-01

    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting for fuel decay during reactor shutdown, or heat produced during a mishap. The reactor system is enhanced with sealing means for excluding external air from contact with the liquid metal coolant leaking from the reactor vessel during an accident. The invention also includes a silo structure which resists attack by leaking liquid metal coolant, and an added unique cooling means.

  11. Method for making monolithic metal oxide aerogels

    DOEpatents

    Droege, Michael W. (Livermore, CA); Coronado, Paul R. (Livermore, CA); Hair, Lucy M. (Livermore, CA)

    1995-01-01

    Transparent, monolithic metal oxide aerogels of varying densities are produced using a method in which a metal alkoxide solution and a catalyst solution are prepared separately and reacted. The resulting hydrolyzed-condensed colloidal solution is gelled, and the wet gel is contained within a sealed, but gas permeable, containment vessel during supercritical extraction of the solvent. The present invention is especially advantageous for making metal oxides other than silica that are prone to forming opaque, cracked aerogels.

  12. Three-Electrode Metal Oxide Reduction Cell

    DOEpatents

    Dees, Dennis W.; Ackerman, John P.

    2005-06-28

    A method of electrochemically reducing a metal oxide to the metal in an electrochemical cell is disclosed along with the cell. Each of the anode and cathode operate at their respective maximum reaction rates. An electrolyte and an anode at which oxygen can be evolved, and a cathode including a metal oxide to be reduced are included as is a third electrode with independent power supplies connecting the anode and the third electrode and the cathode and the third electrode.

  13. Three-electrode metal oxide reduction cell

    DOEpatents

    Dees, Dennis W.; Ackerman, John P.

    2008-08-12

    A method of electrochemically reducing a metal oxide to the metal in an electrochemical cell is disclosed along with the cell. Each of the anode and cathode operate at their respective maximum reaction rates. An electrolyte and an anode at which oxygen can be evolved, and a cathode including a metal oxide to be reduced are included as is a third electrode with independent power supplies connecting the anode and the third electrode and the cathode and the third electrode.

  14. Coupling apparatus for a metal vapor laser

    DOEpatents

    Ball, D.G.; Miller, J.L.

    1993-02-23

    Coupling apparatus for a large bore metal vapor laser is disclosed. The coupling apparatus provides for coupling high voltage pulses (approximately 40 KV) to a metal vapor laser with a high repetition rate (approximately 5 KHz). The coupling apparatus utilizes existing thyratron circuits and provides suitable power input to a large bore metal vapor laser while maintaining satisfactory operating lifetimes for the existing thyratron circuits.

  15. Metal oxide composite dosimeter method and material

    DOEpatents

    Miller, Steven D.

    1998-01-01

    The present invention is a method of measuring a radiation dose wherein a radiation responsive material consisting essentially of metal oxide is first exposed to ionizing radiation. The metal oxide is then stimulating with light thereby causing the radiation responsive material to photoluminesce. Photons emitted from the metal oxide as a result of photoluminescence may be counted to provide a measure of the ionizing radiation.

  16. 'Thirsty' Metals Key to Longer Battery Lifetimes

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    'Thirsty' Metals Key to Longer Battery Lifetimes 'Thirsty' Metals Key to Longer Battery Lifetimes Computations at NERSC show how multiply charged metal ions impact battery capacity June 30, 2014 Contact: Kathy Kincade, +1 510 495 2124, kkincade@lbl.gov PCCPxantheascover Imagine a cell phone battery that lasted a whole week on a single charge. A car battery that worked for months between charges. A massive battery that stores the intermittent electricity from wind turbines and releases it when

  17. Synthesis of new amorphous metallic spin glasses

    DOEpatents

    Haushalter, R.C.

    1985-02-11

    Disclosed are: amorphous metallic precipitates having the formula (M/sub 1/)/sub a/(M/sub 2/)/sub b/ wherein M/sub 1/ is at least one transition metal, M/sub 2/ is at least one main group metal and the integers ''a'' and ''b'' provide stoichiometric balance; the precipitates having a degree of local order characteristic of chemical compounds from the precipitation process and useful electrical and mechanical properties.

