National Library of Energy BETA

Sample records for fee pool total

  1. Performance Period Total Fee Paid FY2008

    Office of Environmental Management (EM)

    1,339,286 FY 2012 38,126 FY 2013 42,265 Cumulative Fee Paid 1,766,600 42,265 Cost Plus Incentive FeeCost Plus Fixed Fee 36,602,425 Contract Period: September 2007 -...

  2. Performance Period Total Fee Paid FY2001

    Office of Environmental Management (EM)

    17,590,414 FY2011 17,558,710 FY2012 14,528,770 Cumulative Fee Paid 126,281,339 Cost Plus Award Fee DE-AC29-01AL66444 Washington TRU Solutions LLC Contractor: Contract Number:...

  3. Total Estimated Contract Cost: Performance Period Total Fee Paid

    Office of Environmental Management (EM)

    DE-AM09-05SR22405DE-AT30-07CC60011SL14 Contractor: Contract Number: Contract Type: Cost Plus Award Fee 357,223 597,797 894,699 EM Contractor Fee Site: Stanford Linear...

  4. Fees

    Energy.gov [DOE]

    The DOE Loan Program is required to collect several fees from loan program Applicants. Please find an outline of these fees below. In addition, DOE is supported by outside consultants and legal...

  5. fees

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    PRIME CONTRACTOR FEES ON SUBCONTRACTOR COSTS U.S. DEPARTMENT OF ENERGY OFFICE OF INSPECTOR GENERAL OFFICE OF AUDIT SERVICES AUDIT REPORT DOE/IG-0427 SEPTEMBER 1998 September 11, 1998 MEMORANDUM FOR THE SECRETARY FROM: Gregory H. Friedman Acting Inspector General SUBJECT: INFORMATION : Audit Report on "The U.S. Department of Energy's Prime Contractor Fees on Subcontractor Costs" BACKGROUND In Fiscal Year 1996, the Department's prime contractors awarded $5.3 billion in subcontracts. The

  6. EM Contractor Fee

    Office of Environmental Management (EM)

    Portsmouth/Paducah Project Office Contract Name: Portsmouth D&D Contract Contractor: Fluor-BWXT Portsmouth LLC Contract Number: DE-AC30-10CC40017 Contract Type: Cost-Plus-Award-Fee Total Estimated Contract Cost: $2,505,496,484 Contract Base Period: March 29, 2011 - March 28, 2016 Contract Option Period: Option 1: 3/29/16 -9/30/18 Option 1a: 10/1/18 - 3/28/21 Fee Information Minimum Fee $0 Maximum Fee $184,024,974 Performance Period Fee Available Fee Earned FY2011 $6,190,992 $5,779,687 FY2012

  7. EM Contractor Fee

    Office of Environmental Management (EM)

    2016 Site: Portsmouth Paducah Project Office Contract Name: Paducah Deactivation Task Order Contractor: Fluor Federal Services Contract Number: DE-EM0001131-DE-DT0007774 Contract Type: Cost Plus Award Fee and FFP Total Estimated Contract Cost: $422,000,000 Contract Base Period: July 22, 2014 - July 21, 2017 Contract Option Period: N/A Fee Information Minimum Fee $0 Maximum Fee $17,278,589 Performance Period Fee Available Fee Earned FY2015 $6,170,759 $4,257,824 FY2016 $5,553,915 $0 FY2017

  8. EM Contractor Fee

    Office of Environmental Management (EM)

    Portsmouth Environmental Technical Services II Contractor: Restoration Services Inc Contract Number: DE-EM0002639 Contract Type: Cost Plus Award Fee Total Estimated Contract Cost: $51,615,957 Contract Base Period: October 1, 2013 - September 30, 2016 Contract Option Period: Option 1: 10/1/16 - 9/30/18 Fee Information Minimum Fee $0 Maximum Fee $1,179,075 Performance Period Fee Available Fee Earned FY2014 $389,929 $358,735 FY2015 $392,092 $360,725 FY2016 $397,054 FY2017 (Option) $0 FY2018

  9. Contractor Fee Payments- Small Sites

    Energy.gov [DOE]

    See the amount of fees earned on EM's major contracts for each evaluated fee period and the total contract to date at the Small Sites office on these charts.

  10. Contractor Fee Payments - Idaho Operations Office | Department of Energy

    Office of Environmental Management (EM)

    Idaho Operations Office Contractor Fee Payments - Idaho Operations Office See the amount of fees earned on EM's major contracts for each evaluated fee period and the total contract to date at the Idaho Operations Office on these charts. Advanced Mixed Waste Treatment Project (34.47 KB) Idaho Cleanup Project (33.59 KB) More Documents & Publications Contractor Fee Payments - Richland Operations Office Contractor Fee Payments - Oak Ridge Operations Contractor Fee Payments - Savannah River

  11. Contractor Fee Payments - Oak Ridge Operations | Department of Energy

    Office of Environmental Management (EM)

    Oak Ridge Operations Contractor Fee Payments - Oak Ridge Operations See the amount of fees earned on EM's major contracts for each evaluated fee period and the total contract to date at the Oak Ridge Operations on these charts. Transuranic Waste Processing - North Wind (33.63 KB) Transuranic Waste Processing - Wastren (36.67 KB) East Tennessee Technology Park (35.79 KB) More Documents & Publications Major Contracts Summary Contractor Fee Payments - Idaho Operations Office Contractor Fee

  12. Total

    U.S. Energy Information Administration (EIA) (indexed site)

    Product: Total Crude Oil Liquefied Petroleum Gases PropanePropylene Normal ButaneButylene Other Liquids Oxygenates Fuel Ethanol MTBE Other Oxygenates Biomass-based Diesel Fuel ...

  13. Contractor Fee Payments - Savannah River Site Office | Department...

    Energy.gov (indexed) [DOE]

    the amount of fees earned on EM's major contracts for each evaluated fee period and the total contract to date at the Savannah River Site Office on these charts. Liquid Waste...

  14. Total..........................................................

    U.S. Energy Information Administration (EIA) (indexed site)

    0.9 Q Q Q Heat Pump......7.7 0.3 Q Q Steam or Hot Water System......Census Division Total West Energy Information Administration ...

  15. Total..........................................................

    U.S. Energy Information Administration (EIA) (indexed site)

    0.9 Q Q Q Heat Pump......6.2 3.8 2.4 Steam or Hot Water System......Census Division Total Northeast Energy Information ...

  16. Total............................................................

    U.S. Energy Information Administration (EIA) (indexed site)

    Total................................................................... 111.1 2,033 1,618 1,031 791 630 401 Total Floorspace (Square Feet) Fewer than 500............................................... 3.2 357 336 113 188 177 59 500 to 999....................................................... 23.8 733 667 308 343 312 144 1,000 to 1,499................................................. 20.8 1,157 1,086 625 435 409 235 1,500 to 1,999................................................. 15.4 1,592

  17. Total

    U.S. Energy Information Administration (EIA) (indexed site)

    Total floor- space 1 Heated floor- space 2 Total floor- space 1 Cooled floor- space 2 Total floor- space 1 Lit floor- space 2 All buildings 87,093 80,078 70,053 79,294 60,998 83,569 68,729 Building floorspace (square feet) 1,001 to 5,000 8,041 6,699 5,833 6,124 4,916 7,130 5,590 5,001 to 10,000 8,900 7,590 6,316 7,304 5,327 8,152 6,288 10,001 to 25,000 14,105 12,744 10,540 12,357 8,840 13,250 10,251 25,001 to 50,000 11,917 10,911 9,638 10,813 7,968 11,542 9,329 50,001 to 100,000 13,918 13,114

  18. Total...................................................................

    U.S. Energy Information Administration (EIA) (indexed site)

    2,033 1,618 1,031 791 630 401 Total Floorspace (Square Feet) Fewer than 500............................................... 3.2 357 336 113 188 177 59 500 to 999....................................................... 23.8 733 667 308 343 312 144 1,000 to 1,499................................................. 20.8 1,157 1,086 625 435 409 235 1,500 to 1,999................................................. 15.4 1,592 1,441 906 595 539 339 2,000 to

  19. Total..........................................................................

    U.S. Energy Information Administration (EIA) (indexed site)

    . 111.1 20.6 15.1 5.5 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.4 500 to 999........................................................... 23.8 4.6 3.6 1.1 1,000 to 1,499..................................................... 20.8 2.8 2.2 0.6 1,500 to 1,999..................................................... 15.4 1.9 1.4 0.5 2,000 to 2,499..................................................... 12.2 2.3 1.7 0.5 2,500 to

  20. Total..........................................................................

    U.S. Energy Information Administration (EIA) (indexed site)

    5.6 17.7 7.9 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.5 0.3 Q 500 to 999........................................................... 23.8 3.9 2.4 1.5 1,000 to 1,499..................................................... 20.8 4.4 3.2 1.2 1,500 to 1,999..................................................... 15.4 3.5 2.4 1.1 2,000 to 2,499..................................................... 12.2 3.2 2.1 1.1 2,500 to

  1. Total..........................................................................

    U.S. Energy Information Administration (EIA) (indexed site)

    0.7 21.7 6.9 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.6 Q Q 500 to 999........................................................... 23.8 9.0 4.2 1.5 3.2 1,000 to 1,499..................................................... 20.8 8.6 4.7 1.5 2.5 1,500 to 1,999..................................................... 15.4 6.0 2.9 1.2 1.9 2,000 to 2,499..................................................... 12.2 4.1 2.1 0.7

  2. Total..........................................................................

    U.S. Energy Information Administration (EIA) (indexed site)

    4.2 7.6 16.6 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 1.0 0.2 0.8 500 to 999........................................................... 23.8 6.3 1.4 4.9 1,000 to 1,499..................................................... 20.8 5.0 1.6 3.4 1,500 to 1,999..................................................... 15.4 4.0 1.4 2.6 2,000 to 2,499..................................................... 12.2 2.6 0.9 1.7 2,500 to

  3. Total................................................

    U.S. Energy Information Administration (EIA) (indexed site)

    .. 111.1 86.6 2,522 1,970 1,310 1,812 1,475 821 1,055 944 554 Total Floorspace (Square Feet) Fewer than 500............................. 3.2 0.9 261 336 162 Q Q Q 334 260 Q 500 to 999.................................... 23.8 9.4 670 683 320 705 666 274 811 721 363 1,000 to 1,499.............................. 20.8 15.0 1,121 1,083 622 1,129 1,052 535 1,228 1,090 676 1,500 to 1,999.............................. 15.4 14.4 1,574 1,450 945 1,628 1,327 629 1,712 1,489 808 2,000 to

  4. Total..........................................................

    U.S. Energy Information Administration (EIA) (indexed site)

    .. 111.1 24.5 1,090 902 341 872 780 441 Total Floorspace (Square Feet) Fewer than 500...................................... 3.1 2.3 403 360 165 366 348 93 500 to 999.............................................. 22.2 14.4 763 660 277 730 646 303 1,000 to 1,499........................................ 19.1 5.8 1,223 1,130 496 1,187 1,086 696 1,500 to 1,999........................................ 14.4 1.0 1,700 1,422 412 1,698 1,544 1,348 2,000 to 2,499........................................ 12.7

