National Library of Energy BETA

Sample records for ford tx marcellus

  1. Ford | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    search Name: Ford Place: Dearborn, MI Website: www.ford.com References: FORD-NREL CRADA1 Information About Partnership with NREL Partnership with NREL Yes Partnership...

  2. FORD | Department of Energy

    Energy Savers

    TECHNOLOGY INNOVATION Ford updated several factories to continue improving fuel efficiency in more than a dozen popular vehicles, including the Escape, Fiesta, Focus, Fusion, and ...

  3. QER- Comment of Marcellus Shale Coalition

    Office of Energy Efficiency and Renewable Energy (EERE)

    Attached please find the Marcellus Shale Coalition’s comments with regard to the U.S. Department of Energy’s Quadrennial Energy Review Task Force Hearing - Natural Gas Transmission, Storage and Distribution. Thank you

  4. Ford's CNG vehicle research

    SciTech Connect (OSTI)

    Nichols, R.J.

    1983-06-01

    Several natural gas vehicles have been built as part of Ford's Alternative Fuel Demonstration Fleet. Two basic methods, compressed gas (CNG), and liquified gas (LNG) were used. Heat transfer danger and the expense and special training needed for LNG refueling are cited. CNG in a dual-fuel engine was demonstrated first. The overall results were unsatisfactory. A single fuel LNG vehicle was then demonstrated. Four other demonstrations, testing different tank weights and engine sizes, lead to the conclusion that single fuel vehicles optimized for CNG use provide better fuel efficiency than dual-fuel vehicles. Lack of public refueling stations confines use to fleet operations.

  5. Ford Electric Battery Group | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Electric Battery Group Jump to: navigation, search Name: Ford Electric Battery Group Place: Dearborn, MI References: Ford Battery1 Information About Partnership with NREL...

  6. Workplace Charging Challenge Partner: Ford Motor Company | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Ford Motor Company Workplace Charging Challenge Partner: Ford Motor Company Workplace Charging Challenge Partner: Ford Motor Company Joined the Challenge: January 2013 ...

  7. GM-Ford-Chrysler: Allocating Loan Authority

    Energy.gov [DOE]

    Statement from GM, Ford, and Chrysler: "Allocating the $25 Billion in Direct Loan Authority to Loan Applicants"

  8. Water Treatment System Cleans Marcellus Shale Wastewater | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Water Treatment System Cleans Marcellus Shale Wastewater Water Treatment System Cleans Marcellus Shale Wastewater April 13, 2011 - 1:00pm Addthis Washington, DC - A water treatment system that can turn wastewater into clean water has been shown to reduce potential environmental impacts associated with producing natural gas from shale formations in the Appalachian basin. Altela Inc.'s AltelaRain® 4000 water desalination system was tested at BLX, Inc.'s Sleppy well site in Indiana

  9. J. Chris Ford, Ph.D. | Department of Energy

    Energy.gov (indexed) [DOE]

    Chris Ford, Ph.D. - Technical Advisor to the Director Office of Economic Impact and Diversity Most Recent by Chris Ford Unlocking Growth Opportunities for Minority Businesses...

  10. NREL to Host Demonstration of Ford's Electric Ranger PU Truck

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Renewable Energy Laboratory to Host Demonstration of Ford's Electric Ranger Pickup Truck ... Media are invited to cover Ford's demonstration of the Electric Ranger at the National ...

  11. Ford Debuts Solar Energy Concept Car

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Ford Motor Company unveiled the C-MAX Solar Energi Concept, a sun-powered vehicle with the potential to deliver what a plug-in hybrid offers without depending on the electric grid for fuel.

  12. President Ford Signs the Energy Reorganization Act of 1974 | National

    National Nuclear Security Administration (NNSA)

    Nuclear Security Administration | (NNSA) Ford Signs the Energy Reorganization Act of 1974 President Ford Signs the Energy Reorganization Act of 1974 Washington, DC President Ford signs the Energy Reorganization Act of 1974. The Atomic Energy Commission is abolished. The Energy Research and Development Administration, Nuclear Regulatory Commission, and Energy Resources Council are established

  13. EIS-0412: TX Energy, LLC, Industrial Gasification Facility Near...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    2: TX Energy, LLC, Industrial Gasification Facility Near Beaumont, TX EIS-0412: TX Energy, LLC, Industrial Gasification Facility Near Beaumont, TX February 18, 2009 EIS-0412: ...

  14. US WSC TX Site Consumption

    U.S. Energy Information Administration (EIA) (indexed site)

    WSC TX Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US WSC TX Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 4,000 8,000 12,000 16,000 US WSC TX Site Consumption kilowatthours $0 $500 $1,000 $1,500 $2,000 US WSC TX Expenditures dollars ELECTRICITY ONLY average per household * Texas households consume an average of 77 million Btu per year, about 14% less than the U.S. average. * Average electricity consumption per Texas home is 26% higher than

  15. AVTA: 2013 Ford C-MAX HEV Testing Results

    Office of Energy Efficiency and Renewable Energy (EERE)

    VTO's National Laboratories have tested and collected both dynamometer and fleet data for the Ford C-MAX HEV (a hybrid electric vehicle).

  16. Ford Motor Co Sustainable Technologies and Hybrid Programme ...

    Open Energy Information (Open El) [EERE & EIA]

    Motor Co Sustainable Technologies and Hybrid Programme Jump to: navigation, search Name: Ford Motor Co - Sustainable Technologies and Hybrid Programme Place: Allen Park, Michigan...

  17. US WSC TX Site Consumption

    Gasoline and Diesel Fuel Update

    ... Yes Yes No No 0% 20% 40% 60% 80% 100% US TX No Car CAR IS PARKED WITHIN 20 FT OF ELECTRICAL OUTLET More highlights from RECS on housing characteristics and energy-related ...

  18. AVTA: 2010 Ford Fusion HEV Testing Results

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe results of testing done on a 2010 Ford Fusion hybrid-electric vehicle. Baseline data, which provides a point of comparison for the other test results, was collected at two different research laboratories. Baseline and other data collected at Idaho National Laboratory is in the attached documents. Baseline and battery testing data collected at Argonne National Laboratory is available in summary and CSV form on the Argonne Downloadable Dynometer Database site (http://www.anl.gov/energy-systems/group/downloadable-dynamometer-databas...). Taken together, these reports give an overall view of how this vehicle functions under extensive testing.

  19. Ford Taurus Ethanol-Fueled Sedan

    SciTech Connect (OSTI)

    Eudy, L.

    1999-06-24

    The U.S. Department of Energy (DOE) is encouraging the use of alternative fuels and alternative fuel vehicles (AFVs). To support this activity, DOE has directed the National Renewable Energy Laboratory (NREL) to conduct projects to evaluate the performance and acceptability of light-duty AFVs. In this study, we tested a pair of 1998 Ford Tauruses: one E85 (85% gasoline/15% ethanol) model (which was tested on both E85 and gasoline) and a gasoline model as closely matched as possible. Each vehicle was run through a series of tests to evaluate acceleration, fuel economy, braking, and cold-start capabilities, as well as more subjective performance indicators such as handling, climate control, and noise.

  20. LPO5-002-Proj-Poster-ATVM-Ford

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    FORD By upgrading 13 facilities across 6 states, Ford was able to meet consumer demand for better fuel e ciency in more than a dozen popular vehicles. OWNER Ford Motor Company LOCATIONS Illinois, Kentucky, Michigan, Missouri, New York, Ohio LOAN AMOUNT $5.9 Billion ISSUANCE DATE September 2009 PERMANENT U.S. JOBS SUPPORTED 33,000 GASOLINE SAVED 268,000,000 Gallons Annually CLIMATE BENEFIT 2,380,000 Metric Tons of C0 2 Prevented Annually INVESTING in AMERICAN ENERGY

  1. Road to Fuel Savings: Ford, Magna Partnership Help Vehicles Shed...

    Energy Savers

    This year at the Detroit Auto Show, Ford Motor Company made waves when it unveiled a new lightweight F-150, knocking nearly 700 pounds off the popular truck. Now the company is one ...

  2. CleanTX Foundation | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    is a stub. You can help OpenEI by expanding it. CleanTX Foundation is a policy organization located in Austin, Texas. References About CleanTX Foundation Retrieved from...

  3. EIS-0412: TX Energy, LLC, Industrial Gasification Facility Near Beaumont,

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    TX | Department of Energy 2: TX Energy, LLC, Industrial Gasification Facility Near Beaumont, TX EIS-0412: TX Energy, LLC, Industrial Gasification Facility Near Beaumont, TX February 18, 2009 EIS-0412: Notice of Intent to Prepare an Environmental Impact Statement Construction of the TX Energy, LLC, Industrial Gasification Facility near Beaumont, Texas

  4. New York Marcellus Shale: Industry boom put on hold

    SciTech Connect (OSTI)

    Mercurio, Angelique

    2012-01-16

    Key catalysts for Marcellus Shale drilling in New York were identified. New York remains the only state in the nation with a legislative moratorium on high-volume hydraulic fracturing, as regulators and state lawmakers work to balance the advantages of potential economic benefits while protecting public drinking water resources and the environment. New York is being particularly careful to work on implementing sufficiently strict regulations to mitigate the environmental impacts Pennsylvania has already seen, such as methane gas releases, fracturing fluid releases, flowback water and brine controls, and total dissolved solids discharges. In addition to economic and environmental lessons learned, the New York Department of Environmental Conservation (DEC) also acknowledges impacts to housing markets, security, and other local issues, and may impose stringent measures to mitigate potential risks to local communities. Despite the moratorium, New York has the opportunity to take advantage of increased capital investment, tax revenue generation, and job creation opportunities by increasing shale gas activity. The combination of economic benefits, industry pressure, and recent technological advances will drive the pursuit of natural gas drilling in New York. We identify four principal catalysts as follows: Catalyst 1: Pressure from Within the State. Although high-volume hydraulic fracturing has become a nationally controversial technology, shale fracturing activity is common in every U.S. state except New York. The regulatory process has delayed potential economic opportunities for state and local economies, as well as many industry stakeholders. In 2010, shale gas production accounted for $18.6 billion in federal royalty and local, state, and federal tax revenues. (1) This is expected to continue to grow substantially. The DEC is under increased pressure to open the state to the same opportunities that Alabama, Arkansas, California, Colorado, Kansas, Louisiana, Montana

  5. Updates to the EIA Eagle Ford Play Maps

    U.S. Energy Information Administration (EIA) (indexed site)

    Updates to the EIA Eagle Ford Play Maps December 2014 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Updates to the Eagle Ford Shale Play Maps i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of

  6. Geochemical and Strontium Isotope Characterization of Produced Waters from Marcellus Shale Natural Gas Extraction

    SciTech Connect (OSTI)

    Elizabeth C. Chapman,† Rosemary C. Capo,† Brian W. Stewart,*,† Carl S. Kirby,‡ Richard W. Hammack,§ Karl T. Schroeder,§ and Harry M. Edenborn

    2012-02-24

    Extraction of natural gas by hydraulic fracturing of the Middle Devonian Marcellus Shale, a major gas-bearing unit in the Appalachian Basin, results in significant quantities of produced water containing high total dissolved solids (TDS). We carried out a strontium (Sr) isotope investigation to determine the utility of Sr isotopes in identifying and quantifying the interaction of Marcellus Formation produced waters with other waters in the Appalachian Basin in the event of an accidental release, and to provide information about the source of the dissolved solids. Strontium isotopic ratios of Marcellus produced waters collected over a geographic range of ∼375 km from southwestern to northeastern Pennsylvania define a relatively narrow set of values (εSr SW = +13.8 to +41.6, where εSr SW is the deviation of the 87Sr/86Sr ratio from that of seawater in parts per 104); this isotopic range falls above that of Middle Devonian seawater, and is distinct from most western Pennsylvania acid mine drainage and Upper Devonian Venango Group oil and gas brines. The uniformity of the isotope ratios suggests a basin-wide source of dissolved solids with a component that is more radiogenic than seawater. Mixing models indicate that Sr isotope ratios can be used to sensitively differentiate between Marcellus Formation produced water and other potential sources of TDS into ground or surface waters.

  7. Geochemical and Strontium Isotope Characterization of Produced Waters from Marcellus Shale Natural Gas Extraction

    SciTech Connect (OSTI)

    Chapman, Elizabeth C; Capo, Rosemary C.; Stewart, Brian W.; Kirby, Carl S.; Hammack, Richard W.; Schroeder, Karl T.; Edenborn, Harry M.

    2012-03-20

    Extraction of natural gas by hydraulic fracturing of the Middle Devonian Marcellus Shale, a major gas-bearing unit in the Appalachian Basin, results in significant quantities of produced water containing high total dissolved solids (TDS). We carried out a strontium (Sr) isotope investigation to determine the utility of Sr isotopes in identifying and quantifying the interaction of Marcellus Formation produced waters with other waters in the Appalachian Basin in the event of an accidental release, and to provide information about the source of the dissolved solids. Strontium isotopic ratios of Marcellus produced waters collected over a geographic range of 375 km from southwestern to northeastern Pennsylvania define a relatively narrow set of values (ε{sub Sr}{sup SW} = +13.8 to +41.6, where ε{sub Sr}{sup SW} is the deviation of the {sup 87}Sr/{sup 86}Sr ratio from that of seawater in parts per 10{sup 4}); this isotopic range falls above that of Middle Devonian seawater, and is distinct from most western Pennsylvania acid mine drainage and Upper Devonian Venango Group oil and gas brines. The uniformity of the isotope ratios suggests a basin-wide source of dissolved solids with a component that is more radiogenic than seawater. Mixing models indicate that Sr isotope ratios can be used to sensitively differentiate between Marcellus Formation produced water and other potential sources of TDS into ground or surface waters.

  8. EDF Industrial Power Services (TX), LLC | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    EDF Industrial Power Services (TX), LLC Jump to: navigation, search Name: EDF Industrial Power Services (TX), LLC Place: Texas Phone Number: 877-432-4530 Website:...

  9. Price of Freeport, TX Liquefied Natural Gas Exports to Mexico...

    U.S. Energy Information Administration (EIA) (indexed site)

    Freeport, TX Liquefied Natural Gas Exports to Mexico (Dollars per Thousand Cubic Feet) Price of Freeport, TX Liquefied Natural Gas Exports to Mexico (Dollars per Thousand Cubic...

  10. Penitas, TX Natural Gas Pipeline Imports From Mexico (Dollars...

    U.S. Energy Information Administration (EIA) (indexed site)

    Penitas, TX Natural Gas Pipeline Imports From Mexico (Dollars per Thousand Cubic Feet) Penitas, TX Natural Gas Pipeline Imports From Mexico (Dollars per Thousand Cubic Feet) Decade ...

  11. Alamo, TX Natural Gas Pipeline Imports From Mexico (Dollars per...

    U.S. Energy Information Administration (EIA) (indexed site)

    Alamo, TX Natural Gas Pipeline Imports From Mexico (Dollars per Thousand Cubic Feet) Alamo, TX Natural Gas Pipeline Imports From Mexico (Dollars per Thousand Cubic Feet) Decade ...

  12. An Integrated Water Treatment Technology Solution for Sustainable Water Resource Management in the Marcellus Shale

    SciTech Connect (OSTI)

    Matthew Bruff; Ned Godshall; Karen Evans

    2011-04-30

    This Final Scientific/ Technical Report submitted with respect to Project DE-FE0000833 titled 'An Integrated Water Treatment Technology Solution for Sustainable Water Resource Management in the Marcellus Shale' in support of final reporting requirements. This final report contains a compilation of previous reports with the most current data in order to produce one final complete document. The goal of this research was to provide an integrated approach aimed at addressing the increasing water resource challenges between natural gas production and other water stakeholders in shale gas basins. The objective was to demonstrate that the AltelaRain{reg_sign} technology could be successfully deployed in the Marcellus Shale Basin to treat frac flow-back water. That objective has been successfully met.

  13. Rare earth element geochemistry of outcrop and core samples from the Marcellus Shale

    SciTech Connect (OSTI)

    Noack, Clinton W.; Jain, Jinesh C.; Stegmeier, John; Hakala, J. Alexandra; Karamalidis, Athanasios K.

    2015-06-26

    In this paper, we studied the geochemistry of the rare earth elements (REE) in eleven outcrop samples and six, depth-interval samples of a core from the Marcellus Shale. The REE are classically applied analytes for investigating depositional environments and inferring geochemical processes, making them of interest as potential, naturally occurring indicators of fluid sources as well as indicators of geochemical processes in solid waste disposal. However, little is known of the REE occurrence in the Marcellus Shale or its produced waters, and this study represents one of the first, thorough characterizations of the REE in the Marcellus Shale. In these samples, the abundance of REE and the fractionation of REE profiles were correlated with different mineral components of the shale. Namely, samples with a larger clay component were inferred to have higher absolute concentrations of REE but have less distinctive patterns. Conversely, samples with larger carbonate fractions exhibited a greater degree of fractionation, albeit with lower total abundance. Further study is necessary to determine release mechanisms, as well as REE fate-and-transport, however these results have implications for future brine and solid waste management applications.

  14. Rare earth element geochemistry of outcrop and core samples from the Marcellus Shale

    DOE PAGES-Beta [OSTI]

    Noack, Clinton W.; Jain, Jinesh C.; Stegmeier, John; Hakala, J. Alexandra; Karamalidis, Athanasios K.

    2015-06-26

    In this paper, we studied the geochemistry of the rare earth elements (REE) in eleven outcrop samples and six, depth-interval samples of a core from the Marcellus Shale. The REE are classically applied analytes for investigating depositional environments and inferring geochemical processes, making them of interest as potential, naturally occurring indicators of fluid sources as well as indicators of geochemical processes in solid waste disposal. However, little is known of the REE occurrence in the Marcellus Shale or its produced waters, and this study represents one of the first, thorough characterizations of the REE in the Marcellus Shale. In thesemore » samples, the abundance of REE and the fractionation of REE profiles were correlated with different mineral components of the shale. Namely, samples with a larger clay component were inferred to have higher absolute concentrations of REE but have less distinctive patterns. Conversely, samples with larger carbonate fractions exhibited a greater degree of fractionation, albeit with lower total abundance. Further study is necessary to determine release mechanisms, as well as REE fate-and-transport, however these results have implications for future brine and solid waste management applications.« less

  15. EERE Success Story-Ford-Dow Partnership Is Linked to Carbon Fiber

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Research at ORNL | Department of Energy Ford-Dow Partnership Is Linked to Carbon Fiber Research at ORNL EERE Success Story-Ford-Dow Partnership Is Linked to Carbon Fiber Research at ORNL May 16, 2013 - 12:00am Addthis EERE provided funding to Dow Chemical, Ford Motor Company, and ORNL to demonstrate a novel polymer fiber material and production process technology. These funds support EERE's strategy of investing in emerging technologies that create high-quality, domestic manufacturing jobs

  16. Ford Liquefied Petroleum Gas-Powered F-700 May Set Sales Records

    Alternative Fuels and Advanced Vehicles Data Center

    he introduction in 1992 of an American-made truck with a fully factory-installed/war- ranted liquefied petroleum gas (LPG) engine represents another "Ford first" in the alternative fuel arena. Now the company has introduced an LPG- powered F-700, a medium/heavy- duty truck. According to Tom Steckel, Ford's medium-duty marketing man- ager, Ford's latest sales figures already prove the alternative fuel F-700's popularity. With a little more than 10 months of the model year finished, Ford

  17. Overview of Fords Thermoelectric Programs: Waste Heat Recovery...

    Energy.gov (indexed) [DOE]

    More Documents & Publications Overview of Fords Thermoelectric Programs: Waste Heat Recovery and Climate Control Thermoelectric HVAC for Light-Duty Vehicle Applications ...

  18. Argonne working with Ford and FCA US to study dual-fuel vehicles...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    the same time, which will maximize the efficiency of an engine that uses this approach. "Innovation in Ford powertrain research is constantly progressing," said Tom McCarthy,...

  19. AVTA: 2013 Ford C-Max Energi Fleet PHEV Testing Results

    Energy.gov [DOE]

    VTO's National Laboratories have tested and collected both dynamometer and fleet data for the Ford CMAX Energi (a plug-in hybrid electric vehicle).

  20. TX-100 manufacturing final project report.

    SciTech Connect (OSTI)

    Ashwill, Thomas D.; Berry, Derek S.

    2007-11-01

    This report details the work completed under the TX-100 blade manufacturing portion of the Carbon-Hybrid Blade Developments: Standard and Twist-Coupled Prototype project. The TX-100 blade is a 9 meter prototype blade designed with bend-twist coupling to augment the mitigation of peak loads during normal turbine operation. This structural coupling was achieved by locating off axis carbon fiber in the outboard portion of the blade skins. The report will present the tooling selection, blade production, blade instrumentation, blade shipping and adapter plate design and fabrication. The baseline blade used for this project was the ERS-100 (Revision D) wind turbine blade. The molds used for the production of the TX-100 were originally built for the production of the CX-100 blade. The same high pressure and low pressure skin molds were used to manufacture the TX-100 skins. In order to compensate for the difference in skin thickness between the CX-100 and the TX-100, however, a new TX-100 shear web plug and mold were required. Both the blade assembly fixture and the root stud insertion fixture used for the CX-100 blades could be utilized for the TX-100 blades. A production run of seven TX-100 prototype blades was undertaken at TPI Composites during the month of October, 2004. Of those seven blades, four were instrumented with strain gauges before final assembly. After production at the TPI Composites facility in Rhode Island, the blades were shipped to various test sites: two blades to the National Wind Technology Center at the National Renewable Energy Laboratory in Boulder, Colorado, two blades to Sandia National Laboratory in Albuquerque, New Mexico and three blades to the United States Department of Agriculture turbine field test facility in Bushland, Texas. An adapter plate was designed to allow the TX-100 blades to be installed on existing Micon 65/13M turbines at the USDA site. The conclusion of this program is the kick-off of the TX-100 blade testing at the three

  1. Rio Grande, TX Natural Gas Pipeline Exports to Mexico (Million...

    U.S. Energy Information Administration (EIA) (indexed site)

    Grande, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Rio Grande, TX ... 05312016 Referring Pages: U.S. Natural Gas Pipeline Exports by Point of Exit Rio Grande

  2. Roma, TX Natural Gas Pipeline Exports to Mexico (Million Cubic...

    U.S. Energy Information Administration (EIA) (indexed site)

    Roma, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Roma, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep ...

  3. AVTA: Ford Escape PHEV Advanced Research Vehicle 2010 Testing Results

    Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe results of testing done on a plug-in hybrid electric Ford Escape Advanced Research Vehicle, an experimental model not currently for sale. The baseline performance testing provides a point of comparison for the other test results. Taken together, these reports give an overall view of how this vehicle functions under extensive testing. This research was conducted by Idaho National Laboratory.

  4. Fuel-tolerance tests with the Ford PROCO engine

    SciTech Connect (OSTI)

    Choma, M.A.; Havstad, P.H.; Simko, A.O.; Stockhausen, W.F.

    1981-01-01

    A variety of fuel tolerance tests were conducted utilizing Ford's PROCO engine, a direct fuel injection stratified charge engine developed for light duty vehicles. These engine tests were run on the dynamometer and in vehicles. Data indicate an 89 RON octane requirement, relatively low sensitivity to volatility characteristics and good fuel economy, emission control and operability on a certain range of petroleum fuel and alcohol mixes including 100% methanol. Fuels such as JP-4 and Diesel fuel are not at present suitable for this engine. There were no engine modifications tested that might improve the match between the engine and a particular fuel. The 100% methanol test was conducted with a modified fuel injection pump. Durability aspects including compatibility of various fuels with the materials in the fuel system were not addressed.

  5. US Energy Secretary Chu Announces Finalized $5.9 Billion Loan for Ford

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Motor Company | Department of Energy Finalized $5.9 Billion Loan for Ford Motor Company US Energy Secretary Chu Announces Finalized $5.9 Billion Loan for Ford Motor Company September 17, 2009 - 12:00am Addthis Washington, DC - Today, Secretary Steven Chu announced that the Department of Energy has closed on its loan offer of $5.9 billion to Ford Motor Company to transform factories across Illinois, Kentucky, Michigan, Missouri, and Ohio to produce more fuel efficient models. The loan is part

  6. Model year 2010 Ford Fusion Level-1 testing report.

    SciTech Connect (OSTI)

    Rask, E.; Bocci, D.; Duoba, M.; Lohse-Busch, H.; Energy Systems

    2010-11-23

    As a part of the US Department of Energy's Advanced Vehicle Testing Activity (AVTA), a model year 2010 Ford Fusion was procured by eTec (Phoenix, AZ) and sent to ANL's Advanced Powertrain Research Facility for the purposes of vehicle-level testing in support of the Advanced Vehicle Testing Activity. Data was acquired during testing using non-intrusive sensors, vehicle network information, and facilities equipment (emissions and dynamometer). Standard drive cycles, performance cycles, steady-state cycles, and A/C usage cycles were conducted. Much of this data is openly available for download in ANL's Downloadable Dynamometer Database. The major results are shown in this report. Given the benchmark nature of this assessment, the majority of the testing was done over standard regulatory cycles and sought to obtain a general overview of how the vehicle performs. These cycles include the US FTP cycle (Urban) and Highway Fuel Economy Test cycle as well as the US06, a more aggressive supplemental regulatory cycle. Data collection for this testing was kept at a fairly high level and includes emissions and fuel measurements from an exhaust emissions bench, high-voltage and accessory current/voltage from a DC power analyzer, and CAN bus data such as engine speed, engine load, and electric machine operation. The following sections will seek to explain some of the basic operating characteristics of the MY2010 Fusion and provide insight into unique features of its operation and design.

  7. Pores in Marcellus Shale: A Neutron Scattering and FIB-SEM Study

    SciTech Connect (OSTI)

    Gu, Xin; Cole, David R.; Rother, Gernot; Mildner, David F. R.; Brantley, Susan L.

    2015-01-26

    The production of natural gas has become more and more important in the United States because of the development of hydraulic fracturing techniques, which significantly increase the permeability and fracture network of black shales. The pore structure of shale is a controlling factor for hydrocarbon storage and gas migration. In this work, we investigated the porosity of the Union Springs (Shamokin) Member of the Marcellus Formation from a core drilled in Centre County, PA, USA, using ultrasmall-angle neutron scattering (USANS), small-angle neutron scattering (SANS), focused ion beam scanning electron microscopy (FIB-SEM), and nitrogen gas adsorption. The scattering of neutrons by Marcellus shale depends on the sample orientation: for thin sections cut in the plane of bedding, the scattering pattern is isotropic, while for thin sections cut perpendicular to the bedding, the scattering pattern is anisotropic. The FIB-SEM observations allow attribution of the anisotropic scattering patterns to elongated pores predominantly associated with clay. The apparent porosities calculated from scattering data from the bedding plane sections are lower than those calculated from sections cut perpendicular to the bedding. A preliminary method for estimating the total porosity from the measurements made on the two orientations is presented. This method is in good agreement with nitrogen adsorption for both porosity and specific surface area measurements. Neutron scattering combined with FIB-SEM reveals that the dominant nanosized pores in organic-poor, clay-rich shale samples are water-accessible sheetlike pores within clay aggregates. In contrast, bubble-like organophilic pores in kerogen dominate organic-rich samples. Lastly, developing a better understanding of the distribution of the water-accessible pores will promote more accurate models of water–mineral interactions during hydrofracturing.

  8. Pores in Marcellus Shale: A Neutron Scattering and FIB-SEM Study

    DOE PAGES-Beta [OSTI]

    Gu, Xin; Cole, David R.; Rother, Gernot; Mildner, David F. R.; Brantley, Susan L.

    2015-01-26

    The production of natural gas has become more and more important in the United States because of the development of hydraulic fracturing techniques, which significantly increase the permeability and fracture network of black shales. The pore structure of shale is a controlling factor for hydrocarbon storage and gas migration. In this work, we investigated the porosity of the Union Springs (Shamokin) Member of the Marcellus Formation from a core drilled in Centre County, PA, USA, using ultrasmall-angle neutron scattering (USANS), small-angle neutron scattering (SANS), focused ion beam scanning electron microscopy (FIB-SEM), and nitrogen gas adsorption. The scattering of neutrons bymore » Marcellus shale depends on the sample orientation: for thin sections cut in the plane of bedding, the scattering pattern is isotropic, while for thin sections cut perpendicular to the bedding, the scattering pattern is anisotropic. The FIB-SEM observations allow attribution of the anisotropic scattering patterns to elongated pores predominantly associated with clay. The apparent porosities calculated from scattering data from the bedding plane sections are lower than those calculated from sections cut perpendicular to the bedding. A preliminary method for estimating the total porosity from the measurements made on the two orientations is presented. This method is in good agreement with nitrogen adsorption for both porosity and specific surface area measurements. Neutron scattering combined with FIB-SEM reveals that the dominant nanosized pores in organic-poor, clay-rich shale samples are water-accessible sheetlike pores within clay aggregates. In contrast, bubble-like organophilic pores in kerogen dominate organic-rich samples. Lastly, developing a better understanding of the distribution of the water-accessible pores will promote more accurate models of water–mineral interactions during hydrofracturing.« less

  9. RAPID/Roadmap/6-TX-b | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools Contribute Contact Us Construction Storm Water Permit (6-TX-b) The Texas...

