National Library of Energy BETA

Sample records for flowback water cxs

  1. Cost Effective Recovery of Low-TDS Frac Flowback Water for Re-use

    SciTech Connect

    Claire Henderson; Harish Acharya; Hope Matis; Hareesh Kommepalli; Brian Moore; Hua Wang

    2011-03-31

    The project goal was to develop a cost-effective water recovery process to reduce the costs and envi-ronmental impact of shale gas production. This effort sought to develop both a flowback water pre-treatment process and a membrane-based partial demineralization process for the treatment of the low-Total Dissolved Solids (TDS) portion of the flowback water produced during hydrofracturing operations. The TDS cutoff for consideration in this project is < 35,000 {approx} 45,000 ppm, which is the typical limit for economic water recovery employing reverse osmosis (RO) type membrane desalination processes. The ultimate objective is the production of clean, reclaimed water suitable for re-use in hydrofracturing operations. The team successfully compiled data on flowback composition and other attributes across multiple shale plays, identified the likely applicability of membrane treatment processes in those shales, and expanded the proposed product portfolio to include four options suitable for various reuse or discharge applications. Pretreatment technologies were evaluated at the lab scale and down-selected based upon their efficacy in removing key contaminants. The chosen technologies were further validated by performing membrane fouling studies with treated flowback water to demonstrate the technical feasibility of flowback treatment with RO membranes. Process flow schemes were constructed for each of the four product options based on experimental performance data from actual flowback water treatment studies. For the products requiring membrane treatment, membrane system model-ing software was used to create designs for enhanced water recovery beyond the typical seawater desalination benchmark. System costs based upon vendor and internal cost information for all process flow schemes were generated and are below target and in line with customer expectations. Finally, to account for temporal and geographic variability in flowback characteristics as well as local

  2. Microbial communities in flowback water impoundments from hydraulic fracturing for recovery of shale gas

    SciTech Connect

    Mohan, Arvind Murali; Hartsock, Angela; Hammack, Richard W; Vidic, Radisav D; Gregory, Kelvin B

    2013-12-01

    Hydraulic fracturing for natural gas extraction from shale produces waste brine known as flowback that is impounded at the surface prior to reuse and/or disposal. During impoundment, microbial activity can alter the fate of metals including radionuclides, give rise to odorous compounds, and result in biocorrosion that complicates water and waste management and increases production costs. Here, we describe the microbial ecology at multiple depths of three flowback impoundments from the Marcellus shale that were managed differently. 16S rRNA gene clone libraries revealed that bacterial communities in the untreated and biocide-amended impoundments were depth dependent, diverse, and most similar to species within the taxa [gamma]-proteobacteria, [alpha]-proteobacteria, δ-proteobacteria, Clostridia, Synergistetes, Thermotogae, Spirochetes, and Bacteroidetes. The bacterial community in the pretreated and aerated impoundment was uniform with depth, less diverse, and most similar to known iodide-oxidizing bacteria in the [alpha]-proteobacteria. Archaea were identified only in the untreated and biocide-amended impoundments and were affiliated to the Methanomicrobia class. This is the first study of microbial communities in flowback water impoundments from hydraulic fracturing. The findings expand our knowledge of microbial diversity of an emergent and unexplored environment and may guide the management of flowback impoundments.

  3. Sustainable Management of Flowback Water during Hydraulic Fracturing of Marcellus Shale for Natural Gas Production

    SciTech Connect

    Vidic, Radisav

    2015-01-24

    This study evaluated the feasibility of using abandoned mine drainage (AMD) as make- up water for the reuse of produced water for hydraulic fracturing. There is an abundance of AMD sources near permitted gas wells as documented in this study that can not only serve as makeup water and reduce the demand on high quality water resources but can also as a source of chemicals to treat produced water prior to reuse. The assessment of AMD availability for this purpose based on proximity and relevant regulations was accompanied by bench- and pilot-scale studies to determine optimal treatment to achieve desired water quality for use in hydraulic fracturing. Sulfate ions that are often present in AMD at elevated levels will react with Ba²⁺ and Sr²⁺ in produced water to form insoluble sulfate compounds. Both membrane microfiltration and gravity separation were evaluated for the removal of solids formed as a result of mixing these two impaired waters. Laboratory studies revealed that neither AMD nor barite formed in solution had significant impact on membrane filtration but that some produced waters contained submicron particles that can cause severe fouling of microfiltration membrane. Coagulation/flocculation was found to be an effective process for the removal of suspended solids and both bench- and pilot-scale studies revealed that optimal process conditions can consistently achieve the turbidity of the finished water below 5 NTU. Adjusting the blending ratio of AMD and produced water can achieve the desired effluent sulfate concentration that can be accurately predicted by chemical thermodynamics. Co-treatment of produced water and AMD will result in elevated levels of naturally occurring radioactive materials (NORM) in the solid waste generated in this process due to radium co-precipitation with barium sulfate. Laboratory studies revealed that the mobility of barite that may form in the subsurface due to the presence of sulfate in the fracturing fluid can be

  4. Minimizing damage to a propped fracture by controlled flowback procedures

    SciTech Connect

    Robinson, B.M.; Holditch, S.A.; Whitehead, W.S.

    1988-06-01

    Severe fracture-conductivity damage can result from proppant crushing and/or proppant flowback into the wellbore. Such damage is often concentrated near the wellbore and can directly affect postfracture performance. Most of the time severe fracture-conductivity damage can be minimized by choosing the correct type of proppant for a particular well. In many cases, however, this is not enough. To minimize excessive crushing or to prevent proppant flowback, it is also necessary to control carefully the flowback of the well after the treatment. Specific procedures can be followed to minimize severe fracture-conductivity damage. These procedures involve controlling the rates at which load fluids are recovered and maximizing backpressure against the formation. These procedures require much more time and effort than is normally spent on postfracture cleanup; however, the efforts could result in better performance.

  5. Produced Water R&D | Department of Energy

    Energy.gov [DOE] (indexed site)

    demonstration project, the Altela 600 water treatment system (shown above) treats about 25,000 gallons per day of produced and flowback water from hydraulic fracturing. Photo ...

  6. CX-008950: Categorical Exclusion Determination

    Energy.gov [DOE]

    Pilot Testing: Pretreatment Options to Allow Re-Use of Frac Flowback Water CX(s) Applied: B3.6 Date: 08/13/2012 Location(s): Pennsylvania Offices(s): National Energy Technology Laboratory

  7. CX-008270: Categorical Exclusion Determination

    Energy.gov [DOE]

    Pilot Testing: Pretreatment Options to Allow Re-Use of Frac Flowback Water CX(s) Applied: B3.6 Date: 05/14/2012 Location(s): Pennsylvania Offices(s): National Energy Technology Laboratory

  8. CX-009859: Categorical Exclusion Determination

    Energy.gov [DOE]

    Cost-Effective Treatment of Flowback and Produced Water via an Integrated Precipitative Supercritical Process CX(s) Applied: A9, A11 Date: 01/15/2013 Location(s): Kentucky Offices(s): National Energy Technology Laboratory

  9. CX-009860: Categorical Exclusion Determination

    Energy.gov [DOE]

    Cost-Effective Treatment of Flowback and Produced Water via an Integrated Precipitative Supercritical Process CX(s) Applied: A9, A11, B3.6 Date: 01/15/2013 Location(s): Ohio Offices(s): National Energy Technology Laboratory

  10. PILOT TESTING: PRETREATMENT OPTIONS TO ALLOW RE-USE OF FRAC FLOWBACK AND PRODUCED BRINE FOR GAS SHALE RESOURCE DEVELOPMENT

    SciTech Connect

    Burnett, David

    2012-12-31

    The goal of the A&M DOE NETL Project No. DE-FE0000847 was to develop a mobile, multifunctional water treatment capability designed specifically for “pre-treatment” of field waste brine. The project consisted of constructing s mobile “field laboratory” incorporating new technology for treating high salinity produced water and using the lab to conduct a side-by-side comparison between this new technology and that already existing in field operations. A series of four field trials were performed utilizing the mobile unit to demonstrate the effectiveness of different technology suitable for use with high salinity flow back brines and produced water. The design of the mobile unit was based on previous and current work at the Texas A&M Separation Sciences Pilot Plant. The several treatment techniques which have been found to be successful in both pilot plant and field tests had been tested to incorporate into a single multifunctional process train. Eight different components were evaluated during the trials, two types of oil and grease removal, one BTEX removal step, three micro-filters, and two different nanofilters. The performance of each technique was measured by its separation efficiency, power consumption, and ability to withstand fouling. The field trials were a success. Four different field brines were evaluated in the first trial in New York. Over 16,000 gallons of brine were processed. Using a power cost of $.10 per kWh, media pretreatment power use averaged $0.004 per barrel, solids removal $.04 per barrel and brine “softening” $.84 per barrel. Total power cost was approximately $1.00 per barrel of fluid treated. In Pennsylvania, brines collected from frac ponds were tested in two additional trials. Each of the brines was converted to an oil-free, solids-free brine with no biological activity. Brines were stable over time and would be good candidates for use as a make-up fluid in a subsequent fracturing fluid design. Reports on all of the field

  11. Trip Report-Produced-Water Field Testing

    SciTech Connect

    Sullivan, Enid J.

    2012-05-25

    Los Alamos National Laboratory (LANL) conducted field testing of a produced-water pretreatment apparatus with assistance from faculty at the Texas A&M University (TAMU) protein separation sciences laboratory located on the TAMU main campus. The following report details all of the logistics surrounding the testing. The purpose of the test was to use a new, commercially-available filter media housing containing modified zeolite (surfactant-modified zeolite or SMZ) porous medium for use in pretreatment of oil and gas produced water (PW) and frac-flowback waters. The SMZ was tested previously in October, 2010 in a lab-constructed configuration ('old multicolumn system'), and performed well for removal of benzene, toluene, ethylbenzene, and xylenes (BTEX) from PW. However, a less-expensive, modular configuration is needed for field use. A modular system will allow the field operator to add or subtract SMZ filters as needed to accommodate site specific conditions, and to swap out used filters easily in a multi-unit system. This test demonstrated the use of a commercial filter housing with a simple flow modification and packed with SMZ for removing BTEX from a PW source in College Station, Texas. The system will be tested in June 2012 at a field site in Pennsylvania for treating frac-flowback waters. The goals of this test are: (1) to determine sorption efficiency of BTEX in the new configuration; and (2) to observe the range of flow rates, backpressures, and total volume treated at a given flow rate.

  12. An Integrated Water Treatment Technology Solution for Sustainable Water Resource Management in the Marcellus Shale

    SciTech Connect

    Matthew Bruff; Ned Godshall; Karen Evans

    2011-04-30

    This Final Scientific/ Technical Report submitted with respect to Project DE-FE0000833 titled 'An Integrated Water Treatment Technology Solution for Sustainable Water Resource Management in the Marcellus Shale' in support of final reporting requirements. This final report contains a compilation of previous reports with the most current data in order to produce one final complete document. The goal of this research was to provide an integrated approach aimed at addressing the increasing water resource challenges between natural gas production and other water stakeholders in shale gas basins. The objective was to demonstrate that the AltelaRain{reg_sign} technology could be successfully deployed in the Marcellus Shale Basin to treat frac flow-back water. That objective has been successfully met.

  13. Water management practices used by Fayetteville shale gas producers.

    SciTech Connect

    Veil, J. A.

    2011-06-03

    Water issues continue to play an important role in producing natural gas from shale formations. This report examines water issues relating to shale gas production in the Fayetteville Shale. In particular, the report focuses on how gas producers obtain water supplies used for drilling and hydraulically fracturing wells, how that water is transported to the well sites and stored, and how the wastewater from the wells (flowback and produced water) is managed. Last year, Argonne National Laboratory made a similar evaluation of water issues in the Marcellus Shale (Veil 2010). Gas production in the Marcellus Shale involves at least three states, many oil and gas operators, and multiple wastewater management options. Consequently, Veil (2010) provided extensive information on water. This current study is less complicated for several reasons: (1) gas production in the Fayetteville Shale is somewhat more mature and stable than production in the Marcellus Shale; (2) the Fayetteville Shale underlies a single state (Arkansas); (3) there are only a few gas producers that operate the large majority of the wells in the Fayetteville Shale; (4) much of the water management information relating to the Marcellus Shale also applies to the Fayetteville Shale, therefore, it can be referenced from Veil (2010) rather than being recreated here; and (5) the author has previously published a report on the Fayetteville Shale (Veil 2007) and has helped to develop an informational website on the Fayetteville Shale (Argonne and University of Arkansas 2008), both of these sources, which are relevant to the subject of this report, are cited as references.

  14. Zero Discharge Water Management for Horizontal Shale Gas Well Development

    SciTech Connect

    Paul Ziemkiewicz; Jennifer Hause; Raymond Lovett; David Locke Harry Johnson; Doug Patchen

    2012-03-31

    Hydraulic fracturing technology (fracking), coupled with horizontal drilling, has facilitated exploitation of huge natural gas (gas) reserves in the Devonian-age Marcellus Shale Formation (Marcellus) of the Appalachian Basin. The most-efficient technique for stimulating Marcellus gas production involves hydraulic fracturing (injection of a water-based fluid and sand mixture) along a horizontal well bore to create a series of hydraulic fractures in the Marcellus. The hydraulic fractures free the shale-trapped gas, allowing it to flow to the well bore where it is conveyed to pipelines for transport and distribution. The hydraulic fracturing process has two significant effects on the local environment. First, water withdrawals from local sources compete with the water requirements of ecosystems, domestic and recreational users, and/or agricultural and industrial uses. Second, when the injection phase is over, 10 to 30% of the injected water returns to the surface. This water consists of flowback, which occurs between the completion of fracturing and gas production, and produced water, which occurs during gas production. Collectively referred to as returned frac water (RFW), it is highly saline with varying amounts of organic contamination. It can be disposed of, either by injection into an approved underground injection well, or treated to remove contaminants so that the water meets the requirements of either surface release or recycle use. Depending on the characteristics of the RFW and the availability of satisfactory disposal alternatives, disposal can impose serious costs to the operator. In any case, large quantities of water must be transported to and from well locations, contributing to wear and tear on local roadways that were not designed to handle the heavy loads and increased traffic. The search for a way to mitigate the situation and improve the overall efficiency of shale gas production suggested a treatment method that would allow RFW to be used as make

  15. Quarterly Progress Report

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Effective Recovery of Low-TDS Frac Flowback Water for Re-use Department of Energy: DE-FE0000784 Final Report Reporting Period: October 1, 2009 - March 31, 2011 Harish R. Acharya...

  16. Water Quality

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Water Quality Water Quality We protect water quality through stormwater control measures and an extensive network of monitoring wells and stations encompassing groundwater, surface...

  17. Water Security

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    SunShot Grand Challenge: Regional Test Centers Water Security HomeTag:Water Security Electricity use by water service sector and county. Shown are electricity use by (a) ...

  18. Water Power

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Stationary PowerEnergy Conversion EfficiencyWater Power Water Power Tara Camacho-Lopez 2016-06-01T22:32:54+00:00 Enabling a successful water power industry. Hydropower ...

  19. water scarcity

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ... Geochemistry Geoscience SubTER Carbon Sequestration Program Leadership EnergyWater Nexus ...

  20. water savings

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ... Geochemistry Geoscience SubTER Carbon Sequestration Program Leadership EnergyWater Nexus ...

  1. water infrastructure

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ... Geochemistry Geoscience SubTER Carbon Sequestration Program Leadership EnergyWater Nexus ...

  2. Water Demand

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ... Geochemistry Geoscience SubTER Carbon Sequestration Program Leadership EnergyWater Nexus ...

  3. drinking water

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    drinking water - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us ... Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ...

  4. Water Security

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Water Security - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us ... Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ...

  5. Water Power

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Water Power bernadette Permalink Gallery Bernie Hernandez-Sanchez wins HENAAC Award for outstanding technical achievement News, Water Power Bernie Hernandez-Sanchez wins HENAAC ...

  6. Water Power

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ... Geochemistry Geoscience SubTER Carbon Sequestration Program Leadership EnergyWater Nexus ...

  7. Water Summit

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Advisory: White House to host Water Summit March 21, 2016 Los Alamos watershed research among featured projects LOS ALAMOS, N.M., March 21, 2016-On Tuesday, March 22, 2016-World Water Day-the Administration will host a White House Water Summit to raise awareness of the national importance of water and to highlight new commitments and announcements that the Administration and non-Federal institutions are making to build a sustainable water future. A project from Los Alamos National Laboratory

  8. Water Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Efficiency Hosted by: FEDERAL UTILITY PARTNERSHIP WORKING GROUP SEMINAR November 5-6, 2014 Cape Canaveral, Florida WATER EFFICIENCY Federal Utility Partnership Working Group November 5-6, 2014 Cape Canaveral, FL * Kate McMordie Stoughton - Pacific Northwest National Laboratory * kate.mcmordie@pnnl.gov * Francis Wheeler - Water Savers, LLC * fwheeler@watersaversllc.com Topics * Performance contracting analysis * Water industry terms * Federal reduction goals * Water balance * Water efficiency

  9. Reusing Water

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Reusing Water Reusing Water Millions of gallons of industrial wastewater is recycled at LANL by virtue of a long-term strategy to treat wastewater rather than discharging it into...

  10. Reusing Water

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Reusing Water Reusing Water Millions of gallons of industrial wastewater is recycled at LANL by virtue of a long-term strategy to treat wastewater rather than discharging it into ...

  11. Water Quality

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Renewables » Water Power Technologies Office Water Power Technologies Office Wave Energy Prize Winners Announced Wave Energy Prize Winners Announced Four teams surpassed the difficult threshold of doubling the energy captured from ocean waves with their wave energy converter technologies. See who won the $2.25 million in cash prizes! Read more Direct Current: From Water to Wattage Podcast Direct Current: From Water to Wattage Podcast Hydropower is America's oldest and largest source of clean,

  12. Water pollution

    SciTech Connect

    Not Available

    1990-06-01

    Ballast water, which is sea water that is carried in oil tankers to provide stability, can become contaminated with oil. Alyeska Pipeline Service Company runs a water treatment plant at its pipeline terminal at Prot Valdez, Alaska, to treat ballast water before it is discharged into the sea. GAO reviewed EPA's recently reissued National Pollution Discharge Elimination System permit for the Port Valdez facility. In this report, GAO compares the effluent limits and other requirements under the reissued permit with those of the old permit, determines the reasons for changes in the reissued permit, and examines Alyeska's initial efforts to comply with the reissued permit's effluent limits and reporting requirements.

  13. WATER TREATMENT

    DOEpatents

    Pitman, R.W.; Conley, W.R. Jr.

    1962-12-01

    An automated system for adding clarifying chemicals to water in a water treatment plant is described. To a sample of the floc suspension polyacrylamide or similar filter aid chemicals are added, and the sample is then put through a fast filter. The resulting filtrate has the requisite properties for monitoring in an optical turbidimeter to control the automated system. (AEC)

  14. Water Wars

    Energy Science and Technology Software Center

    2012-09-11

    Sandia National Laboratories and Intel Corporation are cooperating on a project aimed at developing serious games to assist in resource planners in conducting open and participatory projects. Water Wars serves as a prototype game focused on water issues. Water Wars is a multi-player, online role-playing "serious game" combining large-scale simulation (e.g. SimCity), with strategy and interpersonal interaction (e.g. Diplomacy). The game is about water use set in present-day New Mexico. Players enact various stakeholder rolesmore » and compete for water while simultaneously cooperating to prevent environmental collapse. The gamespace utilizes immersive 3D graphics to bring the problem alive. The game integrates Intel's OpenSim visualization engine with Sandia developed agent-based and system dynamics models.« less

  15. September 2004 Water Sampling

    Office of Legacy Management (LM)

    .........7 Water Sampling Field Activities Verification ... Quality Data New Rifle Surface Water Quality Data Old Rifle Surface Water ...

  16. September 2004 Water Sampling

    Office of Legacy Management (LM)

    .........5 Water Sampling Field Activities Verification ... Quality Data New Rifle Surface Water Quality Data Old Rifle Surface Water ...

  17. WATER CONSERVATION PLAN

    National Nuclear Security Administration (NNSA)

    ... Average water consumers can save thousands of gallons of water per year by being aware of ... program on the water distribution systems to include water saving replacement parts. ...

  18. CX-006498: Categorical Exclusion Determination

    Energy.gov [DOE]

    Pilot Testing: Pretreatment Options to Allow Re-Use of Frac Flowback WaterCX(s) Applied: B3.6Date: 08/30/2011Location(s): Plymouth, New YorkOffice(s): Fossil Energy, National Energy Technology Laboratory

  19. Federal Water Management

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Water Cycle Potable water: water of sufficient quality for human consumption Industrial landscaping and agricultural (ILA) water: non-potable water from fresh surface or groundwater Alternative water: onsite non- potable water NOT supplied from fresh surface or groundwater Rainwater Reclaimed wastewater Process reuse Graywater Condensate Set goals Assess current water use Develop a water balance Evaluate efficiency Develop a plan Measure progress Water Management Planning Supply Uses Plumbing

  20. Efficient Water Use & Management

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Water Use Goal 4: Efficient Water Use & Management Aware of the arid climate of northern New Mexico, water reduction and conservation remains a primary concern at LANL. Energy...

  1. September 2004 Water Sampling

    Office of Legacy Management (LM)

    .........5 Water Sampling Field Activities Verification ... per liter (mgL) b New Mexico Ground Water and Surface Water Protection Standard ...

  2. Waters LANL Protects

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Waters LANL Protects Waters LANL Protects LANL watersheds source in the Jemez Mountains and end at the Rio Grande.

  3. September 2004 Water Sampling

    Office of Legacy Management (LM)

    4 Alternate Water Supply System Sampling at the Riverton, Wyoming, Processing Site May .........5 Water Sampling Field Activities Verification ...

  4. September 2004 Water Sampling

    Office of Legacy Management (LM)

    .........7 Water Sampling Field Activities Verification ... Groundwater Quality Data Static Water Level Data Time-Concentration Graphs ...

  5. September 2004 Water Sampling

    Office of Legacy Management (LM)

    and Surface Water Sampling at the Naturita, Colorado Processing Site October 2013 LMSNAP.........5 Water Sampling Field Activities Verification ...

  6. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Water Sampling at the Ambrosia Lake, New Mexico, Disposal Site February 2015 LMSAMB.........5 Water Sampling Field Activities Verification ...

  7. September 2004 Water Sampling

    Office of Legacy Management (LM)

    .........7 Water Sampling Field Activities Verification ... Groundwater Quality Data Surface Water Quality Data Equipment Blank Data Static ...

  8. September 2004 Water Sampling

    Office of Legacy Management (LM)

    July 2015 Groundwater and Surface Water Sampling at the Gunnison, Colorado, Processing .........5 Water Sampling Field Activities Verification ...

  9. September 2004 Water Sampling

    Office of Legacy Management (LM)

    .........5 Water Sampling Field Activities Verification ... Groundwater Quality Data Static Water Level Data Hydrograph Time-Concentration ...

  10. September 2004 Water Sampling

    Office of Legacy Management (LM)

    and Surface Water Sampling at the Green River, Utah, Disposal Site August 2014 LMSGRN.........7 Water Sampling Field Activities Verification ...

  11. ARM: Microwave Radiometer data (MWR Profiles - QME), water vapor, temp, cloud liquid water, precip water retrievals

    DOE Data Explorer

    Maria Cadeddu

    2004-02-19

    Microwave Radiometer data (MWR Profiles - QME), water vapor, temp, cloud liquid water, precip water retrievals

  12. ARM: Microwave Radiometer data (MWR Profiles - QME), water vapor, temp, cloud liquid water, precip water retrievals

    DOE Data Explorer

    Maria Cadeddu

    Microwave Radiometer data (MWR Profiles - QME), water vapor, temp, cloud liquid water, precip water retrievals

  13. Water Heating | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Public Services Homes Water Heating Water Heating Infographic: Water Heaters 101 Infographic: Water Heaters 101 Everything you need to know about saving money on water...

