National Library of Energy BETA

Sample records for food products aluminum

  1. RECOVERY OF ALUMINUM FROM FISSION PRODUCTS

    DOEpatents

    Blanco, R.E.; Higgins, I.R.

    1962-11-20

    A method is given for recovertng aluminum values from aqueous solutions containing said values together with fission products. A mixture of Fe/sub 2/O/ sub 3/ and MnO/sub 2/ is added to a solution containing aluminum and fission products. The resulting aluminum-containing supernatant is then separated from the fission product-bearing metal oxide precipitate and is contacted with a cation exchange resin. The aluminum sorbed on the resin is then eluted and recovered. (AEC)

  2. Ultrahigh-Efficiency Aluminum Production Cells

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Ultrahigh-Efficiency Aluminum Production Cells Saving Energy and Reducing Carbon Emissions with Cell Redesign and Novel Electrolytes This project will develop a multipolar aluminum electrolysis cell technology with an inert anode, a wetted cathode design, a novel low-temperature electrolyte, and advanced sensors and controls. These advancements will save energy, reduce greenhouse gas emissions, cut aluminum production costs, and increase productivity. Introduction Aluminum is an indispensable

  3. Production of aluminum metal by electrolysis of aluminum sulfide

    DOEpatents

    Minh, Nguyen Q.; Loutfy, Raouf O.; Yao, Neng-Ping

    1984-01-01

    Production of metallic aluminum by the electrolysis of Al.sub.2 S.sub.3 at 700.degree.-800.degree. C. in a chloride melt composed of one or more alkali metal chlorides, and one or more alkaline earth metal chlorides and/or aluminum chloride to provide improved operating characteristics of the process.

  4. Ultrahigh-Efficiency Aluminum Production Cells | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Ultrahigh-Efficiency Aluminum Production Cells Ultrahigh-Efficiency Aluminum Production Cells ultrahi-eff_aluminum.pdf (512.14 KB) More Documents & Publications U.S. Energy Requirements for Aluminum Production WA_98_001_REYNOLDS_METALS_COMPANY_Waiver_of_Domestic_and_For.pdf ITP Aluminum: Inert Anodes Roadmap

  5. Carbothermic Aluminum Production Using Scrap Aluminum As A Coolant

    DOEpatents

    LaCamera, Alfred F.

    2002-11-05

    A process for producing aluminum metal by carbothermic reduction of alumina ore. Alumina ore is heated in the presence of carbon at an elevated temperature to produce an aluminum metal body contaminated with about 10-30% by wt. aluminum carbide. Aluminum metal or aluminum alloy scrap then is added to bring the temperature to about 900-1000.degree. C. and precipitate out aluminum carbide. The precipitated aluminum carbide is filtered, decanted, or fluxed with salt to form a molten body having reduced aluminum carbide content.

  6. U.S. Energy Requirements for Aluminum Production | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Requirements for Aluminum Production U.S. Energy Requirements for Aluminum Production Historical Perspective, Theoretical Limits, and Current Practices. U.S. Energy Requirements for Aluminum Production (February 2007) (3.04 MB) More Documents & Publications Ultrahigh-Efficiency Aluminum Production Cells ITP Aluminum: Aluminum Industry Technology Roadmap ITP Aluminum: Aluminum Industry Vision: Sustainable Solutions for a Dynamic World

  7. Aluminum

    Energy.gov [DOE]

    U.S. aluminum producers recognize that energy efficiency offers a competitive edge in world markets. The aluminum industry has worked with AMO to develop a range of resources that can help to increase energy efficiency and lower carbon emissions. Analytical Studies & Other Publications Manufacturing Energy and Carbon Footprints provide a mapping of energy use, energy loss, and carbon emissions for selected industry sectors. U.S. Energy Requirements for Aluminum Production, Historical Perspective, Theoretical Limits, and New Opportunities (2007)

  8. Magnesium Replacement of Aluminum Cast Components in a Production...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Replacement of Aluminum Cast Components in a Production V6 Engine to Effect Cost-Effective Mass Reduction Magnesium Replacement of Aluminum Cast Components in a Production V6 ...

  9. Production of aluminum metal by electrolysis of aluminum sulfide

    DOEpatents

    Minh, N.Q.; Loutfy, R.O.; Yao, N.P.

    1982-04-01

    Metallic aluminum may be produced by the electrolysis of Al/sub 2/S/sub 3/ at 700 to 800/sup 0/C in a chloride melt composed of one or more alkali metal chlorides, and one or more alkaline earth metal chlorides and/or aluminum chloride to provide improved operating characteristics of the process.

  10. Production of anhydrous aluminum chloride composition

    DOEpatents

    Vandergrift, G.F. III; Krumpelt, M.; Horwitz, E.P.

    1981-10-08

    A process is described for producing an anhydrous aluminum chloride composition from a water-based aluminous material such as a slurry of aluminum hydroxide in a multistage extraction process in which the aluminum ion is first extracted into an organic liquid containing an acidic extractant and then extracted from the organic phase into an alkali metal chloride or chlorides to form a melt containing a mixture of chlorides of alkali metal and aluminum. In the process, the organic liquid may be recycled. In addition, the process advantageously includes an electrolysis cell for producing metallic aluminum and the alkali metal chloride or chlorides may be recycled for extraction of the aluminum from the organic phase.

  11. Commonwealth Aluminum: Manufacturer Conducts Plant-Wide Energy Assessments at Two Aluminum Sheet Production Operations

    Energy.gov [DOE]

    This case study describes how Commonwealth Industries (now Aleris Rolled Products) conducted plant-wide energy assessments at its aluminum sheet rolling mills in Lewisport, Kentucky, and Uhrichsville, Ohio, to improve process and energy efficiency.

  12. Electrolytic Cell For Production Of Aluminum From Alumina

    DOEpatents

    Bradford, Donald R; Barnett, Robert J.; Mezner, Michael B.

    2004-11-02

    An electrolytic cell for producing aluminum from alumina having a reservoir for collecting molten aluminum remote from the electrolysis.

  13. Electricity in the production of metals: From aluminum to zinc

    SciTech Connect

    Evans, J.W.

    1995-04-01

    This article treats some electrometallurgical and electromagnetic metals. but it opens with an examination of whether there is ``electricity`` (i.e., vitality) in the primary metals industries, particularly within the United States of America. That question is examined in terms of the economics of two examples: aluminum and zinc. Then, three examples are provided of potential improvements in the production of metals arising front industrial and university research: use of new electrode materials in Hall-Heroult cells to reduce energy consumption in aluminum smelting, the fluidized bed electrowinning of copper and other metals, and the employment of electromagnetic forces in metals processing, particularly electromagnetic casting. The article concludes with observations on the paucity of United States support for research and development (R and D) in primary metals production, compared with that of the industrial activities and of other nations. and suggests a prognosis for the future of arcade research and teaching in extractive and process metallurgy.

  14. Production of sodium-22 from proton irradiated aluminum

    DOEpatents

    Taylor, Wayne A.; Heaton, Richard C.; Jamriska, David J.

    1996-01-01

    A process for selective separation of sodium-22 from a proton irradiated minum target including dissolving a proton irradiated aluminum target in hydrochloric acid to form a first solution including aluminum ions and sodium ions, separating a portion of the aluminum ions from the first solution by crystallization of an aluminum salt, contacting the remaining first solution with an anion exchange resin whereby ions selected from the group consisting of iron and copper are selectively absorbed by the anion exchange resin while aluminum ions and sodium ions remain in solution, contacting the solution with an cation exchange resin whereby aluminum ions and sodium ions are adsorbed by the cation exchange resin, and, contacting the cation exchange resin with an acid solution capable of selectively separating the adsorbed sodium ions from the cation exchange resin while aluminum ions remain adsorbed on the cation exchange resin is disclosed.

  15. Updated Life-Cycle Assessment of Aluminum Production and Semi-fabrication for the GREET Model

    SciTech Connect

    Dai, Qiang; Kelly, Jarod C.; Burnham, Andrew; Elgowainy, Amgad

    2015-09-01

    This report serves as an update for the life-cycle analysis (LCA) of aluminum production based on the most recent data representing the state-of-the-art of the industry in North America. The 2013 Aluminum Association (AA) LCA report on the environmental footprint of semifinished aluminum products in North America provides the basis for the update (The Aluminum Association, 2013). The scope of this study covers primary aluminum production, secondary aluminum production, as well as aluminum semi-fabrication processes including hot rolling, cold rolling, extrusion and shape casting. This report focuses on energy consumptions, material inputs and criteria air pollutant emissions for each process from the cradle-to-gate of aluminum, which starts from bauxite extraction, and ends with manufacturing of semi-fabricated aluminum products. The life-cycle inventory (LCI) tables compiled are to be incorporated into the vehicle cycle model of Argonne National Laboratory’s Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) Model for the release of its 2015 version.

  16. Electrolytic production of high purity aluminum using ceramic inert anodes

    DOEpatents

    Ray, Siba P.; Liu, Xinghua; Weirauch, Douglas A.; DiMilia, Robert A.; Dynys, Joseph M.; Phelps, Frankie E.; LaCamera, Alfred F.

    2002-01-01

    A method of producing commercial purity aluminum in an electrolytic reduction cell comprising ceramic inert anodes is disclosed. The method produces aluminum having acceptable levels of Fe, Cu and Ni impurities. The ceramic inert anodes used in the process may comprise oxides containing Fe and Ni, as well as other oxides, metals and/or dopants.

  17. Electrolytic production of high purity aluminum using inert anodes

    DOEpatents

    Ray, Siba P.; Liu, Xinghua; Weirauch, Jr., Douglas A.

    2001-01-01

    A method of producing commercial purity aluminum in an electrolytic reduction cell comprising inert anodes is disclosed. The method produces aluminum having acceptable levels of Fe, Cu and Ni impurities. The inert anodes used in the process preferably comprise a cermet material comprising ceramic oxide phase portions and metal phase portions.

  18. Dr Writer s Food Products Pvt Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Dr Writer s Food Products Pvt Ltd Jump to: navigation, search Name: Dr. Writer(tm)s Food Products Pvt. Ltd. Place: Mumbai, Maharashtra, India Sector: Biomass Product:...

  19. Final Technical Report Microwave Assisted Electrolyte Cell for Primary Aluminum Production

    SciTech Connect

    Xiaodi Huang; J.Y. Hwang

    2007-04-18

    This research addresses the high priority research need for developing inert anode and wetted cathode technology, as defined in the Aluminum Industry Technology Roadmap and Inert Anode Roadmap, with the performance targets: a) significantly reducing the energy intensity of aluminum production, b) ultimately eliminating anode-related CO2 emissions, and c) reducing aluminum production costs. This research intended to develop a new electrometallurgical extraction technology by introducing microwave irradiation into the current electrolytic cells for primary aluminum production. This technology aimed at accelerating the alumina electrolysis reduction rate and lowering the aluminum production temperature, coupled with the uses of nickel based superalloy inert anode, nickel based superalloy wetted cathode, and modified salt electrolyte. Michigan Technological University, collaborating with Cober Electronic and Century Aluminum, conducted bench-scale research for evaluation of this technology. This research included three sub-topics: a) fluoride microwave absorption; b) microwave assisted electrolytic cell design and fabrication; and c) aluminum electrowinning tests using the microwave assisted electrolytic cell. This research concludes that the typically used fluoride compound for aluminum electrowinning is not a good microwave absorbing material at room temperature. However, it becomes an excellent microwave absorbing material above 550C. The electrowinning tests did not show benefit to introduce microwave irradiation into the electrolytic cell. The experiments revealed that the nickel-based superalloy is not suitable for use as a cathode material; although it wets with molten aluminum, it causes severe reaction with molten aluminum. In the anode experiments, the chosen superalloy did not meet corrosion resistance requirements. A nicked based alloy without iron content could be further investigated.

  20. Carbonaceous cathode with enhanced wettability for aluminum production

    DOEpatents

    Keller, Rudolf; Gatty, David G.; Barca, Brian J.

    2003-09-09

    A method of preparing carbonaceous blocks or bodies for use in a cathode in an electrolytic cell for producing aluminum wherein the cell contains an electrolyte and has molten aluminum contacting the cathode, the cathode having improved wettability with molten aluminum. The method comprises the steps of providing a carbonaceous block and a boron oxide containing melt. The carbonaceous block is immersed in the melt and pressure is applied to the melt to impregnate the melt into pores in the block. Thereafter, the carbonaceous block is withdrawn from the melt, the block having boron oxide containing melt intruded into pores therein, the boron oxide capable of reacting with a source of titanium or zirconium or like metal to form titanium or zirconium diboride during heatup or operation of said cell.

  1. Electrolytic Cell For Production Of Aluminum Employing Planar Anodes.

    DOEpatents

    Barnett, Robert J.; Mezner, Michael B.; Bradford, Donald R

    2004-10-05

    A method of producing aluminum in an electrolytic cell containing alumina dissolved in an electrolyte, the method comprising providing a molten salt electrolyte having alumina dissolved therein in an electrolytic cell. A plurality of anodes and cathodes having planar surfaces are disposed in a generally vertical orientation in the electrolyte, the anodes and cathodes arranged in alternating or interleaving relationship to provide anode planar surfaces disposed opposite cathode planar surfaces, the anode comprised of carbon. Electric current is passed through anodes and through the electrolyte to the cathodes depositing aluminum at the cathodes and forming carbon containing gas at the anodes.

  2. Comparing Laser Welding Technologies with Friction Stir Welding for Production of Aluminum Tailor-Welded Blanks

    SciTech Connect

    Hovanski, Yuri; Carsley, John; Carlson, Blair; Hartfield-Wunsch, Susan; Pilli, Siva Prasad

    2014-01-15

    A comparison of welding techniques was performed to determine the most effective method for producing aluminum tailor-welded blanks for high volume automotive applications. Aluminum sheet was joined with an emphasis on post weld formability, surface quality and weld speed. Comparative results from several laser based welding techniques along with friction stir welding are presented. The results of this study demonstrate a quantitative comparison of weld methodologies in preparing tailor-welded aluminum stampings for high volume production in the automotive industry. Evaluation of nearly a dozen welding variations ultimately led to down selecting a single process based on post-weld quality and performance.

  3. Energy Assessment Helps Kaiser Aluminum Save Energy and Improve Productivity

    Energy.gov [DOE]

    This case study describes how a DOE energy assessment at Kaiser Aluminum's extrusion plant in Sherman, Texas, identified significant potential energy savings in its process heating systems. Employees at the Sherman plant wasted no time moving forward with assessment recommendations. First, they adjusted burner controls on one of the main reverberatory melting furnaces to lower excess oxygen levels. They also made some repairs to the furnace’s door sill and jamb to prevent cold air from seeping into it. By implementing these measures the plant achieved annual energy savings of approximately 45,000 MMBtu and improved the furnace’s energy intensity by 11.1% between 2006 and 2007. With project costs of approximately $28,000 and energy cost savings of $360,000, the simple payback was under 1 month.

  4. Target designs for Accelerator Production of Tritium (APT) utilizing lithium-aluminum

    SciTech Connect

    Todosow, M.; Van Tuyle, G.J.

    1996-03-01

    A number of accelerator-driven spallation neutron-source target/blanket systems have been developed for production of tritium under the APT Program. The two systems described in this paper employ a proton linear accelerator, and a target which contains a heavy-metal(s) for the production of neutrons via spallation, and solid lithium-aluminum for the production of tritium via neutron capture. lie lithium-aluminum technology is based on that employed at Savannah River for tritium production since the 1950`s. In the APT concept tritium is produced without the presence of fissionable materials; therefore, no high-level waste is produced, and the ES&H concerns are significantly reduced compared to reactor systems.

  5. Method And Reactor For Production Of Aluminum By Carbothermic Reduction Of Alumina

    DOEpatents

    Aune, Jan Arthur; Johansen, Kai

    2004-10-19

    A hollow partition wall is employed to feed carbon material to an underflow of a carbothermic reduction furnace used to make aluminum. The partition wall divides a low temperature reaction zone where aluminum oxide is reacted with carbon to form aluminum carbide and a high temperature reaction zone where the aluminum carbide and remaining aluminum oxide are reacted to form aluminum and carbon monoxide.

  6. Process for recovery of aluminum from carbonaceous waste products

    SciTech Connect

    Kapolyi, L.

    1984-03-13

    A carbonaceous waste product, preferably containing 30 to 60% mineral substances, 35 to 55% carbonaceous materials, 5 to 20% water, and having a calorific value of 2,000 to 3,500 k cal/kg is fired to produce thermal energy and a combustion residue. The residue is adjusted, if necessary, by addition of mineral containing additives so that it contains 15 to 50% alumina, 15 to 20% silica and 13 to 45% other oxides (mainly iron oxide, manganese oxide and calcium oxide). Sufficient limestone is added to produce a mixture containing 1.8 to 2.2 moles of calcium oxide per mole of silica and 1.1 to 1.3 moles of calcium oxide per mole of alumina. The mixture is then sintered. The total energy requirements of the sintering step are supplied by the energy generated in the firing step. Useful products such as cement and cast stone can be produced from the sintered product.

  7. Chloride-free processing of aluminum scrap to recover by-product materials

    SciTech Connect

    Riley, W.D.; Jong, B.W.

    1995-12-31

    The US Bureau of Mines has developed technology to recover by-product materials from aluminum scrap using engineered scavenger compounds (ESC). ESCs are structural oxides with a channel or tunnel structure that allows them to hold ions of a specific sizes and charges. The scavenging reaction is easily reversible allowing the ESC to be recharged for continued use and the ion is recovered as an electrodeposit. Key features of this novel technology are: (a) ESC systems are designed to have a high degree of selectivity for a desired ionic species. (b) The recovered material requires little or no additional reprocessing prior to reuse. Two current uses for the ESC technology that are described in this paper are the removal and recycle of lithium (Li) from lithium aluminum (Li-Al) alloys; and, using ESCs as a replacement for the conventional demaging (magnesium removal) technology used by the secondary casting industry. Research indicates that the ESC technology proposed for both these applications has either distinct economic and/or environmental advantages over previously employed methods of recovering metal values from aluminum scrap.

  8. Ethanol: Producting Food, Feed, and Fuel

    Energy.gov [DOE]

    At the August 7, 2008 joint quarterly Web conference of DOE's Biomass and Clean Cities programs, Todd Sneller (Nebraska Ethanol Board) discussed the food versus fuel issue.

  9. Covered Product Category: Hot Food Holding Cabinets

    Energy.gov [DOE]

    The Federal Energy Management Program (FEMP) provides acquisition guidance for hot food holding cabinets, which are covered by the ENERGY STAR program.

  10. Inert anode containing base metal and noble metal useful for the electrolytic production of aluminum

    DOEpatents

    Ray, Siba P.; Liu, Xinghua

    2000-01-01

    An inert anode for production of metals such as aluminum is disclosed. The inert anode comprises a base metal selected from Cu and Ag, and at least one noble metal selected from Ag, Pd, Pt, Au, Rh, Ru, Ir and Os. The inert anode may optionally be formed of sintered particles having interior portions containing more base metal than noble metal and exterior portions containing more noble metal than base metal. In a preferred embodiment, the base metal comprises Cu, and the noble metal comprises Ag, Pd or a combination thereof.

  11. Production of anhydrous aluminum chloride composition and process for electrolysis thereof

    DOEpatents

    Vandegrift, George F.; Krumpelt, Michael; Horwitz, E. Philip

    1983-01-01

    A process for producing an anhydrous aluminum chloride composition from a water-based aluminous material such as a slurry of aluminum hydroxide in a multistage extraction process in which the aluminum ion is first extracted into an organic liquid containing an acidic extractant and then extracted from the organic phase into an alkali metal chloride or chlorides to form a melt containing a mixture of chlorides of alkali metal and aluminum. In the process, the organic liquid may be recycled. In addition, the process advantageously includes an electrolysis cell for producing metallic aluminum and the alkali metal chloride or chlorides may be recycled for extraction of the aluminum from the organic phase.

  12. Cerium-based, intermetallic-strengthened aluminum casting alloy: High-volume co-product development

    DOE PAGES [OSTI]

    Sims, Zachary C.; Weiss, D.; McCall, S. K.; McGuire, M. A.; Ott, R. T.; Geer, Tom; Rios, Orlando; Turchi, P. A. E.

    2016-05-23

    Here, several rare earth elements are considered by-products to rare earth mining efforts. By using one of these by-product elements in a high-volume application such as aluminum casting alloys, the supply of more valuable rare earths can be globally stabilized. Stabilizing the global rare earth market will decrease the long-term criticality of other rare earth elements. The low demand for Ce, the most abundant rare earth, contributes to the instability of rare earth extraction. In this article, we discuss a series of intermetallic-strengthened Al alloys that exhibit the potential for new high-volume use of Ce. The castability, structure, and mechanicalmore » properties of binary, ternary, and quaternary Al-Ce based alloys are discussed. We have determined Al-Ce based alloys to be highly castable across a broad range of compositions. Nanoscale intermetallics dominate the microstructure and are the theorized source of the high ductility. In addition, room-temperature physical properties appear to be competitive with existing aluminum alloys with extended high-temperature stability of the nanostructured intermetallic.« less

  13. Pechiney Rolled Products: Plant-Wide Energy Assessment Identifies Opportunities to Optimize Aluminum Casting and Rolled Operations

    SciTech Connect

    2004-07-01

    A Pechiney Rolled Products plant focused on various aluminum casting processes during a PWA. The assessment revealed potential annual savings of 460,000 MMBtu in natural gas, 9.6 million kWh in electricity, 69 million pounds in CO2, and $2.5 million.

  14. Commonwealth Aluminum: Manufacturer Conducts Plant-Wide Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Commonwealth Aluminum: Manufacturer Conducts Plant-Wide Energy Assessments at Two Aluminum Sheet Production Operations Commonwealth Aluminum: Manufacturer Conducts Plant-Wide ...

  15. ITP Aluminum: Inert Anodes Roadmap

    Office of Energy Efficiency and Renewable Energy (EERE)

    Aluminum is one of the most versatile materials available today that can meet the demanding requirements of tomorrow's products.

  16. Al/sub 2/S/sub 3/ preparation and use in electrolysis process for aluminum production

    DOEpatents

    Hsu, C.C.; Loutfy, R.O.; Yao, N.P.

    A continuous process for producing aluminum sulfide and for electrolyzing the aluminum sulfide to form metallic aluminum in which the aluminum sulfide is produced from aluminum oxide and COS or CS/sub 2/ in the presence of a chloride melt which also serves as the electrolysis bath. Circulation between the reactor and electrolysis cell is carried out to maintain the desired concentration of aluminum sulfide in the bath.

  17. Production of degradable polymers from food-waste streams

    SciTech Connect

    Tsai, S.P.: Coleman, R.D.; Bonsignore, P.V.; Moon, S.H.

    1992-01-01

    In the United States, billions of pounds of cheese whey permeate and approximately 10 billion pounds of potatoes processed each year are typically discarded or sold as cattle feed at $3{endash}6/ton; moreover, the transportation required for these means of disposal can be expensive. As a potential solution to this economic and environmental problem, Argonne National Laboratory is developing technology that: Biologically converts existing food-processing waste streams into lactic acid and uses lactic acid for making environmentally safe, degradable polylactic acid (PLA) and modified PLA plastics and coatings. An Argonne process for biologically converting high-carbohydrate food waste will not only help to solve a waste problem for the food industry, but will also save energy and be economically attractive. Although the initial substrate for Argonne's process development is potato by-product, the process can be adapted to convert other food wastes, as well as corn starch, to lactic acid. Proprietary technology for biologically converting greater than 90% of the starch in potato wastes to glucose has been developed. Glucose and other products of starch hydrolysis are subsequently fermented by bacteria that produce lactic acid. The lactic acid is recovered, concentrated, and further purified to a polymer-grade product.

  18. Production of degradable polymers from food-waste streams

    SciTech Connect

    Tsai, S.P.: Coleman, R.D.; Bonsignore, P.V.; Moon, S.H.

    1992-07-01

    In the United States, billions of pounds of cheese whey permeate and approximately 10 billion pounds of potatoes processed each year are typically discarded or sold as cattle feed at $3{endash}6/ton; moreover, the transportation required for these means of disposal can be expensive. As a potential solution to this economic and environmental problem, Argonne National Laboratory is developing technology that: Biologically converts existing food-processing waste streams into lactic acid and uses lactic acid for making environmentally safe, degradable polylactic acid (PLA) and modified PLA plastics and coatings. An Argonne process for biologically converting high-carbohydrate food waste will not only help to solve a waste problem for the food industry, but will also save energy and be economically attractive. Although the initial substrate for Argonne`s process development is potato by-product, the process can be adapted to convert other food wastes, as well as corn starch, to lactic acid. Proprietary technology for biologically converting greater than 90% of the starch in potato wastes to glucose has been developed. Glucose and other products of starch hydrolysis are subsequently fermented by bacteria that produce lactic acid. The lactic acid is recovered, concentrated, and further purified to a polymer-grade product.

  19. (Polyfluoroaryl) fluoroanions of aluminum, gallium, and indium of enhanced utility, uses thereof, and products based thereon

    DOEpatents

    Marks, Tobin J.; Chen, You-Xian

    2002-01-01

    The (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium are novel weakly coordinating anions which are highly fluorinated. (Polyfluoroaryl)fluoroanions of one such type contain at least one ring substituent other than fluorine. These (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium have greater solubility in organic solvents, or have a coordinative ability essentially equal to or less than that of the corresponding (polyfluoroaryl)fluoroanion of aluminum, gallium, or indium in which the substituent is replaced by fluorine. Another type of new (polyfluoroaryl)fluoroanion of aluminum, gallium, and indium have 1-3 perfluorinated fused ring groups and 2-0 perfluorophenyl groups. When used as a cocatalyst in the formation of novel catalytic complexes with d- or f-block metal compounds having at least one leaving group such as a methyl group, these anions, because of their weak coordination to the metal center, do not interfere in the ethylene polymerization process, while affecting the propylene process favorably, if highly isotactic polypropylene is desired. Thus, the (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium of this invention are useful in various polymerization processes such as are described.

  20. (Polyfluoroaryl) fluoroanions of aluminum, gallium, and indium of enhanced utility, uses thereof, and products based thereon

    DOEpatents

    Marks, Tobin J.; Chen, You-Xian

    2001-01-01

    The (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium are novel weakly coordinating anions which are highly fluorinated. (Polyfluoroaryl)fluoroanions of one such type contain at least one ring substituent other than fluorine. These (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium have greater solubility in organic solvents, or have a coordinative ability essentially equal to or less than that of the corresponding (polyfluoroaryl)fluoroanion of aluminum, gallium, or indium in which the substituent is replaced by fluorine. Another type of new (polyfluoroaryl)fluoroanion of aluminum, gallium, and indium have 1-3 perfluorinated fused ring groups and 2-0 perfluorophenyl groups. When used as a cocatalyst in the formation of novel catalytic complexes with d- or f-block metal compounds having at least one leaving group such as a methyl group, these anions, because of their weak coordination to the metal center, do not interfere in the ethylene polymerization process, while affecting the propylene process favorably, if highly isotactic polypropylene is desired. Thus, the (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium of this invention are useful in various polymerization processes such as are described.

  1. Reduced temperature aluminum production in an electrolytic cell having an inert anode

    DOEpatents

    Dawless, Robert K.; Ray, Siba P.; Hosler, Robert B.; Kozarek, Robert L.; LaCamera, Alfred F.

    2000-01-01

    Aluminum is produced by electrolytic reduction of alumina in a cell having a cathode, an inert anode and a molten salt bath containing metal fluorides and alumina. The inert anode preferably contains copper, silver and oxides of iron and nickel. Reducing the molten salt bath temperature to about 900-950.degree. C. lowers corrosion on the inert anode constituents.

  2. Energy production from food industry wastewaters using bioelectrochemical cells

    SciTech Connect

    Hamilton, Choo Yieng

    2009-01-01

    Conversion of waste and renewable resources to energy using microbial fuel cells (MFCs) is an upcoming technology for enabling a cleaner and sustainable environment. This paper assesses the energy production potential from the US food industry wastewater resource. It also reports on an experimental study investigating conversion of wastewater from a local milk dairy plant to electricity. An MFC anode biocatalyst enriched on model sugar and organic acid substrates was used as the inoculum for the dairy wastewater MFC. The tests were conducted using a two-chamber MFC with a porous three dimensional anode and a Pt/C air-cathode. Power densities up to 690 mW/m2 (54 W/m3) were obtained. Analysis of the food industry wastewater resource indicated that MFCs can potentially recover 2 to 260 kWh/ton of food processed from wastewaters generated during food processing, depending on the biological oxygen demand and volume of water used in the process. A total of 1960 MW of power can potentially be produced from US milk industry wastewaters alone. Hydrogen is an alternate form of energy that can be produced using bioelectrochemical cells. Approximately 2 to 270 m3 of hydrogen can be generated per ton of the food processed. Application of MFCs for treatment of food processing wastewaters requires further investigations into electrode design, materials, liquid flow management, proton transfer, organic loading and scale-up to enable high power densities at the larger scale. Potential for water recycle also exists, but requires careful consideration of the microbiological safety and regulatory aspects and the economic feasibility of the process.

  3. Energy Assessment Helps Kaiser Aluminum Save Energy and Improve...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Helps Kaiser Aluminum Save Energy and Improve Productivity Energy Assessment Helps Kaiser Aluminum Save Energy and Improve Productivity This case study describes how a DOE energy ...

  4. Photo-ionization of aluminum in a hot cavity for the selective production of exotic species project

    SciTech Connect

    Scarpa, D. Corradetti, S.; Manzolaro, M.; Vasquez, J.; Calderolla, M.; Rossignoli, M.; Monetti, A.; Andrighetto, A.; Prete, G.; Makhathini, L.; Tomaselli, A.; Grassi, D.

    2014-02-15

    SPES (Selective Production of Exotic Species) is an Isotope Separation On-Line (ISOL) based accelerator facility that will be built in the Legnaro-Istituto Nazionale di Fisica Nucleare (INFN) Laboratory (Italy), intended to provide intense neutron-rich radioactive ion beams obtained by proton-induced fission of a uranium carbide (UCx) target. Besides this main target material, silicon carbide (SiC) will be the first to be used to deliver p-rich beams. This target will also validate the functionality of the SPES facility with aluminum beam as result of impinging SiC target with proton beam. In the past, off line studies on laser photoionization of aluminum have been performed in Pavia Spectroscopy Laboratory and in Laboratori Nazionali di Legnaro; a XeCl excimer laser was installed in order to test the laser ionization in the SPES hot cavity. With the new Wien filter installed a better characterization of the ionization process in terms of efficiency was performed and results are discussed.

  5. Phase III Advanced Anodes and Cathodes Utilized in Energy Efficient Aluminum Production Cells

    SciTech Connect

    R.A. Christini; R.K. Dawless; S.P. Ray; D.A. Weirauch, Jr.

    2001-11-05

    During Phase I of the present program, Alcoa developed a commercial cell concept that has been estimated to save 30% of the energy required for aluminum smelting. Phase ii involved the construction of a pilot facility and operation of two pilots. Phase iii of the Advanced Anodes and Cathodes Program was aimed at bench experiments to permit the resolution of certain questions to be followed by three pilot cells. All of the milestones related to materials, in particular metal purity, were attained with distinct improvements over work in previous phases of the program. NiO additions to the ceramic phase and Ag additions to the Cu metal phase of the cermet improved corrosion resistance sufficiently that the bench scale pencil anodes met the purity milestones. Some excellent metal purity results have been obtained with anodes of the following composition: Further improvements in anode material composition appear to be dependent on a better understanding of oxide solubilities in molten cryolite. For that reason, work was commissioned with an outside consultant to model the MeO - cryolite systems. That work has led to a better understanding of which oxides can be used to substitute into the NiO-Fe2O3 ceramic phase to stabilize the ferrites and reduce their solubility in molten cryolite. An extensive number of vertical plate bench electrolysis cells were run to try to find conditions where high current efficiencies could be attained. TiB2-G plates were very inconsistent and led to poor wetting and drainage. Pure TiB2 did produce good current efficiencies at small overlaps (shadowing) between the anodes and cathodes. This bench work with vertical plate anodes and cathodes reinforced the importance of good cathode wetting to attain high current efficiencies. Because of those conclusions, new wetting work was commissioned and became a major component of the research during the third year of Phase III. While significant progress was made in several areas, much work needs to be

  6. Understanding composite explosive energetics: 4. Reactive flow modeling of aluminum reaction kinetics in PETN and TNT using normalized product equation of state

    SciTech Connect

    Tao, W.C.; Tarver, C.M.; Kury, J.W.; Lee, C.G.; Ornellas, D.L.

    1993-07-01

    Using Fabry-Perot interferometry techniques, we have determined the early time rate of energy release from detonating PETN and TNT explosives filled with 5 to 20 wt % of either 5 {mu}m or 18 {mu}m spherical aluminum with the detonation products, and calculate the extent of reaction at 1--3 {mu}s after the detonation. All of the metal in PETN formulations filled with 5 wt % and 10 wt % of either 5 {mu}m or 18 {mu}m aluminum reacted within 1.5 {mu}s, resulting in an increase of 18--22% in energy compared to pure PETN. For TNT formulations, between 5 to 10 wt % aluminum reacts completely with the same timeframe. A reactive flow hydrodynamic code model based on the Zeldovich-von Neumann-Doring (ZND) description of the reaction zone and subsequent reaction product expansion (Taylor wave) is used to address the reaction rate of the aluminum particles with detonation product gases. The detonation product JWL equation of state is derived from that of pure PETN using a parametric normalization methodology.

  7. ITP Aluminum: Aluminum Industry Vision: Sustainable Solutions...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Aluminum Industry Vision: Sustainable Solutions for a Dynamic World ITP Aluminum: Aluminum Industry Vision: Sustainable Solutions for a Dynamic World alumvision.pdf (938.86 KB) ...

  8. NNSA Production Office donates 50,177 pounds of food for Feds Feed Families

    National Nuclear Security Administration (NNSA)

    campaign | National Nuclear Security Administration | (NNSA) NNSA Production Office donates 50,177 pounds of food for Feds Feed Families campaign September 09, 2016 Amarillo, Texas -- Employees of the National Nuclear Security Administration Production Office (NPO) have donated 50,177pounds of food as part of the annual U.S. Department of Energy's Feds Feed Families (FFF) campaign. The amount of food donated is almost double the amount donated in the 2015 campaign and continues NPO's

  9. Method of production of pure hydrogen near room temperature from aluminum-based hydride materials

    DOEpatents

    Pecharsky, Vitalij K.; Balema, Viktor P.

    2004-08-10

    The present invention provides a cost-effective method of producing pure hydrogen gas from hydride-based solid materials. The hydride-based solid material is mechanically processed in the presence of a catalyst to obtain pure gaseous hydrogen. Unlike previous methods, hydrogen may be obtained from the solid material without heating, and without the addition of a solvent during processing. The described method of hydrogen production is useful for energy conversion and production technologies that consume pure gaseous hydrogen as a fuel.

  10. The use of aluminum nitride to improve Aluminum-26 Accelerator Mass

    Office of Scientific and Technical Information (OSTI)

    Spectrometry measurements and production of Radioactive Ion Beams (Journal Article) | SciTech Connect Journal Article: The use of aluminum nitride to improve Aluminum-26 Accelerator Mass Spectrometry measurements and production of Radioactive Ion Beams Citation Details In-Document Search This content will become publicly available on October 5, 2017 Title: The use of aluminum nitride to improve Aluminum-26 Accelerator Mass Spectrometry measurements and production of Radioactive Ion Beams

  11. (Polyfluoroaryl)fluoroanions of aluminum, gallium, and indium of enhanced utility, uses thereof, and products based thereon

    DOEpatents

    Marks, Tobin J.; Chen, You-Xian

    2001-01-01

    The (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium are novel weakly coordinating anions which are are highly fluorinated. (Polyfluoroaryl)fluoroanions of one such type contain at least one ring substituent other than fluorine. These (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium have greater solubility in organic solvents, or have a coordinative ability essentially equal to or less than that of the corresponding (polyfluoroaryl)fluoroanion of aluminum, gallium, or indium in which the substituent is replaced by fluorine. Another type of new (polyfluoroaryl)fluoroanion of aluminum, gallium, and indium have 1-3 perfluorinated fused ring groups and 2-0 perfluorophenyl groups. When used as a cocatalyst in the formation of novel catalytic complexes with d- or f-block metal compounds having at least one leaving group such as a methyl group, these anions, because of their weak coordination to the metal center, do not interefere in the ethylene polymerization process, while affecting the the propylene process favorably, if highly isotactic polypropylene is desired. Thus, the (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium of this invention are useful in various polymerization processes such as are described.

  12. Reduction of Carbon Footprint and Energy Efficiency Improvement in Aluminum Production by Use of Novel Wireless Instrumentation Integrated with Mathematical Modeling

    SciTech Connect

    James W. Evans

    2012-04-11

    The work addressed the greenhouse gas emission and electrical energy consumption of the aluminum industry. The objective was to provide a means for reducing both through the application of wireless instrumentation, coupled to mathematical modeling. Worldwide the aluminum industry consumes more electrical energy than all activities in many major countries (e.g. the UK) and emits more greenhouse gasses (e.g. than France). Most of these excesses are in the 'primary production' of aluminum; that is the conversion of aluminum oxide to metal in large electrolytic cells operating at hundreds of thousands of amps. An industry-specific GHG emission has been the focus of the work. The electrolytic cells periodically, but at irregular intervals, experience an upset condition known as an 'anode effect'. During such anode effects the cells emit fluorinated hydrocarbons (PFCs, which have a high global warming potential) at a rate far greater than in normal operation. Therefore curbing anode effects will reduce GHG emissions. Prior work had indicated that the distribution of electrical current within the cell experiences significant shifts in the minutes before an anode effect. The thrust of the present work was to develop technology that could detect and report this early warning of an anode effect so that the control computer could minimize GHG emissions. A system was developed to achieve this goal and, in collaboration with Alcoa, was tested on two cells at an Alcoa plant in Malaga, Washington. The project has also pointed to the possibility of additional improvements that could result from the work. Notable among these is an improvement in efficiency that could result in an increase in cell output at little extra operating cost. Prospects for commercialization have emerged in the form of purchase orders for further installations. The work has demonstrated that a system for monitoring the current of individual anodes in an aluminum cell is practical. Furthermore the system has

  13. Production of aluminum-26

    DOEpatents

    Steinkruger, Fred J.; Phillips, Dennis R.

    1991-01-01

    A method of producing Al-26 from potassium chloride by exposing it to a proton beam in order to break potassium and chlorine atoms into smaller pieces, which include Al-26. The Al-26 is isolated from the potassium chloride and other substances produced by the beam by means of extraction and ion exchange.

  14. Friction Stir Welding Aluminum for Lightweight Vehicles

    Energy.gov [DOE]

    In this video, a researcher from Pacific Northwest National Laboratory describes a new aluminum joining process and the industry partnership that enabled its use for mass auto production.

  15. Food production and consumption near the Savannah River Site

    SciTech Connect

    Hamby, D.M.

    1991-12-31

    Routine operations at the Savannah River Site (SRS) result in the release of radionuclides to the atmosphere and to the Savannah River. The resulting radiological doses to the off-site maximum individual and the 80-km population are estimated on a yearly basis. These estimates are generated using dose models prescribed in the NRC Reg. Guide 1.109 for the commercial nuclear power industry. A study of land and water usage characteristics in the region of the Savannah River Site has been conducted to determine site-specific values of the NRC dose model parameters. The study`s scope included local characteristics of meat, milk, vegetable production; Savannah River recreational activities and fish harvests; meat, milk, vegetable, and seafood consumption rates; and Savannah River drinking-water populations. Average and maximum consumption rates of beef, milk, vegetables, and fish have been determined for individuals residing in the southern United States. The study suggest that many of the consumption rates provided by the NRC may not be appropriate for residents of the South. Average consumption rates are slightly higher than the defaults provided by the NRC. Maximum consumption rates, however, are typically lower than NRC values. Agricultural productivity in the SRS region was found to be quite different than NRC recommendations. Off-site doses have been predicted using both NRC and SRS parameter values to demonstrate the significance of site-specific data.

  16. Food production and consumption near the Savannah River Site

    SciTech Connect

    Hamby, D.M.

    1991-01-01

    Routine operations at the Savannah River Site (SRS) result in the release of radionuclides to the atmosphere and to the Savannah River. The resulting radiological doses to the off-site maximum individual and the 80-km population are estimated on a yearly basis. These estimates are generated using dose models prescribed in the NRC Reg. Guide 1.109 for the commercial nuclear power industry. A study of land and water usage characteristics in the region of the Savannah River Site has been conducted to determine site-specific values of the NRC dose model parameters. The study's scope included local characteristics of meat, milk, vegetable production; Savannah River recreational activities and fish harvests; meat, milk, vegetable, and seafood consumption rates; and Savannah River drinking-water populations. Average and maximum consumption rates of beef, milk, vegetables, and fish have been determined for individuals residing in the southern United States. The study suggest that many of the consumption rates provided by the NRC may not be appropriate for residents of the South. Average consumption rates are slightly higher than the defaults provided by the NRC. Maximum consumption rates, however, are typically lower than NRC values. Agricultural productivity in the SRS region was found to be quite different than NRC recommendations. Off-site doses have been predicted using both NRC and SRS parameter values to demonstrate the significance of site-specific data.

  17. Bioaccumulation and food chain transfer of corrosion products from radioactive stainless steel

    SciTech Connect

    Young, J.S.

    1986-07-01

    Two sets of experiments were conducted to determine if corrosion products from radioactive Type 347 stainless steel could be biologically transferred from sediment through a marine food chain, and whether corrosion products dissolved in seawater could be bioaccumulated and then eliminated. Corrosion products containing /sup 60/Co and /sup 63/Ni from the radioactive stainless steel were introduced into marine sediments. Infaunal polychaete worms exposed to these sediments bioaccumulated the radionuclides. The feeding of these worms to shrimp and fish resulted in a trophic transfer of the radioactive products across a one-step food chain. The magnitude of the transfers are described in terms of transfer factors. Dissolved corrosion products as measured by the radionuclides were also bioaccumulated by shrimp and fish concentrating more than fish. Concentration factors were calculated.

  18. Method using selected carbons to react with Al2O and Al vapors in the carbothermic production of aluminum

    DOEpatents

    Fruehan, Richard J.; Li, Yun; Carkin, Gerald

    2005-02-01

    In a method for recovering Al from an off-gas (3,4) produced during carbothermic reduction of aluminum utilizing at least one smelter (1,2), the off-gas (3,4) is directed to an enclosed reactor (5) which is fed a supply of wood charcoal (7) having a porosity of from about 50 vol. % to 85 vol. % and an average pore diameter of from about 0.05 .mu.m to about 2.00 .mu.m, where the wood charcoal (7) contacts the off-gas (3,4) to produce at least Al.sub.4 C.sub.3 (6), which is passed back to the smelter (1,2).

  19. Household-level dynamics of food waste production and related beliefs, attitudes, and behaviours in Guelph, Ontario

    SciTech Connect

    Parizeau, Kate; Massow, Mike von; Martin, Ralph

    2015-01-15

    Highlights: • We combined household waste stream weights with survey data. • We examine relationships between waste and food-related practices and beliefs. • Families and large households produced more total waste, but less waste per capita. • Food awareness and waste awareness were related to reduced food waste. • Convenience lifestyles were differentially associated with food waste. - Abstract: It has been estimated that Canadians waste $27 billion of food annually, and that half of that waste occurs at the household level (Gooch et al., 2010). There are social, environmental, and economic implications for this scale of food waste, and source separation of organic waste is an increasingly common municipal intervention. There is relatively little research that assesses the dynamics of household food waste (particularly in Canada). The purpose of this study is to combine observations of organic, recyclable, and garbage waste production rates to survey results of food waste-related beliefs, attitudes, and behaviours at the household level in the mid-sized municipality of Guelph, Ontario. Waste weights and surveys were obtained from 68 households in the summer of 2013. The results of this study indicate multiple relationships between food waste production and household shopping practices, food preparation behaviours, household waste management practices, and food-related attitudes, beliefs, and lifestyles. Notably, we observed that food awareness, waste awareness, family lifestyles, and convenience lifestyles were related to food waste production. We conclude that it is important to understand the diversity of factors that can influence food wasting behaviours at the household level in order to design waste management systems and policies to reduce food waste.

  20. ITP Aluminum: Aluminum Industry Roadmap for the Automotive Market...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Aluminum Industry Roadmap for the Automotive Market (May 1999) ITP Aluminum: Aluminum Industry Roadmap for the Automotive Market (May 1999) autoroadmap.pdf (481.39 KB) More ...

  1. Electrometallurgical treatment of aluminum-based fuels.

    SciTech Connect

    Willit, J. L.

    1998-07-29

    We have successfully demonstrated aluminum electrorefining from a U-Al-Si alloy that simulates spent aluminum-based reactor fuel. The aluminum product contains less than 200 ppm uranium. All the results obtained have been in agreement with predictions based on equilibrium thermodynamics. We have also demonstrated the need for adequate stirring to achieve a low-uranium product. Most of the other process steps have been demonstrated in other programs. These include uranium electrorefining, transuranic fission product scrubbing, fission product oxidation, and product consolidation by melting. Future work will focus on the extraction of active metal and rare earth fission products by a molten flux salt and scale-up of the aluminum electrorefining.

  2. Method of winning aluminum metal from aluminous ore

    DOEpatents

    Loutfy, Raouf O.; Keller, Rudolf; Yao, Neng-Ping

    1981-01-01

    Aluminous ore such as bauxite containing alumina is blended with coke or other suitable form of carbon and reacted with sulfur gas at an elevated temperature. For handling, the ore and coke can be extruded into conveniently sized pellets. The reaction with sulfur gas produces molten aluminum sulfide which is separated from residual solid reactants and impurities. The aluminum sulfide is further increased in temperature to cause its decomposition or sublimation, yielding aluminum subsulfide liquid (AlS) and sulfur gas that is recycled. The aluminum monosulfide is then cooled to below its disproportionation temperature to again form molten aluminum sulfide and aluminum metal. A liquid-liquid or liquid-solid separation, depending on the separation temperature, provides product aluminum and aluminum sulfide for recycle to the disproportionation step.

  3. Method of winning aluminum metal from aluminous ore

    DOEpatents

    Loutfy, R.O.; Keller, R.; Yao, N.P.

    Aluminous ore such as bauxite containing alumina is blended with coke or other suitable form of carbon and reacted with sulfur gas at an elevated temperature. For handling, the ore and coke can be extruded into conveniently sized pellets. The reaction with sulfur gas produces molten aluminum sulfide which is separated from residual solid reactants and impurities. The aluminum sulfide is further increased in temperature to cause its decomposition or sublimation, yielding aluminum subsulfide liquid (A1S) and sulfur gas that is recycled. The aluminum monosulfide is then cooled to below its disproportionation temperature to again form molten aluminum sulfide and aluminum metal. A liquid-liquid or liquid-solid separation, depending on the separation temperature, provides product aluminum and aluminum sulfide for recycle to the disproportionation step.

  4. Co-digestion of cattle manure with food waste and sludge to increase biogas production

    SciTech Connect

    Maranon, E.; Castrillon, L.; Quiroga, G.; Fernandez-Nava, Y.; Gomez, L.; Garcia, M.M.

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Small increase in methane production was observed applying sonication pretreatment. Black-Right-Pointing-Pointer Biogas productions between 720 and 1100 mL/Lreactor day were achieved. Black-Right-Pointing-Pointer Volatile solids removal efficiencies ranged between 53% and 60%. Black-Right-Pointing-Pointer Lower methane yields were obtained when operating under thermophilic conditions. Black-Right-Pointing-Pointer Optimum OLR in lab-scale CSTR was 1.2-1.3 g VS/L day (HRT: 20 days). - Abstract: Anaerobic co-digestion strategies are needed to enhance biogas production, especially when treating certain residues such as cattle/pig manure. This paper presents a study of co-digestion of cattle manure with food waste and sewage sludge. With the aim of maximising biogas yields, a series of experiments were carried out under mesophilic and thermophilic conditions using continuously stirred-tank reactors, operating at different hydraulic residence times. Pretreatment with ultrasound was also applied to compare the results with those obtained with non-pretreated waste. Specific methane production decreases when increasing the OLR and decreasing HRT. The maximum value obtained was 603 LCH{sub 4}/kg VS{sub feed} for the co-digestion of a mixture of 70% manure, 20% food waste and 10% sewage sludge (total solid concentration around 4%) at 36 Degree-Sign C, for an OLR of 1.2 g VS/L day. Increasing the OLR to 1.5 g VS/L day led to a decrease of around 20-28% in SMP. Lower methane yields were obtained when operating at 55 Degree-Sign C. The increase in methane production when applying ultrasound to the feed mixtures does not compensate for the energy spent in this pretreatment.

  5. Aluminum reference electrode

    DOEpatents

    Sadoway, D.R.

    1988-08-16

    A stable reference electrode is described for use in monitoring and controlling the process of electrolytic reduction of a metal. In the case of Hall cell reduction of aluminum, the reference electrode comprises a pool of molten aluminum and a solution of molten cryolite, Na[sub 3]AlF[sub 6], wherein the electrical connection to the molten aluminum does not contact the highly corrosive molten salt solution. This is accomplished by altering the density of either the aluminum (decreasing the density) or the electrolyte (increasing the density) so that the aluminum floats on top of the molten salt solution. 1 fig.

  6. Aluminum reference electrode

    DOEpatents

    Sadoway, Donald R.

    1988-01-01

    A stable reference electrode for use in monitoring and controlling the process of electrolytic reduction of a metal. In the case of Hall cell reduction of aluminum, the reference electrode comprises a pool of molten aluminum and a solution of molten cryolite, Na.sub.3 AlF.sub.6, wherein the electrical connection to the molten aluminum does not contact the highly corrosive molten salt solution. This is accomplished by altering the density of either the aluminum (decreasing the density) or the electrolyte (increasing the density) so that the aluminum floats on top of the molten salt solution.

  7. Hydrogen production from food wastes and gas post-treatment by CO{sub 2} adsorption

    SciTech Connect

    Redondas, V.; Gomez, X.; Garcia, S.; Pevida, C.; Rubiera, F.; Moran, A.; Pis, J.J.

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer The dark fermentation process of food wastes was studied over an extended period. Black-Right-Pointing-Pointer Decreasing the HRT of the process negatively affected the specific gas production. Black-Right-Pointing-Pointer Adsorption of CO{sub 2} was successfully attained using a biomass type activated carbon. Black-Right-Pointing-Pointer H{sub 2} concentration in the range of 85-95% was obtained for the treated gas-stream. - Abstract: The production of H{sub 2} by biological means, although still far from being a commercially viable proposition, offers great promise for the future. Purification of the biogas obtained may lead to the production of highly concentrated H{sub 2} streams appropriate for industrial application. This research work evaluates the dark fermentation of food wastes and assesses the possibility of adsorbing CO{sub 2} from the gas stream by means of a low cost biomass-based adsorbent. The reactor used was a completely stirred tank reactor run at different hydraulic retention times (HRTs) while the concentration of solids of the feeding stream was kept constant. The results obtained demonstrate that the H{sub 2} yields from the fermentation of food wastes were affected by modifications in the hydraulic retention time (HRT) due to incomplete hydrolysis. The decrease in the duration of fermentation had a negative effect on the conversion of the substrate into soluble products. This resulted in a lower amount of soluble substrate being available for metabolisation by H{sub 2} producing microflora leading to a reduction in specific H{sub 2} production. Adsorption of CO{sub 2} from a gas stream generated from the dark fermentation process was successfully carried out. The data obtained demonstrate that the column filled with biomass-derived activated carbon resulted in a high degree of hydrogen purification. Co-adsorption of H{sub 2}S onto the activated carbon also took place, there being no evidence of H

  8. A CRITICAL EXAMINATION OF THE X-WIND MODEL FOR CHONDRULE AND CALCIUM-RICH, ALUMINUM-RICH INCLUSION FORMATION AND RADIONUCLIDE PRODUCTION

    SciTech Connect

    Desch, S. J.; Morris, M. A.; Connolly, H. C.; Boss, Alan P.