  10. RAPID/Roadmap/19-TX-a | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools Contribute Contact Us Water Access and Water Rights Overview (19-TX-a) In the late 1960's Texas...

  11. RAPID/Roadmap/14-TX-d | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools Contribute Contact Us 401 Water Quality Certification (14-TX-d) Section 401 of the Clean Water Act (CWA)...

  12. RAPID/Roadmap/11-TX-b | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools Contribute Contact Us Human Remains Process (11-TX-b) This flowchart illustrates the procedure a...

  13. RAPID/Roadmap/11-TX-c | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    11-TX-c.2 - Does the Project Area Contain a Recorded Archaeological Site? However, oil, gas, or other mineral exploration, production, processing, marketing, refining, or...

  14. RAPID/Roadmap/11-TX-a | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    thumbnail: Page number not in range. Flowchart Narrative 11-TX-a.1 - Have Potential Human Remains Been Discovered? If the developer discovers potential human remains during any...

  15. RAPID/Roadmap/15-TX-a | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    BETA About Bulk Transmission Geothermal Hydropower Solar Tools Contribute Contact Us Air Quality Permit - Permit to Construct (15-TX-a) This flowchart illustrates the general...

  16. RAPID/Roadmap/3-TX-i | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    construction plans on the leased asset; Permission for the representatives of TxDOT to enter the area for inspection, maintenance, or reconstruction of highway facilities as...

  17. Price Liquefied Freeport, TX Natural Gas Exports Price to United...

    Annual Energy Outlook

    United Kingdom (Dollars per Thousand Cubic Feet) Price Liquefied Freeport, TX Natural Gas Exports Price to United Kingdom (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1...

  18. RAPID/Roadmap/6-TX-a | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    must obtain the proper oversizeoverweight permit from the Texas Department of Motor Vehicles (TxDMV). 06TXAExtraLegalVehiclePermittingProcess.pdf Error creating...

  19. Multi-scale and Integrated Characterization of the Marcellus Shale in the Appalachian Basin: From Microscopes to Mapping

    SciTech Connect (OSTI)

    Crandall, Dustin; Soeder, Daniel J; McDannell, Kalin T.; Mroz, Thomas

    2010-01-01

    Historic data from the Department of Energy Eastern Gas Shale Project (ESGP) were compiled to develop a database of geochemical analyses, well logs, lithological and natural fracture descriptions from oriented core, and reservoir parameters. The nine EGSP wells were located throughout the Appalachian Basin and intercepted the Marcellus Shale from depths of 750 meters (2500 ft) to 2500 meters (8200 ft). A primary goal of this research is to use these existing data to help construct a geologic framework model of the Marcellus Shale across the basin and link rock properties to gas productivity. In addition to the historic data, x-ray computerized tomography (CT) of entire cores with a voxel resolution of 240mm and optical microscopy to quantify mineral and organic volumes was performed. Porosity and permeability measurements in a high resolution, steady-state flow apparatus are also planned. Earth Vision software was utilized to display and perform volumetric calculations on individual wells, small areas with several horizontal wells, and on a regional basis. The results indicate that the lithologic character of the Marcellus Shale changes across the basin. Gas productivity appears to be influenced by the properties of the organic material and the mineral composition of the rock, local and regional structural features, the current state of in-situ stress, and lithologic controls on the geometry of induced fractures during stimulations. The recoverable gas volume from the Marcellus Shale is variable over the vertical stratigraphic section, as well as laterally across the basin. The results from this study are expected to help improve the assessment of the resource, and help optimize the recovery of natural gas.

  20. Hanford Single Shell Tank Leak Causes and Locations - 241-TX Farm

    SciTech Connect (OSTI)

    Girardot, C. L.; Harlow, D> G.

    2014-07-22

    This document identifies 241-TX Tank Farm (TX Farm) leak causes and locations for the 100 series leaking tanks (241-TX-107 and 241-TX-114) identified in RPP-RPT-50870, Rev. 0, Hanford 241-TX Farm Leak Inventory Assessment Report. This document satisfies the TX Farm portion of the target (T04) in the Hanford Federal Facility Agreement and Consent Order milestone M-045-91F.

  1. Preliminary effects of Marcellus shale drilling on Louisiana waterthrush in West Virginia

    SciTech Connect (OSTI)

    Becker, D.; Sheehan, J.; Wood, P.B.; Edenborn, H.M.

    2011-01-01

    Preliminary effects of Marcellus shale drilling on Louisiana Waterthrush in West Virginia Page 1 of 1 Doug Becker and James Sheehan, WV Cooperative Fish and Wildlife Research Unit, West Virginia Univ., Morgantown, WV 26506, USA; Petra Bohall Wood, U.S. Geological Survey, WV Cooperative Fish and Wildlife Research Unit, West Virginia Univ., Morgantown, WV 26506, USA; Harry Edenborn, National Energy Technology Laboratory, U.S. Department of Energy, Pittsburgh, PA 15236, USA. Spurred by technological advances and high energy prices, extraction of natural gas from Marcellus shale is increasing in the Appalachian Region. Because little is known about effects on wildlife populations, we studied immediate impacts of oil and gas CO&G) extraction on demographics and relative abundance of Louisiana Waterthrush'CLOWA), a riparian obligate species, to establish a baseline for potential future changes. Annually in 2008-2010, we conducted point counts, monitored Mayfield nesting success, spotted-mapped territories, and measured habitat quality using the EPA Rapid Bioassessment protocol for high gradient streams and a LOWA Habitat Suitability Index CHSI) on a 4,100 ha study area in northern West Virginia. On 11 streams, the stream length affected by O&G activities was 0-58%. Relative abundance, territory denSity, and nest success varied annually but were not significantly different across years. Success did not differ between impacted and unimpacted nests, but territory density had minimal correlation with percent of stream impacted by O&G activities. Impacted nests had lower HSI values in 2010 and lower EPA indices in 2009. High site fidelity could mask the immediate impacts of habitat disturbance from drilling as we measured return rates of 57%. All returning individuals were on the same stream they were banded and 88% were within 250 m of their territory from the previous year. We also observed a spatial shift in LOWA territories, perhaps in response to drilling activities

  2. Quantification of Organic Porosity and Water Accessibility in Marcellus Shale Using Neutron Scattering

    DOE PAGES-Beta [OSTI]

    Gu, Xin; Mildner, David F. R.; Cole, David R.; Rother, Gernot; Slingerland, Rudy; Brantley, Susan L.

    2016-04-28

    Pores within organic matter (OM) are a significant contributor to the total pore system in gas shales. These pores contribute most of the storage capacity in gas shales. Here we present a novel approach to characterize the OM pore structure (including the porosity, specific surface area, pore size distribution, and water accessibility) in Marcellus shale. By using ultrasmall and small-angle neutron scattering, and by exploiting the contrast matching of the shale matrix with suitable mixtures of deuterated and protonated water, both total and water-accessible porosity were measured on centimeter-sized samples from two boreholes from the nanometer to micrometer scale withmore » good statistical coverage. Samples were also measured after combustion at 450 °C. Analysis of scattering data from these procedures allowed quantification of OM porosity and water accessibility. OM hosts 24–47% of the total porosity for both organic-rich and -poor samples. This porosity occupies as much as 29% of the OM volume. In contrast to the current paradigm in the literature that OM porosity is organophilic and therefore not likely to contain water, our results demonstrate that OM pores with widths >20 nm exhibit the characteristics of water accessibility. In conclusion, our approach reveals the complex structure and wetting behavior of the OM porosity at scales that are hard to interrogate using other techniques.« less

  3. Ford Hatchery; Washington Department of Fish and Wildlife Fish Program, Hatcheries Division, Annual Report 2003.

    SciTech Connect (OSTI)

    Lovrak, Jon; Ward, Glen

    2004-01-01

    Bonneville Power Administration's participation with the Washington Department of Fish and Wildlife, Ford Hatchery, provides the opportunity for enhancing the recreational and subsistence kokanee fisheries in Banks Lake. The artificial production and fisheries evaluation is done cooperatively through the Spokane Hatchery, Sherman Creek Hatchery (WDFW), Banks Lake Volunteer Net Pen Project, and the Lake Roosevelt Fisheries Evaluation Program. Ford Hatchery's production, together with the Sherman Creek and the Spokane Tribal Hatchery, will contribute to an annual goal of one million kokanee yearlings for Lake Roosevelt and 1.4 million kokanee fingerlings and fry for Banks Lake. The purpose of this multi-agency program is to restore and enhance kokanee salmon and rainbow trout populations in Lake Roosevelt and Banks Lake due to Grand Coulee Dam impoundments. The Ford Hatchery will produce 9,533 lbs. (572,000) kokanee annually for release as fingerlings into Banks Lake in October. An additional 2,133 lbs. (128,000) kokanee will be transferred to net pens on Banks Lake at Electric City in October. The net pen raised kokanee will be reared through the fall, winter, and early spring to a total of 8,533 lbs and released in May. While the origin of kokanee comes from Lake Whatcom, current objectives will be to increase the use of native (or, indigenous) stocks for propagation in Banks Lake and the Upper Columbia River. Additional stocks planned for future use in Banks Lake include Lake Roosevelt kokanee and Meadow Creek kokanee. The Ford Hatchery continues to produce resident trout (80,584 lb. per year) to promote the sport fisheries in trout fishing lakes in eastern Washington (WDFW Management, Region 1). Operation and maintenance funding for the increased kokanee program was implemented in FY 2001 and scheduled to continue through FY 2010. Funds from BPA allow for an additional employee at the Ford Hatchery to assist in the operations and maintenance associated with

  4. Freeport, TX Liquefied Natural Gas Exports to Turkey (Million...

    U.S. Energy Information Administration (EIA) (indexed site)

    Turkey (Million Cubic Feet) Freeport, TX Liquefied Natural Gas Exports to Turkey (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2015 3,145 - No Data ...

  5. Freeport, TX Liquefied Natural Gas Exports to Egypt (Million...

    U.S. Energy Information Administration (EIA) (indexed site)

    Egypt (Million Cubic Feet) Freeport, TX Liquefied Natural Gas Exports to Egypt (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2015 2,947 - No Data ...

  6. Price Liquefied Freeport, TX Natural Gas Exports Price to Japan...

    U.S. Energy Information Administration (EIA) (indexed site)

    Japan (Dollars per Thousand Cubic Feet) Price Liquefied Freeport, TX Natural Gas Exports Price to Japan (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

  7. TxDOT Access Management Manual | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Access Management Manual Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: TxDOT Access Management ManualLegal Abstract Manual prepared...

  8. RAPID/Roadmap/12-TX-a | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Contribute Contact Us State Biological Resource Considerations (12-TX-a) In Texas, no person may capture, trap, take, or kill, or attempt to capture, trap, take, or kill,...

  9. Freeport, TX Liquefied Natural Gas Exports Price to Egypt (Dollars...

    U.S. Energy Information Administration (EIA) (indexed site)

    Price to Egypt (Dollars per Thousand Cubic Feet) Freeport, TX Liquefied Natural Gas Exports Price to Egypt (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug...

  10. RAPID/Roadmap/19-TX-b | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    19-TX-b.6 - Does the Developer Own the Overlying Land? In Texas, the right to acquire and pump ground water is tied to the ownership of the land overlying the groundwater aquifer....

  11. Alamo, TX Natural Gas Pipeline Exports to Mexico (Million Cubic...

    Gasoline and Diesel Fuel Update

    individual company data. Release Date: 09302015 Next Release Date: 10302015 Referring Pages: U.S. Natural Gas Pipeline Exports by Point of Exit Alamo, TX Natural Gas Exports to...

  12. Alamo, TX Natural Gas Pipeline Imports From Mexico (Million Cubic...

    Annual Energy Outlook

    Million Cubic Feet) Alamo, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA...

  13. Alamo, TX Natural Gas Pipeline Exports to Mexico (Million Cubic...

    Gasoline and Diesel Fuel Update

    data. Release Date: 09302015 Next Release Date: 10302015 Referring Pages: U.S. Natural Gas Pipeline Exports by Point of Exit Alamo, TX Natural Gas Imports by Pipeline from...

  14. RAPID/Roadmap/19-TX-e | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    will not interfere with other water rights. 19-TX-e Temporary Surface Water Permit.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number...

  15. RAPID/Roadmap/3-TX-e | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    the leasing process. 03-TX-e - Lease of Texas Parks & Wildlife Department Land (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number...

  16. Hidalgo, TX Natural Gas Pipeline Exports to Mexico (Million Cubic...

    U.S. Energy Information Administration (EIA) (indexed site)

    Million Cubic Feet) Hidalgo, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2012 392 1,937 10 168 2013 529 130 ...

  17. Rio Bravo, TX Natural Gas Pipeline Exports to Mexico (Million...

    U.S. Energy Information Administration (EIA) (indexed site)

    to Mexico (Million Cubic Feet) Rio Bravo, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 6,264 5,596 5,084 ...

  18. Penitas, TX Natural Gas Pipeline Exports to Mexico (Million Cubic...

    U.S. Energy Information Administration (EIA) (indexed site)

    Million Cubic Feet) Penitas, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 252 1,324 824 1,017 871 770 ...

  19. Galvan Ranch, TX Natural Gas Pipeline Imports From Mexico (Million...

    U.S. Energy Information Administration (EIA) (indexed site)

    Million Cubic Feet) Galvan Ranch, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 12 40 77 59 55 47 43 41 ...

  20. El Paso, TX Natural Gas Pipeline Imports From Mexico (Million...

    U.S. Energy Information Administration (EIA) (indexed site)

    Million Cubic Feet) El Paso, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's ...

  1. Simulation and Analysis of North American Natural Gas Supply and Delivery during a Winter High-Demand Event with Loss of Marcellus Production

    Office of Energy Efficiency and Renewable Energy (EERE)

    As part of QER 1.1 analysis, EPSA asked Sandia National Lab to explore scenarios under which a full or partial freeze-off limits natural gas production in the Marcellus Basin. This report describes how several scenarios would affect the production, delivery, storage, and consumption of natural gas.

  2. Ford Van Dyke: Compressed Air Management Program Leads to Improvements that Reduce Energy Consumption at an Automotive Transmission Plant

    SciTech Connect (OSTI)

    2010-06-25

    Staff at the Ford Van Dyke Transmission Plant in Sterling Heights, Michigan, have increased the efficiency of the plant’s compressed air system to enhance its performance while saving energy and improving production.

  3. Evolution of porosity and geochemistry in Marcellus Formation black shale during weathering

    SciTech Connect (OSTI)

    Jin, Lixin; Ryan, Mathur; Rother, Gernot; Cole, David; Bazilevskaya, Ekaterina; Williams, Jennifer; Alex, Carone; Brantley, S. L.

    2013-01-01

    Soils developed on the Oatka Creek member of the Marcellus Formation in Huntingdon, Pennsylvania were analyzed to understand the evolution of black shale matrix porosity and the associated changes in elemental and mineralogical composition during infiltration of water into organic-rich shale. Making the reasonable assumption that soil erosion rates are the same as those measured in a nearby location on a less organic-rich shale, we suggest that soil production rates have on average been faster for this black shale compared to the gray shale in similar climate settings. This difference is attributed to differences in composition: both shales are dominantly quartz, illite, and chlorite, but the Oatka Creek member at this location has more organic matter (1.25 wt.% organic carbon in rock fragments recovered from the bottom of the auger cores and nearby outcrops) and accessory pyrite. During weathering, the extremely low-porosity bedrock slowly disaggregates into shale chips with intergranular pores and fractures. Some of these pores are eitherfilled with organic matter or air-filled but remain unconnected, and thus inaccessible to water. Based on weathering bedrock/soil profiles, disintegration is initiated with oxidation of pyrite and organic matter, which increases the overall porosity and most importantly allows water penetration. Water infiltration exposes fresh surface area and thus promotes dissolution of plagioclase and clays. As these dissolution reactions proceed, the porosity in the deepest shale chips recovered from the soil decrease from 9 to 7% while kaolinite and Fe oxyhydroxides precipitate. Eventually, near the land surface, mineral precipitation is outcompeted by dissolution or particle loss of illite and chlorite and porosity in shale chips increases to 20%. As imaged by computed tomographic analysis, weathering causes i) greater porosity, ii) greater average length of connected pores, and iii) a more branched pore network compared to the unweathered

  4. Evolution of porosity and geochemistry in Marcellus Formation black shale during weathering

    SciTech Connect (OSTI)

    Jin, Lixin; Mathur, Ryan; Rother, Gernot; Cole, David; Bazilevskaya, Ekaterina; Williams, Jennifer; Carone, Alex; Brantley, Susan L

    2013-01-01

    Soils developed on the Oatka Creek member of the Marcellus Formation in Huntingdon, Pennsylvania were analyzed to understand the evolution of black shale matrix porosity and the associated changes in elemental and mineralogical composition during infiltration of water into organic-rich shale. Making the reasonable assumption that soil erosion rates are the same as those measured in a nearby location on a less organic-rich shale, we suggest that soil production rates have on average been faster for this black shale compared to the gray shale in similar climate settings. This difference is attributed to differences in composition: both shales are dominantly quartz, illite, and chlorite, but the Oatka Creek member at this location has more organic matter (1.25 wt% organic carbon in rock fragments recovered from the bottom of the auger cores and nearby outcrops) and accessory pyrite. During weathering, the extremely low-porosity bedrock slowly disaggregates into shale chips with intergranular pores and fractures. Some of these pores are either filled with organic matter or air-filled but remain unconnected, and thus inaccessible to water. Based on weathering bedrock/soil profiles, disintegration is initiated with oxidation of pyrite and organic matter, which increases the overall porosity and most importantly allows water penetration. Water infiltration exposes fresh surface area and thus promotes dissolution of plagioclase and clays. As these dissolution reactions proceed, the porosity in the deepest shale chips recovered from the soil decrease from 9 to 7 % while kaolinite and Fe oxyhydroxides precipitate. Eventually, near the land surface, mineral precipitation is outcompeted by dissolution or particle loss of illite and chlorite and porosity in shale chips increases to 20%. As imaged by computed tomographic analysis, weathering causes i) greater porosity, ii) greater average length of connected pores, and iii) a more branched pore network compared to the

  5. ARM - Field Campaign - TX-2002 AIRS Validation Campaign

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    govCampaignsTX-2002 AIRS Validation Campaign Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : TX-2002 AIRS Validation Campaign 2002.11.18 - 2002.12.13 Lead Scientist : Robert Knuteson Abstract NASA is conducting an aircraft campaign for the validation of the AIRS and MODIS instruments on the EOS Aqua platform. The NASA high altitude ER-2 aircraft will be based in San Antonio, Texas. The ARM SGP central facility is one of the ground

  6. Price of San Elizario, TX Natural Gas Pipeline Exports to Mexico...

    Gasoline and Diesel Fuel Update

    Price of San Elizario, TX Natural Gas Pipeline Exports to Mexico (Dollars per Thousand Cubic Feet) Price of San Elizario, TX Natural Gas Pipeline Exports to Mexico (Dollars per...

  7. McAllen, TX Natural Gas Pipeline Imports From Mexico (Dollars...

    U.S. Energy Information Administration (EIA) (indexed site)

    McAllen, TX Natural Gas Pipeline Imports From Mexico (Dollars per Thousand Cubic Feet) McAllen, TX Natural Gas Pipeline Imports From Mexico (Dollars per Thousand Cubic Feet) Decade ...

  8. File:03-TX-e - Lease of Texas Parks & Wildlife Department Land...

    Open Energy Information (Open El) [EERE & EIA]

    3-TX-e - Lease of Texas Parks & Wildlife Department Land (1).pdf Jump to: navigation, search File File history File usage Metadata File:03-TX-e - Lease of Texas Parks & Wildlife...

  9. File:03-TX-g - Lease of Relinquishment Act Lands.pdf | Open Energy...

    Open Energy Information (Open El) [EERE & EIA]

    TX-g - Lease of Relinquishment Act Lands.pdf Jump to: navigation, search File File history File usage Metadata File:03-TX-g - Lease of Relinquishment Act Lands.pdf Size of this...

  10. File:03-TX-f - Lease of Land Trade Lands.pdf | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    TX-f - Lease of Land Trade Lands.pdf Jump to: navigation, search File File history File usage Metadata File:03-TX-f - Lease of Land Trade Lands.pdf Size of this preview: 463 599...

  11. Clint, TX Natural Gas Pipeline Exports to Mexico (Million Cubic...

    U.S. Energy Information Administration (EIA) (indexed site)

    Million Cubic Feet) Clint, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 8,088 6,402 7,296 6,783 8,836 ...

  12. Integration of Rooftop Photovoltaic Systems in St. Paul Ford Site's Redevelopment Plans

    SciTech Connect (OSTI)

    Olis, D.; Mosey, G.

    2015-03-01

    The purpose of this analysis is to estimate how much electricity the redeveloped Ford Motor Company assembly plant site in St. Paul, Minnesota, might consume under different development scenarios and how much rooftop photovoltaic (PV) generation might be possible at the site. Because the current development scenarios are high-level, preliminary sketches that describe mixes of residential, retail, commercial, and industrial spaces, electricity consumption and available rooftop area for PV under each scenario can only be grossly estimated. These results are only indicative and should be used for estimating purposes only and to help inform development goals and requirements moving forward.

  13. Mike Ford

    Energy.gov [DOE]

    Mike lives in Knoxville and is a technical sales representative for the Garland Company, which is a manufacturer of high-performance roofing and building envelope materials. Prior to Garland he...

  14. UNITED STATES OF AMERICA DEPARTMENT OF ENERGY OFFICE OF FOSSIL...

    Office of Environmental Management (EM)

    regions, including recent shale gas discoveries in the Haynesville, Eagle Ford, Barnett, Floyd-NealConasauga, and Marcellus shale plays. Magnolia emphasizes that the size...

  15. U.S. Energy Information Administration (EIA)

    Annual Energy Outlook

    including the Eagle Ford and portions of the Marcellus and, correspondingly, to decrease drilling in basins where a relatively greater share of production is dry natural gas....

  16. Rotary mode core sampling approved checklist: 241-TX-113

    SciTech Connect (OSTI)

    Fowler, K.D.

    1998-08-03

    The safety assessment for rotary mode core sampling was developed using certain bounding assumptions, however, those assumptions were not verified for each of the existing or potential flammable gas tanks. Therefore, a Flammable Gas/Rotary Mode Core Sampling Approved Checklist has been completed for tank 241-TX-113 prior to sampling operations. This transmittal documents the dispositions of the checklist items from the safety assessment.

  17. Rotary mode core sampling approved checklist: 241-TX-116

    SciTech Connect (OSTI)

    FOWLER, K.D.

    1999-02-24

    The safety assessment for rotary mode core sampling was developed using certain bounding assumptions, however, those assumptions were not verified for each of the existing or potential flammable gas tanks. Therefore, a Flammable Gas/Rotary Mode Core Sampling Approved Checklist has been completed for tank 241-TX-116 prior to sampling operations. This transmittal documents the dispositions of the checklist items from the safety assessment.

  18. Freeport, TX Liquefied Natural Gas Exports (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) (indexed site)

    (Million Cubic Feet) Freeport, TX Liquefied Natural Gas Exports (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 2,725 2014 2,664 2015 2,805 2,728 2,947 3,145 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: U.S.

  19. Freeport, TX Liquefied Natural Gas Exports (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) (indexed site)

    (Million Cubic Feet) Freeport, TX Liquefied Natural Gas Exports (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2016 2 2 3 1 2 8 11 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: U.S.

  20. Laredo, TX Liquefied Natural Gas Exports (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) (indexed site)

    (Million Cubic Feet) Laredo, TX Liquefied Natural Gas Exports (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2015 1 0 2016 3 7 8 18 12 21 23 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: U.S.

  1. Bassi

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    tight oil plays: production and proved reserves, 2013-14 million barrels 2013 2013 Basin Play State(s) Production Reserves Williston Bakken ND, MT, SD 270 4,844 387 5,972 1,128 Western Gulf Eagle Ford TX 351 4,177 497 5,172 995 Permian Bone Spring, Wolfcamp NM, TX 21 335 53 722 387 Denver-Julesberg Niobrara CO, KS, NE, WY 2 17 42 512 495 Appalachian Marcellus* PA, WV 7 89 13 232 143 Fort Worth Barnett TX 9 58 9 47 -11 Sub-total 660 9,520 1,001 12,657 3,137 Other tight oil 41 523 56 708 185 U.S.

  2. Biofuels Issues and Trends - Energy Information Administration

    Gasoline and Diesel Fuel Update

    tight oil plays: production and proved reserves, 2013-14 million barrels 2013 2013 Basin Play State(s) Production Reserves Williston Bakken ND, MT, SD 270 4,844 387 5,972 1,128 Western Gulf Eagle Ford TX 351 4,177 497 5,172 995 Permian Bone Spring, Wolfcamp NM, TX 21 335 53 722 387 Denver-Julesberg Niobrara CO, KS, NE, WY 2 17 42 512 495 Appalachian Marcellus* PA, WV 7 89 13 232 143 Fort Worth Barnett TX 9 58 9 47 -11 Sub-total 660 9,520 1,001 12,657 3,137 Other tight oil 41 523 56 708 185 U.S.

  3. Comparative study of microfacies variation in two samples from the Chittenango member, Marcellus shale subgroup, western New York state, USA

    SciTech Connect (OSTI)

    Balulla, Shama Padmanabhan, E.; Over, Jeffrey

    2015-07-22

    This study demonstrates the significant lithologic variations that occur within the two shale samples from the Chittenango member of the Marcellus shale formation from western New York State in terms of mineralogical composition, type of lamination, pyrite occurrences and fossil content using thin section detailed description and field emission Scanning electron microscope (FESEM) with energy dispersive X-Ray Spectrum (EDX). This study is classified samples as laminated clayshale and fossiliferous carbonaceous shale. The most important detrital constituents of these shales are the clay mineral illite and chlorite, quartz, organic matter, carbonate mineral, and pyrite. The laminated clayshale has a lower amount of quartz and carbonate minerals than fossiliferous carbonaceous shale while it has a higher amount of clay minerals (chlorite and illite) and organic matter. FESEM analysis confirms the presence of chlorite and illite. The fossil content in the laminated clayshale is much lower than the fossiliferous carbonaceous shale. This can provide greater insights about variations in the depositional and environmental factors that influenced its deposition. This result can be compiled with the sufficient data to be helpful for designing the horizontal wells and placement of hydraulic fracturing in shale gas exploration and production.

  4. 2010 Ford Fusion VIN 4757 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Matthew Shirk

    2013-01-01

    The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2010 Ford Fusion HEV (VIN: 3FADP0L34AR144757). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

  5. Ford Plug-In Project: Bringing PHEVs to Market Demonstration and Validation Project

    SciTech Connect (OSTI)

    D'Annunzio, Julie; Slezak, Lee; Conley, John Jason

    2014-03-26

    This project is in support of our national goal to reduce our dependence on fossil fuels. By supporting efforts that contribute toward the successful mass production of plug-in hybrid electric vehicles, our nation’s transportation-related fuel consumption can be offset with energy from the grid. Over four and a half years ago, when this project was originally initiated, plug-in electric vehicles were not readily available in the mass marketplace. Through the creation of a 21 unit plug-in hybrid vehicle fleet, this program was designed to demonstrate the feasibility of the technology and to help build cross-industry familiarity with the technology and interface of this technology with the grid. Ford Escape PHEV Demonstration Fleet 3 March 26, 2014 Since then, however, plug-in vehicles have become increasingly more commonplace in the market. Ford, itself, now offers an all-electric vehicle and two plug-in hybrid vehicles in North America and has announced a third plug-in vehicle offering for Europe. Lessons learned from this project have helped in these production vehicle launches and are mentioned throughout this report. While the technology of plugging in a vehicle to charge a high voltage battery with energy from the grid is now in production, the ability for vehicle-to-grid or bi-directional energy flow was farther away than originally expected. Several technical, regulatory and potential safety issues prevented progressing the vehicle-to-grid energy flow (V2G) demonstration and, after a review with the DOE, V2G was removed from this demonstration project. Also proving challenging were communications between a plug-in vehicle and the grid or smart meter. While this project successfully demonstrated the vehicle to smart meter interface, cross-industry and regulatory work is still needed to define the vehicle-to-grid communication interface.

