National Library of Energy BETA

Sample records for flatiron substation transmission

  1. EIS-0483: Estes to Flatiron Substation Transmission Lines Rebuild...

    Energy Saver

    Colorado. EIS-0483: Estes to Flatiron Substation Transmission Lines Rebuild Project Public Comment Opportunities No public comment opportunities available at this time....

  2. EIS-0483: Estes to Flatiron Substation Transmission Lines Rebuild Project, Larimer County, Colorado

    Energy.gov [DOE]

    Western Area Power Administration (Western) – with USDA Forest Service, Arapaho and Roosevelt National Forest, as a cooperating agency – is preparing an EIS that analyzes the potential environmental impacts of a proposal to rebuild and upgrade two 115-kilovolt single-circuit transmission lines between the Flatiron Substation and the intersection of Mall Road and U.S. Highway 36 in Estes Park, Larimer County, Colorado.

  3. Annual Research Portfolio 2013 Transmission and Substations

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Transmission & Substations Area Overhead Transmission Lines (P35) Underground Transmission Lines (P36) HVDC (P162) Substations (P37) Asset Related Research 3 2013 Electric Power ...

  4. Annual Research Portfolio 2013 Transmission and Substations

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Ord Transmission & Substations New Components & Materials Research Roadmap 2 © 2013 Electric Power Research Institute, Inc. All rights reserved. Transmission & Substations Area Overhead Transmission Lines (P35) Underground Transmission Lines (P36) HVDC (P162) Substations (P37) Asset Related Research 3 © 2013 Electric Power Research Institute, Inc. All rights reserved. EPRI's Mission Advancing safe, reliable, affordable and environmentally responsible electricity for society through

  5. Supervisory Transmission Lines and Substation Maintenance Manager

    Energy.gov [DOE]

    (See Frequently Asked Questions for more information). Where would I be working? Western Area Power Administration Desert Southwest Region Transmission Lines and Substation Maintenance (G5200) 615...

  6. Electrician - Foreman II (Transmission Lines & Substations) ...

    Energy.gov [DOE] (indexed site)

    Region Transmission Lines and Substation Maintenance (G5200) 615 S. 43rd Avenue Phoenix, AZ 85009 Duty Location is Page, AZ Find out more about living conditions at this...

  7. TRANSMISSION AND DISTRIBUTION; POWER SUBSTATIONS; CAPITALIZED...

    Office of Scientific and Technical Information (OSTI)

    AND DISTRIBUTION; POWER SUBSTATIONS; CAPITALIZED COST; CALCULATION METHODS; PLANNING; COST ESTIMATION; MATHEMATICAL MODELS The displacement or deferral of substation...

  8. EA-1899: Rerouting and Renovating of Estes-Flatiron Three Transmission Lines to Double Circuit 115-kV, Larimer County, Colorado

    Energy.gov [DOE]

    DOE’s Western Area Power Administration started to prepare an EA to evaluate the environmental impacts of a proposal to reroute and renovate the Estes-Flatiron Three Transmission Lines in Larimer County, Colorado. Based on comments received during the scoping period, Western ended preparation of DOE/EA-1899 and announced its intent to prepare and environmental impact statement, DOE/EIS-0483.

  9. Canby Area Service Project substation and associated transmission line. Environmental Assessment

    SciTech Connect

    Not Available

    1992-02-01

    Bonneville Power Administration (BPA) provides power to Surprise Valley Electrification Corporation (SVEC) in Modoc County, California. BPA uses PacificCorp`s substation and transmission facilities between Alturas and Canby, California to transfer power to SVEC`s Canby Substation. In the next year, SVEC expects increased industrial, agricultural, and residential electric loads on their 69-kV transmission system south of Canby. SVEC`s substation can accommodate only about 10 percent of the expected additional electric load. BPA`s proposed action is intended to meet SVEC`s increasing electric load. BPA proposes to meet SVEC`s increasing energy load by tapping into BPA`s existing BPA Malin-Warner 230-kV transmission line, and building an 7.9-mile transmission line to a new BPA substation. BPA proposes to build the new substation next to the west side of SVEC`s Canby Substation (Figure 1). This new substation will allow SVEC to move the additional power over their existing transmission or distribution lines. This report is the environmental assessment of the potential impact of the proposed project. The assessment determined that no ``environmental impact statement`` is not required.

  10. Canby Area Service Project : Substation and Associated Transmission Line : Environmental Assessment.

    SciTech Connect

    United States. Bonneville Power Administration.

    1992-02-01

    Bonneville Power Administration (BPA) provides power to Surprise Valley Electrification Corporation (SVEC) in Modoc County, California. BPA uses PacificCorp's substation and transmission facilities between Alturas and Canby, California to transfer power to SVEC's Canby Substation. In the next year, SVEC expects increased industrial, agricultural, and residential electric loads on their 69-kV transmission system south of Canby. SVEC's substation can accommodate only about 10 percent of the expected additional electric load. BPA's proposed action is intended to meet SVEC's increasing electric load. BPA proposes to meet SVEC's increasing energy load by tapping into BPA's existing BPA Malin-Warner 230-kV transmission line, and building an 7.9-mile transmission line to a new BPA substation. BPA proposes to build the new substation next to the west side of SVEC's Canby Substation (Figure 1). This new substation will allow SVEC to move the additional power over their existing transmission or distribution lines. This report is the environmental assessment of the potential impact of the proposed project. The assessment determined that no environmental impact statement'' is not required.

  11. Marys Lake 69/115-kV transmission line upgrade and substation expansion projects

    SciTech Connect

    1996-05-01

    Western Area Power Administration (Western) and the Platte River Power Authority (Platte River) propose to upgrade portions of the existing electric transmission and substation system that serves the Town of Estes Park, Colorado. The existing transmission lines between the Estes Power Plant Switchyard and the Marys Lake Substation include a 115,000 volt (115-kV) line and 69,000 volt (69-kV) line. Approximately one mile is a double-circuit 115/69-kV line on steel lattice structures, and approximately two miles consists of separate single-circuit 115-kV and a 69-kV lines, constructed on wood H-Frame structures. Both lines were constructed in 1951 by the US Bureau of Reclamation. The existing transmission lines are on rights-of-way (ROW) that vary from 75 feet to 120 feet and are owned by Western. There are 48 landowners adjacent to the existing ROW. All of the houses were built adjacent to the existing ROW after the transmission lines were constructed. Upgrading the existing 69-kV transmission line between the Marys Lake Substation and the Estes Power Plant Switchyard to 115-kV and expanding the Marys Lake Substation was identified as the most effective way in which to improve electric service to Estes Park. The primary purpose and need of the proposed project is to improve the reliability of electric service to the Town of Estes Park. Lack of reliability has been a historical concern, and reliability will always be less than desired until physical improvements are made to the electrical facilities serving Estes Park.

  12. Design modification and layout of utility substations for six phase transmission

    SciTech Connect

    Rebbapragada, R.V.; Brown, M.T. ); Dorazio, T.F. ); Stewart, J.R. )

    1993-01-01

    This paper describes the evaluations performed on the New York State Electric and Gas Corporation's (NYSEG) 115 kV Goudey-Oakdale line and Goudey and Oakdale substations to assess the capability of the existing equipment to operate as part of a six phase demonstration project. This paper also describes the design modifications that will be made to meet the goals of the commercial demonstration and to allow integration into the existing three phase operating grid. Reconfiguration of an existing double circuit line to a single circuit six phase line requires installation of phase reconfiguration transformers at the end of the line terminals and the associated switching, metering and protection equipment. In addition, the phase conductors from the terminals of the transformers have to be transposed for connection to the transmission line to achieve the desired 60[degree] vectorial separation angle between adjacent phase conductors. This requires innovative approaches to achieve phase reconfiguration that are economical, technically adequate and constructible and that provide design insights for future six phase lines. Concepts of substation compaction have been pursued when attempting substation modifications for six phase reconfiguration. This is demonstrated by the use of 132 kV metal oxide surge arresters on the 161 kV side of the transformer, the application of live tank gas insulated circuit breakers, the utilization of existing structures within the substation to the extent possible, and the use of railroad ties for transformer support and a membrane based oil containment pit.

  13. Proceedings: Substation equipment diagnostics conference

    SciTech Connect

    Lyons, K.L.

    1994-07-01

    This Substation Equipment Diagnostics Conference held November 3--5, 1993, in New Orleans, Louisiana, reviewed the status of EPRI research on transmission substation diagnostics as well as that of universities, manufacturers, testing organizations, and other researchers. The papers presented were organized under four categories of diagnostics: Transformers, Circuit Breakers, Other Substation Equipment, and Diagnostic Systems.

  14. Inter substation data communications

    SciTech Connect

    Lukas, M.R.

    1996-10-01

    The paper briefly describes the scada system operated by ComEd for substation communications. This system has proven a reliable means for monitor and control of the generation, transmission, and distribution system. An attempt to automate stand-alone substation functions into the RTU has had limited success. An automated substation capacitor control algorithm was incorporated into a PC. The PC directly interfaced with the RTU through the serial port for analog monitoring and control of the capacitor banks. There were no further enhancements or development of other control algorithms with the PC. The paper discusses the power system data evolution, the proposed design improvements, and implementation concerns.

  15. Seminoe-Kortes transmission line/substation consolidation project, Carbon County, Wyoming

    SciTech Connect

    Not Available

    1990-07-01

    The existing switchyards at Western Area Power Administration's (WESTERN) Seminoe and Kortes facilities, located approximately 40 miles northeast of Rawlines, Carbon County, Wyoming, were constructed in 1939 and 1951, respectively. The circuit breakers at these facilities are beyond or approaching their service life and need to be replaced. In addition, the switchyards have poor access for maintenance and replacement of equipment, and their locations create potential for oil spills into the North Platte River. WESTERN is proposing to consolidate the switchyard facilities into one new substation to provide easier access, restore proper levels of system reliability, and decrease the potential for oil contamination of the river. This environmental assessment (EA) was prepared to evaluate the impacts of the proposed Seminoe-Kortes Consolidation Project. 57 refs., 12 figs., 8 tabs.

  16. Substation grounding programs

    SciTech Connect

    Meliopoulos, A.P.S. . Electric Power Lab.)

    1992-05-01

    This document is a users manual and applications guide for the software package SGA. This package comprises four computer programs, namely SOMIP, SMECC, SGSYS, and TGRND. The first three programs are analysis models which are to be used in the design process of substation grounding systems. The fourth program, TGRND, is an analysis program for determining the transient response of a grounding system. This report, Volume 5, is an applications guide of the three computer programs. SOMIP, SMECC, and SGSYS, for the purpose of designing a safe substation grounding system. The applications guide utilizes four example substation grounding systems for the purpose of illustrating the application of the programs, SOMIP, SMECC, and SGSYS. The examples are based on data provided by four contributing utilities, namely, Houston Lighting and Power Company, Southern Company Services, Puget Sound Power and Light Company, and Arizona Public Service Company. For the purpose of illustrating specific capabilities of the computer programs, the data have been modified. As a result, the final designs of the four systems do not necessarily represent actual grounding system designs by these utilities. The example system 1 is a 138 kV/35 kV distribution substation. The example system 2 is a medium size 230 kV/115 kV transmission substation. The third example system is a generation substation while the last is a large 525 kV/345 kV/230 kV transmission substation. The four examples cover most of the practical problems that a user may encounter in the design of substation grounding systems.

  17. Proceedings: Substation Equipment Diagnostics Conference IX

    SciTech Connect

    2001-09-01

    Advanced monitoring and diagnostic sensors and systems are needed to provide reliable and accurate information for determining the condition of major transmission substation equipment. The ninth EPRI Substation Equipment Diagnostics Conference highlighted the work of researchers, universities, manufacturers, and utilities in producing advanced monitoring and diagnostic equipment for substations.

  18. Proceedings: Tenth EPRI Substation Equipment Diagnostics Conference

    SciTech Connect

    2002-06-01

    Advanced monitoring and diagnostic sensors and systems are needed to provide reliable and accurate information for determining the condition of major transmission substation equipment. The tenth EPRI Substation Equipment Diagnostics Conference highlighted the work of researchers, universities, manufacturers, and utilities in producing advanced monitoring and diagnostic equipment for substations.

  19. Proceedings: Substation Equipment Diagnostics Conference VIII

    SciTech Connect

    2000-06-01

    Advanced monitoring and diagnostic sensors and systems are needed to provide reliable and accurate information for determining the condition of major transmission substation equipment. The eighth EPRI Substation Equipment Diagnostics Conference highlighted the work of researchers, universities, manufacturers, and utilities in producing advanced monitoring and diagnostic equipment for substations.

  20. Electric power substation capital costs (Technical Report) |...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... Subject: 24 POWER TRANSMISSION AND DISTRIBUTION; POWER SUBSTATIONS; CAPITALIZED COST; CALCULATION METHODS; PLANNING; COST ESTIMATION; MATHEMATICAL MODELS Word Cloud More Like This ...

  1. Proposed amendment to presidential permit PP-63 and associated modifications to 500 kV international transmission line, Forbes, Minnesota to Manitoba, Canada. [Forbes Substation

    SciTech Connect

    Not Available

    1992-10-01

    This Addendum to the Final Environmental Assessment for the Proposed Amendment to Presidential Permit PP-63 and Associated Modifications to 500 kV International Transmission Line: Forbes, Minnesota to Manitoba, Canada (DOE/EA-587) addresses Northern States Power Company's (NSP) proposed expansion of the Forbes Substation. The applicant has requested that the expansion take place on the west side of the substation, within the existing property line, instead of on the north side as originally proposed. All of the proposed construction would take place on property already owned by NSP. DOE has reviewed the environmental impacts associated with this minor modification and has determined that the conclusions reached in the environmental assessment and Finding of No Significant Impact prepared in connection with NSP's original amendment request remain valid.

  2. EIS-0483: Notice of Intent to Prepare an Environmental Impact...

    Energy Saver

    Statement EIS-0483: Notice of Intent to Prepare an Environmental Impact Statement Estes to Flatiron Substation Transmission Lines Rebuild Project, Larimer County, CO DOE's...

  3. EIS-0483: EPA Notice of Availability of Draft Environmental Impact...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Statement EIS-0483: EPA Notice of Availability of Draft Environmental Impact Statement Estes to Flatiron Substation Transmission Lines Rebuild Project, Larimer County, Colorado...

  4. EIS-0483: Draft Environmental Impact Statement | Department of...

    Energy.gov [DOE] (indexed site)

    Estes to Flatiron Substation Transmission Lines Rebuild Project, Larimer County, Colorado Western Area Power Administration prepared a draft EIS that analyzes the potential...

  5. EIS-0483: Draft Environmental Impact Statement | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    3: Draft Environmental Impact Statement EIS-0483: Draft Environmental Impact Statement Estes to Flatiron Substation Transmission Lines Rebuild Project, Larimer County, Colorado...

  6. EIS-0483: Notice of Intent to Prepare an Environmental Impact...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    EIS-0483: Notice of Intent to Prepare an Environmental Impact Statement Estes to Flatiron Substation Transmission Lines Rebuild Project, Larimer County, CO DOE's Western Area Power ...

  7. Wolf Point Substation, Roosevelt County, Montana

    SciTech Connect

    Not Available

    1991-05-01

    The Western Area Power Administration (Western), an agency of the United States Department of Energy, is proposing to construct the 115-kV Wolf Point Substation near Wolf Point in Roosevelt County, Montana (Figure 1). As part of the construction project, Western's existing Wolf Point Substation would be taken out of service. The existing 115-kV Wolf Point Substation is located approximately 3 miles west of Wolf Point, Montana (Figure 2). The substation was constructed in 1949. The existing Wolf Point Substation serves as a Switching Station'' for the 115-kV transmission in the region. The need for substation improvements is based on operational and reliability issues. For this environmental assessment (EA), the environmental review of the proposed project took into account the removal of the old Wolf Point Substation, rerouting of the five Western lines and four lines from the Cooperatives and Montana-Dakota Utilities Company, and the new road into the proposed substation. Reference to the new proposed Wolf Point Substation in the EA includes these facilities as well as the old substation site. The environmental review looked at the impacts to all resource areas in the Wolf Point area. 7 refs., 6 figs.

  8. The implementation of substation automation coordinated with numerical protection relaying

    SciTech Connect

    Welie, G. van; Carolin, T.

    1994-12-31

    During 1987 Eskom embarked on a process of defining user requirements in the area of substation control. This ultimately resulted in a project being established for the procurement and development of a new generation of substation control equipment. At the same time it was decided to establish a new generation of protection schemes for transmission substations, based on numerical protection relays. From the outset, a high degree of coordination was planned between the substation control and protection equipment. Development contracts were placed with suppliers during late 1990 for the protection schemes and during early 1991 for the substation control equipment. These contracts are nearing completion and the first large installations will commence during 1994. The Transmission Group has committed to employing this new technology in all new substations and all substations to be refurbished. This paper discusses the concept of coordinated substation control and protection and gives insight into implementation issues and functional compromises which had to be made to meet project deadlines.

  9. Ashland Area Support Substation Project

    SciTech Connect

    Not Available

    1992-06-01

    The Bonneville Power Administration (BPA) provides wholesale electric service to the City of Ashland (the City) by transferring power over Pacific Power Light Company's (PP L) 115-kilovolt (kV) transmission lines and through PP L's Ashland and Oak Knoll Substations. The City distributes power over a 12.5-kV system which is heavily loaded during winter peak periods and which has reached the limit of its ability to serve peak loads in a reliable manner. Peak loads under normal winter conditions have exceeded the ratings of the transformers at both the Ashland and Oak Knoll Substations. In 1989, the City modified its distribution system at the request of PP L to allow transfer of three megawatts (MW's) of electric power from the overloaded Ashland Substation to the Oak Knoll Substation. In cooperation with PP L, BPA installed a temporary 6-8 megavolt-amp (MVA) 115-12.5-kV transformer for this purpose. This additional transformer, however, is only a temporary remedy. BPA needs to provide additional, reliable long-term service to the Ashland area through additional transformation in order to keep similar power failures from occurring during upcoming winters in the Ashland area. The temporary installation of another 20-MVA mobile transformer at the Ashland Substation and additional load curtailment are currently being studied to provide for sustained electrical service by the peak winter period 1992. Two overall electrical plans-of-service are described and evaluated in this report. One of them is proposed for action. Within that proposed plan-of-service are location options for the substation. Note that descriptions of actions that may be taken by the City of Ashland are based on information provided by them.

  10. EIS-0400: Granby Pumping Plant Switchyard-Windy Gap Substation Transmission Line Rebuild Project, Grand County, CO

    Energy.gov [DOE]

    Western Area Power Administration prepared an EIS, with the U.S. Forest Service, Bureau of Land Management, and Grand County (Colorado) as cooperating agencies, to evaluate the potential environmental impacts of rebuilding a 12-mile, 69 kV electric transmission line in Grand County. The proposed project would rebuild the single-circuit line as a double-circuit transmission line and add a second power transformer. Western identified potentially significant impacts while preparing an EA for this proposal (DOE/EA-1520) and prepared an EIS instead of completing the EA. Further information about the project is available on the project website.

  11. Energy Department, Arizona Utilities Announce Transmission Infrastruct...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    County, Arizona, and runs southeast to the ED5 Substation in Pinal County, Arizona. ... Area Power Administration Transmission Substation Federal Agencies to Assist with Clean ...

  12. Substation grounding programs. Volume 5, Applications manual

    SciTech Connect

    Meliopoulos, A.P.S.

    1992-05-01

    This document is a users manual and applications guide for the software package SGA. This package comprises four computer programs, namely SOMIP, SMECC, SGSYS, and TGRND. The first three programs are analysis models which are to be used in the design process of substation grounding systems. The fourth program, TGRND, is an analysis program for determining the transient response of a grounding system. This report, Volume 5, is an applications guide of the three computer programs. SOMIP, SMECC, and SGSYS, for the purpose of designing a safe substation grounding system. The applications guide utilizes four example substation grounding systems for the purpose of illustrating the application of the programs, SOMIP, SMECC, and SGSYS. The examples are based on data provided by four contributing utilities, namely, Houston Lighting and Power Company, Southern Company Services, Puget Sound Power and Light Company, and Arizona Public Service Company. For the purpose of illustrating specific capabilities of the computer programs, the data have been modified. As a result, the final designs of the four systems do not necessarily represent actual grounding system designs by these utilities. The example system 1 is a 138 kV/35 kV distribution substation. The example system 2 is a medium size 230 kV/115 kV transmission substation. The third example system is a generation substation while the last is a large 525 kV/345 kV/230 kV transmission substation. The four examples cover most of the practical problems that a user may encounter in the design of substation grounding systems.

  13. Proceedings: Substation equipment diagnostics conference III. Proceedings

    SciTech Connect

    1996-03-01

    This Substation Equipment Diagnostics Conference III was held to review the status of transmission substation diagnostics by EPRI, as well as that of the universities, manufacturers, testing organizations, and other researchers. The papers presented were organized under three categories of diagnostics: Transformers, Miscellaneous Equipment, and Systems. A reception on the evening of the first day of the Conference provided an opportunity for the researchers, utilities and manufacturers to display their equipment for the attendees. Separate abstracts have been indexed into the database for articles from this conference.

  14. Substation flood protection: A case study

    SciTech Connect

    Gacek, D.B.; McGovern, L.L.

    1999-11-01

    On July 18, 1996, the City of Naperville, Illinois encountered a substantial storm event ranging from nine to fourteen inches of rainfall across town in less than twelve hours, with the majority falling over a four-hour period. The watershed containing the City`s Westside substation encountered the most significant rainfall totals, resulting in a flood crest in the substation area of approximately thirteen inches of water. The station is a 138 kV substation, and the flooding of this station caused a power loss to approximately 60% of the City`s customers for more than eight hours. The water level posed no threat to yard equipment, however, within the substation control building, flood water shorted out control circuits and damaged transmission line relay systems. Crews worked round-the-clock for most of a week to return all transmission lines and transformers to normal service. The 15 kV switchgear ultimately had to be replaced due to recurring control circuit problems. Once the station was restored and the cleanup efforts underway, the City embarked on an evaluation to determine what condition or conditions allowed the flooding to occur, and what could be done in the future to avoid this problem to ensure that the customers of Naperville would not experience another service outage of this magnitude due to flooding.

  15. Ashland Area Support Substation Project : Environmental Assessment.

    SciTech Connect

    United States. Bonneville Power Administration.

    1992-06-01

    The Bonneville Power Administration (BPA) provides wholesale electric service to the City of Ashland (the City) by transferring power over Pacific Power & Light Company`s (PP&L) 115-kilovolt (kV) transmission lines and through PP&L`s Ashland and Oak Knoll Substations. The City distributes power over a 12.5-kV system which is heavily loaded during winter peak periods and which has reached the limit of its ability to serve peak loads in a reliable manner. Peak loads under normal winter conditions have exceeded the ratings of the transformers at both the Ashland and Oak Knoll Substations. In 1989, the City modified its distribution system at the request of PP&L to allow transfer of three megawatts (MW`s) of electric power from the overloaded Ashland Substation to the Oak Knoll Substation. In cooperation with PP&L, BPA installed a temporary 6-8 megavolt-amp (MVA) 115-12.5-kV transformer for this purpose. This additional transformer, however, is only a temporary remedy. BPA needs to provide additional, reliable long-term service to the Ashland area through additional transformation in order to keep similar power failures from occurring during upcoming winters in the Ashland area. The temporary installation of another 20-MVA mobile transformer at the Ashland Substation and additional load curtailment are currently being studied to provide for sustained electrical service by the peak winter period 1992. Two overall electrical plans-of-service are described and evaluated in this report. One of them is proposed for action. Within that proposed plan-of-service are location options for the substation. Note that descriptions of actions that may be taken by the City of Ashland are based on information provided by them.

  16. Substation automation problems and possibilities

    SciTech Connect

    Smith, H.L.

    1996-10-01

    The evolutionary growth in the use and application of microprocessors in substations has brought the industry to the point of considering integrated substation protection, control, and monitoring systems. An integrated system holds the promise of greatly reducing the design, documentation, and implementation cost for the substation control, protection, and monitoring systems. This article examines the technical development path and the present implementation problems.

  17. Substation voltage upgrading. Volume 2, Substation insulation tests and design for fast front lightning impulses: Final report

    SciTech Connect

    Panek, J.; Elahi, H.; Lux, A.; Imece, A.F.; LaPanse, R.A.; Stewart, J.R.

    1992-04-01

    This report addresses specific issues to support sound yet not unduly conservative uprating practices for substations. The main parts of the report cover the insulation withstand and overvoltage protection aspects, environmental measurements, reliability criteria, and industry experience. First the insulation design concerns are addressed. Substation stress by a backflashover of the line insulation due to lightning in the vicinity of the substation is recognized as a critical stress. A representative part of a 550 kV BIL substation was erected at the EPRI High Voltage Transmission Research Center, where also a special test circuit was assembled to produce a fast front, slow tail (0.2/200 {mu}s) wave. The substation as well as some special configurations were tested for line-to-ground and line-to-line withstand. Computer studies were performed to complement the test results. A number of important conclusions was reached. The most prominent result in that the high frequency oscillations, as caused by reflections within the substation, do not effect the Critical Flashover Voltage (CFO). The present practice, based on the highest peak is therefore very conservative. The slow tail of the wave appears to dictate the CFO. An arrester model for computer studies to represent very fast as well as slow phenomena was derived. It is based on full scale arrester test data, made available in this project. The computer program to calculate arrester model parameters is also a part of the report. The electric environmental measurements are reported for the tested substation at the HVTRC and for the uprated substation of Public Service Company of Colorado, both before and after the uprating. The performance is satisfactory when corona free hardware is used. Insulation design criteria are analyzed based on substation reliability, the system viewpoint and consequences of the failure. Utility experience with uprated substations is reviewed.

  18. Substation asset management study

    SciTech Connect

    Conroy, M.W.; Conidi, J.

    1996-03-01

    This paper will present an overview of our recent findings in the area of substation asset management and will describe how several utilities, in response to the issues listed above, are re-examining their present maintenance practices in search of more cost-effective programs.

  19. Gas-insulated substations

    SciTech Connect

    Reason, J.

    1993-09-01

    Utilities serving urban areas can no longer take the position that gas-insulated substations (GIS) are costly and unreliable. The only part of a GIS installation that's more costly than an air-insulated station is the equipment itself. Everything else - land, site preparation, maintenance, operation, etc - is less costly. And in more and more cases, land - the most expensive component - is simply not available.

  20. PUREX new substation ATR

    SciTech Connect

    Nelson, D.E.

    1997-05-12

    This document is the acceptance test report (ATR) for the New PUREX Main and Minisubstations. It covers the factory and vendor acceptance and commissioning test reports. Reports are presented for the Main 5 kV substation building, the building fire system, switchgear, and vacuum breaker; the minisubstation control building and switch gear; commissioning test; electrical system and loads inspection; electrical utilities transformer and cable; and relay setting changes based on operational experience.

  1. Substation automation gains momentum with modern options

    SciTech Connect

    Beaty, W.

    1996-12-01

    This paper discusses issues associated with utility substation automation. Monitoring equipment for monitoring power flow, quality, and harmonics for three substations simultaneously is described.

  2. El Paso Electric Company Diablo Substation to the US-Mexico border 115kV transmission line project. Final Environmental Assessment

    SciTech Connect

    Not Available

    1992-04-01

    This Environmental Assessment documents the analysis of alternative corridors for development and operation of a proposed 115 kilovolt transmission line using private lands and transporting power to the US-Mexico international border. The project will require (1) an amendment to El Paso Electric Company`s existing export authorization to transfer power across this border, and (2) a Presidential Permit for construction of the transmission line. The project would be located in Dona Ana county in southern New Mexico, approximately five miles west of El Paso, Texas. The alternative corridors, specific locations within those corridors, and structure types are identified and analyzed in the environmental studies.

  3. Substation alarm multiplexing system (SAMS)

    SciTech Connect

    ElBadaly, H.; Gaughan, J.; Ward, G.; Amengual, S.

    1996-03-01

    This paper describes an on going R&D project to develop, design, install, and assess the field performance of an advanced substation alarm system. SAMS provides a highly fault-tolerant system for the reporting of equipment alarms. SAMS separates and identifies each of the multiple alarm contacts, transmits an alarm condition over existing substation two-wire system, and displays the alarm source, and its associated technical information, on a touch-screen monitor inside the substation control room, and a remote central location and on a hand held terminal which may be carried anywhere within the substation. SAMS is currently installed at the Sherman Creek substation in the Bronx for the purpose of a three month field evaluation.

  4. Scoping study: Substation design workstation

    SciTech Connect

    Mauser, S.F. ); Conroy, M.W. ); Singh, N.M. )

    1993-03-01

    This project conducted a survey, consisting of a written questionaire, a workshop, and site visits to determine what facets of substation engineering would benefit from incorporation into a workstation environment. Based on the needs expressed by the respondents, a program for the staged development of a Substation Workstation is recommended. Six analytical function modules for assisting in substation engineering were identified for potential inclusion in the workstation: Initial Planning Activities; Physical Plant Design; Analytical Functions; Civil/Structural Design; Environmental Design; and Project Management. The initial release of the Substation Workstation is recommended to include the workstation environment (including MENTOR -- a concept for on-line help, tutorials, notepad, a minor spreadsheet, and interfaces to other regular desktop functions) and portions of the first three functional modules listed above. Recommendations for progress beyond this first release of the workstation included the development of additional capabilities within the initial functional modules, as well as the development of the remaining modules. An overlap exists between the analytical requirements for this workstation and those already included in the EPRI TLWorkstation and the ICWorkstation. In some cases, elements of these other workstations are also suggested for incorporation into the Substation Workstation (such as the foundation analyses from the TLWorkstation), and in others, an assimilation of the other workstation into the Substation Workstation is recommended (as with the ICWorkstation). Estimated resources for implementing the recommended program, including both costs and development time, are also provided.

  5. Electric power substation capital costs

    SciTech Connect

    Dagle, J.E.; Brown, D.R.

    1997-12-01

    The displacement or deferral of substation equipment is a key benefit associated with several technologies that are being developed with the support of the US Department of Energy`s Office of Utility Technologies. This could occur, for example, as a result of installing a distributed generating resource within an electricity distribution system. The objective of this study was to develop a model for preparing preliminary estimates of substation capital costs based on rudimentary conceptual design information. The model is intended to be used by energy systems analysts who need ``ballpark`` substation cost estimates to help establish the value of advanced utility technologies that result in the deferral or displacement of substation equipment. This cost-estimating model requires only minimal inputs. More detailed cost-estimating approaches are recommended when more detailed design information is available. The model was developed by collecting and evaluating approximately 20 sets of substation design and cost data from about 10 US sources, including federal power marketing agencies and private and public electric utilities. The model is principally based on data provided by one of these sources. Estimates prepared with the model were compared with estimated and actual costs for the data sets received from the other utilities. In general, good agreement (for conceptual level estimating) was found between estimates prepared with the cost-estimating model and those prepared by the individual utilities. Thus, the model was judged to be adequate for making preliminary estimates of typical substation costs for US utilities.

  6. Intelligent devices simplify remote SCADA installations in substations

    SciTech Connect

    Kopriva, V.J.

    1994-12-31

    Utilities are increasingly relying on Supervisory Control and Data Acquisition (SCADA) Systems for the effective and economical management of electric transmission and distribution systems. Now, advances in equipment and design technologies have created opportunities for an increased level of monitoring and control at electric power substations. In the past, prohibitive factors, including complicated equipment and wiring retrofits, protocol compatibility, and hardware installation and maintenance costs have impeded electric utilities in their attempt at broad based application of SCADA systems in electric substations, particularly at distribution voltage levels. These advances in equipment technologies have provided utilities with the opportunity to install and operate SCADA systems at lower cost, while providing flexibility for system expansion over longer periods. The development of intelligent microprocessor controlled devices and integrated communications has facilitated the use of a distributed design approach to installing SCADA monitoring and control in substations. This approach offers greater hardware flexibility and reduced installation costs while increasing reliability, making the addition of monitoring and control to electric substations increasingly practical. This paper will examine current trends in the application of intelligent microprocessor controlled and electronic devices, in stand alone and distributed applications, and the simplification of techniques for installing SCADA systems in substations. It will also consider the potential advantages to be realized in cost and reliability, and examine the necessary changes in design and operation philosophies required to effectively implement the new technology.

  7. Proponent's Environmental Assessment (PEA) Checklist for Transmission...

    OpenEI (Open Energy Information) [EERE & EIA]

    Proponent's Environmental Assessment (PEA) Checklist for Transmission Line and Substation Projects Jump to: navigation, search OpenEI Reference LibraryAdd to library Permitting...