  5. Total...................................................................

    U.S. Energy Information Administration (EIA) (indexed site)

    Floorspace (Square Feet) Total Floorspace 1 Fewer than 500............................................ 3.2 0.4 Q 0.6 1.7 0.4 500 to 999................................................... 23.8 4.8 1.4 4.2 10.2 3.2 1,000 to 1,499............................................. 20.8 10.6 1.8 1.8 4.0 2.6 1,500 to 1,999............................................. 15.4 12.4 1.5 0.5 0.5 0.4 2,000 to 2,499............................................. 12.2 10.7 1.0 0.2 Q Q 2,500 to

  6. Total.........................................................................

    U.S. Energy Information Administration (EIA) (indexed site)

    Floorspace (Square Feet) Total Floorspace 2 Fewer than 500.................................................. 3.2 Q 0.8 0.9 0.8 0.5 500 to 999.......................................................... 23.8 1.5 5.4 5.5 6.1 5.3 1,000 to 1,499.................................................... 20.8 1.4 4.0 5.2 5.0 5.2 1,500 to 1,999.................................................... 15.4 1.4 3.1 3.5 3.6 3.8 2,000 to 2,499.................................................... 12.2 1.4 3.2 3.0 2.3 2.3

  7. Total..........................................................................

    U.S. Energy Information Administration (EIA) (indexed site)

    25.6 40.7 24.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.9 1.0 500 to 999........................................................... 23.8 4.6 3.9 9.0 6.3 1,000 to 1,499..................................................... 20.8 2.8 4.4 8.6 5.0 1,500 to 1,999..................................................... 15.4 1.9 3.5 6.0 4.0 2,000 to 2,499..................................................... 12.2 2.3 3.2 4.1

  8. Total..........................................................................

    U.S. Energy Information Administration (EIA) (indexed site)

    7.1 7.0 8.0 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.4 Q Q 0.5 500 to 999........................................................... 23.8 2.5 1.5 2.1 3.7 1,000 to 1,499..................................................... 20.8 1.1 2.0 1.5 2.5 1,500 to 1,999..................................................... 15.4 0.5 1.2 1.2 1.9 2,000 to 2,499..................................................... 12.2 0.7 0.5 0.8 1.4

  9. Total...........................................................

    U.S. Energy Information Administration (EIA) (indexed site)

    14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500.................................... 3.2 0.7 Q 0.3 0.3 0.7 0.6 0.3 Q 500 to 999........................................... 23.8 2.7 1.4 2.2 2.8 5.5 5.1 3.0 1.1 1,000 to 1,499..................................... 20.8 2.3 1.4 2.4 2.5 3.5 3.5 3.6 1.6 1,500 to 1,999..................................... 15.4 1.8 1.4 2.2 2.0 2.4 2.4 2.1 1.2 2,000 to 2,499..................................... 12.2 1.4 0.9

  10. Total...........................................................

    U.S. Energy Information Administration (EIA) (indexed site)

    26.7 28.8 20.6 13.1 22.0 16.6 38.6 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................... 3.2 1.9 0.9 Q Q Q 1.3 2.3 500 to 999........................................... 23.8 10.5 7.3 3.3 1.4 1.2 6.6 12.9 1,000 to 1,499..................................... 20.8 5.8 7.0 3.8 2.2 2.0 3.9 8.9 1,500 to 1,999..................................... 15.4 3.1 4.2 3.4 2.0 2.7 1.9 5.0 2,000 to 2,499..................................... 12.2 1.7 2.7 2.9 1.8 3.2 1.1 2.8

  11. Contractor Fee Payments - Savannah River Operations Office | Department of

    Office of Environmental Management (EM)

    Energy Savannah River Operations Office Contractor Fee Payments - Savannah River Operations Office See the amount of fees earned on EM's major contracts for each evaluated fee period and the total contract to date at the Savannah River Site Office on these charts. Comprehensive Security Services (35.16 KB) Site Management and Operations (35.73 KB) Liquid Waste Processing (35.48 KB) Salt Waste Processing Facility (37.07 KB) More Documents & Publications Contractor Fee Payments - Office of

  12. Award Fee Determination Summary

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    2 CH2M Hill Plateau Remediation Company Contract Number: DE-AC06-08RL14788 Final Fee Determination for Base funded Performance Measures Basis of Evaluation: Completion of Performance Measures contained in Section J, Attachment J.4, Performance Evaluation and Measurement Plan, according to the identified completion criteria. Evaluation Results: FY 2012 Base Period Fee Available Fee allocated to FY 2012* Performance Measures $10,399,033.60 Incremental Fee $4,490,000.00 Provisional Fee

  13. Signature of Robert Poole Signature of Robert Poole Signature of Robert Poole

    National Nuclear Security Administration (NNSA)

    Robert Poole Signature of Robert Poole Signature of Robert Poole

  14. FY 2007 Fee Adequacy, Pub 2008 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    the fee will provide sufficient revenues to offset the commercial utilities' share of the total life cycle costs of the Civilian Radioactive Waste Management Program (the Program). ...

  15. NWP Fee Payments

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Expired Contracts Current Contracts Payment Information Nuclear Waste Partnership, LLC (NWP) 2017 Performance Evaluation & Measurement Plan (PEMP) 2016 Performance Evaluation & Measurement Plan (PEMP) 2015 Performance Evaluation & Measurement Plan (PEMP) 2014 Performance Evaluation & Measurement Plan (PEMP) 2013 Performance Evaluation & Measurement Plan (PEMP) Fee Determination and Scorecard NWP FY15 Fee Determination and Scorecard NWP FY14 Fee Determination Scorecard NWP

  16. Contractor Fee Payments - Office of River Protection | Department of Energy

    Office of Environmental Management (EM)

    Office of River Protection Contractor Fee Payments - Office of River Protection See the amount of fees earned on EM's major contracts for each evaluated fee period and the total contract to date at the Office of River Protection on these charts. Laboratory Analytical Services & Testing (34.64 KB) Tank Operations (110.98 KB) Hanford 222-S Laboratory Analysis and Testing Services (33.18 KB) Waste Treatment Plant Design & Construction (36.3 KB) More Documents & Publications Contractor

  17. Contractor Fee Payments - Richland Operations Office | Department of Energy

    Office of Environmental Management (EM)

    Richland Operations Office Contractor Fee Payments - Richland Operations Office See the amount of fees earned on EM's major contracts for each evaluated fee period and the total contract to date at the Richland Operations Office on these charts. Occupational Medical Services - HPM Corporation (34.22 KB) Infrastructure and Site Services Support (35.03 KB) Plateau Remediation (35.51 KB) River Corridor Closure (35.51 KB) Occupational Health Services (34.09 KB) More Documents & Publications

  18. Award Fee Determination Summary

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    1 CH2M Hill Plateau Remediation Company Contract Number: DE-AC06-08RL14788 Final Fee Determination for Base funded and American Recovery and Reinvestment Act (Recovery) funded Performance Measures Basis of Evaluation: Completion of Performance Measures contained in Section J, AttachmentJ.4, Performance Evaluation and Measurement Plan, according to the identified completion criteria. Evaluation Results: Fiscal Year 2011 (Oct 1, 2010 - Sept 30, 2011) Base Funded Fee Recovery Funded Fee Available

  19. Hobo Pool Pool & Spa Low Temperature Geothermal Facility | Open...

    Open Energy Information (Open El) [EERE & EIA]

    Pool Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Hobo Pool Pool & Spa Low Temperature Geothermal Facility Facility Hobo Pool Sector Geothermal...

  20. AWARD FEE DETERMINATION SCORECARD Contractor: Restoration Services...

    Office of Environmental Management (EM)

    Basis of Evaluation: FY14 Award Fee Plan for Restoration Services, Inc.; Portsmouth Environmental Technical Services II Award Fee Available: 349,708.00 Award Fee Earned:...

  1. Fees | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    stub. You can help OpenEI by expanding it. Retrieved from "http:en.openei.orgwindex.php?titleFees&oldid542709" Feedback Contact needs updating Image needs updating...

  2. ," Excise"," LUST Fee ",," ...

    U.S. Energy Information Administration (EIA) (indexed site)

    ... For gasohol and biodiesel (1 to 10% blends), the prepaid rate is 0.10gal. Underground Storage Tank tax: 0.003gal; Environmental Impact Fee: 0.008gal. " "Indiana",0.18,0.151,0...

  3. EM Contractor Fee Payments

    Energy.gov [DOE]

    In the interest of furthering transparency in its government operations, the Department of Energy’s Office of Environmental Management (EM) herein is releasing information relating to fee payments...

  4. FOIA FEES | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    FEES FOIA FEES The FOIA generally requires that requestors pay fees for processing their requests. If costs associated with the processing of a FOIA request are $15.00 or less, no fees are charged. Each FOIA request is reviewed for the purpose of placing a requestor in one of the fee categories described in the document below. FOIA FEES (16.8 KB) More Documents & Publications How to Make a FOIA Request FIA-11-0018 - In the Matter of Robert M. Balick FIA-11-0018 - In the Matter of Robert M.

  5. Fiscal year 1999 Battelle performance evaluation and fee agreement

    SciTech Connect (OSTI)

    DAVIS, T.L.

    1998-10-22

    Fiscal Year 1999 represents the third fill year utilizing a results-oriented, performance-based evaluation for the Contractor's operations and management of the DOE Pacific Northwest National Laboratory (here after referred to as the Laboratory). However, this is the first year that the Contractor's fee is totally performance-based utilizing the same Critical Outcomes. This document describes the critical outcomes, objectives, performance indicators, expected levels of performance, and the basis for the evaluation of the Contractor's performance for the period October 1, 1998 through September 30, 1999, as required by Clauses entitled ''Use of Objective Standards of Performance, Self Assessment and Performance Evaluation'' and ''Performance Measures Review'' of the Contract DE-ACO6-76RL01830. Furthermore, it documents the distribution of the total available performance-based fee and the methodology set for determining the amount of fee earned by the Contractor as stipulated within the causes entitled ''Estimated Cost and Annual Fee,'' ''Total Available Fee'' and ''Allowable Costs and Fee.'' In partnership with the Contractor and other key customers, the Department of Energy (DOE) Headquarters (HQ) and Richland Operations Office (RL) has defined four critical outcomes that serve as the core for the Contractor's performance-based evaluation and fee determination. The Contractor also utilizes these outcomes as a basis for overall management of the Laboratory.

  6. Cove Swimming Pool Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Information (Open El) [EERE & EIA]

    Swimming Pool Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Cove Swimming Pool Pool & Spa Low Temperature Geothermal Facility Facility Cove...

  7. Moana Swimming Pool Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Information (Open El) [EERE & EIA]

    Moana Swimming Pool Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Moana Swimming Pool Pool & Spa Low Temperature Geothermal Facility Facility...

  8. Baker Swimming Pool Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Information (Open El) [EERE & EIA]

    Baker Swimming Pool Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Baker Swimming Pool Pool & Spa Low Temperature Geothermal Facility Facility...

  9. Public Swimming Pool Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Information (Open El) [EERE & EIA]

    Swimming Pool Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Public Swimming Pool Pool & Spa Low Temperature Geothermal Facility Facility Public...