  6. Off-shelf portion of Harris delta: a reexamination of downdip Woodbine-Eagle Ford

    SciTech Connect (OSTI)

    Porter, M.

    1989-03-01

    This study relates the Eagle Ford-equivalent Harris delta north of the Stuart City shelf edge with the downdip Woodbine-Eagle Ford section south of that shelf edge. Together, they comprised one large deltaic complex that divided into two major lobes at an avulsion site near Anderson County. One lobe prograded southwestward toward Kurten field in Brazos County; the other (now partly eroded) prograded southeastward beside the low-lying Sabine (uplift) landmass into Polk County. The Polk County lobe crossed the Stuart City shelf edge in the Seven Oaks-Hortense field area and continued to prograde southward into deeper and higher energy water. Such an environment caused this off-shelf Harris delta to oversteepen, resulting in frequent slumps and gravity flows that deposited debris-flow and turbidite sands along with predominantly fine-grained prodelta sediments. More familiar deltaic facies (outer fringe) are present in the uppermost section. Numerous structural and stratigraphic maps and cross sections illustrate the progradation of the downdip Harris delta and its features. The progradation was arrested for a time by deeper water at the older and more precipitous Sligo shelf edge. This progradational hiatus is recorded by a relatively strong reflection that separates two seismic sequences. The younger, onlapping sequence appears to represent continued Harris delta sedimentation. Among the interesting features mapped seismically and/or geologically are mounded reflections that represent the largest slumping events, thickness anomalies associated with the carbonate substrate, and erosional( ) channels at the section top. These off-shelf Harris delta deposits appear to interfinger laterally with a genetically different eastern (Tuscaloosa ) sequence in Tyler and Jasper Counties.

  7. Off-shelf portion of Harris delta: Reexamination of downdip Woodbine-Eagle Ford

    SciTech Connect (OSTI)

    Porter, M.H. ); Van Siclen, D.C.; Sheriff, R.E. )

    1989-09-01

    This study related the Eagle Ford equivalent Harris delta north of the Stuart City shelf edge with downdip Woodbine-Eagle Ford section south of that shelf edge. Together, they comprised one large deltaic complex that divided into two major lobes at an avulsion site near Anderson County, Texas. One lobe prograded southwestward toward Kurten field in Brazos County, the other (now partly eroded) prograded southeastward beside the low-lying Sabine (uplift) landmass into Polk County. The Polk County lobe crossed the Stuart City shelf edge in the Seven Oaks-Hortense field area, and continued to prograde southward into deeper and higher energy water. Such an environment caused this off-shelf Harris delta to oversteepen, resulting in frequent slumps and gravity flows that deposited debris-flow and turbidite sands along with predominantly fine-grained prodelta sediments. More familiar deltaic facies (outer fringe) are present in the uppermost section. Numerous structural and stratigraphic maps and cross sections illustrate the progradation of the downdip Harris delta and its features. The progradation was arrested for a time by deeper water at the older and more precipitous Sligo shelf edge. This progradational hiatus is recorded by a relatively strong reflection that separates two seismic sequences. The younger onlapping sequence appears to represent continued Harris delta sedimentation. among the interesting features mapped seismically and/or geologically are: mounded reflections that represent the largest slumping events, thickness anomalies associated with the carbonate substrate, and erosional( ) channels at the section top. These off-shelf Harris delta deposits appear to interfinger laterally with a genetically different eastern (Tuscaloosa ) sequence in Tyler and Jasper Counties.

  8. Microsoft Word - TX-100 Final Report - SAND2007-6066.doc

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Manager: Tom Ashwill Abstract This report details the work completed under the TX-100 blade manufacturing portion of the Carbon-Hybrid Blade Developments: Standard and...

  9. Price of Freeport, TX Natural Gas LNG Imports from Other Countries...

    Gasoline and Diesel Fuel Update

    Other Countries (Nominal Dollars per Thousand Cubic Feet) Price of Freeport, TX Natural Gas LNG Imports from Other Countries (Nominal Dollars per Thousand Cubic Feet) Year Jan Feb...

  10. DOE Zero Energy Ready Home Case Study: M Street Homes, Houston, TX |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy M Street Homes, Houston, TX DOE Zero Energy Ready Home Case Study: M Street Homes, Houston, TX DOE Zero Energy Ready Home Case Study: M Street Homes, Houston, TX Case study of a DOE Zero Energy Ready home in Houston, TX, that achieves a HERS 45 without PV or HERS 32 with 1.2 kW PV. The three-story, 4,507-ft2 custom home is powered by a unique tri-generation system that supplies all of the home's electricity, heating, and cooling on site. The tri-generator is powered by a

  11. Staubli TX-90XL robot qualification at the LLIHE.

    SciTech Connect (OSTI)

    Covert, Timothy Todd

    2010-10-01

    The Light Initiated High Explosive (LIHE) Facility uses a robotic arm to spray explosive material onto test items for impulse tests. In 2007, the decision was made to replace the existing PUMA 760 robot with the Staubli TX-90XL. A qualification plan was developed and implemented to verify the safe operating conditions and failure modes of the new system. The robot satisfied the safety requirements established in the qualification plan. A performance issue described in this report remains unresolved at the time of this publication. The final readiness review concluded the qualification of this robot at the LIHE facility.

  12. ,"TX, State Offshore Proved Nonproducing Reserves"

    U.S. Energy Information Administration (EIA) (indexed site)

    Proved Nonproducing Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, State Offshore Proved Nonproducing Reserves",5,"Annual",2014,"6/30/1996" ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  13. Freeport, TX Liquefied Natural Gas Exports Price (Dollars per Thousand

    U.S. Energy Information Administration (EIA) (indexed site)

    Cubic Feet) Price (Dollars per Thousand Cubic Feet) Freeport, TX Liquefied Natural Gas Exports Price (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2016 10.00 15.19 10.00 10.00 10.00 10.00 10.00 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: U.S. Pric

  14. Ford/BASF/UM Activities in Support of the Hydrogen Storage Engineering Center of Excellence

    SciTech Connect (OSTI)

    Veenstra, Mike; Purewal, Justin; Xu, Chunchuan; Yang, Jun; Blaser, Rachel; Sudik, Andrea; Siegel, Don; Ming, Yang; Liu, Dong'an; Chi, Hang; Gaab, Manuela; Arnold, Lena; Muller, Ulrich

    2015-06-30

    Widespread adoption of hydrogen as a vehicular fuel depends critically on the development of low-cost, on-board hydrogen storage technologies capable of achieving high energy densities and fast kinetics for hydrogen uptake and release. As present-day technologies -- which rely on physical storage methods such as compressed hydrogen -- are incapable of attaining established Department of Energy (DOE) targets, development of materials-based approaches for storing hydrogen have garnered increasing attention. Material-based storage technologies have potential to store hydrogen beyond twice the density of liquid hydrogen. To hasten development of these ‘hydride’ materials, the DOE previously established three centers of excellence for materials storage R&D associated with the key classes of materials: metal hydrides, chemical hydrogen, and adsorbents. While these centers made progress in identifying new storage materials, the challenges associated with the engineering of the system around a candidate storage material are in need of further advancement. In 2009 the DOE established the Hydrogen Storage Engineering Center of Excellence with the objective of developing innovative engineering concepts for materials-based hydrogen storage systems. As a partner in the Hydrogen Storage Engineering Center of Excellence, the Ford-UM-BASF team conducted a multi-faceted research program that addresses key engineering challenges associated with the development of materials-based hydrogen storage systems. First, we developed a novel framework that allowed for a material-based hydrogen storage system to be modeled and operated within a virtual fuel cell vehicle. This effort resulted in the ability to assess dynamic operating parameters and interactions between the storage system and fuel cell power plant, including the evaluation of performance throughout various drive cycles. Second, we engaged in cost modeling of various incarnations of the storage systems. This analysis

  15. CX-100 and TX-100 blade field tests.

    SciTech Connect (OSTI)

    Holman, Adam (USDA-Agriculture Research Service, Bushland, TX); Jones, Perry L.; Zayas, Jose R.

    2005-12-01

    In support of the DOE Low Wind Speed Turbine (LWST) program two of the three Micon 65/13M wind turbines at the USDA Agricultural Research Service (ARS) center in Bushland, Texas will be used to test two sets of experimental blades, the CX-100 and TX-100. The blade aerodynamic and structural characterization, meteorological inflow and wind turbine structural response will be monitored with an array of 75 instruments: 33 to characterize the blades, 15 to characterize the inflow, and 27 to characterize the time-varying state of the turbine. For both tests, data will be sampled at a rate of 30 Hz using the ATLAS II (Accurate GPS Time-Linked Data Acquisition System) data acquisition system. The system features a time-synchronized continuous data stream and telemetered data from the turbine rotor. This paper documents the instruments and infrastructure that have been developed to monitor these blades, turbines and inflow.

  16. Advanced Vehicle Testing Activity: High-Percentage Hydrogen/CNG Blend, Ford F-150 -- Operating Summary

    SciTech Connect (OSTI)

    Don Karner; Francfort, James Edward

    2003-01-01

    Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy’s Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service’s Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents the results of 4,695 miles of testing for one of the blended fuel vehicles, a Ford F-150 pickup truck, operating on up to 50% hydrogen–50% CNG fuel.

  17. Advanced Vehicle Testing Activity: Low-Percentage Hydrogen/CNG Blend, Ford F-150 -- Operating Summary

    SciTech Connect (OSTI)

    Karner, D.; Francfort, James Edward

    2003-01-01

    Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy’s Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service’s Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents results of 16,942 miles of testing for one of the blended fuel vehicles, a Ford F-150 pickup truck, operating on up to 30% hydrogen/70% CNG fuel.

  18. File:USDA-CE-Production-GIFmaps-TX.pdf | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    TX.pdf Jump to: navigation, search File File history File usage Texas Ethanol Plant Locations Size of this preview: 776 600 pixels. Full resolution (1,650 1,275 pixels,...

  19. TxDOT - Right of Way Forms webpage | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Right of Way Forms webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: TxDOT - Right of Way Forms webpage Abstract This webpage provides the...

  20. Del Rio, TX Natural Gas Pipeline Exports to Mexico (Million Cubic...

    U.S. Energy Information Administration (EIA) (indexed site)

    Million Cubic Feet) Del Rio, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 28 26 28 23 14 18 24 25 25 24 ...

  1. Freeport, TX Liquefied Natural Gas Exports to Mexico (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) (indexed site)

    Mexico (Million Cubic Feet) Freeport, TX Liquefied Natural Gas Exports to Mexico (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 2,725 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: U.S. Liquefied Natural Gas Exports by Point of Exit Freeport, TX Liquefied Natural Gas Exports to Mexico

  2. ORNL measurements at Hanford Waste Tank TX-118

    SciTech Connect (OSTI)

    Koehler, P.E.; Mihalczo, J.T.

    1995-02-01

    A program of measurements and calculations to develop a method of measuring the fissionable material content of the large waste storage tanks at the Hanford, Washington, site is described in this report. These tanks contain radioactive waste from the processing of irradiated fuel elements from the plutonium-producing nuclear reactors at the Hanford site. Time correlation and noise analysis techniques, similar to those developed for and used in the Nuclear Weapons Identification System at the Y-12 Plant in Oak Ridge, Tennessee, will be used at the Hanford site. Both ``passive`` techniques to detect the neutrons emitted spontaneously from the waste in the tank and ``active`` techniques using AmBe and {sup 252}Cf neutron sources to induce fissions will be used. This work is divided into three major tasks: (1) development of high-sensitivity neutron detectors that can selectively count only neutrons in the high {gamma} radiation fields in the tanks, (2) Monte Carlo neutron transport calculations using both the KENO and MCNP codes to plan and analyze the measurements, and (3) the measurement of time-correlated neutrons by time and frequency analysis to distinguish spontaneous fission from sources inside the tanks. This report describes the development of the detector and its testing in radiation fields at the Radiation Calibration Facility at Oak Ridge National Laboratory and in tank TX-118 at the 200 W area at Westinghouse Hanford Company.

  3. RCRA Assessment Plan for Single-Shell Tank Waste Management Area TX-TY

    SciTech Connect (OSTI)

    Horton, Duane G.

    2007-03-26

    WMA TX-TY contains underground, single-shell tanks that were used to store liquid waste that contained chemicals and radionuclides. Most of the liquid has been removed, and the remaining waste is regulated under the RCRA as modified in 40 CFR Part 265, Subpart F and Washington States Hazardous Waste Management Act . WMA TX-TY was placed in assessment monitoring in 1993 because of elevated specific conductance. A groundwater quality assessment plan was written in 1993 describing the monitoring activities to be used in deciding whether WMA TX-TY had affected groundwater. That plan was updated in 2001 for continued RCRA groundwater quality assessment as required by 40 CFR 265.93 (d)(7). This document further updates the assessment plan for WMA TX-TY by including (1) information obtained from ten new wells installed at the WMA after 1999 and (2) information from routine quarterly groundwater monitoring during the last five years. Also, this plan describes activities for continuing the groundwater assessment at WMA TX TY.

  4. Hanford Tank Farms Vadose Zone, Addendum to the TX Tank Farm Report

    SciTech Connect (OSTI)

    Spatz, R.

    2000-08-01

    This addendum to the TX Tank Farm Report (GJO-97-13-TAR, GJO-HAN-11) published in September 1997 incorporates the results of high-rate and repeat logging activities along with shape factor analysis of the logging data. A high-rate logging system was developed and deployed in the TX Tank Farm to measure cesium-137 concentration levels in high gamma flux zones where the spectral gamma logging system was unable to collect usable data because of high dead times and detector saturation. This report presents additional data and revised visualizations of subsurface contaminant distribution in the TX Tank Farm at the DOE Hanford Site in the state of Washington.

  5. ,"Del Rio, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) (indexed site)

    Del Rio, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Del Rio, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet)",1,"Annual",2015 ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016"

  6. ,"Eagle Pass, TX Natural Gas Pipeline Exports to Mexico (MMcf)"

    U.S. Energy Information Administration (EIA) (indexed site)

    Eagle Pass, TX Natural Gas Pipeline Exports to Mexico (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Eagle Pass, TX Natural Gas Pipeline Exports to Mexico (MMcf)",1,"Annual",2015 ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File

  7. ,"Galvan Ranch, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) (indexed site)

    Galvan Ranch, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Galvan Ranch, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet)",1,"Annual",2015 ,"Release Date:","10/31/2016" ,"Next Release

  8. ,"Rio Bravo, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) (indexed site)

    Bravo, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Rio Bravo, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet)",1,"Annual",2015 ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016"

  9. ,"Rio Grande, TX Natural Gas Pipeline Exports to Mexico (MMcf)"

    U.S. Energy Information Administration (EIA) (indexed site)

    Grande, TX Natural Gas Pipeline Exports to Mexico (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Rio Grande, TX Natural Gas Pipeline Exports to Mexico (MMcf)",1,"Annual",2015 ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File

  10. ,"Roma, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) (indexed site)

    Roma, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Roma, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet)",1,"Annual",2015 ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016"

  11. Freeport, TX Liquefied Natural Gas Exports to Brazil (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) (indexed site)

    Brazil (Million Cubic Feet) Freeport, TX Liquefied Natural Gas Exports to Brazil (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 2,581 2012 2,601 2,644 2,897 2014 2,664 2015 2,805 2,728 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: U.S. Liquefied Natural Gas Exports by Point of Exit Freeport, TX Liquefied Natural Gas

  12. Freeport, TX Liquefied Natural Gas Exports to South Korea (Million Cubic

    U.S. Energy Information Administration (EIA) (indexed site)

    Feet) South Korea (Million Cubic Feet) Freeport, TX Liquefied Natural Gas Exports to South Korea (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 3,157 3,085 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: U.S. Liquefied Natural Gas Exports by Point of Exit Freeport, TX Liquefied Natural Gas Exports to South Korea

  13. Freeport, TX Liquefied Natural Gas Imports From Peru (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) (indexed site)

    From Peru (Million Cubic Feet) Freeport, TX Liquefied Natural Gas Imports From Peru (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 3,175 3,338 3,262 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: U.S. Liquefied Natural Gas Imports by Point of Entry Freeport, TX LNG Imports from Peru

  14. Freeport, TX Liquefied Natural Gas Imports from Norway (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) (indexed site)

    Norway (Million Cubic Feet) Freeport, TX Liquefied Natural Gas Imports from Norway (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 2,709 2,918 2015 5,992 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: U.S. Liquefied Natural Gas Imports by Point of Entry Freeport, TX LNG Imports from Norway

  15. Freeport, TX Liquefied Natural Gas Imports from Yemen (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) (indexed site)

    Yemen (Million Cubic Feet) Freeport, TX Liquefied Natural Gas Imports from Yemen (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 2,869 3,108 2012 2,979 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: U.S. Liquefied Natural Gas Imports by Point of Entry Freeport, TX LNG Imports from Yemen

  16. Freeport, TX Natural Gas LNG Imports (Price) From Nigeria (Dollars per

    U.S. Energy Information Administration (EIA) (indexed site)

    Thousand Cubic Feet) Freeport, TX Natural Gas LNG Imports (Price) From Nigeria (Dollars per Thousand Cubic Feet) Freeport, TX Natural Gas LNG Imports (Price) From Nigeria (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -- -- -- 2010's 6.43 -- -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date:

  17. Freeport, TX Natural Gas Liquefied Natural Gas Imports (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) (indexed site)

    (Million Cubic Feet) Freeport, TX Natural Gas Liquefied Natural Gas Imports (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2014 2,703 2,994 2015 5,992 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: U.S. Liquefied Natural Gas Imports by Point of Entry Freeport, TX LNG Imports from All Countries

  18. Freeport, TX Natural Gas Liquefied Natural Gas Imports from Egypt (Million

    U.S. Energy Information Administration (EIA) (indexed site)

    Cubic Feet) Egypt (Million Cubic Feet) Freeport, TX Natural Gas Liquefied Natural Gas Imports from Egypt (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 2,969 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: U.S. Liquefied Natural Gas Imports by Point of Entry Freeport, TX Liquefied Natural Gas Exports to Egyp

  19. Freeport, TX Natural Gas Liquefied Natural Gas Imports from Other Countries

    U.S. Energy Information Administration (EIA) (indexed site)

    (Million Cubic Feet) Other Countries (Million Cubic Feet) Freeport, TX Natural Gas Liquefied Natural Gas Imports from Other Countries (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2014 2,703 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: U.S. Liquefied Natural Gas Imports by Point of Entry Freeport, TX LNG Imports

  20. Golden Pass, TX Natural Gas Liquefied Natural Gas Imports (price) (Dollars

    U.S. Energy Information Administration (EIA) (indexed site)

    per Thousand Cubic Feet) Golden Pass, TX Natural Gas Liquefied Natural Gas Imports (price) (Dollars per Thousand Cubic Feet) Golden Pass, TX Natural Gas Liquefied Natural Gas Imports (price) (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -- -- -- 2010's 7.90 5.36 -- -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016

  1. Annual Energy Outlook 2013 Early Release Reference Case

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    (CO, WY) Haynesville Utica (OH, PA & WV) Marcellus (PA,WV,OH & NY) Woodford (OK) Granite Wash (OK & TX) Austin Chalk (LA & TX) Monterey (CA) U.S. tight oil production...

  2. DOE Zero Energy Ready Home Case Study: Sterling Brook Custom Homes, Double Oak, TX

    Energy.gov [DOE]

    Case study of a DOE Zero Energy Ready home in Double Oak, TX, north of Dallas, that scored a HERS 44 without PV. The 3,752-ft2 two-story home served as an energy-efficient model home for the custom...

  3. McAllen, TX Natural Gas Pipeline Exports to Mexico (Million Cubic...

    U.S. Energy Information Administration (EIA) (indexed site)

    Million Cubic Feet) McAllen, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 4,414 4,236 5,595 6,174 4,938 ...

  4. U. S. Energy Information Administration | Drilling Productivity Report

    U.S. Energy Information Administration (EIA) (indexed site)

    500 1,000 1,500 2,000 2,500 3,000 Bakken Eagle Ford Haynesville Marcellus Niobrara Permian Utica December-2015 December-2016 Oil production thousand barrels/day 0 3,000 6,000 9,000 12,000 15,000 18,000 Bakken Eagle Ford Haynesville Marcellus Niobrara Permian Utica December-2015 December-2016 Natural gas production million cubic feet/day 0 400 800 1,200 1,600 2,000 Bakken Eagle Ford Haynesville Marcellus Niobrara Permian Utica December-2015 December-2016 New-well oil production per rig

  5. Penitas, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) (indexed site)

    Million Cubic Feet) Penitas, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 253 40 NA 2000's NA NA NA - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: U.S.

  6. Price of Freeport, TX Natural Gas LNG Imports (Dollars per Thousand Cubic

    U.S. Energy Information Administration (EIA) (indexed site)

    Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2014 12.95 14.71 2015 15.12 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: U.S. Price of Liquefied Natural Gas Imports by Point of Entry Freeport, TX LNG Imports from

  7. Roma, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) (indexed site)

    Natural Gas Pipeline Imports From Mexico (Million Cubic Feet) Roma, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2016 1 2 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: U.S.

  8. Laredo, TX Liquefied Natural Gas Exports Price (Dollars per Thousand Cubic

    U.S. Energy Information Administration (EIA) (indexed site)

    Feet) Price (Dollars per Thousand Cubic Feet) Laredo, TX Liquefied Natural Gas Exports Price (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2015 17 17 2016 10 8 8 10 10 10 10 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: U.S. Price of

  9. Advanced Vehicle Testing Activity: Low-Percentage Hydrogen/CNG Blend Ford F-150 Operating Summary - January 2003

    SciTech Connect (OSTI)

    Karner, D.; Francfort, J.E.

    2003-01-22

    Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy's Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service's Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents results of 16,942 miles of testing for one of the blended fuel vehicles, a Ford F-150 pickup truck, operating on up to 30% hydrogen/70% CNG fuel.

  10. Advanced Vehicle Testing Activity: High-Percentage Hydrogen/CNG Blend Ford F-150 Operating Summary - January 2003

    SciTech Connect (OSTI)

    Karner, D.; Francfort, J.E.

    2003-01-22

    Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy's Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service's Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents the results of 4,695 miles of testing for one of the blended fuel vehicles, a Ford F-150 pickup truck, operating on up to 50% hydrogen-50% CNG fuel.

  11. Texas A&M University College Station, TX 77843-3366

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    MS #3366 Texas A&M University College Station, TX 77843-3366 Ph: 979-845-1411 Fax: 979-458-3213 Beam Time Request Form In order to be scheduled you must fill in and return this form by FAX (979-458-3213) or email to Henry Clark (clark@comp.tamu.edu) TO SCHEDULE CYCLOTRON TIME: Please indicate in the appropriate spaces below the number of 8 hour shifts you need, your preferred start date and the beams you intend to use. Since we cannot always schedule your preferred start date, please also

  12. McAllen, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) (indexed site)

    Million Cubic Feet) McAllen, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 2000's 1,118 NA 402 0 0 5,322 7,902 26,605 20,115 12,535 2010's 2,520 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: U.S.

  13. ,"Alamo, TX Natural Gas Pipeline Imports From Mexico (MMcf)"

    U.S. Energy Information Administration (EIA) (indexed site)

    Imports From Mexico (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alamo, TX Natural Gas Pipeline Imports From Mexico (MMcf)",1,"Annual",2014 ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File

  14. ,"El Paso, TX Natural Gas Pipeline Exports to Mexico (MMcf)"

    U.S. Energy Information Administration (EIA) (indexed site)

    Exports to Mexico (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","El Paso, TX Natural Gas Pipeline Exports to Mexico (MMcf)",1,"Annual",2015 ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File

  15. ,"El Paso, TX Natural Gas Pipeline Imports From Mexico (MMcf)"

    U.S. Energy Information Administration (EIA) (indexed site)

    Imports From Mexico (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","El Paso, TX Natural Gas Pipeline Imports From Mexico (MMcf)",1,"Annual",2002 ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File

  16. ,"Hidalgo, TX Natural Gas Pipeline Imports From Mexico (MMcf)"

    U.S. Energy Information Administration (EIA) (indexed site)

    Imports From Mexico (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Hidalgo, TX Natural Gas Pipeline Imports From Mexico (MMcf)",1,"Annual",2014 ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File

  17. ,"McAllen, TX Natural Gas Pipeline Imports From Mexico (MMcf)"

    U.S. Energy Information Administration (EIA) (indexed site)

    Imports From Mexico (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","McAllen, TX Natural Gas Pipeline Imports From Mexico (MMcf)",1,"Annual",2014 ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File

  18. Price of Freeport, TX Liquefied Natural Gas Exports Price to Turkey

    U.S. Energy Information Administration (EIA) (indexed site)

    (Dollars per Thousand Cubic Feet) Price to Turkey (Dollars per Thousand Cubic Feet) Price of Freeport, TX Liquefied Natural Gas Exports Price to Turkey (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's -- 15.99 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: U.S. Price of

  19. Price of Freeport, TX Liquefied Natural Gas Exports to Egypt (Dollars per

    U.S. Energy Information Administration (EIA) (indexed site)

    Thousand Cubic Feet) Egypt (Dollars per Thousand Cubic Feet) Price of Freeport, TX Liquefied Natural Gas Exports to Egypt (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's -- 16.71 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: U.S. Price of Liquefied Natural Gas Exports by

  20. Price of Freeport, TX Natural Gas LNG Imports (Dollars per Thousand Cubic

    U.S. Energy Information Administration (EIA) (indexed site)

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -- 13.83 4.51 2010's 6.96 9.27 10.53 14.85 13.88 15.12 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: U.S. Price of Liquefied Natural Gas Imports by Point of Entry Freeport, TX LNG Exports to

  1. Roma, TX Natural Gas Pipeline Imports From Mexico (Dollars per Thousand

    U.S. Energy Information Administration (EIA) (indexed site)

    Cubic Feet) Natural Gas Pipeline Imports From Mexico (Dollars per Thousand Cubic Feet) Roma, TX Natural Gas Pipeline Imports From Mexico (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2016 2.06 2.61 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: U.S. Price of

  2. Hidalgo, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) (indexed site)

    Million Cubic Feet) Hidalgo, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 13,609 17,243 13,496 41,879 2000's 2,093 7,292 782 0 0 1,342 967 5,259 1,201 284 2010's 62 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: U.S.