  14. Water Power Research | Water Power | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Research NREL conducts water power research; develops design tools; and evaluates, validates, and supports the demonstration of innovative water power technologies. Photo of a buoy designed around the oscillating water column principle wherein the turbine captures the wave energy and the generator converts it into electrical power. Marine and Hydrokinetic Research Marine and hydrokinetic renewable energy technologies extract power from moving water-whether waves, tidal flow, or ocean and river

  15. Clean Water Act Section 401 Water Quality Certification: A Water...

    OpenEI (Open Energy Information) [EERE & EIA]

    Certification: A Water Quality Protection Tool for States and Tribes Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - Guide...

  16. Clean Water Act Section 401 Water Quality Certification A Water...

    OpenEI (Open Energy Information) [EERE & EIA]

    Certification A Water Quality Protection Tool for States and Tribes Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - Guide...

  17. Appendix D Surface Water and Ground Water Time-Concentration...

    Office of Legacy Management (LM)

    Discharge Measurements, Ground Water Level Data, and Ground Water Well Hydrographs This ... Ground Water Level Data D4.0 ......

  18. Heat Pump Water Heaters

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    & Events Expand News & Events Skip navigation links Residential Residential Lighting Energy Star Appliances Consumer Electronics Heat Pump Water Heaters Electric Storage Water...

  19. Electric Storage Water Heaters

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    & Events Expand News & Events Skip navigation links Residential Residential Lighting Energy Star Appliances Consumer Electronics Heat Pump Water Heaters Electric Storage Water...

  20. Bioenergy Impacts … Water

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    biofuel production on water quality and quantity, and determine which biofuel crops are best suited to different geographic locations. Biofuel research is enabling wise water use

  1. water for energy

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ... Geochemistry Geoscience SubTER Carbon Sequestration Program Leadership EnergyWater Nexus ...

  2. water service provider

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ... Geochemistry Geoscience SubTER Carbon Sequestration Program Leadership EnergyWater Nexus ...

  3. energy-water interdependency

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    water interdependency - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us ... Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ...

  4. "smart water" infrastructure

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    smart water" infrastructure - Sandia Energy Energy Search Icon Sandia Home Locations ... Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ...

  5. Water Power | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Water Heating Water Heating Low-flow fixtures will help you reduce your hot water use and save money on your water heating bills. | Photo courtesy of Huntington Veterans Medical Ctr. Low-flow fixtures will help you reduce your hot water use and save money on your water heating bills. | Photo courtesy of Huntington Veterans Medical Ctr. Water heating accounts for about 18% of your home's energy use. Reducing your hot water use, employing energy-saving strategies, and choosing an energy efficient

  6. Sandia Energy Water Security

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    doe-eere-technologist-in-residence-pilotfeed 0 Sandia Team Attends World Water Week in Stockholm http:energy.sandia.govsandia-team-attends-world-water-week-in-sto...

  7. Water Power Personnel

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ... Geochemistry Geoscience SubTER Carbon Sequestration Program Leadership EnergyWater Nexus ...

  8. Water Infrastructure Security

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ... Geochemistry Geoscience SubTER Carbon Sequestration Program Leadership EnergyWater Nexus ...

  9. Wind & Water Power Newsletter

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    & Water Power Newsletter - Sandia Energy Energy Search Icon Sandia Home Locations Contact ... Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ...

  10. Water Monitoring & Treatment Technology

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ... Geochemistry Geoscience SubTER Carbon Sequestration Program Leadership EnergyWater Nexus ...

  11. Water Power Technologies

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ... Geochemistry Geoscience SubTER Carbon Sequestration Program Leadership EnergyWater Nexus ...

  12. Energy/Water Nexus

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ... Geochemistry Geoscience SubTER Carbon Sequestration Program Leadership EnergyWater Nexus ...

  13. Energy-Water Overview

    Gasoline and Diesel Fuel Update

    DOEEIA 2010 Energy Conference Mike Hightower Sandia National Laboratories mmhight@sandia.gov, 505-844-5499 Energy and Water are ... Interdependent Water for Energy and Energy for ...

  14. Energy-Water Nexus

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy-Water Nexus - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us ... Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ...

  15. Water-heating dehumidifier

    DOEpatents

    Tomlinson, John J.

    2006-04-18

    A water-heating dehumidifier includes a refrigerant loop including a compressor, at least one condenser, an expansion device and an evaporator including an evaporator fan. The condenser includes a water inlet and a water outlet for flowing water therethrough or proximate thereto, or is affixed to the tank or immersed into the tank to effect water heating without flowing water. The immersed condenser design includes a self-insulated capillary tube expansion device for simplicity and high efficiency. In a water heating mode air is drawn by the evaporator fan across the evaporator to produce cooled and dehumidified air and heat taken from the air is absorbed by the refrigerant at the evaporator and is pumped to the condenser, where water is heated. When the tank of water heater is full of hot water or a humidistat set point is reached, the water-heating dehumidifier can switch to run as a dehumidifier.

  16. Implementing Brackish Water Use

    SciTech Connect

    Sullivan Graham, Enid Joan

    2015-02-10

    This presentation describes the various water recovery initiatives, their key aspects, and implementation.

  17. Vadose zone water fluxmeter

    DOEpatents

    Faybishenko, Boris A.

    2005-10-25

    A Vadose Zone Water Fluxmeter (WFM) or Direct Measurement WFM provides direct measurement of unsaturated water flow in the vadose zone. The fluxmeter is a cylindrical device that fits in a borehole or can be installed near the surface, or in pits, or in pile structures. The fluxmeter is primarily a combination of tensiometers and a porous element or plate in a water cell that is used for water injection or extraction under field conditions. The same water pressure measured outside and inside of the soil sheltered by the lower cylinder of the fluxmeter indicates that the water flux through the lower cylinder is similar to the water flux in the surrounding soil. The fluxmeter provides direct measurement of the water flow rate in the unsaturated soils and then determines the water flux, i.e. the water flow rate per unit area.

  18. Ground water and energy

    SciTech Connect

    Not Available

    1980-11-01

    This national workshop on ground water and energy was conceived by the US Department of Energy's Office of Environmental Assessments. Generally, OEA needed to know what data are available on ground water, what information is still needed, and how DOE can best utilize what has already been learned. The workshop focussed on three areas: (1) ground water supply; (2) conflicts and barriers to ground water use; and (3) alternatives or solutions to the various issues relating to ground water. (ACR)

  19. Water Vapor Experiment Concludes

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Department of Energy Water Use in the Development and Operations of Geothermal Power Plants Water Use in the Development and Operations of Geothermal Power Plants This report summarizes what is currently known about the life cycle water requirements of geothermal electric power-generating systems and the water quality of geothermal waters. It is part of a larger effort to compare the life cycle impacts of large-scale geothermal electricity generation with other power generation technologies.

  20. Water resources data, Kentucky. Water year 1991

    SciTech Connect

    McClain, D.L.; Byrd, F.D.; Brown, A.C.

    1991-12-31

    Water resources data for the 1991 water year for Kentucky consist of records of stage, discharge, and water quality of streams and lakes; and water-levels of wells. This report includes daily discharge records for 115 stream-gaging stations. It also includes water-quality data for 38 stations sampled at regular intervals. Also published are 13 daily temperature and 8 specific conductance records, and 85 miscellaneous temperature and specific conductance determinations for the gaging stations. Suspended-sediment data for 12 stations (of which 5 are daily) are also published. Ground-water levels are published for 23 recording and 117 partial sites. Precipitation data at a regular interval is published for 1 site. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurement and analyses. These data represent that part of the National Water Data System operated by the US Geological Survey and cooperation State and Federal agencies in Kentucky.

  1. NATURAL GAS FROM SHALE: Questions and Answers

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Challenges are Associated with Shale Gas Production? Developing any energy resource - whether conventional or non-conventional like shale - carries with it the possibility and risk of environmental, public health, and safety issues. Some of the challenges related to shale gas production and hydraulic fracturing include: * Increased consumption of fresh water (volume and sources); * Induced seismicity (earthquakes) from shale flowback water disposal;Chemical disclosure of fracture fluid

  2. Reactor water cleanup system

    DOEpatents

    Gluntz, Douglas M.; Taft, William E.

    1994-01-01

    A reactor water cleanup system includes a reactor pressure vessel containing a reactor core submerged in reactor water. First and second parallel cleanup trains are provided for extracting portions of the reactor water from the pressure vessel, cleaning the extracted water, and returning the cleaned water to the pressure vessel. Each of the cleanup trains includes a heat exchanger for cooling the reactor water, and a cleaner for cleaning the cooled reactor water. A return line is disposed between the cleaner and the pressure vessel for channeling the cleaned water thereto in a first mode of operation. A portion of the cooled water is bypassed around the cleaner during a second mode of operation and returned through the pressure vessel for shutdown cooling.

  3. Reactor water cleanup system

    DOEpatents

    Gluntz, D.M.; Taft, W.E.

    1994-12-20

    A reactor water cleanup system includes a reactor pressure vessel containing a reactor core submerged in reactor water. First and second parallel cleanup trains are provided for extracting portions of the reactor water from the pressure vessel, cleaning the extracted water, and returning the cleaned water to the pressure vessel. Each of the cleanup trains includes a heat exchanger for cooling the reactor water, and a cleaner for cleaning the cooled reactor water. A return line is disposed between the cleaner and the pressure vessel for channeling the cleaned water thereto in a first mode of operation. A portion of the cooled water is bypassed around the cleaner during a second mode of operation and returned through the pressure vessel for shutdown cooling. 1 figure.

  4. ARM - Measurement - Precipitable water

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    govMeasurementsPrecipitable water ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Precipitable water Total amount of water vapor in a vertical column of air, often expressed as the depth of the layer of water that would be formed if all the water vapor were condensed to liquid water. Categories Atmospheric State Instruments The above measurement is considered scientifically relevant for the following

  5. September 2004 Water Sampling

    Office of Legacy Management (LM)

    ... on the water quality of the Little Wind River and of the other surface water features. ... DVP-June 2013, Riverton, Wyoming U.S. Department of Energy RIN 13065379 September 2013 ...

  6. September 2004 Water Sampling

    Office of Legacy Management (LM)

    ... on the water quality of the Little Wind River and of the other surface water features. ... U.S. Department of Energy DVP-September 2015, Riverton, Wyoming February 2016 RINs ...

  7. NDN Water Summit 2015

    Energy.gov [DOE]

    The NDN Water Summit is a two-day summit to build tribal executive capacity through a strategic series of forums, events, and sharing of documentation and experiences. Speakers will cover topics on water policy, climate change, and more.

  8. Indian Water 2015

    Office of Energy Efficiency and Renewable Energy (EERE)

    Indian Water is a call to help plan a national water summit. This strategic session consist of a facilitated dialog with tribal leaders on important opportunities, challenges and tactics, which...

  9. September 2004 Water Sampling

    Office of Legacy Management (LM)

    ... 2014 RIN 14015886 Page 7 Water Sampling Field Activities Verification Checklist Project Gnome-Coach, New Mexico Date(s) of Water Sampling February 19, 2014 Date(s) of ...

  10. September 2004 Water Sampling

    Office of Legacy Management (LM)

    ... 2013 RIN 13015066 Page 7 Water Sampling Field Activities Verification Checklist Project Gnome-Coach, New Mexico Date(s) of Water Sampling January 29-30, 2013 Date(s) of ...

  11. Manus Water Isotope Investigation

    Office of Scientific and Technical Information (OSTI)

    ENERGY Office of Science DOESC-ARM-15-079 Manus Water Isotope Investigation Field ... DOESC-ARM-15-079 Manus Water Isotope Investigation Field Campaign Report JL Conroy, ...

  12. ARM Water Vapor IOP

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ARM Water Vapor IOP The SGP CART site will host the third ARM water vapor IOP on September 18-October 8, 2000. The CART site is home to a powerful array of instruments capable of ...

  13. Water_Treatment.cdr

    Office of Legacy Management (LM)

    than 290 million gallons of contaminated water have been treated and released into the Missouri River from two similar water treatment facilities at the site and the nearby Quarry. ...

  14. Federal Water Use Indices

    Energy.gov [DOE]

    FEMP provides water use indices as a guide for Federal agencies. Note that each is a rough estimate of water usage at different types of sites. Your site may vary considerably.

  15. Manus Water Isotope Investigation

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    9 Manus Water Isotope Investigation Field Campaign Report JL Conroy D Noone KM Cobb March ... DOESC-ARM-15-079 Manus Water Isotope Investigation Field Campaign Report JL Conroy, ...

  16. ARM - Water Vapor

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Water Vapor Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Water Vapor Water vapor is the most effective, fastest changing, and least understood of the greenhouse gases. Water vapor is a powerful greenhouse gas; as a matter of fact, it is the dominant greenhouse gas. But scientists don't

  17. Electrolysis of Water

    Education - Teach & Learn

    Students observe the electrolysis of water using either photovoltaics or a battery as the electric energy source.

  18. Water | Argonne National Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Water The Energy Sector withdraws more freshwater than any other sector in the United States The Energy Sector withdraws more freshwater than any other sector in the United States Significant opportunities are emerging in the public and private sector to tackle water stewardship: the U.S. Department of Energy has identified the energy-water nexus as an emerging activity that require substantial R&D investment in the coming years, and DOE's Water Energy Nexus report has identified reclaimed

  19. Saving Water Saves Energy

    SciTech Connect

    McMahon, James E.; Whitehead, Camilla Dunham; Biermayer, Peter

    2006-06-15

    Hot water use in households, for showers and baths as wellas for washing clothes and dishes, is a major driver of household energyconsumption. Other household uses of water (such as irrigatinglandscaping) require additional energy in other sectors to transport andtreat the water before use, and to treat wastewater. In California, 19percent of total electricity for all sectors combined and 32 percent ofnatural gas consumption is related to water. There is a criticalinterdependence between energy and water systems: thermal power plantsrequire cooling water, and water pumping and treatment require energy.Energy efficiency can be increased by a number of means, includingmore-efficient appliances (e.g., clothes washers or dishwashers that useless total water and less heated water), water-conserving plumbingfixtures and fittings (e.g., showerheads, faucets, toilets) and changesin consumer behavior (e.g., lower temperature set points for storagewater heaters, shorter showers). Water- and energy-conserving activitiescan help offset the stress imposed on limited water (and energy) suppliesfrom increasing population in some areas, particularly in drought years,or increased consumption (e.g., some new shower systems) as a result ofincreased wealth. This paper explores the connections between householdwater use and energy, and suggests options for increased efficiencies inboth individual technologies and systems. Studies indicate that urbanwater use can be reduced cost-effectively by up to 30 percent withcommercially available products. The energy savings associated with watersavings may represent a large additional and largely untappedcost-effective opportunity.

  20. Water treatment method

    DOEpatents

    Martin, Frank S.; Silver, Gary L.

    1991-04-30

    A method for reducing the concentration of any undesirable metals dissolved in contaminated water, such as waste water. The method involves uniformly reacting the contaminated water with an excess amount of solid particulate calcium sulfite to insolubilize the undesirable metal ions, followed by removal thereof and of the unreacted calcium sulfite.

  1. Water Security Toolkit

    Energy Science and Technology Software Center

    2012-09-11

    The Water Security Toolkit (WST) provides software for modeling and analyzing water distribution systems to minimize the potential impact of contamination incidents. WST wraps capabilities for contaminant transport, impact assessment, and sensor network design with response action plans, including source identification, rerouting, and decontamination, to provide a range of water security planning and real-time applications.

  2. Energy-Water Nexus

    SciTech Connect

    Horak, W.

    2010-07-26

    Conclusions of this presentation are: (1) energy and water are interconnected; (2) new energy sources will place increased demands on water supplies; (3) existing energy sources will be subjected to increasing restrictions on their water use; and (4) integrated decision support tools will need to be developed to help policy makers decide which policies and advanced technologies can address these issues.

  3. Water treatment method

    DOEpatents

    Martin, F.S.; Silver, G.L.

    1991-04-30

    A method is described for reducing the concentration of any undesirable metals dissolved in contaminated water, such as waste water. The method involves uniformly reacting the contaminated water with an excess amount of solid particulate calcium sulfite to insolubilize the undesirable metal ions, followed by removal thereof and of the unreacted calcium sulfite.

  4. Photosynthetic water oxidation versus photovoltaic water electrolysis

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Center Objective The Science Center Publications Graduate Research opportunities Undergraduate research opportunities EFRC-501 graduate class Seminar schedules Center News Research Highlights Center Research News Media about Center Center Video Library Bisfuel Picture Gallery Photosynthetic water oxidation versus photovoltaic water electrolysis 13 May 2011 Professor Tom Moore, a leader of Subtask 1 (Total systems analysis, assembly and testing) in the Center, is a coauthor of the review paper

  5. Water Power Research Facilities | Water Power | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Water Power Research Facilities NREL is a partner in advancing the marine and hydrokinetic industry by leveraging its vast experience gained in wind and water power research and development, along with established testing capabilities and facilities. Photo of a drivetrain undergoing testing on a dynamometer system. Dynamometer Facilities Our dynamometers can test a variety of drivetrain components and subsystems, including generators, gearboxes, mechanical or electronic brakes, power

  6. California State Water Resources Control Board 401 Water Quality...

    OpenEI (Open Energy Information) [EERE & EIA]

    401 Water Quality Certification Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: California State Water Resources Control Board 401 Water...

  7. Colorado Division of Water Resources Substitute Water Supply...

    OpenEI (Open Energy Information) [EERE & EIA]

    Substitute Water Supply Plans Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Colorado Division of Water Resources Substitute Water Supply...

  8. Water Transport Within the STack: Water Transport Exploratory...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Within the STack: Water Transport Exploratory Studies Water Transport Within the STack: Water Transport Exploratory Studies Part of a 100 million fuel cell award announced by DOE ...

  9. Future water Cherenkov detectors

    SciTech Connect

    Bergevin, Marc

    2015-05-15

    In these proceedings a review of the current proposed large-scale Warer Cherenkov experiments is given. An argument is made that future water Cherenkov detectors would benefit in the investment in neutron detection technology. A brief overview will be given of proposed water Cherenkov experiments such as HYPER-K and MEMPHYS and other R and D experiments to demonstrate neutron capture in water Cherenkov detectors. Finally, innovation developed in the context of the now defunct LBNE Water R and D option to improve Water Cherenkov technology will be described.

  10. CX-007549: Categorical Exclusion Determination

    Energy.gov [DOE]

    Harrisonville - Waste Water Treatment Plant CX(s) Applied: B5.1 Date: 01/10/2012 Location(s): Missouri Offices(s): Golden Field Office

  11. CX-012570: Categorical Exclusion Determination

    Energy.gov [DOE]

    Install Elevated Fire Water Storage Tank CX(s) Applied: B2.5Date: 41862 Location(s): South CarolinaOffices(s): Savannah River Operations Office

  12. CX-007550: Categorical Exclusion Determination

    Energy.gov [DOE]

    Kearney - Waste Water Treatment Plant CX(s) Applied: B5.1 Date: 01/10/2012 Location(s): Missouri Offices(s): Golden Field Office

  13. CX-010772: Categorical Exclusion Determination

    Energy.gov [DOE]

    Water Security Test Bed (WSTB) CX(s) Applied: B3.6 Date: 07/17/2013 Location(s): Idaho Offices(s): Nuclear Energy

  14. CX-010767: Categorical Exclusion Determination

    Energy.gov [DOE]

    University Boulevard Water Meter Installation CX(s) Applied: B2.2 Date: 08/14/2013 Location(s): Idaho Offices(s): Nuclear Energy

  15. CX-100327 Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    CX-100327 Categorical Exclusion Determination Proposed Rulemaking for Energy Conservation Standards for Commercial Water Heating Equipment RIN: 1904-AD34 CX(s)...

  16. Par Pond water balance

    SciTech Connect

    Hiergesell, R.A.; Dixon, K.L.

    1996-06-01

    A water budget for the Par Pond hydrologic system was established in order to estimate the rate of groundwater influx to Par Pond. This estimate will be used in modeling exercises to predict Par Pond reservoir elevation and spillway discharge in the scenario where Savannah River water is no longer pumped and discharged into Par Pond. The principal of conservation of mass was used to develop the water budget, where water inflow was set equal to water outflow. Components of the water budget were identified, and the flux associated with each was determined. The water budget was considered balanced when inflow and outflow summed to zero. The results of this study suggest that Par Pond gains water from the groundwater system in the upper reaches of the reservoir, but looses water to the groundwater system near the dam. The rate of flux of groundwater from the water table aquifer into Par Pond was determined to be 13 cfs. The rate of flux from Par Pond to the water table aquifer near the dam was determined to be 7 cfs.

  17. Geothermal Water Use: Life Cycle Water Consumption, Water Resource Assessment, and Water Policy Framework

    DOE Data Explorer

    Schroeder, Jenna N.

    2014-06-10

    This report examines life cycle water consumption for various geothermal technologies to better understand factors that affect water consumption across the life cycle (e.g., power plant cooling, belowground fluid losses) and to assess the potential water challenges that future geothermal power generation projects may face. Previous reports in this series quantified the life cycle freshwater requirements of geothermal power-generating systems, explored operational and environmental concerns related to the geochemical composition of geothermal fluids, and assessed future water demand by geothermal power plants according to growth projections for the industry. This report seeks to extend those analyses by including EGS flash, both as part of the life cycle analysis and water resource assessment. A regional water resource assessment based upon the life cycle results is also presented. Finally, the legal framework of water with respect to geothermal resources in the states with active geothermal development is also analyzed.

  18. Geothermal Water Use: Life Cycle Water Consumption, Water Resource Assessment, and Water Policy Framework

    DOE Data Explorer

    Schroeder, Jenna N.

    This report examines life cycle water consumption for various geothermal technologies to better understand factors that affect water consumption across the life cycle (e.g., power plant cooling, belowground fluid losses) and to assess the potential water challenges that future geothermal power generation projects may face. Previous reports in this series quantified the life cycle freshwater requirements of geothermal power-generating systems, explored operational and environmental concerns related to the geochemical composition of geothermal fluids, and assessed future water demand by geothermal power plants according to growth projections for the industry. This report seeks to extend those analyses by including EGS flash, both as part of the life cycle analysis and water resource assessment. A regional water resource assessment based upon the life cycle results is also presented. Finally, the legal framework of water with respect to geothermal resources in the states with active geothermal development is also analyzed.

  19. dist_hot_water.pdf

    Gasoline and Diesel Fuel Update

    District Hot Water Usage Form 1999 Commercial Buildings Energy Consumption Survey (CBECS) ... District Hot Water Usage Was district hot water delivered to the building during the ...

  20. Oasys Water | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Oasys Water Jump to: navigation, search Name: Oasys Water Place: Cambridge, Massachusetts Product: Cambridge-based developer of Engineered Osmosis, desalination and water treatment...

  1. Water Heaters | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Water Heaters Jump to: navigation, search TODO: Add description List of Water Heaters Incentives Retrieved from "http:en.openei.orgwindex.php?titleWaterHeaters&oldid267202"...

  2. Water Power | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Get Involved Help Apps Datasets Community Login | Sign Up Search Gateway Edit History Water Power (Redirected from Water) Jump to: navigation, search Water Power Community Forum...

  3. Super recycled water: quenching computers

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Super recycled water: quenching computers Super recycled water: quenching computers New facility and methods support conserving water and creating recycled products. Using reverse ...

  4. Water Conservation | Department of Energy

    Energy Saver

    Water Conservation Water Conservation Mission The team facilitates the reduction of water consumption intensity at LM sites, as deemed appropriate for LM operations and approved by ...