  8. Richard Shaheen named Senior VP of Transmission

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    transmission lines and initiated upgrades to Celilo Substation and the Pacific Direct Current Intertie. "Richard is an excellent leader, and his 25-plus years of experience at a...

  9. MOV surge arresters: improved substation equipment protection

    SciTech Connect

    Niebuhr, W.D.

    1985-07-01

    The introduction of metal-oxide-varistor (MOV) surge arresters has added a new dimension to substation equipment protection. Through the optimal use of these arresters, it is possible to lower surge arrester ratings and thereby improve protective margins, resulting in a possible reduction of the insulation levels (BIL) of substation equipment. This reduction in BIL can lead to a significant reduction in the cost of substation equipment. General methods are delineated for selecting MOV surge arresters for substation protection and the resulting effect on substation equipment insulation levels.

  10. Substation evaluation using Diagnostic Logic System (DIALOG)

    SciTech Connect

    Andre, W.L.

    1989-08-01

    This project investigated the feasibility of applying a Diagnostic Logic System (DIAGLOG) to evaluate substation operation. The purpose was to see if a determination can be made as to whether the equipment in a substation operated correctly or not when an operating event occurred. The work was directed toward modifying an already proven diagnostic system to create a simplified procedure for describing the operation of substation equipment. Special operating tables or modules of logic were identified for describing relay and breaker operations. The resulting model composed of all the modules connected together is used to evaluate the actual observations available at the substation, and to compare them with what the substation should have produced. The report covers the diagnostic approach used, information on how to construct the modules and examples of diagnosis. Also covered are discussions on the special features of substations that offer a challenge to performing diagnostics. Included in the report are the results of modeling a typical substation and several notes are provided along with an initial library of typical modules which were developed in modeling one of the substations belonging to the Pacific Gas and Electric Company. This substation served as a feasibility demonstrator. 15 figs.

  11. Benefits of Using Mobile Transformers and Mobile Substations...

    Energy.gov [DOE] (indexed site)

    substations (MTS) to rapidly restore electrical service to areas subjected to blackouts ... SUBSTATIONS FOR RAPIDLY RESTORING ELECTRICAL SERVICE: A REPORT TO THE UNITED STATES ...

  12. National SCADA Test Bed Substation Automation Evaluation Report...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: National SCADA Test Bed Substation Automation Evaluation Report Citation Details In-Document Search Title: National SCADA Test Bed Substation Automation ...

  13. A complete and normalized 61850 substation (Smart Grid Project...

    OpenEI (Open Energy Information) [EERE & EIA]

    as a means to improve the design, maintenance and operation of the substation automation systems. Design a standard substation considering the existing and new solutions...

  14. National SCADA Test Bed Substation Automation Evaluation Report...

    Office of Scientific and Technical Information (OSTI)

    National SCADA Test Bed Substation Automation Evaluation Report Citation Details In-Document Search Title: National SCADA Test Bed Substation Automation Evaluation Report You ...

  15. EA-1982: Parker-Davis Transmission System Routine Operation and...

    Energy.gov [DOE] (indexed site)

    proposed continuation of operation and maintenance activities and implementation of a ... and at substations and maintenance facilities associated with the transmission system. ...

  16. EIS-0474: Southline Transmission Line Project; Arizona and New...

    Energy.gov [DOE] (indexed site)

    consist of a new 225-mile transmission line between existing substations at Afton, New Mexico, and Apache, Arizona, and improvements to approximately 130 miles of existing...

  17. Transmission

    Energy Saver

    via underwater and underground, high-voltage direct current ("HVDC") transmission cables. ... Connecticut, TDI proposed to construct a HVDC transmission line from New York's border ...

  18. Substation automation -- a ``bottoms up`` approach

    SciTech Connect

    Thomas, J.

    1996-10-01

    The proliferation of multi-purpose intelligent electronic devices in substations brought the availability of abundant and often overlapping data at the substation. This data can be used for improving the operation and maintenance of the substations and the entire power system. The objective of substation automation is to use technology to gather, consolidate and utilize this data for increasing the efficiency of power system operation and maintenance. Often automation functions are developed and offered around the capabilities of the preferred hardware and software of the integrator. Emphasis is placed on hardware, software and communication protocols rather than need, methodology and application. This can result in over-automation with complex, expensive and ineffective systems, or under-automation that fails to achieve the user`s objectives. The objective is to select appropriate hardware, software and methodology to build the most cost effective system to get the desired results. This paper describes steps to ensure the successful implementation of substation automation.

  19. High voltage electric substation performance in earthquakes

    SciTech Connect

    Eidinger, J.; Ostrom, D.; Matsuda, E.

    1995-12-31

    This paper examines the performance of several types of high voltage substation equipment in past earthquakes. Damage data is provided in chart form. This data is then developed into a tool for estimating the performance of a substation subjected to an earthquake. First, suggests are made about the development of equipment class fragility curves that represent the expected earthquake performance of different voltages and types of equipment. Second, suggestions are made about how damage to individual pieces of equipment at a substation likely affects the post-earthquake performance of the substation as a whole. Finally, estimates are provided as to how quickly a substation, at various levels of damage, can be restored to operational service after the earthquake.

  20. Guidelines for the life extension of substations. Final report

    SciTech Connect

    Conroy, M.W.; Conidi, J.; Moore, H.; Osborn, S.H. Jr.; Armstrong, G.W.

    1995-04-01

    A structured life extension program can help utilities make equipment replacement/refurbishment decisions that ensure safe, reliable, cost-effective operation of transmission substation equipment. These guidelines support current utility practices and industry standards while forming a basis for establishing a maintenance and condition assessment program. These guidelines incorporate the experience of utility, consulting, and equipment engineers to offer a cross section of utility practices for extending the life of substation equipment. Equipment covered in the guidelines include power transformers, circuit breakers switches, relay and control systems, bus and structures, dc systems, grounding systems, surge arresters, control cables, and bushings. The guidelines provide generic approaches to maintenance of substation equipment and systems, condition assessment of major equipment, and decision making regarding refurbishment/replacement options. Incorporated in the guidelines are discussions of such areas as the type of maintenance applied to subject equipment, routine maintenance and inspection procedures, common tests performed as part of a condition assessment program reasons for tests and use of test results, factors to be considered when deciding on replacement/refurbishment, and costs associated with the process.

  1. Earth resistivity measurement near substation ground grids

    SciTech Connect

    Lodwig, S.G.; Mateja, S.A.

    1996-11-01

    Proper substation grounding grid design requires good, accurate soil resistivity measurements. This data is essential to model the substation ground grid to design a safe ground grid with a satisfactory ground grid resistance at minimum cost. For substations with several decades of service, there is some concern that a grid may have deteriorated, been damaged during equipment installation or excavation, or that initial soil resistivity measurements were lost or may not have been correctly performed. Ground grid conductors change the substation surface voltage distribution. Any voltage measurements taken at the complete substation will also vary from the tests made without conductors present. During testing, current was injected in the soil by probes placed near the ground grid. The current tends to follow the ground grid conductors since copper is a far better conductor than the soil it is placed in. Resistance readings near grids will be lower than readings in undisturbed soil. Since computer models were unavailable for many years, analyzing the effect of the grid conductors on soil resistivity measurements was very difficult. As a result, soil resistivity measurements made close to substations were of little use to the engineer unless some means of correcting the measured values could be developed. This paper will present results of soil resistivity measurements near a substation ground grid before and after a ground grid has been installed and describes a means of calculating the undisturbed soil model.

  2. Proceedings: Substation equipment diagnostics conference 6

    SciTech Connect

    Traub, T.P.

    1998-09-01

    Substation Equipment Diagnostics Conference 6 was held to assemble, assess and communicate information on the latest diagnostic techniques, test devices, and systems for substation equipment. It focused on the latest in diagnostic equipment and techniques being developed by EPRI and others in research programs, as well as the equipment and programs now available and in service by electric utilities. The conference brought together the views of researchers, manufacturers and users. The papers presented were organized under three categories: Transformers, Circuit Breakers and Other Substation Equipment, and Communications/Data Management/System Integration. Exhibit booths were provided for attendees to obtain detailed information about vendor products or services.

  3. Safe substation grounding. Part II

    SciTech Connect

    Sverak, J.A.; Benson, R.V.; Dick, W.K.; Dodds, T.H.; Garret, D.C.; Idzkowski, J.E.; Keil, R.P.; Patel, S.A.

    1982-10-01

    Once the safe voltage limits for step and touch are determined, the design of a grounding system can be initiated. The criteria for determining these limits were already defined in Part I. This paper sets forth the fundamental aspects of a grounding design which are common to all substations and shows the differences between conventional and gas-insulated equipment installations. Other topics include: Characteristics of a combined grid - rod system, a general formula and tables for sizing of conductors and joints and methods for calculation of a ground resistance. Potentials of GIS enclosures during fault conditions, properties of concrete-encased electrodes and the use of bentonite are also discussed. The presented material of Part II is a preliminary version of updated information, proposed to replace Sections 7 - 12 of IEEE Std. 80/1976. Paragraphs 6.3 and 6.4 complement Section 6 of Part I, presented in the first report (Paper 80 SM 652-8).

  4. Experimental adoption of RCM in EDF substations

    SciTech Connect

    Heroin, G.; Aupied, J.; Sanchis, G.

    1996-08-01

    EDF, after testing Reliability Centered Maintenance (RCM) on systems used in nuclear power plants, has now successfully extended RCM to all of its nuclear power plants. In the light of this experience, EDF has committed itself to a pilot study on a line bay of a 400 kV substation in 1992. The RCM method as applied benefited from EDF`s policy of maintenance, introduced five years ago on all substations, which has enhanced prospects of reliability. The original feature in the selection of maintenance tasks was that it brought into play two criteria for failure assessment - frequency and seriousness - and two criteria for maintenance task selection - efficiency and facility. The final outcome of RCM as applied to substation maintenance is to categorize maintenance tasks into: (1) essential maintenance tasks, (2) optional tasks, depending on the type and location of the substation, as well as on factors relating to local management of maintenance policy, and (3) unnecessary tasks.

  5. Gas insulated substation equipment for industrial applications

    SciTech Connect

    Kenedy, J.J.

    1984-11-01

    Until recently the only available method for construction of high voltage systems was to use exposed air insulated equipment supported on porcelain columns. The past decade has witnessed the introduction and wide acceptance of compressed gas insulated equipment as a viable alternative to the conventional substation system. The characteristics of gas insulated substations (GIS) and their application for industrial use at service voltages at 69 kV and above are discussed.

  6. Scoping study: Substation design workstation. Final report

    SciTech Connect

    Mauser, S.F.; Conroy, M.W.; Singh, N.M.

    1993-03-01

    This project conducted a survey, consisting of a written questionaire, a workshop, and site visits to determine what facets of substation engineering would benefit from incorporation into a workstation environment. Based on the needs expressed by the respondents, a program for the staged development of a Substation Workstation is recommended. Six analytical function modules for assisting in substation engineering were identified for potential inclusion in the workstation: Initial Planning Activities; Physical Plant Design; Analytical Functions; Civil/Structural Design; Environmental Design; and Project Management. The initial release of the Substation Workstation is recommended to include the workstation environment (including MENTOR -- a concept for on-line help, tutorials, notepad, a minor spreadsheet, and interfaces to other regular desktop functions) and portions of the first three functional modules listed above. Recommendations for progress beyond this first release of the workstation included the development of additional capabilities within the initial functional modules, as well as the development of the remaining modules. An overlap exists between the analytical requirements for this workstation and those already included in the EPRI TLWorkstation and the ICWorkstation. In some cases, elements of these other workstations are also suggested for incorporation into the Substation Workstation (such as the foundation analyses from the TLWorkstation), and in others, an assimilation of the other workstation into the Substation Workstation is recommended (as with the ICWorkstation). Estimated resources for implementing the recommended program, including both costs and development time, are also provided.

  7. EIS-0421: Big Eddy-Knight Transmission Line

    Energy.gov [DOE]

    BPA is proposing to build a new 500 kilovolt (kV) transmission line in Wasco County, Oregon and Klickitat County, Washington and a new substation in Klickitat County. The new BPA transmission line...

  8. Planning substation capacity under the single-contingency scenario

    SciTech Connect

    Leung, L.C.; Khator, S.K.; Schnepp, J.C.

    1995-08-01

    Florida Power and Light (FPL) adopts the single contingency emergency policy for its planning of substation capacity. This paper provides an approach to determine the maximum load which a substation can take on under such a policy. The approach consists of two LP models which determine: (1) the maximum substation load capacity, and (2) the reallocation of load when a substation`s demand cannot be met. Both models are formulated under the single-contingency scenario, an issue which had received little attention in the literature. Not only does the explicit treatment of the scenario provide an exact measure of a substation`s load limit, it also raises several important issues which previous works omit. These two models have been applied to the substation network of the Fort Myers District of the State of Florida.

  9. EIS-0285: Transmission System Vegetation Management Program

    Energy.gov [DOE]

    Bonneville Power Administration (Bonneville) is responsible for maintaining a network of 24,000 kilometers (km) or 15,000 miles (mi.) of electric transmission lines and 350 substations. This...

  10. Environment and protection of a gas-insulated substation

    SciTech Connect

    Koepfinger, J.L.; Lauth, W.C.

    1980-01-01

    Unlike a conventional open-air designed substation, the environment of a gas-insulated substation (GIS) is under the control of the designer and operator. This is a feature that can be utilized by the protection engineer to develop a protective scheme for the substation. A discussion is provided to develop a fault anticipation protection scheme.

  11. Utility programs for substation diagnostics development

    SciTech Connect

    1996-03-01

    This article is a brief overview of the opening remarks of the utility panel. These remarks developed a number of interesting substation diagnostic activities and concepts in which the electric utilities are engaged and outlined the considerations which must accompany development of diagnostic sensors and systems. These area include transformer diagnostics, circuit breaker diagnostics, and testing/cost of diagnostic systems.

  12. Gas-insulated substations: Technology and practice

    SciTech Connect

    Boggs, S.A.; Chu, F.Y.; Fujimoto, N.

    1985-01-01

    This book presents papers summarizing design, use, application, and operation of gas-insulated substations. Subjects covered include economics of GIS, specification of GIS, design, site testing, design and type testing, diagnostics, experience, maintenance, medium high voltage GIS, and new concepts and future trends.

  13. HEMP-induced transients in electric power substations. Final report

    SciTech Connect

    Wiggins, C.M.; Thomas, D.E.; Salas, T.M.

    1992-02-01

    A nuclear detonation in or above the earth`s atmosphere produces an intense electromagnetic pulse (EMP). A large portion of the EMP electromagnetic energy is within the RF spectrum. A detonation at high altitudes above 40 km produces an EMP called high-altitude EMP (HEMP). HEMP is a steep-front short duration transient with a rise time on the order of a few nanoseconds which decays to near zero in less than a microsecond. A single high-altitude burst can subject much of the continental United States to intense HEMP electric fields on the order of tens of kilovolts per meter. The intense transient HEMP will induce fast transients in high-voltage transmission lines and bus structures, instrumentation cables, and control wires in power transmission and distribution (T & D) substations. A system of traveling wave coupling models for a 500 kV substation, including models for the high voltage primary bus, components (circuit breakers, disconnect switches, power transformers, and current and voltage instrument transformers), low voltage control wiring circuits, and a number of conducted and radiated interference coupling modes, had been developed earlier by EPRI. These EPRI served as the baseline for the present HEMP coupling investigations. The HEMP effects on protective relays were assessed for a nominal HEMP environment using several new field coupling models merged with the switching transient data. It is found that a representative solid state relay is unlikely to be damaged or to misoperate by the nominal HEMP threat with a peak field strength of 50 kV/m. However, it is possible for both DC control wires to flash over to ground simultaneously, causing fuses to blow and placing the relay in an inoperative state.

  14. HEMP-induced transients in electric power substations

    SciTech Connect

    Wiggins, C.M.; Thomas, D.E.; Salas, T.M. )

    1992-02-01

    A nuclear detonation in or above the earth's atmosphere produces an intense electromagnetic pulse (EMP). A large portion of the EMP electromagnetic energy is within the RF spectrum. A detonation at high altitudes above 40 km produces an EMP called high-altitude EMP (HEMP). HEMP is a steep-front short duration transient with a rise time on the order of a few nanoseconds which decays to near zero in less than a microsecond. A single high-altitude burst can subject much of the continental United States to intense HEMP electric fields on the order of tens of kilovolts per meter. The intense transient HEMP will induce fast transients in high-voltage transmission lines and bus structures, instrumentation cables, and control wires in power transmission and distribution (T D) substations. A system of traveling wave coupling models for a 500 kV substation, including models for the high voltage primary bus, components (circuit breakers, disconnect switches, power transformers, and current and voltage instrument transformers), low voltage control wiring circuits, and a number of conducted and radiated interference coupling modes, had been developed earlier by EPRI. These EPRI served as the baseline for the present HEMP coupling investigations. The HEMP effects on protective relays were assessed for a nominal HEMP environment using several new field coupling models merged with the switching transient data. It is found that a representative solid state relay is unlikely to be damaged or to misoperate by the nominal HEMP threat with a peak field strength of 50 kV/m. However, it is possible for both DC control wires to flash over to ground simultaneously, causing fuses to blow and placing the relay in an inoperative state.

  15. EA-1671: Big River Substation to Poston Substation 69-Kilovolt Transmission Line Project, Arizona and California

    Energy.gov [DOE]

    The Department of the Interior’s Bureau of Indian Affairs considered preparing this EA, with DOE’s Western Area Power Administration as a cooperating agency. This project has been canceled.

  16. EIS-0159: Record of Decision

    Office of Energy Efficiency and Renewable Energy (EERE)

    Flatiron-Erie 115-kilovolt Transmission Line Project, Larimer County, Boulder County, Weld County, Colorado

  17. Quality Assurance Plan for site electrical replacements at substation line item subproject: 69 KV Substation

    SciTech Connect

    Ohler, C.K.

    1991-05-21

    The 69 KV Substation Project is based on the recognized need to provide a continuous, reliable source of power and to improve the firm capacity of the electrical service to all production facilities at Mound. The project consists of the following major element: 69 KV Substation: (1) Install a 69 KV Substation and associated equipment with two parallel 18 MVA transformers. (2) Install duct bank as required and provide 15 KV feeder cable from new substation to existing Substation 95 for connection to Mound`s existing primary distribution system. (3) Install duct bank for underground routing of the 15 KV feeder cable from Manhole 5C to the existing power house cable pit. (4) Reconfigure existing Dayton Power and Light Co. 15 KV switchgear in P Building. The purpose of this Quality Assurance Plan (QA Plan) is to assure that the objectives of the United States Department of Energy (D.O.E.) and EG&G Mound Applied Technologies, Miamisburg, Ohio (Mound) are met for this non-weapons project relative to health and safety, protection of the environment, reliability and continuity of operations, and documentation of quality efforts. This QA Plan identifies the activities and responsibilities which are necessary in the design, procurement, fabrication, installation, and start up of this project in order to meet these objectives.

  18. Surge propagation in gas insulated substation

    SciTech Connect

    Matsumura, S.; Nitta, T.

    1981-06-01

    Surge propagation performance in a 550 kV gas insulated substation is studied experimentally and by computer simulation using the Electro-Magnetic Transients Program. Extra capacitance added to the system by the components of GIS such as potential devices, branch buses, circuit breakers deform the wave shape of the travelling surges. A simple modeling technique to represent GIS in surge analysis is proposed and its applicability is proved. Paper No. 80 SM 658-5.

  19. Substation distribution transformers failures and spares

    SciTech Connect

    Kogan, V.I. Roeger, C.J.; Tipton, D.E.

    1996-11-01

    Electric utilities should have a sufficient number of spare transformers to backup substation distribution transformers to replace transformers that fail and require factory rebuild or replacement. To identify such a number, the statistical methodology was developed to analyze available failure data for different groups of transformer. That methodology enables the estimation of future numbers of failures with associated probabilities, recommends the proper number of spares, identifies the necessity and shows the means to shorten the transformer`s replacement time.

  20. Modeling and Simulating Blast Effects on Electric Substations

    SciTech Connect

    Lyle G. Roybal; Robert F. Jeffers; Kent E. McGillivary; Tony D. Paul; Ryan Jacobson

    2009-05-01

    A software simulation tool was developed at the Idaho National Laboratory to estimate the fragility of electric substation components subject to an explosive blast. Damage caused by explosively driven fragments on a generic electric substation was estimated by using a ray-tracing technique to track and tabulate fragment impacts and penetrations of substation components. This technique is based on methods used for assessing vulnerability of military aircraft and ground vehicles to explosive blasts. An open-source rendering and ray-trace engine was used for geometric modeling and interactions between fragments and substation components. Semi-empirical material interactions models were used to calculate blast parameters and simulate high-velocity material interactions between explosively driven fragments and substation components. Finally, a Monte Carlo simulation was added to model the random nature of fragment generation allowing a skilled analyst to predict failure probabilities of substation components.

  1. Knowledge engineering tool for training power-substation operators

    SciTech Connect

    Lambert-Torres, G. |; Costa, C.I.A.; Alves da Silva, A.P.; Ribeiro, G.M.; Quintana, V.H.

    1997-04-01

    Artificial intelligence techniques have been applied to create systems that can give answers for different situations and assistance during the substation switching operation. These techniques have also been used for training purposes. This paper presents a computational package for training power substation operators in the control and corrective actions using expert system techniques. Illustrative examples are presented using a 138-kV CEMIG substation.

  2. Design-Build Contract Awarded for Electrical Substation at Los...

    National Nuclear Security Administration (NNSA)

    Design-Build Contract Awarded for Electrical Substation at Los Alamos National Laboratory ... Laboratory (LANL) to Gardner Zemke Mechanical and Electrical Contractors of Albuquerque. ...

  3. EA-2013: Herbicide Application at Three Substations; Imperial...

    Office of Environmental Management (EM)

    Imperial County (California), Maricopa and Yuma Counties (Arizona) EA-2013: Herbicide Application at Three Substations; Imperial County (California), Maricopa and Yuma ...

  4. EIS-0505: Vantage to Pomona Heights 230 kV Transmission Line...

    Energy Saver

    BPA's proposed action is to interconnect the proposed transmission line to an existing BPA substation. EIS-0505: Vantage to Pomona Heights 230 kV Transmission Line Project Public ...

  5. EA-1880: Big Bend to Witten Transmission Line Project, South...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    to construct, own, and operate an approximately 70-mile long 230-kV single-circuit transmission line that would connect a new switchyard with the existing Witten Substation. ...

  6. 351 Substation Demolition -- B Roll | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    351 Substation Demolition -- B Roll 351 Substation Demolition -- B Roll Addthis Description The U.S. Department of Energy (DOE) recently teamed with contractor Washington Closure Hanford to complete a major recycling effort during cleanup of the Hanford Site in southeastern Washington State.

  7. EIS-0451: Hooper Springs Transmission Project, Caribou County, Idaho

    Energy.gov [DOE]

    DOE’s Bonneville Power Administration (BPA) prepared an EIS that evaluates the potential environmental impacts of a proposed new 115-kilovolt (kV) transmission line from BPA's proposed Hooper Springs Substation near Soda Springs, Idaho, to either an existing Lower Valley Energy (LVE) substation or a proposed BPA connection with LVE's existing transmission system in northeastern Caribou County. Additional information is available at http://efw.bpa.gov/environmental_services/Document_Library/HooperSprings/.

  8. Grizzly Substation Fiber Optics : Environmental Assessment.

    SciTech Connect

    United States. Bonneville Power Administration.

    1998-02-01

    This notice announces BPA`s decision to construct, operate, and maintain the Grizzly Substation Fiber Optic Project (Project). This Project is part of a continuing effort by BPA to complete a regionwide upgrade of its existing telecommunications system. The US Forest Service and BPA jointly prepared the Grizzly Substation Fiber Optic Project Environmental Assessment (EA) (DOE/EA-1241) evaluating the potential environmental impacts of the Proposed Action, the Underground Installation Alternative, and the No Action Alternative. Based on the analysis in the EA, the US Forest Service and BPA have determined that the Proposed Action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an Environmental Impact Statement (EIS) is not required and BPA is issuing this FONSI. The US Forest Service has separately issued a FONSI and Decision Notice authorizing BPA to construct, operate, and maintain the Project within the Crooked River National Grassland (Grassland).

  9. EIS-0496: San Luis Transmission Project; Alameda, Merced, San Joaquin and Stanislaus Counties, California

    Energy.gov [DOE]

    Western Area Power Administration and the San Luis & Delta-Mendota Water Authority (Authority) as joint federal and state lead agencies, are preparing an EIS/Environmental Impact Report that assesses the potential environmental impacts of the proposed San Luis Transmission Project. Western proposes to construct, own, operate, and maintain a new 230-kilovolt transmission line between its Tracy and San Luis Substations and a new 70-kV transmission line between the San Luis and O'Neill Substations.

  10. APS team works smarter, cuts substation construction costs by 36%

    SciTech Connect

    Not Available

    1993-05-01

    An aggressive, cost-cutting, team of T D employees at Arizona Public Service Co (APS) is building a new distribution substation in Phoenix for less than half the original cost that APS planners had calculated for the project's land, labor and materials. Scheduled for service in June of this year, APS analysts had originally projected land, labor and materials costs for the 20-MVA Bell substation at nearly $1.7-million-not including major equipment such as transformers, circuit breakers, and switches. However, after studying the project, an empowered APS crew was able to slash 36% off the original estimate-more than $610,000. What's more, APS spokesmen say that its new approach to substation construction and design has given its engineers and construction crews a laundry list of additional ideas to try out on future substation ventures. 4 figs., 1 tab.

  11. Benefits of Using Mobile Transformers and Mobile Substations for Rapidly

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Restoring Electrical Service: a Report to the United States Congress Pursuant to Section 1816 of the Energy Policy Act of 2005 (August 2006) | Department of Energy Using Mobile Transformers and Mobile Substations for Rapidly Restoring Electrical Service: a Report to the United States Congress Pursuant to Section 1816 of the Energy Policy Act of 2005 (August 2006) Benefits of Using Mobile Transformers and Mobile Substations for Rapidly Restoring Electrical Service: a Report to the United

  12. PP&L experience with substation reliability centered maintenance

    SciTech Connect

    Santarelli, P.D.

    1996-08-01

    This paper is intended to present a summary of Pennsylvania Power & Light`s (PP&L) experience with substation Reliability Centered Maintenance (RCM). The purpose of this summary is to first explain the process used by PP&L to implement substation RCM, second to explain the differences that are apparent from the use of the classical RCM analysis as compared to the method used by PP&L, and third to provide several insights into the process.

  13. Variable Voltage Substation Electric Fire and Emergency Response |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Variable Voltage Substation Electric Fire and Emergency Response Variable Voltage Substation Electric Fire and Emergency Response Question from Participant: My question is from an emergency response perspective. It was stated that it took ~ ½ for electricians to de-energize the electrical components before firefighters were allowed in to fight the fire. This delay causes more damage to equipment and potential propagation of the fire. Is there not a "master"

  14. National SCADA Test Bed Substation Automation Evaluation Report

    SciTech Connect

    Kenneth Barnes; Briam Johnson

    2009-10-01

    Increased awareness of the potential for cyber attack has recently resulted in improved cyber security practices associated with the electrical power grid. However, the level of practical understanding and deployment of cyber security practices has not been evenly applied across all business sectors. Much of the focus has been centered on information technology business centers and control rooms. This report explores the current level of substation automation, communication, and cyber security protection deployed in electrical substations throughout existing utilities in the United States. This report documents the evaluation of substation automation implementation and associated vulnerabilities. This evaluation used research conducted by Newton-Evans Research Company for some of its observations and results. The Newton Evans Report aided in the determination of what is the state of substation automation in North American electric utilities. Idaho National Laboratory cyber security experts aided in the determination of what cyber vulnerabilities may pose a threat to electrical substations. This report includes cyber vulnerabilities as well as recommended mitigations. It also describes specific cyber issues found in typical substation automation configurations within the electric utility industry. The evaluation report was performed over a 5-month period starting in October 2008

  15. EIS-0008-S: Supplement, Dickey-Lincoln School Lakes Transmission Project, Maine, New Hampshire, and Vermont

    Energy.gov [DOE]

    The Bonneville Power Administration developed this SEIS to evaluate the environmental impacts of construction of a steel double-circuit 345-kilovolt transmission line from Moore Substation near Littleton, New Hampshire, to Comerford Substation near Monroe, New Hampshire and a 345-kilovolt wood pole transmission line from Comerford Substation to Webster Substation near Franklin, New Hampshire, as part of the Dickey-Lincoln School Lakes Transmission Project. The Final SEIS consists entirely of Section 9 (Consultation and Coordination), which incorporates public and agency comments on the Draft SEIS and responses to those comments, as well as all necessary errata and addenda to the Draft SEIS. This SEIS is a supplement to DOE/EIS-008, Dickey-Lincoln School Lakes Transmission Project.

  16. Integrated substation looks like one RTU to dispatchers

    SciTech Connect

    Koch, W.

    1995-12-01

    Traditionally, supervisory control and data acquisition systems (Scada) use a master/slave arrangement. The master Scada computer polls individual circuit devices for information, or the devices may report (by exception) to the computer. The substation engineering department of Portland General Electric Co (PCE) is now pioneering a new arrangement in which all devices in a substation communicate with each other and a local computer over a data bus. A single communications line connects the Scada master to the same bus for control and/or monitoring. The new approach is known as a substation integration system (SIS). Thus, for a lower initial cost, substation integration: eliminates the need for redundant equipment - such as panel meters, annunciators, transducers, sequence-of-event recorders, auxiliary tripping relays. Scada RTU, control, and transfer switches; reduces control house size by 25% by reducing wiring and using panel space more efficiently; provides a standardized user interface for easy data access, both locally and remotely; is flexible and expandable because of its modularity and use of non-proprietary hardware and software; improves operability, maintainability and reliability through immediate access to key data; and, reduces overall life-cycle costs by reducing travel and outage time through remote access to substation information. 5 figs.

  17. Transient performance of substation structures and associated grounding systems

    SciTech Connect

    Dawalibi, F.P.; Xiong, W.; Ma, J.

    1995-05-01

    When lightning strikes an electric substation, large currents generated by the stroke flow in the above ground structures and grounding system and dissipate in the soil. The electromagnetic fields generated by such high currents may cause damage to equipment and may be dangerous to personnel working nearby. In this paper, the frequency and time domain performance of a substation subjected to a lightning strike is described and discussed. The computed scalar potentials, electric fields, and magnetic fields are presented graphically as a function of spatial coordinates, as a function of time and as a function of both. Two cases are considered. The first case examines the substation grounding system only, while the second case includes an above-ground structure as well. It is believed that the results of the second case have not been published before. A double exponential lightning surge current is injected at one corner of the substation. The response of the grounding system to the frequency domain electromagnetic spectrum of this signal is computed by a frequency domain electromagnetic field analysis software package. The temporal and spatial distributions of the electromagnetic fields inside and near the substation are obtained by an inverse Fourier transformation of all these responses. The presence of a soil with an arbitrary resistivity and permittivity is accurately taken into account. The analysis sheds some new light on the understanding of the effects which take place at the higher frequencies.

  18. Weld-Windsor 115-kV Transmission Line Project, Weld County, Colorado

    SciTech Connect

    1996-05-01

    The Western Area Power Administration is proposing to rebuild a 3.0 mile segment of the existing Flatiron-Weld 115-kV transmission line in Weld County. The line would be reconductored with new conductor on new wood pole double circuit structures. The new structures would support a double circuit transmission line configuration. The first circuit would be owned by Western and the second by Public Service Company of Colorado (PSCO). Alternatives considered included no action, constructing PSCO`s circuit on new right-of-way, and reconductoring Western`s existing line on the same structures. The proposed action was selected because it provided an opportunity to share structures with PSCO and, overall, would minimize costs and environmental impacts. The environmental assessment identifies minor effects on existing natural or human resources and minor benefits for agricultural operations.

  19. Induced transients in substation cables: Measurements and models

    SciTech Connect

    Thomas, D.E.; Wiggins, C.M.; Salas, T.M.; Nickel, F.S. ); Wright, S.E. )

    1994-10-01

    An extensive set of switching transient EMI response measurements on several types of substation cables and internal cable wires in described in this paper. Measured and predicted cable/wire current and voltage transients at both air-insulated substations (AIS) and gas-insulated substations (GIS) are presented, for system voltages ranging from 115 kV to 500 kV.. The maximum peak-to-peak amplitudes of measured wire transients are found to vary from around 1 A to almost 20 A (current in amperes), and from 0.3 kV to almost 7 kV (voltage in kilovolts). Predictive models for field-driven coupling, as well as for direct-driven coupling via current transformers or capacitively-coupled voltage transformers (CT's/CCVT's), are presented. Model predictions are compared to and validated against measured wire transients.

