National Library of Energy BETA

Sample records for final technical


    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    RPSEA FINAL TECHNICAL REPORT 12122.52.FINAL Hugh Daigle, Nicholas W. Hayman, Kyle Spikes, Julia Gale, Peter Eichhubl, Kitty L. Milliken University of Texas at Austin Connectivity between Fractures and Pores in Hydrocarbon-Rich Mudrocks Contract Number 12122-52 June 24, 2016 Principal Investigator: Hugh Daigle Assistant Professor Department of Petroleum and Geosystems Engineering University of Texas at Austin 200 E Dean Keeton St., Stop C0300, Austin, TX 78712-1585 2 LEGAL NOTICE This report was

  2. Final Technical Report

    SciTech Connect

    Maxwell, Mike, J., P.E.


    The STI product is the Final Technical Report from ReliOn, Inc. for contract award DE-EE0000487: Recovery Act PEM Fuel Cell Systems Providing Emergency Reserve and Backup Power. The program covered the turnkey deployment of 431 ReliOn fuel cell systems at 189 individual sites for AT&T and PG&E with ReliOn functioning as the primary equipment supplier and the project manager. The Final Technical Report provides an executive level summary, a comparison of the actual accomplishments vs. the goals and objectives of the project, as well as a summary of the project activity from the contract award date of August 1, 2009 through the contract expiration date of December 31, 2011. Two photos are included in the body of the report which show hydrogen storage and bulk hydrogen refueling technologies developed as a result of this program.

  3. Final Technical Report

    SciTech Connect

    Sobecky, Patricia A; Taillefert, Martial


    This final technical report describes results and findings from a research project to examine the role of microbial phosphohydrolase enzymes in naturally occurring subsurface microorganisms for the purpose of promoting the immobilization of the radionuclide uranium through the production of insoluble uranium phosphate minerals. The research project investigated the microbial mechanisms and the physical and chemical processes promoting uranium biomineralization and sequestration in oxygenated subsurface soils. Uranium biomineralization under aerobic conditions can provide a secondary biobarrier strategy to immobilize radionuclides should the metal precipitates formed by microbial dissimilatory mechanisms remobilize due to a change in redox state.


    SciTech Connect

    McDonald, Henry; Singh, Suminderpal


    The overall objective of the Chattanooga fuel cell demonstrations project was to develop and demonstrate a prototype 5-kW grid-parallel, solid oxide fuel cell (SOFC) system that co-produces hydrogen, based on Ion Americas technology. The commercial viability of the 5kW SOFC system was tested by transporting, installing and commissioning the SOFC system at the Alternative Energy Laboratory at the University of Tennessee Chattanooga. The system also demonstrated the efficiency and the reliability of the system running on natural gas. This project successfully contributed to the achievement of DOE technology validation milestones from the Technology Validation section of the Hydrogen, Fuel Cells and Infrastructure Technologies Program Multi-Year Research, Development and Demonstration Plan. Results of the project can be found in the final technical report.

  5. Final Technical Report

    SciTech Connect

    Aristos Aristidou Natureworks); Robert Kean; Tom Schechinger; Stuart Birrell; Jill Euken


    The two main objectives of this project were: 1) to develop and test technologies to harvest, transport, store, and separate corn stover to supply a clean raw material to the bioproducts industry, and 2) engineer fermentation systems to meet performance targets for lactic acid and ethanol manufacturers. Significant progress was made in testing methods to harvest corn stover in a “single pass” harvest mode (collect corn grain and stover at the same time). This is technically feasible on small scale, but additional equipment refinements will be needed to facilitate cost effective harvest on a larger scale. Transportation models were developed, which indicate that at a corn stover yield of 2.8 tons/acre and purchase price of $35/ton stover, it would be unprofitable to transport stover more than about 25 miles; thus suggesting the development of many regional collection centers. Therefore, collection centers should be located within about 30 miles of the farm, to keep transportation costs to an acceptable level. These collection centers could then potentially do some preprocessing (to fractionate or increase bulk density) and/or ship the biomass by rail or barge to the final customers. Wet storage of stover via ensilage was tested, but no clear economic advantages were evident. Wet storage eliminates fire risk, but increases the complexity of component separation and may result in a small loss of carbohydrate content (fermentation potential). A study of possible supplier-producer relationships, concluded that a “quasi-vertical” integration model would be best suited for new bioproducts industries based on stover. In this model, the relationship would involve a multiyear supply contract (processor with purchase guarantees, producer group with supply guarantees). Price will likely be fixed or calculated based on some formula (possibly a cost plus). Initial quality requirements will be specified (but subject to refinement).Producers would invest in harvest

  6. Final Technical Report Division

    Office of Scientific and Technical Information (OSTI)

    Technical Report Division of Nuclear Physics in the Department of Energy DOE Award ... Center for Theoretical Studies in Nuclear Physics and Related Areas (ECT*), Trento, ...

  7. Final Technical Report

    SciTech Connect

    Gilbert, Chris


    The project, Capital Investment to Fund Equipment Purchases and Facility Modifications to Create a Sustainable Future for EnergyXchange served to replace landfill gas energy with alternative energy resources, primarily solar and wood waste. This is the final project closeout report.

  8. Technical Report - FINAL

    SciTech Connect

    Barbara Luke, Director, UNLV Engineering Geophysics Laboratory


    Improve understanding of the earthquake hazard in the Las Vegas Valley and to assess the state of preparedness of the area's population and structures for the next big earthquake. 1. Enhance the seismic monitoring network in the Las Vegas Valley 2. Improve understanding of deep basin structure through active-source seismic refraction and reflection testing 3. Improve understanding of dynamic response of shallow sediments through seismic testing and correlations with lithology 4. Develop credible earthquake scenarios by laboratory and field studies, literature review and analyses 5. Refine ground motion expectations around the Las Vegas Valley through simulations 6. Assess current building standards in light of improved understanding of hazards 7. Perform risk assessment for structures and infrastructures, with emphasis on lifelines and critical structures 8. Encourage and facilitate broad and open technical interchange regarding earthquake safety in southern Nevada and efforts to inform citizens of earthquake hazards and mitigation opportunities

  9. Ocean Thermal Extractable Energy Visualization: Final Technical...

    Office of Environmental Management (EM)

    Ocean Thermal Extractable Energy Visualization: Final Technical Report Ocean Thermal Extractable Energy Visualization: Final Technical Report Report about the Ocean Thermal ...


    SciTech Connect



    High-resolution tracking detectors based on Active Pixel Sensor (APS) have been valuable tools in Nuclear Physics and High-Energy Physics research, and have contributed to major discoveries. Their integration time, radiation length and readout rate is a limiting factor for the planed luminosity upgrades in nuclear and high-energy physics collider-based experiments. The goal of this program was to demonstrate and develop high-gain, high-resolution tracking detector arrays with faster readout, and shorter radiation length than APS arrays. These arrays may operate as direct charged particle detectors or as readouts of high resolution scintillating fiber arrays. During this program, we developed in CMOS large, high-resolution pixel sensor arrays with integrated readout, and reset at pixel level. Their intrinsic gain, high immunity to surface and moisture damage, will allow operating these detectors with minimal packaging/passivation requirements and will result in radiation length superior to APS. In Phase I, we designed and fabricated arrays with calorimetric output capable of sub-pixel resolution and sub-microsecond readout rate. The technical effort was dedicated to detector and readout structure development, performance verification, as well as to radiation damage and damage annealing.

  11. Final Technical Report

    SciTech Connect

    Stoessel, Chris


    This project developed a new high-performance R-10/high SHGC window design, reviewed market positioning and evaluated manufacturing solutions required for broad market adoption. The project objectives were accomplished by: identifying viable technical solutions based on modeling of modern and potential coating stacks and IGU designs; development of new coating material sets for HM thin film stacks, as well as improved HM IGU designs to accept multiple layers of HM films; matching promising new coating designs with new HM IGU designs to demonstrate performance gains; and, in cooperation with a window manufacturer, assess the potential for high-volume manufacturing and cost efficiency of a HM-based R-10 window with improved solar heat gain characteristics. A broad view of available materials and design options was applied to achieve the desired improvements. Gated engineering methodologies were employed to guide the development process from concept generation to a window demonstration. The project determined that a slightly de-rated window performance allows formulation of a path to achieve the desired cost reductions to support end consumer adoption.

  12. Final Technical Report

    SciTech Connect

    Juan Camilo Serrano


    New and novel material and process technologies applied in wind blade designs and production are critical to increasing the competitiveness of wind power generation against traditional sources of energy. In this project, through collaboration between PPG Industries and MAG Industrial Automation Systems, the potential of using automated manufacturing for the production of fiber glass composite wind blades was evaluated from both technical and economic points of view. Further, it was demonstrated that by modifying the standard blade raw material forms through the use of cost effective pre-impregnated rovings coupled with using an automated fiber placement machine to lay up the parts, it is possible to produce state of the art composite laminates with significantly improved mechanical performance and with higher processing rates than standard blade production technology allows for today, thereby lowering the cost of energy over turbine blades made using traditional processes and materials. In conformity with the scope of work of the submitted proposal, the project team completed each task and documented and reported its findings on the appropriate quarterly report submitted to the DOE project team. The activities and this report are divided into 5 subtasks: (1) Material Investigation - Reviews traditional materials and key specifications and testing methods; (2) Manufacturing and Automation - Identifies new candidate material forms and automated layup processes; (3) Process Development - Performs trials of candidate materials and processes; (4) Predictive Analysis - Assesses impact of new material forms and automated processes on a model blade design; and (5) Feasibility Assessment - Compares traditional manufacturing processes and materials to new candidate material forms and automated processes.

  13. Final Technical Report

    SciTech Connect

    Velasco, Mayda


    This work is focused on the design and construction of novel beam diagnostic and instrumentation for charged particle accelerators required for the next generation of linear colliders. Our main interest is in non-invasive techniques. The Northwestern group of Velasco has been a member of the CLIC Test Facility 3 (CTF3) collaboration since 2003, and the beam instrumentation work is developed mostly at this facility1. This 4 kW electron beam facility has a 25-170 MeV electron LINAC. CTF3 performed a set of dedicated measurements to finalize the development of our RF-Pickup bunch length detectors. The RF-pickup based on mixers was fully commissioned in 2009 and the RF-pickup based on diodes was finished in time for the 2010-11 data taking. The analysis of all the data taken in by the summer of 2010 was finish in time and presented at the main conference of the year, LINAC 2010 in Japan.

  14. Final Technical Report

    SciTech Connect

    Alexander Fridman


    This DOE project DE-FC36-04GO14052 ''Plasma Pilot Plant Test for Treating VOC Emissions from Wood Products Plants'' was conducted by Drexel University in cooperation with Georgia-Pacific (G-P) and Kurchatov Institute (KI). The objective of this project was to test the Plasma Pilot Plant capabilities in wood industry. The final goal of the project was to replace the current state-of-the-art, regenerative thermal oxidation (RTO) technology by Low-Temperature Plasma Technology (LTPT) in paper and wood industry for Volatile Organic Components (VOC) destruction in High Volume Low Concentration (HVLC) vent emissions. MetPro Corporation joined the team as an industrial partner from the environmental control business and a potential leader for commercialization. Concurrent Technology Corporation (CTC) has a separate contract with DOE for this technology evaluation. They prepared questionnaires for comparison of this technology and RTO, and made this comparison. These data are presented in this report along with the description of the technology itself. Experiments with the pilot plant were performed with average plasma power up to 3.6 kW. Different design of the laboratory and pilot plant pulsed coronas, as well as different analytical methods revealed many new peculiarities of the VOC abatement process. The work reported herein describes the experimental results for the VOCs removal efficiency with respect to energy consumption, residence time, water effect and initial concentration.

  15. Final Technical Report

    SciTech Connect

    Alexander Pigarov


    This is the final report for the Research Grant DE-FG02-08ER54989 'Edge Plasma Simulations in NSTX and CTF: Synergy of Lithium Coating, Non-Diffusive Anomalous Transport and Drifts'. The UCSD group including: A.Yu. Pigarov (PI), S.I. Krasheninnikov and R.D. Smirnov, was working on modeling of the impact of lithium coatings on edge plasma parameters in NSTX with the multi-species multi-fluid code UEDGE. The work was conducted in the following main areas: (i) improvements of UEDGE model for plasma-lithium interactions, (ii) understanding the physics of low-recycling divertor regime in NSTX caused by lithium pumping, (iii) study of synergistic effects with lithium coatings and non-diffusive ballooning-like cross-field transport, (iv) simulation of experimental multi-diagnostic data on edge plasma with lithium pumping in NSTX via self-consistent modeling of D-Li-C plasma with UEDGE, and (v) working-gas balance analysis. The accomplishments in these areas are given in the corresponding subsections in Section 2. Publications and presentations made under the Grant are listed in Section 3.

  16. Final Technical Report

    SciTech Connect

    Stenzel, Reiner; Urrutia, J. Manuel


    emissions are only observed in whistler spheromaks and FRCs but not in mirrors or asymmetric configurations lacking magnetic null lines. The collisionless electron energization in a toroidal null line usually produces non-Maxwellian distributions. Off the null axis electrons gain more perpendicular than parallel energy. Distributions with T{sub {perpendicular}} > T{sub {parallel}} lead to whistler instabilities which have been observed. A whistler spheromak is a source of high-frequency whistler emissions. These are usually small amplitude whistlers propagating in a complicated background magnetic field. The waves are emitted from a moving source. High frequency whistlers propagate faster than the spheromak, thus partly move ahead of it and partly in the reverse direction. In test wave experiments wave growth opposite to the direction of the hot electron flow has been observed, confirming that Doppler-shifted cyclotron resonance instabilities account for the emission process. Propagating whistler mirrors produce no significant instabilities except when they interact with other fields which exhibit null lines. For example, a whistler mirror has been launched against a stationary FRC, resulting in strong FRC heating and whistler instabilities. In the whistler mirror configuration the antenna near-zone field produces a toroidal null line outside the coil which can also become a source for whistler emissions. Finally, nonlinear EMHD research has been extended to initially unmagnetized plasmas where a new nonlinear skin depth has been discovered. When a small-amplitude oscillating magnetic field is applied to a plasma the field penetration is governed by the skin depth, collisional or collisionless depending on frequency, collision frequency and plasma frequency. However, when the magnetic field increases the electrons become magnetized and the field penetration occurs in the whistler mode if the cyclotron frequency exceeds the oscillating frequency. This phenomenon has been

  17. Technical Assessment Team Issues Final Report

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    , 2015 Technical Assessment Team Issues Final Report This week the Department of Energy's Technical Assessment Team (TAT) visited Carlsbad and met with federal and contractor staff ...

  18. Final Rule Technical Amendment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Final Rule Technical Amendment Federal Register Announcement: The Department of Energy (DOE) is publishing this technical amendment to the regulations for the loan guarantee ...

  19. Technical planning activity: Final report

    SciTech Connect

    Not Available


    In April 1985, the US Department of Energy's (DOE's) Office of Fusion Energy commissioned the Technical Planning Activity (TPA). The purpose of this activity was to develop a technical planning methodology and prepare technical plans in support of the strategic and policy framework of the Magnetic Fusion Program Plan issued by DOE in February 1985. Although this report represents the views of only the US magnetic fusion community, it is international in scope in the sense that the technical plans contained herein describe the full scope of the tasks that are prerequisites for the commercialization of fusion energy. The TPA has developed a well-structured methodology that includes detailed definitions of technical issues, definitions of program areas and elements, statements of research and development objectives, identification of key decision points and milestones, and descriptions of facility requirements.

  20. Final Scientific/Technical Report

    SciTech Connect

    Troxell, W; Batchelor, A


    Final report for the formation of faculty and education establishing Colorado State's Smart Grid Integration Center

  1. Final Technical Report (Technical Report) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Final Technical Report Citation Details In-Document Search Title: Final Technical Report The biochemistry of bacterial proteins involved in redox transformations of metals and minerals is, without dispute, an important area of research. Nevertheless, most studies on bacterial metal transformation have focused not on biochemistry but on genetics and genomics. The objective of this research is to better understand the role of conformation change in electron transfer from cytochromes to minerals, a


    SciTech Connect



    The City of Georgetown Utility Systems (GUS) patnered with the private sector, the American Public Power Association (APPA) and Southwestern University to design, construct, test and monitor a solar co-generation system directly connected to the GUS electric distribution system. This report consists of the Primary Technical Report and 3 attachments.

  3. Ocean Thermal Extractable Energy Visualization: Final Technical... [DOE] (indexed site)

    ENERGY VISUALIZATION Award DE-EE0002664 October 28, 2012 Final Technical Report Prepared by Lockheed Martin Mission Systems & Sensors (MS2) DE-EE0002664 Ocean Thermal Energy ...

  4. Final Technical Report: Discovering the Nature of Dark Energy...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Final Technical Report: Discovering the Nature of Dark Energy: Towards Better Distances from Type Ia Supernovae Citation Details In-Document Search Title: Final...

  5. Hydroprocessing SRC. Final technical report

    SciTech Connect

    Bronfenbrenner, J.C.; Garg, D.; Harris, C.F.; Znaimer, S.


    Catalyst activity and aging rate were studied in ICRC's process development unit (PDU) and at the Wilsonville Advanced Coal Liquefaction Facility under SRC-I Demonstration Plant hydroprocessing conditions. Similar studies using both high- and low-conversion modes were conducted by The Lummus Company. The studies determined variations in SRC conversion, hydrocarbon gas production, hydrogen consumption, and heteroatom removal. Samples of spent catalyst were analyzed to ascertain the reasons for catalyst deactivation. Finally, the ICRC PDU hydroprocessing results were compared with those generated at Lummus and Wilsonville pilot plants.

  6. Final Scientific/Technical Report

    SciTech Connect

    Chang, Yale


    JHU/APL conducted solid propellant fire characterization tests in warm, humid, ambient conditions near sea level. Yttria and ceria surrogate materials were placed in the fires. The substrates simulating ground surfaces were concrete from a Kennedy Space Center launch pad, and steel covered with a protective ablative material representing a launch platform. In-situ instrumentation consisted of witness materials, thermocouples, air handlers, filters, and cascade impactors; remote instrumentation consisted of optical cameras and spectrometers. Test and analysis team members included the Naval Air Warfare Center Aircraft Division, Sandia National Laboratories (SNL), Alliant Techsystems, and the Johns Hopkins University. Test data were analyzed, reported, and delivered, including plume rise and transport captured on video. Derivation of the alumina particle size distributions formed the basis for condensing vapor and agglomeration estimates. Assessment of alumina mass in the plume, along with the surrogate fraction from filter forensics, provided an estimate of airborne surrogate mass. Technical interchange meetings were held with SNL and the Jet Propulsion Laboratory. Specifications for the fire environment were developed and delivered. A thermochemistry model that simultaneously provides the maximum temperature and heat flux was developed and delivered. An SPIE paper on 3D pyrometry of the fire was written and presented.

  7. IRIS Final Technical Progress Report

    SciTech Connect

    M. D. Carelli


    OAK-B135 This NERI project, originally started as the Secure Transportable Autonomous Light Water Reactor (STAR-LW) and currently known as the International Reactor Innovative and Secure (IRIS) project, had the objective of investigating a novel type of water-cooled reactor to satisfy the Generation IV goals: fuel cycle sustainability, enhanced reliability and safety, and improved economics. The research objectives over the three-year (1999-2002) program were as follows: First year: Assess various design alternatives and establish main characteristics of a point design; Second year: Perform feasibility and engineering assessment of the selected design solutions; Third year: Complete reactor design and performance evaluation, including cost assessment These objectives were fully attained and actually they served to launch IRIS as a full fledged project for eventual commercial deployment. The program did not terminate in 2002 at the end of the NERI program, and has just entered in its fifth year. This has been made possible by the IRIS project participants which have grown from the original four member, two-countries team to the current twenty members, nine countries consortium. All the consortium members work under their own funding and it is estimated that the value of their in-kind contributions over the life of the project has been of the order of $30M. Currently, approximately 100 people worldwide are involved in the project. A very important constituency of the IRIS project is the academia: 7 universities from four countries are members of the consortium and five more US universities are associated via parallel NERI programs. To date, 97 students have worked or are working on IRIS; 59 IRIS-related graduate theses have been prepared or are in preparation, and 41 of these students have already graduated with M.S. (33) or Ph.D. (8) degrees. This ''final'' report (final only as far as the NERI program is concerned) summarizes the work performed in the first four

  8. Final Scientific/Technical Report

    SciTech Connect

    Brown, R. C.; McCarley, T. M.


    . Platform teams organize faculty and students for cross-disciplinary, systems-oriented research and collaborative learning. To date, nine platforms have been developed, although these will most likely be reorganized into a smaller number of broader topics. In the spring of 2004, BRT faculty initiated a regional partnership and collaborative learning program with colleagues at the University of Minnesota, Kansas State University, and South Dakota State University to develop distance education courses in biorenewable resources and technology. As a fledgling graduate program, the BRT graduate program didn’t have the breadth of resources to offer a large number of courses in biorenewables. Other schools faced a similar problem. The academic consortium as first conceived would allow students from the member schools to enroll in biorenewables courses from any of the participating schools, which would assure the necessary enrollment numbers to offer specialized course work. Since its inception, the collaborative curriculum partnership has expanded to include Louisiana State University and the University of Wisconsin. A second international curriculum development campaign was also initiated in the spring of 2004. In particular, several BRT faculty teamed with colleagues at the University of Arkansas, University of Washington, University of Gent (Belgium), National Polytechnic Institute of Toulouse (France), and Technical University of Graz (Austria) to develop an EU-US exchange program in higher education and vocational education/training (entitled “Renewable Resources and Clean Technology”).

  9. Santa Barbara Final Technical Report

    SciTech Connect

    Hacker, Angela; Hansen, Sherman; Watkins, Ashley


    This report serves as the Final Report for Santa Barbara County’s Energy Efficiency and Conservation Block Grant (EECBG) BetterBuildings Neighborhood Program (BBNP) award from the U.S. Department of Energy (DOE). This report explains how DOE BBNP funding was invested to develop robust program infrastructure designed to help property owners complete energy improvements, thereby generating substantial outcomes for the local environment and economy. It provides an overview of program development and design within the grant period, program accomplishments and challenges to date, and a plan for the future sustainability of emPower, the County’s innovative clean energy and building efficiency program. During the grant period, Santa Barbara County’s emPower program primarily targeted 32,000 owner occupied, single family, detached residential homes over 25 years old within the County. In order to help these homeowners and their contractors overcome market barriers to completing residential energy improvements, the program developed and promoted six voluntary, market-based service areas: 1) low cost residential financing (loan loss reserve with two local credit unions), 2) residential rebates, 3) local customer service, 4) expert energy advising, 5) workforce development and training, and 6) marketing, education and outreach. The main goals of the program were to lower building energy use, create jobs and develop a lasting regional building performance market. These services have generated important early outcomes and lessons after the program’s first two years in service. The DOE BBNP funding was extended through October 2014 to enable Santa Barbara County to generate continued outcomes. In fact, funding related to residential financing remains wholly available for the foreseeable future to continue offering Home Upgrade Loans to approximately 1,300 homeowners. The County’s investment of DOE BBNP funding was used to build a lasting, effective, and innovative

  10. Final Technical Report to DOE for the Award DE-SC0004601 (Technical...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Final Technical Report to DOE for the Award DE-SC0004601 Citation Details In-Document Search Title: Final Technical Report to DOE for the Award DE-SC0004601 ...

  11. Final Technical Report for Chief Scientist for Atmospheric Radiation...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Final Technical Report for Chief Scientist for Atmospheric Radiation Measurement (ARM) Aerial Vehicle Program (AVP) Citation Details In-Document Search Title: ...

  12. Final Technical Report: Discovering the Nature of Dark Energy: Towards

    Office of Scientific and Technical Information (OSTI)

    Better Distances from Type Ia Supernovae (Technical Report) | SciTech Connect Technical Report: Final Technical Report: Discovering the Nature of Dark Energy: Towards Better Distances from Type Ia Supernovae Citation Details In-Document Search Title: Final Technical Report: Discovering the Nature of Dark Energy: Towards Better Distances from Type Ia Supernovae The final technical report from the project "Discovering the Nature of Dark Energy: Towards Better Distances from Type Ia

  13. Final Scientific/Technical Report for Project entitled "Mechanism...

    Office of Scientific and Technical Information (OSTI)

    Final ScientificTechnical Report for Project entitled "Mechanism of Uranium Reduction by Shewanella oneidensis" Citation Details In-Document Search Title: Final Scientific...

  14. Microsoft Word - TSI - UW final technical report

    Office of Scientific and Technical Information (OSTI)

    DOE/ER/41187 SHEDDING NEW LIGHT ON EXPLODING STARS: TERASCALE SIMULATIONS OF NEUTRINO-DRIVEN SUPERNOVAE AND THEIR NUCLEOSYNTHESIS Final Technical Report for the Period July 15, 2001 - November 30, 2006 Wick Haxton University of Washington Work Performed Under Cooperative Agreement No. DE-FC02-01ER41187 1 Scope of Work from TSI proposal This project was focused on simulations of core-collapse supernovae on parallel platforms. The intent was to address a number of linked issues: the treatment of

  15. Clean Energy Works Oregon Final Technical Report

    SciTech Connect

    Jacob, Andria; Cyr, Shirley


    In April 2010, the City of Portland received a $20 million award from the U.S. Department of Energy, as part of the Energy Efficiency and Conservation Block Grant program. This award was appropriated under the American Recovery and Reinvestment Act (ARRA), passed by President Obama in 2009. DOE’s program became known as the Better Buildings Neighborhood Program (BBNP). The BBNP grant objectives directed the City of Portland Bureau of Planning and Sustainability (BPS) as the primary grantee to expand the BPS-led pilot program, Clean Energy Works Portland, into Clean Energy Works Oregon (CEWO), with the mission to deliver thousands of home energy retrofits, create jobs, save energy and reduce carbon dioxide emissions.The Final Technical Report explores the successes and lessons learned from the first 3 years of program implementation.

  16. Energy Impact Illinois - Final Technical Report

    SciTech Connect

    Olson, Daniel; Plagman, Emily; Silberhorn, Joey-Lin


    Energy Impact Illinois (EI2) is an alliance of government organizations, nonprofits, and regional utility companies led by the Chicago Metropolitan Agency for Planning (CMAP) that is dedicated to helping communities in the Chicago metropolitan area become more energy efficient. Originally organized as the Chicago Region Retrofit Ramp-Up (CR3), EI2 became part of the nationwide Better Buildings Neighborhood Program (BBNP) in May 2010 after receiving a $25 million award from the U.S. Department of Energy (DOE) authorized through the American Recovery and Reinvestment Act of 2009 (ARRA). The program’s primary goal was to fund initiatives that mitigate barriers to energy efficiency retrofitting activities across residential, multifamily, and commercial building sectors in the seven-county CMAP region and to help to build a sustainable energy efficiency marketplace. The EI2 Final Technical Report provides a detailed review of the strategies, implementation methods, challenges, lessons learned, and final results of the EI2 program during the initial grant period from 2010-2013. During the program period, EI2 successfully increased direct retrofit activity in the region and was able to make a broader impact on the energy efficiency market in the Chicago region. As the period of performance for the initial grant comes to an end, EI2’s legacy raises the bar for the region in terms of helping homeowners and building owners to take action on the continually complex issue of energy efficiency.

  17. Replace Fossil Fuels, Final Technical Report Roberts, William...

    Office of Scientific and Technical Information (OSTI)

    Crude Glycerol as Cost-Effective Fuel for Combined Heat and Power to Replace Fossil Fuels, Final Technical Report Roberts, William L 09 BIOMASS FUELS biofuels, glycerin, glycerol,...

  18. Final Technical Resource Confirmation Testing at the Raft River...

    OpenEI (Open Energy Information) [EERE & EIA]

    Technical Resource Confirmation Testing at the Raft River Geothermal Project, Cassia County, Idaho Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Final...

  19. Final Technical Report: Discovering the Nature of Dark Energy...

    Office of Scientific and Technical Information (OSTI)

    the Nature of Dark Energy: Towards Better Distances from Type Ia Supernovae Citation Details In-Document Search Title: Final Technical Report: Discovering the Nature of Dark ...

  20. Water on Crop Biomass and Soil Permeability FINAL TECHNICAL REPORT

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Irrigating with Treated Oil and Gas Product Water on Crop Biomass and Soil Permeability FINAL TECHNICAL REPORT Prepared By Terry Brown, Jeffrey Morris, Patrick Richards and Joel...

  1. Final Technical Report (Technical Report) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    A paper copy of this document is also available for sale to the public from the National Technical Information Service, Springfield, VA at Authors: Otto-Bliesner, ...

  2. Convective Radio Occultations Final Campaign Summary (Technical...

    Office of Scientific and Technical Information (OSTI)

    Convective Radio Occultations Final Campaign Summary Citation Details In-Document Search Title: Convective Radio Occultations Final Campaign Summary Deep convective systems are ...

  3. Microsoft Word - FINAL_TECHNICAL_REPORT.doc

    Office of Scientific and Technical Information (OSTI)

    ......... 27 Figure 16 Comparison between simulation and experimental results: (a) Top view of final simulated inclusion locations. ...

  4. Final Technical Report on Radioxenon Event Analysis

    SciTech Connect

    Ely, James H.; Cooper, Matthew W.; Hayes, James C.; Heimbigner, Tom R.; McIntyre, Justin I.; Schrom, Brian T.


    This is a final deliverable report for the Advanced Spectral Analysis for Radioxenon project with a focus on radioxenon event categorization.

  5. Southwest Region Experiment Station - Final Technical Report

    SciTech Connect

    Rosenthal, A


    Southwest Technology Development Institute (SWTDI), an independent, university-based research institute, has been the operator of the Southwest Region Photovoltaic Experiment Station (SWRES) for almost 30 years. The overarching mission of SWTDI is to position PV systems and solar technologies to become cost-effective, major sources of energy for the United States. Embedded in SWTDI's general mission has been the more-focused mission of the SWRES: to provide value added technical support to the DOE Solar Energy Technologies Program (SETP) to effectively and efficiently meet the R&D needs and targets specified in the SETP Multi-Year Technical Plan. : The DOE/SETP goals of growing U.S. PV manufacturing into giga-watt capacities and seeing tera-watt-hours of solar energy production in the U.S. require an infrastructure that is under development. The staff of the SWRES has supported DOE/SETP through a coherent, integrated program to address infrastructural needs inhibiting wide-scale PV deployment in three major technical categories: specialized engineering services, workforce development, and deployment facilitation. The SWRES contract underwent three major revisions during its five year period-of- performance, but all tasks and deliverables fell within the following task areas: Task 1: PV Systems Assistance Center 1. Develop a Comprehensive multi-year plan 2. Provide technical workforce development materials and workshops for PV stakeholder groups including university, professional installers, inspectors, state energy offices, Federal agencies 3. Serve on the NABCEP exam committee 4. Provide on-demand technical PV system design reviews for U.S. PV stakeholders 5. Provide PV system field testing and instrumentation, technical outreach (including extensive support for the DOE Market Transformation program) Task 2: Design-for-Manufacture PV Systems 1. Develop and install 18 kW parking carport (cost share) and PV-thermal carport (Albuquerque) deriving and publishing

  6. DOE-TMS-11477-Final Technical Report

    SciTech Connect

    Howe, David


    The Neutron and X-Ray Studies of Advanced Materials VII Symposium, held at the 2014, 143rd Annual Meeting of The Minerals, Metals, and Materials Society (TMS), brought together experts, young investigators, and students from this sub-discipline of materials science in order for them to share their latest discoveries and develop collaborations. This annual symposium, which is organized by The Minerals, Metals, and Materials Society, is an important event for this community of scientists. This year, over 100 high-level technical talks were delivered over the course of the four day event. In addition, the large number of students and young investigators in attendance ensured the maximum benefit to the next generation’s work force in this area of study. The science surrounding the utilization of neutrons and x-rays to study advanced materials is becoming increasingly important in increasing the understanding of how the exceptional materials properties of such materials arise. In particular, x-rays and neutrons can be used to visualize material structures at an extremely high resolution and in some cases, three dimensions—allowing unprecedented insights into the mechanisms governing certain materials properties such as strength and toughness. Moreover, some of these techniques allow materials to be visualized without damaging the material, approaches known as non-destructive evaluation or “NDE”. This allows materials to be studied in 3 dimensions while undergoing change in real time which represents an important (and long sought-after) advancement in materials science. The types of interactions afforded by this event are beneficial to society at large primarily because they provide opportunities for the leaders within this field to learn from one another and thus improve the quality and productivity of their investigations. Additionally, the presence of young investigators and students with technical interests in this field provides promise that the United

  7. Final Technical Report for DOE Grant DE-FG02-91ER20038 (Technical...

    Office of Scientific and Technical Information (OSTI)

    Title: Final Technical Report for DOE Grant DE-FG02-91ER20038 The existence of species within the plant genus Flaveria with differing leaf cell arrangements and photosynthetic ...

  8. Final Scientific/Technical Report (Technical Report) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Final Scientific/Technical Report Citation Details In-Document Search Title: Final Scientific/Technical Report The potential for developing commercially viable microbial H2-production systems as a renewable source of biofuel has been limited by the need for an anaerobic environment to enable photobiological H2-production in capable bacterial and algal species. In this project, we have shown that the cyanobacterium Cyanothece sp. ATCC 51142 has the capacity for highly efficient H2-production

  9. Long pulse chemical laser. Final technical report

    SciTech Connect

    Bardon, R.L.; Breidenthal, R.E.; Buonadonna, V.R.


    This report covers the technical effort through February, 1989. This effort was directed towards the technology associated with the development of a large scale, long pulse DF-CO{sub 2} chemical laser. Optics damage studies performed under Task 1 assessed damage thresholds for diamond-turned salt windows. Task 2 is a multi-faceted task involving the use of PHOCL-50 for laser gain measurements, LTI experiments, and detector testing by LANL personnel. To support these latter tests, PHOCL-50 was upgraded with Boeing funding to incorporate a full aperture outcoupler that increased its energy output by over a factor of 3, to a full kilojoule. The PHOCL-50 carbon block calorimeter was also recalibrated and compared with the LANL Scientech meter. Cloud clearing studies under Task 3 initially concentrated on delivering a Boeing built Cloud Simulation Facility to LANL, and currently involves design of a Cold Cloud Simulation Facility. A Boeing IRAD funded theoretical study on cold cloud clearing revealed that ice clouds may be easier to clear then warm clouds. Task 4 involves the theoretical and experimental study of flow system design as related to laser beam quality. Present efforts on this task are concentrating on temperature gradients induced by the gas filling process. General support for the LPCL field effort is listed under Task 5, with heavy emphasis on assuring reliable operation of the Boeing built Large Slide Valve and other device related tests. The modification of the PHOCL-50 system for testing long pulse DF (4{mu}m only) chemical laser operation is being done under Task 6.

  10. AISI Direct Steelmaking Program. Final technical report

    SciTech Connect

    Aukrust, E.


    This final report deals with the results of a 5-yr project for developing a more energy-efficient, environmentally friendly, less costly process for producing hot metal than current coke ovens and blast furnaces. In the process, iron ore pellets are smelted in a foamy slag created by reaction of coal char with molten slag to produce CO. The CO further reacts with oxygen, which also reacts with coal volatile matter, to produce the heat necessary to sustain the endothermic reduction reaction. The uncombusted CO and H{sub 2} from the coal are used to preheat and prereduce hematite pellets for the most efficient use of the energy in the coal. Laboratory programs confirmed that the process steps worked. Pilot plant studies were successful. Economic analysis for a 1 million tpy plant is promising.

  11. Final Technical Progress Report NANOSTRUCTURED MAGNETIC MATERIALS

    SciTech Connect

    Charles M. Falco


    This report describes progress made during the final phase of our DOE-funded program on Nanostructured Magnetic Materials. This period was quite productive, resulting in the submission of three papers and presentation of three talks at international conferences and three seminars at research institutions. Our DOE-funded research efforts were directed toward studies of magnetism at surfaces and interfaces in high-quality, well-characterized materials prepared by Molecular Beam Epitaxy (MBE) and sputtering. We have an exceptionally well-equipped laboratory for these studies, with: Thin film preparation equipment; Characterization equipment; Equipment to study magnetic properties of surfaces and ultra-thin magnetic films and interfaces in multi-layers and superlattices.

  12. Final Technical Report: Results of Phase 1

    SciTech Connect

    Narang, David, J.; Hambrick, Joshua; Srinivasan, Devarajan; Ayyannar, Raja; O'Brien, Kathleen


    working, utility distribution feeder. To address the technical challenges related to the integration of distributed PV when PV penetration levels reach or exceed 30% of the total load, technologies and methods to ensure the stable and safe operation of the feeder will be evaluated. Lessons learned will enable APS to improve the framework for future PV integration on its system and may also aid other utilities across the United States energy sector in accelerating the adoption of distributed photovoltaic generation.

  13. Geothermal research, Oregon Cascades: Final technical report

    SciTech Connect

    Priest, G.R.; Black, G.L.


    Previous USDOE-funded geothermal studies have produced an extensive temperature gradient and heat flow data base for the State of Oregon. One of the important features identified as a result of these studies is a rapid transition from heat flow values on the order of 40 mW/m/sup 2/ in the Willamette Valley and Western Cascades to values of greater than or equal to100 mW/m/sup 2/ in the High Cascades and the eastern portion of the Western Cascades. These data indicate that the Cascade Range in Oregon has potential as a major geothermal province and stimulated much of the later work completed by government agencies and private industry. Additional data generated as a result of this grant and published in DOGAMI Open-File Report 0-86-2 further define the location and magnitude of this transition zone. In addition, abundant data collected from the vicinity of Breitenbush and Austin Hot Springs have permitted the formulation of relatively detailed models of these hydrothermal systems. These models are published in DOGAMI Open-File Report 0-88-5. Task 1.2 of the Deliverables section of Amendment M001 is fulfilled by DOGAMI publication GMS-48, Geologic map of the McKenzie Bridge quadrangle, Lane County, Oregon. This map was printed in October, 1988, and is part of the final submission to USDOE. 8 refs.

  14. Final Technical Report - DE-EE0003542

    SciTech Connect

    Haley, James D


    Wind has provided energy for thousands of years: some of the earliest windmill engineering designs date back to ancient Babylonia and India where wind would be used as a source of irrigation. Today, wind is the quickest growing resource in Americas expanding energy infrastructure. However, to continue to positively diversify Americas energy portfolio and further reduce the countrys reliance of foreign oil, the industry must grow substantially over the next two decades in both turbine installations and skilled industrial manpower to support. The wind sector is still an emergent industry requiring maturation and development of its labor force: dedicated training is needed to provide the hard and soft skills to support the increasingly complex wind turbine generators as the technology evolves. Furthermore, the American workforce is facing a steep decline in available labor resources as the baby boomer generation enters retirement age. It is therefore vital that a process is quickly created for supporting the next generation of wind technicians. However, the manpower growth must incorporate three key components. First, the safety and technical training curriculum must be standardized across the industry - current wind educational programs are disparate and dedicated standardization programs must be further refined and implemented. Second, it is essential that the wind sector avoid disrupting other energy production industries by cannibalizing workers, which would indirectly affect the rest of Americas energy portfolio. The future wind workforce must be created organically utilizing either young people entering the workforce or train personnel emerging from careers outside of energy production. Third, the training must be quick and efficient as large amounts of wind turbines are being erected each year and this growth is expected to continue until at least 2035. One source that matches these three requirements is personnel transitioning from military service to the

  15. Final Technical Report 09 LW 112

    SciTech Connect

    Lenhoff, R J


    Since the development of new antibiotics is out-paced by the emergence of bacterial resistance to existing antibiotics, it is crucial to understand the genetic mechanisms underlying resistance existing antibiotics. At the center of this mystery is a poorly understood phenomenon, heteroresistance: the coexistence of multiple subpopulations with varying degrees of antibiotic resistance. A better understanding of the fundamental basis of heteroresistance could result in sorely needed breakthroughs in treatment options. This project proposed to leverage a novel microfluidic (microchemostat) technology to probe the heteroresistance phenomenon in bacteria, with the aim of restoring the efficacy of existing {beta}-lactam antibiotics. The clinically important bacteria Methicillin Resistant S. aureus (MRSA) was used as the test case of bacteria that exhibits antibiotic heteroresistance. MRSA is difficult to treat because it is resistant to all {beta}-lactam antibiotics, as well as other classes of antimicrobials. Whereas {beta}-lactams such as methicillin and oxacillin are the preferred antibiotics to treat S. aureus infections due to their efficacy and low side effects, accurate determination and use of oxacillin/methicillin dosage is hampered by heteroresistance. In fact, invasive MRSA infections now account for about 95,000 deaths per year, a number that exceeds the deaths due to either influenza or HIV (12). In some MRSA strains, two subpopulations of cells may coexist: both populations carry the mecA gene that confers resistance, but mecA is differentially expressed so that only a small number of cells are observed during in vitro testing. Why this occurs is not understood. Prior experiments have sought to explain this phenomenon with conflicting results, with technology being the primary barrier to test the system sufficiently. This is the final report on work accomplished under the Lab-wide LDRD project 09-LW-112. This project was awarded to Frederick Balagadde who

  16. Final Report on Statistical Debugging for Petascale Environments (Technical

    Office of Scientific and Technical Information (OSTI)

    Report) | SciTech Connect Final Report on Statistical Debugging for Petascale Environments Citation Details In-Document Search Title: Final Report on Statistical Debugging for Petascale Environments Authors: Liblit, B Publication Date: 2013-01-18 OSTI Identifier: 1062211 Report Number(s): LLNL-SR-612077 DOE Contract Number: W-7405-ENG-48 Resource Type: Technical Report Research Org: Lawrence Livermore National Laboratory (LLNL), Livermore, CA Sponsoring Org: USDOE Country of Publication:

  17. The Independent Technical Analysis Process Final Report 2006-2007.

    SciTech Connect

    Duberstein, Corey; Ham, Kenneth; Dauble, Dennis; Johnson, Gary


    The Bonneville Power Administration (BPA) contracted with the Pacific Northwest National Laboratory (PNNL) to provide technical analytical support for system-wide fish passage information (BPA Project No. 2006-010-00). The goal of this project was to produce rigorous technical analysis products using independent analysts and anonymous peer reviewers. This project provided an independent technical source for non-routine fish passage analyses while allowing routine support functions to be performed by other well-qualified entities. The Independent Technical Analysis Process (ITAP) was created to provide non-routine analysis for fish and wildlife agencies and tribes in particular and the public in general on matters related to juvenile and adult salmon and steelhead passage through the mainstem hydrosystem. The process was designed to maintain the independence of analysts and reviewers from parties requesting analyses, to avoid potential bias in technical products. The objectives identified for this project were to administer a rigorous, transparent process to deliver unbiased technical assistance necessary to coordinate recommendations for storage reservoir and river operations that avoid potential conflicts between anadromous and resident fish. Seven work elements, designated by numbered categories in the Pisces project tracking system, were created to define and accomplish project goals as follows: (1) 118 Coordination - Coordinate technical analysis and review process: (a) Retain expertise for analyst/reviewer roles. (b) Draft research directives. (c) Send directive to the analyst. (d) Coordinate two independent reviews of the draft report. (e) Ensure reviewer comments are addressed within the final report. (2) 162 Analyze/Interpret Data - Implement the independent aspects of the project. (3) 122 Provide Technical Review - Implement the review process for the analysts. (4) 132 Produce Annual Report - FY06 annual progress report with Pisces Disseminate (5) 161

  18. Final Technical Report for DOE Grant, number DE-FG02-05ER15701...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Final Technical Report for DOE Grant, number DE-FG02-05ER15701; Probing Surface Chemistry Under Catalytic Conditions: Olefin Hydrogenation,Cyclization and ...

  19. Final Report (Technical Report) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Final Report Citation Details In-Document Search Title: Final Report The progress over the course of the grant period was excellent. We went from 3-D test codes to full 3-D production codes. We studied several SNe Ia. Most of the support has gone for the 3 years of support of OU graduate student Brian Friesen, who is now mature in his fourth year of research. It is unfortunate that there will be no further DOE support to see him through to the completion of his PhD. Authors:

  20. Final Scientific/Technical Report Development of Large-Area Photo...

    Office of Scientific and Technical Information (OSTI)

    Final ScientificTechnical Report Development of Large-Area Photo-Detectors Citation Details In-Document Search Title: Final ScientificTechnical Report Development of Large-Area...

  1. Site Operator technical report. Final report (1992--1996)

    SciTech Connect


    The Southern California Edison Company (SCE) and the US Department of Energy (DOE) entered into cooperative agreement No. DE-FC07-91ID13077 on August 23, 1991, which expired on August 3, 1996. This cooperative agreement provided SCE with DOE cofunding for participation in the DOE`s Electric and Hybrid Vehicle Site Operator Program. In return, SCE provided the DOE with quarterly progress reports which include operating and maintenance data for the electric (EVs) vehicles in SCE`s fleet. Herein is SCE`s final report for the 1992 to 1996 agreement period. As of September 1, 1996 the SCE fleet had 65 electric vehicles in service. A total of 578,200 miles had been logged. During the agreement period, SCE sent the DOE a total of 19 technical reports (Appendix B). This report summarizes the technical achievements which took place during a long, productive and rewarding, relationship with the DOE.

  2. Physics Analysis of Microwave Imaging Data from DIII-D & KSTAR. Final Technical Report

    SciTech Connect

    Munsat, Tobin


    Final Technical Report of the award entitled Physics Analysis of Microwave Imaging Data from DIII-D & KSTAR

  3. Admiralty Inlet Pilot Tidal Project Final Technical Report

    SciTech Connect

    Collar, Craig


    This document represents the final report for the Admiralty Inlet Pilot Tidal Project, located in Puget Sound, Washington, United States. The Project purpose was to license, permit, and install a grid-connected deep-water tidal turbine array (two turbines) to be used as a platform to gather operational and environmental data on tidal energy generation. The data could then be used to better inform the viability of commercial tidal energy generation from technical, economic, social, and environmental standpoints. This data would serve as a critical step towards the responsible advancement of commercial scale tidal energy in the United States and around the world. In late 2014, Project activities were discontinued due to escalating costs, and the DOE award was terminated in early 2015. Permitting, licensing, and engineering design activities were completed under this award. Final design, deployment, operation, and monitoring were not completed. This report discusses the results and accomplishments achieved under the subject award.

  4. Mathematics Intensive Summer Session (MISS). Final technical report

    SciTech Connect


    This final technical report appears in two parts: the report for the 1995 summer MISS program and the report for the 1996 summer MISS program. Copies of the US Department of Energy Pre-Freshman Enrichment Program 1995 Entry Form and 1996 Entry Form completed by all participants were sent to the Oak Ridge Institute for Science and Education in the fall of 1995 and 1996 respectively. Those forms are on file should they be needed. Attached also is a copy of the Summary of ideas for panel discussions, problem-solving sessions, or small group discussions presented at the Department of Energy Oak Ridge Institute for Science and Education Pre-Freshman Enrichment Program Project Directors Meeting held in San Antonio, TX, November 12--14, 1995.


    Office of Scientific and Technical Information (OSTI)

    RIVER PLUMES (Technical Report) | SciTech Connect Technical Report: FINAL TECHNICAL REPORT-THE ECOLOGY AND GENOMICS OF CO2 FIXATIION IN OCEANIC RIVER PLUMES Citation Details In-Document Search Title: FINAL TECHNICAL REPORT-THE ECOLOGY AND GENOMICS OF CO2 FIXATIION IN OCEANIC RIVER PLUMES Oceanic river plumes represent some of the most productive environments on Earth. As major conduits for freshwater and nutrients into the coastal ocean, their impact on water column ecosystems extend for up

  6. Final Scientific/Technical Report - DE-EE0002960 Recovery Act. Detachment

    Office of Scientific and Technical Information (OSTI)

    faulting and Geothermal Resources - An Innovative Integrated Geological and Geophysical Investigation of Pearl Hot Spring, Nevada (Technical Report) | SciTech Connect Technical Report: Final Scientific/Technical Report - DE-EE0002960 Recovery Act. Detachment faulting and Geothermal Resources - An Innovative Integrated Geological and Geophysical Investigation of Pearl Hot Spring, Nevada Citation Details In-Document Search Title: Final Scientific/Technical Report - DE-EE0002960 Recovery Act.

  7. Support of Hampton University Center for Fusion Research and Training. Final technical report

    SciTech Connect

    Punjabi, Alkesh


    The Final Technical Report on research, education, training, and outreach activities of the Hampton University Center for Fusion Research and Training.

  8. AISI waste oxide recycling program. Final technical report

    SciTech Connect

    Aukrust, E.; Downing, K.B.; Sarma, B.


    In March 1995 AISI completed a five-year, $60 million collaborative development program on Direct Steelmaking cost-shared by DOE under the Metals Initiative. This program defined an energy-efficient and environmentally-friendly technology to produce hot metal for steelmaking directly from coal and iron ore pellets without incurring the high capital costs and environmental problems associated with traditional coke oven and blast furnace technology. As it becomes necessary to replace present capacity, this new technology will be favored because of reduced capital costs, higher energy efficiency, and lower operating costs. In April 1994, having failed to move forward with a demonstration plant for direct ironmaking, despite substantial efforts by both Stelco and Geneva Steel, an alternative opportunity was sought to commercialize this new technology without waiting until existing ironmaking capacity needed to be replaced. Recycling and resource recovery of steel plant waste oxides was considered an attractive possibility. This led to approval of a ten-month, $8.3 million joint program with DOE on recycling steel plant waste oxides utilizing this new smelting technology. This highly successful trial program was completed in December 1994. The results of the pilot plant work and a feasibility study for a recycling demonstration plant are presented in this final technical report.

  9. Final Technical Report - Kotzebue Wind Power Porject - Volume I

    SciTech Connect

    Rana Zucchi, Global Energy Concepts, LLC; Brad Reeve, Kotzebue Electric Association; DOE Project Officer - Doug Hooker


    The Kotzebue Wind Power Project is a joint undertaking of the U.S. Department of Energy (DOE); Kotzebue Electric Association (KEA); and the Alaska Energy Authority (AEA). The goal of the project is to develop, construct, and operate a wind power plant interconnected to a small isolated utility grid in an arctic climate in Northwest Alaska. The primary objective of KEA’s wind energy program is to bring more affordable electricity and jobs to remote Alaskan communities. DOE funding has allowed KEA to develop a multi-faceted approach to meet these objectives that includes wind project planning and development, technology transfer, and community outreach. The first wind turbines were installed in the summer of 1997 and the newest turbines were installed in the spring of 2007. The total installed capacity of the KEA wind power project is 1.16 MW with a total of 17 turbines rated between 65 kW and 100 kW. The operation of the wind power plant has resulted in a wind penetration on the utility system in excess of 35% during periods of low loads. This document and referenced attachments are presented as the final technical report for the U.S. Department of Energy (DOE) grant agreement DE-FG36-97GO10199. Interim deliverables previously submitted are also referenced within this document and where reasonable to do so, specific sections are incorporated in the report or attached as appendices.

  10. Final Technical Report - Kotzebue Wind Power Project - Volume II

    SciTech Connect

    Rana Zucchi, Global Energy Concepts, LLC; Brad Reeve, Kotzebue Electric Association; DOE Project Officer - Doug Hooker


    The Kotzebue Wind Power Project is a joint undertaking of the U.S. Department of Energy (DOE); Kotzebue Electric Association (KEA); and the Alaska Energy Authority (AEA). The goal of the project is to develop, construct, and operate a wind power plant interconnected to a small isolated utility grid in an arctic climate in Northwest Alaska. The primary objective of KEA’s wind energy program is to bring more affordable electricity and jobs to remote Alaskan communities. DOE funding has allowed KEA to develop a multi-faceted approach to meet these objectives that includes wind project planning and development, technology transfer, and community outreach. The first wind turbines were installed in the summer of 1997 and the newest turbines were installed in the spring of 2007. The total installed capacity of the KEA wind power project is 1.16 MW with a total of 17 turbines rated between 65 kW and 100 kW. The operation of the wind power plant has resulted in a wind penetration on the utility system in excess of 35% during periods of low loads. This document and referenced attachments are presented as the final technical report for the U.S. Department of Energy (DOE) grant agreement DE-FG36-97GO10199. Interim deliverables previously submitted are also referenced within this document and where reasonable to do so, specific sections are incorporated in the report or attached as appendices.

  11. FINAL REPORT DE-FG02-07ER15894 (Technical Report) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Technical Report: FINAL REPORT DE-FG02-07ER15894 Citation Details In-Document Search Title: FINAL REPORT DE-FG02-07ER15894 One of the greatest technological hurdles to deployment ...

  12. Final Technical Report of ASR project entitled "ARM Observations...

    Office of Scientific and Technical Information (OSTI)

    Authors: Zhu, Ping 1 + Show Author Affiliations Florida Intl Univ., Miami, FL (United ... Resource Type: Technical Report Research Org: Florida Intl Univ., Miami, FL (United ...