  3. ,"Penitas, TX Natural Gas Pipeline Imports From Mexico (MMcf)"

    U.S. Energy Information Administration (EIA) (indexed site)

    Imports From Mexico (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Penitas, TX Natural Gas Pipeline Imports From Mexico (MMcf)",1,"Annual",2002 ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File

  4. ,"TX, RRC District 1 Crude Oil plus Lease Condensate Proved Reserves"

    U.S. Energy Information Administration (EIA) (indexed site)

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 1 Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2014,"6/30/2009" ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  5. ,"TX, RRC District 1 Dry Natural Gas Proved Reserves"

    U.S. Energy Information Administration (EIA) (indexed site)

    Dry Natural Gas Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 1 Dry Natural Gas Proved Reserves",10,"Annual",2014,"6/30/1977" ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  6. ,"TX, RRC District 1 Lease Condensate Proved Reserves, Reserve Changes, and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 1 Lease Condensate Proved Reserves, Reserve Changes, and Production",10,"Annual",2014,"6/30/1979" ,"Release Date:","11/19/2015" ,"Next Release

  7. ,"TX, RRC District 1 Proved Nonproducing Reserves"

    U.S. Energy Information Administration (EIA) (indexed site)

    Proved Nonproducing Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 1 Proved Nonproducing Reserves",5,"Annual",2014,"6/30/1996" ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  8. ,"TX, RRC District 1 Shale Gas Proved Reserves, Reserves Changes, and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    Shale Gas Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 1 Shale Gas Proved Reserves, Reserves Changes, and Production",10,"Annual",2014,"6/30/2007" ,"Release Date:","11/19/2015" ,"Next Release

  9. ,"TX, RRC District 10 Coalbed Methane Proved Reserves, Reserves Changes, and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    Coalbed Methane Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 10 Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2014,"6/30/2005" ,"Release Date:","11/19/2015" ,"Next Release

  10. ,"TX, RRC District 10 Crude Oil plus Lease Condensate Proved Reserves"

    U.S. Energy Information Administration (EIA) (indexed site)

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 10 Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2014,"6/30/2009" ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  11. ,"TX, RRC District 10 Dry Natural Gas Proved Reserves"

    U.S. Energy Information Administration (EIA) (indexed site)

    Dry Natural Gas Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 10 Dry Natural Gas Proved Reserves",10,"Annual",2014,"6/30/1977" ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  12. ,"TX, RRC District 10 Lease Condensate Proved Reserves, Reserve Changes, and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 10 Lease Condensate Proved Reserves, Reserve Changes, and Production",10,"Annual",2014,"6/30/1979" ,"Release Date:","11/19/2015" ,"Next Release

  13. ,"TX, RRC District 10 Proved Nonproducing Reserves"

    U.S. Energy Information Administration (EIA) (indexed site)

    Proved Nonproducing Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 10 Proved Nonproducing Reserves",5,"Annual",2014,"6/30/1996" ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  14. ,"TX, RRC District 10 Shale Gas Proved Reserves, Reserves Changes, and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    Shale Gas Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 10 Shale Gas Proved Reserves, Reserves Changes, and Production",10,"Annual",2014,"6/30/2007" ,"Release Date:","11/19/2015" ,"Next Release

  15. ,"TX, RRC District 2 Onshore Crude Oil plus Lease Condensate Proved Reserves"

    U.S. Energy Information Administration (EIA) (indexed site)

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 2 Onshore Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2014,"6/30/2009" ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  16. ,"TX, RRC District 2 Onshore Dry Natural Gas Proved Reserves"

    U.S. Energy Information Administration (EIA) (indexed site)

    Dry Natural Gas Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 2 Onshore Dry Natural Gas Proved Reserves",10,"Annual",2014,"6/30/1977" ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  17. ,"TX, RRC District 2 Onshore Proved Nonproducing Reserves"

    U.S. Energy Information Administration (EIA) (indexed site)

    Proved Nonproducing Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 2 Onshore Proved Nonproducing Reserves",5,"Annual",2014,"6/30/1996" ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  18. ,"TX, RRC District 3 Onshore Crude Oil plus Lease Condensate Proved Reserves"

    U.S. Energy Information Administration (EIA) (indexed site)

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 3 Onshore Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2014,"6/30/2009" ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  19. ,"TX, RRC District 3 Onshore Dry Natural Gas Proved Reserves"

    U.S. Energy Information Administration (EIA) (indexed site)

    Dry Natural Gas Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 3 Onshore Dry Natural Gas Proved Reserves",10,"Annual",2014,"6/30/1977" ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  20. ,"TX, RRC District 3 Onshore Proved Nonproducing Reserves"

    U.S. Energy Information Administration (EIA) (indexed site)

    Proved Nonproducing Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 3 Onshore Proved Nonproducing Reserves",5,"Annual",2014,"6/30/1996" ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  1. ,"TX, RRC District 4 Onshore Crude Oil plus Lease Condensate Proved Reserves"

    U.S. Energy Information Administration (EIA) (indexed site)

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 4 Onshore Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2014,"6/30/2009" ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  2. ,"TX, RRC District 4 Onshore Dry Natural Gas Proved Reserves"

    U.S. Energy Information Administration (EIA) (indexed site)

    Dry Natural Gas Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 4 Onshore Dry Natural Gas Proved Reserves",10,"Annual",2014,"6/30/1977" ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  3. ,"TX, RRC District 4 Onshore Proved Nonproducing Reserves"

    U.S. Energy Information Administration (EIA) (indexed site)

    Proved Nonproducing Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 4 Onshore Proved Nonproducing Reserves",5,"Annual",2014,"6/30/1996" ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  4. ,"TX, RRC District 5 Crude Oil plus Lease Condensate Proved Reserves"

    U.S. Energy Information Administration (EIA) (indexed site)

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 5 Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2014,"6/30/2009" ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  5. ,"TX, RRC District 5 Dry Natural Gas Proved Reserves"

    U.S. Energy Information Administration (EIA) (indexed site)

    Dry Natural Gas Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 5 Dry Natural Gas Proved Reserves",10,"Annual",2014,"6/30/1977" ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  6. ,"TX, RRC District 5 Lease Condensate Proved Reserves, Reserve Changes, and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 5 Lease Condensate Proved Reserves, Reserve Changes, and Production",10,"Annual",2014,"6/30/1979" ,"Release Date:","11/19/2015" ,"Next Release

  7. ,"TX, RRC District 5 Proved Nonproducing Reserves"

    U.S. Energy Information Administration (EIA) (indexed site)

    Proved Nonproducing Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 5 Proved Nonproducing Reserves",5,"Annual",2014,"6/30/1996" ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  8. ,"TX, RRC District 5 Shale Gas Proved Reserves, Reserves Changes, and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    Shale Gas Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 5 Shale Gas Proved Reserves, Reserves Changes, and Production",10,"Annual",2014,"6/30/2007" ,"Release Date:","11/19/2015" ,"Next Release

  9. ,"TX, RRC District 6 Crude Oil plus Lease Condensate Proved Reserves"

    U.S. Energy Information Administration (EIA) (indexed site)

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 6 Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2014,"6/30/2009" ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  10. ,"TX, RRC District 6 Dry Natural Gas Proved Reserves"

    U.S. Energy Information Administration (EIA) (indexed site)

    Dry Natural Gas Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 6 Dry Natural Gas Proved Reserves",10,"Annual",2014,"6/30/1977" ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  11. ,"TX, RRC District 6 Lease Condensate Proved Reserves, Reserve Changes, and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 6 Lease Condensate Proved Reserves, Reserve Changes, and Production",10,"Annual",2014,"6/30/1979" ,"Release Date:","11/19/2015" ,"Next Release

  12. ,"TX, RRC District 6 Proved Nonproducing Reserves"

    U.S. Energy Information Administration (EIA) (indexed site)

    Proved Nonproducing Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 6 Proved Nonproducing Reserves",5,"Annual",2014,"6/30/1996" ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  13. ,"TX, RRC District 6 Shale Gas Proved Reserves, Reserves Changes, and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    Shale Gas Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 6 Shale Gas Proved Reserves, Reserves Changes, and Production",10,"Annual",2014,"6/30/2007" ,"Release Date:","11/19/2015" ,"Next Release

  14. ,"TX, RRC District 7B Crude Oil plus Lease Condensate Proved Reserves"

    U.S. Energy Information Administration (EIA) (indexed site)

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 7B Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2014,"6/30/2009" ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  15. ,"TX, RRC District 7B Dry Natural Gas Proved Reserves"

    U.S. Energy Information Administration (EIA) (indexed site)

    Dry Natural Gas Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 7B Dry Natural Gas Proved Reserves",10,"Annual",2014,"6/30/1977" ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  16. ,"TX, RRC District 7B Proved Nonproducing Reserves"

    U.S. Energy Information Administration (EIA) (indexed site)

    Proved Nonproducing Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 7B Proved Nonproducing Reserves",5,"Annual",2014,"6/30/1996" ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  17. ,"TX, RRC District 7C Crude Oil plus Lease Condensate Proved Reserves"

    U.S. Energy Information Administration (EIA) (indexed site)

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 7C Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2014,"6/30/2009" ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  18. ,"TX, RRC District 7C Dry Natural Gas Proved Reserves"

    U.S. Energy Information Administration (EIA) (indexed site)

    Dry Natural Gas Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 7C Dry Natural Gas Proved Reserves",10,"Annual",2014,"6/30/1977" ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  19. ,"TX, RRC District 7C Proved Nonproducing Reserves"

    U.S. Energy Information Administration (EIA) (indexed site)

    Proved Nonproducing Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 7C Proved Nonproducing Reserves",5,"Annual",2014,"6/30/1996" ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  20. ,"TX, RRC District 8 Crude Oil plus Lease Condensate Proved Reserves"

    U.S. Energy Information Administration (EIA) (indexed site)

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 8 Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2014,"6/30/2009" ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  1. ,"TX, RRC District 8 Dry Natural Gas Proved Reserves"

    U.S. Energy Information Administration (EIA) (indexed site)

    Dry Natural Gas Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 8 Dry Natural Gas Proved Reserves",10,"Annual",2014,"6/30/1977" ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  2. ,"TX, RRC District 8 Lease Condensate Proved Reserves, Reserve Changes, and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 8 Lease Condensate Proved Reserves, Reserve Changes, and Production",10,"Annual",2014,"6/30/1979" ,"Release Date:","11/19/2015" ,"Next Release

  3. ,"TX, RRC District 8 Proved Nonproducing Reserves"

    U.S. Energy Information Administration (EIA) (indexed site)

    Proved Nonproducing Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 8 Proved Nonproducing Reserves",5,"Annual",2014,"6/30/1996" ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  4. ,"TX, RRC District 8 Shale Gas Proved Reserves, Reserves Changes, and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    Shale Gas Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 8 Shale Gas Proved Reserves, Reserves Changes, and Production",10,"Annual",2014,"6/30/2007" ,"Release Date:","11/19/2015" ,"Next Release

  5. ,"TX, RRC District 8A Crude Oil plus Lease Condensate Proved Reserves"

    U.S. Energy Information Administration (EIA) (indexed site)

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 8A Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2014,"6/30/2009" ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  6. ,"TX, RRC District 8A Dry Natural Gas Proved Reserves"

    U.S. Energy Information Administration (EIA) (indexed site)

    Dry Natural Gas Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 8A Dry Natural Gas Proved Reserves",10,"Annual",2014,"6/30/1977" ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  7. ,"TX, RRC District 8A Proved Nonproducing Reserves"

    U.S. Energy Information Administration (EIA) (indexed site)

    Proved Nonproducing Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 8A Proved Nonproducing Reserves",5,"Annual",2014,"6/30/1996" ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  8. ,"TX, RRC District 9 Crude Oil plus Lease Condensate Proved Reserves"

    U.S. Energy Information Administration (EIA) (indexed site)

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 9 Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2014,"6/30/2009" ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  9. ,"TX, RRC District 9 Dry Natural Gas Proved Reserves"

    U.S. Energy Information Administration (EIA) (indexed site)

    Dry Natural Gas Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 9 Dry Natural Gas Proved Reserves",10,"Annual",2014,"6/30/1977" ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  10. ,"TX, RRC District 9 Lease Condensate Proved Reserves, Reserve Changes, and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 9 Lease Condensate Proved Reserves, Reserve Changes, and Production",10,"Annual",2014,"6/30/1979" ,"Release Date:","11/19/2015" ,"Next Release

  11. ,"TX, RRC District 9 Proved Nonproducing Reserves"

    U.S. Energy Information Administration (EIA) (indexed site)

    Proved Nonproducing Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 9 Proved Nonproducing Reserves",5,"Annual",2014,"6/30/1996" ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  12. ,"TX, RRC District 9 Shale Gas Proved Reserves, Reserves Changes, and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    Shale Gas Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 9 Shale Gas Proved Reserves, Reserves Changes, and Production",10,"Annual",2014,"6/30/2007" ,"Release Date:","11/19/2015" ,"Next Release

  13. ,"TX, State Offshore Crude Oil plus Lease Condensate Proved Reserves"

    U.S. Energy Information Administration (EIA) (indexed site)

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, State Offshore Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2014,"6/30/2009" ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  14. ,"TX, State Offshore Dry Natural Gas Proved Reserves"

    U.S. Energy Information Administration (EIA) (indexed site)

    Dry Natural Gas Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, State Offshore Dry Natural Gas Proved Reserves",10,"Annual",2014,"6/30/1981" ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  15. ,"TX, State Offshore Lease Condensate Proved Reserves, Reserve Changes, and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, State Offshore Lease Condensate Proved Reserves, Reserve Changes, and Production",10,"Annual",2014,"6/30/1981" ,"Release Date:","11/19/2015" ,"Next Release

  16. ,"TX, State Offshore Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation"

    U.S. Energy Information Administration (EIA) (indexed site)

    Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, State Offshore Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation",10,"Annual",2014,"6/30/1981" ,"Release Date:","11/19/2015" ,"Next

  17. ,"TX, State Offshore Shale Gas Proved Reserves, Reserves Changes, and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    Shale Gas Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, State Offshore Shale Gas Proved Reserves, Reserves Changes, and Production",10,"Annual",2010,"6/30/2007" ,"Release Date:","11/19/2015" ,"Next Release

  18. El Paso, TX Natural Gas Pipeline Imports From Mexico (Dollars per Thousand

    U.S. Energy Information Administration (EIA) (indexed site)

    Cubic Feet) Dollars per Thousand Cubic Feet) El Paso, TX Natural Gas Pipeline Imports From Mexico (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2.09 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: U.S. Price of

  19. Freeport, TX Liquefied Natural Gas Exports to India (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) (indexed site)

    (Million Cubic Feet) Liquefied Natural Gas Exports to India (Million Cubic Feet) (Million Cubic Feet) Freeport, TX Liquefied Natural Gas Exports to India (Million Cubic Feet) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 3,120 2,873 2012 3,004 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: U.S. Liquefied Natural

  20. Freeport, TX Natural Gas Liquefied Natural Gas Imports from Trinidad and

    U.S. Energy Information Administration (EIA) (indexed site)

    Tobago (Million Cubic Feet) Trinidad and Tobago (Million Cubic Feet) Freeport, TX Natural Gas Liquefied Natural Gas Imports from Trinidad and Tobago (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 2,706 2012 2,872 2014 2,994 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: U.S. Liquefied Natural Gas Imports by Point

  1. Golden Pass, TX Natural Gas Liquefied Natural Gas Imports from Qatar

    U.S. Energy Information Administration (EIA) (indexed site)

    (Million Cubic Feet) from Qatar (Million Cubic Feet) Golden Pass, TX Natural Gas Liquefied Natural Gas Imports from Qatar (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 3,902 4,896 4,100 18,487 4,900 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: U.S.

  2. Laredo, TX Liquefied Natural Gas Exports to Mexico (Dollars per Thousand

    U.S. Energy Information Administration (EIA) (indexed site)

    Cubic Feet) Dollars per Thousand Cubic Feet) Laredo, TX Liquefied Natural Gas Exports to Mexico (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2015 16.950 17.180 2016 9.870 7.860 8.270 9.780 9.710 9.710 9.710 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: U.S. Price of

  3. Laredo, TX Liquefied Natural Gas Exports to Mexico (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) (indexed site)

    Million Cubic Feet) Laredo, TX Liquefied Natural Gas Exports to Mexico (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2015 0.512 0.497 2016 2.732 6.966 8.196 17.926 12.429 21.171 22.582 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: U.S.

  4. FORD | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    and Subcommittee on Oversight and Investigations - Committee on Energy and Commerce Before the House Subcommittee on Oversight and Investigations - Energy and Commerce Committee

  5. Cost-effectiveness analysis of TxDOT LPG fleet conversion. Volume 1. Interim research report

    SciTech Connect (OSTI)

    Euritt, M.A.; Taylor, D.B.; Mahmassani, H.

    1992-10-01

    Increased emphasis on energy efficiency and air quality has resulted in a number of state and federal initiatives examining the use of alternative fuels for motor vehicles. Texas' program for alternate fuels includes liquefied petroleum gas (LPG). Based on an analysis of 30-year life-cycle costs, development of a propane vehicle program for the Texas Department of Transportation (TxDOT) would cost about $24.3 million (in 1991 dollars). These costs include savings from lower-priced LPG and differentials between propane and gasoline/diesel in infrastructure costs for a fueling station, vehicle costs, and operating costs. The 30-year life-cycle costs translate into an average annual vehicle cost increase of $308, or about 2.5 cents more per vehicle mile of travel. Sensitivity analyses are performed on the discount rate, price of propane, maintenance savings, vehicle utilization, diesel vehicles, extended vehicle life, original equipment manufacturer (OEM) vehicles, and operating and infrastructure costs. The best results are obtained when not converting diesel vehicles, converting only large fleets, and extending the period the vehicle is kept in service. Combining these factors yields results that are most cost-effective for TxDOT. This is volume one of two volumes.

  6. Cost-effectiveness analysis of TxDOT LPG fleet conversion. Volume 2. Interim research report

    SciTech Connect (OSTI)

    Euritt, M.A.; Taylor, D.B.; Mahmassani, H.

    1992-11-01

    Increased emphasis on energy efficiency and air quality has resulted in a number of state and federal initiatives examining the use of alternative fuels for motor vehicles. Texas' program for alternate fuels includes liquefied petroleum gas (LPG), commonly called propane. Based on an analysis of 30-year life-cycle costs, development of a propane vehicle program for the Texas Department of Transportation (TxDOT) would cost about $24.3 million (in 1991 dollars). These costs include savings from lower-priced propane and differentials between propane and gasoline/diesel in infrastructure costs, vehicle costs, and operating costs. The 30-year life-cycle costs translate into an average annual vehicle cost increase of $308, or about 2.5 cents more per vehicle mile of travel. Based on the cost-effectiveness analysis and assumptions, there are currently no TxDOT locations that can be converted to propane without additional financial outlays. This is volume two of two volumes.

  7. EIS-0412: Federal Loan Guarantee to Support Construction of the TX Energy LLC, Industrial Gasification Facility near Beaumont, Texas

    Energy.gov [DOE]

    The Department of Energy is assessing the potential environmental impacts for its proposed action of issuing a Federal loan guarantee to TX Energy, LLC (TXE). TXE submitted an application to DOE under the Federal loan guarantee program pursuant to the Energy Policy Act of 2005 (EPAct 2005) to support construction of the TXE industrial Gasification Facility near Beaumont, Texas.

  8. RCRA Assessment Plan for Single-Shell Tank Waste Management Area TX-TY at the Hanford Site

    SciTech Connect (OSTI)

    Hodges, Floyd N.; Chou, Charissa J.

    2001-02-23

    A groundwater quality assessment plan was prepared to investigate the rate and extent of aquifer contamination beneath Waste Management Area TX-TY on the Hanford Site in Washington State. This plan is an update of a draft plan issued in February 1999, which guided work performed in fiscal year 2000.

  9. Hidalgo, TX Natural Gas Pipeline Imports From Mexico (Dollars per Thousand

    U.S. Energy Information Administration (EIA) (indexed site)

    Cubic Feet) Dollars per Thousand Cubic Feet) Hidalgo, TX Natural Gas Pipeline Imports From Mexico (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2.26 2.31 2.03 2.09 2000's 5.85 4.61 2.26 -- -- 8.10 5.53 6.23 5.55 4.40 2010's 4.21 -- -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016

  10. Nanoscale elastic changes in 2D Ti3C2Tx (MXene) pseudocapacitive electrodes

    DOE PAGES-Beta [OSTI]

    Come, Jeremy; Xie, Yu; Naguib, Michael; Jesse, Stephen; Kalinin, Sergei V.; Gogotsi, Yury; Kent, Paul R. C.; Balke, Nina

    2016-02-01

    Designing sustainable electrodes for next generation energy storage devices relies on the understanding of their fundamental properties at the nanoscale, including the comprehension of ions insertion into the electrode and their interactions with the active material. One consequence of ion storage is the change in the electrode volume resulting in mechanical strain and stress that can strongly affect the cycle life. Therefore, it is important to understand the changes of dimensions and mechanical properties occurring during electrochemical reactions. While the characterization of mechanical properties via macroscopic measurements is well documented, in-situ characterization of their evolution has never been achieved atmore » the nanoscale. Two dimensional (2D) carbides, known as MXenes, are promising materials for supercapacitors and various kinds of batteries, and understating the coupling between their mechanical and electrochemical properties is therefore necessary. Here we report on in-situ imaging, combined with density functional theory of the elastic changes, of a 2D titanium carbide (Ti3C2Tx) electrode in direction normal to the basal plane during cation intercalation. The results show a strong correlation between the Li+ ions content and the elastic modulus, whereas little effects of K+ ions are observed. Moreover, this strategy enables identifying the preferential intercalation pathways within a single particle.« less

  11. Reservoir fracture mapping using microearthquakes: Austin chalk, Giddings field, TX and 76 field, Clinton Co., KY

    SciTech Connect (OSTI)

    Phillips, W.S.; Rutledge, J.T.; Gardner, T.L.; Fairbanks, T.D.; Miller, M.E.; Schuessler, B.K.

    1996-11-01

    Patterns of microearthquakes detected downhole defined fracture orientation and extent in the Austin chalk, Giddings field, TX and the 76 field, Clinton Co., KY. We collected over 480 and 770 microearthquakes during hydraulic stimulation at two sites in the Austin chalk, and over 3200 during primary production in Clinton Co. Data were of high enough quality that 20%, 31% and 53% of the events could be located, respectively. Reflected waves constrained microearthquakes to the stimulated depths at the base of the Austin chalk. In plan view, microearthquakes defined elongate fracture zones extending from the stimulation wells parallel to the regional fracture trend. However, widths of the stimulated zones differed by a factor of five between the two Austin chalk sites, indicating a large difference in the population of ancillary fractures. Post-stimulation production was much higher from the wider zone. At Clinton Co., microearthquakes defined low-angle, reverse-fault fracture zones above and below a producing zone. Associations with depleted production intervals indicated the mapped fractures had been previously drained. Drilling showed that the fractures currently contain brine. The seismic behavior was consistent with poroelastic models that predicted slight increases in compressive stress above and below the drained volume.

  12. Ford Cleveland: Inside-Out Analysis Identifies Energy and Cost Savings Opportunities at Metal Casting Plant; Industrial Technologies Program Metal Casting BestPractices Plant-Wide Assessment Case Study

    SciTech Connect (OSTI)

    Not Available

    2003-09-01

    The Ford Cleveland Casting Plant used results from its plant-wide energy efficiency assessment to identify 16 energy- and cost-saving projects. These projects addressed combustion, compressed air, water, steam, motor drive, and lighting systems. When implemented, the projects should save a total of$3.28 million per year. In addition, two long-term projects were identified that together would represent another$9.5 million in cost savings.

  13. U.S. Department of Energy FreedomCAR & Vehicle Technologies Program Advanced Vehicle Testing Activity, Hydrogen/CNG Blended Fuels Performance Testing in a Ford F-150

    SciTech Connect (OSTI)

    James E. Francfort

    2003-11-01

    Federal regulation requires energy companies and government entities to utilize alternative fuels in their vehicle fleets. To meet this need, several automobile manufacturers are producing compressed natural gas (CNG)-fueled vehicles. In addition, several converters are modifying gasoline-fueled vehicles to operate on both gasoline and CNG (Bifuel). Because of the availability of CNG vehicles, many energy company and government fleets have adopted CNG as their principle alternative fuel for transportation. Meanwhile, recent research has shown that blending hydrogen with CNG (HCNG) can reduce emissions from CNG vehicles. However, blending hydrogen with CNG (and performing no other vehicle modifications) reduces engine power output, due to the lower volumetric energy density of hydrogen in relation to CNG. Arizona Public Service (APS) and the U.S. Department of Energy’s Advanced Vehicle Testing Activity (DOE AVTA) identified the need to determine the magnitude of these effects and their impact on the viability of using HCNG in existing CNG vehicles. To quantify the effects of using various blended fuels, a work plan was designed to test the acceleration, range, and exhaust emissions of a Ford F-150 pickup truck operating on 100% CNG and blends of 15 and 30% HCNG. This report presents the results of this testing conducted during May and June 2003 by Electric Transportation Applications (Task 4.10, DOE AVTA Cooperative Agreement DEFC36- 00ID-13859).

  14. ,"TX, RRC District 1 Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation"

    U.S. Energy Information Administration (EIA) (indexed site)

    Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 1 Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation",10,"Annual",2014,"6/30/1979" ,"Release Date:","11/19/2015"

  15. ,"TX, RRC District 1 Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation"

    U.S. Energy Information Administration (EIA) (indexed site)

    Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 1 Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation",10,"Annual",2014,"6/30/1979" ,"Release Date:","11/19/2015" ,"Next

  16. ,"TX, RRC District 10 Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation"

    U.S. Energy Information Administration (EIA) (indexed site)

    Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 10 Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation",10,"Annual",2014,"6/30/1979" ,"Release Date:","11/19/2015"

  17. ,"TX, RRC District 10 Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation"

    U.S. Energy Information Administration (EIA) (indexed site)

    Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 10 Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation",10,"Annual",2014,"6/30/1979" ,"Release Date:","11/19/2015" ,"Next

  18. ,"TX, RRC District 2 Onshore Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation"

    U.S. Energy Information Administration (EIA) (indexed site)

    Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 2 Onshore Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation",10,"Annual",2014,"6/30/1979" ,"Release

  19. ,"TX, RRC District 2 Onshore Coalbed Methane Proved Reserves, Reserves Changes, and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    Coalbed Methane Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 2 Onshore Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2014,"6/30/2005" ,"Release Date:","11/19/2015" ,"Next

  20. ,"TX, RRC District 2 Onshore Lease Condensate Proved Reserves, Reserve Changes, and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 2 Onshore Lease Condensate Proved Reserves, Reserve Changes, and Production",10,"Annual",2014,"6/30/1979" ,"Release Date:","11/19/2015" ,"Next

  1. ,"TX, RRC District 2 Onshore Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation"

    U.S. Energy Information Administration (EIA) (indexed site)

    Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 2 Onshore Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation",10,"Annual",2014,"6/30/1979" ,"Release Date:","11/19/2015"

  2. ,"TX, RRC District 2 Onshore Shale Gas Proved Reserves, Reserves Changes, and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    Shale Gas Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 2 Onshore Shale Gas Proved Reserves, Reserves Changes, and Production",10,"Annual",2014,"6/30/2010" ,"Release Date:","11/19/2015" ,"Next Release

  3. ,"TX, RRC District 3 Onshore Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation"

    U.S. Energy Information Administration (EIA) (indexed site)

    Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 3 Onshore Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation",10,"Annual",2014,"6/30/1979" ,"Release

  4. ,"TX, RRC District 3 Onshore Coalbed Methane Proved Reserves, Reserves Changes, and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    Coalbed Methane Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 3 Onshore Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2014,"6/30/2005" ,"Release Date:","11/19/2015" ,"Next

  5. ,"TX, RRC District 3 Onshore Lease Condensate Proved Reserves, Reserve Changes, and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 3 Onshore Lease Condensate Proved Reserves, Reserve Changes, and Production",10,"Annual",2014,"6/30/1979" ,"Release Date:","11/19/2015" ,"Next

  6. ,"TX, RRC District 3 Onshore Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation"

    U.S. Energy Information Administration (EIA) (indexed site)

    Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 3 Onshore Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation",10,"Annual",2014,"6/30/1979" ,"Release Date:","11/19/2015"

  7. ,"TX, RRC District 3 Onshore Shale Gas Proved Reserves, Reserves Changes, and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    Shale Gas Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 3 Onshore Shale Gas Proved Reserves, Reserves Changes, and Production",10,"Annual",2014,"6/30/2007" ,"Release Date:","11/19/2015" ,"Next Release

  8. ,"TX, RRC District 4 Onshore Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation"

    U.S. Energy Information Administration (EIA) (indexed site)

    Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 4 Onshore Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation",10,"Annual",2014,"6/30/1979" ,"Release

  9. ,"TX, RRC District 4 Onshore Coalbed Methane Proved Reserves, Reserves Changes, and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    Coalbed Methane Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 4 Onshore Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2014,"6/30/2005" ,"Release Date:","11/19/2015" ,"Next

  10. ,"TX, RRC District 4 Onshore Lease Condensate Proved Reserves, Reserve Changes, and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 4 Onshore Lease Condensate Proved Reserves, Reserve Changes, and Production",10,"Annual",2014,"6/30/1979" ,"Release Date:","11/19/2015" ,"Next

  11. ,"TX, RRC District 4 Onshore Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation"

    U.S. Energy Information Administration (EIA) (indexed site)

    Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 4 Onshore Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation",10,"Annual",2014,"6/30/1979" ,"Release Date:","11/19/2015"

  12. ,"TX, RRC District 4 Onshore Shale Gas Proved Reserves, Reserves Changes, and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    Shale Gas Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 4 Onshore Shale Gas Proved Reserves, Reserves Changes, and Production",10,"Annual",2014,"6/30/2007" ,"Release Date:","11/19/2015" ,"Next Release

  13. ,"TX, RRC District 5 Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation"

    U.S. Energy Information Administration (EIA) (indexed site)

    Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 5 Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation",10,"Annual",2014,"6/30/1979" ,"Release Date:","11/19/2015"

  14. ,"TX, RRC District 5 Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation"

    U.S. Energy Information Administration (EIA) (indexed site)

    Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 5 Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation",10,"Annual",2014,"6/30/1979" ,"Release Date:","11/19/2015" ,"Next

  15. ,"TX, RRC District 6 Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation"

    U.S. Energy Information Administration (EIA) (indexed site)

    Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 6 Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation",10,"Annual",2014,"6/30/1979" ,"Release Date:","11/19/2015"

  16. ,"TX, RRC District 6 Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation"

    U.S. Energy Information Administration (EIA) (indexed site)

    Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 6 Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation",10,"Annual",2014,"6/30/1979" ,"Release Date:","11/19/2015" ,"Next

  17. ,"TX, RRC District 7B Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation"