  5. Water Heating | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Water Heating Water Heating Infographic: Water Heaters 101 Infographic: Water Heaters 101 Everything you need to know about saving money on water heating costs. Read more Selecting a New Water Heater Selecting a New Water Heater Tankless? Storage? Solar? Save money on your water heating bill by choosing the right type of energy-efficient water heater for your needs. Read more Sizing a New Water Heater Sizing a New Water Heater When buying a new water heater, bigger is not always better. Learn

  6. ARM: Microwave Water Radiometer (MWR): water liq. and vapor along...

    Office of Scientific and Technical Information (OSTI)

    Microwave Water Radiometer (MWR): water liq. and vapor along line of sight (LOS) path Title: ARM: Microwave Water Radiometer (MWR): water liq. and vapor along line of sight (LOS) ...

  7. Hydrogen Production: Photoelectrochemical Water Splitting | Department...

    Energy Saver

    Photoelectrochemical Water Splitting Hydrogen Production: Photoelectrochemical Water Splitting In photoelectrochemical (PEC) water splitting, hydrogen is produced from water using ...

  8. Water Cooling | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Water Cooling Jump to: navigation, search Dictionary.png Water Cooling: Water cooling is commonly defined as a method of using water as a heat conduction to remove heat from an...

  9. Water Heating | Department of Energy

    Energy Saver

    Water Heating Water Heating September 2, 2015 - 11:07am Addthis Low-flow fixtures will help you reduce your hot water use and save money on your water heating bills. | Photo...

  10. NREL: Sustainable NREL - Water Efficiency

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Water Efficiency A photo of water spilling out of a downspout from the roof of a multi-story office building. NREL conserves water in a number of innovative ways. A photo of water ...

  11. Managing our water resources

    SciTech Connect

    Not Available

    1982-05-01

    Water is a plentiful, renewable resource if it is properly managed. The US allocates 82% of its water to agriculture, 10% to industries and utilities. American farmers are beginning to adopt water-conserving techniques long used in the world's arid regions because past profligate use and recent droughts lowered both water tables and farm productivity. Runoff and pollution are responsible for much of the waste of usable water. Because of local water shortages, there is interest in drip irrigation, setting aside more land for reservoirs, and other conservation techniques to ensure adequate supplies for industrial development and economic growth. American faith in technology has led to schemes for desalination, cloud seeding, iceberg towing, and aquifer recharging, as well as the existing system of dams. Proper management of river basins is an important step in the process. 1 figure. (DCK)

  12. Arsenic removal from water

    DOEpatents

    Moore, Robert C.; Anderson, D. Richard

    2007-07-24

    Methods for removing arsenic from water by addition of inexpensive and commonly available magnesium oxide, magnesium hydroxide, calcium oxide, or calcium hydroxide to the water. The hydroxide has a strong chemical affinity for arsenic and rapidly adsorbs arsenic, even in the presence of carbonate in the water. Simple and commercially available mechanical methods for removal of magnesium hydroxide particles with adsorbed arsenic from drinking water can be used, including filtration, dissolved air flotation, vortex separation, or centrifugal separation. A method for continuous removal of arsenic from water is provided. Also provided is a method for concentrating arsenic in a water sample to facilitate quantification of arsenic, by means of magnesium or calcium hydroxide adsorption.

  13. Water Cycle Pilot Study

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    1 Water Cycle Pilot Study To learn more about Earth's water cycle, the U.S. Department of Energy (DOE) has established a multi-laboratory science team representing five DOE national laboratories: Argonne, Brookhaven, Lawrence Berkeley, Los Alamos, and Oak Ridge. The science team will conduct a three- year Water Cycle Pilot Study within the ARM SGP CART site, primarily in the Walnut River Watershed east of Wichita, Kansas. The host facility in the Walnut River Watershed is the Atmospheric

  14. Purified water quality study

    SciTech Connect

    Spinka, H.; Jackowski, P.

    2000-04-03

    Argonne National Laboratory (HEP) is examining the use of purified water for the detection medium in cosmic ray sensors. These sensors are to be deployed in a remote location in Argentina. The purpose of this study is to provide information and preliminary analysis of available water treatment options and associated costs. This information, along with the technical requirements of the sensors, will allow the project team to determine the required water quality to meet the overall project goals.

  15. Water | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Water Water Water America has vast wave, tidal and hydropower resources -- but much of this energy remains untapped. The Energy Department is committed to driving critical research and development efforts to expand electricity generation from these clean energy resources. This includes investments in existing hydropower facilities to equip them with the necessary infrastructure to produce electricity and leading marine and hydrokinetic technology advancements to generate energy from waves,

  16. Water Success Stories

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    1 Water Success Stories en Catching a Wave: Innovative Wave Energy Device Surfs for Power in Hawaii http:energy.goveeresuccess-storiesarticlescatching-wave-innovative-wave-en...

  17. Water Power Program: Publications

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    2014 Hydropower Market Report Details Bookmark & Share View Related Welcome to the Water Power Program Publication and Product Library. This library will allow you to find...

  18. Sandia Energy - Water Security

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas...

  19. September 2004 Water Sampling

    Office of Legacy Management (LM)

    ... Sample ShippingReceiving The Reston Stable Isotope Laboratory in Reston, Virginia, received six water samples on May 23, 2014, submitted for the determination of stable hydrogen, ...

  20. Water Conservation Measures

    SciTech Connect

    2010-12-31

    This software requires inputs of simple water fixture inventory information and calculates the water/energy and cost benefits of various retrofit opportunities. This tool includes water conservation measures for: Low-flow Toilets, Low-flow Urinals, Low-flow Faucets, and Low-flow Showheads. This tool calculates water savings, energy savings, demand reduction, cost savings, and building life cycle costs including: simple payback, discounted payback, net-present value, and savings to investment ratio. In addition this tool also displays the environmental benefits of a project.

  1. Cooling water distribution system

    DOEpatents

    Orr, Richard

    1994-01-01

    A passive containment cooling system for a nuclear reactor containment vessel. Disclosed is a cooling water distribution system for introducing cooling water by gravity uniformly over the outer surface of a steel containment vessel using an interconnected series of radial guide elements, a plurality of circumferential collector elements and collector boxes to collect and feed the cooling water into distribution channels extending along the curved surface of the steel containment vessel. The cooling water is uniformly distributed over the curved surface by a plurality of weirs in the distribution channels.

  2. Water Conservation Measures

    Energy Science and Technology Software Center

    2010-12-31

    This software requires inputs of simple water fixture inventory information and calculates the water/energy and cost benefits of various retrofit opportunities. This tool includes water conservation measures for: Low-flow Toilets, Low-flow Urinals, Low-flow Faucets, and Low-flow Showheads. This tool calculates water savings, energy savings, demand reduction, cost savings, and building life cycle costs including: simple payback, discounted payback, net-present value, and savings to investment ratio. In addition this tool also displays the environmental benefits ofmore » a project.« less

  3. Sandia Energy - Water Power

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    News & Events, Partnership, Renewable Energy, Systems Analysis, Systems Engineering, Water Power WEC-Sim Code Development Meeting at the National Renewable Energy Laboratory...

  4. Sandia Energy - Water Power

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    6, a backward--bent duct buoy (BBDB) oscillating water column wave energy converter design. The team from HMRC included Tom Walsh, Brian Holmes, Florent Thiebaut, Neil...

  5. Storm Water Analytical Period

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    water associated with historical industrial activities at LANL from specified solid waste management units and areas of concern, collectively referred to as Sites. Contact...

  6. Selecting a new water heater

    SciTech Connect

    1995-03-01

    This fact sheet describes the types of water heaters available (storage water heaters, demand water heaters, heat pump water heaters, tankless coil and indirect water heaters, and solar water heaters). The criteria for selection are discussed. These are capacity, efficiency rating, and cost. A resource list is provided for further information.

  7. Purge water management system

    DOEpatents

    Cardoso-Neto, Joao E.; Williams, Daniel W.

    1996-01-01

    A purge water management system for effectively eliminating the production of purge water when obtaining a groundwater sample from a monitoring well. In its preferred embodiment, the purge water management system comprises an expandable container, a transportation system, and a return system. The purge water management system is connected to a wellhead sampling configuration, typically permanently installed at the well site. A pump, positioned with the monitoring well, pumps groundwater through the transportation system into the expandable container, which expands in direct proportion with volume of groundwater introduced, usually three or four well volumes, yet prevents the groundwater from coming into contact with the oxygen in the air. After this quantity of groundwater has been removed from the well, a sample is taken from a sampling port, after which the groundwater in the expandable container can be returned to the monitoring well through the return system. The purge water management system prevents the purge water from coming in contact with the outside environment, especially oxygen, which might cause the constituents of the groundwater to oxidize. Therefore, by introducing the purge water back into the monitoring well, the necessity of dealing with the purge water as a hazardous waste under the Resource Conservation and Recovery Act is eliminated.

  8. Purge water management system

    DOEpatents

    Cardoso-Neto, J.E.; Williams, D.W.

    1995-01-01

    A purge water management system is described for effectively eliminating the production of purge water when obtaining a groundwater sample from a monitoring well. In its preferred embodiment, the purge water management system comprises an expandable container, a transportation system, and a return system. The purge water management system is connected to a wellhead sampling configuration, typically permanently installed at the well site. A pump, positioned with the monitoring well, pumps groundwater through the transportation system into the expandable container, which expands in direct proportion with volume of groundwater introduced, usually three or four well volumes, yet prevents the groundwater from coming into contact with the oxygen in the air. After this quantity of groundwater has been removed from the well, a sample is taken from a sampling port, after which the groundwater in the expandable container can be returned to the monitoring well through the return system. The purge water management system prevents the purge water from coming in contact with the outside environment, especially oxygen, which might cause the constituents of the groundwater to oxidize. Therefore, by introducing the purge water back into the monitoring well, the necessity of dealing with the purge water as a hazardous waste under the Resource Conservation and Recovery Act is eliminated.

  9. Distribution Category: Water R

    Office of Scientific and Technical Information (OSTI)

    Distribution Category: Water R e a c t o r Safety- R e s e a r c h - - A n a l y s i s ... 8 10 I TOTAL VOLUMETRIC FLUX, ms Fig. 9. Fully Developed Air-Water Flow Data.30 ANL Neg. ...

  10. Water Power Publications | Water Power | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Publications NREL disseminates its research and development accomplishments in marine and hydrokinetic energy and hydropower through technical publications. Featured Publications Read some of the featured water power publications from NREL researchers. Image of a report Development of a Nearshore Oscillating Surge Wave Energy Converter with Variable Geometry Image of a report cover Balancing Power Absorption and Fatigue Loads in Irregular Waves Image of a report Spectral Modeling of an

  11. WATER-TRAPPED WORLDS

    SciTech Connect

    Menou, Kristen [Department of Astronomy, Columbia University, 550 West 120th Street, New York, NY 10027 (United States)

    2013-09-01

    Although tidally locked habitable planets orbiting nearby M-dwarf stars are among the best astronomical targets to search for extrasolar life, they may also be deficient in volatiles and water. Climate models for this class of planets show atmospheric transport of water from the dayside to the nightside, where it is precipitated as snow and trapped as ice. Since ice only slowly flows back to the dayside upon accumulation, the resulting hydrological cycle can trap a large amount of water in the form of nightside ice. Using ice sheet dynamical and thermodynamical constraints, I illustrate how planets with less than about a quarter the Earth's oceans could trap most of their surface water on the nightside. This would leave their dayside, where habitable conditions are met, potentially dry. The amount and distribution of residual liquid water on the dayside depend on a variety of geophysical factors, including the efficiency of rock weathering at regulating atmospheric CO{sub 2} as dayside ocean basins dry up. Water-trapped worlds with dry daysides may offer similar advantages as land planets for habitability, by contrast with worlds where more abundant water freely flows around the globe.

  12. EXPERIMENTAL ANIMAL WATERING DEVICE

    DOEpatents

    Finkel, M.P.

    1964-04-01

    A device for watering experimental animals confined in a battery of individual plastic enclosures is described. It consists of a rectangular plastic enclosure having a plurality of fluid-tight compartments, each with a drinking hole near the bottom and a filling hole on the top. The enclosure is immersed in water until filled, its drinking holes sealed with a strip of tape, and it is then placed in the battery. The tape sealing prevents the flow of water from the device, but permits animals to drink by licking the drinking holes. (AEC)

  13. Wind/Water Nexus

    SciTech Connect

    Not Available

    2006-04-01

    Nobel laureate Richard Smalley cited energy and water as among humanity's top problems for the next 50 years as the world's population increases from 6.3 billion to 9 billion. The U.S. Department of Energy's Wind and Hydropower Program has initiated an effort to explore wind energy's role as a technical solution to this critically important issue in the United States and the world. This four-page fact sheet outlines five areas in which wind energy can contribute: thermoelectric power plant/water processes, irrigation, municipal water supply, desalination, and wind/hydropower integration.

  14. California State Water Resources Control Board Storm Water Homepage...

    OpenEI (Open Energy Information) [EERE & EIA]

    State Water Resources Control Board Storm Water Homepage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: California State Water Resources Control Board...

  15. Water Power News

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    858936+791+7+343Water Power News en Energy Department Awards 10.5 Million for Next-Generation Marine Energy Systems http:energy.goveerearticlesenergy-department-awards-105-...

  16. September 2004 Water Sampling

    Office of Legacy Management (LM)

    ... Monitoring wells with an "SC" suffix are completed in the upper sand aquifer of the Wind ... the water level probe would become tangled with the dedicated pump tubing and power cable. ...

  17. September 2004 Water Sampling

    Office of Legacy Management (LM)

    ... the water level probe would become tangled with the dedicated pump tubing and power cable. ... Monitoring wells with an "SC" suffix are completed in the upper sand aquifer of the Wind ...

  18. Water Power Program News

    SciTech Connect

    2012-01-19

    News stories about conventional hydropower and marine and hydrokinetic technologies from the U.S. Department of Energy, the Office of Energy Efficiency and Renewable Energy, the Wind and Water Power Program, and other federal agencies.

  19. Electrolysis of Water

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Electrolysis of Water Grades: 5-8 Topic: Hydrogen and Fuel Cells, Solar Owner: Florida Solar Energy Center This educational material is brought to you by the U.S. Department of...

  20. Energy and Water Act

    Energy.gov [DOE] (indexed site)

    Letter 2004-02 - FY 2004 Le2islation Provisions (dated March 1.2004) Energy and Water Act AL-2004-02 provides guidance regarding the implementation of Section 30 I. 304....

  1. September 2004 Water Sampling

    Office of Legacy Management (LM)

    ... the output of two separators (each servicing a well) and the nearby accumulation tanks. ... Summary of Results The water volume in the collection tanks for most of the wells had ...

  2. UV water disinfector

    DOEpatents

    Gadgil, A.; Garud, V.

    1998-07-14

    A UV disinfector with a gravity driven feed water delivery system and an air-suspended bare UV lamp are disclosed. The disinfector is hydrodynamically optimized with a laminerizing, perforated baffle wall, beveled treatment chamber, and outlet weir. 7 figs.

  3. Water Sample Concentrator

    ScienceCinema

    Idaho National Laboratory

    2016-07-12

    Automated portable device that concentrates and packages a sample of suspected contaminated water for safe, efficient transport to a qualified analytical laboratory. This technology will help safeguard against pathogen contamination or chemical and biolog

  4. Thermoelectrically cooled water trap

    DOEpatents

    Micheels, Ronald H.

    2006-02-21

    A water trap system based on a thermoelectric cooling device is employed to remove a major fraction of the water from air samples, prior to analysis of these samples for chemical composition, by a variety of analytical techniques where water vapor interferes with the measurement process. These analytical techniques include infrared spectroscopy, mass spectrometry, ion mobility spectrometry and gas chromatography. The thermoelectric system for trapping water present in air samples can substantially improve detection sensitivity in these analytical techniques when it is necessary to measure trace analytes with concentrations in the ppm (parts per million) or ppb (parts per billion) partial pressure range. The thermoelectric trap design is compact and amenable to use in a portable gas monitoring instrumentation.

  5. Storm Water Individual Permit.

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    NPDES Storm Water Individual Permit. Wednesday, January 22, 2014 5:30 p.m. Cities of Gold Conference Center 10 Cities of Gold Road, Pojoaque, NM The Individual Permit authorizes...

  6. UV water disinfector

    DOEpatents

    Gadgil, Ashok; Garud, Vikas

    1998-07-14

    A UV disinfector with a gravity driven feed water delivery system, and an air-suspended bare UV lamp. The disinfector is hydrodynamically optimized with a laminerizing, perforated baffle wall, beveled treatment chamber, and outlet weir.

  7. Water Panel Discussion: Federal Reduction Update & Cooling Water Savings

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Houston, TX November 3, 2015 Francis Wheeler Water Savers, LLC (713) 504-6684 fwheeler@watersaversllc.com Don Hofmann Hofmann Water Technologies (800) 289-1833 hofmann@hwt.com Certifications and credentials: CWEP, LEED AP, CEM, CLIA, CLEP, CLIC, CLID and Water Sense Partner 2 Certifications and Training Federal Water Efficiency Mandates Executive Order (EO) 13423 Potable water use intensity (WUI) reduction through FY 2015 Energy Independence and Security Act 2007 Comprehensive water evaluations

  8. Storm Water Individual Permit.

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    are cordially invited to a public information meeting to discuss the biannual update on the NPDES Storm Water Individual Permit. Wednesday, January 22, 2014 5:30 p.m. Cities of Gold Conference Center 10 Cities of Gold Road, Pojoaque, NM The Individual Permit authorizes the discharge of storm water associated with industrial activities at Los Alamos National Laboratory from specified Solid Waste Management Units and Areas of Concern referred to as Sites. Public meetings about the NPDES Storm

  9. Water softening process

    DOEpatents

    Sheppard, John D.; Thomas, David G.

    1976-01-01

    This invention involves an improved process for softening hard water which comprises selectively precipitaing CaCO.sub.3 to form a thin layer thereof, increasing the pH of said water to precipitate magnesium as magnesium hydroxide and then filtering the resultant slurry through said layer. The CaCO.sub.3 layer serves as a thin permeable layer which has particularly useful application in cross-flow filtration applications.

  10. Purifying contaminated water

    DOEpatents

    Daughton, Christian G.

    1983-01-01

    Process for removing biorefractory compounds from contaminated water (e.g., oil shale retort waste-water) by contacting same with fragmented raw oil shale. Biorefractory removal is enhanced by preactivating the oil shale with at least one member of the group of carboxylic, acids, alcohols, aldehydes, ketones, ethers, amines, amides, sulfoxides, mixed ether-esters and nitriles. Further purification is obtained by stripping, followed by biodegradation and removal of the cells.

  11. Residential Absorption Water Heater

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Residential Absorption Water Heater 2014 Building Technologies Office Peer Review Kyle Gluesenkamp, gluesenkampk@ornl.gov Oak Ridge National Laboratory Project Summary Timeline: Start date: Oct 1, 2009 Planned end date: Sep 30, 2015 Key Milestones 1. Glycol additive report; Dec 2013 2. Prototype EF>1.0; March 2014 Budget: Total DOE $ to date: $2,429k Total future DOE $: $250k Target Market/Audience: Residential gas water heating Key Partners: GE CRADA partner SRA International Market

  12. Santa Clara Water & Sewer- Solar Water Heating Program

    Energy.gov [DOE]

    In 1975, the City of Santa Clara established the nation's first municipal solar utility. Under the Solar Water Heating Program, the Santa Clara Water & Sewer Utilities Department supplies,...

  13. Life Cycle Water Consumption and Water Resource Assessment for...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Life Cycle Water Consumption and Water Resource Assessment for Utility-Scale Geothermal Systems: An In-Depth Analysis of Historical and Forthcoming EGS Projects ...

  14. Guide to Colorado Well Permits, Water Rights, and Water Administration...

    OpenEI (Open Energy Information) [EERE & EIA]

    Colorado Well Permits, Water Rights, and Water Administration Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook:...

  15. Water Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Water Energy Water Energy Below are resources for Tribes on water energy technologies. Guide on How to Develop a Small Hydropower Plant This guide aims to give potential developers ...

  16. Guide to Home Water Efficiency

    SciTech Connect

    2010-10-01

    A fact sheet from the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy: A water-efficient home helps you minimize your water use, harness water for reuse, conserve energy, and save money.

  17. Molded polymer solar water heater

    DOEpatents

    Bourne, Richard C.; Lee, Brian E.

    2004-11-09

    A solar water heater has a rotationally-molded water box and a glazing subassembly disposed over the water box that enhances solar gain and provides an insulating air space between the outside environment and the water box. When used with a pressurized water system, an internal heat exchanger is integrally molded within the water box. Mounting and connection hardware is included to provide a rapid and secure method of installation.

  18. Water Power | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Get Involved Help Apps Datasets Community Login | Sign Up Search Gateway Edit History Water Power Jump to: navigation, search Water Power Community Forum Provides the community...

  19. Water for future Mars astronauts?

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Water for future Mars astronauts? Water for future Mars astronauts? Within its first three months on Mars, NASA's Curiosity Rover saw a surprising diversity of soils and sediments ...

  20. Energy and Water Data Portal

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ... Geochemistry Geoscience SubTER Carbon Sequestration Program Leadership EnergyWater Nexus ...

  1. Water and Energy (18 activities)

    Education - Teach & Learn

    An inquiry-based curriculum that introduces students to the properties of water and using water as an energy source with the following activities

  2. Water Availability, Cost, and Use

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ... Geochemistry Geoscience SubTER Carbon Sequestration Program Leadership EnergyWater Nexus ...

  3. System for treating produced water

    DOEpatents

    Sullivan, Enid J.; Katz, Lynn; Kinney, Kerry; Bowman, Robert S.; Kwon, Soondong

    2010-08-03

    A system and method were used to treat produced water. Field-testing demonstrated the removal of contaminants from produced water from oil and gas wells.

  4. Temperature, Water Vapor, and Clouds"

    Office of Scientific and Technical Information (OSTI)

    Radiometric Studies of Temperature, Water Vapor, and Clouds" Project ID: 0011106 ... measurements of column amounts of water vapor and cloud liquid has been well ...

  5. Absorption Heat Pump Water Heater

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Water Heater Kyle Gluesenkamp Building Equipment Group, ETSD gluesenkampk@ornl.gov 865-241-2952 April 3, 2013 CRADA - GE Development of High Performance Residential Gas Water ...

  6. Water Heating | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Water Heating Water Heating Low-flow fixtures will help you reduce your hot water use and save money on your water heating bills. | Photo courtesy of Huntington Veterans Medical Ctr. Low-flow fixtures will help you reduce your hot water use and save money on your water heating bills. | Photo courtesy of Huntington Veterans Medical Ctr. Water heating accounts for about 18% of your home's energy use. Reducing your hot water use, employing energy-saving strategies, and choosing an energy efficient

  7. Portable solar water heater

    SciTech Connect

    Borodulin, G.; Baron, R.; Shkolnik, A.

    1985-11-12

    A combined table and portable solar water heater comprises a suitcase-like rigid casing molded from a rigid plastic material which contains a pair of solar collector panels and connected in series. The panels can be exposed to solar radiation when the casing is opened. Each collector panel or is formed by a copper plate with the solar radiation absorbing surface and copper pipe coil or in heat-transferring relationship with said copper plate. The casing is provided with compartments for accessories, such as adjustable legs for supporting the casing, adjusting its angle to incident sunlight, and for converting the casing into a table; containers for feeding cold water to the solar collector and for receiving hot water from the collector; and a tripod stand for supporting the feeding container at the level above the collector and for arranging a shower set. Temperature-insulating layers of the collectors are formed by separate pieces of rigid material which can be removed from the casing and assembled into a box-shaped container which can be utilized for maintaining water heated by means of the solar water heater at an elevated temperature.

  8. Water Transport Within the STack: Water Transport Exploratory Studies |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Within the STack: Water Transport Exploratory Studies Water Transport Within the STack: Water Transport Exploratory Studies Part of a $100 million fuel cell award announced by DOE Secretary Bodman on Oct. 25, 2006. 2_lanl.pdf (22.05 KB) More Documents & Publications Water Transport Exploratory Studies Fuel Cell Kickoff Meeting Agenda

  9. Sandia Energy - Conventional Water Power: Technology Development

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Technology Development Home Stationary Power Energy Conversion Efficiency Water Power Conventional Water Power: Technology Development Conventional Water Power: Technology...