  10. Klamath Swimming Pools (5) Pool & Spa Low Temperature Geothermal...

    Open Energy Information (Open El) [EERE & EIA]

    Swimming Pools (5) Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Klamath Swimming Pools (5) Pool & Spa Low Temperature Geothermal Facility...

  11. Caliente City Pool Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Information (Open El) [EERE & EIA]

    Caliente City Pool Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Caliente City Pool Pool & Spa Low Temperature Geothermal Facility Facility...

  12. Stacy Park Pool Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Information (Open El) [EERE & EIA]

    Stacy Park Pool Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Stacy Park Pool Pool & Spa Low Temperature Geothermal Facility Facility Stacy Park...

  13. Contractor Fee Payments - Portsmouth Paducah Project Office | Department of

    Office of Environmental Management (EM)

    Energy Portsmouth Paducah Project Office Contractor Fee Payments - Portsmouth Paducah Project Office See the amount of fees earned on EM's major contracts for each evaluated fee period and the total contract to date at the Portsmouth Paducah Project Office on these charts. Operation of DUF6 (117 KB) Portsmouth D&D (118.65 KB) Paducah Deactivation Task Order (115.62 KB) Paducah Remediation - LATA of Kentucky (34.62 KB) Portsmouth Environmental Technical Services II (116.49 KB) Paducah

  14. Hot Springs Soaking Pools Pool & Spa Low Temperature Geothermal...

    Open Energy Information (Open El) [EERE & EIA]

    Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Hot Springs Soaking Pools Pool & Spa Low Temperature Geothermal Facility Facility Hot Springs...

  15. RL's Fiscal Year 2013 Fee Evaluation Summary

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    September 2013 Basis of Evaluation: Performance Evaluation and Measurement Plan (PEMP) Award Fee Available: 21,030,647 Award Fee Earned: 19,352,402 (92%) Award Fee Area ...

  16. Microsoft Word - FY14 NWP Fee Scorecards

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    FY14 Fee Determination Scorecard Contractor: Nuclear Waste Partnership, LLC Contract: DE-EM0001971 Award Period: October 1, 2013 through September 30, 2014 Basis of Evaluation: Performance and Evaluation Plan (PEMP) for FY2014 The FY2014 PEMP for this contract is available at: http://www.wipp.energy.gov/NWPpayments/NWP.htm Award Fee Scorecard: Subjective Fee (Award Fee) Criteria Summary Table Criteria Maximum Available Fee Adjectival Rating Fee Range Available for Adjectival Ratings Percentage

  17. Award Fee Determination Scorecard Contractor: Savannah River...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    2 - September 30, 2013 Basis of Evaluation: Performance and Evaluation Plan (PEMP) This is a Cost Plus Award Fee contract as defined by federal acquisition regulations (FAR). Fee ...

  18. Award Fee Determination Scorecard Contractor: Savannah River...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Performance and Evaluation Plan (PEMP) Award Fee: 3,370,000 Incentive Fee: ... each contract year is identified in the Performance Evaluation Measurement Plan (PEMP). ...

  19. Award Fee Determination Scorecard Contractor: Savannah River...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    4 - September 30, 2015 Basis of Evaluation: Performance and Evaluation Plan (PEMP) This is a Cost Plus Award Fee contract as defined by federal acquisition regulations (FAR). Fee ...

  20. Office of Inspector General audit report on Westinghouse Savannah River Company`s withdrawal of fees

    SciTech Connect (OSTI)

    1999-04-01

    As the operator of the Department`s Savannah River Site, Westinghouse Savannah River Company (Westinghouse) receives three types of fees: (1) award fees commensurate with the overall performance rating, (2) Performance Based Incentive (PBI) fees for achieving measurable goals or defined tasks as specified in annual operating plans, and (3) Cost Reduction Incentive Program (CRIP) fees for making improvements in site operations that reduce total contract costs. The Department`s Contracting Officer notifies Westinghouse when fees are earned, and Westinghouse withdraws the authorized amounts from the Department`s letter-of-credit account. The audit objective was to determine whether Westinghouse withdrew the appropriate amount of fees from the letter-of-credit account in Fiscal Years (FY) 1997 an 1998.

  1. CHPRC Fee Determination Summaries - Hanford Site

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    CHPRC Fee Determination Summaries DOE-RL Contracts/Procurements RL Contracts & Procurements Home Prime Contracts Current Solicitations Other Sources DOE RL Contracting Officers DOE RL Contracting Officer Representatives CHPRC Fee Determination Summaries Email Email Page | Print Print Page | Text Increase Font Size Decrease Font Size CHPRC Fiscal Year 2015 Fee Evaluation Summary CHPRC Fiscal Year 2014 Fee Evaluation Summary CHPRC Fiscal Year 2013 Fee Evaluation Summary CHPRC Fiscal Year 2012

  2. U.S. Department of Energy Office of Inspector General report on inspection of Westinghouse Savannah River Company fees for managing and operating the Savannah River Site

    SciTech Connect (OSTI)

    1995-08-03

    During the first five years of its contract with the Department of Energy, Westinghouse Savannah River Company was paid over $130 million in fees to manage and operate the Savannah River Site. Fees paid to Westinghouse steadily increased over the five year period. For example, fees paid for the last six months of this five year period were over three times as large as fees paid for the first six months. The purpose of this inspection was to review the Department`s annual negotiation of total available fees with Westinghouse, and to examine the reasons for the growth in fees over this five year period. The review disclosed that, after Fiscal Year 1989, the Department used an increasing number of fee bases in calculating Westinghouse Savannah River Company`s fixed-fee-equivalents from the maximum fee schedules within the Department of Energy Acquisition Regulation. The authors found that the Department had significantly increased the percentage of the dollar value of subcontracts being placed in Westinghouse`s fee bases for fee calculation purposes. They found that the Department had effectively increased Westinghouse`s fixed-fee-equivalents by approximately $3 million in both Fiscal Year 1993 and 1994 to, in large part, fund an unallowable employee incentive compensation program. They found that Westinghouse`s total paid fees for the five year period increased significantly over what they would have been had the terms resulting from the original competitive negotiations been maintained. The authors recommended that the Deputy Assist Secretary for Procurement and Assistance Management require that changes in either the number or composition of fee bases used in calculating fees from the maximum fee schedules be submitted to the Department`s Procurement Executive for approval.

  3. Camperworld Hot Springs SCUBA Dive Pool Pool & Spa Low Temperature...

    Open Energy Information (Open El) [EERE & EIA]

    Low Temperature Geothermal Facility Jump to: navigation, search Name Camperworld Hot Springs SCUBA Dive Pool Pool & Spa Low Temperature Geothermal Facility Facility Camperworld...

  4. Equipment Pool | The Ames Laboratory

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Pool What is the Equipment Pool? Property that is no longer required or being used by a research group or administrative office is sent to the Ames Laboratory's warehouse Equipment Pool area for reuitilization within the Laboratory. What property is in the Equipment Pool? 1. Visit the Equipment Pool Listing page, or 2. Visit our Ames Laboratory warehouse between the hours of 7:30-4 p.m. to view the items in the equipment pool. How do I request property from the Pool? Contact Brian Aspengren,

  5. Thread Pool Interface (TPI)

    Energy Science and Technology Software Center (OSTI)

    2008-04-01

    Thread Pool Interface (TpI) provides a simple interface for running functions written in C or C++ in a thread-parallel mode. Application or library codes may need to perform operations thread-parallel on machines with multicore processors. the TPI library provides a simple mechanism for managing thread activation, deactivation, and thread-parallel execution of application-provided subprograms.

  6. Solar Swimming Pool Heaters | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Swimming Pool Heaters Solar Swimming Pool Heaters An example of a solar pool heater. An example of a solar pool heater. You can significantly reduce swimming pool heating costs by...

  7. Gas Swimming Pool Heaters | Department of Energy

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Gas Swimming Pool Heaters Gas Swimming Pool Heaters Gas Swimming Pool Heaters Gas-fired pool heaters remain the most popular system for heating swimming pools. Today you can find ...

  8. Solar Swimming Pool Heaters | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Swimming Pool Heaters Solar Swimming Pool Heaters An example of a solar pool heater. An example of a solar pool heater. You can significantly reduce swimming pool heating costs by ...

  9. Total Estimated Contract Cost: Performance Period

    Office of Environmental Management (EM)

    FY2012 Fee Information Minimum Fee Maximum Fee September 2015 Contract Number: Cost Plus Incentive Fee Contractor: 3,264,909,094 Contract Period: EM Contractor Fee s Idaho...

  10. Title 43 CFR 3000.12 What is the Fee Schedule for Fixed Fees...

    Open Energy Information (Open El) [EERE & EIA]

    000.12 What is the Fee Schedule for Fixed Fees? Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- Federal RegulationFederal Regulation: Title 43...

  11. Award Fee Determination Scorecard Contractor: Bechtel National, Inc. (BNI)

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Award Fee Determination Scorecard Contractor: Bechtel National, Inc. (BNI) Contract: Design, Construction, and Commissioning of the Hanford Tank Waste Treatment and Immobilization Plant Contract Number: DE-AC27-01RV14136 Award Fee Period: January 1, 2015, to December 31, 2015 Basis of Evaluation: 2015 Performance Evaluation and Measurement Plan Award Fee Available: $12,600,000 Award Fee Earned: $8,310,000 (66.0* percent) Incentive B.1 - Award Fee-Project Management - Good The fee for Project

  12. Department of Environmental Conservation Stormwater Program Fee...

    Open Energy Information (Open El) [EERE & EIA]

    PermittingRegulatory Guidance - Supplemental Material: Department of Environmental Conservation Stormwater Program Fee SummaryPermittingRegulatory GuidanceSupplemental Material...

  13. Unique Fee-for-Service Revenues

    Energy.gov [DOE]

    Better Buildings Neighborhood Program Peer Exchange Calls on Program Sustainability: Unique Fee-for-Service Revenues, Call Slides and Discussion Summary, April 11, 2013.

  14. Award Fee Determination Scorecard Contractor: Washington River...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Award Fee Special Emphasis Area (SEA): Functional Element Adjectival Rating* SEA 1: ... Program Very Good SEA 5: Nuclear Safety Very Good SEA 6: Environmental Regulatory ...

  15. DOE - NNSA/NFO -- Nuclear Testing Archive Fee Schedule

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Nuclear Testing Archive > Fee Schedule NNSANFO Language Options U.S. DOENNSA - Nevada Field Office Nuclear Testing Archive (NTA) Fee Schedule The U.S. Department of Energy ...

  16. Swimming Pool Heating | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Swimming Pool Heating Swimming Pool Heating You can reduce the cost of heating your swimming pool by installing a high-efficiency or solar heater, using a pool cover, managing the ...

  17. Solar pool heating | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Solar pool heating Jump to: navigation, search Pool Heating is a great use for solar energy. Solar pool heating systems can be very effective and inexpensive. The pool itself is...

  18. Swimming Pool Covers | Department of Energy

    Energy.gov (indexed) [DOE]

    of heating pools with and without pool covers in different U.S. cities: Estimating Heat Pump Swimming Pool Heater Costs and Savings Estimating Swimming Pool Gas Heating Costs...