  18. Synthesis of new amorphous metallic spin glasses

    DOEpatents

    Haushalter, Robert C.

    1988-01-01

    Amorphous metallic precipitates having the formula (M.sub.1).sub.a (M.sub.2).sub.b wherein M.sub.1 is at least one transition metal, M.sub.2 is at least one main group metal and the integers "a" and "b" provide stoichiometric balance; the precipitates having a degree of local order characteristic of chemical compounds from the precipitation process and useful electrical and mechanical properties.

  19. Synthesis of new amorphous metallic spin glasses

    DOEpatents

    Haushalter, Robert C.

    1986-01-01

    Amorphous metallic precipitates having the formula (M.sub.1).sub.a (M.sub.2).sub.b wherein M.sub.1 is at least one transition metal, M.sub.2 is at least one main group metal and the integers "a" and "b" provide stoichiometric balance; the precipitates having a degree of local order characteristic of chemical compounds from the precipitation process and useful electrical and mechanical properties.

  20. Fabrication of metallic microstructures by micromolding nanoparticles

    DOEpatents

    Morales, Alfredo M.; Winter, Michael R.; Domeier, Linda A.; Allan, Shawn M.; Skala, Dawn M.

    2002-01-01

    A method is provided for fabricating metallic microstructures, i.e., microcomponents of micron or submicron dimensions. A molding composition is prepared containing an optional binder and nanometer size (1 to 1000 nm in diameter) metallic particles. A mold, such as a lithographically patterned mold, preferably a LIGA or a negative photoresist mold, is filled with the molding composition and compressed. The resulting microstructures are then removed from the mold and the resulting metallic microstructures so provided are then sintered.

  1. Bacterial Production of Mixed Metal Oxide Nanoparticles

    Energy Innovation Portal

    2011-10-04

    Researchers at ORNL have developed a method for producing mixed metal oxide nanoparticles using anaerobic bacteria with an electron donor to reduce a metal oxide composition from a higher to a lower oxidation state. This method may be applied to cultures of a variety of metal-reducing bacteria to reduce the toxicity of dopant species to bacteria. In addition, the method provides a means by which bacteria with specifically tailored electron acceptors could facilitate research in bacterial...

  2. Method of measuring metal coating adhesion

    DOEpatents

    Roper, J.R.

    A method for measuring metal coating adhesion to a substrate material comprising the steps of preparing a test coupon of substrate material having the metal coating applied to one surface thereof, applying a second metal coating of gold or silver to opposite surfaces of the test coupon by hot hollow cathode process, applying a coating to one end of each of two pulling rod members, joining the coated ends of the pulling rod members to said opposite coated surfaces of the test coupon by a solid state bonding technique and finally applying instrumented static tensile loading to the pulling rod members until fracture of the metal coating adhesion to the substrate material occurs.

  3. Method and apparatus for melting metals

    DOEpatents

    Moore, Alan F.; Schechter, Donald E.; Morrow, Marvin Stanley

    2006-03-14

    A method and apparatus for melting metals uses microwave energy as the primary source of heat. The metal or mixture of metals are placed in a ceramic crucible which couples, at least partially, with the microwaves to be used. The crucible is encased in a ceramic casket for insulation and placed within a microwave chamber. The chamber may be evacuated and refilled to exclude oxygen. After melting, the crucible may be removed for pouring or poured within the chamber by dripping or running into a heated mold within the chamber. Apparent coupling of the microwaves with softened or molten metal produces high temperatures with great energy savings.

  4. Determining thermochemical properties of halogenated metals:...

    Office of Scientific and Technical Information (OSTI)

    metals: On enabling the rapid assessment of agent defeat formulations You ... Country of Publication: United States Language: English Subject: 37 INORGANIC, ORGANIC, ...

  5. Simplified Electrode Formation using Stabilized Lithium Metal...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Metal Powder (SLMP) Doping of Lithium Ion Battery Electrodes Lawrence Berkeley National Laboratory Contact LBL About This Technology Technology Marketing Summary A team of ...