  10. Light Water Reactor Sustainability (LWRS) Program | Department...

    Energy Saver

    Nuclear Reactor Technologies Light Water Reactor Sustainability (LWRS) Program Light Water Reactor Sustainability (LWRS) Program Light Water Reactor Sustainability (LWRS) ...

  11. Alternative Water Sources Maps | Department of Energy

    Energy Saver

    Facilities Water Efficiency Alternative Water Sources Maps Alternative Water Sources Maps Rainwater Harvesting Regulations Rainwater Harvesting Regulations Read more ...

  12. Hydrogen Production: Thermochemical Water Splitting | Department...

    Energy Saver

    Processes Hydrogen Production: Thermochemical Water Splitting Hydrogen Production: Thermochemical Water Splitting Thermochemical water splitting uses high temperatures-from ...

  13. Light Water Reactor Sustainability Technical Documents | Department...

    Energy Saver

    Nuclear Reactor Technologies Light Water Reactor Sustainability Program Light Water Reactor Sustainability Technical Documents Light Water Reactor Sustainability Technical ...

  14. Fuel cell water transport

    DOEpatents

    Vanderborgh, Nicholas E.; Hedstrom, James C.

    1990-01-01

    The moisture content and temperature of hydrogen and oxygen gases is regulated throughout traverse of the gases in a fuel cell incorporating a solid polymer membrane. At least one of the gases traverses a first flow field adjacent the solid polymer membrane, where chemical reactions occur to generate an electrical current. A second flow field is located sequential with the first flow field and incorporates a membrane for effective water transport. A control fluid is then circulated adjacent the second membrane on the face opposite the fuel cell gas wherein moisture is either transported from the control fluid to humidify a fuel gas, e.g., hydrogen, or to the control fluid to prevent excess water buildup in the oxidizer gas, e.g., oxygen. Evaporation of water into the control gas and the control gas temperature act to control the fuel cell gas temperatures throughout the traverse of the fuel cell by the gases.

  15. Water, law, science

    SciTech Connect

    Narasimhan, T.N.

    2007-10-17

    In a world with water resources severely impacted bytechnology, science must actively contribute to water law. To this end,this paper is an earth scientist s attempt to comprehend essentialelements of water law, and to examine their connections to science.Science and law share a common logical framework of starting with apriori prescribed tenets, and drawing consistent inferences. In science,observationally established physical laws constitute the tenets, while inlaw, they stem from social values. The foundations of modern water law inEurope and the New World were formulated nearly two thousand years ago byRoman jurists who were inspired by Greek philosophy of reason.Recognizing that vital natural elements such as water, air, and the seawere governed by immutable natural laws, they reasoned that theseelements belonged to all humans, and therefore cannot be owned as privateproperty. Legally, such public property was to be governed by jusgentium, the law of all people or the law of all nations. In contrast,jus civile or civil law governed private property. Remarkably, jusgentium continues to be relevant in our contemporary society in whichscience plays a pivotal role in exploiting vital resources common to all.This paper examines the historical roots of modern water law, followstheir evolution through the centuries, and examines how the spirit ofscience inherent in jus gentium is profoundly influencing evolving waterand environmental laws in Europe, the United States and elsewhere. In atechnological world, scientific knowledge has to lie at the core of waterlaw. Yet, science cannot formulate law. It is hoped that a philosophicalunderstanding of the relationships between science and law willcontribute to their constructively coming together in the service ofsociety.

  16. Alternative Water Sources Map | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Facilities Water Efficiency Alternative Water Sources Map Alternative Water Sources Map The Federal Energy Management Program (FEMP) created the Alternative Water Map to...

  17. Increasing Federal Office Building Water Efficiency

    SciTech Connect

    2010-04-21

    Quick guide to increasing Federal office building water efficiency, water management planning, performing a water audit, calculating a water balance, and best management practices.

  18. Water Use Reduction | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Facilities Water Use Reduction Water Use Reduction Water Use Reduction Water Use Reduction The Federal Energy Management Program (FEMP) provides agencies with guidance and...

  19. Alternative Water Sources Map | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Facilities Water Efficiency Alternative Water Sources Map Alternative Water Sources Map The Federal Energy Management Program (FEMP) created the Alternative Water Map to ...

  20. Landscaping Water Conservation | Department of Energy

    Energy Saver

    Water Conservation Landscaping Water Conservation This colorful water-conserving landscape requires only one-quarter the water a bluegrass lawn would use. | Photo courtesy of Jim ...

  1. Water Heating Projects | Department of Energy

    Energy Saver

    HVAC, Water Heating, & Appliances Water Heating Projects Water Heating Projects Figure 1: The system model for the combined Water heater, dehumidifier and cooler (WHDC). A ...

  2. Light water detritiation

    SciTech Connect

    Fedorchenko, O.A.; Aleksee, I.A.; Bondarenko, S.D.; Vasyanina, T.V.

    2015-03-15

    Hundreds of thousands of tons of tritiated light water have been accumulating from the enterprises of nuclear fuel cycles around the world. The Dual-Temperature Water-Hydrogen (DTWH) process looks like the only practical alternative to Combined Electrolysis and Catalytic Exchange (CECE). In DTWH power-consuming lower reflux device (electrolytic cell) is replaced by a so-called 'hot tower' (LPCE column operating at conditions which ensure relatively small value of elementary separation factor α(hot)). In the upper, cold tower, the tritium transfers from hydrogen to water while in the lower, hot tower - in the opposite direction - from water to hydrogen. The DTWH process is much more complicated compared to CECE; it must be thoroughly computed and strictly controlled by an automatic control system. The use of a simulation code for DTWH is absolutely important. The simulation code EVIO-5 deals with 3 flows inside a column (hydrogen gas, water vapour and liquid water) and 2 simultaneous isotope exchange sub-processes (counter-current phase exchange and co-current catalytic exchange). EVIO-5 takes into account the strong dependence of process performance on given conditions (temperature and pressure). It calculates steady-state isotope concentration profiles considering a full set of reversible exchange reactions between different isotope modifications of water and hydrogen (12 molecular species). So the code can be used for simulation of LPCE column operation for detritiation of hydrogen and water feed, which contains H and D not only at low concentrations but above 10 at.% also. EVIO-5 code is used to model a Tritium Removal Facility with a throughput capacity of about 400 m{sup 3}/day. Simulation results show that a huge amount of wet-proofed catalyst is required (about 6000 m{sup 3}), mainly (90%) in the first stage. One reason for these large expenses (apart from a big scale of the problem itself) is the relatively high tritium separation factor in the hot tower

  3. Chaudagaz condensation water heater

    SciTech Connect

    Nocturne, P.

    1982-01-01

    The Chaudagaz water heater offers (1) a high heating capacity (40 kW) through the use of a ventilator-equipped burner, (2) quick warmup (less than 20 min), and (3) high heating efficiency (85% upper calorific value) obtained by a unique heat-recovery system. The combustion products rise through a central cylinder, then flow downward along stainless-steel spiral tubing, warming the water and exiting from the bottom of the tank. This natural flow allows easy discharge of condensates and prevents cold air from sweeping through the stack when the burner is off.

  4. National Smart Water Grid

    SciTech Connect

    Beaulieu, R A

    2009-07-13

    The United States repeatedly experiences floods along the Midwest's large rivers and droughts in the arid Western States that cause traumatic environmental conditions with huge economic impact. With an integrated approach and solution these problems can be alleviated. Tapping into the Mississippi River and its tributaries, the world's third largest fresh water river system, during flood events will mitigate the damage of flooding and provide a new source of fresh water to the Western States. The trend of increased flooding on the Midwest's large rivers is supported by a growing body of scientific literature. The Colorado River Basin and the western states are experiencing a protracted multi-year drought. Fresh water can be pumped via pipelines from areas of overabundance/flood to areas of drought or high demand. Calculations document 10 to 60 million acre-feet (maf) of fresh water per flood event can be captured from the Midwest's Rivers and pumped via pipelines to the Colorado River and introduced upstream of Lake Powell, Utah, to destinations near Denver, Colorado, and used in areas along the pipelines. Water users of the Colorado River include the cities in southern Nevada, southern California, northern Arizona, Colorado, Utah, Indian Tribes, and Mexico. The proposed start and end points, and routes of the pipelines are documented, including information on right-of-ways necessary for state and federal permits. A National Smart Water Grid{trademark} (NSWG) Project will create thousands of new jobs for construction, operation, and maintenance and save billions in drought and flood damage reparations tax dollars. The socio-economic benefits of NWSG include decreased flooding in the Midwest; increased agriculture, and recreation and tourism; improved national security, transportation, and fishery and wildlife habitats; mitigated regional climate change and global warming such as increased carbon capture; decreased salinity in Colorado River water crossing the US

  5. Impacts of Water Quality on Residential Water Heating Equipment

    SciTech Connect

    Widder, Sarah H.; Baechler, Michael C.

    2013-11-01

    Water heating is a ubiquitous energy use in all residential housing, accounting for 17.7% of residential energy use (EIA 2012). Today, there are many efficient water heating options available for every fuel type, from electric and gas to more unconventional fuel types like propane, solar, and fuel oil. Which water heating option is the best choice for a given household will depend on a number of factors, including average daily hot water use (total gallons per day), hot water draw patterns (close together or spread out), the hot water distribution system (compact or distributed), installation constraints (such as space, electrical service, or venting accommodations) and fuel-type availability and cost. While in general more efficient water heaters are more expensive than conventional water heating technologies, the savings in energy use and, thus, utility bills can recoup the additional upfront investment and make an efficient water heater a good investment over time in most situations, although the specific payback period for a given installation will vary widely. However, the expected lifetime of a water heater in a given installation can dramatically influence the cost effectiveness and savings potential of a water heater and should be considered, along with water use characteristics, fuel availability and cost, and specific home characteristics when selecting the optimum water heating equipment for a particular installation. This report provides recommendations for selecting and maintaining water heating equipment based on local water quality characteristics.

  6. Federal Incentives for Water Power

    SciTech Connect

    2013-04-05

    This factsheet lists the major federal incentives for water power technologies available as of April 2013.

  7. Surprise Valley water geochmical data

    DOE Data Explorer

    Nicolas Spycher

    2015-04-13

    Chemical analyses of thermal and cold ground waters from Surprise Valley, compiled from publicly available sources.

  8. Tribal Water in Arizona Conference

    Energy.gov [DOE]

    The Law Seminars International is hosting the Tribal Water in Arizona: New Development for Indian Water Rights, Regulations, and Settlement Processes. The two-day conference will present an overview of the law governing tribal water rights and impacting the development of tribal water projects.

  9. Surprise Valley water geochmical data

    DOE Data Explorer

    Nicolas Spycher

    Chemical analyses of thermal and cold ground waters from Surprise Valley, compiled from publicly available sources.

  10. September 2004 Water Sampling

    Office of Legacy Management (LM)

    3 Groundwater and Surface Water Sampling at the Monument Valley, Arizona, Processing Site March 2014 LMS/MON/S01213 This page intentionally left blank U.S. Department of Energy DVP-December 2013, Monument Valley, Arizona March 2014 RIN 13125794 Page i Contents Sampling Event Summary ...............................................................................................................1 Monument Valley, Arizona, Processing Site, Sample Location Map

  11. September 2004 Water Sampling

    Office of Legacy Management (LM)

    and Surface Water Sampling at the Monument Valley, Arizona, Processing Site February 2015 LMS/MON/S01214 This page intentionally left blank U.S. Department of Energy DVP-December 2014, Monument Valley, Arizona February 2015 RIN 14126645 Page i Contents Sampling Event Summary ...............................................................................................................1 Monument Valley, Arizona, Disposal Site Sample Location Map ..................................................5

  12. September 2004 Water Sampling

    Office of Legacy Management (LM)

    and Surface Water Sampling at the Monticello, Utah, Processing Site July 2014 LMS/MNT/S00414 This page intentionally left blank U.S. Department of Energy DVP-April 2014, Monticello, Utah July 2014 RIN 14046077 Page i Contents Sampling Event Summary ...............................................................................................................1 Planned Sampling Map, April 2014, Monticello, Utah, Processing Site .........................................5 Data Assessment Summary

  13. September 2004 Water Sampling

    Office of Legacy Management (LM)

    and Surface Water Sampling at the Monticello, Utah, Processing Site July 2015 LMS/MNT/S00415 This page intentionally left blank U.S. Department of Energy DVP-April 2015, Monticello, Utah July 2015 RIN 15046927 Page i Contents Sampling Event Summary ...............................................................................................................1 Monticello, Utah, Processing Site Sample Location Map ...............................................................5 Data Assessment

  14. September 2004 Water Sampling

    Office of Legacy Management (LM)

    3 Water Sampling at the Monticello, Utah, Processing Site January 2014 LMS/MNT/S01013 This page intentionally left blank U.S. Department of Energy DVP-October 2013, Monticello, Utah January 2014 RIN 13105661 and 13105711 Page i Contents Sampling Event Summary ...............................................................................................................1 Planned Sampling Map, Monticello, Utah, Processing and Disposal Site, October 2013 ..............5 Data Assessment Summary

  15. September 2004 Water Sampling

    Office of Legacy Management (LM)

    5 Groundwater and Surface Water Sampling at the Monticello, Utah, Processing Site January 2016 LMS/MNT/S01015 This page intentionally left blank U.S. Department of Energy DVP-October 2015, Monticello, Utah January 2016 RIN 15107423 Page i Contents Sampling Event Summary ...............................................................................................................1 Monticello, Utah, Processing Site Sample Location Map

  16. September 2004 Water Sampling

    Office of Legacy Management (LM)

    and May 2014 Groundwater and Surface Water Sampling at the Shiprock, New Mexico, Disposal Site June 2014 LMS/SHP/S00314 This page intentionally left blank U.S. Department of Energy DVP-March and May 2014, Shiprock, New Mexico June 2014 RIN 14036011, 14036013, and 14056142 Page i Contents Sampling Event Summary ...............................................................................................................1 Shiprock, New Mexico, Disposal Site, Sample Location Map

  17. September 2004 Water Sampling

    Office of Legacy Management (LM)

    5 Groundwater and Surface Water Sampling at the Tuba City, Arizona Disposal Site June 2015 LMS/TUB/S00215 This page intentionally left blank U.S. Department of Energy DVP-February 2015, Tuba City, Arizona June 2015 RIN 15026775 Page i Contents Sampling Event Summary ...............................................................................................................1 Planned Sampling Map Tuba City, AZ, Disposal Site February 2015 ............................................5 Data

  18. September 2004 Water Sampling

    Office of Legacy Management (LM)

    3 Groundwater and Surface Water Sampling at the Tuba City, Arizona, Disposal Site November 2013 LMS/TUB/S00813 This page intentionally left blank U.S. Department of Energy DVP-August 2013, Tuba City, Arizona November 2013 RIN 13085553 Page i Contents Sampling Event Summary ...............................................................................................................1 Tuba City, Arizona, Disposal Site, Sample Location Map

  19. Light water reactor program

    SciTech Connect

    Franks, S.M.

    1994-12-31

    The US Department of Energy`s Light Water Reactor Program is outlined. The scope of the program consists of: design certification of evolutionary plants; design, development, and design certification of simplified passive plants; first-of-a-kind engineering to achieve commercial standardization; plant lifetime improvement; and advanced reactor severe accident program. These program activities of the Office of Nuclear Energy are discussed.

  20. Researching power plant water recovery

    SciTech Connect

    2008-04-01

    A range of projects supported by NETl under the Innovations for Existing Plant Program are investigating modifications to power plant cooling systems for reducing water loss, and recovering water from the flue gas and the cooling tower. This paper discusses two technologies showing particular promise condense water that is typically lost to evaporation, SPX technologies' Air2Air{sup trademark} condenses water from a cooling tower, while Lehigh University's process condenses water and acid in flue gas. 3 figs.

  1. Missouri Water Treatment Plant Upgraded

    Energy.gov [DOE]

    The city of St. Peters, Missouri obtains its water from one of the best known rivers. Eight pumps from underground wells in the Mississippi River floodplain send water to a lime-softening water treatment plant where it is prepared for drinking water purposes. But because the demand for clean water exists at all times, the plant consumes noticeably large amounts of money and energy.

  2. Nationwide water availability data for energy-water modeling.

    SciTech Connect

    Tidwell, Vincent Carroll; Zemlick, Katie M.; Klise, Geoffrey Taylor

    2013-11-01

    The purpose of this effort is to explore where the availability of water could be a limiting factor in the siting of new electric power generation. To support this analysis, water availability is mapped at the county level for the conterminous United States (3109 counties). Five water sources are individually considered, including unappropriated surface water, unappropriated groundwater, appropriated water (western U.S. only), municipal wastewater and brackish groundwater. Also mapped is projected growth in non-thermoelectric consumptive water demand to 2035. Finally, the water availability metrics are accompanied by estimated costs associated with utilizing that particular supply of water. Ultimately these data sets are being developed for use in the National Renewable Energy Laboratories' (NREL) Regional Energy Deployment System (ReEDS) model, designed to investigate the likely deployment of new energy installations in the U.S., subject to a number of constraints, particularly water.

  3. BOILING WATER REACTOR WITH FEED WATER INJECTION NOZZLES

    DOEpatents

    Treshow, M.

    1963-04-30

    This patent covers the use of injection nozzles for pumping water into the lower ends of reactor fuel tubes in which water is converted directly to steam. Pumping water through fuel tubes of this type of boiling water reactor increases its power. The injection nozzles decrease the size of pump needed, because the pump handles only the water going through the nozzles, additional water being sucked into the tubes by the nozzles independently of the pump from the exterior body of water in which the fuel tubes are immersed. The resulting movement of exterior water along the tubes holds down steam formation, and thus maintains the moderator effectiveness, of the exterior body of water. (AEC)

  4. Water Heating Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Water Heating Basics Water Heating Basics August 19, 2013 - 11:15am Addthis A variety of systems are available for water heating in homes and buildings. Learn about: Conventional Storage Water Heaters Demand (Tankless or Instantaneous) Water Heaters Heat Pump Water Heaters Solar Water Heaters Tankless Coil and Indirect Water Heaters Addthis Related Articles Tankless Demand Water Heater Basics Solar Water Heater Basics Heat Pump Water Heater Basics Energy Basics Home Renewable Energy Homes &

  5. Ground-water in Texas

    SciTech Connect

    Ward-McLemore, E.

    1985-01-01

    Amount 61% of the water used by Texans is ground-water. Some areas, both municipal and rural, depend entirely on ground-water. In many areas long term withdrawal is lowering the water levels, causing surface land subsidence, salt-water encroachment, and reducing future reservoir availability. The increasing probability of seepage from radioactive and toxic wastes, herbicide residues, septic systems, and oilfield brines is threatening dangerous contamination of fresh ground-water reservoirs. The Texas Department of Water Resources, the Texas Department of Health, State and private colleges and universities, the US Geological Survey, the Environmental Protection Agency, various underground water districts, among others, are cooperating with concerned hydrologists in a concentrated program to increase the efficiency of ground-water use and development, preserve the aquifer reservoirs, and decrease the pollution potential. 88 references.

  6. Google Earth Tour: Water reuse at LANL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Google Earth Tour: Water reuse at LANL Google Earth Tour: Water reuse at LANL

  7. Urban Sustainability Water Module

    Energy Science and Technology Software Center

    1998-09-22

    Most urban areas are experiencing substantial growth rate. In order to support the growth and still maintain the high quality of life currently available in these areas, government planners, and developers and general stakeholders are very interested in a product that will allow them to experiment with different development scenarios to determine the best path forward. One of the biggest concerns is the amount of water that will be available as the growth continues. Thismore » software package will allow them as a group to input their ideas and get a visual view of the results, immediately. They will be able to watch the water resources as they are consumed by the increasing growth in residential, commercial and industrial areas.« less

  8. Water soluble laser dyes

    DOEpatents

    Hammond, Peter R.; Feeman, James F.; Field, George F.

    1998-01-01

    Novel water soluble dyes of the formula I are provided ##STR1## wherein R.sup.1 and R.sup.4 are alkyl of 1 to 4 carbon atoms or hydrogen; or R.sup.1 -R.sup.2 or R.sup.2 -R.sup.4 form part of aliphatic heterocyclic rings; R.sup.2 is hydrogen or joined with R.sup.1 or R.sup.4 as described above; R.sup.3 is --(CH.sub.2).sub.m --SO.sub.3.sup.-, where m is 1 to 6; X is N, CH or ##STR2## where Y is 2 --SO.sub.3.sup.- ; Z is 3, 4, 5 or 6 --SO.sub.3.sup.-. The novel dyes are particularly useful as the active media in water solution dye lasers.

  9. Water soluble laser dyes

    DOEpatents

    Hammond, P.R.; Feeman, J.F.; Field, G.F.

    1998-08-11

    Novel water soluble dyes of the formula 1 are provided by the formula described in the paper wherein R{sup 1} and R{sup 4} are alkyl of 1 to 4 carbon atoms or hydrogen; or R{sup 1}--R{sup 2} or R{sup 2}--R{sup 4} form part of aliphatic heterocyclic rings; R{sup 2} is hydrogen or joined with R{sup 1} or R{sup 4} as described above; R{sup 3} is --(CH{sub 2}){sub m}--SO{sub 3}{sup {minus}}, where m is 1 to 6; X is N, CH or formula 2 given in paper where Y is 2 --SO{sub 3}{sup {minus}} ; Z is 3, 4, 5 or 6 --SO{sub 3}{sup {minus}}. The novel dyes are particularly useful as the active media in water solution dye lasers.

  10. Water Cooled Mirror Design

    SciTech Connect

    Dale, Gregory E.; Holloway, Michael Andrew; Pulliam, Elias Noel

    2015-03-30

    This design is intended to replace the current mirror setup being used for the NorthStar Moly 99 project in order to monitor the target coupon. The existing setup has limited movement for camera alignment and is difficult to align properly. This proposed conceptual design for a water cooled mirror will allow for greater thermal transfer between the mirror and the water block. It will also improve positioning of the mirror by using flexible vacuum hosing and a ball head joint capable of a wide range of motion. Incorporating this design into the target monitoring system will provide more efficient cooling of the mirror which will improve the amount of diffraction caused by the heating of the mirror. The process of aligning the mirror for accurate position will be greatly improved by increasing the range of motion by offering six degrees of freedom.

  11. Deep Water Technology

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Deepwater Technology Deepwater (and Ultra-Deepwater, 5000 feet of water depth and beyond) is recognized as one of the last remaining areas of the world were oil and natural gas resources remain to be discovered and produced. The architecture of the systems employed to cost-effectively develop these resources in an environmentally safe manner, reflect some of industry's most advanced engineering accomplishments. NETL funds research to catalyze further advances that can help Gulf of Mexico

  12. Water Transport Exploratory Studies

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Exploratory Studies Office of Hydrogen, Fuel Cells, and Infrastructure Technologies 2007 kickoff meeting February 13-14, 2007 DOE Forrestal Building Rod Borup Mukundan Rangachary, Bryan Pivovar, Yu Seung Kim, John Davey, David Wood, Tom Springer, Muhammad Arif , Ken Chen, Simon Cleghorn, Will Johnson, Karren More, Peter Wilde, Tom Zawodzinski Los Alamos National Lab This presentation does not contain any proprietary or confidential information Objectives * Develop understanding of water

  13. Tips: Water Heating | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Water Heating Tips: Water Heating Keep your energy bills out of hot water. Insulate your water heater to save ... Drain-water, or greywater, heat recovery systems capture the energy ...

  14. Tips: Water Heating | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Water Heating Tips: Water Heating Keep your energy bills out of hot water. Insulate your water heater to save energy and money, or choose an on-demand hot water heater to save even ...

