National Library of Energy BETA

Sample records for figure showing number

  1. ORISE: Report shows number of health physics degrees for 2010

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    report shows number of health physics degrees increased for graduates, decreased for undergraduates in 2010 Decreased number of B.S. degrees remains higher than levels in the early 2000 FOR IMMEDIATE RELEASE Dec. 20, 2011 FY12-09 OAK RIDGE, Tenn.-The number of health physics graduate degrees increased for both master's and doctoral candidates in 2010, but decreased for bachelor's degrees, says a report released this year by the Oak Ridge Institute for Science and Education. The ORISE report,

  2. ORISE report shows number of health physics Ph.D.s declined in...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ORISE report shows number of health physics Ph.D.s declined in 2009 FOR IMMEDIATE RELEASE June 15, 2010 FY10-37 OAK RIDGE, Tenn.-Health physics undergraduate degrees increased...

  3. ORISE report shows number of health physics Ph.D.s declined in 2009

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ORISE report shows number of health physics Ph.D.s declined in 2009 FOR IMMEDIATE RELEASE June 15, 2010 FY10-37 OAK RIDGE, Tenn.-Health physics undergraduate degrees increased slightly in 2009 continuing a six-year trend, but doctorate degrees reported a 40-year low, says a report recently released by the Oak Ridge Institute for Science and Education. The report also showed the number of M.S. degrees was 21 percent less than in 2008. The ORISE report, Health Physics Enrollments and Degrees

  4. Facts, Figures

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Figures Facts, Figures The Lab's mission is to develop and apply science and technology to ensure the safety, security, and reliability of the U.S. nuclear deterrent; reduce global threats; and solve other emerging national security and energy challenges. Facts, Figures for 2016 People Total employees: 10,500, including approximately: Los Alamos National Security, LLC: 6,850 Centerra-LA (Guard Force): 300 Contractors: 400 Students: 1,100 Unionized craft workers: 880 Post doctoral researchers:

  5. Cancer Facts & Figures - 2010

    National Nuclear Security Administration (NNSA)

    ... among smokers), certain metals (chromium, cadmium, arsenic), 16 Cancer Facts & Figures 2010 some organic chemicals, radiation, air pollution, and a history of tuberculosis. ...

  6. Study Shows Carbon Emission Reductions from City Energy Actions...

    Office of Environmental Management (EM)

    See Figure 2. Graphic with figure 2 images. The results show regional variation in the ... See Figure 3. Graphic of figure 3 images. Key Considerations from the Study Based on the ...

  7. PHOBOS Experiment: Figures and Data

    DOE Data Explorer

    The PHOBOS Collaboration

    PHOBOS consists of many silicon detectors surrounding the interaction region. With these detectors physicists can count the total number of produced particles and study the angular distributions of all the products. Physicists know from other branches of physics that a characteristic of phase transitions are fluctuations in physical observables. With the PHOBOS array they look for unusual events or fluctuations in the number of particles and angular distribution. The articles that have appeared in refereed science journals are listed here with separate links to the supporting data plots, figures, and tables of numeric data.  See also supporting data for articles in technical journals at http://www.phobos.bnl.gov/Publications/Technical/phobos_technical_publications.htm and from conference proceedings at http://www.phobos.bnl.gov/Publications/Proceedings/phobos_proceedings_publications.htm

  8. PHOBOS Experiment: Figures and Data

    DOE Data Explorer

    The PHOBOS Collaboration

    PHOBOS consists of many silicon detectors surrounding the interaction region. With these detectors physicists can count the total number of produced particles and study the angular distributions of all the products. Physicists know from other branches of physics that a characteristic of phase transitions are fluctuations in physical observables. With the PHOBOS array they look for unusual events or fluctuations in the number of particles and angular distribution. The articles that have appeared in refereed science journals are listed here with separate links to the supporting data plots, figures, and tables of numeric data. See also supporting data for articles in technical journals at http://www.phobos.bnl.gov/Publications/Technical/phobos_technical_publications.htm and from conference proceedings at http://www.phobos.bnl.gov/Publications/Proceedings/phobos_proceedings_publications.htm

  9. Microsoft Word - figure_21.doc

    Energy Information Administration (EIA) (indexed site)

    5 Figure 21. Average citygate price of natural gas in the United States, 2014 (dollars per thousand cubic feet) U.S. Energy Information Administration | Natural Gas Annual ...

  10. Microsoft Word - figure_25.doc

    Energy Information Administration (EIA) (indexed site)

    1 Figure 25. Average price of natural gas delivered to U.S. electric power consumers, 2014 (dollars per thousand cubic feet) U.S. Energy Information Administration | Natural Gas ...

  11. Microsoft Word - figure_24.doc

    Energy Information Administration (EIA) (indexed site)

    0 Figure 24. Average price of natural gas delivered to U.S. onsystem industrial consumers, 2014 (dollars per thousand cubic feet) U.S. Energy Information Administration | Natural ...

  12. Microsoft Word - figure_22.doc

    Energy Information Administration (EIA) (indexed site)

    8 Figure 22. Average price of natural gas delivered to U.S. residential consumers, 2014 (dollars per thousand cubic feet) U.S. Energy Information Administration | Natural Gas ...

  13. Microsoft Word - figure_23.doc

    Energy Information Administration (EIA) (indexed site)

    9 Figure 23. Average price of natural gas delivered to U.S. commercial consumers, 2014 (dollars per thousand cubic feet) U.S. Energy Information Administration | Natural Gas Annual ...

  14. Microsoft Word - Figure_01.doc

    Energy Information Administration (EIA) (indexed site)

    3 Figure 1. Selected average prices of natural gas in the United States, 2010-2014 0 1 2 3 4 5 6 7 2010 2011 2012 2013 2014 E xports Im ports C itygate dollars per thousand cubic ...

  15. Microsoft Word - Figure_05.doc

    Energy Information Administration (EIA) (indexed site)

    24 0 1 2 3 4 2013 2014 2015 2016 2017 All Storage Fields Other than Salt Caverns Salt Caverns trillion cubic feet Trillion Cubic Feet Figure 5 Note: Geographic coverage is the 50 states and the District of Columbia. Alaska was added to U.S. total as of January 2013. Source: Energy Information Administration (EIA): Form EIA-191, "Monthly Underground Gas Storage Report." Billion Cubic Meters Figure 5. Working gas in underground natural gas storage in the United States, 2013-2016

  16. Working Gas in Underground Storage Figure

    Annual Energy Outlook

    Working Gas in Underground Storage Figure Working Gas in Underground Storage Figure Working Gas in Underground Storage Compared with 5-Year Range Graph....

  17. Working Gas in Underground Storage Figure

    Annual Energy Outlook

    Gas in Underground Storage Figure Working Gas in Underground Storage Compared with 5-Year Range Graph...

  18. Employee Show

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Where Science Inspires Art Fermilab Employee Art Show 2015 Exhibition Dates -September 18, 2015 November 30, 2015 Reception - September 23, 2015 5 7pm Eligibility: Any current...

  19. Light Show

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    9 Lightning - Nature's Light Show Lightning provides one of nature's most spectacular displays of energy. Though fascinating to observe, lightning can be dangerous and deadly. Protecting ARM instruments from lightning damage is vital. Putting equipment worth millions of dollars into open fields (Photo: NOAA) ARM Facilities Newsletter is published by Argonne National Laboratory, a multiprogram laboratory operated by The University of Chicago under contract W-31-109-Eng-38 with the U.S. Department

  20. Microsoft Word - Figure_02.doc

    Energy Information Administration (EIA) (indexed site)

    6 0.0 0.2 0.4 0.6 0.8 1.0 1.2 2013 2014 2015 2016 2017 Residential Commercial trillion cubic feet Figure 2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 2013 2014 2015 2016 2017 Industrial Electric Power trillion cubic feet Sources: 2013-2015: Energy Information Administration (EIA): Form EIA-857, "Monthly Report of Natural Gas Purchases and Deliveries to Consumers"; Form EIA-923, "Power Plant Operations Report"; EIA computations; and Natural Gas Annual 2015. January 2016 through current

  1. Working Gas in Underground Storage Figure

    Gasoline and Diesel Fuel Update

    Working Gas in Underground Storage Figure Working Gas in Underground Storage Compared with 5-Year Range Graph.

  2. Microsoft Word - figure_14.doc

    Energy Information Administration (EIA) (indexed site)

    42 Figure 14. Net interstate movements, imports, and exports of natural gas in the United States, 2015 (million cubic feet) Norway Trinidad/ Tobago Yemen Norway Egypt Turkey Interstate Movements Not Shown on Map From Volume To From Volume To CT RI MD DC IN MA MD VA MA CT RI MA MA NH VA DC WA MT ID OR W Y ND SD CA NV UT CO NE KS AZ NM OK TX MN WI MI IA IL IN OH MO AR MS AL GA TN KY FL SC NC WV MD DE VA PA NJ NY CT RI MA VT NH ME LA HI AK Mexico Canada Canada Canada Canada Canada Canada Canada

  3. Figure2.jpg | OSTI, US Dept of Energy Office of Scientific and Technical

    Office of Scientific and Technical Information (OSTI)

    Information Figure2

  4. Figure3.jpg | OSTI, US Dept of Energy Office of Scientific and Technical

    Office of Scientific and Technical Information (OSTI)

    Information Figure3

  5. Figure4.jpg | OSTI, US Dept of Energy Office of Scientific and Technical

    Office of Scientific and Technical Information (OSTI)

    Information Figure4

  6. Microsoft Word - Figure_13_2015.doc

    Energy Information Administration (EIA) (indexed site)

    35 2015 Flow Capacity (million cubic feet per day) Figure 13. Principal Interstate Natural Gas Flow Capacity Summary, 2015 Source: Energy Information Administration, Office of Oil, Gas, and Coal Supply Statistics. = Direction of Flow = Bi-directional 15,000 12,000 9,000 6,000 3,000 0

  7. Microsoft Word - figure_07-2016.doc

    Energy Information Administration (EIA) (indexed site)

    1 Source: Office of Fossil Energy, U.S. Department of Energy, Natural Gas Imports and Exports. Figure 7. U.S. natural gas trade summary, 2011-2015 0 0.5 1 1.5 2 2.5 3 3.5 4 2011 2012 2013 2014 2015 Total Imports Total Exports Net Imports trillion cubic feet

  8. Microsoft Word - figure_09_2016.doc

    Energy Information Administration (EIA) (indexed site)

    3 Canada Mexico Figure 9. Flow of natural gas imports, 2015 (billion cubic feet) Source: Energy Information Administration, based on data from the Office of Fossil Energy, U.S. Department of Energy, Natural Gas Imports and Exports. 12 50 674 190 United States 6 1 Trinidad/Tobago 12 Norway 6 Yemen 535 420 233 11 133 430 12 9 7 71 3

  9. Figure ES1. Map of Northern Alaska

    Energy Information Administration (EIA) (indexed site)

    Figure ES1. Map of Northern Alaska figurees1.jpg (61418 bytes) Source: Edited from U.S. Geological Survey, "The Oil and Gas Resource Potential of the Arctic National Wildlife Refuge 1002 Area, Alaska," Open File Report 98-34, 1999. Return to the Executive Summary.

  10. I.D I VI Figure

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ~press - ,~,.--;~ 3.1 ,,~-.::;:.--- ~ ( 3.1 ( ;-; t\ I.D I VI Figure 9-1. Location of the original Cypress Grove Set-Aside and the Stave Island and Georgia Power replacement Areas. Set-Aside 9: Cypress Grove, Stave Island, and Georgia Power

  11. Figure correction of multilayer coated optics

    DOEpatents

    Chapman; Henry N. , Taylor; John S.

    2010-02-16

    A process is provided for producing near-perfect optical surfaces, for EUV and soft-x-ray optics. The method involves polishing or otherwise figuring the multilayer coating that has been deposited on an optical substrate, in order to correct for errors in the figure of the substrate and coating. A method such as ion-beam milling is used to remove material from the multilayer coating by an amount that varies in a specified way across the substrate. The phase of the EUV light that is reflected from the multilayer will be affected by the amount of multilayer material removed, but this effect will be reduced by a factor of 1-n as compared with height variations of the substrate, where n is the average refractive index of the multilayer.

  12. Figure F8. Coal demand regions

    Gasoline and Diesel Fuel Update

    9 U.S. Energy Information Administration | Annual Energy Outlook 2016 Regional maps Figure F8. Coal demand regions Figure F7. Coal Demand Regions CT,MA,ME,NH,RI,VT OH 1. NE 3. S1 4. S2 5. GF 6. OH 7. EN AL,MS MN,ND,SD IA,NE,MO,KS TX,LA,OK,AR MT,WY,ID CO,UT,NV AZ,NM 9. AM 11. C2 12. WS 13. MT 14. CU 15. ZN WV,MD,DC,DE 2. YP Region Content Region Code NY,PA,NJ VA,NC,SC GA,FL IN,IL,MI,WI Region Content Region Code 14. CU 13. MT 16. PC 15. ZN 12. WS 11. C2 9. AM 5. GF 8. KT 4. S2 7. EN 6. OH 2. YP

  13. figure1_solitons.jpg | OSTI, US Dept of Energy Office of Scientific and

    Office of Scientific and Technical Information (OSTI)

    Technical Information figure1_solitons

  14. Figure 1_space.jpg | OSTI, US Dept of Energy Office of Scientific and

    Office of Scientific and Technical Information (OSTI)

    Technical Information Figure 1_space

  15. ORISE: Report shows number of health physics degrees for 2010

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    seen what impact the March 11 Fukushima Daiichi accident may have on the nuclear industry. ... Conversely, the Fukushima incident has also led to a reassessment of the safety ...

  16. Sandia National Laboratories: Facts & Figures

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Facts & Figures Sandia's multimission work is represented in a diverse funding portfolio. Budget FY15 Operating $ 2,809.7 million Capital equipment $ 41.0 million Construction $ 29.9 million TOTAL LAB FUNDING $ 2,880.6 million Note: Sandia's fiscal year (FY) runs from October 1 through September 30. Funding by source FY15 NNSA Weapons activities $ 1,576.6 million Defense nuclear nonproliferation $ 143.9 million Other NNSA $ 1.0 million Total NNSA $ 1,721.0 million Non-NNSA DOE Electricity

  17. Microsoft Word - Figure_03_04.doc

    Energy Information Administration (EIA) (indexed site)

    8 0 2 4 6 8 10 12 14 16 18 20 22 2013 2014 2015 2016 2017 Residential Commercial Industrial Electric Power Citygate dollars per thousand cubic feet Figure 3 and 4 0 2 4 6 8 10 12 14 16 18 20 22 2013 2014 2015 2016 2017 NGPL Composite Spot Price NG Spot Price at Henry Hub dollars per thousand cubic feet Note: Prices are in nominal dollars. Sources: 2013-2015: Energy Information Administration (EIA), Natural Gas Annual 2015. January 2016 through current month: Form EIA-857, "Monthly Report of

  18. Figure F2. Electricity market module regions

    Energy Information Administration (EIA) (indexed site)

    F-3 U.S. Energy Information Administration | Annual Energy Outlook 2016 Regional maps Figure F2. Electricity market module regions Source: U.S. Energy Information Administration, Office of Energy Analysis. 1 2 3 4 5 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 6 7 1. ERCT TRE All 2. FRCC FRCC All 3. MROE MRO East 4. MROW MRO West 5. NEWE NPCC New England 6. NYCW NPCC NYC/Westchester 7. NYLI NPCC Long Island 8. NYUP NPCC Upstate NY 9. RFCE RFC East 10. RFCM RFC Michigan 11. RFCW RFC West 12. SRDA

  19. Figure F1. United States Census Divisions

    Gasoline and Diesel Fuel Update

    53 Figure 17. Natural gas delivered to consumers in the United States, 2015 Volumes in Million Cubic Feet Trillion Cubic Feet trillion cubic feet All Other States Wisconsin Indiana Texas Pennsylvania New Jersey Ohio Michigan Illinois California New York 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 Residential All Other States Minnesota Massachusetts Pennsylvania New Jersey Ohio Michigan Texas Illinois California New York 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 Commercial trillion cubic feet Res idential 4,609,670

  20. Figure F7. Coal supply regions

    Gasoline and Diesel Fuel Update

    8 Appendix F Figure F7. Coal supply regions WA ID OR CA NV UT TX OK AR MO LA MS AL GA FL TN SC NC KY VA WV WY CO SD ND MI MN WI IL IN OH MD PA NJ DE CT MA NH VT NY ME RI MT NE IA KS MI AZ NM 500 0 SCALE IN MILES APPALACHIA Northern Appalachia Central Appalachia Southern Appalachia INTERIOR NORTHERN GREAT PLAINS Eastern Interior Western Interior Gulf Lignite Dakota Lignite Western Montana Wyoming, Northern Powder River Basin Wyoming, Southern Powder River Basin Western Wyoming OTHER WEST Rocky

  1. Surface figure control for coated optics

    DOEpatents

    Ray-Chaudhuri, Avijit K.; Spence, Paul A.; Kanouff, Michael P.

    2001-01-01

    A pedestal optical substrate that simultaneously provides high substrate dynamic stiffness, provides low surface figure sensitivity to mechanical mounting hardware inputs, and constrains surface figure changes caused by optical coatings to be primarily spherical in nature. The pedestal optical substrate includes a disk-like optic or substrate section having a top surface that is coated, a disk-like base section that provides location at which the substrate can be mounted, and a connecting cylindrical section between the base and optics or substrate sections. The optic section has an optical section thickness.sup.2 /optical section diameter ratio of between about 5 to 10 mm, and a thickness variation between front and back surfaces of less than about 10%. The connecting cylindrical section may be attached via three spaced legs or members. However, the pedestal optical substrate can be manufactured from a solid piece of material to form a monolith, thus avoiding joints between the sections, or the disk-like base can be formed separately and connected to the connecting section. By way of example, the pedestal optical substrate may be utilized in the fabrication of optics for an extreme ultraviolet (EUV) lithography imaging system, or in any optical system requiring coated optics and substrates with reduced sensitivity to mechanical mounts.

  2. Finding Six-Figure ROI From Energy Efficiency | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Six-Figure ROI From Energy Efficiency Finding Six-Figure ROI From Energy Efficiency September 28, 2010 - 10:20am Addthis Kevin Craft What are the key facts? Recovery Act funded ...

  3. Sample manuscript showing style and formatting specifications...

    Office of Scientific and Technical Information (OSTI)

    ... as the outputs in Figure 5. The extracted green areas are shown in Figure 6 (b). ... States to promote electricity generation from renewable energy sources such as solar. ...

  4. Figure 1. Project Area, Focused Study Area, Potential Access...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Page 4 of 8 Figure 1. Project Area, Focused Study Area, Potential Access Agreement Land, and Land Not Suitable for Conveyance...

  5. Show Me PACE

    Energy.gov [DOE]

    In July 2010 Missouri enacted the Property Assessed Clean Energy Act. In June 2015, Show Me PACE was established under this law as a Clean Energy Development Board. PACE financing allows property...

  6. Post-Show Tips

    Energy.gov [DOE]

    These guidelines are designed to help you with the post-show process. This page includes tips for tearing down your exhibit, shipping the exhibit, and collecting your bills.

  7. Request Number:

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    1074438 Name: Gayle Cooper Organization: nla Address: _ Country: United States Phone Number: Fax Number: nla E-mail: . ~===--------- Reasonably Describe Records Description: Information pertaining to the Department of Energy's cost estimate for reinstating pension benefit service years to the Enterprise Company (ENCO) employees who are active plan participants in the Hanford Site Pension Plan. This cost estimate was an outcome of the DOE's Worker Town Hall Meetings held on September 17-18, 2009.

  8. (Document Number)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    A TA-53 TOUR FORM/RADIOLOGICAL LOG (Send completed form to MS H831) _____________ _____________________________ _________________________________ Tour Date Purpose of Tour or Tour Title Start Time and Approximate Duration ___________________________ ______________ _______________________ _________________ Tour Point of Contact/Requestor Z# (if applicable) Organization/Phone Number Signature Locations Visited: (Check all that apply, and list any others not shown. Prior approval must be obtained

  9. Figure ES2. Annual Indices of Real Disposable Income, Vehicle...

    Energy Information Administration (EIA) (indexed site)

    ES2 Figure ES2. Annual Indices of Real Disposable Income, Vehicle-Miles Traveled, Consumer Price Index (CPI-U), and Real Average Retail Gasoline Price, 1978-2004, 1985100...

  10. Canada Mexico Figure 11. Flow of natural gas exports, 2014

    Energy Information Administration (EIA) (indexed site)

    8 Canada Mexico Figure 11. Flow of natural gas exports, 2014 (billion cubic feet) Source: Energy Information Administration, based on data from the Office of Fossil Energy, U.S. ...

  11. Subsea completion data show steady activity levels

    SciTech Connect

    Mohr, H.O. )

    1993-02-01

    Review of subsea completion statistics indicates 45 installations during 1992 - one more than during 1991. The 45 installations are still considerably less than the all-time high of 66 installations in 1985. Petrobras continues to install three times as many subsea completions as Shell, the next most active user. However, as in the past three years, the overall-lower number of installations last year was due to reduced applications by Petrobras. During 1991, that company installed 10 subsea completions, whereas during 1988, for example, it completed 37 installations. It should be noted that reduced activity by petrobras reflects problems with financing and general activity, rather than a lack of confidence in subsea completions. The number of future subsea completions identified for installation during the next 10 years is 1,144 - some 10% more than the 1,014 identified at the end of 1991. The present planned installation figure is an all-time high; the next highest number of installations identified was 1,083 at the end of 1989. These and other statistics are presented in 10 tables. A brief analysis of each is included.

  12. Figure F5. Oil and gas supply model regions

    Gasoline and Diesel Fuel Update

    6 Appendix F Figure F5. Oil and gas supply model regions Figure F4. Oil and Gas Supply Model Regions Atlantic WA MT WY ID NV UT CO AZ NM TX OK IA KS MO IL IN KY TN MS AL FL GA SC NC WV PA NJ MD DE NY CT ME RI MA NH VA WI MI OH NE SD MN ND AR LA OR CA VT Northeast (1) Gulf of Mexico Gulf Coast (2) Midcontinent (3) Rocky Mountain (5) West Coast (6) Pacific Offshore North Slope AK TX TX NM TX Southwest (4) Onshore North Slope Other Alaska Source: U.S. Energy Information Administration, Office of

  13. Figure F6. Natural gas transmission and distribution model regions

    Gasoline and Diesel Fuel Update

    7 U.S. Energy Information Administration | Annual Energy Outlook 2016 Regional maps Figure F6. Natural gas transmission and distribution model regions 218 U.S. Energy Information Administration / Annual Energy Outlook 2010 Figure F5. Natural Gas Transmission and Distribution Model Regions Pacifi c (9) Moun tain (8) CA (12) AZ/N M (11) W. North Centr al (4) W. South Centr al (7) E. South Centr al (6) E. North Centr al (3) S. Atlan tic (5) FL (10) Mid. Atlan tic (2) New Engl. (1) W. Canad a E.

  14. BILIWG: Consistent "Figures of Merit" (Presentation)

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    BILIWG: Consistent "Figures of Merit" A finite set of results reported in consistent units * To track progress of individual projects on a consistent basis * To enable comparing projects in a transparent manner Potential BILIWG Figures of Merit Key BILI Distributed Reforming Targets * Cost ($/kg of H2): H2A analysis - Distributed reforming station,1000 kg/day ave./daily dispensed, 5000/6250 psi (and 10,000/12,000 psi) dispensing, 500 units/yr. * nth unit vs. 500 units/yr ? * production

  15. East Tennessee Technology Park by the Numbers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    East Tennessee Technology Park by the Numbers East Tennessee Technology Park by the Numbers September 13, 2016 - 12:15pm Addthis East Tennessee Technology Park by the Numbers East Tennessee Technology Park by the Numbers East Tennessee Technology Park by the Numbers East Tennessee Technology Park by the Numbers Statistics associated with decontaminating, decommissioning and demolishing the five gaseous diffusion buildings at the East Tennessee Technology Park. Notable figures from the EM

  16. DOE Award Number: DE-EE0000405 Award Recipient: University of...

    Office of Scientific and Technical Information (OSTI)

    ... The figures below show the fermenter and output from the Raman analysis. Fermenter used for UW biofuels research Output from Raman probe showing consumption of glucose and ...

  17. Polarized Ion Beams in Figure-8 Rings of JLab's MEIC

    SciTech Connect

    Derbenev, Yaroslav; Lin, Fanglei; Morozov, Vasiliy; Zhang, Yuhong; Kondratenko, Anatoliy; Kondratenko, M.A.; Filatov, Yury

    2014-07-01

    The Medium-energy Electron-Ion Collider (MEIC) proposed by Jefferson Lab is designed to provide high polarization of both colliding beams. One of the unique features of JLab's MEIC is figure-8 shape of its rings. It allows preservation and control of polarization of all ion species including small-anomalous-magnetic-moment deuterons during their acceleration and storage. The figure-8 design conceptually expands the capability of obtaining polarized high-energy beams in comparison to conventional designs because of its property of having no preferred periodic spin direction. This allows one to control effectively the beam polarization by means of magnetic insertions with small field integrals. We present a complete scheme for preserving the ion polarization during all stages of acceleration and its control in the collider's experimental straights.

  18. NOvA (Fermilab E929) Official Plots and Figures

    DOE Data Explorer

    The NOvA collaboration, consisting of 180 researchers across 28 institutions and managed by the Fermi National Accelerator Laboratory (FNAL), is developing instruments for a neutrino-focused experiment that will attempt to answer three fundamental questions in neutrino physics: 1) Can we observe the oscillation of muon neutrinos to electron neutrinos; 2) What is the ordering of the neutrino masses; and 3) What is the symmetry between matter and antimatter? The collaboration makes various data plots and figures available. These are grouped under five headings, with brief descriptions included for each individual figure: Neutrino Spectra, Detector Overview, Theta12 Mass Hierarchy CP phase, Theta 23 Delta Msqr23, and NuSterile.

  19. Volume_III_App_A_Figures_Chapter2

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Plains & Eastern EIS Figure 2.1-1: Converter Station General Layout 0 50 100 Miles OKLAHOMA ARKANSAS NE W M EX IC O T N COLORADO MISSOURI KANSAS MISSISSIPPI LOUISIANA TEXAS A R Arkansas AC Interconnection Siting Area Oklahoma AC Interconnection Siting Area Future Optima Substation Region 4 Link 3 Variation 2 Lee Creek Variation Oklahoma Converter Station Siting Area Arkansas Converter Station Siting Area Tennessee Converter Station Siting Area Region 1 Region 2 Region 3 Region 4 Region 5

  20. Figure F3. North American Electric Reliability Corporation regions

    Gasoline and Diesel Fuel Update

    3 U.S. Energy Information Administration | Annual Energy Outlook 2016 Regional maps Figure F2. Electricity market module regions Source: U.S. Energy Information Administration, Office of Energy Analysis. 1 2 3 4 5 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 6 7 1. ERCT TRE All 2. FRCC FRCC All 3. MROE MRO East 4. MROW MRO West 5. NEWE NPCC New England 6. NYCW NPCC NYC/Westchester 7. NYLI NPCC Long Island 8. NYUP NPCC Upstate NY 9. RFCE RFC East 10. RFCM RFC Michigan 11. RFCW RFC West 12. SRDA

  1. Guidelines for Supplier, Vendor Shows

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Guidelines for Supplier, Vendor Shows Guidelines for SupplierVendor or Professional Local Trade FairsShows As a premier national research and development laboratory, LANL seeks...