    2010-12-10

    Meteoritic data, especially regarding chondrules and calcium-rich, aluminum-rich inclusions (CAIs), and isotopic evidence for short-lived radionuclides (SLRs) in the solar nebula, potentially can constrain how planetary systems form. Interpretation of these data demands an astrophysical model, and the 'X-wind' model of Shu et al. and collaborators has been advanced to explain the origin of chondrules, CAIs, and SLRs. It posits that chondrules and CAIs were thermally processed <0.1 AU from the protostar, then flung by a magnetocentrifugal outflow to the 2-3 AU region to be incorporated into chondrites. Here we critically examine key assumptions and predictions of the X-wind model. We find a number of internal inconsistencies: theory and observation show no solid material exists at 0.1 AU; particles at 0.1 AU cannot escape being accreted into the star; particles at 0.1 AU will collide at speeds high enough to destroy them; thermal sputtering will prevent growth of particles; and launching of particles in magnetocentrifugal outflows is not modeled, and may not be possible. We also identify a number of incorrect predictions of the X-wind model: the oxygen fugacity where CAIs form is orders of magnitude too oxidizing, chondrule cooling rates are orders of magnitude lower than those experienced by barred olivine chondrules, chondrule-matrix complementarity is not predicted, and the SLRs are not produced in their observed proportions. We conclude that the X-wind model is not relevant to chondrule and CAI formation and SLR production. We discuss more plausible models for chondrule and CAI formation and SLR production.

  9. ITP Aluminum: Aluminum Industry Technology Roadmap

    Office of Energy Efficiency and Renewable Energy (EERE)

    In 2002, the industry created this updated Aluminum Industry Technology Roadmap to define the specific research and development priorities, performance targets, and milestones required to achieve the set vision.

  10. Spray Rolling Aluminum Strip

    SciTech Connect

    Lavernia, E.J.; Delplanque, J-P; McHugh, K.M.

    2006-05-10

    Spray forming is a competitive low-cost alternative to ingot metallurgy for manufacturing ferrous and non-ferrous alloy shapes. It produces materials with a reduced number of processing steps, while maintaining materials properties, with the possibility of near-net-shape manufacturing. However, there are several hurdles to large-scale commercial adoption of spray forming: 1) ensuring strip is consistently flat, 2) eliminating porosity, particularly at the deposit/substrate interface, and 3) improving material yield. Through this program, a new strip/sheet casting process, termed spray rolling, has been developed, which is an innovative manufacturing technique to produce aluminum net-shape products. Spray rolling combines the benefits of twin-roll casting and conventional spray forming, showing a promising potential to overcome the above hurdles associated with spray forming. Spray rolling requires less energy and generates less scrap than conventional processes and, consequently, enables the development of materials with lower environmental impacts in both processing and final products. Spray Rolling was developed as a collaborative project between the University of California-Davis, the Colorado School of Mines, the Idaho National Engineering and Environmental Laboratory, and an industry team. The following objectives of this project were achieved: (1) Demonstration of the feasibility of the spray rolling process at the bench-scale level and evaluation of the materials properties of spray rolled aluminum strip alloys; and (2) Demonstration of 2X scalability of the process and documentation of technical hurdles to further scale up and initiate technology transfer to industry for eventual commercialization of the process.

  11. BONDING ALUMINUM METALS

    DOEpatents

    Noland, R.A.; Walker, D.E.

    1961-06-13

    A process is given for bonding aluminum to aluminum. Silicon powder is applied to at least one of the two surfaces of the two elements to be bonded, the two elements are assembled and rubbed against each other at room temperature whereby any oxide film is ruptured by the silicon crystals in the interface; thereafter heat and pressure are applied whereby an aluminum-silicon alloy is formed, squeezed out from the interface together with any oxide film, and the elements are bonded.

  12. Process for mitigating corrosion and increasing the conductivity of steel studs in soderberg anodes of aluminum reduction cells

    DOEpatents

    Oden, Laurance L.; White, Jack C.; Ramsey, James A.

    1994-01-01

    A corrosion resistant electrically conductive coating on steel anode studs used in the production of aluminum by electrolysis.

  13. Low Temperature Aluminum Dissolution Of Sludge Waste

    SciTech Connect

    Keefer, M.T.; Hamm, B.A.; Pike, J.A. [Washington Savannah River Company, Aiken, SC (United States)

    2008-07-01

    High Level Waste (HLW) at the Savannah River Site (SRS) is currently stored in aging underground storage tanks. This waste is a complex mixture of insoluble solids, referred to as sludge, and soluble salts. Continued long-term storage of these radioactive wastes poses an environmental risk. The sludge is currently being stabilized in the Defense Waste Processing Facility (DWPF) through a vitrification process immobilizing the waste in a borosilicate glass matrix for long-term storage in a federal repository. Without additional treatment, the existing volume of sludge would produce nearly 8000 canisters of vitrified waste. Aluminum compounds, along with other non-radioactive components, represent a significant portion of the sludge mass currently planned for vitrification processing in DWPF. Removing the aluminum from the waste stream reduces the volume of sludge requiring vitrification and improves production rates. Treating the sludge with a concentrated sodium hydroxide (caustic) solution at elevated temperatures (>90 deg. C) to remove aluminum is part of an overall sludge mass reduction effort to reduce the number of vitrified canisters, shorten the life cycle for the HLW system, and reduce the risk associated with the long term storage of radioactive wastes at SRS. A projected reduction of nearly 900 canisters will be achieved by performing aluminum dissolution on six targeted sludge batches; however, a project to develop and install equipment will not be ready for operation until 2013. The associated upgrades necessary to implement a high temperature process in existing facilities are costly and present many technical challenges. Efforts to better understand the characteristics of the sludge mass and dissolution kinetics are warranted to overcome these challenges. Opportunities to further reduce the amount of vitrified waste and increase production rates should also be pursued. Sludge staged in Tank 51 as the next sludge batch for feed to DWPF consisted

  14. ALUMINUM CLADDING DISSOLUTION

    DOEpatents

    Schulz, W.W.

    1964-01-28

    This patent shows a method of moderating the chemical reaction when aluminum is dissolved in 2 to 7 molar nitric acid with a mercury catalyst. Nickelous nitrate is added as a negative promoter. (AEC)

  15. CORROSION PROTECTION OF ALUMINUM

    DOEpatents

    Dalrymple, R.S.; Nelson, W.B.

    1963-07-01

    Treatment of aluminum-base metal surfaces in an autoclave with an aqueous chromic acid solution of 0.5 to 3% by weight and of pH below 2 for 20 to 50 hrs at 160 to 180 deg C produces an extremely corrosion-resistant aluminum oxidechromium film on the surface. A chromic acid concentration of 1 to 2% and a pH of about 1 are preferred. (D.C.W.)

  16. Corrosion Protection of Aluminum

    DOEpatents

    Dalrymple, R. S.; Nelson, W. B.

    1963-07-01

    Treatment of aluminum-base metal surfaces in an autoclave with an aqueous chromic acid solution of 0.5 to 3% by weight and of pH below 2 for 20 to 50 hrs at 160 to 180 deg C produces an extremely corrosion-resistant aluminum oxidechromium film on the surface. A chromic acid concentration of 1 to 2% and a pH of about 1 are preferred.

  17. One step process for producing dense aluminum nitride and composites thereof

    DOEpatents

    Holt, J. Birch; Kingman, Donald D.; Bianchini, Gregory M.

    1989-01-01

    A one step combustion process for the synthesis of dense aluminum nitride compositions is disclosed. The process comprises igniting pure aluminum powder in a nitrogen atmosphere at a pressure of about 1000 atmospheres or higher. The process enables the production of aluminum nitride bodies to be formed directly in a mold of any desired shape.

  18. One step process for producing dense aluminum nitride and composites thereof

    DOEpatents

    Holt, J.B.; Kingman, D.D.; Bianchini, G.M.

    1989-10-31

    A one step combustion process for the synthesis of dense aluminum nitride compositions is disclosed. The process comprises igniting pure aluminum powder in a nitrogen atmosphere at a pressure of about 1,000 atmospheres or higher. The process enables the production of aluminum nitride bodies to be formed directly in a mold of any desired shape.

  19. ITP Aluminum: Energy and Environmental Profile of the U.S. Aluminum...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ITP Aluminum: Energy and Environmental Profile of the U.S. Aluminum Industry ITP Aluminum: Energy and Environmental Profile of the U.S. Aluminum Industry aluminum.pdf (1.12 MB) ...

  20. Production of aluminum-silicon alloy and ferrosilicon and commercial purity aluminum by the direct reduction process. Second annual technical report for the period 1978 September 1-1979 December 31

    SciTech Connect

    Bruno, M.J.

    1980-10-01

    A new computer program was developed for simultaneously solving heat and mass balance at steady state for a flowing one-dimensional chemical reactor. Bench scale reactor results confirmed that minimum final stage reaction temperature is 1950 to 2000/sup 0/C, depending on the Fe/sub 2/O/sub 3/ concentration in the burden. Additions of Fe/sub 2/O/sub 3/ to the charge produced significant increase in metallic yield. A new bench reactor was designed, built, and operated to facilitate semi-continuous operation, using O/sub 2/ injection to burn coke supporting the burden, resulting in burden movement. Validity of the equipment and test procedures was demonstrated by successfully operating the reactor as an iron blast furnace at 1500/sup 0/C. Bench scale fractional crystallizer runs were continued to determine the impurity effects of Fe up to 6.9% and Ti up to 1.25% on alloy product purity and yield. High initial impurity concentrations resulted in less pure Al-Si product and product yield below 50% due to Al and Si losses as Fe-Si-Al and Ti-Si-Al intermetallics. Long term testing was continued in the large bench scale membrane cell to evaluate woven cloth membrane and other construction materials, operating procedures, and effects of operating parameters on cell performance. Included in the latter were starting alloy composition, current density, anode-cathode spacing, and electrolyte composition.

  1. Designing aluminum sealing glasses for manufacturability

    SciTech Connect

    Kovacic, L.; Crowder, S.V.; Brow, R.K.; Bencoe, D.N.

    1993-12-31

    Manufacturability issues involved in the development of new sealing glasses include tailoring glass compositions to meet material and component requirements and determining the optimum seal processing parameters. For each of these issues, statistical analysis can be used to shorten the time between concept and product in the development of what is essentially a new manufacturing technology. We use the development of our new family of phosphate-based glasses for aluminum/stainless steel and aluminum/CuBe hermetic sealing, the ALSG family, to illustrate the statistical approach.

  2. The influence of slaughterhouse waste on fermentative H{sub 2} production from food waste: Preliminary results

    SciTech Connect

    Boni, Maria Rosaria; Sbaffoni, Silvia; Tuccinardi, Letizia

    2013-06-15

    Highlights: Co-digestion process finalized to bio-H{sub 2} production was tested in batch tests. Slaughterhouse waste (SHW) and food waste (FW) were co-digested in different proportions. The presence of SHW affected the H{sub 2} production from FW. When SHW ranging between 50% and 70% the H{sub 2} production is improved. SHW percentages above 70%, led to a depletion in H{sub 2} production. - Abstract: The aim of this study was to evaluate the influence of slaughterhouse waste (SHW; essentially the skin, fats, and meat waste of pork, poultry, and beef) in a fermentative co-digestion process for H{sub 2} production from pre-selected organic waste taken from a refectory (food waste [FW]). Batch tests under mesophilic conditions were conducted in stirred reactors filled with different proportions of FW and SHW. The addition of 60% and 70% SHW to a mixture of SHW and FW improved H{sub 2} production compared to that in FW only, reaching H{sub 2}-production yields of 145 and 109 ml gVS{sub 0}{sup -1}, respectively, which are 1.52 times higher than that obtained with FW alone. Although the SHW ensured a more stable fermentative process due to its high buffering capacity, a depletion of H{sub 2} production occurred when SHW fraction was higher than 70%. Above this percentage, the formation of foam and aggregated material created non-homogenous conditions of digestion. Additionally, the increasing amount of SHW in the reactors may lead to an accumulation of long chain fatty acids (LCFAs), which are potentially toxic for anaerobic microorganisms and may inhibit the normal evolution of the fermentative process.

  3. Regeneration of aluminum hydride

    DOEpatents

    Graetz, Jason Allan; Reilly, James J; Wegrzyn, James E

    2012-09-18

    The present invention provides methods and materials for the formation of hydrogen storage alanes, AlH.sub.x, where x is greater than 0 and less than or equal to 6 at reduced H.sub.2 pressures and temperatures. The methods rely upon reduction of the change in free energy of the reaction between aluminum and molecular H.sub.2. The change in free energy is reduced by lowering the entropy change during the reaction by providing aluminum in a state of high entropy, and by increasing the magnitude of the change in enthalpy of the reaction or combinations thereof.

  4. Regeneration of aluminum hydride

    DOEpatents

    Graetz, Jason Allan; Reilly, James J.

    2009-04-21

    The present invention provides methods and materials for the formation of hydrogen storage alanes, AlH.sub.x, where x is greater than 0 and less than or equal to 6 at reduced H.sub.2 pressures and temperatures. The methods rely upon reduction of the change in free energy of the reaction between aluminum and molecular H.sub.2. The change in free energy is reduced by lowering the entropy change during the reaction by providing aluminum in a state of high entropy, by increasing the magnitude of the change in enthalpy of the reaction or combinations thereof.

  5. Scientists ignite aluminum water mix

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Scientists ignite aluminum water mix Scientists ignite aluminum water mix Don't worry, that beer can you're holding is not going to spontaneously burst into flames. June 30, 2014 Los Alamos National Laboratory chemist Bryce Tappan ignites a small quantity of aluminum nanoparticle water mixture. In open air, the compound burns like a Fourth of July sparkler. Los Alamos National Laboratory chemist Bryce Tappan ignites a small quantity of aluminum nanoparticle water mixture. In open air, the

  6. PROCESS FOR REMOVING ALUMINUM COATINGS

    DOEpatents

    Flox, J.

    1959-07-01

    A process is presented for removing aluminum jackets or cans from uranium slugs. This is accomplished by immersing the aluminum coated uranium slugs in an aqueous solution of 9 to 20% sodium hydroxide and 35 to 12% sodium nitrate to selectively dissolve the aluminum coating, the amount of solution being such as to obtain a molar ratio of sodium hydroxide to aluminum of at least

  7. MECS 2006 - Food and Beverage | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Food and Beverage MECS 2006 - Food and Beverage Manufacturing Energy and Carbon Footprint for Food and Beverage (NAICS 311, 312) Sector with Total Energy Input, October 2012 (MECS 2006) All available footprints and supporting documents Manufacturing Energy and Carbon Footprint Food and Beverage (121.73 KB) More Documents & Publications Food and Beverage (2010 MECS) MECS 2006 - Alumina and Aluminum MECS 2006 - Cement

  8. Investigation of Opportunities for High-Temperature Solar Energy in the Aluminum Industry

    SciTech Connect

    Murray, J.

    2006-05-01

    This report gives the conclusions drawn from a study of the potential application of high-temperature solar process heat for production of aluminum.

  9. Aluminum battery alloys

    DOEpatents

    Thompson, D.S.; Scott, D.H.

    1984-09-28

    Aluminum alloys suitable for use as anode structures in electrochemical cells are disclosed. These alloys include iron levels higher than previously felt possible, due to the presence of controlled amounts of manganese, with possible additions of magnesium and controlled amounts of gallium.

  10. Aluminum battery alloys

    DOEpatents

    Thompson, David S.; Scott, Darwin H.

    1985-01-01

    Aluminum alloys suitable for use as anode structures in electrochemical cs are disclosed. These alloys include iron levels higher than previously felt possible, due to the presence of controlled amounts of manganese, with possible additions of magnesium and controlled amounts of gallium.

  11. Fluxless aluminum brazing

    DOEpatents

    Werner, W.J.

    1974-01-01

    This invention relates to a fluxless brazing alloy for use in forming brazed composites made from members of aluminum and its alloys. The brazing alloy consists of 35-55% Al, 10--20% Si, 25-60% Ge; 65-88% Al, 2-20% Si, 2--18% In; 65--80% Al, 15-- 25% Si, 5- 15% Y. (0fficial Gazette)

  12. Aluminum/cuprous oxide thermite

    SciTech Connect

    Shapiro, A.B.; Gressmann, R.

    1982-03-03

    Thermite is a generic name applied to a class of metal-metal oxide reactants that undergo a chemical oxidation reduction reaction with the liberation of large amounts of thermal energy. If a mixture of aluminum and cuprous oxide is ignited, the thermitic reaction 2Al + 3Cu/sub 2/O ..-->.. Al/sub 2/O/sub 3/ + 6Cu will proceed at such a rapid rate (burn rate of 6 cm/s) and with the evolution of so much heat (580 cal/g) that the temperature will rise to about 2570/sup 0/C. The thermite reaction, accordingly, has been used for sabotaging or destroying military equipment, starting military fires, and welding together large sections of metal. Aluminum/cuprous oxide (Al/Cu/sub 2/O) thermite is discussed in this report with respect to these topics: reactant powder characterization; power contaminant extraction; reactant powder compaction into a consolidated pellet; initiation system; and reaction and reaction product analysis.

  13. SOLDERING OF ALUMINUM BASE METALS

    DOEpatents

    Erickson, G.F.

    1958-02-25

    This patent deals with the soldering of aluminum to metals of different types, such as copper, brass, and iron. This is accomplished by heating the aluminum metal to be soldered to slightly above 30 deg C, rubbing a small amount of metallic gallium into the part of the surface to be soldered, whereby an aluminum--gallium alloy forms on the surface, and then heating the aluminum piece to the melting point of lead--tin soft solder, applying lead--tin soft solder to this alloyed surface, and combining the aluminum with the other metal to which it is to be soldered.

  14. Spray-formed tooling and aluminum strip

    SciTech Connect

    McHugh, K.M.

    1995-11-01

    Spray forming is an advanced materials processing technology that converts a bulk liquid metal to a near-net-shape solid by depositing atomized droplets onto a suitably shaped substrate. By combining rapid solidification processing with product shape control, spray forming can reduce manufacturing costs while improving product quality. De Laval nozzles offer an alternative method to the more conventional spray nozzle designs. Two applications are described: high-volume production of aluminum alloy strip, and the production of specialized tooling, such as injection molds and dies, for rapid prototyping.

  15. Impact of Aluminum on Anticipated Corrosion in a Flooded SNF Multi Canister Overpack (MCO)

    SciTech Connect

    DUNCAN, D.R.

    1999-07-06

    Corrosion reactions in a flooded MCO are examined to determine the impact of aluminum corrosion products (from aluminum basket grids and spacers) on bound water estimates and subsequent fuel/environment reactions during storage. The mass and impact of corrosion products were determined to be insignificant, validating the choice of aluminum as an MCO component and confirming expectations that no changes to the Technical Databook or particulate mass or water content are necessary.

  16. Membrane Purification Cell for Aluminum Recycling

    SciTech Connect

    David DeYoung; James Wiswall; Cong Wang

    2011-11-29

    Recycling mixed aluminum scrap usually requires adding primary aluminum to the scrap stream as a diluent to reduce the concentration of non-aluminum constituents used in aluminum alloys. Since primary aluminum production requires approximately 10 times more energy than melting scrap, the bulk of the energy and carbon dioxide emissions for recycling are associated with using primary aluminum as a diluent. Eliminating the need for using primary aluminum as a diluent would dramatically reduce energy requirements, decrease carbon dioxide emissions, and increase scrap utilization in recycling. Electrorefining can be used to extract pure aluminum from mixed scrap. Some example applications include producing primary grade aluminum from specific scrap streams such as consumer packaging and mixed alloy saw chips, and recycling multi-alloy products such as brazing sheet. Electrorefining can also be used to extract valuable alloying elements such as Li from Al-Li mixed scrap. This project was aimed at developing an electrorefining process for purifying aluminum to reduce energy consumption and emissions by 75% compared to conventional technology. An electrolytic molten aluminum purification process, utilizing a horizontal membrane cell anode, was designed, constructed, operated and validated. The electrorefining technology could also be used to produce ultra-high purity aluminum for advanced materials applications. The technical objectives for this project were to: - Validate the membrane cell concept with a lab-scale electrorefining cell; - Determine if previously identified voltage increase issue for chloride electrolytes holds for a fluoride-based electrolyte system; - Assess the probability that voltage change issues can be solved; and - Conduct a market and economic analysis to assess commercial feasibility. The process was tested using three different binary alloy compositions (Al-2.0 wt.% Cu, Al-4.7 wt.% Si, Al-0.6 wt.% Fe) and a brazing sheet scrap composition (Al-2

  17. The production of chemicals from food processing wastes using a novel fermenter separator. Annual progress report, January 1993--March 1994

    SciTech Connect

    Dale, M.C.; Venkatesh, K.V.; Choi, H.; Salicetti-Piazza, L.; Borgos-Rubio, N.; Okos, M.R.; Wankat, P.C.

    1994-03-15

    The basic objective of this project is to convert waste streams from the food processing industry to usable fuels and chemicals using novel bioreactors. These bioreactors should allow economical utilization of waste (whey, waste sugars, waste starch, bottling wastes, candy wastes, molasses, and cellulosic wastes) by the production of ethanol, acetone/butanol, organic acids (acetic, lactic, and gluconic), yeast diacetyl flavor, and antifungal compounds. Continuous processes incorporating various processing improvements such as simultaneous product separation and immobilized cells are being developed to allow commercial scale utilization of waste stream. The production of ethanol by a continuous reactor-separator is the process closest to commercialization with a 7,500 liter pilot plant presently sited at an Iowa site to convert whey lactose to ethanol. Accomplishments during 1993 include installation and start-up of a 7,500 liter ICRS for ethanol production at an industry site in Iowa; Donation and installation of a 200 liter yeast pilot Plant to the project from Kenyon Enterprises; Modeling and testing of a low energy system for recovery of ethanol from vapor is using a solvent absorption/extractive distillation system; Simultaneous saccharification/fermentation of raw corn grits and starch in a stirred reactor/separator; Testing of the ability of `koji` process to ferment raw corn grits in a `no-cook` process.

  18. Scientists ignite aluminum water mix

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    of a chemical reaction - is a primary function in determining nanoaluminum combustion burn rates. "It's been long understood that nanoscale aluminum particles, 110 nanometers and...

  19. Alumina and Aluminum (2010 MECS)

    Energy.gov [DOE]

    Manufacturing Energy and Carbon Footprint for Alumina and Aluminum Sector (NAICS 3313) Energy use data source: 2010 EIA MECS (with adjustments) Footprint Last Revised: February 2014

  20. Aluminum processing energy benchmark report

    SciTech Connect

    None, None

    2007-02-01

    Substantial energy efficiency gains have been made in the aluminum industry over the past forty years, resulting in a 58 percent decrease in energy utilization.

  1. The production of fuels and chemicals from food processing wastes using a novel fermenter separator

    SciTech Connect

    Dale, M.C.; Venkatesh, K.V.; Choi, Hojoon; Moelhman, M.; Saliceti, L.; Okos, M.R.; Wankat, P.C.

    1991-12-01

    During 1991, considerable progress was made on the waste utilization project. Two small Wisconsin companies have expressed an interest in promoting and developing the ICRS technology. Pilot plant sites at (1) Hopkinton, IA, for a sweet whey plant, and Beaver Dam WI, for an acid whey site have been under development siting ICRS operations. The Hopkinton, IA site is owned and operated by Permeate Refining Inc., who have built a batch ethanol plant across the street from Swiss Valley Farms cheddar cheese operations. Permeate from Swiss Valley is piped across to PRI. PRI has signed a contract to site a 300--500,000 gallon/yr to ICRS pilot plant. They feel that the lower labor, lower energy, continuous process offered by the ICRS will substantially improve their profitability. Catalytics, Inc, is involved with converting whey from a Kraft cream cheese operation to ethanol and yeast. A complete project including whey concentration, sterilization, and yeast growth has been designed for this site. Process design improvements with the ICRS focussed on ethanol recovery techniques during this year's project. A solvent absorption/extractive distillation (SAED) process has been developed which offers the capability of obtaining an anhydrous ethanol product from vapors off 3 to 9% ethanol solutions using very little energy for distillation. Work on products from waste streams was also performed. a. Diacetyl as a high value flavor compound was very successfully produced in a Stirred Tank Reactor w/Separation. b. Yeast production from secondary carbohydrates in the whey, lactic acid, and glycerol was studied. c. Lactic acid production from cellulose and lactose studies continued. d. Production of anti-fungal reagents by immobilized plant cells; Gossypol has antifungal properties and is produced by G. arboretum.

  2. Reactions of aluminum with uranium fluorides and oxyfluorides

    SciTech Connect

    Leitnaker, J.M.; Nichols, R.W.; Lankford, B.S.

    1991-12-31

    Every 30 to 40 million operating hours a destructive reaction is observed in one of the {approximately}4000 large compressors that move UF{sub 6} through the gaseous diffusion plants. Despite its infrequency, such a reaction can be costly in terms of equipment and time. Laboratory experiments reveal that the presence of moderate pressures of UF{sub 6} actually cools heated aluminum, although thermodynamic calculations indicate the potential for a 3000-4000{degrees}C temperature rise. Within a narrow and rather low (<100 torr; 1 torr = 133.322 Pa) pressure range, however, the aluminum is seen to react with sufficient heat release to soften an alumina boat. Three things must occur in order for aluminum to react vigorously with either UF{sub 6} or UO{sub 2}F{sub 2}. 1. An initiating source of heat must be provided. In the compressors, this source can be friction, permitted by disruption of the balance of the large rotating part or by creep of the aluminum during a high-temperature treatment. In the absence of this heat source, compressors have operated for 40 years in UF{sub 6} without significant reaction. 2. The film protecting the aluminum must be breached. Melting (of UF{sub 5} at 620 K or aluminum at 930 K) can cause such a breach in laboratory experiments. In contrast, holding Al samples in UF{sub 6} at 870 K for several hours produces only moderate reaction. Rubbing in the cascade can undoubtedly breach the protective film. 3. Reaction products must not build up and smother the reaction. While uranium products tend to dissolve or dissipate in molten aluminum, AIF{sub 3} shows a remarkable tendency to surround and hence protect even molten aluminum. Hence the initial temperature rise must be rapid and sufficient to move reactants into a temperature region in which products are removed from the reaction site.

  3. Calculation of Accumulated Radiation Doses to Man from Radionuclides Found in Food Products and from Radionuclides in the Environment.

    Energy Science and Technology Software Center

    1981-02-17

    PABLM calculates internal radiation doses to man from radionuclides in food products and external radiation doses from radionuclides in the environment. It can be used to calculate accumulated doses to 23 possible body organs or tissues for any one or a combination of radionuclides. Radiation doses from radionuclides in the environment may be calculated from deposition on the soil or plants during an atmospheric or liquid release, or from exposure to residual radionuclides in themore » environment after the releases have ended. Radioactive decay is considered during the release of radionuclides, after they are deposited on the plants or ground, and during holdup of food after harvest. A chain decay scheme is used; it includes branching to account for transitions to and from isomeric states. Doses may be calculated for either a maximum-exposed individual or for a population group. The doses calculated are accumulated doses from continuous chronic exposure. A first-year committed dose is calculated as well as an integrated dose for a selected number of years.« less

  4. Cost-Effective Consolidation of Fine Aluminum Scrap for Increased Remelting Effieciency

    SciTech Connect

    William Van Geertruyden

    2005-09-22

    The main objective of this research was to develop a new re-melting process for fine or light gauge aluminum scrap products that exhibits dramatic improvements in energy efficiency. Light gauge aluminum scrap in the form of chips, turnings, and borings has historically been underutilized in the aluminum recycling process due to its high surface area to volume ratio resulting in low melt recovery. Laboratory scale consolidation experiments were performed using loose aluminum powder as a modeling material as well as shredded aluminum wire scrap. The processing parameters necessary to create consolidated aluminum material were determined. Additionally, re-melting experiments using consolidated and unconsolidated aluminum powder confirmed the hypothesis that metal recovery using consolidated material will significantly improve by as much as 20%. Based on this research, it is estimated that approximately 495 billion Btu/year can be saved by implementation of this technology in one domestic aluminum rolling plant alone. The energy savings are realized by substituting aluminum scrap for primary aluminum, which requires large amounts of energy to produce. While there will be an initial capital investment, companies will benefit from the reduction of dependence on primary aluminum thus saving considerable costs. Additionally, the technology will allow companies to maintain in-house alloy scrap, rather than purchasing from other vendors and eliminate the need to discard the light gauge scrap to landfills.

  5. Trends in radionuclide concentrations for selected wildlife and food products near the Hanford Site from 1971 through 1988

    SciTech Connect

    Eberhardt, L.E.; Cadwell, L.L.; Price, K.R.; Carlile, D.W.; Alaska Dept. of Fish and Game, Juneau, AK )

    1989-09-01

    From 1971 through 1988 at least 40 species of wildlife and 27 different types of food products were collected and analyzed for radionuclides as part of the Pacific Northwest Laboratory (PNL) Environmental Monitoring Program. This report summarizes the results of these analyses for sample types collected for all or most of the 18-year period. The objectives of this summary investigation were to identify long-term trends or significant year-to-year changes in radionuclide concentrations and, if possible, relate any observed changes in radionuclide concentrations to their sources and probable causes. Statistical techniques were employed to test for long-term trends. Conspicuous short-term changes in radionuclide concentrations were identified from inspection of the data. 30 refs., 16 figs., 4 tabs.

  6. LIQUID BIO-FUEL PRODUCTION FROM NON-FOOD BIOMASS VIA HIGH TEMPERATURE STEAM ELECTROLYSIS

    SciTech Connect

    G. L. Hawkes; J. E. O'Brien; M. G. McKellar

    2011-11-01

    Bio-Syntrolysis is a hybrid energy process that enables production of synthetic liquid fuels that are compatible with the existing conventional liquid transportation fuels infrastructure. Using biomass as a renewable carbon source, and supplemental hydrogen from high-temperature steam electrolysis (HTSE), bio-syntrolysis has the potential to provide a significant alternative petroleum source that could reduce US dependence on imported oil. Combining hydrogen from HTSE with CO from an oxygen-blown biomass gasifier yields syngas to be used as a feedstock for synthesis of liquid transportation fuels via a Fischer-Tropsch process. Conversion of syngas to liquid hydrocarbon fuels, using a biomass-based carbon source, expands the application of renewable energy beyond the grid to include transportation fuels. It can also contribute to grid stability associated with non-dispatchable power generation. The use of supplemental hydrogen from HTSE enables greater than 90% utilization of the biomass carbon content which is about 2.5 times higher than carbon utilization associated with traditional cellulosic ethanol production. If the electrical power source needed for HTSE is based on nuclear or renewable energy, the process is carbon neutral. INL has demonstrated improved biomass processing prior to gasification. Recyclable biomass in the form of crop residue or energy crops would serve as the feedstock for this process. A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to heat steam for the hydrogen production via the high temperature steam electrolysis process. Oxygen produced form the electrolysis process is used to control the oxidation rate in the oxygen-blown biomass gasifier. Based on the gasifier temperature, 94% to 95% of the carbon in the biomass becomes carbon monoxide in the syngas (carbon monoxide and hydrogen). Assuming the thermal efficiency of the power

  7. Aluminum alloys for satellite boxes : engineering guidelines...

    Office of Scientific and Technical Information (OSTI)

    Aluminum alloys for satellite boxes : engineering guidelines for obtaining adequate ... Title: Aluminum alloys for satellite boxes : engineering guidelines for obtaining adequate ...

  8. A Programmable Bandwidth Aluminum Nitride Microresonator Filter...

    Office of Scientific and Technical Information (OSTI)

    A Programmable Bandwidth Aluminum Nitride Microresonator Filter. Citation Details In-Document Search Title: A Programmable Bandwidth Aluminum Nitride Microresonator Filter. Abstract ...

  9. West Pico Food | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Pico Food Jump to: navigation, search Name: West Pico Food Place: Vernon, California Sector: Solar Product: A distributor of wholesale frozen foods to supermarket chains in...

  10. PREPARATION OF URANIUM-ALUMINUM ALLOYS

    DOEpatents

    Moore, R.H.

    1962-09-01

    A process is given for preparing uranium--aluminum alloys from a solution of uranium halide in an about equimolar molten alkali metal halide-- aluminum halide mixture and excess aluminum. The uranium halide is reduced and the uranium is alloyed with the excess aluminum. The alloy and salt are separated from each other. (AEC)

  11. Austenite stabilization and high strength-elongation product of a low silicon aluminum-free hot-rolled directly quenched and dynamically partitioned steel

    SciTech Connect

    Tan, Xiao-Dong; Xu, Yun-Bo; Yang, Xiao-Long; Hu, Zhi-Ping; Peng, Fei; Ju, Xiao-Wei; Wu, Di

    2015-06-15

    Microstructures composed of lath martensite and retained austenite with volume fraction between 8.0 vol.% and 12.0 vol.% were obtained in a low-C low-Si Al-free steel through hot-rolling direct quenching and dynamical partitioning (HDQ&DP) processes. The austenite stabilization mechanism in the low-C low-Si Al-free steel under the special dynamical partitioning processes is investigated by analyzing the carbon partition behavior from martensite to austenite and the carbide precipitation-coarsening behavior in martensite laths combining with the possible hot rolling deformation inheritance. Results show that the satisfying retained austenite amount in currently studied low-Si Al-free HDQ&DP steel is caused by the high-efficiency carbon enrichment in the 30–80 nm thick regions of austenite near the interfaces in the hot-rolled ultra-fast cooled structure and the avoidance of serious carbides coarsening during the continuous cooling procedures. The excellent strength-elongation product reaching up to 26,000 MPa% shows that the involved HDQ&DP process is a promising method to develop a new generation of advanced high strength steel. - Highlights: • HDQ&DP processes were applied to a low-C low-Si Al-free steel. • Effective partitioning time during the continuous cooling processes is 1–220 s. • Retained austenite with volume fraction between 8.0 vol. % and 12.0 vol. % has been obtained. • The special austenite stabilization mechanism has been expounded.

  12. Electrolyte treatment for aluminum reduction

    DOEpatents

    Brown, Craig W.; Brooks, Richard J.; Frizzle, Patrick B.; Juric, Drago D.

    2002-01-01

    A method of treating an electrolyte for use in the electrolytic reduction of alumina to aluminum employing an anode and a cathode, the alumina dissolved in the electrolyte, the treating improving wetting of the cathode with molten aluminum during electrolysis. The method comprises the steps of providing a molten electrolyte comprised of ALF.sub.3 and at least one salt selected from the group consisting of NaF, KF and LiF, and treating the electrolyte by providing therein 0.004 to 0.2 wt. % of a transition metal or transition metal compound for improved wettability of the cathode with molten aluminum during subsequent electrolysis to reduce alumina to aluminum.

  13. Aluminum industry applications for OTEC

    SciTech Connect

    Jones, M.S.; Leshaw, D.; Sathyanarayana, K.; Sprouse, A.M.; Thiagarajan, V.

    1980-12-01

    The objective of the program is to study the integration issues which must be resolved to realize the market potential of ocean thermal energy conversion (OTEC) power for the aluminum industry. The study established, as a baseline, an OTEC plant with an electrical output of 100 MWe which would power an aluminum reduction plant. The reduction plant would have a nominal annual output of about 60,000 metric tons of aluminum metal. Three modes of operation were studied, viz: 1. A reduction plant on shore and a floating OTEC power plant moored offshore supplying energy by cable. 2. A reduction plant on shore and a floating OTEC power plant at sea supplying energy by means of an ''energy bridge.'' 3. A floating reduction plant on the same platform as the OTEC power plant. For the floating OTEC/aluminum plantship, three reduction processes were examined. 1. The conventional Hall process with prebaked anodes. 2. The drained cathode Hall cell process. 3. The aluminum chloride reduction process.

  14. Aluminum and polymeric coatings for protection of uranium

    SciTech Connect

    Colmenares, C.; McCreary, T.; Monaco, S.; Walkup, C.; Gleeson, G.; Kervin, J.; Smith, R.L.; McCaffrey, C.

    1983-12-21

    Ion-plated aluminum films on uranium will not provide adequate protection for 25 years. Magnetron-plated aluminum films on uranium are much better than ion-plated ones. Kel-F 800 films on uranium can provide adequate protection for 25 years. Their use in production must be delayed until the following factors are sorted out: water permeability in Kel-F 800 must be determined between 30 and 60/sup 0/C; the effect of UF/sub 3/, at the Kel-F/metal interface, on the permeability of water must be assessed; and the effect of crystallinity on water permeability must be evaluated. Applying Kel-F films on aluminum ion-plated uranium provides a good interim solution for long term storage.

  15. Titanium Matrix Composite Tooling Material for Aluminum Die Castings

    Energy.gov [DOE]

    In aluminum die-casting, molten aluminum is forced under high pressure into a die cavity. First a "shot" of molten aluminum is ladled into a shot sleeve and the shot of molten aluminum is forced by...

  16. PREPARATION OF DIBASIC ALUMINUM NITRATE

    DOEpatents

    Gresky, A.T.; Nurmi, E.O.; Foster, D.L.; Wischow, R.P.; Savolainen, J.E.

    1960-04-01

    A method is given for the preparation and recovery of basic aluminum nltrates having an OH: Al ratio of at least two, comprising two steps. First, metallic aluminum is dissolved in aqueous Al(NO/sub 3/)/sub 3/, in the presence of a small quantity of elemental or ionic mercury, to increase its Al: NO/sub 3/ ratio into the range 1 to 1.2. The resulting aqueous solution is then added to an excess of a special organic solvent, typically a mixture of five parts methanol and six parts diethyl ether, whereupon the basic aluminum nitrate, e.g. Al/sub 6/(OH)/sub 13/-(NO/sub 3/)/sub 5/, recoverably precipitates.

  17. Rechargeable Aluminum-Ion Batteries

    SciTech Connect

    Paranthaman, Mariappan Parans; Liu, Hansan; Sun, Xiao-Guang; Dai, Sheng; Brown, Gilbert M

    2015-01-01

    This chapter reports on the development of rechargeable aluminum-ion batteries. A possible concept of rechargeable aluminum/aluminum-ion battery based on low-cost, earth-abundant Al anode, ionic liquid EMImCl:AlCl3 (1-ethyl-3-methyl imidazolium chloroaluminate) electrolytes and MnO2 cathode has been proposed. Al anode has been reported to show good reversibility in acid melts. However, due to the problems in demonstrating the reversibility in cathodes, alternate battery cathodes and battery concepts have also been presented. New ionic liquid electrolytes for reversible Al dissolution and deposition are needed in the future for replacing corrosive EMImCl:AlCl3 electrolytes.

  18. Dissolution and Separation of Aluminum and Aluminosilicates

    DOE PAGES [OSTI]

    McFarlane, Joanna; Benker, Dennis; DePaoli, David W.; Felker, Leslie Kevin; Mattus, Catherine H.

    2015-12-19

    The selection of an aluminum alloy for target irradiation affects post-irradiation target dissolution and separations. Recent tests with aluminum alloy 6061 yielded greater than expected precipitation in the dissolver, forming up to 10 wt.% solids of aluminum hydroxides and aluminosilicates. Aluminosilicate dissolution presents challenges in a number of different areas, metals extraction from minerals, flyash treatment, and separations from aluminum alloys. We present experimental work that attempts to maximize dissolution of aluminum metal, along with silicon, magnesium, and copper impurities, through control of temperature, the rate of reagent addition, and incubation time. Aluminum phase transformations have been identified as amore » function of time and temperature, using X-ray diffraction. Solutions have been analyzed using wet chemical methods and X-ray fluorescence. Our data have been compared with published calculations of aluminum phase diagrams. Approaches are given to enhance the dissolution of aluminum and aluminosilicate phases in caustic solution.« less

  19. Dissolution and Separation of Aluminum and Aluminosilicates

    SciTech Connect

    McFarlane, Joanna; Benker, Dennis; DePaoli, David W.; Felker, Leslie Kevin; Mattus, Catherine H.

    2015-12-19

    The selection of an aluminum alloy for target irradiation affects post-irradiation target dissolution and separations. Recent tests with aluminum alloy 6061 yielded greater than expected precipitation in the dissolver, forming up to 10 wt.% solids of aluminum hydroxides and aluminosilicates. Aluminosilicate dissolution presents challenges in a number of different areas, metals extraction from minerals, flyash treatment, and separations from aluminum alloys. We present experimental work that attempts to maximize dissolution of aluminum metal, along with silicon, magnesium, and copper impurities, through control of temperature, the rate of reagent addition, and incubation time. Aluminum phase transformations have been identified as a function of time and temperature, using X-ray diffraction. Solutions have been analyzed using wet chemical methods and X-ray fluorescence. Our data have been compared with published calculations of aluminum phase diagrams. Approaches are given to enhance the dissolution of aluminum and aluminosilicate phases in caustic solution.

  20. Aluminum-carbon composite electrode

    DOEpatents

    Farahmandi, C. Joseph; Dispennette, John M.

    1998-07-07

    A high performance double layer capacitor having an electric double layer formed in the interface between activated carbon and an electrolyte is disclosed. The high performance double layer capacitor includes a pair of aluminum impregnated carbon composite electrodes having an evenly distributed and continuous path of aluminum impregnated within an activated carbon fiber preform saturated with a high performance electrolytic solution. The high performance double layer capacitor is capable of delivering at least 5 Wh/kg of useful energy at power ratings of at least 600 W/kg.

  1. Aluminum-carbon composite electrode

    DOEpatents

    Farahmandi, C.J.; Dispennette, J.M.

    1998-07-07

    A high performance double layer capacitor having an electric double layer formed in the interface between activated carbon and an electrolyte is disclosed. The high performance double layer capacitor includes a pair of aluminum impregnated carbon composite electrodes having an evenly distributed and continuous path of aluminum impregnated within an activated carbon fiber preform saturated with a high performance electrolytic solution. The high performance double layer capacitor is capable of delivering at least 5 Wh/kg of useful energy at power ratings of at least 600 W/kg. 3 figs.

  2. Welding the four most popular aluminum alloys

    SciTech Connect

    Irving, B.

    1994-02-01

    The fact that business is good in aluminum welding is a sure sign that more manufacturers and fabricators are using GMA and GTA welding to build new products out of this lightweight nonferrous metal. Among the most widely specified weldable grades are Alloys 6061, 5083, 5052 and 5454. A rundown on these four alloys, including properties and selected applications, is provided. Any company working with aluminum for the first time needs to know something about these four alloys. Alloys of copper-magnesium-silicon combination, of which 6061 is one, are heat-treatable. The three 5XXX series alloys, on the other hand, are nonheat-treatable. According to P.B. Dickerson, consultant, Lower Burrell, Pa., 5083, because of its high magnesium content, is the easiest of the four alloys to arc weld. Dickerson put the cut-off point in weldability at 3.5% magnesium. To prevent cracking, he added, both 6061 and 5052 require much more filler metal than do the other two alloys. Alloy 6061 consists of 0.25Cu, 0.6Si, 1.0Mg, and 0.20Cr. The main applications for 6061 aluminum are structural, architectural, automotive, railway, marine and pipe. It has good formability, weldability, corrosion resistance and strength. Although the 6XXX series alloys are prone to hot cracking, this condition can be readily overcome by correct choice of joint design and electrode. The most popular temper for 6061 is T6, although the -T651, -T4, and -F temper are also popular. The -T651 temper is like a -T6 temper, only it has received some final stretch hardening. The -T4 temper has been solution heat-treated and quenched. The -F temper is in the as-fabricated condition.

  3. A roadmap for research on crassulacean acid metabolism (CAM) to enhance sustainable food and bioenergy production in a hotter, drier world

    SciTech Connect

    Yang, Xiaohan; Cushman, John C.; Borland, Anne M.; Edwards, Erika; Wullschleger, Stan D.; Tuskan, Gerald A.; Owen, Nick; Griffiths, Howard; Smith, J. Andrew C.; Cestari De Paoli, Henrique; Weston, David; Cottingham, Robert; Hartwell, James; Davis, Sarah C.; Silvera, Katia; Ming, Ray; Schlauch, Karen; Abraham, Paul E.; Stewart, J. Ryan; Guo, Hao -Bo; Nair, Sujithkumar S.; Ranjan, Priya; Palla, Kaitlin J.; Yin, Hengfu; Albion, Rebecca; Ha, Jungmin; Lim, Sung Don; Wone, Bernard W. M.; Yim, Won Cheol; Garcia, Travis; Mayer, Jesse A.; Petereit, Juli; Casey, Erin; Hettich, Robert L.; Ceusters, John; Ranjan, Priya; Palla, Kaitlin J.; Yin, Hengfu; Reyes-Garcia, Casandra; Andrade, Jose Luis; Freschi, Luciano; Beltran, Juan D.; Dever, Louisa V.; Boxall, Susanna F.; Waller, Jade; Davies, Jack; Bupphada, Phaitun; Kadu, Nirja; Winter, Klaus; Sage, Rowan F.; Aguilar, Cristobal N.; Schmutz, Jeremy; Jenkins, Jerry; Holtum, Joseph A.M.

    2015-07-07

    Crassulacean acid metabolism (CAM) is a specialized mode of photosynthesis that features nocturnal CO₂ uptake, facilitates increased water-use efficiency (WUE), and enables CAM plants to inhabit water-limited environments such as semi-arid deserts or seasonally dry forests. Human population growth and global climate change now present challenges for agricultural production systems to increase food, feed, forage, fiber, and fuel production. One approach to meet these challenges is to increase reliance on CAM crops, such as Agave and Opuntia, for biomass production on semi-arid, abandoned, marginal, or degraded agricultural lands. Major research efforts are now underway to assess the productivity of CAM crop species and to harness the WUE of CAM by engineering this pathway into existing food and bioenergy crops. An improved understanding of CAM gained through intensive and expanded research efforts has potential for high returns on research investment in the foreseeable future. To help realize the potential of sustainable dryland agricultural systems, it is necessary to address scientific questions related to the genomic features, regulatory mechanisms, and evolution of CAM; CAM-into-C3 engineering; and the production of CAM crops. Answering these questions requires collaborative efforts to build infrastructure for CAM model systems, field trials, mutant collections, and data management.

  4. A roadmap for research on crassulacean acid metabolism (CAM) to enhance sustainable food and bioenergy production in a hotter, drier world

    SciTech Connect

    Yang, Xiaohan; Cushman, John C.; Borland, Anne M.; Edwards, Erika; Wullschleger, Stan D.; Tuskan, Gerald A.; Owen, Nick; Griffiths, Howard; Smith, J. Andrew C.; Cestari De Paoli, Henrique; Weston, David; Cottingham, Robert; Hartwell, James; Davis, Sarah C.; Silvera, Katia; Ming, Ray; Schlauch, Karen; Abraham, Paul E.; Stewart, J. Ryan; Guo, Hao -Bo; Nair, Sujithkumar S.; Ranjan, Priya; Palla, Kaitlin J.; Yin, Hengfu; Albion, Rebecca; Ha, Jungmin; Lim, Sung Don; Wone, Bernard W. M.; Yim, Won Cheol; Garcia, Travis; Mayer, Jesse A.; Petereit, Juli; Casey, Erin; Hettich, Robert L.; Ceusters, John; Ranjan, Priya; Palla, Kaitlin J.; Yin, Hengfu; Reyes-Garcia, Casandra; Andrade, Jose Luis; Freschi, Luciano; Beltran, Juan D.; Dever, Louisa V.; Boxall, Susanna F.; Waller, Jade; Davies, Jack; Bupphada, Phaitun; Kadu, Nirja; Winter, Klaus; Sage, Rowan F.; Aguilar, Cristobal N.; Schmutz, Jeremy; Jenkins, Jerry; Holtum, Joseph A.M.

    2015-01-01

    Crassulacean acid metabolism (CAM) is a specialized mode of photosynthesis that features nocturnal CO₂ uptake, facilitates increased water-use efficiency (WUE), and enables CAM plants to inhabit water-limited environments such as semi-arid deserts or seasonally dry forests. Human population growth and global climate change now present challenges for agricultural production systems to increase food, feed, forage, fiber, and fuel production. One approach to meet these challenges is to increase reliance on CAM crops, such as Agave and Opuntia, for biomass production on semi-arid, abandoned, marginal, or degraded agricultural lands. Major research efforts are now underway to assess the productivity of CAM crop species and to harness the WUE of CAM by engineering this pathway into existing food and bioenergy crops. An improved understanding of CAM gained through intensive and expanded research efforts has potential for high returns on research investment in the foreseeable future. To help realize the potential of sustainable dryland agricultural systems, it is necessary to address scientific questions related to the genomic features, regulatory mechanisms, and evolution of CAM; CAM-into-C3 engineering; and the production of CAM crops. Answering these questions requires collaborative efforts to build infrastructure for CAM model systems, field trials, mutant collections, and data management.

  5. A roadmap for research on crassulacean acid metabolism (CAM) to enhance sustainable food and bioenergy production in a hotter, drier world

    DOE PAGES [OSTI]

    Yang, Xiaohan; Cushman, John C.; Borland, Anne M.; Edwards, Erika; Wullschleger, Stan D.; Tuskan, Gerald A.; Owen, Nick; Griffiths, Howard; Smith, J. Andrew C.; Cestari De Paoli, Henrique; et al

    2015-01-01

    Crassulacean acid metabolism (CAM) is a specialized mode of photosynthesis that features nocturnal CO₂ uptake, facilitates increased water-use efficiency (WUE), and enables CAM plants to inhabit water-limited environments such as semi-arid deserts or seasonally dry forests. Human population growth and global climate change now present challenges for agricultural production systems to increase food, feed, forage, fiber, and fuel production. One approach to meet these challenges is to increase reliance on CAM crops, such as Agave and Opuntia, for biomass production on semi-arid, abandoned, marginal, or degraded agricultural lands. Major research efforts are now underway to assess the productivity of CAMmore » crop species and to harness the WUE of CAM by engineering this pathway into existing food and bioenergy crops. An improved understanding of CAM gained through intensive and expanded research efforts has potential for high returns on research investment in the foreseeable future. To help realize the potential of sustainable dryland agricultural systems, it is necessary to address scientific questions related to the genomic features, regulatory mechanisms, and evolution of CAM; CAM-into-C3 engineering; and the production of CAM crops. Answering these questions requires collaborative efforts to build infrastructure for CAM model systems, field trials, mutant collections, and data management.« less

  6. Life-cycle energy savings potential from aluminum-intensive vehicles

    SciTech Connect

    Stodolsky, F.; Vyas, A.; Cuenca, R.; Gaines, L.

    1995-07-01

    The life-cycle energy and fuel-use impacts of US-produced aluminum-intensive passenger cars and passenger trucks are assessed. The energy analysis includes vehicle fuel consumption, material production energy, and recycling energy. A model that stimulates market dynamics was used to project aluminum-intensive vehicle market shares and national energy savings potential for the period between 2005 and 2030. We conclude that there is a net energy savings with the use of aluminum-intensive vehicles. Manufacturing costs must be reduced to achieve significant market penetration of aluminum-intensive vehicles. The petroleum energy saved from improved fuel efficiency offsets the additional energy needed to manufacture aluminum compared to steel. The energy needed to make aluminum can be reduced further if wrought aluminum is recycled back to wrought aluminum. We find that oil use is displaced by additional use of natural gas and nonfossil energy, but use of coal is lower. Many of the results are not necessarily applicable to vehicles built outside of the United States, but others could be used with caution.

  7. EVALUATION OF LOW TEMPERATURE ALUMINUM DISSOLUTION IN TANK 51

    SciTech Connect

    Pike, J

    2008-09-04

    Tank 41 that was stored and sampled in Tank 49 was determined to be supersaturated relative to aluminum. Supersaturation in Tank 49 is not a risk to LTAD. However, storing and processing of this supernate carries a risk of solids precipitation, primarily in the form of gibbsite or boehmite. Blending with the supernate in Tank 11 neither increases nor decreases this risk. LTAD was initiated as an opportunity to substantially mitigate the planned increase in canister production and DWPF lifecycle after the realization of more sludge solids stored in the HLW tanks. As determined from the preliminary evaluation of LTAD, the direct benefit of the decanted liquid stored in Tank 11 represents 45 canisters at 34% waste loading with potential indirect benefits for much larger reductions. Application of an aluminum dissolution process to the remaining high aluminum content sludge will potentially reduce the planned canister production by several hundred canisters at 34%-38% waste loading.