  15. Life Cycle Water Consumption and Water Resource Assessment for

    Office of Scientific and Technical Information (OSTI)

    Utility-Scale Geothermal Systems: An In-Depth Analysis of Historical and Forthcoming EGS Projects (Technical Report) | SciTech Connect Technical Report: Life Cycle Water Consumption and Water Resource Assessment for Utility-Scale Geothermal Systems: An In-Depth Analysis of Historical and Forthcoming EGS Projects Citation Details In-Document Search Title: Life Cycle Water Consumption and Water Resource Assessment for Utility-Scale Geothermal Systems: An In-Depth Analysis of Historical and

  16. QER- Comment of American Water

    Office of Energy Efficiency and Renewable Energy (EERE)

    Dear QER Team; Thank you for the opportunity to provide comments to the Quadrennial Energy Review Task Force to discuss the water and energy nexus, advances in water innovative technologies, and the impact of climate change on water issues. On behalf of American Water, I wish to submit the following White Papers which we have prepared on these critical issues: Innovations in Energy Use Sustainability and Resiliency Planning for Water Utilities One Water Water/Energy Correlation The Value of Water Challenges in the Water Industry: Climate Change Challenges in the Water Industry: Meeting Demand in the West Innovation Solutions Within the Water Industry: Desalination Innovation Solutions Within the Water Industry: Going Green Innovation Solutions Within the Water Industry: Water Reuse Bridging the Water Innovation Gap. Founded in 1886, American Water is the largest publicly traded U.S. water and wastewater utility company. With headquarters in Voorhees, NJ, the company employs approximately 6,600 dedicated professionals who provide drinking water, wastewater and other related services to an estimated 14 million people in more than 40 states. Please feel free to contact me if you have any questions or if there is any way American Water can be helpful to your mission. Respectfully Yours, Martin (See attached file: White Papers.pdf) Martin D. Kerckhoff Vice President and Divisional General Counsel Central Division American Water CONFIDENTIAL & PRIVILEGED COMMUNICATION This email and any attachments hereto constitute a legally confidential communication from the Legal Department of American Water. The information contained herein is subject to attorney-client privilege and is for the sole use of the intended original addressee. If you are not the intended original addressee, you are hereby notified that any reading, disclosure, copying, distribution, use, or taking of any action in reliance on the contents contained herein is strictly prohibited. If you have received this

  17. Central Multifamily Water Heating Systems

    Energy.gov [DOE]

    The Building America Program is hosting a no-cost, webinar-based training on Central Multifamily Water Heating Systems. The webinar will focus the effective use of central heat pump water heaters...

  18. NREL: Water Power Research - Projects

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Projects NREL's water power R&D projects support industry efforts to develop and deploy cost-effective water power technologies and to better understand the value and potential of...

  19. Water Heating | Department of Energy

    Energy.gov [DOE] (indexed site)

    Low-flow fixtures will help you reduce your hot water use and save money on your water heating bills. | Photo courtesy of Huntington Veterans Medical Ctr. Low-flow fixtures will...

  20. Columbia Water & Light- Solar Rebates

    Energy.gov [DOE]

    Columbia Water & Light electric customers are eligible for a $400 rebate for the purchase of a new solar water heater. To apply for this rebate, a customer submits a pre-approval application to...

  1. ARM - Measurement - Total cloud water

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    cloud water ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Total cloud water The total concentration (mass/vol) of ice and liquid water particles in a cloud; this includes condensed water content (CWC). Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a

  2. Water-Efficiency Program Prioritization

    Energy.gov [DOE]

    Presentation outlines water-efficiency program requirements and priorities as presented to Federal agencies by the Federal Energy Management Program.

  3. Scientists ignite aluminum water mix

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Scientists ignite aluminum water mix Scientists ignite aluminum water mix Don't worry, that beer can you're holding is not going to spontaneously burst into flames. June 30, 2014 Los Alamos National Laboratory chemist Bryce Tappan ignites a small quantity of aluminum nanoparticle water mixture. In open air, the compound burns like a Fourth of July sparkler. Los Alamos National Laboratory chemist Bryce Tappan ignites a small quantity of aluminum nanoparticle water mixture. In open air, the

  4. Water-Using Equipment: Domestic

    SciTech Connect

    Solana, Amy E.; Mcmordie, Katherine

    2006-01-24

    Water management is an important aspect of energy engineering. This article addresses water-using equipment primarily used for household purposes, including faucets, showers, toilets, urinals, dishwashers, and clothes washers, and focuses on how the equipment can be optimized to save both water and energy. Technology retrofits and operation and maintenance changes are the primary methods discussed for water and energy conservation. Auditing to determine current consumption rates is also described for each technology.

  5. Water purification using organic salts

    DOEpatents

    Currier, Robert P.

    2004-11-23

    Water purification using organic salts. Feed water is mixed with at least one organic salt at a temperature sufficiently low to form organic salt hydrate crystals and brine. The crystals are separated from the brine, rinsed, and melted to form an aqueous solution of organic salt. Some of the water is removed from the aqueous organic salt solution. The purified water is collected, and the remaining more concentrated aqueous organic salt solution is reused.

  6. Hydrogen isotope separation from water

    DOEpatents

    Jensen, R.J.

    1975-09-01

    A process for separating tritium from tritium-containing water or deuterium enrichment from water is described. The process involves selective, laser-induced two-photon excitation and photodissociation of those water molecules containing deuterium or tritium followed by immediate reaction of the photodissociation products with a scavenger gas which does not substantially absorb the laser light. The reaction products are then separated from the undissociated water. (auth)

  7. Comprehensive Water-Efficiency Solutions

    SciTech Connect

    McMordie Stoughton, Kate

    2015-07-15

    Energy performance contracts can be an effective way to integrate comprehensive water-efficient technologies and solutions into energy efficiency projects. Current practices often miss key opportunities to incorporate a full suite of water measures primarily because a comprehensive approach is not taken in the assessment. This article provides information on how to develop a comprehensive water project that leads to innovative solutions and potential for large water reduction.

  8. Efficient Water Use & Management

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Water Use Goal 4: Efficient Water Use & Management Aware of the arid climate of northern New Mexico, water reduction and conservation remains a primary concern at LANL. Energy Conservation» Efficient Water Use & Management» High Performance Sustainable Buildings» Greening Transportation» Green Purchasing & Green Technology» Pollution Prevention» Science Serving Sustainability» ENVIRONMENTAL SUSTAINABILITY GOALS at LANL Sanitary Effluent Reclamation Facility: Using reverse

  9. Boiler and cooling water basics

    SciTech Connect

    Ketrick, B.T.

    1995-06-01

    Boiler Water Treatment products and programs are used in boiler systems to prevent the formation of water side deposits and corrosion. Water side deposits will cause a loss of boiler efficiency, as well as, damage to the boiler internals. Corrosion can cause a loss of boiler metal integrity. Both conditions can lead to a reduced operating life for the boiler and costly annual repairs.

  10. War against water

    SciTech Connect

    Fitz-Hugh, S.

    1982-01-01

    It is stressed that waterproofing should be the most important concern in an earth-sheltered home, starting with the design and continuing throughout the construction. Damage which may be caused by water leakage is discussed. Proper site selection is most important and the need for outside professionals and consultants is emphasized. The ideal waterproofing system is discussed and illustrated. Waterproofing agents are discussed in detail. They are: (1) sodium bentonite; (2) elastomers, such as isobutylene isoprene (butyl rubber), EPDM (ethylene propylene diene monomer), and liquid elastomers (polyurethanes); and (3) rubberized asphalt. Availability, sheet sizes and application of these waterproofing agents are discussed. (MJJ)

  11. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Water Sampling at the Salmon, Mississippi, Site March 2014 Approved for public release; further dissemination unlimited LMS/SAL/S00413 Available for sale to the public from: U.S. Department of Commerce National Technical Information Service 5301 Shawnee Road Alexandria, VA 22312 Telephone: 800.553.6847 Fax: 703.605.6900 E-mail: orders@ntis.gov Online Ordering: http://www.ntis.gov/help/ordermethods.aspx Available electronically at http://www.osti.gov/bridge Available for a processing fee to U.S.

  12. Water heater control module

    DOEpatents

    Hammerstrom, Donald J

    2013-11-26

    An advanced electric water heater control system that interfaces with a high temperature cut-off thermostat and an upper regulating thermostat. The system includes a control module that is electrically connected to the high-temperature cut-off thermostat and the upper regulating thermostat. The control module includes a switch to open or close the high-temperature cut-off thermostat and the upper regulating thermostat. The control module further includes circuitry configured to control said switch in response to a signal selected from the group of an autonomous signal, a communicated signal, and combinations thereof.

  13. Submerged water wheel

    SciTech Connect

    Frisz, J. O.

    1985-11-05

    A water wheel for operating fully submerged in an ocean current has a rotating frame member supported on the ocean floor for rotation about a vertical axis. The frame member supports a plurality of vertically extending vanes, each vane being rotatably supported on the frame for limited rotation about a vertical axis. It has a hydrofoil shape in cross-section with the axis of rotation parallel to the leading and trailing edges. Rotation of the vanes is limited relative to the frame by a hydraulic piston control system and shock absorbers.

  14. Molecular water oxidation catalyst

    DOEpatents

    Gratzel, Michael; Munavalli, Shekhar; Pern, Fu-Jann; Frank, Arthur J.

    1993-01-01

    A dimeric composition of the formula: ##STR1## wherein L', L", L'", and L"" are each a bidentate ligand having at least one functional substituent, the ligand selected from bipyridine, phenanthroline, 2-phenylpyridine, bipyrimidine, and bipyrazyl and the functional substituent selected from carboxylic acid, ester, amide, halogenide, anhydride, acyl ketone, alkyl ketone, acid chloride, sulfonic acid, phosphonic acid, and nitro and nitroso groups. An electrochemical oxidation process for the production of the above functionally substituted bidentate ligand diaqua oxo-bridged ruthenium dimers and their use as water oxidation catalysts is described.

  15. CHIMNEY FOR BOILING WATER REACTOR

    DOEpatents

    Petrick, M.

    1961-08-01

    A boiling-water reactor is described which has vertical fuel-containing channels for forming steam from water. Risers above the channels increase the head of water radially outward, whereby water is moved upward through the channels with greater force. The risers are concentric and the radial width of the space between them is somewhat small. There is a relatively low rate of flow of water up through the radially outer fuel-containing channels, with which the space between the risers is in communication. (AE C)

  16. USGS Annual Water Data Reports

    SciTech Connect

    2012-04-01

    Water resources data are published annually for use by engineers, scientists, managers, educators, and the general public. These archival products supplement direct access to current and historical water data provided by the National Water Information System (NWIS). Beginning with Water Year 2006, annual water data reports are available as individual electronic Site Data Sheets for the entire Nation for retrieval, download, and localized printing on demand. National distribution includes tabular and map interfaces for search, query, display and download of data. Data provided include extreme and mean discharge rates.

  17. What waters does LANL protect?

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    What waters does LANL protect? What waters does LANL protect? Rainfall in the Jemez Mountains flows to the Valles Caldera and eastward onto Laboratory lands. August 1, 2013 Reflection in the Valles Caldera RELATED IMAGES http://farm8.staticflickr.com/7252/7599998130_b7aef738b9_t.jpg Enlarge http://farm9.staticflickr.com/8421/7600000986_ebf8889fc7_t.jpg Enlarge Clean the Past: Water Protection What waters does LANL protect? Google Earth Tour: Waters around LANL Jemez Mountains Headwaters

  18. Best Management Practice #14: Alternative Water Sources

    Office of Energy Efficiency and Renewable Energy (EERE)

    Many federal facilities may have water uses that can be met with non-potable water from alternative water sources. Potentially available alternative water sources for Federal sources include municipal-supplied reclaimed water, treated gray water from on-site sanitary sources, and storm water.

  19. WATER BOILER REACTOR

    DOEpatents

    King, L.D.P.

    1960-11-22

    As its name implies, this reactor utilizes an aqueous solution of a fissionable element salt, and is also conventional in that it contains a heat exchanger cooling coil immersed in the fuel. Its novelty lies in the utilization of a cylindrical reactor vessel to provide a critical region having a large and constant interface with a supernatant vapor region, and the use of a hollow sleeve coolant member suspended from the cover assembly in coaxial relation with the reactor vessel. Cool water is circulated inside this hollow coolant member, and a gap between its outer wall and the reactor vessel is used to carry off radiolytic gases for recombination in an external catalyst chamber. The central passage of the coolant member defines a reflux condenser passage into which the externally recombined gases are returned and condensed. The large and constant interface between fuel solution and vapor region prevents the formation of large bubbles and minimizes the amount of fuel salt carried off by water vapor, thus making possible higher flux densities, specific powers and power densities.

  20. Waste water filtration enhancement

    SciTech Connect

    Martin, H.L.

    1989-01-01

    Removal of submicron particles from process solutions and waste water is now economically achievable using a new Tyvek{reg sign} media in conventional filtration equipment. This new product greatly enhances filtration and allows use of the much improved filter aids and polymers which were recently developed. It has reduced operating costs and ensures a clean effluent discharge to the environment. This significant technical development is especially important to those who discharge to a small stream with low 7Q10 flow and must soon routinely pass the Toxicity tests that are being required by many States for NPDES permit renewal. The Savannah River Plant produces special nuclear materials for the US Government. Aluminum forming and metal finishing operations in M-Area, that manufacture fuel and target assemblies for the nuclear reactors, discharge to a waste water treatment facility using BAT hydroxide precipitation and filtration. The new Tyvek{reg sign} media and filter aids have achieved 55% less solids in the filtrate discharged to Tims Branch Creek, 15% less hazardous waste (dry filter cake), 150%-370% more filtration capacity, 74% lower materials purchase cost, 10% lower total M-Area manufacturing cost, and have improved safety. Performance with the improved polymers is now being evaluated.

  1. Water inventory management in condenser pool of boiling water reactor

    DOEpatents

    Gluntz, Douglas M.

    1996-01-01

    An improved system for managing the water inventory in the condenser pool of a boiling water reactor has means for raising the level of the upper surface of the condenser pool water without adding water to the isolation pool. A tank filled with water is installed in a chamber of the condenser pool. The water-filled tank contains one or more holes or openings at its lowermost periphery and is connected via piping and a passive-type valve (e.g., squib valve) to a high-pressure gas-charged pneumatic tank of appropriate volume. The valve is normally closed, but can be opened at an appropriate time following a loss-of-coolant accident. When the valve opens, high-pressure gas inside the pneumatic tank is released to flow passively through the piping to pressurize the interior of the water-filled tank. In so doing, the initial water contents of the tank are expelled through the openings, causing the water level in the condenser pool to rise. This increases the volume of water available to be boiled off by heat conducted from the passive containment cooling heat exchangers. 4 figs.

  2. Water inventory management in condenser pool of boiling water reactor

    DOEpatents

    Gluntz, D.M.

    1996-03-12

    An improved system for managing the water inventory in the condenser pool of a boiling water reactor has means for raising the level of the upper surface of the condenser pool water without adding water to the isolation pool. A tank filled with water is installed in a chamber of the condenser pool. The water-filled tank contains one or more holes or openings at its lowermost periphery and is connected via piping and a passive-type valve (e.g., squib valve) to a high-pressure gas-charged pneumatic tank of appropriate volume. The valve is normally closed, but can be opened at an appropriate time following a loss-of-coolant accident. When the valve opens, high-pressure gas inside the pneumatic tank is released to flow passively through the piping to pressurize the interior of the water-filled tank. In so doing, the initial water contents of the tank are expelled through the openings, causing the water level in the condenser pool to rise. This increases the volume of water available to be boiled off by heat conducted from the passive containment cooling heat exchangers. 4 figs.

  3. Sandia Energy - Conventional Water Power: Market Acceleration

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Market Acceleration Home Stationary Power Energy Conversion Efficiency Water Power Conventional Water Power: Market Acceleration Conventional Water Power: Market AccelerationTara...

  4. NETL Research: Energy and Water Interface

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Water and Energy Interface Water and energy are inextricably linked. Because thermoelectric generation and fossil fuel extraction can impact water resources, it is critically...

  5. Colorado Ground Water Commission | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Colorado Ground Water Commission Jump to: navigation, search Name: Colorado Ground Water Commission Place: Colorado Website: water.state.co.usgroundwater References: Colorado...

  6. Water Heating Standing Technical Committee Presentation | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Water Heating Standing Technical Committee Presentation Water Heating Standing Technical Committee Presentation This presentation outlines the goals of the Water Heating Standing...

  7. Trees Water People | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Trees Water People Jump to: navigation, search Name: Trees, Water & People Place: Fort Collins, Colorado Zip: 80524 Sector: Renewable Energy Product: Trees, Water & People develops...

  8. Sandusky Water Filtration | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Water Filtration Jump to: navigation, search Name Sandusky Water Filtration Facility Sandusky Water Filtration Sector Wind energy Facility Type Community Wind Facility Status In...

  9. Tahoe Water Systems | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Tahoe Water Systems Jump to: navigation, search Name: Tahoe Water Systems Sector: Solar, Wind energy Product: Develops a self-contained solarwind based water pumping technology....

  10. Westlands Water District | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Westlands Water District Jump to: navigation, search Name: Westlands Water District Place: California Sector: Solar Product: Water district in central California which administers...

  11. Category:Water Sampling | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Water Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Water Sampling page? For detailed information on Water Sampling as...

  12. Flat Water Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Water Wind Farm Jump to: navigation, search Name Flat Water Wind Farm Facility Flat Water Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  13. Vidler Water Company Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Vidler Water Company Inc Jump to: navigation, search Name: Vidler Water Company Inc Place: Carson City, Nevada Zip: 89703 Sector: Solar Product: Nevada-based water and land...

  14. Vermont Section 401 Water Quality Certification Application ...

    OpenEI (Open Energy Information) [EERE & EIA]

    Abstract Application required for Section 401 water quality certification under the Clean Water Act. Form Type ApplicationNotice Form Topic Section 401 Water Quality...

  15. Energy Positive Water Resource Recovery Workshop Presentations...

    Office of Environmental Management (EM)

    Energy Positive Water Resource Recovery Workshop Presentations Energy Positive Water Resource Recovery Workshop Presentations Presentations: Keynote 1: Energy-Positive Water...

  16. Water Energy Tech Team | Department of Energy

    Energy.gov [DOE] (indexed site)

    Featured Publication Featured Publication Water-Energy Nexus: Challenges and Opportunities Report June 2014 Read more Water & Energy Water & Energy Explore an info graphic...

  17. Energy Positive Water Resource Recovery Workshop Presentations...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Positive Water Resource Recovery Workshop Presentations Energy Positive Water Resource Recovery Workshop Presentations Presentations: Keynote 1: Energy-Positive Water ...

  18. Water Efficiency Case Studies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Water Efficiency Case Studies Water Efficiency Case Studies These case studies offer examples of water efficiency projects implemented by federal agencies. They are organized by ...

  19. A new approach to water desalination

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    new approach to water desalination A new approach to water desalination Graphene sheets with precisely controlled pores have potential to purify water more efficiently than ...

  20. Research & Development Roadmap: Emerging Water Heating Technologies...

    Office of Environmental Management (EM)

    Water Heating Technologies Research & Development Roadmap: Emerging Water Heating Technologies The Research and Development (R&D) Roadmap for Emerging Water Heating Technologies ...

  1. Hawaii Water Well Temperature and Hydraulic Head

    DOE Data Explorer

    Nicole Lautze

    2014-12-01

    .csv file consisting of the water well temperature and water table elevation for wells in the State of Hawaii. Data source, Hawaii Commission of Water Resources Management.

  2. Light Water Reactor Sustainability Program - Integrated Program...

    Energy Saver

    Light Water Reactor Sustainability Program - Integrated Program Plan Light Water Reactor Sustainability Program - Integrated Program Plan The Light Water Reactor Sustainability ...

  3. Storage Water Heaters | Department of Energy

    Energy Saver

    Storage Water Heaters Storage Water Heaters Consider energy efficiency when selecting a conventional storage water heater to avoid paying more over its lifetime. | Photo courtesy ...

  4. Appendix B Ground Water Management Policy

    Office of Legacy Management (LM)

    Ground Water Management Policy for the Monticello Mill Tailings Site and Adjacent Areas ... OF NATURAL RESOURCES DIVISION OF WATER RIGHTS Ground-Water Management Policy for ...

  5. Water displacement mercury pump

    DOEpatents

    Nielsen, Marshall G.

    1985-01-01

    A water displacement mercury pump has a fluid inlet conduit and diffuser, a valve, a pressure cannister, and a fluid outlet conduit. The valve has a valve head which seats in an opening in the cannister. The entire assembly is readily insertable into a process vessel which produces mercury as a product. As the mercury settles, it flows into the opening in the cannister displacing lighter material. When the valve is in a closed position, the pressure cannister is sealed except for the fluid inlet conduit and the fluid outlet conduit. Introduction of a lighter fluid into the cannister will act to displace a heavier fluid from the cannister via the fluid outlet conduit. The entire pump assembly penetrates only a top wall of the process vessel, and not the sides or the bottom wall of the process vessel. This insures a leak-proof environment and is especially suitable for processing of hazardous materials.

  6. Water cooled steam jet

    DOEpatents

    Wagner, E.P. Jr.

    1999-01-12

    A water cooled steam jet for transferring fluid and preventing vapor lock, or vaporization of the fluid being transferred, has a venturi nozzle and a cooling jacket. The venturi nozzle produces a high velocity flow which creates a vacuum to draw fluid from a source of fluid. The venturi nozzle has a converging section connected to a source of steam, a diffuser section attached to an outlet and a throat portion disposed there between. The cooling jacket surrounds the venturi nozzle and a suction tube through which the fluid is being drawn into the venturi nozzle. Coolant flows through the cooling jacket. The cooling jacket dissipates heat generated by the venturi nozzle to prevent vapor lock. 2 figs.

  7. Water cooled steam jet

    DOEpatents

    Wagner, Jr., Edward P.

    1999-01-01

    A water cooled steam jet for transferring fluid and preventing vapor lock, or vaporization of the fluid being transferred, has a venturi nozzle and a cooling jacket. The venturi nozzle produces a high velocity flow which creates a vacuum to draw fluid from a source of fluid. The venturi nozzle has a converging section connected to a source of steam, a diffuser section attached to an outlet and a throat portion disposed therebetween. The cooling jacket surrounds the venturi nozzle and a suction tube through which the fluid is being drawn into the venturi nozzle. Coolant flows through the cooling jacket. The cooling jacket dissipates heat generated by the venturi nozzle to prevent vapor lock.

  8. Sunlight + Water = Tomorrow's Energy

    SciTech Connect

    Jones, Anne Katherine

    2013-07-18

    Representing the Center for Bio-Inspired Solar Fuel Production (BISfuel), this document is one of the entries in the Ten Hundred and One Word Challenge. As part of the challenge, the 46 Energy Frontier Research Centers were invited to represent their science in images, cartoons, photos, words and original paintings, but any descriptions or words could only use the 1000 most commonly used words in the English language, with the addition of one word important to each of the EFRCs and the mission of DOE: energy. The mission of BISfuel is to construct a complete system for solar-powered production of hydrogen fuel via water splitting; design principles are drawn from the fundamental concepts that underlie photosynthetic energy conversion.

  9. Water displacement mercury pump

    DOEpatents

    Nielsen, M.G.

    1984-04-20

    A water displacement mercury pump has a fluid inlet conduit and diffuser, a valve, a pressure cannister, and a fluid outlet conduit. The valve has a valve head which seats in an opening in the cannister. The entire assembly is readily insertable into a process vessel which produces mercury as a product. As the mercury settles, it flows into the opening in the cannister displacing lighter material. When the valve is in a closed position, the pressure cannister is sealed except for the fluid inlet conduit and the fluid outlet conduit. Introduction of a lighter fluid into the cannister will act to displace a heavier fluid from the cannister via the fluid outlet conduit. The entire pump assembly penetrates only a top wall of the process vessel, and not the sides or the bottom wall of the process vessel. This insures a leak-proof environment and is especially suitable for processing of hazardous materials.