  2. ORISE: Report shows nuclear engineering graduation rates on the...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ORISE report shows nuclear engineering graduation rates on the rise in 2013 Number of ... OAK RIDGE, Tenn.-The number of college students graduating with majors in nuclear ...

  3. Fermilab E866 (NuSea) Figures and Data Plots

    DOE Data Explorer

    None

    The NuSea Experiment at Fermilab studied the internal structure of protons, in particular the difference between up quarks and down quarks. This experiment also addressed at least two other physics questions: nuclear effects on the production of charmonia states (bound states of charm and anti-charm quarks) and energy loss of quarks in nuclei from Drell-Yan measurements on nuclei. While much of the NuSea data are available only to the collaboration, figures, data plots, and tables are presented as stand-alone items for viewing or download. They are listed in conjunction with the published papers, theses, or presentations in which they first appeared. The date range is 1998 to 2008. To see these figures and plots, click on E866 publications or go directly to http://p25ext.lanl.gov/e866/papers/papers.html. Theses are at http://p25ext.lanl.gov/e866/papers/e866theses/e866theses.html and the presentations are found at http://p25ext.lanl.gov/e866/papers/e866talks/e866talks.html. Many of the items are postscript files.

  4. Study shows tanker spills about equal from groundings and collisions

    SciTech Connect

    Not Available

    1992-02-17

    This paper reports that figures compiled by International Tanker Owners Pollution Federation Ltd., London, dispel the commonly held belief that tanker groundings are more significant than collisions in terms of oil pollution. During the past 21 years, the number of spills and volumes released after collisions and groundings were almost the same, the Catherine Grey, the federation's database manager. The federation the efforts to design environmentally safer tankers, such as those with double hulls, to minimize oil spills following accidents should take full account of the causes of major spills.

  5. Natural Gas Processing Plants in the United States: 2010 Update / Figure 7

    Gasoline and Diesel Fuel Update

    7. Natural Gas Processing Plants in Alaska, 2009 Figure 7. Natural Gas Processing Plants in Alaska, 2009

  6. 9-D polarized proton transport in the MEIC figure 8 collider ring - first steps

    SciTech Connect

    Meot, F.; Morozov, V. S.

    2015-05-03

    Spin tracking studies in the MEIC figure-8 collider ion ring are presented, based on a very preliminary design of the lattice. They provide numerical illustrations of some of the aspects of the figure-8 concept, including spin-rotator based spin control, and lay out the path towards a complete spin tracking simulation of a figure-8 ring.

  7. 9-D polarized proton transport in the MEIC figure-8 collider ring: first steps

    SciTech Connect

    Meot, F.; Morozov, V. S.

    2014-10-24

    Spin tracking studies in the MEIC figure-8 collider ion ring are presented, based on a very preliminary design of the lattice. They provide numerical illustrations of some of the aspects of the figure-8 concept, including spin-rotator based spin control, and lay out the path towards a complete spin tracking simulation of a figure-8 ring.

  8. STAR (Solenoidal Tracker at RHIC) Figures and Data

    DOE Data Explorer

    The STAR Collaboration

    The primary physics task of STAR is to study the formation and characteristics of the quark-gluon plasma (QGP), a state of matter believed to exist at sufficiently high energy densities. STAR consists of several types of detectors, each specializing in detecting certain types of particles or characterizing their motion. These detectors work together in an advanced data acquisition and subsequent physics analysis that allows final statements to be made about the collision. The STAR Publications page provides access to all published papers by the STAR Collaboration, and many of them have separate links to the figures and data found in or supporting the paper. See also the data-rich summaries of the research at http://www.star.bnl.gov/central/physics/results/. [See also DDE00230

  9. BRAHMS (Broad Range Hadron Magnetic Spectrometer) Figures and Data Archive

    DOE Data Explorer

    The BRAHMS experiment was designed to measure charged hadrons over a wide range of rapidity and transverse momentum to study the reaction mechanisms of the relativistic heavy ion reactions at the Relativistic Heavy Ion Collider at Brookhaven National Laboratory and the properties of the highly excited nuclear matter formed in these reactions. The experiment took its first data during the RHIC 2000 year run and completed data taking in June 2006. The BRAHMS archive makes publications available and also makes data and figures from those publications available as separate items. See also the complete list of publications, multimedia presentations, and related papers at http://www4.rcf.bnl.gov/brahms/WWW/publications.html

  10. Backstage at the Daily Show

    Energy.gov [DOE]

    Backstage footage from Secretary Chu's appearance on the Daily Show where he discuses the green room candy dish and possible lighting considerations.

  11. International Builders' Show | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Builders' Show International Builders' Show February 14, 2008 - 11:29am Addthis Remarks as Prepared for Delivery by Secretary Bodman Thank you, Andy, and thank you all for being here. The world has reached an energy crossroads. Rising global energy demand and the need for more environmentally-responsible energy production and consumption have presented us with a number of global challenges that require global solutions. Every American has a role to play in meeting these challenges. And that's

  12. With growing numbers of solar energy...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Pending SOLAR GLARE HAZARD ANALYSIS TOOL (SGHAT) TECHNOLOGY SUMMARY Figure 1. Glare from solar panels viewed from an air traffic control tower. Figure 2. Screen image of glare...

  13. ShowMe3D

    Energy Science and Technology Software Center

    2012-01-05

    ShowMe3D is a data visualization graphical user interface specifically designed for use with hyperspectral image obtained from the Hyperspectral Confocal Microscope. The program allows the user to select and display any single image from a three dimensional hyperspectral image stack. By moving a slider control, the user can easily move between images of the stack. The user can zoom into any region of the image. The user can select any pixel or region from themore » displayed image and display the fluorescence spectrum associated with that pixel or region. The user can define up to 3 spectral filters to apply to the hyperspectral image and view the image as it would appear from a filter-based confocal microscope. The user can also obtain statistics such as intensity average and variance from selected regions.« less

  14. ShowMe3D

    SciTech Connect

    Sinclair, Michael B

    2012-01-05

    ShowMe3D is a data visualization graphical user interface specifically designed for use with hyperspectral image obtained from the Hyperspectral Confocal Microscope. The program allows the user to select and display any single image from a three dimensional hyperspectral image stack. By moving a slider control, the user can easily move between images of the stack. The user can zoom into any region of the image. The user can select any pixel or region from the displayed image and display the fluorescence spectrum associated with that pixel or region. The user can define up to 3 spectral filters to apply to the hyperspectral image and view the image as it would appear from a filter-based confocal microscope. The user can also obtain statistics such as intensity average and variance from selected regions.

  15. Figure 1. Project Area, Focused Study Area, Potential Access Agreement Land, and Land Not

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Page 4 of 8 Figure 1. Project Area, Focused Study Area, Potential Access Agreement Land, and Land Not Suitable for Conveyance

  16. The application of a figure of merit for nuclear explosive utility...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: The application of a figure of merit for nuclear explosive utility as metric for material attractiveness in a nuclear material theft scenario Citation Details ...

  17. Natural Gas Processing Plants in the United States: 2010 Update / Figure 2

    Gasoline and Diesel Fuel Update

    2. Processing Plant Capacity and Percent of Total U.S. Capacity, 2009 Figure 2. Processing Plant Capacity and Percent of Total U.S. Capacity, 2009

  18. Number | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Property:NumOfPlants Property:NumProdWells Property:NumRepWells Property:Number of Color Cameras Property:Number of Devices Deployed Property:Number of Plants included in...

  19. NSR Key Number Retrieval

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    NSR Key Number Retrieval Pease enter key in the box Submit

  20. ORISE: Report shows nuclear engineering graduation rates rebounding...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    report shows nuclear engineering graduation rates rebounding in 2015 after brief decline ... number of college students graduating with majors in nuclear engineering has rebounded. ...

  1. ORISE: Report shows nuclear engineering graduation rates leveling...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ORISE report shows nuclear engineering graduation rates leveling off in 2014 after five ... OAK RIDGE, Tenn.-The number of college students graduating with majors in nuclear ...

  2. Number of Gas Producing Oil Wells

    Gasoline and Diesel Fuel Update

    73 0 1 2 3 4 5 6 7 8 9 10 11 12 Number of Consumers Eligible Participating Table 26. Number of consumers eligible and participating in a customer choice program in the residential sector, 2015 Figure 26. Top Five States with Participants in a Residential Customer Choice Program, 2015 California 10,969,597 6,712,311 441,523 Colorado 1,712,153 1,254,056 0 Connecticut 531,380 1,121 340 District of Columbia 147,895 147,867 17,167 Florida 701,981 17,626 16,363 Georgia 1,777,558 1,468,084 1,468,084

  3. Big Numbers | Jefferson Lab

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Big Numbers Big Numbers May 16, 2011 This article has some numbers in it. In principle, numbers are just language, like English or Japanese. Nevertheless, it is true that not everyone is comfortable or facile with numbers and may be turned off by too many of them. To those people, I apologize that this article pays less attention to maximizing the readership than some I do. But sometimes it's just appropriate to indulge one's self, so here goes. When we discuss the performance of some piece of

  4. Florida Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Florida Natural Gas Number of Oil Wells (Number of ... Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Florida ...

  5. Sandia Energy - New Material Tests Show Biaxial Laminate Creep...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Recent industry observations of damage occurring earlier than expected in the blade panel regions (Figure 1) were brought to the attention of researchers at Sandia National...

  6. Natural Gas Processing Plants in the United States: 2010 Update / Figure 1

    Gasoline and Diesel Fuel Update

    1. Natural Gas Processing Plants and Production Basins, 2009 Figure 1. Natural Gas Processing Plants and Production Basins, 2009 Source: U.S. Energy Information Administration, GasTran Natural Gas Transportation Information System

  7. Natural Gas Processing Plants in the United States: 2010 Update / Figure 4

    Gasoline and Diesel Fuel Update

    4. Natural Gas Processing Plants, Production Basins, and Plays in the Gulf of Mexico States, 2009 Figure 4. Natural Gas Processing Plants, Production Basins, and Plays in the Gulf of Mexico States,

  8. Natural Gas Processing Plants in the United States: 2010 Update / Figure 5

    Gasoline and Diesel Fuel Update

    5. Natural Gas Processing Plants, Production Basins, and Plays in the Rocky Mountain States and California, 2009 Figure 5. Natural Gas Processing Plants, Production Basins, and Plays in the Rocky Mountain States and California,

  9. Natural Gas Processing Plants in the United States: 2010 Update / Figure 6

    Gasoline and Diesel Fuel Update

    6. Natural Gas Processing Plants, Production Basins, and Plays in the Midwestern and Eastern States, 2009 Figure 6. Natural Gas Processing Plants, Production Basins, and Plays in the Midwestern and Eastern States,

  10. Property:Number of Color Cameras | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Color Cameras Jump to: navigation, search Property Name Number of Color Cameras Property Type Number Pages using the property "Number of Color Cameras" Showing 25 pages using this...

  11. Multiple-Filled Skutterudites: High Thermoelectric Figure of Merit through Separately Optimizing Electrical and Thermal Transports

    SciTech Connect

    Zhang, Weiqing; Yang, Jiong; Yang, Jihui; Wang, Hsin; Salvador, James R.; Shi, Xun; Chi, Miaofang; Cho, Jung Y; Bai, Shengqiang; Chen, Lidong

    2011-01-01

    Skutterudites CoSb{sub 3} with multiple cofillers Ba, La, and Yb were synthesized and very high thermoelectric figure of merit ZT = 1.7 at 850 K was realized. X-ray diffraction of the densified multiple-filled bulk samples reveals all samples are phase pure. High-resolution scanning transmission electron microscopy (STEM) and energy dispersive X-ray spectroscopy (EDS) analysis confirm that multiple guest fillers occupy the nanoscale-cages in the skutterudites. The fillers are further shown to be uniformly distributed and the Co-Sb skutterudite framework is virtually unperturbed from atomic scale to a few micrometers. Our results firmly show that high power factors can be realized by adjusting the total filling fraction of fillers with different charge states to reach the optimum carrier density, at the same time, lattice thermal conductivity can also be significantly reduced, to values near the glass limit of these materials, through combining filler species of different rattling frequencies to achieve broad-frequency phonon scattering. Therefore, partially filled skutterudites with multiple fillers of different chemical nature render unique structural characteristics for optimizing electrical and thermal transports in a relatively independent way, leading to continually enhanced ZT values from single- to double-, and finally to multiple-filled skutterudites. The idea of combining multiple fillers with different charge states and rattling frequencies for performance optimization is also expected to be valid for other caged TE compounds.

  12. Florida Natural Gas Number of Commercial Consumers (Number of...

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Florida Natural Gas Number of Commercial ... Referring Pages: Number of Natural Gas Commercial Consumers Florida Number of Natural Gas ...

  13. Florida Natural Gas Number of Industrial Consumers (Number of...

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Florida Natural Gas Number of Industrial ... Referring Pages: Number of Natural Gas Industrial Consumers Florida Number of Natural Gas ...

  14. Florida Natural Gas Number of Residential Consumers (Number of...

    Gasoline and Diesel Fuel Update

    Residential Consumers (Number of Elements) Florida Natural Gas Number of Residential ... Referring Pages: Number of Natural Gas Residential Consumers Florida Number of Natural Gas ...

  15. New York Natural Gas Number of Commercial Consumers (Number of...

    Annual Energy Outlook

    Commercial Consumers (Number of Elements) New York Natural Gas Number of Commercial ... Referring Pages: Number of Natural Gas Commercial Consumers New York Number of Natural Gas ...

  16. New Mexico Natural Gas Number of Commercial Consumers (Number...

    Gasoline and Diesel Fuel Update

    Commercial Consumers (Number of Elements) New Mexico Natural Gas Number of Commercial ... Referring Pages: Number of Natural Gas Commercial Consumers New Mexico Number of Natural ...

  17. North Dakota Natural Gas Number of Commercial Consumers (Number...

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) North Dakota Natural Gas Number of Commercial ... Referring Pages: Number of Natural Gas Commercial Consumers North Dakota Number of Natural ...

  18. Quantum random number generator

    DOEpatents

    Pooser, Raphael C.

    2016-05-10

    A quantum random number generator (QRNG) and a photon generator for a QRNG are provided. The photon generator may be operated in a spontaneous mode below a lasing threshold to emit photons. Photons emitted from the photon generator may have at least one random characteristic, which may be monitored by the QRNG to generate a random number. In one embodiment, the photon generator may include a photon emitter and an amplifier coupled to the photon emitter. The amplifier may enable the photon generator to be used in the QRNG without introducing significant bias in the random number and may enable multiplexing of multiple random numbers. The amplifier may also desensitize the photon generator to fluctuations in power supplied thereto while operating in the spontaneous mode. In one embodiment, the photon emitter and amplifier may be a tapered diode amplifier.

  19. Report number codes

    SciTech Connect

    Nelson, R.N.

    1985-05-01

    This publication lists all report number codes processed by the Office of Scientific and Technical Information. The report codes are substantially based on the American National Standards Institute, Standard Technical Report Number (STRN)-Format and Creation Z39.23-1983. The Standard Technical Report Number (STRN) provides one of the primary methods of identifying a specific technical report. The STRN consists of two parts: The report code and the sequential number. The report code identifies the issuing organization, a specific program, or a type of document. The sequential number, which is assigned in sequence by each report issuing entity, is not included in this publication. Part I of this compilation is alphabetized by report codes followed by issuing installations. Part II lists the issuing organization followed by the assigned report code(s). In both Parts I and II, the names of issuing organizations appear for the most part in the form used at the time the reports were issued. However, for some of the more prolific installations which have had name changes, all entries have been merged under the current name.

  20. Development of ion beam figuring system with electrostatic deflection for ultraprecise X-ray reflective optics

    SciTech Connect

    Yamada, Jumpei; Matsuyama, Satoshi Sano, Yasuhisa; Yamauchi, Kazuto

    2015-09-15

    We developed an ion beam figuring system that utilizes electrostatic deflection. The system can produce an arbitrary shape by deterministically scanning the ion beam. The scan of the ion beam, which can be precisely controlled using only an electrical signal, enables us to avoid degradation of the mirror shape caused by imperfect acceleration or deceleration of a mechanically scanning stage. Additionally, this surface figuring method can easily be combined with X-ray metrology because the workpiece remains fixed during the figuring. We evaluated the figuring accuracy of the system by fabricating a plano-elliptical mirror for X-ray focusing. A mirror with a shape error of 1.4 nm root mean square (RMS) with a maximum removal depth of 992 nm, which corresponds to figuring accuracy of 0.14% RMS, was achieved. After the second shape corrections, an elliptical shape with a shape error of approximately 1 nm peak-to-valley, 0.48 nm RMS could be fabricated. Then, the mirror surface was smoothed by a low-energy ion beam. Consequently, a micro-roughness of 0.117 nm RMS, measured by atomic force microscopy, was achieved over an area of 1 × 1 μm{sup 2}.

  1. Quantum random number generation

    DOE PAGES [OSTI]

    Ma, Xiongfeng; Yuan, Xiao; Cao, Zhu; Zhang, Zhen; Qi, Bing

    2016-06-28

    Here, quantum physics can be exploited to generate true random numbers, which play important roles in many applications, especially in cryptography. Genuine randomness from the measurement of a quantum system reveals the inherent nature of quantumness -- coherence, an important feature that differentiates quantum mechanics from classical physics. The generation of genuine randomness is generally considered impossible with only classical means. Based on the degree of trustworthiness on devices, quantum random number generators (QRNGs) can be grouped into three categories. The first category, practical QRNG, is built on fully trusted and calibrated devices and typically can generate randomness at amore » high speed by properly modeling the devices. The second category is self-testing QRNG, where verifiable randomness can be generated without trusting the actual implementation. The third category, semi-self-testing QRNG, is an intermediate category which provides a tradeoff between the trustworthiness on the device and the random number generation speed.« less

  2. ALARA notes, Number 8

    SciTech Connect

    Khan, T.A.; Baum, J.W.; Beckman, M.C.

    1993-10-01

    This document contains information dealing with the lessons learned from the experience of nuclear plants. In this issue the authors tried to avoid the `tyranny` of numbers and concentrated on the main lessons learned. Topics include: filtration devices for air pollution abatement, crack repair and inspection, and remote handling equipment.

  3. Natural Gas Processing Plants in the United States: 2010 Update / Figure 3

    Gasoline and Diesel Fuel Update

    3. Natural Gas Processing Plants Utilization Rates Based on 2008 Flows Figure 3. Natural Gas Processing Plants Utilization Rates Based on 2008 Flows Note: Average utilization rates are based on 2008 flows and 2009 capacity, which were used as a proxy for 2009 and reported 2009 capacity reported on Form EIA-757.

  4. Show Me Ethanol LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Show Me Ethanol LLC Jump to: navigation, search Name: Show Me Ethanol, LLC Place: Carrollton, Missouri Zip: 64633 Product: Developing an ethanol project in Carrollton, Missouri....

  5. Detroit Auto Show 2012 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Detroit Auto Show 2012 Detroit Auto Show 2012 Addthis 1 of 10 Energy Secretary Steven Chu with Chrysler Chief Executive Sergio Marchionne. Image: Hantz Leger (Energy Department ...

  6. ORISE: Report shows nuclear engineering graduation rates leveling off in

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    2014 after five years of increase ORISE report shows nuclear engineering graduation rates leveling off in 2014 after five years of increase Decline seen in undergraduate and master degrees, while number of doctoral degrees awarded increased FOR IMMEDIATE RELEASE July 31, 2015 FY15-38 OAK RIDGE, Tenn.-The number of college students graduating with majors in nuclear engineering has flattened and even declined somewhat after five straight years of continual increases, according to a report by

  7. ORISE: Report shows nuclear engineering graduation rates rebounding in 2015

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    after brief decline report shows nuclear engineering graduation rates rebounding in 2015 after brief decline Increases seen in undergraduate and master degrees, while number of doctorate degrees awarded declined FOR IMMEDIATE RELEASE May 23, 2016 FY16-27 OAK RIDGE, Tenn.-After briefly declining in 2014 following five straight years of continual increases, the number of college students graduating with majors in nuclear engineering has rebounded. This is according to an annual study conducted

  8. Modular redundant number systems

    SciTech Connect

    1998-05-31

    With the increased use of public key cryptography, faster modular multiplication has become an important cryptographic issue. Almost all public key cryptography, including most elliptic curve systems, use modular multiplication. Modular multiplication, particularly for the large public key modulii, is very slow. Increasing the speed of modular multiplication is almost synonymous with increasing the speed of public key cryptography. There are two parts to modular multiplication: multiplication and modular reduction. Though there are fast methods for multiplying and fast methods for doing modular reduction, they do not mix well. Most fast techniques require integers to be in a special form. These special forms are not related and converting from one form to another is more costly than using the standard techniques. To this date it has been better to use the fast modular reduction technique coupled with standard multiplication. Standard modular reduction is much more costly than standard multiplication. Fast modular reduction (Montgomery`s method) reduces the reduction cost to approximately that of a standard multiply. Of the fast multiplication techniques, the redundant number system technique (RNS) is one of the most popular. It is simple, converting a large convolution (multiply) into many smaller independent ones. Not only do redundant number systems increase speed, but the independent parts allow for parallelization. RNS form implies working modulo another constant. Depending on the relationship between these two constants; reduction OR division may be possible, but not both. This paper describes a new technique using ideas from both Montgomery`s method and RNS. It avoids the formula problem and allows fast reduction and multiplication. Since RNS form is used throughout, it also allows the entire process to be parallelized.

  9. The Paris Motor Show | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    The Paris Motor Show The Paris Motor Show October 4, 2010 - 9:39am Addthis David Sandalow at the Paris Auto Show | DOE photo David Sandalow at the Paris Auto Show | DOE photo David Sandalow David Sandalow Former Under Secretary of Energy (Acting) and Assistant Secretary for Policy & International Affairs At the Paris Motor Show today, electric cars are everywhere. Chevrolet is showing off the Volt, its plug-in hybrid due in U.S. showrooms this December. (Motown music blared as a Chevy rep

  10. Wyoming Natural Gas Number of Residential Consumers (Number of...

    Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Wyoming Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  11. Virginia Natural Gas Number of Residential Consumers (Number...

    Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Virginia Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  12. Utah Natural Gas Number of Industrial Consumers (Number of Elements...

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Utah Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 ...

  13. Wisconsin Natural Gas Number of Industrial Consumers (Number...

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Wisconsin Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  14. Virginia Natural Gas Number of Commercial Consumers (Number of...

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Virginia Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  15. Wyoming Natural Gas Number of Industrial Consumers (Number of...

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Wyoming Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  16. Utah Natural Gas Number of Residential Consumers (Number of Elements...

    Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Utah Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  17. Vermont Natural Gas Number of Residential Consumers (Number of...

    Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Vermont Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  18. Utah Natural Gas Number of Commercial Consumers (Number of Elements...

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Utah Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 ...

  19. Virginia Natural Gas Number of Industrial Consumers (Number of...

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Virginia Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  20. West Virginia Natural Gas Number of Industrial Consumers (Number...

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) West Virginia Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  1. Wisconsin Natural Gas Number of Residential Consumers (Number...

    Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Wisconsin Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  2. Vermont Natural Gas Number of Commercial Consumers (Number of...

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Vermont Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  3. Wyoming Natural Gas Number of Commercial Consumers (Number of...

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Wyoming Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  4. West Virginia Natural Gas Number of Commercial Consumers (Number...

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) West Virginia Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  5. Washington Natural Gas Number of Commercial Consumers (Number...

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Washington Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  6. Washington Natural Gas Number of Residential Consumers (Number...

    Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Washington Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  7. Washington Natural Gas Number of Industrial Consumers (Number...

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Washington Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  8. Wisconsin Natural Gas Number of Commercial Consumers (Number...

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Wisconsin Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  9. Vermont Natural Gas Number of Industrial Consumers (Number of...

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Vermont Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  10. West Virginia Natural Gas Number of Residential Consumers (Number...

    Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) West Virginia Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  11. New York Natural Gas Number of Residential Consumers (Number...

    Annual Energy Outlook

    Residential Consumers (Number of Elements) New York Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  12. New Mexico Natural Gas Number of Residential Consumers (Number...

    Gasoline and Diesel Fuel Update

    Residential Consumers (Number of Elements) New Mexico Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  13. New Jersey Natural Gas Number of Residential Consumers (Number...

    Gasoline and Diesel Fuel Update

    Residential Consumers (Number of Elements) New Jersey Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  14. North Carolina Natural Gas Number of Residential Consumers (Number...

    Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) North Carolina Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  15. North Carolina Natural Gas Number of Industrial Consumers (Number...

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) North Carolina Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  16. North Dakota Natural Gas Number of Industrial Consumers (Number...

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) North Dakota Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  17. North Dakota Natural Gas Number of Residential Consumers (Number...

    Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) North Dakota Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  18. North Carolina Natural Gas Number of Commercial Consumers (Number...

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) North Carolina Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  19. New Hampshire Natural Gas Number of Commercial Consumers (Number...

    Gasoline and Diesel Fuel Update

    Commercial Consumers (Number of Elements) New Hampshire Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  20. New Hampshire Natural Gas Number of Industrial Consumers (Number...

    Gasoline and Diesel Fuel Update

    Industrial Consumers (Number of Elements) New Hampshire Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  1. New Hampshire Natural Gas Number of Residential Consumers (Number...

    Annual Energy Outlook

    Residential Consumers (Number of Elements) New Hampshire Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  2. New Mexico Natural Gas Number of Industrial Consumers (Number...

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) New Mexico Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  3. Rare earth-doped materials with enhanced thermoelectric figure of merit

    DOEpatents

    Venkatasubramanian, Rama; Cook, Bruce Allen; Levin, Evgenii M.; Harringa, Joel Lee

    2016-09-06

    A thermoelectric material and a thermoelectric converter using this material. The thermoelectric material has a first component including a semiconductor material and a second component including a rare earth material included in the first component to thereby increase a figure of merit of a composite of the semiconductor material and the rare earth material relative to a figure of merit of the semiconductor material. The thermoelectric converter has a p-type thermoelectric material and a n-type thermoelectric material. At least one of the p-type thermoelectric material and the n-type thermoelectric material includes a rare earth material in at least one of the p-type thermoelectric material or the n-type thermoelectric material.

  4. Structural and Evolutionary Analyses Show Unique Stabilization...

    Office of Scientific and Technical Information (OSTI)

    Title: Structural and Evolutionary Analyses Show Unique Stabilization Strategies in the Type IV Pili of Clostridium difficile Authors: Piepenbrink, Kurt H. ; Maldarelli, Grace A. ; ...