    U.S. Energy Information Administration (EIA) (indexed site)

    Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 7B Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation",10,"Annual",2014,"6/30/1979" ,"Release Date:","11/19/2015"

  18. ,"TX, RRC District 7B Lease Condensate Proved Reserves, Reserve Changes, and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 7B Lease Condensate Proved Reserves, Reserve Changes, and Production",10,"Annual",2014,"6/30/1979" ,"Release Date:","11/19/2015" ,"Next Release

  19. ,"TX, RRC District 7B Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation"

    U.S. Energy Information Administration (EIA) (indexed site)

    Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 7B Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation",10,"Annual",2014,"6/30/1979" ,"Release Date:","11/19/2015" ,"Next

  20. ,"TX, RRC District 7B Shale Gas Proved Reserves, Reserves Changes, and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    Shale Gas Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 7B Shale Gas Proved Reserves, Reserves Changes, and Production",10,"Annual",2014,"6/30/2007" ,"Release Date:","11/19/2015" ,"Next Release

  1. ,"TX, RRC District 7C Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation"

    U.S. Energy Information Administration (EIA) (indexed site)

    Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 7C Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation",10,"Annual",2014,"6/30/1979" ,"Release Date:","11/19/2015"

  2. ,"TX, RRC District 7C Lease Condensate Proved Reserves, Reserve Changes, and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 7C Lease Condensate Proved Reserves, Reserve Changes, and Production",10,"Annual",2014,"6/30/1979" ,"Release Date:","11/19/2015" ,"Next Release

  3. ,"TX, RRC District 7C Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation"

    U.S. Energy Information Administration (EIA) (indexed site)

    Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 7C Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation",10,"Annual",2014,"6/30/1979" ,"Release Date:","11/19/2015" ,"Next

  4. ,"TX, RRC District 7C Shale Gas Proved Reserves, Reserves Changes, and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    Shale Gas Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 7C Shale Gas Proved Reserves, Reserves Changes, and Production",10,"Annual",2014,"6/30/2010" ,"Release Date:","11/19/2015" ,"Next Release

  5. ,"TX, RRC District 8 Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation"

    U.S. Energy Information Administration (EIA) (indexed site)

    Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 8 Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation",10,"Annual",2014,"6/30/1979" ,"Release Date:","11/19/2015"

  6. ,"TX, RRC District 8 Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation"

    U.S. Energy Information Administration (EIA) (indexed site)

    Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 8 Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation",10,"Annual",2014,"6/30/1979" ,"Release Date:","11/19/2015" ,"Next

  7. ,"TX, RRC District 8A Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation"

    U.S. Energy Information Administration (EIA) (indexed site)

    Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 8A Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation",10,"Annual",2014,"6/30/1979" ,"Release Date:","11/19/2015"

  8. ,"TX, RRC District 8A Lease Condensate Proved Reserves, Reserve Changes, and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 8A Lease Condensate Proved Reserves, Reserve Changes, and Production",10,"Annual",2014,"6/30/1979" ,"Release Date:","11/19/2015" ,"Next Release

  9. ,"TX, RRC District 8A Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation"

    U.S. Energy Information Administration (EIA) (indexed site)

    Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 8A Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation",10,"Annual",2014,"6/30/1979" ,"Release Date:","11/19/2015" ,"Next

  10. ,"TX, RRC District 8A Shale Gas Proved Reserves, Reserves Changes, and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    Shale Gas Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 8A Shale Gas Proved Reserves, Reserves Changes, and Production",10,"Annual",2014,"6/30/2012" ,"Release Date:","11/19/2015" ,"Next Release

  11. ,"TX, RRC District 9 Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation"

    U.S. Energy Information Administration (EIA) (indexed site)

    Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 9 Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation",10,"Annual",2014,"6/30/1979" ,"Release Date:","11/19/2015"

  12. ,"TX, RRC District 9 Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation"

    U.S. Energy Information Administration (EIA) (indexed site)

    Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 9 Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation",10,"Annual",2014,"6/30/1979" ,"Release Date:","11/19/2015" ,"Next

  13. ,"TX, State Offshore Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation"

    U.S. Energy Information Administration (EIA) (indexed site)

    Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, State Offshore Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation",10,"Annual",2014,"6/30/1981" ,"Release Date:","11/19/2015"

  14. SURFACE GEOPHYSICAL EXPLORATION OF TX-TY TANK FARMS AT THE HANFORD SITE RESULTS OF BACKGROUND CHARACTERIZATION WITH GROUND PENETRATING RADAR

    SciTech Connect (OSTI)

    MYERS DA; CUBBAGE R; BRAUCHLA R; O'BRIEN G

    2008-07-24

    Ground penetrating radar surveys of the TX and TY tank farms were performed to identify existing infrastructure in the near surface environment. These surveys were designed to provide background information supporting Surface-to-Surface and Well-to-Well resistivity surveys of Waste Management Area TX-TY. The objective of the preliminary investigation was to collect background characterization information with GPR to understand the spatial distribution of metallic objects that could potentially interfere with the results from high resolution resistivity{trademark} surveys. The results of the background characterization confirm the existence of documented infrastructure, as well as highlight locations of possible additional undocumented subsurface metallic objects.

  15. Women @ Energy: Kelley Herndon Ford

    Energy.gov [DOE]

    "You’ll likely work on many different projects in your professional life, so I encourage you to experience a diverse set of disciplines--don’t focus too narrowly too soon. Once you find something you like, work hard, ask for help, and don’t give up." Read more from Kelley on her profile here.

  16. Knatokie Ford | Department of Energy

    Energy.gov (indexed) [DOE]

    Craft Kevin Craft is a Marketing Writer/Producer at Gensler. Most Recent Denver Public Schools Get Solar Energy System November 1 Unemployed Engineer Finds New Career in Weatherization October 27 Houston Smart Grid System Almost Ready for Launch October 8

    Eber - National Renewable Energy Laboratory Kevin Eber is a Senior Science Writer at the National Renewable Energy Laboratory, one of the Department of Energy's 17 National Labs. Most Recent To Protect the Grid from Hackers, You Need to

  17. Alternating magnetic anisotropy of Li2(Li1xTx)N(T=Mn,Fe,Co,andNi)

    DOE PAGES-Beta [OSTI]

    Jesche, A.; Ke, L.; Jacobs, J. L.; Harmon, B.; Houk, R. S.; Canfield, P. C.

    2015-05-11

    Substantial amounts of the transition metals Mn, Fe, Co, and Ni can be substituted for Li in single crystalline Li2(Li1xTx)N. Isothermal and temperature-dependent magnetization measurements reveal local magnetic moments with magnitudes significantly exceeding the spin-only value. The additional contributions stem from unquenched orbital moments that lead to rare-earth-like behavior of the magnetic properties. Accordingly, extremely large magnetic anisotropies have been found. Most notably, the magnetic anisotropy alternates as easy plane?easy axis?easy plane?easy axis when progressing from T = Mn ? Fe ? Co ? Ni. This behavior can be understood based on a perturbation approach in an analytical, single-ion model.moreAs a result, the calculated magnetic anisotropies show surprisingly good agreement with the experiment and capture the basic features observed for the different transition metals.less

  18. Alternating magnetic anisotropy of Li2(Li1–xTx)N (T = Mn, Fe, Co, and Ni)

    DOE PAGES-Beta [OSTI]

    Jesche, A.; Ke, L.; Jacobs, J. L.; Harmon, B.; Houk, R. S.; Canfield, P. C.

    2015-05-11

    Substantial amounts of the transition metals Mn, Fe, Co, and Ni can be substituted for Li in single crystalline Li2(Li1–xTx)N. Isothermal and temperature-dependent magnetization measurements reveal local magnetic moments with magnitudes significantly exceeding the spin-only value. The additional contributions stem from unquenched orbital moments that lead to rare-earth-like behavior of the magnetic properties. Accordingly, extremely large magnetic anisotropies have been found. Most notably, the magnetic anisotropy alternates as easy plane→easy axis→easy plane→easy axis when progressing from T = Mn → Fe → Co → Ni. This behavior can be understood based on a perturbation approach in an analytical, single-ion model.more » As a result, the calculated magnetic anisotropies show surprisingly good agreement with the experiment and capture the basic features observed for the different transition metals.« less

  19. Resolving the structure of Ti3C2Tx MXenes through multilevel structural modeling of the atomic pair distribution function

    DOE PAGES-Beta [OSTI]

    Wesolowski, David J.; Wang, Hsiu -Wen; Page, Katharine L.; Naguib, Michael; Gogotsi, Yury

    2015-12-08

    MXenes are a recently discovered family of two-dimensional (2D) early transition metal carbides and carbonitrides, which have already shown many attractive properties and a great promise in energy storage and many other applications. However, a complex surface chemistry and small coherence length has been an obstacle in some applications of MXenes, also limiting accuracy of predictions of their properties. In this study, we describe and benchmark a novel way of modeling layered materials with real interfaces (diverse surface functional groups and stacking order between the adjacent monolayers) against experimental data. The structures of three kinds of Ti3C2Tx MXenes (T standsmore » for surface terminating species, including O, OH, and F) produced under different synthesis conditions were resolved for the first time using atomic pair distribution function obtained by high-quality neutron total scattering. The true nature of the material can be easily captured with the sensitivity of neutron scattering to the surface species of interest and the detailed third-generation structure model we present. The modeling approach leads to new understanding of MXene structural properties and can replace the currently used idealized models in predictions of a variety of physical, chemical and functional properties of Ti3C2-based MXenes. Furthermore, the developed models can be employed to guide the design of new MXene materials with selected surface termination and controlled contact angle, catalytic, optical, electrochemical and other properties. We suggest that the multi-level structural modeling should form the basis for a generalized methodology on modeling diffraction and pair distribution function data for 2D and layered materials.« less

  20. HIA 2015 DOE Zero Energy Ready Home Case Study: Carl Franklin Homes, L.C./Green Extreme Homes, CDC, McKinley Project, Garland TX

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Franklin Homes, L.C./ Green Extreme Homes, CDC McKinley Project Garland, TX DOE ZERO ENERGY READY HOME(tm) The U.S. Department of Energy invites home builders across the country to meet the extraordinary levels of excellence and quality specified in DOE's Zero Energy Ready Home program (formerly known as Challenge Home). Every DOE Zero Energy Ready Home starts with ENERGY STAR Certified Homes Version 3.0 for an energy-efficient home built on a solid foundation of building science research.

  1. SU-E-J-48: Imaging Origin-Radiation Isocenter Coincidence for Linac-Based SRS with Novalis Tx

    SciTech Connect (OSTI)

    Geraghty, C; Workie, D; Hasson, B

    2015-06-15

    Purpose To implement and evaluate an image-based Winston-Lutz (WL) test to measure the displacement between ExacTrac imaging origin and radiation isocenter on a Novalis Tx system using RIT V6.2 software analysis tools. Displacement between imaging and radiation isocenters was tracked over time. The method was applied for cone-based and MLC-based WL tests. Methods The Brainlab Winston-Lutz phantom was aligned to room lasers. The ExacTrac imaging system was then used to detect the Winston- Lutz phantom and obtain the displacement between the center of the phantom and the imaging origin. EPID images of the phantom were obtained at various gantry and couch angles and analyzed with RIT calculating the phantom center to radiation isocenter displacement. The RIT and Exactrac displacements were combined to calculate the displacement between imaging origin and radiation isocenter. Results were tracked over time. Results Mean displacements between ExacTrac origin and radiation isocenter were: VRT: −0.1mm ± 0.3mm, LNG: 0.5mm ± 0.2mm, LAT: 0.2mm ± 0.2mm (vector magnitude of 0.7 ± 0.2mm). Radiation isocenter was characterized by the mean of the standard deviations of the WL phantom displacements: σVRT: 0.2mm, σLNG: 0.4mm, σLAT: 0.6mm. The linac couch base was serviced to reduce couch walkout. This reduced σLAT to 0.2mm. These measurements established a new baseline of radiation isocenter-imaging origin coincidence. Conclusion The image-based WL test has ensured submillimeter localization accuracy using the ExacTrac imaging system. Standard deviations of ExacTrac-radiation isocenter displacements indicate that average agreement within 0.3mm is possible in each axis. This WL test is a departure from the tradiational WL in that imaging origin/radiation isocenter agreement is the end goal not lasers/radiation isocenter.

  2. ~tx410.ptx

    U.S. Energy Information Administration (EIA) (indexed site)

    ASA Committee Discussion. . . . . . . . . . . 48 Breakout Sessions New Biodiesel Fuel ... ASA Summary of New Biodiesel Fuel Survey. . .128 Barbara Forsyth ASA Summary of Economics ...

  3. ~tx421.ptx

    U.S. Energy Information Administration (EIA) (indexed site)

    ... time periods in which that 12 price really jumped around. ... term energy outlooks and long-term energy 13 outlooks right. ... and 20 coal and the other fuel groups, we're 21 releasing ...

  4. Training Session: Euless, TX

    Energy.gov [DOE]

    This 3.5-hour training provides builders with a comprehensive review of zero energy-ready home construction including the business case, detailed specifications, and opportunities to be recognized...

  5. D&TX

    Office of Legacy Management (LM)

    Fqpr an2 2. E. sulu+rr fis2 S*crep t & fbQ s-e: of the ?atagel DrFAm%un 1 0 * the >rt &Fzz d t& &men of ScieJce & >&7*-z 4-q 2s'; %rZion 0C the ZLLS of Science a2 3152-37 ...

  6. Characterization of Vadose Zone Sediments Below the TX Tank Farm: Boreholes C3830, C3831, C3832 and RCRA Borehole 299-W10-27

    SciTech Connect (OSTI)

    Serne, R. Jeffrey; Bjornstad, Bruce N.; Horton, Duane G.; Lanigan, David C.; Lindenmeier, Clark W.; Lindberg, Michael J.; Clayton, Ray E.; Legore, Virginia L.; Orr, Robert D.; Kutnyakov, Igor V.; Baum, Steven R.; Geiszler, Keith N.; Valenta, Michelle M.; Vickerman, Tanya S.

    2008-09-11

    This report was revised in September 2008 to remove acid-extractable sodium data from Tables 4.8, 4.28,4.43, and 4.59. The sodium data was removed due to potential contamination introduced during the acid extraction process. The rest of the text remains unchanged from the original report issued in April 2004. The overall goal of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities at Hanford. To meet this goal, CH2M HILL Hanford Group, Inc. tasked scientists from Pacific Northwest National Laboratory to perform detailed analyses on vadose zone sediments from within Waste Management Area (WMA) T-TX-TY. This report is the first of two reports written to present the results of these analyses. Specifically, this report contains all the geologic, geochemical, and selected physical characterization data collected on vadose zone sediment recovered from boreholes C3830, C3831, and C3832 in the TX Tank Farm, and from borehole 299-W-10-27 installed northeast of the TY Tank Farm.

  7. Table 2. U.S. tight oil plays: production and proved reserves...

    U.S. Energy Information Administration (EIA) (indexed site)

    "Basin","Play","State(s)","Production","Reserves" "Williston","Bakken","ND, MT, SD",270,4844,387,5972,1128 "Western Gulf","Eagle Ford","TX",351,4177,497,5172,995 "Permian","Bo...

  8. Characterization of Vadose Zone Sediments Below the TX Tank Farm: Probe Holes C3830, C3831, C3832 and 299-W10-27

    SciTech Connect (OSTI)

    Serne, R JEFFREY.; Bjornstad, Bruce N.; Horton, Duane G.; Lanigan, David C.; Lindenmeier, Clark W.; Lindberg, Michael J.; Clayton, Ray E.; LeGore, Virginia L.; Orr, Robert D.; Kutnyakov, Igor V.; Baum, Steven R.; Geiszler, Keith N.; Valenta, Michelle M.; Vickerman, Tanya S.

    2004-04-01

    Pacific Northwest National Laboratory performed detailed analyses on vadose zone sediments from within Waste Management Area T-TX-TY. This report contains all the geologic, geochemical, and selected physical characterization data collected on vadose zone sediment recovered from three probe holes (C3830, C3831, and C3832) in the TX Tank Farm, and from borehole 299-W-10-27. Sediments from borehole 299-W-10-27 are considered to be uncontaminated sediments that can be compared with contaminated sediments. This report also presents our interpretation of the sediment lithologies, the vertical extent of contamination, the migration potential of the contaminants, and the likely source of the contamination in the vadose zone and groundwater below the TX Tank Farm. Sediment from the probe holes was analyzed for: moisture, radionuclide and carbon contents;, one-to-one water extracts (soil pH, electrical conductivity, cation, trace metal, and anion data), and 8 M nitric acid extracts. Overall, our analyses showed that common ion exchange is a key mechanism that influences the distribution of contaminants within that portion of the vadose zone affected by tank liquor. We did not observe significant indications of caustic alteration of the sediment mineralogy or porosity, or significant zones of slightly elevated pH values in the probe holes. The sediments do show that sodium-, nitrate-, and sulfate-dominated fluids are present. The fluids are more dilute than tank fluids observed below tanks at the SX and BX Tank Farms. Three primary stratigraphic units were encountered in each probe hole: (1) backfill material, (2) the Hanford formation, and (3) the Cold Creek unit. Each of the probe holes contain thin fine-grained layers in the Hanford H2 stratigraphic unit that may impact the flow of leaked fluids and effect irregular and horizontal flow. The probe holes could not penetrate below the enriched calcium carbonate strata of the Cold Creek lower subunit; therefore, we did not

  9. Overview of Fords Thermoelectric Programs: Waste Heat Recovery and Climate Control

    Energy.gov [DOE]

    Overview of progress in TE waste heat recovery from sedan gasoline-engine exhaust, TE HVAC system in hybrid sedan, and establishing targets for cost, power density, packaging, durability, and systems integration

  10. Water management technologies used by Marcellus Shale Gas Producers.

    SciTech Connect (OSTI)

    Veil, J. A.; Environmental Science Division

    2010-07-30

    Natural gas represents an important energy source for the United States. According to the U.S. Department of Energy's (DOE's) Energy Information Administration (EIA), about 22% of the country's energy needs are provided by natural gas. Historically, natural gas was produced from conventional vertical wells drilled into porous hydrocarbon-containing formations. During the past decade, operators have increasingly looked to other unconventional sources of natural gas, such as coal bed methane, tight gas sands, and gas shales.

  11. Depositional Model of the Marcellus Shale in West Virginia Based...

    Office of Scientific and Technical Information (OSTI)

    To the contrary, our sedimentary data suggest a rather shallow water depth, intermittent ... most simply by fluctuations in water depth coupled with fluctuations in sediment supply. ...

  12. Remote Gas Well Monitoring Technology Applied to Marcellus Shale...

    Energy Savers

    ... the drilling effort in Washington County, WVU had been testing the remote, wireless system for the past year. Its success during testing demonstrates its ability to be a cost-effec...

  13. ~tx22C0.ptx

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    + + + + + STUDYING THE COMMUNICATIONS REQUIREMENTS OF ELECTRIC UTILITIES TO INFORM FEDERAL SMART GRID POLICIES + + + + + PUBLIC MEETING + + + + + THURSDAY, JUNE 17, 2010 + + + + + The Public Meeting was held in Room 8E069 at the Department of Energy, Forrestal Building, 1000 Independence Avenue, S.W., Washington, D.C., at 10:00 a.m., Scott Blake Harris, Chair, presiding. PRESENT: BECKY BLALOCK SHERMAN J. ELLIOTT LYNNE ELLYN SCOTT BLAKE HARRIS JIM INGRAHAM JIM L. JONES MICHAEL LANMAN KYLE

  14. ~txF74.ptx

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... The voltage source converters or the 10 HVDC stations today are very lossy. 11 Not the ... pushed real hard. 8 Now, nothing against HVDC, I 9 really do believe that the line ...

  15. About ZERH Sessions: Austin, TX

    Energy.gov [DOE]

    10:00 a.m. - 12:30 p.m. An Overview: What is it, and how do I participate?This session discusses the critical components that define a truly zero energy ready home (ZERH), how builders are able to...

  16. Final Report of a CRADA Between Pacific Northwest National Laboratory and the Ford Motor Company (CRADA No. PNNL/265): “Deactivation Mechanisms of Base Metal/Zeolite Urea Selective Catalytic Reduction Materials, and Development of Zeolite-Based Hydrocarbon Adsorber Materials”

    SciTech Connect (OSTI)

    Gao, Feng; Kwak, Ja Hun; Lee, Jong H.; Tran, Diana N.; Peden, Charles HF; Howden, Ken; Cheng, Yisun; Lupescu, Jason; Cavattaio, Giovanni; Lambert, Christine; McCabe, Robert W.

    2013-02-14

    Reducing NOx emissions and particulate matter (PM) are primary concerns for diesel vehicles required to meet current LEV II and future LEV III emission standards which require 90+% NOx conversion. Currently, urea SCR as the NOx reductant and a Catalyzed Diesel Particulate Filter (CDPF) are being used for emission control system components by Ford Motor Company for 2010 and beyond diesel vehicles. Because the use of this technology for vehicle applications is new, the relative lack of experience makes it especially challenging to satisfy durability requirements. Of particular concern is being able to realistically simulate actual field aging of the catalyst systems under laboratory conditions. This is necessary both as a rapid assessment tool for verifying improved performance and certifiability of new catalyst formulations, and to develop a good understanding of deactivation mechanisms that can be used to develop improved catalyst materials. In addition to NOx and PM, the hydrocarbon (HC) emission standards are expected to become much more stringent during the next few years. Meanwhile, the engine-out HC emissions are expected to increase and/or be more difficult to remove. Since HC can be removed only when the catalyst becomes warm enough for its oxidation, three-way catalyst (TWC) and diesel oxidation catalyst (DOC) formulations often contain proprietary zeolite materials to hold the HC produced during the cold start period until the catalyst reaches its operating temperature (e.g., >200°C). Unfortunately, much of trapped HC tends to be released before the catalyst reaches the operating temperature. Among materials effective for trapping HC during the catalyst warm-up period, siliceous zeolites are commonly used because of their high surface area and high stability under typical operating conditions. However, there has been little research on the physical properties of these materials related to the adsorption and release of various hydrocarbon species found in

  17. Basin Play State(s) Production Reserves Williston Bakken ND,...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    2013 2013 Basin Play State(s) Production Reserves Williston Bakken ND, MT, SD 270 4,844 387 5,972 1,128 Western Gulf Eagle Ford TX 351 4,177 497 5,172 995 Permian Bone Spring, ...

  18. DOE - Office of Legacy Management -- Dawn Ford Site - 038

    Office of Legacy Management (LM)

    After the owner completes U. S. Nuclear Regulatory Commission license termination the Department of Energy's Office of Legacy Management will be responsible for providing ...

  19. Ford Plug-In Project: Bringing PHEVs to Market

    Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  20. AVTA: 2013 Ford Fusion Energi PHEV Testing Results

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. ...

  1. West Ford Flat Geothermal Facility | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    processes (afday) Daily Operation Water Use (afday) Well Field Water Use (afday) Cooling Tower Water use (annual average) (afday) Cooling Tower Water use (summer average) (af...

  2. AVTA: 2013 Ford C-Max Energi PHEV Testing Results

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road....

  3. AVTA: 2013 Ford Focus All-Electric Vehicle Testing Reports

    Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. ...

  4. President Ford Signs the Energy Reorganization Act of 1974 |...

    National Nuclear Security Administration (NNSA)

    of 1974. The Atomic Energy Commission is abolished. The Energy Research and Development Administration, Nuclear Regulatory Commission, and Energy Resources Council are established

  5. Chattanooga Eagle Ford Rio Grande Embayment Texas- Louisiana...

    Gasoline and Diesel Fuel Update

    Permian Basin Illinois Basin Anadarko Basin Greater Green River Basin Cherokee Platform ... Shale Gas Plays, Lower 48 States 0 200 400 100 300 Miles Source: Energy Information ...

  6. DOE - Office of Legacy Management -- Dawn Ford Site - 038

    Office of Legacy Management (LM)

    Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials ... After the owner completes U. S. Nuclear Regulatory Commission license termination the ...

  7. Ford Plug-In Project: Bringing PHEVs to Market

    Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  8. Ford Plug-In Project: Bringing PHEVs to Market

    Office of Energy Efficiency and Renewable Energy (EERE)

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  9. Ford Plug-In Project: Bringing PHEVs to Market

    Office of Energy Efficiency and Renewable Energy (EERE)

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  10. Ford Plug-In Project: Bringing PHEVs to Market

    Office of Energy Efficiency and Renewable Energy (EERE)

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  11. Ford County, Kansas: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Kansas: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.6540069, -99.8124935 Show Map Loading map... "minzoom":false,"mappingservice":"googl...

  12. U.S. monthly oil production tops 8 million barrels per day for the first time since 1988

    U.S. Energy Information Administration (EIA) (indexed site)

    Record natural gas production for the U.S. in 2014 U.S. natural gas production is expected to increase 5.3% this year. In its new forecast, the U.S. Energy Information Administration said it expects U.S. natural gas production to reach a record 69.8 billion cubic feet per day this year....that's about 3.2 billion cubic feet per day higher than in 2013. Higher U.S. gas production...particularly in Pennsylvania's Marcellus Shale region and the Eagle Ford Shale region in Texas...is supporting the

  13. ~txF7D.ptx

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    THURSDAY OCTOBER 20, 2011 + + + + + The Electricity Advisory Committee met, in the Conference Center of the National Rural Electric Cooperative Association Headquarters, 4301 Wilson Boulevard, Arlington, Virginia, at 8:00 a.m., Richard Cowart, Chair, presiding. MEMBERS PRESENT RICHARD COWART, Regulatory Assistance Project, Chair RICK BOWEN, Alcoa RALPH CAVANAGH, Natural Resources Defense Council THE HONORABLE ROBERT CURRY, New York State Public Service Commission JOSE DELGADO, American

  14. TX, RRC District 1 Proved Nonproducing Reserves

    U.S. Energy Information Administration (EIA) (indexed site)

    26 144 436 1,266 1,324 1,427 1996-2014 Lease Condensate (million bbls) 6 28 128 257 158 233 1998-2014 Total Gas (billion cu ft) 743 1,725 3,627 6,524 4,317 7,542 1996-2014 Nonassociated Gas (billion cu ft) 719 1,545 2,960 4,532 2,079 4,721 1996-2014 Associated Gas (billion cu ft) 24 180 667 1,992 2,238 2,821

  15. TX, RRC District 10 Proved Nonproducing Reserves

    U.S. Energy Information Administration (EIA) (indexed site)

    9 35 51 70 70 46 1996-2014 Lease Condensate (million bbls) 27 55 54 59 41 68 1998-2014 Total Gas (billion cu ft) 2,325 3,353 2,954 2,906 2,062 2,744 1996-2014 Nonassociated Gas (billion cu ft) 2,162 3,138 2,633 2,579 1,728 2,486 1996-2014 Associated Gas (billion cu ft) 163 215 321 327 334 258

  16. TX, RRC District 5 Proved Nonproducing Reserves

    U.S. Energy Information Administration (EIA) (indexed site)

    0 1 29 12 28 1996-2014 Lease Condensate (million bbls) 0 0 0 0 0 0 1998-2014 Total Gas (billion cu ft) 9,039 9,340 8,784 3,255 2,729 3,216 1996-2014 Nonassociated Gas (billion cu ft) 9,039 9,340 8,779 3,237 2,724 3,201 1996-2014 Associated Gas (billion cu ft) 0 0 5 18 5 15

  17. TX, RRC District 6 Proved Nonproducing Reserves

    U.S. Energy Information Administration (EIA) (indexed site)

    2 11 16 32 18 40 1996-2014 Lease Condensate (million bbls) 21 34 25 39 27 42 1998-2014 Total Gas (billion cu ft) 5,690 7,090 6,712 4,849 4,273 4,458 1996-2014 Nonassociated Gas (billion cu ft) 5,671 6,977 6,596 4,643 4,087 4,373 1996-2014 Associated Gas (billion cu ft) 19 113 116 206 186 8

  18. TX, RRC District 8 Proved Nonproducing Reserves

    U.S. Energy Information Administration (EIA) (indexed site)

    679 790 934 1,144 1,057 1,441 1996-2014 Lease Condensate (million bbls) 6 44 19 29 30 20 1998-2014 Total Gas (billion cu ft) 2,469 2,518 2,891 2,626 2,752 3,333 1996-2014 Nonassociated Gas (billion cu ft) 1,427 1,157 991 335 402 368 1996-2014 Associated Gas (billion cu ft) 1,042 1,361 1,900 2,291 2,350 2,965

  19. TX, RRC District 9 Proved Nonproducing Reserves

    U.S. Energy Information Administration (EIA) (indexed site)

    5 21 20 32 20 39 1996-2014 Lease Condensate (million bbls) 8 8 12 8 10 4 1998-2014 Total Gas (billion cu ft) 4,168 4,274 2,974 2,824 2,455 2,133 1996-2014 Nonassociated Gas (billion cu ft) 3,935 4,043 2,724 2,452 2,236 1,763 1996-2014 Associated Gas (billion cu ft) 233 231 250 372 219 370

  20. TX, State Offshore Proved Nonproducing Reserves

    U.S. Energy Information Administration (EIA) (indexed site)

    0 0 1 0 0 0 1996-2014 Lease Condensate (million bbls) 2 0 1 0 1 0 1998-2014 Total Gas (billion cu ft) 61 29 29 24 15 10 1996-2014 Nonassociated Gas (billion cu ft) 59 29 25 22 13 10 1996-2014 Associated Gas (billion cu ft) 2 0 4 2 2 0

  1. Microsoft Word - abstract-lacognata-tx_2012

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ASTROPHYSICAL ENERGIES Dr. M. La Cognata INFN-Laboratori Nazionali del Sud, Catania, Italy ABSTRACT The 19 F(p,) 16 O reaction is an important fluorine destruction channel in ...