  10. CX-009332: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    NORM Mitigation and Clean Water Recovery from Marcellus Frac Water CX(s) Applied: B3.6 Date: 09/25/2012 Location(s): Washington Offices(s): National Energy Technology Laboratory

  11. CX-008342: Categorical Exclusion Determination

    Energy.gov [DOE]

    Replace Big Hill Raw Water Intake System Oil Water Separator Tank with Concrete Tank GFE CX(s) Applied: B1.3 Date: 05/18/2012 Location(s): Texas Offices(s): Strategic Petroleum Reserve Field Office

  12. CX-008348: Categorical Exclusion Determination

    Energy.gov [DOE]

    Replace Big Hill Raw Water Intake System Oil Water Separator Tank with Concrete Tank CX(s) Applied: B1.3 Date: 04/16/2012 Location(s): Louisiana Offices(s): Strategic Petroleum Reserve Field Office

  13. CX-009078: Categorical Exclusion Determination

    Energy.gov [DOE]

    Dismantle and removal (D&R) of Domestic Water (DW) & Process Water (PWS) heater tanks CX(s) Applied: B1.3 Date: 07/11/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office

  14. CX-012509: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Potable Water and Fire Water Supply Line Replacement CX(s) Applied: B1.3, B2.5Date: 41849 Location(s): West VirginiaOffices(s): National Energy Technology Laboratory

  15. Categorical Exclusion Determinations: B1.26 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    approximately 250,000 gallons per day) wastewater and surface water treatment facilities ... Re-route SMARTDITCH and Channel Storm Water and Low Level Wastewater Discharges CX(s) ...

  16. WaterSense Program: Methodology for National Water Savings Analysis Model Indoor Residential Water Use

    SciTech Connect

    Whitehead, Camilla Dunham; McNeil, Michael; Dunham_Whitehead, Camilla; Letschert, Virginie; della_Cava, Mirka

    2008-02-28

    The U.S. Environmental Protection Agency (EPA) influences the market for plumbing fixtures and fittings by encouraging consumers to purchase products that carry the WaterSense label, which certifies those products as performing at low flow rates compared to unlabeled fixtures and fittings. As consumers decide to purchase water-efficient products, water consumption will decline nationwide. Decreased water consumption should prolong the operating life of water and wastewater treatment facilities.This report describes the method used to calculate national water savings attributable to EPA?s WaterSense program. A Microsoft Excel spreadsheet model, the National Water Savings (NWS) analysis model, accompanies this methodology report. Version 1.0 of the NWS model evaluates indoor residential water consumption. Two additional documents, a Users? Guide to the spreadsheet model and an Impacts Report, accompany the NWS model and this methodology document. Altogether, these four documents represent Phase One of this project. The Users? Guide leads policy makers through the spreadsheet options available for projecting the water savings that result from various policy scenarios. The Impacts Report shows national water savings that will result from differing degrees of market saturation of high-efficiency water-using products.This detailed methodology report describes the NWS analysis model, which examines the effects of WaterSense by tracking the shipments of products that WaterSense has designated as water-efficient. The model estimates market penetration of products that carry the WaterSense label. Market penetration is calculated for both existing and new construction. The NWS model estimates savings based on an accounting analysis of water-using products and of building stock. Estimates of future national water savings will help policy makers further direct the focus of WaterSense and calculate stakeholder impacts from the program.Calculating the total gallons of water the

  17. Water Power Forum | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    Water Power Forum Home > Water Power Forum > Posts by term > Water Power Forum Content Group Activity By term Q & A Feeds Term: Water power Type Term Title Author Replies Last Post...

  18. Solar Water Heater Basics | Department of Energy

    Energy Saver

    Water Heating Solar Water Heater Basics Solar Water Heater Basics August 19, 2013 - 3:01pm Addthis Illustration of an active, closed loop solar water heater. A large, flat panel ...

  19. Interaction of water with epoxy.

    SciTech Connect

    Powers, Dana Auburn

    2009-07-01

    The chemistries of reactants, plasticizers, solvents and additives in an epoxy paint are discussed. Polyamide additives may play an important role in the absorption of molecular iodine by epoxy paints. It is recommended that the unsaturation of the polyamide additive in the epoxy cure be determined. Experimental studies of water absorption by epoxy resins are discussed. These studies show that absorption can disrupt hydrogen bonds among segments of the polymers and cause swelling of the polymer. The water absorption increases the diffusion coefficient of water within the polymer. Permanent damage to the polymer can result if water causes hydrolysis of ether linkages. Water desorption studies are recommended to ascertain how water absorption affects epoxy paint.

  20. Cogeneration of water and power

    SciTech Connect

    Sephton, H.H.; Frank, K.F.

    1997-09-01

    Need of pure water in areas of limited supply has driven the development of technologies to permit recycling of available water and to generate new water supplies by purifying saline resources. These technologies include sedimentation, filtration, softening, ion exchange, electrodialysis, reverse osmosis and distillation. Some of these developments serve needs of the power industry, others evolved due to the synergistic relationship between generating water and power. Large plant seawater desalination depend on this synergism for best economy, especially in Southern California and the Middle East. Applying new processes promise to drive down the cost of desalinated water, based on recently improved thermal efficiencies and on capital cost reductions. Cogeneration with these processes provides new mutual benefits for power and water technologies.

  1. Vibrational spectroscopy of water interfaces

    SciTech Connect

    Du, Q.

    1994-12-01

    The second order nonlinear optical processes of second harmonic generation and sum frequency generation are powerful and versatile tools for studying all kinds of surfaces. They possess unusual surface sensitivity due to the symmetry properties of the second order nonlinear susceptibility. The technique of infrared-visible sum frequency generation (SFG) is particularly attractive because it offers a viable way to do vibrational spectroscopy on any surfaces accessible to light with submonolayer sensitivity. In this thesis, the author applies SFG to study a number of important water interfaces. At the air/water interface, hydrophobic solid/water and liquid/water interfaces, it was found that approximately 25% of surface water molecules have one of their hydrogen pointing away from the liquid water. The large number of unsatisfied hydrogen bonds contributes significantly to the large interfacial energy of the hydrophobic surfaces. At the hydrophilic fused quartz/water interface and a fatty acid monolayer covered water surface, the structure and orientation of surface water molecules are controlled by the hydrogen bonding of water molecules with the surface OH groups and the electrostatic interaction with the surface field from the ionization of surface groups. A change of pH value in the bulk water can significantly change the relative importance of the two interactions and cause a drastic change in orientation of the surface water molecules. SFG has also been applied to study the tribological response of some model lubricant films. Monolayers of Langmuir-Blodgett films were found to disorder orientationaly under mildly high pressure and recover promptly upon removal of the applied pressure.

  2. Supercooled liquid water Estimation Tool

    Energy Science and Technology Software Center

    2012-05-04

    The Cloud Supercooled liquid water Estimation Tool (SEET) is a user driven Graphical User Interface (GUI) that estimates cloud supercooled liquid water (SLW) content in terms of vertical column and total mass from Moderate resolution Imaging Supercooled liquid water Estimation Tool Spectroradiometer (MODIS) spatially derived cloud products and realistic vertical cloud parameterizations that are user defined. It also contains functions for post-processing of the resulting data in tabular and graphical form.

  3. Water-based coatings pass recycling test

    SciTech Connect

    Holt, L.

    1990-11-01

    Water based coatings can greatly enhance the natural water resistance, grease resistance, MVTR, and many other properties of corrugated board.

  4. Coordinating Energy Efficiency With Water Conservation Services...

    Energy Saver

    With Water Conservation Services Coordinating Energy Efficiency With Water Conservation Services Better Buildings Residential Network Program Sustainability Peer Exchange Call ...

  5. Solar Water Heaters | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Heat & Cool » Water Heating » Solar Water Heaters Solar Water Heaters Solar panels heat water that is delivered to a storage tank.| Photo courtesy of David Springer, National Renewable Energy Laboratory Solar panels heat water that is delivered to a storage tank.| Photo courtesy of David Springer, National Renewable Energy Laboratory Solar water heaters -- also called solar domestic hot water systems -- can be a cost-effective way to generate hot water for your home. They can be used in

  6. Water Quantity | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Quantity Jump to: navigation, search Retrieved from "http:en.openei.orgwindex.php?titleWaterQuantity&oldid612364" Feedback Contact needs updating Image needs updating...

  7. Removing Arsenic from Drinking Water

    SciTech Connect

    2011-01-01

    See how INL scientists are using nanotechnology to remove arsenic from drinking water. For more INL research, visit http://www.facebook.com/idahonationallaboratory

  8. Water Sampling | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Water Sampling Details Activities (63) Areas (51) Regions (5) NEPA(2) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Field Sampling...

  9. Synchrotrons Explore Water's Molecular Mysteries

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Laboratory's Advanced Light Source, scientists observed a surprisingly dense form of water that remained liquid well beyond its typical freezing point. Researchers applied a...

  10. Wonders of Water (14 activities)

    Education - Teach & Learn

    An inquiry-based curriculum that introduces scientific concepts of electricity, water, and hydropower to elementary students with the following activities

  11. Liquid chromatographic determination of water

    DOEpatents

    Fortier, Nancy E.; Fritz, James S.

    1990-11-13

    A sensitive method for the determination of water in the presence of common interferences is presented. The detection system is based on the effect of water on the equilibrium which results from the reaction aryl aldehydes, such as cinnamaldehyde and methanol in the eluent to form cinnamaldehyde dimethylacetal, plus water. This equilibrium is shifted in a catalytic atmosphere of a hydrogen ion form past column reactor. The extent of the shift and the resulting change in absorbance are proportional to the amount of water present.

  12. Liquid chromatographic determination of water

    DOEpatents

    Fortier, N.E.; Fritz, J.S.

    1990-11-13

    A sensitive method for the determination of water in the presence of common interferences is presented. The detection system is based on the effect of water on the equilibrium which results from the reaction aryl aldehydes, such as cinnamaldehyde and methanol in the eluent to form cinnamaldehyde dimethylacetal, plus water. This equilibrium is shifted in a catalytic atmosphere of a hydrogen ion form past column reactor. The extent of the shift and the resulting change in absorbance are proportional to the amount of water present. 1 fig.

  13. Removing Arsenic from Drinking Water

    ScienceCinema

    None

    2016-07-12

    See how INL scientists are using nanotechnology to remove arsenic from drinking water. For more INL research, visit http://www.facebook.com/idahonationallaboratory

  14. Individual Permit for Storm Water

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    discharges. The Permit establishes target action levels (TALs) that are equivalent to New Mexico State water-quality criteria. These TALs are used as benchmarks to determine the...

  15. Water Supply Infrastructure System Surety

    SciTech Connect

    EKMAN,MARK E.; ISBELL,DARYL

    2000-01-06

    The executive branch of the United States government has acknowledged and identified threats to the water supply infrastructure of the United States. These threats include contamination of the water supply, aging infrastructure components, and malicious attack. Government recognition of the importance of providing safe, secure, and reliable water supplies has a historical precedence in the water works of the ancient Romans, who recognized the same basic threats to their water supply infrastructure the United States acknowledges today. System surety is the philosophy of ''designing for threats, planning for failure, and managing for success'' in system design and implementation. System surety is an alternative to traditional compliance-based approaches to safety, security, and reliability. Four types of surety are recognized: reactive surety; proactive surety, preventative surety; and fundamental, inherent surety. The five steps of the system surety approach can be used to establish the type of surety needed for the water infrastructure and the methods used to realize a sure water infrastructure. The benefit to the water industry of using the system surety approach to infrastructure design and assessment is a proactive approach to safety, security, and reliability for water transmission, treatment, distribution, and wastewater collection and treatment.

  16. What waters does LANL protect?

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    does LANL protect? Google Earth Tour: Waters around LANL Jemez Mountains Headwaters Watersheds The Rio Grande Buckman Direct Diversion Project Groundwater in the Regional Aquifer...

  17. Promising Technology: Condensing Gas Water Heaters

    Energy.gov [DOE]

    Condensing water heaters achieve higher efficiencies than conventional water heaters by capturing the latent heat from water vapor contained in the flue gases. Combustion gases are exhausted through a secondary heat exchanger where the latent heat of water vapor in the exhaust gas is transferred to the stored water. This technology enables the water heater to achieve thermal efficiencies up to 99%.

  18. SWQM: Source Water Quality Modeling Software

    Energy Science and Technology Software Center

    2008-01-08

    The Source Water Quality Modeling software (SWQM) simulates the water quality conditions that reflect properties of water generated by water treatment facilities. SWQM consists of a set of Matlab scripts that model the statistical variation that is expected in a water treatment facility’s water, such as pH and chlorine levels.

  19. Residential Water Heaters Webinar | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Residential Water Heaters Webinar Residential Water Heaters Webinar 20110224_residential_water_heater_webinar.pdf (1.77 MB) More Documents & Publications Sustainable Energy Resources for Consumers (SERC) - On-Demand Tankless Water Heaters 2014-10-14 Issuance: Test Procedures and Energy Conservation Standards for Residential Solar Water Heaters; Request for Information Webinar: ENERGY STAR Hot Water Systems for High Performance Homes

  20. Arsenic in water treatment.

    SciTech Connect

    Siegel, Malcolm Dean

    2004-12-01

    Sandia National Laboratories (SNL) is collaborating with the Awwa Research Foundation (AwwaRF) and WERC (A Consortium for Environmental Education and Technology Development) in a program for the development and testing of innovative technologies that have the potential to substantially reduce the costs associated with arsenic removal from drinking water. Sandia National Laboratories will administer contracts placed with AwwaRF and WERC to carry out bench scale studies and economic analyses/outreach activities, respectively. The elements of the AwwaRF program include (1) identification of new technologies, (2) proof-of-concept laboratory studies and, (3) a research program that will meet the other needs of small utilities by providing solutions to small utilities so that they may successfully meet the new arsenic MCL. WERC's activities will include development of an economic analysis tool for Pilot Scale Demonstrations and development of educational training and technical assistance tools. The objective of the Sandia Program is the field demonstration testing of innovative technologies. The primary deliverables of the Sandia program will be engineering analyses of candidate technologies; these will be contained in preliminary reports and final analysis reports. Projected scale-up costs will be generated using a cost model provided by WERC or another suitable model.

  1. Solar water heating panel

    SciTech Connect

    Burke, B.G.

    1984-10-02

    The present invention discloses a solar water heating panel and method of constructing such a solar panel from a pair of thin sheets bonded together around their peripheral edges and having at least one of the sheets formed with resiliently flexible areas defined by a plurality of abutting concave hexagonal areas or zones. The center of each hexagonal zone is formed as a dimple, concave with respect to the opposite sheet, whose radius of curvature is greater than the radius of an inscribed circle within said zone. The abutting zones between each hexagonal zone are formed convex relative to the opposite sheet and have a radius less than that of an inscribed circle. In a preferred form, the sheets are joined together at the center of alternate spaced-apart hexagonal areas. In this way, except for the centers bonded near the panel edges, each joined hexagonal center is surrounded by six unjoined areas to form both transverse and longitudinal flow passages through the panel.

  2. Biofuel impacts on water.

    SciTech Connect

    Tidwell, Vincent Carroll; Malczynski, Leonard A.; Sun, Amy Cha-Tien

    2011-01-01

    Sandia National Laboratories and General Motors Global Energy Systems team conducted a joint biofuels systems analysis project from March to November 2008. The purpose of this study was to assess the feasibility, implications, limitations, and enablers of large-scale production of biofuels. 90 billion gallons of ethanol (the energy equivalent of approximately 60 billion gallons of gasoline) per year by 2030 was chosen as the book-end target to understand an aggressive deployment. Since previous studies have addressed the potential of biomass but not the supply chain rollout needed to achieve large production targets, the focus of this study was on a comprehensive systems understanding the evolution of the full supply chain and key interdependencies over time. The supply chain components examined in this study included agricultural land use changes, production of biomass feedstocks, storage and transportation of these feedstocks, construction of conversion plants, conversion of feedstocks to ethanol at these plants, transportation of ethanol and blending with gasoline, and distribution to retail outlets. To support this analysis, we developed a 'Seed to Station' system dynamics model (Biofuels Deployment Model - BDM) to explore the feasibility of meeting specified ethanol production targets. The focus of this report is water and its linkage to broad scale biofuel deployment.

  3. Recent California water transfers: Emerging options in water management. Final report

    SciTech Connect

    Lund, J.R.; Israel, M.

    1992-12-01

    Report examines the recent use of water transfers in California. Emphasis is on the use of water transfers during the current drought and how planners and operators of federal, state, and local systems can integrate water transfers into the planning and operations of their systems. Through the California experience, the study identifies motivations for incorporating water transfers into water supply systems, reviews a variety of water transfer types, and discusses the integration of water transfers with traditional supply argumentation and water conservation measures. Limitations, constraints, and difficulties for employing water transfers within existing systems are also discussed. The study focuses primarily on the technical, planning, and operational aspects of water transfers, rather than the legal, economic, and social implications. Water transfers, Water management, Water bank, Water supply, Water use, Water institutions, Infrastructure, California state water project, Water rights, Drought, Surface water, Groundwater.

  4. Tankless Coil and Indirect Water Heaters | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Coil and Indirect Water Heaters Tankless Coil and Indirect Water Heaters An indirect water heater. An indirect water heater. Tankless coil and indirect water heaters use a home's...

  5. Comparison of Water-Hydrogen Catalytic Exchange Processes Versus...

    Office of Environmental Management (EM)

    Comparison of Water-Hydrogen Catalytic Exchange Processes Versus Water Distillation for Water Detritiation Comparison of Water-Hydrogen Catalytic Exchange Processes Versus Water ...

  6. Tankless Coil and Indirect Water Heaters | Department of Energy

    Energy Saver

    Coil and Indirect Water Heaters Tankless Coil and Indirect Water Heaters An indirect water heater. An indirect water heater. Tankless coil and indirect water heaters use a home's ...

  7. Selecting a New Water Heater | Department of Energy

    Energy Saver

    Heat & Cool Water Heating Selecting a New Water Heater Selecting a New Water Heater Water heater testing facility at Oak Ridge National Laboratory. Water heater testing ...

  8. Norm removal from frac water

    DOEpatents

    Silva, James Manio; Matis, Hope; Kostedt, IV, William Leonard

    2014-11-18

    A method for treating low barium frac water includes contacting a frac water stream with a radium selective complexing resin to produce a low radium stream, passing the low radium stream through a thermal brine concentrator to produce a concentrated brine; and passing the concentrated brine through a thermal crystallizer to yield road salt.

  9. Does water dope carbon nanotubes?

    SciTech Connect

    Bell, Robert A.; Payne, Michael C.; Mostofi, Arash A.

    2014-10-28

    We calculate the long-range perturbation to the electronic charge density of carbon nanotubes (CNTs) as a result of the physisorption of a water molecule. We find that the dominant effect is a charge redistribution in the CNT due to polarisation caused by the dipole moment of the water molecule. The charge redistribution is found to occur over a length-scale greater than 30 , highlighting the need for large-scale simulations. By comparing our fully first-principles calculations to ones in which the perturbation due to a water molecule is treated using a classical electrostatic model, we estimate that the charge transfer between CNT and water is negligible (no more than 10{sup ?4}?e per water molecule). We therefore conclude that water does not significantly dope CNTs, a conclusion that is consistent with the poor alignment of the relevant energy levels of the water molecule and CNT. Previous calculations that suggest water n-dopes CNTs are likely due to the misinterpretation of Mulliken charge partitioning in small supercells.

  10. Method of treating waste water

    DOEpatents

    Deininger, James P.; Chatfield, Linda K.

    1995-01-01

    A process of treating water to remove metal ion contaminants contained therein, said metal ion contaminants selected from the group consisting of metals in Groups 8, 1b, 2b, 4a, 5a, or 6a of the periodic table, lanthanide metals, and actinide metals including transuranic element metals, by adjusting the pH of a metal ion contaminant-containing water source to within the range of about 6.5 to about 14.0, admixing the water source with a mixture of an alkali or alkaline earth ferrate and a water soluble salt, e.g., a zirconium salt, in an amount sufficient to form a precipitate within the water source, the amount the mixture of ferrate and water soluble salt effective to reduce the metal ion contaminant concentration in the water source, permitting the precipitate in the admixture to separate and thereby yield a supernatant liquid having a reduced metal ion contaminant concentration, and separating the supernatant liquid having the reduced metal ion contaminant concentration from the admixture is provided. A composition of matter including an alkali or alkaline earth ferrate and a water soluble salt, e.g., a zirconium salt, is also provided.

  11. High efficiency water heating system

    SciTech Connect

    Gerstmann, J.; Vasilakis, A.D.

    1984-05-01

    A high efficiency gas fired residential water heater includes an insulated, plastic-lined storage tank. The water in the tank is heated by an external heat exchanger which defines a water-walled combustion chamber. The fuel gas and combustion air burned in the chamber are premixed to a near stoichiometric mixture without the use of a blower. Under the force of line pressure or less, the fuel gas is accelerated into an aspirator/mixer which premixes an amount of air sufficient for complete combustion of the fuel gas. The water-walled combustion chamber is particularly suited for substantial recovery of the heat of a pilot flame. The pilot products of combustion heat water at the upper end of the combustion chamber without causing significant convective flow throughout the heat exchanger.

  12. Wynkoop Building Performance Measurement: Water

    SciTech Connect

    Fowler, Kimberly M.; Kora, Angela R.

    2012-08-26

    This report is a summary of the water analysis performance for the Denver, Colorado Wynkoop Building. The Wynkoop Building (Figure 1) was built in 2006 as the Environmental Protection Agency (EPA) Region 8 Headquarters intended to house over 900 occupants in the 301,292 gross square feet (248,849 rentable square feet). The building was built on a brownfield in the Lower Downtown Historic District as part of an urban redevelopment effort. The building was designed and constructed through a public-private partnership with the sustainable design elements developed jointly by General Services Administration (GSA) and EPA. That partnership is still active with all parties still engaged to optimize building operations and use the building as a Learning Laboratory. The building design achieved U.S. Green Building Council Leadership in Energy and Environmental Design for New Construction (LEED-NC) Gold Certification in 2008 (Figure 2) and a 2008 EPA Energy Star Rating of 96 with design highlights that include: (1) Water use was designed to use 40% less than a typical design baseline. The design included low flow fixtures, waterless urinals and dual flush toilets; (2) Native and adaptive vegetation were selected to minimize the need for irrigation water for landscaping; and (3) Energy use intensity was modeled at 66.1 kBtus/gross square foot, which is 39% better than ASHRAE 90.1 1999. The Wynkoop Building water use (10 gallons/square foot) was measured at lower than industry average (15 gallons/square foot) and GSA goals (13 gallons/square foot), however, it was higher than building management expected it would be. The type of occupants and number of occupants can have a significant impact on fixture water use. The occupancy per floor varied significantly over the study time period, which added uncertainty to the data analysis. Investigation of the fixture use on the 2nd, 5th, and 7th floors identified potential for water use reduction if the flush direction of the dual

  13. Achieving Water-Sustainable Bioenergy Production

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    BioEnergy 2015: Opportunities in a Changing Energy Landscape Achieving Water-Sustainable Bioenergy Production May Wu Argonne National Laboratory Session 3-A: Growing a Water-Smart Bioeconomy BioEnergy 2015 Conference June 23-24, 2015 Washington, DC * Water and energy are intertwined. Energy production requires water resource; water supply needs energy. A growing population demands increased supply of water, food, and energy. * Energy and fuel production and water sustainability have a dynamic

  14. Explore Water Power Careers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Water Power Careers Explore Water Power Careers America's oldest and largest source of renewable power is water. To this end, the Water Power Program, part of the Wind and Water Power Technologies Office, researches, tests, evaluates, and deploys a portfolio of innovative technologies for clean, domestic power generation from resources such as hydropower, waves, and tides. America's oldest and largest source of renewable power is water. To this end, the Water Power Program, part of the Wind and

  15. Promising Technology: Tankless Gas Water Heaters

    Energy.gov [DOE]

    A tankless gas water heater does not have a storage tank, as a conventional water heater does. Instead, a tankless water heater instantaneously heats water flowing over the heat exchanger coils when there is hot water demand. Because there is no tank, tankless water heaters have no standby energy losses that are associated with storage units. Another non-energy saving benefit is that a tankless water heater is much more compact.