  5. Long range self-assembly of polythiophene breath figures: Optical and morphological characterization

    DOE PAGES [OSTI]

    Routh, Prahlad K.; Nykypanchuk, Dmytro; Venkatesh, T. A.; Cotlet, Mircea

    2015-09-01

    Large area, device relevant sized microporous thin films are formed with commercially available polythiophenes by the breath figure technique, a water-assisted micro patterning method, with such semitransparent thin films exhibiting periodicity and uniformity dictated by the length of the polymer side chain. Compared to drop casted thin films, the microporous thin films exhibit increased crystallinity due to stronger packing of the polymer inside the honeycomb frame.

  6. A Framework for Geometric Reasoning About Human Figures and Factors in Assembly Processes

    SciTech Connect

    Calton, Terri L.

    1999-07-20

    Automatic assembly sequencing and visualization tools are valuable in determining the best assembly sequences, but without Human Factors and Figure Models (HFFMs) it is difficult to evaluate or visualize human interaction. In industry, accelerating technological advances and shorter market windows have forced companies to turn to an agile manufacturing paradigm. This trend has promoted computerized automation of product design and manufacturing processes, such as automated assembly planning. However, all automated assembly planning software tools assume that the individual components fly into their assembled configuration and generate what appear to be perfectly valid operations, but in reality some operations cannot physically be carried out by a human. For example, the use of a ratchet may be reasoned feasible for an assembly operation; however, when a hand is placed on the tool the operation is no longer feasible, perhaps because of inaccessibility, insufficient strength or human interference with assembly components. Similarly, human figure modeling algorithms may indicate that assembly operations are not feasible and consequently force design modifications, however, if they had the capability to quickly generate alternative assembly sequences, they might have identified a feasible solution. To solve this problem, HFFMs must be integrated with automated assembly planning which allows engineers to quickly verify that assembly operations are possible and to see ways to make the designs even better. This paper presents a framework for integrating geometry-based assembly planning algorithms with commercially available human figure modeling software packages. Experimental results to selected applications along with lessons learned are presented.

  7. DOE Booth Presentations From Grainger Show 2015

    Energy.gov [DOE]

    DOE hosted its solid-state lighting informational booth February 16–18 at the annual Grainger Show in Orlando, FL. With over 17,000 attendees and over 750 exhibitors, the show gathered a wide range of Grainger customers—from universities to large hotel chains as well as Grainger team members to learn the latest about LED lighting.

  8. 2013 Washington Auto Show | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    3 Washington Auto Show 2013 Washington Auto Show Addthis 1 of 10 While at the Washington Auto Show, Energy Secretary Steven Chu visited Nissan to see the 2013 Leaf. | Photo courtesy of Sarah Gerrity, Energy Department. Date taken: 2013-01-31 13:50 2 of 10 The new Nissan Leaf is being built at the company's Smyrna, Tennessee, Vehicle Assembly Plant -- helping to cut the price of its electric vehicle. | Photo courtesy of Sarah Gerrity, Energy Department. Date taken: 2013-01-31 13:49 3 of 10 Energy

  9. 2016 Washington Auto Show | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Washington Auto Show 2016 Washington Auto Show Addthis 1 of 20 Energy Secretary Ernest Moniz sits in the driver's seat of the all-electric Chevrolet Bolt at the Washington Auto Show. When it debuts on the road later this year, the Bolt will offer drivers about 200 miles of electric range. Image: Simon Edelman, Energy Department Date taken: 2016-01-21 09:45 2 of 20 The 2016 next-generation Chevrolet Volt builds on the success of its previous version, which was the first plug-in hybrid electric

  10. Gasoline price shows small increase (Short version)

    Energy Information Administration (EIA) (indexed site)

    shows small increase (Short version) The U.S. average retail price for regular gasoline rose to $3.32 a gallon on Monday. That's up 1.2 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration.

  11. Gasoline price shows small increase (short version)

    Energy Information Administration (EIA) (indexed site)

    Short version) The U.S. average retail price for regular gasoline showed little movement from last week. Prices rose 4/10 of a cent to $3.30 a gallon on Monday, based on the weekly price survey by the U.S. Energy Information Administration.

  12. Geothermal Energy Featured on NBC's Today Show

    Energy.gov [DOE]

    In Iceland, there are five major geothermal power plants which produce about 26% (2006) of the country's electricity. In addition, geothermal heating meets the heating and hot water requirements for around 87% of the nation's buildings. As part of its "Ends of the Earth" series, NBC's Today Show presented a feature on the use of geothermal energy in Iceland.

  13. Carbon number distribution of Fischer-Tropsch products formed on an iron catalyst in a slurry reactor

    SciTech Connect

    Satterfield, C.N.; Huff, G.A. Jr.

    1982-01-01

    Studies at 234 to 269/sup 0/C and at 790 kPa showed a precise linear relationship between the log of mole fraction m/sub n/ of products of carbon number n, and n, as predicted by the Flory molecular-weight distribution provided that all products, including oxygenated species, are considered. The relationship held over more than four orders of magnitude of m/sub n/, values of n of from 1 to about 20, and over a wide range of gas composition. The chain growth probability factor, ..cap alpha.., increased slightly from 0.67 at 269/sup 0/C to 0.71 at 234/sup 0/C. 8 figures, 1 table.

  14. China shows increasing interest in heavy oil and oil sands

    SciTech Connect

    Not Available

    1986-12-01

    China and Canadian and US groups are cooperating in several areas to develop the heavy oil, asphalt, and oil sand deposits of China. The agreements dealing with exploration and upgrading are briefly described. The majority of the paper describes the occurrences of heavy oil, asphalt, and oil sands in China. 1 figure.

  15. Nuclear Detection Figure Of Merit (NDFOM) Version 1.2 User's Guide

    SciTech Connect

    Stroud, Phillip D; Dufresne, Thomas A.

    2012-08-27

    NDFOM is a detector database and detector evaluation system, accessible as a web service. It runs on the same server as the Patriot service, but uses port 8081. In this user's guide, we will use the example case that the patriot service is running on http://patriot.lanl.gov. Then the NDFOM service would be accessible at the URL http://patriot.lanl.gov:8081/ndfom. In addition to local server installations, common server locations are 1) a patriot server running on a virtual machine (use the virtual machine URL with :8081/ndfom), and 2) a patriot server running on a local machine (use http://localhost:8081/ndfom or http://127.0.0.1:8081/ndfom). The home screen provides panels to select detectors, a scenario, and a figure-of-merit. It also has an 'analyze' button, which will evaluate the selected figure-of-merit for the selected detectors, for the scenario selected by the user. The detector effectiveness evaluations are presented through the browser in a ranked list of detectors. The user does not need to log in to perform analysis with pre-supplied detectors, scenarios, and FOMs. The homepage view is shown in Figure 1. The first panel displays a list of the detectors in the current detector database. The user can select one, some, or all detectors to evaluate. On the right of each listed detector, there is a star icon. Clicking that icon will open a panel that displays the details about that detector, such as detector material, dimensions, thresholds, etc. The center panel displays the pre-supplied scenarios that are in the database. A scenario specifies the source of interest, the spectrum of the radiation, the background radiation spectrum, the distance or distance of closest approach, the allowable false positive rate, and the dwell time or speed. Scenario details can be obtained by clicking the star to the right of a scenario. A scenario can be selected by clicking it.

  16. Laser research shows promise for cancer treatment

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Cancer treatment Laser research shows promise for cancer treatment Scientists have observed for the first time how a laser penetrates dense, electron-rich plasma to generate ions. August 20, 2012 Sasi Palaniyappan, right, and Rahul Shah inside a target chamber where the TRIDENT short pulse laser is aimed at a very thin foil target. Sasi Palaniyappan, right, and Rahul Shah inside a target chamber where the TRIDENT short pulse laser is aimed at a very thin foil target. Contact Nancy Ambrosiano

  17. High thermoelectric figure of merit in nanocrystalline polyaniline at low temperatures

    SciTech Connect

    Nath, Chandrani; Kumar, Ashok E-mail: okram@csr.res.in; Kuo, Yung-Kang; Okram, Gunadhor Singh E-mail: okram@csr.res.in

    2014-09-29

    Thermoelectric coolers with figure of merit (ZT) close to unity at low temperatures are the need of the hour with new advances in high temperature superconductors, superconducting microelectronic circuits, quantum computers, and photonics. Here, we demonstrate that the conducting polymer polyaniline (Pani) doped with camphor sulfonic acid synthesized in semi-crystalline nanostructures, possesses a giant Seebeck effect at low temperatures. The resulting enormously large Seebeck coefficient (up to 0.6 V/K) combined with an intrinsically low electrical conductivity and thermal conductivity give rise to a ZT = 0.77 at 45 K and ZT = 2.17 at 17 K.

  18. Cytoplasmic Domain Structures of Kir2.1 and Kir3.1 Shows Sites for

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Modulating Gating and Rectification Cytoplasmic Domain Structures of Kir2.1 and Kir3.1 Shows Sites for Modulating Gating and Rectification Scott Pegan1, Christine Arrabit2, Wei Zhou1, Witek Kwiatkowski1, Anthony Collins3, Paul Slesinger2 and Senyon Choe1 Structural Biology1 and Peptide Biology2 Laboratories, The Salk Institute, La Jolla, Ca 92037; Department of Pharmaceutical Sciences3, College of Pharmacy, Oregon State University, Corvallis, OR 97331 Figure 1. Kir2.1 cytoplasmic domain's

  19. Number

    Office of Legacy Management (LM)

    It is seen that all operations are performed vet, thus eliminating almost entirely a dust exposure hazard. A* Monazite sand is at present derived from India which supplies an ore ...

  20. Gasoline price shows small increase (long version)

    Energy Information Administration (EIA) (indexed site)

    long version) The U.S. average retail price for regular gasoline showed little movement from last week. Prices rose 4/10 of a cent to $3.30 a gallon on Monday, based on the weekly price survey by the U.S. Energy Information Administration. Pump prices were highest in the New England States, at 3.52 a gallon, down 1/10 of a penny from a week ago. Prices were lowest at 2.87 a gallon in the Rocky Mountain States, with the biggest regional price drop at close to 7 cents.

  1. Tennessee Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Tennessee Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 52 75 NA NA NA - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Tennessee Natural Gas Summ

  2. Texas Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Texas Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 85,030 94,203 96,949 104,205 105,159 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Texas Natural

  3. Pennsylvania Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Pennsylvania Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 7,046 7,627 7,164 8,481 7,557 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Pennsylvania

  4. Louisiana Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Louisiana Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 5,201 5,057 5,078 5,285 4,968 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Louisiana Natural

  5. Michigan Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Michigan Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 510 514 537 584 532 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Michigan Natural Gas Summary

  6. Mississippi Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Mississippi Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 561 618 581 540 501 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Mississippi Natural Gas

  7. Missouri Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Missouri Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 1 1 1 1 NA - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Missouri Natural Gas Summary

  8. Montana Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Montana Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 1,956 2,147 2,268 2,377 2,277 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Montana Natural Gas

  9. Nebraska Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Nebraska Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 84 73 54 51 51 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Nebraska Natural Gas Summar

  10. Nevada Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Nevada Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 4 4 4 4 4 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Nevada Natural Gas Summary

  11. Ohio Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Ohio Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 6,775 6,745 7,038 7,257 5,941 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Ohio Natural Gas

  12. Oklahoma Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Oklahoma Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 6,723 7,360 8,744 7,105 8,368 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Oklahoma Natural

  13. Alabama Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Alabama Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 346 367 402 436 414 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Alabama Natural Gas Sum

  14. Alaska Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Alaska Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 2,040 1,981 2,006 2,042 2,096 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Alaska Natural Gas

  15. Arizona Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Arizona Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 1 1 1 0 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Arizona Natural Gas Summary

  16. Arkansas Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Arkansas Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 165 174 218 233 240 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Arkansas Natural Gas

  17. California Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) California Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 25,958 26,061 26,542 26,835 27,075 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) California

  18. Colorado Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Colorado Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 5,963 6,456 6,799 7,771 7,733 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Colorado Natural

  19. Utah Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Utah Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 3,119 3,520 3,946 4,249 3,966 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Utah Natural Gas

  20. Virginia Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Virginia Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 2 1 1 2 2 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Virginia Natural Gas Summary

  1. Wyoming Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Wyoming Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 4,430 4,563 4,391 4,538 4,603 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Wyoming Natural Gas

  2. Kentucky Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Kentucky Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 317 358 340 NA NA - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Kentucky Natural Gas Su

  3. Maryland Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Maryland Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Maryland Natural Gas Summary

  4. Oregon Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oregon Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Oregon Natural Gas Summary

  5. Alaska Natural Gas Number of Industrial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Alaska Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 10 11 8 1990's 8 8 10 11 11 9 202 7 7 9 2000's 9 8 9 9 10 12 11 11 6 3 2010's 3 5 3 3 1 4 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Natural

  6. Hawaii Natural Gas Number of Industrial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Hawaii Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 27 26 29 2000's 28 28 29 29 29 28 26 27 27 25 2010's 24 24 22 22 23 25 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Natural Gas Indu

  7. Indiana Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's NA NA NA NA NA - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Indiana Natural Gas Summary

  8. Kansas Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Kansas Natural Gas Summary

  9. Enhancement of thermoelectric figure of merit in β-Zn{sub 4}Sb{sub 3} by indium doping control

    SciTech Connect

    Wei, Pai-Chun E-mail: cheny2@phys.sinica.edu.tw; Hsu, Chia-Hao; Chang, Chung-Chieh; Chen, Cheng-Lung; Wu, Maw-Kuen; Chen, Yang-Yuan E-mail: cheny2@phys.sinica.edu.tw; Yang, Chun-Chuen; Chen, Jeng-Lung; Sankar, Raman; Chou, Fang-Cheng; Chen, Chi-Liang; Dong, Chung-Li; Chen, Kuei-Hsien

    2015-09-21

    We demonstrate the control of phase composition in Bridgman-grown β-Zn{sub 4}Sb{sub 3} crystals by indium doping, an effective way to overcome the difficulty of growing very pure β-Zn{sub 4}Sb{sub 3} thermoelectric material. The crystal structures are characterized by Rietveld refinement with synchrotron X-ray diffraction data. The results show an anisotropic lattice expansion in In-doped β-Zn{sub 4}Sb{sub 3} wherein the zinc atoms are partially substituted by indium ones at 36f site of R-3c symmetry. Through the elimination of ZnSb phase, all the three individual thermoelectric properties are simultaneously improved, i.e., increasing electrical conductivity and Seebeck coefficient while reducing thermal conductivity. Under an optimal In concentration (x = 0.05), pure phase β-Zn{sub 4}Sb{sub 3} crystal can be obtained, which possesses a high figure of merit (ZT) of 1.4 at 700 K.

  10. Method and system for optical figuring by imagewise heating of a solvent

    DOEpatents

    Rushford, Michael C.

    2005-08-30

    A method and system of imagewise etching the surface of a substrate, such as thin glass, in a parallel process. The substrate surface is placed in contact with an etchant solution which increases in etch rate with temperature. A local thermal gradient is then generated in each of a plurality of selected local regions of a boundary layer of the etchant solution to imagewise etch the substrate surface in a parallel process. In one embodiment, the local thermal gradient is a local heating gradient produced at selected addresses chosen from an indexed array of addresses. The activation of each of the selected addresses is independently controlled by a computer processor so as to imagewise etch the substrate surface at region-specific etch rates. Moreover, etching progress is preferably concurrently monitored in real time over the entire surface area by an interferometer so as to deterministically control the computer processor to image-wise figure the substrate surface where needed.

  11. Gamma and neutron detection modeling in the nuclear detection figure of merit (NDFOM) portal

    SciTech Connect

    Stroud, Phillip D [Los Alamos National Laboratory; Saeger, Kevin J [Los Alamos National Laboratory

    2009-01-01

    The Nuclear Detection Figure Of Merit (NDFOM) portal is a database of objects and algorithms for evaluating the performance of radiation detectors to detect nuclear material. This paper describes the algorithms used to model the physics and mathematics of radiation detection. As a first-principles end-to-end analysis system, it starts with the representation of the gamma and neutron spectral fluxes, which are computed with the particle and radiation transport code MCNPX. The gamma spectra emitted by uranium, plutonium, and several other materials of interest are described. The impact of shielding and other intervening material is computed by the method of build-up factors. The interaction of radiation with the detector material is computed by a detector response function approach. The construction of detector response function matrices based on MCNPX simulation runs is described in detail. Neutron fluxes are represented in a three group formulation to treat differences in detector sensitivities to thermal, epithermal, and fast neutrons.

  12. PHENIX (Pioneering High Energy Nuclear Interaction eXperiment): Data Tables and Figures from Published Papers

    DOE Data Explorer

    The PHENIX Experiment is the largest of the four experiments currently taking data at the Relativistic Heavy Ion Collider. PHENIX, the Pioneering High Energy Nuclear Interaction eXperiment, is an exploratory experiment for the investigation of high energy collisions of heavy ions and protons. PHENIX is designed specifically to measure direct probes of the collisions such as electrons, muons, and photons. The primary goal of PHENIX is to discover and study a new state of matter called the Quark-Gluon Plasma. More than 60 published papers and preprints are listed here with links to the full text and separate links to the supporting PHENIX data in plain text tables and to EPS and GIF figures from the papers.

  13. ARM - Measurement - Particle number concentration

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    number concentration ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Particle number concentration The number of particles present in any given volume of air. Categories Aerosols Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those

  14. Total Number of Operable Refineries

    Energy Information Administration (EIA) (indexed site)

    Data Series: Total Number of Operable Refineries Number of Operating Refineries Number of Idle Refineries Atmospheric Crude Oil Distillation Operable Capacity (B/CD) Atmospheric Crude Oil Distillation Operating Capacity (B/CD) Atmospheric Crude Oil Distillation Idle Capacity (B/CD) Atmospheric Crude Oil Distillation Operable Capacity (B/SD) Atmospheric Crude Oil Distillation Operating Capacity (B/SD) Atmospheric Crude Oil Distillation Idle Capacity (B/SD) Vacuum Distillation Downstream Charge

  15. Compendium of Experimental Cetane Numbers

    SciTech Connect

    Yanowitz, J.; Ratcliff, M. A.; McCormick, R. L.; Taylor, J. D.; Murphy, M. J.

    2014-08-01

    This report is an updated version of the 2004 Compendium of Experimental Cetane Number Data and presents a compilation of measured cetane numbers for pure chemical compounds. It includes all available single compound cetane number data found in the scientific literature up until March 2014 as well as a number of unpublished values, most measured over the past decade at the National Renewable Energy Laboratory. This Compendium contains cetane values for 389 pure compounds, including 189 hydrocarbons and 201 oxygenates. More than 250 individual measurements are new to this version of the Compendium. For many compounds, numerous measurements are included, often collected by different researchers using different methods. Cetane number is a relative ranking of a fuel's autoignition characteristics for use in compression ignition engines; it is based on the amount of time between fuel injection and ignition, also known as ignition delay. The cetane number is typically measured either in a single-cylinder engine or a constant volume combustion chamber. Values in the previous Compendium derived from octane numbers have been removed, and replaced with a brief analysis of the correlation between cetane numbers and octane numbers. The discussion on the accuracy and precision of the most commonly used methods for measuring cetane has been expanded and the data has been annotated extensively to provide additional information that will help the reader judge the relative reliability of individual results.

  16. Rhode Island Natural Gas Number of Industrial Consumers (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Industrial Consumers (Number of Elements) Rhode Island Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,158 1,152 1,122 1990's 1,135 1,107 1,096 1,066 1,064 359 363 336 325 302 2000's 317 283 54 236 223 223 245 256 243 260 2010's 249 245 248 271 266 260 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release

  17. South Dakota Natural Gas Number of Industrial Consumers (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Industrial Consumers (Number of Elements) South Dakota Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 261 267 270 1990's 275 283 319 355 381 396 444 481 464 445 2000's 416 402 533 526 475 542 528 548 598 598 2010's 580 556 574 566 575 578 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  18. Maine Natural Gas Number of Industrial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Maine Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 73 73 74 1990's 80 81 80 66 89 74 87 81 110 108 2000's 178 233 66 65 69 69 73 76 82 85 2010's 94 102 108 120 126 136 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016

  19. Montana Natural Gas Number of Industrial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Montana Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 435 435 428 1990's 457 452 459 462 453 463 466 462 454 397 2000's 71 73 439 412 593 716 711 693 693 396 2010's 384 381 372 372 369 366 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date:

  20. Nevada Natural Gas Number of Industrial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Nevada Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 93 98 100 1990's 100 113 114 117 119 120 121 93 93 109 2000's 90 90 96 97 179 192 207 220 189 192 2010's 184 177 177 195 219 215 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date:

  1. Arizona Natural Gas Number of Industrial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Arizona Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 358 344 354 1990's 526 532 532 526 519 530 534 480 514 555 2000's 526 504 488 450 414 425 439 395 383 390 2010's 368 371 379 383 386 400 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release

  2. Delaware Natural Gas Number of Industrial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Delaware Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 241 233 235 1990's 240 243 248 249 252 253 250 265 257 264 2000's 297 316 182 184 186 179 170 185 165 112 2010's 114 129 134 138 141 144 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release

  3. Idaho Natural Gas Number of Industrial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Idaho Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 219 132 64 1990's 62 65 66 75 144 167 183 189 203 200 2000's 217 198 194 191 196 195 192 188 199 187 2010's 184 178 179 183 189 187 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date:

  4. Departmental Business Instrument Numbering System

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    2005-01-27

    The Order prescribes the procedures for assigning identifying numbers to all Department of Energy (DOE) and National Nuclear Security Administration (NNSA) business instruments. Cancels DOE O 540.1. Canceled by DOE O 540.1B.

  5. Departmental Business Instrument Numbering System

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    2000-12-05

    To prescribe procedures for assigning identifying numbers to all Department of Energy (DOE), including the National Nuclear Security Administration, business instruments. Cancels DOE 1331.2B. Canceled by DOE O 540.1A.

  6. Tennessee Natural Gas Number of Commercial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Tennessee Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 77,104 81,159 84,040 1990's 88,753 89,863 91,999 94,860 97,943 101,561 103,867 105,925 109,772 112,978 2000's 115,691 118,561 120,130 131,916 125,042 124,755 126,970 126,324 128,007 127,704 2010's 127,914 128,969 130,139 131,091 131,027 132,392 - = No Data Reported; -- = Not Applicable; NA = Not

  7. Tennessee Natural Gas Number of Industrial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Tennessee Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,206 2,151 2,555 1990's 2,361 2,369 2,425 2,512 2,440 2,393 2,306 2,382 5,149 2,159 2000's 2,386 2,704 2,657 2,755 2,738 2,498 2,545 2,656 2,650 2,717 2010's 2,702 2,729 2,679 2,581 2,595 2,651 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  8. Tennessee Natural Gas Number of Residential Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Tennessee Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 534,882 565,856 599,042 1990's 627,031 661,105 696,140 733,363 768,421 804,724 841,232 867,793 905,757 937,896 2000's 969,537 993,363 1,009,225 1,022,628 1,037,429 1,049,307 1,063,328 1,071,756 1,084,102 1,083,573 2010's 1,085,387 1,089,009 1,084,726 1,094,122 1,106,917 1,124,572 - = No Data

  9. Texas Natural Gas Number of Commercial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Texas Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 294,879 284,013 270,227 1990's 268,181 269,411 292,990 297,516 306,376 325,785 329,287 332,077 320,922 314,598 2000's 315,906 314,858 317,446 320,786 322,242 322,999 329,918 326,812 324,671 313,384 2010's 312,277 314,041 314,811 314,036 316,756 319,512 - = No Data Reported; -- = Not Applicable; NA = Not

  10. Texas Natural Gas Number of Industrial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Texas Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 4,852 4,427 13,383 1990's 13,659 13,770 5,481 5,823 5,222 9,043 8,796 5,339 5,318 5,655 2000's 11,613 10,047 9,143 9,015 9,359 9,136 8,664 11,063 5,568 8,581 2010's 8,779 8,713 8,953 8,525 8,398 6,655 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  11. Texas Natural Gas Number of Residential Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Texas Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3,155,948 3,166,168 3,201,316 1990's 3,232,849 3,274,482 3,285,025 3,346,809 3,350,314 3,446,120 3,501,853 3,543,027 3,600,505 3,613,864 2000's 3,704,501 3,738,260 3,809,370 3,859,647 3,939,101 3,984,481 4,067,508 4,156,991 4,205,412 4,248,613 2010's 4,288,495 4,326,156 4,370,057 4,424,103 4,469,282

  12. Pennsylvania Natural Gas Number of Commercial Consumers (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Commercial Consumers (Number of Elements) Pennsylvania Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 166,901 172,615 178,545 1990's 186,772 191,103 193,863 198,299 206,812 209,245 214,340 215,057 216,519 223,732 2000's 228,037 225,911 226,957 227,708 231,051 233,132 231,540 234,597 233,462 233,334 2010's 233,751 233,588 235,049 237,922 239,681 241,682 - = No Data Reported; -- = Not

  13. Pennsylvania Natural Gas Number of Industrial Consumers (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Industrial Consumers (Number of Elements) Pennsylvania Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 6,089 6,070 6,023 1990's 6,238 6,344 6,496 6,407 6,388 6,328 6,441 6,492 6,736 7,080 2000's 6,330 6,159 5,880 5,577 5,726 5,577 5,241 4,868 4,772 4,745 2010's 4,624 5,007 5,066 5,024 5,084 4,932 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  14. Pennsylvania Natural Gas Number of Residential Consumers (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Residential Consumers (Number of Elements) Pennsylvania Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,237,877 2,271,801 2,291,242 1990's 2,311,795 2,333,377 2,363,575 2,386,249 2,393,053 2,413,715 2,431,909 2,452,524 2,493,639 2,486,704 2000's 2,519,794 2,542,724 2,559,024 2,572,584 2,591,458 2,600,574 2,605,782 2,620,755 2,631,340 2,635,886 2010's 2,646,211 2,667,392 2,678,547

  15. Rhode Island Natural Gas Number of Commercial Consumers (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Commercial Consumers (Number of Elements) Rhode Island Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 15,128 16,096 16,924 1990's 17,765 18,430 18,607 21,178 21,208 21,472 21,664 21,862 22,136 22,254 2000's 22,592 22,815 23,364 23,270 22,994 23,082 23,150 23,007 23,010 22,988 2010's 23,049 23,177 23,359 23,742 23,934 24,088 - = No Data Reported; -- = Not Applicable; NA = Not

  16. Rhode Island Natural Gas Number of Residential Consumers (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Residential Consumers (Number of Elements) Rhode Island Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 180,656 185,861 190,796 1990's 195,100 196,438 197,926 198,563 200,959 202,947 204,259 212,777 208,208 211,097 2000's 214,474 216,781 219,769 221,141 223,669 224,320 225,027 223,589 224,103 224,846 2010's 225,204 225,828 228,487 231,763 233,786 236,323 - = No Data Reported; -- =

  17. South Carolina Natural Gas Number of Commercial Consumers (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Commercial Consumers (Number of Elements) South Carolina Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 35,414 37,075 38,856 1990's 39,904 39,999 40,968 42,191 45,487 47,293 48,650 50,817 52,237 53,436 2000's 54,794 55,257 55,608 55,909 56,049 56,974 57,452 57,544 56,317 55,850 2010's 55,853 55,846 55,908 55,997 56,323 56,871 - = No Data Reported; -- = Not Applicable; NA = Not