  8. Decarbonization process for carbothermically produced aluminum

    DOEpatents

    Bruno, Marshall J.; Carkin, Gerald E.; DeYoung, David H.; Dunlap, Sr., Ronald M.

    2015-06-30

    A method of recovering aluminum is provided. An alloy melt having Al.sub.4C.sub.3 and aluminum is provided. This mixture is cooled and then a sufficient amount of a finely dispersed gas is added to the alloy melt at a temperature of about 700.degree. C. to about 900.degree. C. The aluminum recovered is a decarbonized carbothermically produced aluminum where the step of adding a sufficient amount of the finely dispersed gas effects separation of the aluminum from the Al.sub.4C.sub.3 precipitates by flotation, resulting in two phases with the Al.sub.4C.sub.3 precipitates being the upper layer and the decarbonized aluminum being the lower layer. The aluminum is then recovered from the Al.sub.4C.sub.3 precipitates through decanting.

  9. MECS 2006 - Alumina and Aluminum | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Alumina and Aluminum MECS 2006 - Alumina and Aluminum Manufacturing Energy and Carbon Footprint for Alumina and Aluminum Sector (NAICS 3313) with Total Energy Input, October 2012 (MECS 2006) All available footprints and supporting documents Manufacturing Energy and Carbon Footprint Alumina and Aluminum (118.88 KB) More Documents & Publications Alumina and Aluminum (2010 MECS) MECS 2006 - Cement MECS 2006 - Glass

  10. High Strength, Dissimilar Alloy Aluminum Tailor-Welded Blanks

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Annual Merit Review High Strength, Dissimilar Alloy Aluminum Tailor-Welded Blanks YURI HOVANSKI This Presentation does not contain any proprietary, confidential, or otherwise restricted information Project ID #LM099 Pacific Northwest National Laboratory June 12, 2015 Project Overview Automotive OEM GM Tier I Supplier TWB Company LLC Material Provider Alcoa 2 2 Start: FY2015 Finish: FY2017 15% complete Capacity to rapidly join dissimilar alloy Al sheet is not developed for high volume production.

  11. PREPARATION OF ACTINIDE-ALUMINUM ALLOYS

    DOEpatents

    Moore, R.H.

    1962-09-01

    BS>A process is given for preparing alloys of aluminum with plutonium, uranium, and/or thorium by chlorinating actinide oxide dissolved in molten alkali metal chloride with hydrochloric acid, chlorine, and/or phosgene, adding aluminum metal, and passing air and/or water vapor through the mass. Actinide metal is formed and alloyed with the aluminum. After cooling to solidification, the alloy is separated from the salt. (AEC)

  12. Could Aluminum Nitride Produce Quantum Bits?

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Home » News & Publications » News » Science News » Could Aluminum Nitride Produce Quantum Bits? Could Aluminum Nitride Produce Quantum Bits? After running simulations at NERSC researchers believe it's possible May 2, 2016 Linda Vu, lvu@lbl.gov, 510.495.2402 Graphical Abstract AlN Sci Rep no logo cropped This graphic illustrates an engineered nitrogen vacancy in aluminum nitride. Quantum computers have the potential to break common cryptography techniques, search huge datasets and

  13. Aluminum Leaching of ''Archived'' Sludge from Tanks 8F, 11H, and 12H

    SciTech Connect

    FONDEUR, FERNANDOF.

    2004-03-12

    Aluminum can promote formation or dissolution of networks in hydroxide solid solutions. When present in large amounts it will act as a network former increasing both the viscosity and the surface tension of melts. This translates into poor free flow properties that affect pour rate of glass production in the Defense Waste Processing Facility (DWPF). To mitigate this situation, DWPF operations limit the amount of aluminum contained in sludge. This study investigated the leaching of aluminum compounds from archived sludge samples. The conclusions found boehmite present as the predominant aluminum compound in sludge from two tanks. We did not identify an aluminum compound in sludge from the third tank. We did not detect any amorphous aluminum hydroxide in the samples. The amount of goethite measured 4.2 percentage weight while hematite measured 3.7 percentage weight in Tank 11H sludge. The recommended recipe for removing gibbsite in sludge proved inefficient for digesting boehmite, removing less than 50 per cent of the compound within 48 hours. The recipe did remove boehmite when the test ran for 10 days (i.e., 7 more days than the recommended baseline leaching period). Additions of fluoride and phosphate to Tank 12H archived sludge did not improve the aluminum leaching efficiency of the baseline recipe.

  14. Activated Aluminum Hydride Hydrogen Storage Compositions - Energy...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Startup America Startup America Hydrogen and Fuel Cell Hydrogen and Fuel Cell Find More Like This Return to Search Activated Aluminum Hydride Hydrogen Storage Compositions ...

  15. Activated aluminum hydride hydrogen storage compositions and...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal ... Return to Search Activated aluminum hydride hydrogen storage compositions and uses thereof ...

  16. High resistivity aluminum antimonide radiation detector

    DOEpatents

    Sherohman, John W.; Coombs, III, Arthur W.; Yee, Jick H.

    2007-12-18

    Bulk Aluminum Antimonide (AlSb)-based single crystal materials have been prepared for use as ambient (room) temperature X-ray and Gamma-ray radiation detection.

  17. Aluminum-stabilized NB3SN superconductor

    DOEpatents

    Scanlan, Ronald M.

    1988-01-01

    An aluminum-stabilized Nb.sub.3 Sn superconductor and process for producing same, utilizing ultrapure aluminum. Ductile components are co-drawn with aluminum to produce a conductor suitable for winding magnets. After winding, the conductor is heated to convert it to the brittle Nb.sub.3 Sn superconductor phase, using a temperature high enough to perform the transformation but still below the melting point of the aluminum. This results in reaction of substantially all of the niobium, while providing stabilization and react-in-place features which are beneficial in the fabrication of magnets utilizing superconducting materials.

  18. High resistivity aluminum antimonide radiation detector

    DOEpatents

    Sherohman, John W.; Coombs, III, Arthur W.; Yee, Jick H.

    2005-05-03

    Bulk Aluminum Antimonide (AlSb)-based single crystal materials have been prepared for use as ambient (room) temperature X-ray and Gamma-ray radiation detection.

  19. Reaction of Aluminum with Water to Produce Hydrogen: A Study...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Reaction of Aluminum with Water to Produce Hydrogen: A Study of Issues Related to the Use of Aluminum for On-Board Vehicular Hydrogen Storage. Version 2, 2010. Reaction of Aluminum ...

  20. Understanding composite explosive energetics: 3, Reactive flow modeling of aluminum reaction kinetics in PETN and TNT

    SciTech Connect

    Tao, W.C.; Tarver, C.M.; Ornellas, D.L.

    1991-12-06

    Using Fabry-Perot interferometry techniques, we have determined that early time rate of energy release from detonating PETN and TNT explosives filled with 5 and 10 wt % of either 5 {mu}m of 18 {mu}m spherical aluminum (Al) particles. From the measured particle velocity data, we are able to infer the reaction rate of aluminum with the detonation products, and calculate the extent of reaction 1--3 {mu}s after the detonation. We observed that a substantional portion of the aluminum metal in all of the PETN and TNE formulations reacted within the timeframe of the one-dimensional experiment. In the PETN formulation filed with 5 wt % of 5 {mu}m aluminum, all of the metal reacted within 1.5 {mu}s, resulting in an increase of 22% in energy compared to pure PETN. A reactive-flow hydrodynamic model based on the Zeldovich-von Neumann-Doring (ZND) description of the reaction zone and subsequent reaction produce expansion (Taylor wave) is used to interpret the reaction rate of the aluminum particles with detonation product gases. The diffusion-controlled reaction mechanism for aluminum and the global kinetic parameters used in the model have been found to be consistent for all the PETN and TNT formulations.

  1. Friction Stir Welding Aluminum for Lightweight Vehicles | Department...

    Office of Environmental Management (EM)

    Friction Stir Welding Aluminum for Lightweight Vehicles Friction Stir Welding Aluminum for Lightweight Vehicles Addthis Description In this video, a researcher from Pacific ...

  2. XUV Absorption by Solid Density Aluminum (Journal Article) |...

    Office of Scientific and Technical Information (OSTI)

    XUV Absorption by Solid Density Aluminum Citation Details In-Document Search Title: XUV Absorption by Solid Density Aluminum An inverse bremsstrahlung model for plasmas and simple ...

  3. Composite-Reinforced Aluminum Conductor | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    annealed trapezoidal-shaped conductive aluminum wires. Compared with a conventional steel core cable, the new core allows for up to 28% more conductive aluminum to be wrapped...

  4. Rechargeable Aluminum Batteries with Conducting Polymers as Positive...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Rechargeable Aluminum Batteries with Conducting Polymers as Positive Electrodes. Citation Details In-Document Search Title: Rechargeable Aluminum Batteries with ...

  5. Rechargeable aluminum batteries with conducting polymers as positive...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Rechargeable aluminum batteries with conducting polymers as positive electrodes. Citation Details In-Document Search Title: Rechargeable aluminum batteries with ...

  6. Rechargeable Aluminum Batteries with Conducting Polymers as Active...

    Office of Scientific and Technical Information (OSTI)

    Conference: Rechargeable Aluminum Batteries with Conducting Polymers as Active Cathode Materials. Citation Details In-Document Search Title: Rechargeable Aluminum Batteries with ...

  7. Reaction of Aluminum with Water to Produce Hydrogen: A Study...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Reaction of Aluminum with Water to Produce Hydrogen A Study of Issues Related to the Use ... Alloys PROPERTIES OF THE ALUMINUM-WATER REACTIONS RELATIVE ...... 14 TO ...

  8. Adsorption of tris(8-hydroxyquinoline)aluminum molecules on cobalt...

    Office of Scientific and Technical Information (OSTI)

    Adsorption of tris(8-hydroxyquinoline)aluminum molecules on cobalt surfaces Prev Next Title: Adsorption of tris(8-hydroxyquinoline)aluminum molecules on cobalt surfaces ...

  9. High Speed Joining of Dissimilar Alloy Aluminum Tailor Welded...

    Energy Saver

    High Speed Joining of Dissimilar Alloy Aluminum Tailor Welded Blanks High Speed Joining of Dissimilar Alloy Aluminum Tailor Welded Blanks 2013 DOE Hydrogen and Fuel Cells Program ...

  10. Aluminum electroplating on steel from a fused bromide electrolyte...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Return to Search Aluminum electroplating on steel from a fused bromide electrolyte Idaho ... widely used to electroplate aluminum on steel, brass, copper and other substrate ...

  11. Novel technique for increasing corrosion resistance: Aluminum Project Fact Sheet

    SciTech Connect

    NREL

    2000-02-01

    Fact sheet written for the Inventions and Innovation Program about a new nontoxic coating process that protects aluminum and aluminum alloys.

  12. SOLID STATE BONDING OF THORIUM WITH ALUMINUM

    DOEpatents

    Storchhelm, S.

    1959-12-01

    A method is described for bonding thorium and aluminum by placing clean surfaces of thorium and aluminum in contact with each other and hot pressing the metals together in a protective atmosphere at a temperature of about 375 to 575 deg C and at a pressure of at least 10 tsi to effect a bond.

  13. Aluminum low temperature smelting cell metal collection

    DOEpatents

    Beck, Theodore R.; Brown, Craig W.

    2002-07-16

    A method of producing aluminum in an electrolytic cell containing alumina dissolved in an electrolyte. The method comprises the steps of providing a molten salt electrolyte in an electrolytic cell having an anodic liner for containing the electrolyte, the liner having an anodic bottom and walls including at least one end wall extending upwardly from the anodic bottom, the anodic liner being substantially inert with respect to the molten electrolyte. A plurality of non-consumable anodes is provided and disposed vertically in the electrolyte. A plurality of cathodes is disposed vertically in the electrolyte in alternating relationship with the anodes. The anodes are electrically connected to the anodic liner. An electric current is passed through the anodic liner to the anodes, through the electrolyte to the cathodes, and aluminum is deposited on said cathodes. Oxygen bubbles are generated at the anodes and the anodic liner, the bubbles stirring the electrolyte. Molten aluminum is collected from the cathodes into a tubular member positioned underneath the cathodes. The tubular member is in liquid communication with each cathode to collect the molten aluminum therefrom while excluding electrolyte. Molten aluminum is delivered through the tubular member to a molten aluminum reservoir located substantially opposite the anodes and cathodes. The molten aluminum is collected from the cathodes and delivered to the reservoir while avoiding contact of the molten aluminum with the anodic bottom.

  14. METHOD FOR JOINING ALUMINUM TO STAINLESS STEEL

    DOEpatents

    Lemon, L.C.

    1960-05-24

    Aluminum may be joined to stainless steel without the use of flux by tinning the aluminum with a tin solder containing 1% silver and 1% lead, tinning the stainless steel with a 50% lead 50% tin solder, and then sweating the tinned surfaces together.

  15. Drying studies for corroded DOE aluminum plate fuels

    SciTech Connect

    Lords, R.E.; Windes, W.E.; Crepeau, J.C.; Sidwell, R.W.

    1996-05-01

    The Idaho National Engineering Laboratory (INEL) currently stores a wide variety of spent nuclear fuel. The fuel was originally intended to be stored underwater for a short period of thermal cooling, then removed and reprocessed. However, it has been stored underwater for much longer thank originally anticipated. During this time dust and airborne desert soil have entered the oldest INEL pool, accumulating on the fuel. Also, the aluminum fuel cladding has corroded compromising the exposed surfaces of the fuel. Plans are now underway to move some the the more vulnerable aluminum plate type fuels into dry storage in an existing vented and filtered fuel storage facility. In preparation for dry storage of the fuel a drying and canning station is being built at the INEL. The two primary objectives of this facility are to determine the influence of corrosion products on the drying process and to establish temperature distribution inside the canister during heating.

  16. Aluminum-based metal-air batteries

    DOEpatents

    Friesen, Cody A.; Martinez, Jose Antonio Bautista

    2016-01-12

    Provided in one embodiment is an electrochemical cell, comprising: (i) a plurality of electrodes, comprising a fuel electrode that comprises aluminum and an air electrode that absorbs gaseous oxygen, the electrodes being operable in a discharge mode wherein the aluminum is oxidized at the fuel electrode and oxygen is reduced at the air electrode, and (ii) an ionically conductive medium, comprising an organic solvent; wherein during non-use of the cell, the organic solvent promotes formation of a protective interface between the aluminum of the fuel electrode and the ionically conductive medium, and wherein at an onset of the discharge mode, at least some of the protective interface is removed from the aluminum to thereafter permit oxidation of the aluminum during the discharge mode.

  17. HIGH ALUMINUM HLW GLASSES FOR HANFORDS WTP

    SciTech Connect

    KRUGER AA; JOSEPH I; BOWMAN BW; GAN H; KOT W; MATLACK KS; PEGG IL

    2009-08-19

    The world's largest radioactive waste vitrification facility is now under construction at the United State Department of Energy's (DOE's) Hanford site. The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is designed to treat nearly 53 million gallons of mixed hazardous and radioactive waste now residing in 177 underground storage tanks. This multi-decade processing campaign will be one of the most complex ever undertaken because of the wide chemical and physical variability of the waste compositions generated during the cold war era that are stored at Hanford. The DOE Office of River Protection (ORP) has initiated a program to improve the long-term operating efficiency of the WTP vitrification plants with the objective of reducing the overall cost of tank waste treatment and disposal and shortening the duration of plant operations. Due to the size, complexity and duration of the WTP mission, the lifecycle operating and waste disposal costs are substantial. As a result, gains in High Level Waste (HLW) and Low Activity Waste (LAW) waste loadings, as well as increases in glass production rate, which can reduce mission duration and glass volumes for disposal, can yield substantial overall cost savings. EnergySolutions and its long-term research partner, the Vitreous State Laboratory (VSL) of the Catholic University of America, have been involved in a multi-year ORP program directed at optimizing various aspects of the HLW and LAW vitrification flow sheets. A number of Hanford HLW streams contain high concentrations of aluminum, which is challenging with respect to both waste loading and processing rate. Therefore, a key focus area of the ORP vitrification process optimization program at EnergySolutions and VSL has been development of HLW glass compositions that can accommodate high Al{sub 2}O{sub 3} concentrations while maintaining high processing rates in the Joule Heated Ceramic Melters (JHCMs) used for waste vitrification at the WTP. This paper, reviews

  18. Decontamination and reuse of ORGDP aluminum scrap

    SciTech Connect

    Compere, A.L.; Griffith, W.L.; Hayden, H.W.; Wilson, D.F.

    1996-12-01

    The Gaseous Diffusion Plants, or GDPs, have significant amounts of a number of metals, including nickel, aluminum, copper, and steel. Aluminum was used extensively throughout the GDPs because of its excellent strength to weight ratios and good resistance to corrosion by UF{sub 6}. This report is concerned with the recycle of aluminum stator and rotor blades from axial compressors. Most of the stator and rotor blades were made from 214-X aluminum casting alloy. Used compressor blades were contaminated with uranium both as a result of surface contamination and as an accumulation held in surface-connected voids inside of the blades. A variety of GDP studies were performed to evaluate the amounts of uranium retained in the blades; the volume, area, and location of voids in the blades; and connections between surface defects and voids. Based on experimental data on deposition, uranium content of the blades is 0.3%, or roughly 200 times the value expected from blade surface area. However, this value does correlate with estimated internal surface area and with lengthy deposition times. Based on a literature search, it appears that gaseous decontamination or melt refining using fluxes specific for uranium removal have the potential for removing internal contamination from aluminum blades. A melt refining process was used to recycle blades during the 1950s and 1960s. The process removed roughly one-third of the uranium from the blades. Blade cast from recycled aluminum appeared to perform as well as blades from virgin material. New melt refining and gaseous decontamination processes have been shown to provide substantially better decontamination of pure aluminum. If these techniques can be successfully adapted to treat aluminum 214-X alloy, internal and, possibly, external reuse of aluminum alloys may be possible.

  19. Retention and release of tritium in aluminum clad, Al-Li alloys

    SciTech Connect

    Louthan, M.R. Jr.

    1991-12-31

    Tritium retention in and release from aluminum clad, aluminum-lithium alloys is modeled from experimental and operational data developed during the thirty plus years of tritium production at the Savannah River Site. The model assumes that tritium atoms, formed by the {sup 6}Li(n,{alpha}){sup 3}He reaction, are produced in solid solution in the Al-Li alloy. Because of the low solubility of hydrogen isotopes in aluminum alloys, the irradiated Al-Li rapidly becomes supersaturated in tritium. Newly produced tritium atoms are trapped by lithium atoms to form a lithium tritide. The effective tritium pressure required for trap or tritide stability is the equilibrium decomposition pressure of tritium over a lithium tritide-aluminum mixture. The temperature dependence of tritium release is determined by the permeability of the cladding to tritium and the local equilibrium at the trap sites. This model is used to calculate tritium release from aluminum clad, aluminum-lithium alloys. 9 refs., 3 figs.

  20. Retention and release of tritium in aluminum clad, Al-Li alloys

    SciTech Connect

    Louthan, M.R. Jr.

    1991-01-01

    Tritium retention in and release from aluminum clad, aluminum-lithium alloys is modeled from experimental and operational data developed during the thirty plus years of tritium production at the Savannah River Site. The model assumes that tritium atoms, formed by the {sup 6}Li(n,{alpha}){sup 3}He reaction, are produced in solid solution in the Al-Li alloy. Because of the low solubility of hydrogen isotopes in aluminum alloys, the irradiated Al-Li rapidly becomes supersaturated in tritium. Newly produced tritium atoms are trapped by lithium atoms to form a lithium tritide. The effective tritium pressure required for trap or tritide stability is the equilibrium decomposition pressure of tritium over a lithium tritide-aluminum mixture. The temperature dependence of tritium release is determined by the permeability of the cladding to tritium and the local equilibrium at the trap sites. This model is used to calculate tritium release from aluminum clad, aluminum-lithium alloys. 9 refs., 3 figs.

  1. Electrically conductive containment vessel for molten aluminum

    DOEpatents

    Holcombe, Cressie E.; Scott, Donald G.

    1985-01-01

    The present invention is directed to a containment vessel which is particularly useful in melting aluminum. The vessel of the present invention is a multilayered vessel characterized by being electrically conductive, essentially nonwettable by and nonreactive with molten aluminum. The vessel is formed by coating a tantalum substrate of a suitable configuration with a mixture of yttria and particulate metal borides. The yttria in the coating inhibits the wetting of the coating while the boride particulate material provides the electrical conductivity through the vessel. The vessel of the present invention is particularly suitable for use in melting aluminum by ion bombardment.

  2. Electrically conductive containment vessel for molten aluminum

    DOEpatents

    Holcombe, C.E.; Scott, D.G.

    1984-06-25

    The present invention is directed to a containment vessel which is particularly useful in melting aluminum. The vessel of the present invention is a multilayered vessel characterized by being electrically conductive, essentially nonwettable by and nonreactive with molten aluminum. The vessel is formed by coating a tantalum substrate of a suitable configuration with a mixture of yttria and particulate metal 10 borides. The yttria in the coating inhibits the wetting of the coating while the boride particulate material provides the electrical conductivity through the vessel. The vessel of the present invention is particularly suitable for use in melting aluminum by ion bombardment.

  3. Cathode for aluminum producing electrolytic cell

    DOEpatents

    Brown, Craig W.

    2004-04-13

    A method of producing aluminum in an electrolytic cell comprising the steps of providing an anode in a cell, preferably a non-reactive anode, and also providing a cathode in the cell, the cathode comprised of a base material having low electrical conductivity reactive with molten aluminum to provide a highly electrically conductive layer on the base material. Electric current is passed from the anode to the cathode and alumina is reduced and aluminum is deposited at the cathode. The cathode base material is selected from boron carbide, and zirconium oxide.

  4. ITP Aluminum: Technical Working Group on Inert Anode Technologies |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Aluminum: Technical Working Group on Inert Anode Technologies ITP Aluminum: Technical Working Group on Inert Anode Technologies inertech.pdf (8.16 MB) More Documents & Publications ITP Aluminum: Energy and Environmental Profile of the U.S. Aluminum Industry EIS-0333: Draft Environmental Impact Statement Better Buildings Network View | September 2015

  5. Formulation and method for preparing gels comprising hydrous aluminum oxide

    DOEpatents

    Collins, Jack L.

    2014-06-17

    Formulations useful for preparing hydrous aluminum oxide gels contain a metal salt including aluminum, an organic base, and a complexing agent. Methods for preparing gels containing hydrous aluminum oxide include heating a formulation to a temperature sufficient to induce gel formation, where the formulation contains a metal salt including aluminum, an organic base, and a complexing agent.

  6. A simple aluminum gasket for use with both stainless steel and aluminum flanges

    SciTech Connect

    Langley, R.A.

    1991-01-01

    A technique has been developed for making aluminum wire seal gaskets of various sizes and shapes for use with both stainless steel and aluminum alloy flanges. The gasket material used is 0.9999 pure aluminum, drawn to a diameter of 3 mm. This material can be easily welded and formed into various shapes. A single gasket has been successfully used up to five times without baking. The largest gasket tested to date is 3.5 m long and was used in the shape of a parallelogram. Previous use of aluminum wire gaskets, including results for bakeout at temperatures from 20 to 660{degree}C, is reviewed. A search of the literature indicates that this is the first reported use of aluminum wire gaskets for aluminum alloy flanges. The technique is described in detail, and the results are summarized. 11 refs., 4 figs.

  7. Mechanical Properties of Aluminum Matrix Composite Reinforced by Carbothermally Reduced of Fly Ash

    SciTech Connect

    Jamasri; Wildan, M. W.; Sulardjaka; Kusnanto

    2011-01-17

    The addition of fly ash into aluminum as reinforcement can potentially reduce the production cost and density of aluminum. However, mechanical properties of aluminum matrix composite reinforced by fly ash (MMC ALFA) have some limitations due to the characteristic of fly ash. In this study, a carbothermal reduction process of fly ash and activated carbon powder with particle size <32 {mu}m was performed prior to produce MMC ALFA.The process was carried out in a furnace at 1300 deg. C in vacuum condition under argon flow. Synthesis product was analyzed by XRD with Cu-K{sub {alpha}} radiation. From XRD analysis, it shows that the synthesis process can produce SiC powder. The synthesis product was subsequently used as reinforcement particle. Aluminum powder was mixed with 5, 10 and 15% of the synthesized powder, and then uni-axially compacted at pressure of 300 MPa. The compacted product was sintered for 2 hours in argon atmosphere at temperature variation of 550 and 600 deg. C. Flexural strength, hardness and density of MMC ALFA's product were respectively evaluated using a four point bending test method based on ASTM C1161 standard, Brinell hardness scale and Archimedes method. The result of this study shows that the increase of weight of reinforcement can significantly increase the hardness and flexural strength of MMCs. The highest hardness and flexural strength of the MMC product are 300 kg/mm{sup 2} and 107.5 MPa, respectively.

  8. ITP Aluminum: Aluminum Industry Vision: Sustainable Solutions for a Dynamic World

    Energy.gov [DOE]

    The Aluminum Vision is intended to stimulate a wide variety of R&D activities to accelerate technology development throughout industry.

  9. ITP Aluminum: Energy and Environmental Profile of the U.S. Aluminum Industry

    Energy.gov [DOE]

    This detailed report benchmarks the energy and environmental characteristics of the key technologies used in the major processes of the aluminum industry.

  10. A scanning Kelvin probe analysis of aluminum and aluminum alloys

    SciTech Connect

    Hansen, D.C.; Grecsek, G.E.; Roberts, R.O.

    1999-07-01

    A scanning Kelvin probe was used to determine a correlation between work function measurements in air and corrosion potential measurements in solution of pure metals. Test panels of AA2024-T3 treated with various surface preparations and primer/coatings were also analyzed using this technique. Filiform corrosion was observed on a scribed panel that had been exposed to a humid environment, whereas on a non-scribed and non-exposed test panel, holidays in the coating were observed and clearly defined. Work function (wf) analysis yielded more noble values for areas within the scribe mark and more active values were observed for areas adjacent to the scribe mark where delamination of the coating and filiform corrosion was observed. The tips of corrosion filaments were found to be anodic in relation to the body of the filament, with areas of activity extending away from the filaments themselves. Measurements made on an aircraft access panel resulted in the detection of a potential gradient within the repair area. These results indicate that the scanning Kelvin probe is a useful non-destructive technique for the detection of delamination and disbanding of coatings, coating anomalies and corrosion susceptibility of coatings on aluminum aircraft alloys.

  11. Aqueous recovery of actinides from aluminum alloys

    SciTech Connect

    Gray, J.H.; Chostner, D.F.; Gray, L.W.

    1989-01-01

    Early in the 1980's, a joint Rocky Flats/Savannah River program was established to recover actinides from scraps and residues generated during Rocky Flats purification operations. The initial program involved pyrochemical treatment of Molten Salt Extraction (MSE) chloride salts and Electrorefining (ER) anode heel metal to form aluminum alloys suitable for aqueous processing at Savannah River. Recently Rocky Flats has expressed interest in expanding the aluminum alloy program to include treatment of chloride salt residues from a modified Molten Salt Extraction process and from the Electrorefining purification operations. Samples of the current aluminum alloy buttons were prepared at Rocky Flats and sent to Savannah River Laboratory for flowsheet development and characterization of the alloys. A summary of the scrub alloy-anode heel alloy program will be presented along with recent results from aqueous dissolution studies of the new aluminum alloys. 2 figs., 4 tabs.

  12. Study of constitution diagram aluminum-tantalum

    SciTech Connect

    Glazov, V.M.; Mal'tsev, M.V.; Chistyakov, Y.D.

    1988-10-20

    Alloys of aluminum with tantalum were for the first time obtained by aluminothermic method in 1868 by Moriniak. Later these alloys were studied in the works of Schirmeister (1915) and Brouwer (1938), moreover Brouwer established that tantalum with aluminum forms the chemical compound TaA1, which has tetragonal crystal lattice with parameters a=5.422 angstroms and c=8.536 angstroms (1). However despite the fact that alloys of aluminum with tantalum long ago are obtained already, constitution diagram of this system is not studied until recently. In connection with the application of tantalum as the modifying additive in aluminum alloys an emergency in the construction of this diagram, without the knowledge by which it is not possible to give the correct explanation of the mechanism of the very process of the modification of primary grain. For this purpose was undertaken this work. Russian translations.

  13. PROCESS OF ELECTROPLATING METALS WITH ALUMINUM

    DOEpatents

    Schickner, W.C.

    1960-04-26

    A process of electroplating aluminum on metals from a nonaqueous bath and a novel method of pretreating or conditioning the metal prior to electrodeposition of the aluminum are given. The process of this invention, as applied by way of example to the plating of uranium, comprises the steps of plating the uranium with the barrier inetal, immersing the barrier-coated uranium in fatty acid, and electrolyzing a water-free diethyl ether solution of aluminum chloride and lithium hydride while making the uranium the cathode until an aluminum deposit of the desired thickness has been formed. According to another preferred embodiment the barrier-coated uranium is immersed in an isopropyl alcohol solution of sterato chromic chloride prior to the fatty acid treatment of this invention.

  14. Method for removing magnesium from aluminum-magnesium alloys with engineered scavenger compound

    SciTech Connect

    Riley, W.D.; Jong, B.W.

    1994-12-31

    The invention relates to a method for removal and production of high purity magnesium from aluminum-magnesium alloys using an engineered scanvenger compound. In particular, the invention relates to a method for removal and production of high purity magnesium from aluminum-magnesium alloys using the engineered scanvenger compound (ESC) lithium titanate (Li2O3TiO2). The removal of magnesium from the aluminum-magnesium alloys is performed at about 600-750 C in a molten salt bath of KCl or KCl-MgCl2 using lithium titanate (Li2O3TiO2) as the engineered scavenger compound (ESC). Electrode deposition of magnesium from the loaded ESC onto a stainless steel electrode is accomplished in a second step, and provides a clean magnesium electrode deposit for recycling. The second step also prepares the ESC for reuse.

  15. FABRICATION OF URANIUM-ALUMINUM ALLOYS

    DOEpatents

    Saller, H.A.

    1959-12-15

    A process is presented for producing a workable article of a uranium- aluminum alloy in which the uranium content is between 14 and 70% by weight; aluminum powder and powdered UAl/sub 2/, UAl/sub 3/, UAl/sub 5/, or UBe/sub 9/ are mixed, and the mixture is compressed into the shape desired and sintered at between 450 and 600 deg C.

  16. Regeneration of Aluminum Hydride - Energy Innovation Portal

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Regeneration of Aluminum Hydride Brookhaven National Laboratory Contact BNL About This Technology Publications: PDF Document Publication Regeneration of Lithium Aluminum Hydride (919 KB) Technology Marketing Summary Alane is one of the most promising solutions to storing hydrogen for use in hydrogen fuel cells. This technology provides exceptional improvement in solving the difficult problem of economically preparing the material. Description Describes methods and materials required for the

  17. Dynamic consolidation of aluminum-silicon carbide composites

    SciTech Connect

    Rabin, B.H.; Korth, G.E.; Williamson, R.L.

    1990-01-01

    Dynamic consolidation was investigated as a potential method for producing P/M metal matrix composites. In this study, 2124 aluminum powders were mixed with silicon carbide particulate and consolidated using explosives. Numerical simulations were performed to provide insight into the consolidation process and to aid in the selection of experimental conditions. The microstructure of the as-consolidated product was dependent upon processing variables. Careful control of the shock parameters allowed full density, crack free composites to be achieved in cylindrical geometries. Although full density was obtained, low fracture strengths suggested a lack of interparticle bonding, probably resulting from the limited ability to redistribute surface oxides during consolidation. 10 refs., 9 figs.

  18. Underwater vapor phase burning of aluminum particles and on aluminum ignition during steam explosions

    SciTech Connect

    Epstein, M. )

    1991-09-01

    Recently reported experimental studies on aluminum-water steam explosions indicate that there may be a critical metal temperature at which the process changes over from a physical explosion to one which is very violent and involves the rapid liberation of chemical energy. In this report we examine the hypothesis that vapor-phase burning of aluminum is a necessary condition for the occurrence of such ignition-type'' steam explosions. An available two-phase stagnation flow film-boiling model is used to calculate the steam flux to the vaporizing aluminum surface. Combining this calculation with the notion that there is an upper limit to the magnitude of the metal vaporization rate at which the reaction regime must change from vapor phase to surface burning, leads to prediction of the critical metal surface temperature below which vapor phase burning is impossible. The critical temperature is predicted for both the aluminum-water pre-mixture configuration in which coarse drops of aluminum are falling freely through water and for the finely-fragmented aluminum drops in the wake of the pressure shock that triggers'' the explosion. Vapor phase burning is predicted to be possible during the pre-mixture phase but not very likely during the trigger phase of a steam explosion. The implications of these findings in terms of the validity of the hypothesis that ignition may begin with the vapor phase burning of aluminum is discussed. Recently postulated, alternative mechanisms of underwater aluminum ignition are also discussed.

  19. Underwater vapor phase burning of aluminum particles and on aluminum ignition during steam explosions

    SciTech Connect

    Epstein, M.

    1991-09-01

    Recently reported experimental studies on aluminum-water steam explosions indicate that there may be a critical metal temperature at which the process changes over from a physical explosion to one which is very violent and involves the rapid liberation of chemical energy. In this report we examine the hypothesis that vapor-phase burning of aluminum is a necessary condition for the occurrence of such ``ignition-type`` steam explosions. An available two-phase stagnation flow film-boiling model is used to calculate the steam flux to the vaporizing aluminum surface. Combining this calculation with the notion that there is an upper limit to the magnitude of the metal vaporization rate at which the reaction regime must change from vapor phase to surface burning, leads to prediction of the critical metal surface temperature below which vapor phase burning is impossible. The critical temperature is predicted for both the aluminum-water pre-mixture configuration in which coarse drops of aluminum are falling freely through water and for the finely-fragmented aluminum drops in the wake of the pressure shock that ``triggers`` the explosion. Vapor phase burning is predicted to be possible during the pre-mixture phase but not very likely during the trigger phase of a steam explosion. The implications of these findings in terms of the validity of the hypothesis that ignition may begin with the vapor phase burning of aluminum is discussed. Recently postulated, alternative mechanisms of underwater aluminum ignition are also discussed.

  20. ITP Aluminum: Aluminum Industry Roadmap for the Automotive Market...

    Energy Saver

    ... compared to steel vehicles will continue to range from 500 to 700 gallons of gasoline. ... The production of tailor-welded blanks (TWBs) involves welding two or more separate sheets ...

  1. ALUMINUM AND CHROMIUM LEACHING WORKSHOP WHITEPAPER

    SciTech Connect

    McCabe, D; Jeff Pike, J; Bill Wilmarth, B

    2007-04-25

    A workshop was held on January 23-24, 2007 to discuss the status of processes to leach constituents from High Level Waste (HLW) sludges at the Hanford and Savannah River Sites. The objective of the workshop was to examine the needs and requirements for the HLW flowsheet for each site, discuss the status of knowledge of the leaching processes, communicate the research plans, and identify opportunities for synergy to address knowledge gaps. The purpose of leaching of non-radioactive constituents from the sludge waste is to reduce the burden of material that must be vitrified in the HLW melter systems, resulting in reduced HLW glass waste volume, reduced disposal costs, shorter process schedules, and higher facility throughput rates. The leaching process is estimated to reduce the operating life cycle of SRS by seven years and decrease the number of HLW canisters to be disposed in the Repository by 1000 [Gillam et al., 2006]. Comparably at Hanford, the aluminum and chromium leaching processes are estimated to reduce the operating life cycle of the Waste Treatment Plant by 20 years and decrease the number of canisters to the Repository by 15,000-30,000 [Gilbert, 2007]. These leaching processes will save the Department of Energy (DOE) billions of dollars in clean up and disposal costs. The primary constituents targeted for removal by leaching are aluminum and chromium. It is desirable to have some aluminum in glass to improve its durability; however, too much aluminum can increase the sludge viscosity, glass viscosity, and reduce overall process throughput. Chromium leaching is necessary to prevent formation of crystalline compounds in the glass, but is only needed at Hanford because of differences in the sludge waste chemistry at the two sites. Improving glass formulations to increase tolerance of aluminum and chromium is another approach to decrease HLW glass volume. It is likely that an optimum condition can be found by both performing leaching and improving

  2. Roll Casting of Aluminum Alloy Clad Strip

    SciTech Connect

    Nakamura, R.; Tsuge, H. [Graduate School of Osaka Institute of Technology (Japan); Haga, T. [Osaka Institute of Technology, 5-16-1 Omiya Asahiku Osaka city 535-8585 (Japan); Watari, H. [Tokyo Institute of Technology, 4259 Nagatsuda Midoriku Yokohama city 226-8502 (Japan); Kumai, S. [Gunma University, 1-5-1 tenjin cho Kiryu city 376-8515 (Japan)

    2011-01-17

    Casting of aluminum alloy three layers of clad strip was tried using the two sets of twin roll casters, and effects of the casting parameters on the cladding conditions were investigated. One twin roll caster was mounted on the other twin roll caster. Base strip was 8079 aluminum alloy and overlay strips were 6022 aluminum alloy. Effects of roll-load of upper and lower casters and melt temperature of the lower caster were investigated. When the roll-load of the upper and lower caster was large enough, the overlay strip could be solidified and be connected. The overlay strip could be connected when the melt of the overlay strip cast by the lower caster was low enough. Sound three layers of clad strip could be cast by proper conditions.

  3. Lithium-aluminum-magnesium electrode composition

    DOEpatents

    Melendres, Carlos A.; Siegel, Stanley

    1978-01-01

    A negative electrode composition is presented for use in a secondary, high-temperature electrochemical cell. The cell also includes a molten salt electrolyte of alkali metal halides or alkaline earth metal halides and a positive electrode including a chalcogen or a metal chalcogenide as the active electrode material. The negative electrode composition includes up to 50 atom percent lithium as the active electrode constituent and a magnesium-aluminum alloy as a structural matrix. Various binary and ternary intermetallic phases of lithium, magnesium, and aluminum are formed but the electrode composition in both its charged and discharged state remains substantially free of the alpha lithium-aluminum phase and exhibits good structural integrity.

  4. Lithium-aluminum-iron electrode composition

    DOEpatents

    Kaun, Thomas D.

    1979-01-01

    A negative electrode composition is presented for use in a secondary electrochemical cell. The cell also includes an electrolyte with lithium ions such as a molten salt of alkali metal halides or alkaline earth metal halides that can be used in high-temperature cells. The cell's positive electrode contains a a chalcogen or a metal chalcogenide as the active electrode material. The negative electrode composition includes up to 50 atom percent lithium as the active electrode constituent in an alloy of aluminum-iron. Various binary and ternary intermetallic phases of lithium, aluminum and iron are formed. The lithium within the intermetallic phase of Al.sub.5 Fe.sub.2 exhibits increased activity over that of lithium within a lithium-aluminum alloy to provide an increased cell potential of up to about 0.25 volt.

  5. Aluminum phosphate ceramics for waste storage

    DOEpatents

    Wagh, Arun; Maloney, Martin D

    2014-06-03

    The present disclosure describes solid waste forms and methods of processing waste. In one particular implementation, the invention provides a method of processing waste that may be particularly suitable for processing hazardous waste. In this method, a waste component is combined with an aluminum oxide and an acidic phosphate component in a slurry. A molar ratio of aluminum to phosphorus in the slurry is greater than one. Water in the slurry may be evaporated while mixing the slurry at a temperature of about 140-200.degree. C. The mixed slurry may be allowed to cure into a solid waste form. This solid waste form includes an anhydrous aluminum phosphate with at least a residual portion of the waste component bound therein.

  6. Production

    Energy.gov [DOE]

    Algae production R&D focuses on exploring resource use and availability, algal biomass development and improvements, characterizing algal biomass components, and the ecology and engineering of cultivation systems.

  7. Investigation of Aluminum Site Changes of Dehydrated Zeolite...

    Office of Scientific and Technical Information (OSTI)

    Aluminum Site Changes of Dehydrated Zeolite H-Beta during a Rehydration Process by High Field Solid State NMR Citation Details In-Document Search Title: Investigation of Aluminum ...

  8. Reaction of Aluminum with Water to Produce Hydrogen - 2010 Update

    Publication and Product Library

    A Study of Issues Related to the Use of Aluminum for On-Board Vehicular Hydrogen Storage The purpose of this White Paper is to describe and evaluate the potential of aluminum-water reactions for the

  9. Aluminum plasmonic metamaterials for structural color printing

    DOE PAGES [OSTI]

    Cheng, Fei; Gao, Jie; Stan, Liliana; Rosenmann, Daniel; Czaplewski, David; Yang, Xiaodong

    2015-05-26

    We report a structural color printing platform based on aluminum plasmonic metamaterials supporting near perfect light absorption and narrow-band spectral response tunable across the visible spectrum to realize high-resolution, angle-insensitive color printing with high color purity and saturation. Additionally, the fabricated metamaterials can be protected by a transparent polymer thin layer for ambient use with further improved color performance. The demonstrated structural color printing with aluminum plasmonic metamaterials offers great potential for relevant applications such as security marking and information storage.

  10. Cathode Connector For Aluminum Low Temperature Smelting Cell

    DOEpatents

    Brown, Craig W.; Beck, Theodore R.; Frizzle, Patrick B.

    2003-07-16

    Cathode connector means for low temperature aluminum smelting cell for connecting titanium diboride cathode or the like to bus bars.

  11. Activated aluminum hydride hydrogen storage compositions and uses thereof

    DOEpatents

    Sandrock, Gary; Reilly, James; Graetz, Jason; Wegrzyn, James E.

    2010-11-23

    In one aspect, the invention relates to activated aluminum hydride hydrogen storage compositions containing aluminum hydride in the presence of, or absence of, hydrogen desorption stimulants. The invention particularly relates to such compositions having one or more hydrogen desorption stimulants selected from metal hydrides and metal aluminum hydrides. In another aspect, the invention relates to methods for generating hydrogen from such hydrogen storage compositions.

  12. ITP Aluminum: Energy Requirements for the U.S. Aluminum Industry

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... They are fabricated from highly conductive aluminum alloy and are sized for minimum overall system cost. Any voltage drop in the busbar and connector system results in energy loss. ...

  13. Chemical vapor deposition of aluminum oxide

    DOEpatents

    Gordon, Roy; Kramer, Keith; Liu, Xinye

    2000-01-01

    An aluminum oxide film is deposited on a heated substrate by CVD from one or more alkylaluminum alkoxide compounds having composition R.sub.n Al.sub.2 (OR').sub.6-n, wherein R and R' are alkyl groups and n is in the range of 1 to 5.

  14. Superconducting transition temperature in anodized aluminum

    SciTech Connect

    Leemann, C.; Elliott, J.H.; Deutscher, G.; Orbach, R.; Wolf, S.A.

    1983-08-01

    We have measured the superconducting transition temperature of anodized aluminum films of grain sizes ranging from less than 100 to 3000 A. The transition temperature is 1.8 K for films of grain size 100 A and decreases monotonically with increasing grain size to 1.2 K for 3000-A grains. The effect depends only on the volume of the grains.

  15. Electrometallurgical treatment of aluminum-matrix fuels

    SciTech Connect

    Willit, J.L.; Gay, E.C.; Miller, W.E.; McPheeters, C.C.; Laidler, J.J.

    1996-08-01

    The electrometallurgical treatment process described in this paper builds on our experience in treating spent fuel from the Experimental Breeder Reactor (EBR-II). The work is also to some degree, a spin-off from applying electrometallurgical treatment to spent fuel from the Hanford single pass reactors (SPRs) and fuel and flush salt from the Molten Salt Reactor Experiment (MSRE) in treating EBR-II fuel, we recover the actinides from a uranium-zirconium fuel by electrorefining the uranium out of the chopped fuel. With SPR fuel, uranium is electrorefined out of the aluminum cladding. Both of these processes are conducted in a LiCl-KCl molten-salt electrolyte. In the case of the MSRE, which used a fluoride salt-based fuel, uranium in this salt is recovered through a series of electrochemical reductions. Recovering high-purity uranium from an aluminum-matrix fuel is more challenging than treating SPR or EBR-II fuel because the aluminum- matrix fuel is typically -90% (volume basis) aluminum.

  16. Polymer gel electrolytes for application in aluminum deposition and rechargeable aluminum ion batteries

    SciTech Connect

    Sun, Xiao -Guang; Fang, Youxing; Jiang, Xueguang; Yoshii, Kazuki; Tsuda, Tetsuya; Dai, Sheng

    2015-10-22

    Polymer gel electrolyte using AlCl3 complexed acrylamide as functional monomer and ionic liquids based on acidic mixture of 1-ethyl-3-methylimidazolium chloride (EMImCl) and AlCl3 as plasticizer has been successfully prepared for the first time by free radical polymerization. Aluminum deposition is successfully obtained with a polymer gel membrane contianing 80 wt% ionic liquid. As a result, the polymer gel membranes are also good candidates for rechargeable aluminum ion batteries.

  17. Polymer gel electrolytes for application in aluminum deposition and rechargeable aluminum ion batteries

    DOE PAGES [OSTI]

    Sun, Xiao -Guang; Fang, Youxing; Jiang, Xueguang; Yoshii, Kazuki; Tsuda, Tetsuya; Dai, Sheng

    2015-10-22

    Polymer gel electrolyte using AlCl3 complexed acrylamide as functional monomer and ionic liquids based on acidic mixture of 1-ethyl-3-methylimidazolium chloride (EMImCl) and AlCl3 as plasticizer has been successfully prepared for the first time by free radical polymerization. Aluminum deposition is successfully obtained with a polymer gel membrane contianing 80 wt% ionic liquid. As a result, the polymer gel membranes are also good candidates for rechargeable aluminum ion batteries.

  18. Energy-Saving Melting and Revert Reduction Technology (E-SMARRT): Development of Elevated Temperature Aluminum Metal Matrix Composite (MMC) Alloy and Its Processing Technology

    SciTech Connect

    Weiss, David C.; Gegal, Gerald A.

    2014-04-15

    The objective of this project was to provide a production capable cast aluminum metal matrix composite (MMC) alloy with an operating temperature capability of 250-300°C. Important industrial sectors as well as the military now seek lightweight aluminum alloy castings that can operate in temperature ranges of 250-300°C. Current needs in this temperature range are being satisfied by the use of titanium alloy castings. These have the desired strength properties but the end components are heavier and significantly more costly. Also, the energy requirements for production of titanium alloy castings are significantly higher than those required for production of aluminum alloys and aluminum alloy castings.

  19. Hyperveolcity impacts on aluminum from 6 to 11 km/s for hydrocode benchmarking.

    SciTech Connect

    Saul, W. Venner; Reinhart, William Dodd; Thornhill, Tom Finley, III; Lawrence, Raymond Jeffery Jr.; Chhabildas, Lalit Chandra; Bessette, Gregory Carl; Kipp, Marlin E.

    2003-04-01

    A systematic computational and experimental study is presented on impact generated debris resulting from record-high impact speeds recently achieved on the Sandia three-stage light-gas gun. In these experiments, a target plate of aluminum is impacted by a titanium-alloy flyer plate at speeds ranging from 6.5 to 11 km/s, producing pressures from 1 Mb to over 2.3 Mb, and temperatures as high as 15000 K (>1 eV). The aluminum plate is totally melted at stresses above 1.6 Mb. Upon release, the thermodynamic release isentropes will interact with the vapor dome. The amount of vapor generated in the debris cloud will depend on many factors such as the thickness of the aluminum plate, super-cooling, vaporization kinetics, the distance, and therefore time, over which the impact-generated debris is allowed to expand. To characterize the debris cloud, the velocity history produced by stagnation of the aluminum expansion products against a witness plate is measured using velocity interferometry. X-ray measurements of the debris cloud are also recorded prior to stagnation against an aluminum witness plate. Both radiographs and witness-plate velocity measurements suggest that the vaporization process is both time-dependent and heterogeneous when the material is released from shocked states around 230 GPa. Experiments suggest that the threshold for vaporization kinetics in aluminum should become significant when expanded from shocked states over 230 GPa. Numerical simulations are conducted to compare the measured x-ray radiographs of the debris cloud and the time-resolved experimental interferometer record with calculational results using the 3-D hydrodynamic wavecode, CTH. Results of these experiments and calculations are discussed in this paper.

  20. FLOWSHEET FOR ALUMINUM REMOVAL FROM SLUDGE BATCH 6

    SciTech Connect

    Pike, J; Jeffrey Gillam, J

    2008-12-17

    Samples of Tank 12 sludge slurry show a substantially larger fraction of aluminum than originally identified in sludge batch planning. The Liquid Waste Organization (LWO) plans to formulate Sludge Batch 6 (SB6) with about one half of the sludge slurry in Tank 12 and one half of the sludge slurry in Tank 4. LWO identified aluminum dissolution as a method to mitigate the effect of having about 50% more solids in High Level Waste (HLW) sludge than previously planned. Previous aluminum dissolution performed in a HLW tank in 1982 was performed at approximately 85 C for 5 days and dissolved nearly 80% of the aluminum in the sludge slurry. In 2008, LWO successfully dissolved 64% of the aluminum at approximately 60 C in 46 days with minimal tank modifications and using only slurry pumps as a heat source. This report establishes the technical basis and flowsheet for performing an aluminum removal process in Tank 51 for SB6 that incorporates the lessons learned from previous aluminum dissolution evolutions. For SB6, aluminum dissolution process temperature will be held at a minimum of 65 C for at least 24 days, but as long as practical or until as much as 80% of the aluminum is dissolved. As planned, an aluminum removal process can reduce the aluminum in SB6 from about 84,500 kg to as little as 17,900 kg with a corresponding reduction of total insoluble solids in the batch from 246,000 kg to 131,000 kg. The extent of the reduction may be limited by the time available to maintain Tank 51 at dissolution temperature. The range of dissolution in four weeks based on the known variability in dissolution kinetics can range from 44 to more than 80%. At 44% of the aluminum dissolved, the mass reduction is approximately 1/2 of the mass noted above, i.e., 33,300 kg of aluminum instead of 66,600 kg. Planning to reach 80% of the aluminum dissolved should allow a maximum of 81 days for dissolution and reduce the allowance if test data shows faster kinetics. 47,800 kg of the dissolved

  1. Process of electrolysis and fractional crystallization for aluminum purification

    DOEpatents

    Dawless, R.K.; Bowman, K.A.; Mazgaj, R.M.; Cochran, C.N.

    1983-10-25

    A method is described for purifying aluminum that contains impurities, the method including the step of introducing such aluminum containing impurities to a charging and melting chamber located in an electrolytic cell of the type having a porous diaphragm permeable by the electrolyte of the cell and impermeable to molten aluminum. The method includes further the steps of supplying impure aluminum from the chamber to the anode area of the cell and electrolytically transferring aluminum from the anode area to the cathode through the diaphragm while leaving impurities in the anode area, thereby purifying the aluminum introduced into the chamber. The method includes the further steps of collecting the purified aluminum at the cathode, and lowering the level of impurities concentrated in the anode area by subjecting molten aluminum and impurities in said chamber to a fractional crystallization treatment wherein eutectic-type impurities crystallize and precipitate out of the aluminum. The eutectic impurities that have crystallized are physically removed from the chamber. The aluminum in the chamber is now suited for further purification as provided in the above step of electrolytically transferring aluminum through the diaphragm. 2 figs.

  2. Process of electrolysis and fractional crystallization for aluminum purification

    DOEpatents

    Dawless, Robert K.; Bowman, Kenneth A.; Mazgaj, Robert M.; Cochran, C. Norman

    1983-10-25

    A method for purifying aluminum that contains impurities, the method including the step of introducing such aluminum containing impurities to a charging and melting chamber located in an electrolytic cell of the type having a porous diaphragm permeable by the electrolyte of the cell and impermeable to molten aluminum. The method includes further the steps of supplying impure aluminum from the chamber to the anode area of the cell and electrolytically transferring aluminum from the anode area to the cathode through the diaphragm while leaving impurities in the anode area, thereby purifying the aluminum introduced into the chamber. The method includes the further steps of collecting the purified aluminum at the cathode, and lowering the level of impurities concentrated in the anode area by subjecting molten aluminum and impurities in said chamber to a fractional crystallization treatment wherein eutectic-type impurities crystallize and precipitate out of the aluminum. The eutectic impurities that have crystallized are physically removed from the chamber. The aluminum in the chamber is now suited for further purification as provided in the above step of electrolytically transferring aluminum through the diaphragm.