  16. Method of treating waste water

    DOEpatents

    Deininger, J. Paul; Chatfield, Linda K.

    1991-01-01

    A process of treating water to remove transuranic elements contained therein by adjusting the pH of a transuranic element-containing water source to within the range of about 6.5 to about 14.0, admixing the water source with an alkali or alkaline earth ferrate in an amount sufficient to form a precipitate within the water source, the amount of ferrate effective to reduce the transuranic element concentration in the water source, permitting the precipitate in the admixture to separate and thereby yield a supernatant liquid having a reduced transuranic element concentration, and separating the supernatant liquid having the reduced transuranic element concentration from the admixture is provided. Additionally, a water soluble salt, e.g., a zirconium salt, can be added with the alkali or alkaline earth ferrate in the process to provide greater removal efficiencies. A composition of matter including an alkali or alkaline earth ferrate and a water soluble salt, e.g., a zirconium salt, is also provided.

  17. Hydropower Research | Water Power | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Basics Hydropower Basics Content on this page requires a newer version of Adobe Flash Player. Get Adobe Flash player Most people associate water power with the Hoover Dam-a huge facility harnessing the power of an entire river behind its walls-but hydropower facilities come in all sizes. Some may be very large, but they can be tiny too, taking advantage of water flows in municipal water facilities or irrigation ditches. They can even be "dam-less," with diversions or run-of-river

  18. Photovoltaic water pumping for Bolivia

    SciTech Connect

    Post, H.N.; Garvison, P.

    1987-01-01

    This paper describes the design, installation and performance of photovoltaically-powered water pumping systems which provide potable water to residents of three villages in the Altiplano region of Bolivia. The installation of these systems during August 1986 was the culmination of a cooperative effort between The World Bank, US Department of Energy and the Bolivian government. This project was configured to demonstrate, through pilot systems, the many potential benefits of using photovoltaic water pumping in developing countries. The lessons learned through the procurement and installation of these systems are discussed and the resulting benefits of the project to international lending institutions, US industry, and the Bolivian participants are examined.

  19. Screening reactor steam/water piping systems for water hammer

    SciTech Connect

    Griffith, P.

    1997-09-01

    A steam/water system possessing a certain combination of thermal, hydraulic and operational states, can, in certain geometries, lead to a steam bubble collapse induced water hammer. These states, operations, and geometries are identified. A procedure that can be used for identifying whether an unbuilt reactor system is prone to water hammer is proposed. For the most common water hammer, steam bubble collapse induced water hammer, six conditions must be met in order for one to occur. These are: (1) the pipe must be almost horizontal; (2) the subcooling must be greater than 20 C; (3) the L/D must be greater than 24; (4) the velocity must be low enough so that the pipe does not run full, i.e., the Froude number must be less than one; (5) there should be void nearby; (6) the pressure must be high enough so that significant damage occurs, that is the pressure should be above 10 atmospheres. Recommendations on how to avoid this kind of water hammer in both the design and the operation of the reactor system are made.

  20. Water Energy Tech Team | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Water Energy Tech Team Water Energy Tech Team Water &amp; Energy Water & Energy Info graphic about the water-energy nexus and the trends that affect it Read more Energy-Water Roundtable Energy-Water Roundtable Takeaways from the 2015 DOE Energy-Water Nexus Roundtable Series Read more Clean Energy Research Center (CERC) Clean Energy Research Center (CERC) Energy-water nexus track for bilateral diplomatic R&D initiative in the U.S. and China Read more Featured Publication Featured

  1. Solar water heating: FEMP fact sheet

    SciTech Connect

    Clyne, R.

    1999-09-30

    Using the sun to heat domestic water makes sense in almost any climate. Solar water heaters typically provide 40 to 80{percent} of a building's annual water-heating needs. A solar water-heating system's performance depends primarily on the outdoor temperature, the temperature to which the water is heated, and the amount of sunlight striking the collector.

  2. Protective tubes for sodium heated water tubes

    DOEpatents

    Essebaggers, Jan

    1979-01-01

    A heat exchanger in which water tubes are heated by liquid sodium which minimizes the results of accidental contact between the water and the sodium caused by failure of one or more of the water tubes. A cylindrical protective tube envelopes each water tube and the sodium flows axially in the annular spaces between the protective tubes and the water tubes.

  3. Promising Technology: Heat Pump Water Heaters

    Energy.gov [DOE]

    A heat pump water heater uses electricity to transfer heat from the ambient air to stored water, as opposed to an electric resistance water heater, which uses electricity to generate the heat directly. This enables the heat pump water heater to be 2 to 3 times as efficient as an electric resistance water heater.

  4. Water resources data for Louisiana, water year 1995. Water data report (Annual), 1 October 1994-30 September 1995

    SciTech Connect

    Garrison, C.R.; Lovelace, W.M.; Montgomery, P.A.

    1996-05-01

    Water resources data for the 1995 water year for Louisiana consists of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; and water levels and water quality of ground water. This report contains records for water discharge at 65 gaging stations; stage only for 40 gaging stations and 6 lakes; water quality for 45 surface-water stations (including 23 gage stations) and 76 wells; and water levels for 217 observation wells. Also included are data for 113 crest-stage and flood-profile partial-record stations. Additional water data were collected at various sites not involved in the systematic data-collection program, and are published as miscellaneous measurements.

  5. Water resources data for Louisiana, water year 1994. Water-data report (Annual), 1 October 1993-30 September 1994

    SciTech Connect

    Garrison, C.R.; Lovelace, W.M.; Montgomery, P.A.

    1995-03-01

    Water resources data for the 1994 water year for Louisiana consists of records for stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; and water levels and water quality of ground water. This report contains records for water discharge at 64 gaging stations; stage only for 45 gaging stations and 6 lakes; water quality for 51 surface-water stations (including 24 gage stations) and 84 wells; and water levels for 209 observations wells. Also included are data for 115 crest-stage and flood-profile partial-record stations. Additional water data were collected at various sites not involved in the systematic data-collection program, and are published as miscellaneous measurements.

  6. electricity use to lift water

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... Laboratories Social Twitter Google + Vimeo GovDelivery SlideShare SunShot Grand Challenge: Regional Test Centers electricity use to lift water HomeTag:electricity use to lift

  7. electricity use to treat water

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... Laboratories Social Twitter Google + Vimeo GovDelivery SlideShare SunShot Grand Challenge: Regional Test Centers electricity use to treat water HomeTag:electricity use to treat

  8. electricity use to convey water

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... Laboratories Social Twitter Google + Vimeo GovDelivery SlideShare SunShot Grand Challenge: Regional Test Centers electricity use to convey water HomeTag:electricity use to convey

  9. Utility solar water heating workshops

    SciTech Connect

    Barrett, L.B. )

    1992-01-01

    The objective of this project was to explore the problems and opportunities for utility participation with solar water heating as a DSM measure. Expected benefits from the workshops included an increased awareness and interest by utilities in solar water heating as well as greater understanding by federal research and policy officials of utility perspectives for purposes of planning and programming. Ultimately, the project could result in better information transfer, increased implementation of solar water heating programs, greater penetration of solar systems, and more effective research projects. The objective of the workshops was satisfied. Each workshop succeeded in exploring the problems and opportunities for utility participation with solar water heating as a DSM option. The participants provided a range of ideas and suggestions regarding useful next steps for utilities and NREL. According to evaluations, the participants believed the workshops were very valuable, and they returned to their utilities with new information, ideas, and commitment.

  10. NREL: Water Power Research - Capabilities

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    and hydrokinetic technologies and hydropower R&D through the U.S. Department of Energy's Water Power Program. Our activities span a wide spectrum of disciplines, including fluid...

  11. Director, Water Power Technologies Office

    Energy.gov [DOE]

    This position is located in the Water Power Technologies Office (WPTO) in the Office of Energy Efficiency and Renewable Energy (EERE). The mission of EERE is to create and sustain American...

  12. Cost Effective Water Heating Solutions

    Energy.gov [DOE]

    This presentation was given at the Summer 2012 DOE Building America meeting on July 25, 2012, and addressed the question"Are high-efficiency hot water heating systems worth the cost?"

  13. ARM - Measurement - Ice water content

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    content ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Ice water content The concentration (mass/vol) of ice water particles in a cloud. Categories Cloud Properties, Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including

  14. Research Staff | Water Power | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Research Staff Learn more about the expertise and technical skills of the water power research team and staff at NREL. Photo of Daniel Laird Daniel Laird Center Director Daniel Laird is director of the National Wind Technology Center (NWTC). Prior to joining NREL in 2015, he spent 19 years at Sandia National Laboratories leading wind energy and water power research efforts in structural analysis and simulation, computational design tools, advanced manufacturing, composite materials, and blade

  15. Metals extraction from sea water

    SciTech Connect

    Chryssostomidis, C.; Larue, G.J.; Morgan, D.T.

    1981-10-06

    A method and system for continuously extracting metals from sea water by deploying adsorber sheets in a suitable current of sea water, recovering the adsorber sheets after they become loaded with metal and eluting the metal from the recovered sheets. The system involves the use of hollow, perforated bobbins on which the sheets are rolled as they are recovered and through which elutant is introduced.

  16. Steam-water relative permeability

    SciTech Connect

    Ambusso, W.; Satik, C.; Home, R.N.

    1997-12-31

    A set of relative permeability relations for simultaneous flow of steam and water in porous media have been measured in steady state experiments conducted under the conditions that eliminate most errors associated with saturation and pressure measurements. These relations show that the relative permeabilities for steam-water flow in porous media vary approximately linearly with saturation. This departure from the nitrogen/water behavior indicates that there are fundamental differences between steam/water and nitrogen/water flows. The saturations in these experiments were measured by using a high resolution X-ray computer tomography (CT) scanner. In addition the pressure gradients were obtained from the measurements of liquid phase pressure over the portions with flat saturation profiles. These two aspects constitute a major improvement in the experimental method compared to those used in the past. Comparison of the saturation profiles measured by the X-ray CT scanner during the experiments shows a good agreement with those predicted by numerical simulations. To obtain results that are applicable to general flow of steam and water in porous media similar experiments will be conducted at higher temperature and with porous rocks of different wetting characteristics and porosity distribution.

  17. WaterFurnace Renewable Energy Inc formerly WaterFurnace Industries...

    OpenEI (Open Energy Information) [EERE & EIA]

    WaterFurnace Renewable Energy Inc formerly WaterFurnace Industries Inc WFI Jump to: navigation, search Name: WaterFurnace Renewable Energy Inc (formerly: WaterFurnace Industries,...

  18. Safe Drinking Water Act | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Drinking Water Act Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: Safe Drinking Water ActLegal Abstract The Safe Drinking Water...

  19. POTENTIAL DIMETHYLMERCURY CONCENTRATION IN WATER & ORGANIC CONDENSATE

    SciTech Connect

    MEACHAM, J.E.

    2004-12-28

    This document bounds potential dimethylmercury concentration in water or organic condensate that might form in ventilation systems or cooler tank regions. Dimethylmercury concentrations were extremely low and would be below drinking water standards in the water condensate.

  20. Energy Saver 101: Water Heating Infographic

    Energy.gov [DOE]

    Looking for ways to save money on water heating? Energy Saver 101: Water Heating infographic lays out evergything you need to know about water heating and shares ways to save energy and money.

  1. Solar Water Heat | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Water Heat Jump to: navigation, search TODO: Add description List of Solar Water Heat Incentives Retrieved from "http:en.openei.orgwindex.php?titleSolarWaterHeat&oldid26719...

  2. Storage Water Heaters | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Storage Water Heaters Storage Water Heaters June 15, 2012 - 6:00pm Addthis Consider energy efficiency when selecting a conventional storage water heater to avoid paying more over...

  3. Landscaping Water Conservation | Department of Energy

    Energy.gov [DOE] (indexed site)

    colorful water-conserving landscape requires only one-quarter the water a bluegrass lawn would use. | Photo courtesy of Jim Knopf. This colorful water-conserving landscape requires...

  4. Water Power Forum | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    Water Power Forum Home > Water Power Forum > Posts by term > Water Power Forum Content Group Activity By term Q & A Feeds Term: marine energy Type Term Title Author Replies Last...

  5. Water Power Forum | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    Water Power Forum Home > Water Power Forum > Posts by term > Water Power Forum Content Group Activity By term Q & A Feeds Term: Wave Type Term Title Author Replies Last Post sort...

  6. Water Power Forum | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    Water Power Forum Home > Water Power Forum > Posts by term > Water Power Forum Content Group Activity By term Q & A Feeds Term: ocean energy Type Term Title Author Replies Last...

  7. Water Power Forum | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    Water Power Forum Home > Water Power Forum > Posts by term > Water Power Forum Content Group Activity By term Q & A Feeds Term: current energy Type Term Title Author Replies Last...

  8. Water Power Forum | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    Water Power Forum Home > Water Power Forum > Posts by term > Water Power Forum Content Group Activity By term Q & A Feeds Term: DOE Type Term Title Author Replies Last Post sort...

  9. Water Power Forum | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    Water Power Forum Home > Water Power Forum > Posts by term > Water Power Forum Content Group Activity By term Q & A Feeds Term: CBS Type Term Title Author Replies Last Post sort...

  10. Water Power Forum | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    Water Power Forum Home > Water Power Forum > Posts by term > Water Power Forum Content Group Activity By term Q & A Feeds Term: Current Type Term Title Author Replies Last Post...

  11. Water Power Forum | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    Water Power Forum Home > Water Power Forum > Posts by term > Water Power Forum Content Group Activity By term Q & A Feeds Term: community Type Term Title Author Replies Last Post...

  12. Water Power Forum | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    Water Power Forum Home > Water Power Forum > Posts by term > Water Power Forum Content Group Activity By term Q & A Feeds Term: LCOE Type Term Title Author Replies Last Post sort...

  13. Water Power Forum | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    Water Power Forum Home > Water Power Forum > Posts by term > Water Power Forum Content Group Activity By term Q & A Feeds Term: Cost Type Term Title Author Replies Last Post sort...

  14. Water Power Forum | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    Water Power Forum Home > Water Power Forum > Posts by term > Water Power Forum Content Group Activity By term Q & A Feeds Term: gateway Type Term Title Author Replies Last Post...

  15. Water Power Forum | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    Water Power Forum Home > Water Power Forum > Posts by term > Water Power Forum Content Group Activity By term Q & A Feeds Term: levelized cost of energy Type Term Title Author...

  16. Water Power Forum | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    Water Power Forum Home > Water Power Forum > Posts by term > Water Power Forum Content Group Activity By term Q & A Feeds Term: forum Type Term Title Author Replies Last Post sort...

  17. Water Power Forum | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    Water Power Forum Home > Water Power Forum > Posts by term > Water Power Forum Content Group Activity By term Q & A Feeds Term: Tidal Type Term Title Author Replies Last Post sort...

  18. Water Power Forum | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    Water Power Forum Home > Water Power Forum > Posts by term > Water Power Forum Content Group Activity By term Q & A Feeds Term: numerical modeling Type Term Title Author Replies...

  19. Tips: Water Heating | Department of Energy

    Energy.gov [DOE] (indexed site)

    Keep your energy bills out of hot water. Insulate your water heater to save energy and money, or choose an on-demand hot water heater to save even more. Keep your energy bills out...

  20. Placer County Water Agency | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Placer County Water Agency Jump to: navigation, search Name: Placer County Water Agency Place: California Phone Number: (530) 823-4850 Website: www.pcwa.net Twitter: @PlacerWater...

  1. Water Impacts of the Electricity Sector (Presentation)

    SciTech Connect

    Macknick, J.

    2012-06-01

    This presentation discusses the water impacts of the electricity sector. Nationally, the electricity sector is a major end-user of water. Water issues affect power plants throughout the nation.

  2. Do You Have a Solar Water Heater?

    Energy.gov [DOE]

    Earlier this week, Ernie wrote about the economics of getting a solar water heater. As Ernie explained, a solar water heater is more expensive than a normal water heater, but depending on your area...

  3. water-management | netl.doe.gov

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Water Management R&D Water research encompasses the need to reduce the amount of freshwater used by power plants and to minimize any potential impacts of plant operations on water ...

  4. Heat Pump Water Heaters | Department of Energy

    Energy.gov [DOE] (indexed site)

    A diagram of a heat pump water heater. A diagram of a heat pump water heater. What does this mean for me? Heat pump water heaters can be two to three times more energy efficient...

  5. Y-12 National Security Complex Water Assessment

    SciTech Connect

    Elam, Shana E.; Bassett, P.; McMordie Stoughton, Kate

    2010-11-01

    The Department of Energy's Federal Energy Management Program (FEMP) sponsored a water assessment at the Y 12 National Security Complex (Y 12) located in Oak Ridge, Tennessee. Driven by mandated water reduction goals of Executive Orders 13423 and 13514, the objective of the water assessment is to develop a comprehensive understanding of the current water-consuming applications and equipment at Y 12 and to identify key areas for water efficiency improvements that could be applied not only at Y-12 but at other Federal facilities as well. FEMP selected Pacific Northwest National Laboratory to coordinate and manage the water assessment. PNNL contracted Water Savers, LLC to lead the technical aspects of the water assessment. Water Savers provided key technical expertise in water auditing, metering, and cooling systems. This is the report of that effort, which concluded that the Y-12 facility could realize considerable water savings by implementing the recommended water efficiency opportunities.

  6. Tritium Ground Water Issues | Department of Energy

    Office of Environmental Management (EM)

    Ground Water Issues Tritium Ground Water Issues Presentation from the 35th Tritium Focus Group Meeting held in Princeton, New Jersey on May 05-07, 2015. Tritium Ground Water Issues ...

  7. Marietta Power & Water- Residential Energy Efficiency Rebate

    Energy.gov [DOE]

    Marietta Power & Water provides rebates for electric water heaters ($250) and electric and dual-fuel heat pumps ($150). If both a water heater and heat pump are installed simultaneously, a...

  8. Water Resources Data Nevada Water Year 2002 Water-Data Report...

    National Nuclear Security Administration (NNSA)

    D. Joyner, and Roslyn Ryan Water-Data Report NV-02-1 Prepared in cooperation with the ... may be considered as partial records, but they are presented separately in this report. ...

  9. NREL: Energy Analysis: Energy-Water Nexus

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy-Water Nexus A cartoon showing the nexus of water and energy using red and blue arrows to indicate the flow water and energy through generation, fuel production, and consumption. Source: U.S. Department of Energy, 2006 Enlarge image Water is required to produce energy. Energy is required to pump, treat, and transport water. The energy-water nexus examines the interactions between these two inextricably linked sectors. NREL helps policymakers, researchers, and investors understand and

  10. Water Research and Technology | Argonne National Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Water Power Events Water Power Events Below is an industry calendar with meetings, conferences, and webinars of interest to the conventional hydropower and marine and hydrokinetic technology communities.

    Water Power Funding Opportunities Water Power Funding Opportunities The Water Power Program focuses on technological development and deployment of innovative technologies capable of generating electricity from water. The program funds research and development activities through competitive

  11. NETL Research: Energy and Water Interface

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Water and Energy Interface Water and energy are inextricably linked. Because thermoelectric generation and fossil fuel extraction can impact water resources, it is critically important to protect U.S. water supplies while providing the energy needed to power the nation in the 21st century. Through integrated water and energy-related activities, the U.S. Department of Energy/National Energy Technology Laboratory (DOE/NETL) Water-Energy Interface program has attempted to address this challenge

  12. Water Power Program At-A-Glance

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    WATER POWER TECHNOLOGIES WATER POWER TECHNOLOGIES FY 2017 BUDGET AT-A-GLANCE The Water Power Program is committed to developing and deploying a portfolio of innovative technologies and market solutions for clean, domestic power generation from water resources across the U.S. (hydropower, marine and hydrokinetics). What We Do The Water Power Program strives to produce the next generation of water power technologies and jump-start private sector innovation critical to the country's long-term

  13. Water Power Technologies Office | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Water Power Technologies Office Water Power Technologies Office Direct Current: From Water to Wattage Podcast Direct Current: From Water to Wattage Podcast Hydropower is America's oldest and largest source of clean, renewable energy. But can it grow to meet our changing needs? Follow our hosts on a journey from hydropower's origins to the new wave of technologies that could shape its future. Read more Amped Up for Water Amped Up for Water The Office of Energy Efficiency and Renewable Energy

  14. Water and Energy | Argonne National Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Water and Energy Agricultural irrigation system Agricultural irrigation system The world's water systems are undergoing significant stress. Extreme events and changing weather patterns are overwhelming an already inadequate water infrastructure. At the same time, urbanization, population growth and economic development are increasing demand for energy. Water and energy are tightly intertwined: energy is required to produce clean water and water is required for energy production, for example to

  15. Addressing the Water and Energy Nexus

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Water and Energy Nexus - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us ... Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ...

  16. Beijing Haohua Rivers International Water Engineering Consulting...

    OpenEI (Open Energy Information) [EERE & EIA]

    Haohua Rivers International Water Engineering Consulting Co Ltd Jump to: navigation, search Name: Beijing Haohua Rivers International Water Engineering Consulting Co.Ltd. Place:...

  17. Oregon Water Resources Commission | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Water Resources Commission Jump to: navigation, search Name: Oregon Water Resources Commission Abbreviation: OWRC Address: 725 Summer Street NE, Suite A Place: Salem, Oregon Zip:...

  18. Total Space Heating Water Heating Cook-

    Annual Energy Outlook

    Commercial Buildings Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing...

  19. Water Resources Council FLOODPLAIN MANAGEMENT GUIDELINES For...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Water Resources Council FLOODPLAIN MANAGEMENT GUIDELINES For Implementing E.O. 11988 43 FR 6030 February 10, 1978 (Second Reprinting) i- ' 1': : 8410-01 WATER RESOURCES COUNCIL...

  20. Water Success Stories | Department of Energy

    Energy.gov [DOE] (indexed site)

    emissions-free, and cost-effective water power open new possibilities for this reliable, renewable resource. Explore EERE's water power success stories below. July 29, 2015 The...

  1. Water-Gas Sampling | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Water-Gas Sampling (Redirected from Water-Gas Samples) Redirect page Jump to: navigation, search REDIRECT Downhole Fluid Sampling Retrieved from "http:en.openei.orgw...

  2. Columbia Water & Light- Solar Energy Loans

    Energy.gov [DOE]

    Columbia Water & Light (CWL) offers electric residential and commercial customers low-interest loans for photovoltaic (PV) systems and solar water heaters.

  3. DOE Wind and Water Power Technologies Office

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Wind and Water Power Technologies Office - Sandia Energy Energy Search Icon Sandia Home ... Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ...

  4. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,870 1,276...

  5. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update

    Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All...

  6. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,602 1,397...

  7. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ... 2,037...

  8. Solar water heaters | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Solar water heaters Jump to: navigation, search (The following text is derived from the United States Department of Energy's description of Solar Water Heating technology.)1...

  9. Texas Water Development Board | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Development Board Jump to: navigation, search Logo: Texas Water Development Board Name: Texas Water Development Board Abbreviation: TWDB Address: 1700 North Congress Avenue Place:...

  10. Solar water heaters | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Solar water heaters (Redirected from - Solar Hot Water) Jump to: navigation, search (The following text is derived from the United States Department of Energy's description of...

  11. Oregon Water Resources Department | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Resources Department Jump to: navigation, search Logo: Oregon Water Resources Department Name: Oregon Water Resources Department Address: 725 Summer Street NE, Suite A Place:...