  18. South Carolina Natural Gas Number of Industrial Consumers (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Industrial Consumers (Number of Elements) South Carolina Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,256 1,273 1,307 1990's 1,384 1,400 1,568 1,625 1,928 1,802 1,759 1,764 1,728 1,768 2000's 1,715 1,702 1,563 1,574 1,528 1,535 1,528 1,472 1,426 1,358 2010's 1,325 1,329 1,435 1,452 1,442 1,438 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  19. South Carolina Natural Gas Number of Residential Consumers (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Residential Consumers (Number of Elements) South Carolina Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 302,321 313,831 327,527 1990's 339,486 344,763 357,818 370,411 416,773 412,259 426,088 443,093 460,141 473,799 2000's 489,340 501,161 508,686 516,362 527,008 541,523 554,953 570,213 561,196 565,774 2010's 570,797 576,594 583,633 593,286 605,644 620,555 - = No Data Reported; -- =

  20. South Dakota Natural Gas Number of Commercial Consumers (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Commercial Consumers (Number of Elements) South Dakota Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 12,480 12,438 12,771 1990's 13,443 13,692 14,133 16,523 15,539 16,285 16,880 17,432 17,972 18,453 2000's 19,100 19,378 19,794 20,070 20,457 20,771 21,149 21,502 21,819 22,071 2010's 22,267 22,570 22,955 23,214 23,591 24,040 - = No Data Reported; -- = Not Applicable; NA = Not

  1. South Dakota Natural Gas Number of Residential Consumers (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Residential Consumers (Number of Elements) South Dakota Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 101,468 102,084 103,538 1990's 105,436 107,846 110,291 128,029 119,544 124,152 127,269 130,307 133,095 136,789 2000's 142,075 144,310 147,356 150,725 148,105 157,457 160,481 163,458 165,694 168,096 2010's 169,838 170,877 173,856 176,204 179,042 182,568 - = No Data Reported; -- =

  2. Louisiana Natural Gas Number of Commercial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Louisiana Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 67,382 66,472 64,114 1990's 62,770 61,574 61,030 62,055 62,184 62,930 62,101 62,270 63,029 62,911 2000's 62,710 62,241 62,247 63,512 60,580 58,409 57,097 57,127 57,066 58,396 2010's 58,562 58,749 63,381 59,147 58,996 57,873 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld

  3. Louisiana Natural Gas Number of Industrial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Louisiana Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,617 1,503 1,531 1990's 1,504 1,469 1,452 1,592 1,737 1,383 1,444 1,406 1,380 1,397 2000's 1,318 1,440 1,357 1,291 1,460 1,086 962 945 988 954 2010's 942 920 963 916 883 845 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  4. Louisiana Natural Gas Number of Residential Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Louisiana Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 952,079 946,970 934,472 1990's 934,007 936,423 940,403 941,294 945,387 957,558 945,967 962,786 962,436 961,925 2000's 964,133 952,753 957,048 958,795 940,400 905,857 868,353 879,612 886,084 889,570 2010's 893,400 897,513 963,688 901,635 903,686 888,023 - = No Data Reported; -- = Not Applicable; NA

  5. Maine Natural Gas Number of Commercial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Maine Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3,435 3,731 3,986 1990's 4,250 4,455 4,838 4,979 5,297 5,819 6,414 6,606 6,662 6,582 2000's 6,954 6,936 7,375 7,517 7,687 8,178 8,168 8,334 8,491 8,815 2010's 9,084 9,681 10,179 11,415 11,810 11,888 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  6. Maine Natural Gas Number of Residential Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Maine Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 12,134 11,933 11,902 1990's 12,000 12,424 13,766 13,880 14,104 14,917 14,982 15,221 15,646 15,247 2000's 17,111 17,302 17,921 18,385 18,707 18,633 18,824 18,921 19,571 20,806 2010's 21,142 22,461 23,555 24,765 27,047 31,011 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  7. Maryland Natural Gas Number of Commercial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Maryland Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 51,252 53,045 54,740 1990's 55,576 61,878 62,858 63,767 64,698 66,094 69,991 69,056 67,850 69,301 2000's 70,671 70,691 71,824 72,076 72,809 73,780 74,584 74,856 75,053 75,771 2010's 75,192 75,788 75,799 77,117 77,846 78,138 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld

  8. Maryland Natural Gas Number of Industrial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Maryland Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 5,222 5,397 5,570 1990's 5,646 520 514 496 516 481 430 479 1,472 536 2000's 329 795 1,434 1,361 1,354 1,325 1,340 1,333 1,225 1,234 2010's 1,255 1,226 1,163 1,173 1,179 1,169 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  9. Maryland Natural Gas Number of Residential Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Maryland Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 755,294 760,754 767,219 1990's 774,707 782,373 894,677 807,204 824,137 841,772 871,012 890,195 901,455 939,029 2000's 941,384 959,772 978,319 987,863 1,009,455 1,024,955 1,040,941 1,053,948 1,057,521 1,067,807 2010's 1,071,566 1,077,168 1,078,978 1,099,272 1,101,292 1,113,342 - = No Data Reported;

  10. Massachusetts Natural Gas Number of Commercial Consumers (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Commercial Consumers (Number of Elements) Massachusetts Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 84,636 93,005 92,252 1990's 85,775 88,746 85,873 102,187 92,744 104,453 105,889 107,926 108,832 113,177 2000's 117,993 120,984 122,447 123,006 125,107 120,167 126,713 128,965 242,693 153,826 2010's 144,487 138,225 142,825 144,246 139,556 140,533 - = No Data Reported; -- = Not

  11. Massachusetts Natural Gas Number of Industrial Consumers (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Industrial Consumers (Number of Elements) Massachusetts Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 5,626 7,199 13,057 1990's 6,539 5,006 8,723 7,283 8,019 10,447 10,952 11,058 11,245 8,027 2000's 8,794 9,750 9,090 11,272 10,949 12,019 12,456 12,678 36,928 19,208 2010's 12,751 10,721 10,840 11,063 10,946 11,266 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  12. Massachusetts Natural Gas Number of Residential Consumers (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Residential Consumers (Number of Elements) Massachusetts Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,082,777 1,100,635 1,114,920 1990's 1,118,429 1,127,536 1,137,911 1,155,443 1,179,869 1,180,860 1,188,317 1,204,494 1,212,486 1,232,887 2000's 1,278,781 1,283,008 1,295,952 1,324,715 1,306,142 1,297,508 1,348,848 1,361,470 1,236,480 1,370,353 2010's 1,389,592 1,408,314 1,447,947

  13. Michigan Natural Gas Number of Commercial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Michigan Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 178,469 185,961 191,474 1990's 195,766 198,890 201,561 204,453 207,629 211,817 214,843 222,726 224,506 227,159 2000's 230,558 225,109 247,818 246,123 246,991 253,415 254,923 253,139 252,382 252,017 2010's 249,309 249,456 249,994 250,994 253,127 254,484 - = No Data Reported; -- = Not Applicable; NA =

  14. Michigan Natural Gas Number of Industrial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Michigan Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 10,885 11,117 11,452 1990's 11,500 11,446 11,460 11,425 11,308 11,454 11,848 12,233 11,888 14,527 2000's 11,384 11,210 10,468 10,378 10,088 10,049 9,885 9,728 10,563 18,186 2010's 9,332 9,088 8,833 8,497 8,156 7,931 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  15. Michigan Natural Gas Number of Residential Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Michigan Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,452,554 2,491,149 2,531,304 1990's 2,573,570 2,609,561 2,640,579 2,677,085 2,717,683 2,767,190 2,812,876 2,859,483 2,903,698 2,949,628 2000's 2,999,737 3,011,205 3,110,743 3,140,021 3,161,370 3,187,583 3,193,920 3,188,152 3,172,623 3,169,026 2010's 3,152,468 3,153,895 3,161,033 3,180,349

  16. Minnesota Natural Gas Number of Commercial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Minnesota Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 88,789 90,256 92,916 1990's 95,474 97,388 99,707 93,062 102,857 103,874 105,531 108,686 110,986 114,127 2000's 116,529 119,007 121,751 123,123 125,133 126,310 129,149 128,367 130,847 131,801 2010's 132,163 132,938 134,394 135,557 136,380 138,871 - = No Data Reported; -- = Not Applicable; NA = Not

  17. Minnesota Natural Gas Number of Industrial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Minnesota Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,585 2,670 2,638 1990's 2,574 2,486 2,515 2,477 2,592 2,531 2,564 2,233 2,188 2,267 2000's 2,025 1,996 2,029 2,074 2,040 1,432 1,257 1,146 1,131 2,039 2010's 2,106 1,770 1,793 1,870 1,880 1,868 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  18. Minnesota Natural Gas Number of Residential Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Minnesota Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 872,148 894,380 911,001 1990's 946,107 970,941 998,201 1,074,631 1,049,263 1,080,009 1,103,709 1,134,019 1,161,423 1,190,190 2000's 1,222,397 1,249,748 1,282,751 1,308,143 1,338,061 1,364,237 1,401,362 1,401,623 1,413,162 1,423,703 2010's 1,429,681 1,436,063 1,445,824 1,459,134 1,472,663 1,496,790

  19. Mississippi Natural Gas Number of Commercial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Mississippi Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 43,362 44,170 44,253 1990's 43,184 43,693 44,313 45,310 43,803 45,444 46,029 47,311 45,345 47,620 2000's 50,913 51,109 50,468 50,928 54,027 54,936 55,741 56,155 55,291 50,713 2010's 50,537 50,636 50,689 50,153 49,911 49,821 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  20. Mississippi Natural Gas Number of Industrial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Mississippi Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,312 1,263 1,282 1990's 1,317 1,314 1,327 1,324 1,313 1,298 1,241 1,199 1,165 1,246 2000's 1,199 1,214 1,083 1,161 996 1,205 1,181 1,346 1,132 1,141 2010's 980 982 936 933 943 930 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company

  1. Mississippi Natural Gas Number of Residential Consumers (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Residential Consumers (Number of Elements) Mississippi Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 370,094 372,238 376,353 1990's 382,251 386,264 392,155 398,472 405,312 415,123 418,442 423,397 415,673 426,352 2000's 434,501 438,069 435,146 438,861 445,212 445,856 437,669 445,043 443,025 437,715 2010's 436,840 442,479 442,840 445,589 440,252 439,359 - = No Data Reported; -- =

  2. Missouri Natural Gas Number of Commercial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Missouri Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 96,711 97,939 99,721 1990's 105,164 117,675 125,174 125,571 132,378 130,318 133,445 135,553 135,417 133,464 2000's 133,969 135,968 137,924 140,057 141,258 142,148 143,632 142,965 141,529 140,633 2010's 138,670 138,214 144,906 142,495 143,134 141,216 - = No Data Reported; -- = Not Applicable; NA = Not

  3. Missouri Natural Gas Number of Industrial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Missouri Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,832 2,880 3,063 1990's 3,140 3,096 2,989 3,040 3,115 3,033 3,408 3,097 3,151 3,152 2000's 3,094 3,085 2,935 3,115 3,600 3,545 3,548 3,511 3,514 3,573 2010's 3,541 3,307 3,692 3,538 3,497 3,232 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  4. Missouri Natural Gas Number of Residential Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Missouri Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,180,546 1,194,985 1,208,523 1990's 1,213,305 1,211,342 1,220,203 1,225,921 1,281,007 1,259,102 1,275,465 1,293,032 1,307,563 1,311,865 2000's 1,324,282 1,326,160 1,340,726 1,343,614 1,346,773 1,348,743 1,353,892 1,354,173 1,352,015 1,348,781 2010's 1,348,549 1,342,920 1,389,910 1,357,740

  5. Montana Natural Gas Number of Commercial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Montana Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 21,382 22,246 22,219 1990's 23,331 23,185 23,610 24,373 25,349 26,329 26,374 27,457 28,065 28,424 2000's 29,215 29,429 30,250 30,814 31,357 31,304 31,817 32,472 33,008 33,731 2010's 34,002 34,305 34,504 34,909 35,205 35,777 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  6. Montana Natural Gas Number of Residential Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Montana Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 167,883 171,785 171,156 1990's 174,384 177,726 182,641 188,879 194,357 203,435 205,199 209,806 218,851 222,114 2000's 224,784 226,171 229,015 232,839 236,511 240,554 245,883 247,035 253,122 255,472 2010's 257,322 259,046 259,957 262,122 265,849 269,766 - = No Data Reported; -- = Not Applicable; NA =

  7. Nebraska Natural Gas Number of Commercial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Nebraska Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 60,707 61,365 60,377 1990's 60,405 60,947 61,319 60,599 62,045 61,275 61,117 51,661 63,819 53,943 2000's 55,194 55,692 56,560 55,999 57,087 57,389 56,548 55,761 58,160 56,454 2010's 56,246 56,553 56,608 58,005 57,191 57,521 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld

  8. Nebraska Natural Gas Number of Industrial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Nebraska Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 675 684 702 1990's 712 718 696 718 766 2,432 2,234 11,553 10,673 10,342 2000's 10,161 10,504 9,156 9,022 8,463 7,973 7,697 7,668 11,627 7,863 2010's 7,912 7,955 8,160 8,495 8,791 8,868 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  9. Nebraska Natural Gas Number of Residential Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Nebraska Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 400,218 403,657 406,723 1990's 407,094 413,354 418,611 413,358 428,201 427,720 439,931 444,970 523,790 460,173 2000's 475,673 476,275 487,332 492,451 497,391 501,279 499,504 494,005 512,013 512,551 2010's 510,776 514,481 515,338 527,397 522,408 525,165 - = No Data Reported; -- = Not Applicable; NA

  10. Nevada Natural Gas Number of Commercial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Nevada Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 18,294 18,921 19,924 1990's 20,694 22,124 22,799 23,207 24,521 25,593 26,613 27,629 29,030 30,521 2000's 31,789 32,782 33,877 34,590 35,792 37,093 38,546 40,128 41,098 41,303 2010's 40,801 40,944 41,192 41,710 42,338 42,860 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  11. Nevada Natural Gas Number of Residential Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Nevada Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 213,422 219,981 236,237 1990's 256,119 283,307 295,714 305,099 336,353 364,112 393,783 426,221 458,737 490,029 2000's 520,233 550,850 580,319 610,756 648,551 688,058 726,772 750,570 758,315 760,391 2010's 764,435 772,880 782,759 794,150 808,970 824,039 - = No Data Reported; -- = Not Applicable; NA =

  12. Ohio Natural Gas Number of Commercial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Ohio Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 213,601 219,257 225,347 1990's 233,075 236,519 237,861 240,684 245,190 250,223 259,663 254,991 258,076 266,102 2000's 269,561 269,327 271,160 271,203 272,445 277,767 270,552 272,555 272,899 270,596 2010's 268,346 268,647 267,793 269,081 269,758 269,981 - = No Data Reported; -- = Not Applicable; NA = Not

  13. Ohio Natural Gas Number of Industrial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Ohio Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 7,929 8,163 8,356 1990's 8,301 8,479 8,573 8,678 8,655 8,650 8,672 7,779 8,112 8,136 2000's 8,267 8,515 8,111 8,098 7,899 8,328 6,929 6,858 6,806 6,712 2010's 6,571 6,482 6,381 6,554 6,526 6,502 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  14. Ohio Natural Gas Number of Residential Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Ohio Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,648,972 2,678,838 2,714,839 1990's 2,766,912 2,801,716 2,826,713 2,867,959 2,921,536 2,967,375 2,994,891 3,041,948 3,050,960 3,111,108 2000's 3,178,840 3,195,584 3,208,466 3,225,908 3,250,068 3,272,307 3,263,062 3,273,791 3,262,716 3,253,184 2010's 3,240,619 3,236,160 3,244,274 3,271,074 3,283,968

  15. Oklahoma Natural Gas Number of Commercial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Oklahoma Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 87,824 86,666 86,172 1990's 85,790 86,744 87,120 88,181 87,494 88,358 89,852 90,284 89,711 80,986 2000's 80,558 79,045 80,029 79,733 79,512 78,726 78,745 93,991 94,247 94,314 2010's 92,430 93,903 94,537 95,385 96,005 96,471 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld

  16. Oklahoma Natural Gas Number of Industrial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Oklahoma Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,772 2,689 2,877 1990's 2,889 2,840 2,859 2,912 2,853 2,845 2,843 2,531 3,295 3,040 2000's 2,821 3,403 3,438 3,367 3,283 2,855 2,811 2,822 2,920 2,618 2010's 2,731 2,733 2,872 2,958 3,062 3,059 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  17. Oklahoma Natural Gas Number of Residential Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Oklahoma Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 809,171 805,107 806,875 1990's 814,296 824,172 832,677 842,130 845,448 856,604 866,531 872,454 877,236 867,922 2000's 859,951 868,314 875,338 876,420 875,271 880,403 879,589 920,616 923,650 924,745 2010's 914,869 922,240 927,346 931,981 937,237 941,137 - = No Data Reported; -- = Not Applicable; NA

  18. Oregon Natural Gas Number of Commercial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Oregon Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 40,967 41,998 43,997 1990's 47,175 55,374 50,251 51,910 53,700 55,409 57,613 60,419 63,085 65,034 2000's 66,893 68,098 69,150 74,515 71,762 73,520 74,683 80,998 76,868 76,893 2010's 77,370 77,822 78,237 79,276 80,480 80,877 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  19. Oregon Natural Gas Number of Industrial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Oregon Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 676 1,034 738 1990's 699 787 740 696 765 791 799 704 695 718 2000's 717 821 842 926 907 1,118 1,060 1,136 1,075 1,051 2010's 1,053 1,066 1,076 1,085 1,099 1,117 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  20. Oregon Natural Gas Number of Residential Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Oregon Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 280,670 288,066 302,156 1990's 326,177 376,166 354,256 371,151 391,845 411,465 433,638 456,960 477,796 502,000 2000's 523,952 542,799 563,744 625,398 595,495 626,685 647,635 664,455 674,421 675,582 2010's 682,737 688,681 693,507 700,211 707,010 717,999 - = No Data Reported; -- = Not Applicable; NA =

  1. Alabama Natural Gas Number of Commercial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Alabama Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 53 54,306 55,400 56,822 1990's 56,903 57,265 58,068 57,827 60,320 60,902 62,064 65,919 76,467 64,185 2000's 66,193 65,794 65,788 65,297 65,223 65,294 66,337 65,879 65,313 67,674 2010's 68,163 67,696 67,252 67,136 67,847 67,746 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld

  2. Alabama Natural Gas Number of Industrial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Alabama Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2 2,313 2,293 2,380 1990's 2,431 2,523 2,509 2,458 2,477 2,491 2,512 2,496 2,464 2,620 2000's 2,792 2,781 2,730 2,743 2,799 2,787 2,735 2,704 2,757 3,057 2010's 3,039 2,988 3,045 3,143 3,244 3,300 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  3. Alabama Natural Gas Number of Residential Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Alabama Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 656 662,217 668,432 683,528 1990's 686,149 700,195 711,043 730,114 744,394 751,890 766,322 781,711 788,464 775,311 2000's 805,689 807,770 806,389 809,754 806,660 809,454 808,801 796,476 792,236 785,005 2010's 778,985 772,892 767,396 765,957 769,900 768,568 - = No Data Reported; -- = Not Applicable;

  4. Alaska Natural Gas Number of Commercial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Alaska Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 11 11,484 11,649 11,806 1990's 11,921 12,071 12,204 12,359 12,475 12,584 12,732 12,945 13,176 13,409 2000's 13,711 14,002 14,342 14,502 13,999 14,120 14,384 13,408 12,764 13,215 2010's 12,998 13,027 13,133 13,246 13,399 13,549 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld

  5. Alaska Natural Gas Number of Residential Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Alaska Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 66 67,648 68,612 69,540 1990's 70,808 72,565 74,268 75,842 77,670 79,474 81,348 83,596 86,243 88,924 2000's 91,297 93,896 97,077 100,404 104,360 108,401 112,269 115,500 119,039 120,124 2010's 121,166 121,736 122,983 124,411 126,416 128,605 - = No Data Reported; -- = Not Applicable; NA = Not

  6. Arizona Natural Gas Number of Commercial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Arizona Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 46 46,702 46,636 46,776 1990's 47,292 53,982 47,781 47,678 48,568 49,145 49,693 50,115 51,712 53,022 2000's 54,056 54,724 56,260 56,082 56,186 56,572 57,091 57,169 57,586 57,191 2010's 56,676 56,547 56,532 56,585 56,649 56,793 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld

  7. Arizona Natural Gas Number of Residential Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Arizona Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 545 567,962 564,195 572,461 1990's 586,866 642,659 604,899 610,337 635,335 661,192 689,597 724,911 764,167 802,469 2000's 846,016 884,789 925,927 957,442 993,885 1,042,662 1,088,574 1,119,266 1,128,264 1,130,047 2010's 1,138,448 1,146,286 1,157,688 1,172,003 1,186,794 1,200,783 - = No Data Reported;

  8. Arkansas Natural Gas Number of Commercial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Arkansas Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 60 60,355 61,630 61,848 1990's 61,530 61,731 62,221 62,952 63,821 65,490 67,293 68,413 69,974 71,389 2000's 72,933 71,875 71,530 71,016 70,655 69,990 69,475 69,495 69,144 69,043 2010's 67,987 67,815 68,765 68,791 69,011 69,265 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  9. Arkansas Natural Gas Number of Industrial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Arkansas Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1 1,410 1,151 1,412 1990's 1,396 1,367 1,319 1,364 1,417 1,366 1,488 1,336 1,300 1,393 2000's 1,414 1,122 1,407 1,269 1,223 1,120 1,120 1,055 1,104 1,025 2010's 1,079 1,133 990 1,020 1,009 1,023 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  10. Arkansas Natural Gas Number of Residential Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Arkansas Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 475 480,839 485,112 491,110 1990's 488,850 495,148 504,722 513,466 521,176 531,182 539,952 544,460 550,017 554,121 2000's 560,055 552,716 553,192 553,211 554,844 555,861 555,905 557,966 556,746 557,355 2010's 549,970 551,795 549,959 549,764 549,034 550,108 - = No Data Reported; -- = Not Applicable;

  11. California Natural Gas Number of Commercial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) California Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 413 404,507 407,435 410,231 1990's 415,073 421,278 412,467 411,648 411,140 411,535 408,294 406,803 588,224 416,791 2000's 413,003 416,036 420,690 431,795 432,367 434,899 442,052 446,267 447,160 441,806 2010's 439,572 440,990 442,708 444,342 443,115 446,510 - = No Data Reported; -- = Not Applicable;

  12. California Natural Gas Number of Industrial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) California Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 31 44,764 44,680 46,243 1990's 46,048 44,865 40,528 42,748 38,750 38,457 36,613 35,830 36,235 36,435 2000's 35,391 34,893 33,725 34,617 41,487 40,226 38,637 39,134 39,591 38,746 2010's 38,006 37,575 37,686 37,996 37,548 36,854 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  13. California Natural Gas Number of Residential Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) California Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 7,626 7,904,858 8,113,034 8,313,776 1990's 8,497,848 8,634,774 8,680,613 8,726,187 8,790,733 8,865,541 8,969,308 9,060,473 9,181,928 9,331,206 2000's 9,370,797 9,603,122 9,726,642 9,803,311 9,957,412 10,124,433 10,329,224 10,439,220 10,515,162 10,510,950 2010's 10,542,584 10,625,190 10,681,916

  14. Colorado Natural Gas Number of Commercial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Colorado Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 108 109,770 110,769 112,004 1990's 112,661 113,945 114,898 115,924 115,994 118,502 121,221 123,580 125,178 129,041 2000's 131,613 134,393 136,489 138,621 138,543 137,513 139,746 141,420 144,719 145,624 2010's 145,460 145,837 145,960 150,145 150,235 150,545 - = No Data Reported; -- = Not Applicable;

  15. Colorado Natural Gas Number of Industrial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Colorado Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1 896 923 976 1990's 1,018 1,074 1,108 1,032 1,176 1,528 2,099 2,923 3,349 4,727 2000's 4,994 4,729 4,337 4,054 4,175 4,318 4,472 4,592 4,816 5,084 2010's 6,232 6,529 6,906 7,293 7,823 8,098 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  16. Colorado Natural Gas Number of Residential Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Colorado Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 925 942,571 955,810 970,512 1990's 983,592 1,002,154 1,022,542 1,044,699 1,073,308 1,108,899 1,147,743 1,183,978 1,223,433 1,265,032 2000's 1,315,619 1,365,413 1,412,923 1,453,974 1,496,876 1,524,813 1,558,911 1,583,945 1,606,602 1,622,434 2010's 1,634,587 1,645,716 1,659,808 1,672,312 1,690,581

  17. Connecticut Natural Gas Number of Commercial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Connecticut Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 38 40,886 41,594 43,703 1990's 45,364 45,925 46,859 45,529 45,042 45,935 47,055 48,195 47,110 49,930 2000's 52,384 49,815 49,383 50,691 50,839 52,572 52,982 52,389 53,903 54,510 2010's 54,842 55,028 55,407 55,500 56,591 57,403 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  18. Connecticut Natural Gas Number of Industrial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Connecticut Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2 2,709 2,818 2,908 1990's 3,061 2,921 2,923 2,952 3,754 3,705 3,435 3,459 3,441 3,465 2000's 3,683 3,881 3,716 3,625 3,470 3,437 3,393 3,317 3,196 3,138 2010's 3,063 3,062 3,148 4,454 4,217 3,945 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  19. Connecticut Natural Gas Number of Residential Consumers (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Residential Consumers (Number of Elements) Connecticut Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 400 411,349 417,831 424,036 1990's 428,912 430,078 432,244 427,761 428,157 431,909 433,778 436,119 438,716 442,457 2000's 458,388 458,404 462,574 466,913 469,332 475,221 478,849 482,902 487,320 489,349 2010's 490,185 494,970 504,138 513,492 522,658 531,380 - = No Data Reported; --

  20. Delaware Natural Gas Number of Commercial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Delaware Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 6 6,180 6,566 7,074 1990's 7,485 7,895 8,173 8,409 8,721 9,133 9,518 9,807 10,081 10,441 2000's 9,639 11,075 11,463 11,682 11,921 12,070 12,345 12,576 12,703 12,839 2010's 12,861 12,931 12,997 13,163 13,352 13,430 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  1. Delaware Natural Gas Number of Residential Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Delaware Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 81 82,829 84,328 86,428 1990's 88,894 91,467 94,027 96,914 100,431 103,531 106,548 109,400 112,507 115,961 2000's 117,845 122,829 126,418 129,870 133,197 137,115 141,276 145,010 147,541 149,006 2010's 150,458 152,005 153,307 155,627 158,502 161,607 - = No Data Reported; -- = Not Applicable; NA =

  2. Georgia Natural Gas Number of Commercial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Georgia Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 94 98,809 102,277 106,690 1990's 108,295 109,659 111,423 114,889 117,980 120,122 123,200 123,367 126,050 225,020 2000's 128,275 130,373 128,233 129,867 128,923 128,389 127,843 127,832 126,804 127,347 2010's 124,759 123,454 121,243 126,060 122,578 123,307 - = No Data Reported; -- = Not Applicable; NA =