  20. Prototypes for gas insulated substation infrared monitoring. Final report

    SciTech Connect

    Crall, R.F.

    1995-01-01

    Gas insulated substations (GIS) are very reliable; but when a short circuit occurs, finding the fault so that equipment can be repaired can take a long time. Infrared (IR) fault location techniques offer some promise to enable faster fault location in the future. It can be very time consuming to locate a short circuit inside a gas insulated bus segment of a gas insulated substation. Special testing may be required, and holes may have to be cut in order to locate the fault so that repair can be initiated. This process is not only expensive but can also lead to damage of unfaulted parts and contamination of the system, which can degrade its reliability. Fast and simple identification of the fault location is highly desirable for reliable operation of the substation. Earlier work had indicated that IR techniques could meet functional requirements and might be cost effective for this application.

  1. The role of the digital fault recorder in the automated substation

    SciTech Connect

    Brandt, J.D.

    1996-10-01

    This paper addresses the role of the digital fault recorder in the automated substation. The topics of the paper include distributed architecture, the substation LAN and reduced installation costs, multiple functions, improved substation intelligence, record generation and record merging, fault summaries, master station software, and future considerations.

  2. Present and future substation control for the National Grid Company

    SciTech Connect

    Martin, J.

    1994-12-31

    The National Grid Company, like many European power utilities, is faced with rapidly increasing commercial pressures. It is therefore vitally important that the introduction of new technology is cost justified and shown to provide economic support to the business and operational objectives. Privatisation of the electricity supply industry has forced a complete review of substation operational management leading to large scale application of remote operation. Using modem technology it rapidly becomes cost effective to introduce replacement rather than enhance existing installations. The paper outlines the present arrangements for substation control, and taking into account new European laws for procurement, illustrates how NGC is proceeding with refurbishment using integrated technology.

  3. EIS-0124: Conrad-Shelby Transmission Line Project, Montana

    Energy.gov [DOE]

    The U.S. Department of Energy's Western Area Power Administration developed this statement to assess the environmental impact of adding a 230 kV transmission line between Conrad and Shelby, Montana and a new substation near Shelby to update the stressed electrical transmission system.

  4. Reliability centered maintenance (RCM) for substations project overview

    SciTech Connect

    Lyons, P.F.

    1996-08-01

    An EPRI Tailored Collaboration project establishing guidelines and tools for implementing Reliability Centered Maintenance (RCM) in substations is nearing completion and final results are being presented at this Substation RCM Conference. The ultimate goal of this RCM project is to help utilities slash substation operations and maintenance costs by optimizing equipment maintenance intervals. Preventive maintenance (PM) programs typically have been developed on a component-by-component basis, relying heavily on equipment vendors` maintenance recommendations. RCM is a logical alternative to traditional PM programs. It is intelligent, common sense maintenance that is function-based rather than component-based. First developed by the airline industry in the 1960s and further developed and applied to the nuclear industry by EPRI in the 1980s, RCM ranks the importance of each function of a system, calculates the impact the loss of the function would have on the overall system, and drives the design of appropriate maintenance tasks for each function. The nuclear industry reaped savings of at least 25% by adopting RCM, and one utility that tried this approach for substation maintenance reported savings of 13% in one year.

  5. Radio interference and transient field from gas-insulated substations

    SciTech Connect

    Harvey, S.M.; Wong, P.S.; Balma, P.M.

    1995-01-01

    Gas-insulated substations (GIS), owing to their compact nature, offer an attractive alternative to conventional substations in areas where space is limited, such as in urban areas. Consequently, it is important to address the issue of environmental conditions within the substation and in the surrounding areas. This paper reports the result of radio interference (RI) and transient field measurements at two GIS in Ontario, Canada. For comparison with RI levels taken at the GIS, RI levels outside two hospitals in the Toronto area were also measured. The transient field study covers electromagnetic interference (EMI) levels generated during switching operations, and includes measurements inside and outside the GIS. Measurements show that RI levels from the GIS were either below background levels, or contributed little to the background. RI levels outside the GIS and the hospitals were similar. Peak transient field values up to 580 V/m were measured inside the station building, and dropped to background values of 10 V/m at about 120 m from the station. The transient field (E) dropped off at a rate of 3/2 power with distance (d) from the air-insulated 115 kV bus, i.e. E {proportional_to} d{sup {minus}1.5}.

  6. Substation based data interpretation techniques for improved power system management

    SciTech Connect

    Booth, C.; McDonald, J.R.; Laycock, W.J.

    1997-04-01

    There is now considerable pressure on electric utilities to operate their systems in the most efficient manner possible and to provide increased quality of service to customers. This pressure, coupled with the decreasing availability of reserve margins dictates that there is a requirement for comprehensive system operation support through, among other things, the provision of quality information relating to the behavior of the primary and secondary systems. This paper will show how the data available within modern substation control and management systems can be exploited in a cost-effective manner, through the implementation of advanced substation functions in an open systems environment. Certain functions which are presently carried out at the control center could be distributed (or partially distributed) to the substation. These functions may provide the utility staff with quality information, which can in turn be used to satisfy the objectives of increasing quality and security of supply, in addition to optimizing the utility`s information, maintenance and asset management functions.

  7. EIS-0114: Fall River/Lower Valley Transmission System Reinforcement

    Energy.gov [DOE]

    The Bonneville Power Administration developed this EIS to explore reinforcing the electrical transmission system in southeastern Idaho by adding a 161-kilovolt partly single- and double-circuit line from the Goshen to Drummond Substations in order to maintain reliable electric service in the area.

  8. EIS-0090: Fort Peck-Havre Transmission Line Project, Montana

    Energy.gov [DOE]

    The U.S. Department of Energy’s Western Area Power Administration prepared this statement to assess the potential environmental and socioeconomic implications of its proposed action to construct and operate a 230kV transmission line from Fort Peck to Havre, Montana, with three intermediate interconnecting substations.

  9. EIS-0134: Charlie Creek-Belfield Transmission Line Project, North Dakota

    Energy.gov [DOE]

    The Western Area Power Administration developed this EIS to assess the environmental impact of constructing a high voltage transmission line between Charlie Creek and Belfield, North Dakota, and a new substation near Belfield to as a means of adding transmission capacity to the area.

  10. Power-installed streetlight foundations lower substation construction costs

    SciTech Connect

    Beason, D.

    1981-07-01

    The Alabama Power Company's power-installed streetlight foundation (SLF) saves 85% of labor costs and is practical as well as economical. After several foundation designs were tried, the multi-helix proved best for swampy terrain. A test of substation structure support began with soil testing to locate any rock on the site. Standard tubular-steel structures with modified baseplates were used. A truck-mounted derrick proved better for installation than a drill rig. Slight corrosive currents are not expected to cause appreciable deterioration to the foundation. (DCK)

  11. EIS-0478: Antelope Valley Station to Neset Transmission Project, Mercer, Dunn, Billings, Williams, McKenzie, and Mountrail Counties, North Dakota

    Energy.gov [DOE]

    USDA Rural Utilities Service prepared an EIS that evaluates the potential environmental impacts of constructing, operating, and maintaining a proposed transmission line and associated facilities in western North Dakota. DOE’s Western Area Power Administration, a cooperating agency, would modify its existing Williston Substation to allow a connection of the proposed new transmission line to Western’s transmission system.

  12. EA-1948: Gila-North Gila Transmission Line Rebuild and Upgrade Project, Yuma County, Arizona

    Energy.gov [DOE]

    DOE’s Western Area Power Administration (Western) prepared this EA to analyze the potential environmental impacts of a proposal to rebuild and upgrade two parallel 4.8-mile transmission lines between the Gila and North Gila Substations and take actions in support of portions of Arizona Public Service’s construction of a new, 12.8 mile 230-kV transmission line between North Gila and a proposed substation in Yuma County, Arizona. The U.S. Bureau of Reclamation and U.S. Army Corps of Engineers are cooperating agencies.

  13. Use of Static Compensators for Voltage Control at 330- and 500-kV Substations

    SciTech Connect

    Dement'ev, Yu. A.; Kochkin, V. I.; Idiatullov, R. M.; Papafanasopulo, S. G.; Smirnov, A. A.; Smirnov, S. G.

    2003-05-15

    A scheme for compensating the reactive power and controlling the voltage of high-voltage, intermediate-voltage, and low-voltage buses of 330 - 500-kV substations, which consist of static thyristor compensators (STC) on low-voltage autotransformers and controlled shunting reactors on high-voltage lines, is presented. It is shown that the STC can be created step-by-step beginning with the reactive part on substations with low-loaded lines. Results of installation of reactor groups of STC stepwise-controlled by vacuum switches at 330- and 500-kV substations are presented. Tests of the reactor groups have proved their high efficiency.

  14. Workshop on user experience with gas-insulated substations

    SciTech Connect

    Graybill, H.W.

    1981-12-01

    There is widespread interest among American and Canadian utilities in the interchange of operating and maintenance experience with gas-insulated substations (GIS). Those utilities who do not yet have GIS on their systems are likewise interested in the operating experience of those who do. A two-day workshop on GIS was held in Portland, Oregon, on July 30 and 31, 1981. The first day of the workshop was open to users only, and the agenda for the day consisted of user presentations on the following subjects: GIS station design and layout; specification and acquisition of GIS equipment; installation and commissioning; and operation and maintenance. On the second day, manufacturers were invited to present their experience, status, and progress in recent developments and improvements. The session was concluded with a general discussion of experience, problems, etc. No formal written papers were presented. The highlights of each verbal presentation and of ensuing discussion are presented in this report.

  15. EA-1951: Midway-Moxee Rebuild and Midway-Grandview Upgrade Transmission Line; Benton and Yakima Counties, Washington

    Energy.gov [DOE]

    Bonneville Power Administration is preparing an EA to assess the potential environmental impacts of the proposed rebuilding of the existing 34-mile Midway-Moxee transmission line and the proposed rebuilding and upgrading of the existing 26-mile Midway-Grandview transmission line. Both 115-kV lines originate at the BPA Midway Substation in Benton County and terminate in Yakima County.

  16. EA-1951: Midway-Moxee Rebuild and Midway-Grandview Upgrade Transmission Line Project; Benton and Yakima Counties, Washington

    Energy.gov [DOE]

    Bonneville Power Administration is preparing an EA to assess the potential environmental impacts of the proposed rebuilding of the existing 34-mile Midway-Moxee transmission line and the proposed rebuilding and upgrading of the existing 26-mile Midway-Grandview transmission line. Both 115-kV lines originate at the BPA Midway Substation in Benton County and terminate in Yakima County.

  17. EIS-0505: Vantage to Pomona Heights 230 kV Transmission Line Project; Yakima, Grant, Benton, and Kittitas Counties, Washington

    Energy.gov [DOE]

    The Bureau of Land Management is preparing, with DOE’s Bonneville Power Administration (BPA) as a cooperating agency, an EIS that evaluates the potential environmental impacts of a proposal to construct a 230-kV transmission line in Washington State. BPA’s proposed action is to interconnect the proposed transmission line to an existing BPA substation.

  18. Power frequency electric and magnetic fields from a 230 kV gas-insulated substation

    SciTech Connect

    Wong, P.S.; Rind, T.M. ); Harvey, S.M.; Scheer, R.R. . Research Div.)

    1994-07-01

    Gas-insulated substations (GIS), owing to their compact nature, offer an attractive alternative to conventional substations where space is limited, such as in urban areas. Consequently, it is important to address the issue of environmental conditions in and around the GIS. This paper presents the results of a survey of power-frequency electric and magnetic fields in and around a 230 kV/28 kV GIS. The survey was designed to cover the electric and magnetic fields from the substation equipment and from the power lines and cables surrounding the substation. It also includes a determination of the shielding effect of the GIS bus sheath. The information provided should allow the prediction of electric and magnetic field levels from other GIS of similar design.

  19. A simple approach to improve lightning performance of an uprated substation

    SciTech Connect

    Harrington, R.J.; Mueen, M.

    1996-07-01

    This paper presents a simple method to minimize lightning surges entering an uprated or compact substation. A severe lightning stress is caused by a backflashover in close proximity to the substation. Feasibility of uprating is based on the surge arrester technology available at present. However, some aspects of line design offer opportunities in reducing frequency and severity of lightning surges imposed on the substation. The tower surge response adds an inductive overshoot only during the front of the stroke which reduces considerably during the tail. If backflashover does not occur before reflections from adjacent towers arrive, it is unlikely to occur at all. Use of guys and underbuilt ground wires in the limiting distance will produce reflections with larger magnitude and reduce the effective surge impedance of the tower. This would not only reduce backflashover frequency but will also minimize crest and duration of surges entering the substation.

  20. Schultz-Hanford Area Transmission Line Project Draft Environmental Impact Statement

    SciTech Connect

    N /A

    2002-02-08

    This summary covers the major points of the Draft Environmental Impact Statement (EIS) prepared for the BPA Schultz-Hanford Transmission Project proposed by the Bonneville Power Administration (BPA). The project involves constructing a new 500-kilovolt (kV) line in central Washington, north of Hanford. The new line would connect to an existing line at the Schultz Substation near Ellensburg and to a new or existing substation in the Hanford area (see Map 2 in EIS). The project may also involve constructing a new substation to accommodate the new transmission line. As a federal agency, BPA is required by the National Environmental Policy Act (NEPA) to take into account potential environmental consequences of its proposal and take action to protect, restore, and enhance the environment during and after construction. Preparation of this EIS assists in meeting those requirements.

  1. Electrical substation service-area estimation using Cellular Automata: An initial report

    SciTech Connect

    Fenwick, J.W.; Dowell, L.J.

    1998-07-01

    The service areas for electric power substations can be estimated using a Cellular Automata (CA) model. The CA model is a discrete, iterative process whereby substations acquire service area by claiming neighboring cells. The service area expands from a substation until a neighboring substation service area is met or the substation`s total capacity or other constraints are reached. The CA-model output is dependent on the rule set that defines cell interactions. The rule set is based on a hierarchy of quantitative metrics that represent real-world factors such as land use and population density. Together, the metrics determine the rate of cell acquisition and the upper bound for service area size. Assessing the CA-model accuracy requires comparisons to actual service areas. These actual service areas can be extracted from distribution maps. Quantitative assessment of the CA-model accuracy can be accomplished by a number of methods. Some are as simple as finding the percentage of cells predicted correctly, while others assess a penalty based on the distance from an incorrectly predicted cell to its correct service area. This is an initial report of a work in progress.

  2. EIS-0100: Liberty-Coolidge 230-kV Transmission Line, Arizona

    Energy.gov [DOE]

    The U.S. Department of Energy’s Western Area Power Administration prepared this statement to assess the potential environmental and socioeconomic implications of various alternatives associated with an upgrade of electrical transmission capability between the Liberty and Coolidge Substations.

  3. EIS-0107: Mead-Phoenix +500-kV Direct Current Transmission Line

    Energy.gov [DOE]

    The U.S. Department of Energy’s Western Area Power Administration (WAPA) prepared this statement to analyze the potential environmental and socioeconomic impacts arising from WAPA and regional project sponsors’ proposal to construct a 500 kilovolt (kV) alternating current (AC) transmission line with the capability to be upgraded later to 500kV direct current (DC), connecting the Westwing Substation, located north of Phoenix, Arizona, with a new McCullough II Substation, located approximately 14 miles west of Boulder City, Nevada. This statement modifies a previously prepared federal statement from which the participants' election to proceed had not occurred at the time this statement was prepared.

  4. Lessons learned from substation predictive maintenance project, TC project {number_sign}7014. Final report

    SciTech Connect

    Geisecke, J.; Spencer, G.; Richardson, F.

    1998-12-01

    The EPRI Maintenance and Diagnostics Center, through a tailored collaboration effort with 10 utilities, developed a Substation Predictive Maintenance Program (SPDM). The objective of the program was to reduce Operation and Maintenance (O and M) costs by applying predictive/condition based maintenance practices to energized substation equipment. This report presents a summary of the project including: how new and existing diagnostic technologies and equipment were evaluated and utilized; how information was gathered in program cost justification and savings and specific work procedures and program administrative aids for a SPDM process. The program was effective in implementing a preventive or condition based maintenance process for participating utilities--enhancing the prioritization or work, redirecting maintenance activity and reducing costs. This document can serve as an implementation guide with lessons learned for substation predictive maintenance processes or to compare and contrast programs currently in place.

  5. EA-1982: Parker-Davis Transmission System Routine Operation and Maintenance Project and Proposed Integrated Vegetation Management Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Western Area Power Administration prepared an EA that assesses potential environmental impacts of the proposed continuation of operation and maintenance activities and implementation of a vegetation management program on Western’s Parker-Davis Transmission System in Arizona, California, and Nevada. These actions would occur on existing transmission line and access road rights-of-way, and at substations and maintenance facilities associated with the transmission system.

  6. Substations reliability-centered maintenance and predictive maintenance - a strategic partnership

    SciTech Connect

    Colsher, R.J.; Abbott, P.D.; Matusheski, R.L.; Smith, S.B.

    1996-08-01

    A maintenance optimization study for substation components can be most effective when Reliability Centered Maintenance (RCM) Analysis is combined with a Predictive Maintenance (PDM) Assessment. If the two processes are performed concurrently, the benefit-to-cost ratios for each is increased. Also, the cost of implementing RCM recommendations for condition monitoring can be minimized, while maximizing their impact at the same time. This paper presents the essential elements of both the RCM and PDM processes, and describes how they work together in a substation environment as a comprehensive maintenance assessment tool. Descriptions of recent experiences are also included.

  7. EA-2013: Herbicide Application at Three Substations; Imperial County (California), Maricopa and Yuma Counties (Arizona)

    Energy.gov [DOE]

    Western Area Power Administration (Western) and the Bureau of Land Management (BLM) prepared an EA that analyzes the potential environmental impacts of Western’s proposed use of selected herbicides for the treatment of undesirable vegetation within three existing substations on lands administered by BLM.

  8. Gas-insulated substation reliability: present status and future trends. Final report

    SciTech Connect

    Boggs, S.A.; Chu, F.Y.; Mashikian, M.S.

    1986-02-01

    Gas-insulated substations (GIS) in the United States have not lived up to their original promise of high reliability. This comparison of US and overseas experience indicates that most US problems came from introducing the technology on high-voltage systems. As US experience with these systems grows, GIS reliability will increase.

  9. An in progress experience on seismic qualification of gas insulated substations

    SciTech Connect

    Bargigia, A. ); Salvetti, M.; Vallino, M. )

    1993-01-01

    The paper presents ENEL's approach for the seismic qualification of standardized GIS. Starting from experimental and analytical activities performed on standardized metal-enclosed primary distribution substations (170 kV), a methodology suitable also for lower (MV) and higher (EHV and UHV) voltage ranges has been defined, taking into account the site characteristics in terms of seismic severity and soil properties.

  10. Puget Sound Area Electric Reliability Plan : Supplemental Environmental Analysis, Schultz Substation.

    SciTech Connect

    United States. Bonneville Power Administration.

    1992-04-01

    This document describes the purpose, function, and the environmental consequences of the proposed Schultz substation near Ellensburg, Washington. The affected environment is described in detail, including aerial survey photographs. The impacts on vegetation, fish and wildlife, soils, and water resources are described. (GHH)

  11. Environmental Assessment of the Gering-Stegall 115-kV Transmission Line Consolidation Project, Scotts Bluff County, Nebraska

    SciTech Connect

    1995-05-01

    The Department of Energy (DOE), Western Area Power Administration (Western) proposes to consolidate segments of two transmission lines near the Gering Substation in Gering, Nebraska. The transmission lines are both located in Scotts Bluff County, Nebraska. The transmission lines are both located in Scotts Bluff County, Nebraska, within the city of Gering. Presently, there are three parallel 115-kilovolt (kV) transmission lines on separate rights-of-way (ROW) that terminate at the Gering Substation. The project would include dismantling the Archer-Gering wood-pole transmission line and rebuilding the remaining two lines on single-pole steel double circuit structures. The project would consolidate the Gering-Stegall North and Gering-Stegall South 115-kV transmission lines on to one ROW for a 1.33-mile segment between the Gering Substation and a point west of the Gering Landfill. All existing wood-pole H-frame structures would be removed, and the Gering-Stegall North and South ROWs abandoned. Western is responsible for the design, construction, operation, and maintenance of the line. Western prepared an environmental assessment (EA) that analyzed the potential environmental impacts of the proposed construction, operation, and maintenance of the 115-kV transmission line consolidation. Based on the analyses in the EA, the DOE finds that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act of 1969 (NEPA).

  12. Lightning overvoltage protection of the paddock 362-145 kV Gas-Insulated Substation

    SciTech Connect

    Elahi, H.; Sublich, M. ); Anderson, M.E.; Nelson, B.D. )

    1990-01-01

    Backflashovers close to the Paddiock 362-145 kV Gas-Insulated Substation (GIS) have been analyzed with the Electro-Magnetic Transient Program (EMTP) using a frequency dependent multi-conductor system. The severity of the lightning stroke currents were derived based on recent recordings in the eastern United States. Impacts of corona attenuation and distortion were accounted for using a shunt linear model approach. Turn-up effects of both line insulator flashover voltages and surge arrester protective characteristics were represented based on manufacturer's volt-time curves. Wave shaping effects of substation capacitances (ie., PT's transformers, CCPD's) were also modeled. Results show the importance of various modeling details in determining the overvoltages inside the GIS due to close backflashovers, which are caused by lightning strokes with varying intensity. These results are aimed at better evaluation of lightning protection requirements for GIS protected by metal-oxide surge arresters.

  13. Design-Build Contract Awarded for Electrical Substation at Los Alamos

    National Nuclear Security Administration (NNSA)

    National Laboratory | National Nuclear Security Administration | (NNSA) Design-Build Contract Awarded for Electrical Substation at Los Alamos National Laboratory April 27, 2016 LOS ALAMOS, NM - Under an interagency agreement with the Department of Energy's National Nuclear Security Administration (DOE/NNSA), the U.S. Army Corps of Engineers (USACE) has awarded a design-build contract at Los Alamos National Laboratory (LANL) to Gardner Zemke Mechanical and Electrical Contractors of

  14. McNary-John Day Transmission Line Project Draft Environmental Impact Statement

    SciTech Connect

    N /A

    2002-03-08

    Bonneville is proposing to construct, operate, and maintain a 79-mile-long 500-kilovolt-transmission line in Benton and Klickitat Counties, Washington, and Umatilla and Sherman counties, Oregon. The new line would start at Bonneville's McNary Substation in Oregon and would cross the Columbia River just north of the substation into Washington. The line would then proceed west for about 70 miles along the Columbia River. At the John Day Dam, the line would again cross the Columbia River into Oregon and terminate at Bonneville's John Day Substation. The new line would parallel existing transmission lines for the entire length; mostly within existing available right-of-way. Presently, the existing transmission lines in the area are operating at capacity. These lines help move power from the east side of the Cascades to the west side, where there is a high need for electricity (cities along the I-5 corridor). Because the Northwest has only recently recovered from a shortfall in electric energy supply and a volatile wholesale power market in which prices reached record highs, there are many new proposals for facilities to generate new power. Some of these facilities are in the vicinity of the McNary-John Day project; the proposed line would help insure that existing and newly generated power could move through the system. Bonneville is also considering the No Action Alternative and several short-line routing alternatives. The short routing alternatives include three half-mile-long routes for getting from the McNary Substation to the Columbia River crossing; three two-mile-long routes where the Hanford-John Day transmission line joins the existing corridor; two 1,000-foot-long routes at corridor mile 32; and two 500-foot-long routes at corridor mile 35.

  15. EIS-0365: Imperial-Mexicali 230-kV Transmission Lines

    Energy.gov [DOE]

    On February 27, 2001, Baja California Power, Inc. (hereafter referred to as Intergen), InterGen Aztec Energy, V.B.V., filed an application with DOE, Office of Fossil Energy, for a Presidential permit that would allow construction and connection of a double-circuit, 230-kV transmission line extending from the Imperial Valley Substation in California for a distance of about 6 mi (10 km) to a point west of Calexico at the U.S.-Mexico border.

  16. EIS-0379- Rebuild of the Libby (FEC) to Troy Section of BPA’s 115-kilovolt Transmission Line in Libby, Lincoln County, Montana

    Energy.gov [DOE]

    This Environmental Impact Statement (EIS) assesses the potential environmental impacts that would result from a proposed Department of Energy (DOE) action on the proposed rebuilding, operation, and maintenance of a 17-mile-long portion of BPA’s Libby to Bonners Ferry 115-kilovolt (kV) Transmission Line in Lincoln County, Montana. The portion to be rebuilt would start at Flathead Electric Cooperative’s (FEC) Libby Substation, in the town of Libby, Montana, and proceed west along an existing right-of-way for about 17 miles, terminating at BPA’s Troy Substation just east of the town of Troy, Montana.

  17. Final environmental impact statement, Washington Water Power/B.C. Hydro Transmission Interconnection Project

    SciTech Connect

    Not Available

    1992-10-01

    Washington Water Power (WWP) proposes to construct and operate an electric transmission line that would connect with the electrical system of the British Columbia Hydro and Power Authority (B.C. Hydro). The project would be composed of a double-circuit, 230-kilovolt (kV) transmission line from WWP`s existing Beacon Substation located northeast of Spokane, Washington to the international border located northwest of Metaline Falls, Washington. The original Presidential permit application and associated proposed route presented in the draft environmental impact statement (DEIS) have been modified to terminate at the Beacon Substation, instead of WWP`s initially proposed termination point at the planned Marshall Substation located southwest of Spokane. A supplemental draft EIS was prepared and submitted for review to not only examine the new proposed 5.6 miles of route, but to also compare the new Proposed Route to the other alternatives previously analyzed in the DEIS. This final EIS (FEIS) assesses the environmental effects of the proposed transmission line through construction, operation, maintenance, and abandonment activities and addresses the impacts associated with the Proposed Action, Eastern Alternative, Western Alternative, Northern Crossover Alternative, Southern Crossover Alternative, and No Action Alternative. The FEIS also contains the comments received and the responses to these comments submitted on the DEIS and Supplemental DEIS.

  18. Transmission Workshop

    Energy.gov [DOE]

    On November 1-2, 2012, the GTT presented a workshop on grid integration on the transmission system at the DoubleTree Crystal City near Washington, DC.

  19. Acoustic diagnosis of gas insulated substations; A theoretical and experimental basis

    SciTech Connect

    Lundgaard, L.E.; Runde, M. ); Skyberg, B. )

    1990-10-01

    Loose particles and discharges inside the ducts of a gas insulated substation (GIS) are considered hazardous to the insulation system. These irregularities or flaws can be detected by using acoustic sensors placed on the enclosure. An elementary review of sound propagation in the GIS, together with corresponding experimental results are presented. By using ultrasonic acoustic emission sensors an excellent sensitivity to discharges and moving particles is obtained. The method offers possibilities for a quantification of the flaws, and thereby for a risk analysis. However, the degree of certainty of such an analysis is still low, especially for particles.

  20. Investigations of multiple reignition phenomena and protection scheme of shunt reactor current interruption in GIS substations

    SciTech Connect

    Okabe, S.; Kosakada, M. ); Toda, H.; Suzuki, K.; Ishikawa, M. )

    1993-01-01

    Carrying out field measurements and computer analysis concerning 150-MVA shunt reactor current interruptions at a 275-kV GIS substation, it is verified that high-frequency current interruptions can be caused by certain system structures on the circuit-breaker power-supply side. A shunt reactor current-interrupting test was conducted with phase-angle-control, which is considered to be the best preventing method against multiple reignitions, by using short-circuit-test facilities. Stable reignition-free interruption is confirmed to be possible even when the longest arcing time is preset.

  1. Experience with SF/sub 6/ Gas-insulated substations and proposals for improved reliability

    SciTech Connect

    Lindsay, C.; Hick, M.

    1984-09-01

    Ontario Hydro has had four or more years of service experience with four gas-insulated substations (GIS) rated at 500 kV and 230 kV and 80 kA. Initially, the stations were fraught with problems, due mainly to the equipment being prototype. Most of the problems have now been corrected and the reliability and maintainability of the stations are satisfactory, comparable to the rest of the system. A number of proposals are made to improve the reliability of future GIS.

  2. Transient ground potential rise in gas-insulated substations: problem identification and mitigation

    SciTech Connect

    Dick, E.P.; Ford, G.L.; Fujimoto, N.; Harvey, S.

    1982-10-01

    Transient ground potential rise, a phenomenon of 10-100 kV potentials with up to 10 ..mu..s duration on the grounded enclosures of gas-insulated substations (GIS), may cause concern for personnel safety and problems for protection and control circuitry. This paper summarizes the results of a research programme conducted for the Canadian Electrical Association (1) and is intended to serve utilities as a practical introduction to this topic. The transient potentials are derived from enclosure configuration using analytical calculations and digital simulations. Modified operating practices, changes in GIS configuration and use of shielding methods may be considered for mitigating the effects of these potentials.

  3. Transmission decisions

    SciTech Connect

    Ellison, C.T. )

    1993-03-01

    As the US FERC moves forward to implement the transmission access provisions of the National Energy Policy Act of 1992, the debate over Regional Transmission Groups continues. Independent energy producers have much at stake in this debate and their reaction to the general RTG concept and to specific RTG proposals will weigh heavily in determining the fate of these proposals.

  4. Kangley-Echo Lake Transmission Line Project Final Environmental Impact Statement

    SciTech Connect

    N /A

    2003-06-20

    BPA proposes to build a single-circuit 500-kV transmission line from a tap point on an existing 500-kV line near Kangley, Washington, to its Echo Lake Substation near North Bend, Washington. The proposed route for this line, also called Alternative 1, is about nine miles long. About five miles of the proposed route would go through the Cedar River Municipal Watershed. In addition, Echo Lake Substation would be expanded about three acres to the east and new equipment would be installed there to accommodate the new line (common to all transmission alternatives). This alternative was proposed because it would be located immediately parallel to an existing BPA existing 500-kV transmission line, the Raver-Echo Lake Transmission Line. Locating a new line next to an existing one reduces right-of-way (ROW) clearing needed for the new line and reduces the need for additional access roads. Lattice steel transmission towers would support the 500-kV transmission line. These structures average 135 feet high, with the average span between towers of about 1,150 feet.

  5. Proposed amendment for Presidential Permit PP-63 and associated modifications to 500 kV international transmission line, Forbes, Minnesota to Manitoba, Canada Northern States Power Company. Final Environmental Assessment

    SciTech Connect

    Not Available

    1992-02-01

    Northern States Power Company, (NSP), a Minnesota investor owned utility has applied to the Office of Fossil Energy, United States Department of Energy, to amend Presidential Permit PP-63 to allow for alterations to the 500 kV transmission line and as sedated facilities currently regulated by this permit. The alterations proposed for the 500 kV line owned by NSP are part of a long term effort sponsored by NSP to upgrade the existing NSP transmission system to allow for increased exchange of electricity with the Manitoba Hydro-Electric Board. Presidential Permit PP-63 authorized NSP to construct, connect, operate and maintain a 500 kV line at the United States/Canadian border approximately seven-and-a-half miles west of Warroad in Roseau County, Minnesota. This line connects with a 500 kV line owned and operated by the Manitoba Hydro-Electric Board (MHEB), which extends from Dorsey, Manitoba, Canada to the United States/Canadian border. NSP proposes to increase the electricity transfer capability of this transmission facility by constructing a new 80-acre substation on the existing 500 kV line in Roseau County, Minnesota, and upgrading the existing substation at Forbes, Minnesota. The proposed Roseau substation would contain two 41.5 ohm series capacitor banks. In addition, static VAR compensators are to be installed at the existing Forbes Substation. Approximately 5 acres would be added to the 30-acre Forbes site to house the additional equipment. No new lines would enter or exit the facility. NSP proposes to place the new Roseau Substation in service in May 1993 and to complete the upgrading of the Forbes Substation in March 1994. The primary, initial purpose of these modifications is to enable NSP to import 400 megawatts of electric power from MHEB during the summer months to meet peak electrical demand in the Minneapolis-St. Paul area. It is expected that this power transfer would begin in 1993.

  6. EIS-0116-S1: Final Supplemental Environmental Impact Statement for the Blue River-Gore Pass Portion of the Hayden-Blue River Transmission Line Project, Grand and Summit Counties, Colorado

    Energy.gov [DOE]

    This supplemental environmental impact statement by the Western Area Power Administration assesses the environmental effects of constructing, operating, and maintaining about 30 miles of 230/345-kV transmission line between the existing Gore Pass Substation northwest of Kremmling, Colorado, and a proposed new substation (not part of this action) near the Ute Pass Road. Alternatives assessed included routing and design alternatives plus the alternatives addressed in the Hayden-Blue River Final EIS, issued by the Rural Electrification Administration in July 1982 and adopted by DOE in June 1985 (see DOE/EIS-0116).