  13. NTRCI Legacy Engine Research and Development Project Final Technical Report

    SciTech Connect

    Smith-Holbert, Connie; Petrolino, Joseph; Watkins, Bart; Irick, David


    The Legacy engine is a completely new design, transitional diesel engine, replacing the reciprocating engine with a rotary engine. The Legacy engine offers significant advances over conventional internal combustion engines in 1) power to weight ratio; 2) multiple fuel acceptance; 3) fuel economy; and 4) environmental compliance. These advances are achieved through a combination of innovative design geometry, rotary motion, aspiration simplicity, and manufacturing/part simplicity. The key technical challenge to the Legacy engine's commercialization, and the focus of this project, was the development of a viable roton tip seal. The PST concept for the roton tip seal was developed into a manufacturable design. The design was evaluated using a custom designed and fabricated seal test fixture and further refined. This design was incorporated into the GEN2.5A prototype and tested for achievable compression pressure. The Decision Point at the end of Phase 1 of the project (described below) was to further optimize the existing tip seal design. Enhancements to the tip seal design were incorporated into the GEN2.5B prototype and tested and evaluated using the iterative research strategy described below. Compression pressures adequate for compression ignition of diesel fuel were achieved, although not consistently in all combustion volumes. The variation in compression pressures was characterized versus design features. As the roton tip seal performance was improved, results pointed toward inadequate performance of the housing side seals. Enhancement of the housing side seal system was accomplished using a custom designed side seal test fixture. The design enhancements developed with the test fixture were also incorporated into the GEN2.5B prototype and tested and evaluated using the iterative research strategy described below. Finally, to simplify the requirements for the roton tip seals and to enhance the introduction and combustion of fuel, a flush-mount fuel injector was

  14. STTR Phase 1 Final Technical Report for Project Entitled "Developing a

    Office of Scientific and Technical Information (OSTI)

    Mobile Torrefaction Machine" (Technical Report) | SciTech Connect STTR Phase 1 Final Technical Report for Project Entitled "Developing a Mobile Torrefaction Machine" Citation Details In-Document Search Title: STTR Phase 1 Final Technical Report for Project Entitled "Developing a Mobile Torrefaction Machine" The goal of this project, sponsored by Agri-Tech Producers, LLC (ATP), the small business grantee, was to determine if the torrefaction technology, developed by

  15. Technical Support Document for the Department of Energy's Notice of Final

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Rulemaking | Department of Energy Technical Support Document for the Department of Energy's Notice of Final Rulemaking Technical Support Document for the Department of Energy's Notice of Final Rulemaking In this Technical Support Document, DOE presents each of the changes to its NEPA implementing regulations (10 CFR part 1021, Subparts B, C, and D) and provides supplementary support for the changes. The left column of the table below shows the changes to the existing regulations and the

  16. Final Technical Report of ASR project entitled "ARM Observations for the

    Office of Scientific and Technical Information (OSTI)

    Development and Evaluation of Models and Parameterizations of Cloudy Boundary Layers" (DE-SC0000825) (Technical Report) | SciTech Connect Final Technical Report of ASR project entitled "ARM Observations for the Development and Evaluation of Models and Parameterizations of Cloudy Boundary Layers" (DE-SC0000825) Citation Details In-Document Search Title: Final Technical Report of ASR project entitled "ARM Observations for the Development and Evaluation of Models and

  17. Final Technical Report for "Reducing tropical precipitation biases in CESM"

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Final Technical Report for "Reducing tropical precipitation biases in CESM" Citation Details In-Document Search Title: Final Technical Report for "Reducing tropical precipitation biases in CESM" In state-of-the-art climate models, each cloud type is treated using its own separate cloud parameterization and its own separate microphysics parameterization. This use of separate schemes for separate cloud regimes is undesirable because it

  18. Process Equipment Cost Estimation, Final Report (Technical Report...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Process Equipment Cost Estimation, Final Report Citation Details In-Document Search Title: Process Equipment Cost Estimation, Final Report You are accessing a document from the ...

  19. Final Technical Report Advanced Solar Resource Modeling and Analysis.

    SciTech Connect

    Hansen, Clifford


    The SunShot Initiative coordinates research, development, demonstration, and deployment activities aimed at dramatically reducing the total installed cost of solar power. The SunShot Initiative focuses on removing critical technical and non-technical barriers to installing and integrating solar energy into the electricity grid. Uncertainty in projected power and energy production from solar power systems contributes to these barriers by increasing financial risks to photovoltaic (PV) deployment and by exacerbating the technical challenges to integration of solar power on the electricity grid.

  20. Final Technical Report: Hydrogen Codes and Standards Outreach

    SciTech Connect

    Hall, Karen I.


    This project contributed significantly to the development of new codes and standards, both domestically and internationally. The NHA collaborated with codes and standards development organizations to identify technical areas of expertise that would be required to produce the codes and standards that industry and DOE felt were required to facilitate commercialization of hydrogen and fuel cell technologies and infrastructure. NHA staff participated directly in technical committees and working groups where issues could be discussed with the appropriate industry groups. In other cases, the NHA recommended specific industry experts to serve on technical committees and working groups where the need for this specific industry expertise would be on-going, and where this approach was likely to contribute to timely completion of the effort. The project also facilitated dialog between codes and standards development organizations, hydrogen and fuel cell experts, the government and national labs, researchers, code officials, industry associations, as well as the public regarding the timeframes for needed codes and standards, industry consensus on technical issues, procedures for implementing changes, and general principles of hydrogen safety. The project facilitated hands-on learning, as participants in several NHA workshops and technical meetings were able to experience hydrogen vehicles, witness hydrogen refueling demonstrations, see metal hydride storage cartridges in operation, and view other hydrogen energy products.

  1. Final Technical Report DOE/GO/13142-1

    SciTech Connect

    Patrick Mulvihill; Quang Nguyen


    This research adds to the understanding of the areas of residual starch and biomass conversion to alcohol, by providing data from pilot plant equipment of larger scale than the minimum required to give commercially scalable data. Instrumentation and control is in place to capture the information produced, for economic and technical evaluation. The impact of rheology, recycle streams, and residence time distributions on the technical and economic performance can be assessed. Various processes can be compared technically and economically because the pilot plants are readily modifiable. Several technologies for residual starch yield improvement have been identified, implemented, and patent applications filed. Various biomass-to-ethanol processes have been compared and one selected for technical optimization and commercialization. The technical and economic feasibility of the current simplified biomass conversion process is being confirmed by intensive pilot plant efforts as of this writing. Optimization of the feedstock handling and pretreatment is occurring to increase the alcohol yield above the minimum commercially viable level already demonstrated. Samples of biomass residue and reactor blowdown condensate are being collected to determine the technical and economic performance of the high-water-recycle waste treatment system being considered for the process. The project is of benefit to the public because it is advancing the efforts to achieve low-cost fermentable substrates for conversion to transportation fuels. This process combines the hydrolysis of agricultural residues with novel enzymes and organisms to convert the sugars released to transportation fuels. The process development is taking place at a scale allowing commercial development to proceed at a rapid pace.

  2. Modular Radioisotope Thermoelectric Generator (RTG) Program. Final technical report

    SciTech Connect

    Not Available


    Section 2.0 of this report summarizes the MOD-RTG reference flight design, and Section 3.0 discusses the Ground Demonstration System design. Multicouple technology development is discussed in Section 4.0, and Section 5.0 lists all published technical papers prepared during the course of the contract.

  3. Final Scientific-Technical Report DOE-GISS-61768. Constraints on cloud feedback from analysis of arm observations and models

    SciTech Connect

    Del Genio, Anthony D.


    Final Scientific-Technical Report for research conducted under the Atmospheric Radiation Measurement Program from 1994-2010.

  4. Final Scientific/Technical Report Grant title: Use of ARM Measurements...

    Office of Scientific and Technical Information (OSTI)

    Final ScientificTechnical Report Grant title: Use of ARM Measurements of Spectral Zenith Radiance for Better Understanding of 3D Cloud-Radiation Processes and Aerosol-Cloud ...

  5. University of Maryland component of the Center for Multiscale Plasma Dynamics: Final Technical Report

    SciTech Connect

    Dorland, William


    The Center for Multiscale Plasma Dynamics (CMPD) was a five-year Fusion Science Center. The University of Maryland (UMD) and UCLA were the host universities. This final technical report describes the physics results from the UMD CMPD.

  6. Final Scientific and Technical Report State and Regional Biomass Partnerships

    SciTech Connect

    Handley, Rick; Stubbs, Anne D.


    The Northeast Regional Biomass Program successfully employed a three pronged approach to build the regional capacity, networks, and reliable information needed to advance biomass and bioenergy technologies and markets. The approach included support for state-based, multi-agency biomass working groups; direct technical assistance to states and private developers; and extensive networking and partnership-building activities to share objective information and best practices.

  7. Insulation from basaltic stamp sand. Final technical report

    SciTech Connect

    Williams, F. D.


    A Midwest Appropriate Technology Grant was awarded to determine the technical and economic feasibility of producing mineral-fiber insulation directly from extensive deposits of basaltic sand produced during former mining and milling operations in the Keweenaw Peninsula region of Michigan's Upper Peninsula. The amounts of local basaltic sands available and representative chemical compositions were determined. The variation of viscosity with temperature and chemical composition was estimated. Samples were melted and either pulled or blown into fiber. In all cases fiber could be made with a reasonable tensile strength to ensure usefulness. It was concluded that it was technically feasible to produce fibers from basaltic stamp sands of the Upper Peninsula of Michigan. A technical feasibility study using published data, a cost and design analysis of a basalt fiber production plant, a market survey of fiber needs, and an economic analysis for investing in a basalt fiber venture was undertaken. These studies concluded that the local production of basaltic insulation was both feasible and economically reasonable. It was suggested that the plant be located in a region of greater population density with lower utility costs. A representative one-third of these studies is included as appendices A, B, C, and D.

  8. Final Technical Report_Clean Energy Program_SLC-SELF

    SciTech Connect

    Henderson, Glenn; Coward, Doug


    This is the Final Technical Report for DOE's Energy Efficiency and Conservation Block Grant, Award No. DE-EE0003813, submitted by St. Lucie County, FL (prime recipient) and the Solar and Energy Loan Fund (SELF), the program's third-party administrator. SELF is a 501(c)(3) and a certified Community Development Financial Institution (CDFI). SELF is a community-based lending organization that operates the Clean Energy Loan Program, which focuses on improving the overall quality of life of underserved populations in Florida with an emphasis on home energy improvements and cost-effective renewable energy alternatives. SELF was launched in 2010 through the creation of the non-profit organization and with a $2.9 million Energy Efficiency and Conservation Block (EECBG) grant from the U.S. Department of Energy (DOE). SELF has its main office and headquarters in St. Lucie County, in the region known as the Treasure Coast in East-Central Florida. St. Lucie County received funding to create SELF as an independent non-profit institution, outside the control of local government. This was important for SELF to create its identity as an integral part of the business community and to help in its quest to become a Community Development Financial Institution (CDFI). This goal was accomplished in 2013, allowing SELF to focus on its mission to increase energy savings while serving markets that have struggled to find affordable financial assistance. These homeowners are most impacted by high energy costs. Energy costs are a disproportionate percentage of household expenses for low to moderate income (LMI) households. Electricity costs have been steadily rising in Florida by nearly 5% per year. Housing in LMI neighborhoods often includes older inefficient structures that further exacerbate the problem. Despite the many available clean energy solutions, most LMI property owners do not have the disposable income or equity in their homes necessary to afford the high upfront cost of energy

  9. Stable Boundary Layer Education (STABLE) Final Campaign Summary (Technical

    Office of Scientific and Technical Information (OSTI)

    Report) | SciTech Connect Stable Boundary Layer Education (STABLE) Final Campaign Summary Citation Details In-Document Search Title: Stable Boundary Layer Education (STABLE) Final Campaign Summary The properties of, and the processes that occur in, the nocturnal stable boundary layer are not well understood, making it difficult to represent adequately in numerical models. The nocturnal boundary layer often is characterized by a temperature inversion and, in the Southern Great Plains region,

  10. The Nocturnal Avian Migration Experiment Final Campaign Report (Technical

    Office of Scientific and Technical Information (OSTI)

    Report) | SciTech Connect The Nocturnal Avian Migration Experiment Final Campaign Report Citation Details In-Document Search Title: The Nocturnal Avian Migration Experiment Final Campaign Report Remote sensing techniques are playing a greater role in ornithology, and radar has proven a valuable tool for high resolution, long-term observations of airborne animals. The major disadvantage in radar remote sensing is the current inability to gain taxonomic information from these measurements. One

  11. Final Report (Technical Report) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Final Report Citation Details In-Document Search Title: Final Report We propose to extend the technique of polarized neutron scattering into new domains by continued development and application of polarized 3He spin-filters. These devices are particularly relevant to the Spallation Neutron Source, as the polarizing monochromators historically used at reactor sources will usually not be suitable polarizers, and wide-angle polarization analysis will be essential. With prior support from the Office

  12. Clean Air for London (CLEARFLO) Final Campaign Summary (Technical Report) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Clean Air for London (CLEARFLO) Final Campaign Summary Citation Details In-Document Search Title: Clean Air for London (CLEARFLO) Final Campaign Summary This field campaign funded the participation of scientists from seven different research groups and operated over thirty instruments during the Winter Intensive Operating Period (January-February 2012) of the Clean Air for London (ClearfLo) campaign. The campaign took place at a rural site in Detling, UK, 45 kilometers

  13. Convective Radio Occultations Final Campaign Summary (Technical Report) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Convective Radio Occultations Final Campaign Summary Citation Details In-Document Search Title: Convective Radio Occultations Final Campaign Summary Deep convective systems are destructive weather phenomena that annually cause many deaths and injuries as well as much damage, thereby accounting for major economic losses in several countries. The number and intensity of such phenomena have increased over the last decades in some areas of the globe. Damage is mostly caused by

  14. FINAL TECHNICAL REPORT: 20% Wind by 2030: Overcoming the Challenges

    SciTech Connect

    Tom Kaiserski; Dan Lloyd


    The funds allocated through the Wind Powering America (WPA) grant were utilized by the State of Montana to support broad outreach activities communicating the benefits and opportunities of increased wind energy and transmission development. The challenges to increased wind development were also clearly communicated with the understanding that a clearer comprehension of the challenges would be beneficial in overcoming the obstacles to further development. The ultimate purpose of these activities was to foster the increased development of Montana's rich wind resources through increased public acceptance and wider dissemination of technical resources.

  15. Establishment of the International Power Institute. Final technical report

    SciTech Connect

    Julius E. Coles


    The International Power Institute, in collaboration with American industries, seeks to address technical, political, economic and cultural issues of developing countries in the interest of facilitating profitable transactions in power related infrastructure projects. IPI works with universities, governments and commercial organizations to render project-specific recommendations for private-sector investment considerations. IPI also established the following goals: Facilitate electric power infrastructure transactions between developing countries and the US power industry; Collaborate with developing countries to identify development strategies to achieve energy stability; and Encourage market driven solutions and work collaboratively with other international trade energy, technology and banking organizations.

  16. Systematized contact between inventors and industry. [Final Technical Report

    SciTech Connect

    Not Available


    A total of 139 inventions by private (individual) inventors were submitted to Technology Targeting Incorporated. Each inventor was told of the nature of the DOE-supported Project, through informational and promotional efforts by TTI, and each completed an Invention Submittal Form developed by TTI to describe the essential nature of the claimed invention. Many also submitted detailed descriptions, drawings, technical reports and similar supplemental materials giving a more comprehensive view of their inventions. Each invention was reviewed for technical and commercial merit, as well as for appropriateness of marketing through the Technology Targeting DataBase[trademark] (hereafter DATABASE). Overall, participating inventors were enthusiastic about the Project and felt participation in it was rewording. Even when not selected for marketing, inventors were given an analysis of their inventions which could help them enhance the inventions and improve marketing efforts. Inventors whose inventions were selected for marketing were shown how to professionally market the inventions, including the format for Non Confidential Invention Summaries, the preferred form for Confidential Disclosure Agreements, targeting of business decision-makers responsible for technology evaluation, and the like; some of these inventors are still interacting with industrial contacts provided by TTI through this Project. All inventors received copies of patent abstracts uncovered in the prior art searches for their inventions and a copy of TTI's booklet, Patent Law Basics for Individual Inventors.

  17. Systematized contact between inventors and industry. Final technical report

    SciTech Connect

    Not Available


    A total of 139 inventions by private (individual) inventors were submitted to Technology Targeting Incorporated. Each inventor was told of the nature of the DOE-supported Project, through informational and promotional efforts by TTI, and each completed an Invention Submittal Form developed by TTI to describe the essential nature of the claimed invention. Many also submitted detailed descriptions, drawings, technical reports and similar supplemental materials giving a more comprehensive view of their inventions. Each invention was reviewed for technical and commercial merit, as well as for appropriateness of marketing through the Technology Targeting DataBase{trademark} (hereafter ``DATABASE). Overall, participating inventors were enthusiastic about the Project and felt participation in it was rewording. Even when not selected for marketing, inventors were given an analysis of their inventions which could help them enhance the inventions and improve marketing efforts. Inventors whose inventions were selected for marketing were shown how to professionally market the inventions, including the format for Non Confidential Invention Summaries, the preferred form for Confidential Disclosure Agreements, targeting of business decision-makers responsible for technology evaluation, and the like; some of these inventors are still interacting with industrial contacts provided by TTI through this Project. All inventors received copies of patent abstracts uncovered in the prior art searches for their inventions and a copy of TTI`s booklet, Patent Law Basics for Individual Inventors.

  18. SIAM Conference on Geometric Design and Computing. Final Technical Report

    SciTech Connect


    The SIAM Conference on Geometric Design and Computing attracted 164 domestic and international researchers, from academia, industry, and government. It provided a stimulating forum in which to learn about the latest developments, to discuss exciting new research directions, and to forge stronger ties between theory and applications. Final Report

  19. Beowawe Bottoming Binary Unit - Final Technical Report for EE0002856

    SciTech Connect

    McDonald, Dale Edward


    This binary plant is the first high-output refrigeration based waste heat recovery cycle in the industry. Its working fluid is environmentally friendly and as such, the permits that would be required with a butane based cycle are not necessary. The unit is modularized, meaning that the unit’s individual skids were assembled in another location and were shipped via truck to the plant site. This project proves the technical feasibility of using low temperature brine The development of the unit led to the realization of low temperature, high output, and environmentally friendly heat recovery systems through domestic research and engineering. The project generates additional renewable energy for Nevada, resulting in cleaner air and reduced carbon dioxide emissions. Royalty and tax payments to governmental agencies will increase, resulting in reduced financial pressure on local entities. The major components of the unit were sourced from American companies, resulting in increased economic activity throughout the country.

  20. Final Scientific Technical Report Crowder College MARET Center

    SciTech Connect

    Boyt, Art; Eberle, Dan; Hudson, Pam; Hopper, Russ


    and validating new applications of solar and other renewable technologies, the MARET Facility will house a wide variety of programs which will advance implementation of renewable energy throughout the region. These program goals include; Curriculum in renewable energy for pre-engineering transfer programs; Certification and degree programs for technical degrees for Energy Efficiency, Wind, Photovoltaic and Solar Thermal professionals; Short courses and workshops for building management and design professionals; Public education and demonstration projects in renewable energy through conferences and K-12 educational outreach; Technical degree offering in building construction incorporating best practices for energy efficiency and renewables; and Business incubators for new renewable energy businesses and new product development The new MARET facility will support the mission of the US Department of Energy (DOE) Solar Program, to improve Americas security, environmental quality, and economic prosperity through public-private partnerships that bring reliable and affordable solar energy technologies to the marketplace, through a variety of educational and business assistance programs. Further, technical innovations planned for the MARET facility and its applied research activities will advance the Solar Program strategic goals to reduce the cost of solar energy to the point it becomes competitive in relevant energy markets (e.g., buildings, power plants) and for solar technology to enable a sustainable solar industry. Overarching Goals relative to program needs, future expansion, flexibility, quality of materials, and construction and operational costs:; Experimental: The structure and systems of the building operate as an educational resource. The systems are meant to be a source for data collection and study for building users and instructors; Educational: Part of the evolution of this building and its ongoing goals is to use the building as an educational tool

  1. Modular Electric Vehicle Program (MEVP). Final technical report

    SciTech Connect


    The Modular Electric Vehicle Program (MEVP) was an EV propulsion system development program in which the technical effort was contracted by DOE to Ford Motor Company. The General Electric Company was a major subcontractor to Ford for the development of the electric subsystem. Sundstrand Power Systems was also a subcontractor to Ford, providing a modified gas turbine engine APU for emissions and performance testing as well as a preliminary design and producibility study for a Gas Turbine-APU for potential use in hybrid/electric vehicles. The four-year research and development effort was cost-shared between Ford, General Electric, Sundstrand Power Systems and DOE. The contract was awarded in response to Ford`s unsolicited proposal. The program objective was to bring electric vehicle propulsion system technology closer to commercialization by developing subsystem components which can be produced from a common design and accommodate a wide range of vehicles; i.e., modularize the components. This concept would enable industry to introduce electric vehicles into the marketplace sooner than would be accomplished via traditional designs in that the economies of mass production could be realized across a spectrum of product offerings. This would eliminate the need to dedicate the design and capital investment to a limited volume product offering which would increase consumer cost and/or lengthen the time required to realize a return on the investment.

  2. Investigation of gigawatt millimeter wave source applications. Final technical report

    SciTech Connect

    Bruder, J.A.; Belcher, M.L.


    The Georgia Tech Research Institute (GTRI) investigated potential applications of millimeter wave (MMW) sources with peak powers on the order of a gigawatt. This power level is representative of MMW devices such as the free electron laser (FEL) and the cyclotron auto-resonance maser (CARM) that are under development at the Lawrence Livermore National Laboratory (LLNL). In addition to determining the technical requirements for these applications, the investigation considered potential users and how a high power MMW system would expand their current capabilities. Two of the more promising applications were examined in detail to include trade-off evaluations system parameters. The trade-off evaluations included overall system configuration, frequency and coherence, component availability, and performance estimates. Brainstorming sessions were held to try and uncover additional applications for a gigawatt MMW source. In setting up guidelines for the session, the need to attempt to predict applications for the years 2000 to 2030 was stressed. Also, possible non-DoD applications needed to be considered. While some of these applications could not in themselves justify the costs involved in the development of the radar system, they could be considered potential secondary applications of the system. As a result of the sessions, a number of interesting potential applications evolved including: space object identification; low angle tracking; illuminator for space-based radar; radio astronomy; space vehicle navigation; space debris location; atmospheric research; wind shear detection; electronic countermeasures; low observable detection; and long range detection via ducting.

  3. Final Technical Report Steam Cycle Washer for Unbleached Pulp

    SciTech Connect

    Starkey, Yvonne; Salminen, Reijo; Karlsnes, Andy


    Project Abstract for “Steam Cycle Washer for Unbleached Pulp” When completed, the patented SC Washer will provide an innovative, energy efficient demonstration project to wash unbleached pulp using a pressure vessel charged with steam. The Port Townsend Paper Corporation’s pulp mill in Port Townsend, WA was initially selected as the host site for conducting the demonstration of the SCW. Due to 2006 and 2007 delays in the project caused by issues with 21st Century Pulp & Paper, the developer of the SCW, and the 2007 bankruptcy proceedings and subsequent restructuring at Port Townsend Paper, the mill can no longer serve as a host site. An alternate host site is now being sought to complete the commercial demonstration of the Steam Cycle Washer for Unbleached Pulp. Additionally, estimated costs to complete the project have more than doubled since the initial estimates for the project were completed in 2002. Additional grant funding from DOE was sought and in July, 2008 the additional DOE funds were procured under a new DOE award, DE-PS36-08GO98014 issued to INL. Once the new host site is secured the completion of the project will begin under the management of INL. Future progress reports and milestone tracking will be completed under requirements of new DOE Award Number DE-PS36-08GO98014. The following are excerpts from the project Peer Review completed in 2006. They describe the project in some detail. Additional information can be found by reviewing DOE Award Number: DE-PS36-08GO98014. 5. Statement of Problem and Technical Barriers: The chemical pulping industry is one of the major users of fresh water in the United States. On average the industry uses over 80 tons of water to produce one ton of pulp, some states use up to 50% more (Washington 120 and Wisconsin 140). In order to process one ton of pulp using 80 tons of process water, a large amount of: • energy is used in process heat and • power is required for pumping the large volume of pulp slurries

  4. Pressurized Oxidative Recovery of Energy from Biomass Final Technical Report

    SciTech Connect

    M. Misra


    This study was conducted to evaluate the technical feasibility of using pressurized oxyfuel, the ThermoEnergy Integrated Power System (TIPS), to recover energy from biomass. The study was focused on two fronts—computer simulation of the TIPS plant and corrosion testing to determine the best materials of construction for the critical heat exchanger components of the process. The goals were to demonstrate that a successful strategy of applying the TIPS process to wood waste could be achieved. To fully investigate the technical and economic benefits of using TIPS, it was necessary to model a conventional air-fired biomass power plant for comparison purposes. The TIPS process recovers and utilizes the latent heat of vaporization of water entrained in the fuel or produced during combustion. This latent heat energy is unavailable in the ambient processes. An average composition of wood waste based on data from the Pacific Northwest, Pacific Southwest, and the South was used for the study. The high moisture content of wood waste is a major advantage of the TIPS process. The process can utilize the higher heating value of the fuel by condensing most of the water vapor in the flue gas and making the flue gas a useful source of heat. This is a considerable thermal efficiency gain over conventional power plants which use the lower heating value of the fuel. The elevated pressure also allows TIPS the option of recovering CO2 at near ambient temperatures with high purity oxygen used in combustion. Unlike ambient pressure processes which need high energy multi-stage CO2 compression to supply pipeline quality product, TIPS is able to simply pump the CO2 liquid using very little auxiliary power. In this study, a 15.0 MWe net biomass power plant was modeled, and when a CO2 pump was included it only used 0.1 MWe auxiliary power. The need for refrigeration is eliminated at such pressures resulting in significant energy, capital, and operating and maintenance savings. Since wood

  5. Development of an AC Module System: Final Technical Report

    SciTech Connect

    Suparna Kadam; Miles Russell


    The GreenRay Inc. program focused on simplifying solar electricity and making it affordable and accessible to the mainstream population. This was accomplished by integrating a solar module, micro-inverter, mounting and monitoring into a reliable, 'plug and play' AC system for residential rooftops, offering the following advantages: (1) Reduced Cost: Reduction in installation labor with fewer components, faster mounting, faster wiring. (2) Maximized Energy Production: Each AC Module operates at its maximum, reducing overall losses from shading, mismatch, or module downtime. (3) Increased Safety. Electrical and fire safety experts agree that AC Modules have significant benefits, with no energized wiring or live connections during installation, maintenance or emergency conditions. (4) Simplified PV for a Broader Group of Installers. Dramatic simplification of design and installation of a solar power system, enabling faster and more efficient delivery of the product into the market through well-established, mainstream channels. This makes solar more accessible to the public. (5) Broadened the Rooftop Market: AC Modules enable solar for many homes that have shading, split roofs, or obstructions. In addition, due to the smaller building block size of 200W vs. 1000W, homeowners with budget limitations can start small and add to their systems over time. Through this DOE program GreenRay developed the all-in-one AC Module system with an integrated PV Module and microinverter, custom residential mounting and performance monitoring. Development efforts took the product from its initial concept, through prototypes, to a commercial product sold and deployed in the residential market. This pilot deployment has demonstrated the technical effectiveness of the AC Module system in meeting the needs and solving the problems of the residential market. While more expensive than the traditional central inverter systems at the pilot scale, the economics of AC Modules become more and more

  6. High-Intensity Plasma Glass Melter Final Technical Report

    SciTech Connect

    Gonterman, J. Ronald; Weinstein, Michael A.


    The purpose of this project was to demonstrate the energy efficiency and reduced emissions that can be obtained with a dual torch DC plasma transferred arc-melting system. Plasmelt Glass Technologies, LLC was formed to solicit and execute the project, which utilize a full-scale test melter system. The system is similar to the one that was originally constructed by Johns Manville, but Plasmelt has added significant improvements to the torch design and melter system that has extended the original JM short torch lives. The original JM design has been shown to achieve melt rates 5 to 10 times faster than conventional gas or electric melting, with improved energy efficiency and reduced emissions. This project began on 7/28/2003 and ended 7/27/06. A laboratory scale melter was designed, constructed, and operated to conduct multiple experimental melting trials on various glass compositions. Glass quality was assessed. Although the melter design is generic and equally applicable to all sectors within the glass industry, the development of this melter has focused primarily on fiberglass with additional exploratory melting trials of frits, specialty, and minerals-melting applications. Throughput, energy efficiency, and glass quality have been shown to be heavily dependent on the selected glass composition. During this project, Plasmelt completed the proof-of-concept work in our Boulder, CO Lab to show the technical feasibility of this transferred-arc plasma melter. Late in the project, the work was focused on developing the processes and evaluating the economic viability of plasma melting aimed at the specific glasses of interest to specific client companies. Post project work is on going with client companies to address broader non-glass materials such as refractories and industrial minerals. Exploratory melting trials have been conducted on several glasses of commercial interest including: C-glass, E-glass, S-Glass, AR-Glass, B-glass, Lighting Glass, NE-Glass, and various

  7. Texas Hydrogen Education Final Scientific/Technical Report

    SciTech Connect

    Hitchcock, David; Bullock, Dan


    fork lifts, and hydrogen fueling) are effective for engaging target audiences, and (3) a clear path forward is needed for state and local agencies interested in project implementation (funding, financing, preliminary design, technical assistance, etc.).

  8. Low pressure high speed Stirling air engine. Final technical report

    SciTech Connect

    Ross, M.A.


    The purpose of this project was to design, construct and test a simple, appropriate technology low pressure, high speed, wood-fired Stirling air engine of 100 W output. The final design was a concentric piston/displacer engine of 454 in. bore and 1 in. stroke with a rhombic drive mechanism. The project engine was ultimately completed and tested, using a propane burner for all tests as a matter of convenience. The 100 W aim was exceeded, at atmospheric pressure, over a wide range of engine speed with the maximum power being 112 W at 1150 rpm. A pressure can was constructed to permit pressurization; however the grant funds were running out, and the only pressurized power test attempted was unsuccessful due to seal difficulties. This was a disappointment because numerous tests on the 4 cubic inch engine suggested power would be more than doubled with pressurization at 25 psig. A manifold was designed and constructed to permit operation of the engine over a standard No. 40 pot bellied stove. The engine was run successfully, but at reduced speed and power, over this stove. The project engine started out being rather noisy in operation, but modifications ultimately resulted in a very quiet engine. Various other difficulties and their solutions also are discussed. (LCL)

  9. Technical assistance for Meharry Medical College Energy Efficiency Project. Final project status and technical report

    SciTech Connect



    This report presents the results of a program to provide technical assistance to Meharry Medical College. The purpose of the program is to facilitate Meharry`s effort to finance a campus-wide facility retrofit. The US Department of Energy (USDOE) funded the program through a grant to the Tennessee Department of Economic and Community Development (TECD). The University of Memphis-Technology and Energy Services (UM-TES), under contract to TECD, performed program services. The report has three sections: (1) introduction; (2) project definition, financing, and participants; and (3) opportunities for federal participation.

  10. Final Technical Report - Photovoltaics for You (PV4You) Program

    SciTech Connect

    Weissman, J. M.; Sherwood, L.; Pulaski, J.; Cook, C.; Kalland, S.; Haynes, J.


    position in developing quality and competency standards for solar professionals and for training programs critical components to bring the solar industry into step with other recognized craft labor forces. IREC's objective was to provide consumer assurances and assist the states and the solar industry in building a strong and qualified workforce. IREC's Schools Going Solar Clearinghouse provided channels of information to educate students, teachers, parents and the community at large about the benefits of solar energy. Solar school projects enhance science and math education while creating an initial entry market for domestic PV. And, IREC's community and outreach network got the right information out to capture the interest and met the needs of different audiences and reached groups that weren't traditionally part of the solar community. IREC's PV4You project was effective because it resulted in reduced costs through easier interconnection and better net metering agreements and by raising the competency standards for solar practitioners. The project provided ways to eliminate barriers and constraints by providing technical assistance, offering model agreements based on industry consensus that were used by state and local decision makers. And, the project increased public acceptance by providing information, news and guidelines for different audiences.

  11. Final Technical Report: Development of Post-Installation Monitoring Capabilities

    SciTech Connect

    Polagye, Brian


    The development of approaches to harness marine and hydrokinetic energy at large-scale is predicated on the compatibility of these generation technologies with the marine environment. At present, aspects of this compatibility are uncertain. Demonstration projects provide an opportunity to address these uncertainties in a way that moves the entire industry forward. However, the monitoring capabilities to realize these advances are often under-developed in comparison to the marine and hydrokinetic energy technologies being studied. Public Utility District No. 1 of Snohomish County has proposed to deploy two 6-meter diameter tidal turbines manufactured by OpenHydro in northern Admiralty Inlet, Puget Sound, Washington. The goal of this deployment is to provide information about the environmental, technical, and economic performance of such turbines that can advance the development of larger-scale tidal energy projects, both in the United States and internationally. The objective of this particular project was to develop environmental monitoring plans in collaboration with resource agencies, while simultaneously advancing the capabilities of monitoring technologies to the point that they could be realistically implemented as part of these plans. In this, the District was joined by researchers at the Northwest National Marine Renewable Energy Center at the University of Washington, Sea Mammal Research Unit, LLC, H.T. Harvey & Associates, and Pacific Northwest National Laboratory. Over a two year period, the project team successfully developed four environmental monitoring and mitigation plans that were adopted as a condition of the operating license for the demonstration project that issued by the Federal Energy Regulatory Commission in March 2014. These plans address nearturbine interactions with marine animals, the sound produced by the turbines, marine mammal behavioral changes associated with the turbines, and changes to benthic habitat associated with colonization

  12. Verification of Steelmaking Slags Iron Content Final Technical Progress Report

    SciTech Connect

    J.Y. Hwang


    The steel industry in the United States generates about 30 million tons of by-products each year, including 6 million tons of desulfurization and BOF/BOP slag. The recycling of BF (blast furnace) slag has made significant progress in past years with much of the material being utilized as construction aggregate and in cementitious applications. However, the recycling of desulfurization and BOF/BOP slags still faces many technical, economic, and environmental challenges. Previous efforts have focused on in-plant recycling of the by-products, achieving only limited success. As a result, large amounts of by-products of various qualities have been stockpiled at steel mills or disposed into landfills. After more than 50 years of stockpiling and landfilling, available mill site space has diminished and environmental constraints have increased. The prospect of conventionally landfilling of the material is a high cost option, a waste of true national resources, and an eternal material liability issue. The research effort has demonstrated that major inroads have been made in establishing the viability of recycling and reuse of the steelmaking slags. The research identified key components in the slags, developed technologies to separate the iron units and produce marketable products from the separation processes. Three products are generated from the technology developed in this research, including a high grade iron product containing about 90%Fe, a medium grade iron product containing about 60% Fe, and a low grade iron product containing less than 10% Fe. The high grade iron product contains primarily metallic iron and can be marketed as a replacement of pig iron or DRI (Direct Reduced Iron) for steel mills. The medium grade iron product contains both iron oxide and metallic iron and can be utilized as a substitute for the iron ore in the blast furnace. The low grade iron product is rich in calcium, magnesium and iron oxides and silicates. It has a sufficient lime value and

  13. Final Technical Report for DE-SC0005467

    SciTech Connect

    Broccoli, Anthony J.


    The objective of this project is to gain a comprehensive understanding of the key atmospheric mechanisms and physical processes associated with temperature extremes in order to better interpret and constrain uncertainty in climate model simulations of future extreme temperatures. To achieve this objective, we first used climate observations and a reanalysis product to identify the key atmospheric circulation patterns associated with extreme temperature days over North America during the late twentieth century. We found that temperature extremes were associated with distinctive signatures in near-surface and mid-tropospheric circulation. The orientations and spatial scales of these circulation anomalies vary with latitude, season, and proximity to important geographic features such as mountains and coastlines. We next examined the associations between daily and monthly temperature extremes and large-scale, recurrent modes of climate variability, including the Pacific-North American (PNA) pattern, the northern annular mode (NAM), and the El Niño-Southern Oscillation (ENSO). The strength of the associations are strongest with the PNA and NAM and weaker for ENSO, and also depend upon season, time scale, and location. The associations are stronger in winter than summer, stronger for monthly than daily extremes, and stronger in the vicinity of the centers of action of the PNA and NAM patterns. In the final stage of this project, we compared climate model simulations of the circulation patterns associated with extreme temperature days over North America with those obtained from observations. Using a variety of metrics and self-organizing maps, we found the multi-model ensemble and the majority of individual models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) generally capture the observed patterns well, including their strength and as well as variations with latitude and season. The results from this project indicate that current models are capable

  14. OTEC Advanced Composite Cold Water Pipe: Final Technical Report

    SciTech Connect

    Dr. Alan Miller; Matthew Ascari


    Ocean Thermal Energy Conversion can exploit natural temperature gradients in the oceans to generate usable forms of energy (for example, cost-competitive baseload electricity in tropical regions such as Hawaii) free from fossil fuel consumption and global warming emissions.The No.1 acknowledged challenge of constructing an OTEC plant is the Cold Water Pipe (CWP), which draws cold water from 1000m depths up to the surface, to serve as the coolant for the OTEC Rankine cycle. For a commercial-scale plant, the CWP is on the order of 10m in diameter.This report describes work done by LMSSC developing the CWP for LM MS2 New Ventures emerging OTEC business. The work started in early 2008 deciding on the minimum-cost CWP architecture, materials, and fabrication process. In order to eliminate what in previous OTEC work had been a very large assembly/deployment risk, we took the innovative approach of building an integral CWP directly from theOTEC platform and down into the water. During the latter half of 2008, we proceeded to a successful small-scale Proof-of-Principles validation of the new fabrication process, at the Engineering Development Lab in Sunnyvale. During 2009-10, under the Cooperative Agreement with the US Dept. of Energy, we have now successfully validated key elements of the process and apparatus at a 4m diameter scale suitable for a future OTEC Pilot Plant. The validations include: (1) Assembly of sandwich core rings from pre-pultruded hollow 'planks,' holding final dimensions accurately; (2) Machine-based dispensing of overlapping strips of thick fiberglass fabric to form the lengthwise-continuous face sheets, holding accurate overlap dimensions; (3) Initial testing of the fabric architecture, showing that the overlap splices develop adequate mechanical strength (work done under a parallel US Naval Facilities Command program); and (4) Successful resin infusion/cure of 4m diameter workpieces, obtaining full wet-out and a non-discernable knitline between

  15. Solar water heating technical support. Technical report for November 1997--April 1998 and final report

    SciTech Connect

    Huggins, J.


    This progress report covers the time period November 1, 1997 through April 30, 1998, and also summarizes the project as the final report. The topics of the report include certification of solar collectors for water heating systems, modeling and testing of solar collectors and gas water heater backup systems, ratings of collectors for specific climates, and solar pool heating systems.

  16. Back-Surface Passivation for High-Efficiency Crystalline Silicon Solar Cells: Final Technical Progress Report, September 2010 -- May 2012

    SciTech Connect

    Schultz-Wittmann, O.


    Final technical progress report for TetraSun, a Photovoltaic Technology Incubator awardee within the U.S. Department of Energy's (DOE) SunShot Program.

  17. Final Technical Report for Grant No. DE-FG02-08ER15926: Assuring the Integrity of Research Data

    SciTech Connect

    Thomas Arrison


    This letter serves as the final technical report for the National Academy of Sciences project on Ensuring the Integrity of Research Data.

  18. Technical Report Cellulosic Based Black Liquor Gasification and Fuels Plant Final Technical Report

    SciTech Connect

    Fornetti, Micheal; Freeman, Douglas


    The Cellulosic Based Black Liquor Gasification and Fuels Plant Project was developed to construct a black liquor to Methanol biorefinery in Escanaba, Michigan. The biorefinery was to be co-located at the existing pulp and paper mill, NewPage’s Escanaba Paper Mill and when in full operation would: • Generate renewable energy for Escanaba Paper Mill • Produce Methanol for transportation fuel of further refinement to Dimethyl Ether • Convert black liquor to white liquor for pulping. Black liquor is a byproduct of the pulping process and as such is generated from abundant and renewable lignocellulosic biomass. The biorefinery would serve to validate the thermochemical pathway and economic models for black liquor gasification. It was a project goal to create a compelling new business model for the pulp and paper industry, and support the nation’s goal for increasing renewable fuels production and reducing its dependence on foreign oil. NewPage Corporation planned to replicate this facility at other NewPage Corporation mills after this first demonstration scale plant was operational and had proven technical and economic feasibility. An overview of the process begins with black liquor being generated in a traditional Kraft pulping process. The black liquor would then be gasified to produce synthesis gas, sodium carbonate and hydrogen sulfide. The synthesis gas is then cleaned with hydrogen sulfide and carbon dioxide removed, and fed into a Methanol reactor where the liquid product is made. The hydrogen sulfide is converted into polysulfide for use in the Kraft pulping process. Polysulfide is a known additive to the Kraft process that increases pulp yield. The sodium carbonate salts are converted to caustic soda in a traditional recausticizing process. The caustic soda is then part of the white liquor that is used in the Kraft pulping process. Cellulosic Based Black Liquor Gasification and Fuels Plant project set out to prove that black liquor gasification could

  19. Technical area status report for low-level mixed waste final waste forms. Volume 1

    SciTech Connect

    Mayberry, J.L.; DeWitt, L.M.; Darnell, R.


    The Final Waste Forms (FWF) Technical Area Status Report (TASR) Working Group, the Vitrification Working Group (WG), and the Performance Standards Working Group were established as subgroups to the FWF Technical Support Group (TSG). The FWF TASR WG is comprised of technical representatives from most of the major DOE sites, the Nuclear Regulatory Commission (NRC), the EPA Office of Solid Waste, and the EPA`s Risk Reduction Engineering Laboratory (RREL). The primary activity of the FWF TASR Working Group was to investigate and report on the current status of FWFs for LLNM in this TASR. The FWF TASR Working Group determined the current status of the development of various waste forms described above by reviewing selected articles and technical reports, summarizing data, and establishing an initial set of FWF characteristics to be used in evaluating candidate FWFS; these characteristics are summarized in Section 2. After an initial review of available information, the FWF TASR Working Group chose to study the following groups of final waste forms: hydraulic cement, sulfur polymer cement, glass, ceramic, and organic binders. The organic binders included polyethylene, bitumen, vinyl ester styrene, epoxy, and urea formaldehyde. Section 3 provides a description of each final waste form. Based on the literature review, the gaps and deficiencies in information were summarized, and conclusions and recommendations were established. The information and data presented in this TASR are intended to assist the FWF Production and Assessment TSG in evaluating the Technical Task Plans (TTPs) submitted to DOE EM-50, and thus provide DOE with the necessary information for their FWF decision-making process. This FWF TASR will also assist the DOE and the MWIP in establishing the most acceptable final waste forms for the various LLMW streams stored at DOE facilities.

  20. Final Scientific/Technical Report Community Petascale Project for Accelerator Science and Simulation

    Office of Scientific and Technical Information (OSTI)

    Scientific/Technical Report Community Petascale Project for Accelerator Science and Simulation Period of Performance: September 01, 2007 to August 31, 2012 For Grant DE-FC02-07ER41500 P.I.: Warren B. Mori UCLA Departments of Physics and Astronomy and of Electrical Engineering Summary: The UCLA Plasma Simulation Group is a major partner of the "Community Petascale Project for Accelerator Science and Simulation". This is the final technical report. We include an

  1. Final Technical Report of Project DE-FG02-96ER14647

    SciTech Connect

    Lundeen, Stephen R.


    This is the final technical report of work completed under DOE support over the period Sept. 1, 1996 until May 31, 2015. The title of the project was "Ion/Excited Atom Collision Studies with a Rydberg Target and a CO2 Laser" from 9/1/96 to 10/31/06, and "Properties of Actinide Ions from Measurements of Rydberg Ion Fine Structure" from 11/1/06 until 5/31/15. The primary technical results were a detailed experimental study of resonant charge transfer between Rydberg atoms and highly-charged ions, and unique measurements of many properties of multiply-charged Thorium ions.

  2. Characterization of the radon source in North-Central Florida. Final report part 1 -- Final project report; Final report part 2 -- Technical report

    SciTech Connect


    This report contains two separate parts: Characterization of the Radon Source in North-Central Florida (final report part 1 -- final project report); and Characterization of the Radon Source in North-Central Florida (technical report). The objectives were to characterize the radon 222 source in a region having a demonstrated elevated indoor radon potential and having geology, lithology, and climate that are different from those in other regions of the U.S. where radon is being studied. Radon availability and transport in this region were described. Approaches for predicting the radon potential of lands in this region were developed.

  3. Final Technical Report - Center for Technology for Advanced Scientific Component Software (TASCS)

    SciTech Connect

    Sussman, Alan


    This is a final technical report for the University of Maryland work in the SciDAC Center for Technology for Advanced Scientific Component Software (TASCS). The Maryland work focused on software tools for coupling parallel software components built using the Common Component Architecture (CCA) APIs. Those tools are based on the Maryland InterComm software framework that has been used in multiple computational science applications to build large-scale simulations of complex physical systems that employ multiple separately developed codes.

  4. Experimental Program Final Technical Progress Report: 15 February 2007 to 30 September 2012

    SciTech Connect

    Kinney, Edward R.


    This is the final technical report of the grant DE-FG02-04ER41301 to the University of Colorado at Boulder entitled "Intermediate Energy Nuclear Physics" and describes the results of our funded activities during the period 15 February 2007 to 30 September 2012. These activities were primarily carried out at Fermilab, RHIC, and the German lab DESY. Significant advances in these experiments were carried out by members of the Colorado group and are described in detail.

  5. ALCC Allocation Final Report: HPC Colony II (Technical Report) | SciTech

    Office of Scientific and Technical Information (OSTI)

    Connect ALCC Allocation Final Report: HPC Colony II Citation Details In-Document Search Title: ALCC Allocation Final Report: HPC Colony II The report describes those activities of the HPC Colony II Project as they relate to their FY2013 ALCC Award. Authors: Jones, Terry R [1] + Show Author Affiliations ORNL Publication Date: 2013-11-01 OSTI Identifier: 1105949 Report Number(s): ORNL/TM-2013/553 KJ0402000; ERKJT17 DOE Contract Number: DE-AC05-00OR22725 Resource Type: Technical Report Research

  6. NEET-AMM Final Technical Report on Laser Direct Manufacturing (LDM) for Nuclear Power Components

    SciTech Connect

    Anderson, Scott; Baca, Georgina; O'Connor, Michael


    Final technical report summarizes the program progress and technical accomplishments of the Laser Direct Manufacturing (LDM) for Nuclear Power Components project. A series of experiments varying build process parameters (scan speed and laser power) were conducted at the outset to establish the optimal build conditions for each of the alloys. Fabrication was completed in collaboration with Quad City Manufacturing Laboratory (QCML). The density of all sample specimens was measured and compared to literature values. Optimal build process conditions giving fabricated part densities close to literature values were chosen for making mechanical test coupons. Test coupons whose principal axis is on the x-y plane (perpendicular to build direction) and on the z plane (parallel to build direction) were built and tested as part of the experimental build matrix to understand the impact of the anisotropic nature of the process.. Investigations are described 316L SS, Inconel 600, 718 and 800 and oxide dispersion strengthed 316L SS (Yttria) alloys.

  7. [Tampa Electric Company IGCC project]. Final public design report; Technical progress report

    SciTech Connect


    This final Public Design Report (PDR) provides completed design information about Tampa Electric Company`s Polk Power Station Unit No. 1, which will demonstrate in a commercial 250 MW unit the operating parameters and benefits of the integration of oxygen-blown, entrained-flow coal gasification with advanced combined cycle technology. Pending development of technically and commercially viable sorbent for the Hot Gas Cleanup System, the HGCU also is demonstrated. The report is organized under the following sections: design basis description; plant descriptions; plant systems; project costs and schedule; heat and material balances; general arrangement drawings; equipment list; and miscellaneous drawings.


    SciTech Connect

    Langdon, Terence G.


    This is the Final Technical Report describing the achievements on this DOE program. This research program was initiated with the objective of obtaining a better understanding of the flow, and especially the superplastic flow, of representative ceramics. Detailed experiments were undertaken on the yttria-stabilized tetragonal zirconia (Y-TZP) and on various composite materials containing Y-TZP and Al{sub 2}O{sub 3}. In addition, a comprehensive theoretical interpretation was developed which showed, for the first time, that the superplasticity of ceramic materials has very significant differences from the conventional superplastic flow in metals.

  9. Final technical evaluation report for the proposed revised reclamation plan for the Atlas Corporation Moab Mill

    SciTech Connect


    This final Technical Evaluation Report (TER) summarizes the US Nuclear Regulatory Commission staff`s review of Atlas Corporation`s proposed reclamation plan for its uranium mill tailings pile near Moab, Utah. The proposed reclamation would allow Atlas to (1) reclaim the tailings pile for permanent disposal and long-term custodial care by a government agency in its current location on the Moab site, (2) prepare the site for closure, and (3) relinquish responsibility of the site after having its NRC license terminated. The NRC staff concludes that, subject to license conditions identified in the TER, the proposed reclamation plan meets the requirements identified in NRC regulations, which appear primarily in 10 CFR Part 40. 112 refs., 6 figs., 16 tabs.

  10. Final technical report; Mercury Release from Organic matter (OM) and OM-Coated Mineral Surfaces

    SciTech Connect

    Aiken, George


    This document is the final technical report for a project designed to address fundamental processes controlling the release of mercury from flood plain soils associated with East Fork Poplar Creek, Tennessee near the U.S. Department of Energy Oak Ridge facility. The report summarizes the activities, findings, presentations, and publications resulting from an award to the U.S. Geological that were part of a larger overall effort including Kathy Nagy (University of Illinois, Chicago, Ill) and Joseph Ryan (University of Colorado, Boulder, CO). The specific charge for the U.S.G.S. portion of the study was to provide analytical support for the larger group effort (Nagy and Ryan), especially with regard to analyses of Hg and dissolved organic matter, and to provide information about the release of mercury from the floodplain soils.

  11. Final Technical Report for Grant DE-FG02-04ER54795

    SciTech Connect

    Merlino, Robert L


    This is the final technical report for DOE Grant #DE-FG02-04ER54795-Experimental Investigations of Fundamental Processes in Dusty Plasmas. A plasma is an ionized gas, and a dusty plasmas is a plasma that contains, in addition to electrons and ions, micron-sized dust particles. The dust particles acquire and electric charge in the plasma by collecting electrons and ions. The electrons move more rapidly than the ions, so the dust charge is negative. A 1 micron dust particle in a typical low temperature plasma has a charge corresponding to approximately 2000 electrons. Dusty plasmas are naturally found in astrophysical plasmas, planetary rings, technological plasmas, and magnetic fusion plasmas. The goal of this project was to study in the laboratory, the basic physical processes that occur in dusty plasmas. This report provides a summary of the major scientific products and activities of this award.

  12. Next Generation Nuclear Plant (NGNP) Prismatic HTGR Conceptual Design Project - Final Technical Report

    SciTech Connect

    Saurwein, John


    This report is the Final Technical Report for the Next Generation Nuclear Plant (NGNP) Prismatic HTGR Conceptual Design Project conducted by a team led by General Atomics under DOE Award DE-NE0000245. The primary overall objective of the project was to develop and document a conceptual design for the Steam Cycle Modular Helium Reactor (SC-MHR), which is the reactor concept proposed by General Atomics for the NGNP Demonstration Plant. The report summarizes the project activities over the entire funding period, compares the accomplishments with the goals and objectives of the project, and discusses the benefits of the work. The report provides complete listings of the products developed under the award and the key documents delivered to the DOE.

  13. Wichita's Self Sufficient Energy Demonstration Center, The Energy Place. Final technical progress report

    SciTech Connect

    Pajor, J.T.


    This final technical report summarizes the results of a Program entitled, Wichita's Self Sufficient Energy Demonstration Center, The Energy Place operated by the City of Wichita Energy Place under a grant from the US Department of Energy within the Appropriate Technology Program. The grant for $23,204 was awarded on October 6, 1980. The main thrust of the proposal was to install and monitor the performance of a Darrieus Style Wind Generator. Shortly after the project began, it was recommended by the consultants from the Wind Energy Lab at Wichita State University, that the type of machine be changed from a Darrieus to a horizontal axis downwind SWECS (small wind energy conversion system). This change was approved by DOE. On August 6, 1981, an Enertech 4000 Wind Generator was installed at The Energy Place. The performance of the machine and its environmental impact have been studied by City staff with the assistance of two consultants. A 5000 watt gasoline powered alternator was also purchased and installed to provide the electrical needs of part of The Energy Place. This experiment demonstrates the self-sufficiency option that is not attainable with the wind system studied. This report recaps the first five quarters of the project, the final quarter and the reports of the consultants.

  14. System-Cost-Optimized Smart EVSE for Residential Application: Final Technical Report including Manufacturing Plan

    SciTech Connect

    Zhu, Charles


    In the 2nd quarter of 2012, a program was formally initiated at Delta Products to develop smart-grid-enabled Electric Vehicle Supply Equipment (EVSE) product for residential use. The project was funded in part by the U.S. Department of Energy (DOE), under award DE-OE0000590. Delta products was the prime contractor to DOE during the three year duration of the project. In addition to Delta Products, several additional supplier-partners were engaged in this research and development (R&D) program, including Detroit Edison DTE, Mercedes Benz Research and Development North America, and kVA. This report summarizes the program and describes the key research outcomes of the program. A technical history of the project activities is provided, which describes the key steps taken in the research and the findings made at successive stages in the multi-stage work. The evolution of an EVSE prototype system is described in detail, culminating in prototypes shipped to Department of Energy Laboratories for final qualification. After the program history is reviewed, the key attributes of the resulting EVSE are described in terms of functionality, performance, and cost. The results clearly demonstrate the ability of this EVSE to meet or exceed DOE's targets for this program, including: construction of a working product-intent prototype of a smart-grid-enabled EVSE, with suitable connectivity to grid management and home-energy management systems, revenue-grade metering, and related technical functions; and cost reduction of 50% or more compared to typical market priced EVSEs at the time of DOE's funding opportunity announcement (FOA), which was released in mid 2011. In addition to meeting all the program goals, the program was completed within the original budget and timeline established at the time of the award. The summary program budget and timeline, comparing plan versus actual values, is provided for reference, along with several supporting explanatory notes. Technical information

  15. Commercialization of air conditioning heat pump/water heater. Final technical report, Volume 1: Transmittal documents; Executive summary; Project summary

    SciTech Connect


    This is the final technical report on a commercialization project for an air conditioning heat pump water heater. The objective of the project was to produce a saleable system which would be economically competitive with natural gas and cost effective with regard to initial cost versus annual operating costs. The development and commercialization of the system is described.

  16. Final Technical Progress Report: Development of Low-Cost Suspension Heliostat; December 7, 2011 - December 6, 2012

    SciTech Connect

    Bender, W.


    Final technical progress report of SunShot Incubator Solaflect Energy. The project succeeded in demonstrating that the Solaflect Suspension Heliostat design is viable for large-scale CSP installations. Canting accuracy is acceptable and is continually improving as Solaflect improves its understanding of this design. Cost reduction initiatives were successful, and there are still many opportunities for further development and further cost reduction.