  3. Georgia Natural Gas Number of Industrial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Georgia Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3 3,034 3,144 3,079 1990's 3,153 3,124 3,186 3,302 3,277 3,261 3,310 3,310 3,262 5,580 2000's 3,294 3,330 3,219 3,326 3,161 3,543 3,053 2,913 2,890 2,254 2010's 2,174 2,184 2,112 2,242 2,481 2,548 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  4. Georgia Natural Gas Number of Residential Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Georgia Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,190 1,237,201 1,275,128 1,308,972 1990's 1,334,935 1,363,723 1,396,860 1,430,626 1,460,141 1,495,992 1,538,458 1,553,948 1,659,730 1,732,865 2000's 1,680,749 1,737,850 1,735,063 1,747,017 1,752,346 1,773,121 1,726,239 1,793,650 1,791,256 1,744,934 2010's 1,740,587 1,740,006 1,739,543 1,805,425

  5. Hawaii Natural Gas Number of Commercial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Hawaii Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,896 2,852 2,842 1990's 2,837 2,786 2,793 3,222 2,805 2,825 2,823 2,783 2,761 2,763 2000's 2,768 2,777 2,781 2,804 2,578 2,572 2,548 2,547 2,540 2,535 2010's 2,551 2,560 2,545 2,627 2,789 2,815 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  6. Hawaii Natural Gas Number of Residential Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Hawaii Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 28,502 28,761 28,970 1990's 29,137 29,701 29,805 29,984 30,614 30,492 31,017 30,990 30,918 30,708 2000's 30,751 30,794 30,731 30,473 26,255 26,219 25,982 25,899 25,632 25,466 2010's 25,389 25,305 25,184 26,374 28,919 28,952 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld

  7. Idaho Natural Gas Number of Commercial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Idaho Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 17,482 18,454 18,813 1990's 19,452 20,328 21,145 21,989 22,999 24,150 25,271 26,436 27,697 28,923 2000's 30,018 30,789 31,547 32,274 33,104 33,362 33,625 33,767 37,320 38,245 2010's 38,506 38,912 39,202 39,722 40,229 40,744 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  8. Idaho Natural Gas Number of Residential Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Idaho Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 104,824 111,532 113,898 1990's 113,954 126,282 136,121 148,582 162,971 175,320 187,756 200,165 213,786 227,807 2000's 240,399 251,004 261,219 274,481 288,380 301,357 316,915 323,114 336,191 342,277 2010's 346,602 350,871 353,963 359,889 367,394 374,557 - = No Data Reported; -- = Not Applicable; NA =

  9. Illinois Natural Gas Number of Commercial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Illinois Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 241,367 278,473 252,791 1990's 257,851 261,107 263,988 268,104 262,308 264,756 265,007 268,841 271,585 274,919 2000's 279,179 278,506 279,838 281,877 273,967 276,763 300,606 296,465 298,418 294,226 2010's 291,395 293,213 297,523 282,743 294,391 295,869 - = No Data Reported; -- = Not Applicable; NA =

  10. Illinois Natural Gas Number of Industrial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Illinois Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 19,460 20,015 25,161 1990's 25,991 26,489 27,178 27,807 25,788 25,929 29,493 28,472 28,063 27,605 2000's 27,348 27,421 27,477 26,698 29,187 29,887 26,109 24,000 23,737 23,857 2010's 25,043 23,722 23,390 23,804 23,829 23,049 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld

  11. Illinois Natural Gas Number of Residential Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Illinois Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3,170,364 3,180,199 3,248,117 1990's 3,287,091 3,320,285 3,354,679 3,388,983 3,418,052 3,452,975 3,494,545 3,521,707 3,556,736 3,594,071 2000's 3,631,762 3,670,693 3,688,281 3,702,308 3,754,132 3,975,961 3,812,121 3,845,441 3,869,308 3,839,438 2010's 3,842,206 3,855,942 3,878,806 3,838,120

  12. Indiana Natural Gas Number of Commercial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Indiana Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 116,571 119,458 122,803 1990's 124,919 128,223 129,973 131,925 134,336 137,162 139,097 140,515 141,307 145,631 2000's 148,411 148,830 150,092 151,586 151,943 159,649 154,322 155,885 157,223 155,615 2010's 156,557 161,293 158,213 158,965 159,596 160,051 - = No Data Reported; -- = Not Applicable; NA =

  13. Indiana Natural Gas Number of Industrial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Indiana Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 5,497 5,696 6,196 1990's 6,439 6,393 6,358 6,508 6,314 6,250 6,586 6,920 6,635 19,069 2000's 10,866 9,778 10,139 8,913 5,368 5,823 5,350 5,427 5,294 5,190 2010's 5,145 5,338 5,204 5,178 5,098 5,095 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  14. Indiana Natural Gas Number of Residential Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Indiana Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,250,476 1,275,401 1,306,747 1990's 1,327,772 1,358,640 1,377,023 1,402,770 1,438,483 1,463,640 1,489,647 1,509,142 1,531,914 1,570,253 2000's 1,604,456 1,613,373 1,657,640 1,644,715 1,588,738 1,707,195 1,661,186 1,677,857 1,678,158 1,662,663 2010's 1,669,026 1,707,148 1,673,132 1,681,841 1,693,267

  15. Iowa Natural Gas Number of Commercial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Iowa Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 80,797 81,294 82,549 1990's 83,047 84,387 85,325 86,452 86,918 88,585 89,663 90,643 91,300 92,306 2000's 93,836 95,485 96,496 96,712 97,274 97,767 97,823 97,979 98,144 98,416 2010's 98,396 98,541 99,113 99,017 99,186 99,662 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  16. Iowa Natural Gas Number of Industrial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Iowa Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,033 1,937 1,895 1990's 1,883 1,866 1,835 1,903 1,957 1,957 2,066 1,839 1,862 1,797 2000's 1,831 1,830 1,855 1,791 1,746 1,744 1,670 1,651 1,652 1,626 2010's 1,528 1,465 1,469 1,491 1,572 1,572 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  17. Iowa Natural Gas Number of Residential Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Iowa Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 690,532 689,655 701,687 1990's 706,842 716,088 729,081 740,722 750,678 760,848 771,109 780,746 790,162 799,015 2000's 812,323 818,313 824,218 832,230 839,415 850,095 858,915 865,553 872,980 875,781 2010's 879,713 883,733 892,123 895,414 900,420 908,058 - = No Data Reported; -- = Not Applicable; NA =

  18. Kansas Natural Gas Number of Commercial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Kansas Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 82,934 83,810 85,143 1990's 85,539 86,874 86,840 87,735 86,457 88,163 89,168 85,018 89,654 86,003 2000's 87,007 86,592 87,397 88,030 86,640 85,634 85,686 85,376 84,703 84,715 2010's 84,446 84,874 84,673 84,969 85,654 86,034 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  19. Kansas Natural Gas Number of Industrial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Kansas Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 4,440 4,314 4,366 1990's 4,357 3,445 3,296 4,369 3,560 3,079 2,988 7,014 10,706 5,861 2000's 8,833 9,341 9,891 9,295 8,955 8,300 8,152 8,327 8,098 7,793 2010's 7,664 7,954 7,970 7,877 7,328 7,218 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  20. Kansas Natural Gas Number of Residential Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Kansas Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 725,676 733,101 731,792 1990's 747,081 753,839 762,545 777,658 773,357 797,524 804,213 811,975 841,843 824,803 2000's 833,662 836,486 843,353 850,464 855,272 856,761 862,203 858,304 853,125 855,454 2010's 853,842 854,730 854,800 858,572 860,441 861,419 - = No Data Reported; -- = Not Applicable; NA =

  1. Kentucky Natural Gas Number of Commercial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Kentucky Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 63,024 63,971 65,041 1990's 67,086 68,461 69,466 71,998 73,562 74,521 76,079 77,693 80,147 80,283 2000's 81,588 81,795 82,757 84,110 84,493 85,243 85,236 85,210 84,985 83,862 2010's 84,707 84,977 85,129 85,999 85,630 85,961 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld

  2. Kentucky Natural Gas Number of Industrial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Kentucky Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,391 1,436 1,443 1990's 1,544 1,587 1,608 1,585 1,621 1,630 1,633 1,698 1,864 1,813 2000's 1,801 1,701 1,785 1,695 1,672 1,698 1,658 1,599 1,585 1,715 2010's 1,742 1,705 1,720 1,767 2,008 2,041 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  3. Kentucky Natural Gas Number of Residential Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Kentucky Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 596,320 606,106 614,058 1990's 624,477 633,942 644,281 654,664 668,774 685,481 696,989 713,509 726,960 735,371 2000's 744,816 749,106 756,234 763,290 767,022 770,080 770,171 771,047 753,531 754,761 2010's 758,129 759,584 757,790 761,575 761,935 764,946 - = No Data Reported; -- = Not Applicable; NA

  4. Illinois Natural Gas Number of Oil Wells (Number of Elements)

    Gasoline and Diesel Fuel Update

    Commercial Consumers (Number of Elements) Illinois Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 241,367 278,473 252,791 1990's 257,851 261,107 263,988 268,104 262,308 264,756 265,007 268,841 271,585 274,919 2000's 279,179 278,506 279,838 281,877 273,967 276,763 300,606 296,465 298,418 294,226 2010's 291,395 293,213 297,523 282,743 294,391 295,869 - = No Data Reported; -- = Not Applicable; NA =

  5. The Majorana Demonstrator: Progress towards showing the feasibility...

    Office of Scientific and Technical Information (OSTI)

    OSTI Identifier: 1052375 Report Number(s): LA-UR-12-24950 DOE Contract Number: AC52-06NA25396 Resource Type: Conference Resource Relation: Conference: 18th International Symposium ...

  6. Phase transition enhanced thermoelectric figure-of-merit in copper chalcogenides

    SciTech Connect

    Brown, David R.; Day, Tristan; Snyder, G. Jeffrey; Borup, Kasper A.; Christensen, Sebastian; Iversen, Bo B.

    2013-11-01

    While thermoelectric materials can be used for solid state cooling, waste heat recovery, and solar electricity generation, low values of the thermoelectric figure of merit, zT, have led to an efficiency too low for widespread use. Thermoelectric effects are characterized by the Seebeck coefficient or thermopower, which is related to the entropy associated with charge transport. For example, coupling spin entropy with the presence of charge carriers has enabled the enhancement of zT in cobalt oxides. We demonstrate that the coupling of a continuous phase transition to carrier transport in Cu{sub 2}Se over a broad (360–410 K) temperature range results in a dramatic peak in thermopower, an increase in phonon and electron scattering, and a corresponding doubling of zT (to 0.7 at 406 K), and a similar but larger increase over a wider temperature range in the zT of Cu{sub 1.97}Ag{sub .03}Se (almost 1.0 at 400 K). The use of structural entropy for enhanced thermopower could lead to new engineering approaches for thermoelectric materials with high zT and new green applications for thermoelectrics.

  7. Figures and Data Plots from the Published Papers of the BELLE Experiment at the KEK - B Factory

    DOE Data Explorer

    This resource provides more than 300 citations to preprints and papers with the figures from each one pulled out separately for easy access and downloading. These are physics publications. Be sure to also see the page of Technical Journal publications at http://belle.kek.jp/belle/bellenim/index.htm and the lists of conference presentations from 2000 through 2009. Belle is a high-energy physics (HEP) experiment that began in 1999 at the KEK B-factory in Japan under the direction of the international Belle Collaboration. The original Letter of Intent from the Collaboration stated their scientific goal as follows:

    The laws of nature have a high degree of symmetry between matter and antimatter; violations of this symmetry, the so-called CP violations, are only seen as a small effect in the decays of neutral K mesons. Although experimental evidence for CP violation was first observed 30 years ago, we still do not understand how they occur. In 1973, Kobayashi and Maskawa (KM) noted that CP violation could be accommodated in the Standard Model only if there were at least six quark flavors, twice the number of quark flavors known at that time. The KM model for CP violation is now considered to be an essential part of the Standard Model. In 1980, Sanda and Carter pointed out that the KM model contained the possibility of rather sizable CP violating asymmetries in certain decay modes of the B meson. The subsequent observation of a long b quark lifetime and a large amount of mixing in the neutral B meson system indicated that it would be feasible to carry out decisive tests of the KM model by studying B meson decays. Our collaboration has been formed around the common interest of clarifying the long standing physics puzzle of CP violation. Our goal is to make a definitive test of the Standard ModelÆs predictions for CP violations in the decays of B mesons. [Copied, with editing, from Letter of Intent (KEK-Report94-2, April 1994); see http

  8. Figures and Data Plots from the Published Papers of the BELLE Experiment at the KEK - B Factory

    DOE Data Explorer

    This resource provides more than 300 citations to preprints and papers with the figures from each one pulled out separately for easy access and downloading. These are physics publications. Be sure to also see the page of Technical Journal publications at http://belle.kek.jp/belle/bellenim/index.htm and the lists of conference presentations from 2000 through 2009. Belle is a high-energy physics (HEP) experiment that began in 1999 at the KEK B-factory in Japan under the direction of the international Belle Collaboration. The original Letter of Intent from the Collaboration stated their scientific goal as follows:

    The laws of nature have a high degree of symmetry between matter and antimatter; violations of this symmetry, the so-called CP violations, are only seen as a small effect in the decays of neutral K mesons. Although experimental evidence for CP violation was first observed 30 years ago, we still do not understand how they occur. In 1973, Kobayashi and Maskawa (KM) noted that CP violation could be accommodated in the Standard Model only if there were at least six quark flavors, twice the number of quark flavors known at that time. The KM model for CP violation is now considered to be an essential part of the Standard Model. In 1980, Sanda and Carter pointed out that the KM model contained the possibility of rather sizable CP violating asymmetries in certain decay modes of the B meson. The subsequent observation of a long b quark lifetime and a large amount of mixing in the neutral B meson system indicated that it would be feasible to carry out decisive tests of the KM model by studying B meson decays. Our collaboration has been formed around the common interest of clarifying the long standing physics puzzle of CP violation. Our goal is to make a definitive test of the Standard Models predictions for CP violations in the decays of B mesons. [Copied, with editing, from Letter of Intent (KEK-Report94-2, April 1994); see http

  9. The 17 GHz active region number

    SciTech Connect

    Selhorst, C. L.; Pacini, A. A.; Costa, J. E. R.; Gimnez de Castro, C. G.; Valio, A.; Shibasaki, K.

    2014-08-01

    We report the statistics of the number of active regions (NAR) observed at 17 GHz with the Nobeyama Radioheliograph between 1992, near the maximum of cycle 22, and 2013, which also includes the maximum of cycle 24, and we compare with other activity indexes. We find that NAR minima are shorter than those of the sunspot number (SSN) and radio flux at 10.7 cm (F10.7). This shorter NAR minima could reflect the presence of active regions generated by faint magnetic fields or spotless regions, which were a considerable fraction of the counted active regions. The ratio between the solar radio indexes F10.7/NAR shows a similar reduction during the two minima analyzed, which contrasts with the increase of the ratio of both radio indexes in relation to the SSN during the minimum of cycle 23-24. These results indicate that the radio indexes are more sensitive to weaker magnetic fields than those necessary to form sunspots, of the order of 1500 G. The analysis of the monthly averages of the active region brightness temperatures shows that its long-term variation mimics the solar cycle; however, due to the gyro-resonance emission, a great number of intense spikes are observed in the maximum temperature study. The decrease in the number of these spikes is also evident during the current cycle 24, a consequence of the sunspot magnetic field weakening in the last few years.

  10. Options in the Eleventh Year for Interim Standard Offer Number Four Contracts

    SciTech Connect

    Hinrichs, Thomas C.

    1992-03-24

    The Interim Standard Offer Number Four Contracts (ISM), under which most of the geothermal industry is selling power (outside of The Geysers), has an initial ten year period of known fixed energy payments. In the eleventh year, the price goes to the Avoided Cost of the buying utility. The specific contract language is ''Seller will be paid at a rate equal to the utilities' published avoided cost of energy as updated and authorized by the Commission (CPUC)''. The first geothermal contract will reach the end of the initial 10 year period in early 1994, a few will end in 1995 and 1996, and the majority will end in the 1997-2000 period. This is beginning to be focused upon by the utilities, lenders and, of course, the operators themselves. The prime reason for focusing on the issue is that avoided costs of the utilities directly track the delivered cost of the natural gas, and most forecasts are showing that the price of gas in the eleventh year of the contracts will be significantly lower than the last year of the fixed period of energy payments. There are many forums in which the predication of natural gas prices are discussed. In the State of California, the agency responsible for the official forecast is the California Energy Commission. Every two years, the CEC holds hearings for input into its biennial Fuels Report (FR) which establishes the forecast of natural gas prices in addition to other parameters which are used in the planning process. The attached Exhibit I is an excerpt out of the 1991 Fuels Report (FR91). Figure 1 compares the forecast of FR89 and FR91 for the Utility Electric Generation (UEG) in PG&E's service area, and Figure 2, the forecast in the SOCAL service area. The FR91 SOCAL service area forecast indicates a bottoming of the gas price in 1994 at $2.50/mmbtu. Recent prices in 1992 are already at these levels. Converting this to an avoided energy cost brings about a price of 2 to 2-1/2 Cents/kWh. The 1992 energy price in the IS04 contract is 9

  11. Surfactant-Free Synthesis of Bi2Te3-Te Micro-Nano Heterostructure with Enhanced Thermoelectric Figure of Merit

    SciTech Connect

    Zhang, Yichi; Wang, Heng; Kraemer, Stephan; Shi, Yifeng; Zhang, Fan; Snedaker, Matt; Ding, Kunlun; Moskovits, Martin; Snyder, G. Jeffrey; Stucky, Galen D.

    2011-03-21

    An ideal thermoelectric material would be a semiconductor with high electrical conductivity and relatively low thermal conductivity: an “electron crystal, phonon glass”. Introducing nanoscale heterostructures into the bulk TE matrix is one way of achieving this intuitively anomalous electron/phonon transport behavior. The heterostructured interfaces are expected to play a significant role in phonon scattering to reduce thermal conductivity and in the energy-dependent scattering of electrical carriers to improve the Seebeck coefficient. A nanoparticle building block assembly approach is plausible to fabricate three-dimensional heterostructured materials on a bulk commercial scale. However, a key problem in applying this strategy is the possible negative impact on TE performance of organic residue from the nanoparticle capping ligands. Herein, we report a wet chemical, surfactant-free, low-temperature, and easily up-scalable strategy for the synthesis of nanoscale heterophase Bi₂Te₃-Te via a galvanic replacement reaction. The micro-nano heterostructured material is fabricated bottom-up, by mixing the heterophase with commercial Bi₂Te₃. This unique structure shows an enhanced zT value of ~0.4 at room temperature. This heterostructure has one of the highest figures of merit among bismuth telluride systems yet achieved by a wet chemical bottom-up assembly. In addition, it shows a 40% enhancement of the figure of merit over our lab-made material without nanoscale heterostructures. This enhancement is mainly due to the decrease in the thermal conductivity while maintaining the power factor. Overall, this cost-efficient and room-temperature synthesis methodology provides the potential for further improvement and large-scale thermoelectric applications.

  12. Sugarcane transgenics expressing MYB transcription factors show improved glucose release

    DOE PAGES [OSTI]

    Poovaiah, Charleson R.; Bewg, William P.; Lan, Wu; Ralph, John; Coleman, Heather D.

    2016-07-15

    In this study, sugarcane, a tropical C4 perennial crop, is capable of producing 30-100 tons or more of biomass per hectare annually. The lignocellulosic residue remaining after sugar extraction is currently underutilized and can provide a significant source of biomass for the production of second-generation bioethanol. As a result, MYB31 and MYB42 were cloned from maize and expressed in sugarcane with and without the UTR sequences. The cloned sequences were 98 and 99 % identical to the published nucleotide sequences. The inclusion of the UTR sequences did not affect any of the parameters tested. There was little difference in plantmore » height and the number of internodes of the MYB-overexpressing sugarcane plants when compared with controls. MYB transgene expression determined by qPCR exhibited continued expression in young and maturing internodes. MYB31 downregulated more genes within the lignin biosynthetic pathway than MYB42. MYB31 and MYB42 expression resulted in decreased lignin content in some lines. All MYB42 plants further analyzed showed significant increases in glucose release by enzymatic hydrolysis in 72 h, whereas only two MYB31 plants released more glucose than control plants. This correlated directly with a significant decrease in acid-insoluble lignin. Soluble sucrose content of the MYB42 transgenic plants did not vary compared to control plants. In conclusion, this study demonstrates the use of MYB transcription factors to improve the production of bioethanol from sugarcane bagasse remaining after sugar extraction.« less

  13. Verification Challenges at Low Numbers

    SciTech Connect

    Benz, Jacob M.; Booker, Paul M.; McDonald, Benjamin S.

    2013-06-01

    Many papers have dealt with the political difficulties and ramifications of deep nuclear arms reductions, and the issues of “Going to Zero”. Political issues include extended deterrence, conventional weapons, ballistic missile defense, and regional and geo-political security issues. At each step on the road to low numbers, the verification required to ensure compliance of all parties will increase significantly. Looking post New START, the next step will likely include warhead limits in the neighborhood of 1000 . Further reductions will include stepping stones at1000 warheads, 100’s of warheads, and then 10’s of warheads before final elimination could be considered of the last few remaining warheads and weapons. This paper will focus on these three threshold reduction levels, 1000, 100’s, 10’s. For each, the issues and challenges will be discussed, potential solutions will be identified, and the verification technologies and chain of custody measures that address these solutions will be surveyed. It is important to note that many of the issues that need to be addressed have no current solution. In these cases, the paper will explore new or novel technologies that could be applied. These technologies will draw from the research and development that is ongoing throughout the national laboratory complex, and will look at technologies utilized in other areas of industry for their application to arms control verification.

  14. Droplet Number Concentration Value Added Product

    Energy Science and Technology Software Center

    2015-08-06

    Cloud droplet number concentration is an important factor in understanding aerosol-cloud interactions. As aerosol concentration increases, it is expected that droplet number concentration (Nd) will increase and droplet size will decrease, for a given liquid water path. This will greatly affect cloud albedo as smaller droplets reflect more shortwave radiation; however, the magnitude and variability of these processes under different environmental conditions is still uncertain.McComiskey et al. (2009) have implemented a method, based onBoers andmore » Mitchell (1994), for calculating Nd from ground-based remote sensing measurements of optical depth and liquid water path. They show that the magnitude of the aerosol-cloud interactions (ACI) varies with a range of factors, including the relative value of the cloud liquid water path (LWP), the aerosol size distribution, and the cloud updraft velocity. Estimates of Nd under a range of cloud types and conditions and at a variety of sites are needed to further quantify the impacts of aerosol cloud interactions. In order to provide data sets for studying aerosol-cloud interactions, the McComiskey et al. (2009) method was implemented as the Droplet Number Concentration (NDROP) value-added product (VAP).« less

  15. Developing and Enhancing Workforce Training Programs: Number of Projects by

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    State | Department of Energy Developing and Enhancing Workforce Training Programs: Number of Projects by State Developing and Enhancing Workforce Training Programs: Number of Projects by State Map of the United States showing the location of Workforce Training Projects, funded through the American Recovery and Reinvestment Act Developing and Enhancing Workforce Training Programs: Number of Projects by State (389.21 KB) More Documents & Publications Workforce Development Wind Projects

  16. Number of Consumers Eligible Participating Table 26. Number of consumers eligible and participating in a customer choice program in the residential

    Energy Information Administration (EIA) (indexed site)

    73 0 1 2 3 4 5 6 7 8 9 10 11 12 Number of Consumers Eligible Participating Table 26. Number of consumers eligible and participating in a customer choice program in the residential sector, 2015 Figure 26. Top Five States with Participants in a Residential Customer Choice Program, 2015 California 10,969,597 6,712,311 441,523 Colorado 1,712,153 1,254,056 0 Connecticut 531,380 1,121 340 District of Columbia 147,895 147,867 17,167 Florida 701,981 17,626 16,363 Georgia 1,777,558 1,468,084 1,468,084

  17. Developing and Enhancing Workforce Training Programs: Number...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Developing and Enhancing Workforce Training Programs: Number of Projects by State Developing and Enhancing Workforce Training Programs: Number of Projects by State Map of the ...

  18. NREL: Wind Research - Wind Career Map Shows Wind Industry Career...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Wind Career Map Shows Wind Industry Career Opportunities, Paths A screenshot of the wind career map showing the various points on a chart that show different careers in the wind...

  19. Property:NumberOfUsers | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    property "NumberOfUsers" Showing 25 pages using this property. (previous 25) (next 25) H HOMER + 578 + HOMER + 14 + HOMER + 1 + HOMER + 34 + HOMER + 6 + HOMER + 68 + HOMER + 89...

  20. Property:Buildings/ReportNumber | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Jump to: navigation, search This is a property of type String. Pages using the property "BuildingsReportNumber" Showing 2 pages using this property. G General Merchandise 50%...

  1. Statistics Show Bearing Problems Cause the Majority of Wind Turbine...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Statistics Show Bearing Problems Cause the Majority of Wind Turbine Gearbox Failures Statistics Show Bearing Problems Cause the Majority of Wind Turbine Gearbox Failures September ...

  2. Water telescope's first sky map shows flickering black holes

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Water telescope's first sky map shows flickering black holes Water telescope's first sky map shows flickering black holes The High Altitude Water Cherenkov observatory has released ...

  3. Federal Energy Management Trade Show | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Federal Energy Management Trade Show Federal Energy Management Trade Show Addthis 1 of 4 Timothy Unruh, Program Manager for the Office of Energy Efficiency and Renewable Energy...

  4. Plasma research shows promise for future compact accelerators

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Plasma research shows promise for future compact accelerators Plasma research shows promise for future compact accelerators A transformative breakthrough in controlling ion beams ...

  5. Pumped-Storage Hydropower Shows Promise for Boosting Energy Storage...

    Energy Saver

    Pumped-Storage Hydropower Shows Promise for Boosting Energy Storage Pumped-Storage Hydropower Shows Promise for Boosting Energy Storage August 23, 2016 - 10:45am Addthis ...

  6. DOE Releases New Analysis Showing Significant Advances in Electric...

    Office of Environmental Management (EM)

    Analysis Showing Significant Advances in Electric Vehicle Deployment DOE Releases New Analysis Showing Significant Advances in Electric Vehicle Deployment February 8, 2011 - ...

  7. Shanghai Hi Show Photovoltaic Science Technology Co Ltd | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Hi Show Photovoltaic Science Technology Co Ltd Jump to: navigation, search Name: Shanghai Hi-Show Photovoltaic Science & Technology Co., Ltd Place: Shanghai Municipality, China...

  8. NREL Refinery Process Shows Increased Effectiveness of Producing...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Refinery Process Shows Increased Effectiveness of Producing Ethanol from Algae NREL Refinery Process Shows Increased Effectiveness of Producing Ethanol from Algae February 11, 2016 ...

  9. Test procedures and protocols: Their relevance to the figure of merit for thermal distribution systems. Volume 1: Informal report

    SciTech Connect

    Andrews, J.W.