  3. Issues for conversion coating of aluminum alloys with hydrotalcite

    SciTech Connect

    Drewien, C.A.; Buchheit, R.G.

    1993-12-01

    Hydrotalcite coatings on aluminum alloys are being developed for corrosion protection of aluminum in aggressive saline environments. Coating bath composition, surface pretreatment, and alloying elements in aluminum all influence the performance of these coatings during salt spray testing. The coating bath, comprised of lithium carbonate, requires aging by dissolution of aluminum into the bath in order to grow corrosion resistant coatings. Coatings formed in non- aged baths do not perform well in salt spray testing. The alloying elements in aluminum alloys, especially copper, influence the coating growth and formation leading to thin coatings. The effect of the alloy elements is to limit the supply of aluminum to the coating/electrolyte interface and hinder growth of hydrotalcite upon aluminum alloys.

  4. Aluminum Target Dissolution in Support of the Pu-238 Program

    SciTech Connect

    McFarlane, Joanna; Benker, Dennis; DePaoli, David W; Felker, Leslie Kevin; Mattus, Catherine H

    2014-09-01

    Selection of an aluminum alloy for target cladding affects post-irradiation target dissolution and separations. Recent tests with aluminum alloy 6061 yielded greater than expected precipitation in the caustic dissolution step, forming up to 10 wt.% solids of aluminum hydroxides and aluminosilicates. We present a study to maximize dissolution of aluminum metal alloy, along with silicon, magnesium, and copper impurities, through control of temperature, the rate of reagent addition, and incubation time. Aluminum phase transformations have been identified as a function of time and temperature, using X-ray diffraction. Solutions have been analyzed using wet chemical methods and X-ray fluorescence. These data have been compared with published calculations of aluminum phase diagrams. Temperature logging during the transients has been investigated as a means to generate kinetic and mass transport data on the dissolution process. Approaches are given to enhance the dissolution of aluminum and aluminosilicate phases in caustic solution.

  5. Photothermally activated motion and ignition using aluminum nanoparticles

    SciTech Connect

    Abboud, Jacques E.; Chong Xinyuan; Zhang Mingjun; Zhang Zhili; Jiang Naibo; Roy, Sukesh; Gord, James R.

    2013-01-14

    The aluminum nanoparticles (Al NPs) are demonstrated to serve as active photothermal media, to enhance and control local photothermal energy deposition via the photothermal effect activated by localized surface plasmon resonance (LSPR) and amplified by Al NPs oxidation. The activation source is a 2-AA-battery-powered xenon flash lamp. The extent of the photothermally activated movement of Al NPs can be {approx}6 mm. Ignition delay can be {approx}0.1 ms. Both scanning electron microscopy and energy-dispersive X-ray spectroscopy measurements of motion-only and after-ignition products confirm significant Al oxidation occurs through sintering and bursting after the flash exposure. Simulations suggest local heat generation is enhanced by LSPR. The positive-feedback effects from the local heat generation amplified by Al oxidation produce a large increase in local temperature and pressure, which enhances movement and accelerates ignition.

  6. Ignition of Aluminum Particles and Clouds

    SciTech Connect

    Kuhl, A L; Boiko, V M

    2010-04-07

    Here we review experimental data and models of the ignition of aluminum (Al) particles and clouds in explosion fields. The review considers: (i) ignition temperatures measured for single Al particles in torch experiments; (ii) thermal explosion models of the ignition of single Al particles; and (iii) the unsteady ignition Al particles clouds in reflected shock environments. These are used to develop an empirical ignition model appropriate for numerical simulations of Al particle combustion in shock dispersed fuel explosions.

  7. Degassing of Aluminum Alloys Using Ultrasonic Vibration

    SciTech Connect

    Meek, T. T.; Han, Q.; Xu, H.

    2006-06-01

    The research was intended to lead to a better fundamental understanding of the effect of ultrasonic energy on the degassing of liquid metals and to develop practical approaches for the ultrasonic degassing of alloys. The goals of the project described here were to evaluate core principles, establish a quantitative basis for the ultrasonic degassing of aluminum alloy melts, and demonstrate the application of ultrsaonic processing during ingot casting and foundry shape casting.

  8. Regeneration of aluminum hydride - Energy Innovation Portal

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    268,288 Site Map Printable Version Share this resource About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners (27) Visual Patent Search Success Stories Find More Like This Return to Search Regeneration of aluminum hydride United

  9. Aluminum-doped Zinc Oxide Nanoink

    Energy Innovation Portal

    2014-08-15

    Scientists at Berkeley Lab have developed a method for fabricating conductive aluminum-doped zinc oxide (AZO) nanocrystals that provide a lower cost, less toxic, earth-abundant alternative to the widely used transparent conductive oxide (TCO) indium tin oxide while offering comparable optical and electronic properties. TCOs are used in devices such as flat screen displays, photovoltaic cells, photochromic windows, chemical sensors, and biosensors....

  10. Aluminum doped zinc oxide for organic photovoltaics

    SciTech Connect

    Murdoch, G. B.; Hinds, S.; Sargent, E. H.; Tsang, S. W.; Mordoukhovski, L.; Lu, Z. H.

    2009-05-25

    Aluminum doped zinc oxide (AZO) was grown via magnetron sputtering as a low-cost alternative to indium tin oxide (ITO) for organic photovoltaics (OPVs). Postdeposition ozone treatment resulted in devices with lower series resistance, increased open-circuit voltage, and power conversion efficiency double that of devices fabricated on untreated AZO. Furthermore, cells fabricated using ozone treated AZO and standard ITO displayed comparable performance.

  11. On the dissolution of iridium by aluminum.

    SciTech Connect

    Hewson, John C.

    2009-08-01

    The potential for liquid aluminum to dissolve an iridium solid is examined. Substantial uncertainties exist in material properties, and the available data for the iridium solubility and iridium diffusivity are discussed. The dissolution rate is expressed in terms of the regression velocity of the solid iridium when exposed to the solvent (aluminum). The temperature has the strongest influence in the dissolution rate. This dependence comes primarily from the solubility of iridium in aluminum and secondarily from the temperature dependence of the diffusion coefficient. This dissolution mass flux is geometry dependent and results are provided for simplified geometries at constant temperatures. For situations where there is negligible convective flow, simple time-dependent diffusion solutions are provided. Correlations for mass transfer are also given for natural convection and forced convection. These estimates suggest that dissolution of iridium can be significant for temperatures well below the melting temperature of iridium, but the uncertainties in actual rates are large because of uncertainties in the physical parameters and in the details of the relevant geometries.

  12. Speciation of aluminum in acidic freshwaters

    SciTech Connect

    Campbell, P.G.C.; Bisson, M.; Bougie, R.; Tessier, A.; Villeneuve, J.P.

    1983-12-01

    The determination of the physical speciation of aluminum in water samples by filtration through polycarbonate membranes proved feasible; control experiments revealed neither contamination nor analyte loss. Treatment of sample filtrates with a fractionally loaded Chelex 100 ion-exchange resin (>75% H/sup +/-form) allows one to distinguish between different forms of aluminum on the basis of their kinetic and thermodynamic properties. Monomeric hydroxo- and fluoroaluminum complexes exchanged readily (>85% after 30 min), as did low molecular weight polynuclear species. Under similar conditions, forms of Al associated with fulvic and humic acids of natural origin exchanged much more slowly (<5% after 30 min, at an Al:dissolved organic carbon atomic ratio of approx. 1:155). Before photooxidation, the filterable aluminum present in natural waters exhibited intermediate behavior (0-50% exchange after 30 min); after UV irradiation the nonexchangeable Al fraction had practically disappeared (90-96% exchange after 30 min), suggesting that the major portion of the nonexchangeable Al initially present was associated with organic matter.

  13. Effects of load voltage on voltage breakdown modes of electrical exploding aluminum wires in air

    SciTech Connect

    Wu, Jian; Li, Xingwen Yang, Zefeng; Wang, Kun; Chao, Youchuang; Shi, Zongqian; Jia, Shenli; Qiu, Aici

    2015-06-15

    The effects of the load voltage on the breakdown modes are investigated in exploding aluminum wires driven by a 1 kA, 0.1 kA/ns pulsed current in air. From laser probing images taken by laser shadowgraphy, schlieren imaging, and interferometry, the position of the shockwave front, the plasma channel, and the wire core edge of the exploding product can be determined. The breakdown mode makes a transition from the internal mode, which involves breakdown inside the wire core, to the shunting mode, which involves breakdown in the compressed air, with decreasing charging voltage. The breakdown electrical field for a gaseous aluminum wire core of nearly solid density is estimated to be more than 20 kV/cm, while the value for gaseous aluminum of approximately 0.2% solid density decreases to 15–20 kV/cm. The breakdown field in shunting mode is less than 20 kV/cm and is strongly affected by the vaporized aluminum, the desorbed gas, and the electrons emitted from the wire core during the current pause. Ohmic heating during voltage collapses will induce further energy deposition in the current channel and thus will result in different expansion speeds for both the wire core and the shockwave front in the different modes.

  14. Process for production of an aluminum hydride compound

    DOEpatents

    Allen, Nathan Tait; Butterick, III, Robert; Chin, Arthur Achhing; Miller, Dean Michael; Molzahn, David Craig

    2013-08-06

    A compound of formula M(AlH.sub.3OR.sup.1).sub.y, wherein R.sup.1 is phenyl substituted by at least one of: (i) an alkoxy group having from one to six carbon atoms; and (ii) an alkyl group having from three to twelve carbon atoms; wherein M is an alkali metal, Be or Mg; and y is one or two.

  15. Electrolytic cell for production of aluminum from alumina

    DOEpatents

    Bradford, Donald R; Barnett, Robert J.; Mezner, Michael B.

    2005-03-15

    Electrolysis of alumina dissolved in a molten salt electrolyte employing inert anode and cathodes, the anode having a box shape with slots for the cathodes.

  16. Agricultural production in the United States by county: a compilation of information from the 1974 census of agriculture for use in terrestrial food-chain transport and assessment models

    SciTech Connect

    Shor, R.W.; Baes, C.F. III; Sharp, R.D.

    1982-01-01

    Terrestrial food-chain models that simulate the transport of environmentally released radionuclides incorporate parameters describing agricultural production and practice. Often a single set of default parameters, such as that listed in USNRC Regulatory Guide 1.109, is used in lieu of site-specific information. However, the geographical diversity of agricultural practice in the United States suggests the limitations of a single set of default parameters for assessment models. This report documents default parameters with a county-wide resolution based on analysis of the 1974 US Census of Agriculture for use in terrestrial food chain models. Data reported by county, together with state-based information from the US Department of Agriculture, Economic and Statistics Service, provided the basis for estimates of model input parameters. This report also describes these data bases, their limitations, and lists default parameters by county. Vegetable production is described for four categories: leafy vegetables; vegetables and fruits exposed to airborne material; vegetables, fruits, and nuts protected from airborne materials; and grains. Livestock feeds were analyzed in categories of hay, silage, pasture, and grains. Pasture consumption was estimated from cattle and sheep inventories, their feed requirements, and reported quantities of harvested forage. The results were compared with assumed yields of the pasture areas reported. In addition, non-vegetable food production estimates including milk, beef, pork, lamb, poultry, eggs, goat milk, and honey are described. The agricultural parameters and land use information - in all 47 items - are tabulated in four appendices for each of the 3067 counties of the US reported to the Census of Agriculture, excluding those in Hawaii and Alaska.

  17. Food Sales Buildings

    Energy Information Administration (EIA) (indexed site)

    Sales Characteristics by Activity... Food Sales Food sales buildings are buildings that are used for retail or wholesale sale of food. Basic Characteristics See also: Equipment |...

  18. http://www.c-p-c.com/products/B-25.html

    National Nuclear Security Administration (NNSA)

    Latches Carbon Steel, Aluminum, Stainless Steel Copyright 2006 | All rights reserved. Wilmington Web Site Design by Port City Digital Container Products Corp. 112 North College ...

  19. Maintaining molten salt electrolyte concentration in aluminum-producing electrolytic cell

    DOEpatents

    Barnett, Robert J.; Mezner, Michael B.; Bradford, Donald R

    2005-01-04

    A method of maintaining molten salt concentration in a low temperature electrolytic cell used for production of aluminum from alumina dissolved in a molten salt electrolyte contained in a cell free of frozen crust wherein volatile material is vented from the cell and contacted and captured on alumina being added to the cell. The captured volatile material is returned with alumina to cell to maintain the concentration of the molten salt.

  20. High Speed Joining of Dissimilar Alloy Aluminum Tailor Welded Blanks |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy High Speed Joining of Dissimilar Alloy Aluminum Tailor Welded Blanks High Speed Joining of Dissimilar Alloy Aluminum Tailor Welded Blanks 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting lm075_hovanski_2013_o.pdf (3.29 MB) More Documents & Publications Vehicle Technologies Office Merit Review 2014: High Speed Joining of Dissimilar Alloy Aluminum Tailor Welded Blanks Vehicle Technologies Office

  1. Local residual stress monitoring of aluminum nitride MEMS using UV

    Office of Scientific and Technical Information (OSTI)

    micro-Raman spectroscopy (Journal Article) | DOE PAGES Local residual stress monitoring of aluminum nitride MEMS using UV micro-Raman spectroscopy This content will become publicly available on January 6, 2017 Title: Local residual stress monitoring of aluminum nitride MEMS using UV micro-Raman spectroscopy Localized stress variation in aluminum nitride (AlN) sputtered on patterned metallization has been monitored through the use of UV micro-Raman spectroscopy. This technique utilizing 325

  2. Apparatus for the electrolytic production of metals

    DOEpatents

    Sadoway, Donald R. (Belmont, MA)

    1993-01-01

    Improved electrolytic cells for producing metals by the electrolytic reduction of a compound dissolved in a molten electrolyte are disclosed. In the improved cells, at least one electrode includes a protective layer comprising an oxide of the cell product metal formed upon an alloy of the cell product metal and a more noble metal. In the case of an aluminum reduction cell, the electrode can comprise an alloy of aluminum with copper, nickel, iron, or combinations thereof, upon which is formed an aluminum oxide protective layer.

  3. High Methane Storage Capacity in Aluminum Metal-Organic Frameworks...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    High Methane Storage Capacity in Aluminum Metal-Organic Frameworks Previous Next List Felipe Gndara, Hiroyasu Furukawa, Seungkyu Lee, and Omar M. Yaghi, J. Am. Chem. Soc., 136,...

  4. Design of defect spins in piezoelectric aluminum nitride for...

    Office of Scientific and Technical Information (OSTI)

    Design of defect spins in piezoelectric aluminum nitride for solid-state hybrid quantum ... To date, defect qubits have only been realized in materials with strong covalent bonds. ...

  5. Aluminum-Alkaline Metal-Metal Composite Conductor - Energy Innovation...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    researchers have developed a high strength, lightweight aluminum wire for high-voltage power transmission with reduced electrical resistance for overhead electrical lines. ...

  6. Aluminum-Alkaline Metal-Metal Composite Conductor - Energy Innovation...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Researchers have developed a high strength, lightweight aluminum wire for high-voltage power transmission with reduced electrical resistance for overhead electrical lines. ...

  7. Enhancement of Aluminum Alloy Forgings Using Rapid Infrared Heating...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    and industry partners, Queen City Forging Company and Infra Red Heating Technologies LLC, have developed a process for forging aluminum parts using infrared (IR) technology. ...

  8. Aluminum Carbothermic Technology (Technical Report) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    producing commercial grade aluminum, designated as the ''Advanced Reactor Process'' (ARP). ... The tasks included work on four components of the process, Stages 1 and 2 of the reactor, ...

  9. Energy and Environmental Profile of the Aluminum Industry

    SciTech Connect

    Margolis, Nancy

    1997-07-01

    This detailed report (PDF 2.5 MB) benchmarks the energy and environmental characteristics of the key technologies used in the major processes of the aluminum industry.

  10. Aluminum-stabilized Nb[sub 3]Sn superconductor

    DOEpatents

    Scanlan, R.M.

    1988-05-10

    Disclosed are an aluminum-stabilized Nb[sub 3]Sn superconductor and process for producing same, utilizing ultrapure aluminum. Ductile components are co-drawn with aluminum to produce a conductor suitable for winding magnets. After winding, the conductor is heated to convert it to the brittle Nb[sub 3]Sn superconductor phase, using a temperature high enough to perform the transformation but still below the melting point of the aluminum. This results in reaction of substantially all of the niobium, while providing stabilization and react-in-place features which are beneficial in the fabrication of magnets utilizing superconducting materials. 4 figs.

  11. Energy Assessment Helps Kaiser Aluminum Save Energy and Improve...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Kaiser Aluminum plant in Sherman, Texas, improved its annual furnace energy intensity by ... Adopted as Standard for Analyzing Plant Process Heating Systems Company-Wide ...

  12. DOE - Office of Legacy Management -- Aluminum Co of America ...

    Office of Legacy Management (LM)

    Related to Aluminum Company of America (ALCOA) PA.23-1 - DOE Letter; Williams to Jackson (ALCOA) concerning results of radiological surveys and elimination of the site from...

  13. Electrodeposition of magnesium and magnesium/aluminum alloys

    DOEpatents

    Mayer, Anton

    1988-01-01

    Electrolytes and plating solutions for use in processes for electroplating and electroforming pure magnesium and alloys of aluminum and magnesium and also electrodeposition processes. An electrolyte of this invention is comprised of an alkali metal fluoride or a quaternary ammonium halide, dimethyl magnesium and/or diethyl magnesium, and triethyl aluminum and/or triisobutyl aluminum. An electrolyte may be dissolved in an aromatic hydrocarbon solvent to form a plating solution. The proportions of the component compounds in the electrolyte are varied to produce essentially pure magnesium or magnesium/aluminum alloys having varying selected compositions.

  14. Aluminum-stabilized Nb/sub 3/Sn superconductor

    DOEpatents

    Scanlan, R.M.

    1984-02-10

    This patent discloses an aluminum-stabilized Nb/sub 3/Sn superconductor and process for producing same, utilizing ultrapure aluminum. Ductile components are co-drawn with aluminum to produce a conductor suitable for winding magnets. After winding, the conductor is heated to convert it to the brittle Nb/sub 3/Sn superconductor phase, using a temperature high enough to perform the transformation but still below the melting point of the aluminum. This results in reaction of substantially all of the niobium, while providing stabilization and react-in-place features which are beneficial in the fabrication of magnets utilizing superconducting materials.

  15. Joining of parts via magnetic heating of metal aluminum powders

    DOEpatents

    Baker, Ian

    2013-05-21

    A method of joining at least two parts includes steps of dispersing a joining material comprising a multi-phase magnetic metal-aluminum powder at an interface between the at least two parts to be joined and applying an alternating magnetic field (AMF). The AMF has a magnetic field strength and frequency suitable for inducing magnetic hysteresis losses in the metal-aluminum powder and is applied for a period that raises temperature of the metal-aluminum powder to an exothermic transformation temperature. At the exothermic transformation temperature, the metal-aluminum powder melts and resolidifies as a metal aluminide solid having a non-magnetic configuration.

  16. Design of defect spins in piezoelectric aluminum nitride for...

    Office of Scientific and Technical Information (OSTI)

    Design of defect spins in piezoelectric aluminum nitride for solid-state hybrid quantum ... Language: English Subject: 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS electronic ...

  17. DOE - Office of Legacy Management -- Hunter Douglas Aluminum...

    Office of Legacy Management (LM)

    Designated Name: Not Designated Alternate Name: Hunter Douglas Aluminum Corporation CA.11-1 Location: 3016 Kansas Avenue , Riverside , California CA.11-1 Evaluation Year: 1995 ...

  18. Virtual Aluminum Castings An Industrial Application of Integrated...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    and cost challenges. Nowhere is this more evident than in the development of designs and manufacturing processes for cast aluminum engine blocks and cylinder heads. Increasing...

  19. Electrodeposition of magnesium and magnesium/aluminum alloys

    DOEpatents

    Mayer, A.

    1988-01-21

    Electrolytes and plating solutions for use in processes for electroplating and electroforming pure magnesium and alloys of aluminum and magnesium and also electrodeposition processes. An electrolyte of this invention is comprised of an alkali metal fluoride or a quaternary ammonium halide, dimethyl magnesium and/or diethyl magnesium, and triethyl aluminum and/or triisobutyl aluminum. An electrolyte may be dissolved in an aromatic hydrocarbon solvent to form a plating solution. The proportions of the component compounds in the electrolyte are varied to produce essentially pure magnesium or magnesium/aluminum alloys having varying selected compositions.

  20. Aluminum-doped Zinc Oxide Nanoink - Energy Innovation Portal

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    conductive aluminum-doped zinc oxide (AZO) nanocrystals that provide a lower cost, ... Description The optoelectronic properties of AZO nanocrystals can be tuned by controlling ...

  1. Mold Materials For Permanent Molding of Aluminum Alloys (Technical...

    Office of Scientific and Technical Information (OSTI)

    Title: Mold Materials For Permanent Molding of Aluminum Alloys A test that involves ... This test has been employed to determine the relative thermal fatigue resistance of ...

  2. Microsoft PowerPoint - Aluminum Concentrations in Storm Water...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Title: Solid and Dissolved Phase Aluminum in Storm Water Runoff on the Pajarito Plateau, Poster, Individual Permit for Storm Water, NPDES Permit No. NM0030759 Author(s): ...

  3. PRODUCTION OF URANIUM TETRACHLORIDE

    DOEpatents

    Calkins, V.P.

    1958-12-16

    A process is descrlbed for the production of uranium tetrachloride by contacting uranlum values such as uranium hexafluoride, uranlum tetrafluoride, or uranium oxides with either aluminum chloride, boron chloride, or sodium alumlnum chloride under substantially anhydrous condltlons at such a temperature and pressure that the chlorldes are maintained in the molten form and until the uranium values are completely converted to uranlum tetrachloride.

  4. Lithium aluminum/iron sulfide battery having lithium aluminum and silicon as negative electrode

    DOEpatents

    Gilbert, Marian; Kaun, Thomas D.

    1984-01-01

    A method of making a negative electrode, the electrode made thereby and a secondary electrochemical cell using the electrode. Silicon powder is mixed with powdered electroactive material, such as the lithium-aluminum eutectic, to provide an improved electrode and cell.

  5. TREATMENT OF FISSION PRODUCT WASTE

    DOEpatents

    Huff, J.B.

    1959-07-28

    A pyrogenic method of separating nuclear reactor waste solutions containing aluminum and fission products as buring petroleum coke in an underground retort, collecting the easily volatile gases resulting as the first fraction, he uminum chloride as the second fraction, permitting the coke bed to cool and ll contain all the longest lived radioactive fission products in greatly reduced volume.

  6. Method of forming aluminum oxynitride material and bodies formed by such methods

    DOEpatents

    Bakas, Michael P. [Ammon, ID; Lillo, Thomas M. [Idaho Falls, ID; Chu, Henry S. [Idaho Falls, ID

    2010-11-16

    Methods of forming aluminum oxynitride (AlON) materials include sintering green bodies comprising aluminum orthophosphate or another sacrificial material therein. Such green bodies may comprise aluminum, oxygen, and nitrogen in addition to the aluminum orthophosphate. For example, the green bodies may include a mixture of aluminum oxide, aluminum nitride, and aluminum orthophosphate or another sacrificial material. Additional methods of forming aluminum oxynitride (AlON) materials include sintering a green body including a sacrificial material therein, using the sacrificial material to form pores in the green body during sintering, and infiltrating the pores formed in the green body with a liquid infiltrant during sintering. Bodies are formed using such methods.

  7. Brazed aluminum, Plate-fin heat exchangers for OTEC

    SciTech Connect

    Foust, H.D.

    1980-12-01

    Brazed aluminum plate-fin heat exchangers have been available for special applications for over thirty years. The performance, compactness, versatility, and low cost of these heat exchangers has been unequaled by other heat exchanger configuration. The application of brazed aluminum has been highly limited because of necessary restrictions for clean non-corrosive atmospheres. Air and gas separation have provided ideal conditions for accepting brazed aluminum and in turn have benefited by the salient features of these plate-fin heat exchangers. In fact, brazed aluminum and cryogenic gas and air separation have become nearly synonymous. Brazed aluminum in its historic form could not be considered for a seawater atmosphere. However, technology presents a new look of significant importance to OTEC in terms of compactness and cost. The significant technological variation made was to include one-piece hollow extensions for the seawater passages. Crevice corrosion sites are thereby entirely eliminated and pitting corrosion attack will be controlled by an integral and sacrificial layer of a zinc-aluminum alloy. This paper on brazed aluminum plate-fin heat exchangers for OTEC will aquaint the reader with the state-of-art and variations suggested to qualify this form of aluminum for seawater use. In order to verify the desirable cost potential for OTEC, Trane teamed with Westinghouse to perform an OTEC system analysis with this heat exchanger. These results are very promising and reported in detail elsewhere.

  8. Pulsed laser weldability of aluminum alloys

    SciTech Connect

    Weeter, L.A.

    1985-01-01

    This study was undertaken to determine the weldability of six aluminum alloys (1100, 3003, 4043, 4047, 5356, and 6061) in similar alloy, dissimilar alloy, and similar alloy with a 4047 filler metal addition combinations. The Pulsed Laser Weldability Test was used to evaluate the weldability of the various alloy combinations. The Pulsed Laser Weldability Test rated the weldability of the six aluminum alloys from least crack sensitive to most crack sensitive as: 1100, 4047, 4043, 3003, 5356, 6061. The results of joining 1100, 3003, 5356, or 6061 to either 4043 or 4047 in an approximately 50% mixture revealed that all of these combinations were very crack sensitive. The addition of smaller amounts of 4047 to either 5356 or 6061 revealed the same phenomenon. 0.08, 0.13, and 0.25 millimeter thick sheets of 4047 were placed between two pieces of either 5356 or 6061 and the weldability test was performed. All of the filler metal additions made crack sensitive joints. A 0.38 mm thick sheet of 4047 was also tested between 5356 or 6061. However, this sheet was too thick for the Pulsed Laser Weldability Test to accurately evaluate.

  9. Energy conservation in the primary aluminum and chlor-alkali industries

    SciTech Connect

    Not Available

    1980-10-01

    The primary aluminum and chlor-alkali industries together use nearly 13% of the electrical energy consumed by US industry. As part of its mission to promote energy conservation in basic US industries, the DOE surveys the present technological status of the major electrochemical industries and evaluates promising technological innovations that may lead to reduced energy requirements. This study provides technical and economic analyses in support of a government program of research and development in advanced electrolytic technology. This program is intended to supplement the development efforts directed toward energy savings by private industry. Sections II and III of this report cover aluminum and chlorine production processes only, since these two industries represent over 90% of the electrical energy requirements of all electrolytic industries in the United States. Section IV examines barriers to accelerated research and development by the electrolytic industries, and makes suggestions for government actions to overcome these barriers.

  10. Superconducting structure with layers of niobium nitride and aluminum nitride

    DOEpatents

    Murduck, James M.; Lepetre, Yves J.; Schuller, Ivan K.; Ketterson, John B.

    1989-01-01

    A superconducting structure is formed by depositing alternate layers of aluminum nitride and niobium nitride on a substrate. Deposition methods include dc magnetron reactive sputtering, rf magnetron reactive sputtering, thin-film diffusion, chemical vapor deposition, and ion-beam deposition. Structures have been built with layers of niobium nitride and aluminum nitride having thicknesses in a range of 20 to 350 Angstroms. Best results have been achieved with films of niobium nitride deposited to a thickness of approximately 70 Angstroms and aluminum nitride deposited to a thickness of approximately 20 Angstroms. Such films of niobium nitride separated by a single layer of aluminum nitride are useful in forming Josephson junctions. Structures of 30 or more alternating layers of niobium nitride and aluminum nitride are useful when deposited on fixed substrates or flexible strips to form bulk superconductors for carrying electric current. They are also adaptable as voltage-controlled microwave energy sources.

  11. Superconducting structure with layers of niobium nitride and aluminum nitride

    DOEpatents

    Murduck, J.M.; Lepetre, Y.J.; Schuller, I.K.; Ketterson, J.B.

    1989-07-04

    A superconducting structure is formed by depositing alternate layers of aluminum nitride and niobium nitride on a substrate. Deposition methods include dc magnetron reactive sputtering, rf magnetron reactive sputtering, thin-film diffusion, chemical vapor deposition, and ion-beam deposition. Structures have been built with layers of niobium nitride and aluminum nitride having thicknesses in a range of 20 to 350 Angstroms. Best results have been achieved with films of niobium nitride deposited to a thickness of approximately 70 Angstroms and aluminum nitride deposited to a thickness of approximately 20 Angstroms. Such films of niobium nitride separated by a single layer of aluminum nitride are useful in forming Josephson junctions. Structures of 30 or more alternating layers of niobium nitride and aluminum nitride are useful when deposited on fixed substrates or flexible strips to form bulk superconductors for carrying electric current. They are also adaptable as voltage-controlled microwave energy sources. 8 figs.

  12. The production of fuels and chemicals from food processing wastes using a novel fermenter separator. Annual progress report, January 1991--December 1991

    SciTech Connect

    Dale, M.C.; Venkatesh, K.V.; Choi, Hojoon; Moelhman, M.; Saliceti, L.; Okos, M.R.; Wankat, P.C.

    1991-12-01

    During 1991, considerable progress was made on the waste utilization project. Two small Wisconsin companies have expressed an interest in promoting and developing the ICRS technology. Pilot plant sites at (1) Hopkinton, IA, for a sweet whey plant, and Beaver Dam WI, for an acid whey site have been under development siting ICRS operations. The Hopkinton, IA site is owned and operated by Permeate Refining Inc., who have built a batch ethanol plant across the street from Swiss Valley Farms cheddar cheese operations. Permeate from Swiss Valley is piped across to PRI. PRI has signed a contract to site a 300--500,000 gallon/yr to ICRS pilot plant. They feel that the lower labor, lower energy, continuous process offered by the ICRS will substantially improve their profitability. Catalytics, Inc, is involved with converting whey from a Kraft cream cheese operation to ethanol and yeast. A complete project including whey concentration, sterilization, and yeast growth has been designed for this site. Process design improvements with the ICRS focussed on ethanol recovery techniques during this year`s project. A solvent absorption/extractive distillation (SAED) process has been developed which offers the capability of obtaining an anhydrous ethanol product from vapors off 3 to 9% ethanol solutions using very little energy for distillation. Work on products from waste streams was also performed. a. Diacetyl as a high value flavor compound was very successfully produced in a Stirred Tank Reactor w/Separation. b. Yeast production from secondary carbohydrates in the whey, lactic acid, and glycerol was studied. c. Lactic acid production from cellulose and lactose studies continued. d. Production of anti-fungal reagents by immobilized plant cells; Gossypol has antifungal properties and is produced by G. arboretum.

  13. Diode laser welding of aluminum to steel

    SciTech Connect

    Santo, Loredana; Quadrini, Fabrizio; Trovalusci, Federica [University of Rome Tor Vergata, Department of Mechanical Engineering, Via del Politecnico 1, 00133 Rome (Italy)

    2011-05-04

    Laser welding of dissimilar materials was carried out by using a high power diode laser to join aluminum to steel in a butt-joint configuration. During testing, the laser scan rate was changed as well as the laser power: at low values of fluence (i.e. the ratio between laser power and scan rate), poor joining was observed; instead at high values of fluence, an excess in the material melting affected the joint integrity. Between these limiting values, a good aesthetics was obtained; further investigations were carried out by means of tensile tests and SEM analyses. Unfortunately, a brittle behavior was observed for all the joints and a maximum rupture stress about 40 MPa was measured. Apart from the formation of intermeltallic phases, poor mechanical performances also depended on the chosen joining configuration, particularly because of the thickness reduction of the seam in comparison with the base material.

  14. Oxygen-exchange Pathways in Aluminum Polyoxocations

    SciTech Connect

    Rustad, James R.; Loring, J. S.; Casey, William H.

    2004-07-15

    Using molecular dynamics simulations and electronic structure methods, we postulate a mechanism to explain the complicated reactivity trends that are observed for oxygen isotope exchange reactions between sites in aluminum polyoxocations of the E-Keggin type and bulk solution. Experimentally, the molecules have four nonequivalent oxygens that differ considerably in reactivity both within a molecule, and between molecules in the series: Al13, GaAl12, and GeAl12 [MO4Al12(OH)24(H2O)12 n*(aq); with M=Al(III) for Al13, n=7; M=Ga(III) for GaAl12, n=7; M=Ge(IV) for GeAl12, n=8]. We find that a partly dissociated, metastable intermediate molecule of expanded volume is necessary for exchange of both sets of u2-OH and that the steady-state concentration of this intermediate reflects the bond strengths between the central metal and the u4-O. Thus the central metal exerts extraordinary control over reactions at hydroxyl bridges, although these are three bonds away. This mechanism not only explains the reactivity trends for oxygen isotope exchange in u2-OH and u-OH2 sites in the E-Keggin aluminum molecules, but also explains the observation that the reactivities of minerals tend to reflect the presence of highly coordinated oxygens, such as the u4-O in boehmite, a-, and y-Al2O3 and their Fe(III) analogs. The partial dissociation of these highly coordinated oxygens, coupled with simultaneous activation and displacement of neighboring metal centers, may be a fundamental process by which metals atoms undergo ligand exchanges at mineral surfaces.

  15. Lightweight Aluminum/Nano composites for Automotive Drive Train Applications

    SciTech Connect

    Chelluri, Bhanumathi; Knoth, Edward A.; Schumaker, Edward J.

    2012-12-14

    During Phase I, we successfully processed air atomized aluminum powders via Dynamic Magnetic Compaction (DMC) pressing and subsequent sintering to produce parts with properties similar to wrought aluminum. We have also showed for the first time that aluminum powders can be processed without lubes via press and sintering to 100 % density. This will preclude a delube cycle in sintering and promote environmentally friendly P/M processing. Processing aluminum powders via press and sintering with minimum shrinkage will enable net shape fabrication. Aluminum powders processed via a conventional powder metallurgy process produce too large a shrinkage. Because of this, sinter parts have to be machined into specific net shape. This results in increased scrap and cost. Fully sintered aluminum alloy under this Phase I project has shown good particle-to-particle bonding and mechanical properties. We have also shown the feasibility of preparing nano composite powders and processing via pressing and sintering. This was accomplished by dispersing nano silicon carbide (SiC) powders into aluminum matrix comprising micron-sized powders (<100 microns) using a proprietary process. These composite powders of Al with nano SiC were processed using DMC press and sinter process to sinter density of 85-90%. The process optimization along with sintering needs to be carried out to produce full density composites.

  16. Food Service Buildings

    Energy Information Administration (EIA) (indexed site)

    was a food service building were only asked whether the building was a restaurant, bar, fast food chain, or cafeteria (all the same category) or some other type of food service...

  17. Process for strengthening aluminum based ceramics and material

    DOEpatents

    Moorhead, Arthur J.; Kim, Hyoun-Ee

    2000-01-01

    A process for strengthening aluminum based ceramics is provided. A gaseous atmosphere consisting essentially of silicon monoxide gas is formed by exposing a source of silicon to an atmosphere consisting essentially of hydrogen and a sufficient amount of water vapor. The aluminum based ceramic is exposed to the gaseous silicon monoxide atmosphere for a period of time and at a temperature sufficient to produce a continuous, stable silicon-containing film on the surface of the aluminum based ceramic that increases the strength of the ceramic.

  18. New Process for Grain Refinement of Aluminum. Final Report

    SciTech Connect

    Dr. Joseph A. Megy

    2000-09-22

    A new method of grain refining aluminum involving in-situ formation of boride nuclei in molten aluminum just prior to casting has been developed in the subject DOE program over the last thirty months by a team consisting of JDC, Inc., Alcoa Technical Center, GRAS, Inc., Touchstone Labs, and GKS Engineering Services. The Manufacturing process to make boron trichloride for grain refining is much simpler than preparing conventional grain refiners, with attendant environmental, capital, and energy savings. The manufacture of boride grain refining nuclei using the fy-Gem process avoids clusters, salt and oxide inclusions that cause quality problems in aluminum today.

  19. Holiday Food Drive 2016

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Food Drive 2016 Holiday Food Drive 2016 Helping feed Northern New Mexico families...reaching out to Northern New Mexico communities. September 16, 2013 LANL employees organize food for the Holiday Food Drive. Contacts Annual Food & Holiday Gift Drives Mike Martinez (505) 699-3388 Community Partnerships Office (505) 665-4400 Email Participate in Laboratory's annual food collection drive-through Nov. 17 Laboratory employees can continue to make a difference in the lives of others in local

  20. Cast B2-phase iron-aluminum alloys with improved fluidity

    DOEpatents

    Maziasz, Philip J.; Paris, Alan M.; Vought, Joseph D.

    2002-01-01

    Systems and methods are described for iron aluminum alloys. A composition includes iron, aluminum and manganese. A method includes providing an alloy including iron, aluminum and manganese; and processing the alloy. The systems and methods provide advantages because additions of manganese to iron aluminum alloys dramatically increase the fluidity of the alloys prior to solidification during casting.

  1. THE APPARENT SOLUBILITY OF ALUMINUM(III) IN HANFORD HIGH-LEVEL WASTE TANKS

    SciTech Connect

    REYNOLDS JG

    2012-06-20

    The solubility of aluminum in Hanford nuclear waste impacts on the process ability of the waste by a number of proposed treatment options. For many years, Hanford staff has anecdotally noted that aluminum appears to be considerably more soluble in Hanford waste than the simpler electrolyte solutions used as analogues. There has been minimal scientific study to confirm these anecdotal observations, however. The present study determines the apparent solubility product for gibbsite in 50 tank samples. The ratio of hydroxide to aluminum in the liquid phase for the samples is calculated and plotted as a function of total sodium molarity. Total sodium molarity is used as a surrogate for ionic strength, because the relative ratios of mono, di and trivalent anions are not available for all of the samples. These results were compared to the simple NaOH-NaAl(OH{sub 4})H{sub 2}O system, and the NaOH-NaAl(OH{sub 4})NaCl-H{sub 2}O system data retrieved from the literature. The results show that gibbsite is apparently more soluble in the samples than in the simple systems whenever the sodium molarity is greater than two. This apparent enhanced solubility cannot be explained solely by differences in ionic strength. The change in solubility with ionic strength in simple systems is small compared to the difference between aluminum solubility in Hanford waste and the simple systems. The reason for the apparent enhanced solubility is unknown, but could include. kinetic or thermodynamic factors that are not present in the simple electrolyte systems. Any kinetic explanation would have to explain why the samples are always supersaturated whenever the sodium molarity is above two. Real waste characterization data should not be used to validate thermodynamic solubility models until it can be confirmed that the apparent enhanced gibbsite solubility is a thermodynamic effect and not a kinetic effect.

  2. Food and Beverage Sector (NAICS 311 and 312) Combustion Emissions Profile, November 2012

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    4 U.S. Manufacturing Energy Use and Greenhouse Gas Emissions Analysis 2.5 FOOD AND BEVERAGE SECTOR (NAICS 311 AND 312) 2.5.1. Overview of the Food and Beverage Manufacturing Sector The food and beverage sector is an integral component of the U.S. economy, transforming livestock and agricultural products into intermediate and final food and beverage products. Food and beverage is one of the largest manufacturing sectors, resulting in considerable consumer expenditures for food and beverage

  3. Gating of Permanent Molds for Aluminum Casting (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    pattern and heat flow behavior in permanent mold castings. Equipment and procedure for real time X-Ray radiography of molten aluminum flow into permanent molds have been developed. ...

  4. Electrodialysis technology for salt recovery from aluminum salt cake

    SciTech Connect

    Hryn, J. N.; Krumdick, G.; Graziano, D.; Sreenivasarao, K.

    2000-02-02

    Electrodialysis technology for recovering salt from aluminum salt cake is being developed at Argonne National Laboratory. Salt cake, a slag-like aluminum-industry waste stream, contains aluminum metal, salt (NaCl and KCl), and nonmetallics (primarily aluminum oxide). Salt cake can be recycled by digesting with water and filtering to recover the metal and oxide values. A major obstacle to widespread salt cake recycling is the cost of recovering salt from the process brine. Electrodialysis technology developed at Argonne appears to be a cost-effective approach to handling the salt brines, compared to evaporation or disposal. In Argonne's technology, the salt brine is concentrated until salt crystals are precipitated in the electrodialysis stack; the crystals are recovered downstream. The technology is being evaluated on the pilot scale using Eurodia's EUR 40-76-5 stack.

  5. Aluminum Surface Texturing by Means of Laser Interference Metallurgy...

    Office of Scientific and Technical Information (OSTI)

    laser interferometry produced by two beams of a pulsed Nd:YAG laser operating at 10Hz of frequency to clean aluminum surfaces, and meanwhile creating periodic and rough surface...

  6. Aluminum electroplating on steel from a fused bromide electrolyte

    SciTech Connect

    Prabhat K. Tripathy; Laura A. Wurth; Eric J. Dufek; Toni Y. Gutknecht; Natalie J. Gese; Paula Hahn; Steven M. Frank; Guy L. Frederickson; J. Stephen Herring

    2014-08-01

    A quaternary bromide bath (LiBr–KBr–CsBr–AlBr3) was used to electro-coat aluminum on steel substrates. The electrolytewas prepared by the addition of AlBr3 into the eutectic LiBr–KBr–CsBr melt. A smooth, thick, adherent and shiny aluminum coating could be obtained with 80 wt.% AlBr3 in the ternary melt. The SEM photographs of the coated surfaces suggest the formation of thick and dense coatings with good aluminum coverage. Both salt immersion and open circuit potential measurement suggested that the coatings did display a good corrosionresistance behavior. Annealing of the coated surfaces, prior to corrosion tests, suggested the robustness of the metallic aluminum coating in preventing the corrosion of the steel surfaces. Studies also indicated that the quaternary bromide plating bath can potentially provide a better aluminumcoating on both ferrous and non-ferrous metals, including complex surfaces/geometries.

  7. Ames Lab 101: BAM (Boron-Aluminum-Magnesium)

    ScienceCinema

    Bruce Cook

    2013-06-05

    Materials scientist, Bruce Cook, discusses the super hard, low friction, and lubricious alloy know as BAM (Boron-Aluminum-Magnesium). BAM was discovered by Bruce Cook and his team a

  8. Gas-tungsten arc welding of aluminum alloys

    DOEpatents

    Frye, L.D.

    1982-03-25

    The present invention is directed to a gas-tungsten arc welding method for joining together structures formed of aluminum alloy with these structures disposed contiguously to a heat-damagable substrate of a metal dissimilar to the aluminum alloy. The method of the present invention is practiced by diamond machining the fay surfaces of the aluminum alloy structures to profice a mirror finish thereon having a surface roughness in the order of about one microinch. The fay surface are aligned and heated sufficiently by the tungsten electrode to fuse the aluminum alloy continguous to the fay surfaces to effect the weld joint. The heat input used to provide an oxide-free weld is significantly less than that required if the fay surfaces were prepared by using conventional chemical and mechanical practices.

  9. Gas-tungsten arc welding of aluminum alloys

    DOEpatents

    Frye, Lowell D.

    1984-01-01

    A gas-tungsten arc welding method for joining together structures formed of aluminum alloy with these structures disposed contiguously to a heat-damagable substrate of a metal dissimilar to the aluminum alloy. The method of the present invention is practiced by diamond machining the fay surfaces of the aluminum alloy structures to provide a mirror finish thereon having a surface roughness in the order of about one microinch. The fay surfaces are aligned and heated sufficiently by the tungsten electrode to fuse the aluminum alloy contiguous to the fay surfaces to effect the weld joint. The heat input used to provide an oxide-free weld is significantly less than that required if the fay surfaces were prepared by using conventional chemical and mechanical practices.

  10. Improving the Cycling Life of Aluminum and Germanium Thin Films...

    Office of Scientific and Technical Information (OSTI)

    in Li-Ion Batteries. Citation Details In-Document Search Title: Improving the Cycling Life of Aluminum and Germanium Thin Films for use as Anodic Materials in Li-Ion Batteries. ...

  11. Improving the Cycling Life of Aluminum and Germanium Thin Films...

    Office of Scientific and Technical Information (OSTI)

    Li-Ion Batteries. Citation Details In-Document Search Title: Improving the Cycling Life of Aluminum and Germanium Thin Films for use as Anodic Materials in Li-Ion Batteries. You ...

  12. Gating of Permanent Molds for ALuminum Casting (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    problems caused by improper gating are entrained aluminum oxide films and entrapped gas. ... Publication Date: 2004-03-30 OSTI Identifier: 822451 DOE Contract Number: FC36-01ID13983 ...

  13. Aluminum for bonding Si-Ge alloys to graphite

    DOEpatents

    Eggemann, Robert V.

    1976-01-13

    Improved thermoelectric device and process, comprising the high-temperature, vacuum bonding of a graphite contact and silicon-germanium thermoelectric element by the use of a low void, aluminum, metallurgical shim with low electrical resistance sandwiched therebetween.

  14. High-Temperature Aluminum Alloys | Department of Energy

    Energy.gov [DOE] (indexed site)

    and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting pm044smith2012o.pdf (4.99 MB) More Documents & Publications High-Temperature Aluminum Alloys ...

  15. METHOD OF ALLOYING REACTIVE METALS WITH ALUMINUM OR BERYLLIUM

    DOEpatents

    Runnalls, O.J.C.

    1957-10-15

    A halide of one or more of the reactive metals, neptunium, cerium and americium, is mixed with aluminum or beryllium. The mass is heated at 700 to 1200 deg C, while maintaining a substantial vacuum of above 10/sup -3/ mm of mercury or better, until the halide of the reactive metal is reduced and the metal itself alloys with the reducing metal. The reaction proceeds efficiently due to the volatilization of the halides of the reducing metal, aluminum or beryllium.

  16. Recovery of aluminum and other metal values from fly ash

    DOEpatents

    McDowell, William J.; Seeley, Forest G.

    1981-01-01

    The invention described herein relates to a method for improving the acid leachability of aluminum and other metal values found in fly ash which comprises sintering the fly ash, prior to acid leaching, with a calcium sulfate-containing composition at a temperature at which the calcium sulfate is retained in said composition during sintering and for a time sufficient to quantitatively convert the aluminum in said fly ash into an acid-leachable form.

  17. Recovery of aluminum and other metal values from fly ash

    DOEpatents

    McDowell, W.J.; Seeley, F.G.

    1979-11-01

    The invention relates to a method for improving the acid leachability of aluminum and other metal values found in fly ash which comprises sintering the fly ash, prior to acid leaching, with a calcium sulfate-containing composition at a temperature at which the calcium sulfate is retained in said composition during sintering and for a time sufficient to quantitatively convert the aluminum in said fly ash into an acid-leachable form.

  18. Fluorescent lighting with aluminum nitride phosphors

    DOEpatents

    Cherepy, Nerine J.; Payne, Stephen A.; Seeley, Zachary M.; Srivastava, Alok M.

    2016-05-10

    A fluorescent lamp includes a glass envelope; at least two electrodes connected to the glass envelope; mercury vapor and an inert gas within the glass envelope; and a phosphor within the glass envelope, wherein the phosphor blend includes aluminum nitride. The phosphor may be a wurtzite (hexagonal) crystalline structure Al.sub.(1-x)M.sub.xN phosphor, where M may be drawn from beryllium, magnesium, calcium, strontium, barium, zinc, scandium, yttrium, lanthanum, cerium, praseodymium, europium, gadolinium, terbium, ytterbium, bismuth, manganese, silicon, germanium, tin, boron, or gallium is synthesized to include dopants to control its luminescence under ultraviolet excitation. The disclosed Al.sub.(1-x)M.sub.xN:Mn phosphor provides bright orange-red emission, comparable in efficiency and spectrum to that of the standard orange-red phosphor used in fluorescent lighting, Y.sub.2O.sub.3:Eu. Furthermore, it offers excellent lumen maintenance in a fluorescent lamp, and does not utilize "critical rare earths," minimizing sensitivity to fluctuating market prices for the rare earth elements.

  19. Food Security and Nutrition NONE 09 BIOMASS FUELS; BIOFUELS;...

    Office of Scientific and Technical Information (OSTI)

    Level Panel of Experts on Food Security and Nutrition NONE 09 BIOMASS FUELS; BIOFUELS; PRODUCTION; AGRICULTURE; ENERGY POLICY; SOCIO-ECONOMIC FACTORS; SUSTAINABLE DEVELOPMENT;...

  20. Simulation of Turbulent Combustion Fields of Shock-Dispersed Aluminum Using the AMR Code

    SciTech Connect

    Kuhl, A L; Bell, J B; Beckner, V E; Khasainov, B

    2006-11-02

    We present a Model for simulating experiments of combustion in Shock-Dispersed-Fuel (SDF) explosions. The SDF charge consisted of a 0.5-g spherical PETN booster, surrounded by 1-g of fuel powder (flake Aluminum). Detonation of the booster charge creates a high-temperature, high-pressure source (PETN detonation products gases) that both disperses the fuel and heats it. Combustion ensues when the fuel mixes with air. The gas phase is governed by the gas-dynamic conservation laws, while the particle phase obeys the continuum mechanics laws for heterogeneous media. The two phases exchange mass, momentum and energy according to inter-phase interaction terms. The kinetics model used an empirical particle burn relation. The thermodynamic model considers the air, fuel and booster products to be of frozen composition, while the Al combustion products are assumed to be in equilibrium. The thermodynamic states were calculated by the Cheetah code; resulting state points were fit with analytic functions suitable for numerical simulations. Numerical simulations of combustion of an Aluminum SDF charge in a 6.4-liter chamber were performed. Computed pressure histories agree with measurements.

  1. Uranium deposition study on aluminum: results of early tests

    SciTech Connect

    Hughes, M.R.; Nolan, T.A.

    1984-06-19

    Laboratory experiments to quantify uranium compound deposition on Aluminum 3003 test coupons have been initiated. These experiments consist of exposing the coupons to normal assay UF/sub 6/ (0.7% /sup 235/U) in nickel reaction vessels under various conditions of UF/sub 6/ pressure, temperature, and time. To-date, runs from 5 minutes to 2000 hr have been completed at a UF/sub 6/ pressure of 100 torr and at a temperature of 60/sup 0/C. Longer exposure times are in progress. Initial results indicated that a surface film of uranium, primarily as uranyl fluoride (UO/sub 2/F/sub 2/), is deposited very soon after exposure to UF/sub 6/. In a five minute UF/sub 6/ exposure at a temperature of 60/sup 0/C, an average of 2.9 ..mu..g U/cm/sup 2/ was deposited; after 24 hr the deposit typically increased to 5.0 ..mu..g/cm/sup 2/ and then increased to 10.4 ..mu..g/cm/sup 2/ after 2000 hr. This amount of deposit (at 2000 hr exposure) would contribute roughly 10 to 20% to the total 186 keV gamma signal obtained from a GCEP product header pipe being operated at UF/sub 6/ pressures of 2 to 5 torr. The amount of isotopic exchange which would occur in the deposit in the event that HEU and LEU productions were alternated is considered. It is felt that isotopic exchange would not occur to any significant amount within the fixed deposit during relatively short HEU production periods since the HEU would be present primarily as adsorbed UF/sub 6/ molecules on the surface of the deposit. The adsorbed HEU molecules would be removed by evacuation and diluted by LEU production. Major increases in the deposit count would be observed if a leak occurred or moisture was introduced into the system while HEU was being produced.

  2. Radioactivity and food

    SciTech Connect

    Olszyna-Marzys, A.E. )

    1990-03-01

    Two topics relating to radioactivity and food are discussed: food irradiation for preservation purposes, and food contamination from radioactive substances. Food irradiation involves the use of electromagnetic energy (x and gamma rays) emitted by radioactive substances or produced by machine in order to destroy the insects and microorganisms present and prevent germination. The sanitary and economic advantages of treating food in this way are discussed. Numerous studies have confirmed that under strictly controlled conditions no undesirable changes take place in food that has been irradiated nor is radioactivity induced. Reference is made to the accident at the Chernobyl nuclear power station, which aroused public concern about irradiated food. The events surrounding the accident are reviewed, and its consequences with regard to contamination of different foods with radioactive substances, particularly iodine-131 and cesium-137, are described. Also discussed are the steps that have been taken by different international organizations to set limits on acceptable radioactivity in food.15 references.