  6. Apparatus for the electrolytic production of metals

    DOEpatents

    Sadoway, Donald R. (Belmont, MA)

    1993-01-01

    Improved electrolytic cells for producing metals by the electrolytic reduction of a compound dissolved in a molten electrolyte are disclosed. In the improved cells, at least one electrode includes a protective layer comprising an oxide of the cell product metal formed upon an alloy of the cell product metal and a more noble metal. In the case of an aluminum reduction cell, the electrode can comprise an alloy of aluminum with copper, nickel, iron, or combinations thereof, upon which is formed an aluminum oxide protective layer.

  7. Significant enhancement of thermoelectric properties and metallization...

    Office of Scientific and Technical Information (OSTI)

    2 ; Institute for Solid State Chemistry of Russian Academy of Sciences, ... Institute of Metal Physics of Russian Academy of Sciences, Urals Division, 18 S. ...

  8. "Radiative Liquid Lithium (metal) Divertor" Inventor..-- Masayuki...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    "Radiative Liquid Lithium (metal) Divertor" Inventor..-- Masayuki Ono The invention utilizes liquid lithium as a radiative material. The radiative process greatly reduces the ...

  9. Lateral electrodeposition of compositionally modulated metal layers

    DOEpatents

    Hearne, Sean J

    2014-03-25

    A method for making a laterally modulated metallic structure that is compositionally modulated in the lateral direction with respect to a substrate.

  10. Method of measuring metal coating adhesion

    DOEpatents

    Roper, John R.

    1985-01-01

    A method for measuring metal coating adhesion to a substrate material comprising the steps of preparing a test coupon of substrate material having the metal coating applied to one surface thereof, applying a second metal coating of gold or silver to opposite surfaces of the test coupon by hot hollow cathode process, applying a coating to one end of each of two pulling rod members, joining the coated ends of the pulling rod members to said opposite coated surfaces of the test coupon by a solid state bonding technique and finally applying instrumented static tensile loading to the pulling rod members until fracture of the metal coating adhesion to the substrate material occurs.

  11. Metals at Albany: Past, Present, and Future

    Energy.gov [DOE]

    Reactive metals, rare metals, specialty metals – all these terms refer to a set of elements that include titanium, hafnium, niobium, and zirconium. The processing of these metals has a very close link with the Office of Fossil Energy’s National Energy Technology Laboratory (NETL) in Albany, OR. And the work done at NETL’s Albany facility (formerly a Bureau of Mines lab) to help develop a process for using zirconium in naval submarines is featured in a new exhibit at the Albany Regional Museum.

  12. PRODUCTION OF URANIUM METAL BY CARBON REDUCTION

    DOEpatents

    Holden, R.B.; Powers, R.M.; Blaber, O.J.

    1959-09-22

    The preparation of uranium metal by the carbon reduction of an oxide of uranium is described. In a preferred embodiment of the invention a charge composed of carbon and uranium oxide is heated to a solid mass after which it is further heated under vacuum to a temperature of about 2000 deg C to produce a fused uranium metal. Slowly ccoling the fused mass produces a dendritic structure of uranium carbide in uranium metal. Reacting the solidified charge with deionized water hydrolyzes the uranium carbide to finely divide uranium dioxide which can be separated from the coarser uranium metal by ordinary filtration methods.

  13. Californium--palladium metal neutron source material

    DOEpatents

    Dahlen, B.L.; Mosly, W.C. Jr.; Smith, P.K.; Albenesius, E.L.

    1974-01-22

    Californium, as metal or oxide, is uniformly dispersed throughout a noble metal matrix, provided in compact, rod or wire form. A solution of californium values is added to palladium metal powder, dried, blended and pressed into a compact having a uni-form distribution of californium. The californium values are decomposed to californium oxide or metal by heating in an inert or reducing atmosphere. Sintering the compact to a high density closes the matrix around the dispersed californium. The sintered compact is then mechanically shaped into an elongated rod or wire form. (4 claims, no drawings) (Official Gazette)

  14. Half Metallic Digital Ferromagnetic Heterostructure Composed...

    Office of Scientific and Technical Information (OSTI)

    Citation Details In-Document Search Title: Half Metallic Digital Ferromagnetic ... originating from hybridized Mn-d and nearest-neighbor Si-p states, and the corresponding ...