  2. Alamo, TX Natural Gas Exports to Mexico

    Annual Energy Outlook

    3,678 27,479 48,850 72,039 76,111 78,866 1998-2014 Pipeline Prices 3.95 4.50 4.10 2.86 3.81 4.63 1998...

  3. Alamo, TX Natural Gas Exports to Mexico

    Gasoline and Diesel Fuel Update

    Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2009 2010 2011 2012 2013 2014 View...

  4. Clint, TX Natural Gas Exports to Mexico

    U.S. Energy Information Administration (EIA) (indexed site)

    87,449 96,722 101,585 108,573 123,670 126,022 1997-2015 Pipeline Prices 4.61 4.29 3.08 4.05 4.68 2.70 1997

  5. Penitas, TX Natural Gas Exports to Mexico

    U.S. Energy Information Administration (EIA) (indexed site)

    Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 1996 1998 1999 2000 2001 2002 View History Pipeline Volumes 253 40 NA NA NA NA 1996-2002 Pipeline Prices 1.72 2.04 1996-1998

  6. Penitas, TX Natural Gas Exports to Mexico

    U.S. Energy Information Administration (EIA) (indexed site)

    1,371 6,871 0 0 0 0 1996-2015 Pipeline Prices 4.94 4.19 -- -- -- -- 1996

  7. Micro-Grids for Colonias (TX)

    SciTech Connect (OSTI)

    Dean Schneider; Michael Martin; Renee Berry; Charles Moyer

    2012-07-31

    This report describes the results of the final implementation and testing of a hybrid micro-grid system designed for off-grid applications in underserved Colonias along the Texas/Mexico border. The project is a federally funded follow-on to a project funded by the Texas State Energy Conservation Office in 2007 that developed and demonstrated initial prototype hybrid generation systems consisting of a proprietary energy storage technology, high efficiency charging and inverting systems, photovoltaic cells, a wind turbine, and bio-diesel generators. This combination of technologies provided continuous power to dwellings that are not grid connected, with a significant savings in fuel by allowing power generation at highly efficient operating conditions. The objective of this project was to complete development of the prototype systems and to finalize and engineering design; to install and operate the systems in the intended environment, and to evaluate the technical and economic effectiveness of the systems. The objectives of this project were met. This report documents the final design that was achieved and includes the engineering design documents for the system. The system operated as designed, with the system availability limited by maintenance requirements of the diesel gensets. Overall, the system achieved a 96% availability over the operation of the three deployed systems. Capital costs of the systems were dependent upon both the size of the generation system and the scope of the distribution grid, but, in this instance, the systems averaged $0.72/kWh delivered. This cost would decrease significantly as utilization of the system increased. The system with the highest utilization achieved a capitol cost amortized value of $0.34/kWh produced. The average amortized fuel and maintenance cost was $0.48/kWh which was dependent upon the amount of maintenance required by the diesel generator. Economically, the system is difficult to justify as an alternative to grid power. However, the operational costs are reasonable if grid power is unavailable, e.g. in a remote area or in a disaster recovery situation. In fact, avoided fuel costs for the smaller of the systems in use during this project would have a payback of the capital costs of that system in 2.3 years, far short of the effective system life.

  8. Roma, TX Natural Gas Exports to Mexico

    U.S. Energy Information Administration (EIA) (indexed site)

    36,813 65,794 133,769 138,340 154,471 168,049 1999-2015 Pipeline Prices 4.55 4.14 2.86 3.80 4.62 2.79

  9. Microsoft Word - abstract-lacognata-tx_2012

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    THE FLUORINE DESTRUCTION IN STARS: FIRST EXPERIMENTAL STUDY OF THE 19 F(p,α 0 ) 16 O REACTION AT ASTROPHYSICAL ENERGIES Dr. M. La Cognata INFN-Laboratori Nazionali del Sud, Catania, Italy ABSTRACT The 19 F(p,α) 16 O reaction is an important fluorine destruction channel in the proton-rich outer layers of asymptotic giant branch (AGB) stars and it might also play a role in hydrogen-deficient post- AGB star nucleosynthesis. So far, available direct measurements do not reach the energy region of

  10. Hidalgo, TX Natural Gas Exports to Mexico

    U.S. Energy Information Administration (EIA) (indexed site)

    0 2,506 9,227 14,862 8,817 1996-2015 Pipeline Prices -- -- 3.47 3.92 4.68 2.28 1996

  11. Sustainable Management of Flowback Water during Hydraulic Fracturing of Marcellus Shale for Natural Gas Production

    SciTech Connect (OSTI)

    Vidic, Radisav

    2015-01-24

    This study evaluated the feasibility of using abandoned mine drainage (AMD) as make- up water for the reuse of produced water for hydraulic fracturing. There is an abundance of AMD sources near permitted gas wells as documented in this study that can not only serve as makeup water and reduce the demand on high quality water resources but can also as a source of chemicals to treat produced water prior to reuse. The assessment of AMD availability for this purpose based on proximity and relevant regulations was accompanied by bench- and pilot-scale studies to determine optimal treatment to achieve desired water quality for use in hydraulic fracturing. Sulfate ions that are often present in AMD at elevated levels will react with Ba²⁺ and Sr²⁺ in produced water to form insoluble sulfate compounds. Both membrane microfiltration and gravity separation were evaluated for the removal of solids formed as a result of mixing these two impaired waters. Laboratory studies revealed that neither AMD nor barite formed in solution had significant impact on membrane filtration but that some produced waters contained submicron particles that can cause severe fouling of microfiltration membrane. Coagulation/flocculation was found to be an effective process for the removal of suspended solids and both bench- and pilot-scale studies revealed that optimal process conditions can consistently achieve the turbidity of the finished water below 5 NTU. Adjusting the blending ratio of AMD and produced water can achieve the desired effluent sulfate concentration that can be accurately predicted by chemical thermodynamics. Co-treatment of produced water and AMD will result in elevated levels of naturally occurring radioactive materials (NORM) in the solid waste generated in this process due to radium co-precipitation with barium sulfate. Laboratory studies revealed that the mobility of barite that may form in the subsurface due to the presence of sulfate in the fracturing fluid can be controlled by the addition of appropriate antiscalants.

  12. Pantex Regional Middle School Science Bowl | U.S. DOE Office...

    Office of Science (SC) [DOE]

    TX Collingsworth County, TX Crosby County, TX Dallam County, TX Dawson County, TX Deaf Smith County, TX Donley County, TX Floyd County, TX Gaines County, TX Garza County, TX Gray ...

  13. Pantex Regional High School Science Bowl | U.S. DOE Office of...

    Office of Science (SC) [DOE]

    TX Cottle County, TX Crosby County, TX Dallam County, TX Dawson County, TX Deaf Smith County, TX Dickens County, TX Donley County, TX Floyd County, TX Gaines County, TX ...

  14. Basin Shale Play State(s) Production Reserves Production Reserves

    U.S. Energy Information Administration (EIA) (indexed site)

    shale gas plays: natural gas production and proved reserves, 2013-14 2013 2014 Change 2014-2013 Basin Shale Play State(s) Production Reserves Production Reserves Production Reserves Marcellus* PA,WV 3.6 62.4 4.9 84.5 1.3 22.1 TX 2.0 26.0 1.8 24.3 -0.2 -1.7 TX 1.4 17.4 1.9 23.7 0.5 6.3 TX,LA 1.9 16.1 1.4 16.6 -0.5 0.5 TX, OK 0.7 12.5 0.8 16.6 0.1 4.1 AR 1.0 12.2 1.0 11.7 0.0 -0.5 OH 0.1 2.3 0.4 6.4 0.3 4.1 Sub-total 10.7 148.9 12.3 183.7 1.4 34.8 Other shale gas 0.7 10.2 1.1 15.9 0.4 5.7 All

  15. U.S. Department of Energy

    Gasoline and Diesel Fuel Update

    ... TX ROBERTS INDIAN CREEK 1909833001 TX GREGG LONGVIEW 1976560001 TX SMITH CHAPEL HILL ... TX STEPHENS SHACKELFORD 170 4916171012 TX IRION MERTZON 4916171017 TX SMITH TYLER GAS ...

  16. Extraction of organic compounds from representative shales and the effect on porosity

    DOE PAGES-Beta [OSTI]

    DiStefano, Victoria H.; McFarlane, Joanna; Anovitz, Lawrence M.; Stack, Andrew G.; Gordon, Alexander D.; Littrell, Ken C.; Chipera, Steve J.; Hunt, Rodney D.; Lewis, Samuel A.; Hale, Richard E.; et al

    2016-09-01

    This study is an attempt to understand how native organics are distributed with respect to pore size to determine the relationship between hydrocarbon chemistry and pore structure in shales, as the location and accessibility of hydrocarbons is key to understanding and improving the extractability of hydrocarbons in hydraulic fracturing. Selected shale cores from the Eagle Ford and Marcellus formations were subjected to pyrolysis gas chromatography (GC), thermogravimetric analysis, and organic solvent extraction with the resulting effluent analyzed by GC-mass spectrometry (MS). Organics representing the oil and gas fraction (0.1 to 1 wt. %) were observed by GC-MS. For most ofmore » the samples, the amount of native organic extracted directly related to the percentage of clay in the shale. The porosity and pore size distribution (0.95 nm to 1.35 m) in the Eagle Ford and Marcellus shales was measured before and after solvent extraction using small angle neutron scattering (SANS). An unconventional method was used to quantify the background from incoherent scattering as the Porod transformation obscures the Bragg peak from the clay minerals. Furthermore, the change in porosity from SANS is indicative of the extraction or breakdown of higher molecular weight bitumen with high C/H ratios (asphaltenes and resins). This is mostly likely attributed to complete dissolution or migration of asphaltenes and resins. These longer carbon chain lengths, C30-C40, were observed by pyrolysis GC, but either were too heavy to be analyzed in the extracts by GC-MS or were not effectively leached into the organic solvents. Thus, experimental limitations meant that the amount of extractable material could not be directly correlated to the changes in porosity measured by SANS. But, the observable porosity generally increased with solvent extraction. A decrease in porosity after extraction as observed in a shale with high clay content and low maturity was attributed to swelling of pores

  17. Zero Discharge Water Management for Horizontal Shale Gas Well...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    (fracking), coupled with horizontal drilling, has facilitated exploitation of huge natural gas (gas) reserves in the Devonian-age Marcellus Shale Formation (Marcellus) of...

  18. INDEPENDENT CONFIRMATORY SURVEY SUMMARY AND RESULTS FOR THE FORD NUCLEAR REACTOR, ANN ARBOR, MICHIGAN

    SciTech Connect (OSTI)

    ALTIC, NICK A

    2013-07-25

    At the NRC's request, ORAU conducted confirmatory surveys of the FNR during the period of December 4 through 6, 2012. The survey activities included visual inspections and measurement and sampling activities. Confirmatory activities also included the review and assessment of UM's project documentation and methodologies. Surface scans identified elevated activity in two areas. The first area was on a wall outside of Room 3103 and the second area was in the southwest section on the first floor. The first area was remediated to background levels. However, the second area was due to gamma shine from a neighboring source storage area. A retrospective analysis of UM's FSS data shows that for the SUs investigated by the ORAU survey team, UM met the survey requirements set forth in the FSSP. The total mean surface activity values were directly compared with the mean total surface activity reported by UM. Mean surface activity values determined by UM were within two standard deviations of the mean determined by ORAU. Additionally, all surface activity values were less than the corresponding gross beta DCGLW. Laboratory analysis of the soil showed that COC concentrations were less than the respective DCGLW values. For the inter-lab comparison, the DER was above 3 for only one sample. However, since the sum of fractions for each of the soil samples was below 1, thus none of the samples would fail to meet release guidelines. Based on the findings of the side-by-side direct measurements, and after discussion with the NRC and ORAU, UM decided to use a more appropriate source efficiency in their direct measurement calculations and changed their source efficiency from 0.37 to 0.25.

  19. "INDEPENDENT CONFIRMATORY SURVEY SUMMARY AND RESULTS FOR THE FORD NUCLEAR REACTOR, REVISION 1, ANN ARBOR, MICHIGAN

    SciTech Connect (OSTI)

    ALTIC, NICK A

    2013-08-01

    At the NRC's request, ORAU conducted confirmatory surveys of the FNR during the period of December 4 through 6, 2012. The survey activities included visual inspections and measurement and sampling activities. Confirmatory activities also included the review and assessment of UM's project documentation and methodologies. Surface scans identified elevated activity in two areas. The first area was on a wall outside of Room 3103 and the second area was in the southwest section on the first floor. The first area was remediated to background levels. However, the second area was due to gamma shine from a neighboring source storage area. A retrospective analysis of UM's FSS data shows that for the SUs investigated by the ORAU survey team, UM met the survey requirements set forth in the FSSP. The total mean surface activity values were directly compared with the mean total surface activity reported by UM. Mean surface activity values determined by UM were within two standard deviations of the mean determined by ORAU. Additionally, all surface activity values were less than the corresponding gross beta DCGL{sub W}. Laboratory analysis of the soil showed that COC concentrations were less than the respective DCGL{sub W} values. For the inter-lab comparison, the DER was above 3 for only one sample. However, since the sum of fractions for each of the soil samples was below 1, thus none of the samples would fail to meet release guidelines. Based on the findings of the side-by-side direct measurements, and after discussion with the NRC and ORAU, UM decided to use a more appropriate source efficiency in their direct measurement calculations and changed their source efficiency from 0.37 to 0.25.

  20. Overview of Fords Thermoelectric Programs: Waste Heat Recovery and Climate Control

    Energy.gov [DOE]

    Overview of progress in TE waste heat recovery from sedan gasoline-engine exhaust, TE HVAC system in hybrid sedan, and establishing targets for cost, power density, packaging, durability, and systems integration

  1. Ford-Dow Partnership Is Linked to Carbon Fiber Research at ORNL...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    and ORNL to demonstrate a novel polymer fiber material and production process technology. ... in research and development, materials science, and high-volume polymer processing. ...

  2. Development of the 2011MY Ford Super Duty Catalyst System | Department...

    Energy.gov (indexed) [DOE]

    including catalyst layout to maximize NOx conversion and balance of precious metals for oxidation function during ... Urea SCR and DPF System for Tier 2 Diesel Light-Duty Trucks ...

  3. EERE Success Story-Ford-Dow Partnership Is Linked to Carbon Fiber...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Carbon Fiber Technology Facility Set To Scale Up Industry Plasma oxidation oven. Photo Courtesy: RMX Technologies EERE Success Story-Plasma Oxidation of Carbon Fiber Precursor ...

  4. Ford-Dow Partnership Is Linked to Carbon Fiber Research at ORNL

    Energy.gov [DOE]

    National lab teams up with two companies to establish better manufacturing and production process technology.

  5. Eagle Pass, TX Natural Gas Pipeline Exports to Mexico (Million...

    U.S. Energy Information Administration (EIA) (indexed site)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 159 155 151 135 135 127 118 210 210 257 243 213 2012 281 269 283 258 201 247 244 256 228 247 246 212 2013 259 236 246 250 ...

  6. RAPID/Roadmap/7-TX-a | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    is intended to be sold at wholesale, including the owner or operator of electric energy storage equipment or facilities to which the Public Utility Regulatory Act applies; Does...

  7. Price Liquefied Freeport, TX Natural Gas Exports to India (Dollars...

    U.S. Energy Information Administration (EIA) (indexed site)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -- -- -- 2010's 7.56 8.66 11.10 -- --

  8. Freeport, TX Liquefied Natural Gas Exports to Brazil (Million...

    Annual Energy Outlook

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 2010's 0 2,581 8,142 0 2,664...

  9. RAPID/Roadmap/3-TX-f | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    address of the surface owner of record in the tax assessor's office; The name, address, phone number, and taxpayer ID number of a non-corporate applicant; The corporate name,...

  10. RAPID/Roadmap/3-TX-d | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    in the section, and county or counties in which the land lies; The name, address, phone number, and taxpayer ID number of a non-corporate applicant; The corporate name,...

  11. TX, RRC District 3 Onshore Coalbed Methane Proved Reserves, Reserves...

    U.S. Energy Information Administration (EIA) (indexed site)

    71 47 2005-2013 Adjustments 0 0 0 81 -17 2009-2013 Revision Increases 0 0 0 0 0 2009-2013 Revision Decreases 0 0 0 0 0 2009-2013 Sales 0 0 0 0 0 2009-2013 Acquisitions 0 0 0 0 0...

  12. TX, RRC District 10 Coalbed Methane Proved Reserves, Reserves...

    Annual Energy Outlook

    8 7 2005-2013 Adjustments 0 0 0 9 0 2009-2013 Revision Increases 0 0 0 0 0 2009-2013 Revision Decreases 0 0 0 0 0 2009-2013 Sales 0 0 0 0 0 2009-2013 Acquisitions 0 0 0 0 0...

  13. TX, RRC District 4 Onshore Coalbed Methane Proved Reserves, Reserves...

    U.S. Energy Information Administration (EIA) (indexed site)

    1 1 2005-2013 Adjustments 0 0 0 1 0 2009-2013 Revision Increases 0 0 0 0 0 2009-2013 Revision Decreases 0 0 0 0 0 2009-2013 Sales 0 0 0 0 0 2009-2013 Acquisitions 0 0 0 0 0...

  14. TX, RRC District 2 Onshore Coalbed Methane Proved Reserves, Reserves...

    U.S. Energy Information Administration (EIA) (indexed site)

    1 2 2005-2013 Adjustments 0 0 0 1 1 2009-2013 Revision Increases 0 0 0 0 0 2009-2013 Revision Decreases 0 0 0 0 0 2009-2013 Sales 0 0 0 0 0 2009-2013 Acquisitions 0 0 0 0 0...

  15. TX, RRC District 1 Dry Natural Gas Proved Reserves

    U.S. Energy Information Administration (EIA) (indexed site)

    398 2,399 5,910 8,868 7,784 11,945 1977-2014 Adjustments -22 -95 53 122 161 81 1977-2014 Revision Increases 105 424 2,221 1,896 1,141 4,001 1977-2014 Revision Decreases 104 320 174 1,548 2,833 872 1977-2014 Sales 35 466 1,193 32 91 150 2000-2014 Acquisitions 50 416 1,139 19 127 173 2000-2014 Extensions 143 1,023 1,657 2,884 1,076 1,766 1977-2014 New Field Discoveries 358 117 24 38 2 0 1977-2014 New Reservoir Discoveries in Old Fields 0 15 2 1 11 16 1977-2014 Estimated Production 82 113 218 422

  16. TX, RRC District 10 Dry Natural Gas Proved Reserves

    U.S. Energy Information Administration (EIA) (indexed site)

    6,882 7,663 7,513 7,253 7,034 7,454 1977-2014 Adjustments 188 -172 -76 301 41 127 1977-2014 Revision Increases 526 1,252 795 1,022 891 910 1977-2014 Revision Decreases 1,060 958 1,413 2,427 1,369 1,101 1977-2014 Sales 46 131 1,089 132 533 1,387 2000-2014 Acquisitions 68 96 579 671 813 1,846 2000-2014 Extensions 837 1,263 1,687 1,003 532 657 1977-2014 New Field Discoveries 0 0 3 0 0 0 1977-2014 New Reservoir Discoveries in Old Fields 0 0 14 0 92 0 1977-2014 Estimated Production 553 569 650 698

  17. TX, RRC District 2 Onshore Dry Natural Gas Proved Reserves

    U.S. Energy Information Administration (EIA) (indexed site)

    800 2,090 3,423 5,462 5,910 6,559 1977-2014 Adjustments -90 -10 178 -19 -219 -84 1977-2014 Revision Increases 190 333 425 403 985 633 1977-2014 Revision Decreases 372 302 550 614 1,462 732 1977-2014 Sales 22 18 162 11 370 1,327 2000-2014 Acquisitions 5 30 634 195 426 1,267 2000-2014 Extensions 86 178 1,001 2,446 1,595 1,462 1977-2014 New Field Discoveries 11 307 0 0 0 0 1977-2014 New Reservoir Discoveries in Old Fields 13 9 113 69 27 103 1977-2014 Estimated Production 259 237 306 430 534 673

  18. TX, RRC District 2 Onshore Lease Condensate Proved Reserves, Reserve

    U.S. Energy Information Administration (EIA) (indexed site)

    Changes, and Production 5 47 229 506 594 706 1979-2014 Adjustments 3 1 13 -26 7 -9 2009-2014 Revision Increases 2 4 33 54 98 70 2009-2014 Revision Decreases 6 4 20 15 162 89 2009-2014 Sales 0 0 6 0 10 139 2009-2014 Acquisitions 0 0 80 22 24 137 2009-2014 Extensions 1 15 91 272 179 208 2009-2014 New Field Discoveries 0 21 0 0 0 0 2009-2014 New Reservoir Discoveries in Old Fields 1 0 9 3 1 0 2009-2014 Estimated Production 3 5 18 33 49 6

  19. TX, RRC District 2 Onshore Proved Nonproducing Reserves

    U.S. Energy Information Administration (EIA) (indexed site)

    14 53 242 711 615 825 1996-2014 Lease Condensate (million bbls) 1 22 100 369 268 438 1998-2014 Total Gas (billion cu ft) 648 886 1,504 3,707 2,477 4,014 1996-2014 Nonassociated Gas (billion cu ft) 617 810 1,104 2,307 1,567 2,454 1996-2014 Associated Gas (billion cu ft) 31 76 400 1,400 910 1,560

  20. TX, RRC District 3 Onshore Dry Natural Gas Proved Reserves

    U.S. Energy Information Administration (EIA) (indexed site)

    2,616 2,588 2,260 2,154 2,307 2,199 1977-2014 Adjustments -124 82 -95 164 49 -191 1977-2014 Revision Increases 490 482 375 604 547 370 1977-2014 Revision Decreases 369 319 252 631 284 264 1977-2014 Sales 174 184 274 214 103 142 2000-2014 Acquisitions 190 199 204 182 130 171 2000-2014 Extensions 288 175 104 121 119 222 1977-2014 New Field Discoveries 61 20 16 10 3 27 1977-2014 New Reservoir Discoveries in Old Fields 11 25 3 8 9 20 1977-2014 Estimated Production 509 508 409 350 317 321

  1. TX, RRC District 3 Onshore Lease Condensate Proved Reserves, Reserve

    U.S. Energy Information Administration (EIA) (indexed site)

    Changes, and Production 75 76 81 63 67 1979-2014 Adjustments 3 -2 3 13 -8 1 2009-2014 Revision Increases 20 19 18 20 12 9 2009-2014 Revision Decreases 10 16 9 16 17 8 2009-2014 Sales 1 4 11 8 2 3 2009-2014 Acquisitions 1 12 10 4 4 7 2009-2014 Extensions 10 10 6 6 3 4 2009-2014 New Field Discoveries 3 1 0 0 0 1 2009-2014 New Reservoir Discoveries in Old Fields 0 1 0 0 1 3 2009-2014 Estimated Production 17 20 16 14 11 10

  2. TX, RRC District 4 Onshore Dry Natural Gas Proved Reserves

    U.S. Energy Information Administration (EIA) (indexed site)

    6,728 7,014 9,458 8,743 9,640 11,057 1977-2014 Adjustments -127 3 358 635 225 82 1977-2014 Revision Increases 774 1,084 2,271 965 905 1,496 1977-2014 Revision Decreases 1,419 850 1,087 2,072 1,491 786 1977-2014 Sales 260 208 939 550 424 505 2000-2014 Acquisitions 309 180 1,245 65 523 1,148 2000-2014 Extensions 506 943 1,452 1,162 1,977 843 1977-2014 New Field Discoveries 45 24 7 1 0 2 1977-2014 New Reservoir Discoveries in Old Fields 309 3 23 5 1 19 1977-2014 Estimated Production 1,013 893 886

  3. TX, RRC District 4 Onshore Lease Condensate Proved Reserves, Reserve

    U.S. Energy Information Administration (EIA) (indexed site)

    Changes, and Production 96 202 181 228 223 1979-2014 Adjustments -2 -1 4 28 83 -16 2009-2014 Revision Increases 15 12 47 17 23 16 2009-2014 Revision Decreases 16 14 35 100 74 24 2009-2014 Sales 5 2 10 3 8 4 2009-2014 Acquisitions 3 2 20 2 5 18 2009-2014 Extensions 7 37 94 53 38 26 2009-2014 New Field Discoveries 3 0 0 0 0 0 2009-2014 New Reservoir Discoveries in Old Fields 1 0 1 0 0 0 2009-2014 Estimated Production 11 12 15 18 20 21

  4. TX, RRC District 5 Dry Natural Gas Proved Reserves

    U.S. Energy Information Administration (EIA) (indexed site)

    22,343 24,363 27,843 17,331 19,280 17,880 1977-2014 Adjustments 96 27 674 -1,078 269 -119 1977-2014 Revision Increases 1,904 1,577 3,693 336 3,338 740 1977-2014 Revision Decreases 1,458 1,274 2,157 8,168 769 1,417 1977-2014 Sales 31 1 10,556 529 93 614 2000-2014 Acquisitions 277 5 10,694 289 574 1,229 2000-2014 Extensions 2,992 3,457 3,034 387 188 193 1977-2014 New Field Discoveries 0 0 2 0 0 0 1977-2014 New Reservoir Discoveries in Old Fields 0 0 0 3 24 0 1977-2014 Estimated Production 1,718

  5. TX, RRC District 6 Dry Natural Gas Proved Reserves

    U.S. Energy Information Administration (EIA) (indexed site)

    12,795 14,886 15,480 11,340 11,655 11,516 1977-2014 Adjustments 423 403 296 -1,010 128 -272 1977-2014 Revision Increases 1,820 2,660 4,894 2,108 2,089 1,979 1977-2014 Revision Decreases 2,225 2,680 5,464 5,203 1,404 1,178 1977-2014 Sales 358 505 3,938 290 429 842 2000-2014 Acquisitions 243 955 3,944 393 572 614 2000-2014 Extensions 1,671 2,173 1,670 979 409 562 1977-2014 New Field Discoveries 0 51 3 0 0 0 1977-2014 New Reservoir Discoveries in Old Fields 41 51 268 7 7 0 1977-2014 Estimated

  6. TX, RRC District 7B Dry Natural Gas Proved Reserves

    U.S. Energy Information Administration (EIA) (indexed site)

    2,077 2,242 3,305 2,943 2,787 2,290 1977-2014 Adjustments 63 68 -65 666 -162 -170 1977-2014 Revision Increases 144 260 387 41 405 203 1977-2014 Revision Decreases 193 231 344 983 223 355 1977-2014 Sales 494 3 683 142 18 2 2000-2014 Acquisitions 27 0 1,855 116 15 0 2000-2014 Extensions 319 220 109 205 2 8 1977-2014 New Field Discoveries 0 0 0 0 0 0 1977-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 53 0 1977-2014 Estimated Production 171 149 196 265 228 181

  7. TX, RRC District 7B Proved Nonproducing Reserves

    U.S. Energy Information Administration (EIA) (indexed site)

    8 8 13 19 12 16 1996-2014 Lease Condensate (million bbls) 0 1 0 0 0 0 1998-2014 Total Gas (billion cu ft) 737 897 890 857 629 464 1996-2014 Nonassociated Gas (billion cu ft) 714 890 878 840 617 407 1996-2014 Associated Gas (billion cu ft) 23 7 12 17 12 5

  8. TX, RRC District 7C Dry Natural Gas Proved Reserves

    U.S. Energy Information Administration (EIA) (indexed site)

    4,827 4,787 4,475 4,890 4,800 6,422 1977-2014 Adjustments 29 68 -311 639 -236 764 1977-2014 Revision Increases 355 535 684 421 693 1,343 1977-2014 Revision Decreases 447 710 708 1,113 889 1,177 1977-2014 Sales 90 575 260 84 129 636 2000-2014 Acquisitions 97 451 271 106 127 886 2000-2014 Extensions 263 496 305 708 568 865 1977-2014 New Field Discoveries 0 0 0 1 0 0 1977-2014 New Reservoir Discoveries in Old Fields 2 10 0 46 104 1 1977-2014 Estimated Production 328 315 293 309 328 424

  9. TX, RRC District 7C Proved Nonproducing Reserves

    U.S. Energy Information Administration (EIA) (indexed site)

    221 286 301 438 400 642 1996-2014 Lease Condensate (million bbls) 10 13 4 14 3 5 1998-2014 Total Gas (billion cu ft) 1,619 1,659 1,551 1,844 1,540 2,305 1996-2014 Nonassociated Gas (billion cu ft) 875 789 447 387 157 318 1996-2014 Associated Gas (billion cu ft) 744 870 1,104 1,457 1,383 1,98

  10. TX, RRC District 8 Dry Natural Gas Proved Reserves

    U.S. Energy Information Administration (EIA) (indexed site)

    6,672 7,206 7,039 7,738 8,629 9,742 1977-2014 Adjustments 233 304 -703 395 243 -395 1977-2014 Revision Increases 828 1,082 1,056 1,115 1,154 2,164 1977-2014 Revision Decreases 1,375 1,268 1,028 1,549 1,060 1,388 1977-2014 Sales 260 363 185 385 608 734 2000-2014 Acquisitions 194 758 482 656 575 771 2000-2014 Extensions 747 568 676 1,023 1,223 1,429 1977-2014 New Field Discoveries 1 0 4 7 0 1 1977-2014 New Reservoir Discoveries in Old Fields 25 2 1 1 26 32 1977-2014 Estimated Production 545 549

  11. TX, RRC District 8A Proved Nonproducing Reserves

    U.S. Energy Information Administration (EIA) (indexed site)

    413 418 419 433 367 361 1996-2014 Lease Condensate (million bbls) 6 11 5 6 0 0 1998-2014 Total Gas (billion cu ft) 376 369 360 336 309 258 1996-2014 Nonassociated Gas (billion cu ft) 2 1 1 1 1 1 1996-2014 Associated Gas (billion cu ft) 374 368 359 335 308 25

  12. TX, RRC District 9 Dry Natural Gas Proved Reserves

    U.S. Energy Information Administration (EIA) (indexed site)

    10,904 12,464 10,115 8,894 9,195 8,791 1977-2014 Adjustments 18 336 -110 -725 378 248 1977-2014 Revision Increases 610 1,070 2,850 212 1,087 793 1977-2014 Revision Decreases 503 221 5,564 1,048 636 1,036 1977-2014 Sales 71 92 1,204 353 583 139 2000-2014 Acquisitions 86 46 1,432 281 18 0 2000-2014 Extensions 2,400 1,147 850 977 396 346 1977-2014 New Field Discoveries 0 0 10 0 0 0 1977-2014 New Reservoir Discoveries in Old Fields 14 7 0 46 244 0 1977-2014 Estimated Production 687 733 613 611 603

  13. TX, State Offshore Shale Gas Proved Reserves, Reserves Changes, and

    U.S. Energy Information Administration (EIA) (indexed site)

    Production 2007 2008 2009 2010 View History Proved Reserves as of Dec. 31 0 0 0 0 2007-2010 Adjustments 0 0 2009-2010 Revision Increases 0 0 2009-2010 Revision Decreases 0 0 2009-2010 Sales 0 0 2009-2010 Acquisitions 0 0 2009-2010 Extensions 0 0 2009-2010 New Field Discoveries 0 0 2009-2010 New Reservoir Discoveries in Old Fields 0 0 2009-2010 Estimated Production 0 0 0 0 2007-2010

  14. RAPID/Roadmap/7-TX-b | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    defined in PUCT Substantive Rule 25.173(c) and must meet the requirements of 25.173. A power generating company may participate in the program and may generate RECs and buy or...