  17. Conjugated ionomers for photovoltaic applications: electric field driven charge separation in organic photovoltaics. Final Technical report

    SciTech Connect

    Lonergan, Mark


    Final technical report for Conjugated ionomers for photovoltaic applications, electric field driven charge separation in organic photovoltaics. The central goal of the work we completed was been to understand the photochemical and photovoltaic properties of ionically functionalized conjugated polymers (conjugated ionomers or polyelectrolytes) and energy conversion systems based on them. We primarily studied two classes of conjugated polymer interfaces that we developed based either upon undoped conjugated polymers with an asymmetry in ionic composition (the ionic junction) or doped conjugated polymers with an asymmetry in doping type (the p-n junction). The materials used for these studies have primarily been the polyacetylene ionomers. We completed a detailed study of p-n junctions with systematically varying dopant density, photochemical creation of doped junctions, and experimental and theoretical work on charge transport and injection in polyacetylene ionomers. We have also completed related work on the use of conjugated ionomers as interlayers that improve the efficiency or organic photovoltaic systems and studied several important aspects of the chemistry of ionically functionalized semiconductors, including mechanisms of so-called "anion-doping", the formation of charge transfer complexes with oxygen, and the synthesis of new polyfluorene polyelectrolytes. We also worked worked with the Haley group at the University of Oregon on new indenofluorene-based organic acceptors.

  18. Volatiles combustion in fluidized beds. Final technical report, 4 September 1992--4 June 1995

    SciTech Connect

    Pendergrass, R.A. II; Raffensperger, C.; Hesketh, R.P.


    The goal of this project is to investigate the conditions in which volatiles will burn within both the dense and freeboard regions of fluidized beds. Experiments using a fluidized bed operated at incipient fluidization are being conducted to characterize the effect of particle surface area, initial fuel concentration, and particle type on the inhibition of volatiles within a fluidized bed. A review of the work conducted under this grant is presented in this Final Technical Report. Both experimental and theoretical work have been conducted to examine the inhibition of the combustion by the fluidized bed material, sand. It has been shown that particulate phase at incipient fluidization inhibits the combustion of propane by free radical destruction at the surface of sand particles within the particulate phase. The implications of these findings is that at bed temperatures lower than the critical temperatures, gas combustion can only occur in the bubble phase or at the top surface of a bubbling fluidized bed. In modeling fluidized bed combustion this inhibition by the particulate phase should be included.

  19. Final Technical Report - SciDAC Cooperative Agreement: Center for Wave Interactions with Magnetohydrodynamics

    SciTech Connect

    Schnack, Dalton D.


    Final technical report for research performed by Dr. Thomas G. Jenkins in collaboration with Professor Dalton D. Schnack on SciDAC Cooperative Agreement: Center for Wave Interactions with Magnetohydrodyanics, DE-FC02-06ER54899, for the period of 8/15/06 - 8/14/11. This report centers on the Slow MHD physics campaign work performed by Dr. Jenkins while at UW-Madison and then at Tech-X Corporation. To make progress on the problem of RF induced currents affect magnetic island evolution in toroidal plasmas, a set of research approaches are outlined. Three approaches can be addressed in parallel. These are: (1) Analytically prescribed additional term in Ohm's law to model the effect of localized ECCD current drive; (2) Introduce an additional evolution equation for the Ohm's law source term. Establish a RF source 'box' where information from the RF code couples to the fluid evolution; and (3) Carry out a more rigorous analytic calculation treating the additional RF terms in a closure problem. These approaches rely on the necessity of reinvigorating the computation modeling efforts of resistive and neoclassical tearing modes with present day versions of the numerical tools. For the RF community, the relevant action item is - RF ray tracing codes need to be modified so that general three-dimensional spatial information can be obtained. Further, interface efforts between the two codes require work as well as an assessment as to the numerical stability properties of the procedures to be used.

  20. Final Technical Report. DeepCwind Consortium Research Program. January 15, 2010 - March 31, 2013

    SciTech Connect

    Dagher, Habib; Viselli, Anthony; Goupee, Andrew; Thaler, Jeffrey; Brady, Damian; Browne, Peter; Browning, James; Chung, Jade; Coulling, Alexander; Deese, Heather; Fowler, Matthew; Holberton, Rebecca; Anant, Jain; Jalbert, Dustin; Johnson, Theresa; Jonkman, Jason; Karlson, Benjamin; Kimball, Richard; Koo, Bonjun; Lackner, Matthew; Lambrakos, Kostas; Lankowski, Matthew; Leopold, Adrienne; Lim, Ho-Joon; Mangum, Linda; Martin, Heather; Masciola, Marco; Maynard, Melissa; McCleave, James; Mizrahi, Robert; Molta, Paul; Pershing, Andrew; Pettigrew, Neal; Prowell, Ian; Qua, Andrew; Sherwood, Graham; Snape, Thomas; Steneck, Robert; Stewart, Gordon; Stockwell, Jason; Swift, Andrew H. P.; Thomas, Dale; Viselli, Elizabeth; Zydlewski, Gayle


    This is the final technical report for the U.S. Department of Energy-funded program, DE-0002981: DeepCwind Consortium Research Program. The project objective was the partial validation of coupled models and optimization of materials for offshore wind structures. The United States has a great opportunity to harness an indigenous abundant renewable energy resource: offshore wind. In 2010, the National Renewable Energy Laboratory (NREL) estimated there to be over 4,000 GW of potential offshore wind energy found within 50 nautical miles of the US coastlines (Musial and Ram, 2010). The US Energy Information Administration reported the total annual US electric energy generation in 2010 was 4,120 billion kilowatt-hours (equivalent to 470 GW) (US EIA, 2011), slightly more than 10% of the potential offshore wind resource. In addition, deep water offshore wind is the dominant US ocean energy resource available comprising 75% of the total assessed ocean energy resource as compared to wave and tidal resources (Musial, 2008). Through these assessments it is clear offshore wind can be a major contributor to US energy supplies. The caveat to capturing offshore wind along many parts of the US coast is deep water. Nearly 60%, or 2,450 GW, of the estimated US offshore wind resource is located in water depths of 60 m or more (Musial and Ram, 2010). At water depths over 60 m building fixed offshore wind turbine foundations, such as those found in Europe, is likely economically infeasible (Musial et al., 2006). Therefore floating wind turbine technology is seen as the best option for extracting a majority of the US offshore wind energy resource. Volume 1 - Test Site; Volume 2 - Coupled Models; and Volume 3 - Composite Materials

  1. Environmentally responsible recycling of thin-film cadmium telluride photovoltaic modules. Final technical report

    SciTech Connect

    Bohland, John


    Continuing from the third quarter, all technical objectives of this Phase II SBIR work were previously and successfully completed. This report is therefore brief and contains two elements (1) a comparison of technical objective accomplishments to the stated goals in the original grant proposal (2) a summary of the third key element of this work; a market analysis for the developed recycling technology systems.

  2. Technical Support Document for the Department of Energy's Notice of Final Rulemaking

    Office of Energy Efficiency and Renewable Energy (EERE)

    In this Technical Support Document, DOE presents each of the changes to its NEPA implementing regulations (10 CFR part 1021, Subparts B, C, and D) and provides supplementary support for the changes...

  3. Final Technical Report Power through Policy: "Best Practices" for Cost-Effective Distributed Wind

    SciTech Connect

    Rhoads-Weaver, Heather; Gagne, Matthew; Sahl, Kurt; Orrell, Alice; Banks, Jennifer


    Power through Policy: 'Best Practices' for Cost-Effective Distributed Wind is a U.S. Department of Energy (DOE)-funded project to identify distributed wind technology policy best practices and to help policymakers, utilities, advocates, and consumers examine their effectiveness using a pro forma model. Incorporating a customized feed from the Database of State Incentives for Renewables and Efficiency (DSIRE), the Web-based Distributed Wind Policy Comparison Tool (Policy Tool) is designed to assist state, local, and utility officials in understanding the financial impacts of different policy options to help reduce the cost of distributed wind technologies. The project's final products include the Distributed Wind Policy Comparison Tool, found at, and its accompanying documentation: Distributed Wind Policy Comparison Tool Guidebook: User Instructions, Assumptions, and Case Studies. With only two initial user inputs required, the Policy Tool allows users to adjust and test a wide range of policy-related variables through a user-friendly dashboard interface with slider bars. The Policy Tool is populated with a variety of financial variables, including turbine costs, electricity rates, policies, and financial incentives; economic variables including discount and escalation rates; as well as technical variables that impact electricity production, such as turbine power curves and wind speed. The Policy Tool allows users to change many of the variables, including the policies, to gauge the expected impacts that various policy combinations could have on the cost of energy (COE), net present value (NPV), internal rate of return (IRR), and the simple payback of distributed wind projects ranging in size from 2.4 kilowatts (kW) to 100 kW. The project conducted case studies to demonstrate how the Policy Tool can provide insights into 'what if' scenarios and also allow the current status of incentives to be examined or defended when necessary. The ranking

  4. Uncertainty Quantification in the Reliability and Risk Assessment of Generation IV Reactors: Final Scientific/Technical Report

    SciTech Connect

    Vierow, Karen; Aldemir, Tunc


    The project entitled, “Uncertainty Quantification in the Reliability and Risk Assessment of Generation IV Reactors”, was conducted as a DOE NERI project collaboration between Texas A&M University and The Ohio State University between March 2006 and June 2009. The overall goal of the proposed project was to develop practical approaches and tools by which dynamic reliability and risk assessment techniques can be used to augment the uncertainty quantification process in probabilistic risk assessment (PRA) methods and PRA applications for Generation IV reactors. This report is the Final Scientific/Technical Report summarizing the project.

  5. Development of a Foam OTEC System. Final technical report for Fiscal Year 1979

    SciTech Connect

    Not Available


    Research on Development of a Foam OTEC System, as carried out at Carnegie-Mellon University from October 1, 1978 through September 30, 1979, is described. To a brief section summarizing highlights of research results are appended 12 technical reports which detail specific sections of the program. The work described is continuing and a proposal is currently being submitted to provide support in fiscal 1980.

  6. Final Technical Report for: Chemical Control of Charge Trapping and Charge Transfer

    Office of Scientific and Technical Information (OSTI)

    Technical Report for: Chemical Control of Charge Trapping and Charge Transfer Processes at the Organic-Inorganic Interface within Quantum Dot-Organic Complexes DE-SC0003998 PI: Emily A. Weiss, Professor and Irving M. Klotz Research Professor Department of Chemistry, Northwestern University Executive Summary: Within the research program funded through the Early Career Research Award we designed complexes of colloidal semiconductor quantum dots (QDs) and organic molecules in which the interfacial

  7. International Standards Development for Marine and Hydrokinetic Renewable Energy - Final Report on Technical Status

    SciTech Connect

    Rondorf, Neil E.; Busch, Jason; Kimball, Richard


    This report summarizes the progress toward development of International Standards for Marine and Hydrokinetic Renewable Energy, as funded by the U.S. Department of Energy (DOE) under the International Electrotechnical Commission (IEC) Technical Committee 114. The project has three main objectives: 1. Provide funding to support participation of key U.S. industry technical experts in 6 (originally 4) international working groups and/or project teams (the primary standards-making committees) and to attend technical meetings to ensure greater U.S. involvement in the development of these standards. 2. Provide a report to DOE and industry stakeholders summarizing the IEC standards development process for marine and hydrokinetic renewable energy, new international standards and their justifications, and provide standards guidance to industry members. 3. Provide a semi-annual (web-based) newsletter to the marine renewable energy community. The newsletter will educate industry members and stakeholders about the processes, progress, and needs of the US efforts to support the international standards development effort. The newsletter is available at

  8. Final technical report: Energy Works Lab, December 15, 1994--August 14, 1995

    SciTech Connect


    The Energy Works Lab project was a two tier project consisting of the GIRLS SUMMER LAB and ENERGY WORKS. This final report is a summary of the completed project.

  9. A Novel Slurry-Based Biomass Reforming Process Final Technical Report

    SciTech Connect

    Emerson, Sean C.; Davis, Timothy D.; Peles, A.; She, Ying; Sheffel, Joshua; Willigan, Rhonda R.; Vanderspurt, Thomas H.; Zhu, Tianli


    hydrogen, methane, and carbon dioxide was repeatedly demonstrated in batch reactors varying in size from 50 mL to 7.6 L. The different wood sources (e.g., swamp maple, poplar, and commercial wood flour) were converted in the presence of a heterogeneous catalyst and base at relatively low temperatures (e.g., 310°C) at sub-critical pressures sufficient to maintain the liquid phase. Both precious metal and base metal catalysts were found to be active for the liquid phase hydrolysis and reforming of wood. Pt-based catalysts, particularly Pt-Re, were shown to be more selective toward breaking C-C bonds, resulting in a higher selectivity to hydrogen versus methane. Ni-based catalysts were found to prefer breaking C-O bonds, favoring the production of methane. The project showed that increasing the concentration of base (base to wood ratio) in the presence of Raney Ni catalysts resulted in greater selectivity toward hydrogen but at the expense of increasing the production of undesirable organic acids from the wood, lowering the amount of wood converted to gas. It was shown that by modifying Ni-based catalysts with dopants, it was possible to reduce the base concentration while maintaining the selectivity toward hydrogen and increasing wood conversion to gas versus organic acids. The final stage of the project was the construction and testing of a demonstration unit for H2 production. This continuous flow demonstration unit consisted of wood slurry and potassium carbonate feed pump systems, two reactors for hydrolysis and reforming, and a gas-liquid separation system. The technical challenges associated with unreacted wood fines and Raney Ni catalyst retention limited the demonstration unit to using a fixed bed Raney Ni catalyst form. The lower activity of the larger particle Raney Ni in turn limited the residence time and thus the wood mass flow feed rate to 50 g min-1 for a 1 wt% wood slurry. The project demonstrated continuous H2 yields with unmodified, fixed bed Raney Ni

  10. Project Final Report: HPC-Colony II (Technical Report) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Project Final Report: HPC-Colony II Citation Details In-Document Search Title: Project Final Report: HPC-Colony II This report recounts the HPC Colony II Project which was a computer science effort funded by DOE's Advanced Scientific Computing Research office. The project included researchers from ORNL, IBM, and the University of Illinois at Urbana-Champaign. The topic of the effort was adaptive system software for extreme scale parallel machines. A description of findings is included. Authors:

  11. Technical analysis of US Army Weapons Systems and related advanced technologies of military interest. Final report

    SciTech Connect


    This report summarizes the activities and accomplishments of an US Army technology security project designed to identify and develop effective policy guidelines for militarily critical technologies in specific Army systems and in broad generic technology areas of military interest, Individual systems analyses are documented in separate Weapons Systems Technical Assessments (WSTAs) and the general generic technology areas are evaluated in the Advanced Technology Assessment Reports (ATARs), However, specific details of these assessments are not addressed here, only recommendations regarding aspects of the defined approach, methodology, and format are provided and discussed.

  12. Harnessing Light: Capitalizing on Optical Science Trends and Challenges for Future Research. Final Technical Report

    SciTech Connect

    Svedberg, Erik


    The committee has during the earlier period finalized their work on the report, Optics and Photonics: Essential Technologies for Our Nation (2013) . The report did undergo review and initial editorial processing. The NRC released a pre-publication report on August 13, 2012. A final report is now available. The study director has been able to practice his skills in running a national academies committee. From a research perspective the grant has generated a report with recommendations to the government. The work itself is the meetings where the committee convened to hear presenters and to discuss the status of optics and photonics as well as writing the report.

  13. Clean ferrous casting technology research. Final technical report, September 29, 1993--December 31, 1995

    SciTech Connect

    Bates, C.E.; Griffin, J.; Giese, S.R.; Lane, A.M.


    This is the final report covering work performed on research into methods of attaining clean ferrous castings. In this program methods were developed to minimize the formation of inclusions in steel castings by using a variety of techniques which decreased the tendency for inclusions to form during melting, casting and solidification. In a second project, a reaction chamber was built to remove inclusions from molten steel using electromagnetic force. Finally, a thorough investigation of the causes of sand penetration defects in iron castings was completed, and a program developed which predicts the probability of penetration formation and indicates methods for avoiding it.

  14. GoAmazon2014/15. Oxidation Flow Reactor Final Campaign Report (Technical

    Office of Scientific and Technical Information (OSTI)

    Report) | SciTech Connect GoAmazon2014/15. Oxidation Flow Reactor Final Campaign Report Citation Details In-Document Search Title: GoAmazon2014/15. Oxidation Flow Reactor Final Campaign Report The primary goal of the Green Ocean Amazon (GoAmazon2014/5) field campaign was to measure and mechanistically understand the formation of particle number and mass in a region affected by large tropical rainforest biogenic emissions and sometimes anthropogenic influence from a large urban center. As

  15. Pool daily fuel scheduling. Volume 1: technical manual. Final Report, February 1981

    SciTech Connect

    Pang, C.K.; Mikolinnas, T.A.; Reppen, N.D.; Ringlee, R.J.; Wollenberg, B.F.


    The results and efforts of research and development of methods for daily fuel scheduling performed under EPRI Project RP 1048-5 by Power Technologies, Inc. (PTI) are reported in three volumes: Technical Manual, Programming Manual, and Program Listings. Daily fuel scheduling involves the scheduling and dispatching of generating facilities to meet all system loads and operating requirements for periods ranging from a day to a week. Daily fuel scheduling and computer requirements are defined. The scheduling problem is formulated as a mixed-integer linear programming (MILP) optimization problem in which the total system operating cost is minimized. A potentially practical scheduling procedure, based on a combination of search and MILP approaches, was proposed; these two approaches were investigated, coded in FORTRAN and tested individually. This volume of the report (Volume 1) is the Technical Manual and contains the main body of the report, which includes descriptions and results for two approaches to the daily fuel scheduling problem: Search Approach and Mixed Integer Linear Programming (MILP) Approach. Prototype computer programs on these approaches have been coded in FORTRAN for testing and evaluation purposes using PTI in-house PRIME time-sharing computer.

  16. Technical program plan for the transitioning, decommissioning, and final disposition focus area

    SciTech Connect

    Not Available


    Hundreds of aging nuclear materials processing facilities within the Department of Energy`s (DOE) Weapons Complex are now being shut down and deactivated. These facilities, situated throughout the United States, will require a monumental effort to clean up safely and with minimal environmental insult. Current cleanup technologies tend to be labor intensive and expensive, they produce an unacceptably large volume of waste, and they expose workers to radioactive and other hazardous substances. This document describes an emerging program designed to develop and demonstrate new technical approaches to the decontamination and decommissioning (D&D) program for DOE`s nuclear materials processing facilities. Sponsored by the DOE Office of Technology Development within the Office of Environmental Restoration and Waste Management (EM), the program seeks to integrate the strengths of DOE`s technical, managerial, and systems engineering capabilities with those of industry, universities, and other government agencies. Once developed, these technologies will help to provide US industry with a competitive edge in the worldwide market that exists for improved environmental restoration and D&D services.

  17. Final Scientific/Technical Report Solar America Initiative: Solar Outreach and Communications

    SciTech Connect

    Weissman, Jane M


    The purpose of the Solar America Initiative: Solar Outreach and Communications grant was to promote better communications among stakeholders; address infrastructure barriers to solar energy; and coordinate with industry, the U.S. Department of Energy, national laboratories, states, cities and counties. The Interstate Renewable Energy Council (IREC), a non-profit organization formed in 1982, approached this grant project by establishing a wide range of communication and outreach activities including newsletters, workshops, webinars, model practices and publications; by advancing easy and fair hook-up rules to the utility grid; and by upgrading training based on industry competency standards. The Connecting to the Grid project and the Solar Codes and Standards Public Hearings project offered communication coupled with technical assistance to overcome interconnection, net metering and other regulatory and program barriers. The Workforce Development Project tackled building a strong workforce through quality training and competency assessment programs. IREC's web site, the semi-monthly state and stakeholder newsletter and the metrics report resulted in better communications among stakeholders. Workshops and phone seminars offered technical assistance and kept stakeholders up-to-date on key issues. All of these activities resulted in implementing sustainable solutions to institutional and market barriers to solar energy and getting the right information to the right people.

  18. Record of principal work activities/deliverables. Final technical report, September 28, 1984--September 27, 1989

    SciTech Connect

    Not Available


    Over the five year period of performance, thirteen task assignments were issued by the DOE to ARINC Research. During the two year base period seven tasks were assigned. Two task assignments were issued for each of the three consecutive one year option periods. Associated with all task assignments were multiple subtasks, some of which required significant effort. These subtasks are appropriately cited in this report under their respective task assignments as principal work activities or deliverables. The technical and management support provided to the DOE under this contract focused on two general areas: (1) appraisal activities and (2) non-appraisal activities. Support to appraisals included planning, document review, developing lines-of-inquiry, interviewing, data collection, report writing, and follow-up. Such work was executed both on-site at the DOE facility under review and off-site. Non-appraisal support was varied and included such areas as document review, data base development, technical assessments. statistical analysis, policy analysis, reliability engineering, and workshop and conference planning and execution.

  19. Final Technical Report ?¢???? CMS FAST OPTICAL CALORIMETRY

    SciTech Connect

    David R Winn


    This is the final report of CMS FAST OPTICAL CALORIMETRY, a grant to Fairfield University for development, construction, installation and operation of the forward calorimeter on CMS, and for upgrades of the forward and endcap calorimeters for higher luminosity and radiation damage amelioration.

  20. Solar America Initiative State Working Group: Final Scientific/Technical Report

    SciTech Connect

    Julie Taylor


    Through the support from the Department of Energy, NARUC has educated thousands of stakeholders, including Public Utility Commissioners, commission staff, and State energy officials on solar energy technology, implementation, and policy. During the lifetime of this grant, NARUC staff engaged stakeholders in policy discussions, technical research, site visits, and educational meetings/webinars/materials that provided valuable education and coordination on solar energy technology and policy among the States. Primary research geared toward State decision-makers enabled stakeholders to be informed on current issues and created new solar energy leaders throughout the United States. Publications including a Frequently Asked Questions guide on feed-in tariffs and a legal analysis of state implementation of feed-in tariffs gave NARUC members the capacity to understand complex issues related to the economic impacts of policies supportive of solar energy, and potential paths for implementation of technology. Technical partnerships with the National Renewable Energy Laboratory (NREL) instructed NARUC members on feed-in tariff policy for four States and solar PV resource assessment in seven States, as well as economic impacts of solar energy implementation in those States. Because many of the States in these technical partnerships had negligible amounts of solar energy installed, this research gave them new capacity to understand how policies and implementation could impact their constituency. This original research produced new data now available, not only to decision-makers, but also to the public at-large including educational institutions, NGOs, consumer groups, and other citizens who have an interest in solar energy adoption in the US. Under this grant, stakeholders engaged in several dialogs. These educational opportunities brought NARUC members and other stakeholders together several times each year, shared best practices with State decision-makers, fostered

  1. 7th BOC Priestley Conference. Final technical report, May 1, 1994--April 30, 1995

    SciTech Connect


    The 1994 BOC Priestly Conference was held at Bucknell University in Lewisburg, PA, from June 24 through June 27, 1994. This conference, managed by the American Chemical Society (ACS), was a joint celebration with the Royal Society of Chemistry (RSC) commemorating Joseph Priestley`s arrival in the US and his discovery of oxygen. There were 120 attendees. The basic theme of the conference was Oxidants and Oxidation in the Earth`s Atmosphere, with a keynote lecture on the history of ozone. A distinguished group of US and international atmospheric chemists addressed the issues dominating current research and policy agendas. Topics crucial to the atmospheric chemistry of global change and local and regional air pollution were discussed. The program for the conference included four technical sessions on the following topics: Oxidative fate of atmospheric pollutants; Photochemical smog and ozone; Stratospheric ozone; and, Global tropospheric ozone.

  2. Advanced Power Ultra-Uprates of Existing Plants (APPU) Final Scientific/Technical Report

    SciTech Connect

    Rubiolo, Pablo R.; Conway, Lawarence E.; Oriani, Luca; Lahoda, Edward J.; DeSilva, Greg; Hu, Min H.; Hartz, Josh; Bachrach, Uriel; Smith, Larry; Dudek, Daniel F.; Gary J. Toman; Feng, Dandong; Hejzlar, Pavel; Kazimi, Mujid S.


    This project assessed the feasibility of a Power Ultra-Uprate on an existing nuclear plant. The study determined the technical and design limitations of the current components, both inside and outside the containment. Based on the identified plant bottlenecks, the design changes for major pieces of equipment required to meet the Power Ultra-Uprate throughput were determined. Costs for modified pieces of equipment and for change-out and disposal of the replaced equipment were evaluated. These costs were then used to develop capital, fuel and operating and maintenance cost estimates for the Power Ultra-Uprate plant. The cost evaluation indicates that the largest cost components are the replacement of power (during the outage required for the uprate) and the new fuel loading. Based on these results, the study concluded that, for a standard 4-loop plant, the proposed Power Ultra-Uprate is technically feasible. However, the power uprate is likely to be more expensive than the cost (per Kw electric installed) of a new plant when large capacity uprates are considered (>25%). Nevertheless, the concept of the Power Ultra-Uprate may be an attractive option for specific nuclear power plants where a large margin exists in the steam and power conversion system or where medium power increases (~600 MWe) are needed. The results of the study suggest that development efforts on fuel technologies for current nuclear power plants should be oriented towards improving the fuel performance (fretting-wear, corrosion, uranium load, manufacturing, safety) required to achieve higher burnup rather focusing on potential increases in the fuel thermal output.

  3. Final Technical Report: Residential Fuel Cell Demonstration by the Delaware County Electric Cooperative, Inc.

    SciTech Connect

    Mark Hilson Schneider


    This demonstration project contributes to the knowledge base in the area of fuel cells in stationary applications, propane fuel cells, edge-of-grid applications for fuel cells, and energy storage in combination with fuel cells. The project demonstrated that it is technically feasible to meet the whole-house electrical energy needs of a typical upstate New York residence with a 5-kW fuel cell in combination with in-home energy storage without any major modifications to the residence or modifications to the consumption patterns of the residents of the home. The use of a fuel cell at constant output power through a 120-Volt inverter leads to system performance issues including: • relatively poor power quality as quantified by the IEEE-defined short term flicker parameter • relatively low overall system efficiency Each of these issues is discussed in detail in the text of this report. The fuel cell performed well over the 1-year demonstration period in terms of availability and efficiency of conversion from chemical energy (propane) to electrical energy at the fuel cell output terminals. Another strength of fuel cell performance in the demonstration was the low requirements for maintenance and repair on the fuel cell. The project uncovered a new and important installation consideration for propane fuel cells. Alcohol added to new propane storage tanks is preferentially absorbed on the surface of some fuel cell reformer desulfurization filters. The experience on this project indicates that special attention must be paid to the volume and composition of propane tank additives. Size, composition, and replacement schedules for the de-sulfurization filter bed should be adjusted to account for propane tank additives to avoid sulfur poisoning of fuel cell stacks. Despite good overall technical performance of the fuel cell and the whole energy system, the demonstration showed that such a system is not economically feasible as compared to other commercially available

  4. 1993-1994 Final technical report for establishing the SECME Model in the District of Columbia

    SciTech Connect

    Vickers, R.G.


    This is the final report for a program to establish the SECME Model in the District of Columbia. This program has seen the development of a partnership between the District of Columbia Public Schools, the University of the District of Columbia, the Department of Energy, and SECME. This partnership has demonstrated positive achievement in mathematics and science education and learning in students within the District of Columbia.

  5. Final Technical Report for "High Energy Physics at The University of Iowa"

    SciTech Connect

    Mallik, Usha; Meurice, Yannick; Nachtman, Jane; Onel, Yasar; Reno, Mary


    Particle Physics explores the very fundamental building blocks of our universe: the nature of forces, of space and time. By exploring very energetic collisions of sub-nuclear particles with sophisticated detectors at the colliding beam accelerators (as well as others), experimental particle physicists have established the current theory known as the Standard Model (SM), one of the several theoretical postulates to explain our everyday world. It explains all phenomena known up to a very small fraction of a second after the Big Bang to a high precision; the Higgs boson, discovered recently, was the last of the particle predicted by the SM. However, many other phenomena, like existence of dark energy, dark matter, absence of anti-matter, the parameters in the SM, neutrino masses etc. are not explained by the SM. So, in order to find out what lies beyond the SM, i.e., what conditions at the earliest fractions of the first second of the universe gave rise to the SM, we constructed the Large Hadron Collider (LHC) at CERN after the Tevatron collider at Fermi National Accelerator Laboratory. Each of these projects helped us push the boundary further with new insights as we explore a yet higher energy regime. The experiments are extremely complex, and as we push the boundaries of our existing knowledge, it also requires pushing the boundaries of our technical knowhow. So, not only do we pursue humankind’s most basic intellectual pursuit of knowledge, we help develop technology that benefits today’s highly technical society. Our trained Ph.D. students become experts at fast computing, manipulation of large data volumes and databases, developing cloud computing, fast electronics, advanced detector developments, and complex interfaces in several of these areas. Many of the Particle physics Ph.D.s build their careers at various technology and computing facilities, even financial institutions use some of their skills of simulation and statistical prowess. Additionally, last

  6. Light Duty Fuel Cell Electric Vehicle Validation Data. Final Technical Report

    SciTech Connect

    Jelen, Deborah; Odom, Sara


    Electricore, along with partners from Quong & Associates, Inc., Honda R&D Americas (Honda), Nissan Technical Center North America (Nissan), and Toyota Motor Engineering & Manufacturing North America, Inc. (Toyota), participated in the Light Duty Fuel Cell Electric Vehicle (FCEV) Validation Data program sponsored by the Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) (Cooperative Agreement No. DE-EE0005968). The goal of this program was to provide real world data from the operation of past and current FCEVs, in order to measure their performance and improvements over time. The program was successful; 85% of the data fields requested were provided and not restricted due to proprietary reasons. Overall, the team from Electricore provided at least 4.8 GB of data to DOE, which was combined with data from other participants to produce over 33 key data products. These products included vehicle performance and fuel cell stack performance/durability. The data were submitted to the National Renewable Energy Laboratory’s National Fuel Cell Technology Evaluation Center (NREL NFCTEC) and combined with input from other participants. NREL then produced composite data products (CDP) which anonymized the data in order to maintain confidentiality. The results were compared with past data, which showed a measurable improvement in FCEVs over the past several years. The results were presented by NREL at the 2014 Fuel Cell Seminar, and 2014 and 2015 (planned) DOE Annual Merit Review. The project was successful. The team provided all of the data agreed upon and met all of its goals. The project finished on time and within budget. In addition, an extra $62,911 of cost sharing was provided by the Electricore team. All participants believed that the method used to collect, combine, anonymize, and present the data was technically and economically effective. This project helped EERE meet its mission of ensuring America’s security and prosperity by

  7. Conducting Polymer-Inorganic Nanoparticle (CPIN) Nanoarrays for Battery Applications - Final Technical Report

    SciTech Connect

    Buttry, Daniel A.


    Our objective was to develop new, self-assembling conducting polymer-inorganic nanoparticle nanoarrays (CPIN nanoarrays) comprised of nanoparticles of inorganic Li+ insertion compounds that are wired together with oligomeric chains of derivatives of polythiophene. Using these nanoarrays, we developed an understanding of the relationship between structure and electrochemical function for nanostructured materials. Such nanoarrays are expected to have extremely high specific energy and specific power for battery applications due to the unique structural characteristics that derive from the nanoarray. Under this award we developed several synthetic approaches to producing manganese dioxide nanoparticles (NPs). We also developed a layer-by-layer approach for immobilizing these NPs so they could be examined electrochemically. We also developed new synthetic procedures for encapsulating manganese dioxide nanoparticles within spheres of polyethylenedioxythiophene (PEDOT), a conducting polymer with excellent charge-discharge stability. These have a unique manganese dioxide core-PEDOT shell structure. We examined the structures of these systems using transmission electron microscopy, various scanning probe microscopies, and electrochemical measurements. Various technical reports have been submitted that describe the work, including conference presentations, publications and patent applications. These reports are available through, the DOE Energy Link System.

  8. CIS Modules Process R&D: Final Technical Report, October 2005 - June 2006

    SciTech Connect

    Tarrant, D. E.; Gay, R. R.


    The primary objectives of this subcontract were to: address key near-term technical R&D issues for continued improvement in thin-film PV products; continue process development for increased production capacity; pursue long-term R&D contributing to progress toward the MYTP goals for 2020 to increase the conversion efficiency to 15% and reduce module manufacturing costs to less than $50/m2, thus enabling PV systems with a 30-year lifetime at an installed cost of under $2.00/W; and advance the understanding of the requirements needed to achieve better thin-film PV cell and module performance, greater reliability and market acceptance, and investigate materials systems and new devices that can improve the cost/performance ratio of future thin-film PV factories. The demonstrated and maintained high production yield is a major accomplishment supporting attractive cost projections for CIS. Process R&D at successive levels of CIS production has led to the continued demonstration of the prerequisites for commitment to large-scale commercialization. Process and packaging R&D during this and previous subcontracts has demonstrated the potential for further cost and performance improvements.

  9. Conceptual model for regional radionuclide transport from a basalt repository site. Final draft, technical memorandum

    SciTech Connect

    Walton, W.C.; Voorhees, M.L.; Prickett, T.A.


    This technical memorandum was prepared to: (1) describe a typical basalt radionuclide repository site, (2) describe geologic and hydrologic processes associated with regional radionuclide transport in basalts, (3) define the parameters required to model regional radionuclide transport from a basalt repository site, and (4) develop a ''conceptual model'' of radionuclide transport from a basalt repository site. In a general hydrological sense, basalts may be described as layered sequences of aquifers and aquitards. The Columbia River Basalt, centered near the semi-arid Pasco Basin, is considered by many to be typical basalt repository host rock. Detailed description of the flow system including flow velocities with high-low hydraulic conductivity sequences are not possible with existing data. However, according to theory, waste-transport routes are ultimately towards the Columbia River and the lengths of flow paths from the repository to the biosphere may be relatively short. There are many physical, chemical, thermal, and nuclear processes with associated parameters that together determine the possible pattern of radionuclide migration in basalts and surrounding formations. Brief process descriptions and associated parameter lists are provided. Emphasis has been placed on the use of the distribution coefficient in simulating ion exchange. The use of the distribution coefficient approach is limited because it takes into account only relatively fast mass transfer processes. In general, knowledge of hydrogeochemical processes is primitive.

  10. Final environmental assessment: TRU waste drum staging building, Technical Area 55, Los Alamos National Laboratory

    SciTech Connect


    Much of the US Department of Energy`s (DOE`s) research on plutonium metallurgy and plutonium processing is performed at Los Alamos National Laboratory (LANL), in Los Alamos, New Mexico. LANL`s main facility for plutonium research is the Plutonium Facility, also referred to as Technical Area 55 (TA-55). The main laboratory building for plutonium work within the Plutonium Facility (TA-55) is the Plutonium Facility Building 4, or PF-4. This Environmental Assessment (EA) analyzes the potential environmental effects that would be expected to occur if DOE were to stage sealed containers of transuranic (TRU) and TRU mixed waste in a support building at the Plutonium Facility (TA-55) that is adjacent to PF-4. At present, the waste containers are staged in the basement of PF-4. The proposed project is to convert an existing support structure (Building 185), a prefabricated metal building on a concrete foundation, and operate it as a temporary staging facility for sealed containers of solid TRU and TRU mixed waste. The TRU and TRU mixed wastes would be contained in sealed 55-gallon drums and standard waste boxes as they await approval to be transported to TA-54. The containers would then be transported to a longer term TRU waste storage area at TA-54. The TRU wastes are generated from plutonium operations carried out in PF-4. The drum staging building would also be used to store and prepare for use new, empty TRU waste containers.

  11. Final Technical Report: "New Tools for Physics with Low-energy Antimatter"

    SciTech Connect

    Surko, Clifford M.


    The objective of this research is to develop new tools to manipulate antimatter plasmas and to tailor them for specific scientific and technical uses. The work has two specific objectives. One is establishing the limits for positron accumulation and confinement in the form of single-component plasmas in Penning-Malmberg traps. This technique underpins a wealth of antimatter applications. A second objective is to develop an understanding of the limits for formation of cold, bright positron beams. The research done in this grant focused on particular facets of these goals. One focus was extracting tailored beams from a high-field Penning-Malmberg trap from the magnetic field to form new kinds of high-quality electrostatic beams. A second goal was to develop the technology for colder trap-based beams using a cryogenically cooled buffer gas. A third objective was to conduct the basic plasma research to develop a new high-capacity multicell trap (MCT) for research with antimatter. Progress is reported here in all three areas. While the goal of this research is to develop new tools for manipulating positrons (i.e., the antiparticles of electrons), much of the work was done with test electron plasmas for increased data rate. Some of the techniques developed in the course of this work are also relevant to the manipulation and use of antiprotons.

  12. STTR Phase 1 Final Technical Report for Project Entitled "Developing a Mobile Torrefaction Machine"

    SciTech Connect

    James, Joseph J.


    The goal of this project, sponsored by Agri-Tech Producers, LLC (ATP), the small business grantee, was to determine if the torrefaction technology, developed by North Carolina State University (NCSU), which ATP has licensed, could be feasibly deployed in a mobile unit. The study adds to the area investigated, by having ATP’s STTR Phase I team give thoughtful consideration to how to use NCSU’s technology in a mobile unit. The findings by ATP’s team were that NCSU’s technology would best perform in units 30’ by 80’ (See Spec Sheet for the Torre-Tech 5.0 Unit in the Appendix) and the technical effectiveness and economic feasibility investigation suggested that such units were not easily, efficiently or safely utilized in a forest or farm setting. (Note rendering of possible mobile system in the Appendix) Therefore, the findings by ATP’s team were that NCSU’s technology could not feasibly be deployed as a mobile unit.

  13. Management support services to the Office of Utility Technologies. Final technical report

    SciTech Connect

    Not Available


    The Office of Utility Technologies works cooperatively with industry and the utility sector to realize the market potential for energy efficiency and renewable energy technologies. Under this contract, BNF has provided management support services for OUT R&D activities for the following Program offices: (1) Office of Energy Management; (2) Office of Solar Energy Conversion; (3) Office of Renewable Energy Conversion; and (4) Deputy Assistant Secretary. During the period between 4/17/91 and 9/17/93, BNF furnished the necessary personnel, equipment, materials, facilities and travel required to provide management support services for each of the above Program Offices. From 9/18/93 to 12/17/93, BNF has been involved in closeout activities, including final product deliverables. Research efforts that have been supported in these Program Offices are: (1) for Energy Management -- Advanced Utility Concepts Division; Utility Systems Division; Integrated Planning; (2) for Solar Energy Conversion -- Photovoltaics Division; Solar Thermal and Biomass Power Division; (3) for Renewable Energy Conversion -- Geothermal Division; Wind, Hydroelectric and Ocean Systems Division; (4) for the Deputy Assistant Secretary -- support as required by the Supporting Staff. This final report contains summaries of the work accomplished for each of the Program Offices listed above.

  14. Development of the helical reaction hydraulic turbine. Final technical report, July 1, 1996--June 30, 1998

    SciTech Connect

    Gorlov, A.


    The present report contains the final results obtained during July 1996--July 1998. This report should be considered in association with the Annual Progress Report submitted in July 1997 due to the fact that not all of the intermediate results reflected in the Progress Report have been included in the Final Report. The aim of the project was to build a helical hydraulic turbine prototype and demonstrate its suitability and advantages as a novel apparatus to harness hydropower from ultra low-head rivers and other free water streams such as ocean currents or rivers without dams. The research objectives of the project are: Design, optimization and selection of the hydro foil section for the helical turbine; Design of the turbine for demonstration project; Construction and testing of the turbine module; Assessing test results and determining scale-up feasibility. The research conducted under this project has substantially exceeded the original goals including designing, constructing and testing of a scaled-up triple-helix turbine, as well as developing recommendations for application of the turbine for direct water pumping in irrigation systems and for future use in wind farms. Measurements collected during two years of turbine testing are kept in the PI files.

  15. Final Technical Report for "Feature Extraction, Characterization, and Visualization for Protein Interaction via Geometric and Topological Methods"

    SciTech Connect

    Wang, Yusu


    Shape analysis plays an important role in many applications. In particular, in molecular biology, analyzing molecular shapes is essential to the fundamental problem of understanding how molecules interact. This project aims at developing efficient and effective algorithms to characterize and analyze molecular structures using geometric and topological methods. Two main components of this project are (1) developing novel molecular shape descriptors; and (2) identifying and representing meaningful features based on those descriptors. The project also produces accompanying (visualization) software. Results from this project (09/2006??10/2009) include the following publications. We have also set up web-servers for the software developed in this period, so that our new methods are accessible to a broader scientific community. The web sites are given below as well. In this final technical report, we first list publications and software resulted from this project. We then briefly explain the research conducted and main accomplishments during the period of this project.

  16. Fundamental studies of the chemical vapor deposition of diamond. Final technical report, April 1, 1988--December 31, 1994

    SciTech Connect

    Nix, W.D.


    We submit here a final technical report for the research program entitled: Fundamental Studies of the Chemical Vapor Deposition of Diamond, DOE Grant No. DE-FG05-88ER45345-M006. This research program was initiated in 1988 under the direction of the late Professor David A. Stevenson and was renewed in 1992. Unfortunately, at the end of 1992, just as the last phase of this work was getting underway, Professor Stevenson learned that he had developed mesothelioma, a form of cancer based on asbestos. Professor Stevenson died from that disease in February of 1994. Professor William D. Nix, the Chairman of the Materials Science department at Stanford was named the Principal Investigator. Professor Nix has assembled this final technical report. Much of the work of this grant was conducted by Mr. Paul Dennig, a graduate student who will receive his Ph.D. degree from Stanford in a few months. His research findings are described in the chapters of this report and in the papers published over the past few years. The main discovery of this work was that surface topology plays a crucial role in the nucleation of diamond on silicon. Dennig and his collaborators demonstrated this by showing that diamond nucleates preferentially at the tips of asperities on a silicon surface rather than in the re-entrant comers at the base of such asperities. Some of the possible reasons for this effect are described in this report. The published papers listed on the next page of this report also describe this research. Interested persons can obtain copies of these papers from Professor Nix at Stanford. A full account of all of the research results obtained in this work is given in the regular chapters that follow this brief introduction. In addition, interested readers will want to consult Mr. Dennig`s Ph.D. dissertation when it is made available later this year.

  17. Microalgae as a source of liquid fuels. Final technical report. [200 references

    SciTech Connect

    Benemann, J.R.; Goebel, R.P.; Weissman, J.C.; Augenstein, D.C.


    The economics of liquid-fuels production from microalgae was evaluated. A detailed review of published economic analyses of microalgae biomass production revealed wide variations in the published costs, which ranged from several dollars per pound for existing commercial health-food production in the Far East, to less than .05/lb costs projected for microalgae biomass for fuel conversion. As little design information or specific cost data has been published, a credible cost estimate required the conceptual engineering design and cost estimating of microalgae to liquid-fuels processes. Two systems were analyzed, shallow (2 to 3'') covered ponds and deeper (1 ft) open ponds. Only the latter was selected for an in-depth analysis due to the many technical shortcomings of the former approach. Based on the cost analysis of a very simple and low cost process, the most optimistic costs extrapolated were about $60/barrel. These were based on many optimistic assumptions. Additional, more detailed, engieering and cost analyses would be useful. However, the major emphasis in future work in this area should be on demonstrating the basic premises on which this design was based: high productivity and oil content of microalgae strains that can dominate in open ponds and which can be harvested by a simple bioflocculation process. Several specific basic research needs were identified: (1) Fundamentals of species selection and control in open pond systems. Effects of environmental variables on species dominance is of particular interest. (2) Mechanisms of algae bioflocculation. (3) Photosynthetic pathways and efficiency under conditions of high lipid production. (4) Effects of non-steady state operating conditions, particularly pH (CO/sub 2/ availability), on productivity. 18 figures, 47 tables.

  18. Advanced Flue Gas Desulfurization (AFGD) demonstration project: Volume 2, Project performance and economics. Final technical report

    SciTech Connect


    The project objective is to demonstrate removal of 90--95% or more of the SO{sub 2} at approximately one-half the cost of conventional scrubbing technology; and to demonstrate significant reduction of space requirements. In this project, Pure Air has built a single SO{sub 2} absorber for a 528-MWe power plant. The absorber performs three functions in a single vessel: prequencher, absorber, and oxidation of sludge to gypsum. Additionally, the absorber is of a co- current design, in which the flue gas and scrubbing slurry move in the same direction and at a relatively high velocity compared to conventional scrubbers. These features all combine to yield a state- of-the-art SO{sub 2} absorber that is more compact and less expensive than conventional scrubbers. The project incorporated a number of technical features including the injection of pulverized limestone directly into the absorber, a device called an air rotary sparger located within the base of the absorber, and a novel wastewater evaporation system. The air rotary sparger combines the functions of agitation and air distribution into one piece of equipment to facilitate the oxidation of calcium sulfite to gypsum. Additionally, wastewater treatment is being demonstrated to minimize water disposal problems inherent in many high-chloride coals. Bituminous coals primarily from the Indiana, Illinois coal basin containing 2--4.5% sulfur were tested during the demonstration. The Advanced Flue Gas Desulfurization (AFGD) process has demonstrated removal of 95% or more of the SO{sub 2} while providing a commercial gypsum by-product in lieu of solid waste. A portion of the commercial gypsum is being agglomerated into a product known as PowerChip{reg_sign} gypsum which exhibits improved physical properties, easier flowability and more user friendly handling characteristics to enhance its transportation and marketability to gypsum end-users.

  19. Final Technical Report - Advanced Optical Sensors to Minimize Energy Consumption in Polymer Extrusion Processes

    SciTech Connect

    Susan J. Foulk


    Project Objective: The objectives of this study are to develop an accurate and stable on-line sensor system to monitor color and composition on-line in polymer melts, to develop a scheme for using the output to control extruders to eliminate the energy, material and operational costs of off-specification product, and to combine or eliminate some extrusion processes. Background: Polymer extrusion processes are difficult to control because the quality achieved in the final product is complexly affected by the properties of the extruder screw, speed of extrusion, temperature, polymer composition, strength and dispersion properties of additives, and feeder system properties. Extruder systems are engineered to be highly reproducible so that when the correct settings to produce a particular product are found, that product can be reliably produced time after time. However market conditions often require changes in the final product, different products or grades may be processed in the same equipment, and feed materials vary from lot to lot. All of these changes require empirical adjustment of extruder settings to produce a product meeting specifications. Optical sensor systems that can continuously monitor the composition and color of the extruded polymer could detect process upsets, drift, blending oscillations, and changes in dispersion of additives. Development of an effective control algorithm using the output of the monitor would enable rapid corrections for changes in materials and operating conditions, thereby eliminating most of the scrap and recycle of current processing. This information could be used to identify extruder systems issues, diagnose problem sources, and suggest corrective actions in real-time to help keep extruder system settings within the optimum control region. Using these advanced optical sensor systems would give extruder operators real-time feedback from their process. They could reduce the amount of off-spec product produced and

  20. DOE SBIR Phase II Final Technical Report - Assessing Climate Change Effects on Wind Energy

    SciTech Connect

    Whiteman, Cameron; Capps, Scott


    Specialized Vertum Partners software tools were prototyped, tested and commercialized to allow wind energy stakeholders to assess the uncertainties of climate change on wind power production and distribution. This project resulted in three commercially proven products and a marketing tool. The first was a Weather Research and Forecasting Model (WRF) based resource evaluation system. The second was a web-based service providing global 10m wind data from multiple sources to wind industry subscription customers. The third product addressed the needs of our utility clients looking at climate change effects on electricity distribution. For this we collaborated on the Santa Ana Wildfire Threat Index (SAWTi), which was released publicly last quarter. Finally to promote these products and educate potential users we released “Gust or Bust”, a graphic-novel styled marketing publication.

  1. Final Scientific/Technical Report Carbon Capture and Storage Training Northwest - CCSTNW

    SciTech Connect

    Workman, James


    This report details the activities of the Carbon Capture and Storage Training Northwest (CCSTNW) program 2009 to 2013. The CCSTNW created, implemented, and provided Carbon Capture and Storage (CCS) training over the period of the program. With the assistance of an expert advisory board, CCSTNW created curriculum and conducted three short courses, more than three lectures, two symposiums, and a final conference. The program was conducted in five phases; 1) organization, gap analysis, and form advisory board; 2) develop list serves, website, and tech alerts; 3) training needs survey; 4) conduct lectures, courses, symposiums, and a conference; 5) evaluation surveys and course evaluations. This program was conducted jointly by Environmental Outreach and Stewardship Alliance (dba. Northwest Environmental Training Center – NWETC) and Pacific Northwest National Laboratories (PNNL).

  2. Assessment of chronic toxicity of petroleum and produced water components to marine organisms. Final technical summary

    SciTech Connect

    Cherr, G.N.; Higashi, R.M.; Shenker, J.M.


    The objectives of the report were: (1) to determine the effects of produced water exposure in early life stages of marine plants and animals, at the cellular, subcellular, and physiological levels; (2) to determine the effects of produced water exposure on reproduction in marine organisms; and (3) to develop non-invasive approaches for assessing reproductive impairment. The effects of produced water (PW) was assessed on development in three ecologically and economically important species, the purple sea urchin (Strongylocentrotus purpuratus), the giant kelp (macrocystis pyrifera), and tsahe California mussel (Mytilus califonrnianus). To determine the basis for effects of PW on these developing organisms, some fundamental studies were prerequisite. Furthermore, eggs and embryos from adults which were outplanted near the discharge were also studied. Finally, the biochemical response of embryos to PW was also defined.

  3. Technical area status report for low-level mixed waste final waste forms. Volume 2, Appendices

    SciTech Connect

    Mayberry, J.L.; Huebner, T.L.; Ross, W.; Nakaoka, R.; Schumacher, R.; Cunnane, J.; Singh, D.; Darnell, R.; Greenhalgh, W.


    This report presents information on low-level mixed waste forms.The descriptions of the low-level mixed waste (LLMW) streams that are considered by the Mixed Waste Integrated Program (MWIP) are given in Appendix A. This information was taken from descriptions generated by the Mixed Waste Treatment Program (MWTP). Appendix B provides a list of characteristic properties initially considered by the Final Waste Form (FWF) Working Group (WG). A description of facilities available to test the various FWFs discussed in Volume I of DOE/MWIP-3 are given in Appendix C. Appendix D provides a summary of numerous articles that were reviewed on testing of FWFS. Information that was collected by the tests on the characteristic properties considered in this report are documented in Appendix D. The articles reviewed are not a comprehensive list, but are provided to give an indication of the data that are available.

  4. Technical Report (Final): Development of Solid State Reagents for Preparing Radiolabeled Imaging Agents

    SciTech Connect

    Kabalka, George W


    The goal of this research was on the development of new, rapid, and efficient synthetic methods for incorporating short-lived radionuclides into agents of use in measuring dynamic processes. The initial project period (Year 1) was focused on the preparation of stable, solid state precursors that could be used to efficiently incorporate short-lived radioisotopes into small molecules of use in biological applications (environmental, plant, and animal). The investigation included development and evaluation of new methods for preparing carbon-carbon and carbon-halogen bonds for use in constructing the substrates to be radiolabeled. The second phase (Year 2) was focused on developing isotope incorporation techniques using the stable, boronated polymeric precursors. The final phase (Year 3), was focused on the preparation of specific radiolabeled agents and evaluation of their biodistribution using micro-PET and micro-SPECT. In addition, we began the development of a new series of polymeric borane reagents based on polyethylene glycol backbones.

  5. Base technology Stirling engine military applications assessment. Final technical report, 1 June 30-September 1983

    SciTech Connect

    Daley, J.G.


    The design of an advanced Stirling engine is considered for potential use in Air Force mobile electric power generator sets. The prospects for acceptable reliability appears good due to new approaches to recognized Stirling problem areas; sealing, heater head and control. The present design appears suitable for a 30kW set, but Air Force needs would be best suited by development of a 60kW unit. Standardization would be facilitated by using the 60kW Stirling engine and associated auxiliaries in a 30kW set. Final design drawings have been completed in the 30kW engine but construction and tests are required to establish that both design criteria for the engine and mobile power requirements are met. Originator-supplied keywords include: Heat pipe, and Combustor control.