  19. Alternative Fuels Data Center: State Fees as Transportation Funding

    Alternative Fuels and Advanced Vehicles Data Center

    Alternatives Fees as Transportation Funding Alternatives to someone by E-mail Share Alternative Fuels Data Center: State Fees as Transportation Funding Alternatives on Facebook Tweet about Alternative Fuels Data Center: State Fees as Transportation Funding Alternatives on Twitter Bookmark Alternative Fuels Data Center: State Fees as Transportation Funding Alternatives on Google Bookmark Alternative Fuels Data Center: State Fees as Transportation Funding Alternatives on Delicious Rank

  20. Richland Operations Office's Fiscal Year 2014 Fee Evaluation Summary

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Operations Office's Fiscal Year 2014 Fee Evaluation Summary Contractor: CH2M HILL Plateau Remediation Company (CHPRC) Contract: Plateau Remediation Contract Contract Number: DE-AC06-08RL14788 Award Period: October 2013 through September 2014 (fiscal year 2014) Basis of Evaluation: Performance Evaluation and Measurement Plan (PEMP) Award Fee Available: $9,815,000 Award Fee Earned: $9,659,555 Award Fee Area Adjectival Ratings: Excellent (Earnings represent 98 percent of available fee) Significant

  1. Richland Operations Office's Fiscal Year 2015 Fee Evaluation Summary

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Office's Fiscal Year 2015 Fee Evaluation Summary Contractor: CH2M HILL Plateau Remediation Company (CHPRC) Contract: Plateau Remediation Contract Contract Number: DE-AC06-08RL14788 Award Period: October 2014 through September 2015 (fiscal year 2015) Basis of Evaluation: Performance Evaluation and Measurement Plan (PEMP) Award Fee Available: $10,899,475 Award Fee Earned: $10,591,975 Award Fee Area Adjectival Ratings: Excellent (Earnings represent 95 percent of available fee) Significant

  2. Richland Operations Office's Fiscal Year 2013 Fee Evaluation Summary

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Office's Fiscal Year 2013 Fee Evaluation Summary Contractor: CH2M HILL Plateau Remediation Company (CHPRC) Contract: Plateau Remediation Contract Contract Number: DE-AC06-08RL14788 Award Period: October 2012 through September 2013 (fiscal year 2013) Basis of Evaluation: Performance Evaluation and Measurement Plan (PEMP) Award Fee Available: $14,092,235 (includes fee set aside for multi-year incentives for the Plutonium Finishing Plant project) Award Fee Earned: $4,910,099 Award Fee Area

  3. Release of Department of Energy Award Fee and Incentive Fee Reports

    Energy.gov [DOE]

    To provide a consistent Department of Energy approach on the disclosure of award fee and incentive fee reports (fee determination reports) for management and operating contracts and other major contracts at the Department’s sites, the Department will, in the near future, be implementing the following policy: programs shall, at a minimum, publish a one-page score card for each contractor summarizing the fee determination and release the fee determination report upon request. However, programs will only release the fee determination report to the public after appropriate redactions are made. The Department’s Senior Procurement Executives, in consultation with the Heads of Contracting Activities and the Office of General Counsel, intend to develop and issue the policy shortly.

  4. Swimming Pool Covers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Swimming Pool Covers Swimming Pool Covers Covering a pool when it is not in use is the single most effective means of reducing pool heating costs. | Photo courtesy of Aquatherm Industries. Covering a pool when it is not in use is the single most effective means of reducing pool heating costs. | Photo courtesy of Aquatherm Industries. You can significantly reduce swimming pool heating costs by using a pool cover. On the following pages, see the tables showing the costs of heating pools with and

  5. RL's Fiscal Year 2013 Fee Evaluation Summary

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Evaluation and Measurement Plan (PEMP) Award Fee Available: 300,000.00 Award ... The FY 13 PEMP for this contract is available at: http:www.hanford.govfiles.cfm...

  6. Sacramento Ordinance to Waive Solar PV Fees

    Office of Energy Efficiency and Renewable Energy (EERE)

    This is an ordinance by the city of Sacramento to suspend for the calendar years 2007-2009 all fees related to installation of photovoltaic systems on existing residences.

  7. FY 14 Award Fee Determination Scorecard

    Office of Environmental Management (EM)

    14 Award Fee Determination Scorecard Contractor: Swift and Staley Inc. (SST) Contract: DE-AC30-10CC40021 Award Period: October 1,2013 - September 30,2014 Basis of Evaluation: FY 14 ...

  8. WAI Contract & Fee Determination | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    It is contract DE-EM0000323, and it includes all sections through MOD80. PDF icon WAI Contract (DE-EM0000323) PDF icon Fee determination letter (Oct. 2014) More Documents & ...

  9. CONCUR: AWARD FEE PLAN - FY15

    Office of Environmental Management (EM)

    as Facility Support Services Contract Award Fee Plan Contract Number DE-CI0000004 3 editorial or personnel changes may be made and implemented without being provided to the...

  10. A simplified model of decontamination by BWR steam suppression pools

    SciTech Connect (OSTI)

    Powers, D.A.

    1997-05-01

    Phenomena that can decontaminate aerosol-laden gases sparging through steam suppression pools of boiling water reactors during reactor accidents are described. Uncertainties in aerosol properties, aerosol behavior within gas bubbles, and bubble behavior in plumes affect predictions of decontamination by steam suppression pools. Uncertainties in the boundary and initial conditions that are dictated by the progression of severe reactor accidents and that will affect predictions of decontamination by steam suppression pools are discussed. Ten parameters that characterize boundary and initial condition uncertainties, nine parameters that characterize aerosol property and behavior uncertainties, and eleven parameters that characterize uncertainties in the behavior of bubbles in steam suppression pools are identified. Ranges for the values of these parameters and subjective probability distributions for parametric values within the ranges are defined. These uncertain parameters are used in Monte Carlo uncertainty analyses to develop uncertainty distributions for the decontamination that can be achieved by steam suppression pools and the size distribution of aerosols that do emerge from such pools. A simplified model of decontamination by steam suppression pools is developed by correlating features of the uncertainty distributions for total decontamination factor, DF(total), mean size of emerging aerosol particles, d{sub p}, and the standard deviation of the emerging aerosol size distribution, {sigma}, with pool depth, H. Correlations of the median values of the uncertainty distributions are suggested as the best estimate of decontamination by suppression pools. Correlations of the 10 percentile and 90 percentile values of the uncertainty distributions characterize the uncertainty in the best estimates. 295 refs., 121 figs., 113 tabs.

  11. Jandy Pool Products: Order (2010-CE-1111)

    Energy.gov [DOE]

    DOE ordered Jandy Pool Products, Inc. to pay a $10,000 civil penalty after finding Jandy Pool Products had failed to certify that certain models of pool heaters comply with the applicable energy conservation standards.

  12. Swimming Pool Covers | Department of Energy

    Office of Environmental Management (EM)

    Gas Heating Costs and Savings Use of a pool cover also can help reduce the size of a solar pool heating system, which can save money. How They Work Swimming pools lose energy in...

  13. Gas Swimming Pool Heaters | Department of Energy

    Energy.gov (indexed) [DOE]

    Gas Swimming Pool Heaters Gas-fired pool heaters remain the most popular system for heating swimming pools. Today you can find new gas-fired heater models with much higher...

  14. Gas Swimming Pool Heaters | Department of Energy

    Energy.gov (indexed) [DOE]

    and pool use, they may not be the most energy-efficient option when compared to heat pump and solar pool heaters. How They Work Gas pool heaters use either natural gas or...

  15. Section L Attachment I - Summary and Fee Sheet Amendment 000002.xlsx

    National Nuclear Security Administration (NNSA)

    I Summary and Fee Sheet Amendment 000002 Nevada National Security Site Management and Operating (M&O) Contract PROPOSED 2017 Mgt Team Costs 2018 Mgt Team Costs Subtotal $0 FEE CLIN 0001 - Management and Operation of NNSS Base Term Year 1 Year 2 Year 3 Year 4 Year 5 Option Term Year 1 Year 2 Year 3 Year 4 Year 5 Subtotal $0 CLIN 0002 - Strategic Partnership Program Base Term Year 1 Year 2 Year 3 Year 4 Year 5 Option Term Year 1 Year 2 Year 3 Year 4 Year 5 Subtotal $0 TOTAL ALL $0 Mgt Team

  16. Patricia Poole-Shirriel | Department of Energy

    Energy.gov (indexed) [DOE]

    Patricia Poole-Shirriel Team Leader, Human Resource Management Team Ms. Poole-Shirriel ... support specialist, responsible for all human resource and administrative functions. Ms. ...

  17. Award Fee Determination Scorecard Contractor: Bechtel National, Inc. (BNI)

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Contractor: Bechtel National, Inc. (BNI) Contract: Design, Construction, and Commissioning of the Hanford Tank Waste Treatment & Immobilization Plant Contract Number: DE-AC27-01RV14136 Award Fee Period: January 1, 2014 to June 30, 2014 Basis of Evaluation: 2014-A Performance Evaluation and Measurement Plan Award Fee Available: $6,300,000 Award Fee Earned: $3,970,000 (63.0%) Incentive B.1 - Award Fee-Project Management The fee for Project Management is divided into three Award Fee Objectives

  18. Award Fee Determination Scorecard Contractor: Bechtel National, Inc. (BNI)

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Award Fee Determination Scorecard Contractor: Bechtel National, Inc. (BNI) Contract: Design, Construction, and Commissioning of the Hanford Tank Waste Treatment & Immobilization Plant Contract Number: DE-AC27-01RV14136 Award Fee Period: July 1, 2014 to December 31, 2014 Basis of Evaluation: 2014-B Performance Evaluation and Measurement Plan Award Fee Available: $6,300,000 Award Fee Earned: $4,095,000 (65.0%) Incentive B.1 - Award Fee-Project Management - Good The fee for Project Management

  19. Award Fee Determination Scorecard Contractor: Washington River Protection Solutions, LLC

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Washington River Protection Solutions, LLC Contract: Tank Operations Contract Contract Number: DE-AC27-08RV14800 Award Fee Period: October 1, 2014 to September 30, 2015 Basis of Evaluation: FY 2015 Award Fee, Performance Evaluation and Measurement Plan Award Fee Available: $15,600,000 Award Fee Earned: $13,728,000 (88%) Award Fee Area Adjectival Ratings for each Award Fee Special Emphasis Area (SEA): Functional Element Adjectival Rating* SEA 1: Management of Single-Shell (SST) and Double-Shell

  20. U.S. Department of Energy Releases Revised Total System Life Cycle Cost

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Estimate and Fee Adequacy Report for Yucca Mountain Project | Department of Energy Revised Total System Life Cycle Cost Estimate and Fee Adequacy Report for Yucca Mountain Project U.S. Department of Energy Releases Revised Total System Life Cycle Cost Estimate and Fee Adequacy Report for Yucca Mountain Project August 5, 2008 - 2:40pm Addthis WASHINGTON, DC -The U.S. Department of Energy (DOE) today released a revised estimate of the total system life cycle cost for a repository at Yucca

  1. ACQUISITION LETTER 2014-02: PROVISIONAL PAYMENT OF FEE | Department...

    Energy.gov (indexed) [DOE]

    on provisional payment of fee for non management and operating contracts. PF2014-08 Acquisition Letter 2014-02 Provisional Payment of FeeAcquisition Letter 2014-02 Provisional ...