  7. Tucson Electric Power Company Sahuarita-Nogales Transmission Line Draft Environmental Impact Statement

    SciTech Connect

    N /A

    2003-08-27

    conductors, and two neutral ground wires that would provide both lightning protection and fiber optic communications, on a single set of support structures. The transmission line would originate at TEP's existing South Substation (which TEP would expand), in the vicinity of Sahuarita, Arizona, and interconnect with the Citizens Communications (Citizens) system at a Gateway Substation that TEP would construct west of Nogales, Arizona. The double-circuit transmission line would continue from the Gateway Substation south to cross the U.S.-Mexico border and extend approximately 60 miles (mi) (98 kilometers [km]) into the Sonoran region of Mexico, connecting with the Comision Federal de Electricidad (CFE, the national electric utility of Mexico) at CFE's Santa Ana Substation.

  8. Feasibility study: Application of RCM techniques for substation maintenance at the Bonneville Power Administration

    SciTech Connect

    Purucker, S.L.; Tonn, B.E.; Goeltz, R.T.; James, R.D.; Kercel, S.; Rizy, D.T.; Simpson, M.L.; Van Dyke, J.W.

    1992-05-28

    This feasibility study examines reliability centered maintenance (RCM) as it applies to Bonneville Power Administrations (BPA) substation maintenance program. Reliability techniques are examined in evaluated. Existing BPA equipment maintenance procedures are documented. Equipment failure history is considered. Economic impacts are estimated. Various equipment instrumentation methods are reviewed. Based on this analysis a prototype system is proposed. The prototype will be implemented in two phases. Phase 1 is to be completed in 1992, it includes instrumenting one power transformer and one oil circuit breaker. Software development will focus on displaying data. Phase 2 is to be completed the following year. The remaining transformers and breakers will be instrumented during the second phase. Software development will focus on predictive maintenance techniques and maintenance decision support.

  9. Type B investigation of electrical fault in 351 Substation, December 4, 1994

    SciTech Connect

    Debban, H.L.; Shearer, C.A.; Boger, R.M.; McDonald, G.P.; Eyre, L.E.; Dell, L.D.; Kelly, D.S.

    1995-02-01

    On December 4, 1994, at 2132:10 hours, an electrical failure of a cable-tapping splice resulted in a fire in the 300 Area of the DOE Hanford Site. The fire occurred in the yard of Substation 351 in electrical Vault R122V, where the cable-tapping splice was located. The fire incinerated all cables passing to and through the vault causing them to fail. The failure of the cables resulted in a power outage to twenty customers in the 300 Area. The vault was electrically isolated, and power was restored to the electrical distribution system at 2311 hours. This report contains the accident scenario, accident analysis, direct cause and root and contributing causes.

  10. Seismic base isolation of gas insulated electrical substations: Comparison among different solutions

    SciTech Connect

    Serino, G.; Bettinali, F.; Bonacina, G.

    1995-12-31

    Base isolation of an outdoor 170 kV Gas-Insulated Substation conforming to ENEL standardization is proposed. The analyzed GIS has two separated phases and its layout consists of a compact block composed of five bays and two High-to-Medium Voltage power transformers. The design has been carried out following the International Electrotechnical Commission (IEC) requirements for seismic qualification of HV equipment. Three solutions are presented, each making use of different isolation devices: High-Damping Steel-Laminated Rubber Bearings, helical springs and visco-dampers, Friction Pendulu devices. The procedures adopted in the design of the three isolation systems are briefly explained, pointing out advantages and drawbacks of each solution.

  11. Techniques for the protection of gas-insulated substation to cable interfaces

    SciTech Connect

    Fujimoto, N.; Croall, S.J.; Foty, S.M. )

    1988-10-01

    Line-to-ground faults in gas-insulated substations (GIS) generate fast nanosecond risetime transients which cause sparkovers across the insulated flange of high pressure oil filled cable/GIS interfaces. The ionized path formed by the sparkovers creates a low-impedance path for power frequency fault current, resulting in flange damage with potentially serious consequences. Various techniques for protecting the insulating flange from such damage are investigated and discussed, both in terms of new designs and in terms of retrofits for existing installations. In order to be effective, each protection scheme must adequately deal with the fast transients generated by breakdown in the GIS. As the frequencies of these transients are 1 to 2 orders of magnitude higher than for ''conventional'' power system transients, special considerations are necessary in the protection scheme chosen.

  12. Experience in the installation of a microprocessor system for controlling converter units of the Vyborg substation

    SciTech Connect

    Gusakovskii, K. B.; Zmaznov, E. Yu.; Katantsev, S. V.; Mazurenko, A. K.; Mestergazi, V. A.; Prochan, G. G.; Funtikova, S. F.

    2006-01-15

    The experience in the installation of modern digital systems for controlling converter units at the Vyborg converter substation on the basis of advanced microprocessor devices is considered. It is shown that debugging of a control and protection system on mathematical and physical models does not guarantee optimum control of actual converter devices. Examples of advancing the control and protection system are described, the necessity for which has become obvious in tests of actual equipment. Comparison of oscillograms of processes before optimization of the control system and after its optimization and adjustment shows that the digital control system makes it possible to improve substantially the algorithms of control and protection in the short term and without changing the hardware component.

  13. Transmission Services

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Transmission Services BPA Clarifications on the DSO216 1 Document updated on 2242015 at 3:29:25 PM B O N N E V I L L E P O W E R A D M I N I S T R A T I O N BPA Clarifications on...

  14. Wallula Power Project and Wallula - McNary Transmission Line Project Final Environmental Impact Statement

    SciTech Connect

    N /A

    2002-08-16

    Wallula Generation, LLC proposes to construct a 1,300-megawatt (MW) natural gas-fired combined-cycle combustion gas turbine facility (the Wallula Power Project). The project would be located in the northwestern portion of Walla Walla County, Washington, approximately 8 miles south of the City of Pasco, 2 miles north of the unincorporated community of Wallula, and 7 miles southeast of the unincorporated community of Burbank. The purpose of the proposed power project is to provide energy to meet the needs of the Northwest and other interconnected electric transmission areas where electrical energy is needed. Firm transmission of the power generated by the Wallula Power Project would require construction of a new 500-kilovolt (kV) transmission line and construction of a new switchyard near Smiths Harbor. Approximately 5.1 miles of new transmission line from the proposed generation plant to the new switchyard would be completed. An additional 28 miles of new transmission line from the Smiths Harbor Switchyard to the McNary Substation would be constructed adjacent to the existing Lower Monumental-McNary transmission line and upgrades completed to the existing McNary Substation if loads are exceeded on the existing line. Wallula Generation, LLC, would construct and operate the generation plant and associated facilities, including the makeup water supply line. Bonneville would design, construct, and operate the two 500 kV transmission line segments and switchyard. To supply natural gas to the plant site, a 5.9-mile pipeline interconnection would be engineered, constructed, owned, and operated by PG&E Gas Transmission-Northwest (GTN). This EIS evaluates the environmental impacts of the proposed action, which includes the proposed power plant and 33-mile transmission line. It also evaluates an alternative using taller towers and longer spans between towers along part of the transmission line, and the use of an alternative approach for the transmission line where it would

  15. Plains & Eastern Clean Line Transmission Line - Part 2 Application...

    Energy Saver

    ... KB) Appendix 10-E HVDC Scheme Diagram (33.51 KB) Appendix 10-F Shelby Substation and Optima Substation One-Line Drawings (925.73 KB) Appendix 10-J HVDC Specification ...

  16. Model and simulation of a flywheel energy storage system at a utility substation using electro-magnetic transients programs

    SciTech Connect

    Weissbach, R.S.; Karady, G.G.; Farmer, R.G.

    1996-11-01

    A flywheel energy storage system for use as an uninterruptible power supply at a utility substation to replace electrochemical batteries has been modeled. The model is developed using the Electro-Magnetic Transients Program (EMTP). Models for the flywheel, permanent magnet (synchronous) motor/generator, rectifiers and inverter have been included. Transient response for loss of power and clearing of a short circuit fault, as well as variation of load voltage due to the flywheel spinning down, is presented.

  17. Holbrook Substation Superconductor Cable System, Long Island, New York Final Report

    SciTech Connect

    Maguire, James; McNamara, Joseph

    2010-06-25

    The LIPA Superconductor project broke ground on July 4, 2006, was first energized on April 22, 2008 (Earth Day) and was commissioned on June 25, 2008. Since commissioning, up until early March, 2009, there were numerous refrigeration events that impacted steady state operations. This led to the review of the alarms that were being generated and a rewrite of the program logic in order to decrease the hypersensitivity surrounding these alarms. The high temperature superconductor (HTS) cable was energized on March 5, 2009 and ran uninterrupted until a human error during a refrigeration system switchover knocked the cable out of the grid in early February 2010. The HTS cable was in the grid uninterrupted from March 5, 2009 to February 4, 2010. Although there have been refrigeration events (propagated mainly by voltage sags/surges) during this period, the system was able to automatically switch over from the primary to the backup refrigeration system without issue as required during this period. On February 4, 2010, when switching from the backup over to the primary refrigeration system, two rather than one liquid nitrogen pumps were started inadvertently by a human error (communication) causing an overpressure in the cable cooling line. This in turn activated the pressure relief valve located in the grounding substation. The cable was automatically taken out of the grid without any damage to the components or system as a result of signals sent from the AMSC control cabinet to the LIPA substation. The cable was switched back into the grid again on March 16, 2010 without incident and has been operational since that time. Since switching from the backup to the primary is not an automatic process, a recent improvement was added to the refrigeration operating system to allow remote commands to return the system from backup to primary cooling. This improvement makes the switching procedure quicker since travel to the site to perform this operation is no longer necessary and

  18. Transmission | Department of Energy

    Energy Saver

    resources for Tribes on transmission. Transmission 101 Presentation from the National Council on Electricity Policy's Transmissions Technologies workshop. Includes information on...

  19. Transmission Business Line

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Transmission Business Line Non-Federal Financing of Transmission Projects - March 2004 Critical paths on the Northwest transmission grid are congested and the system is near or at...

  20. McNary-John Day Transmission Line Project, Final Environmental Impact Statement

    SciTech Connect

    N /A

    2002-08-30

    Bonneville is proposing to construct, operate, and maintain a 79-mile-long 500-kilovolt-transmission line in Benton and Klickitat Counties, Washington, and Umatilla and Sherman Counties, Oregon. The new line would start at Bonneville's McNary Substation in Oregon and would cross the Columbia River just north of the substation into Washington. The line would then proceed west for about 70 miles along the Columbia River. At the John Day Dam, the line would again cross the Columbia River into Oregon and terminate at Bonneville's John Day Substation. The new line would parallel existing transmission lines for the entire length; mostly within existing available right-of-way. Presently, the existing transmission lines in the area are operating at capacity. These lines help move power from the east side of the Cascades to the west side, where there is a high need for electricity (cities along the I-5 corridor). Because the Northwest has only recently recovered from a shortfall in electric energy supply and a volatile wholesale power market in which prices reached record highs, there are many new proposals for facilities to generate new power. Some of these facilities are in the vicinity of the McNary-John Day project; the proposed line would help insure that existing and newly generated power could move through the system. Bonneville is also considering the No Action Alternative and several short-line routing alternatives. The short routing alternatives include three half-mile-long routes for getting from the McNary Substation to the Columbia River crossing; three two-mile-long routes where the Hanford-John Day transmission line joins the existing corridor; two 1,000-foot-long routes at corridor mile 32; and two 500-foot-long routes at corridor mile 35. This abbreviated final EIS consists of an introduction to the document, changes to the draft EIS, copies of all the comments received on the draft EIS, and Bonneville's written responses to the comments. The final EIS

  1. DOE Transmission Workshop

    Energy.gov [DOE] (indexed site)

    Order No. 1000 Transmission Ratemaking Enabling New Resources - Demand Response - Variable Generation - Storage 2 Stages of Transmission Planning - Local, ...

  2. Hydromechanical transmission

    DOEpatents

    Orshansky, Jr. deceased, Elias; Weseloh, William E.

    1978-01-01

    A power transmission having three planetary assemblies, each having its own carrier and its own planet, sun, and ring gears. A speed-varying module is connected in driving relation to the input shaft and in driving relationship to the three sun gears, all of which are connected together. The speed-varying means may comprise a pair of hydraulic units hydraulically interconnected so that one serves as a pump while the other serves as a motor and vice versa, one of the units having a variable stroke and being connected in driving relation to the input shaft, the other unit, which may have a fixed stroke, being connected in driving relation to the sun gears. The input shaft also drives the carrier of the third planetary assembly. A brake grounds the first carrier in the first range and in reverse and causes drive to be delivered to the output through the first ring gear in a hydrostatic mode. The carrier of the third planetary assembly drives the ring gear of the second planetary assembly, and a first clutching means connects the second carrier with the output in a second range, the brake for grounding the first carrier then being released. A second clutching means enables the third ring gear to drive the output shaft in a third range.

  3. Grand Coulee - Bell 500-kV Transmission Line Project, Draft Environmental Impact Statement

    SciTech Connect

    N /A

    2002-08-09

    BPA is proposing to construct a 500-kilovolt (kV) transmission line that would extend approximately 84 miles between the Grand Coulee 500-kV Switchyard, near Grand Coulee Dam, and the Bell Substation, in Mead just north of Spokane. The new line would cross portions of Douglas, Grant, Lincoln, and Spokane counties. In addition to the transmission line, new equipment would be installed at the substations at each end of the new line and at other facilities. The proposed action would remove an existing 115-kV transmission line and replace it with the new 500-kV line on existing right-of-way for most of its length. Additional right-of-way would be needed in the first 3.5 miles out of the Grand Coulee Switchyard to connect to the existing 115-kV right-of-way. Since the mid-1990s, the transmission path west of Spokane, called the West of Hatwai transmission pathway, has grown increasingly constrained. To date, BPA has been able to manage operation of the path through available operating practices, and customer needed have been met while maintaining the reliability of the path. however, in early 2001, operations showed that the amount of electricity that needs to flow from east to west along this path creates severe transmission congestion. Under these conditions, the system is at risk of overloads and violation of industry safety and reliability standards. The problem is particularly acute in the spring and summer months because of the large amount of power generated by dams east of the path. Large amounts of water cannot be spilled during that time in order for BPA to fulfill its obligation to protect threatened and endangered fish. The amount of power that needs to move through this area during these months at times could exceed the carrying capacity of the existing transmission lines. In additional capacity is not added, BPA will run a significant risk that it will not be able to continue to meet its contractual obligations to deliver power and maintain reliability

  4. Joint HVAC transmission EMF environmental study

    SciTech Connect

    Stormshak, F.; Thompson, J. )

    1992-05-01

    This document describes the rationale, procedures, and results of a carefully controlled study conducted to establish whether chronic exposure of female (ewe) Suffolk lambs to the environment of a 500-kV 60-Hz transmission line would affect various characteristics of growth, endocrine function, and reproductive development. This experiment used identical housing and management schemes for control and line-exposed ewes, thus minimizing these factors as contributors to between-group experimental error. Further, throughout the 10-month duration of this study, changes in electric and magnetic fields, audible noise, and weather conditions were monitored continuously by a computerized system. Such measurements provided the opportunity to identify any relationship between environmental factors and biological responses. Because of reports in the literature that electric and magnetic fields alter concentrations of melatonin in laboratory animals, the primary objective of this study was to ascertain whether a similar effect occurs in lambs exposed to a 500-kV a-c line in a natural setting. In addition, onset of puberty, changes in body weight, wool growth, and behavior were monitored. To determine whether the environment of a 500-kV line caused stress in the study animals, serum levels of cortisol were measured. The study was conducted at Bonneville Power Administration's Ostrander Substation near Estacada, Oregon.

  5. The results of systems tests of the 500 kV busbar controllable shunting reactor in the Tavricheskaya substation

    SciTech Connect

    Gusev, S. I.; Karpov, V. N.; Kiselev, A. N.; Kochkin, V. I.

    2009-09-15

    The results of systems tests of the 500 kV busbar magnetization-controllable shunting reactor (CSR), set up in the Tavricheskaya substation, including measurements of the quality of the electric power, the harmonic composition of the network currents of the reactor for different values of the reactive power consumed, the determination of the regulating characteristics of the reactor, the speed of response of the shunting reactor in the current and voltage stabilization modes, and also the operation of the reactor under dynamic conditions for different perturbations, are presented. The results obtained are analyzed.

  6. The integration of renewable energy sources into electric power transmission systems

    SciTech Connect

    Barnes, P.R.; Dykas, W.P.; Kirby, B.J.; Purucker, S.L.; Lawler, J.S.

    1995-07-01

    Renewable energy technologies such as photovoltaics, solar thermal power plants, and wind turbines are nonconventional, environmentally attractive sources of energy that can be considered for electric power generation. Many of the areas with abundant renewable energy resources (very sunny or windy areas) are far removed from major load centers. Although electrical power can be transmitted over long distances of many hundreds of miles through high-voltage transmission lines, power transmission systems often operate near their limits with little excess capacity for new generation sources. This study assesses the available capacity of transmission systems in designated abundant renewable energy resource regions and identifies the requirements for high-capacity plant integration in selected cases. In general, about 50 MW of power from renewable sources can be integrated into existing transmission systems to supply local loads without transmission upgrades beyond the construction of a substation to connect to the grid. Except in the Southwest, significant investment to strengthen transmission systems will be required to support the development of high-capacity renewable sources of 1000 MW or greater in areas remote from major load centers. Cost estimates for new transmission facilities to integrate and dispatch some of these high-capacity renewable sources ranged from several million dollars to approximately one billion dollars, with the latter figure an increase in total investment of 35%, assuming that the renewable source is the only user of the transmission facility.

  7. CX-008381: Categorical Exclusion Determination

    Energy.gov [DOE]

    Big Thompson to Flatiron 13.8 Kilovolt Transmission Line Structure Replacement CX(s) Applied: B1.3 Date: 05/09/2012 Location(s): Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

  8. EIS-0285-SA-147: Supplement Analysis | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Analysis Transmission System Vegetation Management Program Vegetation Management for the Big Eddy-Chenoweth NO. 1 and 2 Substation to Substation, Big Eddy - Midway Substation to 2...

  9. RAPID/BulkTransmission/Transmission Siting & Interconnection...

    OpenEI (Open Energy Information) [EERE & EIA]

    federal review). Bulk Transmission Transmission Siting & Interconnection in New Mexico New Mexico Statutes (N.M.S.) 62-9-1, 62-9-3(B), and 62-9-3.2 No Location Permit may be...

  10. NREL: Transmission Grid Integration - Transmission Planning and...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Printable Version Transmission Grid Integration Home Issues Projects Western Wind & Solar ... Electricity Market Operations Energy Imbalance Markets FESTIV Model Active ...

  11. National Transmission Grid Study

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Grid Study U.S. Department of Energy The Honorable Spencer Abraham Secretary of Energy May 2002 ii National Transmission Grid Study National Transmission Grid Study i ii National Transmission Grid Study National Transmission Grid Study iii How This Study Was Conducted The National Energy Policy Plan directed the U.S. Department of Energy (DOE) to conduct a study to examine the benefits of establishing a national electricity transmission grid and to identify transmission bottlenecks and measures

  12. Survey of Transmission Cost Allocation Methodologies for Regional Transmission Organizations

    SciTech Connect

    Fink, S.; Porter, K.; Mudd, C.; Rogers, J.

    2011-02-01

    The report presents transmission cost allocation methodologies for reliability transmission projects, generation interconnection, and economic transmission projects for all Regional Transmission Organizations.

  13. Transmission Capacity Forum

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Email Address: Name: Organization Entity Type: Select the best fit for your role... Energy Trader Transmission Provider Employee Transmission Purchaser Energy Scheduler...

  14. Electricity Generation, Transmission ...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Generation, Transmission and Energy Storage Systems Utilities and other electricity and transmission providers and regulators often require that equipment be proven safe and ...

  15. TITLE AUTHORS SUBJECT SUBJECT RELATED DESCRIPTION PUBLISHER AVAILABILI...

    Office of Scientific and Technical Information (OSTI)

    TRANSMISSION AND DISTRIBUTION POWER SUBSTATIONS CAPITALIZED COST CALCULATION METHODS PLANNING COST ESTIMATION MATHEMATICAL MODELS The displacement or deferral of substation...

  16. Sandia Energy - Transmission Grid Integration

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Transmission Grid Integration Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Grid Integration Transmission Grid Integration Transmission Grid...

  17. RAPID/BulkTransmission/California | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    District Valley Electric Assn, Inc Current Projects Colorado River-Valley (and Red Bluff Substation) Eldorado-Ivanpah Carrizo-Midway Reconductoring SCEIID Joint Path 42...

  18. Feasibility study: Application of RCM techniques for substation maintenance at the Bonneville Power Administration. [Reliability Centered Maintenance (RCM)

    SciTech Connect

    Purucker, S.L.; Tonn, B.E.; Goeltz, R.T.; James, R.D.; Kercel, S.; Rizy, D.T.; Simpson, M.L.; Van Dyke, J.W.

    1992-05-28

    This feasibility study examines reliability centered maintenance (RCM) as it applies to Bonneville Power Administrations (BPA) substation maintenance program. Reliability techniques are examined in evaluated. Existing BPA equipment maintenance procedures are documented. Equipment failure history is considered. Economic impacts are estimated. Various equipment instrumentation methods are reviewed. Based on this analysis a prototype system is proposed. The prototype will be implemented in two phases. Phase 1 is to be completed in 1992, it includes instrumenting one power transformer and one oil circuit breaker. Software development will focus on displaying data. Phase 2 is to be completed the following year. The remaining transformers and breakers will be instrumented during the second phase. Software development will focus on predictive maintenance techniques and maintenance decision support.

  19. {open_quotes}Secure Bus{close_quotes} disturbance-free power at the utility substation level

    SciTech Connect

    Boenig, H.J.; Jones, W.H.

    1996-12-01

    Over the last 18 months Public Service Company of New Mexico (PNM), El Camino Real Engineering, Inc. (CRE), Los Alamos National Laboratory (LANL) and Sandia National Laboratories (SNL) have worked on the development of disturbance-free power at the medium voltage substation level. The work resulted in the Secure Bus concept, a system in which a medium voltage bus in a substation is immune to power outages and voltage sags on the utility source. The Secure Bus voltage is also immune to voltage sags resulting from faults on any distribution feeder connected to the bus. The Secure Bus concept originated from work conducted to improve power quality for large high-tech manufacturing facilities, in particular for large semiconductor manufacturing plants. For the demands on quality power of a modern facility conventional equipment is not adequate for protecting the end user. For example, the operation of conventional vacuum breakers during short circuit conditions on a feeder circuit, requiring 3 to 5 cycles for breaker opening, does not allow for fast enough current interruption to avoid a voltage dip on the main bus. A sever voltage sag could result in a shut down of sensitive equipment being supplied by the other feeder circuits, which are connected to the main bus. The circumvent the problem, a fast breaker was introduced which interrupts the short circuit before the current causes a significant voltage disturbance. To make the bus immune also to power disturbances caused by power outages, energy storage is introduced to provide the necessary energy back-up in case the primary source is not available.

  20. Proposed Amendment to Presidential Permit PP-63 and Associated Modifications to 500-kV International Transmission Line: Forbes, Minnesota to Manitoba, Canada, Northern States Power Company. Addendum to the final Environmental Assessment

    SciTech Connect

    Not Available

    1992-10-01

    This Addendum to the Final Environmental Assessment for the Proposed Amendment to Presidential Permit PP-63 and Associated Modifications to 500 kV International Transmission Line: Forbes, Minnesota to Manitoba, Canada (DOE/EA-587) addresses Northern States Power Company`s (NSP) proposed expansion of the Forbes Substation. The applicant has requested that the expansion take place on the west side of the substation, within the existing property line, instead of on the north side as originally proposed. All of the proposed construction would take place on property already owned by NSP. DOE has reviewed the environmental impacts associated with this minor modification and has determined that the conclusions reached in the environmental assessment and Finding of No Significant Impact prepared in connection with NSP`s original amendment request remain valid.

  1. Proposed amendment to presidential permit PP-63 and associated modifications to 500 kV international transmission line, Forbes, Minnesota to Manitoba, Canada. Addendum to the final environmental assessment

    SciTech Connect

    Not Available

    1992-10-01

    This Addendum to the Final Environmental Assessment for the Proposed Amendment to Presidential Permit PP-63 and Associated Modifications to 500 kV International Transmission Line: Forbes, Minnesota to Manitoba, Canada (DOE/EA-587) addresses Northern States Power Company`s (NSP) proposed expansion of the Forbes Substation. The applicant has requested that the expansion take place on the west side of the substation, within the existing property line, instead of on the north side as originally proposed. All of the proposed construction would take place on property already owned by NSP. DOE has reviewed the environmental impacts associated with this minor modification and has determined that the conclusions reached in the environmental assessment and Finding of No Significant Impact prepared in connection with NSP`s original amendment request remain valid.

  2. Automated manual transmission controller

    DOEpatents

    Lawrie, Robert E.; Reed, Jr., Richard G.; Bernier, David R.

    1999-12-28

    A powertrain system for a hybrid vehicle. The hybrid vehicle includes a heat engine, such as a diesel engine, and an electric machine, which operates as both an electric motor and an alternator, to power the vehicle. The hybrid vehicle also includes a manual-style transmission configured to operate as an automatic transmission from the perspective of the driver. The engine and the electric machine drive an input shaft which in turn drives an output shaft of the transmission. In addition to driving the transmission, the electric machine regulates the speed of the input shaft in order to synchronize the input shaft during either an upshift or downshift of the transmission by either decreasing or increasing the speed of the input shaft. When decreasing the speed of the input shaft, the electric motor functions as an alternator to produce electrical energy which may be stored by a storage device. Operation of the transmission is controlled by a transmission controller which receives input signals and generates output signals to control shift and clutch motors to effect smooth launch, upshift shifts, and downshifts of the transmission, so that the transmission functions substantially as an automatic transmission from the perspective of the driver, while internally substantially functioning as a manual transmission.

  3. Type B Accident Investigation of the Serious Personal Injury while Doble Testing at the Western Area Power Administration Hayden Substation, May 19, 1999

    Office of Energy Efficiency and Renewable Energy (EERE)

    On May 19, 1999, at 10:31 a.m., four Western Area Power Administration (Western) employees were performing Doble testing on a circuit breaker at Hayden Substation in Routt County, Colorado. Three electricians were injured when the high-voltage lead (HVL) of the Doble test set encroached on the minimum approach distance to an energized part outside clearance boundaries, drawing arcing faults.

  4. Development of electronic potential and current transducers suitable for gas insulated switchgear and adequate for application to substation digital control systems

    SciTech Connect

    Tokoro, K.; Harumoto, Y.; Ida, Y.; Mukae, H.; Ohno, Y.; Shimada, M.; Yamamoto, H.; Yoshida, Y.

    1982-10-01

    Substation Digital Control System (SDCS) had been developed for the future system controlling the large scale power system. For application of SDCS to Gas Insulated Switchgear (GIS), electronic potential and current transducers fit for GIS have been developed. This equipment is composed of a capacitive dividing type potential transducer, a low burden current transformer, an analogue-to-digital conversion unit and an optical fiber signal transmit system. Good performance is confirmed by the application tests simulating the field circumstances.

  5. Transmission Planning Analysis Tool

    SciTech Connect

    2015-06-23

    Developed to solve specific problem: Assist transmission planning for regional transfers in interconnected power systems. This work was originated in a study for the U.S. Department of State, to recommend transmission reinforcements for the Central American regional system that interconnects 6 countries. Transmission planning analysis is currently performed by engineers with domainspecific and systemspecific knowledge without a unique methodology. The software codes of this disclosure assists engineers by defining systematic analysis procedures to help identify weak points and make decisions on transmission planning of regional interconnected power systems. Transmission Planning Analysis Tool groups PSS/E results of multiple AC contingency analysis and voltage stability analysis and QV analysis of many scenarios of study and arrange them in a systematic way to aid power system planning engineers or transmission operators in effective decision]making process or in the off]line study environment.

  6. Transmission Planning Analysis Tool

    Energy Science and Technology Software Center

    2015-06-23

    Developed to solve specific problem: Assist transmission planning for regional transfers in interconnected power systems. This work was originated in a study for the U.S. Department of State, to recommend transmission reinforcements for the Central American regional system that interconnects 6 countries. Transmission planning analysis is currently performed by engineers with domainspecific and systemspecific knowledge without a unique methodology. The software codes of this disclosure assists engineers by defining systematic analysis procedures to help identifymore » weak points and make decisions on transmission planning of regional interconnected power systems. Transmission Planning Analysis Tool groups PSS/E results of multiple AC contingency analysis and voltage stability analysis and QV analysis of many scenarios of study and arrange them in a systematic way to aid power system planning engineers or transmission operators in effective decision]making process or in the off]line study environment.« less

  7. NREL: Transmission Grid Integration - Publications

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Publications Want updates about future transmission grid integration webinars and ... and Transmission Study Flexible Energy Scheduling Tool for Integration of ...

  8. Series Transmission Line Transformer

    DOEpatents

    Buckles, Robert A.; Booth, Rex; Yen, Boris T.

    2004-06-29

    A series transmission line transformer is set forth which includes two or more of impedance matched sets of at least two transmissions lines such as shielded cables, connected in parallel at one end ans series at the other in a cascading fashion. The cables are wound about a magnetic core. The series transmission line transformer (STLT) which can provide for higher impedance ratios and bandwidths, which is scalable, and which is of simpler design and construction.

  9. Transmission - Contact Information

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Contact-Information-Transmission Sign In About | Careers | Contact | Investors | bpa.gov Search News & Us Expand News & Us Projects & Initiatives Expand Projects &...

  10. Current Transmission Rates

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    links Financial Information Financial Public Processes Asset Management Cost Verification Process Rate Cases Rate Information Current Power Rates Current Transmission Rates...

  11. Previous Transmission Rates

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    links Financial Information Financial Public Processes Asset Management Cost Verification Process Rate Cases Rate Information Current Power Rates Current Transmission Rates...

  12. Collaborative Transmission Technology Roadmap

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Addendum to the Collaborative Transmission Technology Roadmap March 2014 Bonneville Power Administration Enhanced PDF Functionality Functionality of the PDF version of this...

  13. Transmission and Storage Operations

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Transmission and Storage Operations Natural Gas Infrastructure R&D and Methane Mitigation Workshop Mary Savalle, PMP, LSSGB Compression Reliability Engineer November 12, 2014 ...

  14. Electrical Engineer- Transmission Lines

    Energy.gov [DOE]

    (See Frequently Asked Questions for more information). Where would I be working? Western Area Power Administration, Upper Great Plains Region, Maintenance, North Dakota Maintenance, Transmission...

  15. 2012 Transmission Rate Schedules

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    2014 Transmission, Ancillary, and Control Area Service Rate Schedules and General Rate Schedule Provisions (FY 2014-2015) October 2013 United States Department of Energy...

  16. Transmission Infrastructure Program

    Energy.gov [DOE] (indexed site)

    needs * Commercial underwriting standards TIP Portfolio Management Fundamentals * Reflective ... transmission line that connects a renewable-rich zone south of Phoenix in ...

  17. Transmission Siting_071508.indd

    Office of Environmental Management (EM)

    ... Such strategies may include transmission, generation, demand-side options, or a combination of all three. For example, many States have adopted renewable portfolio standards (RPS) ...

  18. 30-MJ superconducting magnetic energy storage for electric-transmission stabilization

    SciTech Connect

    Turner, R.D.; Rogers, J.D.

    1981-01-01

    The Bonneville Power Administration operates the electric power transmission system that connects the Pacific Northwest and southern California. The HVAC interties develop 0.35 Hz oscillations when the lines are heavily loaded. A 30 MJ (8.4 kWh) Superconducting Magnetic Energy Storage (SMES) unit with a 10 MW converter can provide system damping for the oscillation. The unit is scheduled for installation in 1982 and operation in 1982-83. Status of the project is described. The conductor has been fully tested electrically and mechanically and the 5 kA superconducting cable has been produced. The 30 MJ superconducting coil is essentially complete. All major components of the electrical and cryogenic systems except the nonconducting dewar have been completed. The refrigerator and converter are undergoing tests. The system is to be located at the BPA Tacoma Substation and operated by microwave link from Portland, OR.