  6. Recovery Act: Energy Efficiency of Data Networks through Rate Adaptation (EEDNRA) - Final Technical Report

    SciTech Connect

    Matthew Andrews; Spyridon Antonakopoulos; Steve Fortune; Andrea Francini; Lisa Zhang


    This Concept Definition Study focused on developing a scientific understanding of methods to reduce energy consumption in data networks using rate adaptation. Rate adaptation is a collection of techniques that reduce energy consumption when traffic is light, and only require full energy when traffic is at full provisioned capacity. Rate adaptation is a very promising technique for saving energy: modern data networks are typically operated at average rates well below capacity, but network equipment has not yet been designed to incorporate rate adaptation. The Study concerns packet-switching equipment, routers and switches; such equipment forms the backbone of the modern Internet. The focus of the study is on algorithms and protocols that can be implemented in software or firmware to exploit hardware power-control mechanisms. Hardware power-control mechanisms are widely used in the computer industry, and are beginning to be available for networking equipment as well. Network equipment has different performance requirements than computer equipment because of the very fast rate of packet arrival; hence novel power-control algorithms are required for networking. This study resulted in five published papers, one internal report, and two patent applications, documented below. The specific technical accomplishments are the following: A model for the power consumption of switching equipment used in service-provider telecommunication networks as a function of operating state, and measured power-consumption values for typical current equipment. An algorithm for use in a router that adapts packet processing rate and hence power consumption to traffic load while maintaining performance guarantees on delay and throughput. An algorithm that performs network-wide traffic routing with the objective of minimizing energy consumption, assuming that routers have less-than-ideal rate adaptivity. An estimate of the potential energy savings in service-provider networks using

  7. Concentrating Solar Power - Molten Salt Pump Development, Final Technical Report (Phase 1)

    SciTech Connect

    Michael McDowell; Alan Schwartz


    The purpose of this project is to develop a long shafted pump to operate at high temperatures for the purpose of producing energy with renewable resources. In Phase I of this three phase project we developed molten salt pump requirements, evaluated existing hardware designs for necessary modifications, developed a preliminary design of the pump concept, and developed refined cost estimates for Phase II and Phase III of the project. The decision has been made not to continue the project into Phases II and III. There is an ever increasing world-wide demand for sources of energy. With only a limited supply of fossil fuels, and with the costs to obtain and produce those fuels increasing, sources of renewable energy must be found. Currently, capturing the sun's energy is expensive compared to heritage fossil fuel energy production. However, there are government requirements on Industry to increase the amount of energy generated from renewable resources. The objective of this project is to design, build and test a long-shafted, molten salt pump. This is the type of pump necessary for a molten salt thermal storage system in a commercial-scale solar trough plant. This project is under the Department of Energy (DOE) Solar Energy Technologies Program, managed by the Office of Energy Efficiency and Renewable Energy. To reduce the levelized cost of energy (LCOE), and to meet the requirements of 'tomorrows' demand, technical innovations are needed. The DOE is committed to reducing the LCOE to 7-10 cents/kWh by 2015, and to 5-7 cents/kWh by 2020. To accomplish these goals, the performance envelope for commercial use of long-shafted molten salt pumps must be expanded. The intent of this project is to verify acceptable operation of pump components in the type of molten salt (thermal storage medium) used in commercial power plants today. Field testing will be necessary to verify the integrity of the pump design, and thus reduce the risk to industry. While the primary goal is to

  8. Ocean Thermal Energy Conversion Life Cycle Cost Assessment, Final Technical Report, 30 May 2012

    SciTech Connect

    Martel, Laura; Smith, Paul; Rizea, Steven; Van Ryzin, Joe; Morgan, Charles; Noland, Gary; Pavlosky, Rick; Thomas, Michael; Halkyard, John


    The Ocean Thermal Energy Conversion (OTEC) Life Cycle Cost Assessment (OLCCA) is a study performed by members of the Lockheed Martin (LM) OTEC Team under funding from the Department of Energy (DOE), Award No. DE-EE0002663, dated 01/01/2010. OLCCA objectives are to estimate procurement, operations and maintenance, and overhaul costs for two types of OTEC plants: -Plants moored to the sea floor where the electricity produced by the OTEC plant is directly connected to the grid ashore via a marine power cable (Grid Connected OTEC plants) -Open-ocean grazing OTEC plant-ships producing an energy carrier that is transported to designated ports (Energy Carrier OTEC plants) Costs are developed using the concept of levelized cost of energy established by DOE for use in comparing electricity costs from various generating systems. One area of system costs that had not been developed in detail prior to this analysis was the operations and sustainment (O&S) cost for both types of OTEC plants. Procurement costs, generally referred to as capital expense and O&S costs (operations and maintenance (O&M) costs plus overhaul and replacement costs), are assessed over the 30 year operational life of the plants and an annual annuity calculated to achieve a levelized cost (constant across entire plant life). Dividing this levelized cost by the average annual energy production results in a levelized cost of electricity, or LCOE, for the OTEC plants. Technical and production efficiency enhancements that could result in a lower value of the OTEC LCOE were also explored. The thermal OTEC resource for Oahu, Hawaii and projected build out plan were developed. The estimate of the OTEC resource and LCOE values for the planned OTEC systems enable this information to be displayed as energy supplied versus levelized cost of the supplied energy; this curve is referred to as an Energy Supply Curve. The Oahu Energy Supply Curve represents initial OTEC deployment starting in 2018 and demonstrates the

  9. Puget Sound Tidal Energy In-Water Testing and Development Project Final Technical Report

    SciTech Connect

    Craig W. Collar


    groups, and others. All required permit and license applications were completed and submitted under this award, including a Final License Application for a pilot hydrokinetic license from the Federal Energy Regulatory Commission. The tasks described above have brought the project through all necessary requirements to construct a tidal pilot project in Admiralty Inlet with the exception of final permit and license approvals, and the selection of a general contractor to perform project construction.

  10. Phase 1 Final Technical Report - MgB2 Synthesis for High Field Performance

    SciTech Connect

    Mohit Bhatia; Peter McIntyre


    boron results in the formation of parasitic phases such as MgB4, MgB7, etc. Such parasitic phases are a primary element of the connectivity problem, in which even though a sample powder may contain grains of high-quality MgB2, adjacent grains are surrounded by intergrowths of parasitic phases so that current trans-port is badly degraded. The best results to date have been obtained using boron powder produced long ago for a rocket propellant development project. The synthesis process was complex and is now largely lost, and the manufacturing equipment has long since been scrapped. The last batch of the powder has been used during recent years to support MgB2 R&D at several labs, but supplies are dwindling. ATC has identified a first application of its plasma torch to synthesize phase-pure amorphous boron flake using a rapid-quench splat technique. Inexpensive technical-grade boron would be purified of contaminants, then dispersed as an aerosol in inert gas and passed through the plasma torch to melt it into a spray. The spray would be splat-condensed on a rotating drum to form pure amorphous flake. The process would begin with technical-grade boron powder, having good stoichiometric purity, nanoscale particles, but significant contamination of MgO and crystalline boron. We used wet chemistry to remove B2O3 completely and reduced the MgO impurity, and analyzed the particle size distribution using a Coulter counter and the phase composition using X-ray diffrac-tion (XRD). The next step will be to build an rf plasma torch with a recirculating single-component aerosol feed and the cooled splat drum and collector, and undertake process devel-opment for amorphous boron powder. This revised goal has two benefits. First, it is an easier technology than our ultimate goal of a multi-component laminar flow torch. We have been counseled by those experienced in plasma torch technology that our ultimate goal will require a torch that should be feasible but has never been attempted. It

  11. Final Technical Report for the Net-Zero Energy Commercial Buildings Consortium

    SciTech Connect

    Fazeli, Sandy


    The Commercial Buildings Consortium (CBC) was established in 2009, under the chairmanship of the National Association of State Energy Officials (NASEO), as a supporting organization to the Commercial Buildings Initiative (CBI). The CBI was created by Congress through the Energy Independence and Security Act of 2007 (EISA) and launched by the Department of Energy (DOE) in 2008 with the goal to “develop and disseminate technologies, practices, and policies for establishment of zero net energy commercial buildings.”. The impact of the CBC since 2009 has been multifold, resulting in increased collaboration, increased innovation, and increased demonstration and deployment. During the project performance period of 2009-2014, the CBC provided an organizational framework for sustained public-private collaboration among more than 600 commercial building professionals, researchers and educators, utilities, and government agencies at federal, state, and local level. The CBC’s research has identified emerging technologies, market strategies, and innovative public and corporate policies to help advance CBI’s zero-net-energy. Finally, the CBC worked in close partnership with DOE’s commercial building teams and the Better Buildings Alliances to identify opportunities for proving out and deploying energy-saving technologies and practices.

  12. Photovoltaic manufacturing technology, Phase 1. Final technical report, 1 May 1991--10 May 1991

    SciTech Connect

    Not Available


    This report describes subcontracted research by the Chronar Corporation, prepared by Advanced Photovoltaic Systems, Inc. (APS) for Phase 1 of the Photovoltaic Manufacturing Technology Development project. Amorphous silicon is chosen as the PV technology that Chronar Corporation and APS believe offers the greatest potential for manufacturing improvements, which, in turn, will result in significant cost reductions and performance improvements in photovoltaic products. The APS ``Eureka`` facility was chosen as the manufacturing system that can offer the possibility of achieving these production enhancements. The relationship of the ``Eureka`` facility to Chronar`s ``batch`` plants is discussed. Five key areas are also identified that could meet the objectives of manufacturing potential that could lead to improved performance, reduced manufacturing costs, and significantly increased production. The projected long-term potential benefits of these areas are discussed, as well as problems that may impede the achievement of the hoped-for developments. A significant number of the problems discussed are of a generic nature and could be of general interest to the industry. The final section of this document addresses the cost and time estimates for achieving the solutions to the problems discussed earlier. Emphasis is placed on the number, type, and cost of the human resources required for the project.

  13. Knowledge Boosting Curriculum for New Wind Industry Professionals Final Technical Report

    SciTech Connect

    Marsh, Ruth H; Rogers, Anthony L


    DNV Renewables (USA) Inc. (DNV KEMA) received a grant from the U.S. Department of Energy (DOE) to develop the curriculum for a series of short courses intended to address Topic Area 5 Workforce Development, one of the focus areas to achieve the goals outlined in 20% Wind by 2030: Increasing Wind Energy's Contribution to Electricity Supply. The aim of the curriculum development project was to provide material for instructors to use in a training program to help professionals transition into careers in wind energy. Under this grant DNV KEMA established a knowledge boosting program for the wind energy industry with the following objectives: 1. Develop technical training curricula and teaching materials for six key topic areas that can be implemented in a flexible format by a knowledgeable instructor. The topic areas form a foundation that can be leveraged for subsequent, more detailed learning modules (not developed in this program). 2. Develop an implementation guidance document to accompany the curricula outlining key learning objectives, implementation methods, and guidance for utilizing the curricula. This curriculum is intended to provide experienced trainers course material that can be used to provide course participants with a basic background in wind energy and wind project development. The curriculum addresses all aspects of developing a wind project, that when implemented can be put to use immediately, making the participant an asset to U.S. wind industry employers. The curriculum is comprised of six short modules, together equivalent in level of content to a one-semester college-level course. The student who completes all six modules should be able to understand on a basic level what is required to develop a wind project, speak with a reasonable level of confidence about such topics as wind resource assessment, energy assessment, turbine technology and project economics, and contribute to the analysis and review of project information. The content of the

  14. Final Technical Report for Industrial Assessment Center at West Virginia University

    SciTech Connect

    Gopalakrishnan, Bhaskaran


    The Industrial Assessment Center (IAC) program at West Virginia University (WVU), which is funded by the Industrial Technologies Program (ITP) in the U.S. Department of Energys (DOE) Office of Energy Efficiency and Renewable Energy (EERE), has provided a unique opportunity to enhance efficient energy utilization in small to medium-sized manufacturers. It has also provided training to engineering students in the identification and analysis of efficient energy use in each aspect of the manufacturing process and associated supporting elements. The outcomes of the IAC Program at WVU have assisted the manufacturers and the students in having a heightened sensitivity to industrial energy conservation, waste reduction, and productivity improvement, as well as a better understanding of the technical aspects of manufacturing processes and the supporting elements through which efficient energy utilization can be enhanced. The IAC at WVU has conducted 101 energy assessments from 2002 until 2006. The focus of the industrial assessments has been on energy savings. It has been the IACs interest to strongly focus on energy savings and on waste minimization and productivity improvements that strictly have an impact on energy. The IAC at WVU was selected as the Center of the year in 2005 from amongst 26 centers and has obtained a ranking within the top 5 in the previous few years. From 2002 to 2006, the total recommended energy savings produced by the IAC at WVU is 1,214,414 MMBtu, of which the electricity accounts for 93,826,067 kWh (equivalent to 320,226 MMBtu) and natural gas for 871,743 MMBtu. The balance is accounted for in savings in other fuels, mainly coal and wood. This results in an average recommended energy savings of 928,971 kWh from electricity and 8,631 MMBtu from natural gas per facility. The total CO2 emissions saved from 2002 to 2006 is 154,462 tons, with an average of 1,529.3 tons per facility. The average recommended energy cost savings per facility is $135

  15. Hawaii Utility Integration Initiatives to Enable Wind (Wind HUI) Final Technical Report

    SciTech Connect

    Dora Nakafuji; Lisa Dangelmaier; Chris Reynolds


    help guide Hawaii and the nation toward more reliable adoption of clean energy resources. Results from these efforts are helping to inform Hawaiian utilities continue to Transform infrastructure, Incorporate renewable considerations and priorities into new processes/procedures, and Demonstrate the technical effectiveness and feasibility of new technologies to shape our pathways forward. Lessons learned and experience captured as part of this effort will hopefully provide practical guidance for others embarking on major legacy infrastructure transformations and renewable integration projects.

  16. Deep Geothermal Drilling Using Millimeter Wave Technology. Final Technical Research Report

    SciTech Connect

    Oglesby, Kenneth; Woskov, Paul; Einstein, Herbert; Livesay, Bill


    Conventional drilling methods are very mature, but still have difficulty drilling through very deep,very hard and hot rocks for geothermal, nuclear waste entombment and oil and gas applications.This project demonstrated the capabilities of utilizing only high energy beams to drill such rocks,commonly called ‘Direct Energy Drilling’, which has been the dream of industry since the invention of the laser in the 1960s. A new region of the electromagnetic spectrum, millimeter wave (MMW) wavelengths at 30-300 giga-hertz (GHz) frequency was used to accomplish this feat. To demonstrate MMW beam drilling capabilities a lab bench waveguide delivery, monitoring and instrument system was designed, built and tested around an existing (but non-optimal) 28 GHz frequency, 10 kilowatt (kW) gyrotron. Low waveguide efficiency, plasma generation and reflected power challenges were overcome. Real-time monitoring of the drilling process was also demonstrated. Then the technical capability of using only high power intense millimeter waves to melt (with some vaporization) four different rock types (granite, basalt, sandstone, limestone) was demonstrated through 36 bench tests. Full bore drilling up to 2” diameter (size limited by the available MMW power) was demonstrated through granite and basalt samples. The project also demonstrated that MMW beam transmission losses through high temperature (260°C, 500oF), high pressure (34.5 MPa, 5000 psi) nitrogen gas was below the error range of the meter long path length test equipment and instruments utilized. To refine those transmission losses closer, to allow extrapolation to very great distances, will require a new test cell design and higher sensitivity instruments. All rock samples subjected to high peak temperature by MMW beams developed fractures due to thermal stresses, although the peak temperature was thermodynamically limited by radiative losses. Therefore, this limited drill rate and rock strength data were not able to be

  17. Coal plasticity at high heating rates and temperatures. Final technical progress report

    SciTech Connect

    Gerjarusak, S.; Peters, W.A.; Howard, J.B.


    Plastic coals are important feedstocks in coke manufacture, coal liquefaction, gasification, and combustion. During these processes, the thermoplastic behavior of these coals is also important since it may contribute to desirable or undesirable characteristics. For example, during liquefaction, the plastic behavior is desired since it leads to liquid-liquid reactions which are faster than solid-liquid reactions. During gasification, the elastic behavior is undesired since it leads to caking and agglomeration of coal particles which result in bed bogging in fixed or fluidized bed gasifiers. The plastic behavior of different coals was studied using a fast-response plastometer. A modified plastometer was used to measure the torque required to turn at constant angular speed a cone-shaped disk embedded in a thin layer of coal. The coal particles were packed between two metal plates which are heated electrically. Heating rates, final temperatures, pressures, and durations of experiment ranged from 200--800 K/s, 700--1300 K, vacuum-50 atm helium, and 0--40 s, respectively. The apparent viscosity of the molten coal was calculated from the measured torque using the governing equation of the cone-and-plate viscometer. Using a concentrated suspension model, the molten coal`s apparent viscosity was related to the quantity of the liquid metaplast present during pyrolysis. Seven coals from Argonne National Laboratory Premium Coal Sample Bank were studied. Five bituminous coals, from high-volatile to low-volatile bituminous, were found to have very good plastic behavior. Coal type strongly affects the magnitude and duration of plasticity. Hvb coals were most plastic. Mvb and lvb coals, though the maximum plasticity and plastic period were less. Low rank coals such as subbituminous and lignite did not exhibit any plasticity in the present studies. Coal plasticity is moderately well correlated with simple indices of coal type such as the elemental C,O, and H contents.

  18. Advanced wind turbine near-term product development. Final technical report

    SciTech Connect



    In 1990 the US Department of Energy initiated the Advanced Wind Turbine (AWT) Program to assist the growth of a viable wind energy industry in the US. This program, which has been managed through the National Renewable Energy Laboratory (NREL) in Golden, Colorado, has been divided into three phases: (1) conceptual design studies, (2) near-term product development, and (3) next-generation product development. The goals of the second phase were to bring into production wind turbines which would meet the cost goal of $0.05 kWh at a site with a mean (Rayleigh) windspeed of 5.8 m/s (13 mph) and a vertical wind shear exponent of 0.14. These machines were to allow a US-based industry to compete domestically with other sources of energy and to provide internationally competitive products. Information is given in the report on design values of peak loads and of fatigue spectra and the results of the design process are summarized in a table. Measured response is compared with the results from mathematical modeling using the ADAMS code and is discussed. Detailed information is presented on the estimated costs of maintenance and on spare parts requirements. A failure modes and effects analysis was carried out and resulted in approximately 50 design changes including the identification of ten previously unidentified failure modes. The performance results of both prototypes are examined and adjusted for air density and for correlation between the anemometer site and the turbine location. The anticipated energy production at the reference site specified by NREL is used to calculate the final cost of energy using the formulas indicated in the Statement of Work. The value obtained is $0.0514/kWh in January 1994 dollars. 71 figs., 30 tabs.

  19. The effect of selective solvent absorption on coal conversion. Final technical report

    SciTech Connect

    Larsen, J.W.


    Using a pair of different recycle oils from Wilsonville and {sup 1}H NMR, {sup 13}C NMR, gel permeation (GPC) chromatography, high pressure liquid chromatography (HPLC), and elemental analysis, no significant differences were observed between the composition of the recycle oil and that portion of the oil not absorbed by the coal. For these complex mixtures, coals are not selective absorbants. Since most of the heteroatoms responsible for most of the specific interactions have been removed by hydrogenolyses, this is perhaps not surprising. To address the issue of the role of hydrogen bond donors in the reused as hydrogen donor coal, tetralin and 2-t-butyltetralin were used as hydrogen donor solvents. This work is reported in detail in Section 2. The basic idea is that the presence of the t-butyl group on the aromatic ring will hinder or block diffusion of the hydrogen donor into the coal resulting in lower conversions and less hydrogen transferred with 2-t-butyltetralin than with tetralin. Observed was identical amounts of hydrogen transfer and nearly identical conversions to pyridine solubles for both hydrogen donors. Diffusion of hydrogen donors into the coal does not seem to play a significant role in coal conversion. Finally, in Section 3 is discussed the unfavorable impact on conversion of the structural rearrangements which occur when Illinois No. 6 coal is swollen with a solvent. We believe this rearrangement results in a more strongly associated solid leading to the diminution of coal reactions. Hydrogen donor diffusion does not seem to be a major factor in coal conversion while the structural rearrangement does. Both areas warrant further exploration.

  20. Strengthening the fission reactor nuclear science and engineering program at UCLA. Final technical report

    SciTech Connect

    Okrent, D.


    This is the final report on DOE Award No. DE-FG03-92ER75838 A000, a three year matching grant program with Pacific Gas and Electric Company (PG and E) to support strengthening of the fission reactor nuclear science and engineering program at UCLA. The program began on September 30, 1992. The program has enabled UCLA to use its strong existing background to train students in technological problems which simultaneously are of interest to the industry and of specific interest to PG and E. The program included undergraduate scholarships, graduate traineeships and distinguished lecturers. Four topics were selected for research the first year, with the benefit of active collaboration with personnel from PG and E. These topics remained the same during the second year of this program. During the third year, two topics ended with the departure o the students involved (reflux cooling in a PWR during a shutdown and erosion/corrosion of carbon steel piping). Two new topics (long-term risk and fuel relocation within the reactor vessel) were added; hence, the topics during the third year award were the following: reflux condensation and the effect of non-condensable gases; erosion/corrosion of carbon steel piping; use of artificial intelligence in severe accident diagnosis for PWRs (diagnosis of plant status during a PWR station blackout scenario); the influence on risk of organization and management quality; considerations of long term risk from the disposal of hazardous wastes; and a probabilistic treatment of fuel motion and fuel relocation within the reactor vessel during a severe core damage accident.

  1. Improved methods for water shutoff. Final technical progress report, October 1, 1997--September 30, 1998

    SciTech Connect

    Seright, R.S.; Liang, J.T.; Schrader, R.; Hagstrom, J. II; Liu, J.; Wavrik, K.


    In the United States, more than 20 billion barrels of salt water are produced each year during oilfield operations. A tremendous economic incentive exists to reduce water production if that can be accomplished without significantly sacrificing hydrocarbon production. This three-year research project had three objectives. The first objective was to identify chemical blocking agents that will (a) during placement, flow readily through fractures without penetrating significantly into porous rock and with screening out or developing excessive pressure gradients and (b) at a predictable and controllable time, become immobile and resistant breakdown upon exposure to moderate to high pressure gradients. The second objective was to identify schemes that optimize placement of the above blocking agents. The third objective was to explain why gels and other chemical blocking agents reduce permeability to one phase (e.g., water) more than that to another phase (e.g., oil or gas). The authors also wanted to identify conditions that maximize this phenomenon. This project consisted of three tasks, each of which addressed one of the above objectives. This report describes work performed during the third and final period of the project. During this three-year project, they: (1) Developed a procedure and software for sizing gelant treatments in hydraulically fractured production wells; (2) Developed a method (based on interwell tracer results) to determine the potential for applying gel treatments in naturally fractured reservoirs; (3) Characterized gel properties during extrusion through fractures; (4) Developed a method to predict gel placement in naturally fractured reservoirs; (5) Made progress in elucidating the mechanism for why some gels can reduce permeability to water more than that to oil; (6) Demonstrated the limitations of using water/oil ratio diagnostic plots to distinguish between channeling and coning; and (7) Proposed a philosophy for diagnosing and attacking water

  2. Solar 2 Green Energy, Arts & Education Center. Final Scientific/Technical Report

    SciTech Connect

    Paquette, Jamie C; Collins, Christopher J


    provided to assist with the ongoing design work of Solar 2, including architecture, engineering and the development of construction specifications. The work performed during the project period brought this process as far along as it could go pending the raising of funds to begin construction of the building. Once those funds are secured, we will finalize any additional details needed before beginning the bidding process and then moving into construction. DOE's funding was extremely valuable in helping Solar One determine the feasibility of a net-zero construction on the site and allowed for the design to project to meet the high standards necessary for LEED Platinum status.

  3. Final Scientific/Technical Report. A closed path methane and water vapor gas analyzer

    SciTech Connect

    Xu, Liukang; McDermitt, Dayle; Anderson, Tyler; Riensche, Brad; Komissarov, Anatoly; Howe, Julie


    utilized to randomize the noise introduced from potential etalons. It is expected that all original specifications contained within the initial proposal will be met. We are currently in the beginning stages of assembling the first generation prototypes and finalizing the remaining design elements. The first prototypes will initially be tested in our environmental calibration chamber in which specific gas concentrations, temperature and humidity levels can be controlled. Once operation in this controlled setting is verified, the prototypes will be deployed at LI-COR's Experimental Research Station (LERS). Deployment at the LERS site will test the instrument's robustness in a real-world situation.

  4. Final Technical Report: Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project

    SciTech Connect

    Ronald Grasman


    This report summarizes the work conducted under U.S. Department of Energy (DOE) under contract DE-FC36-04GO14285 by Mercedes-Benz & Research Development, North America (MBRDNA), Chrysler, Daimler, Mercedes Benz USA (MBUSA), BP, DTE Energy and NextEnergy to validate fuel cell technologies for infrastructure, transportation as well as assess technology and commercial readiness for the market. The Mercedes Team, together with its partners, tested the technology by operating and fueling hydrogen fuel cell vehicles under real world conditions in varying climate, terrain and driving conditions. Vehicle and infrastructure data was collected to monitor the progress toward the hydrogen vehicle and infrastructure performance targets of $2.00 to 3.00/gge hydrogen production cost and 2,000-hour fuel cell durability. Finally, to prepare the public for a hydrogen economy, outreach activities were designed to promote awareness and acceptance of hydrogen technology. DTE, BP and NextEnergy established hydrogen filling stations using multiple technologies for on-site hydrogen generation, storage and dispensing. DTE established a hydrogen station in Southfield, Michigan while NextEnergy and BP worked together to construct one hydrogen station in Detroit. BP constructed another fueling station in Burbank, California and provided a full-time hydrogen trailer at San Francisco, California and a hydrogen station located at Los Angeles International Airport in Southern, California. Stations were operated between 2005 and 2011. The Team deployed 30 Gen I Fuel Cell Vehicles (FCVs) in the beginning of the project. While 28 Gen I F-CELLs used the A-Class platform, the remaining 2 were Sprinter delivery vans. Fuel cell vehicles were operated by external customers for real-world operations in various regions (ecosystems) to capture various driving patterns and climate conditions (hot, moderate and cold). External operators consisted of F-CELL partner organizations in California and Michigan

  5. Final Technical Report: Intensive Quenching Technology for Heat Treating and Forging Industries

    SciTech Connect

    Aronov, Michael A.


    standard dies by at least 50%. Dies provided by an AST customer, made of plain carbon 1045 steel and used for pellet manufacturing outperformed the standard dies by more than 100%. Concrete crusher liner wear plates provided by an EHT customer and made of 1045 steel, had the same surface hardness as the plates made of more expensive, pre-hardened high alloy HARDOX-500 material supplied by a Swedish company and used currently by the EHT customer. The 1045 material intensively quenched wear plates are currently in the field. Concrete block molding machine wear plates provided by an IQT customer and made of 8620 steel were processed at the AST production IQ system using a 40% reduced carburization cycle. An effective case depth in the intensively quenched wear plates was the same as in the standard, oil quenched parts. Base keys provided by an EHT customer and made of 8620 steel were processed using a 40% reduced carburization cycle. The intensively quenched parts showed the same performance as standard parts. IQT introduced the IQ process in heat treat practices of three commercial heat-treating shops: Akron Steel Treating Co., Summit Heat Treating Co. and Euclid Heat Treating Co. CWRU conducted a material characterization study for a variety of steels to develop a database to support changing/modification of recognized standards for quenching steel parts. IQT conducted a series of IQ workshops, published seven technical papers and participated in ASM Heat Treating Society conference and exposition and in Furnace North America Show. IQT designed and built a fully automated new IQ system installed at the Center for Intensive Quenching. This system includes the following major components: a stand-alone 1,900-gallon IQ water system, a 24'' x 24'' atmosphere pit furnace, and an automated load transfer mechanism. IQT established a ''Center for Intensive Quenching'' at the AST facilities. The 4,000 square feet Center includes the following equipment: High-velocity single part

  6. DE-FG02-08ER64658 (OASIS) - Final Technical Report

    SciTech Connect

    Sharman, Jonathan


    Project OASIS (Operation of Advanced Structures, Interfaces and Sub-components for MEAs) was a 12 month project that ran from 1st September 2008 to 31st August 2009, and was managed by the Department of Energy Office of Science, Chicago Office, as Award No DE-FG02-08ER64658, with Johnson Matthey Fuel Cells Inc. as the sole contractor. The project was completed on schedule, with technical successes (details below) and payment of the full grant award made by DOE. The aim of the project was the development of membrane electrode assemblies (MEAs) for H2/air polymer electrolyte membrane (PEM) fuel cells that would give higher performance under hot/dry and dry operating conditions, ideally with no loss of performance under wet conditions. Reducing or eliminating the need for humidifying the incoming gases will allow significant system cost and size reduction for many fuel cell applications including automotive, stationary and back-up power, and portable systems. Portable systems are also of particular interest in military markets. In previous work Johnson Matthey Fuel Cells had developed very stable, corrosion-resistant catalysts suitable for resisting degradation by carbon corrosion in particular. These materials were applied within the OASIS project as they are considered necessary for systems such as automotive where multiple start-stop events are experienced. These catalysts were contrasted with more conventional materials in the design of catalyst layers and novel microporous layers (MPLs) and gas diffusion layer (GDL) combinations were also explored. Early on in the work it was shown how much more aggressive high temperature operation is than dry operation. At the same humidity, tests at 110?C caused much more dehydration than tests at 80?C and the high temperature condition was much more revealing of improvements made to MEA design. Alloy catalysts were introduced and compared with Pt catalysts with a range of particle sizes. It was apparent that the larger

  7. A Systems Approach to Bio-Oil Stabilization - Final Technical Report

    SciTech Connect

    Brown, Robert C; Meyer, Terrence; Fox, Rodney; Submramaniam, Shankar; Shanks, Brent; Smith, Ryan G


    The objective of this project is to develop practical, cost effective methods for stabilizing biomass-derived fast pyrolysis oil for at least six months of storage under ambient conditions. The U.S. Department of Energy has targeted three strategies for stabilizing bio-oils: (1) reducing the oxygen content of the organic compounds comprising pyrolysis oil; (2) removal of carboxylic acid groups such that the total acid number (TAN) of the pyrolysis oil is dramatically reduced; and (3) reducing the charcoal content, which contains alkali metals known to catalyze reactions that increase the viscosity of bio-oil. Alkali and alkaline earth metals (AAEM), are known to catalyze decomposition reactions of biomass carbohydrates to produce light oxygenates that destabilize the resulting bio-oil. Methods envisioned to prevent the AAEM from reaction with the biomass carbohydrates include washing the AAEM out of the biomass with water or dilute acid or infusing an acid catalyst to passivate the AAEM. Infusion of acids into the feedstock to convert all of the AAEM to salts which are stable at pyrolysis temperatures proved to be a much more economically feasible process. Our results from pyrolyzing acid infused biomass showed increases in the yield of anhydrosugars by greater than 300% while greatly reducing the yield of light oxygenates that are known to destabilize bio-oil. Particulate matter can interfere with combustion or catalytic processing of either syngas or bio-oil. It also is thought to catalyze the polymerization of bio-oil, which increases the viscosity of bio-oil over time. High temperature bag houses, ceramic candle filters, and moving bed granular filters have been variously suggested for syngas cleaning at elevated temperatures. High temperature filtration of bio-oil vapors has also been suggested by the National Renewable Energy Laboratory although there remain technical challenges to this approach. The fast pyrolysis of biomass yields three main organic

  8. Final Technical Report: Hawaii Hydrogen Center for Development and Deployment of Distributed Energy Systems

    SciTech Connect

    Rocheleau, Richard E.


    -efficiency CIGS and a-Si:H with operating features compatible with high-efficiency photoelectrochemical (PEC) water-splitting. The objective of one activity under the hydrogen production from biomass task was to conduct parametric testing of the Pearson gasifier and to determine the effects of gasifier operating conditions on the gas yields and quality. The hydrogen yield from this gasifier was evaluated in a parametric test series over a range of residence times from 0.8 to 2.2 seconds. H2 concentrations as high as 55% (volume) were measured in the product gas at the longer residence times and this corresponds to a hydrogen yield of 90 kg per tonne of bagasse without gas upgrading. The objective of another activity was to develop hot gas clean-up capabilities for the HNEI gasifier test facility to support hydrogen-from-biomass research. The product gas stream at the outlet of the hot gas filter was characterized for concentrations of permanent gas species and contaminants. Biomass feedstock processing activity included a preliminary investigation into methods for processing sugar cane trash at the Puunene Sugar Factory on the island of Maui, Hawaii. The objective of the investigation was to explore treatment methods that would enable the successful use of cane trash as fuel for the production of hydrogen via gasification. Analyses were completed for the technical and economic feasibility of producing biofuel from photosynthetic marine microbes on a commercial scale. Results included estimates for total costs, energy efficiency, and return on investment. The biohydrogen team undertook a comprehensive review of the field and came to what is considered a realistic conclusion. To summarize, continued research is recommended in the fundamentals of the science related to genetic engineering and specific topics to cover knowledge gaps. In the meantime, the team also advocates continued development of related processes which can be linked to pollution control and other real world

  9. Technical Report: Final project report for Terahertz Spectroscopy of Complex Matter

    SciTech Connect

    R. A. Cheville; D. R. Grischkowsky


    This project designed characterization techniques for thin films of complex matter and other materials in the terahertz spectral region extending from approximately 100 GHz to 4000 GHz (4 THz) midway between radio waves and light. THz has traditionally been a difficult region of the spectrum in which to conduct spectroscopic measurements. The THz gap arises from the nature of the sources and detectors used in spectroscopy both at the optical (high frequency) side and electronic (low frequency) side of the gap. To deal with the extremely rapid oscillations of the electric field in this frequency region this research project adapted techniques from both the electronics and optics technologies by fabricating microscopic antennas and driving them with short optical pulses. This research technique creates nearly single cycle pulses with extremely broad spectral bandwidth that are able to cover the THz spectral range with a single measurement. The technique of THz time domain spectroscopy (THz-TDS) has seen increasing use and acceptance in laboratories over the past fifteen years. However significant technical challenges remain in order to allow THz-TDS to be applied to measurement of solid materials, particularly thin films and complex matter. This project focused on the development and adaptation of time domain THz measurement techniques to investigate the electronic properties of complex matter in the terahertz frequency region from 25 GHz to beyond 5 THz (<1 inv. cm to >165 inv. cm). This project pursued multiple tracks in adapting THz Time Domain Spectroscopy (THz-TDS) to measurement of complex matter. The first, and most important, is development of a reliable methods to characterize the complex dielectric constant of thin films with high accuracy when the wavelength of the THz radiation is much longer than the thickness of the film. We have pursued several techniques for measurement of thin films. The most promising of these are waveguide spectroscopy and THz

  10. Final Technical Report of project: "Contactless Real-Time Monitoring of Paper Mechanical Behavior During Papermaking"

    SciTech Connect

    Emmanuel Lafond; Paul Ridgway; Ted Jackson; Rick Russo; Ken Telschow; Vance Deason; Yves Berthelot; David Griggs; Xinya Zhang; Gary Baum


    The early precursors of laser ultrasonics on paper were Prof. Y. Berthelot from the Georgia Institute of Technology/Mechanical Engineering department, and Prof. P. Brodeur from the Institute of Paper Science and Technology, both located in Atlanta, Georgia. The first Ph.D. thesis that shed quite some light on the topic, but also left some questions unanswered, was completed by Mont A. Johnson in 1996. Mont Johnson was Prof. Berthelot's student at Georgia Tech. In 1997 P. Brodeur proposed a project involving himself, Y. Berthelot, Dr. Ken Telschow and Mr. Vance Deason from INL, Honeywell-Measurex and Dr. Rick Russo from LBNL. The first time the proposal was not accepted and P. Brodeur decided to re-propose it without the involvement from LBNL. Rick Russo proposed a separate project on the same topic on his side. Both proposals were finally accepted and work started in the fall of 1997 on the two projects. Early on, the biggest challenge was to find an optical detection method which could detect laser-induced displacements of the web surface that are of the order of .1 micron in the ultrasonic range. This was to be done while the web was having an out-of-plane amplitude of motion in the mm range due to web flutter; while moving at 10 m/s to 30 m/s in the plane of the web, on the paper machine. Both teams grappled with the same problems and tried similar methods in some cases, but came up with two similar but different solutions one year later. The IPST, GT, INL team found that an interferometer made by Lasson Technologies Inc. using the photo-induced electro-motive force in Gallium Arsenide was able to detect ultrasonic waves up to 12-15 m/s. It also developed in house an interferometer using the Two-Wave Mixing effect in photorefractive crystals that showed good promises for on-line applications, and experimented with a scanning mirror to reduce motion-induced texture noise from the web and improve signal to noise ratio. On its side, LBNL had the idea to combine a

  11. FINAL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)


  12. DECREASE Final Technical Report: Development of a Commercial Ready Enzyme Application System for Ethanol

    SciTech Connect

    Teter, Sarah A


    Conversion of biomass to sugars plays a central in reducing our dependence on petroleum, as it allows production of a wide range of biobased fuels and chemicals, through fermentation of those sugars. The DECREASE project delivers an effective enzyme cocktail for this conversion, enabling reduced costs for producing advanced biofuels such as cellulosic ethanol. Benefits to the public contributed by growth of the advanced biofuels industry include job creation, economic growth, and energy security. The DECREASE primary project objective was to develop a two-fold improved enzyme cocktail, relative to an advanced cocktail (CZP00005) that had been developed previously (from 2000- 2007). While the final milestone was delivery of all enzyme components as an experimental mixture, a secondary objective was to deploy an improved cocktail within 3 years following the close of the project. In February 2012, Novozymes launched Cellic CTec3, a multi-enzyme cocktail derived in part from components developed under DECREASE. The externally validated performance of CTec3 and an additional component under project benchmarking conditions indicated a 1.8-fold dose reduction in enzyme dose required for 90% conversion (based on all available glucose and xylose sources) of NREL dilute acid pretreated PCS, relative to the starting advanced enzyme cocktail. While the ability to achieve 90% conversion is impressive, targeting such high levels of biomass digestion is likely not the most cost effective strategy. Novozymes techno economic modeling showed that for NREL's dilute acid pretreated corn stover (PCS), 80% target conversion enables a lower total production cost for cellulosic ethanol than for 90% conversion, and this was also found to be the case when cost assumptions were based on the NREL 2002 Design Report. A 1.8X dose-reduction was observed for 80% conversion in the small scale (50 g) DECREASE benchmark assay for CTec3 and an additional component. An upscaled experiment (in 0.5 kg

  13. Lake Granbury and Lake Whitney Assessment Initiative Final Scientific/Technical Report Summary

    SciTech Connect

    Harris, B.L.; Roelke, Daniel; Brooks, Bryan; Grover, James


    . Our numerical modeling results support the idea that cyanobacteria, through allelopathy, control the timing of golden algae blooms in Lake Granbury. The in-lake experiments in Lake Whitney and Lake Waco also revealed that as golden algae blooms develop, there are natural enemies (a species of rotifer, and a virus) that help slow the population growth. Again, better characterization of these organisms is a high priority as it may be key to managing golden algae blooms. Our laboratory and in-lake experiments and field monitoring have shown that nutrient additions will remove toxicity and prevent golden algae from blooming. In fact, other algae displace the golden algae after nutrient additions. Additions of ammonia are particularly effective, even at low doses (much lower than what is employed in fish hatchery ponds). Application of ammonia in limited areas of lakes, such as in coves, should be explored as a management option. The laboratory experiments and field monitoring also show that the potency of toxins produced by P. parvum is greatly reduced when water pH is lower, closer to neutral levels. Application of mild acid to limited areas of lakes (but not to a level where acidic conditions are created), such as in coves, should be explored as a management option. Finally, our field monitoring and mathematical modeling revealed that flushing/dilution at high enough levels could prevent P. parvum from forming blooms and/or terminate existing blooms. This technique could work using deeper waters within a lake to flush the surface waters of limited areas of the same lakes, such as in coves and should be explored as a management option. In this way, water releases from upstream reservoirs would not be necessary and there would be no addition of nutrients in the lake.

  14. Development of Molten-Salt Heat Transfer Fluid Technology for Parabolic Trough Solar Power Plants - Public Final Technical Report

    SciTech Connect

    Grogan, Dylan C. P.


    Executive Summary This Final Report for the "Development of Molten-Salt Heat Transfer Fluid (HTF) Technology for Parabolic Trough Solar Power Plants” describes the overall project accomplishments, results and conclusions. Phase 1 analyzed the feasibility, cost and performance of a parabolic trough solar power plant with a molten salt heat transfer fluid (HTF); researched and/or developed feasible component options, detailed cost estimates and workable operating procedures; and developed hourly performance models. As a result, a molten salt plant with 6 hours of storage was shown to reduce Thermal Energy Storage (TES) cost by 43.2%, solar field cost by 14.8%, and levelized cost of energy (LCOE) by 9.8% - 14.5% relative to a similar state-of-the-art baseline plant. The LCOE savings range met the project’s Go/No Go criteria of 10% LCOE reduction. Another primary focus of Phase 1 and 2 was risk mitigation. The large risk areas associated with a molten salt parabolic trough plant were addressed in both Phases, such as; HTF freeze prevention and recovery, collector components and piping connections, and complex component interactions. Phase 2 analyzed in more detail the technical and economic feasibility of a 140 MWe,gross molten-salt CSP plant with 6 hours of TES. Phase 2 accomplishments included developing technical solutions to the above mentioned risk areas, such as freeze protection/recovery, corrosion effects of applicable molten salts, collector design improvements for molten salt, and developing plant operating strategies for maximized plant performance and freeze risk mitigation. Phase 2 accomplishments also included developing and thoroughly analyzing a molten salt, Parabolic Trough power plant performance model, in order to achieve the project cost and performance targets. The plant performance model and an extensive basic Engineering, Procurement, and Construction (EPC) quote were used to calculate a real levelized cost of energy (LCOE) of 11.50

  15. Powder Metallurgy of Uranium Alloy Fuels for TRU-Burning Reactors Final Technical Report

    SciTech Connect

    McDeavitt, Sean M


    Overview Fast reactors were evaluated to enable the transmutation of transuranic isotopes generated by nuclear energy systems. The motivation for this was that TRU isotopes have high radiotoxicity and relatively long half-lives, making them unattractive for disposal in a long-term geologic repository. Fast reactors provide an efficient means to utilize the energy content of the TRUs while destroying them. An enabling technology that requires research and development is the fabrication metallic fuel containing TRU isotopes using powder metallurgy methods. This project focused upon developing a powder metallurgical fabrication method to produce U-Zr-transuranic (TRU) alloys at relatively low processing temperatures (500ºC to 600ºC) using either hot extrusion or alpha-phase sintering for charecterization. Researchers quantified the fundamental aspects of both processing methods using surrogate metals to simulate the TRU elements. The process produced novel solutions to some of the issues relating to metallic fuels, such as fuel-cladding chemical interactions, fuel swelling, volatility losses during casting, and casting mold material losses. Workscope There were two primary tasks associated with this project: 1. Hot working fabrication using mechanical alloying and extrusion • Design, fabricate, and assemble extrusion equipment • Extrusion database on DU metal • Extrusion database on U-10Zr alloys • Extrusion database on U-20xx-10Zr alloys • Evaluation and testing of tube sheath metals 2. Low-temperature sintering of U alloys • Design, fabricate, and assemble equipment • Sintering database on DU metal • Sintering database on U-10Zr alloys • Liquid assisted phase sintering on U-20xx-10Zr alloys Appendices Outline Appendix A contains a Fuel Cycle Research & Development (FCR&D) poster and contact presentation where TAMU made primary contributions. Appendix B contains MSNE theses and final defense presentations by David Garnetti and Grant Helmreich

  16. Final Technical Report: Effects of Impurities on Fuel Cell Performance and Durability

    SciTech Connect

    James G. Goodwin, Jr.; Hector Colon-Mercado; Kitiya Hongsirikarn; and Jack Z. Zhang


    accessible for hydrogen activation. Of the impurities studied, CO, NH3, perchloroethylene (also known as tetrachloroethylene), tetrahydrofuran, diborane, and metal cations had significant negative effects on the components in a fuel cell. While CO has no effect on the Nafion, it significantly poisons the Pt catalyst by adsorbing and blocking hydrogen activation. The effect can be reversed with time once the flow of CO is stopped. NH3 has no effect on the Pt catalyst at fuel cell conditions; it poisons the proton sites on Nafion (by forming NH4+ cations), decreasing drastically the proton conductivity of Nafion. This poisoning can slowly be reversed once the flow of NH3 is stopped. Perchloroethylene has a major effect on fuel cell performance. Since it has little/no effect on Nafion conductivity, its poisoning effect is on the Pt catalyst. However, this effect takes place primarily for the Pt catalyst at the cathode, since the presence of oxygen is very important for this poisoning effect. Tetrahydrofuran was shown not to impact Nafion conductivity; however, it does affect fuel cell performance. Therefore, its primary effect is on the Pt catalyst. The effect of THF on fuel cell performance is reversible. Diborane also can significant affect fuel cell performance. This effect is reversible once diborane is removed from the inlet streams. H2O2 is not an impurity usually present in the hydrogen or oxygen streams to a fuel cell. However, it is generated during fuel cell operation. The presence of Fe cations in the Nafion due to system corrosion and/or arising from MEA production act to catalyze the severe degradation of the Nafion by H2O2. Finally, the presence of metal cation impurities (Na+, Ca 2+, Fe3+) in Nafion from MEA preparation or from corrosion significantly impacts its proton conductivity due to replacement of proton sites. This effect is not reversible. Hydrocarbons, such as ethylene, might be expected to affect Pt or Nafion but do not at a typical fuel cell

  17. Final Technical Report: Electromagnetic Pump Insulation Materials Development and Testing (PLM-DOC-0005-2465) Report # DOEGEHB00613

    SciTech Connect

    Krahn, John; Reed, Claude; Loewen, Eric


    Final Technical Report: Electromagnetic Pump Insulation Materials Development and Testing (Report # DOEGEHB00613) summarizes the information gathered from the analysis of the 160 m3/min EM Pump insulation that was tested in 2000-2002 and additional evaluations of new resilient, engineered insulation system evaluated and tested at both GRC and ANL. This report provides information on Tasks 1 and 2 of the entire project. This report also provides information in three broad areas: Historical and current data; Conclusions based on test data; and Insulation specifications for use in EM Pumps. The research for Task 2 builds upon Task 1: Update EM Pump Databank, which is summarized within this report. Where research for Task 3 and 4 Next-Generation EM Pump Analysis Tools identified parameters or analysis model that benefits Task 2 research, those items are noted within this report. The important design variables for the manufacture and operation of an EM Pump that the insulation research can evaluate are: space constraints; voltage capability of insulation system; maximum flux density through iron; flow rate and outlet pressure; efficiency and manufacturability. The development summary of the Electromagnetic Pump Insulation Materials Development and Testing was completed to include: Historical and current data; Conclusions based on test data; and Insulation specifications for use in EM Pumps.

  18. Flow in porous media, phase behavior and ultralow interfacial tensions: mechanisms of enhanced petroleum recovery. Final technical report

    SciTech Connect

    Davis, H.T.; Scriven, L.E.


    A major program of university research, longer-ranged and more fundamental in approach than industrial research, into basic mechanisms of enhancing petroleum recovery and into underlying physics, chemistry, geology, applied mathematics, computation, and engineering science has been built at Minnesota. The 1982 outputs of the interdisciplinary team of investigators were again ideas, instruments, techniques, data, understanding and skilled people: forty-one scientific and engineering papers in leading journals; four pioneering Ph.D. theses; numerous presentations to scientific and technical meetings, and to industrial, governmental and university laboratories; vigorous program of research visits to and from Minnesota; and two outstanding Ph.D.'s to research positions in the petroleum industry, one to a university faculty position, one to research leadership in a governmental institute. This report summarizes the 1982 papers and theses and features sixteen major accomplishments of the program during that year. Abstracts of all forty-five publications in the permanent literature are appended. Further details of information transfer and personnel exchange with industrial, governmental and university laboratories appear in 1982 Quarterly Reports available from the Department of Energy and are not reproduced here. The Minnesota program continues in 1983, notwithstanding earlier uncertainty about the DOE funding which finally materialized and is the bulk of support. Supplemental grants-in-aid from nine companies in the petroleum industry are important, as are the limited University and departmental contributions. 839 references, 172 figures, 29 tables.

  19. Final Technical Report

    Office of Scientific and Technical Information (OSTI)

    used during the oxidation o f substrates and the potential for hydrogen production. ... W hen the m utant lacking six hydrogenases was tested for grow th on hydrogen, it grew ...

  20. Technical Report: Final

    SciTech Connect

    Lueking, Angela D.; Wang, Cheng-Yu


    The objective of this work was to develop catalyzed nanoporous materials that have superior hydrogen uptake between 300K and 400K and moderate pressures. Platinum nanoparticles were introduced to both activated carbons (ACs) and microporous metal organic frameworks (MMOFs) in order to dissociate molecular hydrogen into an active hydrogen species that diffuses from the catalyst to weakly chemisorbs to the AC/MMOF support; this combined sequence is referred to as the hydrogen spillover mechanism. For all materials studied, maximum excess hydrogen uptake was 1-1.4 wt% (excess) at 300K, falling short of DOE storage goals (5.5 wt% by 2015). Select Pt/AC materials (after in situ catalyst activation) had high uptake (up to 1.4 wt%) at low pressure which significantly exceeded that expected for physisorption. The uptake was not correlated to size of Pt catalyst, but appeared to be associated with high surface activity of the AC support and the methodology of catalyst doping. Multiple techniques were explored to introduce Pt nanoparticles into MMOFs, but most led to significant structural degradation. Ultimately, a ‘pre-bridge’ (PB) technique was used to introduce Pt/AC catalysts into MMOFs, as the PB technique led to virtually non-detectable changes in structure. At high pressure, hydrogen spillover of ~1 wt% (excess) to a PB-MMOF was very slow (i.e. >80 hours at 70-80 bar), which can be attributed to high diffusion barriers in a complex three-surface domain material (Pt, AC, MMOF) as well as unexpected evidence for mechanical instability of the undoped MMOF precursor. In a low-pressure comparison study of three PB-MMOFs, we found evidence that the doping technique may introduce defects which may contribute to enhanced adsorption at 300K. However, we could not rule out the effect of active Pt sites, as common predictors of adsorption generally favored the materials without Pt. Furthermore, spectroscopic evidence provided definitive evidence of weak hydrogen chemisorption to two MMOFs and AC, and was found only for materials containing Pt catalyst. Overall, high uptake via hydrogen spillover requires high catalytic activity and an energy neutral surface landscape for ready diffusion, with little to no correlation to the size of the Pt nanoparticle or textural properties (i.e. surface area or porosity) of the AC or MMOF support.

  1. Final Technical Report

    SciTech Connect

    Richard Petriello; Frederick Bonato


    The purpose of this grant was to purchase equipment for biotechnology studies and courses at Saint Peter’s College (SPC). Equipment was used for courses such as Genetics and Biochemistry. The equipment helped SPC update its labs so as to create a better learning environment for our students.

  2. Final Technical Report

    SciTech Connect

    Eugene Clothiaux, Johannes Verlinde, Jerry Harrington


    The research project focuses on the following topics: a) removal of artifacts in the Doppler spectra from the ARM cloud radars, b) development of the second generation Active Remote Sensing of Cloud Layers (ARSCL) cloud data products, and c) evaluation of ARM cloud property retrievals within the framework of the EarthCARE simulator. We continue to pursue research on areas related to radiative transfer, atmospheric heating rates and related dynamics (topics of interest to the ARM science community at this time) and to contribute on an ad-hoc basis to the science of other ARM-supported principal investigators.

  3. Final Technical Report

    SciTech Connect

    Pilewskie, Peter


    During the 1-year duration of this project a new Shortwave Spectrometer (SWS) was designed and developed for deployment at the Southern Great Plains Central Facility to measure zenith solar spectral radiance. The SWS is comprised of two Zeiss miniature monolithic spectrometers (MMS-1 and MMS-NIR) for visible and near-infrared detection in the wavelength range between 350 and 2250 nm. Spectral resolution is 8 nm for the MMS-1 and 12 nm for the MMS-NIR. The light collector is a narrow field of view (±1.5 º) collimator at the front end of a high-grade custom-made fiber optic bundle. The data acquisition and control system is a 933 MHz Pentium based PC in a PC104 format with a USB interface between the computer and the spectrometers. Spectral sampling rate is approximately 1 Hz. A prototype SWS was deployed at SGP in November and December 2004 and it collected zenith-sky solar spectra at 1 Hz continuously over a 29 day period. Prior to deployment it was calibrated and characterized at the NASA Ames Airborne Sensor Facility (ASF) using a 30 inch Integrating Sphere. The SWS was also calibrated using a portable 12 inch integrating sphere at the Central Facility. The testing and calibration procedures were developed during this implementation. The planning and scheduling for permanent installation of the new SWS as well as data processing, calibration, archiving, and distribution was conducted.

  4. Final Scientific Technical Report...

    Office of Scientific and Technical Information (OSTI)

    ... on BAS, only 10% of commercial buildings utilize advanced monitoring and controls 1. ... potential that automation and monitoring systems can offer, there is a need for ...

  5. Final Technical Report

    SciTech Connect

    Maxwell, Gregory M.


    The Industrial Assessment Center at Iowa State University provided 93 companies in 5 states with Industrial Assessments. The total potential energy cost savings is approximately $11.43 million. The savings includes approximately 38.6 million kWh of electrical energy, 65 MW of electrical demand, and 426,000 MMBtu of natural gas. The center employed and trained 43 engineering students and involved 4 engineering faculty from both the Industrial and Mechanical Engineering Departments. Benefits to the public include increased productivity of manufacturing plants, training of engineering students in the area of industrial energy efficiency and reduced energy consumption.


    SciTech Connect

    Charles E. Frazier


    This research effort was directed towards the development of a novel cold-setting adhesive for the manufacture of laminated veneer lumber, LVL. The adhesives studied were isocyanate-reactive polyurethanes that cure at room temperature and bond to high moisture content veneer (12%). The elimination of hot-pressing and the reduction in veneer drying is expected to provide substantial energy savings and decreases in VOC emissions. Furthermore, the use of higher moisture content veneer was expected to reduce or eliminate the tendency for veneer over drying, and the related reduction in wood surface energy. The effort produced a novel emulsion polymer isocyanate (EPI) adhesive that performed better than the standard phenol-formaldehyde adhesive. This performance comparison/evaluation suggested that the new adhesive could perhaps meet the original project goals, stated above. However, this effort was not translated into technological practice, nor evaluated on a larger pilot scale, because the participating companies experienced personnel changes that altered outlook for this technology.

  7. Final Technical Report

    SciTech Connect

    Wijewardhana, Rohana; Argyres, Philip


    Task A - Theory Research in theoretical physics in the Department of Physics at the University of Cincinnati has been funded by the U.S. Department of Energy starting in 1984. Professors Peter Suranyi, Louis Witten, Fred Mansouri, L.C.R. Wijewardhana, Alexander Kagan and Philip Argyres have served as P.I.'s of the Cincinnati DOE theory task. Task B - Heavy Flavor Physics Research in experimental particle physics in the Department of Physics at the University of Cincinnati has been funded by the U.S. Department of Energy since 1999. Professor Kay Kinoshita has served as P.I. on Task B since its inception. Task C - Neutrinos Over the past three years, Task C has been measuring the properties of neutrinos with the MiniBooNE and Daya Bay detectors and building two new neutrino experiments: MicroBooNE and LArIAT. In addition, the PI (Randy Johnson) has joined the long leadtime experiment, LBNE, and has participated in the R&D report for CHiPs. Results and progress on each of these experiments will be summarized below.

  8. Final Technical Report

    SciTech Connect

    Jim Hinde


    The City of Albuquerque Aviation Department began planning for an alternative fuels facility in 1999 and began actively pursuing funding for the project in 2000. The original project scope was intended to provide a fueling station that provided unleaded gasoline, E-85, diesel, compressed natural gas (CNG) and propane. When the tragedy of 9/11 occurred, all capital projects were put on hold and then reassessed to validate needs and priorities. The alternative fuels station was scaled back to a CNG facility to: (1) Provide fuel for the common shuttle that served the rental car facilities at the airport; (2) Provide a CNG fuel center for use by all levels of government for vehicle fueling; (3) Provide another CNG facility near the interstate to improve the State network for CNG fueling; (4) Provide a backup fueling facility for the University of New Mexico and the City of Albuquerque Transit Department who were also using CNG vehicles; and (5) Provide another fueling facility accessible to the general public.