  2. Section L Attachment I - Summary and Fee Sheet Amendment 000002...

    National Nuclear Security Administration (NNSA)

    I Summary and Fee Sheet Amendment 000002 Nevada National Security Site Management and Operating (M&O) Contract PROPOSED 2017 Mgt Team Costs 2018 Mgt Team Costs Subtotal 0 FEE CLIN ...

  3. Utah Water Rights Fee Schedule | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Utah Water Rights Fee Schedule Abstract Water rights fee schedule based on amount appropriated....

  4. Title 18 CFR 381 Fees | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Regulation: Title 18 CFR 381 FeesLegal Abstract Part 381 Fees, Forms under Title 18: Conservation of Power and Water Resources of the U.S. Code of Federal Regulations, current...

  5. Title 11 Alaska Administrative Code Chapter 5 Fees | Open Energy...

    Open Energy Information (Open El) [EERE & EIA]

    5 Fees Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Title 11 Alaska Administrative Code Chapter 5 FeesLegal Abstract...

  6. Alaska Division of Water Permit Fees | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Water Permit Fees Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Alaska Division of Water Permit Fees Author Alaska Division of Water Published...

  7. Method of measuring a liquid pool volume

    DOE Patents [OSTI]

    Garcia, Gabe V.; Carlson, Nancy M.; Donaldson, Alan D.

    1991-01-01

    A method of measuring a molten metal liquid pool volume and in particular molten titanium liquid pools, including the steps of (a) generating an ultrasonic wave at the surface of the molten metal liquid pool, (b) shining a light on the surface of a molten metal liquid pool, (c) detecting a change in the frequency of light, (d) detecting an ultrasonic wave echo at the surface of the molten metal liquid pool, and (e) computing the volume of the molten metal liquid.

  8. U.S. Department of Energy Releases Revised Total System Life...

    Energy Savers

    U.S. Department of Energy Releases Revised Total System Life Cycle Cost Estimate and Fee Adequacy Report ... U.S. Department of Energy Awards Contracts for Waste Storage Canisters for ...

  9. Report on Solar Pool Heating Quantitative Survey

    SciTech Connect (OSTI)

    Synapse Infusion Group, Inc.

    1999-05-06

    This report details the results of a quantitative research study undertaken to better understand the marketplace for solar pool-heating systems from the perspective of residential pool owners.

  10. Solar Swimming Pool Heaters | Department of Energy

    Energy.gov (indexed) [DOE]

    annual operating costs. Actually, solar pool heating is the most cost-effective use of solar energy in many climates. How They Work Most solar pool heating systems include the...

  11. Pool power control in remelting systems

    DOE Patents [OSTI]

    Williamson, Rodney L.; Melgaard, David K.; Beaman, Joseph J.

    2011-12-13

    An apparatus for and method of controlling a remelting furnace comprising adjusting current supplied to an electrode based upon a predetermined pool power reference value and adjusting the electrode drive speed based upon the predetermined pool power reference value.

  12. Total Imports

    U.S. Energy Information Administration (EIA) (indexed site)

    Data Series: Imports - Total Imports - Crude Oil Imports - Crude Oil, Commercial Imports - by SPR Imports - into SPR by Others Imports - Total Products Imports - Total Motor Gasoline Imports - Finished Motor Gasoline Imports - Reformulated Gasoline Imports - Reformulated Gasoline Blended w/ Fuel Ethanol Imports - Other Reformulated Gasoline Imports - Conventional Gasoline Imports - Conv. Gasoline Blended w/ Fuel Ethanol Imports - Conv. Gasoline Blended w/ Fuel Ethanol, Ed55 & < Imports -

  13. Managing Swimming Pool Temperature for Energy Efficiency | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Managing Swimming Pool Temperature for Energy Efficiency Managing Swimming Pool Temperature for Energy Efficiency May 29, 2012 - 7:42pm Addthis Managing Swimming Pool Temperature...

  14. Retail Demand Response in Southwest Power Pool | Department of...

    Energy Savers

    Retail Demand Response in Southwest Power Pool Retail Demand Response in Southwest Power Pool In 2007, the Southwest Power Pool (SPP) formed the Customer Response Task Force (CRTF) ...

  15. EA-098 Western Systems Power Pool | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    EA-098 Western Systems Power Pool Order authorizing Western Systems Power Pool to export electric energy to Canada PDF icon EA- 98 Western Systems Power Pool More Documents & ...

  16. EA-98-I Western Systems Power Pool | Department of Energy

    Energy Savers

    Power Pool Order authorizing Western Systems Power Pool to export electric energy to Canada. PDF icon EA-98-I Western Systems Power Pool More Documents & Publications Application...

  17. Method of measuring a liquid pool volume

    DOE Patents [OSTI]

    Garcia, G.V.; Carlson, N.M.; Donaldson, A.D.

    1991-03-19

    A method of measuring a molten metal liquid pool volume and in particular molten titanium liquid pools is disclosed, including the steps of (a) generating an ultrasonic wave at the surface of the molten metal liquid pool, (b) shining a light on the surface of a molten metal liquid pool, (c) detecting a change in the frequency of light, (d) detecting an ultrasonic wave echo at the surface of the molten metal liquid pool, and (e) computing the volume of the molten metal liquid. 3 figures.

  18. Microsoft Word - DRAFT FY15 Award Fee Plan LATA - 09-19-2014...

    Office of Environmental Management (EM)

    Remediation Contract Award Fee Plan Contract Number: DE-AC30-10CC40020 AWARD FEE PLAN FOR LATA ... (if applicable), (b) one-page scorecard, (c) Award Fee Determination Letter, ...

  19. UCOR Contract & Fee Determination | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    UCOR Contract & Fee Determination UCOR Contract & Fee Determination The attached document is UCOR's conformed contract with the Oak Ridge Office of Environmental Managment. It is contract DE-SC0004645, and it includes all sections through MOD94. UCOR contract (DE-SC0004645) (4 MB) UCOR fee determination letter (July 2016) (571.83 KB) More Documents & Publications PPPO Contract Awards Update to the Department of Energy Acquisition Guide Chapter 16.2, Performance Evaluation and

  20. Award Fee Determination Shows Performance Improvement in WTP Contractor |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Award Fee Determination Shows Performance Improvement in WTP Contractor Award Fee Determination Shows Performance Improvement in WTP Contractor April 14, 2016 - 1:15pm Addthis RICHLAND, Wash. - EM Office of River Protection (ORP) Waste Treatment and Immobilization Plant (WTP) contractor Bechtel National Inc. improved its performance slightly in calendar year 2015 compared to the last half of 2014, earning 66 percent of its possible award fee, or $8.31 million out of a

  1. Gordon Fee, part 1 | Y-12 National Security Complex

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Blake Case Larry Case Patrick Case Dorothy Coker Gordon Fee Linda Fellers Louis Freels Marie Guy Nathan Henry Agnes Houser John Rice Irwin Harvey Kite Charlie Manning Alice...

  2. Gordon Fee, part 2 | Y-12 National Security Complex

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Blake Case Larry Case Patrick Case Dorothy Coker Gordon Fee Linda Fellers Louis Freels Marie Guy Nathan Henry Agnes Houser John Rice Irwin Harvey Kite Charlie Manning Alice...

  3. Sacramento Ordinance to Waive Fees for Solar Hot Water

    Energy.gov [DOE]

    An ordinance suspending for the calendar years 2007-2009 all fees related to installations of solar water heaters on existing residences.

  4. Inspection of Westinghouse Savannah River Company Fees for Managing...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... The ** **printed document may also contain charts and ... (IG-1), Department of ** **Energy, 1000 Independence Avenue, ... for MMC, before conversion to an award fee basis, ...

  5. Wetland Permit Application Fees 2015 | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook: Wetland Permit Application Fees 2015PermittingRegulatory GuidanceGuide...

  6. Oregon Fees for Underground Injection Control Program Fact Sheet...

    Open Energy Information (Open El) [EERE & EIA]

    Fees for Underground Injection Control Program Fact Sheet Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - Supplemental Material:...

  7. Microsoft Word - Award Fee Determination Scorecard for FY 2013...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Award Fee Area Adjectival Ratings: Functional Element Adjectival Rating* Conduct of ... Program Compliance Very Good Nuclear Safety Very Good Environmental Regulatory ...

  8. EA-98-K Western Systems Power Pool | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    K Western Systems Power Pool EA-98-K Western Systems Power Pool Order authorizing Western Systems Power Pool to export electric energy to Canada. EA-98-K Western Systems Power Pool ...

  9. EA-98-G WESTERN SYSTEMS POWER POOL | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    G WESTERN SYSTEMS POWER POOL EA-98-G WESTERN SYSTEMS POWER POOL Order authorizing Western System Power Pool to export electric energy to Canada EA-98-G WESTERN SYSTEMS POWER POOL ...

  10. EA-98-H Western Systems Power Pool | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    H Western Systems Power Pool EA-98-H Western Systems Power Pool Order Authorizing Western Systems Power Pool to export electric energy to Canada EA-98-H Western Systems Power Pool ...

  11. Award\tFee\tDetermination\tScorecard Contractor: Savannah River...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Performance and Evaluation Plan (PEMP) Award Fee: 3,000,000.00 Incentive Fee: ... each contract year is identified in the Performance Evaluation Measurement Plan (PEMP). ...

  12. EA-98-J Western Systems Power Pool | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    J Western Systems Power Pool EA-98-J Western Systems Power Pool Order authorizing Western Systems Power Pool to export electric energy to Canada EA-98-J Western Systems Power Pool (1.56 MB) More Documents & Publications EA-098 Western Systems Power Pool EA-98-I Western Systems Power Pool EA-98-K

  13. EA-98-L Western Systems Power Pool | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    L Western Systems Power Pool EA-98-L Western Systems Power Pool Order authorizing Western Systems Power Pool to export electric energy to Canada EA-98-L Western Systems Power Pool (161.12 KB) More Documents & Publications EA-098 Western Systems Power Pool EA-98-I Western Systems Power Pool EA-98-K

  14. EA-098-E Western Systems Power Pool | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    E Western Systems Power Pool EA-098-E Western Systems Power Pool Order authorizing Western Systems Power Pool to export electric energy to Canada EA- 98-E Western Systems Power Pool (13.43 KB) More Documents & Publications EA-98-G WESTERN SYSTEMS POWER POOL EA-98-F, Western Systems Power Pool EA-98-M Members of WSPP, Inc.

  15. Fee Determinations: Requirement to Obtain Acquisition Executive's Input

    Energy.gov [DOE]

    On January 28, 2013, the Deputy Secretary issued the attached memorandum to the Department's senior officials requiring any Fee Determining Official whose contract falls under the cognizance of an Acquisition Executive to brief and obtain the input of that Acquisition Executive before determining earned fee under the contract.