  19. Transmission Line Security Monitor

    ScienceCinema

    None

    2016-07-12

    The Transmission Line Security Monitor is a multi-sensor monitor that mounts directly on high-voltage transmission lines to detect, characterize and communicate terrorist activity, human tampering and threatening conditions around support towers. For more information about INL's critical infrastructure protection research, visit http://www.facebook.com/idahonationallaboratory.

  20. Transmission Line Security Monitor

    SciTech Connect

    2011-01-01

    The Transmission Line Security Monitor is a multi-sensor monitor that mounts directly on high-voltage transmission lines to detect, characterize and communicate terrorist activity, human tampering and threatening conditions around support towers. For more information about INL's critical infrastructure protection research, visit http://www.facebook.com/idahonationallaboratory.

  1. Wild Horse 69-kV transmission line environmental assessment

    SciTech Connect

    1996-12-01

    Hill County Electric Cooperative Inc. (Hill County) proposes to construct and operate a 69-kV transmission line from its North Gildford Substation in Montana north to the Canadian border. A vicinity project area map is enclosed as a figure. TransCanada Power Corporation (TCP), a Canadian power-marketing company, will own and construct the connecting 69-kV line from the international border to Express Pipeline`s pump station at Wild Horse, Alberta. This Environmental Assessment is prepared for the Department of Energy (DOE) as lead federal agency to comply with the requirements of the National Environmental Policy Act (NEPA), as part of DOE`s review and approval process of the applications filed by Hill County for a DOE Presidential Permit and License to Export Electricity to a foreign country. The purpose of the proposed line is to supply electric energy to a crude oil pump station in Canada, owned by Express Pipeline Ltd. (Express). The pipeline would transport Canadian-produced oil from Hardisty, Alberta, Canada, to Caster, Wyoming. The Express Pipeline is scheduled to be constructed in 1996--97 and will supply crude oil to refineries in Wyoming and the midwest.

  2. ELECTRICAL SUBSTATION RELIABILITY EVALUATION WITH EMPHASIS ON EVOLVING INTERDEPENDENCE ON COMMUNICATION INFRASTRUCTURE.

    SciTech Connect

    AZARM,M.A.BARI,R.A.MUSICKI,Z.

    2004-01-15

    The objective of this study is to develop a methodology for a probabilistic assessment of the reliability and security of electrical energy distribution networks. This includes consideration of the future grid system, which will rely heavily on the existing digitally based communication infrastructure for monitoring and protection. Another important objective of this study is to provide information and insights from this research to Consolidated Edison Company (Con Edison) that could be useful in the design of the new network segment to be installed in the area of the World Trade Center in lower Manhattan. Our method is microscopic in nature and relies heavily on the specific design of the portion of the grid being analyzed. It extensively models the types of faults that a grid could potentially experience, the response of the grid, and the specific design of the protection schemes. We demonstrate that the existing technology can be extended and applied to the electrical grid and to the supporting communication network. A small subsection of a hypothetical grid based on the existing New York City electrical grid system of Con Edison is used to demonstrate the methods. Sensitivity studies show that in the current design the frequency for the loss of the main station is sensitive to the communication network reliability. The reliability of the communication network could become a more important contributor to the electrical grid reliability as the utilization of the communication network significantly increases in the near future to support ''smart'' transmission and/or distributed generation. The identification of potential failure modes and their likelihood can support decisions on potential modifications to the network including hardware, monitoring instrumentation, and protection systems.

  3. Notices

    Energy Saver

    Pumping Plant Switchyard- Windy Gap Substation Transmission Line Rebuild, Grand ... Switchyard-Windy Gap Substation (Project) transmission line in Grand County, Colorado. ...

  4. One West Third Street Tulsa, Oklahoma

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... alongside many of the agency's substation and transmission crews and ... has served as the Section Chief for Substation and Transmission Engineering, managing ...

  5. Down hole transmission system

    DOEpatents

    Hall, David R. (Provo, UT); Hall, Jr., H. Tracy (Provo, UT)

    2007-07-24

    A transmission system in a downhole component comprises a data transmission element in both ends of the downhole component. Each data transmission element houses an electrically conducting coil in a MCEI circular trough. The electrically conducting coil comprises at least two generally fractional loops. In the preferred embodiment, the transmission elements are connected by an electrical conductor. Preferably, the electrical conductor is a coaxial cable. Preferably, the MCEI trough comprises ferrite. In the preferred embodiment, the fractional loops are connected by a connecting cable. In one aspect of the present invention, the connecting cable is a pair of twisted wires. In one embodiment the connecting cable is a shielded pair of twisted wires. In another aspect of the present invention, the connecting cable is a coaxial cable. The connecting cable may be disposed outside of the MCEI circular trough.

  6. Downhole transmission system

    DOEpatents

    Hall, David R.; Fox, Joe

    2008-01-15

    A transmission system in a downhole component comprises a data transmission element in both ends of the downhole component. Each data transmission element houses an electrically conducting coil in a MCEI circular trough. An electrical conductor connects both the transmission elements. The electrical conductor comprises at least three electrically conductive elements insulated from each other. In the preferred embodiment the electrical conductor comprises an electrically conducting outer shield, an electrically conducting inner shield and an electrical conducting core. In some embodiments of the present invention, the electrical conductor comprises an electrically insulating jacket. In other embodiments, the electrical conductor comprises a pair of twisted wires. In some embodiments, the electrical conductor comprises semi-conductive material.

  7. Transmission Grid Integration

    Energy.gov [DOE]

    The levels of solar energy penetration envisioned by the DOE SunShot Initiative must be interconnected effectively onto the transmission grid. This interconnection requires an in-depth...

  8. Transmission SEAB Presentation

    Energy.gov [DOE] (indexed site)

    "05 * Nine Agency MOU - Oct. 2009 * Transmission Cabinet * Designated 7 Pilot Projects DOD CEQ FERC USDA DOE ACHP EPA DOI DOC RRTT Pilot Projects RRTT Rapid Response Team for ...

  9. EIS-0411: Transmission Agency of Northern California Transmission Project

    Energy.gov [DOE]

    This EIS is for the Western Area Power Administration construction, operation, and maintenance of the proposed transmission agency of Northern California Transmission Project, California.

  10. Transmission Infrastructure Program

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    TRANSMISSION INFRASTRUCTURE PROGRAM DOE Tribal Energy Summit 2015 SECRETARYOF ENERGY'S FINANCING ROUNDTABLE Tracey A. LeBeau Senior Vice President & Transmission Infrastructure Program Manager 1 Program Description Western's Loan Authority * $3.25 billion permanent authority (revolving) * Goal: Attract investment in infrastructure & address market needs * Commercial underwriting standards TIP Portfolio Management Fundamentals * Reflective of Market Need(s) * Ensure Funds Revolve 2 Recent

  11. National transmission grid study

    SciTech Connect

    Abraham, Spencer

    2003-05-31

    The National Energy Policy Plan directed the U.S. Department of Energy (DOE) to conduct a study to examine the benefits of establishing a national electricity transmission grid and to identify transmission bottlenecks and measures to address them. DOE began by conducting an independent analysis of U.S. electricity markets and identifying transmission system bottlenecks using DOE’s Policy Office Electricity Modeling System (POEMS). DOE’s analysis, presented in Section 2, confirms the central role of the nation’s transmission system in lowering costs to consumers through increased trade. More importantly, DOE’s analysis also confirms the results of previous studies, which show that transmission bottlenecks and related transmission system market practices are adding hundreds of millions of dollars to consumers’ electricity bills each year. A more detailed technical overview of the use of POEMS is provided in Appendix A. DOE led an extensive, open, public input process and heard a wide range of comments and recommendations that have all been considered.1 More than 150 participants registered for three public workshops held in Detroit, MI (September 24, 2001); Atlanta, GA (September 26, 2001); and Phoenix, AZ (September 28, 2001).

  12. Transmission Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    DOE Grid Tech Team » Activities/Outreach » GTT Activities » Transmission Workshop Transmission Workshop Transmission Workshop GTT Transmission Workshop - November 1-2, 2012 On November 1-2, 2012, the GTT presented a workshop on grid integration on the transmission system at the DoubleTree Crystal City near Washington, DC. A draft of the DOE Action Plan Addressing the Electricity Transmission System was discussed during the workshop, which addressed the challenges and opportunities presented

  13. ITC Transmission | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    ITC Transmission Jump to: navigation, search Name: ITC Transmission Place: Michigan Phone Number: Western Michigan Office: (269) 792-7223 -- Northern Michigan Office: (989)...

  14. Transmission SEAB Presentation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Transmission SEAB Presentation Transmission SEAB Presentation PDF icon Transmission SEAB Presentation More Documents & Publications Before House Natural Resources Committee QER - ...

  15. Storage & Transmission Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Storage & Transmission Projects Storage & Transmission Projects Storage & Transmission Projects Storage & Transmission Projects Storage & Transmission Projects Storage & Transmission Projects Storage & Transmission Projects Storage & Transmission Projects STORAGE & TRANSMISSION 2 PROJECTS in 2 LOCATIONS 600 MW TRANSMISSION CAPACITY 235 MILES TRANSMISSION LENGTH 20 MW STORAGE / DISCHARGE CAPACITY ALL FIGURES AS OF MARCH 2015 STORAGE & TRANSMISSION

  16. Hybrid Transmission Corridor study

    SciTech Connect

    Clairmont, B.A.; Johnson, G.B.; Zaffanella, L.E. )

    1992-06-01

    Hybrid Transmission Corridors are areas where High Voltage Alternating Current (HVAC) transmission lines and High Voltage Direct Current (HVDC) transmission lines exist in close proximity of each other. Because of the acceptance of HVDC as a means of transporting electric power over long distances and the difficulties associated with obtaining new right-of-ways, HVDC lines may have to share the same transmission corridor with HVAC lines. The interactions between conductors energized with different types of voltages causes changes in the electrical stresses applied to the conductors and insulators. As a result, corona phenomena, field effects and insulation performance can be affected. This report presents the results of an investigation of the HVAC-HVDC interaction and its effect on corona and AC and DC electric field phenomena. The method of investigation was based on calculation methods developed at the EPRI High Voltage Transmission Research Center (HVTRC) and supported by the results of full and reduced-scale line tests. Also, a survey of existing hybrid corridors is given along with the results of measurements made at one of those corridors. A number of examples in which an existing AC corridor may be transformed into a hybrid corridor are discussed. The main result of the research is an analytical/empirical model for predicting the electrical/environmental performance of hybrid corridors, a definition of ACDC interaction and a set of criteria for specifying when the interaction becomes significant, and a set of design rules.

  17. Transmission line capital costs

    SciTech Connect

    Hughes, K.R.; Brown, D.R.

    1995-05-01

    The displacement or deferral of conventional AC transmission line installation is a key benefit associated with several technologies being developed with the support of the U.S. Department of Energy`s Office of Energy Management (OEM). Previous benefits assessments conducted within OEM have been based on significantly different assumptions for the average cost per mile of AC transmission line. In response to this uncertainty, an investigation of transmission line capital cost data was initiated. The objective of this study was to develop a database for preparing preliminary estimates of transmission line costs. An extensive search of potential data sources identified databases maintained by the Bonneville Power Administration (BPA) and the Western Area Power Administration (WAPA) as superior sources of transmission line cost data. The BPA and WAPA data were adjusted to a common basis and combined together. The composite database covers voltage levels from 13.8 to 765 W, with cost estimates for a given voltage level varying depending on conductor size, tower material type, tower frame type, and number of circuits. Reported transmission line costs vary significantly, even for a given voltage level. This can usually be explained by variation in the design factors noted above and variation in environmental and land (right-of-way) costs, which are extremely site-specific. Cost estimates prepared from the composite database were compared to cost data collected by the Federal Energy Regulatory Commission (FERC) for investor-owned utilities from across the United States. The comparison was hampered because the only design specifications included with the FERC data were voltage level and line length. Working within this limitation, the FERC data were not found to differ significantly from the composite database. Therefore, the composite database was judged to be a reasonable proxy for estimating national average costs.

  18. Printed circuit dispersive transmission line

    DOEpatents

    Ikezi, H.; Lin-Liu, Y.R.; DeGrassie, J.S.

    1991-08-27

    A printed circuit dispersive transmission line structure is disclosed comprising an insulator, a ground plane formed on one surface of the insulator, a first transmission line formed on a second surface of the insulator, and a second transmission line also formed on the second surface of the insulator and of longer length than the first transmission line and periodically intersecting the first transmission line. In a preferred embodiment, the transmission line structure exhibits highly dispersive characteristics by designing the length of one of the transmission line between two adjacent periodic intersections to be longer than the other. 5 figures.

  19. Printed circuit dispersive transmission line

    DOEpatents

    Ikezi, Hiroyuki; Lin-Liu, Yuh-Ren; DeGrassie, John S.

    1991-01-01

    A printed circuit dispersive transmission line structure is disclosed comprising an insulator, a ground plane formed on one surface of the insulator, a first transmission line formed on a second surface of the insulator, and a second transmission line also formed on the second surface of the insulator and of longer length than the first transmission line and periodically intersecting the first transmission line. In a preferred embodiment, the transmission line structure exhibits highly dispersive characteristics by designing the length of one of the transmission line between two adjacent periodic intersections to be longer than the other.

  20. Autonomous data transmission apparatus

    DOEpatents

    Kotlyar, Oleg M. (4675 W. 3825 S, Salt Lake City, UT 84120)

    1997-01-01

    A autonomous borehole data transmission apparatus for transmitting measurement data from measuring instruments at the downhole end of a drill string by generating pressure pulses utilizing a transducer longitudinally responsive to magnetic field pulses caused by electrical pulses corresponding to the measured downhole parameters.

  1. Autonomous data transmission apparatus

    DOEpatents

    Kotlyar, O.M.

    1997-03-25

    A autonomous borehole data transmission apparatus is described for transmitting measurement data from measuring instruments at the downhole end of a drill string by generating pressure pulses utilizing a transducer longitudinally responsive to magnetic field pulses caused by electrical pulses corresponding to the measured downhole parameters. 4 figs.

  2. Borehole data transmission apparatus

    DOEpatents

    Kotlyar, Oleg M.

    1993-01-01

    A borehole data transmission apparatus whereby a centrifugal pump impeller(s) is used to provide a turbine stage having substantial pressure characteristics in response to changing rotational speed of a shaft for the pressure pulsing of data from the borehole through the drilling mud to the surface of the earth.

  3. Borehole data transmission apparatus

    DOEpatents

    Kotlyar, O.M.

    1993-03-23

    A borehole data transmission apparatus is described whereby a centrifugal pump impeller(s) is used to provide a turbine stage having substantial pressure characteristics in response to changing rotational speed of a shaft for the pressure pulsing of data from the borehole through the drilling mud to the surface of the earth.

  4. Big George to Carter Mountain 115-kV transmission line project, Park and Hot Springs Counties, Wyoming. Environmental Assessment

    SciTech Connect

    Not Available

    1994-02-01

    The Western Area Power Administration (Western) is proposing to rebuild, operate, and maintain a 115-kilovolt (kV) transmission line between the Big George and Carter Mountain Substations in northwest Wyoming (Park and Hot Springs Counties). This environmental assessment (EA) was prepared in compliance with the National Environmental Policy Act (NEPA) and the regulations of the Council on Environmental Quality (CEQ) and the Department of Energy (DOE). The existing Big George to Carter Mountain 69-kV transmission line was constructed in 1941 by the US Department of Interior, Bureau of Reclamation, with 1/0 copper conductor on wood-pole H-frame structures without an overhead ground wire. The line should be replaced because of the deteriorated condition of the wood-pole H-frame structures. Because the line lacks an overhead ground wire, it is subject to numerous outages caused by lightning. The line will be 54 years old in 1995, which is the target date for line replacement. The normal service life of a wood-pole line is 45 years. Under the No Action Alternative, no new transmission lines would be built in the project area. The existing 69-kV transmission line would continue to operate with routine maintenance, with no provisions made for replacement.

  5. Drill string transmission line

    DOEpatents

    Hall, David R.; Hall, Jr., H. Tracy; Pixton, David S.; Bradford, Kline; Fox, Joe

    2006-03-28

    A transmission line assembly for transmitting information along a downhole tool comprising a pin end, a box end, and a central bore traveling between the pin end and the box end, is disclosed in one embodiment of the invention as including a protective conduit. A transmission line is routed through the protective conduit. The protective conduit is routed through the central bore and the ends of the protective conduit are routed through channels formed in the pin end and box end of the downhole tool. The protective conduit is elastically forced into a spiral or other non-linear path along the interior surface of the central bore by compressing the protective conduit to a length within the downhole tool shorter than the protective conduit.

  6. Transmission and Storage Operations

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Transmission and Storage Operations Natural Gas Infrastructure R&D and Methane Mitigation Workshop Mary Savalle, PMP, LSSGB Compression Reliability Engineer November 12, 2014 Agenda * DTE Gas Snapshot * NOx & CO - Combustion stability * Methane - Packing - Blowdowns * Capture vs Flare 2 SNAPSHOT * DTE Gas - 41 Units * Age Range: 8-59yrs (Average 45yrs) - 118,200HP * 1,000-15,000HP - 7 different manufacturers * Cooper-Bessemer, Solar, Waukesha, DeLaval, IR, CAT, Ariel - Complete Mixture *

  7. Appendix TFIELD: Transmissivity Fields

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Appendix TFIELD-2014 Transmissivity Fields United States Department of Energy Waste Isolation Pilot Plant Carlsbad Field Office Carlsbad, New Mexico Compliance Recertification Application 2014 Appendix TFIELD-2014 Table of Contents TFIELD-1.0 Overview of the T-field Development, Calibration, and Mining Modification Process TFIELD-2.0 Geologic Data TFIELD-2.1 Culebra Hydrogeologic Setting TFIELD-2.2 Refinement of Geologic Boundaries TFIELD-2.2.1 Rustler Halite Margins TFIELD-2.2.2 Salado

  8. EIS-0400: Final Environmental Impact Statement

    Office of Energy Efficiency and Renewable Energy (EERE)

    Granby Pumping Plant Switchyard-Windy Gap Substation Transmission Line Rebuild Project, Grand County, CO

  9. EIS-0400: Draft Environmental Impact Statement

    Office of Energy Efficiency and Renewable Energy (EERE)

    Granby Pumping Plant Switchyard-Windy Gap Substation Transmission Line Rebuild Project, Grand County, CO

  10. EIS-0400: EPA Notice of Availability of a Draft Environmental Impact Statement

    Office of Energy Efficiency and Renewable Energy (EERE)

    Grandby Pumping Plant Switchyard Windy Gap Substation Transmission Line Rebuild Project, Grand County, CO

  11. EIS-0400: EPA Notice of Availability of Final Environmental Impact Statement

    Energy.gov [DOE]

    Granby Pumping Plant Switchyard-Windy Gap Substation Transmission Line Rebuild Project, Grand County, CO

  12. GTT 2012 Transmission Workshop- Documents

    Energy.gov [DOE]

    Use the links below to download documents from the GTT's Transmission Workshop, held November 1-2, 2012

  13. Electricity Transmission, A Primer | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Transmission, A Primer Electricity Transmission, A Primer This primer on electric transmission is intended to help policymakers understand the physics of the transmission system, the economics, and the policies. Electricity Transmission, A Primer (1.95 MB) More Documents & Publications Draft Chapter 4: Transmission Adequacy Electricity Grid Basics Webinar Presentation Slides and Text Version Chapter 4 Transmission Adequacy

  14. EIS-0267: BPA/Lower Valley Transmission System Reinforcement Project, Wyoming

    Energy.gov [DOE]

    This EIS analyzes BPA and LVPL proposal to construct a new 115-kV line from BPA’s Swan Valley Substation near Swan Valley in Bonneville County, Idaho about 58 km (36 miles) east to BPA’s Teton Substation near Jackson in Teton County, Wyoming.

  15. SANDIA REPORT

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... The LTC source voltage is a function of the transmission voltage at the substation and the voltage drop across the substation transformer. Power flow studies on the distribution ...

  16. US Department of Energy

    Energy.gov [DOE] (indexed site)

    ... Proposed transmission system upgrade; new substation, existing substation additions, etc. ... Malheur Wildlife Area Jonesboro Diversion Replacement Project (DOEEA-1194) EA 112012 ...

  17. Automated manual transmission clutch controller

    DOEpatents

    Lawrie, Robert E.; Reed, Jr., Richard G.; Rausen, David J.

    1999-11-30

    A powertrain system for a hybrid vehicle. The hybrid vehicle includes a heat engine, such as a diesel engine, and an electric machine, which operates as both an electric motor and an alternator, to power the vehicle. The hybrid vehicle also includes a manual-style transmission configured to operate as an automatic transmission from the perspective of the driver. The engine and the electric machine drive an input shaft which in turn drives an output shaft of the transmission. In addition to driving the transmission, the electric machine regulates the speed of the input shaft in order to synchronize the input shaft during either an upshift or downshift of the transmission by either decreasing or increasing the speed of the input shaft. When decreasing the speed of the input shaft, the electric motor functions as an alternator to produce electrical energy which may be stored by a storage device. Operation of the transmission is controlled by a transmission controller which receives input signals and generates output signals to control shift and clutch motors to effect smooth launch, upshift shifts, and downshifts of the transmission, so that the transmission functions substantially as an automatic transmission from the perspective of the driver, while internally substantially functioning as a manual transmission.

  18. 2015 National Electric Transmission Congestion Study | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    2015 National Electric Transmission Congestion Study 2015 National Electric Transmission Congestion Study 2015 National Electric Transmission Congestion Study Section 1221(a) of ...

  19. Bordertown to California Transmission | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Transmission EIS Bordertown to California 120kV Transmission Line Project Environmental Impact Statement General NEPA Document Info Energy Sector Transmission Environmental...

  20. RAPID/Bulk Transmission | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Page Edit History RAPIDBulk Transmission < RAPID(Redirected from RAPIDOverviewBulkTransmission) Redirect page Jump to: navigation, search REDIRECT RAPIDBulkTransmission...

  1. Electricity Transmission, A Primer | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Electricity Transmission, A Primer Electricity Transmission, A Primer This primer on electric transmission is intended to help policymakers understand the physics of the...

  2. Colorado Electrical Transmission Grid

    DOE Data Explorer

    Zehner, Richard E.

    2012-02-01

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Originator: Xcel Energy Publication Date: 2012 Title: Colorado XcelEnergy NonXcel Transmission Network Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains transmission network of Colorado Spatial Domain: Extent: Top: 4540689.017558 m Left: 160606.141934 m Right: 758715.946645 m Bottom: 4098910.893397m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS’1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System ’1984 (WGS ’1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shapefile

  3. Dynamic Transmission Electron Microscopy

    SciTech Connect

    Evans, James E.; Jungjohann, K. L.; Browning, Nigel D.

    2012-10-12

    Dynamic transmission electron microscopy (DTEM) combines the benefits of high spatial resolution electron microscopy with the high temporal resolution of ultrafast lasers. The incorporation of these two components into a single instrument provides a perfect platform for in situ observations of material processes. However, previous DTEM applications have focused on observing structural changes occurring in samples exposed to high vacuum. Therefore, in order to expand the pump-probe experimental regime to more natural environmental conditions, in situ gas and liquid chambers must be coupled with Dynamic TEM. This chapter describes the current and future applications of in situ liquid DTEM to permit time-resolved atomic scale observations in an aqueous environment, Although this chapter focuses mostly on in situ liquid imaging, the same research potential exists for in situ gas experiments and the successful integration of these techniques promises new insights for understanding nanoparticle, catalyst and biological protein dynamics with unprecedented spatiotemporal resolution.

  4. EIS-0451: Notice of Intent to Prepare an Environmental Impact...

    Energy.gov [DOE] (indexed site)

    transmission line and a 138115-kV substation (collectively referred to as the Hooper Springs Project). The new BPA substation would be called Hooper Springs Substation and would...

  5. 2012 National Electric Transmission Congestion Study: Presentation...

    Energy Saver

    2012 National Electric Transmission Congestion Study: Presentation from Congestion Study Webinar Series 2012 National Electric Transmission Congestion Study: Presentation from...

  6. Transmission Planning | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Planning Transmission Planning Modernizing America's electricity infrastructure is one of the U.S. Department of Energy's top priorities. The National Transmission Grid Study made clear that without dramatic improvements and upgrades over the next decade our nation's transmission system will fall short of the reliability standards our economy requires, and will result in higher electricity costs to consumers. The Department's research into a variety of tools that will improve advanced system

  7. Vice President, Transmission System Operations

    Energy.gov [DOE]

    The VP for Transmission System Operations provides strategic leadership, direction, and oversight of the people, business processes, and systems that are responsible for the safe, reliable, and...

  8. Transmission Expansion in the Midwest

    Energy.gov [DOE]

    At this unique forum, participants will hear top executives from the area's RTOs, utilities, transmission developers, and state regulatory agencies discuss and debate the most critical issues...

  9. AGENDA: PETROLEUM PRODUCT TRANSMISSION & DISTRIBUTION

    Office of Energy Efficiency and Renewable Energy (EERE)

    The agenda for the Quadrennial Energy Review (QER) public stakeholder meeting in New Orleans on petroleum product transmission, distribution, and storage.

  10. DOE Electricity Transmission System Workshop

    Energy.gov [DOE] (indexed site)

    ... Activities can span from basic R&D through demonstration projects. Parallel Breakout Sessions (see white paper: "DOE Action Plan Addressing the Electricity Transmission System") ...

  11. NREL: Transmission Grid Integration - News

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    The National Renewable Energy Laboratory (NREL) will be strongly supporting this ... Archives 2015 | 2014 Printable Version Transmission Grid Integration Home Issues Projects ...

  12. NREL: Transmission Grid Integration - Webmaster

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Your message: Send Message Printable Version Transmission Grid Integration Home Issues ... NREL is a national laboratory of the U.S. Department of Energy, Office of Energy ...

  13. Small passenger car transmission test: Chevrolet Luv transmission

    SciTech Connect

    Bujold, M.P.

    1980-06-01

    The small passenger car transmission test was initiated to supply electric vehicle manufacturers with technical information regarding the performance of commercially available transmissions. This information would enable EV manufacturers to design a more energy efficient vehicle. With this information the manufacturers would be able to estimate vehicle driving range as well as speed and torque requirements for specific roadload performance characteristics. This report covers the 1978 Chevrolet Luv Truck manual transmission. This transmission was tested per a passenger car automatic transmission test code (SAE J65lb) which required drive performance, coast performance, and no load test conditions. The portion of the test code which involved the throttle valve modulation and line pressure were deleted since they did not apply to the manual transmission. Under these test conditions the transmission attained maximum efficiencies in the upper 90% range at rated load for both drive performance tests and coast performance tests. The major results of this test are the torque speed and efficiency curves which are located in the data section of this report. These graphs map the complete performance characteristics for the Chevrolet Luv Truck Manual transmission. This information will facilitate the vehicle manufacturer in the design of a more energy efficient vehicle.

  14. Microsoft PowerPoint - Schatz Materials Research in T&D [Read...

    Office of Environmental Management (EM)

    Transformers Other Substation Equipment 5 Transmission Infrastructure 6 Transmission System Applications Distribution System Applications Sensors - - - Everywhere Discussion

  15. Acoustic data transmission method

    SciTech Connect

    Duckworth, A.

    1991-09-17

    This patent describes a method for transmitting time line data through a drillstring having drill pipe sections connected end-to-end by joints from a first location below the surface of the earth to a second location at or near the surface of the earth, the length and cross-sectional area of the drill pipe sections being different from the length and cross-sectional area of the joints. It comprises generating acoustic data signals having a single frequency content in at least one passband of the drillstring; transmitting the data signals through the drillstring from either the first location to the second location or from the second location to the first location during a time period prior to the onset of reflective interference caused by the data signals reflecting from along the length of the drillstring, the time period being equal to or less than the time for the data signals to travel three lengths of the drillstring; stopping the transmission of data signals at the onset of the reflective interference and allowing the acoustic signals to substantially attenuate; and detecting the data signals at the respective first or second location.

  16. EC Transmission Line Materials

    SciTech Connect

    Bigelow, Tim S

    2012-05-01

    The purpose of this document is to identify materials acceptable for use in the US ITER Project Office (USIPO)-supplied components for the ITER Electron cyclotron Heating and Current Drive (ECH&CD) transmission lines (TL), PBS-52. The source of material property information for design analysis shall be either the applicable structural code or the ITER Material Properties Handbook. In the case of conflict, the ITER Material Properties Handbook shall take precedence. Materials selection, and use, shall follow the guidelines established in the Materials Assessment Report (MAR). Materials exposed to vacuum shall conform to the ITER Vacuum Handbook. [Ref. 2] Commercial materials shall conform to the applicable standard (e.g., ASTM, JIS, DIN) for the definition of their grade, physical, chemical and electrical properties and related testing. All materials for which a suitable certification from the supplier is not available shall be tested to determine the relevant properties, as part of the procurement. A complete traceability of all the materials including welding materials shall be provided. Halogenated materials (example: insulating materials) shall be forbidden in areas served by the detritiation systems. Exceptions must be approved by the Tritium System and Safety Section Responsible Officers.

  17. HVDC power transmission technology assessment

    SciTech Connect

    Hauth, R.L.; Tatro, P.J.; Railing, B.D.; Johnson, B.K.; Stewart, J.R.; Fink, J.L.

    1997-04-01

    The purpose of this study was to develop an assessment of the national utility system`s needs for electric transmission during the period 1995-2020 that could be met by future reduced-cost HVDC systems. The assessment was to include an economic evaluation of HVDC as a means for meeting those needs as well as a comparison with competing technologies such as ac transmission with and without Flexible AC Transmission System (FACTS) controllers. The role of force commutated dc converters was to be assumed where appropriate. The assessment begins by identifying the general needs for transmission in the U.S. in the context of a future deregulated power industry. The possible roles for direct current transmission are then postulated in terms of representative scenarios. A few of the scenarios are illustrated with the help of actual U.S. system examples. non-traditional applications as well as traditional applications such as long lines and asynchronous interconnections are discussed. The classical ``break-even distance`` concept for comparing HVDC and ac lines is used to assess the selected scenarios. The impact of reduced-cost converters is reflected in terms of the break-even distance. This report presents a comprehensive review of the functional benefits of HVDC transmission and updated cost data for both ac and dc system components. It also provides some provocative thoughts on how direct current transmission might be applied to better utilize and expand our nation`s increasingly stressed transmission assets.

  18. Direct current power transmission systems

    SciTech Connect

    Padiyar, K.R.

    1991-01-01

    This book represents text on HVDC transmission available. It deals with the various aspects of the state of the art in HVDC transmission technology. This book presents many aspects of interactions of AC/DC systems. Modeling and analysis of DC systems are also discussed in detail.