  9. Final Technical Report

    SciTech Connect

    Bult Carol J.


    The results of the DOE-funded Mouse Genome Sequence (MGS) project include a significant enhancement in the capacity of the community to connect biological knowledge with the mouse genome sequence in a comparative context. The resources developed as the result of the activities of the MGS project staff are used extensively by both individual researchers and other informatics groups.

  10. Final Technical Report

    SciTech Connect

    Ritchie, Jack L


    The activity reported includes work on several experiments (BNL E871 at Brookhaven National Lab, HERA-B at DESY, MINOS at Fermilab, BABAR at SLAC, and Minerva at Fermilab) and theory.

  11. Final Technical Report

    SciTech Connect

    John Cuzens; Necitas Sumait


    BlueFire Ethanol, Inc., a U.S. based corporation with offices in Irvine, California developed a cellulosic biorefinery to convert approximately 700 dry metric tons per day in to 18.9 million gallons per year of cellulosic ethanol. The Project is proposed to be located in the city of Fulton, County of Itawamba, Mississippi.

  12. Final Technical Report

    SciTech Connect

    Hittle, Dr. Douglas C.; Kostrzewa, Michael F.


    The Department of Energy’s Industrial Assessment Center at Colorado State University (CSU IAC) has been helping manufacturers in Colorado and the Rocky Mountain region save energy, reduce waste, and save money while helping to produce highly-trained and highly-capable energy engineers since 1984. The most recent four-year contract continues that trend. This contract ran from September 1, 2002 through May 31, 2007 and included assessments conducted from September 1, 2002 through August 31, 2006. During this contract, the CSU IAC served 77 manufacturers in six Rocky Mountain States and recommended about 311,800 MMBtu/yr in energy savings, 12.6 million gallons of waste water reduction per year, nearly 650,000 pounds of solid waste reduction per year, and more than 5,600 gallons of hazardous solid waste per year, saving more than $9.54 million dollars per year in utility, waste disposal, raw material, and labor costs. Total expenditures for the period were about $814,000 for the period or about $203,500 per year. Thus, the CSU IAC generated almost 12 times more recommended cost savings than the project cost. In addition, the program employed 24 undergraduate mechanical and civil engineering students and seven graduate mechanical engineering students. Of these students, more than 75% have gone on to successful careers in energy engineering or manufacturing, where they continue to provide additional energy and cost savings for industry and the country.

  13. Final Technical Report

    SciTech Connect

    D. Paul Mehta


    The Industrial Assessment Center at Bradley University (BU IAC) has been successful in promoting the wise use of energy resources, reduction of environmental waste and increased productivity in the industrial sector. Over 1100 assessment recommendations have been made to 94 industrial clients from September 1, 2002 to August 31, 2006. The projected savings from these recommendations exceeded $15.5 million of which just under $10 million or 62% were implemented. In addition to this over 50 students have been trained to idientify opportunities to reduce costs in induatrial facilities. Many of these students have gone on to careers where they influence the costs of manufacturing thus multiplying the efforts of the center. The details of how this was accomplished is contained in the report which follows.


    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... SPE Unconventional Gas Conference, paper SPE 131768. Spikes, K.T., Jiang, M., 2013. Rock ... plan to study the potential impacts of hydraulic fracturing on drinking water resources. ...

  15. Final Technical Report

    SciTech Connect

    Marc Snir


    The work under this grant consisted of encouraging community activities for the development of parallel programming patterns. This work was in conjunction with the research performed under the Pmodels award - where research was pursued on the development for new parallel programming models. Work on programming patterns does not have, as a goal, the invention of new technology. Rather, it is about codifying existing practice, so as to provide practitioners with a common language. This facilitates education and communication between practitioners. In addition, it helps in the design of new parallel frameworks and languages. One major issue in their design is expressiveness: To what extent does the language or framework facilitates the expression of common programming patterns. In order to assess expressiveness in any useful way, it is necessary to identify those common patterns.

  16. Final Technical Report

    SciTech Connect

    Mattes, M. Jules


    The best summary of our results is probably provided by the list of publications based on work supported by this grant, which is given below. In general, the objectives were realized, and we have demonstrated, for the first time, that radiolabeled Abs can kill single tumor cells very effectively, and that they can also be effective in treating models of human tumors growing as xenografts in SCID mice. Our original work, as proposed in the application, was with Abs to B-lymphoma cells, namely anti-CD20 and anti-HLA-DR. After our successful efforts with these Abs, we decided to extend the results to other tumor types. Accordingly, carcinomas of the breast, ovary and other tissues were treated with radiolabeled Abs to EGFr and HER-2. These tumors cells were also effectively killed in vitro with radiolabeled Abs. This is significant because these Abs are widely used, and successful, in the clinic (unlabeled) and because the flattened shape of the cells, in vitro, is expected to make them considerably more difficult to kill than the spherical lymphoma cells. A major goal was to compare radionuclides emitting different types of radiation, namely low energy electrons (Auger and conversion electrons), {beta}-particles, and {alpha}-particles. All three types could effectively kill cells in vitro with considerable specificity. However, the low energy electrons, which we abbreviate LEEs, have significant advantages, mainly due to their lower level of non-specific toxicity. This was demonstrated both in vitro and in vivo. Thus, {beta}-particle emitters conjugated to anti-CD20 could protect mice against the growth of B-lymphoma tumor cells, but the therapeutic effect was limited by the maximum dose that could be administered, without killing the mouse. In contrast, the LEE emitters were more effective, largely because the toxicity was much less, allowing an approximately 10-fold higher {mu}Ci dose to be injected. Conjugates with {alpha}-particle emitters were also less effective than the LEE emitters, probably because of the much shorter half-life of the available {alpha}-particle emitter (less than 1 hr). Of the LEE emitters tested, {sup 67}Ga was considerably more potent than {sup 111}In, per decay, but {sup 111}In has major advantages due to the fact that better chelators are available, and the purity of the commercial radionuclide is much higher. Both were better than {sup 125}I because of their more suitable half-lives. Therefore, 111In remains the optimal LEE emitter at the current time, although it is useful to continue to consider the use of other radionuclides. In fact, we have emphasized that there are many LEE-emitting radionuclides that would be much more potent than {sup 111}In; these are not available at all, or not available carrier-free, or suitable conjugation methods have not been developed. Our results indicate that the development of such radionuclides, at the DOE reactors or at other facilities, would be likely to have substantial medical applications. In therapy, we have thus far been able to treat micrometastatic tumors (injected i.v.) and only small s.c. tumors, barely visible by eye, thin disks with a diameter of 1-2 mm. Because some of the tumors used grow slowly, we are able to obtain effective therapy as late as one month after tumor injection. While this is a limitation, perhaps due to the short tissue path-length of the LEEs, it does not mean that they are not clinically useful: many patients have microscope disease, and such tumors are probably the most difficult, and important, to treat. If we can effectively eliminate such micrometastases, there is a prospect of curing patients in whom the tumor would otherwise recur. Also, it is still possible that we could use this approach to treat larger tumor, if multiple doses are administered. It should also be pointed out that my laboratory is virtually the only one doing experiments of this type. Previous theoretical calculations had suggested that it should be possible to kill single cells with Abs conjugated to LEE emitters, and that the level of Ab binding, with high-density antigens, should be sufficient to achieve this effect. But we were the first to put this idea into practice. Therefore, we feel that we have essentially opened up a new area of research, and that future investigators will be able to build on the solid foundation than we have laid.

  17. Final Technical Report

    SciTech Connect

    Simon Silver


    The work done with DOE support during this 15 year period was extensive and successful. It is best summarized by the list of 58 publications (below) which reported progress made with DOE support. These are from the grant period and a few more recent reporting on grant research. Mostly these are primary research reports in reviewed journals. There are also, however, many summary reviews in review journals and in scientific monographs, as they also are key places for reporting research progress. What we did during this grant period (and much longer) was to characterize genetic determinants for bacterial resistances to additional toxic heavy metals of DOE concern, through starting with phenotypic properties of the resistant bacteria to DNA sequence determination and characterization of the genes involved. Over the years (and as shown in the list of publications), the toxic metal-forming elements we have studied included Ag, As, Cd, Cr, and Hg. In each case, we started with basically nothing (or very little) known, progressed through quite detailed understanding, until other laboratory groups also became strongly involved in related studies. More recently, with DOE support, we were the first laboratory group in the world to identify genes for bacterial resistance to silver salts (sil genes) and the closely related silver-and-copper resistance genes cus. This was initially reported in detail in Gupta et al. (1999; see publications list below). We also identified the first toxic metal 'gene island' (multiple transcripts and perhaps 25 genes each in need of detailed study) which encodes the subunits of arsenite oxidase (which we called aso; Silver and Phung, 2005; but most other researchers have subsequently settled on aox for the gene mnemonic). Both of these systems were firsts. Now a few years later, a search on GenBank shows that each is now represented by gene families with more than a dozen examples that have been identified and sequenced. Most of the additional representative systems are from total bacterial genomes without specific gene characterization.

  18. Final Technical Report

    SciTech Connect

    Jack Brenizer


    The Consortium of Big-10 University Research and Training Reactors was by design a strategic partnership of seven leading institutions. We received the support of both our industry and DOE laboratory partners. Investiments in reactor, laboratory and program infrastructure, allowed us to lead the national effort to expand and improve the education of engineers in nuclear science and engineering, to provide outreach and education to pre-college educators and students and to become a key resource of ideas and trained personnel for our U.S. industrial and DOE laboratory collaborators.

  19. Final Technical Report

    SciTech Connect

    Rasure, John, et. al.


    Through past DOE funding, the MIND Research network has funded a national consortium effort that used multi-modal neuroimaging, genetics, and clinical assessment of subjects to study schizophrenia in both first episode and persistently ill patients. Although active recruitment of research participants is complete, this consortium remains active and productive in terms of analysis of this unique multi-modal data collected on over 320 subjects.

  20. Final Technical Progress Report

    SciTech Connect

    J.Y. Hwang; R.C. Greenlund


    Michigan Technological University has demonstrated major inroads in establishing the viability of utilizing aluminum smelting by-product waste materials in lightweight concrete product applications. The research identified key elements of producing various forms of lightweight concrete products through utilizing various procedures and mixture components with the by-product materials. A process was developed through pilot plant testing that results in additional aluminum recovery at finer sizes, a clean returnable salt product through spray drying technology, and a low-salt-content oxide product with enough aluminum metal content that it can be used to form lightweight cementitious mixtures. Having three distinct products aids in generating favorable process economics. Revenue projections from aluminum recovery and salt recovery are enough to cover processing costs and create a cost-free oxide product to market for lightweight concrete applications. This supply side commercialization strategy offers aluminum by-product recyclers a potentially no cost product, which has been demonstrated through this project to create desirable and marketable lightweight concrete products of various forms. Environmental benefits to the public are tremendous. At best, all dross and salt cake materials have the potential to be completely recycled and utilized. At worst, disposal sites would see a reduced amount of material: a post processed oxide product with little salt and no hydrogen sulfide or ammonia gas generating capability, which, if isolated from high alkali conditions, would pose no reactivity concerns. The US aluminum industry has historically, along with the steel industry, been a leader in recycling metal. The findings from this project, increased metal recovery, improved salt recycling, and demonstrated end uses for oxide residues, will go a long way in helping the aluminum industry obtain 100% material utilization and zero discharge.

  1. Final technical report

    SciTech Connect

    J.A. Rial; J. Lees


    As proposed, the main effort in this project is the development of software capable of performing real-time monitoring of micro-seismic activity recorded by an array of sensors deployed around an EGS. The main milestones are defined by the development of software to perform the following tasks: • Real-time micro-earthquake detection and location • Real-time detection of shear-wave splitting • Delayed-time inversion of shear-wave splitting These algorithms, which are discussed in detail in this report, make possible the automatic and real-time monitoring of subsurface fracture systems in geothermal fields from data collected by an array of seismic sensors. Shear wave splitting (SWS) is parameterized in terms of the polarization of the fast shear wave and the time delay between the fast and slow shear waves, which are automatically measured and stored. The measured parameters are then combined with previously measured SWS parameters at the same station and used to invert for the orientation (strike and dip) and intensity of cracks under that station. In addition, this grant allowed the collection of seismic data from several geothermal regions in the US (Coso) and Iceland (Hengill) to use in the development and testing of the software.

  2. Final Technical Report

    SciTech Connect

    Thiel, Jerry; Giese, Scott R; Beckermann, Christoph; Combi, Joan; Yavorsky, James; Cannon, Fred


    The Center for Advanced Biobased was created with funding supplied by the Department of Energy to study biobased alternatives to petroleum based materials used in the manufacture of foundry sand binders. The project was successful in developing two new biobased polymers that are based on renewable agricultural materials or abundant naturally occurring organic materials. The technology has the potential of replacing large amounts of chemicals produced from oil with environmentally friendly alternatives.

  3. Final Technical Report

    SciTech Connect

    Logan, Jesse, L; Witmer, Dennis, PhD


    The overall goal of this project was to design, evaluate, and engineer a Vanadium Red-Ox Flow Battery's integration into an existing wind site and micro-grid environment to determine if it is possible to achieve a fifteen percent reduction of diesel fuel usage during periods of peak load and otherwise stabilize the grid in potential high wind penetration systems. The bulk of the work was done by modeling the existing hybrid wind-diesel system and the proposed system with added flow battery storage. The flow battery was changed from a Vanadium Red-Ox to a Zinc Bromine flow battery by a different manufacturer during the modeling process. Several complications arose, but modeling proved to be successful and is ongoing. The development of a modeling platform for flow battery energy storage is a key element in evaluating both economic benefits and dispatch strategies for high penetration in micro-grid wind-diesel systems.


    SciTech Connect

    Fargione, Joseph


    The United States has abundant wind resources, such that only about 3% of the resource would need to be developed to achieve the goal of producing 20% of electricity in the United States by 2030. Inappropriately sited wind development may result in conflicts with wildlife that can delay or derail development projects, increase projects costs, and may degrade important conservation values. The most cost-effective approach to reducing such conflicts is through landscape-scale siting early in project development. To support landscape scale siting that avoids sensitive areas for wildlife, we compiled a database on species distributions, wind resource, disturbed areas, and land ownership. This database can be viewed and obtained via Wind project developers can use this web tool to identify potentially sensitive areas and areas that are already disturbed and are therefore likely to be less sensitive to additional impacts from wind development. The United States goal of producing 20% of its electricity from wind energy by the year 2030 would require 241 GW of terrestrial nameplate capacity. We analyzed whether this goal could be met by using lands that are already disturbed, which would minimize impacts to wildlife. Our research shows that over 14 times the DOE goal could be produced on lands that are already disturbed (primarily cropland and oil and gas fields), after taking into account wind resource availability and areas that would be precluded from wind development because of existing urban development or because of development restrictions. This work was published in the peer reviewed science journal PLoS ONE (a free online journal) and can be viewed here: Even projects that are sited appropriately may have some impacts on wildlife habitat that can be offset with offsite compensatory mitigation. We demonstrate one approach to mapping and quantifying mitigation costs, using the state of Kansas as a case study. Our approach considers a range of conservation targets (species and habitat) and calculates mitigation costs based on actual costs of the conservation actions (protection and restoration) that would be needed to fully offset impacts. This work was published in the peer reviewed science journal PLoS ONE (a free online journal) and can be viewed here:

  5. Final Technical Report

    SciTech Connect

    Peter McIntyre


    This document presents an annual report on our long-term R&D grant for development of new technology for future colliders. The organizing theme of our development is to develop a compact high-field collider dipole, utilizing wind-and-react Nb3Sn coil fabrication, stress man-agement, conductor optimization, bladder preload, and flux plate suppression of magnetization multipoles . The development trail for this new technology began over four years ago with the successful testing of TAMU12, a NbTi model in which we put to a first test many of the construction details of the high-field design. We have built TAMU2, a mirror-geometry dipole containing a single coil module of the 3-module set required for the 14 Tesla design. This first Nb3Sn model was built using ITER conductor which carries much less current than high-performance conductor but enables us to prove in practice our reaction bake and impregnation strategies with ‘free’ su-perconductor. TAMU2 has been shipped to LBNL for testing. Work is beginning on the con-struction of TAMU3, which will contain two coil modules of the 14 Tesla design. TAMU3 has a design field of 13.5 Tesla, and will enable us to fully evaluate the issues of stress management that will be important to the full design. With the completion of TAMU2 and the construction of TAMU3 the Texas A&M group ‘comes of age’ in the family of superconducting magnet R&D laboratories. We have completed the phase of developing core technologies and fixtures and entered the phase of building and testing a succession of TAMU3 model dipoles that each build incrementally upon a proven core design. TAMU3 provides a testbed in which we can build a succession of model dipoles in which each new model uses one new winding module coupled with one module from the previ-ous model, and uses all of the same structural elements in successive models. This incremental development should enable us to keep to a minimum the time between the completion and test-ing of successive models. Each new model will incorporate a particular design element that we wish to evaluate: first the basic TAMU3 structure, then substitute one pancake using high-performance superconductor (3,000 A/mm2 @ 12 T, 4.2 K), then substitute one pancake using mixed-strand cable, then insert a steel nose to reduce the peak field in the end region of a single-pancake coil. While we are building and testing this succession of TAMU3 models we will de-velop the tooling and evaluate strategies for flaring the ends of the center double-pancake coil needed for.TAMU4. TAMU4 is a full implementation of the design, culminating in 14 Tesla performance. Pending the proposed increase of budget from the present 3-year-flat budget and providing that the tests of each model dipole do not lead to substantial modifications of the de-sign, the time to build and test each succeeding model could be ~9 months. During the present funding year we made a sequence of innovations that have major poten-tial benefit for the commissioning of LHC, upgrade of its luminosity, and its long-term future: • An electrode assembly, suitable for integration within the existing LHC dipoles, ca-pable of killing the electron cloud effect – an effect that threatens to limit the lumi-nosity that could be attained in LHC; • A Nb3Sn structured cable, which makes it possible to design very high gradient quadrupoles for upgrade of the interaction regions of LHC to enhance its luminosity; • A Nb3Sn/NbTi levitated-pole dipole for use in the D1 bends that combine and sepa-rate the beams at the intersection regions. The levitated-pole design uniquely solves the problems of radiation damage and heating from particles swept from the beam. • A hybrid dipole technology, in which inner windings of Bi-2212 are integrated in a Nb3Sn block-coil dipole to push to 24 Tesla, opening the possibility of a future trip-ler upgrade of LHC .

  6. Final Technical Report

    SciTech Connect

    Helen Cunning


    Hackensack University Medical Center's major initiative to create a cleaner healthier and safer environment for patients, employees and the community served by the medical center is built on its commitment to protect the environment and conserve precious energy resources. Since 2004 the Medical Center launched a long term campaign to temper the negative environmental impact of proposed and existing new construction at the medical center and to improve campus wide overall energy efficiency. The plan was to begin by implementing a number of innovative and eco-friendly enhancements to the Gabrellian Women's and Children's Pavilion, in construction at the time, which would lead to Certification by the US Green Building Councils Leadership & Environmental Design (LEED) program. In addition the medical center would evaluate the feasibility of implementing a photovoltaic system in the new construction (in development and planned) to provide clean pollution free electricity. The steps taken to achieve this included conducting a feasibility study complete with architectural and engineering assessments to determine the potential for implementation of a photovoltaic system on the campus and also to conduct an energy survey that would focus on determining specific opportunities and upgrades that would lead to a healthier energy efficient interior environment at the medical center. The studies conducted by the medical center to determine the viability of installing a photovoltaic system identified two key issues that factored into leaderships decision not to implement the solar powered system. These factors were related to the advanced phase of construction of the women's and children's pavilion and the financial considerations to redesign and implement in the ambulatory cancer center. The medical center, in spite of their inability to proceed with the solar aspect of the project upheld their commitment to create a healthier environment for the patients and the community. To achieve a healthier energy efficient interior environment the medical center made substantive upgrades and improvements to the HVAC, plumbing electrical and other operating systems. Measures that were implemented range from use of lighting and plumbing fixture sensors , to reduce electrical and water usage, to use of refrigerants containing hydrochlorofluorocarbons (HCFCs) which cause significantly less depletion of the ozone layer than the refrigerants more commonly used. Additional appropriate energy efficiency component upgrades include the installation of Chiller plants with variable frequency drives (VFDs) and harmonic filters, high efficiency motors, solar window glazing, and lighting/motion sensors.

  7. Final Technical Report

    SciTech Connect

    Newmarker, Marc; Campbell, Mark


    Design, validate at prototype level, and then demonstrate a full size, 800 MWht Thermal Energy Storage (TES) system based on Phase Changing Material (PCM) TES modules with round trip efficiency in excess of 93%. The PCM TES module would be the building block of a TES system which can be deployed at costs inline with the DOE benchmark of 2020. The development of a reliable, unsophisticated, modular, and scalable TES system designed to be massmanufactured utilizing advanced automated fabrication and assembly processes and field installed in the most cost-effective configuration could facilitate the attainment of a Levelized Cost of Energy (LCOE) of $.07/kWh by 2015. It was believed that the DOE targets can be attained by finding the best combinationTES module size, its optimal integration in the power cycle, and readily available PCM. Work under this project ultimately focused on the development and performance evaluation of a 100kWht prototype heat exchanger. The design utilizes a commercially available heat exchanger product to create a unique latent heat PCM storage module. The novel ideal associated with this technology is the inclusion of an agitation mechanism that is activated during the discharge process to improve heat transfer. The prototype unit did not meet the performance goals estimated through modeling, nor did the estimated costs of the system fall in line with the goals established by DOE.

  8. Final Technical Report

    SciTech Connect

    Thomas F. Kauffman


    The goal of the project was to research and develop a biorefinery technology platform for adhesives, elastomers and foams. The program developed new bio-based products which can replace petrochemical-based polyurethane technology in film laminating and other adhesive, sealant and elastomer applications. The technology provides faster cure, lower energy consumption and safety enhancements versus incumbent urethane technology.

  9. Final Technical Report

    SciTech Connect

    Kosanovic, Dragoljub


    The industrial Assessment Center at the University of Massachusetts completed 83 assessments in this project period, covering all states in New England and the eastern part of New York. The combined energy consumption for these facilities was more than 750,000,000 kWh costing approximately $77,000,000 for electricity and close to 5,600,000 MMBtu for all fossil fuels combined, totaling almost $37,000,000. The average annual energy costs per plant were $1,372,600. We had almost eight recommendations per assessment, and the implemented recommendations alone are saving these facilities on an average $66,500 or almost 5% of their total energy bill. We have organized and participated in sixteen seminars and presentations promoting energy efficiency practices and other DOE tools and programs. Our center developed the Chilled Water System Assessment tool that is part of DOEs BestPractices Suite of Tools. During this period we had nineteen students in the program. Fifteen were graduate students, and four were undergraduate students. Eleven of them graduated with the Masters of Science degree in mechanical engineering and are working in the energy field, and three are currently in the program. Two undergraduate students were hired by engineering firms that perform energy efficiency services, and one continued his education and is pursuing an advanced engineering degree. We cooperate with the Manufacturing Extension Partnerships and state Energy Offices to provide energy efficiency services to their constituents. As a result of our activities, all our clients requested assessments or were referred to us by one of the state energy offices, the MEPs or DOE. Our current and former staff members hold 16 Qualified Specialist certificates. Seven of those were awarded to our students while participating in the IAC program. Currently we have three staff members with nine QS certificates and two students with four. Three people from our staff were involved in the DOEs Save Energy Now program during the first year of program as steam and process heating qualified specialists. We completed eleven ESAs during 2006.

  10. Final Technical Reprot

    SciTech Connect

    Jennifer Knighten


    This report is the summary of research and a written report conducted by Energy Northwest with consultant Rhyno Stinchfield.

  11. Final Technical Report

    SciTech Connect

    Lawrence Ives; Eric Montgomery; Zhigang Pan; Blake Riddick; Donald Feldman; Lou Falce


    This program applied reservoir cathode technology to increase the lifetime of cesiated tungsten photocathodes. Cesiated tungsten photocathodes provide a quantum efficiency of approximately 0.08% when cesium is initially applied to the surface. During operation, however, the cesium evaporates from the surface, resulting in a gradual decrease in quantum efficiency. After 4-6 hours of operation, the efficiency drop to below useful levels, requiring recoating on the emission surface. This program developed a cathode geometry where cesium could be continuously diffused to the surface at a rate matching the evaporation rate. This results in constant current emission until the cesium in the reservoir is depleted. Measurements of the evaporation rate indicated that the reservoir should provide cesium for more than 30,000 hours of continuous operation. This is orders of magnitude longer operation then previously available. Experiments also demonstrated that the photocathode could be rejuvenated following contamination from a vacuum leak. Recoating of the emission surface demonstrated that the initial quantum efficiency could be recovered.

  12. Final Technical Report

    SciTech Connect

    Bohdan W. Oppenheim


    In the fiscal years 2003 through 2006, the LMU-IAC conducted 76 industrial assessments with 595 assessment recommendations, with 382 recommendations implemented, with practically all plant types and sizes, extending in geographical location from about 250 miles north of LMU-IAC to 50 miles south and 90 miles east. Plant sizes varied from one building of 30,000 sq ft to 17 buildings of 1.5 million sq ft. The amount of energy savings identified was worth about $34,303,699. Because of the national level Lean Productivity programs at the university, LMU-IAC is unique in its expertise of the impact of Lean productivity on energy savings, which is huge, far exceeding the energy savings from the equipment improvements. Besides energy savings, LMU-IAC promoted the good name of the program and DOE in the local industry, utilities, trade organizations, the vast aerospace industry, educational institutions, and the public. The IAC work resulted in numerous public lectures, a chapter in the Encyclopedia of Industrial Energy, and several journal articles. 37 students, including 8 graduate students have been trained and issued DOE IAC Certificates. Several of them found work as energy experts.

  13. Final Technical Report

    SciTech Connect

    Shayya, Walid


    The state of New York through the New York State Energy Research and Development Authority (NYSERDA) has developed a suite of digester projects throughout the state to assess the potential for anaerobic digestion systems to improve manure management and concurrently produce energy through the production of heat and electrical power using the biogas produced from the digesters. Dairies comprise a significant part of the agribusiness and economy of the state of New York. Improving the energy efficiency and environmental footprint of dairies is a goal of NYSERDA. SUNY Morrisville State College (MSC) is part of a collection of state universities, dairy farms, cooperatives, and municipalities examining anaerobic digestion systems to achieve the goals of NYSERDA, the improvement of manure management, and reducing emissions to local dairy animal sites. The process for siting a digester system at the MSC’s free-stall Dairy Complex was initiated in 2002. The project involved the construction of an anaerobic digester that can accommodate the organic waste generated at Dairy complex located about a mile southeast of the main campus. Support for the project was provided through funding from the New York State Energy Research and Development Authority (NYSERDA) and the New York State Department of Agriculture and Markets. The DOE contribution to the project provided additional resources to construct an expanded facility to handle waste generated from the existing free-stall dairy and the newly-constructed barns. Construction on the project was completed in 2006 and the production of biogas started soon after the tanks were filled with the effluent generated at the Dairy Complex. The system has been in operation since December 17, 2006. The generated biogas was consistently flared starting from December 20, 2006, and until the operation of the internal combustion engine/generator set were first tested on the 9th of January, 2007. Flaring the biogas continued until the interconnect with the power grid was approved by NYSEG (the electrical power provider) and the combined heat and power generation (CHP) system was authorized to start on February 27, 2007. The system has been in operation since February 28, 2007, and is generating 45 to 50 kW of electrical power on continuous basis. The completed project will ultimately allow for investigating the facility of utilizing organic waste from a dairy operation in a hard-top plug-flow methane digester with the ultimate goal of reducing environmental risk, increasing economic benefits, and demonstrating the viability of an anaerobic methane digestion system. Many benefits are expected as a result of the completed project including our better understanding of the anaerobic digestion process and its management as well as the facility to utilize the methane digester as a demonstration site for dairy producers, farmers, and organic waste producers in New York State and the Northeast. Additional benefits include helping current and future students in dairy science and technology, agricultural business, environmental sciences, agricultural engineering, and other disciplines develop better understanding of underutilized biomass alternative energy technologies, environmental conservation, environmental stewardship, and sustainable agriculture.

  14. Final technical report

    SciTech Connect

    Johnson, C.; Long, S.; Li, Binsheng; Lamke, A.J.


    The overall goal of the contract is to provide general support and advice to the DOE, Office of Fossil Energy (DOE/EF) on the opportunities for coal and Clean Coal Technology trade in the Asia-Pacific region. The report which follows is divided into six subsections, each pertaining to separate subtasks the U.S. Department of Energy requested. Subtask A includes two reports, one which outlines important coal and clean coal technology news events which occurred during the second half of 1993, and another which outlines the potential for Clean Coal Technology in the Asia-Pacific Region. Subtask B and the first paper in Subtask C contain advisories and briefing papers that present and explain the coal, electricity and Clean Coal Technology situation in China. The second paper in Subtask C is an overview of the coal supply, demand and trade situation in the Asian region with coal projections to the year 2010. Subtask D is an overview of meetings with Asian energy and policy representatives which were carried out to (1) gather key information relevant to this contract, and (2) examine areas for closer cooperation on important coal/CCT-related energy issues. The tasks listed in the contract proposal as Subtasks E and F are summarized in respective sections of this report. Subtask E specifies the activities carried out under the APEC Experts` Group on Clean Coal Technologies, and Subtask F explains the work done by the Coal Project in building contacts and working relationships with key energy and technology planners in China (including The State Science and Technology Commission, the Ministry of Electric Power and Tsinghua University, and the State Planning Commission). The Subtask E section also includes activities to develop and strengthen the role of the APEC Experts Group on Clean Coal Activities.

  15. Final Technical Report

    SciTech Connect

    Chen, Cheng-Po; Andarawis, Emad; Shaddock, David; Yin, Liang; Ghandi, Reza; Srikrishnan, Kashyap; Saia, Richard; Patil, Amita; Fang, Kun; Shen, Zhenzhen


    The development and demonstration in this digital telemetry project has brought SiC-based high temperature electronics to a new level of complexity and integration with the active electronic devices and the packaging materials operating at 300°C for greater than 2000 hours. Our highest level of integration is a 6x6mm die with 474 transistors with the most complex functionality to date. Advances were made in the area of device modeling and fabrication, circuit simulation and design, device testing, and packaging. The technologies developed here would help enable sensor systems in enhanced geothermal systems, as well as other applications with high temperature requirements.

  16. Final Technical Report

    Office of Scientific and Technical Information (OSTI)

    ... If the singlet bipolaron comprises the majority (Figure 1a, red line), the susceptibility ... nanohybrid solution becomes darker due to a red shift in the photoabsorption (Figure 5c). ...

  17. Final Technical Report

    SciTech Connect

    Dr. Asok K. Ray


    During the past decades, considerable theoretical efforts have been devoted to studying the electronic and geometric structures and related properties of surfaces. Such efforts are particularly important for systems like the actinides for which experimental work is relatively difficult to perform due to material problems and toxicity. The actinides are characterized by a gradual filling of the 5f-electron shell with the degree of localization increasing with the atomic number Z along the last series of the periodic table. The open shell of the 5f electrons determines the atomic, molecular, and solid state properties of the actinide elements and their compounds and understanding the quantum mechanics of the 5f electrons is the defining issue in the chemistry and physics of actinide elements. These elements are also characterized by the increasing prominence of relativistic effects and their studies can, in fact, help us understand the role of relativity throughout the periodic table. However, the electronic and geometric structures of the actinides, specifically the trans-uranium actinides and the roles of the 5f electrons in chemical bonding are still not well understood. This is crucial not only for our understanding of the actinides but also for the fact that the actinides constitute 'the missing link' between the d transition elements and the lanthanides. The 5f orbitals have properties intermediate between those of localized 4f and delocalized 3d orbitals. Thus, a proper understanding of the actinides will help us understand the behavior of the lanthanides and transition metals as well. In fact, there is an urgent need for continued extensive and detailed theoretical research in this area to provide significant and deep understandings of the electronic and geometric structures of the actinides. In this work, we have performed electronic structure studies for plutonium (Pu), americium (Am), and curium (Cm) surfaces, and molecular adsorptions on Pu and Am surfaces. In particular, the region at the boundary of Pu and Am, is widely believed to be the crossover region between d-like itinerant and f-like localized behavior The eventual goal is a complete understanding of the surface chemistry and physics processes of all actinide surfaces, defining the chemistry and physics of such heavy elements. Among the actinides, plutonium, with five 5f electrons in the solid state, is arguably the most complex, fascinating, and enigmatic element known to mankind and has attracted extraordinary scientific and technological interests because of its unique properties, generating a significant body of research in diverse areas, including superconductivity. Pu has, at least, six stable allotropes between room temperature and melting at atmospheric pressure, indicating that the valence electrons can hybridize into a number of complex bonding arrangements. Central and critical questions relate to the electronic structure, localization of the 5f electrons and the magnetism of Pu. For the light-actinides, from Th to Pu, the 5f electrons are believed to be delocalized, hybridizing with the 6d and 7s electrons. For the heavier actinides, Am and beyond, the 5f electrons are localized with the 5f orbitals progressively lower in energy relative to the 6d configuration. Hence, Pu is in a position where the 5f electronic behavior changes from itinerant to localized. As far as magnetism is concerned, a majority of the theoretical calculations continues to claim the existence of magnetism while almost all the experimental results do not find any support for such claims. The second element of interest to us, namely americium, occupies a central position in the actinide series with respect to the involvement of 5f electrons in metallic bonding. It is widely believed that the 5f electrons in Am are localized and that Am undergoes a series of crystallographic phase changes with pressure. Fully-relativistic all electron surface studies of the different phases of Am, initially for the dhcp and the fcc surfaces, can and have provided us with valuable information about chemical bonding in Am and the transitions from f-electron delocalization to f-electron localization in trans-uranium compounds. In particular, a comparative study of the electronic structures of the Pu and Am surfaces using the techniques of all-electron modern density functional theory and beyond can provide significant information about the role of 5f electrons in bond formation as also the localization of the 5f electrons, matters of considerable controversies. The change from metallic 5f bonding into local-moment nonbonding configurations that takes place between Pu and Am is rather unique in the periodic table and is at the very heart of our understanding of electronic structure. We believe that, considering the narrow bandwidth of surface states, any transition from itinerant to localized behavior first takes place at the actinide surfaces with possible reconstructions.

  18. Final Technical Report

    SciTech Connect

    Herrin, David L


    This report summarizes many of the projects, and lists all of the publications and persons trained with support from the grant.

  19. Final Technical Report

    SciTech Connect

    Michael Read; R. Lawrence Ives; Patrick Ferguson


    Calabazas Creek Research Inc. (CCR) completed Phase I the development of a 10 MW, 1.3 GHz, annular beam klystron (ABK) for driving advanced accelerators, such as the International Linear Collider (ILC). Through detailed simulations in Phase I, CCR produced a design that meets all of the requirements for ILC. The ABK uses an annular beam to minimize space charge depression and the impedance. This allows the relatively low voltage of 120 kV specified for the International Linear Collider (ILC). Like the sheet beam klystron, the ABK uses a thin beam located close to the drift tube walls; however, it operates with lower risk, single mode cavities. In addition, it is azimuthally symmetric, dramatically reducing design and fabrication costs. It provides the same operating characteristics as a multi-beam klystron, but is far simpler and will be easier and less expensive to fabricate.

  20. Final Technical Report

    SciTech Connect

    Michael Laub


    Our team of investigators from MIT (Michael Laub) and Stanford (Harley McAdams and Lucy Shapiro) conducted a multi-faceted, systematic experimental analysis of the 106 Caulobacter two-component signal transduction system proteins (62 histidine kinases and 44 response regulators) to understand how they coordinate cell cycle progression, metabolism, and response to environmental changes. These two-component signaling proteins were characterized at the genetic, biochemical, and genomic levels. The results generated by our laboratories have provided numerous insights into how Caulobacter cells sense and respond to a myriad of signals. As nearly all bacteria use two-component signaling for cell regulation, the results from this project help to deepen our general understanding of bacterial signal transduction. The tools and approaches developed can be applied to other bacteria. In particular, work from the Laub laboratory now enables the systematic, rational rewiring of two-component signaling proteins, a major advance that stands to impact synthetic biology and the development of biosensors and other designer molecular circuits. Results are summarized from our work. Each section lists publications and publicly-available resources which result from the work described.

  1. Final Technical Report

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... world to reduce their reliance on energy imports or strive towards energy independence. ... However, some other organics like methanol could promote the precipitation reactions ...


    SciTech Connect

    Newmarker, Marc; Campbell, Mark


    Work under this project has ultimately focused on the development of a modular packed bed based thermal energy storage system. The design assumes the use of standard segments of carbon steel pipe filled with spherical materials creating a packed bed. These materials are assumed to be manufactured in such a way that the spherical shape is uniform throughout the packed bed. Out of 32 candidate materials evaluated, 8 materials remain. Each material meets the Phase I milestones that were specified for this storage system: a round trip efficiency in excess of 93%, and a required volume of packed bed material that does not exceed the volume of molten salt used in a two-tank storage system with equivalent thermal performance.

  3. Final Technical Report

    SciTech Connect

    Richard Burnett


    The Casper College Renewable Program has four objectives: research, demonstration, commercialization and outreach with three outcomes: information, education and training.

  4. Final Technical Report

    SciTech Connect

    W. C. Griffith


    In this project we provide an example of how to develop multi-tiered models to go across levels of biological organization to provide a framework for relating results of studies of low doses of ionizing radiation. This framework allows us to better understand how to extrapolate laboratory results to policy decisions, and to identify future studies that will increase confidence in policy decisions. In our application of the conceptual Model we were able to move across multiple levels of biological assessment for rodents going from molecular to organism level for in vitro and in vivo endpoints and to relate these to human in vivo organism level effects. We used the rich literature on the effects of ionizing radiation on the developing brain in our models. The focus of this report is on disrupted neuronal migration due to radiation exposure and the structural and functional implications of these early biological effects. The cellular mechanisms resulting in pathogenesis are most likely due to a combination of the three mechanisms mentioned. For the purposes of a computational model, quantitative studies of low dose radiation effects on migration of neuronal progenitor cells in the cerebral mantle of experimental animals were used. In this project we were able to show now results from studies of low doses of radiation can be used in a multidimensional framework to construct linked models of neurodevelopment using molecular, cellular, tissue, and organ level studies conducted both in vitro and in vivo in rodents. These models could also be linked to behavioral endpoints in rodents which can be compared to available results in humans. The available data supported modeling to 10 cGy with limited data available at 5 cGy. We observed gradual but non-linear changes as the doses decreased. For neurodevelopment it appears that the slope of the dose response decreases from 25 cGy to 10 cGy. Future studies of neurodevelopment should be able to better define the dose response in this range.

  5. Final Technical Report

    SciTech Connect

    Buttry, Daniel A


    We adapted and refined a synthesis of gold nanoparticles of type, Au101(PPh3)21Cl5 (Au101). In our hands, this method routinely gave fairly high yields of Au101 NPs. These NPs were characterized using several techniques, including TEM, AFM/STM and various NMR measurements, including solid state methods. We also used a simpler citrate-based preparation of Au NPs. We immobilized the Au NPs on carbon and characterized their electrochemical behavior. In addition, we prepared and characterized tin oxide NPs that were capped with phosphonic acid capping ligands. Our goal in this part of the project was to expand the NMR methods available to study ligand complexation in non-metallic NP materials that may be of interest as electrochemical materials. The use of tin oxide as a host material for tin metal that could be used to alloy of Li in battery anodes was the motivation for our interest in these types of materials.

  6. Final Technical Report

    SciTech Connect

    S.T. Misture


    The project was centered on developing new ceramic materials to improve efficiency of solar energy capture for photovoltaic cells and for catalysts to split water to make hydrogen. The work has led to one possible breakthrough material, a nanoscale photocatalyst that can be used to assemble nanocomposite catalysts. Another important result of the work is the development of synthesis methods to create nanostructured and mesoporous oxides for use in solar energy harvesting. Specifically, we have developed two new methods potentially useful for preparing high performance electrodes for PV cells.

  7. Final Technical Report

    Office of Scientific and Technical Information (OSTI)

    ... Biophys. Mol. Biol. 89:292-329. Pereira, LA., A. R. Ramos, F. Grein, M.C. Marques, S.M. da Silva, and S.S. Venceslau. (2011) A comparative genomic analysis of energy metabolism in ...

  8. CEEM Final Technical Report

    SciTech Connect

    Bowers, John


    The mission of the Center for Energy Efficient Materials (CEEM) was to serve the Department of Energy and the nation as a center of excellence dedicated to advancing basic research in nano-structured materials and devices for applications to solar electricity, thermoelectric conversion of waste heat to electricity, and solidstate lighting. The foundation of CEEM was based on the unique capabilities of UCSB and its partner institutions to control, synthesize, characterize, model, and apply materials at the nanoscale for more efficient sustainable energy resources. This unique expertise was a key source of the synergy that unified the research of the Center. Although the Center’s focus was basic research, It’s longer-term objective has been to transfer new materials and devices into the commercial sector where they will have a substantial impact on the nation’s need for efficient sustainable energy resources. As one measure of the impact of the Center, two start-up companies were formed based on its research. In addition, Center participants published a total of 210 archival journal articles, of which 51 were exclusively sponsored by the DOE grant. The work of the Center was structured around four specific tasks: Organic Solar Cells, Solid-State Lighting, Thermoelectrics, and High Efficiency Multi-junction Photovoltaic devices. A brief summary of each follows – detailed descriptions are in Sections 4 & 5 of this report. Research supported through CEEM led to an important shift with respect to the choice of materials used for the fabrication of solution deposited organic solar cells. Solution deposition opens the opportunity to manufacture solar cells via economically-viable high throughput tools, such as roll to roll printing. Prior to CEEM, most organic semiconductors utilized for this purpose involved polymeric materials, which, although they can form thin films reliably, suffer from batch to batch variations due to the statistical nature of the chemical reactions that produce them. In response, the CEEM team developed well-defined molecular semiconductors that produce active layers with very high power conversion efficiencies, in other words they can convert a very high fraction of sunlight into useful electrical power. The fact that the semiconductor is formed from molecular species provides the basis for circumventing the unreliability of polymer counterparts and, as an additional bonus, allows one to attain much grater insight into the structure of the active layer. The latter is particularly important because efficient conversion is the result of a complex arrangement of two semiconductors that need to phase separate in a way akin to oil and water, but with domains that are described by nanoscale dimensions. CEEM was therefore able to provide deep insight into the influence of nanostructure, through the application of structural characterization tools and theoretical methods that describe how electrical charges migrate through the organic layer. Our research in light emitting diode (LED)-based solid state lighting (SSL) was directed at improving efficiency and reducing costs to enable the widespread deployment of economically-viable replacements for inefficient incandescent, halogen, and fluorescent-based lighting. Our specific focus was to advance the fundamental science and technology of light emitting diodes to both understand factors that limit efficiencies and to provide innovative and viable solutions to the current impediments. One of the main challenges we faced is the decrease in efficiency when LEDs are driven harder to increase light output---the so called “droop” effect. It requires large emitting surfaces to reach a desired optical output, and necessitates the use of costly heat sinks, both of which increase the cost. We successfully reduced droop by growing LED crystals having non-conventional orientations. As recognized by the award of the 2014 Nobel prize to the inventors of the nitride LEDs (one of whom was a member of CEEM), LEDs already have a large societal impact in both developed (l

  9. Final Technical Report

    SciTech Connect

    drucker, jeff


    This project investigated the fundamental science of nanowire epitaxy using vapor-liquid-solid growth in the silicon-germanium material system. Ultrahigh vacuum chemical vapor deposition (UHV CVD) was the primary deposition method. Nanowires grown using UHV CVD were characterized ex situ using scanning electron microscopy and a variety of transmission electron microscopy techniques. In situ transmission electron microscopy was also employed to monitor growth in real time and was instrumental in elucidating growth mechanisms.

  10. Final Technical Report

    SciTech Connect

    Xi, Xiaoxing


    The objective of this project is to develop a MgB2 superconducting RF (SRF) cavity technology. Compared to the currently-used SRF material niobium, MgB2 has a much higher Tc of 40 K, a lower residual resistivity (< 0.1 µΩcm), and a higher thermodynamic critical field Hc. SRF cavities with MgB2 coatings have the potentials for higher Q, higher gradient, and higher operation temperatures. A MgB2 SRF technology can significantly reduce the operating costs of particle accelerators when these potentials are realized. In this project, we have made significant progresses in the deposition of large-area (2” diameter) MgB2 films for RF characterizations, deposition of MgB2 films on metal substrates including Nb, Mo, Ta, and stainless steel, enhancement of Hc1 with decreasing MgB2 film thickness, fabrication and characterization of MgB2/MgO multilayers, and deposition of MgB2 films of excellent superconducting properties on the wall of a 6-GHz RF cavity. These results have laid foundation for a MgB2 superconducting SRF cavity technology.

  11. Final Technical Report

    SciTech Connect

    Sara Bergan, Executive Director; Brendan Jordan, Program Manager; Subcontractors as listed on the report.


    The following report contributes to our knowledge of how to economically produce wildlife-friendly grass mixtures for future fuel feedstocks in the northern plains. It investigates northern-adapted cultivars; management and harvest regimes that are good for yields, soils and wildlife; comparative analysis of monocultures and simple mixtures of native grasses; economic implications of growing grasses for fuel feedstocks in specific locations in the northern plains; and conversion options for turning the grasses into useful chemicals and fuels. The core results of this study suggest the following; Native grasses, even simple grass mixtures, can be produced profitably in the northern plains as far west as the 100th meridian with yields ranging from 2 to 6 tons per acre; Northern adapted cultivars may yield less in good years, but have much greater long-term sustainable yield potential than higher-yielding southern varieties; Grasses require very little inputs and stop economically responding to N applications above 56kg/hectare; Harvesting after a killing frost may reduce the yield available in that given year but will increase overall yields averaged throughout multiple years; Harvesting after a killing frost or even in early spring reduces the level of ash and undesirable molecules like K which cause adverse reactions in pyrolysis processing. Grasses can be managed for biomass harvest and maintain or improve overall soil-health and carbon sequestration benefits of idled grassland; The carbon sequestration activity of the grasses seems to follow the above ground health of the biomass. In other words plots where the above ground biomass is regularly removed can continue to sequester carbon at the rate of 2 tons/acre/year if the stand health is strong and yielding significant amounts of biomass; Managing grasses for feedstock quality in a biomass system requires some of the same management strategies as managing for wildlife benefit. We believe that biomass development can be done in such a way that also maximizes or improves upon conservation and other environmental goals (in some cases even when compared to idled land); Switchgrass and big bluestem work well together in simple mixture plots where big bluestem fills in around the switchgrass which alone grows in bunches and leaves patches of bare soil open and susceptible to erosion; Longer-term studies in the northern plains may also find that every other year harvest schemes produce as much biomass averaged over the years as annual harvests; Grasses can be grown for between $23 and $54/ton in the northern plains at production rates between 3 and 5 tons/acre; Land costs, yields, and harvest frequency are the largest determining factors in the farm scale economics. Without any land rent offset or incentive for production, and with annual harvesting, grass production is likely to be around $35/ton in the northern plains (farm gate); Average transportation costs range from $3 to $10/ton delivered to the plant gate. Average distance from the plant is the biggest factor - $3/ton at 10 miles, $10/ton at 50 miles; There is a substantial penalty paid on a per unit of energy produced basis when one converts grasses to bio-oil, but the bio-oil can then compete in higher priced fuel markets whereas grasses alone compete directly with relatively cheap coal; Bio oil or modified bio-oil (without the HA or other chemical fraction) is a suitable fuel for boiler and combustion turbines that would otherwise use residual fuel oil or number 2 diesel; Ensyn has already commercialized the use of HA in smokey flavorants for the food industry but that market is rather small. HA, however, is also found to be a suitable replacement for the much larger US market for ethanolamines and ethalyne oxides that are used as dispersants; Unless crude oil prices rise, the highest and best use of grass based bio-oil is primarily as a direct fuel. As prices rise, HA, phenol and other chemical fractions may become more attractive; Although we were able to create available glucose from the AHG fraction in the bio-oil it proved recalcitrant to fermentation by yeast. Although fermentation results were much more positive with wood based bio-oil sugars, ethanol does not appear to be a likely product from grass based bio-oil; and A package of policy recommendations has been developed with roughly 75 key stakeholders from throughout the region that would support the transition to greater development of advanced biofuels and products in the region, as well as a strong role for native grass agriculture to support those industries.

  12. Final Technical Report

    SciTech Connect

    Efthimios Kaxiras


    This research consisted of a theoretical investigation of the properties of surface-based nanostructures, having as a main goal the deeper understanding of the atomic-scale mechanisms responsible for the formation and stability of such structures. This understanding will lead to the design of improved systems for applications in diverse areas such as novel electronic devices, sensors, field-effect transistors, substrates with enhanced hydro-phobic (water repelling) or hydro-philic (water absorbing) behavior for coatings of various surfaces used in bioengineering, flexible displays, organic photovoltaics, etc. The research consisted of developing new theoretical methodologies and applying them to a wide range of interesting physical systems. Highlights of the new methodologies include techniques for bridging different scales, from the quantum-mechanical electronic level to the meso-scopic level of large molecular structures such as DNA, carbon nanotubes and two-dimensional assemblies of organic molecules. These methodologies were successfully applied to investigate interactions between systems that are large on the atomic scale (reaching the scale of microns in length or milliseconds in time), but still incorporating all the essential elements of the atomic-scale structure. While the research performed here did not address applications directly, the implications of its finding are important in guiding experimental searches and in coming up with novel solutions to important problems. In this sense, the results of this work can be incorporated in the design of many useful applications. Specifically, in addition to elucidating important physical principles on how nano-structures are stabilized on surfaces, we have used our theoretical investigations to make predictions for useful applications in the following fields: a) we proposed new types of nanotubes that can overcome the limitations of the carbon nanotubes whose properties depend sensitively on the structure which cannot be controlled experimentally; b) we showed how carbon nanotubes can be employed in optical determination of the DNA base sequence, an exciting application for ultra-fast DNA sequencing; c) we proposed a nano-structure (titanium dioxide nano-wire) based design for organic photovoltaics using natural dyes, and showed that it will be an efficient system for the absorption of light and the charge transfer from the dye to the wire.

  13. Final Technical Report Division

    Office of Scientific and Technical Information (OSTI)

    Report Division of Nuclear Physics in the Department of Energy DOE Award# DE-FG02-05ER64101 Title: Heavy Quarks, QCD, and Effective Field Theory Authors: Thomas Mehen (PI) Project Period: June 15, 2005 - June 14, 2010 Susan Lasley, Assistant Director, Office of Research Support, Box 90077,Duke University, Durham NC 27708. 1 I. INTRODUCTION The research supported by this OJI award is in the area of heavy quark and quarko- nium production, especially the application Soft-Collinear Effective Theory

  14. Final Technical Report

    SciTech Connect

    David B. Wilson


    This grant provided the basic funding that enabled me to carry out a detailed characterization of the proteins used by the aerobic soil bacterium, Thermobifida fusca, to degrade cellulose and to study the mechanisms used by T. fusca to regulate cellulase synthesis. This work resulted in 53 publications and led to the decision by The DOE Joint Genome Institute to sequence the T. fusca genome. T. fusca is now recognized as one of the best studied cellulolytic microorganisms and our work led to the discovery of a novel class of cellulases, processive endoglucanases, which are found in many cellulolytic bacteria including both aerobes and anaerobes. In addition, we were able to determine the mechanism by which Cel9A caused processive hydrolysis of cellulose. This research also helped to explain why many cellulolytic microorganisms produce two different exocellulases, as we showed that these enzymes have different specificities, with one attacking the reducing end of a cellulose chain and the other attacking the nonreducing end. Our work also provided additional evidence for the importance of a cellulose binding domain (carbohydrate binding module) [CBM] in the hydrolysis of crystalline cellulose.

  15. Final Technical Report

    SciTech Connect

    Finlayson-Pitts, Barbara J.


    DOE has funded our work in three areas: (1) reactions of sea salt aerosols to form photochemically labile halogen gases that help to drive tropospheric chemistry; (2) oxidation of organics at interfaces and formation of SOA driven by oxides of nitrogen photochemistry; and (3) nucleation and growth of new particles in the troposphere from reactions of methanesulfonic acid with amines.

  16. Technical and Analytical Support Services to the Office of Environmental Analysis, Office of Environment, Safety and Health. Final report

    SciTech Connect


    The primary purpose of this contract was to provide technical analyses, studies, and reviews related to land use/water issues and energy resource development in support of the activities of the Office of Environmental Analysis, Office of Environment, Safety and Health. Tasks under this contract included: Issue Papers. Energetics provided issue papers on a number of specific energy and environmental issue areas. Each issue paper consisted of a systematic review and analysis of major factors (technical, legal, environmental, economic, energy, health and social) that could enter into DOE`s environmental/energy policy decisions; Special Analyses. Energetics conducted special in-depth technical analyses as requested by the Contracting Officer`s Technical Representative (COTR); and Critical Review and Evaluation of Program Reports. Energetics performed critical reviews of a number of technical reports arising from DOE program activities. These documents included issue papers and reports resulting from special technical analyses of specific issues, technologies, or broad areas of concern. Reviews focused on both the technical and programmatic impact of the report. Energetics made recommendations and gave input to assist DOE in determining the environmental impacts of energy policies and projects.

  17. GPHS-RTGs in support of the Cassini RTG Program. Addendum to the final technical report, May 1--December 31, 1998

    SciTech Connect


    This Addendum to the Cassini GPHS-RTG Program Final Technical Progress Report describes activities performed during the period 1 May 1998 through 31 December 1998, including effort reflecting contract modification M058. These activities include Earth Gravity Assist (EGA) reentry and related analyses which are detailed in Part A, and effort related to the installation of CAGO equipment within Lockheed Martin`s Building 100 facility in Valley Forge, PA, which is detailed in Part B.