  16. A NOVEL APPROACH TO SPENT FUEL POOL DECOMMISSIONING

    SciTech Connect (OSTI)

    R. L. Demmer

    2011-04-01

    The Idaho National Laboratory (INL) has been at the forefront of developing methods to reduce the cost and schedule of deactivating spent fuel pools (SFP). Several pools have been deactivated at the INL using an underwater approach with divers. These projects provided a basis for the INL cooperation with the Dresden Nuclear Power Station Unit 1 SFP (Exelon Generation Company) deactivation. It represents the first time that a commercial nuclear power plant (NPP) SFP was decommissioned using this underwater coating process. This approach has advantages in many aspects, particularly in reducing airborne contamination and allowing safer, more cost effective deactivation. The INL pioneered underwater coating process was used to decommission three SFPs with a total combined pool volume of over 900,000 gallons. INL provided engineering support and shared project plans to successfully initiate the Dresden project. This report outlines the steps taken by INL and Exelon to decommission SFPs using the underwater coating process. The rationale used to select the underwater coating process and the advantages and disadvantages are described. Special circumstances are also discussed, such as the use of a remotely-operated underwater vehicle to visually and radiologically map the pool areas that were not readily accessible. A larger project, the INTEC-603 SFP in-situ (grouting) deactivation, is reviewed. Several specific areas where special equipment was employed are discussed and a Lessons Learned evaluation is included.

  17. WEIGHTED GUIDELINES PROFIT/FEE OBJECTIVE

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    WEIGHTED GUIDELINES PROFIT/FEE OBJECTIVE DOE F 4220.23 (06-95) U.S. DEPARTMENT OF ENERGY 1. CONTRACTOR IDENTIFICATION 2. TYPE OF ACQUISTION ACTION (REFER TO OFPP MANUAL, FEDERAL PROCUREMENT DATA SYSTEMS - PRODUCT AND SERVICE CODES. APRIL 1980) a. Name c. Street address b. Division (If any) d. City e. State f. Zip code a. SUPPLIES & EQUIPMENT b. RESEARCH & DEVELOPMENT c. SERVICES: (1) ARCHITECT-ENGINEER: (2) MANAGEMENT SERVICES: (3) MEDICAL: (4) OTHER (e.g., SUPPORT SERVICES) 3.

  18. LinguisticBelief and PoolEvidence

    Energy Science and Technology Software Center (OSTI)

    2008-03-11

    LinguisticBelief allows the creation and analysis of combinations of linguistic variables with epistemic uncertainty for decision making. The model is solved using approximate reasoning to implement the belief/plausibility measure of uncertainty for combinations of variables expressed as purely linguistic fuzzy sets. PoolEvidence pools evidence for linguistic variables from many experts for input into LinguisticBelief.

  19. EA-186-A New England Power Pool | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    -A New England Power Pool EA-186-A New England Power Pool Order authorizing New England Power Pool to export electric energy to Canada. EA-186-A New England Power Pool (728.53 KB) More Documents & Publications EA-98-I Western Systems Power Pool EA-98-K Western Systems Power Pool Application to Export Electric Energy OE Docket No. EA-298 New England Power Pool (NEPOOL)

  20. Award Fee Evaluation Period 6 Determination Scorecard Contractor: Fluor-BWXT Portsmouth LLC

    Office of Environmental Management (EM)

    6 Determination Scorecard Contractor: Fluor-BWXT Portsmouth LLC Contract: DE-AC30-10CC40017 Award Fee Evaluation Period: Fiscal Year 2015 (October 1, 2015 to March 28, 2016) Basis of Evaluation: Award Fee Plan for Fluor-BWXT Portsmouth LLC Award Fee Evaluation Period 6 Categories of Performance: Subjective: $3,858,795 PBI: $9,003,856 Super PBI: $11,623,818 Stretch: $0 Award Fee Available: $24,486,469 Award Fee Earned: $6,823,811 (27.86%) Categories of Performance Award Fee Award Fee Area

  1. Paducah Infrastructure Contract Award Fee Plan Contract Number: DE-AC30-10CC40021

    Office of Environmental Management (EM)

    Paducah Infrastructure Contract Award Fee Plan Contract Number: DE-AC30-10CC40021 TABLE OF CONTENTS (i) PAGE 1. INTRODUCTION 1 2. DEFINITION OF TERMS 1 3. AWARD FEE STRUCTURE 1 4. ORGANIZATIONAL STRUCTURE 2 5. RESPONSIBILITIES 2 6. AWARD FEE AMOUNTS AND PERIODS 3 7. AWARD FEE PROCESS 4 8. TERMINATION FOR CONVENIENCE 6 EXHIBITS 1. Performance Evaluation Board Members and Advisors 7 2. Award Fee Rating Table, Award Fee Conversion Chart and Award Fee Calculations 8 3. Rating Criteria 9 4. Rating

  2. Acquisition Guide Chapter 70.15 - M&O Contractor Incentives - Fee, Rollover

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Performance Fee, and Award Term | Department of Energy 15 - M&O Contractor Incentives - Fee, Rollover of Performance Fee, and Award Term Acquisition Guide Chapter 70.15 - M&O Contractor Incentives - Fee, Rollover of Performance Fee, and Award Term Policy Flash 2008-62 (113.24 KB) Chapter 70.15 - M&O Contractor Incentives - Fee, Rollover of Performance Fee, and Award Term (96.21 KB) More Documents & Publications Microsoft Word - AcqGuide70pt15rev9-OPAM Before the Senate

  3. Apparatus for draining lower drywell pool water into suppresion pool in boiling water reactor

    DOE Patents [OSTI]

    Gluntz, Douglas M.

    1996-01-01

    An apparatus which mitigates temperature stratification in the suppression pool water caused by hot water drained into the suppression pool from the lower drywell pool. The outlet of a spillover hole formed in the inner bounding wall of the suppression pool is connected to and in flow communication with one end of piping. The inlet end of the piping is above the water level in the suppression pool. The piping is routed down the vertical downcomer duct and through a hole formed in the thin wall separating the downcomer duct from the suppression pool water. The piping discharge end preferably has an elevation at or near the bottom of the suppression pool and has a location in the horizontal plane which is removed from the point where the piping first emerges on the suppression pool side of the inner bounding wall of the suppression pool. This enables water at the surface of the lower drywell pool to flow into and be discharged at the bottom of the suppression pool.

  4. Managing Swimming Pool Temperature for Energy Efficiency | Department...

    Energy.gov (indexed) [DOE]

    affects the size of the pool's heater, but also your heating costs if use a gas or heat pump pool heater. Pool water temperatures typically range from 78F to 82F. The...

  5. EA-098-D Western Systems Power Pool | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    D Western Systems Power Pool EA-098-D Western Systems Power Pool Order authorizing Western Systems Power Pool to export electric energy to Canada PDF icon EA- 98-D Western Systems ...

  6. Managing Swimming Pool Temperature for Energy Efficiency | Department...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    only affects the size of the pool's heater, but also your heating costs if use a gas or heat pump pool heater. Pool water temperatures typically range from 78F to 82F. The...

  7. EA-98-F, Western Systems Power Pool | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    F, Western Systems Power Pool EA-98-F, Western Systems Power Pool Order authorizing Western Systems Power Pool to export electric energy to Canada PDF icon EA-98-F, Western Systems ...

  8. EA-98-C Western Systems Power Pool | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    C Western Systems Power Pool EA-98-C Western Systems Power Pool Order authorizing Western Systems Power Pool to export electricity to Canada PDF icon EA-98-C Western Systems Power ...

  9. Performance Study of Swimming Pool Heaters

    SciTech Connect (OSTI)

    McDonald, R.J.

    2009-01-01

    The objective of this report is to perform a controlled laboratory study on the efficiency and emissions of swimming pool heaters based on a limited field investigation into the range of expected variations in operational parameters. Swimming pool heater sales trends have indicated a significant decline in the number of conventional natural gas-fired swimming pool heaters (NGPH). On Long Island the decline has been quite sharp, on the order of 50%, in new installations since 2001. The major portion of the decline has been offset by a significant increase in the sales of electric powered heat pump pool heaters (HPPH) that have been gaining market favor. National Grid contracted with Brookhaven National Laboratory (BNL) to measure performance factors in order to compare the relative energy, environmental and economic consequences of using one technology versus the other. A field study was deemed inappropriate because of the wide range of differences in actual load variations (pool size), geographic orientations, ground plantings and shading variations, number of hours of use, seasonal use variations, occupancy patterns, hour of the day use patterns, temperature selection, etc. A decision was made to perform a controlled laboratory study based on a limited field investigation into the range of expected operational variations in parameters. Critical to this are the frequency of use, temperature selection, and sizing of the heater to the associated pool heating loads. This would be accomplished by installing a limited amount of relatively simple compact field data acquisition units on selected pool installations. This data included gas usage when available and alternately heater power or gas consumption rates were inferred from the manufacturer's specifications when direct metering was not available in the field. Figure 1 illustrates a typical pool heater installation layout.

  10. Idaho Water Right Applications, Forms, and Fees Webpage | Open...

    Open Energy Information (Open El) [EERE & EIA]

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Idaho Water Right Applications, Forms, and Fees Webpage Abstract This webpage provides an overview...

  11. Spent fuel management fee methodology and computer code user's manual.

    SciTech Connect (OSTI)

    Engel, R.L.; White, M.K.

    1982-01-01

    The methodology and computer model described here were developed to analyze the cash flows for the federal government taking title to and managing spent nuclear fuel. The methodology has been used by the US Department of Energy (DOE) to estimate the spent fuel disposal fee that will provide full cost recovery. Although the methodology was designed to analyze interim storage followed by spent fuel disposal, it could be used to calculate a fee for reprocessing spent fuel and disposing of the waste. The methodology consists of two phases. The first phase estimates government expenditures for spent fuel management. The second phase determines the fees that will result in revenues such that the government attains full cost recovery assuming various revenue collection philosophies. These two phases are discussed in detail in subsequent sections of this report. Each of the two phases constitute a computer module, called SPADE (SPent fuel Analysis and Disposal Economics) and FEAN (FEe ANalysis), respectively.

  12. FISCAL YEAR 2014 AWARD FEE DETERMINATION SCORECARD Contractor...

    Office of Environmental Management (EM)

    FISCAL YEAR 2014 AWARD FEE DETERMINATION SCORECARD Contractor: LATA Environmental Services of Kentucky, LLC Contract No.: DE-AC30-10CC40020 Award Period: October 1, 2013 through ...

  13. Award Fee Evaluation Period 5 Determination Scorecard Contractor...

    Office of Environmental Management (EM)

    5 Determination Scorecard Contractor: Fluor-BWXT Portsmouth LLC Contract: DE-AC30-10CC40017 Award Fee Evaluation Period: Fiscal Year 2015 (October 1, 2014 to September 30, 2015) ...

  14. Award Fee Evaluation Period 6 Determination Scorecard Contractor...

    Office of Environmental Management (EM)

    6 Determination Scorecard Contractor: Wastren-EnergX Mission Support, LLC Contract: DE-CI0000004 Award Fee Evaluation Period: Fiscal Year 2015 (October 1, 2014 to September 30, ...