    1993-09-01

    A conceptual framework is developed that categorizes measurement protocols for forced-air thermal distribution systems in small buildings. This framework is based on the distinction between two generic approaches. The {open_quote}system-comparison{close_quote} approach seeks to determine, via a pair of whole-house energy-use measurements, the difference in energy use between the house with the as-found duct system and the same house with no energy losses attributable to the thermal distribution system. The {open_quote}component loss-factor{close_quote} approach identifies and measures the individual causes of duct losses, and then builds up a value for the net overall duct efficiency, usually with the help of computer simulation. Examples of each approach are analyzed and related to a proposed Figure of Merit for thermal distribution systems. This Figure of Merit would serve as the basis for a Standard Method of Test analogous to those already in place for furnaces, boilers, air conditioners, and heat pumps.

  10. Simulations Show Swirling Rings, Whirlpool-Like Structure in Subatomic

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    'Soup' Simulations Show Swirling Rings, Whirlpool-Like Structure in Subatomic 'Soup'

  11. Florida Natural Gas Number of Gas and Gas Condensate Wells (Number...

    Gasoline and Diesel Fuel Update

    Gas and Gas Condensate Wells (Number of Elements) Florida Natural Gas Number of Gas and ...2016 Referring Pages: Number of Producing Gas Wells (Summary) Florida Natural Gas Summary

  12. Experimental studies of Reynolds number dependence of turbulent mixing & transport

    SciTech Connect

    Warhaft, Z.

    1996-12-31

    An overview of recent experiments, in which the author generated high Reynolds number homogeneous grid turbulence, is provided. The author shows that in a small wind tunnel, Reynolds numbers that are sufficiently high (R{sub {lambda}} {approximately} 800, R{sub {ell}} {approximately} 36, 000) such that many of the aspects of turbulence that hitherto have only been observed in large scale anisotropic shear flows, are obtained. In particular the author studied the evolution of the spectrum with Reynolds number, the Kolmogorov constant and the internal intermittency, showing the way they tend to their high Reynolds number asymptotes. Thus the author links previous low Reynolds number laboratory experiments with large scale environmental measurements.

  13. ORISE: Report shows nuclear engineering graduation rates on the rise in

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    2013 ORISE report shows nuclear engineering graduation rates on the rise in 2013 Number of graduate degrees expected to remain consistent, but undergraduate degrees could see decrease come 2015 FOR IMMEDIATE RELEASE March 3, 2014 FY14-11 OAK RIDGE, Tenn.-The number of college students graduating with majors in nuclear engineering continues to increase, according to a report by the Oak Ridge Institute for Science and Education, which surveyed 32 U.S. universities with nuclear engineering

  14. All-optical logic gate based on transient grating from disperse red 1 doped organic-inorganic hybrid films with an improved figure of merit

    SciTech Connect

    Gao, Tianxi; Que, Wenxiu Shao, Jinyou; Wang, Yushu

    2015-10-21

    Azobenzene dyes have large refractive index near their main resonance, but the poor figure of merit (FOM) limits their potential for all-optical applications. To improve this situation, disperse red 1 (DR1) molecules were dispersed in a sol-gel germanium/Ormosil organic-inorganic hybrid matrix. Z-scan measurement results showed a good compatibility between the dopant and the matrix, and also, an improved FOM was obtained as compared to the DR1/polymer films reported previously. To demonstrate the all-optical signal processing effect, a cw Nd:YAG laser emitting at 532 nm and a He-Ne laser emitting at 632.8 nm were used as pump and probe beams, respectively. DR1 acts as an initiator of the photo-induced transient holographic grating, which is attributed to the trans-cis-trans photoisomerization. Thus, a three inputs AND all-optical logic gate was achieved by using choppers with different frequencies. The detailed mechanism of operation is discussed. These results indicate that the DR1 doped germanium/Ormosil organic-inorganic hybrid film with an improved FOM has a great potential in all-optical devices around its main resonance.

  15. A Look Inside the Detroit Auto Show | Department of Energy

    Energy Saver

    the Detroit Auto Show A Look Inside the Detroit Auto Show January 12, 2011 - 1:15pm Addthis Kerry Duggan Kerry Duggan Waking up at 4:30AM is not my idea of fun. But after I ...

  16. Interactive Map Shows Thousands of Sandia Labs Collaborations...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Interactive Map Shows Thousands of Sandia Labs Collaborations Across U.S. Interactive Map Shows Thousands of Sandia Labs Collaborations Across U.S. March 8, 2016 - 2:46pm Addthis ...

  17. New Interactive Map Shows Big Potential for America's Wind Energy...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Interactive Map Shows Big Potential for America's Wind Energy Future New Interactive Map Shows Big Potential for America's Wind Energy Future March 31, 2015 - 11:50am Addthis Wind ...

  18. Show Me the Money!: How to Find Financing, Access Incentives...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Show Me the Money: How to Find Financing, Access Incentives, and Get Projects Done Show Me the Money: How to Find Financing, Access Incentives, and Get Projects Done December 6, ...

  19. New Report Shows Downward Trend in LCOE for Wind | Department...

    Office of Environmental Management (EM)

    New Report Shows Downward Trend in LCOE for Wind New Report Shows Downward Trend in LCOE for Wind May 18, 2015 - 2:48pm Addthis A new report recently published by the U.S. ...

  20. New Geothermal Prospects in the Western United States Show Promise...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Geothermal Prospects in the Western United States Show Promise New Geothermal Prospects in the Western United States Show Promise February 27, 2013 - 2:21pm Addthis New geothermal ...

  1. Dynein Motor Domain Shows Ring-Shaped Motor, Buttress

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Dynein Motor Domain Shows Ring-Shaped Motor, Buttress Dynein Motor Domain Shows Ring-Shaped Motor, Buttress Print Monday, 28 November 2011 14:52 Movement is fundamental to life. It...

  2. Native American Heritage Month (NAHM) - Cultural Film Showing |

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Department of Energy Native American Heritage Month (NAHM) - Cultural Film Showing Native American Heritage Month (NAHM) - Cultural Film Showing November 14, 2016 10:00AM to 11:00AM EST Native American Heritage Month (NAHM) - Cultural Film Showing

  3. Getting the Most Out of a Show | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Publications, Exhibits, & Logos » Getting the Most Out of a Show Getting the Most Out of a Show These guidelines are designed to assist you during the event, in order to get the most out of the showing of your exhibit. Look the Part Create a good impression for EERE by looking polished and professional. Wear business-like, comfortable attire. Don't forget your nametag! Get plenty of rest before the show, and pace yourself during the show (you will need breaks, so schedule them). Staffing

  4. Extracting grain-orientation-dependent data from in situ time-of-flight neutron diffraction. I. Inverse pole figures

    DOE PAGES [OSTI]

    Stoica, Grigoreta M.; Stoica, Alexandru Dan; An, Ke; Ma, Dong; Vogel, S. C.; Carpenter, J. S.; Wang, Xun-Li

    2014-11-28

    The problem of calculating the inverse pole figure (IPF) is analyzed from the perspective of the application of time-of flight neutron diffraction toin situmonitoring of the thermomechanical behavior of engineering materials. On the basis of a quasi-Monte Carlo (QMC) method, a consistent set of grain orientations is generated and used to compute the weighting factors for IPF normalization. The weighting factors are instrument dependent and were calculated for the engineering materials diffractometer VULCAN (Spallation Neutron Source, Oak Ridge National Laboratory). The QMC method is applied to face-centered cubic structures and can be easily extended to other crystallographic symmetries. Examples includemore » 316LN stainless steelin situloaded in tension at room temperature and an Al–2%Mg alloy, substantially deformed by cold rolling and in situannealed up to 653 K.« less

  5. Low Mach Number Models in Computational Astrophysics

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Ann Almgren Low Mach Number Models in Computational Astrophysics February 4, 2014 Ann Almgren. Berkeley Lab Downloads Almgren-nug2014.pdf | Adobe Acrobat PDF file Low Mach Number...

  6. Climate Zone Number 5 | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Climate Zone Number 5 Jump to: navigation, search A type of climate defined in the ASHRAE 169-2006 standard. Climate Zone Number 5 is defined as Cool- Humid(5A) with IP Units 5400...

  7. Los Alamos disease-fighting technology showing promise

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    disease-fighting technology showing promise Los Alamos disease-fighting technology showing promise A pathogen-carrying pest known as the glassy-winged sharpshooter has plagued grape vines in California for more than century, but a new technology from Los Alamos National Laboratory could change that. November 4, 2016 Los Alamos disease-fighting technology showing promise Citrus plants treated with immunity technology, left, and untreated plants. Innate Immunity LLC is developing genetically

  8. 3D Printed Car at the International Manufacturing Technology Show |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy 3D Printed Car at the International Manufacturing Technology Show 3D Printed Car at the International Manufacturing Technology Show Addthis WORLD'S FIRST 1 of 6 WORLD'S FIRST The world's first 3D-printed car on display at the International Manufacturing Technology Show in Chicago last week. Arizona-based Local Motors, and Cincinnati Incorporated teamed with Oak Ridge National Laboratory's Manufacturing Demonstration Facility-with funding support from the Energy

  9. Water telescope's first sky map shows flickering black holes

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Water telescope's first sky map shows flickering black holes Water telescope's first sky map shows flickering black holes The High Altitude Water Cherenkov observatory has released its first map of the sky, including the first measurements of how often black holes flicker on and off. It has also caught pulsars, supernova remnants, and other bizarre cosmic beasts. April 24, 2016 Water telescope's first sky map shows flickering black holes Three new sources of gamma rays spotted by HAWC. Credit:

  10. New Geothermal Prospects in the Western United States Show Promise |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Geothermal Prospects in the Western United States Show Promise New Geothermal Prospects in the Western United States Show Promise February 27, 2013 - 2:21pm Addthis New geothermal prospects in the western United States show promise, according to the new 2013 Annual U.S. Geothermal Power Production and Development Report, published by the Geothermal Energy Association this week. With an estimate of more than 500 Megawatts of new potential in Oregon alone, industry leader

  11. CHICAGO HOUSE PARTIES SHOW WAYS TO UPGRADE | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    CHICAGO HOUSE PARTIES SHOW WAYS TO UPGRADE CHICAGO HOUSE PARTIES SHOW WAYS TO UPGRADE CHICAGO HOUSE PARTIES SHOW WAYS TO UPGRADE The Chicago Metropolitan Agency for Planning (CMAP) and its partners created Energy Impact Illinois (EI2) to promote home energy upgrades in single-family homes, multifamily housing units, and commercial buildings to help the region meet its 2008 Chicago Climate Action Plan and longer term GO TO 2040 Strategic Plan. EI2 enlisted the help of the Elevate Energy, a

  12. Secretary Moniz Releases Report Showing the Cost Reductions and Rapid

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Deployment of Clean Energy Technologies | Department of Energy Secretary Moniz Releases Report Showing the Cost Reductions and Rapid Deployment of Clean Energy Technologies Secretary Moniz Releases Report Showing the Cost Reductions and Rapid Deployment of Clean Energy Technologies September 28, 2016 - 11:33am Addthis Secretary Moniz Releases Report Showing the Cost Reductions and Rapid Deployment of Clean Energy Technologies NEWS MEDIA CONTACT (202) 586-4940 DOENews@hq.doe.gov During Obama

  13. NREL: Wind Research - New Video Shows How NREL Is Redefining...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    New Video Shows How NREL Is Redefining What's Possible for Renewable Energy Through Grid Integration January 23, 2015 NREL is spearheading engineering innovations that will help...

  14. The Majorana Demonstrator: Progress towards showing the feasibility...

    Office of Scientific and Technical Information (OSTI)

    Authors: Finnerty, P. 1 ; Elliott, Steven R. 2 ; Boswell, Melissa 2 ; Kidd, Mary 2 ; Rielage, Keith R. 2 ; Ronquest, Michael 2 ; Steele, Steven 2 + Show Author ...

  15. NREL: Technology Transfer - New Video Shows How NREL Is Redefining...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    New Video Shows How NREL Is Redefining What's Possible for Renewable Energy Through Grid Integration January 23, 2015 NREL is spearheading engineering innovations that will help...

  16. Analysis shows greenhouse gas emissions similar for shale, crude...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Michael Wang, Argonne senior scientist and lead on the GREET model Analysis shows greenhouse gas emissions similar for shale, crude oil By Tona Kunz * October 15, 2015 Tweet ...

  17. ANL Study Shows Wind Power Decreases Power Sector Emissions ...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    increases, pollutant emissions decrease overall due to the replacement of fossil fuels. "Our study clearly shows that using wind to generate electricity has a discernible ...

  18. SLIDESHOW: Secretary Moniz Tours 2014 Washington Auto Show

    Energy.gov [DOE]

    A slideshow featuring highlights from Secretary Moniz's tour of the 2014 Washington Auto Show is currently posted on the Energy Department's blog.

  19. Sandia Energy - Biofuels Blend Right In: Researchers Show Ionic...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Biofuels Blend Right In: Researchers Show Ionic Liquids Effective for Pretreating Mixed Blends of Biofuel Feedstocks Home Renewable Energy Energy Transportation Energy Biofuels...

  20. Latest Report Shows Cost of Going Solar has Dropped Significantly...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    The report shows that the installed price of distributed solar photovoltaic (PV) power systems in the United States continues to fall precipitously, especially in the last 5 years. ...

  1. Widget:ShowRefFieldsButton | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    widget provides supporting functionality to forms that want to capture references for specific values. Specifically, this widget creates the Show Reference Fields button, which...

  2. NREL: Hydrogen and Fuel Cells Research - Evaluation Results Show...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Evaluation Results Show Continued Improvements in Fuel Cell Electric Vehicle Durability, Fuel Economy, Driving Range Project Technology Validation: Fuel Cell Electric Vehicle ...

  3. Argonne Site Map Showing CNM Location | Argonne National Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Argonne Site Map Showing CNM Location Find your way to the Center for Nanoscale Materials on the Argonne National Laboratory campus. PDF icon CNM-Argonne_map

  4. User:Nlangle/show map test | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    show map test < User:Nlangle Jump to: navigation, search Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":"ROADMAP","SATELLITE","H...

  5. Electrophoretic NMR measurements of lithium transference numbers in polymer gel electrolytes

    SciTech Connect

    Dai, H.; Sanderson, S.; Davey, J.; Uribe, F.; Zawodzinski, T.A. Jr.

    1997-05-01

    Polymer gel electrolytes are of increasing interest for plastic lithium batteries largely because of their high room temperature conductivity. Several studies have probed their conductivity and electrochemical stability but very little work has been done related to lithium transference numbers. Lithium ion transference numbers, the net number of Faradays carried by lithium upon the passage of 1 Faraday of charge across a cell, are key figures of merit for any potential lithium battery electrolytes. The authors describe here their application of electrophoretic NMR (ENMR) to the determination of transference numbers of lithium ions in polymer gel electrolytes. Two types of polymer gel electrolytes were selected for this study: PAN/PC/EC/LiX and Kynar/PC/LiX. Results obtained for the two types of gels are compared and the effects of anion, polymer-ion interactions and ion-ion interactions on lithium transference numbers are discussed. Significant differences in the behavior of transference numbers with salt concentration are observed for the two types of gels. This may be due to the extent of interaction between the polymer and the ions. Implications for solid polymer electrolytes are discussed.

  6. DOE Booth Presentations From Grainger Show 2015 Downloads

    Energy.gov [DOE]

    DOE hosted its solid-state lighting informational booth February 16–18 at the annual Grainger Show in Orlando, FL. With over 17,000 attendees and over 750 exhibitors, the show gathered a wide range of Grainger customers—from universities to large hotel chains as well as Grainger team members to learn the latest about LED lighting.

  7. On the binary expansions of algebraic numbers

    SciTech Connect

    Bailey, David H.; Borwein, Jonathan M.; Crandall, Richard E.; Pomerance, Carl

    2003-07-01

    Employing concepts from additive number theory, together with results on binary evaluations and partial series, we establish bounds on the density of 1's in the binary expansions of real algebraic numbers. A central result is that if a real y has algebraic degree D > 1, then the number {number_sign}(|y|, N) of 1-bits in the expansion of |y| through bit position N satisfies {number_sign}(|y|, N) > CN{sup 1/D} for a positive number C (depending on y) and sufficiently large N. This in itself establishes the transcendency of a class of reals {summation}{sub n{ge}0} 1/2{sup f(n)} where the integer-valued function f grows sufficiently fast; say, faster than any fixed power of n. By these methods we re-establish the transcendency of the Kempner--Mahler number {summation}{sub n{ge}0}1/2{sup 2{sup n}}, yet we can also handle numbers with a substantially denser occurrence of 1's. Though the number z = {summation}{sub n{ge}0}1/2{sup n{sup 2}} has too high a 1's density for application of our central result, we are able to invoke some rather intricate number-theoretical analysis and extended computations to reveal aspects of the binary structure of z{sup 2}.

  8. Annual report shows potential INL radiation dose well below safe...

    Energy.gov [DOE] (indexed site)

    The U.S. Department of Energy's Idaho Operations Office reported this month that radiation ... Data shows that the INL site potential radiation dose is less than 1% of the limit of 10 ...

  9. Study Shows Significant Economic Impact from Recovery Act

    Energy.gov [DOE]

    A study recently released shows the $1.6 billion the Savannah River Site (SRS) received from the American Recovery and Reinvestment Act has had a positive economic impact on the adjacent five...

  10. The #LabsRoadShow: National Lab Contributions

    Energy.gov [DOE]

    Join us for Stop Two of the Labs Road Show. All week we'll be highlighting the most notable contributions National Labs have made to science, energy and national security.

  11. New Report Shows Trend Toward Larger Offshore Wind Systems

    Energy.gov [DOE]

    The Energy Department released a new report showing progress for the U.S. offshore wind energy market in 2012, including 11 commercial-scale U.S. projects reaching an advanced stage of development.

  12. NREL Survey Shows Dramatic Improvement in B100 Biodiesel Quality...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Survey Shows Dramatic Improvement in B100 Biodiesel Quality April 15, 2013 The latest national survey of 100% biodiesel (B100) "blend stock" samples by the U.S. Department of ...

  13. Global Climate Change Assessment Report Shows Nations Not Doing...

    OpenEI (Open Energy Information) [EERE & EIA]

    Global Climate Change Assessment Report Shows Nations Not Doing Enough Home > Blogs > Dc's blog Dc's picture Submitted by Dc(266) Contributor 5 November, 2014 - 14:49 The latest...

  14. Considering removing "Show Preview" button on utility rate form...

    OpenEI (Open Energy Information) [EERE & EIA]

    Rates I'm considering removing the "Show Preview" button, since it does not work (javascript validation issue that could be fixed), and it doesn't make sense. The reason to...

  15. The Chemistry Magic Show Captivates Kids | GE Global Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Chemistry Magic Show Captivates Kids Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to ...

  16. 2014 Data Book Shows Increased Use of Renewable Electricity ...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Book shows that U.S. renewable electricity grew to 15.5 percent of total installed capacity and 13.5 percent of total electricity generation. Published annually by the National...

  17. JSON shows incomplete info | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    found several rates where the JSON file doesn't show all of the information shown in the web interface. This is not an approval issue since I see it on both rates that say "This...

  18. Energy Innovation Hub Report Shows Philadelphia-area Building...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Innovation Hub Report Shows Philadelphia-area Building Retrofits Could Support 23,500 Jobs November 10, 2011 - 10:36am Addthis This is the Greater Philadelphia Innovation ...

  19. Secretary Chu Speaks at the 2010 Washington Auto Show

    Office of Energy Efficiency and Renewable Energy (EERE)

    at the 2010 Washington Auto Show, Secretary Chu lays out a roadmap for how the U.S. can lead the world in making the clean vehicles we need. He also announced that the Department of Energy had...

  20. Dynein Motor Domain Shows Ring-Shaped Motor, Buttress

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Dynein Motor Domain Shows Ring-Shaped Motor, Buttress Print Movement is fundamental to life. It takes place even at the cellular level where cargo is continually being transported...

  1. Photo of the Week: the 2014 Washington Auto Show | Department...

    Energy.gov [DOE] (indexed site)

    In this photo, a Boy Scout watches light shine on a solar panel that's powering a hydrogen fuel cell system, showing how photovoltaic panels work and energy systems can be ...

  2. 3 Breakthroughs Show How Bioenergy Innovations are Energizing the Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Landscape | Department of Energy Breakthroughs Show How Bioenergy Innovations are Energizing the Energy Landscape 3 Breakthroughs Show How Bioenergy Innovations are Energizing the Energy Landscape October 5, 2016 - 4:30pm Addthis Innovations are moving the bioenergy industry forward. Photos courtesy of Virgin Atlantic (left), Sapphire Energy, Inc. (center), and DC Water’s Blue Plains Advanced Wastewater Treatment Plant (right). Watch the video <a

  3. Plasma research shows promise for future compact accelerators

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Plasma research shows promise for future compact accelerators Plasma research shows promise for future compact accelerators A transformative breakthrough in controlling ion beams allows small-scale laser-plasma accelerators to deliver unprecedented power densities. December 21, 2015 The team in front of the Trident Target Chamber. Back, from left: Tom Shimada, Sha-Marie Reid, Adam Sefkow, Miguel Santiago, and Chris Hamilton. Front, from left: Russ Mortensen, Chengkun Huang, Sasi Palaniyappan,

  4. SLIDESHOW: Secretary Moniz Tours 2014 Washington Auto Show | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Secretary Moniz Tours 2014 Washington Auto Show SLIDESHOW: Secretary Moniz Tours 2014 Washington Auto Show January 22, 2014 - 6:45pm Addthis Hyundai Fuel Cell 1 of 14 Hyundai Fuel Cell Pictured here is Secretary Moniz looking at the fuel cell and motor used to power Hyundai's Tucson fuel cell vehicle. Fuel cell vehicles use hydrogen to produce electricity, which powers an electric motor to make the vehicle and its accessories work. Image: Sarah Gerrity, Energy Department. Date taken:

  5. DOE Releases New Analysis Showing Significant Advances in Electric Vehicle

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Deployment | Department of Energy Analysis Showing Significant Advances in Electric Vehicle Deployment DOE Releases New Analysis Showing Significant Advances in Electric Vehicle Deployment February 8, 2011 - 12:00am Addthis WASHINGTON - The U.S. Department of Energy today released One Million Electric Vehicles by 2015 (pdf - 220 kb), an analysis of advances in electric vehicle deployment and progress to date in meeting President Obama's goal of putting one million electric vehicles on the

  6. New global HIV vaccine design shows promise in monkeys

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    New global HIV vaccine design shows promise in monkeys New global HIV vaccine design shows promise in monkeys These vaccines are specifically designed to present the most common forms of parts of the virus that can be recognized by the immune system. October 30, 2013 Bette Korber of Los Alamos National Laboratory, who developed a component of a new vaccine against HIV, now being tested in monkeys. Bette Korber of Los Alamos National Laboratory, who developed a component of a new vaccine against

  7. The Majorana Demonstrator: Progress towards showing the feasibility of a

    Office of Scientific and Technical Information (OSTI)

    76Ge neutrinoless double-beta decay experiment (Conference) | SciTech Connect Conference: The Majorana Demonstrator: Progress towards showing the feasibility of a 76Ge neutrinoless double-beta decay experiment Citation Details In-Document Search Title: The Majorana Demonstrator: Progress towards showing the feasibility of a 76Ge neutrinoless double-beta decay experiment Authors: Finnerty, P. [1] ; Elliott, Steven R. [2] ; Boswell, Melissa [2] ; Kidd, Mary [2] ; Rielage, Keith R. [2] ;

  8. Award Fee Determination Shows Performance Improvement in WTP Contractor |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Award Fee Determination Shows Performance Improvement in WTP Contractor Award Fee Determination Shows Performance Improvement in WTP Contractor April 14, 2016 - 1:15pm Addthis RICHLAND, Wash. - EM Office of River Protection (ORP) Waste Treatment and Immobilization Plant (WTP) contractor Bechtel National Inc. improved its performance slightly in calendar year 2015 compared to the last half of 2014, earning 66 percent of its possible award fee, or $8.31 million out of a

  9. MECS Fuel Oil Figures

    Energy Information Administration (EIA) (indexed site)

    Energy Consumption Survey (MECS): Consumption of Energy; U.S. Department of Commerce, Bureau of the Census, Annual Survey of Manufactures (ASM): Statistics for Industry...

  10. Self-correcting random number generator

    DOEpatents

    Humble, Travis S.; Pooser, Raphael C.

    2016-09-06

    A system and method for generating random numbers. The system may include a random number generator (RNG), such as a quantum random number generator (QRNG) configured to self-correct or adapt in order to substantially achieve randomness from the output of the RNG. By adapting, the RNG may generate a random number that may be considered random regardless of whether the random number itself is tested as such. As an example, the RNG may include components to monitor one or more characteristics of the RNG during operation, and may use the monitored characteristics as a basis for adapting, or self-correcting, to provide a random number according to one or more performance criteria.

  11. Utah Natural Gas Number of Gas and Gas Condensate Wells (Number...

    Energy Information Administration (EIA) (indexed site)

    Gas and Gas Condensate Wells (Number of Elements) Utah Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 ...

  12. Wyoming Natural Gas Number of Gas and Gas Condensate Wells (Number...

    Energy Information Administration (EIA) (indexed site)

    Gas and Gas Condensate Wells (Number of Elements) Wyoming Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 ...

  13. ARM - Measurement - Cloud particle number concentration

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    number concentration ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Cloud particle number concentration The total number of cloud particles present in any given volume of air. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available

  14. Particle Number & Particulate Mass Emissions Measurements on...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Heavy-duty Engine using the PMP Methodologies Particle Number & Particulate Mass Emissions Measurements on a 'Euro VI' Heavy-duty Engine using the PMP Methodologies Poster ...

  15. Calculating Atomic Number Densities for Uranium

    Energy Science and Technology Software Center

    1993-01-01

    Provides method to calculate atomic number densities of selected uranium compounds and hydrogenous moderators for use in nuclear criticality safety analyses at gaseous diffusion uranium enrichment facilities.

  16. Identification of Export Control Classification Number - ITER

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    of Export Control Classification Number - ITER (April 2012) As the "Shipper of Record" ... be shipped from the United States to the ITER International Organization in Cadarache, ...