  18. Preliminary draft industrial siting administration permit application: Socioeconomic factors technical report. Final technical report, November 1980-May 1982. [Proposed WyCoalGas project in Converse County, Wyoming

    SciTech Connect

    Not Available


    Under the with-project scenario, WyCoalGas is projected to make a difference in the long-range future of Converse County. Because of the size of the proposed construction and operations work forces, the projected changes in employment, income, labor force, and population will alter Converse County's economic role in the region. Specifically, as growth occurs, Converse County will begin to satisfy a larger portion of its own higher-ordered demands, those that are currently being satisfied by the economy of Casper. Business-serving and household-serving activities, currently absent, will find the larger income and population base forecast to occur with the WyCoalGas project desirable. Converse County's economy will begin to mature, moving away from strict dependence on extractive industries to a more sophisticated structure that could eventually appeal to national, and certainly, regional markets. The technical demand of the WyCoalGas plant will mean a significant influx of varying occupations and skills. The creation of basic manufacturing, advanced trade and service sectors, and concomitant finance and transportation firms will make Converse County more economically autonomous. The county will also begin to serve market center functions for the smaller counties of eastern Wyoming that currently rely on Casper, Cheyenne or other distant market centers. The projected conditions expected to exist in the absence of the WyCoalGas project, the socioeconomic conditions that would accompany the project, and the differences between the two scenarios are considered. The analysis is keyed to the linkages between Converse County and Natrona County.

  19. Final Technical Progress Report: High-Efficiency Low-Cost Thin-Film GaAs Photovoltaic Module Development Program; July 14, 2010 - January 13, 2012

    SciTech Connect

    Mattos, L.


    This is the final technical progress report of the High-Efficiency Low-Cost Thin-Film GaAs Photovoltaic Module Development Program. Alta Devices has successfully completed all milestones and deliverables established as part of the NREL PV incubator program. During the 18 months of this program, Alta has proven all key processes required to commercialize its solar module product. The incubator focus was on back end process steps directed at conversion of Alta's high quality solar film into high efficiency 1-sun PV modules. This report describes all program deliverables and the work behind each accomplishment.

  20. DOEGO85004_1: Final Non-proprietary Technical Report, Generating Process and Economic Data for Preliminary Design of PureVision Biorefineries DOEGO85004_2: One Original Final Proprietary Technical Report to be mailed to DOE Golden.

    SciTech Connect

    Kadam, Kiran L., Ph.D; Lehrburger, Ed


    The overall objective of the project was to define a two-stage reactive fractionation process for converting corn stover into a solid cellulose stream and two liquid streams containing mostly hemicellulosic sugars and lignin, respectively. Toward this goal, biomass fractionation was conducted using a small continuous pilot unit with a nominal capacity of 100 pounds per day of dry biomass to generate performance data using primarily corn stover as feedstock. In the course of the program, the PureVision process was optimized for efficient hemicellulose hydrolysis in the first stage employing autohydrolysis and delignification in the second stage using sodium hydroxide as a catalyst. The remaining cellulose was deemed to be an excellent substrate for producing fermentation sugars, requiring 40% less enzymes for hydrolysis than conventional pretreatment systems using dilute acid. The fractionated cellulose was also determined to have potential higher-value applications as a pulp product. The lignin coproduct was determined to be substantially lower in molecular weight (MW) compared to lignins produced in the kraft or sulfite pulping processes. This low-MW lignin can be used as a feed and concrete binder and as an intermediate for producing a range of high-value products including phenolic resins. This research adds to the understanding of the biomass conversion area in that a new process was developed in the true spirit of biorefineries. The work completed successfully demonstrated the technical effectiveness of the process at the pilot level indicating the technology is ready to advance to a 2–3 ton per day scale. No technical showstoppers are anticipated in scaling up the PureVision fractionation process to commercial scale. Also, economic feasibility of using the PureVision process in a commercial-scale biorefinery was investigated and the minimum ethanol selling price for the PureVision process was calculated to be $0.94/gal ethanol vs. $1.07/gal ethanol for the

  1. Technical support to the ER program subsurface technologies team leader. Final report, March 15, 1993--March 15, 1998

    SciTech Connect


    This research included development of a new geologic sample management facility and associated quality assurance systems for the LANL Environmental Restoration Program. Additional work with the LANL Environmental Restoration Program included the development of Sampling and Analysis Plans (SAP) for various Operable Units for the Laboratory. The PI (Davidson) served as the sample curation/sample management specialist on the ER program Subsurface Studies Technical Team. Specialization in Field Unit Data Base systems was the focus of the work towards the end of the contract. A document is included which provides the Statement of Policy for the management of borehole samples collected during environmental restoration activities at LANL.

  2. Final Technical Progress Report; Closeout Certifications; CSSV Newsletter Volume I; CSSV Newsletter Volume II; CSSV Activity Journal; CSSV Final Financial Report

    SciTech Connect

    Houston, Johnny L; Geter, Kerry


    This Project?s third year of implementation in 2007-2008, the final year, as designated by Elizabeth City State University (ECSU), in cooperation with the National Association of Mathematicians (NAM) Inc., in an effort to promote research and research training programs in computational science ? scientific visualization (CSSV). A major goal of the Project was to attract the energetic and productive faculty, graduate and upper division undergraduate students of diverse ethnicities to a program that investigates science and computational science issues of long-term interest to the Department of Energy (DoE) and the nation. The breadth and depth of computational science?scientific visualization and the magnitude of resources available are enormous for permitting a variety of research activities. ECSU?s Computational Science-Science Visualization Center will serve as a conduit for directing users to these enormous resources.

  3. Entrained-flow gasification at elevated pressure: Volume 1: Final technical report, March 1, 1985-April 30,1987

    SciTech Connect

    Hedman, P.O.; Smoot, L.D.; Smith, P.J.; Blackham, A.U.


    The general purpose of this research program was to develop a basic understanding of the physical and chemical processes in entrained coal gasification and to use the results to improve and evaluate an entrained gasification computer model. The first task included the collection and analysis of in-situ gasifier data at elevated pressures with three coal types (North Dakota lignite, Wyoming subbituminous and Illinois bituminous), the design, construction, and testing of new coal/oxygen/steam injectors with a fourth coal type (Utah bituminous), the collection of supporting turbulent fluid dynamic (LDV) data from cold-flow studies, and the investigation of the feasibility of using laser-based (CARS) daignostic instruments to make measurements in coal flames. The second task included improvements to the two-dimensional gasifier submodels, tabulation and evaluation of new coal devolatilization and char oxidation data for predictions, fundamental studies of turbulent particle dispersion, the development of improved numerical methods, and validation of the comprehensive model through comparison of predictions with experimental results. The third task was to transfer technical advances to industry and to METC through technical seminars, production of a detailed data book, code placement, and publication of results. Research results for these three tasks are summarized briefly here and presented in detail in the body of the report and in supporting references. 202 refs., 73 figs., 23 tabs.

  4. Development of Ultra-Efficient Electric Motors Final Technical Report Covering work from April 2002 through September 2007

    SciTech Connect

    Rich Schiferl


    High temperature superconducting (HTS) motors offer the potential for dramatic volume and loss reduction compared to conventional, high horspower, industrial motors. This report is the final report on the results of eight research tasks that address some of the issues related to HTS motor development that affect motor efficiency, cost, and reliability.

  5. Evaluation of station blackout accidents at nuclear power plants: Technical findings related to unresolved safety issue A-44: Final report

    SciTech Connect

    Not Available


    ''Station Blackout,'' which is the complete loss of alternating current (AC) electrical power in a nuclear power plant, has been designated as Unresolved Safety Issue A-44. Because many safety systems required for reactor core decay heat removal and containment heat removal depend on AC power, the consequences of a station blackout could be severe. This report documents the findings of technical studies performed as part of the program to resolve this issue. The important factors analyzed include: the fequency of loss of offsite power; the probability that emergency or onsite AC power supplies would be unavailable; the capability and reliability of decay heat removal systems independent of AC power; and the likelihood that offsite power would be restored before systems that cannot operate for extended periods without AC power fail, thus resulting in core damage. This report also addresses effects of different designs, locations, and operational features on the estimated frequency of core damage resulting from station blackout events.

  6. Final Technical Report [Cosmogenic background and shielding R&D for a Ge Neutrinoless Double Beta Decay Experiment

    SciTech Connect

    Guiseppe, Vince


    The USD Majorana group focused all of its effort in support of the MAJORANA DEMONSTRATOR (MJD) experiment. Final designs of the shielding subsystems are complete. Construction of the MJD shielding systems at SURF has begun and the proposed activities directly support the completion of the shield systems. The PI and the group contribute heavily to the onsite construction activities of the MJD experiment. The group led investigations into neutron and neutron-?induced backgrounds, shielding effectiveness and design, and radon backgrounds.

  7. Solar powered hydrogen generating facility and hydrogen powered vehicle fleet. Final technical report, August 11, 1994--January 6, 1997

    SciTech Connect

    Provenzano, J.J.


    This final report describes activities carried out in support of a demonstration of a hydrogen powered vehicle fleet and construction of a solar powered hydrogen generation system. The hydrogen generation system was permitted for construction, constructed, and permitted for operation. It is not connected to the utility grid, either for electrolytic generation of hydrogen or for compression of the gas. Operation results from ideal and cloudy days are presented. The report also describes the achievement of licensing permits for their hydrogen powered trucks in California, safety assessments of the trucks, performance data, and information on emissions measurements which demonstrate performance better than the Ultra-Low Emission Vehicle levels.

  8. K-edge Subtraction Angiography with Synchrotron X-Rays: Final Technical Report, (February 1, 1984 to January 31, 1987)

    DOE R&D Accomplishments

    Hofstadter, R.


    The aim was the development of an angiographic method and appropriate equipment for imaging with x-rays the coronary arteries in a non-invasive manner. Successive steps involved studies with phantoms, live animals and finally with human subjects. Clinical evaluation of human coronary arteries remains a goal of this and a continuing project, and steps along the way to such an achievement are in process. Transvenous injection of a dye using the method of iodine dichromography near 33.2 keV, the K-edge of iodine, forms the basis of the method

  9. Ocean Thermal Extractable Energy Visualization- Final Technical Report on Award DE-EE0002664. October 28, 2012

    SciTech Connect

    Ascari, Matthew B.; Hanson, Howard P.; Rauchenstein, Lynn; Van Zwieten, James; Bharathan, Desikan; Heimiller, Donna; Langle, Nicholas; Scott, George N.; Potemra, James; Nagurny, N. John; Jansen, Eugene


    The Ocean Thermal Extractable Energy Visualization (OTEEV) project focuses on assessing the Maximum Practicably Extractable Energy (MPEE) from the world's ocean thermal resources. MPEE is defined as being sustainable and technically feasible, given today's state-of-the-art ocean energy technology. Under this project the OTEEV team developed a comprehensive Geospatial Information System (GIS) dataset and software tool, and used the tool to provide a meaningful assessment of MPEE from the global and domestic U.S. ocean thermal resources. The OTEEV project leverages existing NREL renewable energy GIS technologies and integrates extractable energy estimated from quality-controlled data and projected optimal achievable energy conversion rates. Input data are synthesized from a broad range of existing in-situ measurements and ground-truthed numerical models with temporal and spatial resolutions sufficient to reflect the local resource. Energy production rates are calculated for regions based on conversion rates estimated for current technology, local energy density of the resource, and sustainable resource extraction. Plant spacing and maximum production rates are then estimated based on a default plant size and transmission mechanisms. The resulting data are organized, displayed, and accessed using a multi-layered GIS mapping tool, with a user-friendly graphical user interface.

  10. Advanced liquefaction using coal swelling and catalyst dispersion techniques. Volume 1, Final technical report, October 1, 1991--September 30, 1994

    SciTech Connect

    Curtis, C.W.; Gutterman, C.; Chander, S.


    The overall objective of this project was to develop a new approach for the direct liquefaction of coal to produce an all-distillate product slate at a sizable cost reduction over current technology. The approach integrated coal selection, pretreatment, coal swelling with catalyst impregnation, liquefaction, product recovery with characterization, alternate bottoms processing, and a technical assessment including an economic evaluation. Heterofunctional solvents were the most effective in swelling coals. Also solvent blends such as isopropanol/water were more effective than pure solvents alone. Impregnating slurry catalysts simultaneously during coal swelling showed that better uptake was achieved with nonswelling solvent and higher impregnation temperature. Some enhancement in initial coal conversion was seen liquefying SO{sub 2}-treated Black Thunder coal with slurry catalysts, and also when hydrogen donor liquefaction solvents were used. Noncatalytic reactions showed no benefit from SO{sub 2} treatment. Coupling coal swelling and SO{sub 2} treatment with slurry catalysts was also not beneficial, although high conversion was seen with continuous operation and long residence time, however, similar high conversion was observed with untreated coal. SO{sub 2} treatment is not economically attractive unless it provides about 17% increase in coal reactivity. In most cases, the best results were obtained when the coal was untreated and the slurry catalyst was added directly into the reactor. Foster Wheeler`s ASCOT process had better average liquid yields than either Wilsonville`s vacuum tower/ROSE combination or delayed coking process. This liquid product also had good quality.

  11. Assessment of oil-shale technology in Brazil. Final technical report, October 27, 1980-July 27, 1981

    SciTech Connect

    Not Available


    The development of an oil shale industry in the United States will require the solution of a variety of technical, economic, environmental, and health and safety problems. This assessment investigates whether US oil shale developers might benefit from the experience gained by the Brazilians in the operation of their Usina Prototipo do Irati oil shale demonstration plant at Sao Mateus do Sul, and from the data generated from their oil shale research and development programs. A chapter providing background information on Brazil and the Brazilian oil shale deposits is followed by an examination of the potential recovery processes applicable to Brazilian oil shale. The evolution of the Brazilian retorting system is reviewed and compared with the mining and retorting proposed for US shales. Factors impacting on the economics of shale oil production in Brazil are reviewed and compared to economic analyses of oil shale production in the US. Chapters examining the consequences of shale development in terms of impact on the physical environment and the oil shale worker complete the report. Throughout the report, where data permits, similarities and differences are drawn between the oil shale programs underway in Brazil and the US. In addition, research areas in which technology or information transfer could benefit either or both countries' oil shale programs are identified.

  12. Technology development for thin strip metal casting, Phase 2: Final technical report. [Melt spinning or planar flow casting

    SciTech Connect

    Williams, R.S.


    The Phase II program has been conducted by a team of engineers from Westinghouse Electric Corporation and Armco, Inc., with the objective of providing a suitably sized experimental planar flow casting machine, and using it to perform casting trials to address the above technical uncertainties for cast thicknesses and speeds representative of industrial production, and with sufficient duration to diminish thermal transient effects. A nominally 7 ft. diameter water-cooled copper wheel planar flow casting system has been designed, fabricated and installed in a dedicated 15,000 sq. ft. foundry facility are Armco Inc., Middletown, Ohio. This system is capable of casting 3 in. wide strip and operating at surface speeds up to 25 ft/sec. Additionally, the facility also contains a 16 in. diameter water-cooled wheel with interchangeable casting substrates of different materials. This small wheel facility has been adapted to utilize the melt overflow process for casting of 3 in. wide strip. These casting facilities are supported by a 500 lb. induction melting furnace and necessary liquid steel handling equipment. Adequate techniques have been developed for transportation and filtering of liquid steel without undue temperature loss. Good control of the planar flow casting process was not achieved during this program, however given such control and the adoption of clean steel practices, the inference is that the process will be capable of producing strip which is readily cold-rollable in the as-cast condition. After cold rolling and annealing, such material should have useful mechanical properties. 8 refs., 112 figs., 10 tabs.

  13. Little Knife Field CO/sub 2/ minitest, Billings County, North Dakota. Final report. Volume 1. Technical report

    SciTech Connect

    Upton, J.E.


    A carbon dioxide minitest was conducted in the Mission Canyon Formation (lower Mississippian) at Little Knife Field, North Dakota. The Mission Canyon is a dolomitized carbonate reservoir which is undergoing primary depletion. Four wells were drilled in an inverted four-spot configuration, covering five acres. The central well served as the injection well and was surrounded by three non-producing observation wells. Oriented cores were cut in each well for detailed reservoir characterization and laboratory testing. In addition, a well test program was conducted which involved two pulse tests and injectivity tests on the individual wells. Results from these tests were used as part of the input data for two reservoir simulation models. Various parameters in the computer models were varied to determine the most efficient injection plan for the specific reservoir characteristics. The pattern sweep efficiency for carbon dioxide approached 52 percent in the minitest area. Displacement efficiency, as indicated by simulation study, was 50 percent of the oil-in-place at the start of the project, compared with an efficiency of 37 percent for waterflood. Thirty-one hundred cubic feet of CO/sub 2/ were required per incremental barrel of displaced oil. The absence of producing wells and the fact that only one zone within the Mission Canyon Formation was flooded, favorably influenced these figures. The Little Knife CO/sub 2/ minitest confirmed, by field testing, the results of laboratory CO/sub 2/ miscible displacement tests. The minitest indicated that the CO/sub 2/ miscible displacement process has technical potential for commercialization in a dolomitized carbonate reservoir that has not been extensively waterflooded and has an indicated high remaining oil saturation. 159 figures, 46 tables.

  14. Final Technical Report [Scalable methods for electronic excitations and optical responses of nanostructures: mathematics to algorithms to observables

    SciTech Connect

    Saad, Yousef


    The master project under which this work is funded had as its main objective to develop computational methods for modeling electronic excited-state and optical properties of various nanostructures. The specific goals of the computer science group were primarily to develop effective numerical algorithms in Density Functional Theory (DFT) and Time Dependent Density Functional Theory (TDDFT). There were essentially four distinct stated objectives. The first objective was to study and develop effective numerical algorithms for solving large eigenvalue problems such as those that arise in Density Functional Theory (DFT) methods. The second objective was to explore so-called linear scaling methods or Methods that avoid diagonalization. The third was to develop effective approaches for Time-Dependent DFT (TDDFT). Our fourth and final objective was to examine effective solution strategies for other problems in electronic excitations, such as the GW/Bethe-Salpeter method, and quantum transport problems.

  15. Large-area Silicon-Film{trademark} panels and solar cells. Final technical report, July 1995--March 1998

    SciTech Connect

    Rand, J.A.; Bai, Y.; Barnett, A.M.; Culik, J.S.; Ford, D.H.; Hall, R.B.; Kendall, C.L.


    This report will detail substantial improvements in each of the task areas. A number of new products were developed, including a 130 kW array built using a new panel design. Improvements in laboratory-scale solar cell processing resulted in a confirmed efficiency of 16.6%. A new Silicon-Film{trademark} production sheet machine was built which increased throughput by 70%. Three solar cell fabrication processes were converted from low throughout batch processes to high throughput, continuous, belt processes. These new processes are capable of processing sheet over 31 cm in width. Finally, a new Silicon-Film{trademark} sheet machine was built that demonstrated a sheet width of 38 cm. This tool enabled AstroPower to demonstrate a wide range of solar cell sizes, many of which have generated considerable market interest.

  16. The influence of deep-seabed CO2 sequestration on small metazoan (meiofaunal) viability and community structure: final technical report

    SciTech Connect

    Thistle, D


    Since the industrial revolution, the burning of fossil fuel has produced carbon dioxide at an increasing rate. Present atmospheric concentration is about ~1.5 times the preindustrial level and is rising. Because carbon dioxide is a greenhouse gas, its increased concentration in the atmosphere is thought to be a cause of global warming. If so, the rate of global warming could be slowed if industrial carbon dioxide were not released into the atmosphere. One suggestion has been to sequester it in the deep ocean, but theory predicts that deep-sea species will be intolerant of the increased concentrations of carbon dioxide and the increased acidity it would cause. The aim of our research was to test for consequences of carbon dioxide sequestration on deep-sea, sediment-dwelling meiofauna. Recent technical advances allowed us to test for effects in situ at depths proposed for sequestration. The basic experimental unit was an open-topped container into which we pumped ~20 L of liquid carbon dioxide. The liquid carbon dioxide mixed with near-bottom sea water, which produced carbon dioxide-rich sea water that flowed out over the near-by seabed. We did 30-day experiments at several locations and with different numbers of carbon dioxide-filled containers. Harpacticoid copepods (Crustacea) were our test taxon. In an experiment we did during a previous grant period, we found that large numbers of individuals exposed to carbon dioxide-rich sea water had been killed (Thistle et al. 2004). During the present grant period, we analyzed the species-level data in greater detail and discovered that, although individuals of many species had been killed by exposure to carbon dioxide-rich sea water, individuals of some species had not (Thistle et al. 2005). This result suggests that seabed sequestration of carbon dioxide will not just reduce the abundance of the meiofauna but will change the composition of the community. In another experiment, we found that some harpacticoid species swim

  17. Improved design of room and pillar coal mining. Final technical report, October 1, 1978-March 31, 1982

    SciTech Connect

    Bieniawski, Z.T.


    The objective of this research grant was to improve upon the design of roof spans and coal pillars in a coal mining technique known as room-and-pillar mining. Essentially, the project consisted of three aspects: determination of stable roof spans; determination of the strength of coal pillars; and determination of safety factors for room-and-pillar coal mining conditions in the United States. The study included a critical review of the available pillar design formulas as well as the design methods for selecting stable roof spans. Three novel approaches were utilized: (1) the petite sismique technique was assessed for possible determination of coal pillar deformability; this was the first use of this technique in the United States since its development in France; (2) the Geomechanics Classification was extended for determination of safe roof spans in room-and-pillar coal mining; and (3) a national survey of the current design practice as well as of the stable and failed coal pillars and roof spans was performed with the aim of determining factors of safety in room-and-pillar coal mining. Research investigations included field studies, laboratory testing and analytical computer simulations. The final outcome of the project is a proposal for a design code for room-and-pillar coal mining in the United States. In the course of this research, seven publications were prepared and three M.S. theses were completed. Practical applications of this research are discussed.

  18. SRC burn test in 700-hp oil-designed boiler. Volume 1. Integrated report. Final technical report

    SciTech Connect

    Not Available


    This burn test program was conducted during the period of August 1982 to February 1983 to demonstrate that Solvent Refined Coal (SRC) products can displace petroleum as a boiler fuel in oil- and gas-designed boilers. The test program was performed at the U.S. Department of Energy's Pittsburgh Energy Technology Center (PETC). Three forms of SRC (pulverized SRC, a solution of SRC dissolved in process-derived distillates, and a slurry of SRC and water) and No. 6 Fuel Oil were evaluated in the 700-hp (30 x 10/sup 6/ Btu/hour) watertube, oil-designed boiler facility at PETC. The test program was managed by the International Coal Refining Company (ICRC) and sponsored by the Department of Energy. Other organizations were involved as necessary to provide the expertise required to execute the test program. This final report represents an integrated overview of the test program conducted at PETC. More detailed information with preliminary data can be obtained from separate reports prepared by PETC, Southern Research Institute, Wheelabrator-Frye, Babcock and Wilcox, and Combustion Engineering. These are presented as Annex Volumes A-F. 25 references, 41 figures, 15 tables.

  19. Investigation of a rotary valving system with variable valve timing for internal combustion engines: Final technical report

    SciTech Connect

    Cross, P.C.; Hansen, C.N.


    The objective of the program was to provide a functional demonstration of the Hansen Rotary Valving System with Variable Valve timing (HRVS/VVT), capable of throttleless inlet charge control, as an alternative to conventional poppet-valves for use in spark ignited internal combustion engines. The goal of this new technology is to secure benefits in fuel economy, broadened torque band, vibration reduction, and overhaul accessibility. Additionally, use of the variable valve timing capability to vary the effective compression ratio is expected to improve multi-fuel tolerance and efficiency. Efforts directed at the design of HRVS components proved to be far more extensive than had been anticipated, ultimately requiring that proof-trial design/development work be performed. Although both time and funds were exhausted before optical or ion-probe types of in-cylinder investigation could be undertaken, a great deal of laboratory data was acquired during the course of the design/development work. This laboratory data is the basis for the information presented in this Final Report.

  20. GPHS-RTGs in support of the Cassini RTG Program. Final technical report, January 11, 1991--April 30, 1998

    SciTech Connect


    As noted in the historical summary, this program encountered a number of changes in direction, schedule, and scope over the period 11 January 1991 to 31 December 1998. The report provides a comprehensive summary of all the varied aspects of the program over its seven and a quarter years, and highlights those aspects that provide information beneficial to future radioisotope programs. In addition to summarizing the scope of the Cassini GPHS-RTG Program provided as background, the introduction includes a discussion of the scope of the final report and offers reference sources for information on those topics not covered. Much of the design heritage of the GPHS-RTG comes from the Multi-Hundred Watt (MHW) RTGs used on the Lincoln Experimental Satellites (LES) 8/9 and Voyager spacecraft. The design utilized for the Cassini program was developed, in large part, under the GPHS-RTG program which produced the Galileo and Ulysses RTGs. Reports from those programs included detailed documentation of the design, development, and testing of converter components and full converters that were identical to, or similar to, components used in the Cassini program. Where such information is available in previous reports, it is not repeated here.

  1. Quantifying And Predicting Wood Quality Of Loblolly And Slash Pine Under Intensive Forest Management Final Technical Report

    SciTech Connect

    Richard F. Daniels; Alexander Clark III


    The forest industry will increasingly rely on fast-growing intensively managed southern pine plantations to furnish wood and fiber. Intensive silvicultural practices, including competition control, stand density control, fertilization, and genetic improvement are yielding tremendous gains in the quantity of wood production from commercial forest land. How these technologies affect wood properties was heretofore unknown, although there is concern about the suitability of fast-grown wood for traditional forest products. A four year study was undertaken to examine the effects of these intensive practices on the properties of loblolly and slash pine wood by applying a common sampling method over 10 existing field experiments. Early weed control gets young pines off to a rapid start, often with dramatically increased growth rates. This response is all in juvenile wood however, which is low in density and strength. Similar results are found with early Nitrogen fertilization at the time of planting. These treatments increase the proportion of juvenile wood in the tree. Later, mid-rotation fertilization with Nitrogen and Phosphorus can have long term (4-8 year) growth gains. Slight reductions in wood density are short-lived (1-2 years) and occur while the tree is producing dense, stiff mature wood. Impacts of mid-rotation fertilization on wood properties for manufacturing are estimated to be minimal. Genetic differences are evident in wood density and other properties. Single family plantings showed somewhat more uniform properties than bulk improved or unimproved seedlots. Selection of genetic sources with optimal wood properties may counter some of the negative impacts of intensive weed control and fertilization. This work will allow forest managers to better predict the effects of their practices on the quality of their final product.

  2. Hybrid solar thermal-photovoltaic systems demonstration, Phase I and II. Final technical progress report, July 5, 1979-December 1982

    SciTech Connect

    Loferski, J.J.


    The purpose of the project is to investigate a system based on combined photovoltaic/thermal (PV/T) panels to supply the energy needs of a small single family residence. The system finally selected and constructed uses PV/T panels which utilize air as the heat transfer medium. Optimization of thermal performance was accomplished by attaching metal fins to the back surface of each cell which significantly increased the heat transfer coefficient from the solar cells to the air stream. The other major components of the selected system are an air-to-air heat pump, a rock bin thermal energy storage bin, a synchronous dc-to-ac converter, a microprocessor to control the system, a heat exchanger for the domestic hot water system and of course the building itself which is a one story, well insulated structure having a floor area of 1200 ft/sup 2/. A prototype collector was constructed and tested. Based on this experience, twenty collectors, containing 2860 four inch diameter solar cells, were constructed and installed on the building. Performance of the system was simulated using a TRNSYS-derived program, modified to accommodate PV/T panels and to include the particular components included in the selected system. Simulation of the performance showed that about 65 percent of the total annual energy needs of the building would be provided by the PV/T system. Of this total, about one half is produced at a time when it can be used in the building and one half must be sold back to the utility.

  3. Final technical report for Phenomic Analysis of Natural and Induced Variation in Brachypodium Distachyon DE-SC0001526

    SciTech Connect

    Vogel, John P.


    The goal of this project was to apply high-throughput, non-destructive phenotyping (phenomics) to collections of natural variants and induced mutants of the model grass Brachypodium distachyon and characterize a small subset of that material in detail. B. distachyon is well suited to this phenomic approach because its small size and rapid generation time allow researchers to grow many plants under carefully controlled conditions. In addition, the simple diploid genetics, high quality genome sequence and existence of numerous experimental tools available for B. distachyon allow us to rapidly identify genes affecting specific phenotypes. Our phenomic analysis revealed great diversity in biofuel-relevant traits like growth rate, biomass and photosynthetic rate. This clearly demonstrated the feasibility of applying a phenomic approach to the model grass B. distachyon. We also demonstrated the utility of B. distachyon for studying mature root system, something that is virtually impossible to do with biomass crops. We showed tremendous natural variation in root architecture that can potentially be used to design crops with superior nutrient and water harvesting capability. Finally, we demonstrated the speed with which we can link specific genes to specific phenotypes by studying two mutants in detail. Importantly, in both cases, the specific biological lessons learned were grass-specific and could not have been learned from a dicot model system. Furthermore, one of the genes affects cell wall integrity and thus may be a useful target in the context of biomass crop improvement. Ultimately, all this information can be used to accelerate the creation of improved biomass crops.

  4. Texas Hydrogen Highway Fuel Cell Hybrid Bus and Fueling Infrastructure Technology Showcase - Final Scientific/Technical Report

    SciTech Connect

    Hitchcock, David


    The Texas Hydrogen Highway project has showcased a hydrogen fuel cell transit bus and hydrogen fueling infrastructure that was designed and built through previous support from various public and private sector entities. The aim of this project has been to increase awareness among transit agencies and other public entities on these transportation technologies, and to place such technologies into commercial applications, such as a public transit agency. The initial project concept developed in 2004 was to show that a skid-mounted, fully-integrated, factory-built and tested hydrogen fueling station could be used to simplify the design, and lower the cost of fueling infrastructure for fuel cell vehicles. The approach was to design, engineer, build, and test the integrated fueling station at the factory then install it at a site that offered educational and technical resources and provide an opportunity to showcase both the fueling station and advanced hydrogen vehicles. The two primary technology components include: Hydrogen Fueling Station: The hydrogen fueling infrastructure was designed and built by Gas Technology Institute primarily through a funding grant from the Texas Commission on Environmental Quality. It includes hydrogen production, clean-up, compression, storage, and dispensing. The station consists of a steam methane reformer, gas clean-up system, gas compressor and 48 kilograms of hydrogen storage capacity for dispensing at 5000 psig. The station is skid-mounted for easy installation and can be relocated if needed. It includes a dispenser that is designed to provide temperaturecompensated fills using a control algorithm. The total station daily capacity is approximately 50 kilograms. Fuel Cell Bus: The transit passenger bus built by Ebus, a company located in Downey, CA, was commissioned and acquired by GTI prior to this project. It is a fuel cell plug-in hybrid electric vehicle which is ADA compliant, has air conditioning sufficient for Texas operations

  5. Ultracoatings: Enabling Energy and Power Solutions in High Contact Stress Environments through next-generation Nanocoatings Final Technical Report

    SciTech Connect

    Clifton B. Higdon III


    technology, called Ultracoatings, through initial development, scale up, and commercialization to a variety of markets would represent a transformative leap to surface engineering. Several application spaces were considered for immediate implementation of the Ultracoatings technology, including, but not limited to, a drive shaft for an aerospace fuel pump, engine timing components, and dry solids pump hardware for an innovative coal gasifier. The primary focus of the program was to evaluate and screen the performance of the selected (Ti, Zr)B2 Ultracoatings composition for future development. This process included synthesis of the material for physical vapor deposition, sputtering trials and coating characterization, friction and wear testing on sample coupons, and functional hardware testing. The main project deliverables used to gage the project's adherence to its original objective were: Development of a coating/substrate pairing that exhibits wear rate of 0.1 mg/hour or lower at a 1GPa contact pressure, while achieving a maximum coating cost of $0.10/cm2. Demonstrate the aforementioned wear rate in both lubricated and starved lubrication conditions. Although the (Ti, Zr) B2 coating was not tailored for low friction performance, friction and wear evaluations of the material demonstrated a coefficient of sliding friction as low as 0.09. This suggests that varying the percentage of TiB2 present in the composite could enhance the materials performance in water-based lubricants. In the aerospace drive shaft application, functional hardware coated with (Ti, Zr)B2 survived a variety of abuse and long-range durability tests, with contact pressures exceeding 2 GPa. For engine timing components, further work is planned to evaluate the Ultracoatings technology in direct injection and diesel engine conditions. In the final identified application space the dry solids pump hardware, discussions continue on the application of the Ultracoatings technology for those specific components

  6. Final report. Geothermal Energy Program: Information dissemination, public outreach, and technical analysis activities. April 1, 1999 to December 31, 2001. USDOE Grant No. DE-FG01-99-EE35098

    SciTech Connect

    Lund, John W.


    This is the final report of the accomplishments of the geothermal energy program: information dissemination, public outreach, and technical analysis activities by the project team consisting of the Geo-Heat Center, Geothermal Resources Council, Geothermal Education Office, Geothermal Energy Association, and the Washington State University Energy Program.

  7. Synthesis of 6-Methyl-9-propyldibenzothiophene-4-ol amended to 9-isopropyl-6-methyldibenzothiophene-4-ol. Final technical report, July 25, 1991--January 25, 1993

    SciTech Connect

    Eisenbraun, E.J.


    This is a draft final technical report on Task 1 of a contract to synthesize 6-Methyl-9-propyldibenzothiophene-4-ol, as amended to 9- isopropyl-6-methyldibenzothiophene-4-ol. This report is a compilation of data presented in earlier reports. The first annual report dealt with an attempted synthesis of 4-methoxy-6-methyl-9- propyldibenzothiophene (the original target compound), the successful synthesis and delivery of 200 grams of the sulfide 1,4-diethyl-2- [(2{prime}-methoxyphenyl)-thio]benzene, and initial work on a new synthesis route for the preparation of the new target compound 9- isopropyl-6-methyldibenzothiophene-4-ol. The change to the new target compound and the new synthesis route became necessary when it was learned that the sulfide mixture could not be cyclized to the substituted dibenzothiophene mixture. The second annual report described the successful preparation of 45 g of the new target compound using the new synthesis route. Subsequently funds were provided to synthesize an additional 45 g of the new target using the same reaction scheme. This task was recently completed.

  8. EECBG BBNP Final Technical Report

    SciTech Connect

    Energy, Austin


    City of Austin / Austin Energy’s Better Building Neighborhood Program grant accomplishments and lessons learned.

  9. Final Scientific/Technical Report

    SciTech Connect

    Newbold, Kenneth F.


    Led by James Madison University, Valley 25x?25 promotes using a diverse energy portfolio to achieve the goal of 25 percent renewable energy by 2025, including renewables like wind, biomass, solar, and geothermal. A primary emphasis is energy efficiency, which offers the best opportunities to decrease the use and impact of non-renewable energy sources. Endorsed by the national 25x?25 organization, Valley 25x?25 serves as an East Coast Demonstration Project, and as such, partners with regional businesses, local and state governments, institutions of higher education, and K-12 schools to explore how Valley resources can contribute to the development of innovative energy solutions.

  10. Alabama SEP Final Technical Report

    SciTech Connect

    Grimes, Elizabeth M.


    Executive Summary In the fall of 2010, the Alabama Department of Economic and Community Affairs (ADECA) launched the Multi-State Model for Catalyzing the National Home Energy Retrofit Market Project (Multi-State Project). This residential energy efficiency pilot program was a collaborative effort among the states of Alabama, Massachusetts, Virginia, and Washington, and was funded by competitive State Energy Program (SEP) awards through the U.S. Department of Energy (DOE). The objective of this project was to catalyze the home energy efficiency retrofit market in select areas within the state of Alabama. To achieve this goal, the project addressed a variety of marketplace elements that did not exist, or were underdeveloped, at the outset of the effort. These included establishing minimum standards and credentials for marketplace suppliers, educating and engaging homeowners on the benefits of energy efficiency and addressing real or perceived financial barriers to investments in whole-home energy efficiency, among others. The anticipated effect of the activities would be increased market demand for retrofits, improved audit to retrofit conversion rates and growth in overall community understanding of energy efficiency. The four-state collaborative was created with the intent of accelerating market transformation by allowing each state to learn from their peers, each of whom possessed different starting points, resources, and strategies for achieving the overall objective. The four partner states engaged the National Association of State Energy Officials (NASEO) to oversee a project steering committee and to manage the project evaluation for all four states. The steering committee, comprised of key program partners, met on a regular basis to provide overall project coordination, guidance, and progress assessment. While there were variances in program design among the states, there were several common elements: use of the Energy Performance Score (EPS) platform; an audit and home energy rating tool; emphasis on community based coordination and partnerships; marketing and outreach to increase homeowner participation; training for market actors; access to financing options including rebates, incentives, and loan products; and an in depth process evaluation to support continual program improvement and analysis. In Alabama, Nexus Energy Center operated energy efficiency retrofit programs in Huntsville and Birmingham. In the Huntsville community the AlabamaWISE program was available in five Alabama counties: Cullman, Lawrence, Limestone, Madison, and Morgan. In Birmingham, the program was available to residents in Jefferson and Shelby Counties. In both communities, the program was similar in terms of program design but tailored marketing and partnerships to address the unique local conditions and population of each community. ADECA and the Southeast Energy Efficiency Alliance (SEEA) provided overall project management services and common resources to the local program administrator Nexus Energy Center, including contracted services for contractor training, quality assurance testing, data collection and reporting, and compliance. The fundamental components of the AlabamaWISE program included a vertical contractor-based business model; comprehensive energy assessments; third-party quality assurance; rebates for installation of energy saving measures; accessible, low-interest financing; targeted and inbound marketing; Energy Performance Score (EPS) tool to engage and educate homeowners; training for auditors, contractors, and real estate professionals; and online resources for education and program enrollment. Program participants were eligible to receive rebates or financing toward the assessments and upgrades to their home provided they reached at least 20 percent deemed or modeled energy savings. The design of each program focused on addressing several known barriers including: limited homeowner knowledge on the benefits of energy efficiency, lack of financing options, lack of community support for energy efficiency programs, and lack of trained market actors including contractors and real estate professionals. The programs were able to make progress on addressing all of these barriers and were most successful in offering financing options and training market actors. The most challenging barriers proved to be the act of building a market for energy efficiency where none previously existed, convincing homeowners of the value in investing in energy efficiency (and therefore completing retrofits), engaging electric and natural gas utilities to partner on delivery, and achieving the overall project target of 1,365 completed retrofits. The components that proved to be the most valuable to program success were engaged contractor networks that could promote and endorse the program, partnerships with local business and organizations, and the access to rebates, incentives and financing mechanisms. The programs were successful in building relationships with a variety of community participants including: local contractors, Associations of REALTORS, home builders associations, universities, utilities, local and state governments, and other non-profit organizations. Throughout this program, 933 building audits and 795 building retrofits were completed making homes in Alabama more comfortable, less expensive to operate, more valuable to the marketplace, and safer and healthier for families. Continuing on this momentum, Nexus Energy Center plans to continue operating and expanding operations in Alabama as a Home Performance with ENERGY STAR sponsor and will continue to provide energy services and education to communities in Alabama.

  11. Final Scientific/Technical Report

    SciTech Connect

    Seinfeld, John H.


    This project addressed the following research need in the Atmospheric System Research (ASR) Science and Program Plan: "Measurements downwind of urban sources of aerosol particles and precursor gases have shown that the mass concentration of secondary organic aerosol (SOA) can be several-fold greater than can be explained on the basis of current model calculations using observed precursor concentrations. ASR will continue conducting laboratory experiments on both gas-phase and aqueous-phase SOA formation to characterize the particle formation and the organic gases that react to form new organic aerosol material on aerosol seeds. ASR will use these experiments to guide the development of comprehensive chemical mechanisms... to guide the development of parameterizations that are simple enough to be applied to aerosol life cycle models."

  12. Linear Corrugating - Final Technical Report

    SciTech Connect

    Lloyd Chapman


    Linear Corrugating is a process for the manufacture of corrugated containers in which the flutes of the corrugated medium are oriented in the Machine Direction (MD) of the several layers of paper used. Conversely, in the conventional corrugating process the flutes are oriented at right angles to the MD in the Cross Machine Direction (CD). Paper is stronger in MD than in CD. Therefore, boxes made using the Linear Corrugating process are significantly stronger-in the prime strength criteria, Box Compression Test (BCT) than boxes made conventionally. This means that using Linear Corrugating boxes can be manufactured to BCT equaling conventional boxes but containing 30% less fiber. The corrugated container industry is a large part of the U.S. economy, producing over 40 million tons annually. For such a large industry, the potential savings of Linear Corrugating are enormous. The grant for this project covered three phases in the development of the Linear Corrugating process: (1) Production and evaluation of corrugated boxes on commercial equipment to verify that boxes so manufactured would have enhanced BCT as proposed in the application; (2) Production and evaluation of corrugated boxes made on laboratory equipment using combined board from (1) above but having dual manufactures joints (glue joints). This box manufacturing method (Dual Joint) is proposed to overcome box perimeter limitations of the Linear Corrugating process; (3) Design, Construction, Operation and Evaluation of an engineering prototype machine to form flutes in corrugating medium in the MD of the paper. This operation is the central requirement of the Linear Corrugating process. Items I and II were successfully completed, showing predicted BCT increases from the Linear Corrugated boxes and significant strength improvement in the Dual Joint boxes. The Former was constructed and operated successfully using kraft linerboard as the forming medium. It was found that tensile strength and stretch characteristics of the corrugating medium were not sufficient to allow fluting this paper in the former. Possible causes and corrective actions to overcome this problem are addressed in the body of the report below.

  13. GOWind Project Final Technical Report

    SciTech Connect

    Hatton, Ian


    To obtain a permit, to construct, to connect 3x6MW permanent magnet direct drive wind power generators, and to deliver to the ERCOT grid 18MW of renewable energy from up to 5 miles offshore San Pedro Island, Texas. To further develop the site to accommodate up to 1000MW of productivity and thereby drive down the average cost of construction, making offshore wind power economically competitive with alternative sources of energy.

  14. Final Technical Report of Research

    DOE R&D Accomplishments

    Taube, H.


    The studies conducted embrace the following subject areas: ion solvation, mechanistic studies on substitution reactions in metal complexes, oxidation of coordinated ligands, mechanistic studies on electron transfer reactions, preparation and characterization of new species in the aquo and ammino systems.


    Office of Scientific and Technical Information (OSTI)

    into the coastal ocean, their impact on water column ecosystems extend for up to a ... fixation gene expression in surface water, with greater heterokont rbcL RNA at SCM depths. ...

  16. Final Technical Report Phase I

    SciTech Connect

    Dr. Robert J. Macek


    Low energy electrons (often referred to as "electron clouds") in the beam chambers of high intensity accelerators and storage rings can limit their performance. They can limit intensity by causing instabilities, unacceptable pressure increases or increases in beam size. Thus, reliable simulations of electron cloud generation in the Los Alamos high intensity Proton Storage Ring (PSR) and similar machines would be a most valuable tool for improving our understanding of its origin, the parameters that affect it and how it might be controlled. Such tools would provide cost-effective methods for designing mitigation measures and evaluating them before going to the expense of fabrication and experimental testing in an operating accelerator facility. In this project we have developed and tested several significant improvements to a widely used electron cloud simulation code, POSINST. In our version, LANLPOSINST V6, we have add several important features including the capability to model a multi-element section of the ring consisting of two quadrupole magnets with 3-dimensional magnetic fields, dipole magnet end fields, several drift spaces and various electron cloud diagnostics. Improvements were also added to the modeling of the initial primary or â??seedâ? electrons from proton beam losses. One important conclusion from benchmarking these improvements was the need to include â??seedâ? electrons produced from secondary particles resulting from the primary proton beam losses.


    Office of Scientific and Technical Information (OSTI)

    THE ECOLOGY AND GENOMICS OF CO 2 FIXATIION IN OCEANIC RIVER PLUMES Project ID: 0001592 PI: ... This offshore plume station was dominated by Synechcoccus in the surface and prasinophytes ...

  18. Alkaline Electrolysis Final Technical Report

    SciTech Connect

    RIchard Bourgeois; Steven Sanborn; Eliot Assimakopoulos


    In this project, GE developed electrolyzer stack technologies to meet DOE’s goals for low cost electrolysis hydrogen. The main barrier to meeting the targets for electrolyzer cost was in stack assembly and construction. GE’s invention of a single piece or “monolithic” plastic electrolyzer stack reduces these costs considerably. In addition, GE developed low cost cell electrodes using a novel application of metal spray coating technology. Bench scale stack testing and cost modeling indicates that the DOE targets for stack capital cost and efficiency can be met by full-scale production of industrial electrolyzers incorporating GE’s stack technology innovations.

  19. Final Scientific/Technical Report

    SciTech Connect

    Dr. Michael Strasik


    Boeing Phantom Works and its team originally proposed a three-year Phase III SPI project to develop a 30-kWh flywheel with a 100 kW power capability as a power risk management system (RMS) for power users and providers. The chief objectives for the Risk Management System Flywheel were to (1) demonstrate its ability to protect a critical load such as a small data center from swings in power availability, cost, and power factor and (2) show that the RMS flywheel can perform these functions with reduced noise, emissions, and operating costs when compared with non-HTS competitors including batteries, diesel generators, and microturbines.

  20. Department of Energy Acquisition Regulation (DEAR) Technical... [DOE] (indexed site)

    of Energy Acquisition Regulation (DEAR) Technical Amendment-Final Rule (172.78 KB) More Documents & Publications Department of Energy Acquisition Regulation (DEAR) Technical ...

  1. Technical Support Document for the Department of Energy's Notice...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Technical Support Document for the Department of Energy's Notice of Final Rulemaking Technical Support Document for the Department of Energy's Notice of Final Rulemaking In this ...

  2. Final Project Report

    SciTech Connect

    Wang, Qiang; Dandy, David S.


    This is the final technical report of the DOE project DE-FG02-07ER46448 awarded to Colorado State University.

  3. Illinois Clean Coal Institute 2005 annual report. Final technical report for the period September 1st, 2004, through August 31, 2005 on projects funded by the Illinois Department of Commerce and Economic Opportunity

    SciTech Connect


    This final technical report contains the abstracts and executive summaries of projects funded through the Illinois Clean Coal Institute solicitation entitled 'Request for proposals No. 04-1(ICCI/RFP04-1)'. Support of these projects is by the Office of Coal Development and Department of Commerce and Economic Opportunity. The projects fall into the following categories: advanced coal mining technologies; coal preparation and coal production business practice; management of coal combustion byproducts; commercialization and technology transfer. Final project extensions are also recorded.

  4. Program of technical assistance to the Organization for the Prohibition of Chemical Weapons - lessons learned from the U.S. program of technical assistance to IAEA safeguards. Final report

    SciTech Connect


    The Defense Nuclear Agency is sponsoring a technical study of the requirements of a vehicle to meet the OPCW`s future needs for enhanced chemical weapons verification capabilities. This report provides information about the proven mechanisms by which the U.S. provided both short- and long-term assistance to the IAEA to enhance its verification capabilities. Much of the technical assistance has generic application to international organizations verifying compliance with disarmament treaties or conventions. In addition, some of the equipment developed by the U.S. under the existing arrangements can be applied in the verification of other disarmament treaties or conventions. U.S. technical assistance to IAEA safeguards outside of the IAEA`s regular budget proved to be necessary. The U.S. technical assistance was successful in improving the effectiveness of IAEA safeguards for its most urgent responsibilities and in providing the technical elements for increased IAEA {open_quotes}readiness{close_quotes} for the postponed responsibilities deemed important for U.S. policy objectives. Much of the technical assistance was directed to generic subjects and helped to achieve a system of international verification. It is expected that the capabilities of the Organization for the Prohibition of Chemical Weapons (OPCW) to verify a state`s compliance with the {open_quotes}Chemical Weapons Convention{close_quotes} will require improvements. This report presents 18 important lessons learned from the experience of the IAEA and the U.S. Program of Technical Assistance to IAEA Safeguards (POTAS), organized into three tiers. Each lesson is presented in the report in the context of the difficulty, need and history in which the lesson was learned. Only the most important points are recapitulated in this executive summary.

  5. Technical Standards

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Review for Technical Standards of Interest Legend: Red = Technical Standards Program Activities and Responsibilities Blue = Directives Program Activities and Responsibilities

  6. Technical Review Panel Report

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    TRP Report v7, 12 Aug 2012 TRP Report Final December 2012 Advanced Reactor Concepts Technical Review Panel Report Evaluation and Identification of future R&D on eight Advanced Reactor Concepts, conducted April - September 2012 December 2012 Public release version 2 Public release version 3 Table of Contents Summary ................................................................................................................................... 4 1. Overview of the Technical Review Panel

  7. Technical Position, Regarding Appropriate Accountable Sealed... [DOE] (indexed site)

    More Documents & Publications EA-1086: Final Environmental Assessment Radiological Control Technical Position, Regarding Surface Contamination Values for Alpha-Emitting...

  8. Technical and economic feasibility of the low energy geothermal sources in Europe. Appendices. Final report. Faisabilite technique et economique de la geothermie basse energie en Europe. Annexes

    SciTech Connect

    Not Available


    This is Part 2 of an earlier report and comprises 14 appendices of technical matter covering the determination of hydrogeological characteristics in a geothermal system, provisional technical programs for such things as drilling and well-tubing, influence of climatic data, heat exchangers and pumps, cost of production and injection pumps, transportation of geothermal water, examples of heat balances in industries such as the malting, brewing, dairy and tannery industries, and the utilization of a geothermal source in the mineral industry. Detailed reports are given for each of the systems already in existence in France. The present geothermal situation in Italy is reviewed together with projects and forecasts of use.


    SciTech Connect

    Ron Moon


    This final scientific report documents the Industrial Technology Program (ITP) Stage 2 Concept Development effort on Data Center Energy Reduction and Management Through Real-Time Optimal Control (RTOC). Society is becoming increasingly dependent on information technology systems, driving exponential growth in demand for data center processing and an insatiable appetite for energy. David Raths noted, 'A 50,000-square-foot data center uses approximately 4 megawatts of power, or the equivalent of 57 barrels of oil a day1.' The problem has become so severe that in some cases, users are giving up raw performance for a better balance between performance and energy efficiency. Historically, power systems for data centers were crudely sized to meet maximum demand. Since many servers operate at 60%-90% of maximum power while only utilizing an average of 5% to 15% of their capability, there are huge inefficiencies in the consumption and delivery of power in these data centers. The goal of the 'Recovery Act: Decreasing Data Center Energy Use through Network and Infrastructure Control' is to develop a state of the art approach for autonomously and intelligently reducing and managing data center power through real-time optimal control. Advances in microelectronics and software are enabling the opportunity to realize significant data center power savings through the implementation of autonomous power management control algorithms. The first step to realizing these savings was addressed in this study through the successful creation of a flexible and scalable mathematical model (equation) for data center behavior and the formulation of an acceptable low technical risk market introduction strategy leveraging commercial hardware and software familiar to the data center market. Follow-on Stage 3 Concept Development efforts include predictive modeling and simulation of algorithm performance, prototype demonstrations with representative data center equipment to verify requisite

  10. Department of Energy Acquisition Regulation (DEAR) Technical

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Amendment-Final Rule | Department of Energy Energy Acquisition Regulation (DEAR) Technical Amendment-Final Rule Department of Energy Acquisition Regulation (DEAR) Technical Amendment-Final Rule PF2009-66.pdf (171.29 KB) PF2009-66a - Attachment-Department of Energy Acquisition Regulation (DEAR) Technical Amendment-Final Rule (172.78 KB) More Documents & Publications Department of Energy Acquisition Regulation (DEAR) Final Rule for Subchapters A, B, and C Department of Energy Acquisition

  11. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox basin, Utah. Final technical progress report, October 1--December 31, 1995

    SciTech Connect

    Allison, M.L.


    The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide-(CO{sub 2}) flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. The results of this project will be transferred to industry and other researchers through a petroleum extension service, creation of digital databases for distribution, technical workshops and seminars, field trips, technical presentations at national and regional professional meeting, and publication in newsletters and various technical or trade journals. Five activities continued this quarter as part of the geological and reservoir characterization of carbonate mound buildups in the Paradox basin: (1) regional facies evaluation, (2) evaluation of outcrop analogues, (3) field-scale geologic analysis, (4) reservoir analysis, and (5) technology transfer.

  12. Final Technical Report on STTR Project DE-FG02-06ER86282 Development and Demonstration of 6-Dimensional Muon Beam Cooling

    SciTech Connect

    Muons, Inc.


    The overarching purpose of this project was to prepare a proposal for an experiment to demonstrate 6-dimensional muon beam cooling. The technical objectives were all steps in preparing the proposal, which was successfully presented to the Fermilab Accelerator Advisory Committee in February 2009. All primary goals of this project have been met.

  13. Wyoming coal-conversion project. Final technical report, November 1980-February 1982. [Proposed WyCoalGas project, Converse County, Wyoming; contains list of appendices with title and identification

    SciTech Connect


    This final technical report describes what WyCoalGas, Inc. and its subcontractors accomplished in resolving issues related to the resource, technology, economic, environmental, socioeconomic, and governmental requirements affecting a project located near Douglas, Wyoming for producing 150 Billion Btu per day by gasifying sub-bituminous coal. The report summarizes the results of the work on each task and includes the deliverables that WyCoalGas, Inc. and the subcontractors prepared. The co-venturers withdrew from the project for two reasons: federal financial assistance to the project was seen to be highly uncertain; and funds were being expended at an unacceptably high rate.

  14. Cumulative Effects of Micro-Hydro Development on the Fisheries of the Swan River Drainage, Montana, Volume II, Technical Information, 1983-1984 Final Report.

    SciTech Connect

    Leathe, Stephen A.


    This report summarizes a study to determine the potential cumulative effects of proposed small hydro development on the fisheries of the Swan River drainage. This report contains technical information and is a support document for the main report (Leathe and Enk, 1985). Consequently, discussion of results was minimized. The sections on fish population monitoring, streambed monitoring, habitat survey comparisons, and water temperature are the only portions that were not discussed in the main report. 5 refs., 55 figs., 44 tabs.

  15. SAM Technical Review Committee Final Report: Summary and Key Recommendations from the Onsite TRC Meeting Held April 22-23, 2013

    SciTech Connect

    Blair, N.; Dobos, S.; Janzou, S.; Gilman, P.; Freeman, J.; Kaffine, L.


    The System Advisor Model (SAM) is a broad and robust set of models and frameworks for analyzing both system performance and system financing. It does this across a range of technologies dominated by solar technologies including photovoltaics (PV) and concentrated solar power (CSP). The U.S. Department of Energy (DOE) Solar Energy Technology Program requested the SAM development team to review the photovoltaic performance modeling with the development community and specifically, with the independent engineering community. The report summarizes the major effort for this technical review committee (TRC).