  3. Life Cycle Energy and Environmental Assessment of Aluminum-Intensive Vehicle Design

    SciTech Connect

    Das, Sujit

    2014-01-01

    Advanced lightweight materials are increasingly being incorporated into new vehicle designs by automakers to enhance performance and assist in complying with increasing requirements of corporate average fuel economy standards. To assess the primary energy and carbon dioxide equivalent (CO2e) implications of vehicle designs utilizing these materials, this study examines the potential life cycle impacts of two lightweight material alternative vehicle designs, i.e., steel and aluminum of a typical passenger vehicle operated today in North America. LCA for three common alternative lightweight vehicle designs are evaluated: current production ( Baseline ), an advanced high strength steel and aluminum design ( LWSV ), and an aluminum-intensive design (AIV). This study focuses on body-in-white and closures since these are the largest automotive systems by weight accounting for approximately 40% of total curb weight of a typical passenger vehicle. Secondary mass savings resulting from body lightweighting are considered for the vehicles engine, driveline and suspension. A cradle-to-cradle life cycle assessment (LCA) was conducted for these three vehicle material alternatives. LCA methodology for this study included material production, mill semi-fabrication, vehicle use phase operation, and end-of-life recycling. This study followed international standards ISO 14040:2006 [1] and ISO 14044:2006 [2], consistent with the automotive LCA guidance document currently being developed [3]. Vehicle use phase mass reduction was found to account for over 90% of total vehicle life cycle energy and CO2e emissions. The AIV design achieved mass reduction of 25% (versus baseline) resulting in reductions in total life cycle primary energy consumption by 20% and CO2e emissions by 17%. Overall, the AIV design showed the best breakeven vehicle mileage from both primary energy consumption and climate change perspectives.

  4. Hydrogen storage in sodium aluminum hydride.

    SciTech Connect

    Ozolins, Vidvuds; Herberg, J.L. (Lawrence Livermore National Laboratories, Livermore, CA); McCarty, Kevin F.; Maxwell, Robert S. (Lawrence Livermore National Laboratories, Livermore, CA); Stumpf, Roland Rudolph; Majzoub, Eric H.

    2005-11-01

    Sodium aluminum hydride, NaAlH{sub 4}, has been studied for use as a hydrogen storage material. The effect of Ti, as a few mol. % dopant in the system to increase kinetics of hydrogen sorption, is studied with respect to changes in lattice structure of the crystal. No Ti substitution is found in the crystal lattice. Electronic structure calculations indicate that the NaAlH{sub 4} and Na{sub 3}AlH{sub 6} structures are complex-ionic hydrides with Na{sup +} cations and AlH{sub 4}{sup -} and AlH{sub 6}{sup 3-} anions, respectively. Compound formation studies indicate the primary Ti-compound formed when doping the material at 33 at. % is TiAl{sub 3} , and likely Ti-Al compounds at lower doping rates. A general study of sorption kinetics of NaAlH{sub 4}, when doped with a variety of Ti-halide compounds, indicates a uniform response with the kinetics similar for all dopants. NMR multiple quantum studies of solution-doped samples indicate solvent interaction with the doped alanate. Raman spectroscopy was used to study the lattice dynamics of NaAlH{sub 4}, and illustrated the molecular ionic nature of the lattice as a separation of vibrational modes between the AlH{sub 4}{sup -} anion-modes and lattice-modes. In-situ Raman measurements indicate a stable AlH{sub 4}{sup -} anion that is stable at the melting temperature of NaAlH{sub 4}, indicating that Ti-dopants must affect the Al-H bond strength.

  5. Boron-doped back-surface fields using an aluminum-alloy process

    SciTech Connect

    Gee, J.M.; Bode, M.D.; Silva, B.L.

    1997-10-01

    Boron-doped back-surface fields (BSF`s) have potentially superior performance compared to aluminum-doped BSF`s due to the higher solid solubility of boron compared to aluminum. However, conventional boron diffusions require a long, high temperature step that is both costly and incompatible with many photovoltaic-grade crystalline-silicon materials. We examined a process that uses a relatively low-temperature aluminum-alloy process to obtain a boron-doped BSF by doping the aluminum with boron. In agreement with theoretical expectations, we found that thicker aluminum layers and higher boron doping levels improved the performance of aluminum-alloyed BSF`s.

  6. Hermetic aluminum radio frequency interconnection and method for making

    DOEpatents

    Kilgo, Riley D.; Kovacic, Larry; Brow, Richard K.

    2000-01-01

    The present invention provides a light-weight, hermetic coaxial radio-frequency (RF) interconnection having an electrically conductive outer housing made of aluminum or an aluminum alloy, a central electrical conductor made of ferrous or non-ferrous material, and a cylinder of dielectric material comprising a low-melting-temperature, high-thermal-expansion aluminophosphate glass composition for hermetically sealing between the aluminum-alloy outer housing and the ferrous or non-ferrous center conductor. The entire RF interconnection assembly is made permanently hermetic by thermally fusing the center conductor, glass, and housing concurrently by bringing the glass to the melt point by way of exposure to an atmospheric temperature sufficient to melt the glass, less than 540.degree. C., but that does not melt the center conductor or the outer aluminum or aluminum alloy housing. The composition of the glass used is controlled to provide a suitable low dielectric constant so that an appropriate electrical characteristic impedance, for example 50 ohms, can be achieved for an electrical interconnection that performs well at high radio frequencies and also provides an interconnection maintaining a relatively small physical size.

  7. Aluminum-Enhanced Underwater Electrical Discharges for Steam Explosion Triggering

    SciTech Connect

    HOGELAND, STEVE R.; NELSON, LLOYD S.; ROTH, THOMAS CHRISTOPHER

    1999-07-01

    For a number of years, we have been initiating steam explosions of single drops of molten materials with pressure and flow (bubble growth) transients generated by discharging a capacitor bank through gold bridgewires placed underwater. Recent experimental and theoretical advances in the field of steam explosions, however, have made it important to substantially increase these relatively mild transients in water without using high explosives, if possible. To do this with the same capacitor bank, we have discharged similar energies through tiny strips of aluminum foil submerged in water. By replacing the gold wires with the aluminum strips, we were able to add the energy of the aluminum-water combustion to that normally deposited electrically by the bridgewire explosion in water. The chemical enhancement of the explosive characteristics of the discharges was substantial: when the same electrical energies were discharged through the aluminum strips, peak pressures increased as much as 12-fold and maximum bubble volumes as much as 5-fold above those generated with the gold wires. For given weights of aluminum, the magnitudes of both parameters appeared to exceed those produced by the underwater explosion of equivalent weights of high explosives.

  8. REAL TIME ULTRASONIC ALUMINUM SPOT WELD MONITORING SYSTEM

    SciTech Connect

    Regalado, W. Perez; Chertov, A. M.; Maev, R. Gr.

    2010-02-22

    Aluminum alloys pose several properties that make them one of the most popular engineering materials: they have excellent corrosion resistance, and high weight-to-strength ratio. Resistance spot welding of aluminum alloys is widely used today but oxide film and aluminum thermal and electrical properties make spot welding a difficult task. Electrode degradation due to pitting, alloying and mushrooming decreases the weld quality and adjustment of parameters like current and force is required. To realize these adjustments and ensure weld quality, a tool to measure weld quality in real time is required. In this paper, a real time ultrasonic non-destructive evaluation system for aluminum spot welds is presented. The system is able to monitor nugget growth while the spot weld is being made. This is achieved by interpreting the echoes of an ultrasound transducer located in one of the welding electrodes. The transducer receives and transmits an ultrasound signal at different times during the welding cycle. Valuable information of the weld quality is embedded in this signal. The system is able to determine the weld nugget diameter by measuring the delays of the ultrasound signals received during the complete welding cycle. The article presents the system performance on aluminum alloy AA6022.

  9. Computer-assisted Rheo-forging Processing of A356 Aluminum Alloys

    SciTech Connect

    Kim, H. H. [Department of Mechanical and Precision Engineering, Pusan National University, Busan 609-735 (Korea, Republic of); Kang, C. G. [School of Mechanical Engineering, Pusan National University, Busan 609-735 (Korea, Republic of)

    2010-06-15

    Die casting process has been used widely for complex automotive products such as the knuckle, arm and etc. Generally, a part fabricated by casting has limited strength due to manufacturing defects by origin such as the dendrite structure and segregation. As an attempt to offer a solution to these problems, forging has been used as an alternative process. However, the forging process provides limited formability for complex shape products. Rheo-forging of metal offers not only superior mechanical strength but also requires significantly lower machine loads than solid forming processes. In order to produce semi-solid materials of the desired microstructure, a stirring process is applied during solidification of A356 aluminum molten state. This paper presents the results of an A356 aluminum alloy sample, which were obtained by experiment and by simulation using DEFORM 3D V6.1. Samples of metal parts were subsequently fabricated by using hydraulic press machinery. In order to compare the influence of loading method, two types of samples were fabricated: (1) samples fabricated under direct loading die sets (2) those fabricated under indirect loading die sets. The formability and defects, which were predicted by FEM simulation, were similar to those of samples used in practice.

  10. Aluminum Stabilized NbTi Conductor Test Coil Design, Fabrication, and Test Results

    SciTech Connect

    Andreev, N.; Chlachidze, G.; Evbota, D.; Kashikhin, V.S.; Lamm, M.; Makarov, A.; Tartaglia, M.; Nakamoto, T.; Ogitsu, T.; Tanaka, K.; Yamamoto, A.; /KEK, Tsukuba

    2011-09-01

    A new generation of precision muon conversion experiments is planned at both Fermilab and KEK. These experiments will depend upon a complex set of solenoid magnets for the production, momentum selection and transport of a muon beam to a stopping target, and for tracking detector momentum analysis of candidate conversion electrons from the target. Baseline designs for the production and detector solenoids use NbTi cable that is heavily stabilized by an extruded high RRR aluminum jacket. A U.S.-Japan research collaboration has begun whose goal is to advance the development of optimized Al-NbTi conductors, gain experience with the technology of winding coils from this material, and test the conductor performance as modest length samples become available. For this purpose, a 'conductor test' solenoid with three coils was designed and built at Fermilab. A sample of the RIKEN Al-NbTi conductor from KEK was wound into a 'test' coil; this was sandwiched between two 'field' coils wound from doubled SSC cable, to increase the peak field on the RIKEN test coil. All three solenoid coils were epoxy impregnated, and utilized aluminum outer bandage rings to apply preload to the coils when cold. The design and fabrication details, and results of the magnet quench performance tests are presented and discussed.

  11. An economic and technical assessment of black-dross and salt-cake-recycling systems for application in the secondary aluminum industry

    SciTech Connect

    Karvelas, D.; Daniels, E.; Jody, B.; Bonsignore, P.

    1991-12-01

    The secondary aluminum industry annually disposes of large amounts of dross residues and salt cake, which are by-products from the processing of scrap aluminum for reuse. These wastes contain as much as 50% salts and are presently disposed of in conventional landfills. As the costs of landfill space increase and the availability of landfill space decreases, disposal of the residues will increasingly compromise the economics of recycling aluminum. Alternative processes exist by which the major constituents of the various drosses and salt cakes can be recovered for recycling. In this study, we review available recycling technologies and processes relevant to the recycling of black dross and salt cake and discuss new concepts that have the potential to improve the cost-effectiveness of recycling technologies.

  12. Carbon Emissions: Food Industry

    Energy Information Administration (EIA) (indexed site)

    Food Industry Carbon Emissions in the Food Industry The Industry at a Glance, 1994 (SIC Code: 20) Total Energy-Related Emissions: 24.4 million metric tons of carbon (MMTC) -- Pct....

  13. ITP Aluminum: Energy and Environmental Profile of the U.S. Aluminum Industry

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    and Environmental Profile of the U.S. Aluminum Industry July 1997 Prepared by , Inc. Columbia, Maryland Prepared for U.S. Department of Energy Office of Industrial Technologies $&.12:/('*0(176 7KLVUHSRUWZDVZULWWHQE\1DQF\0DUJROLVRI(QHUJHWLFV,QFRUSRUDWHGLQ&ROXPELD0DU\ODQG 7KHUHSRUWZDVSUHSDUHGXQGHUWKHJHQHUDOGLUHFWLRQRI/RXLV6RXVD86'HSDUWPHQWRI(QHUJ\

  14. Evaluation of several corrosion protective coating systems on aluminum

    SciTech Connect

    Higgins, R.H.

    1981-02-01

    A study of several protective coating systems for use on aluminum in seawater/seacoast environments was conducted to review the developments made on protective coatings since early in the Space Shuttle program and to perform comparative studies on these coatings to determine their effectiveness for providing corrosion protection during exposure to seawater/seacoast environments. Panels of 2219-T87 aluminum were coated with 21 different systems and exposed to a 5 percent salt spray for 4000 h. Application properties, adhesion measurements, heat resistance and corrosion protection were evaluated. For comparative studies, the presently specified Bostik epoxy system used on the SRB structures was included. Results of these tests indicate four systems with outstanding performance and four additional systems with protection almost as good. These systems are based on a chromated pretreatment, a chromate epoxy primer, and a polyurethane topcoat. Consideration for one of these systems should be included for those applications where superior corrosion protection for aluminum surfaces is required.

  15. COMPILATION OF LABORATORY SCALE ALUMINUM WASH AND LEACH REPORT RESULTS

    SciTech Connect

    HARRINGTON SJ

    2011-01-06

    This report compiles and analyzes all known wash and caustic leach laboratory studies. As further data is produced, this report will be updated. Included are aluminum mineralogical analysis results as well as a summation of the wash and leach procedures and results. Of the 177 underground storage tanks at Hanford, information was only available for five individual double-shell tanks, forty-one individual single-shell tanks (e.g. thirty-nine 100 series and two 200 series tanks), and twelve grouped tank wastes. Seven of the individual single-shell tank studies provided data for the percent of aluminum removal as a function of time for various caustic concentrations and leaching temperatures. It was determined that in most cases increased leaching temperature, caustic concentration, and leaching time leads to increased dissolution of leachable aluminum solids.

  16. Plasma Decontamination of Uranium From the Interior of Aluminum Objects

    SciTech Connect

    Veilleux, J.M.; Munson, C.; Fitzpatrick, J.; Chamberlin, E.P.; El-Genk, M.S.

    1997-04-21

    RF plasma glow discharges are being investigated for removing and recovering radioactive elements from contaminated objects, especially those contaminated with transuranic (TRU) materials. These plasmas, using nitrogen trifluoride as the working gas, have been successful at removing uranium and plutonium contaminants from test coupons of stainless steel and aluminum surfaces, including small cracks and crevices, and the interior surfaces of relatively hard to reach aluminum pipes. Contaminant removal exceeded 99.9% from simple surfaces and contaminant recovery using cryogenic traps has exceeded 50%. Work continues with the objective of demonstrating that transuranic contaminated waste can be transformed to low level waste (LLW) and to better understand the physics of the interaction between plasma and surface contaminants. This work summarizes the preliminary results from plasma decontamination from the interior of aluminum objects--the nooks and crannies experiments.

  17. Effect of grain orientation on aluminum relocation at incipient melt conditions

    SciTech Connect

    Yilmaz, Nadir; Vigil, Francisco M.; Vigil, Miquela S.; Branam, Robert; Tolendino, Greg; Gill, Walt; Burl Donaldson, A.

    2015-09-01

    Aluminum is commonly used for structural applications in the aerospace industry because of its high strength in relation to its weight. It is necessary to understand the mechanical response of aluminum structures at elevated temperatures such as those experienced in a fire. Additionally, aluminum alloys exhibit many complicated behaviors that require further research and understanding, such as aluminum combustion, oxide skin formation and creep behavior. This paper discusses the effect of grain orientation on aluminum deformation subjected to heating at incipient melt conditions. Experiments were conducted by applying a vertical compressive force to aluminum alloy 7075 block test specimens. Furthermore, compression testing was done on test specimens with the applied load on the long transverse and short transverse orientations. Our results showed that the grain orientation significantly influences aluminums strength and mode of failure.

  18. Comment on Free-free opacity in warm aluminum by Vinko et al...

    Office of Scientific and Technical Information (OSTI)

    Comment on Free-free opacity in warm aluminum by Vinko et al Citation Details In-Document Search Title: Comment on Free-free opacity in warm aluminum by Vinko et al Authors: ...

  19. Shock-ramp loading of tin and aluminum. (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Shock-ramp loading of tin and aluminum. Citation Details In-Document Search Title: Shock-ramp loading of tin and aluminum. Abstract not provided. Authors: Seagle, Christopher T ...

  20. Evaluation of Corrosion of Aluminum Based Reactor Fuel Cladding Materials During Dry Storage

    SciTech Connect

    Peacock, H.B. Jr.

    1999-10-21

    This report provides an evaluation of the corrosion behavior of aluminum cladding alloys and aluminum-uranium alloys at conditions relevant to dry storage. The details of the corrosion program are described and the results to date are discussed.

  1. Tank 12 Sludge Characterization and Aluminum Dissolution Demonstration

    SciTech Connect

    Reboul, S.; Hay, M.; Zeigler, K; Stone, M.

    2010-05-05

    A 3-L sludge slurry sample from Tank 12 was characterized and then processed through an aluminum dissolution demonstration. The dominant constituent of the sludge was found to be aluminum in the form of boehmite. The iron content was minor, about one-tenth that of the aluminum. The salt content of the supernatant was relatively high, with a sodium concentration of {approx}7 M. Due to these characteristics, the yield stress and plastic viscosity of the unprocessed slurry were relatively high (19 Pa and 27 cP), and the settling rate of the sludge was relatively low ({approx}20% settling over a two and a half week period). Prior to performing aluminum dissolution, plutonium and gadolinium were added to the slurry to simulate receipt of plutonium waste from H-Canyon. Aluminum dissolution was performed over a 26 day period at a temperature of 65 C. Approximately 60% of the insoluble aluminum dissolved during the demonstration, with the rate of dissolution slowing significantly by the end of the demonstration period. In contrast, approximately 20% of the plutonium and less than 1% of the gadolinium partitioned to the liquid phase. However, about a third of the liquid phase plutonium became solubilized prior to the dissolution period, when the H-Canyon plutonium/gadolinium simulant was added to the Tank 12 slurry. Quantification of iron dissolution was less clear, but appeared to be on the order of 1% based on the majority of data (a minor portion of the data suggested iron dissolution could be as high as 10%). The yield stress of the post-dissolution slurry (2.5 Pa) was an order of magnitude lower than the initial slurry, due most likely to the reduced insoluble solids content caused by aluminum dissolution. In contrast, the plastic viscosity remained unchanged (27 cP). The settling rate of the post-dissolution slurry was higher than the initial slurry, but still relatively low compared to settling of typical high iron content/low salt content sludges. Approximately 40

  2. TANK 12 SLUDGE CHARACTERIZATION AND ALUMINUM DISSOLUTION DEMONSTRATION

    SciTech Connect

    Reboul, S; Michael Hay, M; Kristine Zeigler, K; Michael Stone, M

    2009-03-25

    A 3-L sludge slurry sample from Tank 12 was characterized and then processed through an aluminum dissolution demonstration. The dominant constituent of the sludge was found to be aluminum in the form of boehmite. The iron content was minor, about one-tenth that of the aluminum. The salt content of the supernatant was relatively high, with a sodium concentration of {approx}7 M. Due to these characteristics, the yield stress and plastic viscosity of the unprocessed slurry were relatively high (19 Pa and 27 cP), and the settling rate of the sludge was relatively low ({approx}20% settling over a two and a half week period). Prior to performing aluminum dissolution, plutonium and gadolinium were added to the slurry to simulate receipt of plutonium waste from H-Canyon. Aluminum dissolution was performed over a 26 day period at a temperature of 65 C. Approximately 60% of the insoluble aluminum dissolved during the demonstration, with the rate of dissolution slowing significantly by the end of the demonstration period. In contrast, approximately 20% of the plutonium and less than 1% of the gadolinium partitioned to the liquid phase. However, about a third of the liquid phase plutonium became solubilized prior to the dissolution period, when the H-Canyon plutonium/gadolinium simulant was added to the Tank 12 slurry. Quantification of iron dissolution was less clear, but appeared to be on the order of 1% based on the majority of data (a minor portion of the data suggested iron dissolution could be as high as 10%). The yield stress of the post-dissolution slurry (2.5 Pa) was an order of magnitude lower than the initial slurry, due most likely to the reduced insoluble solids content caused by aluminum dissolution. In contrast, the plastic viscosity remained unchanged (27 cP). The settling rate of the post-dissolution slurry was higher than the initial slurry, but still relatively low compared to settling of typical high iron content/low salt content sludges. Approximately 40

  3. Aluminum Surface Texturing by Means of Laser Interference Metallurgy

    SciTech Connect

    Chen, Jian; Sabau, Adrian S; Jones, Jonaaron F.; Hackett, Alexandra C.; Daniel, Claus; Warren, Charles David

    2015-01-01

    The increasing use of lightweight materials, such as aluminum alloys, in auto body structures requires more effective surface cleaning and texturing techniques to improve the quality of the structural components. The present work introduces a novel surface treatment method using laser interferometry produced by two beams of a pulsed Nd:YAG laser operating at 10Hz of frequency to clean aluminum surfaces, and meanwhile creating periodic and rough surface structures. The influences of beam size, laser fluence, wavelength, and pulse number per spot are investigated. High resolution optical profiler images reveal the change of the peak-to-valley height on the laser-treated surface.

  4. Low temperature aluminum reduction cell using hollow cathode

    DOEpatents

    Brown, Craig W.; Frizzle, Patrick B.

    2002-08-20

    A method of producing aluminum in an electrolytic cell containing alumina dissolved in an electrolyte. A plurality of non-consumable anodes are disposed substantially vertically in the electrolyte along with a plurality of monolithic hollow cathodes. Each cathode has a top and bottom and the cathodes are disposed vertically in the electrolyte and the anodes and the cathodes are arranged in alternating relationship. Each of the cathodes is comprised of a first side facing a first opposing anode and a second side facing a second opposing anode. The first and second sides are joined by ends to form a reservoir in the hollow cathode for collecting aluminum therein deposited at the cathode.

  5. The influence of aluminum grain size on alumina nanoporous structure

    SciTech Connect

    Feil, A. F.; Costa, M. V. da; Amaral, L.; Teixeira, S. R.; Migowski, P.; Dupont, J.; Machado, G.; Peripolli, S. B.

    2010-01-15

    An approach to control the interpore distances and nanopore diameters of 150-nm-thick thin aluminum films is reported here. The Al thin films were grown by sputtering on p-type silicon substrate and anodized with a conventional anodization process in a phosphoric acid solution. It was found that interpore distance and pore diameter are related to the aluminum grain size and can be controlled by annealing. The grain contours limit the sizes of alumina cells. This mechanism is valid for grain sizes supporting only one alumina cell and consequently only one pore.

  6. Optimization of Squeeze Casting for Aluminum Alloy Parts

    SciTech Connect

    David Schwam; John F. Wallace; Qingming Chang; Yulong Zhu

    2002-07-30

    This study was initiated with the installation of a new production size UBE 350 Ton VSC Squeeze Casting system in the Metal Casting Laboratory at Case Western University. A Lindberg 75k W electrical melting furnace was installed alongside. The challenge of installation and operation of such industrial-size equipment in an academic environment was met successfully. Subsequently, a Sterling oil die heater and a Visi-Track shot monitoring system were added. A significant number of inserts were designed and fabricated over the span of the project, primarily for squeeze casting different configurations of test bars and plates. A spiral ''ribbon insert'' for evaluation of molten metal fluidity was also fabricated. These inserts were used to generate a broad range of processing conditions and determine their effect on the quality of the squeeze cast parts. This investigation has studied the influence of the various casting variables on the quality of indirect squeeze castings primarily of aluminum alloys. The variables studied include gating design, fill time and fill patter, metal pressure and die temperature variations. The quality of the die casting was assessed by an analysis of both their surface condition and internal soundness. The primary metal tested was an aluminum 356 alloy. In addition to determining the effect of these casting variables on casting quality as measured by a flat plate die of various thickness, a number of test bar inserts with different gating designs have been inserted in the squeeze casting machine. The mechanical properties of these test bars produced under different squeeze casting conditions were measured and reported. The investigation of the resulting properties also included an analysis of the microstructure of the squeeze castings and the effect of the various structural constituents on the resulting properties. The main conclusions from this investigation are as follows: The ingate size and shape are very important since it must

  7. Recovery of aluminum oxide by the Ames lime-soda sinter process: scale-up using a rotary kiln

    SciTech Connect

    Murtha, M.J.; Burnet, G.; Harnby, N.

    1985-01-01

    The Ames Lime-Soda Sinter Process provides a means for recovering aluminum oxide from power plant fly ash while producing a residue that can be used in the manufacture of sulfate resistant (Type V) portland cement. The process has been fully researched and its feasibility is now being demonstrated through pilot plant scale investigation. This paper reports results of the pelletized feed preparation by agglomeration in a rotary pan granulator, continuous feed sintering in an electrically heated rotary kiln, and product recovery from the clinker by aqueous extraction, desilication of the filtrate, and precipitation of a hydrated aluminum oxide. Results from earlier bench-scale research have been found to apply consistently to the pilot plant scale work.

  8. REPORT ON QUALITATIVE VALIDATION EXPERIMENTS USING LITHIUM-ALUMINUM LAYERED DOUBLE-HYDROXIDES FOR THE REDUCTION OF ALUMINUM FROM THE WASTE TREATMENT PLANT FEEDSTOCK

    SciTech Connect

    HUBER HJ; DUNCAN JB; COOKE GA

    2010-05-11

    A process for removing aluminum from tank waste simulants by adding lithium and precipitating Li-Al-dihydroxide (Lithiumhydrotalcite, [LiAl{sub 2}(OH){sub 6}]{sup +}X{sup -}) has been verified. The tests involved a double-shell tank (DST) simulant and a single-shell tank (SST) simulant. In the case of the DST simulant, the product was the anticipated Li-hydrotalcite. For the SST simulant, the product formed was primarily Li-phosphate. However, adding excess Li to the solution did result in the formation of traces of Li-hydrotalcite. The Li-hydrotalcite from the DST supernate was an easily filterable solid. After four water washes the filter cake was a fluffy white material made of < 100 {micro}m particles made of smaller spheres. These spheres are agglomerates of {approx} 5 {micro}m diameter platelets with < 1 {micro}m thickness. Chemical and mineralogical analyses of the filtrate, filter cake, and wash waters indicate a removal of 90+ wt% of the dissolved Al for the DST simulant. For the SST simulant, the main competing reaction to the formation of lithium hydrotalcite appears to be the formation of lithium phosphate. In case of the DST simulant, phosphorus co-precipitated with the hydrotalcite. This would imply the added benefit of the removal of phosphorus along with aluminum in the pre-treatment part of the waste treatment and immobilization plant (WTP). For this endeavor to be successful, a serious effort toward process parameter optimization is necessary. Among the major issues to be addressed are the dependency of the reaction yield on the solution chemistry, as well as residence times, temperatures, and an understanding of particle growth.

  9. Energy-Efficient Melting and Direct Delivery of High Quality Molten Aluminum

    Energy.gov [DOE]

    Fact Sheet About Complete Scrap-to-Caster System Will Save Energy and Reduce Costs in the Aluminum Industry

  10. Mercury-free dissolution of aluminum-clad fuel in nitric acid

    DOEpatents

    Christian, J.D.; Anderson, P.A.

    1994-11-15

    A mercury-free dissolution process for aluminum involves placing the aluminum in a dissolver vessel in contact with nitric acid-fluoboric acid mixture at an elevated temperature. By maintaining a continuous flow of the acid mixture through the dissolver vessel, an effluent containing aluminum nitrate, nitric acid, fluoboric acid and other dissolved components are removed. 5 figs.

  11. Mercury-free dissolution of aluminum-clad fuel in nitric acid

    DOEpatents

    Christian, Jerry D.; Anderson, Philip A.

    1994-01-01

    A mercury-free dissolution process for aluminum involves placing the aluminum in a dissolver vessel in contact with nitric acid-fluoboric acid mixture at an elevated temperature. By maintaining a continuous flow of the acid mixture through the dissolver vessel, an effluent containing aluminum nitrate, nitric acid, fluoboric acid and other dissolved components are removed.

  12. Radioactivity and foods

    SciTech Connect

    Olszyna-Marzys, A.E. )

    1991-01-01

    The purpose of this article is to describe and contrast two relationships between radiation and food--on the one hand, beneficial preservation of food by controlled exposure to ionizing radiation; and, on the other, contamination of food by accidental incorporation of radioactive nuclides within the food itself. In food irradiation, electrons or electromagnetic radiation is used to destroy microorganisms and insects or prevent seed germination. The economic advantages and health benefits of sterilizing food in this manner are clear, and numerous studies have confirmed that under strictly controlled conditions no undersirable changes or induced radioactivity is produced in the irradiated food. An altogether different situation is presented by exposure of food animals and farming areas to radioactive materials, as occurred after the major Soviet nuclear reactor accident at Chenobyl. This article furnishes the basic information needed to understand the nature of food contamination associated with that event and describes the work of international organizations seeking to establish appropriate safe limits for levels of radioactivity in foods.

  13. In-Situ, Real-Time Measurement of Melt Constituents in the Aluminum, Glass, and Steel Industries

    SciTech Connect

    Robert De Saro

    2006-05-18

    Energy Research Company (ERCo), with support from DOE’s Industrial Technologies Program, Sensors and Automation has developed a Laser Induced Breakdown Spectroscopy (LIBS) probe to measure, in real time and in-situ, the composition of an aluminum melt in a furnace at an industrial plant. The compositional data is provided to the operator continuously allowing the operator to adjust the melt composition, saving energy, increasing production, and maintaining tighter compositional tolerances than has been previously possible. The overall objectives of this project were to: -- design, develop, fabricate, test and project future costs of the LIBS probe on bench-size experiments; - test the unit in a pilot-scaled aluminum furnace under varying operating conditions of temperature and melt constituents; -- determine the instruments needed for use in industrial environment; -- compare LIBS Probe data to readings traditionally taken on the furnace; -- get full-scale data to resolve if, and how, the LIBS Probe design should be modified for operator acceptance. Extensive laboratory tests have proven the concept feasibility. Elemental concentrations below 0.1% wt. have been accurately measured. Further, the LIBS system has now been installed and is operating at a Commonwealth Aluminum plant in Ohio. The technology is crosscutting as it can be used in a wide variety of applications. In the Sensors and Automation Program the application was for the secondary aluminum industry. However, this project spawned a number of other applications, which are also reported here for completeness. The project was effective in that two commercial systems are now operating; one at Commonwealth Aluminum and another at a PPG fiberglass plant. Other commercial installations are being negotiated as of this writing. This project led to the following conclusions: 1. The LIBS System has been developed for industrial applications. This is the first time this has been accomplished. In addition, two

  14. Hydrogen Production

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Production Hydrogen can be produced using diverse, domestic resources. Fossil fuels, such as natural gas and coal, can be converted to produce hydrogen, and the use of carbon capture, utilization, and storage can reduce the carbon footprint of these processes. Hydrogen can also be produced from low carbon and renewable resources, including biomass grown from non-food crops and splitting water using electricity from wind, solar, geothermal, nuclear, and hydroelectric. This diversity of potential

  15. Improved Irradiation Performance of Uranium-Molybdenum/Aluminum Dispersion Fuel by Silicon Addition in Aluminum

    SciTech Connect

    Yeon Soo Kim; G. L. Hofman; A. B. Robinson; D. M. Wachs

    2013-10-01

    Uranium-molybdenum fuel particle dispersion in aluminum is a form of fuel under development for conversion of high-power research and test reactors from highly enriched to low-enriched uranium in the U.S. Global Threat Reduction Initiative program (also known as the Reduced Enrichment for Research and Test Reactors program). Extensive irradiation tests have been conducted to find a solution for problems caused by interaction layer growth and pore formation between U-Mo and Al. Adding a small amount of Si (up to [approximately]5 wt%) in the Al matrix was one of the proposed remedies. The effect of silicon addition in the Al matrix was examined using irradiation test results by comparing side-by-side samples with different Si additions. Interaction layer growth was progressively reduced with increasing Si addition to the matrix Al, up to 4.8 wt%. The Si addition also appeared to delay pore formation and growth between the U-Mo and Al.

  16. Temporary Food Service

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Food Service The SLAC Café, auditorium and visitor center have been closed and will be replaced with a new Science and User Support Building (SUSB). During this construction (2013-2015), temporary food service will be provided by the Cardinal Chef Mobile Gourmet food trucks. On-Site The food trucks are located in front of Building 27. Hours of Operation Monday through Friday Breakfast: 7:30AM-9:30AM Lunch: 11:00AM-2:00PM Menu: http://www-project.slac.stanford.edu/foodtruckmenu/default.asp Local

  17. Holiday Food Drive

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Community Programs Office (505) 665-4400 Email Get Expertise Helping feed Northern New Mexico families During the Laboratory's 2015 Annual Food Drive, employees and subcontract...

  18. Urban Food Initiative

    SciTech Connect

    Buluswar, Shashi

    2015-05-06

    Shashi Buluswar, Berkeley Lab's Executive Director of the Institute for Globally Transformative Technologies (LIGTT) discusses the issue of urban food deserts and malnutrition in American inner cities.

  19. Development of Aluminum Stabilized Superconducting Cables for the Mu2e Detector Solenoid

    SciTech Connect

    Lombardo, Vito; Buehler, M.; Lamm, M.; Page, T.; Curreli, S.; Fabbricatore, P.; Musenich, R.

    2015-10-16

    The Mu2e experiment at Fermilab is designed to measure the rare process of direct muon-to-electron conversion in the field of a nucleus. The experiment comprises a system of three superconducting solenoids, which focus secondary muons from the production target and transport them to an aluminum stopping target, while minimizing the associated background. The Detector Solenoid (DS) is the last magnet in the transport line and its main functions are to provide a graded field in the region of the stopping target as well as a precision magnetic field in a volume large enough to house the tracker downstream of the stopping target. The Detector Solenoid coils are designed to be wound using NbTi Rutherford cables conformed in high purity aluminum for stabilization and then cold-worked for strength. Two types of Al-stabilized conductor are required to build the DS coils, one for the gradient section and one for the spectrometer section of the solenoid. The dimensions are optimized to generate the required field profile when the same current is transported in both conductors. The conductors contain NbTi Rutherford cables with 12 (DS1) and 8 (DS2) strands respectively and are manufactured by two different vendors. This paper describes the results of the manufacturing of production lengths of the Al-stabilized cables needed to build the Mu2e Detector Solenoid as well as the testing campaigns and main results. The main cable properties and results of electrical and mechanical tests are summarized and discussed for each stage of the cable development process. Results are compared to design values to show how the production cables satisfy all the design criteria starting from the NbTi wires to the Al-stabilized cables.

  20. Purchasing Energy-Efficient Hot Food Holding Cabinets

    Energy.gov [DOE]

    The Federal Energy Management Program (FEMP) provides acquisition guidance for hot food holding cabinets, a product category covered by ENERGY STAR efficiency requirements. Federal laws and requirements mandate that agencies purchase ENERGY STAR-qualified products or FEMP-designated products in all product categories covered by these programs and in any acquisition actions that are not specifically exempted by law.

  1. Welding high-strength aluminum alloys at the Paton Institute

    SciTech Connect

    Kuchuk, Yatsenko, S.I.; Cherednichok, V.T.; Semenov, L.A. )

    1993-07-01

    The choice of the flash method for welding aluminum-alloy sections was governed first of all by the possibility of producing homogeneous-structure joints with the minimum amount of possible discontinuities and an insignificant metal strength loss in the welding zone. The aluminum alloy welding technology under consideration relies on the method of flash welding without using any protective atmospheres. The reason is first of all that a complex cross-sectional shape of workpieces being joined, their configuration and considerable overall dimensions make it difficult to use chambers of any type. Besides, conducted studies ascertained that in flash welding, in contrast to various fusion welding processes, the use of protective atmospheres or a vacuum is of little benefit. Here are the results of studying the specifics of thermal and electric processes in flashing, the physical features of weld joint formation, the basics of the welding technology, and the characteristics of the equipment.

  2. Influence of insulating coating on aluminum wire explosions

    SciTech Connect

    Li, Yang; Wu, Jian; Sheng, Liang; Zhao, Jizhen; Zhang, Mei; Yuan, Yuan; Peng, Bodong; Li, Xingwen

    2014-10-15

    Single wire explosions are widely used in understanding the early stages of z-pinch experiments. This paper presents a serial of experiments conducted on the pulse power generator with ?1?kA peak current and ?10?ns rising time in Xi'an Jiao Tong University. Polyimide coated aluminum wires and uncoated ones were tested under three different voltages to analyze the effect of insulating coating. Experimental results showed that insulating coating can increase the energy deposition 10%?30% in aluminum wires by delaying the voltage collapse and raising the maximum load resistance. The substantial energy deposition resulted in about 20% faster expansion rates for coated wires. Experimental evidence that plasma channel shunts the current from the wire core was observed by streak camera and schlieren graphs. This paper also briefly discussed the influence of nonuniform coating on the morphology of wire expansion.

  3. Reduction of Annealing Times for Energy Conservation in Aluminum

    SciTech Connect

    Anthony D. Rollett; Hasso Weiland; Mohammed Alvi; Abhijit Brahme

    2005-08-31

    Carnegie Mellon University was teamed with the Alcoa Technical Center with support from the US Dept. of Energy (Office of Industrial Technology) and the Pennsylvania Technology Investment Authority (PTIA) to make processing of aluminum less costly and more energy efficient. Researchers in the Department of Materials Science and Engineering have investigated how annealing processes in the early stages of aluminum processing affect the structure and properties of the material. Annealing at high temperatures consumes significant amounts of time and energy. By making detailed measurements of the crystallography and morphology of internal structural changes they have generated new information that will provide a scientific basis for shortening processing times and consuming less energy during annealing.

  4. Melt behavior of aluminum clad rods

    SciTech Connect

    Geiger, G.T.; Long, T.A.; DeWald, A.B. Jr.

    1994-08-01

    Since the Li-Al alloy cores in control rods used to control production reactors are susceptible to corrosion by heavy water, they were clad with Al. This paper reports results of an experimental and numerical study of the behavior of control rods heated to the point of clad and rod-core failure. Results show that the core of the rod melts first; the clad fails only after significant additional heating. Once the rod breaks and drops to the bottom of the quartz tube in the furnace, the lower section of the rod fails by ``poker-chipping`` downward as the topmost portion fails before the portion below it. Part of the core in the remaining top of the rod relocates immediately after rod separation, leaving a hollow tube of Al which also melts upon further heating.

  5. Adiabatic release measurements in aluminum between 400 and 1200 GPa: Characterization of aluminum as a shock standard in the multimegabar regime

    DOE PAGES [OSTI]

    Knudson, Marcus D.; Desjarlais, Michael P.; Pribram-Jones, Aurora

    2015-06-15

    Aluminum has been used prolifically as an impedance matching standard in the multimegabar regime (1 Mbar = 100 GPa), particularly in nuclear driven, early laser driven, and early magnetically driven flyer plate experiments. The accuracy of these impedance matching measurements depends upon the knowledge of both the Hugoniot and release or reshock response of aluminum. Here, we present the results of several adiabatic release measurements of aluminum from ~400–1200 GPa states along the principal Hugoniot using full density polymethylpentene (commonly known as TPX), and both ~190 and ~110 mg/cc silica aerogel standards. Additionally, these data were analyzed within the frameworkmore » of a simple, analytical model that was motivated by a first-principles molecular dynamics investigation into the release response of aluminum, as well as by a survey of the release response determined from several tabular equations of state for aluminum. Combined, this theoretical and experimental study provides a method to perform impedance matching calculations without the need to appeal to any tabular equation of state for aluminum. Furthermore, as an analytical model, this method allows for propagation of all uncertainty, including the random measurement uncertainties and the systematic uncertainties of the Hugoniot and release response of aluminum. This work establishes aluminum for use as a high-precision standard for impedance matching in the multimegabar regime.« less

  6. Adiabatic release measurements in aluminum between 400 and 1200 GPa: Characterization of aluminum as a shock standard in the multimegabar regime

    SciTech Connect

    Knudson, Marcus D.; Desjarlais, Michael P.; Pribram-Jones, Aurora

    2015-06-15

    Aluminum has been used prolifically as an impedance matching standard in the multimegabar regime (1 Mbar = 100 GPa), particularly in nuclear driven, early laser driven, and early magnetically driven flyer plate experiments. The accuracy of these impedance matching measurements depends upon the knowledge of both the Hugoniot and release or reshock response of aluminum. Here, we present the results of several adiabatic release measurements of aluminum from ~400–1200 GPa states along the principal Hugoniot using full density polymethylpentene (commonly known as TPX), and both ~190 and ~110 mg/cc silica aerogel standards. Additionally, these data were analyzed within the framework of a simple, analytical model that was motivated by a first-principles molecular dynamics investigation into the release response of aluminum, as well as by a survey of the release response determined from several tabular equations of state for aluminum. Combined, this theoretical and experimental study provides a method to perform impedance matching calculations without the need to appeal to any tabular equation of state for aluminum. Furthermore, as an analytical model, this method allows for propagation of all uncertainty, including the random measurement uncertainties and the systematic uncertainties of the Hugoniot and release response of aluminum. This work establishes aluminum for use as a high-precision standard for impedance matching in the multimegabar regime.

  7. Adiabatic release measurements in aluminum between 400-1200 GPa. Characterization of aluminum as a shock standard in the multimegabar regime

    SciTech Connect

    Knudson, Marcus D.; Desjarlais, Michael P.; Pribram-Jones, Aurora

    2015-06-15

    Aluminum has been used prolifically as an impedance matching standard in the multimegabar regime (1 Mbar = 100 GPa), particularly in nuclear driven, early laser driven, and early magnetically driven flyer plate experiments. The accuracy of these impedance matching measurements depends upon the knowledge of both the Hugoniot and release or reshock response of aluminum. Here, we present the results of several adiabatic release measurements of aluminum from ~4001200 GPa states along the principal Hugoniot using full density polymethylpentene (commonly known as TPX), and both ~190 and ~110 mg/cc silica aerogel standards. Additionally, these data were analyzed within the framework of a simple, analytical model that was motivated by a first-principles molecular dynamics investigation into the release response of aluminum, as well as by a survey of the release response determined from several tabular equations of state for aluminum. Combined, this theoretical and experimental study provides a method to perform impedance matching calculations without the need to appeal to any tabular equation of state for aluminum. Furthermore, as an analytical model, this method allows for propagation of all uncertainty, including the random measurement uncertainties and the systematic uncertainties of the Hugoniot and release response of aluminum. This work establishes aluminum for use as a high-precision standard for impedance matching in the multimegabar regime.

  8. ITP Aluminum: Aluminum Industry Roadmap for the Automotive Market (May 1999)

    Office of Energy Efficiency and Renewable Energy (EERE)

    Cooperative partnerships between industry and government are encouraging the development and use of innovative technologies that reduce industrial energy use, processing wastes, and production costs.

  9. Analytical chemistry of aluminum salt cake

    SciTech Connect

    Graczyk, D.G.; Essling, A.M.; Huff, E.A.; Smith, F.P.; Snyder, C.T.

    1997-02-01

    Component phases of Al salt cake or products from processing salt cake, resist dissolution, a key first step in most analysis procedures. In this work (analysis support to a study of conversion of salt cake fines to value-added oxide products), analysis methods were adapted or devised for determining leachable salt, total halides (Cl and F), Al metal, and elemental composition. Leaching of salt cake fines was by ultrasonic agitation with deionized water. The leachate was analyzed for anions by ion chromatography and for cations by ICP-atomic emission spectroscopy. Only chloride could be measured in the anions, and charge balances between cations and chloride were near unity, indicating that all major dissolved species were chloride salts. For total halides, the chloride and fluorides components were first decomposed by KOH fusion, and the dissolved chloride and fluoride were measured by ion chromatography. Al metal in the fines was determined by a hydrogen evolution procedure adapted for submilligram quantities of metallic Al: the Al was reacted with HCl in a closed system containing a measured amount of high-purity He. After reaction, the H/He ratio was measured by mass spectroscopy. Recoveries of Al metal standards (about 30mg) averaged 93%. Comparison of the acid evolution with caustic reaction of the Al metal showed virtually identical results, but reaction was faster in the acid medium. Decomposition of the salt cake with mineral acids left residues that had to be dissolved by fusion with Na carbonate. Better dissolution was obtained by fusing the salt cake with Li tetraborate; the resulting solution could be used for accurate Al assay of salt cake materials by classical 8-hydroxyquinolate gravimetry.

  10. Red-emitting manganese-doped aluminum nitride phosphor

    DOE PAGES [OSTI]

    Cherepy, Nerine J.; Payne, Stephen A.; Harvey, Nicholas M.; Aberg, Daniel; Seeley, Zachary M.; Holliday, Kiel S.; Tran, Ich C.; Zhou, Fei; Martinez, H. Paul; Demeyer, Jessica M.; et al

    2016-02-10

    Here, we report high efficiency luminescence with a manganese-doped aluminum nitride red-emitting phosphor under 254 nm excitation, as well as its excellent lumen maintenance in fluorescent lamp conditions, making it a candidate replacement for the widely deployed europium-doped yttria red phosphor. Solid-state reaction of aluminum nitride powders with manganese metal at 1900 °C, 10 atm N2 in a reducing environment results in nitrogen deficiency, as revealed diffuse reflectance spectra. When these powders are subsequently annealed in flowing nitrogen at 1650 °C, higher nitrogen content is recovered, resulting in white powders. Silicon was added to samples as an oxygen getter tomore » improve emission efficiency. NEXAFS spectra and DFT calculations indicate that the Mn dopant is divalent. From DFT calculations, the UV absorption band is proposed to be due to an aluminum vacancy coupled with oxygen impurity dopants, and Mn2+ is assumed to be closely associated with this site. In contrast with some previous reports, we find that the highest quantum efficiency with 254 nm excitation (Q.E. = 0.86 ± 0.14) is obtained in aluminum nitride with a low manganese doping level of 0.06 mol.%. The principal Mn2+ decay of 1.25 ms is assigned to non-interacting Mn sites, while additional components in the microsecond range appear with higher Mn doping, consistent with Mn clustering and resultant exchange coupling. Slower components are present in samples with low Mn doping, as well as strong afterglow, assigned to trapping on shallow traps followed by detrapping and subsequent trapping on Mn.« less

  11. Precursor detonation wave development in ANFO due to aluminum confinement

    SciTech Connect

    Jackson, Scott I; Klyanda, Charles B; Short, Mark

    2010-01-01

    Detonations in explosive mixtures of ammonium-nitrate-fuel-oil (ANFO) confined by aluminum allow for transport of detonation energy ahead of the detonation front due to the aluminum sound speed exceeding the detonation velocity. The net effect of this energy transport on the detonation is unclear. It could enhance the detonation by precompressing the explosive near the wall. Alternatively, it could decrease the explosive performance by crushing porosity required for initiation by shock compression or destroying confinement ahead of the detonation. At present, these phenomena are not well understood. But with slowly detonating, non-ideal high explosive (NIHE) systems becoming increasing prevalent, proper understanding and prediction of the performance of these metal-confined NIHE systems is desirable. Experiments are discussed that measured the effect of this ANFO detonation energy transported upstream of the front by a 76-mm-inner-diameter aluminum confining tube. Detonation velocity, detonation-front shape, and aluminum response are recorded as a function of confiner wall thickness and length. Detonation shape profiles display little curvature near the confining surface, which is attributed to energy transported upstream modifying the flow. Average detonation velocities were seen to increase with increasing confiner thickness, while wavefront curvature decreased due to the stiffer, subsonic confinement. Significant radial sidewall tube motion was observed immediately ahead of the detonation. Axial motion was also detected, which interfered with the front shape measurements in some cases. It was concluded that the confiner was able to transport energy ahead of the detonation and that this transport has a definite effect on the detonation by modifying its characteristic shape.

  12. Fatigue response of repaired thick aluminum panels with bondline flaws

    SciTech Connect

    Conley, D.S.

    1999-03-01

    This research investigated the fatigue response of precracked 558 x 177.8 x 6.35 mm (22.0 x 7.0 x 0.25 in) 2024-T351 aluminum panels repaired with single-sided partially bonded, unidirectional, eighteen ply boron/epoxy reinforcements. Disbonds were introduced into the bondline of each repair during the adhesion process using teflon inserts. Five different disbond configurations, with varying disbond locations and sizes, were tested. Each repaired panel was subjected to constant amplitude cyclic fatigue loading with a maximum stress of 120MPa. Results from the different configurations were compared against one another and against repaired panels with no debonds to assess the effect of disbonds on repair life. Results from the experimentation showed that even in the case of very large disbonds (20% of total bond area), the bonded repairs significantly extended the lives of the cracked panels. Disbond configurations with disbonds located away from the crack in the aluminum panel, performed comparably to the repaired panel with no disbonds. Disbond configurations with disbonds covering the crack in the aluminum panel yielded slightly lower lives than those obtained from repaired panels with no disbonds. Cyclic fatigue loading caused no increase in size of the artificially induced disbonds. Cyclic disbond growth was observed in the immediate vicinity of the crack. Finite element analysis using the Three Layer Technique was performed to assess the ability of current modeling techniques in predicting the life of cracked thick aluminum panels repaired with composite patches. Results from the finite element analysis were shown to very closely match experimental data.

  13. High Speed Joining of Dissimilar Alloy Aluminum Tailor Welded Blanks

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Speed Joining of Dissimilar Alloy Aluminum Tailor Welded Blanks YURI HOVANSKI April 10, 2013 This Presentation does not contain any proprietary, confidential, or otherwise restricted information Project ID #LM075 Pacific Northwest National Laboratory May 15, 2013 Project Overview OEM GM Tier I Supplier TWB Company LLC Material Provider Alcoa April 10, 2013 2 2 Start: FY2012 Finish: FY2014 33% complete Capacity to rapidly join Al sheet in dissimilar thicknesses and alloys is not developed. Supply

  14. High Strength, Dissimilar Alloy Aluminum Tailor-Welded Blanks

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Annual Merit Review High Strength, Dissimilar Alloy Aluminum Tailor-Welded Blanks YURI HOVANSKI This Presentation does not contain any proprietary, confidential, or otherwise restricted information Project ID #LM099 Pacific Northwest National Laboratory June 2016 Project Overview National Laboratory PNNL (lead) Automotive OEM GM Tier I Supplier TWB Company LLC Material Provider Alcoa 2 2 Start: FY2015 Finish: FY2017 43% complete Capacity to rapidly join dissimilar alloy Al sheet is not developed

  15. Microstructure Development and Characteristics of Semisolid Aluminum Alloys

    SciTech Connect

    Merton Flemings; srinath Viswanathan

    2001-05-15

    A drop forge viscometer was employed to investigate the flow behavior under very rapid compression rates of A357, A356 diluted with pure aluminum and Al-4.5%Cu alloys. The A357 alloys were of commercial origin (MHD and SIMA) and the rheocast, modified A356 and Al-4.5Cu alloys were produced by a process developed at the solidification laboratory of MIT.

  16. Low Cost Titanium Alloy Production

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Titanium Alloy Production Titanium for Energy Efficient Mechanical Systems. Titanium (Ti) is highly valued for its strength-to-weight ratio and corrosion resistance. However, after conventional wrought processing and machining, it is typically in excess of 40 times more expensive than a corresponding steel part and nearly 20 times more expensive than an aluminum part. The high cost of Ti parts is a function of both high materials loss and multiple high temperature forging steps. This, in turn,

  17. Process for production of a metal hydride

    DOEpatents

    Allen, Nathan Tait; Butterick, III, Robert; Chin, Arthur Achhing; Millar, Dean Michael; Molzahn, David Craig

    2014-08-12

    A process for production of a metal hydride compound MH.sub.x, wherein x is one or two and M is an alkali metal, Be or Mg. The process comprises combining a compound of formula (R.sup.1O).sub.xM with aluminum, hydrogen and at least one metal selected from among titanium, zirconium, hafnium, niobium, vanadium, tantalum and iron to produce a compound of formula MH.sub.x. R.sup.1 is phenyl or phenyl substituted by at least one alkyl or alkoxy group. A mole ratio of aluminum to (R.sup.1O).sub.xM is from 0.1:1 to 1:1. The catalyst is present at a level of at least 200 ppm based on weight of aluminum.