  15. Fact #901: November 30, 2015 States Assessing Fees on Electric...

    Energy.gov (indexed) [DOE]

    PEV Idaho 150 PEV Idaho 100 HEV North Carolina 100 EV Washington 100 EV ... all PEVs that can travel 30 miles using only battery power have an additional 50 fee. ...

  16. Award Fee Determination Scorecard Contractor: Centerra-Savannah River Site

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Award Fee Determination Scorecard Contractor: Centerra-Savannah River Site Contract: Protective Force Security Services Contract Number: DE-AC30-10CC60025 Award Period: October 1, 2014 - September 30, 2015 Basis of Evaluation: Award Fee Plan The contractor is required to provide, operate and maintain an armed and uniformed protective force for the physical protection of United States Department of Energy (DOE) security interests and other such related duties at the Savannah River Site (SRS). The

  17. Brockway Springs Resort Pool & Spa Low Temperature Geothermal...

    Open Energy Information (Open El) [EERE & EIA]

    Brockway Springs Resort Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Brockway Springs Resort Pool & Spa Low Temperature Geothermal Facility...

  18. Sol Duc Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Information (Open El) [EERE & EIA]

    Sol Duc Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Sol Duc Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Sol...

  19. Fire Water Lodge Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Information (Open El) [EERE & EIA]

    Lodge Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Fire Water Lodge Pool & Spa Low Temperature Geothermal Facility Facility Fire Water Lodge...

  20. Buckhorn Mineral Wells Pool & Spa Low Temperature Geothermal...

    Open Energy Information (Open El) [EERE & EIA]

    Buckhorn Mineral Wells Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Buckhorn Mineral Wells Pool & Spa Low Temperature Geothermal Facility...

  1. Medicine Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Information (Open El) [EERE & EIA]

    Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Medicine Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Medicine Hot...

  2. Blue Mountain Hot Spring Guest Ranch Pool & Spa Low Temperature...

    Open Energy Information (Open El) [EERE & EIA]

    Ranch Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Blue Mountain Hot Spring Guest Ranch Pool & Spa Low Temperature Geothermal Facility Facility...

  3. Warm Springs Resort Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Information (Open El) [EERE & EIA]

    Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Warm Springs Resort Pool & Spa Low Temperature Geothermal Facility Facility Warm Springs Resort...

  4. Camas Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Information (Open El) [EERE & EIA]

    Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Camas Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Camas Hot...

  5. Camperworld Hot Springs Pool & Spa Low Temperature Geothermal...

    Open Energy Information (Open El) [EERE & EIA]

    Camperworld Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Camperworld Hot Springs Pool & Spa Low Temperature Geothermal Facility...

  6. Radium Hot Springs Resort Pool & Spa Low Temperature Geothermal...

    Open Energy Information (Open El) [EERE & EIA]

    Radium Hot Springs Resort Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Radium Hot Springs Resort Pool & Spa Low Temperature Geothermal Facility...

  7. Indian Springs Resort Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Information (Open El) [EERE & EIA]

    Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Indian Springs Resort Pool & Spa Low Temperature Geothermal Facility Facility Indian Springs Resort...

  8. Carson Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Information (Open El) [EERE & EIA]

    Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Carson Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Carson Hot...

  9. Baumgartner Hot Springs Pool & Spa Low Temperature Geothermal...

    Open Energy Information (Open El) [EERE & EIA]

    Baumgartner Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Baumgartner Hot Springs Pool & Spa Low Temperature Geothermal Facility...

  10. Grover Hot Springs State Park Pool & Spa Low Temperature Geothermal...

    Open Energy Information (Open El) [EERE & EIA]

    Hot Springs State Park Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Grover Hot Springs State Park Pool & Spa Low Temperature Geothermal Facility...

  11. Twin Springs Resort Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Information (Open El) [EERE & EIA]

    Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Twin Springs Resort Pool & Spa Low Temperature Geothermal Facility Facility Twin Springs Resort...

  12. Wilbur Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Information (Open El) [EERE & EIA]

    Wilbur Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Wilbur Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Wilbur...

  13. Lava Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Information (Open El) [EERE & EIA]

    Lava Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Lava Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Lava Hot...

  14. Harbin Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Information (Open El) [EERE & EIA]

    Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Harbin Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Harbin Hot...

  15. Burgdorf Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Information (Open El) [EERE & EIA]

    Burgdorf Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Burgdorf Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility...

  16. Avila Hot Springs Spa & RV Resort Pool & Spa Low Temperature...

    Open Energy Information (Open El) [EERE & EIA]

    Avila Hot Springs Spa & RV Resort Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Avila Hot Springs Spa & RV Resort Pool & Spa Low Temperature...

  17. Goldmeyer Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Information (Open El) [EERE & EIA]

    Goldmeyer Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Goldmeyer Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility...

  18. Palm Springs Spa Resort Casino Pool & Spa Low Temperature Geothermal...

    Open Energy Information (Open El) [EERE & EIA]

    Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Palm Springs Spa Resort Casino Pool & Spa Low Temperature Geothermal Facility Facility Palm...

  19. Hot Springs State Park Pool & Spa Low Temperature Geothermal...

    Open Energy Information (Open El) [EERE & EIA]

    Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Hot Springs State Park Pool & Spa Low Temperature Geothermal Facility Facility Hot Springs State...

  20. Waunita Hot Springs Ranch Pool & Spa Low Temperature Geothermal...

    Open Energy Information (Open El) [EERE & EIA]

    Waunita Hot Springs Ranch Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Waunita Hot Springs Ranch Pool & Spa Low Temperature Geothermal Facility...

  1. Como Springs Resort Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Information (Open El) [EERE & EIA]

    Como Springs Resort Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Como Springs Resort Pool & Spa Low Temperature Geothermal Facility Facility Como...

  2. Ouray Municipal Pool Space Heating Low Temperature Geothermal...

    Open Energy Information (Open El) [EERE & EIA]

    Municipal Pool Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Ouray Municipal Pool Space Heating Low Temperature Geothermal Facility Facility...

  3. Doe Bay Village Resort Pool & Spa Low Temperature Geothermal...

    Open Energy Information (Open El) [EERE & EIA]

    Doe Bay Village Resort Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Doe Bay Village Resort Pool & Spa Low Temperature Geothermal Facility...

  4. List of Solar Pool Heating Incentives | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    List of Solar Pool Heating Incentives Jump to: navigation, search The following contains the list of 117 Solar Pool Heating Incentives. CSV (rows 1 - 117) Incentive Incentive Type...

  5. Stewart Mineral Springs Pool & Spa Low Temperature Geothermal...

    Open Energy Information (Open El) [EERE & EIA]

    Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Stewart Mineral Springs Pool & Spa Low Temperature Geothermal Facility Facility Stewart...

  6. Kaiser Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Information (Open El) [EERE & EIA]

    Kaiser Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Kaiser Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Kaiser...

  7. Fairmont Hot Springs Resort Pool & Spa Low Temperature Geothermal...

    Open Energy Information (Open El) [EERE & EIA]

    Pool & Spa Low Temperature Geothermal Facility Facility Fairmont Hot Springs Resort Sector Geothermal energy Type Pool and Spa Location Anaconda, Montana Coordinates...

  8. Auburn Hot Spring Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Information (Open El) [EERE & EIA]

    Hot Spring Pool & Spa Low Temperature Geothermal Facility Facility Auburn Hot Spring Sector Geothermal energy Type Pool and Spa Location Auburn, Wyoming Coordinates...

  9. Baker's Bar M Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Information (Open El) [EERE & EIA]

    Baker's Bar M Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Baker's Bar M Pool & Spa Low Temperature Geothermal Facility Facility Baker's Bar M...

  10. California Hot Springs Pool & Spa Low Temperature Geothermal...

    Open Energy Information (Open El) [EERE & EIA]

    Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name California Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility California Hot...

  11. Hunt's Ash Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Information (Open El) [EERE & EIA]

    Hunt's Ash Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Hunt's Ash Springs Pool & Spa Low Temperature Geothermal Facility Facility Hunt's...

  12. Jackson Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Information (Open El) [EERE & EIA]

    Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Jackson Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Jackson Hot...

  13. Sleeping Child Hot Springs Pool & Spa Low Temperature Geothermal...

    Open Energy Information (Open El) [EERE & EIA]

    Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Sleeping Child Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Sleeping...

  14. Crystal Crane Hot Springs Pool & Spa Low Temperature Geothermal...

    Open Energy Information (Open El) [EERE & EIA]

    Crystal Crane Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Crystal Crane Hot Springs Pool & Spa Low Temperature Geothermal Facility...

  15. Warner Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Information (Open El) [EERE & EIA]

    Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Warner Springs Pool & Spa Low Temperature Geothermal Facility Facility Warner Springs Sector...

  16. Wheeler Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Information (Open El) [EERE & EIA]

    Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Wheeler Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Wheeler Hot...

  17. Jacumba Hot Springs Health Spa Pool & Spa Low Temperature Geothermal...

    Open Energy Information (Open El) [EERE & EIA]

    Jacumba Hot Springs Health Spa Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Jacumba Hot Springs Health Spa Pool & Spa Low Temperature Geothermal...

  18. Steamboat Springs Health and Rec. Pool & Spa Low Temperature...

    Open Energy Information (Open El) [EERE & EIA]

    Springs Health and Rec. Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Steamboat Springs Health and Rec. Pool & Spa Low Temperature Geothermal...

  19. Lehman Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Information (Open El) [EERE & EIA]

    Lehman Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Lehman Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Lehman...

  20. Horse Creek Hot Spring Pool & Spa Low Temperature Geothermal...

    Open Energy Information (Open El) [EERE & EIA]

    Creek Hot Spring Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Horse Creek Hot Spring Pool & Spa Low Temperature Geothermal Facility Facility...

  1. Bear Trap Hot Spring Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Information (Open El) [EERE & EIA]

    Trap Hot Spring Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Bear Trap Hot Spring Pool & Spa Low Temperature Geothermal Facility Facility Bear...

  2. Salmon Hot Spring Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Information (Open El) [EERE & EIA]

    Hot Spring Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Salmon Hot Spring Pool & Spa Low Temperature Geothermal Facility Facility Salmon Hot...

  3. Granite Creek Hot Spring Pool & Spa Low Temperature Geothermal...

    Open Energy Information (Open El) [EERE & EIA]

    Creek Hot Spring Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Granite Creek Hot Spring Pool & Spa Low Temperature Geothermal Facility Facility...

  4. Challis Hot Spring Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Information (Open El) [EERE & EIA]

    Challis Hot Spring Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Challis Hot Spring Pool & Spa Low Temperature Geothermal Facility Facility...

  5. Alive Polarity's Murrietta Hot Spring Pool & Spa Low Temperature...

    Open Energy Information (Open El) [EERE & EIA]

    Alive Polarity's Murrietta Hot Spring Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Alive Polarity's Murrietta Hot Spring Pool & Spa Low...

  6. River Inn Natural Hot Spring Pool & Spa Low Temperature Geothermal...

    Open Energy Information (Open El) [EERE & EIA]

    Inn Natural Hot Spring Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name River Inn Natural Hot Spring Pool & Spa Low Temperature Geothermal Facility...

  7. Broadwater Hot Spring Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Information (Open El) [EERE & EIA]

    Hot Spring Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Broadwater Hot Spring Pool & Spa Low Temperature Geothermal Facility Facility Broadwater...