  16. New Metallization Technique Suitable for 6-MW Pilot Production of Efficient Multicrystalline Solar Cells Using Upgraded Metallurgical Silicon: Final Technical Progress Report, December 17, 2007-- June 16, 2009

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report describes CaliSolar's work as a Photovoltaic Technology Incubator awardee within the U.S. Department of Energy's Solar Energy Technologies Program. The term of this subcontract with the National Renewable Energy Laboratory was two years. During this time, CaliSolar evolved from a handful of employees to over 100 scientists, engineers, technicians, and operators. On the technical side, the company transitioned from a proof-of-concept through pilot-scale to large-scale industrial production. A fully automated 60-megawatt manufacturing line was commissioned in Sunnyvale, California. The facility converts upgraded metallurgical-grade silicon feedstock to ingots, wafers, and high-efficiency multicrystalline solar cells.

  17. Design and fabrication of a low-cost Darrieus vertical-axis wind-turbine system, Phase II. Volume 2. Final technical report

    SciTech Connect

    Not Available


    This report describes Alcoa's successful fabrication, installation, and check-out of 100-kW 17-metre Vertical-Axis Wind Turbines (VAWTs). The turbines are Darrieus-type VAWTs with rotors 17 meters (55 feet) in diameter and 25.15 metres (83 feet) in height. They can produce 100 kW of electric power at a cost of energy as low as 3 cents per kWh, in an 18-mph wind regime using 12% annualized costs. Four turbines were produced; three are installed and are operable at (1) the Wind Systems Test Center, Rocky Flats, Colorado; (2) the US Department of Agriculture Conservation and Production Research Center at Bushland, Texas; and (3) Tisbury Water Authority, Vineyard Haven, Massachusetts, on the island of Martha's Vineyard. The fourth turbine is stored at Bushland, Texas, awaiting selection of an erection site. Technical direction was provided to Alcoa by Sandia National Laboratories. Contract results are documented in this report (SAND82-7113) and in the Phase I Technical Report (ALO-4272), both of which are available through NTIS.

  18. PV String to 3-Phase Inverter with Highest Voltage Capabilities, Highest Efficiency and 25 Year Lifetime: Final Technical Report, November 7, 2011 - November 6, 2012

    SciTech Connect

    West, R.


    Final report for Renewable Power Conversion. The overall objective of this project was to develop a prototype PV inverter which enables a new utility-scale PV system approach where the cost, performance, reliability and safety benefits of this new approach have the potential to make all others obsolete.

  19. Flatsheet_Final

    Office of Environmental Management (EM)

    Department of Energy First Solar AVSR Solar Ranch Technical Eligibility Re-Evaluation Memo First Solar AVSR Solar Ranch Technical Eligibility Re-Evaluation Memo First_Solar_AVSR_Solar_Ranch_One_Technical_Eligibility_Re-Evaluation.pdf (81.63 KB) More Documents & Publications ANTELOPE VALLEY SOLAR RANCH EA-1826: Final Environmental Assessment REEE Solicitation Public Meeting Presentation Department of Energy

    First Step to Spur U.S. Manufacturing of Small Modular Nuclear Reactors

  20. Final Report. SFAA No. DEFC02-98CH10961. Technical assistance for joint implementation and other supporting mechanisms and measures for greenhouse gas emissions mitigation

    SciTech Connect

    Knight, Denise


    IIEC, a division of CERF, has developed an extensive base of experience implementing activities that support climate action by developing USIJI projects in transitional countries within Asia, Latin America, Central and Eastern Europe, and southern Africa. IIEC has been able to provide a range of technical and policy assistance to governments and industry in support of sustainable energy use. IIEC continues to work in key countries with local partners to develop and implement energy efficiency policies and standards, develop site-specific projects, and assist governing bodies to establish national priorities and evaluation criteria for approving GHG-mitigation projects. As part of this project, IIEC focused on promoting a series of activities in Thailand and South Africa in order to identify GHG mitigation projects and work within the national approval process of those countries. The sections of this report outline the activities conducted in each country in order to achieve that goal.

  1. Aurora final report

    SciTech Connect

    Robert, Dross; Amedeo, Conti


    Final Technical report detailing the work done by Nuvera and its partners to fulfill the goals of the program "Transport Studies Enabling Efficiency Optimization of Cost-Competitive Fuel Cell Stacks" (a.k.a. AURORA)

  2. Final Technical Report on the Genome Sequence DataBase (GSDB): DE-FG03 95 ER 62062 September 1997-September 1999

    SciTech Connect

    Harger, Carol A.


    Since September 1997 NCGR has produced two web-based tools for researchers to use to access and analyze data in the Genome Sequence DataBase (GSDB). These tools are: Sequence Viewer, a nucleotide sequence and annotation visualization tool, and MAR-Finder, a tool that predicts, base upon statistical inferences, the location of matrix attachment regions (MARS) within a nucleotide sequence. [The annual report for June 1996 to August 1997 is included as an attachment to this final report.

  3. Technical Guidance [DOE]

    The Office of Technical Guidance, within the Office of Health, Safety and Security develops and issues Government-wide and Department-wide technical guidance to ensure that classified nuclear...

  4. Phase 3 of a Brushless Doubly-Fed Machine System Development Program : Final Technical Report for Period January 1, 1992-June 30, 1993.

    SciTech Connect

    Alexander, Gerald C.; Spee, Rene; Wallace, Alan K.


    Since the inception of the BDFM development program in 1989, the value of BDFM technology has become apparent. The BDFM provides for adjustable speed, synchronous operation while keeping costs associated with the required power conversion equipment lower than in competing technologies. This provides for an advantage in initial as well as maintenance expenses over conventional drive system. Thus, the BDFM enables energy efficient, adjustable speed process control for applications where established drive technology has not been able to deliver satisfactory returns on investment. At the same time, the BDFM challenges conventional drive technologies in established markets by providing for improved performance at lower cost. BDFM converter rating is kept at a minimum, which significantly improves power quality at the utility interface over competing power conversion equipment. In summary, BDFM technology can be expected to provide significant benefits to utilities as well as their customers. This report discusses technical research and development activities related to Phase 3 of the Brushless Doubly-Fed Machine System Development Program, including work made possible by supplemental funds for laboratory improvement and prototype construction. Market research for the BDFM was provided by the College of Business at Oregon State University; market study results will be discussed in a separate report.

  5. Final Technical Report - 300???°C Capable Electronics Platform and Temperature Sensor System For Enhanced Geothermal Systems

    SciTech Connect

    Cheng-Po Chen; David Shaddock; Peter Sandvik; Rich Saia; Amita Patil, Alexey Vert; Tan Zhang


    A silicon carbide (SiC) based electronic temperature sensor prototype has been demonstrated to operate at 300???°C. We showed continuous operation of 1,000 hours with SiC operational amplifier and surface mounted discreet resistors and capacitors on a ceramic circuit board. This feasibility demonstration is a major milestone in the development of high temperature electronics in general and high temperature geothermal exploration and well management tools in particular. SiC technology offers technical advantages that are not found in competing technologies such as silicon-on-insulator (SOI) at high temperatures of 200???°C to 300???°C and beyond. The SiC integrated circuits and packaging methods can be used in new product introduction by GE Oil and Gas for high temperature down-hole tools. The existing SiC fabrication facility at GE is sufficient to support the quantities currently demanded by the marketplace, and there are other entities in the United States and other countries capable of ramping up SiC technology manufacturing. The ceramic circuit boards are different from traditional organic-based electronics circuit boards, but the fabrication process is compatible with existing ceramic substrate manufacturing. This project has brought high temperature electronics forward, and brings us closer to commercializing tools that will enable and reduce the cost of enhanced geothermal technology to benefit the public in terms of providing clean renewable energy at lower costs.

  6. Simultaneous high-temperature removal of alkali and particulates in a pressurized gasification system. Final technical progress report, April 1981-July 1983

    SciTech Connect

    Mulik, P.R.; Alvin, M.A.; Bachovchin, D.M.


    This program is directed at performing experimental and analytical investigations, deriving system designs, and estimating costs to ascertain the feasibility of using aluminosilicate-based getters for controlling alkali in pressurized gasification systems. Its overall objective is to develop a plan for evaluating a scaled-up version of the gettering process as a unit operation or as an integral part of a particulate removal device. This report describes work completed on the four technical program tasks: Thermodynamic projections; Getter Selection and Qualification; System Performance Projections; and Program Definition for Concept Scale-up during the 27-month contract performance period. Work completed on the thermodynamic projections includes a data base update, development of alkali phase diagrams, and system performance projections. Getter selection and qualification efforts involved over 70 kinetic studies in which a leading candidate getter - emathlite - was selected and characterized. System performance projections identified a packed-bed configuration containing relatively large getter pellets as the preferred contacting device for a full-scale unit. For emathlite, we concluded that full-scale unit bed heights of 2 m or less would be required if we assume annual replacement on the basis of bed saturation capacity. Concept scale-up work involved defining the hardware and test program requirements for further development of the emathlite packed-bed system. 56 references, 80 figures, 74 tables.

  7. Spent Fuel Test-Climax: An evaluation of the technical feasibility of geologic storage of spent nuclear fuel in granite: Final report

    SciTech Connect

    Patrick, W.C.


    In the Climax stock granite on the Nevada Test Site, eleven canisters of spent nuclear reactor fuel were emplaced, and six electrical simulators were energized. When test data indicated that the test objectives were met during the 3-year storage phase, the spent-fuel canisters were retrieved and the thermal sources were de-energized. The project demonstrated the feasibility of packaging, transporting, storing, and retrieving highly radioactive fuel assemblies in a safe and reliable manner. In addition to emplacement and retrieval operations, three exchanges of spent-fuel assemblies between the SFT-C and a surface storage facility, conducted during the storage phase, furthered this demonstration. The test led to development of a technical measurements program. To meet these objectives, nearly 1000 instruments and a computer-based data acquisition system were deployed. Geotechnical, seismological, and test status data were recorded on a continuing basis for the three-year storage phase and six-month monitored cool-down of the test. This report summarizes the engineering and scientific endeavors which led to successful design and execution of the test. The design, fabrication, and construction of all facilities and handling systems are discussed, in the context of test objectives and a safety assessment. The discussion progresses from site characterization and experiment design through data acquisition and analysis of test data in the context of design calculations. 117 refs., 52 figs., 81 tabs.

  8. Technology, safety and costs of decommissioning a reference boiling water reactor power station: Technical support for decommissioning matters related to preparation of the final decommissioning rule

    SciTech Connect

    Konzek, G.J.; Smith, R.I.


    Preparation of the final Decommissioning Rule by the Nuclear Regulatory Commission (NRC) staff has been assisted by Pacific Northwest Laboratory (PNL) staff familiar with decommissioning matters. These efforts have included updating previous cost estimates developed during the series of studies of conceptually decommissioning reference licensed nuclear facilities for inclusion in the Final Generic Environmental Impact Statement (FGEIS) on decommissioning; documenting the cost updates; evaluating the cost and dose impacts of post-TMI-2 backfits on decommissioning; developing a revised scaling formula for estimating decommissioning costs for reactor plants different in size from the reference boiling water reactor (BWR) described in the earlier study; and defining a formula for adjusting current cost estimates to reflect future escalation in labor, materials, and waste disposal costs. This report presents the results of recent PNL studies to provide supporting information in three areas concerning decommissioning of the reference BWR: updating the previous cost estimates to January 1986 dollars; assessing the cost and dose impacts of post-TMI-2 backfits; and developing a scaling formula for plants different in size than the reference plant and an escalation formula for adjusting current cost estimates for future escalation.

  9. NASPI Synchrophasor Technical Report Phasor Tools Visualization Workshop Technical Summary

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    1 NASPI Synchrophasor Technical Report Phasor Tools Visualization Workshop Technical Summary February 28, 2012 Workshop June 13, 2012 Final Report Context This technical material was developed in June, 2012 by the North American SynchroPhasor Initiative, a collaboration between the North American electric industry (utilities, grid operators, vendors and consultants), the North American Electric Reliability Corporation, academics, and the U.S. Department of Energy, to advance and accelerate the

  10. Free-piston Stirling engine diaphragm-coupled Heat-Actuated Heat Pump component technology program: Volume 1, Phase 2A and 2B final report: Technical discussion

    SciTech Connect

    Ackermann, R.A.


    This report presents the results of an effort to develop and demonstrate the technical feasibility of a residential size Stirling-engine-driven diaphragm-coupled compressor for a heat pump application. The heat pump module consists of a 3-kW free-piston Stirling engine (FPSE), an efficient hydraulic transmission, and a nominal 3-ton capacity refrigerant (R-22) reciprocating compressor. During earlier Phase 1 activity, the lower end (hydraulic transmission and compressor) was designed, fabricated, mated to an existing Mechanical Technology Incorporated (MTI) FPSE, and tested. After several years of development, this heat pump module achieved a capacity of 2.5 refrigeration tons at 95/degree/F ambient conditions. While this was below the module's rated 3.0-ton capacity, it demonstrated the potential of the FPSE heat pump (FPSE/HP) and identified a lack of engine power as the main reason for the low capacity. During a companion engine development program sponsored by the Gas Research Institute, the engine was improved by developing a new displacer drive that increased the FPSE's power capability. During Phase 2, the new engine, the Mark I, was mated to the lower end (transmission/compressor) and tested. The testing of the Mark I FPSE/HP module was very successful, with the system achieving its 3.0-ton capacity goal and all other proof-of-concepts targets. Included herein is a discussion of the Phase 2 activity, including the results of the Mark I FPSE/HP module testing, a component design effort of several key lower end components that was performed to optimize the design, and the Lennox evaluation. 91 figs., 36 tabs.

  11. Demonstration of oxygen-enriched air staging at Owens-Brockway glass containers. Final technical report for the period April 1, 1995--February 28, 1997

    SciTech Connect

    Rue, D.; Abbasi, H.


    The overall objective of this program was to demonstrate the use of a previously developed combustion modification technology to reduce NO{sub x} emissions from sideport regenerative container glass melters. Specific objectives were to: acquire baseline operating data on the host sideport furnace, evaluate secondary oxidant injection strategies based on earlier endport furnace results and through modeling of a single port pair, retrofit and test one port pair (the test furnace has six port pairs) with a flexible OEAS system, and select the optimal system configuration, use the results from tests with one port pair to design, retrofit, and test OEAS on the entire furnace (six port pairs), and analyze test results, prepare report, and finalize the business plan to commercialize OEAS for sideport furnaces.

  12. Optimization of Phase-Engineered a-Si:H-Based Multi-Junction Solar Cells: Final Technical Report, October 2001-July 2005

    SciTech Connect

    Wronski, C. R.; Collins, R. W.; Podraza, N. J.; Vlahos, V.; Pearce, J. M.; Deng, J.; Albert, M.; Ferreira, G. M.; Chen, C.


    The scope of the work under this subcontract has involved investigating engineered improvements in the performance and stability of solar cells in a systematic way, which included the following four tasks: (1) Materials research and device development; (2) Process improvement directed by real time diagnostics; (3) Device loss mechanisms; and (4) Characterization strategies for advanced materials Our work has resulted in new and important insights into the deposition of a-Si:H-based materials, as well as into the nature of the Staebler-Wronski Effect (SWE). Presumably, many of these insights will be used by industrial partners to develop more systematic approaches in optimizing solar cells for higher performance and stability. This effort also cleared up several serious misconceptions about the nature of the p-layer in cells and the SWE in materials and cells. Finally, the subcontract identified future directions that should be pursued for greater understanding and improvement.

  13. Final Technical Report for Collaborative Research: Regional climate-change projections through next-generation empirical and dynamical models, DE-FG02-07ER64429

    SciTech Connect

    Smyth, Padhraic


    This is the final report for a DOE-funded research project describing the outcome of research on non-homogeneous hidden Markov models (NHMMs) and coupled ocean-atmosphere (O-A) intermediate-complexity models (ICMs) to identify the potentially predictable modes of climate variability, and to investigate their impacts on the regional-scale. The main results consist of extensive development of the hidden Markov models for rainfall simulation and downscaling specifically within the non-stationary climate change context together with the development of parallelized software; application of NHMMs to downscaling of rainfall projections over India; identification and analysis of decadal climate signals in data and models; and, studies of climate variability in terms of the dynamics of atmospheric flow regimes.

  14. Final Technical Report Advanced Anchoring Technology DOE Award Number DE-EE0003632 Project Period 09/10 - 09/12

    SciTech Connect

    Meggitt, Dallas J


    anchor systems and the associated drilling and grouting systems to demonstrate the feasibility and practicality of micropile anchors. This report presents several conceptual system designs for different applications. This project has concluded that grouted marine micropile anchor technology is practical and very attractive technically and financially for marine renewable energy applications. This technology is considered to be at a Technology Readiness Level 5.

  15. The plasma centrifuge: A compact, low cost, stable isotope separator. Phase 2 final technical report, September 15, 1991--September 14, 1995

    SciTech Connect

    Guss, W.


    Enriched stable isotopes are required for production of radionuclides as well as for research and diagnostic uses. Science Research Laboratory (SRL) has developed a plasma centrifuge for moderate throughput of enriched stable isotopes, such as {sup 13}C, {sup 17}O, {sup 18}O, and {sup 203}Tl, for medical as well as other applications. Dwindling isotope stocks have restricted the use of enriched isotopes and their associated labeled organic molecules in medical imaging to very few research facilities because of high costs of isotope separation. With the introduction of the plasma centrifuge separator, the cost per separated gram of even rarely occurring isotopes ({le} 1% natural abundance) is potentially many times lower than with other separation technologies (cryogenic distillation and calutrons). The centrifuge is a simple, robust, pulsed electrical discharge device that has successfully demonstrated isotope separation of small (mg) quantities of {sup 26}Mg. Based on the results of the Phase 2 program, modest enhancements to the power supplies and cooling systems, a centrifuge separator will have high repetition rate (60 pps) and high duty cycle (60%) to produce in one month kilogram quantities of highly enriched stable isotopes. The centrifuge may be used in stand-alone operation or could be used as a high-throughput pre-separation stage with calutrons providing the final separation.

  16. A study of the effects of enhanced oil recovery agents on the quality of Strategic Petroleum Reserves crude oil. Final technical report

    SciTech Connect

    Kabadi, V.N.


    The project was initiated on September 1, 1990. The objective of the project was to carry out a literature search to estimate the types and extents of long time interactions of enhanced oil recovery (EOR) agents, such as surfactants, caustics and polymers, with crude oil. This information is necessary to make recommendations about mixing EOR crude oil with crude oils from primary and secondary recovery processes in the Strategic Petroleum Reserve (SPR). Data were sought on both adverse and beneficial effects of EOR agents that would impact handling, transportation and refining of crude oil. An extensive literature search has been completed, and the following informations has been compiled: (1) a listing of existing EOR test and field projects; (2) a listing of currently used EOR agents; and (3) evidence of short and long term physical and chemical interactions of these EOR-agents with hydrocarbons, and their effects on the quality of crude oil at long times. This information is presented in this report. Finally some conclusions are derived and recommendations are made. Although the conclusions are based mostly on extrapolations because of lack of specific data, it is recommended that the enhancement of the rates of biodegradation of oil catalyzed by the EOR agents needs to be further studied. There is no evidence of substantial long term effects on crude oil because of other interactions. Some recommendations are also made regarding the types of studies that would be necessary to determine the effect of certain EOR agents on the rates of biodegradation of crude oil.

  17. Final technical report for project titled Quantitative Characterization of Cell Aggregation/Adhesion as Predictor for Distribution and Transport of Microorganisms in Subsurface Environment

    SciTech Connect

    Gu, April Z; Wan, Kai-tak


    -surface interactions is essential for the field. To tackle this, we have developed a number of new Bio-nanomechanical techniques, including reflection interference contrast microscopy (RICM) and bio-AFM (Atomic Force Microscopy), for cell adhesion-detachment measurement of the long-range surface interactions, in combination with mathematical modeling, which would allow us to characterize the mechanical behavior from single cell to multi-cell aggregate, critical thresholds for large scale coaggregation and transportation of cells and aggregates in the presence of long range inter-surface forces etc. Although some technical and mathematical challenges remain, the preliminary results promise great breakthrough potential. In this study, we investigated the cellular surface characteristics of representative bio-remediating microorganisms relevant to DOE IFRC (Integrated Field-Scale Subsurface Research Challenges) sites and their transport behaviors in porous media, aiming to draw a groundbreaking correlation between the micro-scale genetic and biological origin-based cell surface properties, the consequent mechanical adhesion and aggregation behaviors, and the macro-scale microbial mobility and retention in porous media, which are unavailable in the literature. The long-term goal is to significantly improve the mechanistic and quantitative understanding of microbial mobility, sorption, and transport within reactive transport models as needed to manipulate subsurface contaminant fate and transport predictions.

  18. Tolerance of Three-Stage CIGS Deposition to Variations Imposed by Roll-to-Roll Processing: Final Technical Report, May 2003 - September 2005

    SciTech Connect

    Beck, M. E.; Britt, J. S.


    Three-stage co-evaporation of CIGS imposes stringent limits on the parameter space if high-efficient devices are to result. Substrate temperatures during the 1st stage (as well as during the 2nd and 3rd stage), Se partial pressure, and amount of Na supplied are critical for good nucleation, proper In-Ga-selenide precursor phase, and diffusion of Cu into the precursor, as well as diffusion of Ga through the film. In addition, the degree of Cu-rich excursion impacts maximum performance and process tolerance. Enveloping the above is the basic time-temperature profile inextricably linked to the metals delivery rates. Although high-efficiency, three-stage deposited CIGS devices on the R&D scale are grown at about 20-45 minutes to thicknesses of 2 to 2.5 m, the latter is not a viable approach for an economic manufacturing process. At Global Solar Energy, Inc., CIGS films are typically grown in about 6 minutes to thicknesses of less than 2 m. At the same time, the emissivity and thermal conductivity of stainless steel is vastly different from that of glass, and the reduced growth time poses restrictions on the substrate temperature ramp rates and diffusion of species (reaction kinetics). Material compatibility in the highly corrosive Se environment places limitations on the substrate heaters; i.e., substrate temperatures. Finally, one key advantage of a RTR deposition approach (compact equipment) restricts post CIGS Se exposure and cool-down rates to be vastly different than those practiced in the laboratory.


    SciTech Connect



    In order to reduce the current excesses of plutonium (both weapon grade and reactor grade) and other transuranium elements, a concept of inert matrix fuel (IMF) has been proposed for an uranium free transmutation of fissile actinides which excludes continuous uranium-plutonium conversion in thermal reactors and advanced systems. Magnesium oxide (MgO) is a promising candidate for inert matrix (IM) materials due to its high melting point (2827 C), high thermal conductivity (13 W/K {center_dot} m at 1000 C), good neutronic properties, and irradiation stability However, MgO reacts with water and hydrates easily, which prevents it from being used in light water reactors (LWRs) as an IM. To improve the hydration resistance of MgO-based inert matrix materials, Medvedev and coworkers have recently investigated the introduction of a secondary phase that acts as a hydration barrier. An MgO-ZrO{sub 2} composite was specifically studied and the results showed that the composite exhibited improved hydration resistance than pure MgO. However, ZrO{sub 2} is insoluble in most acids except HF, which is undesirable for fuel reprocessing. Moreover, the thermal conductivity of ZrO{sub 2} is low and typically less than 3 W {center_dot} m{sup -1} {center_dot} K{sup -1} at 1000 C. In search for an alternative composite strategy, Nd{sub 2}Zr{sub 2}O{sub 7}, an oxide compound with pyrochlore structure, has been proposed recently as a corrosion resistant phase, and MgO-Nd{sub 2}Zr{sub 2}O{sub 7} composites have been investigated as potential IM materials. An adequate thermal conductivity of 6 W {center_dot} m{sup -} 1 {center_dot} K{sup -1} at 1000 C for the MgO-Nd{sub 2}Zr{sub 2}O{sub 7} composite with 90 vol% MgO was recently calculated and reported. Other simulations proposed that the MgO-pyrochlore composites could exhibit higher radiation stability than previously reported. Final optimization of the composite microstructure was performed on the 70 vol% MgO-Nd{sub 2}Zr{sub 2}O{sub 7

  20. Technical information

    Gasoline and Diesel Fuel Update

    Home> Commercial Buildings Home> Technical Information > Estimation of Standard Errors Estimation of Standard Errors Sampling error is the difference between the survey estimate...

  1. Final Technical Report (Technical Report) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Close Cite: Bibtex Format Close 0 pages in this document matching the terms "" Search For Terms: Enter terms in the toolbar above to search the full text of this document for ...

  2. Final Scientific/Technical Report (Technical Report) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    ASR will continue conducting laboratory experiments on both gas-phase and aqueous-phase ... Report Number(s): DOE-CALTECH--0006626 DOE Contract Number: SC0006626 Resource Type: ...

  3. Final Technical Report for Award # ER64999 (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    global carbon cycle: a systems biology approach to the study of Methanosarcina species". ... methane; methanogenic archaea; systems biology; genomics; transcriptomics; metabolic ...

  4. Final Technical Report (Technical Report) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Contributing Orgs: University of Wisconsin Country of Publication: United States Language: English Subject: 54 ENVIRONMENTAL SCIENCES Word Cloud More Like This Full Text preview ...

  5. Final Technical Report (Technical Report) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    a process that underpins respiratory metal reduction by bacteria in nature and in bioremediation strategies, including reductive immobilization of radioactive contaminants. ...

  6. Final Scientific/Technical Report (Technical Report) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    The potential for developing commercially viable microbial ... out in which we took cells from the end of a 12 hour ... system for producing biohydrogen as a renewable fuel source. ...

  7. Technical Specifications

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Specifications Technical Specifications High-level technical specifications Contacts Project Director Jim Lujan (505) 665-0718 Email Project Co-Director Manuel Vigil (505) 665-1960 Email Chief Architect Scott Hemmert (505) 284-1679 Email ACES Co-director Gary Grider (505) 665-9077 Email ACES Co-director Ken Alvin (505) 844-9329 Email Trinity High-level Technical Specifications Operational Lifetime 2015 to 2020 Capability 8x to 12x improvement over Cielo in fidelity, physics, and performance

  8. Preparation of PAC libraries. Final technical report

    SciTech Connect

    Pieter J. de Jong


    The goals of this project were to create P1 Artificial Chromosome (PAC) cloning vectors and use these vectors to generate, characterize, and distribute both human and mouse genomic PAC libraries to the scientific community.


    SciTech Connect

    Block, Timothy; Ball, Kia; Fournier, Ashley


    In 2010 the Southeast Energy Efficiency Alliance (SEEA) received a $20 million Energy Efficiency and Conservation Block Grant (EECBG) under the U.S. Department of Energy’s Better Building Neighborhood Program (BBNP). This grant, funded by the American Recovery and Reinvestment Act, also included sub-grantees in 13 communities across the Southeast, known as the Southeast Consortium. The objective of this project was to establish a framework for energy efficiency retrofit programs to create models for replication across the Southeast and beyond. To achieve this goal, SEEA and its project partners focused on establishing infrastructure to develop and sustain the energy efficiency market in specific localities across the southeast. Activities included implementing minimum training standards and credentials for marketplace suppliers, educating and engaging homeowners on the benefits of energy efficiency through strategic marketing and outreach and addressing real or perceived financial barriers to investments in whole-home energy efficiency through a variety of financing mechanisms. The anticipated outcome of these activities would be best practice models for program design, marketing, financing, data collection and evaluation as well as increased market demand for energy efficiency retrofits and products. The Southeast Consortium’s programmatic impacts along with the impacts of the other BBNP grantees would further the progress towards the overall goal of energy efficiency market transformation. As the primary grantee SEEA served as the overall program administrator and provided common resources to the 13 Southeast Consortium sub-grantees including contracted services for contractor training, quality assurance testing, data collection, reporting and compliance. Sub-grantee programs were located in cities across eight states including Alabama, Florida, Georgia, Louisiana, North Carolina, South Carolina, Tennessee, Virginia and the U.S. Virgin Islands. Each sub-grantee program was designed to address the unique local conditions and population of its community. There was great diversity in programs design, types of financing and incentives, building stock characteristics, climate and partnerships. From 2010 through 2013, SEEA and its sub-grantee programs focused on determining best practices in program administration, workforce development, marketing and consumer education, financing, and utility partnerships. One of the common themes among programs that were most successful in each of these areas was strong partnerships and collaborations with people or organizations in the community. In many instances engaged partners proved to be the key to addressing barriers such as access to financing, workforce development opportunities and access to utility bill data. The most challenging barrier proved to be the act of building a market for energy efficiency where none previously existed. With limited time and resources, educating homeowners of the value in investing in energy efficiency while engaging electric and gas utilities served as a significant barrier for several programs. While there is still much work to be done to continue to transform the energy efficiency market in the Southeast, the programmatic activities led by SEEA and its sub-grantees resulted in 8,180 energy audits and 5,155 energy efficiency retrofits across the Southeast. In total the Southeast Consortium saved an estimated 27,915,655.93 kWh and generated an estimated $ 2,291,965.90 in annual energy cost savings in the region.

  10. Final Technical Report: Collaborative Research. Polymeric Muliferroics...

    Office of Scientific and Technical Information (OSTI)

    The goal of this project is to investigate room temperature magnetism and magnetoelectric coupling of polymeric multiferroics. A new family of organic charge-transfer complexes has ...

  11. Final Technical Report, reEnergize Program

    SciTech Connect

    Wamstad-Evans, Kristi; Williams, Eric; Kubicek, Jason


    The reEnergize Program helped to build a market for residential and commercial energy evaluations and upgrades. The program provided incentives to encourage participants to save energy, save money, and make their homes and businesses more safe, healthy, and comfortable. As part of the Better Buildings Neighborhood Program (BBNP), the successful investment of this $10 million grant toward market development was the first grant funding collaboration between the cities of Omaha and Lincoln. Through more than three years of work, thousands of participants, contractors, and community members worked together to make the reEnergize Program a demonstration of how to “Build Energy Smart Communities.”

  12. Final Technical Report: Increasing Prediction Accuracy.

    SciTech Connect

    King, Bruce Hardison; Hansen, Clifford; Stein, Joshua


    PV performance models are used to quantify the value of PV plants in a given location. They combine the performance characteristics of the system, the measured or predicted irradiance and weather at a site, and the system configuration and design into a prediction of the amount of energy that will be produced by a PV system. These predictions must be as accurate as possible in order for finance charges to be minimized. Higher accuracy equals lower project risk. The Increasing Prediction Accuracy project at Sandia focuses on quantifying and reducing uncertainties in PV system performance models.

  13. Final Technical Report, DE-SC0000581

    SciTech Connect

    Douglas C. Lynn, Executive Director


    The focus of the CEHMM award was alternative energy research and education. The objective of the CEHMM algae to biodiesel project was to determine the viability and feasibility of using algae as a feedstock for commercial biodiesel production. The project investigated the propagation, harvesting and extraction of oil from a salt/brine water algae in open raceway ponds.

  14. Final Technical Report, DE-SC0005319

    SciTech Connect

    Douglas C. Lynn, Executive Director


    The CEHMM algae to biodiesel project is a research and development endeavor investigating renewable fuels and a host of high-value co-products from the propagation, harvesting, and extraction of oil from a salt/brine water algae in open raceway ponds. Use of algae as renewable fuel feedstock complementary to petroleum diesel has great potential to make fuels and a host of valuable co-products, thereby reducing American dependence on foreign oil, sequestering carbon, and providing attractive multi-market returns for potential investors. This project is a green energy project thereby supporting the national agenda of a clean and renewable source of energy and will not compete with traditional food crops.

  15. Improvements in geothermometry. Final technical report. Rev

    SciTech Connect

    Potter, J.; Dibble, W.; Parks, G.; Nur, A.


    Alkali and alkaline earth geothermometers are useful for estimating geothermal reservoir temperatures, though a general theoretical basis has yet to be established and experimental calibration needs improvement. Equilibrium cation exchange between feldspars provided the original basis for the Na-K and Na-K-Ca geothermometers (Fournier and Truesdell, 1973), but theoretical, field and experimental evidence prove that neither equilibrium nor feldspars are necessary. Here, evidence is summarized in support of these observations, concluding that these geothermometers can be expected to have a surprisingly wide range of applicability, but that the reasons behind such broad applicability are not yet understood. Early experimental work proved that water-rock interactions are slow at low temperatures, so experimental calibration at temperatures below 150/sup 0/ is impractical. Theoretical methods and field data were used instead for all work at low temperatures. Experimental methods were emphasized for temperatures above 150/sup 0/C, and the simplest possible solid and solution compositions were used to permit investigation of one process or question at a time. Unexpected results in experimental work prevented complete integration of the various portions of the investigation.

  16. Improvements in geothermometry. Final technical report

    SciTech Connect

    Potter, J.; Dibble, W.; Parks, G.; Nur, A.


    The following are covered: the basis of the Na-K-Ca geothermometer, geothermometry via model calculations, non ideality and complexing, and experimental calibration.

  17. Final Technical Report, DOE/ER/64323

    SciTech Connect

    Valocchi, Albert J. University of Illinois, Dept of Civil & Environ Engr


    The DOE SciDAC program funded a team that developed PFLOTRAN, the next-generation (â??peta-scaleâ??) massively parallel, multiphase, multicomponent reactive flow and transport code. These codes are required to improve understanding and risk management of subsurface contaminant migration and geological sequestration of carbon dioxide. The important fate and transport processes occurring in the subsurface span a wide range of spatial and temporal scales, and involve nonlinear interactions among many different chemical constituents. Due to the complexity of this problem, modeling subsurface processes normally requires simplifying assumptions. However, tools of advanced scientific computing that have been used in other areas such as energy and materials research can also help address challenging problems in the environmental and geoscience fields. The overall project was led by Los Alamos National Laboratory and included Argonne, Oak Ridge and Pacific Northwest National Laboratories, in addition to the University of Illinois. This report summarizes the results of the research done at the University of Illinois, which focused on improvements to the underlying physical and computational modeling of certain transport and mixing processes.

  18. Alaska Wind Energy Project Final Technical Report

    SciTech Connect

    Stromberg, Rich


    To support design and construction of wind energy power plants that demonstrate the feasibility and methods necessary for widespread adoption of wind energy systems in rural Alaska.

  19. Final Technical report-4-30-13

    Office of Scientific and Technical Information (OSTI)

    ... The Tcr mutants displayed a broad spectrum of anaerobic growth deficiencies, including several that were unable to reduce Tc(VII) with hydrogen or lactate as electron donor, yet ...

  20. Final Technical Report: Integrated Distribution-Transmission...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... a tool was created in Python, and multiple feeders provided by two western U.S. utilities (under NDA with NREL) in SynerGi and CYMDIST format were converted to GridLAB-D format. ...

  1. Final Scientific - Technical Report, Geothermal Resource Exploration...

    OpenEI (Open Energy Information) [EERE & EIA]

    lower part of this sedimentary section is sand-rich, suggesting good potential for a sediment-hosted geothermal reservoir in porous sands, similar to other fields in the region...

  2. Final Technical Report. Project Boeing SGS

    SciTech Connect

    Bell, Thomas E.


    Boeing and its partner, PJM Interconnection, teamed to bring advanced “defense-grade” technologies for cyber security to the US regional power grid through demonstration in PJM’s energy management environment. Under this cooperative project with the Department of Energy, Boeing and PJM have developed and demonstrated a host of technologies specifically tailored to the needs of PJM and the electric sector as a whole. The team has demonstrated to the energy industry a combination of processes, techniques and technologies that have been successfully implemented in the commercial, defense, and intelligence communities to identify, mitigate and continuously monitor the cyber security of critical systems. Guided by the results of a Cyber Security Risk-Based Assessment completed in Phase I, the Boeing-PJM team has completed multiple iterations through the Phase II Development and Phase III Deployment phases. Multiple cyber security solutions have been completed across a variety of controls including: Application Security, Enhanced Malware Detection, Security Incident and Event Management (SIEM) Optimization, Continuous Vulnerability Monitoring, SCADA Monitoring/Intrusion Detection, Operational Resiliency, Cyber Range simulations and hands on cyber security personnel training. All of the developed and demonstrated solutions are suitable for replication across the electric sector and/or the energy sector as a whole. Benefits identified include; Improved malware and intrusion detection capability on critical SCADA networks including behavioral-based alerts resulting in improved zero-day threat protection; Improved Security Incident and Event Management system resulting in better threat visibility, thus increasing the likelihood of detecting a serious event; Improved malware detection and zero-day threat response capability; Improved ability to systematically evaluate and secure in house and vendor sourced software applications; Improved ability to continuously monitor and maintain secure configuration of network devices resulting in reduced vulnerabilities for potential exploitation; Improved overall cyber security situational awareness through the integration of multiple discrete security technologies into a single cyber security reporting console; Improved ability to maintain the resiliency of critical systems in the face of a targeted cyber attack of other significant event; Improved ability to model complex networks for penetration testing and advanced training of cyber security personnel

  3. Nanoparticle Solar Cell Final Technical Report

    SciTech Connect

    Breeze, Alison, J; Sahoo, Yudhisthira; Reddy, Damoder; Sholin, Veronica; Carter, Sue


    The purpose of this work was to demonstrate all-inorganic nanoparticle-based solar cells with photovoltaic performance extending into the near-IR region of the solar spectrum as a pathway towards improving power conversion efficiencies. The field of all-inorganic nanoparticle-based solar cells is very new, with only one literature publication in the prior to our project. Very little is understood regarding how these devices function. Inorganic solar cells with IR performance have previously been fabricated using traditional methods such as physical vapor deposition and sputtering, and solution-processed devices utilizing IR-absorbing organic polymers have been investigated. The solution-based deposition of nanoparticles offers the potential of a low-cost manufacturing process combined with the ability to tune the chemical synthesis and material properties to control the device properties. This work, in collaboration with the Sue Carter research group at the University of California, Santa Cruz, has greatly expanded the knowledge base in this field, exploring multiple material systems and several key areas of device physics including temperature, bandgap and electrode device behavior dependence, material morphological behavior, and the role of buffer layers. One publication has been accepted to Solar Energy Materials and Solar Cells pending minor revision and another two papers are being written now. While device performance in the near-IR did not reach the level anticipated at the beginning of this grant, we did observe one of the highest near-IR efficiencies for a nanoparticle-based solar cell device to date. We also identified several key parameters of importance for improving both near-IR performance and nanoparticle solar cells in general, and demonstrated multiple pathways which showed promise for future commercialization with further research.

  4. Regulatory analysis technical evaluation handbook. Final report

    SciTech Connect


    The purpose of this Handbook is to provide guidance to the regulatory analyst to promote preparation of quality regulatory analysis documents and to implement the policies of the Regulatory Analysis Guidelines of the US Nuclear Regulatory Commission (NUREG/BR-0058 Rev. 2). This Handbook expands upon policy concepts included in the NRC Guidelines and translates the six steps in preparing regulatory analyses into implementable methodologies for the analyst. It provides standardized methods of preparation and presentation of regulatory analyses, with the inclusion of input that will satisfy all backfit requirements and requirements of NRC`s Committee to Review Generic Requirements. Information on the objectives of the safety goal evaluation process and potential data sources for preparing a safety goal evaluation is also included. Consistent application of the methods provided here will result in more directly comparable analyses, thus aiding decision-makers in evaluating and comparing various regulatory actions. The handbook is being issued in loose-leaf format to facilitate revisions. NRC intends to periodically revise the handbook as new and improved guidance, data, and methods become available.

  5. Pagosa Springs geothermal project. Final technical report

    SciTech Connect

    Not Available


    This booklet discusses some ideas and methods for using Colorado geothermal energy. A project installed in Pagosa Springs, which consists of a pipeline laid down 8th street with service to residences retrofitted to geothermal space heating, is described. (ACR)

  6. The Keystone Center final technical report

    SciTech Connect

    Not Available


    The Keystone Center began its work with the Environmental Management Science Program (EMSP) in May, 1996, when The Center agreed to design, organize, and facilitate stakeholder meetings at two DOE sites: Savannah River and Hanford. These meetings were held June 24--25, 1996 for the purpose of discussing the role of EMSP in constructing a site-specific basic research agenda that maps site cleanup needs to basic science areas. Summaries of the discussions from these meetings as well as lists of the stakeholders who were invited are included as Attachment 1. In August/September 1996, the Keystone Center was asked to convene two additional site meetings using funds that remained in their contract. These meetings were held in October 1996 at Oak Ridge and Idaho National Engineering Laboratory. Summaries from these meetings and participant lists are included as Attachment 2.

  7. Startech Hydrogen Production Final Technical Report

    SciTech Connect

    Startech Engineering Department


    The assigned work scope includes the modification and utilization of the Plasma Converter System, Integration of a StarCell{trademark} Multistage Ceramic Membrane System (StarCell), and testing of the integrated systems towards DOE targets for gasification and membrane separation. Testing and evaluation was performed at the Startech Engineering and Demonstration Test Center in Bristol, CT. The Objectives of the program are as follows: (1) Characterize the performance of the integrated Plasma Converter and StarCell{trademark} Systems for hydrogen production and purification from abundant and inexpensive feedstocks; (2) Compare integrated hydrogen production performance to conventional technologies and DOE benchmarks; (3) Run pressure and temperature testing to baseline StarCell's performance; and (4) Determine the effect of process contaminants on the StarCell{trademark} system.

  8. Final Technical report-4-30-13

    Office of Scientific and Technical Information (OSTI)

    ... of Shewanella oneidensis MR-1. FEMS Microbiology Letters, 259:282-287. Dale, J., R. ... Department of Microbiology, Cornell University, Ithaca, NY, 407. DiChristina T. 2007. ...

  9. Final Report. Institute for Ultralscale Visualization (Technical...

    Office of Scientific and Technical Information (OSTI)

    Warren 1 ; Huang, Jian 2 ; Humphreys, Gregory 3 ; Moreland, Kenneth 4 ; Ross, Rob 5 ; Shen, Han-Wei 6 ; Silver, Deborah 7 + Show Author Affiliations Univ. of ...


    SciTech Connect

    Kerrick, Sharon S.; Vincent, Charles D.


    This report provides the summary of a project whose purpose was to support the costs of developing a nuclear engineering awareness program, an instruction program for teachers to integrate lessons on nuclear science and technology into their existing curricula, and web sites for the exchange of nuclear engineering career information and classroom materials. The specific objectives of the program were as follows: OBJECTIVE 1: INCREASE AWARENESS AND INTEREST OF NUCLEAR ENGINEERING; OBJECTIVE 2: INSTRUCT TEACHERS ON NUCLEAR TOPICS; OBJECTIVE 3: NUCLEAR EDUCATION PROGRAMS WEB-SITE; OBJECTIVE 4: SUPPORT TO UNIVERSITY/INDUSTRY MATCHING GRANTS AND REACTOR SHARING; OBJECTIVE 5: PILOT PROJECT; OBJECTIVE 6: NUCLEAR ENGINEERING ENROLLMENT SURVEY AT UNIVERSITIES

  11. Final Technical GATE Report, 1998-2006

    SciTech Connect

    GATE Fuel Cell Vehicle Center


    In 1998, the U.S. Department of Energy (DOE) funded 10 proposals to establish graduate automotive technology education (GATE) centers of excellence at nine universities, each addressing a specific technological area. The University of California, Davis was chosen for two centers: Fuel Cell Center and Hybrid-Electric Vehicle Design Center (power drivetrains and control strategies). This report is specific to the Fuel Cell Center only, which was housed at the UC Davis Institute of Transportation Studies (ITS-Davis). ITS-Davis created the Fuel Cell Vehicle Center, with the following goals: (1) create an interdisciplinary fuel cell vehicle curriculum that cuts across engineering, the physical sciences and, to a lesser extent, the social sciences; (2) expand and strengthen the then-emerging multidisciplinary fuel cell vehicle research program; (3) strengthen links with industry; (4) create an active public outreach program; and (5) serve as neutral ground for interactions between academia, the auto, energy, and technology industries, government, and public-interest non-governmental organizations. At the time of proposal, the Center had a solid track record in fuel cell research, strong connections with industry, strong campus support, a core group of distinguished and motivated faculty, and an established institutional foundation for fuel cell vehicle research and education.

  12. Utilities as tax collectors. Final technical report

    SciTech Connect

    Not Available


    This report looks at taxation of the investor owned electric utility industry. We provide basic data and analysis addressing the question: ''How much of the consumer's electricity bill goes to taxes.'' We further analyze what relationship there might be between state and local taxation and state utility regulation. Although it is very difficult to link basic economic data with taxes by industry, some inferences can be drawn.

  13. Toughened ceramics life prediction. Final technical report

    SciTech Connect

    Salem, J.A.; Choi, S.R.; Pawlik, R.J.


    The objective of this research was to understand the room temperature and high temperature behavior of brittle materials such as in situ toughened ceramics, glasses and intermetallics as the basis for developing life prediction and test methodologies. A major objective was to understand the relationship between microstructure and mechanical behavior within the bounds of a limited number of materials. A second major objective was to determine the behavior as a function of time and temperature. Specifically, the room temperature and elevated strength and reliability, the fracture toughness, slow crack growth and the creep behavior. These results will provide input for parallel materials development and design methodology programs. Resultant design codes will be verified. A summary of the accomplishments that occurred under this program is given.

  14. Final Technical Report: Characterizing Emerging Technologies.

    SciTech Connect

    King, Bruce Hardison; Hansen, Clifford; Stein, Joshua; Riley, Daniel; Gonzalez, Sigifredo


    The Characterizing Emerging Technologies project focuses on developing, improving and validating characterization methods for PV modules, inverters and embedded power electronics. Characterization methods and associated analysis techniques are at the heart of technology assessments and accurate component and system modeling. Outputs of the project include measurement and analysis procedures that industry can use to accurately model performance of PV system components, in order to better distinguish and understand the performance differences between competing products (module and inverters) and new component designs and technologies (e.g., new PV cell designs, inverter topologies, etc.).

  15. Ice Load Project Final Technical Report

    SciTech Connect

    McCoy, Timothy J.; Brown, Thomas; Byrne, Alex


    As interest and investment in offshore wind projects increase worldwide, some turbines will be installed in locations where ice of significant thickness forms on the water surface. This ice moves under the driving forces of wind, current, and thermal effects and may result in substantial forces on bottom-fixed support structures. The North and Baltic Seas in Europe have begun to see significant wind energy development and the Great Lakes of the United States and Canada may host wind energy development in the near future. Design of the support structures for these projects is best performed through the use of an integrated tool that can calculate the cumulative effects of forces due to turbine operations, wind, waves, and floating ice. The dynamic nature of ice forces requires that these forces be included in the design simulations, rather than added as static forces to simulation results. The International Electrotechnical Commission (IEC) standard[2] for offshore wind turbine design and the International Organization for Standardization (ISO) standard[3] for offshore structures provide requirements and algorithms for the calculation of forces induced by surface ice; however, currently none of the major wind turbine dynamic simulation codes provides the ability to model ice loads. The scope of work of the project described in this report includes the development of a suite of subroutines, collectively named IceFloe, that meet the requirements of the IEC and ISO standards and couples with four of the major wind turbine dynamic simulation codes. The mechanisms by which ice forces impinge on offshore structures generally include the forces required for crushing of the ice against vertical-sided structures and the forces required to fracture the ice as it rides up on conical-sided structures. Within these two broad categories, the dynamic character of the forces with respect to time is also dependent on other factors such as the velocity and thickness of the moving ice and the response of the structure. In some cases, the dynamic effects are random and in other cases they are deterministic, such as the effect of structural resonance and coupling of the ice forces with the defection of the support structure. The initial versions of the IceFloe routines incorporate modules that address these varied force and dynamic phenomena with seven alternative algorithms that can be specified by the user. The IceFloe routines have been linked and tested with four major wind turbine aeroelastic simulation codes: FAST, a tool developed under the management of the National Renewable Energy Laboratory (NREL) and available free of charge from its web site; Bladed[4], a widely-used commercial package available from DNV GL; ADAMS[5], a general purpose multi-body simulation code used in the wind industry and available from MSC Software; and HAWC2[6], a code developed by and available for purchase from Danmarks Tekniske Universitet (DTU). Interface routines have been developed and tested with full wind turbine simulations for each of these codes and the source code and example inputs and outputs are available from the NREL website.

  16. Final Technical Report for Award # ER64999

    SciTech Connect

    Metcalf, William W.


    This report provides a summary of activities for Award # ER64999, a Genomes to Life Project funded by the Office of Science, Basic Energy Research. The project was entitled "Methanogenic archaea and the global carbon cycle: a systems biology approach to the study of Methanosarcina species". The long-term goal of this multi-investigator project was the creation of integrated, multiscale models that accurately and quantitatively predict the role of Methanosarcina species in the global carbon cycle under dynamic environmental conditions. To achieve these goals we pursed four specific aims: (1) genome sequencing of numerous members of the Order Methanosarcinales, (2) identification of genomic sources of phenotypic variation through in silico comparative genomics, (3) elucidation of the transcriptional networks of two Methanosarcina species, and (4) development of comprehensive metabolic network models for characterized strains to address the question of how metabolic models scale with genetic distance.

  17. Heat Treatment Procedure Qualification -- Final Technical Report

    SciTech Connect

    Robert C. Voigt


    Heat treatment practices used by steel foundries have been carefully studied as part of comprehensive heat treatment procedure development trials. These studies highlight the relationships between critical heat treatment process control parameters and heat treatment success. Foundry heat treatment trials to develop heat treatment procedure qualification have shed light on the relationship between heat treatment theory and current practices. Furnace load time-temperature profiles in steel foundries exhibit significant differences depending on heat treatment equipment, furnace loading practice, and furnace maintenance. Time-temperature profiles of the furnace control thermocouples can be very different from the time-temperature profiles observed at the center of casting loads in the furnace. Typical austenitrization temperatures and holding times used by steel foundries far exceed what is required for transformation to austenite. Quenching and hardenability concepts were also investigated. Heat treatment procedure qualification (HTPQ) schema to demonstrate heat treatment success and to pre-qualify other alloys and section sizes requiring lesser hardenability have been developed. Tempering success is dependent on both tempering time and temperature. As such, furnace temperature uniformity and control of furnace loading during tempering is critical to obtain the desired mechanical properties. The ramp-up time in the furnace prior to the establishment of steady state heat treatment conditions contributes to the extent of heat treatment performed. This influence of ramp-up to temperature during tempering has been quantified.

  18. Final Technical Report: PV Fault Detection Tool.

    SciTech Connect

    King, Bruce Hardison; Jones, Christian Birk


    The PV Fault Detection Tool project plans to demonstrate that the FDT can (a) detect catastrophic and degradation faults and (b) identify the type of fault. This will be accomplished by collecting fault signatures using different instruments and integrating this information to establish a logical controller for detecting, diagnosing and classifying each fault.

  19. Maine PACE Program Final Technical Report

    SciTech Connect

    Fischer, Dana; Adamson, Joy M


    The ARRA EECBG BetterBuilding helped augment the existing Home Energy Savings Programs (HESP) and incentives with financing through a subordinate lien PACE and HUD PowerSaver programs. The program was designed to document innovative techniques to dramatically increase the number of homes participating in weatherization programs in participating towns. Maine will support new energy efficiency retrofit pilots throughout the state, designed to motivate a large number of homeowners to invest in comprehensive home energy efficiency upgrades to bring real solutions to market.

  20. DOE-RCT-0003641 Final Technical Report

    SciTech Connect

    Wagner, Edward; Lesster, Ted


    This program studied novel concepts for an Axial Flux Reluctance Machine to capture energy from marine hydrokinetic sources and compared their attributes to a Radial Flux Reluctance Machine which was designed under a prior Department of Energy program for the same application. Detailed electromagnetic and mechanical analyses were performed to determine the validity of the concept and to provide a direct comparison with the existing conventional Radial Flux Switched Reluctance Machine designed during the Advanced Wave Energy Conversion Project, DE-EE0003641. The alternate design changed the machine topology so that the flux that is switched flows axially rather than radially and the poles themselves are long radially, as opposed to the radial flux machine that has pole pieces that are long axially. It appeared possible to build an axial flux machine that should be considerably more compact than the radial machine. In an “apples to apples” comparison, the same rules with regard to generating magnetic force and the fundamental limitations of flux density hold, so that at the heart of the machine the same torque equations hold. The differences are in the mechanical configuration that limits or enhances the change of permeance with rotor position, in the amount of permeable iron required to channel the flux via the pole pieces to the air-gaps, and in the sizing and complexity of the electrical winding. Accordingly it was anticipated that the magnetic component weight would be similar but that better use of space would result in a shorter machine with accompanying reduction in housing and support structure. For the comparison the pole count was kept the same at 28 though it was also expected that the radial tapering of the slots between pole pieces would permit a higher pole count machine, enabling the generation of greater power at a given speed in some future design. The baseline Radial Flux Machine design was established during the previous DOE program. Its characteristics were tabulated for use in comparing to the Axial Flux Machine. Three basic conceptual designs for the Axial Flux Machine were considered: (1) a machine with a single coil at the inner diameter of the machine, (2) a machine with a single coil at the outside diameter of the machine, and (3) a machine with a coil around each tooth. Slight variations of these basic configurations were considered during the study. Analysis was performed on these configurations to determine the best candidate design to advance to preliminary design, based on size, weight, performance, cost and manufacturability. The configuration selected as the most promising was the multi-pole machine with a coil around each tooth. This configuration provided the least complexity with respect to the mechanical configuration and manufacturing, which would yield the highest reliability and lowest cost machine of the three options. A preliminary design was performed on this selected configuration. For this first ever axial design of the multi rotor configuration the 'apples to apples' comparison was based on using the same length of rotor pole as the axial length of rotor pole in the radial machine and making the mean radius of the rotor in the axial machine the same as the air gap radius in the radial machine. The tooth to slot ratio at the mean radius of the axial machine was the same as the tooth to slot ratio of the radial machine. The comparison between the original radial flux machine and the new axial flux machine indicates that for the same torque, the axial flux machine diameter will be 27% greater, but it will have 30% of the length, and 76% of the weight. Based on these results, it is concluded that an axial flux reluctance machine presents a viable option for large generators to be used for the capture of wave energy. In the analysis of Task 4, below, it is pointed out that our selection of dimensional similarity for the 'apples to apples' comparison did not produce an optimum axial flux design. There is torque capability to spare, implying we could reduce the magnetic structure, but the winding area, constrained by the pole separation at the inner pole radius has a higher resistance than desirable, implying we need more room for copper. The recommendation is to proceed via one cycle of optimization and review to correct this unbalance and then proceed to a detailed design phase to produce manufacturing drawings, followed by the construction of a prototype to test the performance of the machine against predicted results.