  18. Effect of grain orientation on aluminum relocation at incipient melt conditions

    SciTech Connect

    Yilmaz, Nadir; Vigil, Francisco M.; Vigil, Miquela S.; Branam, Robert; Tolendino, Greg; Gill, Walt; Burl Donaldson, A.

    2015-09-01

    Aluminum is commonly used for structural applications in the aerospace industry because of its high strength in relation to its weight. It is necessary to understand the mechanical response of aluminum structures at elevated temperatures such as those experienced in a fire. Additionally, aluminum alloys exhibit many complicated behaviors that require further research and understanding, such as aluminum combustion, oxide skin formation and creep behavior. This paper discusses the effect of grain orientation on aluminum deformation subjected to heating at incipient melt conditions. Experiments were conducted by applying a vertical compressive force to aluminum alloy 7075 block test specimens. Furthermore, compression testing was done on test specimens with the applied load on the long transverse and short transverse orientations. Our results showed that the grain orientation significantly influences aluminum’s strength and mode of failure.

  19. Effect of grain orientation on aluminum relocation at incipient melt conditions

    DOE PAGES [OSTI]

    Yilmaz, Nadir; Vigil, Francisco M.; Vigil, Miquela S.; Branam, Robert; Tolendino, Greg; Gill, Walt; Burl Donaldson, A.

    2015-09-01

    Aluminum is commonly used for structural applications in the aerospace industry because of its high strength in relation to its weight. It is necessary to understand the mechanical response of aluminum structures at elevated temperatures such as those experienced in a fire. Additionally, aluminum alloys exhibit many complicated behaviors that require further research and understanding, such as aluminum combustion, oxide skin formation and creep behavior. This paper discusses the effect of grain orientation on aluminum deformation subjected to heating at incipient melt conditions. Experiments were conducted by applying a vertical compressive force to aluminum alloy 7075 block test specimens. Furthermore,more » compression testing was done on test specimens with the applied load on the long transverse and short transverse orientations. Our results showed that the grain orientation significantly influences aluminum’s strength and mode of failure.« less

  20. Susceptibility of Aluminum Alloys to Corrosion in Simulated Fuel Blends Containing Ethanol

    SciTech Connect

    Thomson, Jeffery K; Pawel, Steven J; Wilson, Dane F

    2013-01-01

    The compatibility of aluminum and aluminum alloys with synthetic fuel blends comprised of ethanol and reference fuel C (a 50/50 mix of toluene and iso-octane) was examined as a function of water content and temperature. Commercially pure wrought aluminum and several cast aluminum alloys were observed to be similarly susceptible to substantial corrosion in dry (< 50 ppm water) ethanol. Corrosion rates of all the aluminum materials examined was accelerated by increased temperature and ethanol content in the fuel mixture, but inhibited by increased water content. Pretreatments designed to stabilize passive films on aluminum increased the incubation time for onset of corrosion, suggesting film stability is a significant factor in the mechanism of corrosion.

  1. Development of Cost-Effective Low-Permeability Ceramic and Refractory Components for Aluminum Melting and Casting

    SciTech Connect

    Dale E. Brown (Pyrotek); Puja B. Kadolkar (ORNL)

    2005-12-15

    The primary goal of this project was to develop and validate new classes of cost-effective low-permeability ceramic and refractory components for handling molten aluminum in both melting and casting environments. Three approaches were employed with partial to full success to achieve this goal: (1) Develop materials and methods for sealing surface porosity in thermal-shock-resistant ceramic refractories; (2) Develop new ceramic coatings for extreme service in molten aluminum operations, with particular emphasis on coatings based on highly stable oxide phases; and (3) Develop new monolithic refractories designed for lower-permeability applications using controlled porosity gradients and particle size distributions. The results of the research work and the field tests performed utilizing these three approaches are listed below: (1) It was demonstrated that high-density IR heating could be a tool for altering and sealing the surface porosity of fused silica. However, the process was not very cost-effective. (2) A low-cost glaze composition having a coefficient of thermal expansion (CTE) similar to that of a DFS tube was identified and was successfully tested for its integrity and adherence to DFS. Although the glaze acted as a barrier between the molten aluminum and the DFS, persistent porosity and crazing within the glaze affected its performance during the reactivity tests, thus acting as an obstacle in scaling up production of this glaze. (3) Pyrotek's XL glaze showed great success in improving the life of the DFS tubes. Pyrotek has reported an increasing market demand for the XL-coated DFS tubes, which exhibit useful lifetimes three times better than those of uncoated tubes. (4) A computer model to optimize particle size distribution for reduced permeability was developed and successfully applied to casting formulations. Silica riser tubes produced using these new formulations have been tested in a commercial aluminum casting facility and have been reported to

  2. CO sub 2 induced inhibition of the localized corrosion of aluminum, Al-0. 5% Cu, and Al-2% Cu in dilute HF solution

    SciTech Connect

    Scully, J.R. . Dept. of Materials Science); Peebles, D.E. )

    1991-01-01

    This study presents work on corrosion of aluminum, Al-.5% Cu, and Al-2% Cu. Electrochemical tests were performed in dilute HF solutions both with and without CO{sub 2} sparging. It is suggested that CO{sub 2} or its reaction products interact with the passive film so that exposure of Cu in the oxide-solution interface is minimized. CO{sub 2} is investigated as a corrosion inhibitor. 4 refs. (JDL)

  3. Indirect-Fired Kiln Conserves Scrap Aluminum and Cuts Costs | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Indirect-Fired Kiln Conserves Scrap Aluminum and Cuts Costs Indirect-Fired Kiln Conserves Scrap Aluminum and Cuts Costs This case study examines a succesful process heating technology improvement implemented by Wabash Alloys at its East Syracuse, New York, facility. A demonstration project conducted at this plant by Energy Research Company (ERCo), of Staten Island, New York, involves a new energy-efficient kiln that heats scrap aluminum for reuse. This kiln has enabled Wabash to

  4. Use of aluminum nitride to obtain temperature measurements in a high temperature and high radiation environment

    DOEpatents

    Wernsman, Bernard R.; Blasi, Raymond J.; Tittman, Bernhard R.; Parks, David A.

    2016-04-26

    An aluminum nitride piezoelectric ultrasonic transducer successfully operates at temperatures of up to 1000.degree. C. and fast (>1 MeV) neutron fluencies of more than 10.sup.18 n/cm.sup.2. The transducer comprises a transparent, nitrogen rich aluminum nitride (AlN) crystal wafer that is coupled to an aluminum cylinder for pulse-echo measurements. The transducer has the capability to measure in situ gamma heating within the core of a nuclear reactor.

  5. New Aluminum Alloys for Energy-Efficient Transportation | U.S...

    Office of Science (SC)

    New Aluminum Alloys for Energy-Efficient Transportation Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities ...

  6. Electrochemical separation of aluminum from uranium for research reactor spent nuclear fuel applications.

    SciTech Connect

    Slater, S. A.; Willit, J. L.; Gay, E. C.; Chemical Engineering

    1999-01-01

    Researchers at Argonne National Laboratory (ANL) are developing an electrorefining process to treat aluminum-based spent nuclear fuel by electrochemically separating aluminum from uranium. The aluminum electrorefiner is modeled after the high-throughput electrorefiner developed at ANL. Aluminum is electrorefined, using a fluoride salt electrolyte, in a potential range of -0.1 V to -0.2 V, while uranium is electrorefined in a potential range of -0.3 V to -0.4 V; therefore, aluminum can be selectively separated electrochemically from uranium. A series of laboratory-scale experiments was performed to demonstrate the aluminum electrorefining concept. These experiments involved selecting an electrolyte (determining a suitable fluoride salt composition); selecting a crucible material for the electrochemical cell; optimizing the operating conditions; determining the effect of adding alkaline and rare earth elements to the electrolyte; and demonstrating the electrochemical separation of aluminum from uranium, using a U-Al-Si alloy as a simulant for aluminum-based spent nuclear fuel. Results of the laboratory-scale experiments indicate that aluminum can be selectively electrotransported from the anode to the cathode, while uranium remains in the anode basket.

  7. Innovative system blows away sorting problems for recyclers: Aluminum success story

    SciTech Connect

    Theis, K.

    1999-12-14

    Fact sheet written for the Inventions and Innovation Program about an electronic-pneumatic system for separating aluminum in mixed recyclable streams.

  8. Effectiveness of the food recovery at the retailing stage under shelf life uncertainty: An application to Italian food chains

    SciTech Connect

    Muriana, Cinzia

    2015-07-15

    Highlights: • The food recovery is seen as suitable way to manage food near to its expiry date. • The variability of the products shelf life must be taken into account. • The paper addresses the mathematic modeling of the profit related to food recovery. • The optimal time to withdraw the products is determinant for food recovery. - Abstract: Food losses represent a significant issue affecting food supply chains. The possibility of recovering such products can be seen as an effective way to reduce such a phenomenon, improve supply chain performances and ameliorate the conditions of undernourished people. The topic has been already investigated by a previous paper enforcing the hypothesis of deterministic and constant Shelf Life (SL) of products. However, such a model cannot be properly extended to products affected by uncertainties of the SL as it does not take into account the deterioration costs and loss of profits due to the overcoming of the SL within the cycle time. Thus the present paper presents an extension of the previous one under stochastic conditions of the food quality. Differently from the previous publication, this work represents a general model applicable to all supply chains, especially to those managing fresh products characterized by uncertain SL such as fruits and vegetables. The deterioration costs and loss of profits are included in the model and the optimal time at which to withdraw the products from the shelves as well as the quantities to be shipped at each alternative destination have been determined. A comparison of the proposed model with that reported in the previous publication has been carried out in order to underline the impact of the SL variability on the optimality conditions. The results show that the food recovery strategy in the presence of uncertainty of the food quality is rewarding, even if the optimal profit is lower than that of the deterministic case.

  9. VOC compliance on the ball: Aluminum can manufacturer rolls to California VOC compliance

    SciTech Connect

    Gay, R.

    1997-07-01

    Since entering the North American beverage can market in 1969, Ball Corp., has increased its market share at a pace more than double the growth of the market itself. In addition to holding numerous patented advancements in can-making technology, Ball prides itself as an environmentally responsible company. When Ball decided to increase production capacity in its Fairfield, California, plant, the challenge was to produce more cans, while still complying with the state`s stringent air emissions regulations. As with other aluminum can manufacturing facilities, Ball`s coating and curing operations generate volatile organic compounds (VOCs). Ball`s permit from the state of California allows only limited amounts of VOC discharges into the atmosphere. With proposed increases in production capacities, however, the Bay Area`s Air Quality Management District--a local US EPA authority--required Ball to incinerate far more VOCs than the existing recuperative abatement system could handle. According to California regulations, facilities that wish to increase VOC emissions must install some type of VOC-control system or provide technological offsets. This regulatory pressure led Ball to seek a solution that would not only comply with emissions regulations, but would not compromise the company`s production process. Ball engineers selected a regenerative thermal oxidizer (RTO) for the Fairfield, Calif., plant. Considering the success Ball has encountered in previous experiences with this type of oxidation unit, the company immediately selected an RTO instead of catalytic oxidizers or other types of pollution control equipment.

  10. FRICTION STIR SPOT WELDING OF 6016 ALUMINUM ALLOY

    SciTech Connect

    Mishra, Rajiv S.; Webb, S.; Freeney, T. A.; Chen, Y. L.; Gayden, X.; Grant, Glenn J.; Herling, Darrell R.

    2007-01-08

    Friction stir spot welding (FSSW) of 6016 aluminum alloy was evaluated with conventional pin tool and new off-center feature tools. The off-center feature tool provides significant control over the joint area. The tool rotation rate was varied between 1000 and 2500 rpm. Maximum failure strength was observed in the tool rotation range of 1200-1500 rpm. The results are interpreted in the context of material flow in the joint and influence of thermal input on microstructural changes. The off-center feature tool concept opens up new possibilities for plunge-type friction stir spot welding.

  11. Final Report: Wetted Cathodes for Low-Temperature Aluminum Smelting

    SciTech Connect

    Brown, Craig W

    2002-09-30

    A low-temperature aluminum smelting process being developed differs from the Hall-Heroult process in several significant ways. The low-temperature process employs a more acidic electrolyte than cryolite, an alumina slurry, oxygen-generating metal anodes, and vertically suspended electrodes. Wetted and drained vertical cathodes are crucial to the new process. Such cathodes represent a significant portion of the capital costs projected for the new technology. Although studies exist of wetted cathode technology with Hall-Heoult cells, the differences make such a study desirable with the new process.

  12. The Effect of Impurities on the Processing of Aluminum Alloys

    SciTech Connect

    Zi-Kui Liu; Shengjun Zhang; Qingyou Han; Vinod Sikka

    2007-04-23

    For this Aluminum Industry of the Future (IOF) project, the effect of impurities on the processing of aluminum alloys was systematically investigated. The work was carried out as a collaborative effort between the Pennsylvania State University and Oak Ridge National Laboratory. Industrial support was provided by ALCOA and ThermoCalc, Inc. The achievements described below were made. A method that combines first-principles calculation and calculation of phase diagrams (CALPHAD) was used to develop the multicomponent database Al-Ca-K-Li-Mg-Na. This method was extensively used in this project for the development of a thermodynamic database. The first-principles approach provided some thermodynamic property data that are not available in the open literature. These calculated results were used in the thermodynamic modeling as experimental data. Some of the thermodynamic property data are difficult, if not impossible, to measure. The method developed and used in this project allows the estimation of these data for thermodynamic database development. The multicomponent database Al-Ca-K-Li-Mg-Na was developed. Elements such as Ca, Li, Na, and K are impurities that strongly affect the formability and corrosion behavior of aluminum alloys. However, these impurity elements are not included in the commercial aluminum alloy database. The process of thermodynamic modeling began from Al-Na, Ca-Li, Li-Na, K-Na, and Li-K sub-binary systems. Then ternary and higher systems were extrapolated because of the lack of experimental information. Databases for five binary alloy systems and two ternary systems were developed. Along with other existing binary and ternary databases, the full database of the multicomponent Al-Ca-K-Li-Mg-Na system was completed in this project. The methodology in integrating with commercial or other aluminum alloy databases can be developed. The mechanism of sodium-induced high-temperature embrittlement (HTE) of Al-Mg is now understood. Using the thermodynamic

  13. Part A - low-aluminum-content iron-aluminum alloys. Part B - commercial-scale melting and processing of FAPY alloy

    SciTech Connect

    Sikka, V.K.; Howell, C.R.; Hall, F.; Valykeo, J.

    1996-06-01

    The FAPY is a Fe-16 at. % Al alloy of nominal composition. The aluminum content of the alloy is such that it remains single phase ({alpha}) without the formation of an ordered phase (DO{sub 3}). The alloy has good oxidation resistance at temperatures up to 1000{degrees}C and has shown significantly superior performance as heating elements as compared to the commonly used nickel-based alloy, Nichrome. Although wire for the heating elements has been fabricated from small (15-1b) laboratory heats, for its commercial applications, the wire needs to be producible from large (1200 to 1500-1b) air-melted heats. The purpose of this study was to produce commercial size heats and investigate their mechanical properties and microstructure in the as-cast, hot-worked, and cold-worked conditions. The results of this study are expected to provide: (1) insight into processing steps for large heats into wire under commercial conditions, and (2) the mechanical properties data on commercial size heats in various product forms.

  14. Final Report - Melt Rate Enhancement for High Aluminum HLW Glass Formulation, VSL-08R1360-1, Rev. 0, dated 12/19/08

    SciTech Connect

    Kruger, Albert A.; Pegg, I. L.; Chaudhuri, M.; Gong, W.; Gan, H.; Matlack, K. S.; Bardakci, T.; Kot, W.

    2013-11-13

    The principal objective of the work reported here was to develop and identify HLW glass compositions that maximize waste processing rates for the aluminum limted waste composition specified by ORP while maintaining high waste loadings and acceptable glass properties. This was accomplished through a combination of crucible-scale tests, confirmation tests on the DM100 melter system, and demonstration at pilot scale (DM1200). The DM100-BL unit was selected for these tests since it was used previously with the HLW waste streams evaluated in this study, was used for tests on HLW glass compositions to support subsequent tests on the HLW Pilot Melter, conduct tests to determine the effect of various glass properties (viscosity and conductivity) and oxide concentrations on glass production rates with HLW feed streams, and to assess the volatility of cesium and technetium during the vitrification of an HLW AZ-102 composition. The same melter was selected for the present tests in order to maintain comparisons between the previously collected data. These tests provide information on melter processing characteristics and off-gas data, including formation of secondary phases and partitioning. Once DM100 tests were completed, one of the compositions was selected for further testing on the DM1200; the DM1200 system has been used for processing a variety of simulated Hanford waste streams. Tests on the larger melter provide processing data at one third of the scale of the actual WTP HLW melter and, therefore, provide a more accurate and reliable assessment of production rates and potential processing issues. The work focused on maximizing waste processing rates for high aluminum HLW compositions. In view of the diversity of forms of aluminum in the Hanford tanks, tests were also conducted on the DM100 to determine the effect of changes in the form of aluminum on feed properties and production rate. In addition, the work evaluated the effect on production rate of modest increases

  15. Reaction of Aluminum with Water to Produce Hydrogen: A Study of Issues Related to the Use of Aluminum for On-Board Vehicular Hydrogen Storage. Version 2, 2010.

    Office of Energy Efficiency and Renewable Energy (EERE)

    Produced in 2008 by DOE and updated in 2010, this report focuses on the key issues as well as advantages and disadvantages associated with using the reaction between aluminum metal and water for on-board vehicular hydrogen storage.

  16. Synthesis and use of (polyfluoroaryl)fluoroanions of aluminum, gallium and indium

    DOEpatents

    Marks, Tobin J.; Chen, You-Xian

    2000-01-01

    Salts of (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium are described. The (polyfluoroaryl)fluoroanions have the formula [ER'R"R'"F].sup..crclbar. wherein E is aluminum, gallium, or indium, wherein F is fluorine, and wherein R', R", and R'" is each a fluorinated phenyl, fluorinated biphenyl, or fluorinated polycyclic group.

  17. Cathode for a hall-heroult type electrolytic cell for producing aluminum

    DOEpatents

    Brown, Craig W.

    2004-04-13

    A method of producing aluminum from alumina in an electrolytic cell including using a cathode comprised of a base material having low electrical conductivity and wettable with molten aluminum to form a reaction layer having a high electrical conductivity on said base layer and a cathode bar extending from said reaction layer through said base material to conduct electrical current from said reaction layer.

  18. Metastable phases in mechanically alloyed aluminum germanium powders

    SciTech Connect

    Yvon, P.J.; Schwarz, R.B.

    1993-03-01

    Aluminum and germanium form a simple eutectic system with no stable intermetallic phase, and limited mutual solubility. We report the formation of a metastable rhombohedral,{gamma}{sub 1} phase by mechanically alloying aluminum and germanium powders. This phase, which appears for compositions between 20 and 50 at. % germanium, has also been observed in rapidly quenched alloys, but there is disagreement as to its composition. By measuring the heat of crystallization as a function of composition, we determined the composition of the {gamma}{sub 1} phase to be Al{sub 70}Ge{sub 30}. We also produced Al{sub 70}Ge{sub 30} by arc melting the pure elements, followed by splat-quenching at a cooling rate in the range of 10{sup 8} K s{sup {minus}1}. This method produced two metastable phases, one of which was found to be the {gamma}{sub 1} phase obtained by mechanical alloying. The other was a monoclinic phase reported earlier in the literature as {gamma}{sub 2}.

  19. Rechargeable aluminum batteries with conducting polymers as positive electrodes.

    SciTech Connect

    Hudak, Nicholas S.

    2013-12-01

    This report is a summary of research results from an Early Career LDRD project con-ducted from January 2012 to December 2013 at Sandia National Laboratories. Demonstrated here is the use of conducting polymers as active materials in the posi-tive electrodes of rechargeable aluminum-based batteries operating at room tempera-ture. The battery chemistry is based on chloroaluminate ionic liquid electrolytes, which allow reversible stripping and plating of aluminum metal at the negative elec-trode. Characterization of electrochemically synthesized polypyrrole films revealed doping of the polymers with chloroaluminate anions, which is a quasi-reversible reac-tion that facilitates battery cycling. Stable galvanostatic cycling of polypyrrole and polythiophene cells was demonstrated, with capacities at near-theoretical levels (30-100 mAh g-1) and coulombic efficiencies approaching 100%. The energy density of a sealed sandwich-type cell with polythiophene at the positive electrode was estimated as 44 Wh kg-1, which is competitive with state-of-the-art battery chemistries for grid-scale energy storage.

  20. Interfacial charging phenomena of aluminum (hydr)oxides

    SciTech Connect

    Hiemstra, T.; Yong, H.; Van Riemsdijk, W.H.

    1999-08-31

    The interfacial charging of Al(OH){sub 3} (gibbsite and bayerite) and Al{sub 2}O{sub 3} has been studied. For Al(OH){sub 3} it can be shown that the very strong variation in charging behavior for different preparations is related to the relative presence of differently reacting crystal planes. The edge faces of the hexagonal gibbsite crystals are proton reactive over the whole pH range, in contrast to the 001 plane, which is mainly uncharged below pH = 10. On this 001 face only doubly coordinated surface groups are found, in contrast to the edges which also have singly coordinated surface groups. The results are fully in agreement with the predictions of the Multi site complexation (MUSIC) model. The proton adsorption, electrolyte ion adsorption, and shift of the IEP of gibbsite and aluminum oxide have been modeled simultaneously. For gibbsite, the ion pair formation of Na is larger than that of Cl, as is evidenced by modeling the experimentally observed upward shift on the IEP and charge reversal at high electrolyte concentrations. All these experimental results can be satisfactorily modeled with the MUSIC model, including the experimental surface potential of aluminum oxide (ISFET).

  1. X-ray diffractometry of lanthanum-nickel-aluminum alloys

    SciTech Connect

    Mosley, W.C.

    1988-08-08

    X-ray diffractometry provides much useful information on LANA alloys that complements data obtained by SEM and Electron Microprobe Analysis. Accurate measurements of the hexagonal lattice parameters of the primary LaNi{sub 5-y}Aly phase reveal the aluminum content (y) and allow the prediction of desorption pressures for the hydrogen isotopes. A study of the broadening of x-ray diffraction lines of the LaNi{sub 5-y}Aly primary phase caused by cyclic absorption and desorption of hydrogen suggests that substitution of aluminum for nickel stabilizes the primary phase with respect to formation of antistructure defects that could cause undesirable trapping of hydrogen isotopes. Correlation of XRD with SEM and EMPA results has helped identify secondary phases, determine their abundances in volume percent, and reveal how they react with hydrogen and the atmosphere. Characterizations of LANA alloys used in process development has provided the bases for development of specifications for alloys to be used in the Replacement Trittium Facility. 28 refs., 4 tabs., 12 figs.

  2. Morphological development and oxidation mechanisms of aluminum nitride whiskers

    SciTech Connect

    Hou Xinmei; Yue Changsheng; Kumar Singh, Ankit; Zhang Mei; Chou Kuochih

    2010-04-15

    Hexagonal aluminum nitride (AlN) whiskers have been synthesized at 1873 K under a flowing nitrogen atmosphere. The synthesized whiskers are long straight filaments with diameters between 1 and 5 {mu}m and length in the cm range. In order to investigate its 'oxidation resistance', a series of experiments have been performed. The oxidation behavior was quite different in the experimental temperature range assigned, which can be attributed to the kinetic factor and the morphological development during oxidation process. It was chemical controlled at lower temperature while both chemical reaction and diffusion controlled at medium temperature. Further accelerating of temperature to 1473 K, AlN whiskers was peeled into smaller parts, which increased the oxidation rate and hence showed powder-like oxidation behavior. Our new kinetic theory has been applied to study the oxidation behavior of AlN whiskers. The comparison of the experimental data with the theoretical ones validates the applicability of the new model. - Hexagonal aluminum nitride (AlN) whiskers have been synthesized at 1873 K under a flowing nitrogen atmosphere. The synthesized whiskers are long straight filaments with diameters between 1 and 5 {mu}m and length in the cm range.

  3. Radiation tolerance of piezoelectric bulk single-crystal aluminum nitride

    SciTech Connect

    David A. Parks; Bernhard R. Tittmann

    2014-07-01

    For practical use in harsh radiation environments, we pose selection criteria for piezoelectric materials for nondestructive evaluation (NDE) and material characterization. Using these criteria, piezoelectric aluminum nitride is shown to be an excellent candidate. The results of tests on an aluminumnitride-based transducer operating in a nuclear reactor are also presented. We demonstrate the tolerance of single-crystal piezoelectric aluminum nitride after fast and thermal neutron fluences of 1.85 × 1018 neutron/cm2 and 5.8 × 1018 neutron/cm2, respectively, and a gamma dose of 26.8 MGy. The radiation hardness of AlN is most evident from the unaltered piezoelectric coefficient d33, which measured 5.5 pC/N after a fast and thermal neutron exposure in a nuclear reactor core for over 120 MWh, in agreement with the published literature value. The results offer potential for improving reactor safety and furthering the understanding of radiation effects on materials by enabling structural health monitoring and NDE in spite of the high levels of radiation and high temperatures, which are known to destroy typical commercial ultrasonic transducers.

  4. Continuous Severe Plastic Deformation Processing of Aluminum Alloys

    SciTech Connect

    Raghavan Srinivasan; Prabir K. Chaudhury; Balakrishna Cherukuri; Qingyou Han; David Swenson; Percy Gros

    2006-06-30

    Metals with grain sizes smaller than 1-micrometer have received much attention in the past decade. These materials have been classified as ultra fine grain (UFG) materials (grain sizes in the range of 100 to 1000-nm) and nano-materials (grain size <100-nm) depending on the grain size. This report addresses the production of bulk UFG metals through the use of severe plastic deformation processing, and their subsequent use as stock material for further thermomechanical processing, such as forging. A number of severe plastic deformation (SPD) methods for producing bulk UFG metals have been developed since the early 1990s. The most promising of these processes for producing large size stock that is suitable for forging is the equal channel angular extrusion or pressing (ECAE/P) process. This process involves introducing large shear strain in the work-piece by pushing it through a die that consists of two channels with the same cross-sectional shape that meet at an angle to each other. Since the cross-sections of the two channels are the same, the extruded product can be re-inserted into the entrance channel and pushed again through the die. Repeated extrusion through the ECAE/P die accumulates sufficient strain to breakdown the microstructure and produce ultra fine grain size. It is well known that metals with very fine grain sizes (< 10-micrometer) have higher strain rate sensitivity and greater elongation to failure at elevated temperature, exhibiting superplastic behavior. However, this superplastic behavior is usually manifest at high temperature (> half the melting temperature on the absolute scale) and very low strain rates (< 0.0001/s). UFG metals have been shown to exhibit superplastic characteristics at lower temperature and higher strain rates, making this phenomenon more practical for manufacturing. This enables part unitization and forging more complex and net shape parts. Laboratory studies have shown that this is particularly true for UFG metals produced

  5. Summer food habits of juvenile Arctic foxes in northern Alaska

    SciTech Connect

    Garrott, R.A.; Eberhardt, L.E.; Hanson, W.C.

    1983-01-01

    The absence of garbage in fox scats collected in the Colville Delta area was expected because garbage was unavailable to these foxes. Foxes from Prudhoe Bay, however, had access to quantities of garbage as a result of petroleum development activities. Most occupied dens in the Prudhoe Bay area were littered with garbage. Telemetry investigations conducted in conjunction with our study of food habits indicated that foxes frequented areas of human activity to solicit handouts and forage garbage disposal sites. The reason for the low occurrence of garbage in Prudhoe Bay scats is undoubtedly related to the lack of undigestible matter in most forms of garbage. The small number of scats that were classified as containing garbage typically contained only packaging materials associated with processed food such as plastic wrap and aluminum foil. The highly digestible nature of most forms of garbage made it impossible to quantify its importance in the diet of foxes. Prudhoe Bay foxes undoubtedly use garbage; however, the diversity and abundance of natural prey in the scat indicates that these foxes only supplement their summer diet with garbage. Dependence on this food resource may increase during the winter when foxes must rely almost exclusively on the fluctuating lemming poulations for sustenance. 11 references, 2 tables.

  6. Aluminum-blade development for the Mod-0A 200-kilowatt wind turbine

    SciTech Connect

    Linscott, B.S.; Shaltens, R.K.; Eggers, A.G.

    1981-12-01

    This report documents the operating experience with two aluminum blades used on the DOE/NASA Mod-0A 200-kilowatt wind turbine located at Clayton, New Mexico. Each Mod-0A aluminum blade is 59.9 feet long and weighs 2360 pounds. The aluminum Mod-0A blade design requirements, the selected design, fabrication procedures, and the blade analyses are discussed. A detailed chronology is presented on the operating experience of the Mod-0A aluminum blades used at Clayton, New Mexico. Blade structural damage was experienced. Inspection and damage assessment were required. Structural modifications that were incorporated to the blades successfully extended the useful operating life of the blades. The aluminum blades completed the planned 2 years of operation of the Clayton wind turbine. The blades were removed from service in August 1980 to allow testing of advanced technology wood composite blades.

  7. Carbothermic reduction and prereduced charge for producing aluminum-silicon alloys

    DOEpatents

    Stevenson, David T.; Troup, Robert L.

    1985-01-01

    Disclosed is a method for the carbothermic reduction of aluminum oxide to form an aluminum alloy including producing silicon carbide by heating a first mix of carbon and silicon oxide in a combustion reactor to an elevated temperature sufficient to produce silicon carbide at an accelerated rate, the heating being provided by an in situ combustion with oxygen gas, and then admixing the silicon carbide with carbon and aluminum oxide to form a second mix and heating the second mix in a second reactor to an elevated metal-forming temperature sufficient to produce aluminum-silicon alloy. The prereduction step includes holding aluminum oxide substantially absent from the combustion reactor. The metal-forming step includes feeding silicon oxide in a preferred ratio with silicon carbide.

  8. Carbothermic reduction and prereduced charge for producing aluminum-silicon alloys

    DOEpatents

    Stevenson, D.T.; Troup, R.L.

    1985-01-01

    Disclosed is a method for the carbothermic reduction of aluminum oxide to form an aluminum alloy including producing silicon carbide by heating a first mix of carbon and silicon oxide in a combustion reactor to an elevated temperature sufficient to produce silicon carbide at an accelerated rate, the heating being provided by an in situ combustion with oxygen gas, and then admixing the silicon carbide with carbon and aluminum oxide to form a second mix and heating the second mix in a second reactor to an elevated metal-forming temperature sufficient to produce aluminum-silicon alloy. The prereduction step includes holding aluminum oxide substantially absent from the combustion reactor. The metal-forming step includes feeding silicon oxide in a preferred ratio with silicon carbide. 1 fig.

  9. Radioactivity in food crops

    SciTech Connect

    Drury, J.S.; Baldauf, M.F.; Daniel, E.W.; Fore, C.S.; Uziel, M.S.

    1983-05-01

    Published levels of radioactivity in food crops from 21 countries and 4 island chains of Oceania are listed. The tabulation includes more than 3000 examples of 100 different crops. Data are arranged alphabetically by food crop and geographical origin. The sampling date, nuclide measured, mean radioactivity, range of radioactivities, sample basis, number of samples analyzed, and bibliographic citation are given for each entry, when available. Analyses were reported most frequently for /sup 137/Cs, /sup 40/K, /sup 90/Sr, /sup 226/Ra, /sup 228/Ra, plutonium, uranium, total alpha, and total beta, but a few authors also reported data for /sup 241/Am, /sup 7/Be, /sup 60/Co, /sup 55/Fe, /sup 3/H, /sup 131/I, /sup 54/Mn, /sup 95/Nb, /sup 210/Pb, /sup 210/Po, /sup 106/Ru, /sup 125/Sb, /sup 228/Th, /sup 232/Th, and /sup 95/Zr. Based on the reported data it appears that radioactivity from alpha emitters in food crops is usually low, on the order of 0.1 Bq.g/sup -1/ (wet weight) or less. Reported values of beta radiation in a given crop generally appear to be several orders of magnitude greater than those of alpha emitters. The most striking aspect of the data is the great range of radioactivity reported for a given nuclide in similar food crops with different geographical origins.

  10. Impact of magnetron configuration on plasma and film properties of sputtered aluminum nitride thin films

    SciTech Connect

    Duquenne, C.; Tessier, P. Y.; Besland, M. P.; Angleraud, B.; Jouan, P. Y.; Djouadi, M. A.; Aubry, R.; Delage, S.

    2008-09-15

    We have investigated the growth of the c-axis oriented aluminum nitride (AlN) thin films on (100) silicon by reactive dc magnetron sputtering at low temperature, considering the effect of the magnet configuration on plasma and film properties. It appears that a magnet modification can significantly modify both the plasma characteristics and the film properties. Electrical and optical characterizations of the plasma phase highlight that depending on the magnet configuration, two very different types of deposition process can be involved in the same deposition chamber. On the one hand, with a balanced magnetron (type 1), the deposition process enhances the production of AlN dimers in the plasma phase and enables to synthesize AlN films with different preferential orientations (100, 002, and even 101). On the other hand, a strongly unbalanced magnetron (type 2) provides a limited production of AlN species in the plasma phase and a strong increase in the ratio of ions to metal atom flux on the growing films. In the latter case, the ion energy provided by the ion flux to the growing film is typically in the 20-30 eV range. Thus, dense (002) oriented films with high crystalline quality are obtained without any substrate heating.

  11. Pulverized coal firing of aluminum melting furnaces. Final report. [Sulfide capacity of various slags in given temperature range

    SciTech Connect

    Stewart, D.L. Jr.; Dastolfo, L.E. Jr.; DeYoung, D.H.

    1984-04-01

    Significant progress has been achieved in the development of a desulfurizing coal combustion process by the Aluminum Company of America (Alcoa) in a research program funded by the United States Department of Energy. Conceptually, high sulfur coal is burned with additives in a staged cyclone combustor, such that sufficient sulfur to obviate products of combustion (POC) scrubbing is retained in the slag by-product. Bench scale studies conducted during the program have shown that 70% of the sulfur (2.65% sulfur coal) reports to the slag at equilibrium through a 25% addition of iron ore to the coal. Results obtained correlate with published data for similar slag at higher temperatures. In pilot scale combustion tests, equilibrium levels of coal sulfur were retained by the slag (11 to 14%). Equilibrium sulfur capture was limited by low particulate retention and operating temperature higher than optimal. Cost estimates for implementation of the process are included in this report. 28 references, 39 figures, 58 tables.

  12. PRODUCTION OF PLUTONIUM METAL

    DOEpatents

    Lyon, W.L.; Moore, R.H.

    1961-01-17

    A process is given for producing plutonium metal by the reduction of plutonium chloride, dissolved in alkali metal chloride plus or minus aluminum chloride, with magnesium or a magnesium-aluminum alloy at between 700 and 800 deg C and separating the plutonium or plutonium-aluminum alloy formed from the salt.

  13. West Valley Demonstration Project Food Drive Delivers Food for...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    grocery stores to purchase food at or below wholesale price. Volunteers help load the food into trucks, bring it to the pantries, and stock the shelves. "The support we receive...

  14. Geothermal demonstration: Zunil food dehydration facility

    SciTech Connect

    Maldonado, O. ); Altseimer, J.; Thayer, G.R. ); Cooper, L. ); Caicedo, A. . Inst. Nacional de Electrificacion)

    1991-08-01

    A food dehydration facility was constructed near the town of Zunil, Guatemala, to demonstrate the use of geothermal energy for industrial applications. The facility, with some modifications to the design, was found to work quite satisfactorily. Tests using five different products were completed during the time geothermal energy was used in the plant. During the time the plant was not able to use geothermal energy, a temporary diesel-fueled boiler provided the energy to test dehydration on seven other crops available in this area. The system demonstrates that geothermal heat can be used successfully for dehydrating food products. Many other industrial applications of geothermal energy could be considered for Zunil since a considerable amount of moderate-temperature heat will become available when the planned geothermal electrical facility is constructed there. 6 refs., 15 figs., 7 tabs.

  15. MELT RATE ENHANCEMENT FOR HIGH ALUMINUM HLW (HIGH LEVEL WASTE) GLASS FORMULATION FINAL REPORT 08R1360-1

    SciTech Connect

    KRUGER AA; MATLACK KS; KOT W; PEGG IL; JOSEPH I; BARDAKCI T; GAN H; GONG W; CHAUDHURI M

    2010-01-04

    This report describes the development and testing of new glass formulations for high aluminum waste streams that achieve high waste loadings while maintaining high processing rates. The testing was based on the compositions of Hanford High Level Waste (HLW) with limiting concentrations of aluminum specified by the Office of River Protection (ORP). The testing identified glass formulations that optimize waste loading and waste processing rate while meeting all processing and product quality requirements. The work included preparation and characterization of crucible melts and small scale melt rate screening tests. The results were used to select compositions for subsequent testing in a DuraMelter 100 (DM100) system. These tests were used to determine processing rates for the selected formulations as well as to examine the effects of increased glass processing temperature, and the form of aluminum in the waste simulant. Finally, one of the formulations was selected for large-scale confirmatory testing on the HLW Pilot Melter (DM1200), which is a one third scale prototype of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) HLW melter and off-gas treatment system. This work builds on previous work performed at the Vitreous State Laboratory (VSL) for Department of Energy (DOE) to increase waste loading and processing rates for high-iron HLW waste streams as well as previous tests conducted for ORP on the same high-aluminum waste composition used in the present work and other Hanford HLW compositions. The scope of this study was outlined in a Test Plan that was prepared in response to an ORP-supplied statement of work. It is currently estimated that the number of HLW canisters to be produced in the WTP is about 13,500 (equivalent to 40,500 MT glass). This estimate is based upon the inventory of the tank wastes, the anticipated performance of the sludge treatment processes, and current understanding of the capability of the borosilicate glass waste form

  16. Experimental investigation on the energy deposition and expansion rate under the electrical explosion of aluminum wire in vacuum

    SciTech Connect

    Shi, Zongqian; Wang, Kun; Shi, Yuanjie; Wu, Jian; Han, Ruoyu

    2015-12-28

    Experimental investigations on the electrical explosion of aluminum wire using negative polarity current in vacuum are presented. Current pulses with rise rates of 40 A/ns, 80 A/ns, and 120 A/ns are generated for investigating the influence of current rise rate on energy deposition. Experimental results show a significant increase of energy deposition into the wire before the voltage breakdown with the increase of current rise rate. The influence of wire dimension on energy deposition is investigated as well. Decreasing the wire length allows more energy to be deposited into the wire. The energy deposition of a 0.5 cm-long wire explosion is ∼2.5 times higher than the energy deposition of a 2 cm-long wire explosion. The dependence of the energy deposition on wire diameter demonstrates a maximum energy deposition of 2.7 eV/atom with a diameter of ∼18 μm. Substantial increase in energy deposition is observed in the electrical explosion of aluminum wire with polyimide coating. A laser probe is applied to construct the shadowgraphy, schlieren, and interferometry diagnostics. The morphology and expansion trajectory of exploding products are analyzed based on the shadowgram. The interference phase shift is reconstructed from the interferogram. Parallel dual wires are exploded to estimate the expansion velocity of the plasma shell.

  17. Method of manufacturing a niobium-aluminum-germanium superconductive material

    DOEpatents

    Wang, John L.; Pickus, Milton R.; Douglas, Kent E.

    1980-01-01

    A method for manufacturing flexible Nb.sub.3 (Al,Ge) multifilamentary superconductive material in which a sintered porous niobium compact is infiltrated with an aluminum-germanium alloy and thereafter deformed and heat treated in a series of steps at different successively higher temperatures preferably below 1000.degree. C. to produce filaments composed of Nb.sub.3 (Al,G3) within the compact. By avoiding temperatures in excess of 1000.degree. C. during the heat treatment, cladding material such as copper can be applied to facilitate a deformation step preceding the heat treatment and can remain in place through the heat treatment to also serve as a temperature stabilizer for supeconductive material produced. Further, these lower heat treatment temperatures favor formation of filaments with reduced grain size and, hence with more grain boundaries which in turn increase the current-carrying capacity of the superconductive material.

  18. Formability Prediction Of Aluminum Sheet In Automotive Applications

    SciTech Connect

    Leppin, Christian; Daniel, Dominique; Shahani, Ravi; Gese, Helmut; Dell, Harry

    2007-05-17

    In the following paper, a full mechanical characterization of the AA6016 T4 aluminum alloy car body sheet DR100 is presented. A comprehensive experimental program was performed to identify and model the orthotopic elasto-plastic deformation behavior of the material and its fracture characteristics including criteria for localized necking, ductile fracture and shear fracture. The commercial software package MF GenYld + CrachFEM in combination with the explicit finite element code Ls-Dyna is used to validate the quality of the material model with experiments, namely, prediction of the FLD, deep drawing with a cross-shaped punch and finally, analysis of a simplified hemming process using a solid discretization of the problem. The focus is on the correct prediction of the limits of the material in such processes.

  19. TEST RESULTS FROM GAMMA IRRADIATION OF ALUMINUM OXYHYDROXIDES

    SciTech Connect

    Fisher, D.; Westbrook, M.; Sindelar, R.

    2012-02-01

    Hydrated metal oxides or oxyhydroxides boehmite and gibbsite that can form on spent aluminum-clad nuclear fuel assemblies during in-core and post-discharge wet storage were exposed as granular powders to gamma irradiation in a {sup 60}Co irradiator in closed laboratory test vessels with air and with argon as separate cover gases. The results show that boehmite readily evolves hydrogen with exposure up to a dose of 1.8 x 10{sup 8} rad, the maximum tested, in both a full-dried and moist condition of the powder, whereas only a very small measurable quantity of hydrogen was generated from the granular powder of gibbsite. Specific information on the test setup, sample characteristics, sample preparation, irradiation, and gas analysis are described.

  20. Supersonic laser-induced jetting of aluminum micro-droplets

    SciTech Connect

    Zenou, M.; Sa'ar, A.; Kotler, Z.

    2015-05-04

    The droplet velocity and the incubation time of pure aluminum micro-droplets, printed using the method of sub-nanosecond laser induced forward transfer, have been measured indicating the formation of supersonic laser-induced jetting. The incubation time and the droplet velocity were extracted by measuring a transient electrical signal associated with droplet landing on the surface of the acceptor substrate. This technique has been exploited for studying small volume droplets, in the range of 10–100 femto-litters for which supersonic velocities were measured. The results suggest elastic propagation of the droplets across the donor-to-acceptor gap, a nonlinear deposition dynamics on the surface of the acceptor and overall efficient energy transfer from the laser beam to the droplets.

  1. Laser assisted high entropy alloy coating on aluminum: Microstructural evolution

    SciTech Connect

    Katakam, Shravana; Joshi, Sameehan S.; Mridha, Sanghita; Mukherjee, Sundeep; Dahotre, Narendra B.

    2014-09-14

    High entropy alloy (Al-Fe-Co-Cr-Ni) coatings were synthesized using laser surface engineering on aluminum substrate. Electron diffraction analysis confirmed the formation of solid solution of body centered cubic high entropy alloy phase along with phases with long range periodic structures within the coating. Evolution of such type of microstructure was a result of kinetics associated with laser process, which generates higher temperatures and rapid cooling resulting in retention of high entropy alloy phase followed by reheating and/or annealing in subsequent passes of the laser track giving rise to partial decomposition. The partial decomposition resulted in formation of precipitates having layered morphology with a mixture of high entropy alloy rich phases, compounds, and long range ordered phases.

  2. Structure of stagnated plasma in aluminum wire array Z pinches

    SciTech Connect

    Hall, G. N.; Pikuz, S. A.; Shelkovenko, T. A.; Bland, S. N.; Lebedev, S. V.; Ampleford, D. J.; Palmer, J. B. A.; Bott, S. C.; Rapley, J.; Chittenden, J. P.; Apruzese, J. P.

    2006-08-15

    Experiments with aluminum wire array Z pinches have been carried out on the mega-ampere generator for plasma implosion experiments (MAGPIE) at Imperial College London [I. H. Mitchell et al., Rev. Sci. Instrum. 67, 1533 (1996)]. It has been shown that in these arrays, there are two intense sources of radiation during stagnation; Al XII line emission from a precursor-sized object, and both continuum and Al XIII radiation from bright spots of either significantly higher temperature or density randomly distributed around this object so as to produce a hollow emission profile. Spatially resolved spectra produced by spherically bent crystals were recorded, both time-integrated and time-resolved, and were used to show that these two sources of radiation peak at the same time.

  3. Structure/property relations of aluminum under varying rates and stress states

    SciTech Connect

    Tucker, Matthew T; Horstemeyer, Mark F; Whittington, Wilburn R; Solanki, Kiran N

    2010-11-19

    In this work we analyze the plasticity, damage, and fracture characteristics of three different processed aluminum alloys (rolled 5083-H13, cast A356-T6, and extruded 6061-T6) under varying stress states (tension, compression, and torsion) and strain rates (0.001/, 1/s., and 1000/s). The stress state difference had more of a flow stress effect than the applied strain rates for those given in this study (0.001/sec up to 1000/sec). The stress state and strain rate also had a profound effect on the damage evolution of each aluminum alloy. Tension and torsional straining gave much greater damage nucleation rates than compression. Although the damage of all three alloys was found to be void nucleation dominated, the A356-T6 and 5083-H131 aluminum alloys incurred void damage via micron scale particles where the 6061-T6 aluminum alloy incurred void damage from two scales, micron-scale particles and nanoscale precipitates. Having two length scales of particles that participated in the damage evolution made the 6061-T6 incur a strain rate sensitive damage rate that was different than the other two aluminum alloys. Under tension, as the strain rate increased, the 6061-T6 aluminum alloy's void nucleation rate decreased, but the A356-T6 and 5083-H131 aluminum alloys void nucleation rate increased.

  4. Oxidation of ligand-protected aluminum clusters: An ab initio molecular dynamics study

    SciTech Connect

    Alnemrat, Sufian; Hooper, Joseph P.

    2014-03-14

    We report Car-Parrinello molecular dynamics simulations of the oxidation of ligand-protected aluminum clusters that form a prototypical cluster-assembled material. These clusters contain a small aluminum core surrounded by a monolayer of organic ligand. The aromatic cyclopentadienyl ligands form a strong bond with surface Al atoms, giving rise to an organometallic cluster that crystallizes into a low-symmetry solid and is briefly stable in air before oxidizing. Our calculations of isolated aluminum/cyclopentadienyl clusters reacting with oxygen show minimal reaction between the ligand and O{sub 2} molecules at simulation temperatures of 500 and 1000 K. In all cases, the reaction pathway involves O{sub 2} diffusing through the ligand barrier, splitting into atomic oxygen upon contact with the aluminum, and forming an oxide cluster with aluminum/ligand bonds still largely intact. Loss of individual aluminum-ligand units, as expected from unimolecular decomposition calculations, is not observed except following significant oxidation. These calculations highlight the role of the ligand in providing a steric barrier against oxidizers and in maintaining the large aluminum surface area of the solid-state cluster material.

  5. Characterization of an explosively bonded aluminum proton beam window for the Spallation Neutron Source

    SciTech Connect

    McClintock, David A; Janney, Jim G; Parish, Chad M

    2014-01-01

    An effort is underway at the Spallation Neutron Source (SNS) to change the design of the 1st Generation high-nickel alloy proton beam window (PBW) to one that utilizes aluminum for the window material. One of the key challenges to implementation of an aluminum PBW at the SNS was selection of an appropriate joining method to bond an aluminum window to the stainless steel bulk shielding of the PBW assembly. An explosively formed bond was selected as the most promising joining method for the aluminum PBW design. A testing campaign was conducted to evaluate the strength and efficacy of explosively formed bonds that were produced using two different interlayer materials: niobium and titanium. The characterization methods reported here include tensile testing, thermal-shock leak testing, optical microscopy, and advanced scanning electron microscopy. All tensile specimens examined failed in the aluminum interlayer and measured tensile strengths were all slightly greater than the native properties of the aluminum interlayer, while elongation values were all slightly lower. A leak developed in the test vessel with a niobium interlayer joint after repeated thermal-shock cycles, and was attributed to an extensive crack network that formed in a layer of niobium-rich intermetallics located on the bond interfaces of the niobium interlayer; the test vessel with a titanium interlayer did not develop a leak under the conditions tested. Due to the experience gained from these characterizations, the explosively formed bond with a titanium interlayer was selected for the aluminum PBW design at the SNS.

  6. Flat Ge-doped optical fibres for food irradiation dosimetry

    SciTech Connect

    Noor, N. Mohd; Jusoh, M. A.; Razis, A. F. Abdull; Alawiah, A.; Bradley, D. A.

    2015-04-24

    Exposing food to radiation can improve hygiene quality, germination control, retard sprouting, and enhance physical attributes of the food product. To provide for food safety, radiation dosimetry in irradiated food is required. Herein, fabricated germanium doped (Ge-doped) optical fibres have been used. The fibres have been irradiated using a gamma source irradiator, doses in the range 1 kGy to 10 kGy being delivered. Using Ge-doped optical fibres of variable size, type and dopant concentration, study has been made of linearity, reproducibility, and fading. The thermoluminescence (TL) yield of the fibres were obtained and compared. The fibres exhibit a linear dose response over the investigated range of doses, with mean reproducibility to within 2.69 % to 8.77 %, exceeding the dose range of all commercial dosimeters used in evaluating high doses for the food irradiation industry. TL fading of the Ge-doped flat fibres has been found to be < 13%.

  7. Enhanced structural color generation in aluminum metamaterials coated with a thin polymer layer

    DOE PAGES [OSTI]

    Cheng, Fei; Yang, Xiaodong; Rosenmann, Daniel; Stan, Liliana; Czaplewski, David; Gao, Jie

    2015-09-18

    A high-resolution and angle-insensitive structural color generation platform is demonstrated based on triple-layer aluminum-silica-aluminum metamaterials supporting surface plasmon resonances tunable across the entire visible spectrum. The color performances of the fabricated aluminum metamaterials can be strongly enhanced by coating a thin transparent polymer layer on top. The results show that the presence of the polymer layer induces a better impedance matching for the plasmonic resonances to the free space so that strong light absorption can be obtained, leading to the generation of pure colors in cyan, magenta, yellow and black (CMYK) with high color saturation.

  8. Salt-soda sinter process for recovering aluminum from fly ash

    DOEpatents

    McDowell, W.J.; Seeley, F.G.

    A method for recovering aluminum values from fly ash comprises sintering the fly ash with a mixture of NaCl and Na/sub 2/CO/sub 3/ to a temperature in the range 700/sup 0/ to 900/sup 0/C for a period of time sufficient to convert greater than 90% of the aluminum content of the fly ash into an acidsoluble fraction and then contacting the thus-treated fraction with an aqueous solution of nitric or sulfuric acid to effect dissolution of aluminum and other metal values in said solution.

  9. Salt-soda sinter process for recovering aluminum from fly ash

    DOEpatents

    McDowell, William J.; Seeley, Forest G.

    1981-01-01

    A method for recovering aluminum values from fly ash comprises sintering the fly ash with a mixture of NaCl and Na.sub.2 CO.sub.3 to a temperature in the range 700.degree.-900.degree. C. for a period of time sufficient to convert greater than 90% of the aluminum content of the fly ash into an acid-soluble fraction and then contacting the thus-treated fraction with an aqueous solution of nitric or sulfuric acid to effect dissolution of aluminum and other metal values in said solution.

  10. Salt-soda sinter process for recovering aluminum from fly ash

    SciTech Connect

    Mcdowell, W.J.; Seeley, F.G.

    1981-03-03

    A method for recovering aluminum values from fly ash comprises sintering the fly ash with a mixture of NaCl and Na2CO3 to a temperature in the range 700*-900* C for a period of time sufficient to convert greater than 90% of the aluminum content of the fly ash into an acid-soluble fraction and then contacting the thus-treated fraction with an aqueous solution of nitric or sulfuric acid to effect dissolution of aluminum and other metal values in said solution.