  17. U.S. gasoline prices show little movement (long version)

    Energy Information Administration (EIA) (indexed site)

    30, 2014 U.S. gasoline prices show little movement (long version) The U.S. average retail price for regular gasoline showed no movement from last week. The average price remained flat at $3.70 a gallon on Monday, based on the weekly price survey by the U.S. Energy Information Administration. Pump prices were highest in the West Coast states at 4.04 a gallon, up 2 ½ cents from a week ago. Prices were lowest in the Gulf Coast region at 3.48 a gallon, down 1.1 cents. This is Amerine Woodyard, with

  18. Secretary Moniz's Remarks at the Washington Auto Show -- As Delivered |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Washington Auto Show -- As Delivered Secretary Moniz's Remarks at the Washington Auto Show -- As Delivered January 22, 2015 - 1:12pm Addthis Dr. Ernest Moniz Dr. Ernest Moniz Secretary of Energy It's a pleasure to be back again this year, as last year was terrific. And as I'll say later on, last year I saw my very first fuel-cell vehicle here. And, as we'll talk about, it was a pretty big year for progress in the fuel-cell world. I was thinking of my own earliest

  19. Bats Offshore? Energy Department Research Study Shows Where and When |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Bats Offshore? Energy Department Research Study Shows Where and When Bats Offshore? Energy Department Research Study Shows Where and When October 24, 2016 - 4:11pm Addthis Photo of a bat detector machine overlooking the ocean. A long-term acoustic survey of bat activity at remote islands, offshore structures, and coastal sites in the Gulf of Maine, Great Lakes, and mid-Atlantic Coast has helped reveal where and when bats fly offshore. The multiyear study, funded by the

  20. New Report Shows Domestic Offshore Wind Industry Potential, 21 Projects

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Planned in U.S. Waters | Department of Energy Domestic Offshore Wind Industry Potential, 21 Projects Planned in U.S. Waters New Report Shows Domestic Offshore Wind Industry Potential, 21 Projects Planned in U.S. Waters September 29, 2015 - 11:30am Addthis The Energy Department today released a new report showing strong progress for the U.S. offshore wind market-including the start of construction of the nation's first commercial-scale offshore wind farm, one of 21 projects totaling 15,650

  1. NREL 2016 Standard Scenarios Outlook Shows Continued Growth in Renewables

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    and Gas in the U.S. Power Sector - News Releases | NREL 2016 Standard Scenarios Outlook Shows Continued Growth in Renewables and Gas in the U.S. Power Sector Webinar on December 6 November 16, 2016 Graph of Renewable Energy Penetration by NREL. Renewable energy penetration in the U.S. power sector as projected by a subset of the Standard Scenarios, where the dashed line shows historical values. Penetration is defined as the fraction of load met by renewable energy. Source: NREL. The Energy

  2. High Performance House Showcased at Builders Show - News Releases | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    High Performance House Showcased at Builders Show January 20, 2004 Golden, Colo. - Homebuilders attending the 2004 International Builders' Show in Las Vegas can tour a new kind of home-a highly energy-efficient Zero Energy Home that will produce as much electricity as it uses over the course of a year. The U.S. Department of Energy (DOE) and its National Renewable Energy Laboratory (NREL) partnered with Pardee Homes and energy consultant ConSol to introduce the Zero Energy Home concept with this

  3. EM Makes Strong Showing in Federal Food Drive

    Energy.gov [DOE]

    WASHINGTON, D.C. – EM made a strong showing in this year’s Feds Feed Families drive, contributing 46,493 pounds of food across the DOE complex and topping it off by winning top prize in a government-wide chili cook-off held at the Department’s headquarters.

  4. Regional Partnership Documentary Wins "Best of Show" Aurora Award

    Energy.gov [DOE]

    A documentary co-produced by Prairie Public Broadcasting and the Plains CO2 Reduction (PCOR) Partnership with support from the U.S. Department of Energy has received a 2012 Platinum Best of Show Aurora Award—the highest honor awarded—in the nature/environment documentary category.

  5. INTERSTELLAR SONIC AND ALFVENIC MACH NUMBERS AND THE TSALLIS DISTRIBUTION

    SciTech Connect

    Tofflemire, Benjamin M.; Burkhart, Blakesley; Lazarian, A.

    2011-07-20

    In an effort to characterize the Mach numbers of interstellar medium (ISM) magnetohydrodynamic (MHD) turbulence, we study the probability distribution functions (PDFs) of spatial increments of density, velocity, and magnetic field for 14 ideal isothermal MHD simulations at a resolution of 512{sup 3}. In particular, we fit the PDFs using the Tsallis function and study the dependency of the fit parameters on the compressibility and magnetization of the gas. We find that the Tsallis function fits PDFs of MHD turbulence well, with fit parameters showing sensitivities to the sonic and Alfven Mach numbers. For three-dimensional density, column density, and Position-Position-Velocity data, we find that the amplitude and width of the PDFs show a dependency on the sonic Mach number. We also find that the width of the PDF is sensitive to the global Alfvenic Mach number especially in cases where the sonic number is high. These dependencies are also found for mock observational cases, where cloud-like boundary conditions, smoothing, and noise are introduced. The ability of Tsallis statistics to characterize the sonic and Alfvenic Mach numbers of simulated ISM turbulence points to it being a useful tool in the analysis of the observed ISM, especially when used simultaneously with other statistical techniques.

  6. Compendium of Experimental Cetane Number Data

    SciTech Connect

    Murphy, M. J.; Taylor, J. D.; McCormick, R. L.

    2004-09-01

    In this report, we present a compilation of reported cetane numbers for pure chemical compounds. The compiled database contains cetane values for 299 pure compounds, including 156 hydrocarbons and 143 oxygenates. Cetane number is a relative ranking of fuels based on the amount of time between fuel injection and ignition. The cetane number is typically measured either in a combustion bomb or in a single-cylinder research engine. This report includes cetane values from several different measurement techniques - each of which has associated uncertainties. Additionally, many of the reported values are determined by measuring blending cetane numbers, which introduces significant error. In many cases, the measurement technique is not reported nor is there any discussion about the purity of the compounds. Nonetheless, the data in this report represent the best pure compound cetane number values available from the literature as of August 2004.

  7. Conference shows high school girls their scientific future | Argonne

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    National Laboratory J'Tia Taylor (left), a nonproliferation technical specialist in Argonne's Nuclear Engineering Division, speaks with event attendees. Click to enlarge. J'Tia Taylor (left), a nonproliferation technical specialist in Argonne's Nuclear Engineering Division, speaks with event attendees. Click to enlarge. Conference shows high school girls their scientific future By Justin H.S. Breaux * April 7, 2014 Tweet EmailPrint ARGONNE, Ill. - Nearly 400 high school girls from the

  8. Los Alamos plasma research shows promise for future compact accelerators |

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration | (NNSA) plasma research shows promise for future compact accelerators Tuesday, January 12, 2016 - 12:00am NNSA Blog The team in front of Los Alamos' Trident Laser Target Chamber. Back, from left: Tom Shimada, Sha-Marie Reid, Adam Sefkow, Miguel Santiago, and Chris Hamilton. Front, from left: Russ Mortensen, Chengkun Huang, Sasi Palaniyappan, Juan Fernandez, Cort Gautier and Randy Johnson. A transformative breakthrough in controlling ion beams allows

  9. Research Shows Ventilated Auto Seats Improve Fuel Economy, Comfort - News

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Releases | NREL Research Shows Ventilated Auto Seats Improve Fuel Economy, Comfort March 2, 2006 Golden, Colo. - The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) has demonstrated that ventilated automotive seats not only can improve passenger comfort but also a vehicle's fuel economy. That's because ventilated seats keep drivers and passengers cooler, so they need less air conditioning to be comfortable. NREL's Vehicle Ancillary Loads Reduction team has been

  10. Secretary Chu Speaks at the 2010 Washington Auto Show

    ScienceCinema

    Secretary Chu

    2016-07-12

    Secretary Chu lays out a roadmap for how the U.S. can lead the world in making the clean vehicles we need at the 2010 Washington Auto Show. He also announced that the Department of Energy had closed on a $1.4 billion loan to Nissan to build the all-electric LEAF in Tennessee and create up to 1,300 American jobs.

  11. Modified Yeast Show Improved Xylose Fermentation and Toxin Tolerance -

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy Innovation Portal Show Improved Xylose Fermentation and Toxin Tolerance Great Lakes Bioenergy Research Center Contact GLBRC About This Technology Technology Marketing Summary Bleaching plant material with alkaline hydrogen peroxide (AHP) is an old process used for papermaking. Several decades ago researchers suggested that this method also could be used in biofuel production. The method involves treating switchgrass or corn stover with hydrogen peroxide under basic conditions.

  12. Secretary Chu Speaks at the 2010 Washington Auto Show

    SciTech Connect

    Secretary Chu

    2010-02-03

    Secretary Chu lays out a roadmap for how the U.S. can lead the world in making the clean vehicles we need at the 2010 Washington Auto Show. He also announced that the Department of Energy had closed on a $1.4 billion loan to Nissan to build the all-electric LEAF in Tennessee and create up to 1,300 American jobs.

  13. NNSA administrator shows NM congressional delegation the Albuquerque

    National Nuclear Security Administration (NNSA)

    Complex to make case for new facility | National Nuclear Security Administration | (NNSA) administrator shows NM congressional delegation the Albuquerque Complex to make case for new facility Friday, February 26, 2016 - 1:42pm WASHINGTON, DC - Lt. Gen. Frank Klotz (Ret.), Administrator of the Department of Energy's National Nuclear Security Administration, hosted two members of the New Mexico congressional delegation on Feb. 18 for a tour of the aging facilities occupied by 1,200 NNSA

  14. Case Studies Show the Value of Program Evaluation

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    
 1
 Case Studies Show the Value of Program Evaluation Value of Program Evaluation Case Study Series Sponsored by the U.S. Department of Energy, November 2009 The U.S Department of Energy sponsored several small case studies that clearly demonstrate the benefits that evaluation can provide to energy and environmental programs. The result is a set of five "Value of Program Evaluation" Case Studies (each 2-pages in length) documenting the benefits of implementing recommendations from

  15. Perovskite solar technology shows quick energy returns | Argonne National

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Laboratory Perovskite solar technology shows quick energy returns By Payal Marathe * July 17, 2015 Tweet EmailPrint Solar panels are an investment-not only in terms of money, but also energy. It takes energy to mine, process and purify raw materials, and then to manufacture and install the final product. Silicon-based panels, which dominate the market for solar power, usually need about two years to return this energy investment. But for technology made with perovskites-a class of materials

  16. Kuwaiti oil sector shows more signs of recovery

    SciTech Connect

    Not Available

    1992-04-06

    This paper reports that Kuwait's oil sector continues to show signs of recovery from the Persian Gulf war. On Mar. 23 Kuwait Petroleum Co. (KPC) loaded the country's first shipment of liquefied petroleum gas for export since the Iraqi invasion in August 1990. In addition, the first shipment of Kuwaiti crude recovered from giant oil lakes formed by hundreds of wild wells sabotaged in the war was to arrive by tanker in Naples, Italy, late last month. The tanker is carrying 210,000 bbl of crude. However, the project to clean up the lakes and recover more oil, undertaken by Bechtel Corp. with Kuwait Oil Co. (KOC), has reached a stand still.

  17. Mo Year Report Period: EIA ID NUMBER:

    Energy Information Administration (EIA) (indexed site)

    Mo Year Report Period: EIA ID NUMBER: http:www.eia.govsurveyformeia14instructions.pdf Mailing Address: Secure File Transfer option available at: (e.g., PO Box, RR) https:...

  18. Identification of Export Control Classification Number - ITER

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    of Export Control Classification Number - ITER (April 2012) As the "Shipper of Record" please provide the appropriate Export Control Classification Number (ECCN) for the products (equipment, components and/or materials) and if applicable the nonproprietary associated installation/maintenance documentation that will be shipped from the United States to the ITER International Organization in Cadarache, France or to ITER Members worldwide on behalf of the Company. In rare instances an

  19. Fingering instability in nonadiabatic low-Lewis-number flames

    SciTech Connect

    Frankel, M.L.; Sivashinsky, G.I. |

    1995-12-01

    Employing the formal similarity between the dispersion relations for the hydrodynamic (Darrieus-Landau) and the diffusive instabilities at the quenching threshold, a phenomenological model for the nonlinear evolution of the near-limit premixed flame is proposed. Numerical simulations of the model show that at sufficiently high Zeldovich and low Lewis numbers the cellular flame resulting from the diffusive instability exhibits a tendency towards self-fragmentation resembling that known to occur in near-limit low-Lewis-number systems. (c) 1995 The American Physical Society

  20. WIPP Documents - All documents by number

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Note: Documents that do not have document numbers are not included in this listing. Large file size alert This symbol means the document may be a large file size. All documents by number Common document prefixes DOE/CAO DOE/TRU DOE/CBFO DOE/WIPP DOE/EA NM DOE/EIS Other DOE/CAO Back to top DOE/CAO 95-1095, Oct. 1995 Remote Handled Transuranic Waste Study This study was conducted to satisfy the requirements defined by the WIPP Land Withdrawal Act and considered by DOE to be a prudent exercise in

  1. Approximate resolution of hard numbering problems

    SciTech Connect

    Bailleux, O.; Chabrier, J.J.

    1996-12-31

    We present a new method for estimating the number of solutions of constraint satisfaction problems. We use a stochastic forward checking algorithm for drawing a sample of paths from a search tree. With this sample, we compute two values related to the number of solutions of a CSP instance. First, an unbiased estimate, second, a lower bound with an arbitrary low error probability. We will describe applications to the Boolean Satisfiability problem and the Queens problem. We shall give some experimental results for these problems.

  2. Probing lepton number violation on three frontiers

    SciTech Connect

    Deppisch, Frank F. [Department of Physics and Astronomy, University College London (United Kingdom)

    2013-12-30

    Neutrinoless double beta decay constitutes the main probe for lepton number violation at low energies, motivated by the expected Majorana nature of the light but massive neutrinos. On the other hand, the theoretical interpretation of the (non-)observation of this process is not straightforward as the Majorana neutrinos can destructively interfere in their contribution and many other New Physics mechanisms can additionally mediate the process. We here highlight the potential of combining neutrinoless double beta decay with searches for Tritium decay, cosmological observations and LHC physics to improve the quantitative insight into the neutrino properties and to unravel potential sources of lepton number violation.

  3. U.S. Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) U.S. Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 181,241 195,869 203,990 215,815 215,867 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) U.S. Natural

  4. South Dakota Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) South Dakota Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 72 69 74 68 65 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) South Dakota Natural Gas

  5. New Mexico Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) New Mexico Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 12,887 13,791 14,171 14,814 14,580 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) New Mexico

  6. New York Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) New York Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 988 1,170 1,589 1,731 1,697 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) New York Natural Gas

  7. North Dakota Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) North Dakota Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 5,561 7,379 9,363 11,532 12,799 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) North Dakota

  8. West Virginia Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) West Virginia Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 2,373 2,509 2,675 2,606 2,244 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) West Virginia

  9. Climate Zone Number 1 | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Zone Number 1 is defined as Very Hot - Humid(1A) with IP Units 9000 < CDD50F and SI Units 5000 < CDD10C Dry(1B) with IP Units 9000 < CDD50F and SI Units 5000 < CDD10C...

  10. Nevada Number of Natural Gas Consumers

    Annual Energy Outlook

    760,391 764,435 772,880 782,759 794,150 808,970 1987-2014 Sales 764,435 772,880 782,759 794,150 808,970 1997-2014 Commercial Number of Consumers 41,303 40,801 40,944 41,192 41,710 ...

  11. Washington Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update

    059,239 1,067,979 1,079,277 1,088,762 1,102,318 1,118,193 1987-2014 Sales 1,067,979 1,079,277 1,088,762 1,102,318 1,118,193 1997-2014 Commercial Number of Consumers 98,965 99,231...

  12. North Carolina Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update

    ,102,001 1,115,532 1,128,963 1,142,947 1,161,398 1,183,152 1987-2014 Sales 1,115,532 1,128,963 1,142,947 1,161,398 1,183,152 1997-2014 Commercial Number of Consumers 113,630...

  13. Pennsylvania Number of Natural Gas Consumers

    Annual Energy Outlook

    1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 618 606 604 540 627 666 1967-2014 Industrial Number of Consumers 4,745 4,624 5,007 5,066 5,024 5,084 1987-2014...

  14. The New Element Curium (Atomic Number 96)

    DOE R&D Accomplishments

    Seaborg, G. T.; James, R. A.; Ghiorso, A.

    1948-00-00

    Two isotopes of the element with atomic number 96 have been produced by the helium-ion bombardment of plutonium. The name curium, symbol Cm, is proposed for element 96. The chemical experiments indicate that the most stable oxidation state of curium is the III state.

  15. Oklahoma Number of Natural Gas Consumers

    Annual Energy Outlook

    924,745 914,869 922,240 927,346 931,981 937,237 1987-2014 Sales 914,869 922,240 927,346 931,981 937,237 1997-2014 Transported 0 0 0 0 0 1997-2014 Commercial Number of Consumers ...

  16. New Mexico Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update

    560,479 559,852 570,637 561,713 572,224 614,313 1987-2014 Sales 559,825 570,592 561,652 572,146 614,231 1997-2014 Transported 27 45 61 78 82 1997-2014 Commercial Number of...

  17. Kansas Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update

    855,454 853,842 854,730 854,800 858,572 861,092 1987-2014 Sales 853,842 854,730 854,779 858,546 861,066 1997-2014 Transported 0 0 21 26 26 2004-2014 Commercial Number of Consumers...

  18. New Hampshire Number of Natural Gas Consumers

    Annual Energy Outlook

    96,924 95,361 97,400 99,738 98,715 99,146 1987-2014 Sales 95,360 97,400 99,738 98,715 99,146 1997-2014 Transported 1 0 0 0 0 2010-2014 Commercial Number of Consumers 16,937 16,645 ...

  19. Minnesota Number of Natural Gas Consumers

    Annual Energy Outlook

    423,703 1,429,681 1,436,063 1,445,824 1,459,134 1,472,663 1987-2014 Sales 1,429,681 1,436,063 1,445,824 1,459,134 1,472,663 1997-2014 Commercial Number of Consumers 131,801 132,163 ...

  20. Energy By The Numbers: An Energy Revolution | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy By The Numbers: An Energy Revolution Energy By The Numbers: An Energy Revolution

  1. A Critical Examination of Figure of Merit (FOM). Assessing the Goodness-of-Fit in Gamma/X-ray Peak Analysis

    SciTech Connect

    Croft, S.; Favalli, Andrea; Weaver, Brian Phillip; Williams, Brian J.; Burr, Thomas Lee; Henzlova, Daniela; McElroy, R. D.

    2015-10-06

    In this paper we develop and investigate several criteria for assessing how well a proposed spectral form fits observed spectra. We consider the classical improved figure of merit (FOM) along with several modifications, as well as criteria motivated by Poisson regression from the statistical literature. We also develop a new FOM that is based on the statistical idea of the bootstrap. A spectral simulator has been developed to assess the performance of these different criteria under multiple data configurations.

  2. Record figure of merit values of highly stoichiometric Sb2Te3 porous bulk synthesized from tailor-made molecular precursors in ionic liquids

    DOE PAGES [OSTI]

    Heimann, Stefan; Schulz, Stephan; Schaumann, Julian; Mudring, Anja; Stötzel, Julia; Maculewicz, Franziska; Schierning, Gabi

    2015-08-06

    We report on the synthesis of Sb2Te3 nanoparticles with record-high figure of merit values of up to 1.5. The central thermoelectric parameters, electrical conductivity, thermal conductivity and Seebeck coefficient, were independently optimized. Critical influence of porosity for the fabrication of highly efficient thermoelectric materials is firstly demonstrated, giving a strong guidance for the optimization of other thermoelectric materials.

  3. Louisiana Number of Natural Gas Consumers

    Energy Information Administration (EIA) (indexed site)

    893,400 897,513 963,688 901,635 903,686 888,023 1987-2015 Sales 893,400 897,513 963,688 901,635 903,686 888,023 1997-2015 Transported 0 0 0 0 0 0 1997-2015 Commercial Number of Consumers 58,562 58,749 63,381 59,147 58,996 57,873 1987-2015 Sales 58,501 58,685 63,256 58,985 58,823 57,695 1998-2015 Transported 61 64 125 162 173 178 1998-2015 Average Consumption per Consumer (Thousand Cubic Ft.) 461 441 415 488 530 515 1967-2015 Industrial Number of Consumers 942 920 963 916 883 845 1987-2015 Sales

  4. Maine Number of Natural Gas Consumers

    Energy Information Administration (EIA) (indexed site)

    21,142 22,461 23,555 24,765 27,047 31,011 1987-2015 Sales 21,141 22,461 23,555 24,765 27,047 31,011 1997-2015 Transported 1 0 0 0 0 0 2010-2015 Commercial Number of Consumers 9,084 9,681 10,179 11,415 11,810 11,888 1987-2015 Sales 7,583 8,081 8,388 9,481 9,859 10,216 1998-2015 Transported 1,501 1,600 1,791 1,934 1,951 1,672 1999-2015 Average Consumption per Consumer (Thousand Cubic Ft.) 642 681 718 714 765 847 1967-2015 Industrial Number of Consumers 94 102 108 120 126 136 1987-2015 Sales 26 29

  5. Mississippi Number of Natural Gas Consumers

    Energy Information Administration (EIA) (indexed site)

    436,840 442,479 442,840 445,589 440,252 439,359 1987-2015 Sales 436,840 439,511 440,171 442,974 440,252 439,359 1997-2015 Transported 0 2,968 2,669 2,615 0 0 2010-2015 Commercial Number of Consumers 50,537 50,636 50,689 50,153 49,911 49,821 1987-2015 Sales 50,503 50,273 50,360 49,829 49,870 49,766 1998-2015 Transported 34 363 329 324 41 55 1998-2015 Average Consumption per Consumer (Thousand Cubic Ft.) 419 400 352 388 445 395 1967-2015 Industrial Number of Consumers 980 982 936 933 943 930

  6. Missouri Number of Natural Gas Consumers

    Energy Information Administration (EIA) (indexed site)

    348,549 1,342,920 1,389,910 1,357,740 1,363,286 1,369,204 1987-2015 Sales 1,348,549 1,342,920 1,389,910 1,357,740 1,363,286 1,369,204 1997-2015 Transported 0 0 0 0 0 0 2010-2015 Commercial Number of Consumers 138,670 138,214 144,906 142,495 143,134 141,216 1987-2015 Sales 137,342 136,843 143,487 141,047 141,587 140,144 1998-2015 Transported 1,328 1,371 1,419 1,448 1,547 1,072 1998-2015 Average Consumption per Consumer (Thousand Cubic Ft.) 441 451 378 453 509 435 1967-2015 Industrial Number of

  7. Montana Number of Natural Gas Consumers

    Energy Information Administration (EIA) (indexed site)

    257,322 259,046 259,957 262,122 265,849 269,766 1987-2015 Sales 256,841 258,579 259,484 261,637 265,323 269,045 1997-2015 Transported 481 467 473 485 526 721 2005-2015 Commercial Number of Consumers 34,002 34,305 34,504 34,909 35,205 35,777 1987-2015 Sales 33,652 33,939 33,967 34,305 34,558 35,022 1998-2015 Transported 350 366 537 604 647 755 1998-2015 Average Consumption per Consumer (Thousand Cubic Ft.) 602 651 557 601 612 541 1967-2015 Industrial Number of Consumers 384 381 372 372 369 366

  8. Nebraska Number of Natural Gas Consumers

    Energy Information Administration (EIA) (indexed site)

    510,776 514,481 515,338 527,397 522,408 525,165 1987-2015 Sales 442,413 446,652 447,617 459,712 454,725 457,504 1997-2015 Transported 68,363 67,829 67,721 67,685 67,683 67,661 1997-2015 Commercial Number of Consumers 56,246 56,553 56,608 58,005 57,191 57,521 1987-2015 Sales 40,348 40,881 41,074 42,400 41,467 41,718 1998-2015 Transported 15,898 15,672 15,534 15,605 15,724 15,803 1998-2015 Average Consumption per Consumer (Thousand Cubic Ft.) 569 568 468 555 567 512 1967-2015 Industrial Number of

  9. Alabama Number of Natural Gas Consumers

    Energy Information Administration (EIA) (indexed site)

    778,985 772,892 767,396 765,957 769,900 768,568 1986-2015 Sales 778,985 772,892 767,396 765,957 769,900 768,568 1997-2015 Transported 0 0 0 0 0 0 1997-2015 Commercial Number of Consumers 68,163 67,696 67,252 67,136 67,847 67,746 1986-2015 Sales 68,017 67,561 67,117 67,006 67,718 67,619 1998-2015 Transported 146 135 135 130 129 127 1998-2015 Average Consumption per Consumer (Thousand Cubic Ft.) 397 371 320 377 406 368 1967-2015 Industrial Number of Consumers 3,039 2,988 3,045 3,143 3,244 3,300

  10. Alaska Number of Natural Gas Consumers

    Energy Information Administration (EIA) (indexed site)

    121,166 121,736 122,983 124,411 126,416 128,605 1986-2015 Sales 121,166 121,736 122,983 124,411 126,416 128,605 1997-2015 Commercial Number of Consumers 12,998 13,027 13,133 13,246 13,399 13,549 1986-2015 Sales 12,673 12,724 13,072 13,184 13,336 13,529 1998-2015 Transported 325 303 61 62 63 20 1998-2015 Average Consumption per Consumer (Thousand Cubic Ft.) 1,225 1,489 1,515 1,411 1,338 1,363 1967-2015 Industrial Number of Consumers 3 5 3 3 1 4 1987-2015 Sales 2 2 3 2 1 4 1998-2015 Transported 1

  11. Arkansas Number of Natural Gas Consumers

    Energy Information Administration (EIA) (indexed site)

    549,970 551,795 549,959 549,764 549,034 550,108 1986-2015 Sales 549,970 551,795 549,959 549,764 549,034 550,108 1997-2015 Commercial Number of Consumers 67,987 67,815 68,765 68,791 69,011 69,265 1986-2015 Sales 67,676 67,454 68,151 68,127 68,291 68,438 1998-2015 Transported 311 361 614 664 720 827 1998-2015 Average Consumption per Consumer (Thousand Cubic Ft.) 592 590 603 692 734 688 1967-2015 Industrial Number of Consumers 1,079 1,133 990 1,020 1,009 1,023 1986-2015 Sales 580 554 523 513 531

  12. Sensitivity in risk analyses with uncertain numbers.

    SciTech Connect

    Tucker, W. Troy; Ferson, Scott

    2006-06-01

    Sensitivity analysis is a study of how changes in the inputs to a model influence the results of the model. Many techniques have recently been proposed for use when the model is probabilistic. This report considers the related problem of sensitivity analysis when the model includes uncertain numbers that can involve both aleatory and epistemic uncertainty and the method of calculation is Dempster-Shafer evidence theory or probability bounds analysis. Some traditional methods for sensitivity analysis generalize directly for use with uncertain numbers, but, in some respects, sensitivity analysis for these analyses differs from traditional deterministic or probabilistic sensitivity analyses. A case study of a dike reliability assessment illustrates several methods of sensitivity analysis, including traditional probabilistic assessment, local derivatives, and a ''pinching'' strategy that hypothetically reduces the epistemic uncertainty or aleatory uncertainty, or both, in an input variable to estimate the reduction of uncertainty in the outputs. The prospects for applying the methods to black box models are also considered.