  19. Completed Transmission and Distribution Projects

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Completed Transmission and Distribution Projects Inspection Technologies | Remote Sensing Technologies | Materials Development | Operational Technologies Completed Transmission & Distribution Projects Project Number Project Name Primary Performer DE-AM26-05NT42653 Conceptual Engineering/Socioeconomic Impact Study-Alaska Spur Pipeline ASRC Constructors, Inc. Completed Inspection Technologies DE-NT-0004654 The Instrumented Pipeline Initiative Concurrent Technologies Corporation

  20. Energy Transmission and Infrastructure

    SciTech Connect

    Mathison, Jane

    2012-12-31

    The objective of Energy Transmission and Infrastructure Northern Ohio (OH) was to lay the conceptual and analytical foundation for an energy economy in northern Ohio that will: • improve the efficiency with which energy is used in the residential, commercial, industrial, agricultural, and transportation sectors for Oberlin, Ohio as a district-wide model for Congressional District OH-09; • identify the potential to deploy wind and solar technologies and the most effective configuration for the regional energy system (i.e., the ratio of distributed or centralized power generation); • analyze the potential within the district to utilize farm wastes to produce biofuels; • enhance long-term energy security by identifying ways to deploy local resources and building Ohio-based enterprises; • identify the policy, regulatory, and financial barriers impeding development of a new energy system; and • improve energy infrastructure within Congressional District OH-09. This objective of laying the foundation for a renewable energy system in Ohio was achieved through four primary areas of activity: 1. district-wide energy infrastructure assessments and alternative-energy transmission studies; 2. energy infrastructure improvement projects undertaken by American Municipal Power (AMP) affiliates in the northern Ohio communities of Elmore, Oak Harbor, and Wellington; 3. Oberlin, OH-area energy assessment initiatives; and 4. a district-wide conference held in September 2011 to disseminate year-one findings. The grant supported 17 research studies by leading energy, policy, and financial specialists, including studies on: current energy use in the district and the Oberlin area; regional potential for energy generation from renewable sources such as solar power, wind, and farm-waste; energy and transportation strategies for transitioning the City of Oberlin entirely to renewable resources and considering pedestrians, bicyclists, and public transportation as well as drivers

  1. Regional Transmission Projects: Finding Solutions

    SciTech Connect

    The Keystone Center

    2005-06-15

    The Keystone Center convened and facilitated a year-long Dialogue on "Regional Transmission Projects: Finding Solutions" to develop recommendations that will help address the difficult and contentious issues related to expansions of regional electric transmission systems that are needed for reliable and economic transmission of power within and across regions. This effort brought together a cross-section of affected stakeholders and thought leaders to address the problem with the collective wisdom of their experience and interests. Transmission owners sat at the table with consumer advocates and environmental organizations. Representatives from regional transmission organizations exchanged ideas with state and federal regulators. Generation developers explored common interests with public power suppliers. Together, the Dialogue participants developed consensus solutions about how to begin unraveling some of the more intractable issues surrounding identification of need, allocation of costs, and reaching consensus on siting issues that can frustrate the development of regional transmission infrastructure. The recommendations fall into three broad categories: 1. Recommendations on appropriate institutional arrangements and processes for achieving regional consensus on the need for new or expanded transmission infrastructure 2. Recommendations on the process for siting of transmission lines 3. Recommendations on the tools needed to support regional planning, cost allocation, and siting efforts. List of Dialogue participants: List of Dialogue Participants: American Electric Power American Transmission Company American Wind Energy Association California ISO Calpine Corporation Cinergy Edison Electric Institute Environmental Defense Federal Energy Regulatory Commission Great River Energy International Transmission Company ISO-New England Iowa Public Utility Board Kanner & Associates Midwest ISO National Association of Regulatory Utility Commissioners National Association

  2. Joint HVAC Transmission EMF Environmental Study : Final Report on Experiment 1.

    SciTech Connect

    United States. Bonneville Power Administration; Oregon Regional Primate Research Center

    1992-05-01

    This document describes the rationale, procedures, and results of a carefully controlled study conducted to establish whether chronic exposure of female (ewe) Suffolk lambs to the environment of a 500-kV 60-Hz transmission line would affect various characteristics of growth, endocrine function, and reproductive development. This experiment used identical housing and management schemes for control and line-exposed ewes, thus minimizing these factors as contributors to between-group experimental error. Further, throughout the 10-month duration of this study, changes in electric and magnetic fields, audible noise, and weather conditions were monitored continuously by a computerized system. Such measurements provided the opportunity to identify any relationship between environmental factors and biological responses. Because of reports in the literature that electric and magnetic fields alter concentrations of melatonin in laboratory animals, the primary objective of this study was to ascertain whether a similar effect occurs in lambs exposed to a 500-kV a-c line in a natural setting. In addition, onset of puberty, changes in body weight, wool growth, and behavior were monitored. To determine whether the environment of a 500-kV line caused stress in the study animals, serum levels of cortisol were measured. The study was conducted at Bonneville Power Administration`s Ostrander Substation near Estacada, Oregon.

  3. Transmission level instrument transformers and transient event recorders characterization for harmonic measurements

    SciTech Connect

    Meliopoulos, A.P.S.; Zhang, Fan ); Cokkinides, G.J. ); Coffeen, L.; Burnett, R.; McBride, J. ); Zelingher, S.; Stillman, G.

    1993-07-01

    This paper presents a technique for laboratory characterization of instrument transformers designed for transmission level voltage and current measurements. The technique is also extended to Transient Event Recorders (TERs). The objective of the method is to determine the suitability of existing substation instrument transformers for harmonic measurements, particularly in the frequency range of 60 to 1500 Hz covering the first 25 harmonics. Specifically, the following characteristics are of interest in the frequency range of 60 to 1500 Hz: transfer function magnitude and phase, linearity, and sensitivity of the frequency response to burdens. The measurement technique is based on exciting the instrument transformer primary with an impulsive waveform. Both input and output waveforms are recorded using laboratory grade probes and digitizers. Subsequently, digital signal processing techniques are used to compute the instrument transformer frequency response. Several voltage transformers (both PTs and CCVTs) and current transformers in the 230kV-765kV voltage range were tested. The results of these tests are described in the paper. Conclusions are presented regarding the suitability of the instrument transformers and transient event recorders for harmonic measurement and the requirements for such a system. A quantitative analysis of the measurement accuracy and software based methods to enhance the measurement accuracy is also presented.

  4. Fact #850: December 8, 2014 Automatic Transmissions have closed the Fuel Economy Gap with Manual Transmissions

    Energy.gov [DOE]

    Historically, manual transmissions have delivered better fuel economy than automatic transmissions. However, improvements in the efficiency of automatic transmissions have closed that gap in recent...

  5. Electrical transmission line diametrical retainer

    DOEpatents

    Hall, David R.; Hall, Jr., H. Tracy; Pixton, David; Dahlgren, Scott; Sneddon, Cameron; Briscoe, Michael; Fox, Joe

    2004-12-14

    The invention is a mechanism for retaining an electrical transmission line. In one embodiment of the invention it is a system for retaining an electrical transmission line within down hole components. In accordance with one aspect of the invention, the system includes a plurality of downhole components, such as sections of pipe in a drill string. The system also includes a coaxial cable running between the first and second end of a drill pipe, the coaxial cable having a conductive tube and a conductive core within it. The invention allows the electrical transmission line to with stand the tension and compression of drill pipe during routine drilling cycles.

  6. National Transmission Grid Study: 2002

    Energy.gov [DOE]

    National Transmission Grid Study: The National Energy Policy Plan directed the U.S. Department of Energy (DOE) to conduct a study to examine the benefits of establishing a national electricity...

  7. National Electric Transmission Congestion Studies

    Office of Energy Efficiency and Renewable Energy (EERE)

    Section 216(a) of the Federal Power Act, as amended by the Energy Policy Act of 2005, directs the U.S. Department of Energy (DOE) to conduct a study every three years on electric transmission congestion and constraints within the Eastern and Western Interconnections. The American Reinvestment and Recovery Act of 2009 (Recovery Act) further directed the Secretary to include in the 2009 Congestion Study an analysis of significant potential sources of renewable energy that are constrained by lack of adequate transmission capacity. Based on this study, and comments concerning it from states and other stakeholders, the Secretary of Energy may designate any geographic area experiencing electric transmission capacity constraints or congestion as a national interest electric transmission corridor (National Corridor).

  8. Transmission Services Product Pricing Validation

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    and 09:00 PPT on the above effective date. On October 15, 2013, at 08:00 (PPT), Transmission Services will be updating the OASIS default product prices to reflect the 2014...

  9. Transmission Services Product Pricing Validation

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    and 12:00 PPT on the above effective date. On October 1, 2015, at 11:00 (PPT), Transmission Services will be updating the OASIS default product prices to reflect the 2016...

  10. Bulk Power Generation and Transmission

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Innovative Opportunities Blue lines: Transmission Grid Red lines: Lines that are congested or at outages - in RealTime Yellow and Red iconsdots: Power plant RealTime production ...

  11. Transmission Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    On November 1-2, 2012, the GTT presented a workshop on grid integration on the transmission system at the DoubleTree Crystal City near Washington, DC. A draft of the DOE Action ...

  12. EIS-0231: Navajo Transmission Project

    Energy.gov [DOE]

    This EIS evaluates the environmental impacts of a proposal to by Dine Power Authority, a Navajo Nation enterprise, to construct, operate, and maintain a 500 kilovolt (kV) transmission line planned...

  13. Transmission Reliability | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Transmission Reliability Transmission Reliability Modernizing America's electricity infrastructure is one of the U.S. Department of Energy's top priorities. The DOE Strategic Plan states that today's electric grid needs to be more efficient, reliable, and secure. A modern, smarter electric grid may save consumers money, help our economy run more efficiently, allow rapid growth in renewable energy sources, and enhance energy reliability. The Department's research into a variety of tools that will

  14. The design, construction, and operation of long-distance high-voltage electricity transmission technologies.

    SciTech Connect

    Molburg, J. C.; Kavicky, J. A.; Picel, K. C.

    2008-03-03

    This report focuses on transmission lines, which operate at voltages of 115 kV and higher. Currently, the highest voltage lines comprising the North American power grid are at 765 kV. The grid is the network of transmission lines that interconnect most large power plants on the North American continent. One transmission line at this high voltage was built near Chicago as part of the interconnection for three large nuclear power plants southwest of the city. Lines at this voltage also serve markets in New York and New England, also very high demand regions. The large power transfers along the West Coast are generally at 230 or 500 kV. Just as there are practical limits to centralization of power production, there are practical limits to increasing line voltage. As voltage increases, the height of the supporting towers, the size of the insulators, the distance between conductors on a tower, and even the width of the right-of-way (ROW) required increase. These design features safely isolate the electric power, which has an increasing tendency to arc to ground as the voltage (or electrical potential) increases. In addition, very high voltages (345 kV and above) are subject to corona losses. These losses are a result of ionization of the atmosphere, and can amount to several megawatts of wasted power. Furthermore, they are a local nuisance to radio transmission and can produce a noticeable hum. Centralized power production has advantages of economies of scale and special resource availability (for instance, hydro resources), but centralized power requires long-distance transfers of power both to reach customers and to provide interconnections for reliability. Long distances are most economically served at high voltages, which require large-scale equipment and impose a substantial footprint on the corridors through which power passes. The most visible components of the transmission system are the conductors that provide paths for the power and the towers that keep these

  15. CX-008389: Categorical Exclusion Determination

    Energy.gov [DOE]

    Danger Tree Management on Estes-Pole Hill and Pole Hill-Flatiron 115 Kilovolt Transmission Lines CX(s) Applied: B1.3 Date: 03/09/2012 Location(s): Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

  16. Chapter 4 Transmission Adequacy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    4 Transmission Adequacy Chapter 4 Transmission Adequacy Transmission lines are the critical link between the point of electricity generation and consumers. The U.S. transmission grid infrastructure is owned and operated by approximately 3,000 distribution utilities and 500 transmission owners. This structure presents a distinct set of challenges in transmission planning, siting, cost allocation, grid operations and management, technological innovation, financing and construction. The development

  17. Lone Star Transmission LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Transmission LLC Jump to: navigation, search Name: Lone Star Transmission LLC Place: Juno Beach, Florida Zip: 33408 Product: Wholly owned subsidiary of FPL Energy, developing...

  18. 2006 National Electric Transmission Congestion Study | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Electric Transmission Congestion Study 2006 National Electric Transmission Congestion Study Section 216(a) of the Federal Power Act, as amended by the Energy Policy Act of 2005, ...

  19. 2009 National Electric Transmission Congestion Study | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Electric Transmission Congestion Study 2009 National Electric Transmission Congestion Study Section 216(a) of the Federal Power Act, as amended by the Energy Policy Act of 2005, ...

  20. Transmission Losses Product (pbl/products)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Wind Smoothing and Intertie Service (Pilot) Firstgov Pricing for Transmission Losses Product Bonneville Power Administration (BPA) Power Services offers to sell transmission...

  1. Midwest Independent Transmission System Operator | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Midwest Independent Transmission System Operator Jump to: navigation, search Name: Midwest Independent Transmission System Operator Place: Carmel, IN References: SGIC1 This...

  2. Interconnection-Wide Transmission Planning Initiative: Topic...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    State Agency Input Regarding Electric Resource and Transmission Planning in the Texas Interconnection Interconnection-Wide Transmission Planning Initiative: Topic B, State Agency ...

  3. Interconnection-Wide Transmission Planning Initiative - Meeting...

    Office of Environmental Management (EM)

    Interconnection-Wide Transmission Planning Initiative - Meeting Calendars Interconnection-Wide Transmission Planning Initiative - Meeting Calendars Click on the links below to ...

  4. Transmission Capital Limited | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Transmission Capital Limited Jump to: navigation, search Name: Transmission Capital Limited Place: London, United Kingdom Zip: EC2V 7HR Sector: Renewable Energy, Services Product:...

  5. Great Northern Transmission Line Project Draft Environmental...

    Energy.gov [DOE] (indexed site)

    ... (i.e., gasification island, air separation unit, ... Energy's approximately 10-mile long, 345 kV transmission ... previously constructed three of four 230 kV transmission ...

  6. Southwest Transmission Cooperative, Inc. Smart Grid Project ...

    OpenEI (Open Energy Information) [EERE & EIA]

    syntax: * Display map References ARRA Smart Grid Investment Grants1 Southwest Transmission Cooperative Award2 Southwest Transmission Cooperative, Inc., located in Benson,...

  7. NREL: Transmission Grid Integration Home Page

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Photo of transmission lines with a city in the background. NREL works with electric utilities, energy policymakers, and ... Researchers study transmission and grid integration issues ...

  8. 2006 National Electric Transmission Congestion Study Federal...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    6 National Electric Transmission Congestion Study Federal Register Notice & Comments 2006 National Electric Transmission Congestion Study Federal Register Notice & Comments The...

  9. American Transmission Systems Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    American Transmission Systems Inc Jump to: navigation, search Name: American Transmission Systems Inc Place: Ohio Website: www.atcllc.com Twitter: @amertransco References: EIA...

  10. Electric Transmission Siting | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    OtherOther: Electric Transmission SitingLegal Abstract Brief overview of the California Public Utilities Commission's process for siting of electric transmission lines. Published...

  11. PP-230 International Transmission Company | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    International Transmission Company PP-230 International Transmission Company Presidential permit authorizing International Transmission Company to construct, operate, and maintain ...

  12. Phase 2 Report: Oahu Wind Integration and Transmission Study...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Transmission Interconnection Project Phase 2 Report: Oahu Wind Integration and Transmission Study (OWITS); Hawaiian Islands Transmission Interconnection Project This report ...

  13. Oahu Wind Integration and Transmission Study (OWITS): Hawaiian...

    Energy Saver

    Islands Transmission Interconnection Project Oahu Wind Integration and Transmission Study (OWITS): Hawaiian Islands Transmission Interconnection Project This report provides ...

  14. Reliability centered maintenance (RCM) products - future

    SciTech Connect

    Lyons, P.F.

    1996-08-01

    This paper summarizes products related to RCM of power systems which will soon be available. The titles include: substation RCM handbook and software; substation RCM driven productive maintenance; transmission RCM evaluation; transmission inspection and maintenance workstation; transmission inspection and detection methods; substation RCM implementation and software support; substation maintenance management workstation; transmission RCM handbook and software; transmission inspection and maintenance workstation - TC; distribution RCM handbook and software; transmission RCM implementation and software support; and distribution RCM implementation and software support.

  15. Interconnection Transmission Planning: Awards | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Interconnection Transmission Planning: Awards Interconnection Transmission Planning: Awards List of Interconnection Transmission Planning awards under the American Recovery and Reinvestment Act organized by interconnection including the organization and amount of Recovery Act funding Interconnection Transmission Planning: Awards (39.73 KB) More Documents & Publications EAC Recommendations for DOE Action Regarding Interconnection-Wide Planning - June 6, 2013 Report: Impacts of Demand-Side

  16. Wind Integration, Transmission, and Resource Assessment and

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Characterization Projects | Department of Energy Wind Integration, Transmission, and Resource Assessment and Characterization Projects Wind Integration, Transmission, and Resource Assessment and Characterization Projects This report covers the Wind and Water Power Technologies Office's Wind integration, transmission, and resource assessment and characterization projects from fiscal years 2006 to 2014. Wind Integration, Transmission, and Resource Assessment and Characterization Projects (3.35

  17. Transmission Electron Microscopy | Materials Science | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Transmission Electron Microscopy Photo of NREL researcher using transmission electron microscope. F-20 UT Transmission Electron Microscope. Transmission electron microscopy probes properties of thin foils such as chemistry, microstructure, and crystalline defects. In the conventional transmission electron microscopy (TEM) mode, the condenser lenses of the microscope are adjusted to illuminate the sample with a parallel coherent beam of electrons, usually several µm across. Microphoto taken with

  18. EA-0587: Proposed Amendment to Presidential Permit PP-63 and Associated Modification to 500 kV International Transmission Line: Forbes, Minnesota to Manitoba, Canada

    Energy.gov [DOE]

    This EA evaluates the environmental impacts of Northern States Power Company's  proposal to expand the Forbes Substation in Minnesota.

  19. Power superconducting power transmission cable

    DOEpatents

    Ashworth, Stephen P.

    2003-01-01

    The present invention is for a compact superconducting power transmission cable operating at distribution level voltages. The superconducting cable is a conductor with a number of tapes assembled into a subconductor. These conductors are then mounted co-planarly in an elongated dielectric to produce a 3-phase cable. The arrangement increases the magnetic field parallel to the tapes thereby reducing ac losses.

  20. Power superconducting power transmission cable

    DOEpatents

    Ashworth, Stephen P.

    2003-06-10

    The present invention is for a compact superconducting power transmission cable operating at distribution level voltages. The superconducting cable is a conductor with a number of tapes assembled into a subconductor. These conductors are then mounted co-planarly in an elongated dielectric to produce a 3-phase cable. The arrangement increases the magnetic field parallel to the tapes thereby reducing ac losses.

  1. Transmission

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Volunteers - Sign Up About Science Bowl Curriculum and Activities How to Build a Motor The Great Marble Drop How to Build a Turbine How to Build a Tower Classroom...

  2. Defect tolerant transmission lithography mask

    DOEpatents

    Vernon, Stephen P.

    2000-01-01

    A transmission lithography mask that utilizes a transparent substrate or a partially transparent membrane as the active region of the mask. A reflective single layer or multilayer coating is deposited on the membrane surface facing the illumination system. The coating is selectively patterned (removed) to form transmissive (bright) regions. Structural imperfections and defects in the coating have negligible effect on the aerial image of the mask master pattern since the coating is used to reflect radiation out of the entrance pupil of the imaging system. Similarly, structural imperfections in the clear regions of the membrane have little influence on the amplitude or phase of the transmitted electromagnetic fields. Since the mask "discards," rather than absorbs, unwanted radiation, it has reduced optical absorption and reduced thermal loading as compared to conventional designs. For EUV applications, the mask circumvents the phase defect problem, and is independent of the thermal load during exposure.

  3. Wave transmission over submerged breakwaters

    SciTech Connect

    Kobayashi, N.; Wurjanto, A. )

    1989-09-01

    Monochromatic wave reflection and transmission over a submerged impermeable breakwater is predicted numerically by slightly modifying the numerical model developed previously for predicting wave reflection and run-up on rough or smooth impermeable slopes. The slight modification is related to the landward boundary condition required for the transmitted wave propagating landward. In addition to the conservation equations of mass and momentum used to compute the flow field, an equation of energy is derived to estimate the rate of energy dissipation due to wave breaking. The computed reflection and transmission coefficients are shown to be in agreement with available small-scale test data. The numerical model also predicts the spatial variation of the energy dissipation, the mean water level difference, and the time-averaged volume flux per unit width, although available measurements are not sufficient for evaluating the capabilities and limitations of the numerical model for predicting these quantities.

  4. Midwest Transmission Workshop II Summary

    SciTech Connect

    Kevin Bryan

    2002-12-05

    OAK-B135 After introductions of all participants, Abby Arnold, RESOLVE, reviewed the purpose of the meeting and the agenda. The purpose of the workshop was to share the results of the Midwest Independent System Operator (MISO) scenario development for wind and other fuel sources and the corresponding implications for transmission throughout the MISO control area. The workshop agenda is included in Attachment A.

  5. Coiled transmission line pulse generators

    DOEpatents

    McDonald, Kenneth Fox

    2010-11-09

    Methods and apparatus are provided for fabricating and constructing solid dielectric "Coiled Transmission Line" pulse generators in radial or axial coiled geometries. The pour and cure fabrication process enables a wide variety of geometries and form factors. The volume between the conductors is filled with liquid blends of monomers, polymers, oligomers, and/or cross-linkers and dielectric powders; and then cured to form high field strength and high dielectric constant solid dielectric transmission lines that intrinsically produce ideal rectangular high voltage pulses when charged and switched into matched impedance loads. Voltage levels may be increased by Marx and/or Blumlein principles incorporating spark gap or, preferentially, solid state switches (such as optically triggered thyristors) which produce reliable, high repetition rate operation. Moreover, these Marxed pulse generators can be DC charged and do not require additional pulse forming circuitry, pulse forming lines, transformers, or an a high voltage spark gap output switch. The apparatus accommodates a wide range of voltages, impedances, pulse durations, pulse repetition rates, and duty cycles. The resulting mobile or flight platform friendly cylindrical geometric configuration is much more compact, light-weight, and robust than conventional linear geometries, or pulse generators constructed from conventional components. Installing additional circuitry may accommodate optional pulse shape improvements. The Coiled Transmission Lines can also be connected in parallel to decrease the impedance, or in series to increase the pulse length.

  6. Bonneville Power Administration Transmission System Vegetation Management Program - Final Environmental Impact Statement

    SciTech Connect

    N /A

    2000-06-23

    Bonneville is responsible for maintaining a network of 24,000 kilometers (km) or 15,000 miles (mi.) of electric transmission lines and 350 substations in a region of diverse vegetation. This vegetation can interfere with electric power flow, pose safety problems for us and the public, and interfere with our ability to maintain these facilities. We need to (1) keep vegetation away from our electric facilities; (2) increase our program efficiency and consistency; (3) review herbicide use (under increased public scrutiny); and (4) maximize the range of tools we can use while minimizing environmental impact (Integrated Vegetation Management). This Final Environmental Impact Statement (FEIS) establishes Planning Steps for managing vegetation for specific projects (to be tiered to this Environmental Impact Statement (EIS)). In addition to No Action (current practice), alternatives are presented for Rights-of-way, Electric Yards, and Non-electric Facilities (landscaping, work yards). Four vegetation control methods are analyzed manual, mechanical, herbicide, and biological. Also evaluated are 23 herbicide active ingredients and 4 herbicide application techniques (spot, localized, broadcast, and aerial). For rights-of-way, we consider three sets of alternatives: alternative management approaches (time-driven or establishing low-growing plant communities); alternative method packages; and, if herbicides are in a methods package, alternative vegetation selections (noxious weeds, deciduous, or any vegetation). For electric yards, one herbicide-use alternative is considered. For non-electric facilities, two method package alternatives are considered. For rights-of-way, the environmentally preferred alternative(s) would use manual, mechanical, and biological control methods, as well as spot and localized herbicide applications for noxious and deciduous plant species; the BPA-preferred alternative(s) would add broadcast and aerial herbicide applications, and would use herbicides

  7. Integrated Transmission and Distribution Control

    SciTech Connect

    Kalsi, Karanjit; Fuller, Jason C.; Tuffner, Francis K.; Lian, Jianming; Zhang, Wei; Marinovici, Laurentiu D.; Fisher, Andrew R.; Chassin, Forrest S.; Hauer, Matthew L.

    2013-01-16

    Distributed, generation, demand response, distributed storage, smart appliances, electric vehicles and renewable energy resources are expected to play a key part in the transformation of the American power system. Control, coordination and compensation of these smart grid assets are inherently interlinked. Advanced control strategies to warrant large-scale penetration of distributed smart grid assets do not currently exist. While many of the smart grid technologies proposed involve assets being deployed at the distribution level, most of the significant benefits accrue at the transmission level. The development of advanced smart grid simulation tools, such as GridLAB-D, has led to a dramatic improvement in the models of smart grid assets available for design and evaluation of smart grid technology. However, one of the main challenges to quantifying the benefits of smart grid assets at the transmission level is the lack of tools and framework for integrating transmission and distribution technologies into a single simulation environment. Furthermore, given the size and complexity of the distribution system, it is crucial to be able to represent the behavior of distributed smart grid assets using reduced-order controllable models and to analyze their impacts on the bulk power system in terms of stability and reliability. The objectives of the project were to: • Develop a simulation environment for integrating transmission and distribution control, • Construct reduced-order controllable models for smart grid assets at the distribution level, • Design and validate closed-loop control strategies for distributed smart grid assets, and • Demonstrate impact of integrating thousands of smart grid assets under closed-loop control demand response strategies on the transmission system. More specifically, GridLAB-D, a distribution system tool, and PowerWorld, a transmission planning tool, are integrated into a single simulation environment. The integrated environment

  8. California - Establishing Transmission Project Review Streamlining...

    OpenEI (Open Energy Information) [EERE & EIA]

    Regulatory Guidance - Supplemental Material: California - Establishing Transmission Project Review Streamlining DirectivesPermittingRegulatory GuidanceSupplemental Material...

  9. Transmission Infrastructure Investment Projects (2009) | Department...

    Energy.gov [DOE] (indexed site)

    Transmission Infrastructure Investment Projects (2009) More Documents & Publications Financial Institution Partnership Program - Commercial Technology Renewable Energy Generation...

  10. Washington/Transmission | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Avista, Pacificorp, Puget Sound Energy, Tacoma Public Utilities, Bonneville Power Administration, Columbia Grid, Northern Tier Transmission Group, and Seattle City...

  11. Agenda: Electricity Transmission and Distribution- East

    Energy.gov [DOE]

    Quadrennial Energy Review Public Meeting in Newark, NJ. September 8, 2014. Electricity Transmission and Distribution - Eastern Interconnection

  12. NREL: Transmission Grid Integration - Hawaii Solar Integration...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Wholesale Electricity Market Operations Energy Imbalance Markets FESTIV Model Active Power Controls Generator Modeling Forecasting Grid Simulation Transmission Planning & Analysis

  13. Environmental Recommendations for Transmission Planning | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    generation resources, energy policies, technology costs, impacts on transmission reliability, and emissions is anticipated to facilitate collaborative and comprehensive...

  14. Energy Efficiency, Renewables, Advanced Transmission and Distribution

    Energy Saver

    Technologies (2008) | Department of Energy Renewables, Advanced Transmission and Distribution Technologies (2008) Energy Efficiency, Renewables, Advanced Transmission and Distribution Technologies (2008) Energy Efficiency, Renewables, Advanced Transmission and Distribution Technologies (2008) (408.96 KB) More Documents & Publications Nuclear Power Facilities (2008) Financial Institution Partnership Program - Commercial Technology Renewable Energy Generation Projects Issued: October 7,

  15. Pulse shaping with transmission lines

    DOEpatents

    Wilcox, Russell B.

    1987-01-01

    A method and apparatus for forming shaped voltage pulses uses passive reflection from a transmission line with nonuniform impedance. The impedance of the reflecting line varies with length in accordance with the desired pulse shape. A high voltage input pulse is transmitted to the reflecting line. A reflected pulse is produced having the desired shape and is transmitted by pulse removal means to a load. Light activated photoconductive switches made of silicon can be utilized. The pulse shaper can be used to drive a Pockels cell to produce shaped optical pulses.

  16. Pulse shaping with transmission lines

    DOEpatents

    Wilcox, R.B.

    1985-08-15

    A method and apparatus for forming shaped voltage pulses uses passive reflection from a transmission line with nonuniform impedance. The impedance of the reflecting line varies with length in accordance with the desired pulse shape. A high voltage input pulse is transmitted to the reflecting line. A reflected pulse is produced having the desired shape and is transmitted by pulse removal means to a load. Light activated photoconductive switches made of silicon can be utilized. The pulse shaper can be used to drive a Pockels cell to produce shaped optical pulses.

  17. Energy Smart Reserved Power

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    News & Events Skip navigation links Residential Commercial Industrial Federal Agriculture Hydroelectric facilities, transmission substations, as well as some fish hatcheries...

  18. 010203-DRAFT-FINAL2.indd

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... are crucial components of system reliability, and capacity improvements and ... Southwestern upgrades transmission and substation equipment and components and ...

  19. Pike Electric Corporation | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    27030 Sector: Renewable Energy Product: Pike provides engineering, construction and maintenance for distribution and transmission powerlines, substations, Engineering, Procurement...

  20. EA-2016: Willow Creek Wind Farm; Butte County, South Dakota ...

    Office of Environmental Management (EM)

    associated access roads, a new collector substation, an operations and maintenance facility, temporary staging areas, and associated transmission interconnection facilities. ...

  1. Automated manual transmission mode selection controller

    DOEpatents

    Lawrie, Robert E.

    1999-11-09

    A powertrain system for a hybrid vehicle. The hybrid vehicle includes a heat engine, such as a diesel engine, and an electric machine, which operates as both an electric motor and an alternator, to power the vehicle. The hybrid vehicle also includes a manual-style transmission configured to operate as an automatic transmission from the perspective of the driver. The engine and the electric machine drive an input shaft which in turn drives an output shaft of the transmission. In addition to driving the transmission, the electric machine regulates the speed of the input shaft in order to synchronize the input shaft during either an upshift or downshift of the transmission by either decreasing or increasing the speed of the input shaft. When decreasing the speed of the input shaft, the electric motor functions as an alternator to produce electrical energy which may be stored by a storage device. Operation of the transmission is controlled by a transmission controller which receives input signals and generates output signals to control shift and clutch motors to effect smooth launch, upshift shifts, and downshifts of the transmission, so that the transmission functions substantially as an automatic transmission from the perspective of the driver, while internally substantially functioning as a manual transmission.

  2. Automated manual transmission shift sequence controller

    DOEpatents

    Lawrie, Robert E.; Reed, Richard G.; Rausen, David J.

    2000-02-01

    A powertrain system for a hybrid vehicle. The hybrid vehicle includes a heat engine, such as a diesel engine, and an electric machine, which operates as both, an electric motor and an alternator, to power the vehicle. The hybrid vehicle also includes a manual-style transmission configured to operate as an automatic transmission from the perspective of the driver. The engine and the electric machine drive an input shaft which in turn drives an output shaft of the transmission. In addition to driving the transmission, the electric machine regulates the speed of the input shaft in order to synchronize the input shaft during either an upshift or downshift of the transmission by either decreasing or increasing the speed of the input shaft. When decreasing the speed of the input shaft, the electric motor functions as an alternator to produce electrical energy which may be stored by a storage device. Operation of the transmission is controlled by a transmission controller which receives input signals and generates output signals to control shift and clutch motors to effect smooth launch, upshift shifts, and downshifts of the transmission, so that the transmission functions substantially as an automatic transmission from the perspective of the driver, while internally substantially functioning as a manual transmission.

  3. Open Access Transmission and Renewable Energy Technologies

    SciTech Connect

    Porter, K.

    1996-09-01

    In April 1996, the Federal Regulatory Commission (PERC) approved Orders 888 and 889 and released a draft rule for public comment on capacity reservation tariffs (CRTs). Order No. 888 requires electric utilities to file transmission tariffs that would allow transmission access to third parties who want to conduct wholesale transactions, and Order No. 889 requires transmission-owning utilities to set up open access, same-time information systems (OASIS), using commercial software and Internet protocols. This paper discusses these Orders in detail, as well as some of the issues before FERC with implications for renewables, which include: transmission pricing; transmission terms and conditions; reassignment of transmission capacity; defining state and FERC jurisdiction over transmission and distribution; the pricing of ancillary services; and the adoption and implementation of independent system operators.

  4. 2009 Electric Transmission Congestion Study | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    2009 Electric Transmission Congestion Study 2009 Electric Transmission Congestion Study The 2009 National Congestion Electric Transmission Study, required by section 216(a) of the...

  5. PP-76 The Vermont Electric Transmission Company | Department...

    Energy.gov [DOE] (indexed site)

    Vermont Electric Transmission Company to construct, operate, and maintain transmission facilities at the U.S. - Canada Border. PDF icon PP-76 The Vermont Electric Transmission ...

  6. RAPID/BulkTransmission/Land Access | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    RAPIDBulkTransmissionLand Access < RAPID | BulkTransmission(Redirected from RAPIDBulkTransmissionLeasing) Jump to: navigation, search RAPID Regulatory and Permitting...

  7. RAPID/BulkTransmission/Land Use | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    RAPIDBulkTransmissionLand Use < RAPID | BulkTransmission Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission...

  8. PP-230-2 International Transmission Company | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    2 International Transmission Company PP-230-2 International Transmission Company Presidential permit authorizing International Transmission Company to construct, operate, and ...

  9. RAPID/BulkTransmission/Water Use | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    RAPIDBulkTransmissionWater Use < RAPID | BulkTransmission Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission...

  10. Comments of New England Electric Transmission Corporation on...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    New England Electric Transmission Corporation on Proposed Open Access Requirement for International Electric Transmission Facilities Comments of New England Electric Transmission ...

  11. RAPID/BulkTransmission/Air Quality | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    BulkTransmissionAir Quality < RAPID | BulkTransmission Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission...

  12. Draft Chapter 4: Transmission Adequacy | Department of Energy

    Energy Saver

    Draft Chapter 4: Transmission Adequacy Draft Chapter 4: Transmission Adequacy A robust interstate electric transmission network must be developed to enable our electricity future....