  15. Preparation of metal-catecholate frameworks

    DOEpatents

    Yaghi, Omar M.; Gandara-Barragan, Felipe; Lu, Zheng; Wan, Shun

    2014-06-03

    The disclosure provides for metal catecholate frameworks, and methods of use thereof, including gas separation, gas storage, catalysis, tunable conductors, supercapacitors, and sensors.

  16. THE METALLICITY EVOLUTION OF INTERACTING GALAXIES

    SciTech Connect

    Torrey, Paul; Hernquist, Lars; Cox, T. J.; Kewley, Lisa

    2012-02-10

    Nuclear inflows of metal-poor interstellar gas triggered by galaxy interactions can account for the systematically lower central oxygen abundances observed in local interacting galaxies. Here, we investigate the metallicity evolution of a large set of simulations of colliding galaxies. Our models include cooling, star formation, feedback, and a new stochastic method for tracking the mass recycled back to the interstellar medium from stellar winds and supernovae. We study the influence of merger-induced inflows, enrichment, gas consumption, and galactic winds in determining the nuclear metallicity. The central metallicity is primarily a competition between the inflow of low-metallicity gas and enrichment from star formation. An average depression in the nuclear metallicity of {approx}0.07 is found for gas-poor disk-disk interactions. Gas-rich disk-disk interactions, on the other hand, typically have an enhancement in the central metallicity that is positively correlated with the gas content. The simulations fare reasonably well when compared to the observed mass-metallicity and separation-metallicity relationships, but further study is warranted.

  17. Tritium on Metal Surfaces | Department of Energy

    Office of Environmental Management (EM)

    (1.03 MB) More Documents & Publications Modeling Tritium on Metal Surfaces Tritium Plasma Experiment and Its Role in PHENIX Program Light Water Detritiation using the CECE ...

  18. Recommendation 221: Recommendation Regarding Recycling of Metals...

    Office of Environmental Management (EM)

    recycling program to address radiologically contaminated metals and equipment for free-release. PDF icon Recommendation 221 PDF icon Responseto221.pdf More Documents &...

  19. Separation of metal ions from aqueous solutions

    DOEpatents

    Almon, Amy C.

    1994-01-01

    A process and apparatus for quantitatively and selectively separating metal ions from mixtures thereof in aqueous solution. The apparatus includes, in combination, a horizontal electrochemical flow cell containing flow bulk electrolyte solution and an aqueous, metal ion-containing solution, the cell containing a metal mesh working electrode, a counter electrode positioned downstream from the working electrode, an independent variable power supply/potentiostat positioned outside of the flow cell and connected to the electrodes, and optionally a detector such as a chromatographic detector, positioned outside the flow cell. This apparatus and its operation has significant application where trace amounts of metal ions are to be separated.

  20. Northern States Metals Company | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Jump to: navigation, search Name: Northern States Metals Company Address: 3207 Innovation Place Place: Youngstown, Ohio Zip: 44509 Sector: Solar Product: Manufacturing Phone...

  1. Nitrided Metallic Bipolar Plates | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    More Documents & Publications Nitrided Metallic Bipolar Plates Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications: 2008 Update High ...

  2. Nitrided Metallic Bipolar Plates | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    More Documents & Publications Nitrided Metallic Bipolar Plates Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications: 2010 Update Mass ...

  3. CO2 Dynamics in a Metal-Organic Framework with Open Metal Sites...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Dynamics in a Metal-Organic Framework with Open Metal Sites Previous Next List Xueqian Kong, Eric Scott, Wen Ding, Jarad A. Mason, Jeffrey R. Long, and Jeffrey A. Reimer, J. Am. ...

  4. Water Adsorption in Metal-Organic Frameworks with Open-Metal...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Water Adsorption in Metal-Organic Frameworks with Open-Metal Sites Previous Next List Xuan Peng, Li-Chiang Lin, Weizhen Sun and Berend Smit, AIChe J. 6, 677-687 (2015) DOI:...