  15. RAPID/Roadmap/7-TX-c | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    in this state a facility to provide retail electric utility service. If a power producer is not a "retail electric utility" then the developer is not required to obtain a...

  16. TX, RRC District 3 Onshore Proved Nonproducing Reserves

    Gasoline and Diesel Fuel Update

    (million bbls) 14 15 14 25 13 19 1998-2014 Total Gas (billion cu ft) 798 879 714 671 735 709 1996-2014 Nonassociated Gas (billion cu ft) 685 739 627 556 502 527 1996-2014...

  17. RAPID/Roadmap/14-TX-b | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Wyoming. On October 9, 2015, the U.S. Court of Appeals for the Sixth Circuit issued a stay halting implementation of the new rule nationwide pending its own determination of its...

  18. TX, State Offshore Dry Natural Gas Proved Reserves

    U.S. Energy Information Administration (EIA) (indexed site)

    Extensions 0 0 0 0 0 0 1981-2014 New Field Discoveries 0 0 0 0 0 0 1981-2014 New Reservoir Discoveries in Old Fields 10 0 0 0 8 0 1981-2014 Estimated Production 40 27 21 22 14 10 ...

  19. TX, State Offshore Associated-Dissolved Natural Gas Proved Reserves...

    U.S. Energy Information Administration (EIA) (indexed site)

    Acquisitions 0 4 0 0 0 0 2000-2014 Extensions 0 0 0 0 0 0 1981-2014 New Field Discoveries 0 0 0 0 0 0 1981-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 0 0 1981-2014 ...

  20. TX, RRC District 8A Dry Natural Gas Proved Reserves

    U.S. Energy Information Administration (EIA) (indexed site)

    Extensions 8 14 10 16 23 8 1977-2014 New Field Discoveries 0 0 0 1 0 0 1977-2014 New Reservoir Discoveries in Old Fields 0 0 1 1 0 0 1977-2014 Estimated Production 108 93 94 97 99 ...

  1. TX, State Offshore Crude Oil plus Lease Condensate Proved Reserves

    U.S. Energy Information Administration (EIA) (indexed site)

    Acquisitions 0 1 0 0 0 0 2009-2014 Extensions 0 0 0 0 0 0 2009-2014 New Field Discoveries 0 0 0 0 0 0 2009-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 0 0 2009-2014 ...

  2. Eagle Pass, TX Natural Gas Pipeline Exports to Mexico (Million...

    U.S. Energy Information Administration (EIA) (indexed site)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 942 1,260 1,471 1,990 2000's 2,114 1,896 1,914 1,969 2,258 2,132 2,118 1,955 1,695 1,237 2010's ...

  3. TX, RRC District 4 Onshore Proved Nonproducing Reserves

    U.S. Energy Information Administration (EIA) (indexed site)

    80 3 1 7 6 1996-2014 Lease Condensate (million bbls) 23 43 83 90 132 115 1998-2014 Total Gas (billion cu ft) 2,663 3,171 4,489 4,755 5,850 6,564 1996-2014 Nonassociated Gas ...

  4. RAPID/Roadmap/4-TX-a | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    and written evidence confirming that it is not delinquent in paying its franchise taxes. The application to prospect must be accompanied by the appropriate filing fee....

  5. RAPID/Roadmap/14-TX-a | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    specifically CWA 319(b). The Management Program outlines Texas' comprehensive strategy to protect and restore water quality impacted by nonpoint sources of pollution....

  6. McAllen, TX Natural Gas Exports to Mexico

    U.S. Energy Information Administration (EIA) (indexed site)

    0,627 56,569 68,425 78,000 79,396 61,402 1998-2015 Pipeline Prices 4.52 4.19 2.95 3.84 4.62 2.85 1998

  7. RAPID/Roadmap/19-TX-c | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    post-office address of the applicant; Identify the source of water supply; State the nature and purposes of the proposed use or uses and the amount of water to be used for each...

  8. RAPID/Roadmap/18-TX-a | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    used in connection with an activity associated with the exploration, development, or production of oil, gas, or geothermal resources, or any other activity regulated by the...

  9. RAPID/Roadmap/5-TX-a | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    for exploratory wells, commercial drilling operations, geothermal wells, and co-production wells. A geothermal resource well is a well drilled within the established...

  10. RAPID/Roadmap/14-TX-c | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    A reservoir is considered to be in a productive reservoir if there is any current or past production of oil, gas, or geothermal resources within 2 mile radius of the proposed well...

  11. RAPID/Roadmap/13-TX-a | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    15.3(d)). Note: Under the Beach Dune Rules Sec. 15.3(s)(2)(a) the exploration for and production of oil and gas is exempted from the Dune Protection permit requirement. If the...

  12. RAPID/Roadmap/3-TX-g | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    must report on the status of the exploration, development, and production of geothermal energy and associated resources under the land governed by Tex. Nat. Rec. Code Sec. 141...

  13. Alamo, TX Natural Gas Imports by Pipeline from Mexico

    U.S. Energy Information Administration (EIA) (indexed site)

    3,678 27,479 48,850 72,039 76,111 78,866 1998-2014 Pipeline Prices 3.95 4.50 4.10 2.86 3.81 4.63 1998...

  14. Alamo, TX Natural Gas Imports by Pipeline from Mexico

    U.S. Energy Information Administration (EIA) (indexed site)

    Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2009 2010 2011 2012 2013 2014 View History Pipeline Volumes 13,279 4,685 0 0 0 0 1998-2014 Pipeline Prices 4.10 4.30 -- -- -- -- 1998-2014

  15. RAPID/Roadmap/3-TX-a | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Act Lands' are defined in the Texas Administrative Code as "any public free school or asylum lands, whether surveyed or unsurveyed, sold with a mineral classification or...

  16. RAPID/Roadmap/3-TX-b | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    following: A diagram of the project showing all structures and dimensions; A copy of a tax statement as proof of ownership of littoral property; A vicinity map showing project...

  17. Rio Grande, TX Natural Gas Pipeline Exports to Mexico (Million...

    Gasoline and Diesel Fuel Update

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2014 8,045 2015 15,984 17,668 21,372 22,842 23,041 24,529 29,766 30,441 29,787 31,090...

  18. RAPID/Roadmap/1-TX-a | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Land use planning in Texas is delegated to municipalities. 01TXALandUsePlanning.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number...

  19. RAPID/Roadmap/19-TX-d | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Quality (TCEQ) handles transfers of surface water rights. 19TXDTransferOfWaterRight.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number...

  20. RAPID/Roadmap/3-TX-c | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    c < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools...

  1. TX, State Offshore Shale Gas Proved Reserves, Reserves Changes...

    Gasoline and Diesel Fuel Update

    2007 2008 2009 2010 View History Proved Reserves as of Dec. 31 0 0 0 0 2007-2010 Adjustments 0 0 2009-2010 Revision Increases 0 0 2009-2010 Revision Decreases 0 0 2009-2010 Sales...

  2. TX, RRC District 5 Shale Gas Proved Reserves, Reserves Changes...

    Gasoline and Diesel Fuel Update

    13,691 16,032 19,747 11,513 13,592 2007-2013 Adjustments 657 105 233 -516 -70 2009-2013 Revision Increases 928 643 3,094 30 2,922 2009-2013 Revision Decreases 587 405 1,405 6,895...

  3. TX, RRC District 8 Shale Gas Proved Reserves, Reserves Changes...

    Gasoline and Diesel Fuel Update

    48 24 90 61 583 649 2007-2013 Adjustments -1 53 -79 249 -21 2009-2013 Revision Increases 2 20 45 19 121 2009-2013 Revision Decreases 22 0 12 47 112 2009-2013 Sales 0 0 0 19 50...

  4. TX, RRC District 1 Shale Gas Proved Reserves, Reserves Changes...

    Gasoline and Diesel Fuel Update

    2 435 1,564 5,123 8,340 7,357 2007-2013 Adjustments 5 8 0 47 315 2009-2013 Revision Increases 1 322 2,141 1,852 1,083 2009-2013 Revision Decreases 0 251 48 1,272 2,818 2009-2013...

  5. TX, RRC District 6 Shale Gas Proved Reserves, Reserves Changes...

    Gasoline and Diesel Fuel Update

    73 1,161 4,381 6,584 4,172 4,633 2007-2013 Adjustments 40 1,968 26 -225 564 2009-2013 Revision Increases 422 1,206 2,322 999 513 2009-2013 Revision Decreases 8 1,319 1,860 2,907...

  6. TX, RRC District 3 Onshore Shale Gas Proved Reserves, Reserves...

    Gasoline and Diesel Fuel Update

    0 0 1 6 24 2007-2013 Adjustments 0 0 1 1 -3 2009-2013 Revision Increases 0 0 0 1 2 2009-2013 Revision Decreases 0 0 0 0 0 2009-2013 Sales 0 0 0 0 4 2009-2013 Acquisitions 0 0 0 2 0...

  7. TX, RRC District 4 Onshore Shale Gas Proved Reserves, Reserves...

    Gasoline and Diesel Fuel Update

    78 565 2,611 3,091 4,377 2007-2013 Adjustments 53 0 185 300 592 2009-2013 Revision Increases 0 66 792 253 174 2009-2013 Revision Decreases 0 12 295 1,160 819 2009-2013 Sales 0 0 75...

  8. TX, RRC District 9 Shale Gas Proved Reserves, Reserves Changes...

    Gasoline and Diesel Fuel Update

    10,756 12,573 10,276 9,260 9,580 2007-2013 Adjustments 179 533 42 -483 378 2009-2013 Revision Increases 580 1,044 3,005 200 1,092 2009-2013 Revision Decreases 469 191 5,864...

  9. TX, RRC District 2 Onshore Shale Gas Proved Reserves, Reserves...

    Gasoline and Diesel Fuel Update

    2010 2011 2012 2013 View History Proved Reserves as of Dec. 31 395 1,692 4,743 5,595 2010-2013 Adjustments 6 237 494 40 2010-2013 Revision Increases 6 388 326 839 2010-2013...

  10. TX, RRC District 10 Shale Gas Proved Reserves, Reserves Changes...

    Gasoline and Diesel Fuel Update

    0 0 0 0 37 37 2007-2013 Adjustments 0 0 -1 11 6 2009-2013 Revision Increases 0 0 0 31 0 2009-2013 Revision Decreases 0 0 0 0 0 2009-2013 Sales 0 0 0 0 1 2009-2013 Acquisitions 0 0...

  11. High Performance Builder Spotlight: GreenCraft, Lewisville, TX

    SciTech Connect (OSTI)

    2011-01-01

    In October and November 2009, the TimberCreek Zero Energy House in Lewisville, Texas, opened as a Building America Demonstration House. The 2,538-foot,three-bedroom, 2½-bath custom-built home showed a home energy rating score (HERS) of 56 without the solar photovoltaics and a HERS score of 1 with PV.

  12. RAPID/Roadmap/8-TX-a | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    a Certificate of Convenience and Necessity (CCN). However, minor modifications and maintenance to an existing transmission system may not need a CCN. 08TXATransmissionSiting.pdf...

  13. RAPID/Roadmap/8-TX-b | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    This flowchart illustrates the procedures for interconnection with Electricity Reliability Council of Texas (ERCOT) in Texas. According to PUCT Substantive Rule 25.198, the...

  14. Price of Freeport, TX Liquefied Natural Gas Exports to Brazil...

    U.S. Energy Information Administration (EIA) (indexed site)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 12.74 2012 10.68 10.57 12.21 2014 15.51 2015 17.44 12.8

  15. Price of Freeport, TX Liquefied Natural Gas Exports to Brazil...

    U.S. Energy Information Administration (EIA) (indexed site)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -- -- -- 2010's -- 12.74 11.19 -- 15.51 15.1

  16. Rio Bravo, TX Natural Gas Exports to Mexico

    U.S. Energy Information Administration (EIA) (indexed site)

    62,914 74,790 75,026 78,196 76,154 81,837 1999-2015 Pipeline Prices 4.42 4.14 2.94 3.88 4.47 2.71

  17. Rio Grande, TX Natural Gas Exports to Mexico

    U.S. Energy Information Administration (EIA) (indexed site)

    2013 2014 2015 View History Pipeline Volumes 0 8,045 310,965 2013-2015 Pipeline Prices -- 4.42 2.85 2013

  18. RAPID/Roadmap/8-TX-f | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    of the total load of the secondary network under consideration; The TDU may postpone processing an application for an individual distributed generation facility if the total...

  19. Rio Bravo, TX Natural Gas Pipeline Exports (Price) Mexico (Dollars...

    U.S. Energy Information Administration (EIA) (indexed site)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 4.58 4.26 4.13 4.36 4.44 4.69 4.56 4.22 4.03 3.68 3.34 3.32 2012 2.85 2.64 2.34 2.09 2.59 2.56 3.05 3.00 2.97 3.44 3.65 ...

  20. Rio Bravo, TX Natural Gas Pipeline Exports (Price) Mexico (Dollars...

    U.S. Energy Information Administration (EIA) (indexed site)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA 2000's NA NA NA 4.99 6.13 8.02 6.51 6.80 9.11 3.91 2010's 4.42 4.14 2.94 3.88 4.47 2.71

  1. Transactive Controls R&D (Tx-R&D)

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... and communication technologies (ICT). - Most common signal is economics based: ... ICT & related physical hardware) that allow applications to be programmed and negotiate...

  2. TX, State Offshore Nonassociated Natural Gas Proved Reserves...

    U.S. Energy Information Administration (EIA) (indexed site)

    161 128 113 88 56 42 1981-2014 Adjustments -29 -7 -24 7 -10 -2 1981-2014 Revision Increases 29 20 70 14 9 17 1981-2014 Revision Decreases 21 35 65 9 19 19 1981-2014 Sales 3 20 2 23 ...

  3. TX, State Offshore Lease Condensate Proved Reserves, Reserve...

    U.S. Energy Information Administration (EIA) (indexed site)

    3 2 1 1 1 1 1981-2014 Adjustments -1 0 -1 0 0 1 2009-2014 Revision Increases 1 0 1 0 0 0 2009-2014 Revision Decreases 0 0 1 0 0 1 2009-2014 Sales 0 0 0 0 0 0 2009-2014 Acquisitions ...

  4. TX, RRC District 4 Onshore Coalbed Methane Proved Reserves, Reserves...

    U.S. Energy Information Administration (EIA) (indexed site)

    1 1 1 2005-2014 Adjustments 0 0 0 1 0 0 2009-2014 Revision Increases 0 0 0 0 0 0 2009-2014 Revision Decreases 0 0 0 0 0 0 2009-2014 Sales 0 0 0 0 0 0 2009-2014 Acquisitions 0 0 0 0 ...

  5. TX, RRC District 10 Coalbed Methane Proved Reserves, Reserves...

    U.S. Energy Information Administration (EIA) (indexed site)

    8 7 7 2005-2014 Adjustments 0 0 0 9 0 5 2009-2014 Revision Increases 0 0 0 0 0 0 2009-2014 Revision Decreases 0 0 0 0 0 4 2009-2014 Sales 0 0 0 0 0 0 2009-2014 Acquisitions 0 0 0 0 ...

  6. TX, RRC District 3 Onshore Coalbed Methane Proved Reserves, Reserves...

    U.S. Energy Information Administration (EIA) (indexed site)

    71 47 49 2005-2014 Adjustments 0 0 0 81 -17 -37 2009-2014 Revision Increases 0 0 0 0 0 21 2009-2014 Revision Decreases 0 0 0 0 0 0 2009-2014 Sales 0 0 0 0 0 1 2009-2014 ...

  7. TX, RRC District 2 Onshore Coalbed Methane Proved Reserves, Reserves...

    U.S. Energy Information Administration (EIA) (indexed site)

    1 2 4 2005-2014 Adjustments 0 0 0 1 1 -5 2009-2014 Revision Increases 0 0 0 0 0 9 2009-2014 Revision Decreases 0 0 0 0 0 0 2009-2014 Sales 0 0 0 0 0 1 2009-2014 Acquisitions 0 0 0 ...

  8. TX, RRC District 1 Natural Gas Liquids Proved Reserves

    Gasoline and Diesel Fuel Update

    96 263 893 2,031 2,360 2,887 2009-2014 Adjustments -3 -20 7 -19 -60 83 2009-2014 Revision Increases 19 16 95 302 288 330 2009-2014 Revision Decreases 19 10 52 253 237 262 2009-2014 Sales 0 4 33 7 90 56 2009-2014 Acquisitions 0 9 33 6 123 86 2009-2014 Extensions 8 137 593 1,194 484 591 2009-2014 New Field Discoveries 4 54 29 19 2 0 2009-2014 New Reservoir Discoveries in Old Fields 0 0 2 8 11 18 2009-2014 Estimated Production 10 15 44 112 192 263

    398 2,399 5,910 8,868 7,784 11,945 1977-2014

  9. TX, RRC District 10 Natural Gas Liquids Proved Reserves

    Gasoline and Diesel Fuel Update

    523 2,599 6,127 9,141 8,118 12,431 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 1,456 2,332 5,227 6,516 4,442 7,733 1979-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 67 267 900 2,625 3,676 4,698 1979-2014 Dry Natural Gas 1,398 2,399 5,910 8,868 7,784 11,945 Lease Separation

    456 2,332 5,227 6,516 4,442 7,733 1979-2014 Adjustments 5 -95 -42 20 120 -73 1979-2014 Revision Increases 110 430 2,184 1,620 702 3,462 1979-2014 Revision Decreases 110 331 116

  10. TX, RRC District 2 Onshore Natural Gas Liquids Proved Reserves

    Gasoline and Diesel Fuel Update

    7,594 8,484 8,373 8,007 7,744 8,354 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 6,984 7,915 7,475 7,073 6,660 7,140 1979-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 610 569 898 934 1,084 1,214 1979-2014 Dry Natural Gas 6,882 7,663 7,513 7,253 7,034 7,454 Lease Separation

    6,984 7,915 7,475 7,073 6,660 7,140 1979-2014 Adjustments 223 -144 -5 213 23 233 1979-2014 Revision Increases 492 1,288 593 1,044 762 801 1979-2014 Revision Decreases 1,120 868

  11. TX, RRC District 3 Onshore Natural Gas Liquids Proved Reserves

    Gasoline and Diesel Fuel Update

    909 2,235 3,690 5,985 6,640 7,524 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 1,837 2,101 2,766 3,986 4,348 4,802 1979-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 72 134 924 1,999 2,292 2,722 1979-2014 Dry Natural Gas 1,800 2,090 3,423 5,462 5,910 6,559 After Lease Separation

    837 2,101 2,766 3,986 4,348 4,802 1979-2014 Adjustments -101 18 153 15 -39 -1 1979-2014 Revision Increases 194 321 397 212 719 454 1979-2014 Revision Decreases 364 308 572

  12. TX, RRC District 4 Onshore Natural Gas Liquids Proved Reserves

    Gasoline and Diesel Fuel Update

    2,802 2,774 2,490 2,429 2,592 2,483 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 2,326 2,308 2,091 1,965 1,795 1,760 1979-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 476 466 399 464 797 723 1979-2014 Dry Natural Gas 2,616 2,588 2,260 2,154 2,307 2,19 After Lease Separation

    2,326 2,308 2,091 1,965 1,795 1,760 1979-2014 Adjustments -105 56 -29 164 -99 52 1979-2014 Revision Increases 456 419 355 608 335 290 1979-2014 Revision Decreases 338 288 225 655

  13. TX, RRC District 5 Natural Gas Liquids Proved Reserves

    Gasoline and Diesel Fuel Update

    4 22 28 65 47 62 2009-2014 Adjustments -4 1 5 1 5 4 2009-2014 Revision Increases 5 3 8 11 1 3 2009-2014 Revision Decreases 1 3 3 3 22 7 2009-2014 Sales 0 0 6 0 0 19 2009-2014 Acquisitions 0 0 6 24 0 19 2009-2014 Extensions 1 0 0 9 4 21 2009-2014 New Field Discoveries 0 0 0 0 0 0 2009-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 0 0 2009-2014 Estimated Production 3 3 4 5 6 6

    22,343 24,363 27,843 17,331 19,280 17,880 1977-2014 Adjustments 96 27 674 -1,078 269 -119 1977-2014 Revision

  14. TX, RRC District 6 Natural Gas Liquids Proved Reserves

    Gasoline and Diesel Fuel Update

    24 240 232 252 267 299 2009-2014 Adjustments 3 3 16 18 -37 19 2009-2014 Revision Increases 38 45 38 17 35 62 2009-2014 Revision Decreases 29 29 43 31 26 27 2009-2014 Sales 3 5 28 18 13 94 2009-2014 Acquisitions 4 11 21 23 26 80 2009-2014 Extensions 8 9 6 30 49 12 2009-2014 New Field Discoveries 0 0 0 0 0 0 2009-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 0 0 2009-2014 Estimated Production 18 18 18 19 19 20

    12,795 14,886 15,480 11,340 11,655 11,516 1977-2014 Adjustments 423 403 296

  15. TX, RRC District 7B Natural Gas Liquids Proved Reserves

    Gasoline and Diesel Fuel Update

    102 102 126 134 113 148 2009-2014 Adjustments 9 4 -3 5 -37 39 2009-2014 Revision Increases 7 9 16 19 24 23 2009-2014 Revision Decreases 7 3 3 5 8 17 2009-2014 Sales 0 0 2 1 0 1 2009-2014 Acquisitions 1 0 27 1 10 0 2009-2014 Extensions 1 0 0 0 1 3 2009-2014 New Field Discoveries 0 0 0 0 0 0 2009-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 0 0 2009-2014 Estimated Production 10 10 11 11 11 12

    2,077 2,242 3,305 2,943 2,787 2,290 1977-2014 Adjustments 63 68 -65 666 -162 -170 1977-2014

  16. TX, RRC District 7C Natural Gas Liquids Proved Reserves

    Gasoline and Diesel Fuel Update

    509 618 672 891 964 1,298 2009-2014 Adjustments 35 -10 8 63 -23 30 2009-2014 Revision Increases 55 69 77 66 162 363 2009-2014 Revision Decreases 25 37 118 139 271 421 2009-2014 Sales 7 56 56 13 9 14 2009-2014 Acquisitions 25 83 62 30 21 155 2009-2014 Extensions 69 88 121 254 227 309 2009-2014 New Field Discoveries 0 0 0 0 0 0 2009-2014 New Reservoir Discoveries in Old Fields 0 6 0 8 29 0 2009-2014 Estimated Production 32 34 40 50 63 8

    4,827 4,787 4,475 4,890 4,800 6,422 1977-2014 Adjustments

  17. TX, RRC District 8 Natural Gas Liquids Proved Reserves

    Gasoline and Diesel Fuel Update

    985 2,254 2,709 3,304 3,356 4,142 2009-2014 Adjustments 10 -93 75 69 33 -16 2009-2014 Revision Increases 201 273 309 401 383 948 2009-2014 Revision Decreases 99 149 235 339 471 554 2009-2014 Sales 63 116 125 78 321 232 2009-2014 Acquisitions 87 315 253 242 270 302 2009-2014 Extensions 202 196 332 500 375 605 2009-2014 New Field Discoveries 0 0 2 3 0 0 2009-2014 New Reservoir Discoveries in Old Fields 4 1 0 2 11 16 2009-2014 Estimated Production 121 158 156 205 228 283

    6,672 7,206 7,039 7,738

  18. TX, RRC District 8A Natural Gas Liquids Proved Reserves

    Gasoline and Diesel Fuel Update

    790 1,822 1,800 1,758 1,736 1,668 2009-2014 Adjustments 19 21 13 10 27 37 2009-2014 Revision Increases 172 181 115 103 97 78 2009-2014 Revision Decreases 15 66 90 66 54 63 2009-2014 Sales 8 23 70 60 57 36 2009-2014 Acquisitions 24 12 102 49 51 17 2009-2014 Extensions 4 15 14 17 21 7 2009-2014 New Field Discoveries 1 0 0 0 0 0 2009-2014 New Reservoir Discoveries in Old Fields 0 0 1 13 0 0 2009-2014 Estimated Production 111 108 107 108 107 108

    1,218 1,164 1,226 1,214 1,269 1,257 1977-2014

  19. TX, RRC District 9 Natural Gas Liquids Proved Reserves

    Gasoline and Diesel Fuel Update

    49 155 181 177 195 209 2009-2014 Adjustments -24 13 -18 -7 37 20 2009-2014 Revision Increases 29 11 32 13 15 28 2009-2014 Revision Decreases 9 21 17 17 45 22 2009-2014 Sales 12 4 11 13 9 2 2009-2014 Acquisitions 22 10 22 11 15 4 2009-2014 Extensions 45 14 39 31 25 7 2009-2014 New Field Discoveries 0 0 0 0 0 0 2009-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 1 0 2009-2014 Estimated Production 15 17 21 22 21 21

    10,904 12,464 10,115 8,894 9,195 8,791 1977-2014 Adjustments 18 336 -110

  20. TX, State Offshore Coalbed Methane Proved Reserves, Reserves Changes, and

    Gasoline and Diesel Fuel Update

    11,522 13,172 10,920 9,682 10,040 9,760 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 11,100 12,587 9,963 8,521 8,947 8,283 1979-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 422 585 957 1,161 1,093 1,477 1979-2014 Dry Natural Gas 10,904 12,464 10,115 8,894 9,195 8,791 Lease Separation

    11,100 12,587 9,963 8,521 8,947 8,283 1979-2014 Adjustments 98 345 211 -609 407 102 1979-2014 Revision Increases 628 932 3,016 177 1,110 774 1979-2014 Revision

  1. TX, State Offshore Natural Gas Liquids Proved Reserves

    Gasoline and Diesel Fuel Update

    4 4 3 3 2 2 2009-2014 Adjustments -2 0 -2 1 -1 1 2009-2014 Revision Increases 1 0 3 0 0 1 2009-2014 Revision Decreases 0 0 2 1 0 2 2009-2014 Sales 0 0 0 0 0 0 2009-2014 Acquisitions 0 1 0 0 0 0 2009-2014 Extensions 0 0 0 0 0 0 2009-2014 New Field Discoveries 0 0 0 0 0 0 2009-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 0 0 2009-2014 Estimated Production 1 1 0 0 0

    64 131 118 94 59 42 1981-2014 Adjustments -29 11 -25 16 -13 -3 1981-2014 Revision Increases 29 20 75 16 9 18 1981-2014

  2. Clint, TX Natural Gas Pipeline Exports to Mexico (Dollars per...

    U.S. Energy Information Administration (EIA) (indexed site)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 4.51 4.57 4.11 4.50 4.51 4.73 4.68 4.57 4.21 3.89 3.71 3.63 2012 3.30 2.93 2.62 2.34 2.57 2.82 3.13 3.23 3.07 3.53 3.83 ...