  13. North Dakota Number of Natural Gas Consumers

    Energy Information Administration (EIA) (indexed site)

    23,585 125,392 130,044 133,975 137,972 141,465 1987-2015 Sales 123,585 125,392 130,044 133,975 137,972 141,465 1997-2015 Transported 0 0 0 0 0 0 2004-2015 Commercial Number of Consumers 17,823 18,421 19,089 19,855 20,687 21,345 1987-2015 Sales 17,745 18,347 19,021 19,788 20,623 21,283 1998-2015 Transported 78 74 68 67 64 62 1998-2015 Average Consumption per Consumer (Thousand Cubic Ft.) 578 596 543 667 677 577 1967-2015 Industrial Number of Consumers 307 259 260 266 269 286 1987-2015 Sales 255

  14. Oregon Number of Natural Gas Consumers

    Energy Information Administration (EIA) (indexed site)

    682,737 688,681 693,507 700,211 707,010 717,999 1987-2015 Sales 682,737 688,681 693,507 700,211 707,010 717,999 1997-2015 Commercial Number of Consumers 77,370 77,822 78,237 79,276 80,480 80,877 1987-2015 Sales 77,351 77,793 78,197 79,227 80,422 80,772 1998-2015 Transported 19 29 40 49 58 105 1998-2015 Average Consumption per Consumer (Thousand Cubic Ft.) 352 390 368 386 353 319 1967-2015 Industrial Number of Consumers 1,053 1,066 1,076 1,085 1,099 1,117 1987-2015 Sales 821 828 817 821 839 853

  15. Rhode Island Number of Natural Gas Consumers

    Energy Information Administration (EIA) (indexed site)

    25,204 225,828 228,487 231,763 233,786 236,323 1987-2015 Sales 225,204 225,828 228,487 231,763 233,786 236,323 1997-2015 Commercial Number of Consumers 23,049 23,177 23,359 23,742 23,934 24,088 1987-2015 Sales 21,507 21,421 21,442 21,731 21,947 22,084 1998-2015 Transported 1,542 1,756 1,917 2,011 1,987 2,004 1998-2015 Average Consumption per Consumer (Thousand Cubic Ft.) 454 468 432 490 551 499 1967-2015 Industrial Number of Consumers 249 245 248 271 266 260 1987-2015 Sales 57 53 56 62 62 48

  16. South Carolina Number of Natural Gas Consumers

    Energy Information Administration (EIA) (indexed site)

    570,797 576,594 583,633 593,286 605,644 620,555 1987-2015 Sales 570,797 576,594 583,633 593,286 605,644 620,555 1997-2015 Commercial Number of Consumers 55,853 55,846 55,908 55,997 56,323 56,871 1987-2015 Sales 55,776 55,760 55,815 55,902 56,225 56,768 1998-2015 Transported 77 86 93 95 98 103 1998-2015 Average Consumption per Consumer (Thousand Cubic Ft.) 432 396 383 426 451 413 1967-2015 Industrial Number of Consumers 1,325 1,329 1,435 1,452 1,442 1,438 1987-2015 Sales 1,139 1,137 1,215 1,223

  17. South Dakota Number of Natural Gas Consumers

    Energy Information Administration (EIA) (indexed site)

    69,838 170,877 173,856 176,204 179,042 182,568 1987-2015 Sales 169,838 170,877 173,856 176,204 179,042 182,568 1997-2015 Commercial Number of Consumers 22,267 22,570 22,955 23,214 23,591 24,040 1987-2015 Sales 22,028 22,332 22,716 22,947 23,330 23,784 1998-2015 Transported 239 238 239 267 261 256 1998-2015 Average Consumption per Consumer (Thousand Cubic Ft.) 495 492 406 523 522 434 1967-2015 Industrial Number of Consumers 580 556 574 566 575 578 1987-2015 Sales 453 431 445 444 452 449 1998-2015

  18. Tennessee Number of Natural Gas Consumers

    Energy Information Administration (EIA) (indexed site)

    ,085,387 1,089,009 1,084,726 1,094,122 1,106,917 1,124,572 1987-2015 Sales 1,085,387 1,089,009 1,084,726 1,094,122 1,106,917 1,124,572 1997-2015 Commercial Number of Consumers 127,914 128,969 130,139 131,091 131,027 132,392 1987-2015 Sales 127,806 128,866 130,035 130,989 130,931 132,294 1998-2015 Transported 108 103 104 102 96 98 1998-2015 Average Consumption per Consumer (Thousand Cubic Ft.) 439 404 345 411 438 401 1967-2015 Industrial Number of Consumers 2,702 2,729 2,679 2,581 2,595 2,651

  19. Utah Number of Natural Gas Consumers

    Energy Information Administration (EIA) (indexed site)

    821,525 830,219 840,687 854,389 869,052 891,917 1987-2015 Sales 821,525 830,219 840,687 854,389 869,052 891,917 1997-2015 Commercial Number of Consumers 61,976 62,885 63,383 64,114 65,134 66,143 1987-2015 Sales 61,929 62,831 63,298 63,960 64,931 65,917 1998-2015 Transported 47 54 85 154 203 226 1998-2015 Average Consumption per Consumer (Thousand Cubic Ft.) 621 643 558 646 586 541 1967-2015 Industrial Number of Consumers 293 286 302 323 326 320 1987-2015 Sales 205 189 189 187 176 157 1998-2015

  20. Vermont Number of Natural Gas Consumers

    Energy Information Administration (EIA) (indexed site)

    38,047 38,839 39,917 41,152 42,231 43,267 1987-2015 Sales 38,047 38,839 39,917 41,152 42,231 43,267 1997-2015 Commercial Number of Consumers 5,137 5,256 5,535 5,441 5,589 5,696 1987-2015 Sales 5,137 5,256 5,535 5,441 5,589 5,696 1998-2015 Average Consumption per Consumer (Thousand Cubic Ft.) 464 472 418 873 864 1,039 1967-2015 Industrial Number of Consumers 38 36 38 13 13 14 1987-2015 Sales 37 35 38 13 13 14 1998-2015 Transported 1 1 0 0 0 0 1999-2015 Average Consumption per Consumer (Thousand

  1. Washington Number of Natural Gas Consumers

    Energy Information Administration (EIA) (indexed site)

    067,979 1,079,277 1,088,762 1,102,318 1,118,193 1,133,629 1987-2015 Sales 1,067,979 1,079,277 1,088,762 1,102,318 1,118,193 1,133,629 1997-2015 Commercial Number of Consumers 99,231 99,674 100,038 100,939 101,730 102,266 1987-2015 Sales 99,166 99,584 99,930 100,819 101,606 102,129 1998-2015 Transported 65 90 108 120 124 137 1998-2015 Average Consumption per Consumer (Thousand Cubic Ft.) 517 567 534 553 535 489 1967-2015 Industrial Number of Consumers 3,372 3,353 3,338 3,320 3,355 3,385 1987-2015

  2. West Virginia Number of Natural Gas Consumers

    Energy Information Administration (EIA) (indexed site)

    344,131 342,069 340,256 340,102 338,652 337,643 1987-2015 Sales 344,125 342,063 340,251 340,098 338,649 337,642 1997-2015 Transported 6 6 5 4 3 1 1997-2015 Commercial Number of Consumers 34,063 34,041 34,078 34,283 34,339 34,448 1987-2015 Sales 33,258 33,228 33,257 33,466 33,574 33,706 1998-2015 Transported 805 813 821 817 765 742 1998-2015 Average Consumption per Consumer (Thousand Cubic Ft.) 731 708 664 707 702 656 1967-2015 Industrial Number of Consumers 102 94 97 95 92 101 1987-2015 Sales 32

  3. Wisconsin Number of Natural Gas Consumers

    Energy Information Administration (EIA) (indexed site)

    663,583 1,671,834 1,681,001 1,692,891 1,705,907 1,721,640 1987-2015 Sales 1,663,583 1,671,834 1,681,001 1,692,891 1,705,907 1,721,640 1997-2015 Transported 0 0 0 0 0 0 1997-2015 Commercial Number of Consumers 164,173 165,002 165,657 166,845 167,901 169,271 1987-2015 Sales 163,060 163,905 164,575 165,718 166,750 168,097 1998-2015 Transported 1,113 1,097 1,082 1,127 1,151 1,174 1998-2015 Average Consumption per Consumer (Thousand Cubic Ft.) 501 528 465 596 637 533 1967-2015 Industrial Number of

  4. Colorado Number of Natural Gas Consumers

    Energy Information Administration (EIA) (indexed site)

    ,634,587 1,645,716 1,659,808 1,672,312 1,690,581 1,712,153 1986-2015 Sales 1,634,582 1,645,711 1,659,803 1,672,307 1,690,576 1,712,150 1997-2015 Transported 5 5 5 5 5 3 1997-2015 Commercial Number of Consumers 145,460 145,837 145,960 150,145 150,235 150,545 1986-2015 Sales 145,236 145,557 145,563 149,826 149,921 150,230 1998-2015 Transported 224 280 397 319 314 315 1998-2015 Average Consumption per Consumer (Thousand Cubic Ft.) 396 383 355 392 386 359 1967-2015 Industrial Number of Consumers

  5. Connecticut Number of Natural Gas Consumers

    Energy Information Administration (EIA) (indexed site)

    490,185 494,970 504,138 513,492 522,658 531,380 1986-2015 Sales 489,380 494,065 503,241 512,110 521,460 530,309 1997-2015 Transported 805 905 897 1,382 1,198 1,071 1997-2015 Commercial Number of Consumers 54,842 55,028 55,407 55,500 56,591 57,403 1986-2015 Sales 50,132 50,170 50,312 48,976 51,613 54,165 1998-2015 Transported 4,710 4,858 5,095 6,524 4,978 3,238 1998-2015 Average Consumption per Consumer (Thousand Cubic Ft.) 741 815 764 836 905 914 1967-2015 Industrial Number of Consumers 3,063

  6. Delaware Number of Natural Gas Consumers

    Energy Information Administration (EIA) (indexed site)

    50,458 152,005 153,307 155,627 158,502 161,607 1986-2015 Sales 150,458 152,005 153,307 155,627 158,502 161,607 1997-2015 Commercial Number of Consumers 12,861 12,931 12,997 13,163 13,352 13,430 1986-2015 Sales 12,706 12,656 12,644 12,777 12,902 12,967 1998-2015 Transported 155 275 353 386 450 463 1999-2015 Average Consumption per Consumer (Thousand Cubic Ft.) 948 810 772 849 890 873 1967-2015 Industrial Number of Consumers 114 129 134 138 141 144 1987-2015 Sales 40 35 29 28 28 29 1998-2015

  7. Florida Number of Natural Gas Consumers

    Energy Information Administration (EIA) (indexed site)

    675,551 679,199 686,994 694,210 703,535 701,981 1986-2015 Sales 661,768 664,564 672,133 679,191 687,766 685,828 1997-2015 Transported 13,783 14,635 14,861 15,019 15,769 16,153 1997-2015 Commercial Number of Consumers 60,854 61,582 63,477 64,772 67,461 65,313 1986-2015 Sales 41,750 41,068 41,102 40,434 41,303 37,647 1998-2015 Transported 19,104 20,514 22,375 24,338 26,158 27,666 1998-2015 Average Consumption per Consumer (Thousand Cubic Ft.) 888 869 861 926 928 961 1967-2015 Industrial Number of

  8. Hawaii Number of Natural Gas Consumers

    Energy Information Administration (EIA) (indexed site)

    25,389 25,305 25,184 26,374 28,919 28,952 1987-2015 Sales 25,389 25,305 25,184 26,374 28,919 28,952 1998-2015 Commercial Number of Consumers 2,551 2,560 2,545 2,627 2,789 2,815 1987-2015 Sales 2,551 2,560 2,545 2,627 2,789 2,815 1998-2015 Average Consumption per Consumer (Thousand Cubic Ft.) 697 691 727 713 692 678 1980-2015 Industrial Number of Consumers 24 24 22 22 23 25 1997-2015 Sales 24 24 22 22 23 25 1998-2015 Average Consumption per Consumer (Thousand Cubic Ft.) 14,111 15,087 16,126

  9. Idaho Number of Natural Gas Consumers

    Energy Information Administration (EIA) (indexed site)

    46,602 350,871 353,963 359,889 367,394 374,557 1987-2015 Sales 346,602 350,871 353,963 359,889 367,394 374,557 1997-2015 Commercial Number of Consumers 38,506 38,912 39,202 39,722 40,229 40,744 1987-2015 Sales 38,468 38,872 39,160 39,681 40,188 40,704 1998-2015 Transported 38 40 42 41 41 40 1998-2015 Average Consumption per Consumer (Thousand Cubic Ft.) 390 433 404 465 422 410 1967-2015 Industrial Number of Consumers 184 178 179 183 189 187 1987-2015 Sales 108 103 105 109 115 117 1998-2015

  10. Iowa Number of Natural Gas Consumers

    Energy Information Administration (EIA) (indexed site)

    879,713 883,733 892,123 895,414 900,420 908,058 1987-2015 Sales 879,713 883,733 892,123 895,414 900,420 908,058 1997-2015 Commercial Number of Consumers 98,396 98,541 99,113 99,017 99,186 99,662 1987-2015 Sales 96,996 97,075 97,580 97,334 97,413 97,834 1998-2015 Transported 1,400 1,466 1,533 1,683 1,773 1,828 1998-2015 Average Consumption per Consumer (Thousand Cubic Ft.) 525 526 442 572 579 494 1967-2015 Industrial Number of Consumers 1,528 1,465 1,469 1,491 1,572 1,572 1987-2015 Sales 1,161

  11. Kentucky Number of Natural Gas Consumers

    Energy Information Administration (EIA) (indexed site)

    758,129 759,584 757,790 761,575 761,935 764,946 1987-2015 Sales 728,940 730,602 730,184 736,011 737,290 742,011 1997-2015 Transported 29,189 28,982 27,606 25,564 24,645 22,935 1997-2015 Commercial Number of Consumers 84,707 84,977 85,129 85,999 85,630 85,961 1987-2015 Sales 80,541 80,392 80,644 81,579 81,338 81,834 1998-2015 Transported 4,166 4,585 4,485 4,420 4,292 4,127 1998-2015 Average Consumption per Consumer (Thousand Cubic Ft.) 435 407 361 435 467 412 1967-2015 Industrial Number of

  12. Wyoming Number of Natural Gas Consumers

    Energy Information Administration (EIA) (indexed site)

    153,852 155,181 157,226 158,889 160,896 159,925 1987-2015 Sales 117,735 118,433 118,691 117,948 118,396 116,456 1997-2015 Transported 36,117 36,748 38,535 40,941 42,500 43,469 1997-2015 Commercial Number of Consumers 19,977 20,146 20,387 20,617 20,894 20,816 1987-2015 Sales 14,319 14,292 14,187 14,221 14,452 14,291 1998-2015 Transported 5,658 5,854 6,200 6,396 6,442 6,525 1998-2015 Average Consumption per Consumer (Thousand Cubic Ft.) 558 580 514 583 583 622 1967-2015 Industrial Number of

  13. Alaska Maximum Number of Active Crews Engaged in Seismic Surveying (Number

    Gasoline and Diesel Fuel Update

    of Elements) Seismic Surveying (Number of Elements) Alaska Maximum Number of Active Crews Engaged in Seismic Surveying (Number of Elements) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2000 0 0 2 3 3 3 1 1 0 0 0 0 2001 0 0 0 0 2 2 0 0 0 0 0 0 2002 2 2 2 2 2 2 2 2 2 2 2 1 2003 0 0 2 2 2 2 2 2

  14. Stockpile Stewardship Quarterly, Volume 2, Number 1

    National Nuclear Security Administration (NNSA)

    1 * May 2012 Message from the Assistant Deputy Administrator for Stockpile Stewardship, Chris Deeney Defense Programs Stockpile Stewardship in Action Volume 2, Number 1 Inside this Issue 2 LANL and ANL Complete Groundbreaking Shock Experiments at the Advanced Photon Source 3 Characterization of Activity-Size-Distribution of Nuclear Fallout 5 Modeling Mix in High-Energy-Density Plasma 6 Quality Input for Microscopic Fission Theory 8 Fiber Reinforced Composites Under Pressure: A Case Study in

  15. Notices Total Estimated Number of Annual

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    372 Federal Register / Vol. 78, No. 181 / Wednesday, September 18, 2013 / Notices Total Estimated Number of Annual Burden Hours: 10,128. Abstract: Enrollment in the Federal Student Aid (FSA) Student Aid Internet Gateway (SAIG) allows eligible entities to securely exchange Title IV, Higher Education Act (HEA) assistance programs data electronically with the Department of Education processors. Organizations establish Destination Point Administrators (DPAs) to transmit, receive, view and update

  16. WIPP Site By The Numbers August 2015

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    0 ft. By the Numbers The Waste Isolation Pilot Plant (WIPP) is a Department of Energy facility designed to safely isolate defense- related transuranic (TRU) waste from people and the environment. WIPP, which began waste disposal operations in 1999, is located 26 miles outside of Carlsbad, New Mexico. Waste temporarily stored at sites around the country is shipped to WIPP and permanently disposed in rooms mined out of an ancient salt formation below the surface. TRU waste destined for WIPP

  17. Table B14. Number of Establishments in Building, Number of Buildings, 1999

    Energy Information Administration (EIA) (indexed site)

    4. Number of Establishments in Building, Number of Buildings, 1999" ,"Number of Buildings (thousand)" ,"All Buildings","Number of Establishments in Building" ,,"One","Two to Five","Six to Ten","Eleven to Twenty","More than Twenty","Currently Unoccupied" "All Buildings ................",4657,3528,688,114,48,27,251 "Building Floorspace" "(Square Feet)" "1,001 to 5,000

  18. U.S. Natural Gas Number of Underground Storage Acquifers Capacity (Number

    Energy Information Administration (EIA) (indexed site)

    of Elements) Acquifers Capacity (Number of Elements) U.S. Natural Gas Number of Underground Storage Acquifers Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 49 2000's 49 39 38 43 43 44 44 43 43 43 2010's 43 43 44 47 46 47 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of

  19. Nevada Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Gas and Gas Condensate Wells (Number of Elements) Nevada Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 5 5 4 4 2000's 4 4 4 4 4 4 4 4 0 0 2010's 0 0 0 0 1 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Producing Gas

  20. Show Tips

    Energy.gov [DOE]

    These guidelines are designed to help you prepare for exhibiting. Be sure that you are fully prepared before the event begins.

  1. U.S. Maximum Number of Active Crews Engaged in Seismic Surveying (Number of

    Gasoline and Diesel Fuel Update

    Elements) Maximum Number of Active Crews Engaged in Seismic Surveying (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 615 717 624 481 563 655 728 848 NA 787 2010's 774

  2. Health Code Number (HCN) Development Procedure

    SciTech Connect

    Petrocchi, Rocky; Craig, Douglas K.; Bond, Jayne-Anne; Trott, Donna M.; Yu, Xiao-Ying

    2013-09-01

    This report provides the detailed description of health code numbers (HCNs) and the procedure of how each HCN is assigned. It contains many guidelines and rationales of HCNs. HCNs are used in the chemical mixture methodology (CMM), a method recommended by the department of energy (DOE) for assessing health effects as a result of exposures to airborne aerosols in an emergency. The procedure is a useful tool for proficient HCN code developers. Intense training and quality assurance with qualified HCN developers are required before an individual comprehends the procedure to develop HCNs for DOE.

  3. The New Element Berkelium (Atomic Number 97)

    DOE R&D Accomplishments

    Seaborg, G. T.; Thompson, S. G.; Ghiorso, A.

    1950-04-26

    An isotope of the element with atomic number 97 has been discovered as a product of the helium-ion bombardment of americium. The name berkelium, symbol Bk, is proposed for element 97. The chemical separation of element 97 from the target material and other reaction products was made by combinations of precipitation and ion exchange adsorption methods making use of its anticipated (III) and (IV) oxidation states and its position as a member of the actinide transition series. The distinctive chemical properties made use of in its separation and the equally distinctive decay properties of the particular isotope constitute the principal evidence for the new element.

  4. Experimental Stations by Number | Stanford Synchrotron Radiation

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Lightsource Experimental Stations by Number Beam Line by Techniques Photon Source Parameters Station Type Techniques Energy Range Contact Person Experimental Station 1-5 X-ray Materials Small-angle X-ray Scattering (SAXS) focused 4600-16000 eV Christopher J. Tassone Tim J. Dunn Experimental Station 2-1 X-ray Powder diffraction Thin film diffraction Focused 5000 - 14500 eV Apurva Mehta Charles Troxel Jr Experimental Station 2-2 X-ray X-ray Absorption Spectroscopy 5000 to 37000 eV Ryan Davis

  5. Property:NumberOfLEDSTools | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Name NumberOfLEDSTools Property Type Number Retrieved from "http:en.openei.orgwindex.php?titleProperty:NumberOfLEDSTools&oldid322418" Feedback Contact needs updating Image...

  6. Property:Number of Plants Included in Planned Estimate | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Number of Plants Included in Planned Estimate Jump to: navigation, search Property Name Number of Plants Included in Planned Estimate Property Type String Description Number of...

  7. The New Element Californium (Atomic Number 98)

    DOE R&D Accomplishments

    Seaborg, G. T.; Thompson, S. G.; Street, K. Jr.; Ghiroso, A.

    1950-06-19

    Definite identification has been made of an isotope of the element with atomic number 98 through the irradiation of Cm{sup 242} with about 35-Mev helium ions in the Berkeley Crocker Laboratory 60-inch cyclotron. The isotope which has been identified has an observed half-life of about 45 minutes and is thought to have the mass number 244. The observed mode of decay of 98{sup 244} is through the emission of alpha-particles, with energy of about 7.1 Mev, which agrees with predictions. Other considerations involving the systematics of radioactivity in this region indicate that it should also be unstable toward decay by electron capture. The chemical separation and identification of the new element was accomplished through the use of ion exchange adsorption methods employing the resin Dowex-50. The element 98 isotope appears in the eka-dysprosium position on elution curves containing berkelium and curium as reference points--that is, it precedes berkelium and curium off the column in like manner that dysprosium precedes terbium and gadolinium. The experiments so far have revealed only the tripositive oxidation state of eka-dysprosium character and suggest either that higher oxidation states are not stable in aqueous solutions or that the rates of oxidation are slow. The successful identification of so small an amount of an isotope of element 98 was possible only through having made accurate predictions of the chemical and radioactive properties.

  8. Tennessee Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Gas and Gas Condensate Wells (Number of Elements) Tennessee Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 700 1990's 690 650 600 505 460 420 2000's 380 350 400 430 280 400 330 305 285 310 2010's 230 1,027 1,027 1,089 NA NA - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next

  9. South Dakota Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Gas and Gas Condensate Wells (Number of Elements) South Dakota Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 53 1990's 54 54 38 47 55 56 61 60 59 60 2000's 71 68 69 61 61 69 69 71 71 89 2010's 102 155 159 133 128 124 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next

  10. Maryland Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Gas and Gas Condensate Wells (Number of Elements) Maryland Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 8 1990's 7 7 9 7 7 7 8 8 8 8 2000's 7 7 5 7 7 7 7 7 7 7 2010's 7 7 7 7 5 7 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages:

  11. Missouri Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Gas and Gas Condensate Wells (Number of Elements) Missouri Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 4 1990's 8 6 5 8 12 15 24 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 19 15 7 6 NA - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring

  12. Nebraska Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Gas and Gas Condensate Wells (Number of Elements) Nebraska Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 15 1990's 11 12 22 59 87 87 88 91 95 96 2000's 98 96 106 109 111 114 114 186 322 285 2010's 276 307 299 246 109 140 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next

  13. Oregon Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Gas and Gas Condensate Wells (Number of Elements) Oregon Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 18 1990's 19 16 16 18 19 17 18 17 15 19 2000's 17 20 18 15 15 15 14 18 21 24 2010's 26 28 24 24 12 14 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date:

  14. Alaska Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Gas and Gas Condensate Wells (Number of Elements) Alaska Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 108 1990's 111 110 112 113 104 100 102 141 148 99 2000's 152 170 165 195 224 227 231 239 261 261 2010's 269 274 281 300 338 329 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  15. Arizona Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Gas and Gas Condensate Wells (Number of Elements) Arizona Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3 1990's 5 6 6 6 6 7 7 8 8 8 2000's 9 8 7 9 6 6 7 7 6 6 2010's 5 5 4 3 6 6 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages:

  16. Illinois Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Gas and Gas Condensate Wells (Number of Elements) Illinois Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 241 1990's 356 373 382 385 390 372 370 372 185 300 2000's 280 300 225 240 251 316 316 43 45 51 2010's 50 40 40 34 36 35 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016

  17. Maryland Number of Natural Gas Consumers

    Energy Information Administration (EIA) (indexed site)

    071,566 1,077,168 1,078,978 1,099,272 1,101,292 1,113,342 1987-2015 Sales 923,870 892,844 867,627 852,555 858,352 875,150 1997-2015 Transported 147,696 184,324 211,351 246,717 242,940 238,192 1997-2015 Commercial Number of Consumers 75,192 75,788 75,799 77,117 77,846 78,138 1987-2015 Sales 54,966 53,778 52,383 52,763 53,961 53,651 1998-2015 Transported 20,226 22,010 23,416 24,354 23,885 24,487 1998-2015 Average Consumption per Consumer (Thousand Cubic Ft.) 898 891 846 923 961 898 1967-2015

  18. Massachusetts Number of Natural Gas Consumers

    Energy Information Administration (EIA) (indexed site)

    389,592 1,408,314 1,447,947 1,467,578 1,461,350 1,478,072 1987-2015 Sales 1,387,842 1,406,447 1,445,934 1,464,120 1,457,055 1,471,658 1997-2015 Transported 1,750 1,867 2,013 3,458 4,295 6,414 1997-2015 Commercial Number of Consumers 144,487 138,225 142,825 144,246 139,556 140,533 1987-2015 Sales 128,256 121,065 124,099 124,963 120,803 121,754 1998-2015 Transported 16,231 17,160 18,726 19,283 18,753 18,779 1998-2015 Average Consumption per Consumer (Thousand Cubic Ft.) 499 586 511 692 758 750

  19. Michigan Number of Natural Gas Consumers

    Energy Information Administration (EIA) (indexed site)

    3,152,468 3,153,895 3,161,033 3,180,349 3,192,807 3,213,910 1987-2015 Sales 2,952,550 2,946,507 2,939,693 2,950,315 2,985,315 3,016,548 1997-2015 Transported 199,918 207,388 221,340 230,034 207,492 197,362 1997-2015 Commercial Number of Consumers 249,309 249,456 249,994 250,994 253,127 254,484 1987-2015 Sales 217,325 213,995 212,411 213,532 219,240 222,427 1998-2015 Transported 31,984 35,461 37,583 37,462 33,887 32,057 1998-2015 Average Consumption per Consumer (Thousand Cubic Ft.) 611 656 578

  20. New Jersey Number of Natural Gas Consumers

    Energy Information Administration (EIA) (indexed site)

    2,649,282 2,659,205 2,671,308 2,686,452 2,705,274 2,728,340 1987-2015 Sales 2,556,514 2,514,492 2,467,520 2,428,664 2,482,281 2,559,463 1997-2015 Transported 92,768 144,713 203,788 257,788 222,993 168,877 1997-2015 Commercial Number of Consumers 234,158 234,721 237,602 236,746 240,083 241,417 1987-2015 Sales 200,680 196,963 192,913 185,030 186,591 190,255 1998-2015 Transported 33,478 37,758 44,689 51,716 53,492 51,162 1998-2015 Average Consumption per Consumer (Thousand Cubic Ft.) 775 817 735