  1. Final Technical Report: Nanostructured Shape Memory ALloys

    SciTech Connect

    Wendy Crone; Walter Drugan; Arthur Ellis; John Perepezko


    With this grant we explored the properties that result from combining the effects of nanostructuring and shape memory using both experimental and theoretical approaches. We developed new methods to make nanostructured NiTi by melt-spinning and cold rolling fabrication strategies, which elicited significantly different behavior. A template synthesis method was also used to created nanoparticles. In order to characterize the particles we created, we developed a new magnetically-assisted particle manipulation technique to manipulate and position nanoscale samples for testing. Beyond characterization, this technique has broader implications for assembly of nanoscale devices and we demonstrated promising applications for optical switching through magnetically-controlled scattering and polarization capabilities. Nanoparticles of nickel-titanium (NiTi) shape memory alloy were also produced using thin film deposition technology and nanosphere lithography. Our work revealed the first direct evidence that the thermally-induced martensitic transformation of these films allows for partial indent recovery on the nanoscale. In addition to thoroughly characterizing and modeling the nanoindentation behavior in NiTi thin films, we demonstrated the feasibility of using nanoindentation on an SMA film for write-read-erase schemes for data storage.

  2. Microsoft Word - TSI - UW final technical report

    Office of Scientific and Technical Information (OSTI)

    the node communications problem; (2) a linear operator inversion method that ... The technique is based on the use of Lanczos moments to reconstruct the response function ...

  3. Bat habitat research. Final technical report

    SciTech Connect

    Keller, B.L.; Bosworth, W.R.; Doering, R.W.


    This progress report describes activities over the current reporting period to characterize the habitats of bats on the INEL. Research tasks are entitled Monitoring bat habitation of caves on the INEL to determine species present, numbers, and seasons of use; Monitor bat use of man-made ponds at the INEL to determine species present and rates of use of these waters; If the Big Lost River is flowing on the INEL and/or if the Big Lost River sinks contain water, determine species present, numbers and seasons of use; Determine the habitat requirement of Townsend`s big-eared bats, including the microclimate of caves containing Townsend`s big-eared bats as compared to other caves that do not contain bats; Determine and describe an economical and efficient bat census technique to be used periodically by INEL scientists to determine the status of bats on the INEL; and Provide a suggestive management and protective plan for bat species on the INEL that might, in the future, be added to the endangered and sensitive list;

  4. Energy efficiency CD ROM. Final technical report

    SciTech Connect

    Totten, Michael


    The Center for Renewable Energy and SustainableTechnology (CREST) has completed the three tasks of subcontract DE-FC36-97GO10228. Three separate multimedia CD-ROM products were developed.

  5. Microsoft Word - FINAL_TECHNICAL_REPORT.doc

    Office of Scientific and Technical Information (OSTI)

    ... 56 21. N. Janco: "Calculating Sizes of Gates and Risers," Am. Foundrymen's Soc. Trans., 1947, vol. 55, pp. 296-300. 22. N. Chvorinov: "Control of the Solidification of Castings by ...

  6. Solar Cell Nanotechnology Final Technical Report

    SciTech Connect

    Das, Biswajit


    The objective of this project is to develop a low cost nonlithographic nanofabrication technology for the fabrication of thin film porous templates as well as uniform arrays of semiconductor nanostructures for the implementation of high efficiency solar cells. Solar cells based on semiconductor nanostructures are expected to have very high energy conversion efficiencies due to the increased absorption coefficients of semiconductor nanostructures. In addition, the thin film porous template can be used for optimum surface texturing of solar cells leading to additional enhancement in energy conversion efficiency. An important requirement for these applications is the ability to synthesize nanostructure arrays of different dimensions with good size control. This project employed nanoporous alumina templates created by the anodization of aluminum thin films deposited on glass substrates for the fabrication of the nanostructures and optimized the process parameters to obtain uniform pore diameters. An additional requirement is uniformity or regularity of the nanostructure arrays. While constant current anodization was observed to provide controlled pore diameters, constant voltage anodization was needed for regularity of the nanostructure arrays. Thus a two-step anodization process was investigated and developed in this project for improving the pore size distribution and pore periodicity of the nanoporous alumina templates. CdTe was selected to be the active material for the nanowires, and the process for the successful synthesis of CdTe nanowires was developed in this project. Two different synthesis approaches were investigated in this project, electrochemical and electrophoretic deposition. While electrochemical synthesis was successfully employed for the synthesis of nanowires inside the pores of the alumina templates, the technique was determined to be non-optimum due to the need of elevated temperature that is detrimental to the structural integrity of the nanoporous alumina templates. In order to eliminate this problem, electrophoretic deposition was selected as the more appropriate technique, which involves the guided deposition of semiconductor nanoparticles in the presence of ultrasonic energy to form the crystalline nanowires. Extensive experimental research was carried out to optimize the process parameters for formation of crystalline nanowires. It was observed that the environmental bath temperature plays a critical role in determining the structural integrity of the nanowires and hence their lengths. Investigation was carried out for the formation of semitransparent ohmic contacts on the nanowires to facilitate photocurrent spectroscopy measurements as well as for solar cell implementation. Formation of such ohmic contacts was found to be challenging and a process involving mechanical and electrochemical polishing was developed to facilitate such contacts. The use of nanoporous alumina templates for the surface texturing of mono- and multi-crystalline solar cells was extensively investigated by electrochemical etching of the silicon through the pores of the nanoporous templates. The processes for template formation as well as etching were optimized and the alumina/silicon interface was investigated using capacitance-voltage characterization. The process developed was found to be viable for improving solar cell performance.

  7. Whitestone Poncelet RISEC Project Final Technical Report

    SciTech Connect

    Hasz Consulting, LLC; Whitestone Power and Communications; CE2 Engineers


    This report covers the development of the Poncelet Kinetics RHK100 Prototype. The work was completed by Hasz Consulting, LLC; CE2 Engineers, LLC; Energetic Drives, LLC; and Applied Power and Control all operating as subcontractors to Whitestone Power and Communications during the year from October 1, 2010 to September 23, 2011. As designed, the prototype is run-of-river instream energy conversion (RISEC) system. The design is principally a three-stage undershot water wheel arranged according to the method of General Poncelet. The power train consists of an epicyclic transmission coupled to a permanent magnet generator. The electronic controls system governs the speed of the wheel and rectifies the power signal to enable the system to be integrated with infinite grid infrastructures, to operate in parallel in finite grid applications with other small power productions sources or to operate in stand-alone mode on demand.

  8. Gigabit network technology. Final technical report

    SciTech Connect

    Davenport, C.M.C. [ed.


    Current digital networks are evolving toward distributed multimedia with a wide variety of applications with individual data rates ranging from kb/sec to tens and hundreds of Mb/sec. Link speed requirements are pushing into the Gb/sec range and beyond the envelop of electronic networking capabilities. There is a vast amount of untapped bandwidth available in the low-attenuation communication bands of an optical fiber. The capacity in one fiber thread is enough to carry more than two thousand times as much information as all the current radio and microwave frequencies. And while fiber optics has replaced copper wire as the transmission medium of choice, the communication capacity of conventional fiber optic networks is ultimately limited by electronic processing speeds.

  9. Phase II Final Scientific/Technical Report

    SciTech Connect

    Grigg, Reid; McPherson, Brian; Lee, Rober


    The Southwest Regional Partnership on Carbon Sequestration (SWP) one of seven regional partnerships sponsored by the U.S. Department of Energy (USDOE) carried out five field pilot tests in its Phase II Carbon Sequestration Demonstration effort, to validate the most promising sequestration technologies and infrastructure concepts, including three geologic pilot tests and two terrestrial pilot programs. This field testing demonstrated the efficacy of proposed sequestration technologies to reduce or offset greenhouse gas emissions in the region. Risk mitigation, optimization of monitoring, verification, and accounting (MVA) protocols, and effective outreach and communication were additional critical goals of these field validation tests. The program included geologic pilot tests located in Utah, New Mexico, Texas, and a region-wide terrestrial analysis. Each geologic sequestration test site was intended to include injection of a minimum of ~75,000 tons/year CO{sub 2}, with minimum injection duration of one year. These pilots represent medium- scale validation tests in sinks that host capacity for possible larger-scale sequestration operations in the future. These validation tests also demonstrated a broad variety of carbon sink targets and multiple value-added benefits, including testing of enhanced oil recovery and sequestration, enhanced coalbed methane production and a geologic sequestration test combined with a local terrestrial sequestration pilot. A regional terrestrial sequestration demonstration was also carried out, with a focus on improved terrestrial MVA methods and reporting approaches specific for the Southwest region.

  10. PEM Degradation Investigation Final Technical Report

    SciTech Connect

    Dan Stevenson; Lee H Spangler


    The objectives of this paper are: (1) Develop a system capable of measuring current and voltage performance for each membrane in a Polymer Electrolyte Membranes (PEM) fuel cell stack and record the performance of each individual cell; (2) Develop a single cell PEM FC to allow in situ synchrotron x-ray measurements of the cell in operation and to perform spatially resolved x-ray measurements on fuel cell elements before and after degradation; and (3) Perform initial magnetic resonance microimaging experiments on membrane materials. The Montana State University PEM Membrane Degradation program is geared towards determining how and why membranes in fuel cells degrade and fail. By monitoring every individual membrane in a fuel cell 2000 times/sec while the cell is subjected to real-world type use, we hope to: (1) cause the types of degradation users see, but in a controlled environment; (2) determine an electrical signature that will identify what causes failure, or at least warns of impending failure; (3) allows us to perform advanced x-ray and MRI characterization of the degraded membranes to provide information that may result in improvements of the membrane material; and (4) perhaps allow design of electronic control systems that will prevent fuel cells from operating under conditions where damage is likely to occur.

  11. PEM Degradation Investigation Final Technical Report

    SciTech Connect

    Dan Stevenson; Lee H Spangler


    This project conducted fundamental studies of PEM MEA degradation. Insights gained from these studies were disseminated to assist MEA manufacturers in understanding degradation mechanisms and work towards DOE 2010 fuel cell durability targets.

  12. Final Design RM | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Final Design RM Final Design RM The Final Design (FD) Review Module (RM) is a tool that assists Department of Energy (DOE) federal project review teams in evaluating the technical sufficiency of the final design prior to CD-3 approval. The FD RM focuses on the engineering design, technology, safety, and quality assurance to determine whether it meets overall design commitments, technical and safety requirements. Final Design RM (2.38 MB) More Documents & Publications Seismic Design

  13. 2011 Final Report - Nano-Oxide Photocatalysis for Solar Energy...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: 2011 Final Report - Nano-Oxide Photocatalysis for Solar Energy Conversion Citation Details In-Document Search Title: 2011 Final Report - Nano-Oxide Photocatalysis ...

  14. Final Report for the DOE Chemical Hydrogen Storage Center of...

    Energy Saver

    Final Report for the DOE Chemical Hydrogen Storage Center of Excellence Final Report for the DOE Chemical Hydrogen Storage Center of Excellence This technical report describes the ...

  15. Final Report on Experimental and Numerical Modeling Activities...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Final Report on Experimental and Numerical Modeling Activities for the Newark Basin Citation Details In-Document Search Title: Final Report on Experimental and ...

  16. Final Report, Volume 1, Metallurgical Evaluation of Cast Duplex...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Final Report, Volume 1, Metallurgical Evaluation of Cast Duplex Stainless Steels and their Weldments Citation Details In-Document Search Title: Final Report, ...

  17. Risk Informed Assessment of Regulatory and Design Requirements for Future Nuclear Power Plants (Cooperative Agreement DE-FC03-99SF21902, Am. M004) Final Technical Report

    SciTech Connect

    Stanley E. Ritterbusch, et. al.


    accidents would be an inherent part of the Probabilistic Safety Assessment for the plant and their evaluation would be probabilistic. Other first year accomplishments include (1) the conversion of an NRC database for cross-referencing NRC criteria and industry codes and standards to Microsoft 2000 software, (2) an assessment of the NRC's hearing process which concluded that the normal cross-examination during public hearings is not actually required by the U.S. Administrative Procedures Act, (3) the identification and listing of reliability data sources, and (4) interfacing with other industry groups (e.g., NEI and IAEA) and NRC at workshops for risk-informing regulations. The major accomplishments during the second year consisted of (1) issuance of the final report for Subtask 1.1, ''Identify Current Applicable Regulatory Requirements [and Industry Standards],'' (2) issuance of the final report for Subtask 1.2,'' Identify Structures, Systems, and Components and Their Associate d Costs for a Typical Plant,'' (3) extension of the new, highly risk-informed design and regulatory framework to non-light-water-reactor technology, (4) completion of more detailed thermal-hydraulic and probabilistic analyses of advanced conceptual reactor system/component designs, (6) initial evaluation and recommendations for improvement of the NRC design review process, and (7) initial development of the software format, procedures and statistical routines needed to store, analyze and retrieve the available reliability data. Final reports for Subtasks 1.1 (regulatory and design criteria) and 1.2 (costs for structures, systems, and components) were prepared and issued. A final report for Subtask 1.3 (Regulatory Framework) was drafted with the aim to issue it in Phase 3 (Year 3). One technical report was produced for Subtask 1.4 (methods development) and two technical reports were produced for Subtask 1.6 (sample problem analysis). An interim report on the NRC design review process (Subtask 1.7) was

  18. Community Power Works Final Report and Conclusions

    SciTech Connect

    Baumel, Christie


    This is the final technical report for the City of Seattle's Community Power Works program, funded through the US DOE Better Buildings grant program.

  19. Technical Standards Managers [DOE] (indexed site)


  20. Technical Sessions

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Technical Sessions S. F. lacobellis R.C.J. Somerville Scripps Institution of Oceanography University of California, San Diego La Jolla, CA 92093-0224 Comparis,on of Cumulus Parameterizations For the present study, the Arakawa-Schubert (AS) cumu- lus parameterization has been incorporated. Thus the model can be run with either the Kuo or the AS parameter- ization. This version of the AS parameterization includes the effects of downdrafts as discussed by Kao and Ogura (1987) and Ogura and Kao

  1. Department of Energy Technical Support Document National Environmental...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Technical Support Document National Environmental Policy Act Implementing ... Notice of proposed rulemaking and public hearing Notice of Final Rulemaking

  2. Microsoft Word - SRP on Application of Engineering and Technical...

    Office of Environmental Management (EM)

    and Technical Requirements for DOE Nuclear Facilities Strengthening Line Management Oversight and Federal Monitoring of Nuclear Facilities and Projects Draft Final for DOE ...


    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    TECHNICAL NOTE Broadband extreme-ultraviolet survey spectrometer for short-time-scale experiments B. E. Chapman, D. J. Den Hartog, and R. J. Fonck A fast and inexpensive spectrometer system has been developed to record extreme-UV impurity spectra in a magnetic-fusion-research device. To simplify the vacuum system, light is passed out of the spectrom- eter's vacuum to the detector with a sodium-salicylate-coated, fiber-optic coupler. This coupler is positioned so that the focal field is nearly

  4. IWARS Final

    Energy Saver

    Appendices 1. Objective, Scope, and Methodology ......Finally, management felt that an expanded audit scope could have provided a more complete ...

  5. Final Optics

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    final optics Final Optics Schematic layout of NIF's final optics assembly (FOA). The suite of optics for one beamline is on the right. The final optics assemblies (FOAs) are the last element of the main laser system and the first of the target area systems. Each FOA contains four integrated optics modules (IOMs) that incorporate beam conditioning, frequency conversion, focusing, diagnostic sampling, and debris shielding capabilities into a single compact assembly. These optics are shown in the

  6. DOE A9024 Final Report Functional and Nanoscale Materials Systems...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: DOE A9024 Final Report Functional and Nanoscale Materials Systems: Frontier Programs of Science at the Frederick Seitz Materials Research Laboratory Citation...

  7. Research in theoretical nuclear and neutrino physics. Final report...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Research in theoretical nuclear and neutrino physics. Final report Citation Details In-Document Search Title: Research in theoretical nuclear and neutrino physics...

  8. Research in theoretical nuclear and neutrino physics. Final report...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Research in theoretical nuclear and neutrino physics. Final report Citation Details In-Document Search Title: Research in theoretical nuclear and neutrino ...

  9. Development of the helical reaction hydraulic turbine. Final...

    Office of Scientific and Technical Information (OSTI)

    helical reaction hydraulic turbine. Final technical report, July 1, 1996--June 30, 1998 Gorlov, A. 16 TIDAL AND WAVE POWER; 17 WIND ENERGY; 13 HYDRO ENERGY; PROGRESS REPORT;...

  10. Department of Energy Acquisition Regulation (DEAR) Final Rule... [DOE] (indexed site)

    Department of Energy Acquisition Regulation (DEAR) Final Rule for changes to Parts 908, ... More Documents & Publications Department of Energy Acquisition Regulation (DEAR) Technical ...

  11. Final report for LDRD13-0130 :

    SciTech Connect

    Franke, Brian Claude


    This is the final report on the LDRD, though the interested reader is referred to the ANS Transactions paper which more thoroughly documents the technical work of this project.

  12. Final EA

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Lane-Wendson No. 1 Transmission Line Rebuild Project Final Environmental Assessment 1 In cooperation with the Bureau of Land Management Lane-Wendson No. 1 Transmission Line Rebuild Project Final Environmental Assessment DEPARTMENT OF ENERGY Bonneville Power Administration DOE/EA-1952 April 2016 This document is the final Environmental Assessment (EA) for the proposed Lane-Wendson No. 1 Transmission Line Rebuild Project. Bonneville Power Administration (BPA) prepared this document as an


    Office of Scientific and Technical Information (OSTI)

    FINAL REPORT Analytical and Elemental Analysis of Air and Soil Samples Facility and Public ... Information 4 Background 5 Stormwater Pollution 5 Erosion and Sediment Control Workshop ...

  14. LLNL Final Design for PDV Measurements of Godiva for Validation...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: LLNL Final Design for PDV Measurements of Godiva for Validation of Multi-Physics Simulation Citation Details In-Document Search Title: LLNL Final Design for PDV ...

  15. Northeast Feedstock Supply Technical and Economica (Technical...

    Office of Scientific and Technical Information (OSTI)

    Northeast Feedstock Supply Technical and Economica Citation Details In-Document Search ... This in-depth analysis considers the current and f Authors: Corrie Nichol ; Kara Cafferty ...


    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    RELEASE AWARDEE: ____________________________________________________ The work under Award No. DE-__________________________, dated ______________, between the United States of America (represented by the Department of Energy, National Energy Technology Laboratory, and the undersigned awardee, having been completed and finally accepted , and in consideration of Final Payment thereunder, the United States of America, its officers, agents and employees are hereby released from all liabilities,

  17. Technical Area 21

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Technical Area 21 Technical Area 21 Technical Area 21 was the site of chemical research for refining plutonium and plutonium metal production from 1945 to 1978. August 1, 2013 Technical Area 21 in 2011 Technical Area 21 in 2011 Technical Area 21 (TA-21), also known as DP Site was the site of chemical research for refining plutonium and plutonium metal production from 1945 to 1978. Between 2008 and 2011, MDAs B, U, and V were excavated and removed. 24 buildings were demolished in 2010 and 2011

  18. Productization and Manufacturing Scaling of High-Efficiency Solar Cell and Module Products Based on a Disruptive Low-Cost, Mono-Crystalline Technology: Final Technical Progress Report, April 1, 2009 - December 30, 2010

    SciTech Connect

    Fatemi, H.


    Final report for PV incubator subcontract with Solexel, Inc. The purpose of this project was to develop Solexel's Unique IP, productize it, and transfer it to manufacturing. Silicon constitutes a significant fraction of the total solar cell cost, resulting in an industry-wide drive to lower silicon usage. Solexel's disruptive Solar cell structure got around these challenges and promised superior light trapping, efficiency and mechanical strength, despite being significantly thinner than commercially available cells. Solexel's successful participation in this incubator project became evident as the company is now moving into commercial production and position itself to be competitive for the next Technology Pathway Partnerships (TPP) funding opportunity.

  19. Type A Accident Investigation Board report on the January 17, 1996, electrical accident with injury in Technical Area 21 Tritium Science and Fabrication Facility Los Alamos National Laboratory. Final report

    SciTech Connect


    An electrical accident was investigated in which a crafts person received serious injuries as a result of coming into contact with a 13.2 kilovolt (kV) electrical cable in the basement of Building 209 in Technical Area 21 (TA-21-209) in the Tritium Science and Fabrication Facility (TSFF) at Los Alamos National Laboratory (LANL). In conducting its investigation, the Accident Investigation Board used various analytical techniques, including events and causal factor analysis, barrier analysis, change analysis, fault tree analysis, materials analysis, and root cause analysis. The board inspected the accident site, reviewed events surrounding the accident, conducted extensive interviews and document reviews, and performed causation analyses to determine the factors that contributed to the accident, including any management system deficiencies. Relevant management systems and factors that could have contributed to the accident were evaluated in accordance with the guiding principles of safety management identified by the Secretary of Energy in an October 1994 letter to the Defense Nuclear Facilities Safety Board and subsequently to Congress.

  20. International Linear Collider-A Technical Progress Report (Technical...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: International Linear Collider-A Technical Progress Report Citation Details In-Document Search Title: International Linear Collider-A Technical Progress Report The ...

  1. Final Report

    SciTech Connect

    Gurney, Kevin R


    This document constitutes the final report under DOE grant DE-FG-08ER64649. The organization of this document is as follows: first, I will review the original scope of the proposed research. Second, I will present the current draft of a paper nearing submission to Nature Climate Change on the initial results of this funded effort. Finally, I will present the last phase of the research under this grant which has supported a Ph.D. student. To that end, I will present the graduate student’s proposed research, a portion of which is completed and reflected in the paper nearing submission. This final work phase will be completed in the next 12 months. This final workphase will likely result in 1-2 additional publications and we consider the results (as exemplified by the current paper) high quality. The continuing results will acknowledge the funding provided by DOE grant DE-FG-08ER64649.

  2. Final Report

    SciTech Connect

    Biros, George


    This the final report for the project "Large-Scale Optimization for Bayesian Inference in Complex Systems," for the work in the group of the co-PI George Biros.

  3. Final Report

    SciTech Connect

    DeTar, Carleton


    This document constitutes the Final Report for award DE-FC02-06ER41446 as required by the Office of Science. It summarizes accomplishments and provides copies of scientific publications with significant contribution from this award.

  4. Final Agenda

    Office of Environmental Management (EM)

    Abuse Programs at DOE Sites | Department of Energy Federal Register Notice, Amending 10 CFR part 707, Workplace Ssubustance Abuse Programs at DOE Sites Federal Register Notice, Amending 10 CFR part 707, Workplace Ssubustance Abuse Programs at DOE Sites January 23, 2008 The Department of Energy (DOE) today published a final rule to amend the Department's regulations to decrease the random drug testing rate of DOE contractor employees in testing designated positions (TDP). Today's final rule

  5. NASA technical baseline

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... Twitter Google + Vimeo GovDelivery SlideShare SunShot Grand Challenge: Regional Test Centers NASA technical baseline HomeTag:NASA technical baseline Curiosity's multi-mission ...

  6. Technical Assessment Team Report

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Technical Assessment Team (TAT) is an independent team of technical experts that evaluated the mechanisms and chemical reactions contributing to the failure of a waste drum at the Waste...

  7. Federal Technical Capability Manual

    Directives, Delegations, and Other Requirements [Office of Management (MA)]


    Provides requirements and responsibilities to ensure recruitment and hiring of technically capable personnel to retain critical technical capabilities within the Department at all times. Cancels DOE M 426.1-1. Canceled by DOE O 426.1.

  8. Final Scientific/Technical Report – DE-EE0002960 Recovery Act. Detachment faulting and Geothermal Resources - An Innovative Integrated Geological and Geophysical Investigation of Pearl Hot Spring, Nevada

    SciTech Connect

    Stockli, Daniel F.


    The Pearl Host Spring Geothermal Project funded by the DoE Geothermal Program was a joint academic (KU/UT & OU) and industry collaboration (Sierra and Ram Power) to investigate structural controls and the importance of low-angle normal faults on geothermal fluid flow through a multifaceted geological, geophysical, and geochemical investigation in west-central Nevada. The study clearly showed that the geothermal resources in Clayton Valley are controlled by the interplay between low-angle normal faults and active deformation related to the Walker Lane. The study not only identified potentially feasible blind geothermal resource plays in eastern Clayton Valley, but also provide a transportable template for exploration in the area of west-central Nevada and other regional and actively-deforming releasing fault bends. The study showed that deep-seated low-angle normal faults likely act as crustal scale permeability boundaries and could play an important role in geothermal circulation and funneling geothermal fluid into active fault zones. Not unique to this study, active deformation is viewed as an important gradient to rejuvenated fracture permeability aiding the long-term viability of blind geothermal resources. The technical approach for Phase I included the following components, (1) Structural and geological analysis of Pearl Hot Spring Resource, (2) (U-Th)/He thermochronometry and geothermometry, (3) detailed gravity data and modeling (plus some magnetic and resistivity), (4) Reflection and Refraction Seismic (Active Source), (5) Integration with existing and new geological/geophysical data, and (6) 3-D Earth Model, combining all data in an innovative approach combining classic work with new geochemical and geophysical methodology to detect blind geothermal resources in a cost-effective fashion.

  9. Hawaii demand-side management resource assessment. Final report, Reference Volume 3 -- Residential and commercial sector DSM analyses: Detailed results from the DBEDT DSM assessment model; Part 1, Technical potential

    SciTech Connect


    The Hawaii Demand-Side Management Resource Assessment was the fourth of seven projects in the Hawaii Energy Strategy (HES) program. HES was designed by the Department of Business, Economic Development, and Tourism (DBEDT) to produce an integrated energy strategy for the State of Hawaii. The purpose of Project 4 was to develop a comprehensive assessment of Hawaii`s demand-side management (DSM) resources. To meet this objective, the project was divided into two phases. The first phase included development of a DSM technology database and the identification of Hawaii commercial building characteristics through on-site audits. These Phase 1 products were then used in Phase 2 to identify expected energy impacts from DSM measures in typical residential and commercial buildings in Hawaii. The building energy simulation model DOE-2.1E was utilized to identify the DSM energy impacts. More detailed information on the typical buildings and the DOE-2.1E modeling effort is available in Reference Volume 1, ``Building Prototype Analysis``. In addition to the DOE-2.1E analysis, estimates of residential and commercial sector gas and electric DSM potential for the four counties of Honolulu, Hawaii, Maui, and Kauai through 2014 were forecasted by the new DBEDT DSM Assessment Model. Results from DBEDTs energy forecasting model, ENERGY 2020, were linked with results from DOE-2.1E building energy simulation runs and estimates of DSM measure impacts, costs, lifetime, and anticipated market penetration rates in the DBEDT DSM Model. Through its algorithms, estimates of DSM potential for each forecast year were developed. Using the load shape information from the DOE-2.1E simulation runs, estimates of electric peak demand impacts were developed. Numerous tables and figures illustrating the technical potential for demand-side management are included.

  10. SPEAR3 | Technical Documentation

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Technical Documentation Hardware Component Database: Mechanical Electrical Drawing shor tcuts BPM Development SSRL | SLAC | Stanford University | SSRL Computing | SLAC Computing ...

  11. Apply for Technical Assistance [DOE]

    Application form for U.S. Department of Energy (DOE) Office of Indian Energy technical assistance for tribes.

  12. Technical Assistance | Department of Energy

    Office of Environmental Management (EM)

    Technical Assistance The Technical Assistance program is managed through the Center for Sustainable Soil and Groundwater Solutions at SRNL. The Technical Assistance program ...

  13. Microsoft Word - Airport_EA_Final.doc

    National Nuclear Security Administration (NNSA)

    515 Final Environmental Assessment for Proposed Closure of the Airport Landfills Within Technical Area 73 at Los Alamos National Laboratory, Los Alamos, New Mexico May 22, 2005 Department of Energy National Nuclear Security Administration Los Alamos Site Office Final EA for Proposed Closure of the Airport Landfills within TA-73 at LANL Page iii of viii Contents Acronyms and Terms .................................................................................................................. vi

  14. Technical Standards Program

    Directives, Delegations, and Other Requirements [Office of Management (MA)]


    The Order promotes DOE's use of Voluntary Consensus Standards (VCS) as the primary method for application of technical standards and establishes and manages the DOE Technical Standards Program (TSP) including technical standards development, information, activities, issues, and interactions. Admin Chg 1 dated 3-12-13.

  15. Technical Standards Program

    Directives, Delegations, and Other Requirements [Office of Management (MA)]


    The Technical Standards Program (TSP) promotes the use of voluntary consensus standards by the Department of Energy (DOE), provides DOE with the means to develop needed technical standards, and manages overall technical standards information, activities, issues, and interactions. Cancels DOE O 1300.2A. Canceled by DOE O 252.1A

  16. Federal Technical Capability

    Directives, Delegations, and Other Requirements [Office of Management (MA)]


    This directive defines requirements and responsibilities for meeting the Department of Energy (DOE) commitment to recruiting, deploying, developing, and retaining a technically competent workforce that will accomplish DOE missions in a safe and efficient manner through the Federal Technical Capability Program (FTCP). Cancels DOE M 426.1-1A, Federal Technical Capability Manual.

  17. Agenda for the October 19-20, 2016 - Technical Exchange Meeting -

    Office of Environmental Management (EM)

    Germantown, Maryland | Department of Energy October 19-20, 2016 - Technical Exchange Meeting - Germantown, Maryland Agenda for the October 19-20, 2016 - Technical Exchange Meeting - Germantown, Maryland Agenda for the October 19-20, 2016 - Technical Exchange Meeting - Germantown, Maryland Agenda - Final (14.39 KB) More Documents & Publications 2016 Annual Technical Exchange Meeting Presenters Biographical Sketches Agenda for the December 15-16, 2015 - Technical Exchange Meeting -

  18. GEM Technical Design Report

    SciTech Connect

    Not Available


    The GEM collaboration was formed in June 1991 to develop a major detector for the SSC. The primary physics objectives of GEM are those central to the motivation for the SSC, to study high p{sub T} physics - exemplified by the search for Higgs bosons - and to search for new physics beyond the standard model. The authors present in this Technical Design Report (TDR) a detector with broad capabilities for the discovery and subsequent study of electroweak symmetry breaking, the origin of mass and flavor, and other physics requiring precise measurements of gammas, electrons, and muons - hence the name, GEM. In addition, as a design goal, they have taken care to provide the robustness needed to do the physics that requires high luminosity. Finally, good coverage and hermeticity allow the detection of missing transverse energy, E{sub T}. The GEM design emphasizes clean identification and high resolution measurement of the primary physics signatures for high p{sub T} physics. The approach is to make precise energy measurements that maximize the sensitivity to rare narrow resonances, to detect the elementary interaction products (quarks, leptons, and photons), and to build in the features required to reduce backgrounds.

  19. Technical Support Document for the National Environmental Policy Act Implementing Procedures

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Technical Support Document Supporting Information for DOE Final Rulemaking, 10 CFR part 1021 Page 1 Department of Energy Technical Support Document for the National Environmental Policy Act Implementing Procedures Final Rule September 27, 2011 This Technical Support Document and the preambles to the Department of Energy"s (DOE"s) Notice of Proposed Rulemaking (76 FR 214) and final rule provide the supporting basis for the changes being made to DOE"s National Environmental Policy

  20. PVWatts Version 1 Technical Reference

    SciTech Connect

    Dobos, A. P.


    The NREL PVWatts(TM) calculator is a web application developed by the National Renewable Energy Laboratory (NREL) that estimates the electricity production of a grid-connected photovoltaic system based on a few simple inputs. PVWatts combines a number of sub-models to predict overall system performance, and makes several hidden assumptions about performance parameters. This technical reference details the individual sub-models, documents assumptions and hidden parameters, and explains the sequence of calculations that yield the final system performance estimation.

  1. Notice of Final Rulemaking | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Final Rulemaking Notice of Final Rulemaking Revisions to U.S. Department of Energy (DOE) regulations governing compliance with the National Environmental Policy Act (NEPA) were published in the Federal Register on October 13, 2011, and will be effective on November 14. The revision (76 FR 63763) can be viewed using the link below. Final Rule - 76 FR 63763 - Oct 13 2011_0.pdf (297.74 KB) More Documents & Publications Department of Energy Technical Support Document National Environmental

  2. Tank Farms Technical Safety Requirements [VOL 1 and 2

    SciTech Connect

    CASH, R.J.


    The Technical Safety Requirements (TSRs) define the acceptable conditions, safe boundaries, basis thereof, and controls to ensure safe operation during authorized activities, for facilities within the scope of the Tank Waste Remediation System (TWRS) Final Safety Analysis Report (FSAR).

  3. OSTI, US Dept of Energy Office of Scientific and Technical Information...

    Office of Scientific and Technical Information (OSTI)

    For financial assistance instruments, the DOE F 4600.2 specifies the required technical ... Generally, research and development awards require a final scientifictechnical report or ...

  4. Agenda- Interagency Steering Committee on Performance and Risk Assessment Community of Practice Annual Technical Exchange Meeting [DOE]

    Final Agenda for the December, 2014 Interagency Steering Committee on Performance and Risk Assessment Community of Practice Annual Technical Exchange Meeting held in Las Vegas, Nevada.

  5. Technical Position, NSTP 2002-2 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    2 Technical Position, NSTP 2002-2 November 13, 2002 Methodology for Final Hazard Categorization for Nuclear Facilities from Category 3 to Radiological Clarification to DOE-STD-1027 to provide the methodology, consistent with the Standard, for considering material quality, form, location, dispersibility, and interaction with available energy sources for final hazard categorization to below Hazard Category 3. Technical Position, NSTP 2002-2 (18.45 KB) More Documents & Publications NSTP 2002-2

  6. Final Technical Report for "Ice nuclei relation to aerosol properties: Data analysis and model parameterization for IN in mixed-phase clouds" (DOE/SC00002354)

    SciTech Connect

    Paul J. DeMott, Anthony J. Prenni; Sonia M. Kreidenweis


    Clouds play an important role in weather and climate. In addition to their key role in the hydrologic cycle, clouds scatter incoming solar radiation and trap infrared radiation from the surface and lower atmosphere. Despite their importance, feedbacks involving clouds remain as one of the largest sources of uncertainty in climate models. To better simulate cloud processes requires better characterization of cloud microphysical processes, which can affect the spatial extent, optical depth and lifetime of clouds. To this end, we developed a new parameterization to be used in numerical models that describes the variation of ice nuclei (IN) number concentrations active to form ice crystals in mixed-phase (water droplets and ice crystals co-existing) cloud conditions as these depend on existing aerosol properties and temperature. The parameterization is based on data collected using the Colorado State University continuous flow diffusion chamber in aircraft and ground-based campaigns over a 14-year period, including data from the DOE-supported Mixed-Phase Arctic Cloud Experiment. The resulting relationship is shown to more accurately represent the variability of ice nuclei distributions in the atmosphere compared to currently used parameterizations based on temperature alone. When implemented in one global climate model, the new parameterization predicted more realistic annually averaged cloud water and ice distributions, and cloud radiative properties, especially for sensitive higher latitude mixed-phase cloud regions. As a test of the new global IN scheme, it was compared to independent data collected during the 2008 DOE-sponsored Indirect and Semi-Direct Aerosol Campaign (ISDAC). Good agreement with this new data set suggests the broad applicability of the new scheme for describing general (non-chemically specific) aerosol influences on IN number concentrations feeding mixed-phase Arctic stratus clouds. Finally, the parameterization was implemented into a regional

  7. Final Report

    SciTech Connect

    Marchant, Gary E.


    This is the final report of a two year project entitled "Governing Nanotechnology Risks and Benefits in the Transition to Regulation: Innovative Public and Private Approaches." This project examined the role of new governance or "soft law" mechanisms such as codes of conduct, voluntary programs and partnership agreements to manage the risks of emerging technologies such as nanotechnology. A series of published or in publication papers and book chapters are attached.

  8. Table 4 - DOE Technical Standards Requiring Central Technical Authority

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    (CTA) Concurrence Prior to Any Revisions or Cancellation | Department of Energy 4 - DOE Technical Standards Requiring Central Technical Authority (CTA) Concurrence Prior to Any Revisions or Cancellation Table 4 - DOE Technical Standards Requiring Central Technical Authority (CTA) Concurrence Prior to Any Revisions or Cancellation Table 4 - DOE Technical Standards Requiring Central Technical Authority (CTA) Concurrence Prior to Any Revisions or Cancellation Table 4 - DOE Technical Standards

  9. Derived Concentration Technical Standard

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    196-2011 April 2011 DOE STANDARD DERIVED CONCENTRATION TECHNICAL STANDARD U.S. Department of Energy AREA ENVR Washington, D.C. 20585 Not Measurement Sensitive This document is available on the Department of Energy Technical Standards Program Web Site at DOE-STD-1196-2011 ACKNOWLEDGEMENTS This Derived Concentration Technical Standard was a collaborative effort sponsored by the DOE Office of Environmental Policy and


    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    AIKEN TECHNICAL COLLEGE CAMPUS 2276 Jefferson Davis Highway, Graniteville SC 29829 Visitor parking is provided mainly on Parking Lot 3. In addition to that, all parking lots have...

  11. Voltage Control Technical Conference

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    1-08-Voltage-Control-Technical-Conference Sign In About | Careers | Contact | Investors | Search News & Us Expand News & Us Projects & Initiatives Expand Projects &...

  12. Volttron Technical meeting

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    VOLTTRON Technical Meeting Virginia Tech Advanced Research Institute July 2015 Our mission * Accelerate clean energy technologies, companies and projects * Create high-quality jobs ...

  13. Technical Information Specialist [DOE]

    A successful candidate in this position will serve as a Technical Information Specialist coordinating and executing data curation and quality activities, including software quality assurance, for...


    PurposeThis procedure describes the responsibilities of persons who are charged with implementing the DOE Technical Standards Program. 

  15. Technical Standards Program

    Directives, Delegations, and Other Requirements [Office of Management (MA)]


    The order establishes the DOE Technical Standards Program. Admin Chg 1, dated 3-12-13 supersedes DOE O 252.1A.


    PurposeThis procedure provides guidance for resolving comments on DOE Technical Standards that are received during the coordination process. 

  17. DOE Final Report 3-28-12

    Office of Scientific and Technical Information (OSTI)

    Final Technical Report Reporting Period: 16 Aug 2010 - 31 Dec 11 Date of Report: 30 Mar 12, corrected 9 Sept 12 Award Number: DE-EE0003497 Project Title: Crude Glycerol as Cost-Effective Fuel for Combined Heat and Power to Replace Fossil Fuels Project Period: 08/16/2010 - 12/31/2011 Recipient Organization: North Carolina State University, Raleigh NC, 27695 Partners: Alcoa Technical Center, Alcoa Center, PA Applied Combustion Technologies, MD Principal Investigator: William L. Roberts, (919)

  18. Yucca Mountain Climate Technical Support Representative

    SciTech Connect

    Sharpe, Saxon E


    The primary objective of Project Activity ORD-FY04-012, “Yucca Mountain Climate Technical Support Representative,” was to provide the Office of Civilian Radioactive Waste Management (OCRWM) with expertise on past, present, and future climate scenarios and to support the technical elements of the Yucca Mountain Project (YMP) climate program. The Climate Technical Support Representative was to explain, defend, and interpret the YMP climate program to the various audiences during Site Recommendation and License Application. This technical support representative was to support DOE management in the preparation and review of documents, and to participate in comment response for the Final Environmental Impact Statement, the Site Recommendation Hearings, the NRC Sufficiency Comments, and other forums as designated by DOE management. Because the activity was terminated 12 months early and experience a 27% reduction in budget, it was not possible to complete all components of the tasks as originally envisioned. Activities not completed include the qualification of climate datasets and the production of a qualified technical report. The following final report is an unqualified summary of the activities that were completed given the reduced time and funding.

  19. Final Report

    SciTech Connect

    R Paul Drake


    OAK-B135 This is the final report from the project Hydrodynamics by High-Energy-Density Plasma Flow and Hydrodynamics and Radiation Hydrodynamics with Astrophysical Applications. This project supported a group at the University of Michigan in the invention, design, performance, and analysis of experiments using high-energy-density research facilities. The experiments explored compressible nonlinear hydrodynamics, in particular at decelerating interfaces, and the radiation hydrodynamics of strong shock waves. It has application to supernovae, astrophysical jets, shock-cloud interactions, and radiative shock waves.

  20. Federal Technical Capability

    Directives, Delegations, and Other Requirements [Office of Management (MA)]


    To define requirements and responsibilities for meeting the Department of Energy (DOE) commitment to recruiting, deploying, developing, and retaining a technically competent workforce that will accomplish DOE missions in a safe and efficient manner through the Federal Technical Capability Program (FTCP). Chg 1 dated 9-20-11 supersedes DOE O 426.1 and cancels DOE P 426.1.

  1. Federal Technical Capability Manual

    Directives, Delegations, and Other Requirements [Office of Management (MA)]


    The Federal Technical Capability Manual provides the process for the recruitment, deployment, development, and retention of Federal personnel with the demonstrated technical capability to safely accomplish the Departments missions and responsibilities at defense nuclear facilities. Canceled by DOE M 426.1-1A. Does not cancel other directives.

  2. About Technical Assistance [DOE]

    As technologies proceed along the development pipeline, most face major hurdles as they attempt to enter commercial markets. Our Technical Assistance program helps lower a range of institutional barriers to prepare innovative, energy-efficient technologies and energy management systems for full commercial deployment. These projects and activities address barriers that are not technical, Technology Readiness Level 9.

  3. Final Progress Report (Technical Report) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Close Cite: Bibtex Format Close 0 pages in this document matching the terms "" Search For Terms: Enter terms in the toolbar above to search the full text of this document for ...

  4. Final Technical Report - Mechanisms and pathways controlling genomic instability

    SciTech Connect

    Dynan, William S.


    This project used model organisms, the zebrafish and the Japanese medaka fish to investigate the effects of low-dose radiation exposure on the vertebrate embryo. Endpoints measured included apoptotic cell death, aging, and oxidative stress.

  5. Combined Final Report for Colony II Project (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    Our strategy is based on adaptive system software that aims to make the intelligent decisions necessary to allow domain scientists to safely focus on their task at hand and allow ...

  6. Final Technical Report: Distributed Controls for High Penetrations of Renewables

    SciTech Connect

    Byrne, Raymond H.; Neely, Jason C.; Rashkin, Lee J.; Trudnowski, Daniel J.; Wilson, David G.


    The goal of this effort was to apply four potential control analysis/design approaches to the design of distributed grid control systems to address the impact of latency and communications uncertainty with high penetrations of photovoltaic (PV) generation. The four techniques considered were: optimal fixed structure control; Nyquist stability criterion; vector Lyapunov analysis; and Hamiltonian design methods. A reduced order model of the Western Electricity Coordinating Council (WECC) developed for the Matlab Power Systems Toolbox (PST) was employed for the study, as well as representative smaller systems (e.g., a two-area, three-area, and four-area power system). Excellent results were obtained with the optimal fixed structure approach, and the methodology we developed was published in a journal article. This approach is promising because it offers a method for designing optimal control systems with the feedback signals available from Phasor Measurement Unit (PMU) data as opposed to full state feedback or the design of an observer. The Nyquist approach inherently handles time delay and incorporates performance guarantees (e.g., gain and phase margin). We developed a technique that works for moderate sized systems, but the approach does not scale well to extremely large system because of computational complexity. The vector Lyapunov approach was applied to a two area model to demonstrate the utility for modeling communications uncertainty. Application to large power systems requires a method to automatically expand/contract the state space and partition the system so that communications uncertainty can be considered. The Hamiltonian Surface Shaping and Power Flow Control (HSSPFC) design methodology was selected to investigate grid systems for energy storage requirements to support high penetration of variable or stochastic generation (such as wind and PV) and loads. This method was applied to several small system models.

  7. Mississippi Ethanol Gasification Project, Final Scientific / Technical Report

    SciTech Connect

    Pearson, Larry, E.


    The Mississippi Ethanol (ME) Project is a comprehensive effort to develop the conversion of biomass to ethanol utilizing a proprietary gasification reactor technology developed by Mississippi Ethanol, LLC. Tasks were split between operation of a 1/10 scale unit at the Diagnostic Instrumentation and Analysis Laboratory (DIAL) of Mississippi State University (MSU) and the construction, development, and operation of a full scale pilot unit located at the ME facility in Winona, Mississippi. In addition to characterization of the ME reactor gasification system, other areas considered critical to the operational and economic viability of the overall ME concept were evaluated. These areas include syngas cleanup, biological conversion of syngas to alcohol, and effects of gasification scale factors. Characterization of run data from the Pre-Pilot and Pilot Units has allowed development of the factors necessary for scale-up from the small unit to the larger unit. This scale range is approximately a factor of 10. Particulate and tar sampling gave order of magnitude values for preliminary design calculations. In addition, sampling values collected downstream of the ash removal system show significant reductions in observed loadings. These loading values indicate that acceptable particulate and tar loading rates could be attained with standard equipment additions to the existing configurations. Overall operation both the Pre-Pilot and Pilot Units proceeded very well. The Pilot Unit was operated as a system, from wood receiving to gas flaring, several times and these runs were used to address possible production-scale concerns. Among these, a pressure feed system was developed to allow feed of material against gasifier system pressure with little or no purge requirements. Similarly, a water wash system, with continuous ash collection, was developed, installed, and tested. Development of a biological system for alcohol production was conducted at Mississippi State University with much progress. However, the current state of biological technology is not deemed to be ready commercially. A preliminary estimate of capital and operating costs of a 12000 gallon per day gasification/biological facility was developed for comparison purposes. In addition, during the biological organism screening and testing, some possible alternative products were identified. One such possibility is the biological production of bio-diesel. Additional research is necessary for further evaluation of all of the biological concepts.

  8. Arc Initiation of High Explosives: Final Report (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    Close Cite: Bibtex Format Close 0 pages in this document matching the terms "" Search For Terms: Enter terms in the toolbar above to search the full text of this document for ...

  9. Final Report (Technical Report) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Close Cite: Bibtex Format Close 0 pages in this document matching the terms "" Search For Terms: Enter terms in the toolbar above to search the full text of this document for ...

  10. Final Scientific-Technical Report DOE-GISS-61768. Constraints...

    Office of Scientific and Technical Information (OSTI)

    Close Cite: Bibtex Format Close 0 pages in this document matching the terms "" Search For Terms: Enter terms in the toolbar above to search the full text of this document for ...

  11. Clean Air for London (CLEARFLO) Final Campaign Summary (Technical...

    Office of Scientific and Technical Information (OSTI)

    Authors: Worsnop, D. R. 1 ; Williams, L. R. 1 ; Herndon, S. C. 1 ; Dubey, M. 2 ; Ng, N. L. 3 ; Thornton, J. 4 ; Knighton, B. 5 ; Coulter, R. 6 ; Prvt, Ash 7 + ...

  12. Final Technical Report for DOE Award SC0006616

    SciTech Connect

    Robertson, Andrew


    This report summarizes research carried out by the project "Collaborative Research, Type 1: Decadal Prediction and Stochastic Simulation of Hydroclimate Over Monsoonal Asia. This collaborative project brought together climate dynamicists (UCLA, IRI), dendroclimatologists (LDEO Tree Ring Laboratory), computer scientists (UCI), and hydrologists (Columbia Water Center, CWC), together with applied scientists in climate risk management (IRI) to create new scientific approaches to quantify and exploit the role of climate variability and change in the growing water crisis across southern and eastern Asia. This project developed new tree-ring based streamflow reconstructions for rivers in monsoonal Asia; improved understanding of hydrologic spatio-temporal modes of variability over monsoonal Asia on interannual-to-centennial time scales; assessed decadal predictability of hydrologic spatio-temporal modes; developed stochastic simulation tools for creating downscaled future climate scenarios based on historical/proxy data and GCM climate change; and developed stochastic reservoir simulation and optimization for scheduling hydropower, irrigation and navigation releases.


    SciTech Connect

    Hansen, Nils


    Research focused on detailed studies of the complex combustion chemistry of oxygenated, bio-derived fuels. In particular, studies were done of the flame chemistry of simple methyl and ethyl esters chosen as surrogates for the long-chain esters that are primary constituents of biodiesel fuels. The principal goals of these studies were: (1) show how fuel-specific structural differences including degree of unsaturation, linear vs. branched chain structures, and methoxy vs. ethoxy functions affect fueldestruction pathways, (2) understand the chemistry leading to potential increases in the emissions of hazardous air pollutants including aldehydes and ketones inherent in the use of biodiesel fuels, and (3) define the key chemical reaction mechanisms responsible for observed reductions in polycyclic aromatic hydrocarbons and particulate matter when oxygenated fuels are used as replacements for conventional fuels.

  14. Final report (Technical Report) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    One outcome of the project is the discovery of a rather universal 1f noise magnitude in electrical transport across nanocrystals. The noise is extensive in the number of dots in ...

  15. Traileka Glacier X-Stack. Final Scientific/Technical Report

    SciTech Connect

    Borkar, Shekhar


    The XStack Traleika Glacier (XSTG) project was a three-year research award for exploring a revolutionary exascale-class machine software framework. The XSTG program, including Intel, UC San Diego, Pacific Northwest National Lab, UIUC, Rice University, Reservoir Labs, ET International, and U. Delaware, had major accomplishments, insights, and products resulting from this three-year effort.

  16. STTR Phase 1 Final Technical Report for Project Entitled "Developing...

    Office of Scientific and Technical Information (OSTI)

    The goal of this project, sponsored by Agri-Tech Producers, LLC (ATP), the small business ... Country of Publication: United States Language: English Subject: 09 BIOMASS FUELS ...

  17. PV Systems Reliability Final Technical Report: Ground Fault Detection

    SciTech Connect

    Lavrova, Olga; Flicker, Jack David; Johnson, Jay


    We have examined ground faults in PhotoVoltaic (PV) arrays and the efficacy of fuse, current detection (RCD), current sense monitoring/relays (CSM), isolation/insulation (Riso) monitoring, and Ground Fault Detection and Isolation (GFID) using simulations based on a Simulation Program with Integrated Circuit Emphasis SPICE ground fault circuit model, experimental ground faults installed on real arrays, and theoretical equations.


    SciTech Connect

    Schanze, Kirk S


    This DOE-supported program investigated the fundamental properties of conjugated polyelectrolytes, with emphasis placed on studies of excited state energy transport, self-assembly into conjugated polyelectroyte (CPE) based films and colloids, and exciton transport and charge injection in CPE films constructed atop wide bandgap semiconductors. In the most recent grant period we have also extended efforts to examine the properties of low-bandgap donor-acceptor conjugated polyelectrolytes that feature strong visible light absorption and the ability to adsorb to metal-oxide interfaces.

  19. Final Scientific/Technical Report – BISfuel EFRC

    SciTech Connect

    Gust, Devens


    The vast majority of the country’s energy needs are met with fossil fuels in the form of natural gas, coal and oil. The use of these fossil fuels contributes to climate change, the unequal distribution of fossil fuel deposits in the earth leads to geopolitical and economic problems, and eventually, fossil fuels will be exhausted. Thus, a renewable, widely distributed, environmentally benign, and inexpensive substitute large enough to meet the needs of society is required. Solar energy meets these criteria. Solar energy may be converted to electricity by photovoltaics, but the need for a continuous energy supply and high-density energy requirements for transportation necessitate technology for storage of energy from sunlight in a fuel. Cost-effective technologies for solar fuel production do not exist, prompting the need for new fundamental science. Fuel production requires not only energy, but also a source of electrons and precursor materials suitable for reduction to useful fuels. Given the immense magnitude of the human energy requirement, the most reasonable source of electrons is water oxidation, and suitable precursor materials are hydrogen ions (for hydrogen gas production) and carbon dioxide (for production of reduced carbon fuels such as methane or methanol). Natural photosynthesis is the only proven “technology” for solar fuel production. It harvests solar energy on a magnitude much larger than that necessary to fill human needs, and has done so for billions of years, creating fossil fuels along the way. BISfuel has approached the design of a complete system for solar water oxidation and hydrogen production by applying the fundamental principles of photosynthesis to the construction of synthetic components and their incorporation into an operational unit. In this artificial photosynthetic approach, the functional blueprint of photosynthesis is followed using non-biological materials. BISfuel brought together a group of investigators from the Department of Chemistry and Biochemistry at Arizona State University and integrated them into a cohesive, highly collaborative unit to attack the solar fuel problem. The investigators came from many disciplines, and worked together to apply their expertise in new areas in order to pursue Center goals. The primary goal, construction of a complete functional system for producing hydrogen fuel from water using sunlight, was realized, although much more work would be necessary to develop a practical device for doing so. The Center investigators discovered a great deal of important new chemistry, as is reported in 100 research publications and several patents and invention disclosures. A spin-off company was established based on some of the Center discoveries. Fundamental discoveries were made in the areas of molecular biotechnology, organic chemistry, inorganic chemistry, photochemistry, catalysis, materials science, physical chemistry and chemical physics. New instrumental techniques were developed, including femtosecond X-ray crystallography, which is an exciting approach to determination of the structures of both biological and synthetic molecules. The fundamental discoveries made by the Center will contribute to the development of not only solar fuel technologies, but also biomedical applications; technological uses of DNA; new materials for (opto)electronic, electrochemical, computational and display applications; fuel cells; industrial catalytic processes and related areas. In addition, Center studies of synthetic systems are leading to a better understanding of important natural biological systems, including natural photosynthesis.

  20. Final Technical Report for Center for Plasma Edge Simulation Research

    SciTech Connect

    Pankin, Alexei Y.; Bateman, Glenn; Kritz, Arnold H.


    The CPES research carried out by the Lehigh fusion group has sought to satisfy the evolving requirements of the CPES project. Overall, the Lehigh group has focused on verification and validation of the codes developed and/or integrated in the CPES project. Consequently, contacts and interaction with experimentalists have been maintained during the course of the project. Prof. Arnold Kritz, the leader of the Lehigh Fusion Group, has participated in the executive management of the CPES project. The code development and simulation studies carried out by the Lehigh fusion group are described in more detail in the sections below.