  13. Draft environmental impact statement for construction and operation of the proposed Bangor Hydro-Electric Company`s second 345-kV transmission tie line to New Brunswick

    SciTech Connect

    1993-10-01

    This Draft Environmental Impact Statement (DEIS) was prepared by the US Department of Energy (US DOE). The proposed action is the issuance of Presidential Permit PP-89 by DOE to Bangor Hydro-Electric Company to construct and operate a new international transmission line interconnection to New Brunswick, Canada that would consist of an 83.8 mile (US portion), 345-kilovolt (kV) alternating current transmission line from the US-Canadian border at Baileyville, Maine to an existing substation at Orrington, Maine. The principal environmental impacts of the construction and operation of the transmission line would be incremental in nature and would include the conversion of forested uplands (mostly commercial timberlands) and wetlands to right-of-way (small trees, shrubs, and herbaceous vegetation). The proposed line would also result in localized minor to moderate visual impacts and would contribute a minor incremental increase in the exposure of some individuals to electromagnetic fields. This DEIS documents the purpose and need for the proposed action, describes the proposed action and alternatives considered and provides a comparison of the proposed and alternatives routes, and provides detailed information on analyses of the environmental consequences of the proposed action and alternatives, as well as mitigative measures to minimize impacts.

  14. 2006 Final Transmission Proposal: Revenue Requirements Study.

    SciTech Connect

    United States. Bonneville Power Administration.

    2005-06-01

    The purpose of the Revenue Requirement Study (Study) is to establish the level of revenues needed from rates for Bonneville Power Administration's (BPA's) transmission and ancillary services to recover, in accordance with sound business principles, costs associated with the transmission of electric power over the Federal Columbia River Transmission System (FCRTS). The FCRTS is part of the larger Federal Columbia River Power System (FCRPS) which also includes the hydroelectric, multipurpose facilities constructed and operated by the U.S. Army Corps of Engineers and the Bureau of Reclamation in the Pacific Northwest. The FCRPS costs that are not included in the FCRTS costs are funded and repaid through BPA power rates. The transmission revenue requirements herein include: recovery of the Federal investment in transmission and transmission-related assets; the operations and maintenance (O&M) and other annual expenses associated with the provision of transmission and ancillary services; the cost of generation inputs for ancillary services and other between business-line services necessary for the transmission of power; and all other transmission-related costs incurred by the Administrator. The cost evaluation period for this rate proposal includes Fiscal Years (FYs) 2005-2007, the period extending from the last year for which historical information is available through the proposed rate test period. The Study includes the transmission revenue requirements for the rate test period, FYs 2006-2007 (Rate Period) and the results of transmission repayment studies. This Study outlines the policies, forecasts, assumptions, and calculations used to determine BPA's transmission revenue requirements. Legal requirements are summarized in Chapter 5 of this Study. The Revenue Requirement Study Documentation (Documentation), TR-06-FS-BPA-01A, contains key technical assumptions and calculations, the results of the transmission repayment studies, and a further explanation of the

  15. Magnetically insulated transmission line oscillator

    DOEpatents

    Bacon, Larry D.; Ballard, William P.; Clark, M. Collins; Marder, Barry M.

    1988-01-01

    A magnetically insulated transmission line oscillator employs self-generated magnetic fields to generate microwave energy. An anode of the oscillator includes slow-wave structures which are formed of a plurality of thin conductive vanes defining cavities therebetween, and a gap is formed between the anode and a cathode of the oscillator. In response to a pulsed voltage applied to the anode and cathode, self-generated magnetic fields arfe produced in a cross-field orientation with respect to the orientation of the electric field between the anode and the cathode. The cross-field magnetic fields insulate the flow of electrons in the gap and confine the flow of electrons within the gap.

  16. Magnetically insulated transmission line oscillator

    DOEpatents

    Bacon, L.D.; Ballard, W.P.; Clark, M.C.; Marder, B.M.

    1987-05-19

    A magnetically insulated transmission line oscillator employs self-generated magnetic fields to generate microwave energy. An anode of the oscillator includes slow-wave structures which are formed of a plurality of thin conductive vanes defining cavities therebetween, and a gap is formed between the anode and a cathode of the oscillator. In response to a pulsed voltage applied to the anode and cathode, self-generated magnetic fields are produced in a cross-field orientation with respect to the orientation of the electric field between the anode and the cathode. The cross-field magnetic fields insulate the flow of electrons in the gap and confine the flow of electrons within the gap. 11 figs.

  17. Superconducting transmission line particle detector

    DOEpatents

    Gray, K.E.

    1988-07-28

    A microvertex particle detector for use in a high energy physic collider including a plurality of parallel superconducting thin film strips separated from a superconducting ground plane by an insulating layer to form a plurality of superconducting waveguides. The microvertex particle detector indicates passage of a charged subatomic particle by measuring a voltage pulse measured across a superconducting waveguide caused by the transition of the superconducting thin film strip from a superconducting to a non- superconducting state in response to the passage of a charged particle. A plurality of superconducting thin film strips in two orthogonal planes plus the slow electromagnetic wave propagating in a superconducting transmission line are used to resolve N/sup 2/ ambiguity of charged particle events. 6 figs.

  18. Shock transmissibility of threaded joints

    SciTech Connect

    Hansen, N.R.; Bateman, V.I.; Brown, F.A.

    1996-12-31

    Sandia National Laboratories (SNL) designs mechanical systems with threaded joints that must survive high shock environments. These mechanical systems include penetrators that must survive soil and rock penetration; drilling pipe strings that must survive rock-cutting, shock environments; and laydown weapons that must survive delivery impact shock. This paper summarizes an analytical study and an experimental evaluation of compressive, one-dimensional, shock transmission through a threaded joint in a split Hopkinson bar configuration. Thread geometries were scaled to simulate large diameter threaded joints with loadings parallel to the axis of the threads. Both strain and acceleration were evaluated with experimental measurements and analysis. Analytical results confirm the experimental conclusions that in this split Hopkinson bar configuration, the change in the one-dimensional shock wave by the threaded joint is localized to a length equal to a few diameters` length beyond the threaded joint.

  19. Superconducting transmission line particle detector

    DOEpatents

    Gray, Kenneth E.

    1989-01-01

    A microvertex particle detector for use in a high energy physic collider including a plurality of parallel superconducting thin film strips separated from a superconducting ground plane by an insulating layer to form a plurality of superconducting waveguides. The microvertex particle detector indicates passage of a charged subatomic particle by measuring a voltage pulse measured across a superconducting waveguide caused by the transition of the superconducting thin film strip from a superconducting to a non-superconducting state in response to the passage of a charged particle. A plurality of superconducting thin film strips in two orthogonal planes plus the slow electromagnetic wave propogating in a superconducting transmission line are used to resolve N.sup.2 ambiguity of charged particle events.

  20. Revenue reconciled optimum pricing of transmission services

    SciTech Connect

    Perera, B.L.P.P.; Farmer, E.D.; Cory, B.J.

    1996-08-01

    This paper describes a methodology for evaluating an optimal set of transmission prices, to be charged for use of a transmission system on a time-of-use basis. The transmission prices are determined by maximizing the global benefit of using the transmission system that allocates both capacity and operational costs. The security considerations are explicitly taken into account by incorporating security factors in the algorithm. The important issue of revenue recovery by the transmission utility is addressed by modifying the optimum prices without affecting the consumer behavior. This can be achieved by setting the prices within indifference intervals over which consumers are insensitive to transmission prices. Application of the methodology is illustrated on the IEEE 24 bus test system.

  1. National Electric Transmission Congestion Study - Portland Workshop |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Portland Workshop National Electric Transmission Congestion Study - Portland Workshop On December 13, 2011, DOE hosted a regional pre-study workshop in Portland, OR to receive input and suggestions concerning the National Electric Transmission Congestion Study. The workshop flyer, agenda, presentations, and full transcript are available below. National Electric Transmission Congestion Study Western Workshops (85.19 KB) 12-13-11 CONGESTION WORKSHOP AGENDA - PORTLAND

  2. National Electric Transmission Congestion Study: Preliminary Findings |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Study: Preliminary Findings National Electric Transmission Congestion Study: Preliminary Findings The Department hosted three webinars in August 2012 to receive input and suggestions concerning the preliminary findings of the National Electric Transmission Congestion Study. The updated presentation used in the webinars is now available. National Electric Transmission Congestion Study: Preliminary Findings - updated presentation (908.32 KB) More Documents &

  3. Detonator comprising a nonlinear transmission line

    SciTech Connect

    Elizondo-Decanini, Juan M

    2014-12-30

    Detonators are described herein. In a general embodiment, the detonator includes a nonlinear transmission line that has a variable capacitance. Capacitance of the nonlinear transmission line is a function of voltage on the nonlinear transmission line. The nonlinear transmission line receives a voltage pulse from a voltage source and compresses the voltage pulse to generate a trigger signal. Compressing the voltage pulse includes increasing amplitude of the voltage pulse and decreasing length of the voltage pulse in time. An igniter receives the trigger signal and detonates an explosive responsive to receipt of the trigger signal.

  4. Transmission Services Commercial Systems Support and Development

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Commercial Systems Support and Development Customer Conference Call Agenda This customer conference call will provide updates concerning BPA Transmission Services' commercial...

  5. Transmission Reliability Program 2015 Reliability & Markets Peer...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Program 2015 Reliability & Markets Peer Review Materials Available Transmission Reliability Program 2015 Reliability & Markets Peer Review Materials Available September 16, 2015 -...

  6. ETrans Federal Permitting Transmission Tracking System | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    More recently, the Rapid Response Team for Transmission (RRTT) was created, which extends activity outside of federal lands. This website hosts a tracking system and search feature...

  7. Generation and Transmission Maximization Model | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    its limited energy and transmission resources, but also firm contracts, independent power producer (IPP) agreements, and bulk power transaction opportunities on the spot...

  8. Natural Gas Transmission and Distribution Module

    Energy Information Administration (EIA) (indexed site)

    July 31, 2012, Washington, DC Major assumption changes for AEO2013 Oil and Gas Working Group Natural Gas Transmission and Distribution Module DRAFT WORKING GROUP PRESENTATION DO ...

  9. Final Report Navajo Transmission Project (NTP)

    SciTech Connect

    Bennie Hoisington; Steven Begay

    2006-09-14

    The Din Power Authority is developing the Navajo Transmission Project (NTP) to relieve the constraints on the transmission of electricity west of the Four Corners area and to improve the operation flexibility and reliability of the extra-high-voltage transmission system in the region. The NTP creates the wholesale transmission capacity for more economical power transfers, sales, and purchases in the region. It will facilitate the development of Navajo energy resources, improve economic conditions on the Navajo Nation as well as allow DPA to participate in the western electrical utility industry.

  10. Template:Nepa Transmission | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    General NEPA Document Information TransmissionType - Energy Sector (e.g. Geothermal, Solar, Wind) (page: Category:ElectricityGeneratingTechnologies) EnvironmentalAnalysisTyp...

  11. Registration Contact List: Electricity Transmission System Workshop

    Energy.gov [DOE] (indexed site)

    ... Gordon H. Matthews General Engineer Bonneville Power Administration PO Box 3621 Portland OR 97208 United States 503-230-3275 Registration Contact List: Electricity Transmission ...

  12. RAPID/BulkTransmission | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    regulatory processes and requirements by searching our regulatory flowchart library. Learn more about bulk transmission. BulkTransCoverage.png Regulations and permitting...

  13. RAPID/Geothermal/Transmission Siting & Interconnection | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    to the public for compensation. See AS 42.05.990(5) for additional information. NA Geothermal Transmission Siting & Interconnection in California California Energy...

  14. Wyoming/Transmission | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Lower Valley Energy, High West Energy, Western Area Power Administration, Bonneville Power Administration, Tri-State Generation and Transmission Association, Inc., and Rocky...

  15. California/Transmission | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    San Diego Gas & Electric, Sacramento Municipal Utility District, PacifiCorp, Bonneville Power Administration, Transmission Agency of Northern California, and Western Area Power...

  16. Nevada/Transmission | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    own transmission facilities in the State of Nevada: NV Energy, Bonneville Power Administration, and Valley Electric Association, Colorado River Commission, Los...

  17. Oregon/Transmission | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Electric Cooperative, Columbia Grid, Northern Tier Transmission Group, and Bonneville Power Administration. Oregon Energy Policy The Oregon Department of Energy's Governor's...

  18. State Generation & Transmission Siting Directory | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Directory Jump to: navigation, search OpenEI Reference LibraryAdd to library General: State Generation & Transmission Siting Directory Abstract A guide of generation and...

  19. State Strategies for Accelerating Transmission Development for...

    OpenEI (Open Energy Information) [EERE & EIA]

    Strategies for Accelerating Transmission Development for Renewable Energy Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: State Strategies for...

  20. Transmission Line Security Monitor: Final Report

    SciTech Connect

    John Svoboda

    2011-04-01

    The Electric Power Transmission Line Security Monitor System Operational Test is a project funded by the Technical Support Working Group (TSWG). TSWG operates under the Combating Terrorism Technical Support Office that functions under the Department of Defense. The Transmission Line Security Monitor System is based on technology developed by Idaho National Laboratory. The technology provides a means for real-time monitoring of physical threats and/or damage to electrical transmission line towers and conductors as well as providing operational parameters to transmission line operators to optimize transmission line operation. The end use is for monitoring long stretches of transmission lines that deliver electrical power from remote generating stations to cities and industry. These transmission lines are generally located in remote transmission line corridors where security infrastructure may not exist. Security and operational sensors in the sensor platform on the conductors take power from the transmission line and relay security and operational information to operations personnel hundreds of miles away without relying on existing infrastructure. Initiated on May 25, 2007, this project resulted in pre-production units tested in realistic operational environments during 2010. A technology licensee, Lindsey Manufacturing of Azusa California, is assisting in design, testing, and ultimately production. The platform was originally designed for a security monitoring mission, but it has been enhanced to include important operational features desired by electrical utilities.

  1. DOE Transmission Capacity Report | Department of Energy

    Office of Environmental Management (EM)

    circuit breakers, capacitors, and other equipment provide more than just a highway to ... Transmission generally enhances reliability; lowers the cost of electricity delivered to ...

  2. National Electric Transmission Congestion Studies | Department...

    Energy.gov [DOE] (indexed site)

    The term "transmission constraint" can refer to a piece of equipment that restricts power flows, to an operational limit imposed to protect reliability, or to a lack of ...

  3. State action in regional transmission groups

    SciTech Connect

    Rokach, J.Z.

    1994-12-01

    States should participate in coordinated transmission planning through regional transmission groups, while reserving their right to pass upon transmission planning. This would smooth an otherwise difficult transition, as FERC and state regulators seek to facilitate a competitive bulk power market that ignores arbitrary jurisdiction lines. Since the Federal Energy Regulatory Commission issued its Policy Statement on Regional Transmission Groups, two RTG`s, the Western Regional Transmission Association and the Southwest Regional Transmission Association, have gained conditional approval from FERC. A third, the Northwest Regional Transmission Association, files its governing agreement with the Commission, seeking FERC`s approval. Price setting within RTGs and information exchanges involved in planning the grid raise questions of the legality of these collective actions under the antitrust laws. All three agreements allow for exchanges of commercial and planning information, but, conspicuously, do not set transmission prices. For the moment, therefore, antitrust liability for RTGs would arise out of the information exchanges involved in planning the grid. In addition, with FERC pushing for `restructuring` at the wholesale level through open access and the states becoming aggressive in trying to institute competition at the consumer level through retail wheeling, issues of federal-state jurisdiction in transmission have come to the fore.

  4. Renewable Energy Transmission Roadmap | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Roadmap Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Renewable Energy Transmission Roadmap Abstract Renewable energy is becoming an...

  5. Electricity Transmission, A Primer | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    LibraryAdd to library Report: Electricity Transmission, A Primer Authors Matthew H. Brown, National Conference of State Legislatures, Richard P. Sedano and The Regulatory...

  6. Ponderomotive phase plate for transmission electron microscopes...

    Office of Scientific and Technical Information (OSTI)

    A ponderomotive phase plate system and method for controllably producing highly tunable phase contrast transfer functions in a transmission electron microscope (TEM) for high ...

  7. 1993 Wholesale Power and Transmission Rate Schedules.

    SciTech Connect

    US Bonneville Power Administration

    1993-10-01

    Bonneville Power Administration 1993 Wholesale Power Rate Schedules and General Rate Schedule Provisions and 1993 Transmission Rate Schedules and General Transmission Rate Schedule Provisions, contained herein, were approved on an interim basis effective October 1, 1993. These rate schedules and provisions were approved by the Federal Energy Commission, United States Department of Energy, in September, 1993. These rate schedules and provisions supersede the Administration`s Wholesale Power Rate Schedules and General Rate Schedule Provisions and Transmission Rate Schedules and General Transmission Rate Schedule Provisions effective October 1, 1991.

  8. Especial Gear Transmissions EGT | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    EGT Jump to: navigation, search Name: Especial Gear Transmissions (EGT) Place: Spain Sector: Wind energy Product: Designs, manufactures and repairs industrial wind gear reducers...

  9. Transmission Services Commercial Systems Support and Development

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Call Agenda This customer conference call will provide updates concerning BPA Transmission Services' commercial systems support and development efforts. It will also provide...

  10. Interconnection-Wide Transmission Planning Initiative: Topic...

    Office of Environmental Management (EM)

    A, Interconnection-Level Analysis and Planning Interconnection-Wide Transmission Planning Initiative: Topic A, Interconnection-Level Analysis and Planning A description of the ...

  11. Interconnection-Wide Transmission Planning Initiative: Topic...

    Energy Saver

    Eastern Interconnection on Electric Resource Planning and Priorities Interconnection-Wide Transmission Planning Initiative: Topic B, Cooperation Among States in the Eastern ...

  12. Interconnection-Wide Transmission Planning Initiative: Topic...

    Energy Saver

    Western Interconnection on Electric Resource Planning and Priorities Interconnection-Wide Transmission Planning Initiative: Topic B, Cooperation Among States in the Western ...

  13. Webinar: Understanding the Interconnection and Transmission Service...

    Energy.gov [DOE] (indexed site)

    Area Power Administration, this Web seminar will answer the following questions: What is the large generator interconnection procedure? How is transmission service requested? ...

  14. Category:NEPA Transmission | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Pages in category "NEPA Transmission" This category contains only the following page. T TransWest Retrieved from "http:en.openei.orgwindex.php?titleCategory:NEPATransmiss...

  15. Transmission Reassignment Reporting Requirement - April 2, 2014

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    capacity reassignments, including but not limited to pricing information, on BPA's Open Access Same-Time Information System (OASIS). Customers reassigning transmission...

  16. Nevada Transmission Siting Information | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook: Nevada Transmission Siting InformationPermittingRegulatory GuidanceGuide...

  17. NREL: Transmission Grid Integration - Working With Us

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    NREL's extensive research facilities-including the new Energy Systems Integration ... Printable Version Transmission Grid Integration Home Issues Projects Research Staff Working ...

  18. Coordination of Federal Authorizations for Electric Transmission...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Coordination of Federal Authorizations for Electric Transmission Facilities: Federal Register Notice Volume 73, No. 183 - Sep. 19, 2008 Coordination of Federal Authorizations for...

  19. NREL: Transmission Grid Integration - Issues Affecting Renewable...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Variability of renewable energy sources Integration costs Frequency response Emissions System balancing Energy storage Transmission Solar and wind forecasting High-penetration ...

  20. Transmission/Resource Library | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    electric transmission systems, including in-depth discussion direct current, below-ground, and high-temperature superconductor lines. Includes sections on design features as...

  1. Reminder: Transmission Services Product Pricing Validation -...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Teams Customer Training Interconnection Notices Rates Standards of Conduct Tariff TF Web Based Training Notice: Reminder: Transmission Services Product Pricing Validation This...

  2. Transmission Services Product Pricing Validation - September...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Teams Customer Training Interconnection Notices Rates Standards of Conduct Tariff TF Web Based Training Notice: Transmission Services Product Pricing Validation On October 1,...

  3. Southline Transmission Line | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Analysis Type EIS Applicant Southline Transmission, LLC, a subsidiary of Hunt Power L.P. Consultant SWCA Environmental Consultants Geothermal Area Project Location Project...

  4. Infrastructure Needs: Natural Gas/Electricity Transmission,...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... This will require significant northsouth transmission investment that falls outside of our ... We are a partner with the New England States Committee on Electricity (NESCOE) ...

  5. Articles about Grid Integration and Transmission | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    about grid integration and transmission featured by the U.S. Department of Energy (DOE) Wind Program. September 16, 2015 Argonne National Laboratory Develops New Model to Quantify...

  6. DOE Affirms National Interest Electric Transmission Corridor...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    data analysis conducted in its 2006 National Interest Electric Transmission study, ... DOE also highlighted that its approach to defining the geographic boundaries of the ...

  7. Memorandum of Understanding Regarding Transmission Siting on...

    OpenEI (Open Energy Information) [EERE & EIA]

    Transmission Siting on Federal Land (2006)Legal Author Federal Agencies Organizations United States Department of Energy, United States Department of Defense, United States...

  8. Scientific Achievement Analytical Transmission Electron Microscopy

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Analytical Transmission Electron Microscopy (TEM) method was developed to determine thickness and wrinkles in electron beam sensitive 2-dimensional (2D) MFI nanosheets....

  9. Application for Presidential Permit OE Docket No. PP-230-4 International Transmission Company: Letter from New York Transmission Owners

    Energy.gov [DOE]

    Application from International Transmission Company to construct, operate, and maintain electric transmission facilities at the U.S. - Canada border.

  10. Generation and Transmission Maximization Model

    Energy Science and Technology Software Center

    2001-04-05

    GTMax was developed to study complex marketing and system operational issues facing electric utility power systems. The model maximizes the value of the electric system taking into account not only a single system''s limited energy and transmission resources but also firm contracts, independent power producer (IPP) agreements, and bulk power transaction opportunities on the spot market. GTMax maximizes net revenues of power systems by finding a solution that increases income while keeping expenses at amore » minimum. It does this while ensuring that market transactions and system operations are within the physical and institutional limitations of the power system. When multiple systems are simulated, GTMax identifies utilities that can successfully compete on the market by tracking hourly energy transactions, costs, and revenues. Some limitations that are modeled are power plant seasonal capabilities and terms specified in firm and IPP contracts. GTMax also considers detaile operational limitations such as power plant ramp rates and hydropower reservoir constraints.« less

  11. Hydromechanical transmission with hydrodynamic drive

    DOEpatents

    Orshansky, Jr., deceased, Elias; Weseloh, William E.

    1979-01-01

    This transmission has a first planetary gear assembly having first input means connected to an input shaft, first output means, and first reaction means, and a second planetary gear assembly having second input means connected to the first input means, second output means, and second reaction means connected directly to the first reaction means by a reaction shaft. First clutch means, when engaged, connect the first output means to an output shaft in a high driving range. A hydrodynamic drive is used; for example, a torque converter, which may or may not have a stationary case, has a pump connected to the second output means, a stator grounded by an overrunning clutch to the case, and a turbine connected to an output member, and may be used in a starting phase. Alternatively, a fluid coupling or other type of hydrodynamic drive may be used. Second clutch means, when engaged, for connecting the output member to the output shaft in a low driving range. A variable-displacement hydraulic unit is mechanically connected to the input shaft, and a fixed-displacement hydraulic unit is mechanically connected to the reaction shaft. The hydraulic units are hydraulically connected together so that when one operates as a pump the other acts as a motor, and vice versa. Both clutch means are connected to the output shaft through a forward-reverse shift arrangement. It is possible to lock out the torque converter after the starting phase is over.

  12. Ecological benefits of dc power transmission

    SciTech Connect

    Kutuzova, N. B.

    2011-05-15

    The environmental effects of dc overhead transmission lines are examined. The major effects of ac and dc transmission lines are compared. Dc lines have advantages compared to ac lines in terms of electrical safety for people under the lines, biological effects, corona losses, and clearance width.

  13. 2009 National Electric Transmission Congestion Study Workshops

    Office of Energy Efficiency and Renewable Energy (EERE)

    DOE hosted six regional pre-study workshops in mid-2008 to receive input and suggestions concerning the 2009 National Electric Transmission Congestion Study, including comments on practical metrics for gauging levels and significance of transmission congestion. Each workshop featured a panel of invited speakers to present their views and comments.

  14. Conductive Channel for Energy Transmission

    SciTech Connect

    Apollonov, Victor V.

    2011-11-10

    For many years the attempts to create conductive channels of big length were taken in order to study the upper atmosphere and to settle special tasks, related to energy transmission. There upon the program of creation of 'Impulsar' represents a great interest, as this program in a combination with high-voltage high repetition rate electrical source can be useful to solve the above mentioned problems (N. Tesla ideas for the days of high power lasers). The principle of conductive channel production can be shortly described as follows. The 'Impulsar' - laser jet engine vehicle - propulsion take place under the influence of powerful high repetition rate pulse-periodic laser radiation. In the experiments the CO{sub 2}-laser and solid state Nd:YAG laser systems had been used. Active impulse appears thanks to air breakdown (<30 km) or to the breakdown of ablated material on the board (>30 km), placed in the vicinity of the focusing mirror-acceptor of the breakdown waves. With each pulse of powerful laser the device rises up, leaving a bright and dense trace of products with high degree of ionization and metallization by conductive nano-particles due to ablation. Conductive dust plasma properties investigation in our experiments was produced by two very effective approaches: high power laser controlled ablation and by explosion of wire. Experimental and theoretical results of conductive canal modeling will be presented. The estimations show that with already experimentally demonstrated figures of specific thrust impulse the lower layers of the Ionosphere can be reached in several ten seconds that is enough to keep the high level of channel conductivity and stability with the help of high repetition rate high voltage generator. Some possible applications for new technology are highlighted.

  15. Environmental Assessment for Central Power and Light Company`s proposed Military Highway-CFE tie 138/69-kV transmission line project Brownsville, Cameron County, Texas

    SciTech Connect

    Not Available

    1992-04-01

    Central Power and Light Company (CPL) intends to upgrade its existing transmission line ties with the Commision Federal de Electricidad (CFE) system in Mexico. CPL currently has a single 69-kilovolt (kV) transmission line in the Brownsville area which connects CPL`s system with the system of CFE. This existing line runs between the Brownsville Switching Station, located on Laredo Road in Brownsville, Cameron County, Texas, and an existing CFE 69-kV line at the Rusteberg Bend of the Rio Grande in Cameron County. Under current conditions of need, the existing 69-kV line does not possess sufficient capability to engage in appropriate power exchanges. Therefore, CPL is proposing to build a new line to link up with CFE. This proposed line would be a double-circuit line, which would (1) continue (on a slightly relocated route) the existing 69-kV tie from CPL`s Brownsville Switching Station to CFE`s facilities, and (2) add a 138-kV tie from the Military Highway Substation, located on Military Highway (US Highway 281), to CFE`s facilities. The proposed 138/69-kV line, which will be constructed and operated by CPL, will be built primarily on steel single-pole structures within an average 60-foot (ft) wide right-of-way (ROW). It will be approximately 6900--9200 ft (1.3--1.7 miles) in length, depending on the alternative route constructed.

  16. Concurrent Wind Cooling in Power Transmission Lines

    SciTech Connect

    Jake P Gentle

    2012-08-01

    Idaho National Laboratory and the Idaho Power Company, with collaboration from Idaho State University, have been working on a project to monitor wind and other environmental data parameters along certain electrical transmission corridors. The combination of both real-time historical weather and environmental data is being used to model, validate, and recommend possibilities for dynamic operations of the transmission lines for power and energy carrying capacity. The planned results can also be used to influence decisions about proposed design criteria for or upgrades to certain sections of the transmission lines.

  17. Solar collector having a solid transmission medium

    DOEpatents

    Schertz, William W.; Zwerdling, Solomon

    1977-06-14

    There is provided a radiant energy transmission device capable of operation in a concentrative mode in which energy incident on an entrance area is directed toward and concentrated on an exit area of smaller area than the entrance area. The device includes a solid radiant energy transmission medium having surfaces coincident with the entrance and exit areas and particularly contoured reflective side walls. The surface coinciding with the entrance area is coupled to a cover plate formed of a radiant energy transmissive material. An energy transducer is coupled to the surface of the medium coinciding with the exit area.

  18. Phase 2 Report: Oahu Wind Integration and Transmission Study (OWITS);

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Hawaiian Islands Transmission Interconnection Project | Department of Energy Phase 2 Report: Oahu Wind Integration and Transmission Study (OWITS); Hawaiian Islands Transmission Interconnection Project Phase 2 Report: Oahu Wind Integration and Transmission Study (OWITS); Hawaiian Islands Transmission Interconnection Project This report provides an independent review included an initial evaluation of the technical configuration and capital costs of establishing an undersea cable system and

  19. Transmission Permitting and Technical Assistance Division | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Transmission Permitting and Technical Assistance Division Transmission Permitting and Technical Assistance Division Transmission Permitting and Technical Assistance Division Timely, accurate and defensible policy and market analysis is a key ingredient to building and sustaining successful programs at DOE. The Transmission Permitting and Technical Assistance Division coordinates OE's policy-related activities which include: Coordination of Federal Transmission Authorizations Section

  20. Oahu Wind Integration and Transmission Study (OWITS): Hawaiian Islands

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Transmission Interconnection Project | Department of Energy Oahu Wind Integration and Transmission Study (OWITS): Hawaiian Islands Transmission Interconnection Project Oahu Wind Integration and Transmission Study (OWITS): Hawaiian Islands Transmission Interconnection Project This report provides an independent review included an initial evaluation of the technical configuration and capital costs of establishing an undersea cable system and examining impacts to the existing electric

  1. EIS-0323-S1: Sacramento Area Voltage Support Project Supplemental Environmental Impact Statement and Environmental Impact Report, Placer, Sacramento, and Sutter Counties, California

    Office of Energy Efficiency and Renewable Energy (EERE)

    Construction and operation has been proposed of approximately 31 to 38 miles of new, double-circuit, 230-kilovolt (kV) transmission line between Western's O'Banion Substation and the area just south of SMUD's Elverta Substation and the reconstruciton of SMUD's existing 230-kV/115kV transmission line between SMUD's Elverta and Natomas substations.

  2. Electrical Transmission Line Diametrical Retention Mechanism

    DOEpatents

    Hall, David R.; Hall, Jr., H. Tracy; Pixton, David; Dahlgren, Scott; Sneddon, Cameron; Briscoe, Michael; Fox, Joe

    2006-01-03

    The invention is a mechanism for retaining an electrical transmission line. In one embodiment of the invention it is a system for retaining an electrical transmission line within downhole components. The invention allows a transmission line to be attached to the internal diameter of drilling components that have a substantially uniform drilling diameter. In accordance with one aspect of the invention, the system includes a plurality of downhole components, such as sections of pipe in a drill string, drill collars, heavy weight drill pipe, and jars. The system also includes a coaxial cable running between the first and second end of a drill pipe, the coaxial cable having a conductive tube and a conductive core within it. The invention allows the electrical transmission line to withstand the tension and compression of drill pipe during routine drilling cycles.

  3. Transmission Reliability Peer Review Materials Now Available

    Energy.gov [DOE]

    The Office of Electricity Delivery and Energy Reliability held a peer review of the Transmission Reliability Program on June 10-11, 2015, in Washington, DC. Materials including the agenda and presentations are now available for download.

  4. Wind Energy Transmission | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Energy Transmission Jump to: navigation, search Photoshop art created from two NREL-PIX photos (10929 & 15185) of a sunset view of electrical power towers combined with wind...

  5. Georgia Transmission Corp | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Corp Jump to: navigation, search Name: Georgia Transmission Corp Place: Georgia References: EIA Form EIA-861 Final Data File for 2010 - File1a1 EIA Form 861 Data Utility Id 7197...

  6. National Electric Transmission Congestion Study- Philadelphia Workshop

    Energy.gov [DOE]

    On December 6, 2011, DOE hosted a regional pre-study workshop in Philadelphia, PA to receive input and suggestions concerning the National Electric Transmission Congestion Study. The workshop flyer, agenda, presentations, and full transcript are available below.

  7. Agenda: Electricity Transmission, Storage and Distribution- West

    Office of Energy Efficiency and Renewable Energy (EERE)

    The subject of transmission has many facets: its role in bulk power reliability, including how to maintain reliability with a changing resource mix; the planning, cost-allocation and state &...

  8. American Transmission Company LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    LLC Jump to: navigation, search Name: American Transmission Company LLC Place: Waukesha, WI References: SGIC1 This article is a stub. You can help OpenEI by expanding it....

  9. National Electric Transmission Congestion Study 2012 Workshops

    Energy.gov [DOE]

    DOE will host four regional pre-study workshops in early December 2011 to receive input and suggestions concerning the National Electric Transmission Congestion Study 2012. For details, please see...