  11. Fabrication of super-hydrophobic surfaces on aluminum alloy substrates by RF-sputtered polytetrafluoroethylene coatings

    SciTech Connect

    Wang, Yang; Liu, Xiao Wei; Zhang, Hai Feng Zhou, Zhi Ping

    2014-03-15

    In this work, we present a method of fabricating super-hydrophobic surface on aluminum alloy substrate. The etching of aluminum surfaces has been performed using Beck's dislocation etchant for different time to create micrometer-sized irregular steps. An optimised etching time of 50 s is found to be essential before polytetrafluoroethylene (PTFE) coating, to obtain a highest water contact angle of 1652 with a lowest contact angle hysteresis as low as 52. The presence of patterned microstructure as revealed by scanning electron microscopy (SEM) together with the low surface energy ultrathin RF-sputtered PTFE films renders the aluminum alloy surfaces highly super-hydrophobic.

  12. ALUMINUM READINESS EVALUATION FOR ALUMINUM REMOVAL AND SODIUM HYDROXIDE REGENRATION FROM HANFORD TANK WASTE BY LITHIUM HYDROTALCITE PRECIPITATION

    SciTech Connect

    SAMS TL; MASSIE HL

    2011-01-27

    A Technology Readiness Evaluation (TRE) performed by AREV A Federal Services, LLC (AFS) for Washington River Protection Solutions, LLC (WRPS) shows the lithium hydrotalcite (LiHT) process invented and patented (pending) by AFS has reached an overall Technology Readiness Level (TRL) of 3. The LiHT process removes aluminum and regenerates sodium hydroxide. The evaluation used test results obtained with a 2-L laboratory-scale system to validate the process and its critical technology elements (CTEs) on Hanford tank waste simulants. The testing included detailed definition and evaluation for parameters of interest and validation by comparison to analytical predictions and data quality objectives for critical subsystems. The results of the TRE would support the development of strategies to further mature the design and implementation of the LiHT process as a supplemental pretreatment option for Hanford tank waste.

  13. Biofuels and Food Security. A report by the High Level Panel of Experts on Food Security and Nutrition

    SciTech Connect

    2013-06-15

    In October 2011, the UN Committee on World Food Security (CFS) recommended a ''review of biofuels policies -- where applicable and if necessary -- according to balanced science-based assessments of the opportunities and challenges that they may represent for food security so that biofuels can be produced where it is socially, economically and environmentally feasible to do so''. In line with this, the CFS requested the HLPE (High Level Panel of Experts) to ''conduct a science-based comparative literature analysis taking into consideration the work produced by the FAO and Global Bioenergy Partnership (GBEP) of the positive and negative effects of biofuels on food security''. Recommendations from the report include the following. Food security policies and biofuel policies cannot be separated because they mutually interact. Food security and the right to food should be priority concerns in the design of any biofuel policy. Governments should adopt the principle: biofuels shall not compromise food security and therefore should be managed so that food access or the resources necessary for the production of food, principally land, biodiversity, water and labour are not put at risk. The CFS should undertake action to ensure that this principle is operable in the very varied contexts in which all countries find themselves. Given the trend to the emergence of a global biofuels market, and a context moving from policy-driven to market-driven biofuels, there is an urgent need for close and pro-active coordination of food security, biofuel/bioenergy policies and energy policies, at national and international levels, as well as rapid response mechanisms in case of crisis. There is also an urgent need to create an enabling, responsible climate for food and non-food investments compatible with food security. The HLPE recommends that governments adopt a coordinated food security and energy security strategy, which would require articulation around the following five axes

  14. Solubility and Reaction Rates of Aluminum Solid Phases Under Geothermal Conditions

    SciTech Connect

    Benezeth, P.; Palmer, D.A.; Wesolowski, D.J.; Anovitz, L.M.

    2000-05-28

    Experimental studies involving equilibrium solubility and dissolution/precipitation rates were initiated on aluminum hydroxide phases prevalent under geothermal reservoir conditions. A large capacity, hydrogen-electrode concentration cell (HECC) was constructed specifically for this purpose.

  15. Fatigue design curves for 6061-T6 aluminum (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    A request has been made to the ASME Boiler and Pressure Vessel Committee that 6061-T6 aluminum be approved for use in the construction of Class 1 welded nuclear vessels so it can ...

  16. Evaluation of Aluminum Participation in the Development of Reactive Waves in Shock Compressed HMX

    SciTech Connect

    Pahl, R. J.; Trott, W. M.; Snedigar, S.; Castaneda, J. N.

    2006-07-28

    A series of gas gun tests has been performed to examine contributions to energy release from micron-sized and nanometric aluminum powder added to sieved (212-300{mu}m) HMX. In the absence of added metal, 4-mm-thick, low-density (64-68% of theoretical maximum density) pressings of the sieved HMX respond to modest shock loading by developing distinctive reactive waves that exhibit both temporal and mesoscale spatial fluctuations. Parallel tests have been performed on samples containing 10% (by mass) aluminum in two particle sizes: 2-{mu}m and 123-nm mean particle diameter, respectively. The finely dispersed aluminum initially suppresses wave growth from HMX reactions; however, after a visible induction period, the added metal drives rapid increases in the transmitted wave particle velocity. Wave profile variations as a function of the aluminum particle diameter are discussed.

  17. Evaluation of aluminum participation in the development of reactive waves in shock compressed HMX.

    SciTech Connect

    Castaneda, Jaime N.; Pahl, Robert J.; Snedigar, Shane; Trott, Wayne Merle

    2005-07-01

    A series of gas gun tests has been performed to examine contributions to energy release from micron-sized and nanometric aluminum powder added to sieved (212-300{micro}m) HMX. In the absence of added metal, 4-mm-thick, low-density (64-68% of theoretical maximum density) pressings of the sieved HMX respond to modest shock loading by developing distinctive reactive waves that exhibit both temporal and mesoscale spatial fluctuations. Parallel tests have been performed on samples containing 10% (by mass) aluminum in two particle sizes: 2-{micro}m and 123-nm mean particle diameter, respectively. The finely dispersed aluminum initially suppresses wave growth from HMX reactions; however, after a visible induction period, the added metal drives rapid increases in the transmitted wave particle velocity. Wave profile variations as a function of the aluminum particle diameter are discussed.

  18. Iron-niobium-aluminum alloy having high-temperature corrosion resistance

    DOEpatents

    Hsu, Huey S.

    1988-04-14

    An alloy for use in high temperature sulfur and oxygen containing environments, having aluminum for oxygen resistance, niobium for sulfur resistance and the balance iron, is discussed. 4 figs., 2 tabs.

  19. Aluminum ion parameters for the 2015 PP-on-Al setup in RHIC

    SciTech Connect

    Gardner, C. J.

    2015-10-02

    In this note the nominal parameters for aluminum ions in Booster, AGS, and RHIC are given for the PP-on-Al setup in RHIC. The setup parameters are summarized in Sections 13, 14, 15.

  20. Polarized proton parameters for the 2015 PP-on-Aluminum setup in RHIC

    SciTech Connect

    Gardner, C. J.

    2015-10-02

    Values are given for RHIC circumference shifts due to snakes for various situations. Relevant parameters are tabulated for polarized protons (PP) in the booster and in AGS and RHIC for PP-on-Aluminum stores.

  1. A UQ Enabled Aluminum Tabular Multiphase Equation-of-State Model

    Office of Scientific and Technical Information (OSTI)

    1325C A UQ Enabled Aluminum Tabular Multiphase Equation-of-State Model Allen C. Robinson, John H. Carpenter0, Bert J. Debusschere*, Ann E. Mattsson0 t Computational Multiphysics, ...

  2. Ignition characteristics of laser-ablated aluminum at shock pressures up to 2 GPa

    SciTech Connect

    Lee, Kyung-Cheol; Young Lee, Jae; Yoh, Jack J.; Taira, Tsubasa; Mo Koo, Goon

    2014-01-07

    The ignition of aluminum particles under high pressure and temperature conditions is considered. The laser ablation method is used to generate oxide-free aluminum particles exposed to pressures ranging between 0.35 and 2.2 GPa. A continuous wave CO{sub 2} laser radiation heats the surface of the aluminum target until ignition is observed. We confirm ignition by a spectroscopic analysis of AlO vibronic band of 484 nm wavelength, and the radiant temperature is measured with respect to various pressures for estimating the heating energy for ignition. The ignition characteristics of the oxide-free aluminum particles exposed to extremely high pressures are reported.

  3. Light metal production

    DOEpatents

    Fan, Qinbai

    2016-04-19

    An electrochemical process for the production of light metals, particularly aluminum. Such a process involves contacting a light metal source material with an inorganic acid to form a solution containing the light metal ions in high concentration. The solution is fed to an electrochemical reactor assembly having an anode side containing an anode and a cathode side containing a cathode, with anode side and the cathode side separated by a bipolar membrane, with the solution being fed to the anode side. Light metal ions are electrochemically transferred through the bipolar membrane to the cathode side. The process further involves reducing the light metal ions to light metal powder. An associated processing system is also provided.

  4. Application of the metal compression forming process for the production of an aluminum alloy component

    SciTech Connect

    Viswanathan, S.; Porter, W.D.; Ren, W.; Purgert, R.M.

    1997-01-01

    Metal Compression Forming (MCF) is a variant of the squeeze casting process, in which molten metal is allowed to solidify under pressure in order to close porosity and form a sound part. MCF applies pressure on the entire mold face, thereby directing pressure on all regions of the casting. It also enhances the solidification rate of the metal, promoting a very fine grain structure which results in improved properties. Consequently, the process is capable of producing parts with properties close to that of forgings, while retaining the near net shape, complex geometry, and relatively low cost of the casting process.

  5. Method of Preparing Hydrous Hafnium, Cerium, or Aluminum Oxide Gels and

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Spherules - Energy Innovation Portal Advanced Materials Advanced Materials Find More Like This Return to Search Method of Preparing Hydrous Hafnium, Cerium, or Aluminum Oxide Gels and Spherules Oak Ridge National Laboratory Contact ORNL About This Technology Technology Marketing Summary An internal gelatin process for preparing hydrous hafnium, cerium, or aluminum oxide microspheres was invented at ORNL. The invention is a type of sol-gel process that solidifies droplets of solution as they

  6. Precipitation and Deposition of Aluminum-Containing Phases in Tank Wastes

    SciTech Connect

    Daniel M. Dabbs; Ilhan A. Aksay

    2005-01-12

    Aluminum-containing phases compose the bulk of solids precipitating during the processing of radioactive tank wastes. Processes designed to minimize the volume of high-level waste through conversion to glassy phases require transporting waste solutions near-saturated with aluminum-containing species from holding tank to processing center. The uncontrolled precipitation within transfer lines results in clogged pipes and lines and fouled ion exchangers, with the potential to shut down processing operations.

  7. Process for the synthesis of nanophase dispersion-strengthened aluminum alloy

    DOEpatents

    Barbour, John C.; Knapp, James Arthur; Follstaedt, David Martin; Myers, Samuel Maxwell

    1998-12-15

    A process for fabricating dispersion-strengthened ceramic-metal composites is claimed. The process comprises in-situ interaction and chemical reaction of a metal in gaseous form with a ceramic producer in plasma form. Such composites can be fabricated with macroscopic dimensions. Special emphasis is placed on fabrication of dispersion-strengthened aluminum oxide-aluminum composites, which can exhibit flow stresses more characteristic of high strength steel.

  8. Effects of solvation shells and cluster size on the reaction of aluminum

    Office of Scientific and Technical Information (OSTI)

    clusters with water (Journal Article) | DOE PAGES Published Article: Effects of solvation shells and cluster size on the reaction of aluminum clusters with water Title: Effects of solvation shells and cluster size on the reaction of aluminum clusters with water Authors: Mou, Weiwei [1] ; Ohmura, Satoshi [2] ; Hemeryck, Anne [3] ; Shimojo, Fuyuki [2] ; Kalia, Rajiv K. [1] ; Nakano, Aiichiro [1] ; Vashishta, Priya [1] + Show Author Affiliations Collaboratory for Advanced Computing and

  9. High-nitrogen-metal complexes as burning-rate modifiers for the aluminum-water propellant system

    SciTech Connect

    Tappan, Bryce C; Mason, Benjamin A

    2009-01-01

    The reactions of electropositive metals, such as aluminum, with water have long been utilized in explosive and propellant formulations, but until recently this has mostly been limited to the water formed as a product gas from the decomposition of another energetic system . Recently, however, with the increased availability of nano-particulate materials, the direct reaction of nano-aluminum (nAl) with water as an oxidizer has been investigated as a propellant system due to high reaction temperatures and the production of hydrogen as the primary gaseous species. This system could be useful for intra-planetary travel where non-terrestrial water is harvested for the oxidizer. Here we present the study of nAl, mixed at a stoichiometric ratio with water ({Phi} = 1) with the highly water soluble metal complexes of bis(tetrazolato)amine (BTA) added at 5, 15,30 and 50 wt% in the case of FeBTA and 5 and 15 wt% in the case of NiBTA and CoBTA. The basic structure of the BTA complexes is shown below where M = Fe, Ni or Co, and x = 3 for Fe and Co and x = 2 for Ni. The particle size of nAl studied was primarily 38 nm with various studies with the particle size of 80 nm. The FeBT A at a loading of 15 wt% gave the highest burning rate enhancement (4.6x at {approx}6.8 MPa), while retaining a low pressure exponent (0.21 compared to 0.24 for nA/H{sub 2}O). At 15 wt% the Ni and Co increased the burning rate, but also increased the pressure exponents. The burning rate of the FeBTA modified material with 80 nm Al decreased as the weight percent of FeBTA was increased, which also tracked decrease in the calculated specific impulse of the mixtures.

  10. Tribological characteristics of aluminum alloys against steel lubricated by ammonium and imidazolium ionic liquids

    SciTech Connect

    Qu, Jun; Blau, Peter Julian; Dai, Sheng; Luo, Huimin; Meyer III, Harry M; Truhan, John J.

    2009-01-01

    Sliding friction and wear characteristics of aluminum alloys against AISI 52100 steel lubricated by ionic liquids (ILs) were investigated at both room and elevated temperatures. The tested aluminum alloys include a commercially pure aluminum Al 1100, a wrought alloy Al 6061-T6511, and a cast alloy Al 319-T6. The lubricating performance of two ILs with the same anion, one ammonium-based [C8H17]3NH.Tf2N and one imidazolium-based C10mim.Tf2N, were compared each other and benchmarked against that of a conventional fully-formulated engine oil. Significant friction (up to 35%) and wear (up to 55%) reductions were achieved by the ammonium IL when lubricating the three aluminum alloys compared to the engine oil. The imidazolium IL performed better than the oil but not as well as the ammonium IL for Al 1100 and 319 alloys. However, accelerated wear was unexpectedly observed for Al 6061 alloy when lubricated by C10mim.Tf2N. Surface chemical analyses implied complex tribochemical reactions between the aluminum surfaces and ILs during the wear testing, which has been demonstrated either beneficial by forming a protective boundary film or detrimental by causing severe tribo-corrosion. The effects of the IL cation structure, aluminum alloy composition, and tribo-testing condition on the friction and wear results have been discussed.

  11. Structural and valence state of iron ions in sodium-aluminum-phosphate glass

    SciTech Connect

    Vashman, A.A.; Pronin, I.S.; Samsonov, V.E.; Filin, V.M.

    1994-12-01

    The purpose of this paper is to study the structural and valence state of iron ions in sodium-aluminum-phosphate glass for the application of liquid radioactive waste solidification. Electron paramagnetic resonance, Moessbauer spectroscopy, and nuclear magnetic resonances were used to conduct the study. Results were used to determine the characteristics of the occupancy and distribution of iron ions over tetra- and octahedral positions as a function of the ratio of the concentration of iron and aluminum oxides, to determine the concentration of Fe{sup 3}{sup +} and Fe{sup 2}{sup +} ions and the number of phosphorus and aluminum atoms in the nearest neighbor environment of the impurity iron ions, and estimate the effect of the concentration of aluminum oxide on the average distance between the phosphorus atoms in the glass. Results indicate that it must be assumed that tetrahedral glass-forming positions of ions are more stable than octahedral positions. Therefore, the long-term fixation of iron ions in sodium-aluminum-phosphate glasses will be more reliable with lower iron-aluminum ratios. These results will apparently extend to radioactive ions due to similar valence properties. 8 refs., 4 figs., 3 tabs.

  12. Direct acid dissolution of aluminum and other metals from fly ash

    SciTech Connect

    Kelmers, A.D.; Egan, B.Z.; Seeley, F.G.; Campbell, G.D.

    1981-01-01

    Fly ash could provide a significant domestic source of alumina and thus supply a large part of the US needs for aluminum and possibly also several other metals. The aluminum and other metals can be solubilized from fly ash by acid dissolution methods. The aluminum may be present in any or all of three solid phases: (1) crystalline; (2) glassy amorphous; and (3) irregular, spongy amorphous. The chemistry of these phases controls the solubilization behavior. The aluminum in high-calcium western ashes is primarily found in the amorphous phases, and much of it can be solubilized by using short-time, ambient-temperature leaching. Little of the aluminum in the low-calcium eastern ashes is solubilized under ambient-temperature conditions, and only a portion can be solubilized even at reflux temperature conditions. Some of the aluminum in these eastern ashes is present as mullite, while some is found in the amorphous material. The fraction contained in mullite is relativey acid insoluble, and only partial solubilization can be achieved even under vigorous acid leach conditions.

  13. Ergonomics Designs of Aluminum Beverage Cans and Bottles

    SciTech Connect

    Han Jing; Itoh, Ryouiti; Shinguryo, Takuro; Yamazaki, Koetsu; Nishiyama, Sadao

    2005-08-05

    This paper introduced the finite element analyses into the ergonomics designs to evaluate the human feelings numerically and objectively. Two design examples in developing aluminum beverage cans and bottles are presented. The first example describes a design of the tab of the can with better finger access. A simulation of finger pulling up the tab of the can has been performed and a pain in the finger has been evaluated by using the maximum value of the contact stress of a finger model. The finger access comparison of three kinds of tab ring shape designs showed that the finger access of the tab that may have a larger contact area with finger is better. The second example describes a design of rib-shape embossed bottles for hot vending. Analyses of tactile sensation of heat have been performed and the amount of heat transmitted from hot bottles to finger was used to present the hot touch feeling. Comparison results showed that the hot touch feeling of rib-shape embossed bottles is better than that of cylindrical bottles, and that the shape of the rib also influenced the hot touch feeling.

  14. Process Development for Stamping Á-Pillar Covers with Aluminum

    SciTech Connect

    Choi, Jung-Pyung; Rohatgi, Aashish; Smith, Mark T.; Lavender, Curt A.

    2015-02-20

    In this work, performed in close collaboration with PACCAR and Magna International, a 6XXX series aluminum alloy was used for the development of A-Pillar cover for the cab of a typical heavy-duty Class-8 truck. The use of Al alloy for the A-pillar cover represents an approximately 40% weight savings over its steel or molded fiberglass composite counterpart. For the selected Al alloy, a small amount of cold work (5% tensile strain), following prior hot-forming, was found to significantly improve the subsequent age-hardening response. The role of solutionizing temperature and rate of cooling on the age-hardening response after paint-bake treatment were investigated. For the temperature range selected in this work, higher solutionizing temperature correlated with greater subsequent age-hardening and vice-versa. However, the age-hardening response was insensitive to the mode of cooling (water quench vs. air cooling). Finally, a two-step forming process was developed where, in the first step, the blank was heated to solutionizing temperature, quenched, and then partially formed at room temperature. For the second step, the pre-form was re-heated and quenched as in the first step, and the forming was completed at room temperature. The resulting A-pillars had sufficient residual ductility to be compatible with hemming and riveting

  15. Longitudinal study of workers in an aluminum smelter

    SciTech Connect

    Chan-Yeung, M.; Enarson, D.A.; MacLean, L.; Irving, D.

    1989-05-01

    We conducted a 6-y follow-up study that included workers in an aluminum smelter in British Columbia. Of the original cohort, 951 workers left the industry and 985 workers participated in both studies. Comparison of those who left and those who remained showed that those who left were (1) older, (2) had a slightly higher prevalence of respiratory symptoms, and (3) had lower lung function; this was especially true for workers who were 50 + y of age at the time the initial study was conducted. Analyses were conducted only on 586 male workers who did not change their job location or smoking habits between the initial and the follow-up study. Potroom workers in the ''high-exposure'' group had a significant reduction in the prevalence of cough, but experienced an increase in the prevalence of wheeze. There was no significant difference in the annual decline in forced expiratory volume in 1 sec and forced vital capacity between the potroom workers and controls. In general, older workers and smokers had a greater decline in lung function compared to younger workers and nonsmokers. Leukocyte count done during the initial study was found to be an independent predictor of longitudinal decline in lung function. The lack of exposure effect on longitudinal decline in lung function could be due to ''healthy worker'' effect and improvement in the working condition of the smelter.

  16. Room temperature aluminum antimonide radiation detector and methods thereof

    DOEpatents

    Lordi, Vincenzo; Wu, Kuang Jen J.; Aberg, Daniel; Erhart, Paul; Coombs, III, Arthur W; Sturm, Benjamin W

    2015-03-03

    In one embodiment, a method for producing a high-purity single crystal of aluminum antimonide (AlSb) includes providing a growing environment with which to grow a crystal, growing a single crystal of AlSb in the growing environment which comprises hydrogen (H.sub.2) gas to reduce oxide formation and subsequent incorporation of oxygen impurities in the crystal, and adding a controlled amount of at least one impurity to the growing environment to effectively incorporate at least one dopant into the crystal. In another embodiment, a high energy radiation detector includes a single high-purity crystal of AlSb, a supporting structure for the crystal, and logic for interpreting signals obtained from the crystal which is operable as a radiation detector at a temperature of about 25.degree. C. In one embodiment, a high-purity single crystal of AlSb includes AlSb and at least one dopant selected from a group consisting of selenium (Se), tellurium (Te), and tin (Sn).

  17. Food and Beverage (2010 MECS)

    Office of Energy Efficiency and Renewable Energy (EERE)

    Manufacturing Energy and Carbon Footprint for Food and Beverage Sector (NAICS 311, 312) Energy use data source: 2010 EIA MECS (with adjustments) Footprint Last Revised: February 2014

  18. Food Service | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Building Types 1 References EIA CBECS Building Types U.S. Energy Information Administration (Oct 2008) Retrieved from "http:en.openei.orgwindex.php?titleFoodService&old...

  19. Food Sales | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Building Types 1 References EIA CBECS Building Types U.S. Energy Information Administration (Oct 2008) Retrieved from "http:en.openei.orgwindex.php?titleFoodSales&oldid...

  20. Los Alamos scientists advance biomass fuel production

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Los Alamos scientists advance biomass fuel production Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue:November 2, 2016 all issues All Issues » submit Los Alamos scientists advance biomass fuel production Adapting biomass waste molecules for energy production May 1, 2013 Lab research can yield energy from non-food biomass Lab research can yield energy from non-food biomass Contact Editor Linda Anderman Email Community Programs Office

  1. Sustainable Harvest for Food and Fuel

    SciTech Connect

    Grosshans, Raymond R.; Kostelnik, Kevin, M.; Jacobson, Jacob J.

    2007-04-01

    The DOE Biomass Program recently implemented the Biofuels Initiative, or 30x30 program, with the dual goal of reducing U.S. dependence on foreign oil by making cellulosic ethanol cost competitive with gasoline by 2012 and by replacing 30 percent of gasoline consumption with biofuels by 2030. Experience to date with increasing ethanol production suggests that it distorts agricultural markets and therefore raises concerns about the sustainability of the DOE 30 X 30 effort: Can the U.S. agricultural system produce sufficient feedstocks for biofuel production and meet the food price and availability expectations of American consumers without causing environmental degradation that would curtail the production of both food and fuel? Efforts are underway to develop computer-based modeling tools that address this concern and support the DOE 30 X 30 goals. Beyond technical agronomic and economic concerns, however, such models must account for the publics growing interest in sustainable agriculture and in the mitigation of predicted global climate change. This paper discusses ongoing work at the Center for Advanced Energy Studies that investigates the potential consequences and long-term sustainability of projected biomass harvests by identifying and incorporating sustainable harvest indicators in a computer modeling strategy.

  2. TiN coated aluminum electrodes for DC high voltage electron guns

    DOE PAGES [OSTI]

    Mamun, Md Abdullah A.; Elmustafa, Abdelmageed A.; Taus, Rhys; Forman, Eric; Poelker, Matthew

    2015-05-01

    Preparing electrodes made of metals like stainless steel, for use inside DC high voltage electron guns, is a labor-intensive and time-consuming process. In this paper, the authors report the exceptional high voltage performance of aluminum electrodes coated with hard titanium nitride (TiN). The aluminum electrodes were comparatively easy to manufacture and required only hours of mechanical polishing using silicon carbide paper, prior to coating with TiN by a commercial vendor. The high voltage performance of three TiN-coated aluminum electrodes, before and after gas conditioning with helium, was compared to that of bare aluminum electrodes, and electrodes manufactured from titanium alloymore » (Ti-6AI-4V). Following gas conditioning, each TiN-coated aluminum electrode reached -225 kV bias voltage while generating less than 100 pA of field emission (<10 pA) using a 40 mm cathode/anode gap, corresponding to field strength of 13.7 MV/m. Smaller gaps were studied to evaluate electrode performance at higher field strength with the best performing TiN-coated aluminum electrode reaching ~22.5 MV/m with field emission less than 100 pA. These results were comparable to those obtained from our best-performing electrodes manufactured from stainless steel, titanium alloy and niobium, as reported in references cited below. The TiN coating provided a very smooth surface and with mechanical properties of the coating (hardness and modulus) superior to those of stainless steel, titanium-alloy, and niobium electrodes. These features likely contributed to the improved high voltage performance of the TiN-coated aluminum electrodes.« less

  3. TiN coated aluminum electrodes for DC high voltage electron guns

    SciTech Connect

    Mamun, Md Abdullah A.; Elmustafa, Abdelmageed A.; Taus, Rhys; Forman, Eric; Poelker, Matthew

    2015-05-01

    Preparing electrodes made of metals like stainless steel, for use inside DC high voltage electron guns, is a labor-intensive and time-consuming process. In this paper, the authors report the exceptional high voltage performance of aluminum electrodes coated with hard titanium nitride (TiN). The aluminum electrodes were comparatively easy to manufacture and required only hours of mechanical polishing using silicon carbide paper, prior to coating with TiN by a commercial vendor. The high voltage performance of three TiN-coated aluminum electrodes, before and after gas conditioning with helium, was compared to that of bare aluminum electrodes, and electrodes manufactured from titanium alloy (Ti-6AI-4V). Following gas conditioning, each TiN-coated aluminum electrode reached -225 kV bias voltage while generating less than 100 pA of field emission (<10 pA) using a 40 mm cathode/anode gap, corresponding to field strength of 13.7 MV/m. Smaller gaps were studied to evaluate electrode performance at higher field strength with the best performing TiN-coated aluminum electrode reaching ~22.5 MV/m with field emission less than 100 pA. These results were comparable to those obtained from our best-performing electrodes manufactured from stainless steel, titanium alloy and niobium, as reported in references cited below. The TiN coating provided a very smooth surface and with mechanical properties of the coating (hardness and modulus) superior to those of stainless steel, titanium-alloy, and niobium electrodes. These features likely contributed to the improved high voltage performance of the TiN-coated aluminum electrodes.

  4. TiN coated aluminum electrodes for DC high voltage electron guns

    SciTech Connect

    Mamun, Md Abdullah A.; Elmustafa, Abdelmageed A.; Taus, Rhys; Forman, Eric; Poelker, Matthew

    2015-05-15

    Preparing electrodes made of metals like stainless steel, for use inside DC high voltage electron guns, is a labor-intensive and time-consuming process. In this paper, the authors report the exceptional high voltage performance of aluminum electrodes coated with hard titanium nitride (TiN). The aluminum electrodes were comparatively easy to manufacture and required only hours of mechanical polishing using silicon carbide paper, prior to coating with TiN by a commercial vendor. The high voltage performance of three TiN-coated aluminum electrodes, before and after gas conditioning with helium, was compared to that of bare aluminum electrodes, and electrodes manufactured from titanium alloy (Ti-6Al-4V). Following gas conditioning, each TiN-coated aluminum electrode reached −225 kV bias voltage while generating less than 100 pA of field emission (<10 pA) using a 40 mm cathode/anode gap, corresponding to field strength of 13.7 MV/m. Smaller gaps were studied to evaluate electrode performance at higher field strength with the best performing TiN-coated aluminum electrode reaching ∼22.5 MV/m with field emission less than 100 pA. These results were comparable to those obtained from our best-performing electrodes manufactured from stainless steel, titanium alloy and niobium, as reported in references cited below. The TiN coating provided a very smooth surface and with mechanical properties of the coating (hardness and modulus) superior to those of stainless steel, titanium-alloy, and niobium electrodes. These features likely contributed to the improved high voltage performance of the TiN-coated aluminum electrodes.

  5. Titanium Matrix Composite Tooling Material for Enhanced Manufacture of Aluminum Die Castings: Inventions and Innovation Metalcasting Project Fact Sheet

    SciTech Connect

    New Horizon Technologies

    2001-01-17

    Project fact sheet written for the Inventions and Innovation Program about an innovative material for use in aluminum die-casting components.

  6. Molecular dynamics simulations of hydrogen diffusion in aluminum

    DOE PAGES [OSTI]

    Zhou, X. W.; El Gabaly, F.; Stavila, V.; Allendorf, M. D.

    2016-03-23

    In this study, hydrogen diffusion impacts the performance of solid-state hydrogen storage materials and contributes to the embrittlement of structural materials under hydrogen-containing environments. In atomistic simulations, the diffusion energy barriers are usually calculated using molecular statics simulations where a nudged elastic band method is used to constrain a path connecting the two end points of an atomic jump. This approach requires prior knowledge of the “end points”. For alloy and defective systems, the number of possible atomic jumps with respect to local atomic configurations is tremendous. Even when these jumps can be exhaustively studied, it is still unclear howmore » they can be combined to give an overall diffusion behavior seen in experiments. Here we describe the use of molecular dynamics simulations to determine the overall diffusion energy barrier from the Arrhenius equation. This method does not require information about atomic jumps, and it has additional advantages, such as the ability to incorporate finite temperature effects and to determine the pre-exponential factor. As a test case for a generic method, we focus on hydrogen diffusion in bulk aluminum. We find that the challenge of this method is the statistical variation of the results. However, highly converged energy barriers can be achieved by an appropriate set of temperatures, output time intervals (for tracking hydrogen positions), and a long total simulation time. Our results help elucidate the inconsistencies of the experimental diffusion data published in the literature. The robust approach developed here may also open up future molecular dynamics simulations to rapidly study diffusion properties of complex material systems in multidimensional spaces involving composition and defects.« less

  7. DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS

    SciTech Connect

    Elliot B. Kennel; Stephen P. Carpenter; Dady Dadyburjor; Manoj Katakdaunde; Liviu Magean; Madhavi Nallani-Chakravartula; Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo

    2006-03-27

    The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. These carbon products include materials used in metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. During this reporting period, efforts have focused on the development of continuous processes for hydrogenation as well as continuous production of carbon foam and coke.

  8. DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS

    SciTech Connect

    Elliot B. Kennel; Stephen P. Carpenter; Dady Dadyburjor; Manoj Katakdaunde; Liviu Magean; Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo

    2005-06-08

    The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. These carbon products include materials used in metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. During this reporting period, efforts have focused on the development of continuous processes for hydrogenation as well as continuous production of carbon foam and coke.

  9. Production of Energy Efficient Preform Structures (PEEPS)

    SciTech Connect

    Dr. John A. Baumann

    2012-06-08

    Due to its low density, good structural characteristics, excellent fabrication properties, and attractive appearance, aluminum metal and its alloys continue to be widely utilized. The transportation industry continues to be the largest consumer of aluminum products, with aerospace as the principal driver for this use. Boeing has long been the largest single company consumer of heat-treated aluminum in the U.S. The extensive use of aluminum to build aircraft and launch vehicles has been sustained, despite the growing reliance on more structurally efficient carbon fiber reinforced composite materials. The trend in the aerospace industry over the past several decades has been to rely extensively on large, complex, thin-walled, monolithic machined structural components, which are fabricated from heavy billets and thick plate using high speed machining. The use of these high buy-to-fly ratio starting product forms, while currently cost effective, is energy inefficient, with a high environmental impact. The widespread implementation of Solid State Joining (SSJ) technologies, to produce lower buy-to-fly ratio starting forms, tailored to each specific application, offers the potential for a more sustainable manufacturing strategy, which would consume less energy, require less material, and reduce material and manufacturing costs. One objective of this project was to project the energy benefits of using SSJ techniques to produce high-performance aluminum structures if implemented in the production of the world fleet of commercial aircraft. A further objective was to produce an energy consumption prediction model, capable of calculating the total energy consumption, solid waste burden, acidification potential, and CO2 burden in producing a starting product form - whether by conventional or SSJ processes - and machining that to a final part configuration. The model needed to be capable of computing and comparing, on an individual part/geometry basis, multiple possible

  10. Production Of High Specific Activity Copper-67

    DOEpatents

    Jamriska, Sr., David J.; Taylor, Wayne A.; Ott, Martin A.; Fowler, Malcolm; Heaton, Richard C.

    2003-10-28

    A process for the selective production and isolation of high specific activity Cu.sup.67 from proton-irradiated enriched Zn.sup.70 target comprises target fabrication, target irradiation with low energy (<25 MeV) protons, chemical separation of the Cu.sup.67 product from the target material and radioactive impurities of gallium, cobalt, iron, and stable aluminum via electrochemical methods or ion exchange using both anion and cation organic ion exchangers, chemical recovery of the enriched Zn.sup.70 target material, and fabrication of new targets for re-irradiation is disclosed.

  11. Production Of High Specific Activity Copper-67

    DOEpatents

    Jamriska, Sr., David J.; Taylor, Wayne A.; Ott, Martin A.; Fowler, Malcolm; Heaton, Richard C.

    2002-12-03

    A process for the selective production and isolation of high specific activity cu.sup.67 from proton-irradiated enriched Zn.sup.70 target comprises target fabrication, target irradiation with low energy (<25 MeV) protons, chemical separation of the Cu.sup.67 product from the target material and radioactive impurities of gallium, cobalt, iron, and stable aluminum via electrochemical methods or ion exchange using both anion and cation organic ion exchangers, chemical recovery of the enriched Zn.sup.70 target material, and fabrication of new targets for re-irradiation is disclosed.

  12. Kinetic energy distributions of sputtered neutral aluminum clusters: Al--Al{sub 6}

    SciTech Connect

    Coon, S.R.; Calaway, W.F.; Pellin, M.J.; Curlee, G.A.; White, J.M.

    1992-12-01

    Neutral aluminum clusters sputtered from polycrystalline aluminum were analyzed by laser postionization time-of-flight (TOF) mass spectrometry. The kinetic energy distributions of Al through Al{sub 6} were measured by a neutrals time-of-flight technique. The interpretation of laser postionization TOF data to extract velocity and energy distributions is presented. The aluminum cluster distributions are qualitatively similar to previous copper cluster distribution measurements from our laboratory. In contrast to the steep high energy tails predicted by the single- or multiple- collision models, the measured cluster distributions have high energy power law dependences in the range of E{sup {minus}3} to E{sup {minus}4.5}. Correlated collision models may explain the substantial abundance of energetic clusters that are observed in these experiments. Possible influences of cluster fragmentation on the distributions are discussed.

  13. Kinetic energy distributions of sputtered neutral aluminum clusters: Al--Al[sub 6

    SciTech Connect

    Coon, S.R.; Calaway, W.F.; Pellin, M.J. ); Curlee, G.A. . Dept. of Physics); White, J.M. . Dept. of Chemistry and Biochemistry)

    1992-01-01

    Neutral aluminum clusters sputtered from polycrystalline aluminum were analyzed by laser postionization time-of-flight (TOF) mass spectrometry. The kinetic energy distributions of Al through Al[sub 6] were measured by a neutrals time-of-flight technique. The interpretation of laser postionization TOF data to extract velocity and energy distributions is presented. The aluminum cluster distributions are qualitatively similar to previous copper cluster distribution measurements from our laboratory. In contrast to the steep high energy tails predicted by the single- or multiple- collision models, the measured cluster distributions have high energy power law dependences in the range of E[sup [minus]3] to E[sup [minus]4.5]. Correlated collision models may explain the substantial abundance of energetic clusters that are observed in these experiments. Possible influences of cluster fragmentation on the distributions are discussed.

  14. Exploring Mbar shock conditions and isochorically heated aluminum at the MEC end station of the LCLS

    SciTech Connect

    Fletcher, L. B.; Lee, H. J.; SLAC, aff; Barbrel, B.; Gauthier, M.; Galtier, E.; Nagler, B.; Doppner, T.; LePape, S.; Ma, T.; Pak, A.; Turnbull, D.; White, T.; Gregori, G.; Wei, M.; Falcone, R. W.; Heimann, P.; Zastrau, U.; Hastings, J. B.; Glenzer, S. H.

    2015-02-05

    Recent experiments performed at the Matter in Extreme Conditions end station (MEC) of the Linac Coherent Light Source (LCLS) have demonstrated the first spectrally resolved measurements of plasmons from isochorically heated aluminum. The experiments have been performed using a seeded 8-keV x-ray laser beam as a pump and probe to both volumetrically heat and scatter x-rays from aluminum. Collective x-ray Thomson scattering spectra show a well-resolved plasmon feature that is down-shifted in energy by 19 eV. In addition, Mbar shock pressures from laser-compressed aluminum foils using Velocity Interferometer System for Any Reflector (VISAR) have been measured. The combination of experiments fully demonstrates the possibility to perform warm dense matter studies at the LCLS with unprecedented accuracy and precision.

  15. DM100 AND DM1200 MELTER TESTING WITH HIGH WASTE LOADING GLASS FORMULATIONS FOR HANFORD HIGH-ALUMINUM HLW STREAMS

    SciTech Connect

    KRUGER AA; MATLACK KS; KOT WK; PEGG IL; JOSEPH I

    2009-12-30

    This Test Plan describes work to support the development and testing of high waste loading glass formulations that achieve high glass melting rates for Hanford high aluminum high level waste (HLW). In particular, the present testing is designed to evaluate the effect of using low activity waste (LAW) waste streams as a source of sodium in place ofchemical additives, sugar or cellulose as a reductant, boehmite as an aluminum source, and further enhancements to waste processing rate while meeting all processing and product quality requirements. The work will include preparation and characterization of crucible melts in support of subsequent DuraMelter 100 (DM 100) tests designed to examine the effects of enhanced glass formulations, glass processing temperature, incorporation of the LAW waste stream as a sodium source, type of organic reductant, and feed solids content on waste processing rate and product quality. Also included is a confirmatory test on the HLW Pilot Melter (DM1200) with a composition selected from those tested on the DM100. This work builds on previous work performed at the Vitreous State Laboratory (VSL) for Department of Energy's (DOE's) Office of River Protection (ORP) to increase waste loading and processing rates for high-iron HLW waste streams as well as previous tests conducted for ORP on the same waste composition. This Test Plan is prepared in response to an ORP-supplied statement of work. It is currently estimated that the number of HLW canisters to be produced in the Hanford Tank Waste Treatment and Immobilization Plant (WTP) is about 12,500. This estimate is based upon the inventory ofthe tank wastes, the anticipated performance of the sludge treatment processes, and current understanding of the capability of the borosilicate glass waste form. The WTP HLW melter design, unlike earlier DOE melter designs, incorporates an active glass bubbler system. The bubblers create active glass pool convection and thereby improve heat transfer and

  16. Charity Event Gives Department Employees an Excuse to Play with Their Food

    Energy.gov [DOE]

    At the Energy Department Feeds Families Sculpture Contest, employees from across the organization made sculptures out of packaged food and household products to support the larger federal effort to help feed needy families in D.C. and beyond. In the end, participants donated 2,160 pounds of food at the event and pledged 130 pounds more.

  17. Thanksgiving Goodwill: West Valley Demonstration Project Food...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Thanksgiving Goodwill: West Valley Demonstration Project Food Drive Provides 640 Turkeys to People in Need Thanksgiving Goodwill: West Valley Demonstration Project Food Drive...

  18. Biomass Boiler for Food Processing Applications | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Biomass Boiler for Food Processing Applications Biomass Boiler for Food Processing Applications Biomass Boiler Uses a Combination of Wood Waste and Tire-Derived Fuel In 2011, the ...

  19. Improvement of plasmonic enhancement of quantum dot emission via an intermediate silicon-aluminum oxide interface

    SciTech Connect

    Wing, Waylin J.; Sadeghi, Seyed M. Campbell, Quinn

    2015-01-05

    We studied the emission of quantum dots in the presence of plasmon-metal oxide substrates, which consist of arrays of metallic nanorods embedded in amorphous silicon coated with a nanometer-thin layer of aluminum oxide on the top. We showed that the combined effects of plasmons and the silicon-aluminum oxide interface can lead to significant enhancement of the quantum efficiency of quantum dots. Our results show that such an interface can significantly enhance plasmonic effects of the nanorods via quantum dot-induced exciton-plasmon coupling, leading to partial polarization of the quantum dots' emission.

  20. Adhesive Bonding of Aluminum and Copper in HVAC&R Applications | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Adhesive Bonding of Aluminum and Copper in HVAC&R Applications Adhesive Bonding of Aluminum and Copper in HVAC&R Applications Lead Performer: Oak Ridge National Laboratory-Oak Ridge, TN Partner: 3M-Maplewood, MN DOE Total Funding: $1,500,000 Cost Share: $167,000 Project Term: 2016-2019 Funding Type: Building Energy Efficiency Frontiers and Innovations Technologies (BENEFIT) - 2016 (DE-FOA-0001383) PROJECT OBJECTIVE Oak Ridge National Lab (ORNL), with its partner 3M, is

  1. A high performance hybrid battery based on aluminum anode and LiFePO4 cathode

    DOE PAGES [OSTI]

    Sun, Xiao-Guang; Bi, Zhonghe; Liu, Hansan; Bridges, Craig A.; Paranthaman, Mariappan Parans; Dai, Sheng; Brown, Gilbert M.

    2015-12-07

    A unique battery hybrid utilizes an aluminum anode, a LiFePO4 cathode and an acidic ionic liquid electrolyte based on 1-ethyl-3-methylimidazolium chloride (EMImCl) and aluminum trichloride (AlCl 3) (EMImCl-AlCl 3, 1-1.1 in molar ratio) with or without LiAlCl4 is proposed. This hybrid ion battery delivers an initial high capacity of 160 mAh g-1 at a current rate of C/5. It also shows good rate capability and cycling performance.

  2. Low-Cost Direct Bonded Aluminum (DBA) Substrates

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    for mass production and that produces high adhesive strength of the ceramic-metal interfaces. Consider the fabrication and use of low-cost AlN as a potential (and...

  3. Optimization of Squeeze Casting for Aluminum Alloy Parts (Technical...

    Office of Scientific and Technical Information (OSTI)

    This study was initiated with the installation of a new production size UBE 350 Ton VSC Squeeze Casting system in the Metal Casting Laboratory at Case Western University. A ...

  4. Process for production of a borohydride compound

    DOEpatents

    Allen, Nathan Tait; Butterick, III, Robert; Chin, Arthur Achhing; Millar, Dean Michael; Molzahn, David Craig

    2014-08-19

    A process for production of a borohydride compound M(BH.sub.4).sub.y. The process has three steps. The first step combines a compound of formula (R.sup.1O).sub.yM with aluminum, hydrogen and a metallic catalyst containing at least one metal selected from the group consisting of titanium, zirconium, hafnium, niobium, vanadium, tantalum and iron to produce a compound of formula M(AlH.sub.3OR.sup.1).sub.y, wherein R.sup.1 is phenyl or phenyl substituted by at least one alkyl or alkoxy group; M is an alkali metal, Be or Mg; and y is one or two; wherein the catalyst is present at a level of at least 200 ppm based on weight of aluminum. The second step combines the compound of formula M(AlH.sub.3OR.sup.1).sub.y with a borate, boroxine or borazine compound to produce M(BH.sub.4).sub.y and a byproduct mixture containing alkali metal and aluminum aryloxides. The third step separates M(BH.sub.4).sub.y from the byproduct mixture.

  5. Energy conservation by hyperfiltration: food industry background literature survey

    SciTech Connect

    Not Available

    1980-04-15

    The application of hyperfiltration to selected food product streams and food processing wastewaters for energy conservation was examined. This literature survey had led to the following conclusions: no research has been conducted in the food industry using membranes with hot process streams due to the temperature limitation (< 40/sup 0/C) of the typically studied cellulose acetate membranes; based on the bench-scale research reviewed, concentration of fruit and vegetable juices with membranes appears to be technically feasible; pretreatment and product recovery research was conducted with membranes on citrus peel oil, potato processing and brine wastewaters and wheys. The experiments demonstrated that these applications are feasible; many of the problems that have been identified with membranes are associated with either the suspended solids or the high osmotic pressure and viscosity of many foods; research using dynamic membranes has been conducted with various effluents, at temperatures to approx. 100/sup 0/C, at pressures to 1200 psi and with suspended solids to approx. 2%; and, the dynamic membrane is being prototype tested by NASA for high temperature processing of shower water. The literature review substantiates potential for dynamic membrane on porous stainless tubes to process a number of hot process and effluent streams in the food processing industry. Hot water for recycle and product concentrations are major areas with potential for economic application. The two plants involved in the first phase of the project should be reviewed to identify potential energy conservation applications. As many as possible of the conservation applications should be tested during the screening phase at each site. The most promising applications at each site should be evaluated more intensively to establish engineering estimates of the economics of this technology for the canned fruit and vegetable segment of the food industry.

  6. Pollution prevention assessment for a manufacturer of food service equipment

    SciTech Connect

    Edwards, H.W.; Kostrzewa, M.F.; Looby, G.P.

    1995-09-01

    The US Environmental Protection Agency (EPA) has funded a pilot project to assist small and medium-size manufacturers who want to minimize their generation of waste but who lack the expertise to do so. In an effort to assist these manufacturers Waste Minimization Assessment Centers (WMACs) were established at selected universities and procedures were adapted from the EPA Waste Minimization Opportunity Assessment Manual. The WMAC team at Colorado State University performed an assessment at a plant that manufacturers commercial food service equipment. Raw materials used by the plant include stainless steel, mild steel, aluminum, and copper and brass. Operations performing in the plant include cutting, forming, bending, welding, polishing, painting, and assembly The team`s report, detailing findings and recommendations, indicated that paint-related wastes (organic solvents) are generated in large quantities and that significant cost savings could be achieved by retrofitting the water curtain paint spray booth to operate as a dry filter paint booth. Toluene could be replaced by a less toxic solvent. This Research Brief was developed by the principal investigators and EPA`s National Risk Management Research Laboratory, Cincinnati, OH, to announce key findings of an ongoing research project that is fully documented in a separate report of the same title available from University City Science Center.

  7. SPERT Destructive Test - I on Aluminum, Highly Enriched Plate Type Core

    SciTech Connect

    2011-04-05

    SPERT - Special Power Excursion Reactor Tests Destructive Test number 1 On Aluminum, Highly Enriched Plate Type Core. A test studying the behavior of the reactor under destructive conditions on a light water moderated pool-type reactor with a plate-type core.

  8. Ionic Current Mapping Techniques and Applications to Aluminum-Copper Corrosion

    SciTech Connect

    Isaacs, H. S.; Jeffcoate, C. S.; Missert, N. A.; Barbour, J. C.

    1999-10-17

    Measurements have been made of the aluminum/metal galvanic couple. A wide range of geometries were investigated varying the areas of anodic and cathodic surfaces and employing specially designed galvanic cells with crevices. In situ ionic current density mapping was used to monitor galvanic corrosion and currents flowing between separated metals was measured.

  9. Calorimetric study on mechanically milled aluminum and multiwall carbon nanotube composites

    SciTech Connect

    Nayan, Niraj Murty, S.V.S.N.; Sharma, S.C.; Kumar, K. Sree; Sinha, P.P.

    2011-11-15

    Pure aluminum reinforced with carbon nanotube (CNT) composites have been prepared by high energy attritor milling up to 48 hrs. Differential Scanning Calorimetry (DSC) has been carried out to investigate apparent activation energy and order of the reaction between carbon nanotubes and aluminum by Kissinger equation and Crane equation under non-isothermal conditions. The DSC results clearly reveal that an exothermic reaction occurs before the melting of aluminum. The effect of milling time on the initiation of this exothermic reaction has been studied. The peak temperature of the reaction of carbon nanotubes and aluminum is found to depend on the heating rate during the continuous heating. Apparent activation energy was found to get doubled after milling for 36 hrs compared to 24 hrs milled samples. The mechanism of the reaction kinetics which depends on reaction order is instantaneous nucleation and one dimensional growth for both samples. Formation of Al{sub 4}C{sub 3} was confirmed by X-ray diffraction (XRD) of as-milled powders and after performing DSC of the milled powders. Highlights: {yields} Attritor milling used for processing Al-CNT composites. {yields} Powder morphology as a function of time studied. {yields} Apparent activation energy and order of the reaction calculated for Al{sub 4}C{sub 3} formation. {yields} Apparent activation energy increases two fold with increase in milling time from 24 to 36 hours.

  10. SPERT Destructive Test - I on Aluminum, Highly Enriched Plate Type Core

    ScienceCinema

    None

    2016-07-12

    SPERT - Special Power Excursion Reactor Tests Destructive Test number 1 On Aluminum, Highly Enriched Plate Type Core. A test studying the behavior of the reactor under destructive conditions on a light water moderated pool-type reactor with a plate-type core.

  11. Development of an electronic device quality aluminum antimonide (AlSb) semiconductor for solar cell applications

    SciTech Connect

    Sherohman, John W; Yee, Jick Hong; Combs, III, Arthur W

    2014-11-11

    Electronic device quality Aluminum Antimonide (AlSb)-based single crystals produced by controlled atmospheric annealing are utilized in various configurations for solar cell applications. Like that of a GaAs-based solar cell devices, the AlSb-based solar cell devices as disclosed herein provides direct conversion of solar energy to electrical power.

  12. Silicon Solar Cells with Front Hetero-Contact and Aluminum Alloy Back Junction: Preprint

    SciTech Connect

    Yuan, H.-C.; Page, M. R.; Iwaniczko, E.; Xu, Y.; Roybal, L.; Wang, Q.; Branz, H. M.; Meier, D. L.

    2008-05-01

    We prototype an alternative n-type monocrystalline silicon (c-Si) solar cell structure that utilizes an n/i-type hydrogenated amorphous silicon (a-Si:H) front hetero-contact and a back p-n junction formed by alloying aluminum (Al) with the n-type Si wafer.

  13. MANAGEMENT OF RESEARCH AND TEST REACTOR ALUMINUM SPENT NUCLEAR FUEL - A TECHNOLOGY ASSESSMENT

    SciTech Connect

    Vinson, D.

    2010-07-11

    The Department of Energy's Environmental Management (DOE-EM) Program is responsible for the receipt and storage of aluminum research reactor spent nuclear fuel or used fuel until ultimate disposition. Aluminum research reactor used fuel is currently being stored or is anticipated to be returned to the U.S. and stored at DOE-EM storage facilities at the Savannah River Site and the Idaho Nuclear Technology and Engineering Center. This paper assesses the technologies and the options for safe transportation/receipt and interim storage of aluminum research reactor spent fuel and reviews the comprehensive strategy for its management. The U.S. Department of Energy uses the Appendix A, Spent Nuclear Fuel Acceptance Criteria, to identify the physical, chemical, and isotopic characteristics of spent nuclear fuel to be returned to the United States under the Foreign Research Reactor Spent Nuclear Fuel Acceptance Program. The fuel is further evaluated for acceptance through assessments of the fuel at the foreign sites that include corrosion damage and handleability. Transport involves use of commercial shipping casks with defined leakage rates that can provide containment of the fuel, some of which are breached. Options for safe storage include wet storage and dry storage. Both options must fully address potential degradation of the aluminum during the storage period. This paper focuses on the various options for safe transport and storage with respect to technology maturity and application.