  12. Vermont Water Quality Certification Application for Hydroelectric...

    OpenEI (Open Energy Information) [EERE & EIA]

    Water Quality Certification Application for Hydroelectric Facilities Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Vermont Water Quality Certification...

  13. Geothermal/Water Use | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Water Use < Geothermal(Redirected from Water Use) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Planning Leasing Exploration Well Field Power Plant Grid...

  14. Vermont Water Quality Standards | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Jump to: navigation, search OpenEI Reference LibraryAdd to library General: Vermont Water Quality Standards Abstract Vermont 401 Water Quality Certification Policy Guidance for...

  15. Alaska Water Quality Standards | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Water Quality Standards Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook: Alaska Water Quality...

  16. Geothermal/Water Use | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Water Use < Geothermal Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Planning Leasing Exploration Well Field Power Plant Grid Connection Environment Water...

  17. Achieving Water-Sustainable Bioenergy Production | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Production Breakout Session 3-A: Growing a Water-Smart Bioeconomy Achieving Water-Sustainable Bioenergy Production May Wu, Principal Environmental System Analyst in the...

  18. Best Management Practice #1: Water Management Planning

    Office of Energy Efficiency and Renewable Energy (EERE)

    A successful water management program starts with developing a comprehensive water management plan. This plan should be included within existing facility operating plans.

  19. Redlands Water & Power Company | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Redlands Water & Power Company Jump to: navigation, search Name: Redlands Water & Power Company Place: Colorado Website: www.redlandswaterandpower.com Outage Hotline: 970-243-2173...

  20. Waterloo Light & Water Comm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Water Comm Jump to: navigation, search Name: Waterloo Light & Water Comm Place: Wisconsin Phone Number: (920) 478-2260 Website: waterlooutilities.com Facebook: https:...

  1. Wonewoc Electric & Water Util | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wonewoc Electric & Water Util Jump to: navigation, search Name: Wonewoc Electric & Water Util Place: Wisconsin Phone Number: (608) 464-3114 Website: www.wonewocwisc.compublicwor...

  2. Cedarburg Light & Water Comm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Cedarburg Light & Water Comm Jump to: navigation, search Name: Cedarburg Light & Water Comm Place: Wisconsin Phone Number: (262) 375-7650 Website: www.cedarburglightandwater.com...

  3. Paragould Light & Water Comm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Paragould Light & Water Comm Jump to: navigation, search Name: Paragould Light & Water Comm Place: Arkansas Phone Number: (870) 239-7700 Website: www.paragould.com Facebook:...

  4. Clarksville Light & Water Co | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Clarksville Light & Water Co Jump to: navigation, search Name: Clarksville Light & Water Co Place: Arkansas Phone Number: 479-754-3148 Website: www.clarksvillelightwater.com...

  5. Modern Electric Water Company | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Modern Electric Water Company Jump to: navigation, search Name: Modern Electric Water Company Address: 904 North Pines Road Place: Spokane Valley, WA Zip: 99206 Phone Number: (509)...

  6. Two Rivers Water & Light | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Water & Light Jump to: navigation, search Name: Two Rivers Water & Light Place: Wisconsin Phone Number: (920) 793-5550 Website: trwaterandlight.com Facebook: https:...

  7. Parkland Light & Water Company | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Parkland Light & Water Company Jump to: navigation, search Name: Parkland Light & Water Company Place: Washington Phone Number: (253) 531-5666 Website: www.plw.coop Outage...

  8. Lockwood Water & Light Company | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Lockwood Water & Light Company Jump to: navigation, search Name: Lockwood Water & Light Company Place: Missouri Phone Number: 417-232-4221 Outage Hotline: 417-232-4221 References:...

  9. Brodhead Water & Lighting Comm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Brodhead Water & Lighting Comm Jump to: navigation, search Name: Brodhead Water & Lighting Comm Place: Wisconsin Phone Number: 608-897-2505 Website: www.cityofbrodheadwi.usdepart...

  10. Temperature of Multibubble Sonoluminescence in Water (Journal...

    Office of Scientific and Technical Information (OSTI)

    Temperature of Multibubble Sonoluminescence in Water Citation Details In-Document Search Title: Temperature of Multibubble Sonoluminescence in Water No abstract prepared. Authors: ...

  11. Microsoft Word - Water Savings Pilot - 20140206.docx

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Overview WATER SAVINGS PILOT Learn more at energy.govbetterbuildingschallenge The ... demonstrate successful approaches to saving water and decrease their utility bills. ...

  12. decreasing water input and waste generation

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    decreasing water input and waste generation - Sandia Energy Energy Search Icon Sandia Home ... Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ...

  13. Tritiated Water Challenge in Fukushima Daiichi

    Office of Environmental Management (EM)

    Tritiated water Challenge in Fukushima Daiichi Steve Xiao, Ph.D. Hydrogen Processing ... decommissioned for training * Currently water is circulating to cool fuels * Radioactive ...

  14. Field Monitoring Protocol: Heat Pump Water Heaters

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Field Monitoring Protocol: Heat Pump Water Heaters B. Sparn, L. Earle, D. Christensen, J. ... 2013 Field Monitoring Protocol: Heat Pump Water Heaters B. Sparn, L. Earle, D. ...

  15. Water reactive hydrogen fuel cell power system

    SciTech Connect

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-11-25

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into the fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  16. Floating Oscillating Water Column Reference Model Completed

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Floating Oscillating Water Column Reference Model Completed - Sandia Energy Energy Search ... Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ...

  17. Water reactive hydrogen fuel cell power system

    DOEpatents

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-01-21

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into a fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  18. Electric Power Generation and Water Use Data

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Power Generation and Water Use Data - Sandia Energy Energy Search Icon Sandia Home ... Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ...

  19. Oregon General Industrial Water Pollution Control Facilities...

    OpenEI (Open Energy Information) [EERE & EIA]

    General Industrial Water Pollution Control Facilities Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Oregon General Industrial Water Pollution...

  20. California Environmental Protection Agency Water Resources Control...

    OpenEI (Open Energy Information) [EERE & EIA]

    Water Resources Control Board Jump to: navigation, search Name: California Environmental Protection Agency Water Resources Control Board Place: Sacramento, California Coordinates:...

  1. Future Bottlenecks for Industrial Water Recycling. (Conference...

    Office of Scientific and Technical Information (OSTI)

    Future Bottlenecks for Industrial Water Recycling. Citation Details In-Document Search Title: Future Bottlenecks for Industrial Water Recycling. Authors: Brady, Patrick V....

  2. Mapping Water Availability in the Western US

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Mapping Water Availability in the Western US - Sandia Energy Energy Search Icon Sandia ... Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ...

  3. Energy-Water Roundtables | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Roundtables Energy-Water Roundtables DOE's 2015 Energy-Water Nexus Roundtable Series engaged stakeholders from industry, academia, utilities, state and local governments, National ...

  4. Water Power Events | Department of Energy

    Office of Environmental Management (EM)

    Water Power Events Water Power Events Below is an industry calendar with meetings, conferences, and webinars of interest to the conventional hydropower and marine and hydrokinetic...

  5. Energy-Water Nexus | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy-Water Nexus Energy-Water Nexus A hybrid Sankey diagram from The Water-Energy Nexus: Challenges and Opportunities report, issued by DOE in 2014, shows interconnected major energy and water flows in the U.S. A hybrid Sankey diagram from The Water-Energy Nexus: Challenges and Opportunities report, issued by DOE in 2014, shows interconnected major energy and water flows in the U.S. Energy and water systems are interconnected. Energy is required to extract, convert, and deliver water of

  6. Heat Pump Water Heaters | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Heat Pump Water Heaters Heat Pump Water Heaters A diagram of a heat pump water heater. A diagram of a heat pump water heater. This utility room includes a heat pump water heater. | Photo courtesy of Thomas Kelsey/U.S. Department of Energy Solar Decathlon This utility room includes a heat pump water heater. | Photo courtesy of Thomas Kelsey/U.S. Department of Energy Solar Decathlon A diagram of a heat pump water heater. This utility room includes a heat pump water heater. | Photo courtesy of

  7. Water Heating Standing Technical Committee Presentation

    Energy Saver

    Water Heating Residential Energy Efficiency Stakeholder's Meeting February 29, 2012 - Austin, Texas 2 STC Chairman Responsibilities * To maintain the Water Heating Strategic ...

  8. Energy Positive Water Resource Recovery Workshop Presentations...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Presentations Energy Positive Water Resource Recovery Workshop Presentations ...ositiveWorkshopReuse.pdf (2.28 MB) NearyWaterResourceWorkshoppresentaion2015.pdf ...

  9. Water Power Events | Department of Energy

    Energy Saver

    Water Power Events Water Power Events Below is an industry calendar with meetings, conferences, and webinars of interest to the conventional hydropower and marine and hydrokinetic ...

  10. Carderock Circulating Water Channel | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Features The Circulating Water Channel is a vertical plane, open to the atmosphere test section with a free surface in a closed recirculating water circuit, variable speed,...

  11. California Water Forms | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Not provided DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for California Water Forms Citation California Water Forms(2009). Retrieved from...

  12. HVAC, Water Heating, and Appliance Publications | Department...

    Energy Saver

    HVAC, Water Heating, and Appliance Publications HVAC, Water Heating, and Appliance Publications September 19, 2016 Alternative Refrigerant Evaluation for High-Ambient-Temperature ...

  13. Light Water Reactor Sustainability Program - Integrated Program...

    Energy Saver

    Program - Integrated Program Plan Light Water Reactor Sustainability Program - Integrated Program Plan The Light Water Reactor Sustainability (LWRS) Program is a research and ...

  14. Water Power Program | Department of Energy

    Energy Saver

    Renewables Water Power Program Water Power Program Hydropower Vision: A New Chapter for America's 1st Renewable Electricity Source Hydropower Vision: A New Chapter for America's ...

  15. DOE_Water_Heater_Meeting_111612.pdf

    Energy Saver

    Conservation Standards for Residential Water Heaters", the comments filed therein, and ... that Joint Commenters had done with water heater manufacturers to identify ...

  16. Advanced Hybrid Water Heater using Electrochemical Compressor...

    Energy Saver

    Hybrid Water Heater using Electrochemical Compressor Advanced Hybrid Water Heater using Electrochemical Compressor Xergy is using its Electro Chemical Compression (ECC) technology ...

  17. Commercial Absorption Heat Pump Water Heater

    Energy Saver

    Absorption Heat Pump Water Heater 2016 Building Technologies Office Peer Review Patrick ... The target market is the hospital, hotel and full service restaurant gas hot water heating ...

  18. CO2 Heat Pump Water Heater

    Energy Saver

    CO 2 Heat Pump Water Heater 2014 Building Technologies Office Peer Review Evaporator Kyle ... MarketAudience: Residential electric water heating Key Partners: GE Appliances CRADA ...

  19. Water Project Screening Tool | Department of Energy

    Energy Saver

    Project Screening Tool Water Project Screening Tool Excel-based tool enables federal agencies to quickly screen sites for water-efficiency opportunities. The objective of the tool ...

  20. Savings Project: Lower Water Heating Temperature | Department...

    Energy Saver

    Lower Water Heating Temperature Savings Project: Lower Water Heating Temperature Addthis Project Level Easy Energy Savings 4%-22% annually Time to Complete 2 hours Overall Cost 0 ...

  1. Light Water Reactor Sustainability Nondestructive Evaluation...

    Energy Saver

    Nondestructive Evaluation for Concrete Research and Development Roadmap Light Water ... US Department of Energy Office of Nuclear Energy's Light Water Reactor Sustainability ...

  2. CO2 Heat Pump Water Heater

    Energy Saver

    CO 2 Heat Pump Water Heater 2016 Building Technologies Office Peer Review Kyle ... Purpose and Objectives Problem Statement: - Heat pump water heaters can save significant ...

  3. Solar Water Heating Webinar | Department of Energy

    Energy Saver

    Weatherization Assistance Program Pilot Projects Solar Water Heating Webinar Solar Water Heating Webinar Watch a recording of National Renewable Energy Laboratory (NREL) ...

  4. Commercial Water Heaters | Department of Energy

    Energy Saver

    Water Heaters Commercial Water Heaters The Department of Energy (DOE) develops standardized data templates for reporting the results of tests conducted in accordance with current ...

  5. Water Data Collection in the 2007 CBECS

    Gasoline and Diesel Fuel Update

    Water Data Collection in the 2007 CBECS CBECS 2007 - Release date: August 28, 2012 Did you know? Select water data results are described in the accompanying report, Energy ...

  6. Condensation induced water hammer safety (Technical Report) ...

    Office of Scientific and Technical Information (OSTI)

    Condensation induced water hammer safety Citation Details In-Document Search Title: Condensation induced water hammer safety You are accessing a document from the Department of ...

  7. water gas shift | netl.doe.gov

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Syngas Contaminant Removal and Conditioning Water Gas Shift & Hydrogen Production Water Gas Shift In applications where scrubbed syngas hydrogencarbon monoxide (H2CO) ratio must ...

  8. NREL: Water Power Research Home Page

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Water Power Research NREL's water power technologies research leverages 35 years of experience developing renewable energy technologies to support the U.S. Department of Energy ...

  9. LIGHT WATER MODERATED NEUTRONIC REACTOR

    DOEpatents

    Christy, R.F.; Weinberg, A.M.

    1957-09-17

    A uranium fuel reactor designed to utilize light water as a moderator is described. The reactor core is in a tank at the bottom of a substantially cylindrical cross-section pit, the core being supported by an apertured grid member and comprised of hexagonal tubes each containing a pluralily of fuel rods held in a geometrical arrangement between end caps of the tubes. The end caps are apertured to permit passage of the coolant water through the tubes and the fuel elements are aluminum clad to prevent corrosion. The tubes are hexagonally arranged in the center of the tank providing an amulus between the core and tank wall which is filled with water to serve as a reflector. In use, the entire pit and tank are filled with water in which is circulated during operation by coming in at the bottom of the tank, passing upwardly through the grid member and fuel tubes and carried off near the top of the pit, thereby picking up the heat generated by the fuel elements during the fission thereof. With this particular design the light water coolant can also be used as the moderator when the uranium is enriched by fissionable isotope to an abundance of U/sup 235/ between 0.78% and 2%.

  10. Water resources data for Louisiana, water year 1996. Water-data report (Annual), 1 October 1995-30 September 1996

    SciTech Connect

    Garrison, C.R.; Lovelace, W.M.; Montgomery, P.A.

    1997-05-01

    The report contains records for water discharge at 64 gaging stations; stage only for 41 gaging stations and 5 lakes; water quality for 38 surface-water stations (including 22 gage stations) and 100 wells; and water levels for 235 observation wells. Also included are data for 117 crest-stage and flood-profile partial-record stations.

  11. Process for photosynthetically splitting water

    DOEpatents

    Greenbaum, Elias

    1984-01-01

    The invention is an improved process for producing gaseous hydrogen and oxygen from water. The process is conducted in a photolytic reactor which contains a water-suspension of a photoactive material containing a hydrogen-liberating catalyst. The reactor also includes a volume for receiving gaseous hydrogen and oxygen evolved from the liquid phase. To avoid oxygen-inactivation of the catalyst, the reactor is evacuated continuously by an external pump which circulates the evolved gases through means for selectively recovering hydrogen therefrom. The pump also cools the reactor by evaporating water from the liquid phase. Preferably, product recovery is effected by selectively diffusing the hydrogen through a heated semipermeable membrane, while maintaining across the membrane a magnetic field gradient which biases the oxygen away from the heated membrane. This promotes separation, minimizes the back-reaction of hydrogen and oxygen, and protects the membrane.

  12. Water freezing and ice melting

    DOE PAGES [OSTI]

    Malolepsza, Edyta; Keyes, Tom

    2015-10-12

    The generalized replica exchange method (gREM) is designed to sample states with coexisting phases and thereby to describe strong first order phase transitions. The isobaric MD version of the gREM is presented and applied to freezing of liquid water, and melting of hexagonal and cubic ice. It is confirmed that coexisting states are well sampled. The statistical temperature as a function of enthalpy, TS(H), is obtained. Hysteresis between freezing and melting is observed and discussed. The entropic analysis of phase transitions is applied and equilibrium transition temperatures, latent heats, and surface tensions are obtained for hexagonal ice↔liquid and cubic ice↔liquid,more » with excellent agreement with published values. A new method is given to assign water molecules among various symmetry types. As a result, pathways for water freezing, ultimately leading to hexagonal ice, are found to contain intermediate layered structures built from hexagonal and cubic ice.« less

  13. CX-007432: Categorical Exclusion Determination

    Energy.gov [DOE]

    Integrated Optimization and Cost Analysis of an Innovative Offshore Wind Plant Design for Shallow and Transitional Water Depths CX(s) Applied: A9 Date: 12/07/2011 Location(s): Virginia Offices(s): Golden Field Office

  14. CX-010542: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Replace Obsolete West Hackberry Raw Water Injection Pump Vibration Transmitters CX(s) Applied: B5.2 Date: 06/24/2013 Location(s): Louisiana Offices(s): Strategic Petroleum Reserve Field Office

  15. CX-011199: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Replace Obsolete West Hackberry Raw Water Injection Pump Vibration Transmitters Government Furnished Equipment CX(s) Applied: B5.2 Date: 09/17/2013 Location(s): Louisiana Offices(s): Strategic Petroleum Reserve Field Office

  16. CX-010393: Categorical Exclusion Determination

    Energy.gov [DOE]

    Sitewide Domestic Water Service Replacement Project CX(s) Applied: B1.3, B1.15 Date: 09/10/2012 Location(s): Illinois Offices(s): Fermi Site Office

  17. CX-013593: Categorical Exclusion Determination

    Energy.gov [DOE]

    Use of DI Water Filtration System CX(s) Applied: B3.6Date: 03/23/2015Location(s): South CarolinaOffices(s): Savannah River Operations Office

  18. CX-012603: Categorical Exclusion Determination

    Energy.gov [DOE]

    Western Groundwater Seepline and Surface Water Sampling Locations CX(s) Applied: B3.1Date: 41814 Location(s): South CarolinaOffices(s): Savannah River Operations Office

  19. CX-100431 Categorical Exclusion Determination

    Energy.gov [DOE]

    Cellular Cofferdams for Hydropower Use Award Number: DE-EE0007245 CX(s) Applied: A9 Water Power Program Date: 12/23/15 Location(s): CO Office(s): Golden Field Office

  20. CX-008863: Categorical Exclusion Determination

    Energy.gov [DOE]

    Dredging of the West Hackberry Raw Water Intake Structure CX(s) Applied: B1.3 Date: 08/14/2012 Location(s): Louisiana Offices(s): Strategic Petroleum Reserve Field Office

  1. CX-010722: Categorical Exclusion Determination

    Energy.gov [DOE]

    Soos Creek Water & Sewer District Land Use Review Request Case No. 20120040 CX(s) Applied: B4.9 Date: 08/20/2013 Location(s): Washington Offices(s): Bonneville Power Administration

  2. CX-012711: Categorical Exclusion Determination

    Energy.gov [DOE]

    Materials and Fuels Complex (MFC) Fire Water Replacement and Upgrades CX(s) Applied: B2.5Date: 41849 Location(s): IdahoOffices(s): Nuclear Energy

  3. CX-100201 Categorical Exclusion Determination

    Energy.gov [DOE]

    Hydro Fellowship Program Award Number: DE-EE0002668 CX(s) Applied: A9, A11 Water Power Program Date: 03/23/2015 Location(s): CO Office(s): Golden Field Office

  4. CX-011143: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Replace River Water Pelton Valves and Remove Existing Valve Houses CX(s) Applied: B1.3. Date: 08/21/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office

  5. CX-009149: Categorical Exclusion Determination

    Energy.gov [DOE]

    Water Heater Zigbee Open Standard Wireless Controller CX(s) Applied: A9, B5.1 Date: 09/13/2012 Location(s): Georgia Offices(s): Golden Field Office

  6. CX-012510: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Petrography/Water Resources Laboratory CX(s) Applied: A9, B3.6Date: 41849 Location(s): West VirginiaOffices(s): National Energy Technology Laboratory

  7. CX-012176: Categorical Exclusion Determination

    Energy.gov [DOE]

    Technology Development For Deuterium Removal From Water CX(s) Applied: B3.6 Date: 04/14/2014 Location(s): South Carolina Offices(s): Savannah River Operations Office

  8. CX-010654: Categorical Exclusion Determination

    Energy.gov [DOE]

    Utilization of Savannah River Site Surface Waters for Wildland Fire Fighting on SRS CX(s) Applied: B3.2 Date: 06/21/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office

  9. CX-014406: Categorical Exclusion Determination

    Energy.gov [DOE]

    Test Reactor Area (TRA)-1608 Water Fountain Replacement CX(s) Applied: B1.15, B1.24Date: 11/20/2015 Location(s): IdahoOffices(s): Nuclear Energy

  10. CX-008630: Categorical Exclusion Determination

    Energy.gov [DOE]

    Surface Water and Groundwater Sampling Pen Branch Floodplain near Chemicals Metals and Pesticides Pits CX(s) Applied: B3.1 Date: 06/07/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office

  11. CX-010059: Categorical Exclusion Determination

    Energy.gov [DOE]

    High Density Fuel Material for Light Water Reactors (LWRs) CX(s) Applied: B1.31 Date: 01/14/2013 Location(s): Idaho Offices(s): Nuclear Energy

  12. CX-014430: Categorical Exclusion Determination

    Energy.gov [DOE]

    Hydrate Modeling & Flow Loop Experiments for Water Continuous and Dispersed Systems CX(s) Applied: B3.6Date: 11/23/2015 Location(s): ColoradoOffices(s): National Energy Technology Laboratory

  13. CX-014213: Categorical Exclusion Determination

    Energy.gov [DOE]

    Hydrate Modeling & Flow Loop Experiments for Water Continuous and Dispersed System CX(s) Applied: A9, B3.6Date: 09/25/2015 Location(s): HawaiiOffices(s): National Energy Technology Laboratory

  14. CX-014586: Categorical Exclusion Determination

    Energy.gov [DOE]

    Subsea Produced Water Sensor Development (Addition of Sub-Recipient) CX(s) Applied: A9, A11, B3.6Date: 03/11/2016 Location(s): OtherOffices(s): National Energy Technology Laboratory

  15. CX-009259: Categorical Exclusion Determination

    Energy.gov [DOE]

    Water Management in Mature Oil Fields Using Advanced Particle Gels CX(s) Applied: A9, B3.6 Date: 09/12/2012 Location(s): Missouri Offices(s): National Energy Technology Laboratory

  16. CX-009030: Categorical Exclusion Determination

    Energy.gov [DOE]

    Study of Intermetallic Nanostructures for Light-water Reactor Materials – Regents of the University of California CX(s) Applied: B3.6 Date: 08/20/2012 Location(s): California Offices(s): Nuclear Energy

  17. CX-100485 Categorical Exclusion Determination

    Energy.gov [DOE]

    Workforce Development for Hydropower Award Number: DE-EE0006507 CX(s) Applied: A9 Water Power Program Date: 02/27/2014 Location(s): IL Office(s): Golden Field Office

  18. CX-009141: Categorical Exclusion Determination

    Energy.gov [DOE]

    Manufacturing of Protected Lithium Electrodes for Advanced Lithium Air, Water, and Batteries CX(s) Applied: A9, B3.6 Date: 09/04/2012 Location(s): California Offices(s): Golden Field Office

  19. CX-009001: Categorical Exclusion Determination

    Energy.gov [DOE]

    Advanced, Energy-Efficient Hybrid Membrane System for Industrial Water Reuse CX(s) Applied: A9, B3.6 Date: 08/27/2012 Location(s): North Carolina, North Carolina Offices(s): Golden Field Office

  20. CX-010962: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Characterizing Natural Gas Hydrates in the Deep Water Gulf of Mexico CX(s) Applied: A9, B3.11 Date: 09/16/2013 Location(s): Oklahoma Offices(s): National Energy Technology Laboratory