  5. Electrolytic systems and methods for making metal halides and refining metals

    SciTech Connect

    Holland, Justin M.; Cecala, David M.

    2015-05-26

    Disclosed are electrochemical cells and methods for producing a halide of a non-alkali metal and for electrorefining the halide. The systems typically involve an electrochemical cell having a cathode structure configured for dissolving a hydrogen halide that forms the halide into a molten salt of the halogen and an alkali metal. Typically a direct current voltage is applied across the cathode and an anode that is fabricated with the non-alkali metal such that the halide of the non-alkali metal is formed adjacent the anode. Electrorefining cells and methods involve applying a direct current voltage across the anode where the halide of the non-alkali metal is formed and the cathode where the non-alkali metal is electro-deposited. In a representative embodiment the halogen is chlorine, the alkali metal is lithium and the non-alkali metal is uranium.

  6. Displacement method and apparatus for reducing passivated metal powders and metal oxides

    SciTech Connect

    Morrell; Jonathan S. , Ripley; Edward B.

    2009-05-05

    A method of reducing target metal oxides and passivated metals to their metallic state. A reduction reaction is used, often combined with a flux agent to enhance separation of the reaction products. Thermal energy in the form of conventional furnace, infrared, or microwave heating may be applied in combination with the reduction reaction.

  7. Ceramic to metal attachment system. [Ceramic electrode to metal conductor in MHD generator

    DOEpatents

    Marchant, D.D.

    1983-06-10

    A composition and method are described for attaching a ceramic electrode to a metal conductor. A layer of randomly interlocked metal fibers saturated with polyimide resin is sandwiched between the ceramic electrode and the metal conductor. The polyimide resin is then polymerized providing bonding.

  8. Metal recovery from porous materials

    DOEpatents

    Sturcken, E.F.

    1992-10-13

    A method is described for recovering plutonium and other metals from materials by leaching comprising the steps of incinerating the materials to form a porous matrix as the residue of incineration, immersing the matrix into acid in a microwave-transparent pressure vessel, sealing the pressure vessel, and applying microwaves so that the temperature and the pressure in the pressure vessel increase. The acid for recovering plutonium can be a mixture of HBF[sub 4] and HNO[sub 3] and preferably the pressure is increased to at least 100 PSI and the temperature to at least 200 C. The porous material can be pulverized before immersion to further increase the leach rate.

  9. REDUCTION OF FLUORIDE TO METAL

    DOEpatents

    Carlson, O.N.; Schmidt, F.A.; Spedding, F.H.

    1960-08-30

    A process is given for making yttrium metal by reducing yttrium fluoride with calcium plus magnesium. Calcium is added in an excess of from 10 to 20% and magnesium in a quantity to yield a magnesium--yttrium alloy containing from 12 to 25% magnesium when the reaction mass is heated in an inert atmosphere at from 900 to 1106 deg C, but preferably above the melting point of the alloy. Calcium chloride may be added so as to obtain a less viscous slag containing from 30 to 60% calcium chloride. After removal of the slag the alloy is vacuum-heated at about 1100 deg C for volatilization of the magnesium and calcium.

  10. Liquid-metal-cooled reactor

    DOEpatents

    Hutter, Ernest

    1982-01-01

    A perforated depressor plate extending across the bottom of the instrument ree of a fast breeder reactor cooperates with a circular cylindrical metal bellows forming a part of the upper adapter of each core assembly and bearing on the bottom of the depressor plate to restrict flow of coolant between core assemblies, thereby reducing significantly the pressure differential between the coolant inside the core assemblies and the coolant outside of the core assemblies. Openings in the depressor plate are slightly smaller than the top of the upper adapter so the depressor plate will serve as a backup mechanical holddown for the core. In addition coolant mixing devices and locating devices are provided attached to the depressor plate.

  11. Liquid-metal-cooled reactor

    DOEpatents

    Hutter, E.