  10. Infrastructure Needs: Natural Gas/Electricity Transmission,...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Through our six operating companies, Eversource operates over 4,300 miles of transmission lines, 72,000 miles of distribution lines, and 6,500 miles of natural gas pipelines. ...

  11. 2015 National Electric Transmission Congestion Study

    Energy.gov [DOE]

    Section 1221(a) of the Energy Policy Act of 2005, codified at 16 U.S.C. 824p(a), directs the Secretary of Energy to conduct an electric transmission congestion study every three years, and to prepare it in consultation with affected states and regional reliability organizations. In the study, the Department seeks to provide information about transmission congestion by focusing on specific indications of transmission constraints and congestion and their consequences. The study focuses on a specific time frame – e.g., historical trends over the past few years, and looking forward three to five years. The study is based entirely on publicly-available data and transmission-related documents. The Department has published two previous congestion studies, one in 2006 and another in 2009.

  12. Data transmission element for downhole drilling components

    DOEpatents

    Hall, David R.; Hall, Jr., H. Tracy; Pixton, David S.; Dahlgren, Scott; Fox, Joe; Sneddon, Cameron; Briscoe, Michael

    2006-01-31

    A robust data transmission element for transmitting information between downhole components, such as sections of drill pipe, in the presence of hostile environmental conditions, such as heat, dirt, rocks, mud, fluids, lubricants, and the like. The data transmission element components include a generally U-shaped annular housing, a generally U-shaped magnetically conductive, electrically insulating element such as ferrite, and an insulated conductor. Features on the magnetically conducting, electrically insulating element and the annular housing create a pocket when assembled. The data transmission element is filled with a polymer to retain the components within the annular housing by filling the pocket with the polymer. The polymer can bond with the annular housing and the insulated conductor but preferably not the magnetically conductive, electrically insulating element. A data transmission element is mounted within a recess proximate a mating surface of a downhole drilling component, such as a section of drill pipe.

  13. Load-resistant coaxial transmission line

    DOEpatents

    Hall, David R.; Fox, Joe

    2006-01-03

    A transmission line for downhole tools that make up all or part of a tool string for drilling and production of oil, gas, and geothermal wells that can withstand the dynamic gravitational forces and other accelerations associated with downhole excavations. The transmission line has a metal tube, or outer conductor, that houses a coaxial wire inner conductor. A non-metallic dielectric material is interposed between the inner and outer conductors. The outer and inner conductors and the dielectric are sufficiently compressed together so that independent motion between them is abated. Compression of the components of the transmission line may be achieved by drawing the transmission through one or more dies in order to draw down the outer conductor onto the dielectric, or by expanding the inner conductor against the dielectric using a mandrel or hydraulic pressure. Non-metallic bead segments may be used in aid of the compression necessary to resist the dynamic forces and accelerations of drilling.

  14. EA-1982: Finding of No Significant Impact | Department of Energy

    Energy Saver

    These actions would occur on existing transmission line and access road rights-of-way, and at substations and maintenance facilities associated with the transmission system. For ...

  15. EIS-0285-SA-149: Supplement Analysis | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Transmission System Vegetation Management Program Vegetation Management for the Captain Jack-Malin 1 500 kV transmission line from structure 24 to Malin Substation (reference...

  16. Comments from the Virginia Department of Environmental Quality...

    Energy Saver

    transmission outages of the 230kV transmission lines that serve the Potomac River Substation on January 9, 2006. Comments from the Virginia Department of Environmental Quality ...

  17. EIS-0332: Mitigation Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    transmission line between Bonneville Power Administration's existing McNary and John Day substations. PDF icon Mitigation Action Plan for the McNary-John Day Transmission...

  18. X-ray transmissive debris shield

    DOEpatents

    Spielman, Rick B.

    1994-01-01

    A composite window structure is described for transmitting x-ray radiation and for shielding radiation generated debris. In particular, separate layers of different x-ray transmissive materials are laminated together to form a high strength, x-ray transmissive debris shield which is particularly suited for use in high energy fluences. In one embodiment, the composite window comprises alternating layers of beryllium and a thermoset polymer.

  19. Scanning Transmission Electron Microscopy | Materials Science | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Transmission Electron Microscopy In the scanning transmission electron microscopy (STEM) mode, the microscope lenses are adjusted to create a focused convergent electron beam or probe at the sample surface. This focused probe is then scanned across the sample and various signals are collected point-by-point to form an image. The convergence of the beam destroys its coherency. Atomic resolution Z-contrast imaging Z-contrast images are formed by mapping the intensity of high-angle scattered

  20. EA-1595: Final Environmental Assessment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    the Davis-Mead 230-kV Transmission Line from Western's Davis substation near Bullhead City, Mohave County, Arizona to its Mead substation near Boulder City, Clark County, Nevada. ...

  1. EIS-0443: Record of Decision | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    235 miles of 500- kilovolt (kV) transmission line. SWIP-South would extend from Harry Allen substation near Las Vegas, Nevada northward to the proposed Thirtymile Substation near...

  2. EIS-0436: I-5 Corridor Reinforcement Project; Multnomah County...

    Office of Environmental Management (EM)

    proposal to build a 500-kilovolt (kV) lattice-steel-tower transmission line that would run from a new 500-kV substation near Castle Rock, Washington, to a new 500-kV substation...

  3. EIS-0436: Notice of Intent to Prepare an Environmental Impact...

    Energy Saver

    proposal to build a 500-kilovolt (kV) lattice-steel-tower transmission line that would run from a new 500-kV substation near Castle Rock, Washington, to a new 500-kV substation...

  4. CX-002213: Categorical Exclusion Determination

    Energy.gov [DOE]

    Spacer replacement along the Hanford-Wautoma #1 and #2 (substation to substation) transmission linesCX(s) Applied: B1.3Date: 04/23/2010Location(s): Benton County, WashingtonOffice(s): Bonneville Power Administration

  5. EA-1739: Finding of No Significant Impact | Department of Energy

    Energy.gov [DOE] (indexed site)

    (Figure 1-1). This 46-mile, 115-kilovolt1 (kV) transmission line, located between the BPA Bandon Substation and the BPA Rogue Substation in Coos and Curry counties, is old,...

  6. EIS-0323-S1: Draft Supplement Environmental Impact Statement...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    (kV) transmission line between Western's O'Banion Substation and the area just south of SMUD's Elverta Substation and the reconstruciton of SMUD's existing 230-kV115kV ...

  7. EIS-0436: I-5 Corridor Reinforcement Project; Multnomah County...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    500-kilovolt (kV) lattice-steel-tower transmission line that would run from a new 500-kV substation near Castle Rock, Washington, to a new 500-kV substation near Troutdale, Oregon. ...

  8. EIS-0436: Notice of Intent to Prepare an Environmental Impact...

    Energy Saver

    500-kilovolt (kV) lattice-steel-tower transmission line that would run from a new 500-kV substation near Castle Rock, Washington, to a new 500-kV substation near Troutdale, Oregon. ...

  9. EIS-0451: Draft Environmental Impact Statement | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    (kV) transmission line and a 138115-kV substation (collectively referred to as the Hooper Springs Project). The new substation would be located adjacent to PacifiCorp's ...

  10. RAPID/Geothermal/Transmission Siting & Interconnection/Idaho...

    OpenEI (Open Energy Information) [EERE & EIA]

    Commission (PUC). 12 Transmission Siting Threshold: NIETC - 115kV Public Utility Definition for Transmission Facility: The term "public utility" includes every common...

  11. RAPID/Geothermal/Transmission Siting & Interconnection/Alaska...

    OpenEI (Open Energy Information) [EERE & EIA]

    exempted through AS 42.05.711. 1 Transmission Siting Threshold: NA Public Utility Definition for Transmission Facility: In Alaska, "public utility' includes every...

  12. EA-1967: Hills Creek-Lookout Point Transmission Line Rebuild...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    967: Hills Creek-Lookout Point Transmission Line Rebuild, Lane County, Oregon EA-1967: Hills Creek-Lookout Point Transmission Line Rebuild, Lane County, Oregon Summary Bonneville ...

  13. EA-1981: Bonneville-Hood River Transmission Line Rebuild, Multnomah...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    81: Bonneville-Hood River Transmission Line Rebuild, Multnomah and Hood River Counties, Oregon EA-1981: Bonneville-Hood River Transmission Line Rebuild, Multnomah and Hood River ...

  14. EA-1961: Kalispell-Kerr Transmission Line Rebuild Project, Kalispell...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    1: Kalispell-Kerr Transmission Line Rebuild Project, Kalispell and Polson, Montana EA-1961: Kalispell-Kerr Transmission Line Rebuild Project, Kalispell and Polson, Montana SUMMARY ...

  15. EIA - Natural Gas Pipeline Network - Natural Gas Transmission...

    Gasoline and Diesel Fuel Update

    Transmission Path Diagram About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates Natural Gas Transmission Path Natural ...

  16. Draft Northern Pass Transmission Line Project Environmental Impact...

    Energy Saver

    ... kilovolt (kV) high voltage direct current (HVDC) transmission line running approximately ... (PSNH) transmission route, convert from HVDC to HVAC at Franklin Converter Station, ...

  17. Eastern Wind Integration and Transmission Study (EWITS) (Revised...

    Energy.gov [DOE] (indexed site)

    PREPARED BY: EnerNex Corporation REVISED FEBRUARY 2011 EASTERN WIND INTEGRATION AND TRANSMISSION STUDY PIX 16204 2 3 EASTERN WIND INTEGRATION AND TRANSMISSION STUDY Revised ...

  18. Plan to Conduct Electric Transmission Congestion Study: Federal...

    Office of Environmental Management (EM)

    Plan to Conduct Electric Transmission Congestion Study: Federal Register Volume 76, No. 218 - Nov. 10, 2011 Plan to Conduct Electric Transmission Congestion Study: Federal Register ...

  19. File:0 - Overall Flow - Transmission.pdf | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - Overall Flow - Transmission.pdf Jump to: navigation, search File File history File usage Metadata File:0 - Overall Flow - Transmission.pdf Size of this preview: 463 599...

  20. Tri State Generation and Transmission Association Inc | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    and Transmission Association Inc Place: Westminster, Colorado Zip: 80234 Product: A wholesale electric power asset operator and transmission grid. Coordinates: 43.07212,...

  1. GTT 2012 Transmission Workshop - Documents | Department of Energy

    Energy Saver

    DOE Grid Tech Team ActivitiesOutreach GTT Activities GTT 2012 Transmission Workshop - Documents GTT 2012 Transmission Workshop - Documents Use the links below to download ...

  2. PP-230-1 International Transmission Company | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    1 International Transmission Company PP-230-1 International Transmission Company Presidential permit authorizing British Columbia Electric Company, Limited to construct, operate, ...

  3. Regulatory Roadmap Workshop for Federal Bulk Transmission Regulations...

    OpenEI (Open Energy Information) [EERE & EIA]

    for bulk transmission. Date: Tuesday, 29 July, 2014 - 09:30 - 15:30 Location: NREL Education Center Auditorium Golden, Colorado Groups: Federal Bulk Transmission Regulatory...

  4. EIS-0496: San Luis Transmission Project; Alameda, Merced, San...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    6: San Luis Transmission Project; Alameda, Merced, San Joaquin and Stanislaus Counties, California EIS-0496: San Luis Transmission Project; Alameda, Merced, San Joaquin and...

  5. Plains and Eastern Clean Line Transmission Line: Comment from...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Plains and Eastern Clean Line Transmission Line: Comment from Change.org Plains and Eastern Clean Line Transmission Line: Comment from Mr. Leftwich Plains and Eastern Clean Line ...

  6. Plains and Eastern Clean Line Transmission Line: Comment from...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Plains and Eastern Clean Line Transmission Line: Comment from Fallon Sanford Plains and Eastern Clean Line Transmission Line: Comment from Mr. Leftwich Plains and Eastern Clean ...

  7. RAPID/Overview/BulkTransmission/Siting/Colorado | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Colorado < RAPID | Overview | BulkTransmission | Siting(Redirected from RAPIDAtlasBulkTransmissionSitingColorado) Redirect page Jump to: navigation, search REDIRECT...

  8. Wireless Sensor Network for Electric Transmission Line Monitoring...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Wireless Sensor Network for Electric Transmission Line Monitoring Citation Details In-Document Search Title: Wireless Sensor Network for Electric Transmission ...

  9. In Situ Transmission Electron Microscopy. (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    In Situ Transmission Electron Microscopy. Citation Details In-Document Search Title: In Situ Transmission Electron Microscopy. Abstract not provided. Authors: Jungjohann, Katherine ...

  10. EIS-0325: Schultz-Hanford Area Transmission Line Project, WA

    Energy.gov [DOE]

    BPA proposes to construct a new 500-kilovolt (kV) transmission line in central Washington. This project would increase transmission system capacity north of Hanford.

  11. Self-Aligning Mirror Mechanism for Transmission Line Offset Correction...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Self-Aligning Mirror Mechanism for Transmission Line Offset Correction The Self-Aligning Mirror Mechanism for Transmission Line Offset Correction is a self-aligning mechanism which...

  12. RAPID/BulkTransmission/Exploration | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools Contribute Contact Us RAPID Bulk Transmission ...

  13. File:08CABCaliforniaTransmissionCPUCProcess.pdf | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    8CABCaliforniaTransmissionCPUCProcess.pdf Jump to: navigation, search File File history File usage File:08CABCaliforniaTransmissionCPUCProcess.pdf Size of this preview: 463 599...

  14. File:08IDAStateTransmission.pdf | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    IDAStateTransmission.pdf Jump to: navigation, search File File history File usage Metadata File:08IDAStateTransmission.pdf Size of this preview: 463 599 pixels. Other...

  15. File:08CAACaliforniaTransmission.pdf | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    CAACaliforniaTransmission.pdf Jump to: navigation, search File File history File usage Metadata File:08CAACaliforniaTransmission.pdf Size of this preview: 463 599 pixels. Other...

  16. Especial Gear Transmissions s founders | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Especial Gear Transmissions s founders Jump to: navigation, search Name: Especial Gear Transmissions's founders Place: Spain Product: EGT's founders References: Especial Gear...

  17. DOE EAC Electricity Adequacy Report. Transmission Chapter DRAFT...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    EAC Electricity Adequacy Report. Transmission Chapter DRAFT- September 18, 2008 DOE EAC Electricity Adequacy Report. Transmission Chapter DRAFT- September 18, 2008 The purpose of...

  18. American Transmission Company LLC II Smart Grid Project | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    your syntax: * Display map References ARRA Smart Grid Investment Grants1 American Transmission Smart Grid2 American Transmission Company, LLC has been selected by the U.S....

  19. National Transmission Grid Study: 2002 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy (DOE) to conduct a study to examine the benefits of establishing a national electricity transmission grid and to identify transmission bottlenecks and measures to...

  20. Tribal Renewable Energy Webinar: Transmission and Grid Basics...

    Energy Saver

    Transmission and Grid Basics for Tribal Economic and Energy Development Tribal Renewable Energy Webinar: Transmission and Grid Basics for Tribal Economic and Energy Development ...

  1. Transmission/Resource Library/Planning | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    public utility transmission providers to meet future electricity demand and maintain reliability of the electric supply system. Transmission providing utilities must undergo...

  2. An Introduction to Electric Power Transmission | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    An Introduction to Electric Power Transmission Jump to: navigation, search OpenEI Reference LibraryAdd to library General: An Introduction to Electric Power Transmission Abstract...

  3. Eastern Wind Integration and Transmission Study -- Preliminary Findings: Preprint

    SciTech Connect

    Corbus, D.; Milligan, M.; Ela, E.; Schuerger, M.; Zavadil, B.

    2009-09-01

    This paper reviews the Eastern Wind Integration and Transmission Study, the development of wind datasets, the transmission analysis, and the results of wind integration analysis for four scenarios.

  4. Plains and Eastern Clean Line Transmission Line: Comment from...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Comment from Mr. Garrett Plains and Eastern Clean Line Transmission Line: Comment from Ms. Rutherford Plains and Eastern Clean Line Transmission Line: Comment from Ms. Campbell

  5. RAPID/BulkTransmission/General Construction | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    RAPIDBulkTransmissionGeneral Construction < RAPID | BulkTransmission Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk...

  6. Questions and Issues on Hydrogen Pipelines: Pipeline Transmission...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Overground Pipelines: approx 21 km Pipeline Transmission of Hydrogen --- 5 Copyright: 5. Mining areas Pipeline Transmission of Hydrogen --- 6 Copyright: France & Netherlands ...

  7. 9-26 QER Report: Energy Transmission, Storage, and Distribution...

    Energy Saver

    -26 QER Report: Energy Transmission, Storage, and Distribution Infrastructure | April 2015 QER Report: Energy Transmission, Storage, and Distribution Infrastructure | April 2015 ...

  8. EIS-0499: Great Northern Transmission Line Project, Minnesota...

    Energy.gov [DOE] (indexed site)

    and connect a new 883-megawatt electric transmission system across the U.S.-Canada border. The proposed 220 mile transmission line would cross the border near Roseau,...

  9. Plains and Eastern Clean Line Transmission Line: Comment from...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Comment from Downwind, LLC Plains and Eastern Clean Line Transmission Line: Comment from Sheila Beck Plains and Eastern Clean Line Transmission Line: Comment from Crystal Yarbrough

  10. Coordination of Federal Transmission Permitting on Federal Lands...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Planning Coordination of Federal Transmission Permitting on Federal Lands (216(h)) Coordination of Federal Transmission Permitting on Federal Lands (216(h)) On October 23, 2009, ...

  11. 2006 National Electric Transmission Congestion Study and Related Materials

    Office of Energy Efficiency and Renewable Energy (EERE)

    The 2006 National Congestion Electric Transmission Study, required by section 216(a) of the Federal Power Act, examines transmission congestion constraints and identifies areas that are...

  12. Plains and Eastern Clean Line Transmission Line: Comment from...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Plains and Eastern Clean Line Transmission Line: Comment from Mr. Dyer Plains and Eastern Clean Line Transmission Line: Comment from Sheila Beck Plains and Eastern Clean Line ...

  13. Property:EIA/861/ActivityTransmission | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Description: Activity Transmission Entity engages in power transmission activity (Y or N) 1 References EIA Form EIA-861 Final Data File for 2008 - F861 File...

  14. EIS-0463: Northern Pass Transmission Line Project, New Hampshire...

    Energy.gov [DOE] (indexed site)

    permit to Northern Pass Transmission, LLC, to construct, operate, maintain, and connect a new electric transmission line across the U.S.-Canada border in northern New Hampshire. ...

  15. PP-22-4 British Columbia Transmission Corporation

    Energy.gov [DOE]

    Presidential permit authorizing British Columbia Transmission Corporation to construct, operate, and mantain electric transmission facilities at the U.S-Canadian border.

  16. EIS-0474: Southline Transmission Line Project; Arizona and New...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Transmission Line Project; Arizona and New Mexico EIS-0474: Southline Transmission Line Project; Arizona and New Mexico Summary The Bureau of Land Management and Western ...

  17. Plains and Eastern Clean Line Transmission Line: Federal Register...

    Office of Environmental Management (EM)

    Plains and Eastern Clean Line Transmission Line: Federal Register Notice, Volume 80, No. 81 - April 28, 2015 Plains and Eastern Clean Line Transmission Line: Federal Register ...

  18. RAPID/BulkTransmission/Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    RAPIDBulkTransmissionPower Plant < RAPID | BulkTransmission Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk...

  19. Aiden Smith Vice President of Transmission Strategy Doug Hart...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Aiden Smith Vice President of Transmission Strategy Doug Hart CFO (Chief Financial ... Smith Selected as Vice President of Transmission Strategy Aiden Smith, a former Public ...

  20. Comments of New England Electric Transmission Corporation on Proposed Open Access Requirement for International Electric Transmission Facilities

    Energy.gov [DOE]

    Motion to intervene out of time and comments of New England Electric Transmission Corporation, New England Hydro-Transmission Electric Company, Inc. and New England Hydro-Transmission Corporation...

  1. An Annotated Bibliography of High-Voltage Direct-Current Transmission and Flexible AC Transmission (FACTS) Devices, 1991-1993.

    SciTech Connect

    Litzenberger, Wayne; Lava, Val

    1994-08-01

    References are contained for HVDC systems, converter stations and components, overhead transmission lines, cable transmission, system design and operations, simulation of high voltage direct current systems, high-voltage direct current installations, and flexible AC transmission system (FACTS).

  2. Fact #850: December 8, 2014 Automatic Transmissions have closed the Fuel Economy Gap with Manual Transmissions- Dataset

    Energy.gov [DOE]

    Excel file with dataset for Fact #850: December 8, 2014 Automatic Transmissions have closed the Fuel Economy Gap with Manual Transmissions

  3. Hydraulic system for a ratio change transmission

    DOEpatents

    Kalns, Ilmars

    1981-01-01

    Disclosed is a drive assembly (10) for an electrically powered vehicle (12). The assembly includes a transaxle (16) having a two-speed transmission (40) and a drive axle differential (46) disposed in a unitary housing assembly (38), an oil-cooled prime mover or electric motor (14) for driving the transmission input shaft (42), an adapter assembly (24) for supporting the prime mover on the transaxle housing assembly, and a hydraulic system (172) providing pressurized oil flow for cooling and lubricating the electric motor and transaxle and for operating a clutch (84) and a brake (86) in the transmission to shift between the two-speed ratios of the transmission. The adapter assembly allows the prime mover to be supported in several positions on the transaxle housing. The brake is spring-applied and locks the transmission in its low-speed ratio should the hydraulic system fail. The hydraulic system pump is driven by an electric motor (212) independent of the prime mover and transaxle.

  4. Single transmission line data acquisition system

    DOEpatents

    Fasching, George E.

    1984-01-01

    A single transmission line interrogated multiple channel data acquisition system is provided in which a plurality of remote station/sensors monitor specific process variables and transmit measurement values over the single transmission line to a master station when addressed by the master station. Power for all remote stations (up to 980) is provided by driving the line with constant voltage supplied from the master station and automatically maintained independent of the number of remote stations directly connected to the line. The transmission line can be an RG-62 coaxial cable with lengths up to about 10,000 feet with branches up to 500 feet. The remote stations can be attached randomly along the line. The remote stations can be scanned at rates up to 980 channels/second.

  5. Data transmission system with distributed microprocessors

    DOEpatents

    Nambu, Shigeo

    1985-01-01

    A data transmission system having a common request line and a special request line in addition to a transmission line. The special request line has priority over the common request line. A plurality of node stations are multi-drop connected to the transmission line. Among the node stations, a supervising station is connected to the special request line and takes precedence over other slave stations to become a master station. The master station collects data from the slave stations. The station connected to the common request line can assign a master control function to any station requesting to be assigned the master control function within a short period of time. Each station has an auto response control circuit. The master station automatically collects data by the auto response controlling circuit independently of the microprocessors of the slave stations.

  6. Downhole transmission system comprising a coaxial capacitor

    DOEpatents

    Hall, David R.; Pixton, David S.; Johnson, Monte L.; Bartholomew, David B.; Hall, Jr., H. Tracy; Rawle, Michael

    2011-05-24

    A transmission system in a downhole component comprises a plurality of data transmission elements. A coaxial cable having an inner conductor and an outer conductor is disposed within a passage in the downhole component such that at least one capacitor is disposed in the passage and having a first terminal coupled to the inner conductor and a second terminal coupled to the outer conductor. Preferably the transmission element comprises an electrically conducting coil. Preferably, within the passage a connector is adapted to electrically connect the inner conductor of the coaxial cable and the lead wire. The coaxial capacitor may be disposed between and in electrically communication with the connector and the passage. In another embodiment a connector is adapted to electrical connect a first and a second portion of the inner conductor of the coaxial cable and a coaxial capacitor is in electrical communication with the connector and the passage.

  7. Asymmetric acoustic transmission in multiple frequency bands

    SciTech Connect

    Sun, Hong-xiang; Yuan, Shou-qi; Zhang, Shu-yi

    2015-11-23

    We report both experimentally and numerically that the multi-band device of the asymmetric acoustic transmission is realized by placing two periodic gratings with different periods on both sides of two brass plates immersed in water. The asymmetric acoustic transmission can exist in four frequency bands below 1500 kHz, which arises from the interaction between various diffractions from the two gratings and Lamb modes in the brass plates immersed in water. The results indicate that the device has the advantages of multiple band, broader bandwidth, and simpler structure. Our finding should have great potential applications in ultrasonic devices.

  8. EC Transmission Line Risk Identification and Analysis

    SciTech Connect

    Bigelow, Tim S

    2012-04-01

    The purpose of this document is to assist in evaluating and planning for the cost, schedule, and technical project risks associated with the delivery and operation of the EC (Electron cyclotron) transmission line system. In general, the major risks that are anticipated to be encountered during the project delivery phase associated with the implementation of the Procurement Arrangement for the EC transmission line system are associated with: (1) Undefined or changing requirements (e.g., functional or regulatory requirements) (2) Underperformance of prototype, first unit, or production components during testing (3) Unavailability of qualified vendors for critical components Technical risks associated with the design and operation of the system are also identified.

  9. 2009 Electric Transmission Congestion Study | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Electric Transmission Congestion Study 2009 Electric Transmission Congestion Study The 2009 National Congestion Electric Transmission Study, required by section 216(a) of the Federal Power Act, examines transmission congestion constraints across the Nation and identifies areas that are transmission-constrained, but does not make recommendations concerning existing or new National Corridor designations. This is the second Congestion Study the Department has conducted, with the first issued in

  10. Methods and systems for micro transmissions

    SciTech Connect

    Stalford, Harold L

    2014-12-23

    Methods and systems for micro transmissions for a micro machine may comprise an input shaft assembly coupled to a micro actuator, an output shaft assembly coupled to a micro shaft, and one or more power conversion elements operable to convert a first type of movement from the micro actuator into a second, disparate type of movement for the micro shaft.

  11. Value-based reliability transmission planning

    SciTech Connect

    Dalton, J.G. III; Garrison, D.L.; Fallon, C.M.

    1996-08-01

    This paper presents a new value-based reliability planning (VBRP) process proposed for planning Duke Power Company`s (DPC) regional transmission system. All transmission served customers are fed from DPC`s regional transmission system which consists of a 44-kV predominantly radial system and a 100-kV predominantly non-radial system. In the past, any single contingency that could occur during system peak conditions and cause a thermal overload required the overloaded facility to be upgraded, regardless of the costs or the likelihood of the overload occurring. The new VBRP process is based on transmission system reliability evaluation and includes the following important elements: (1) a ten-year historical data base describing the probabilities of forced outages for lines and transformers; (2) a five-year average load duration curve describing the probability of an overload should a contingency occur; (3) a customer outage cost data base; (4) and probabilistic techniques. The new process attempts to balance the costs of improving service reliability with the benefits or value that these improvements bring to these customers. The objective is to provide the customers their required level of reliability while minimizing the Total Cost of their electric service.

  12. Transmission line environmental assessment guidance document

    SciTech Connect

    Jackson, J.; Pentecost, E.; Muzzarelli, J.

    1994-01-01

    Since 1939, U.S. utility companies have been required to obtain a Presidential Permit to construct electric transmission lines that cross a U.S. border and connect with a foreign utility. The purpose of this document is to provide Presidential Permit applicants with two types of guidance: (1) on the type of environmental and project descriptive information needed to assess the potential impacts of the proposed and alternative actions and (2) on compliance with applicable federal and state regulations. The main three chapters present information on the purpose and content of this document (Chapter 1); legislative, regulatory, and consultation requirements for transmission line interconnect projects (Chapter 2); and identification of basic transmission system design parameters and environmental data requirements for analysis of potential impacts of the proposed action (Chapter 3). Chapter 3 also includes information on possible techniques or measures to mitigate impacts. Appendix A presents an overview of NEPA requirements and DOE`s implementing procedures. Appendix B summarizes information on legislation that may be applicable to transmission line projects proposed in Presidential Permit applications.

  13. HVDC transmission: a path to the future?

    SciTech Connect

    Teichler, Stephen L.; Levitine, Ilia

    2010-05-15

    Direct current transmission has been the poor stepchild of the U.S. electric industry. Although early-generation plants were based on DC technology, it was soon deemed uneconomical to transmit electricity over long distances, but it now appears poised for a change. Both the increasing technical potential and changing economics of HVDC lines promise a growing role in the future. (author)

  14. Extraordinary acoustic transmission mediated by Helmholtz resonators

    SciTech Connect

    Koju, Vijay; Rowe, Ebony; Robertson, William M.

    2014-07-15

    We demonstrate perfect transmission of sound through a rigid barrier embedded with Helmholtz resonators. The resonators are confined within a waveguide and they are oriented such that one neck protrudes onto each side of the barrier. Perfect sound transmission occurs even though the open area of the necks is less than 3% of the barrier area. Maximum transmission occurs at the resonant frequency of the Helmholtz resonator. Because the dimensions of the Helmholtz resonators are much smaller than the resonant wavelength, the transmission is independent of the direction of sound on the barrier and of the relative placement of the necks. Further, we show that the transmitted sound experiences a continuous phase transition of ? radians as a function of frequency through resonance. In simulations of adjacent resonators with slightly offset resonance frequencies, the phase difference leads to destructive interference. By expanding the simulation to a linear array of tuned Helmholtz resonators we show that it is possible to create an acoustic lens. The ability of Helmholtz resonator arrays to manipulate the phase of a plane acoustic wave enables a new class of sonic beam-forming devices analogous to diffractive optics.

  15. National Electric Transmission Congestion Study Workshops

    Energy.gov [DOE]

    DOE hosted four regional pre-study workshops in early December 2011 to receive input and suggestions concerning the National Electric Transmission Congestion Study. For details, please select a workshop, below. Agendas, presentations, and transcripts are available on the individual workshop pages; please select a workshop from the list below.

  16. Termination for superconducting power transmission systems

    DOEpatents

    Forsyth, E.B.; Jensen, J.E.

    1975-08-26

    This patent relates to a cold, electrical gradient, terminal section for a superconducting cable for alternating current power transmission. A cold electrical gradient section filled with a gaseous coolant acting as an insulator is provided in series with a separate thermal gradient section. (auth)

  17. Transmission capacity reservations implemented through a spot market with transmission congestion contracts

    SciTech Connect

    Harvey, S.M.; Hogan, W.W.; Pope, S.L.

    1996-11-01

    The capacity reservation open access transmission tariff proposed by the FERC is entirely compatible with a competitive bulk power market. Using a point-to-point reservation approach that does not depend on tracking actual flows, capacity rights trading could be coordinated through the system operator. The capacity reservations would be fully tradeable and would fully support the competitive market. Open access to the transmission grid is a necessary support of a competitive market in electricity generation and supply. A key ingredient of open access is a system of capacity allocations for use of the transmission grid. A unique characteristic of electricity transmission is seen in the difficulty of defining transmission rights and matching these rights in a meaningful way to the actual use of the system. The old procedures from the era of vertically integrated utilities will not suffice for the new world of unbundling and competition. Strong network interactions coupled with user flexibility and choice require a new system of transmission capacity definition, reservation and use. The Federal Energy Regulatory Commission has described a system of point-to-point transmission capacity reservations under the Capacity Reservation Open Access Transmission Tariffs (CRT) proposal. The issues addressed under the proposed CRT are important. In the long run, the CRT could be more important than Order 888, and it offers the key ingredients for the future of a competitive electricity market. However, the FERC faces a significant challenge in developing and explaining the CRT ideas. The CRT proposal has been widely read as a narrow, literal prescription requiring seemingly impossible explicit, decentralized trading of physical transmission rights whose ownership and configuration would have to be rearranged constantly to match the dynamic use of the electric system. Viewed from this narrow perspective, the CRT would present, a host of practical difficulties.

  18. Application for presidential permit OE Docket No. PP-230-4 International Transmission Company: Supplemental Comments of the Midwest Independent Transmission System Operator

    Energy.gov [DOE]

    Supplemental comments of the Midwest Independent Transmission System Operaton on the application from International Transmission Company to construct, operate, and maintain electric transmission...

  19. Oahu Wind Integration and Transmission Study (OWITS): Hawaiian Islands Transmission Interconnection Project

    SciTech Connect

    Woodford, D.

    2011-02-01

    This report provides an independent review included an initial evaluation of the technical configuration and capital costs of establishing an undersea cable system and examining impacts to the existing electric transmission systems as a result of interconnecting the islands.

  20. Phase 2 Report: Oahu Wind Integration and Transmission Study (OWITS); Hawaiian Islands Transmission Interconnection Project

    SciTech Connect

    Woodford, D.

    2011-02-01

    This report provides an independent review including an initial evaluation of the technical configuration and capital costs of establishing an undersea cable system and examining impacts to the existing electric transmission systems as a result of interconnecting the islands