  3. Penitas, TX Natural Gas Pipeline Exports to Mexico (Dollars per...

    U.S. Energy Information Administration (EIA) (indexed site)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 4.43 4.15 3.95 4.32 4.37 4.58 4.44 4.38 3.88 3.64 3.10

  4. Alamo, TX Natural Gas Pipeline Exports to Mexico (Dollars per...

    U.S. Energy Information Administration (EIA) (indexed site)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 4.37 4.38 3.92 4.24 4.36 4.46 4.46 4.29 3.88 3.67 3.40 3.31 2012 3.11 2.64 2.28 2.09 2.41 2.48 2.90 3.08 2.80 3.26 3.53 ...

  5. Romas, TX Natural Gas Pipeline Exports (Price) Mexico (Dollars...

    U.S. Energy Information Administration (EIA) (indexed site)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 4.54 4.33 3.95 4.33 4.42 4.49 4.47 4.44 3.92 3.66 3.24 3.30 2012 2.81 2.64 2.35 2.09 2.46 2.63 2.93 3.05 2.81 3.23 3.49 ...

  6. Alamo, TX Natural Gas Pipeline Exports to Mexico (Dollars per...

    U.S. Energy Information Administration (EIA) (indexed site)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 2000's 4.49 4.12 3.35 5.36 5.97 7.17 6.62 7.11 8.40 3.95 2010's 4.50 4.10 2.86 3.81 4.63 ...

  7. Clint, TX Natural Gas Pipeline Exports to Mexico (Dollars per...

    U.S. Energy Information Administration (EIA) (indexed site)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2.24 1.99 2.22 2000's 3.95 4.28 3.16 5.50 5.91 8.01 6.42 6.37 7.83 3.78 2010's 4.61 4.29 3.08 ...

  8. Penitas, TX Natural Gas Pipeline Exports to Mexico (Dollars per...

    U.S. Energy Information Administration (EIA) (indexed site)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2.05 2.62 2.09 NA 2000's NA NA 3.27 6.53 5.71 -- -- -- 8.41 4.37 2010's 4.94 4.19 -- -- --

  9. Romas, TX Natural Gas Pipeline Exports (Price) Mexico (Dollars...

    U.S. Energy Information Administration (EIA) (indexed site)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA 2000's NA NA NA 5.18 5.84 7.29 6.75 6.93 8.58 3.91 2010's 4.55 4.14 2.86 3.80 4.62 2.79

  10. Del Rio, TX Natural Gas Exports to Mexico

    U.S. Energy Information Administration (EIA) (indexed site)

    320 282 355 372 324 306 2006-2015 Pipeline Prices 5.92 5.53 4.33 4.69 5.35 3.59 200

  11. Eagle Pass, TX Natural Gas Exports to Mexico

    U.S. Energy Information Administration (EIA) (indexed site)

    1,471 2,114 2,970 2,608 3,801 4,282 1996-2015 Pipeline Prices 5.13 4.57 3.41 4.37 5.18 3.78

  12. El Paso, TX Natural Gas Exports to Mexico

    U.S. Energy Information Administration (EIA) (indexed site)

    7,043 7,381 6,238 5,657 4,054 3,375 1996-2015 Pipeline Prices 4.72 4.34 3.09 4.05 5.13 2.83

  13. El Paso, TX Natural Gas Imports by Pipeline from Mexico

    U.S. Energy Information Administration (EIA) (indexed site)

    Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 1998 1999 2000 2001 2002 View History Pipeline Volumes 996 NA NA NA NA 1998-2002 Pipeline Prices 2.09 1998-1998

  14. Freeport, TX Liquefied Natural Gas Exports Price (Dollars per Thousand

    U.S. Energy Information Administration (EIA) (indexed site)

    Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 10.31 11.16 13.45 15.51 15.80

  15. Freeport, TX Liquefied Natural Gas Exports Price (Dollars per Thousand

    U.S. Energy Information Administration (EIA) (indexed site)

    Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 13.45 2014 15.51 2015 17.44 12.89 16.71 15.99

  16. Galvan Ranch, TX Natural Gas Imports by Pipeline from Mexico

    U.S. Energy Information Administration (EIA) (indexed site)

    225 501 314 1,046 1,426 933 2007-2015 Pipeline Prices 3.52 3.12 1.87 2.66 3.45 1.71 2007

  17. Hidalgo, TX Natural Gas Imports by Pipeline from Mexico

    U.S. Energy Information Administration (EIA) (indexed site)

    Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2009 2010 2011 2012 2013 2014 View History Pipeline Volumes 284 62 0 0 0 0 1996-2014 Pipeline Prices 4.40 4.21 -- -- -- -- 1996-2014

  18. DOE - Office of Legacy Management -- Falls City Mill Site - TX...

    Office of Legacy Management (LM)

    Licensed to DOE for long-term custody and managed by the Office of Legacy Management. ... Licensed to DOE for long-term custody and managed by the Office of Legacy Management. ...

  19. RAPID/Roadmap/14-TX-e | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Publication. If the pit is in a wetland, submit a copy of the Army Corp of Engineers Wetlands Permit or Permit Application. Note: In addition to requirements listed by the RRC,...

  20. Alamo, TX Natural Gas Pipeline Exports to Mexico (Million Cubic...

    U.S. Energy Information Administration (EIA) (indexed site)

    8,101 6,852 6,008 5,844 5,840 4,837 2015 3,440 3,990 6,547 6,431 7,980 6,896 7,411 5,451 5,292 6,185 4,875 4,771 2016 7,203 5,595 - No Data Reported; -- Not Applicable; NA ...

  1. EV Community Readiness projects: Center for the Commercialization of Electric Technologies (TX); City of Austin, Austin Energy (TX)

    Office of Energy Efficiency and Renewable Energy (EERE)

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  2. Michigan's 14th congressional district: Energy Resources | Open...

    Open Energy Information (Open El) [EERE & EIA]

    Corporation EaglePicher Horizon Batteries LLC Ford Ford Electric Battery Group Ford Motor Co Sustainable Technologies and Hybrid Programme General Motors NextEnergy Trenton...

  3. Wayne County, Michigan: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Corporation EaglePicher Horizon Batteries LLC Ford Ford Electric Battery Group Ford Motor Co Sustainable Technologies and Hybrid Programme Full Circle Developments Inc General...

  4. Washington Department of Fish and Wildlife Fish Program Hatcheries Division: Ford Hatchery, Annual Report 2001-2002.

    SciTech Connect (OSTI)

    Lewis, Mike; Polacek, Matt; Knuttgen, Kamia

    2002-11-01

    The Washington Department of Fish and Wildlife implemented the Banks Lake Fishery Evaluation Project (BLFEP) in September 2001 with funds from the Bonneville Power Administration. The first year of the BLFEP was used to gather historic information, establish methods and protocols, collect limnology data, and conduct the first seasonal fish surveys. Water quality parameters were collected monthly from February to May and bi-monthly from June to August. Banks Lake water temperatures began to increase in April and stratification was apparent by June at all 3 limnology collection sites. By late August, the thermocline had dropped to nearly 20 m deep, with 19-20 C temperatures throughout the epilimnion. Dissolved oxygen levels were generally above 10 mg/L until mid summer when dissolved oxygen dropped near or below 5 mg/L below 20-m deep. Secchi depths ranged from 3-10 m and varied by location and date. Nearshore and offshore fish surveys were conducted in May and July using boat electrofishing, fyke net, gill net, and hydroacoustic surveys. Smallmouth bass Micropterous dolomieui (24%) and lake whitefish Coregonus clupeaformis (20%) dominated the nearshore species composition in May; however, by July yellow perch Perca flavescens (26%) were the second most common species to smallmouth bass (30%). Lake whitefish dominated the offshore catch during May (72%) and July (90%). The May hydroacoustic survey revealed highest densities of fish in the upper 1/3 of the water column in the mid- to northern sections of the reservoir near Steamboat Rock. In the future, data from seasonal surveys will be used to identify potential factors that may limit the production and harvest of kokanee, rainbow trout, and various spiny-rayed fishes in Banks Lake. The limiting factors that will be examined consist of: abiotic factors including water temperature, dissolved oxygen levels, habitat, exploitation and entrainment; and biotic factors including food limitation and predation. The BLFEP will also evaluate the success of several rearing and stocking strategies for hatchery kokanee in Banks Lake.

  5. Obama Administration Announces Additional $208,759,900 for Local...

    Energy Savers

    ... TX TexasTotal Sum City , County, and SEO Allocations All 208,759,900 TX Texas State ... TX Dallas City 12,787,300 TX Del Rio City 156,300 TX Denton City 1,117,000 TX ...

  6. U.S. Energy Information Administration (EIA)

    Gasoline and Diesel Fuel Update

    and Texas, and the Marcellus play in Pennsylvania. In the Marcellus play, despite reduced drilling activity, production increased by almost 70 percent in 2012 over year-ago levels....

  7. NETL F 451.1/1-1, Categorical Exclusion Designation Form

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    TX University of Texas at Austin - Austin, TX (approved CX); Bureau of Economic Geology UT-Austin - Austin, TX (approved CX) Laredo Petroleum, Inc. - Reagan Co., TX FE...

  8. Texas A&M Regional High School Science Bowl | U.S. DOE Office...

    Office of Science (SC) [DOE]

    National Science Bowl U.S. Department of Energy SC-27 Forrestal Building 1000 ... County, TX Titus County, TX Tom Green County, TX Travis County, TX Trinity ...

  9. Texas AM Junior Science Bowl | U.S. DOE Office of Science (SC...

    Office of Science (SC) [DOE]

    National Science Bowl U.S. Department of Energy SC-27 Forrestal Building 1000 ... County, TX Titus County, TX Tom Green County, TX Travis County, TX Trinity ...

  10. Before the Senate Energy and Natural Resources Committee

    Energy.gov [DOE]

    Subject: Marcellus Shale Gas Development and Production in West Virginia By: Anthony Cugini, Director National energy Technology Laboratory

  11. File:03-TX-d - Lease of Public School Fund Land (1).pdf | Open...

    Open Energy Information (Open El) [EERE & EIA]

    file as it appeared at that time. DateTime Thumbnail Dimensions User Comment current 14:56, 5 August 2014 Thumbnail for version as of 14:56, 5 August 2014 1,275 1,650 (85 KB)...

  12. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    FutureGen 2.0 Background The combustion of fossil fuels for electricity generation is one of the largest contributors to carbon dioxide (CO 2 ) emissions in the United States and the world. Future federal legislation and/or regulation may further limit CO 2 emissions from U.S. power generation. Efforts to control CO 2 emissions from this sector are under- way through the development of carbon capture and storage (CCS) technologies. CCS could virtually eliminate CO 2 emissions from power plants

  13. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Figure 1. Predicted spill trajectory 40 days after a hypothetical blowout and the predicted location of beached oil as a result of this hypothetical spill. NETL's Blowout and Spill Occurrence Model (BLOSOM) Background The U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) has created an integrated data and modeling system to support DOE's mission to produce science-based evaluations of engineered and natural systems to ensure sustainable, environmentally responsible

  14. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Pre-combustion Solvents for Carbon Capture Background Carbon capture and storage from fossil-based power generation is a critical compo- nent of realistic strategies for arresting the rise in atmospheric CO 2 concentrations, but capturing substantial amounts of CO 2 using current technology would result in a pro- hibitive rise in the cost of producing energy. In high-pressure CO 2 -containing streams, such as those found in coal gasification processes, one well-established approach to removing

  15. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Chemistry and Surface Science CONTACTS OFFICE OF RESEARCH AND DEVELOPMENT Madhava Syamlal Focus Area Lead Computational Science and Engineering 304-285-4685 madhava.syamlal@netl.doe.gov Computational Chemistry Research in Support of Future Energy Technologies Background Development of efficient future technologies for energy production with zero carbon emissions based on the use of fossil fuels or novel renewable resources is highly dependent on solving a large number of individual break-through

  16. DOE Zero Energy Ready Home Case Study: M Street Homes, Houston, TX |

    Energy Savers

    Custom Home | Department of Energy Study, Caldwell and Johnson, Exeter, RI, Custom Home DOE Zero Energy Ready Home Case Study, Caldwell and Johnson, Exeter, RI, Custom Home Case study of a DOE Zero Energy Ready Home in Exeter, Rhode Island, that scored HERS 43 without PV. This 2,000 ft2 custom home has a spray- foamed attic and walls, plus rigid foam sheathing, ducted mini-split heat pumps, and an HRV. BA_ZeroEnergyReady_CaldwellJohnson_062314.pdf (1.12 MB) More Documents & Publications

  17. Penitas, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) (indexed site)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 8,489 2,977 1,206 NA 2000's NA NA 5,100 3,036 718 0 0 0 18,923 4,262 2010's 1,371 6,871 0 0 0 0

  18. Rio Bravo, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) (indexed site)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA 2000's NA NA NA 8,986 39,588 40,466 60,432 54,660 49,073 56,035 2010's 62,914 74,790 75,026 78,196 76,154 81,837

  19. Rio Grande, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) (indexed site)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 0 8,045 310,965

  20. Roma, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) (indexed site)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA 2000's NA NA NA 62,591 63,331 37,517 20,476 23,152 24,905 20,042 2010's 36,813 65,794 133,769 138,340 154,471 168,049

  1. TX, RRC District 1 Lease Condensate Proved Reserves, Reserve Changes, and

    U.S. Energy Information Administration (EIA) (indexed site)

    Production 4 35 211 320 304 392 1979-2014 Adjustments 5 -5 1 1 -11 -5 2009-2014 Revision Increases 1 2 37 104 97 113 2009-2014 Revision Decreases 1 3 1 95 107 33 2009-2014 Sales 0 4 31 0 2 6 2009-2014 Acquisitions 0 4 30 0 7 7 2009-2014 Extensions 1 16 151 125 38 58 2009-2014 New Field Discoveries 4 12 1 0 0 0 2009-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 0 0 2009-2014 Estimated Production 1 1 12 26 38 4

  2. TX, RRC District 1 Natural Gas Reserves Summary as of Dec. 31

    U.S. Energy Information Administration (EIA) (indexed site)

    523 2,599 6,127 9,141 8,118 12,431 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 1,456 2,332 5,227 6,516 4,442 7,733 1979-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 67 267 900 2,625 3,676 4,698 1979-2014 Dry Natural Gas 1,398 2,399 5,910 8,868 7,784 11,945

  3. TX, RRC District 1 Nonassociated Natural Gas Proved Reserves, Wet After

    U.S. Energy Information Administration (EIA) (indexed site)

    Lease Separation 456 2,332 5,227 6,516 4,442 7,733 1979-2014 Adjustments 5 -95 -42 20 120 -73 1979-2014 Revision Increases 110 430 2,184 1,620 702 3,462 1979-2014 Revision Decreases 110 331 116 1,380 2,783 511 1979-2014 Sales 38 505 1,227 28 13 114 2000-2014 Acquisitions 55 445 1,172 8 6 115 2000-2014 Extensions 141 960 1,117 1,374 352 936 1979-2014 New Field Discoveries 390 63 2 1 0 0 1979-2014 New Reservoir Discoveries in Old Fields 0 16 0 0 0 0 1979-2014 Estimated Production 84 107 195

  4. TX, RRC District 1 Shale Gas Proved Reserves, Reserves Changes, and

    U.S. Energy Information Administration (EIA) (indexed site)

    Production 435 1,564 5,123 8,340 7,357 11,729 2007-2014 Adjustments 5 8 0 47 315 129 2009-2014 Revision Increases 1 322 2,141 1,852 1,083 4,056 2009-2014 Revision Decreases 0 251 48 1,272 2,818 791 2009-2014 Sales 0 409 1,132 4 84 120 2009-2014 Acquisitions 0 401 1,130 6 105 140 2009-2014 Extensions 85 971 1,604 2,911 1,046 1,765 2009-2014 New Field Discoveries 353 114 20 39 0 0 2009-2014 New Reservoir Discoveries in Old Fields 0 14 0 0 0 15 2009-2014 Estimated Production 11 41 156 362 630

  5. TX, RRC District 10 Lease Condensate Proved Reserves, Reserve Changes, and

    U.S. Energy Information Administration (EIA) (indexed site)

    Production 104 140 139 143 138 167 1979-2014 Adjustments 4 -4 1 6 5 5 2009-2014 Revision Increases 25 38 18 26 43 36 2009-2014 Revision Decreases 13 27 38 44 26 32 2009-2014 Sales 1 0 19 1 48 24 2009-2014 Acquisitions 0 2 10 8 19 44 2009-2014 Extensions 16 38 42 27 20 14 2009-2014 New Field Discoveries 0 0 0 0 0 0 2009-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 2 0 2009-2014 Estimated Production 8 11 15 18 20 14

  6. TX, RRC District 10 Natural Gas Reserves Summary as of Dec. 31

    U.S. Energy Information Administration (EIA) (indexed site)

    7,594 8,484 8,373 8,007 7,744 8,354 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 6,984 7,915 7,475 7,073 6,660 7,140 1979-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 610 569 898 934 1,084 1,214 1979-2014 Dry Natural Gas 6,882 7,663 7,513 7,253 7,034 7,454

  7. TX, RRC District 10 Nonassociated Natural Gas Proved Reserves, Wet After

    U.S. Energy Information Administration (EIA) (indexed site)

    Lease Separation 6,984 7,915 7,475 7,073 6,660 7,140 1979-2014 Adjustments 223 -144 -5 213 23 233 1979-2014 Revision Increases 492 1,288 593 1,044 762 801 1979-2014 Revision Decreases 1,120 868 1,533 2,370 1,123 923 1979-2014 Sales 42 145 1,174 146 574 1,513 2000-2014 Acquisitions 57 99 639 692 647 1,936 2000-2014 Extensions 817 1,274 1,676 846 426 530 1979-2014 New Field Discoveries 0 0 4 0 0 0 1979-2014 New Reservoir Discoveries in Old Fields 0 0 15 0 83 0 1979-2014 Estimated Production

  8. TX, RRC District 10 Shale Gas Proved Reserves, Reserves Changes, and

    U.S. Energy Information Administration (EIA) (indexed site)

    Production 0 0 0 37 37 66 2007-2014 Adjustments 0 0 -1 11 6 36 2009-2014 Revision Increases 0 0 0 31 0 1 2009-2014 Revision Decreases 0 0 0 0 0 0 2009-2014 Sales 0 0 0 0 1 0 2009-2014 Acquisitions 0 0 0 0 0 0 2009-2014 Extensions 0 0 1 0 0 0 2009-2014 New Field Discoveries 0 0 0 0 0 0 2009-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 0 0 2009-2014 Estimated Production 0 0 0 5 5 8

  9. TX, RRC District 2 Onshore Natural Gas Reserves Summary as of Dec. 31

    U.S. Energy Information Administration (EIA) (indexed site)

    909 2,235 3,690 5,985 6,640 7,524 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 1,837 2,101 2,766 3,986 4,348 4,802 1979-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 72 134 924 1,999 2,292 2,722 1979-2014 Dry Natural Gas 1,800 2,090 3,423 5,462 5,910 6,559

  10. TX, RRC District 2 Onshore Nonassociated Natural Gas Proved Reserves, Wet

    U.S. Energy Information Administration (EIA) (indexed site)

    After Lease Separation 837 2,101 2,766 3,986 4,348 4,802 1979-2014 Adjustments -101 18 153 15 -39 -1 1979-2014 Revision Increases 194 321 397 212 719 454 1979-2014 Revision Decreases 364 308 572 516 990 642 1979-2014 Sales 23 19 167 11 335 944 2000-2014 Acquisitions 5 29 449 172 361 859 2000-2014 Extensions 80 123 639 1,659 1,023 1,162 1979-2014 New Field Discoveries 0 327 0 0 0 0 1979-2014 New Reservoir Discoveries in Old Fields 13 10 36 23 7 4 1979-2014 Estimated Production 259 237 270 334

  11. TX, RRC District 2 Onshore Shale Gas Proved Reserves, Reserves Changes, and

    U.S. Energy Information Administration (EIA) (indexed site)

    Production 2010 2011 2012 2013 2014 View History Proved Reserves as of Dec. 31 395 1,692 4,743 5,595 6,648 2010-2014 Adjustments 6 237 494 40 79 2010-2014 Revision Increases 6 388 326 839 583 2010-2014 Revision Decreases 5 402 320 1,433 705 2010-2014 Sales 0 61 0 198 1,403 2010-2014 Acquisitions 2 38 210 357 1,402 2010-2014 Extensions 109 1,157 2,604 1,692 1,639 2010-2014 New Field Discoveries 282 0 0 0 0 2010-2014 New Reservoir Discoveries in Old Fields 2 81 64 29 107 2010-2014 Estimated

  12. TX, RRC District 3 Onshore Natural Gas Reserves Summary as of Dec. 31

    U.S. Energy Information Administration (EIA) (indexed site)

    2,802 2,774 2,490 2,429 2,592 2,483 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 2,326 2,308 2,091 1,965 1,795 1,760 1979-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 476 466 399 464 797 723 1979-2014 Dry Natural Gas 2,616 2,588 2,260 2,154 2,307 2,19

  13. TX, RRC District 3 Onshore Nonassociated Natural Gas Proved Reserves, Wet

    U.S. Energy Information Administration (EIA) (indexed site)

    After Lease Separation 2,326 2,308 2,091 1,965 1,795 1,760 1979-2014 Adjustments -105 56 -29 164 -99 52 1979-2014 Revision Increases 456 419 355 608 335 290 1979-2014 Revision Decreases 338 288 225 655 215 228 1979-2014 Sales 152 157 259 224 87 143 2000-2014 Acquisitions 147 202 219 175 86 131 2000-2014 Extensions 270 181 106 122 86 97 1979-2014 New Field Discoveries 58 21 6 7 0 18 1979-2014 New Reservoir Discoveries in Old Fields 12 27 4 8 8 23 1979-2014 Estimated Production 475 479 394 331

  14. TX, RRC District 3 Onshore Shale Gas Proved Reserves, Reserves Changes, and

    U.S. Energy Information Administration (EIA) (indexed site)

    Production 0 0 1 6 24 106 2007-2014 Adjustments 0 0 1 1 -3 35 2009-2014 Revision Increases 0 0 0 1 2 13 2009-2014 Revision Decreases 0 0 0 0 0 7 2009-2014 Sales 0 0 0 0 4 14 2009-2014 Acquisitions 0 0 0 2 0 3 2009-2014 Extensions 0 0 0 1 25 62 2009-2014 New Field Discoveries 0 0 0 0 0 0 2009-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 0 0 2009-2014 Estimated Production 0 0 0 0 2 10

  15. TX, RRC District 4 Onshore Natural Gas Reserves Summary as of Dec. 31

    U.S. Energy Information Administration (EIA) (indexed site)

    7,057 7,392 10,054 9,566 11,101 12,482 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 6,961 7,301 9,993 9,467 11,038 12,291 1979-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 96 91 61 99 63 191 1979-2014 Dry Natural Gas 6,728 7,014 9,458 8,743 9,640 11,057

  16. TX, RRC District 4 Onshore Nonassociated Natural Gas Proved Reserves, Wet

    U.S. Energy Information Administration (EIA) (indexed site)

    After Lease Separation 6,961 7,301 9,993 9,467 11,038 12,291 1979-2014 Adjustments -94 38 434 892 803 -117 1979-2014 Revision Increases 798 1,129 2,390 1,032 1,007 1,651 1979-2014 Revision Decreases 1,456 882 1,133 2,238 1,693 872 1979-2014 Sales 273 219 964 552 477 570 2000-2014 Acquisitions 324 189 1,319 68 600 1,182 2000-2014 Extensions 530 984 1,543 1,263 2,264 938 1979-2014 New Field Discoveries 48 25 7 1 0 2 1979-2014 New Reservoir Discoveries in Old Fields 324 3 24 5 1 21 1979-2014

  17. TX, RRC District 4 Onshore Shale Gas Proved Reserves, Reserves Changes, and

    U.S. Energy Information Administration (EIA) (indexed site)

    Production 78 565 2,611 3,091 4,377 4,991 2007-2014 Adjustments 53 0 185 300 592 11 2009-2014 Revision Increases 0 66 792 253 174 335 2009-2014 Revision Decreases 0 12 295 1,160 819 300 2009-2014 Sales 0 0 75 0 0 20 2009-2014 Acquisitions 0 0 75 0 0 252 2009-2014 Extensions 0 459 1,506 1,392 1,655 717 2009-2014 New Field Discoveries 0 0 0 0 0 0 2009-2014 New Reservoir Discoveries in Old Fields 30 0 12 0 0 0 2009-2014 Estimated Production 5 26 154 305 316 381

  18. TX, RRC District 5 Lease Condensate Proved Reserves, Reserve Changes, and

    U.S. Energy Information Administration (EIA) (indexed site)

    Production 8 6 6 7 6 5 1979-2014 Adjustments 2 0 1 0 1 0 2009-2014 Revision Increases 1 0 1 3 0 1 2009-2014 Revision Decreases 0 1 1 1 1 1 2009-2014 Sales 0 0 4 0 0 0 2009-2014 Acquisitions 0 0 4 0 0 0 2009-2014 Extensions 0 0 0 0 0 0 2009-2014 New Field Discoveries 0 0 0 0 0 0 2009-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 0 0 2009-2014 Estimated Production 1 1 1 1 1

  19. TX, RRC District 5 Natural Gas Reserves Summary as of Dec. 31

    U.S. Energy Information Administration (EIA) (indexed site)

    22,623 24,694 28,187 17,640 19,531 18,155 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 22,602 24,686 28,147 17,587 19,354 17,970 1979-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 21 8 40 53 177 185 1979-2014 Dry Natural Gas 22,343 24,363 27,843 17,331 19,280 17,880

  20. TX, RRC District 5 Nonassociated Natural Gas Proved Reserves, Wet After

    U.S. Energy Information Administration (EIA) (indexed site)

    Lease Separation 22,602 24,686 28,147 17,587 19,354 17,970 1979-2014 Adjustments 130 65 646 -951 207 -46 1979-2014 Revision Increases 1,921 1,596 3,708 338 3,185 723 1979-2014 Revision Decreases 1,412 1,290 2,182 8,291 739 1,435 1979-2014 Sales 32 1 10,683 539 94 609 2000-2014 Acquisitions 281 5 10,823 274 581 1,207 2000-2014 Extensions 3,029 3,504 3,071 384 188 195 1979-2014 New Field Discoveries 0 0 2 0 0 0 1979-2014 New Reservoir Discoveries in Old Fields 0 0 0 3 24 0 1979-2014 Estimated