    A perforated depressor plate extending across the bottom of the instrument tree of a fast breeder reactor cooperates with a circular cylindrical metal bellows forming a part of the upper adapter of each core assembly and bearing on the bottom of the depressor plate to restrict flow of coolant between core assemblies, thereby reducing significantly the pressure differential between the coolant inside the core assemblies and the coolant outside of the core assemblies. Openings in the depressor plate are slightly smaller than the top of the upper adapter so the depressor plate will serve as a backup mechanical holddown for the core. In addition, coolant mixing devices and locating devices are provided attached to the depressor plate.

  12. Gradient porous electrode architectures for rechargeable metal-air batteries

    DOEpatents

    Dudney, Nancy J.; Klett, James W.; Nanda, Jagjit; Narula, Chaitanya Kumar; Pannala, Sreekanth

    2016-03-22

    A cathode for a metal air battery includes a cathode structure having pores. The cathode structure has a metal side and an air side. The porosity decreases from the air side to the metal side. A metal air battery and a method of making a cathode for a metal air battery are also disclosed.

  13. Formability of metallic materials - 2000 A. D

    SciTech Connect

    Newby, J.R.; Niemeier, B.A.

    1982-01-01

    This volume contains 18 papers presented at the meeting of ASTM, of which one is abstracted separately. The subjects covered include formability of steel, aluminum, various metallic composites and sheet materials for automobile bodies. The symposium was also reviewing past experience in forming metallic materials and potential formability technologies.

  14. Arrays of stacked metal coordination compounds

    DOEpatents

    Bulkowski, J.E.

    1986-10-21

    A process is disclosed for preparing novel arrays of metal coordination compounds characterized by arrangement of the metal ions, separated by a linking agent, in stacked order one above the other. The process permits great flexibility in the design of the array. For example, layers of different composition can be added to the array at will. 3 figs.

  15. Process for the disposal of alkali metals

    DOEpatents

    Lewis, Leroy C.

    1977-01-01

    Large quantities of alkali metals may be safely reacted for ultimate disposal by contact with a hot concentrated caustic solution. The alkali metals react with water in the caustic solution in a controlled reaction while steam dilutes the hydrogen formed by the reaction to a safe level.

  16. Process for electrolytically preparing uranium metal

    DOEpatents

    Haas, Paul A.

    1989-01-01

    A process for making uranium metal from uranium oxide by first fluorinating uranium oxide to form uranium tetrafluoride and next electrolytically reducing the uranium tetrafluoride with a carbon anode to form uranium metal and CF.sub.4. The CF.sub.4 is reused in the fluorination reaction rather than being disposed of as a hazardous waste.

  17. Process for electrolytically preparing uranium metal

    DOEpatents

    Haas, Paul A.

    1989-08-01

    A process for making uranium metal from uranium oxide by first fluorinating uranium oxide to form uranium tetrafluoride and next electrolytically reducing the uranium tetrafluoride with a carbon anode to form uranium metal and CF.sub.4. The CF.sub.4 is reused in the fluorination reaction rather than being disposed of as a hazardous waste.

  18. Implementation of Metal Casting Best Practices

    SciTech Connect

    Eppich, Robert; Naranjo, Robert D.

    2007-01-01

    The project examined cases where metal casters had implemented ITP research results and the benefits they received due to that implementation. In cases where casters had not implemented those results, the project examined the factors responsible for that lack of implementation. The project also informed metal casters of the free tools and service offered by the ITP Technology Delivery subprogram.

  19. High temperature ceramic/metal joint structure

    DOEpatents

    Boyd, Gary L.

    1991-01-01

    A high temperature turbine engine includes a hybrid ceramic/metallic rotor member having ceramic/metal joint structure. The disclosed joint is able to endure higher temperatures than previously possible, and aids in controlling heat transfer in the rotor member.

  20. Biaxially textured metal substrate with palladium layer

    DOEpatents

    Robbins, William B.

    2002-12-31

    Described is an article comprising a biaxially textured metal substrate and a layer of palladium deposited on at least one major surface of the metal substrate; wherein the palladium layer has desired in-plane and out-of-plane crystallographic orientations, which allow subsequent layers that are applied on the article to also have the desired orientations.