  14. Ultrasonic deagglomeration of aluminum nanopowders with multi-walled carbon nanotube mixtures

    SciTech Connect

    Kozulin, Alexander A. Vorozhtsov, Sergey A. Kulkov, Sergey S.; Kulkov, Sergey N.; Teipel, U.

    2015-10-27

    Comprehensive investigations of aluminum nanopowders, multi-walled carbon nanotubes, and aluminum mixtures with multi-walled carbon nanotubes subjected to ultrasonic deagglomeration in a liquid medium were performed, using microstructural, X-ray diffraction, thermogravimetric, and calorimetric analyses, and specific surface area measurements. The regime of ultrasonic deagglomeration of aluminum nanopowders with multi-walled carbon nanotubes in a liquid medium is described, during which the division of large agglomerates and creation of homogeneous distribution of mixtures components in the volume takes place. It was determined that ultrasonic treatment influences the morphology and crystalline structure of investigated mixtures, contributes to the appearance of X-ray amorphous phase, decreases the specific surface area of the aluminum nanopowder from 13 to 12 m{sup 2}/g, and increases the pore volume and average size from 0.04 to 0.06 cm{sup 3}/g and from 12 to 19 nm, respectively. The size of coherently-diffracting domain was determined by the X-ray diffraction analysis is close to that estimated from the specific surface area and corresponds to average crystallites size in the materials under study.

  15. DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS

    SciTech Connect

    Elliot B. Kennel; Stephen P. Carpenter; Dady Dadyburjor; Manoj Katakdaunde; Liviu Magean; Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo

    2005-08-11

    The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. These carbon products include materials used in metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. During this reporting period, efforts have focused on the facility modifications for continuous hydrotreating, as well as developing improved protocols for producing synthetic pitches.

  16. Energy-Saving Melting and Revert Reduction Technology (E-SMARRT): Lost Foam Thin Wall - Feasibility of Producing Lost Foam Castings in Aluminum and Magnesium Based Alloys

    SciTech Connect

    Fasoyinu, Yemi; Griffin, John A.

    2014-03-31

    With the increased emphasis on vehicle weight reduction, production of near-net shape components by lost foam casting will make significant inroad into the next-generation of engineering component designs. The lost foam casting process is a cost effective method for producing complex castings using an expandable polystyrene pattern and un-bonded sand. The use of un-bonded molding media in the lost foam process will impose less constraint on the solidifying casting, making hot tearing less prevalent. This is especially true in Al-Mg and Al-Cu alloy systems that are prone to hot tearing when poured in rigid molds partially due to their long freezing range. Some of the unique advantages of using the lost foam casting process are closer dimensional tolerance, higher casting yield, and the elimination of sand cores and binders. Most of the aluminum alloys poured using the lost foam process are based on the Al-Si system. Very limited research work has been performed with Al-Mg and Al-Cu type alloys. With the increased emphasis on vehicle weight reduction, and given the high-strength-to-weight-ratio of magnesium, significant weight savings can be achieved by casting thin-wall (≤ 3 mm) engineering components from both aluminum- and magnesium-base alloys.

  17. SBA-15-supported iron catalysts for Fischer-Tropsch production of diesel fuel

    SciTech Connect

    Dae Jung Kim; Brian C. Dunn; Frank Huggins; Gerald P. Huffman; Min Kang; Jae Eui Yie; Edward M. Eyring

    2006-12-15

    Iron supported on SBA-15, a mesoporous structured silica, has been developed as a catalyst for the Fischer-Tropsch synthesis of hydrocarbons. The catalysts retain the high surface area of the support, {approximately}500 m{sup 2}/g, average pore size, and pore volume. Inclusion of aluminum into the SBA-15 did not significantly alter these parameters. XRD, XAFS, and Moessbauer spectroscopies were used to characterize the catalyst before and after being subjected to the reaction conditions. Prior to reaction, the iron was distributed among {alpha}-Fe{sub 2}O{sub 3}, ferrihydrite, and minor {gamma}Fe{sub 2}O{sub 3}. After reaction, the iron phases detected were nonmagnetic iron oxides, iron carbide, and metallic iron. The length of the induction period typically seen with iron-based F-T catalysts was strongly dependent on the amount of aluminum present in the catalyst. With no aluminum, the induction period lasted about 25 h, whereas the induction period decreased to less than 5 h with an Al:Si mass ratio of 0.010. A further increase in aluminum content lengthened the induction period, but always remained less than that without aluminum. Catalyst activity and product selectivity were also strongly dependent on aluminum content with the maximum diesel fuel fraction, C{sub 11+}, occurring with the Al:Si ratio of 0.010 and a CO conversion of 37%. The small concentration of aluminum may serve to increase the rate of iron carbide formation, whereas higher concentrations may begin to inhibit the rate. 23 refs., 6 figs., 2 tabs.

  18. Surface studies on the thermite mixture of Al/Cu/sub 2/O. II. Thickness measurements of carbon and of aluminum oxide on aluminum, and changes in copper chemistry

    SciTech Connect

    Rengan, A.; Haws, L.D.; Moddeman, W.E.; Wang, P.S.

    1980-10-10

    Improved surface analysis techniques of x-ray induced photoelectron spectroscopy (XPS) and high resolution Auger spectroscopy (AES) were used to study thermite materials. The thermite under examination was a powdered mixuture of aluminum metal and cuprous oxide in a mole ratio of 2/3. These improved techniques were used to examine the surfaces of the aluminum metal and of the cuprous oxide for the presence, the amount, and the thickness of contaminants. Carbon, aluminum oxide, cupric oxide, and metallic-like copper were found on the reactants and mixtures. XPS and AES spectra of aluminum and copper are given, and equations are derived which allow for the calculation of carbon and oxide thicknesses.

  19. CHARACTERIZATION OF TANK 11H AND TANK 51H POST ALUMINUM DISSOLUTION PROCESS SAMPLES

    SciTech Connect

    Hay, M; Daniel McCabe, D

    2008-05-16

    A dip sample of the liquid phase from Tank 11H and a 3-L slurry sample from Tank 51H were obtained and sent to Savannah River National Laboratory for characterization. These samples provide data to verify the amount of aluminum dissolved from the sludge as a result of the low temperature aluminum dissolution process conducted in Tank 51H. The characterization results for the as-received Tank 11H and Tank 51H supernate samples and the total dried solids of the Tank 51H sludge slurry sample appear quite good with respect to the precision of the sample replicates and minimal contamination present in the blank. The two supernate samples show similar concentrations for the major components as expected.

  20. Nanoscale microstructure effects on hydrogen behavior in rapidly solidified aluminum alloys

    SciTech Connect

    Tashlykova-Bushkevich, Iya I.

    2015-12-31

    The present work summarizes recent progress in the investigation of nanoscale microstructure effects on hydrogen behavior in rapidly solidified aluminum alloys foils produced at exceptionally high cooling rates. We focus here on the potential of modification of hydrogen desorption kinetics in respect to weak and strong trapping sites that could serve as hydrogen sinks in Al materials. It is shown that it is important to elucidate the surface microstructure of the Al alloy foils at the submicrometer scale because rapidly solidified microstructural features affect hydrogen trapping at nanostructured defects. We discuss the profound influence of solute atoms on hydrogen−lattice defect interactions in the alloys. with emphasis on role of vacancies in hydrogen evolution; both rapidly solidified pure Al and conventionally processed aluminum samples are considered.

  1. Nucleation and growth of damage in polycrystalline aluminum under dynamic tensile loading

    SciTech Connect

    Qi, M. L.; Yao, Y.; Ran, X. X.; Ye, W.; Bie, B. X.; Fan, D.; Li, P.

    2015-03-15

    Plate-impact experiments were conducted to study the features and mechanisms of void nucleation and growth in the polycrystalline of pure aluminum under dynamic loading. Soft-recovered samples have been analyzed by metallographic microscopy, electron back scattering diffraction (EBSD), and synchrotron radiation x-ray tomography technology. It was found that most of the void nucleation in grains neared the boundaries of “weak-orientation” grains and grew toward the grain boundaries with fractured small grains around the boundaries. This was mainly caused by the accumulation and interaction of slip systems in the “weak-orientation” grains. In addition, the micro voids were nearly octahedron because the octahedral slip systems were formed by 8 slip planes in the polycrystalline of pure aluminum. The EBSD results are consistent with the three-dimensional structure observed by synchrotron radiation x-ray.

  2. Method for processing aluminum spent potliner in a graphite electrode ARC furnace

    DOEpatents

    O'Connor, William K.; Turner, Paul C.; Addison, Gerald W.

    2002-12-24

    A method of processing spent aluminum pot liner containing carbon, cyanide compositions, fluorides and inorganic oxides. The spent aluminum pot liner is crushed iron oxide is added to form an agglomerated material. The agglomerated material is melted in an electric arc furnace having the electrodes submerged in the molten material to provide a reducing environment during the furnace operation. In the reducing environment, pot liner is oxidized while the iron oxides are reduced to produce iron and a slag substantially free of cyanide compositions and fluorides. An off-gas including carbon oxides and fluorine is treated in an air pollution control system with an afterburner and a scrubber to produce NaF, water and a gas vented to the atmosphere free of cyanide compositions, fluorine and CO.

  3. Thrust Generation with Low-Power Continuous-Wave Laser and Aluminum Foil Interaction

    SciTech Connect

    Horisawa, Hideyuki; Sumida, Sota; Funaki, Ikkoh

    2010-05-06

    The micro-newton thrust generation was observed through low-power continuous-wave laser and aluminum foil interaction without any remarkable ablation of the target surface. To evaluate the thrust characteristics, a torsion-balance thrust stand capable for the measurement of the thrust level down to micro-Newton ranges was developed. In the case of an aluminum foil target with 12.5 micrometer thickness, the maximum thrust level was 15 micro-newtons when the laser power was 20 W, or about 0.75 N/MW. It was also found that the laser intensity, or laser power per unit area, irradiated on the target was significantly important on the control of the thrust even under the low-intensity level.

  4. Colloidal infrared reflective and transparent conductive aluminum-doped zinc oxide nanocrystals

    DOEpatents

    Buonsanti, Raffaella; Milliron, Delia J

    2015-02-24

    The present invention provides a method of preparing aluminum-doped zinc oxide (AZO) nanocrystals. In an exemplary embodiment, the method includes (1) injecting a precursor mixture of a zinc precursor, an aluminum precursor, an amine, and a fatty acid in a solution of a vicinal diol in a non-coordinating solvent, thereby resulting in a reaction mixture, (2) precipitating the nanocrystals from the reaction mixture, thereby resulting in a final precipitate, and (3) dissolving the final precipitate in an apolar solvent. The present invention also provides a dispersion. In an exemplary embodiment, the dispersion includes (1) nanocrystals that are well separated from each other, where the nanocrystals are coated with surfactants and (2) an apolar solvent where the nanocrystals are suspended in the apolar solvent. The present invention also provides a film. In an exemplary embodiment, the film includes (1) a substrate and (2) nanocrystals that are evenly distributed on the substrate.

  5. Iron-aluminum alloys having high room-temperature and method for making same

    DOEpatents

    Sikka, Vinod K.; McKamey, Claudette G.

    1993-01-01

    Iron-aluminum alloys having selectable room-temperature ductilities of greater than 20%, high resistance to oxidation and sulfidation, resistant pitting and corrosion in aqueous solutions, and possessing relatively high yield and ultimate tensile strengths are described. These alloys comprise 8 to 9.5% aluminum, up to 7% chromium, up to 4% molybdenum, up to 0.05% carbon, up to 0.5% of a carbide former such as zirconium, up to 0.1 yttrium, and the balance iron. These alloys in wrought form are annealed at a selected temperature in the range of 700.degree. C. to about 1100.degree. C. for providing the alloys with selected room-temperature ductilities in the range of 20 to about 29%.

  6. Method for processing aluminum spent potliner in a graphite electrode arc furnace

    DOEpatents

    O'Connor, William K.; Turner, Paul C.; Addison, G.W.

    2002-12-24

    A method of processing spent aluminum pot liner containing carbon, cyanide compositions, fluorides and inorganic oxides. The spend aluminum pot liner is crushed, iron oxide is added to form an agglomerated material. The agglomerated material is melted in an electric arc furnace having the electrodes submerged in the molten material to provide a reducing environment during the furnace operation. In the reducing environment, pot liner is oxidized while the iron oxides are reduced to produce iron and a slag substantially free of cyanide compositions and fluorides. An off-gas including carbon oxides and fluorine is treated in an air pollution control system with an afterburner and a scrubber to produce NaF, water and a gas vented to the atmosphere free of cyanide compositions, fluorine, and CO.

  7. Method of making highly porous, stable aluminum oxides doped with silicon

    DOEpatents

    Khosravi-Mardkhe, Maryam; Woodfield, Brian F.; Bartholomew, Calvin H.; Huang, Baiyu

    2016-03-22

    The present invention relates to a method for making high surface area and large pore volume thermally stable silica-doped alumina (aluminum oxide) catalyst support and ceramic materials. The ability of the silica-alumina to withstand high temperatures in presence or absence of water and prevent sintering allows it to maintain good activity over a long period of time in catalytic reactions. The method of preparing such materials includes adding organic silicon reagents to an organic aluminum salt such as an alkoxide in a controlled quantity as a doping agent in a solid state, solvent deficient reaction followed by calcination. Alternatively, the organic silicon compound may be added after calcination of the alumina, followed by another calcination step. This method is inexpensive and simple. The alumina catalyst support material prepared by the subject method maintains high pore volumes, pore diameters and surface areas at very high temperatures and in the presence of steam.

  8. Boron-carbide-aluminum and boron-carbide-reactive metal cermets

    DOEpatents

    Halverson, Danny C.; Pyzik, Aleksander J.; Aksay, Ilhan A.

    1986-01-01

    Hard, tough, lightweight boron-carbide-reactive metal composites, particularly boron-carbide-aluminum composites, are produced. These composites have compositions with a plurality of phases. A method is provided, including the steps of wetting and reacting the starting materials, by which the microstructures in the resulting composites can be controllably selected. Starting compositions, reaction temperatures, reaction times, and reaction atmospheres are parameters for controlling the process and resulting compositions. The ceramic phases are homogeneously distributed in the metal phases and adhesive forces at ceramic-metal interfaces are maximized. An initial consolidation step is used to achieve fully dense composites. Microstructures of boron-carbide-aluminum cermets have been produced with modulus of rupture exceeding 110 ksi and fracture toughness exceeding 12 ksi.sqroot.in. These composites and methods can be used to form a variety of structural elements.

  9. Iron-aluminum alloys having high room-temperature and method for making same

    DOEpatents

    Sikka, V.K.; McKamey, C.G.

    1993-08-24

    A wrought and annealed iron-aluminum alloy is described consisting essentially of 8 to 9.5% aluminum, an effective amount of chromium sufficient to promote resistance to aqueous corrosion of the alloy, and an alloying constituent selected from the group of elements consisting of an effective amount of molybdenum sufficient to promote solution hardening of the alloy and resistance of the alloy to pitting when exposed to solutions containing chloride, up to about 0.05% carbon with up to about 0.5% of a carbide former which combines with the carbon to form carbides for controlling grain growth at elevated temperatures, and mixtures thereof, and the balance iron, wherein said alloy has a single disordered [alpha] phase crystal structure, is substantially non-susceptible to hydrogen embrittlement, and has a room-temperature ductility of greater than 20%.

  10. Method of preparing an electrode material of lithium-aluminum alloy

    DOEpatents

    Settle, Jack L.; Myles, Kevin M.; Battles, James E.

    1976-01-01

    A solid compact having a uniform alloy composition of lithium and aluminum is prepared as a negative electrode for an electrochemical cell. Lithium losses during preparation are minimized by dissolving aluminum within a lithium-rich melt at temperatures near the liquidus temperatures. The desired alloy composition is then solidified and fragmented. The fragments are homogenized to a uniform composition by annealing at a temperature near the solidus temperature. After comminuting to fine particles, the alloy material can be blended with powdered electrolyte and pressed into a solid compact having the desired electrode shape. In the preparation of some electrodes, an electrically conductive metal mesh is embedded into the compact as a current collector.

  11. Cu--Ni--Fe anode for use in aluminum producing electrolytic cell

    DOEpatents

    Bergsma, S. Craig; Brown, Craig W.; Bradford, Donald R; Barnett, Robert J.; Mezner, Michael B.

    2006-07-18

    A method of producing aluminum in an electrolytic cell containing alumina dissolved in an electrolyte, the method comprising the steps of providing a molten salt electrolyte at a temperature of less than 900.degree. C. having alumina dissolved therein in an electrolytic cell having a liner for containing the electrolyte, the liner having a bottom and walls extending upwardly from said bottom. A plurality of non-consumable Cu--Ni--Fe anodes and cathodes are disposed in a vertical direction in the electrolyte, the cathodes having a plate configuration and the anodes having a flat configuration to compliment the cathodes. The anodes contain apertures therethrough to permit flow of electrolyte through the apertures to provide alumina-enriched electrolyte between the anodes and the cathodes. Electrical current is passed through the anodes and through the electrolyte to the cathodes, depositing aluminum at the cathodes and producing gas at the anodes.

  12. Novel Cyclotron-Based Radiometal Production

    SciTech Connect

    DeGrado, Timothy R.

    2013-10-31

    Accomplishments: (1) Construction of prototype solution target for radiometal production; (2) Testing of prototype target for production of following isotopes: a. Zr-89. Investigation of Zr-89 production from Y-89 nitrate solution. i. Defined problems of gas evolution and salt precipitation. ii. Solved problem of precipitation by addition of nitric acid. iii. Solved gas evolution problem with addition of backpressure regulator and constant degassing of target during irradiations. iv. Investigated effects of Y-89 nitrate concentration and beam current. v. Published abstracts at SNM and ISRS meetings; (3) Design of 2nd generation radiometal solution target. a. Included reflux chamber and smaller target volume to conserve precious target materials. b. Included aluminum for prototype and tantalum for working model. c. Included greater varicosities for improved heat transfer; and, (4) Construction of 2nd generation radiometal solution target started.

  13. Design of an Aluminum Proton Beam Window for the Spallation Neutron Source

    SciTech Connect

    Janney, Jim G; McClintock, David A

    2012-01-01

    An aluminum proton beam window design is being considered at the Spallation Neutron Source primarily to increase the lifetime of the window, with secondary advantages of higher beam transport efficiency and lower activation. The window separates the core vessel, the location of the mercury target, from the vacuum of the accelerator, while withstanding the pass through of a proton beam of up to 2 MW with 1.0 GeV proton energy. The current aluminum alloy being investigated for the window material is 6061-T651 due to its combination of high strength, high thermal conductivity, and good resistance to aqueous corrosion, as well as demonstrated dependability in previous high-radiation environments. The window design will feature a thin plate with closely spaced cross drilled cooling holes. An analytical approach was used to optimize the dimensions of the window before finite element analysis was used to simulate temperature profiles and stress fields resulting from thermal and static pressure loading. The resulting maximum temperature of 60 C and Von Mises stress of 71 MPa are very low compared to allowables for Al 6061-T651. A significant challenge in designing an aluminum proton beam window for SNS is integrating the window with the current 316L SS shield blocks. Explosion bonding was chosen as a joining technique because of the large bonding area required. A test program has commenced to prove explosion bonding can produce a robust vacuum joint. Pending successful explosion bond testing, the aluminum proton beam window design will be proven acceptable for service in the Spallation Neutron Source.

  14. Refining of solid ferrous scrap intermingled with copper by using molten aluminum

    SciTech Connect

    Iwase, M.

    1996-12-31

    A new approach for the removal of copper from solid ferrous scrap has been proposed by the present authors. With this process, solid ferrous scrap intermingled with pure copper is brought into contact with molten aluminum, which dissolved copper preferentially, and is recovered as {l_brace}Al + Cu{r_brace} alloys. After a duration of 30 minutes at temperatures between 963 K and 1,223 K, steel scrap is removed from the bath, resulting in being free of copper contamination.

  15. Relative electrochemical stability of lithium and aluminum salts and their solvents

    SciTech Connect

    Ciemiecki, K.T.; Auborn, J.J.

    1983-10-01

    The stability series were determined by cyclic voltammetric measurements at platinum electrodes in dry acetonitrile. These results are applicable to the electrochemical synthesis of new organic electrodes and to the development of an ambient temperature rechargeable battery. Cyclic voltammetry was also used to establish electrochemical windows for a class of room temperature chloroaluminate molten salts from which aluminum can be reversibly electrodeposited. Enhancement of oxidative stability by increased Lewis acidity was observed in both the melts and the more conventional electrolytes.

  16. Quench-age method for the fabrication of niobium-aluminum superconductors

    DOEpatents

    Pickus, Milton R.; Ciardella, Robert L.

    1978-01-01

    A flexible Nb.sub.3 Al superconducting wire is fabricated from a niobium-aluminum composite wire by heating to form a solid solution which is retained at room temperature as a metastable solid solution by quenching. The metastable solid solution is then transformed to the stable superconducting A-15 phase by low temperature aging. The transformation induced by aging can be controlled to yield either a multifilamentary or a solid A-15 core surrounded by ductile niobium.

  17. Correlation between shear punch and tensile data for neutron-irradiated aluminum alloys

    SciTech Connect

    Hamilton, M.L.; Edwards, D.J.; Toloczko, M.B.

    1995-04-01

    This work was performed to determine whether shear punch and tensile data obtained on neutron irradiated aluminum alloys exhibited the same type of relationship as had been seen in other work and to assess the validity of extrapolating the results to proton-irradiated alloys. This work was also meant to be the first of a series of similar test matrices designed to determine whether the shear punch/tensile relationship varied or was the same for different alloy classes.

  18. DOWNSTREAM IMPACTS OF SLUDGE MASS REDUCTION VIA ALUMINUM DISSOLUTION ON DWPF PROCESSING OF SAVANNAH RIVER SITE HIGH LEVEL WASTE - 9382

    SciTech Connect

    Pareizs, J; Cj Bannochie, C; Michael Hay, M; Daniel McCabe, D

    2009-01-14

    The SRS sludge that was to become a major fraction of Sludge Batch 5 (SB5) for the Defense Waste Processing Facility (DWPF) contained a large fraction of H-Modified PUREX (HM) sludge, containing a large fraction of aluminum compounds that could adversely impact the processing and increase the vitrified waste volume. It is beneficial to reduce the non-radioactive fraction of the sludge to minimize the number of glass waste canisters that must be sent to a Federal Repository. Removal of aluminum compounds, such as boehmite and gibbsite, from sludge can be performed with the addition of NaOH solution and heating the sludge for several days. Preparation of SB5 involved adding sodium hydroxide directly to the waste tank and heating the contents to a moderate temperature through slurry pump operation to remove a fraction of this aluminum. The Savannah River National Laboratory (SRNL) was tasked with demonstrating this process on actual tank waste sludge in our Shielded Cells Facility. This paper evaluates some of the impacts of aluminum dissolution on sludge washing and DWPF processing by comparing sludge processing with and without aluminum dissolution. It was necessary to demonstrate these steps to ensure that the aluminum removal process would not adversely impact the chemical and physical properties of the sludge which could result in slower processing or process upsets in the DWPF.

  19. DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS

    SciTech Connect

    Elliot B. Kennel; Quentin C. Berg; Stephen P. Carpenter; Dady Dadyburjor; Jason C. Hissam; Manoj Katakdaunde; Liviu Magean; Abha Saddawi; Alfred H. Stiller; John W. Zondlo

    2006-03-07

    The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. The largest applications are those which support metals smelting, such as anodes for aluminum smelting and electrodes for arc furnaces. Other carbon products include materials used in creating fuels for the Direct Carbon Fuel Cell, metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. During this reporting period, efforts have focused on the development of carbon electrodes for Direct Carbon Fuel Cells (DCFC), and on carbon foam composites used in ballistic armor, as well as the hydrotreatment of solvents used in the basic solvent extraction process. A major goal is the production of 1500 pounds of binder pitch, corresponding to about 3000 pounds of hydrotreated solvent.

  20. Reconsideration of natural-gas immersion burners to melt recycled aluminum

    SciTech Connect

    Clark, John A., III; Thekdi, Arvind; Ningileri, S.; Han, Q.

    2005-09-01

    The best open flame reverberatory aluminum melting furnaces are approximately 45% efficient. Furnace efficiency can be increased by using immersed tube burners. Currently, recuperated tube burners with capacities to remelt aluminum are available. Tube burners would allow remelt furnaces to operate at lower temperatures, reduce dross formation, reduce particulate emissions, and provide clean flue gas to other energy intensive processes. Babcock and Wilcox, under GRI (now GTI – Gas Technology Institute) contract in the late-1980’s, demonstrated the technically feasibility of immersion melting of aluminum. However, tube reliability was problematic due to metal penetration, dross build-up, thermal shock, and mechanical failure. Also, the concept of “cold start” melting was not addressed. The Albany Research Center (U.S. DOE) is cooperating with Secat, E3M Inc., the University of Kentucky, and Oak Ridge National Laboratory in an ITP-sponsored program to combine emerging technologies in a retrofitable furnace package targeting improved remelt efficiency ranging from 55% to 75%.

  1. A hot-cracking mitigation technique for welding high-strength aluminum alloy

    SciTech Connect

    Yang, Y.P.; Dong, P.; Zhang, J.; Tian, X.

    2000-01-01

    A hot-cracking mitigation technique for gas tungsten arc welding (GTAW) of high-strength aluminum alloy 2024 is presented. The proposed welding technique incorporates a trailing heat sink (an intense cooling source) with respect to the welding torch. The development of the mitigation technique was based on both detailed welding process simulation using advanced finite element techniques and systematic laboratory experiments. The finite element methods were used to investigate the detailed thermomechanical behavior of the weld metal that undergoes the brittle temperature range (BTR) during welding. As expected, a tensile deformation zone within the material BTR region was identified behind the weld pool under conventional GTA welding process conventional GTA welding process conditions for the aluminum alloy studied. To mitigate hot cracking, the tensile zone behind the weld pool must be eliminated or reduce to a satisfactory level if the weld metal hot ductility cannot be further improved. With detailed computational modeling, it was found that by the introduction of a trailing heat sink at some distance behind the welding arc, the tensile strain rate with respect to temperature in the zone encompassing the BTR region can be significantly reduced. A series of parametric studies were also conducted to derive optimal process parameters for the trailing heat sink. The experimental results confirmed the effectiveness of the trailing heat sink technique. With a proper implementation of the trailing heat sink method, hot cracking can be completely eliminated in welding aluminum alloy 2024 (AA 2024).

  2. A user`s perspective on aluminum dome roofs for aboveground tanks

    SciTech Connect

    Myers, P.E.

    1995-12-31

    There is a trend in the petroleum industry to install aluminum dome roofs on storage tanks of all kinds. Although most dome roofs have been installed on floating roof tanks, there is a trend to install them on fixed roof tanks as well, substituting the familiar shallow fixed cone roof with a geodesic dome. In part, this trend has been caused by EPA requirements causing a greater number of closed tanks to be vented to vapor recovery or vapor destruction systems. Both the aluminum roof manufacturing community and the user have moved into a whole new set of problems associated with the change in dome roof applications from atmospheric to those requiring internal pressure. New problems are just now being dealt with and solved because cost factors tend to make the aluminum dome an economic solution for many cases where sealed tank systems must be used. Because of the increased numbers of geodesic domes as either an alternative to a fixed cone roof tank or as a way to convert an external floating roof tank to an internal floating roof tank or as their potential to serve as tools in the environmental arena, it is the intent of this paper to examine them from the user`s perspective. In addition, some areas of research that should resolve some reliability and safety issues are presented for consideration and research by not only manufacturers but the users as well.

  3. NREL Scientists Reveal Origin of Diverse Melting Behaviors of Aluminum Nanoclusters (Fact Sheet)

    SciTech Connect

    Not Available

    2011-10-01

    Research reveals active role of cluster symmetries on the size-sensitive, diverse melting behaviors of metallic nanoclusters, providing insight to understanding phase changes of nanoparticles for thermal energy storage. Unlike macroscopic bulk materials, intermediate-sized nanoclusters with around 55 atoms inherently exhibit size-sensitive melting changes: adding just a single atom to a nanocluster can cause a dramatic change in melting behavior. Microscopic understanding of thermal behaviors of metal nanoclusters is important for nanoscale catalysis and thermal energy storage applications. However, it is a challenge to obtain a structural interpretation at the atomic level from measured thermodynamic quantities such as heat capacity. Using ab initio molecular dynamics simulations, scientists at the National Renewable Energy Laboratory (NREL) revealed a clear correlation between the diverse melting behaviors of aluminum nanoclusters and cluster core symmetries. These simulations reproduced, for the first time, the size-sensitive heat capacities of aluminum nanoclusters, which exhibit several distinctive shapes associated with the diverse melting behaviors of the clusters. The size-dependent, diverse melting behaviors of the aluminum clusters are attributed to the reduced symmetry (from Td {yields} D2d {yields} Cs) with increasing the cluster sizes and can be used to help design thermal storage materials.

  4. Application of Abrasive-Waterjets for Machining Fatigue-Critical Aircraft Aluminum Parts

    SciTech Connect

    Liu, H T; Hovanski, Yuri; Dahl, Michael E; Zeng, J

    2010-08-19

    Current specifications require AWJ-cut aluminum parts for fatigue critical aerospace structures to go through subsequent processing due to concerns of degradation in fatigue performance. The requirement of secondary process for AWJ-machined parts greatly negates the cost effectiveness of waterjet technology. Some cost savings are envisioned if it can be shown that AWJ net cut parts have comparable durability properties as those conventionally machined. To revisit and upgrade the specifications for AWJ machining of aircraft aluminum, “Dog-bone” specimens, with and without secondary processes, were prepared for independent fatigue tests at Boeing and Pacific Northwest National Laboratory (PNNL). Test results show that the fatigue life is proportional to quality levels of machined edges or inversely proportional to the surface roughness Ra . Even at highest quality level, the average fatigue life of AWJ-machined parts is about 30% shorter than those of conventionally machined counterparts. Between two secondary processes, dry-grit blasting with aluminum oxide abrasives until the striation is removed visually yields excellent result. It actually prolongs the fatigue life of parts at least three times higher than that achievable with conventional machining. Dry-grit blasting is relatively simple and inexpensive to administrate and, equally important, alleviates the concerns of garnet embedment.

  5. Control of back surface reflectance from aluminum alloyed contacts on silicon solar cells

    SciTech Connect

    Cudzinovic, M.; Sopori, B.

    1996-05-01

    A process for forming highly reflective aluminum back contacts with low contact resistance to silicon solar cells is described. By controlling the process conditions, it is possible to vary the silicon/aluminum interface from a specular to a diffuse reflector while maintaining a high interface reflectance. The specular interface is found to be a uniform silicon/aluminum alloy layer a few angstroms thick that has epitaxially regrown on the silicon. The diffuse interface consists of randomly distributed (111) pyramids produced by crystallographic out-diffusion of the bulk silicon. The light trapping ability of the diffuse contact is found to be close to the theoretical limit. Both types of contacts are found to have specific contact resistivities of 10{sup {minus}5} {Omega}-cm{sup 2}. The process for forming the contacts involves illuminating the devices with tungsten halogen lamps. The process is rapid (under 100 s) and low temperature (peak temperature < 580{degrees}C), making it favorable for commercial solar cell fabrication.

  6. An investigation of aluminum titanate-spinel composites behavior in radiation

    SciTech Connect

    Cevikbas, G.; Tugrul, A. B.; Boyraz, T.; Buyuk, B.; Onen, U.

    2015-03-30

    In the present work, the radiation attenuation properties of Aluminum titanate (Al{sub 2}TiO{sub 5})-Spinel (MgAl{sub 2}O{sub 4}) ceramics composites were investigated. Al{sub 2}TiO{sub 5}-MgAl{sub 2}O{sub 4} ceramics composites which have different Al{sub 2}TiO{sub 5} percentages (0%, 5% and 10%) were produced and performed against gamma sources. Cs-137 and Co-60 were used as gamma radiation sources. Transmission technique was used in the experiments. The linear and mass attenuation coefficients of the samples were carried out for gamma radiation sources. The experimental results were compared with the theoretical mass attenuation coefficients which were calculated by using XCOM computer code. Increasing Al{sub 2}TiO{sub 5} percentage in the Aluminum titanate/ Spinel ceramics composites causes the higher linear and mass attenuation coefficients of the composites against Cs-137 and Co-60 gamma radioisotopes. Therefore Also theoretical mass attenuation coefficients are compatible with the experimental results. In conclusion, increasing the Aluminum titanate ratio in the Al{sub 2}TiO{sub 5}-MgAl{sub 2}O{sub 4} ceramics composites increases the gamma shielding property of the Al{sub 2}TiO{sub 5}-MgAl{sub 2}O{sub 4} ceramics for nuclear shielding applications.

  7. Preliminary study of the electrolysis of aluminum sulfide in molten salts

    SciTech Connect

    Minh, N.Q.; Loutfy, R.O.; Yao, N.P.

    1983-02-01

    A preliminary laboratory-scale study of the electrolysis of aluminum sulfide in molten salts investigated the (1) solubility of Al/sub 2/S/sub 3/ in molten salts, (2) electrochemical behavior of Al/sub 2/S/sub 3/, and (3) electrolysis of Al/sub 2/S/sub 3/ with the determination of current efficiency as a function of current density. The solubility measurements show that MgCl/sub 2/-NaCl-KCl eutectic electrolyte at 1023 K can dissolve up to 3.3 mol % sulfide. The molar ratio of sulfur to aluminum in the eutectic is about one, which suggests that some sulfur remains undissolved, probably in the form of MgS. The experimental data and thermodynamic calculations suggest that Al/sub 2/S/sub 3/ dissolves in the eutectic to form AlS/sup +/ species in solution. Addition of AlCl/sub 3/ to the eutectic enhances the solubility of Al/sub 2/S/sub 3/; the solubility increases with increasing AlCl/sub 3/ concentration. The electrode reaction mechanism for the electrolysis of Al/sub 2/S/sub 3/ was elucidated by using linear sweep voltammetry. The cathodic reduction of aluminum-ion-containing species to aluminum proceeds by a reversible, diffusion-controlled, three-electron reaction. The anodic reaction involves the two-electron discharge of sulfide-ion-containing species, followed by the fast dimerization of sulfur atoms to S/sub 2/. Electrolysis experiments show that Al/sub 2/S/sub 3/ dissolved in molten MgCl/sub 2/-NaCl-KCl eutectic or in eutectic containing AlCl/sub 3/ can be electrolyzed to produce aluminum and sulfur. In the eutectic at 1023 K, the electrolysis can be conducted up to about 300 mA/cm/sup 2/ for the saturation solubility of Al/sub 2/S/sub 3/. Although these preliminary results are promising, additional studies are needed to elucidate many critical operating parameters before the technical potential of the electrolysis can be accurately assessed. 20 figures, 18 tables.

  8. Metallic Reinforcement of Direct Squeeze Die Casting Aluminum Alloys for Improved Strength and Fracture Resistance

    SciTech Connect

    D. Schwam: J.F. Wallace: Y. Zhu: J.W. Ki

    2004-10-01

    The utilization of aluminum die casting as enclosures where internal equipment is rotating inside of the casting and could fracture requires a strong housing to restrain the fractured parts. A typical example would be a supercharger. In case of a failure, unless adequately contained, fractured parts could injure people operating the equipment. A number of potential reinforcement materials were investigated. The initial work was conducted in sand molds to create experimental conditions that promote prolonged contact of the reinforcing material with molten aluminum. Bonding of Aluminum bronze, Cast iron, and Ni-resist inserts with various electroplated coatings and surface treatments were analyzed. Also toughening of A354 aluminum cast alloy by steel and stainless steel wire mesh with various conditions was analyzed. A practical approach to reinforcement of die cast aluminum components is to use a reinforcing steel preform. Such performs can be fabricated from steel wire mesh or perforated metal sheet by stamping or deep drawing. A hemispherical, dome shaped casting was selected in this investigation. A deep drawing die was used to fabricate the reinforcing performs. The tendency of aluminum cast enclosures to fracture could be significantly reduced by installing a wire mesh of austenitic stainless steel or a punched austenitic stainless steel sheet within the casting. The use of reinforcements made of austenitic stainless steel wire mesh or punched austenitic stainless steel sheet provided marked improvement in reducing the fragmentation of the casting. The best strengthening was obtained with austenitic stainless steel wire and with a punched stainless steel sheet without annealing this material. Somewhat lower results were obtained with the annealed punched stainless steel sheet. When the annealed 1020 steel wire mesh was used, the results were only slightly improved because of the lower mechanical properties of this unalloyed steel. The lowest results were

  9. Anaerobic co-digestion of food waste and landfill leachate in single-phase batch reactors

    SciTech Connect

    Liao, Xiaofeng; Zhu, Shuangyan; Zhong, Delai; Zhu, Jingping Liao, Li

    2014-11-15

    Highlights: • Anaerobic co-digestion strategy for food waste treatment at OLR 41.8 g VS/L. • A certain amount of raw leachate effectively relieved acidic inhibition. • The study showed that food waste was completely degraded. - Abstract: In order to investigate the effect of raw leachate on anaerobic digestion of food waste, co-digestions of food waste with raw leachate were carried out. A series of single-phase batch mesophilic (35 ± 1 °C) anaerobic digestions were performed at a food waste concentration of 41.8 g VS/L. The results showed that inhibition of biogas production by volatile fatty acids (VFA) occurred without raw leachate addition. A certain amount of raw leachate in the reactors effectively relieved acidic inhibition caused by VFA accumulation, and the system maintained stable with methane yield of 369–466 mL/g VS. Total ammonia nitrogen introduced into the digestion systems with initial 2000–3000 mgNH{sub 4}–N/L not only replenished nitrogen for bacterial growth, but also formed a buffer system with VFA to maintain a delicate biochemical balance between the acidogenic and methanogenic microorganisms. UV spectroscopy and fluorescence excitation–emission matrix spectroscopy data showed that food waste was completely degraded. We concluded that using raw leachate for supplement water addition and pH modifier on anaerobic digestion of food waste was effective. An appropriate fraction of leachate could stimulate methanogenic activity and enhance biogas production.

  10. NPO donates 50,177 pounds of food for Feds Feed Families campaign | Y-12

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    National Security Complex NPO donates 50,177 pounds ... NPO donates 50,177 pounds of food for Feds Feed Families campaign Posted: September 9, 2016 - 10:22am Employees of the National Nuclear Security Administration Production Office have donated 50,177 pounds of food as part of the annual U.S. Department of Energy's Feds Feed Families campaign. The amount of food donated is almost double the amount donated in the 2015 campaign and continues NPO's tradition as a leader in this campaign among

  11. Development of Geothermally Assisted Process for Production of Liquid Fuels and Chemicals from Wheat Straw

    SciTech Connect

    Murphy, V.G.; Linden, J.C.; Moreira, A.R.; Lenz, T.G.

    1981-06-01

    fuel; and on the other hand, it provides a means for ''exporting'' geothermal energy from the well site. The primary goal of the work discussed in this report was to investigate the effects of variations in autohydrolysis conditions on the production of fermentable sugars from wheat straw. In assessing the relative merits of various sets of conditions, we considered both the direct production of sugar from the autohydrolysis of hemicellulose and the subsequent yield from the enzymatic hydrolysis of cellulose. The principal parameters studied were time, temperature, and water/fiber weight ratio; however, we also investigated the effects of adding minor amounts of phenol and aluminum sulfate to the autohydrolysis charge. Phenol was selected for study because it was reported (8) to be effective in suppressing repolymerization of reactive lignin fragments. Aluminum sulfate, on the other hand, was chosen as a representative of the Lewis acids which, we hoped, would catalyze the delignification reactions.

  12. Anaerobic treatment of food wastes

    SciTech Connect

    Criner, G. )

    1991-04-01

    This article describes a research project at the University of Maine in which food wastes from the University cafeteria salad bar are processed in the anaerobic facility which normally treats only animal wastes. The project has benefited the University in several ways: avoidance of waste disposal fees; increased electricity co-generated from the biogas process; and use of the residual as fertilizer. An economic analysis indicated that the estimated cost of anaerobic treatment of the salad bar wastes was $4520/yr and benefits were $4793/yr. Since the digester was already in use, this cost was not factored into the analysis. Further studies are being planned.

  13. Achieving Water-Sustainable Bioenergy Production

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    BioEnergy 2015: Opportunities in a Changing Energy Landscape Achieving Water-Sustainable Bioenergy Production May Wu Argonne National Laboratory Session 3-A: Growing a Water-Smart Bioeconomy BioEnergy 2015 Conference June 23-24, 2015 Washington, DC * Water and energy are intertwined. Energy production requires water resource; water supply needs energy. A growing population demands increased supply of water, food, and energy. * Energy and fuel production and water sustainability have a dynamic

  14. Final Report, Materials for Industrial Heat Recovery Systems, Task 1 Improved Materials and Operation of Recuperators for Aluminum Melting Furnaces

    SciTech Connect

    Keiser, James R.; Sarma, Gorti B.; Thekdi, Arvind; Meisner Roberta A.; Phelps, Tony; Willoughby, Adam W.; Gorog, J. Peter; Zeh, John; Ningileri, Shridas; Liu, Yansheng; Xiao, Chenghe

    2007-09-30

    Production of aluminum is a very energy intensive process which is increasingly more important in the USA. This project concentrated on the materials issues associated with recovery of energy from the flue gas stream in the secondary industry where scrap and recycled metal are melted in large furnaces using gas fired burners. Recuperators are one method used to transfer heat from the flue gas to the air intended for use in the gas burners. By preheating this combustion air, less fuel has to be used to raise the gas temperature to the desired level. Recuperators have been successfully used to preheat the air, however, in many cases the metallic recuperator tubes have a relatively limited lifetime – 6 to 9 months. The intent of this project was to determine the cause of the rapid tube degradation and then to recommend alternative materials or operating conditions to prolong life of the recuperator tubes. The first step to understanding degradation of the tubes was to examine exposed tubes to identify the corrosion products. Analyses of the surface scales showed primarily iron oxides rather than chromium oxide suggesting the tubes were probably cycled to relatively high temperatures to the extent that cycling and subsequent oxide spalling reduced the surface concentration of chromium below a critical level. To characterize the temperatures reached by the tubes, thermocouples were mounted on selected tubes and the temperatures measured. During the several hour furnace cycle, tube temperatures well above 1000°C were regularly recorded and, on some occasions, temperatures of more than 1100°C were measured. Further temperature characterization was done with an infrared camera, and this camera clearly showed the variations in temperature across the first row of tubes in the four recuperator modules. Computational fluid dynamics was used to model the flow of combustion air in the tubes and the flue gas around the outside of the tubes. This modeling showed the

  15. Fish scale deformation analysis using scanning electron microscope: New potential biomarker in aquatic environmental monitoring of aluminum and iron contamination

    SciTech Connect

    Hidayati, Dewi; Sulaiman, Norela; Othman, Shuhaimi; Ismail, B. S.

    2013-11-27

    Fish scale has the potential to be a rapid biomarker due to its structure and high possibility to come into contact with any pollutant in the aquatic environment. The scale structure consists of osteoblastic cells and other bone materials such as collagen where it is possible to form a molecular complex with heavy metals such as aluminum and iron. Hence, aluminum and iron in water could possibly destroy the scale material and marked as a scale deformation that quantitatively could be analyzed by comparing it to the normal scale structure. Water sampling and fish cage experiment were performed between June and July 2011 in Porong river which represented the water body that has high aluminum and iron contamination. The filtered water samples were preserved and extracted using the acid-mixture procedure prior to measurement of the aluminum and iron concentrations using Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES), while samples for total suspended solid (TSS) analysis were kept at 4 °C in cool-boxes. The scales were cleaned with sterile water, then dehydrated in 30, 50, 70, and 90% ethanol and dried on filter papers. They were then mounted on an aluminum stub and coated with gold in a sputter coater prior to Scanning Electron Microscope (SEM) observation. According to the SEM analysis, it was found that there were several deformations on the scale samples taken from sites that have high concentrations of aluminum and iron i.e. the increasing number of pits, deformation and decreasing number of spherules and ridges while the control scale exhibited the normal features. However, the site with higher TSS and pH indicated lower aluminum effect. A moderate correlation was found between the number of pits with aluminum (r=0.43) and iron (r=0.41) concentrations. Fish scale deformation using SEM analysis can potentially be a rapid biomarker in aquatic monitoring of aluminum and iron contamination. However, the measurement must be accompanied by pH and

  16. Senegal food and energy study: energy use and opportunities for energy-related improvements in the food system

    SciTech Connect

    Not Available

    1980-08-01

    The growth of agriculture, the mainstay of Senegal's economy, is contingent upon the acquisition of imported energy. This study examines the key constituents of the Senegalese food system in relation to energy supply and demand. The study first analyzes the food system (crop characteristics, and physical and institutional components) and the energy system (sources, costs, supply/conversion technologies, and consumption patterns). Next, energy-use profiles are provided on the production and distribution processes of millet/sorghum, rice, groundnuts, and fish. Household cooking practices are also discussed. Recommendations to improve irrigation, the second key to increasing food supplies, include funding for low-capacity photovoltaic and solar-thermal systems, setting up windmills in coastal areas, and designing large-capacity solar plants similar to those at Bakel. To save energy at the household level, wood or charcoal cooking stoves must be made more efficient and the use of biogas plants should be studied. To counter the serious depletion of fuelwood, Senegal's main indigenous energy resource, energy-efficient charcoal production should be developed, the charcoal industry reorganized, and afforestation and forest management programs expanded.

  17. Monte Carlo electron-photon transport using GPUs as an accelerator: Results for a water-aluminum-water phantom

    SciTech Connect

    Su, L.; Du, X.; Liu, T.; Xu, X. G.

    2013-07-01

    An electron-photon coupled Monte Carlo code ARCHER - Accelerated Radiation-transport Computations in Heterogeneous Environments - is being developed at Rensselaer Polytechnic Institute as a software test bed for emerging heterogeneous high performance computers that utilize accelerators such as GPUs. In this paper, the preliminary results of code development and testing are presented. The electron transport in media was modeled using the class-II condensed history method. The electron energy considered ranges from a few hundred keV to 30 MeV. Moller scattering and bremsstrahlung processes above a preset energy were explicitly modeled. Energy loss below that threshold was accounted for using the Continuously Slowing Down Approximation (CSDA). Photon transport was dealt with using the delta tracking method. Photoelectric effect, Compton scattering and pair production were modeled. Voxelised geometry was supported. A serial ARHCHER-CPU was first written in C++. The code was then ported to the GPU platform using CUDA C. The hardware involved a desktop PC with an Intel Xeon X5660 CPU and six NVIDIA Tesla M2090 GPUs. ARHCHER was tested for a case of 20 MeV electron beam incident perpendicularly on a water-aluminum-water phantom. The depth and lateral dose profiles were found to agree with results obtained from well tested MC codes. Using six GPU cards, 6x10{sup 6} histories of electrons were simulated within 2 seconds. In comparison, the same case running the EGSnrc and MCNPX codes required 1645 seconds and 9213 seconds, respectively, on a CPU with a single core used. (authors)

  18. Steel and Aluminum Energy Conservation and Technology Competitiveness Act of 1988. Fiscal year 1993 annual report

    SciTech Connect

    Not Available

    1994-09-01

    The Steel and Aluminum Energy Conservation and Technology Competitiveness Act of 1988 (Act), commonly referred to as the Metals Initiative, was signed into law on November 17, 1988 (Public Law 100-680). The Act, 15 U.S.C. 5101 et seq., has tile following purposes: (1) to {open_quotes}increase the energy efficiency and enhance the competitiveness of American steel, aluminum, and copper industries{close_quotes}; and (2) to continue the research and development efforts begun under the Department of Energy (DOE) program known as the Steel Initiative. Section 8 of tile Act requires the Secretary of Energy to prepare an annual report to Congress describing the activities carried out under the Act during each fiscal year. 15 U.S.C. 5107 In addition, with respect to reports on fiscal years 1993, 1995, and 1997, Section 8 requires a complete summary of activities under the management plan and research plan from inception with an analysis of extent of their success in accomplishing the purposes of the Act. Id. The Metals Initiative is currently supporting six steel industry research and development projects: (1) Superplastic Steel Processing with Lawrence Livermore National Laboratory; (2) Direct Steelmaking with the American Iron and Steel Institute; (3) Electrochemical Dezincing of Steel Scrap with Argonne National Laboratory and Metal Recovery Industries (U.S.), Inc.; (4) Rapid Analysis of Molten Metals Using Laser Produced Plasmas with Lehigh University; (5) Direct Strip Casting using a single wheel caster with Armco, Inc.; and (6) Advanced Process Control, also with the American Iron and Steel Institute. At the close of the fiscal year, a seventh project, Waste Oxide Recycling with the American Iron and Steel Institute, was selected for inclusion in the Direct Steelmaking project. There are three projects with the aluminum industry. The first, Wettable Cathodes for Alumina Reduction Cells with the Reynolds Metals Company, continues from the prior periods.

  19. Precipitation and Deposition of Aluminum-Containing Phases in Tank Wastes

    SciTech Connect

    Dabbs, Daniel M.; Aksay, I.A.

    2005-12-01

    In the first phase of our study, we focused on the use of simple organics to raise the solubility of aluminum oxyhydroxides in high alkaline aqueous solvents. In a limited survey of common organic acids, we determined that citric acid had the highest potential to achieve our goal. However, our subsequent investigation revealed that the citric acid appeared to play two roles in the solutions: first, raising the concentration of aluminum in highly alkaline solutions by breaking up or inhibiting ''seed'' polycations and thereby delaying the nucleation and growth of particles; and second, stabilizing nanometer-sized particles in suspension when nucleation did occur. The results of this work were recently published in Langmuir: D.M. Dabbs, U. Ramachandran, S. Lu, J. Liu, L.-Q. Wang, I.A. Aksay, ''Inhibition of Aluminum Oxyhydroxide Precipitation with Citric Acid'' Langmuir, 21, 11690-11695 (2005). The second phase of our work involved the solvation of silicon, again in solutions of high alkalinity. Citric acid, due to its unfavorable pKa values, was not expected to be useful with silicon-containing solutions. Here, the use of polyols was determined to be effective in maintaining silicon-containing particles under high pH conditions but at smaller size with respect to standard suspensions of silicon-containing particles. There were a number of difficulties working with highly alkaline silicon-containing solutions, particularly in solutions at or near the saturation limit. Small deviations in pH resulted in particle formation or dissolution in the absence of the organic agents. One of the more significant observations was that the polyols appeared to stabilize small particles of silicon oxyhydroxides across a wider range of pH, albeit this was difficult to quantify due to the instability of the solutions.

  20. SLUDGE HEEL REMOVAL BY ALUMINUM DISSOLUTION AT SAVANNAH RIVER SITE 12390

    SciTech Connect

    Keefer, M.

    2012-01-12

    High Level Waste (HLW) at the Savannah River Site (SRS) is currently stored in aging underground storage tanks. This waste is a complex mixture of insoluble solids, referred to as sludge, and soluble salts. Continued long-term storage of these radioactive wastes poses an environmental risk. Operations are underway to remove and disposition the waste, clean the tanks and fill with grout for permanent closure. Heel removal is the intermediate phase of the waste retrieval and tank cleaning process at SRS, which is intended to reduce the volume of waste prior to treatment with oxalic acid. The goal of heel removal is to reduce the residual amount of radioactive sludge wastes to less than 37,900 liters (10,000 gallons) of wet solids. Reducing the quantity of residual waste solids in the tank prior to acid cleaning reduces the amount of acid required and reduces the amount of excess acid that could impact ongoing waste management processes. Mechanical heel removal campaigns in Tank 12 have relied solely on the use of mixing pumps that have not been effective at reducing the volume of remaining solids. The remaining waste in Tank 12 is known to have a high aluminum concentration. Aluminum dissolution by caustic leaching was identified as a treatment step to reduce the volume of remaining solids and prepare the tank for acid cleaning. Dissolution was performed in Tank 12 over a two month period in July and August, 2011. Sample results indicated that 16,440 kg of aluminum oxide (boehmite) had been dissolved representing 60% of the starting inventory. The evolution resulted in reducing the sludge solids volume by 22,300 liters (5900 gallons), preparing the tank for chemical cleaning with oxalic acid.