  8. Intersecting Cold Pools: Convective Cloud Organization by Cold...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Intersecting Cold Pools: Convective Cloud Organization by Cold Pools over Tropical Ocean For original submission and image(s), see ARM Research Highlights http:www.arm.gov...

  9. Bald Mountain Hot Springs Pool & Spa Low Temperature Geothermal...

    Open Energy Information (Open El) [EERE & EIA]

    Bald Mountain Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Bald Mountain Hot Springs Pool & Spa Low Temperature Geothermal Facility...

  10. Red River Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Information (Open El) [EERE & EIA]

    Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Red River Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Red River Hot...

  11. Verde Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Information (Open El) [EERE & EIA]

    Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Verde Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Verde Hot Springs...

  12. Robinson Bar Pool & Spa Low Temperature Geothermal Facility ...

    Open Energy Information (Open El) [EERE & EIA]

    Robinson Bar Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Robinson Bar Pool & Spa Low Temperature Geothermal Facility Facility Robinson Bar...

  13. Baileys Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Information (Open El) [EERE & EIA]

    Baileys Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Baileys Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility...

  14. Mountain Spa Resort Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Information (Open El) [EERE & EIA]

    Spa Resort Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Mountain Spa Resort Pool & Spa Low Temperature Geothermal Facility Facility Mountain Spa...

  15. Bagby Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Information (Open El) [EERE & EIA]

    Bagby Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Bagby Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Bagby...

  16. The Homestead Resort Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Information (Open El) [EERE & EIA]

    Homestead Resort Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name The Homestead Resort Pool & Spa Low Temperature Geothermal Facility Facility The...

  17. Ritter Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Information (Open El) [EERE & EIA]

    Ritter Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Ritter Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Ritter...

  18. Trimble Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Information (Open El) [EERE & EIA]

    Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Trimble Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Trimble Hot...

  19. Riverside Inn Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Information (Open El) [EERE & EIA]

    Inn Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Riverside Inn Pool & Spa Low Temperature Geothermal Facility Facility Riverside Inn Sector...

  20. Jackalope Plunge Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Information (Open El) [EERE & EIA]

    Jackalope Plunge Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Jackalope Plunge Pool & Spa Low Temperature Geothermal Facility Facility Jackalope...

  1. Banbury Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Information (Open El) [EERE & EIA]

    Banbury Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Banbury Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility...

  2. Furnace Creek Ranch Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Information (Open El) [EERE & EIA]

    Ranch Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Furnace Creek Ranch Pool & Spa Low Temperature Geothermal Facility Facility Furnace Creek...

  3. Mystic Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Information (Open El) [EERE & EIA]

    Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Mystic Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Mystic Hot Springs Sector...

  4. Tassajara Buddhist Meditation Pool & Spa Low Temperature Geothermal...

    Open Energy Information (Open El) [EERE & EIA]

    Tassajara Buddhist Meditation Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Tassajara Buddhist Meditation Pool & Spa Low Temperature Geothermal...

  5. Frank Nixon Residence Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Information (Open El) [EERE & EIA]

    Frank Nixon Residence Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Frank Nixon Residence Pool & Spa Low Temperature Geothermal Facility Facility...

  6. Murphy Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Information (Open El) [EERE & EIA]

    Murphy Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Murphy Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Murphy...

  7. Orr Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Information (Open El) [EERE & EIA]

    Orr Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Orr Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Orr Hot...

  8. Chico Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Information (Open El) [EERE & EIA]

    Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Chico Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Chico Hot Springs Sector...

  9. Elkhorn Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Information (Open El) [EERE & EIA]

    Elkhorn Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Elkhorn Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility...

  10. Cody Athletic Club Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Information (Open El) [EERE & EIA]

    Cody Athletic Club Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Cody Athletic Club Pool & Spa Low Temperature Geothermal Facility Facility Cody...

  11. Vichy Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Information (Open El) [EERE & EIA]

    Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Vichy Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Vichy Hot Springs Sector...

  12. Campbell Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Information (Open El) [EERE & EIA]

    Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Campbell Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Campbell...

  13. Lincoln Avenue Spa Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Information (Open El) [EERE & EIA]

    Lincoln Avenue Spa Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Lincoln Avenue Spa Pool & Spa Low Temperature Geothermal Facility Facility...

  14. Bowers Mansion Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Information (Open El) [EERE & EIA]

    Bowers Mansion Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Bowers Mansion Pool & Spa Low Temperature Geothermal Facility Facility Bowers Mansion...

  15. Circle Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Information (Open El) [EERE & EIA]

    Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Circle Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Circle Hot Springs Sector...

  16. Camp Aqua Pool & Spa Low Temperature Geothermal Facility | Open...

    Open Energy Information (Open El) [EERE & EIA]

    Aqua Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Camp Aqua Pool & Spa Low Temperature Geothermal Facility Facility Camp Aqua Sector Geothermal...

  17. Bozeman Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Information (Open El) [EERE & EIA]

    Bozeman Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Bozeman Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility...

  18. Dunton Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Information (Open El) [EERE & EIA]

    Dunton Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Dunton Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Dunton...

  19. Matilija Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Information (Open El) [EERE & EIA]

    Matilija Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Matilija Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility...

  20. Chena Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Information (Open El) [EERE & EIA]

    Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Chena Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Chena Hot Springs Sector...

  1. Mercey Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Information (Open El) [EERE & EIA]

    Mercey Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Mercey Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Mercey...

  2. Jones Splashland Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Information (Open El) [EERE & EIA]

    Splashland Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Jones Splashland Pool & Spa Low Temperature Geothermal Facility Facility Jones Splashland...

  3. Town of Tecopa Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Information (Open El) [EERE & EIA]

    Tecopa Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Town of Tecopa Pool & Spa Low Temperature Geothermal Facility Facility Town of Tecopa Sector...

  4. Steamboat Villa Hot Springs Spa Pool & Spa Low Temperature Geothermal...

    Open Energy Information (Open El) [EERE & EIA]

    Villa Hot Springs Spa Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Steamboat Villa Hot Springs Spa Pool & Spa Low Temperature Geothermal Facility...

  5. Belknap Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Information (Open El) [EERE & EIA]

    Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Belknap Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Belknap Hot...

  6. Evan's Plunge Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Information (Open El) [EERE & EIA]

    Evan's Plunge Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Evan's Plunge Pool & Spa Low Temperature Geothermal Facility Facility Evan's Plunge...

  7. Bronze Boot Spa Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Information (Open El) [EERE & EIA]

    Bronze Boot Spa Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Bronze Boot Spa Pool & Spa Low Temperature Geothermal Facility Facility Bronze Boot...

  8. Castle Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Information (Open El) [EERE & EIA]

    Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Castle Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Castle Hot...

  9. Drakesbad Guest Ranch Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Information (Open El) [EERE & EIA]

    Drakesbad Guest Ranch Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Drakesbad Guest Ranch Pool & Spa Low Temperature Geothermal Facility Facility...

  10. International Spa Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Information (Open El) [EERE & EIA]

    Spa Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name International Spa Pool & Spa Low Temperature Geothermal Facility Facility International Spa...

  11. Crystal Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Information (Open El) [EERE & EIA]

    Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Crystal Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Crystal Hot...

  12. The Saratoga Inn Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Information (Open El) [EERE & EIA]

    Saratoga Inn Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name The Saratoga Inn Pool & Spa Low Temperature Geothermal Facility Facility The Saratoga...

  13. Austin Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Information (Open El) [EERE & EIA]

    Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Austin Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Austin Hot...

  14. Cement Creek Ranch Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Information (Open El) [EERE & EIA]

    Cement Creek Ranch Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Cement Creek Ranch Pool & Spa Low Temperature Geothermal Facility Facility Cement...

  15. Goddard Pool & Spa Low Temperature Geothermal Facility | Open...

    Open Energy Information (Open El) [EERE & EIA]

    Goddard Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Goddard Pool & Spa Low Temperature Geothermal Facility Facility Goddard Sector Geothermal...

  16. Bashfords Hot Mineral Spa Pool & Spa Low Temperature Geothermal...

    Open Energy Information (Open El) [EERE & EIA]

    Bashfords Hot Mineral Spa Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Bashfords Hot Mineral Spa Pool & Spa Low Temperature Geothermal Facility...

  17. Heise Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Information (Open El) [EERE & EIA]

    Heise Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Heise Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Heise...

  18. Downatta Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Information (Open El) [EERE & EIA]

    Downatta Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Downatta Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility...

  19. Steele Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Information (Open El) [EERE & EIA]

    Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Steele Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Steele Hot...

  20. Sierra Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Information (Open El) [EERE & EIA]

    Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Sierra Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Sierra Hot...

  1. Hot Creek Pool & Spa Low Temperature Geothermal Facility | Open...

    Open Energy Information (Open El) [EERE & EIA]

    Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Hot Creek Pool & Spa Low Temperature Geothermal Facility Facility Hot Creek Sector Geothermal energy...

  2. Boulder Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Information (Open El) [EERE & EIA]

    Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Boulder Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Boulder Hot Springs...

  3. Mono Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Information (Open El) [EERE & EIA]

    Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Mono Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Mono Hot...

  4. Fountain of Youth Spa Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Information (Open El) [EERE & EIA]

    Spa Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Fountain of Youth Spa Pool & Spa Low Temperature Geothermal Facility Facility Fountain of Youth...

  5. Darrough Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Information (Open El) [EERE & EIA]

    Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Darrough Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Darrough Hot Springs...

  6. Roman Spa Hot Springs Resort Pool & Spa Low Temperature Geothermal...

    Open Energy Information (Open El) [EERE & EIA]

    Spa Hot Springs Resort Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Roman Spa Hot Springs Resort Pool & Spa Low Temperature Geothermal Facility...

  7. Tolovana Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Information (Open El) [EERE & EIA]

    Tolovana Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Tolovana Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility...

  8. Chief Washakie Plunge Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Information (Open El) [EERE & EIA]

    Washakie Plunge Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Chief Washakie Plunge Pool & Spa Low Temperature Geothermal Facility Facility Chief...

  9. Miracle Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Information (Open El) [EERE & EIA]

    Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Miracle Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Miracle Hot Springs...

  10. Home Hotel and Motel Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Information (Open El) [EERE & EIA]

    Hotel and Motel Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Home Hotel and Motel Pool & Spa Low Temperature Geothermal Facility Facility Home...

  11. Symes Hotel and Medicinal Springs Pool & Spa Low Temperature...

    Open Energy Information (Open El) [EERE & EIA]

    Symes Hotel and Medicinal Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Symes Hotel and Medicinal Springs Pool & Spa Low Temperature...

  12. Glenwood Hot Springs Hotel Pool & Spa Low Temperature Geothermal...

    Open Energy Information (Open El) [EERE & EIA]

    Hotel Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Glenwood Hot Springs Hotel Pool & Spa Low Temperature Geothermal Facility Facility Glenwood...

  13. Spa Motel Pool & Spa Low Temperature Geothermal Facility | Open...

    Open Energy Information (Open El) [EERE & EIA]

    Spa Motel Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Spa Motel Pool & Spa Low Temperature Geothermal Facility Facility Spa Motel Sector...

  14. Veyo Resort Pool & Spa Low Temperature Geothermal Facility |...

    Open Energy Information (Open El) [EERE & EIA]

    Veyo Resort Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Veyo Resort Pool & Spa Low Temperature Geothermal Facility Facility Veyo Resort Sector...

  15. Notaras Lodge Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Information (Open El) [EERE & EIA]

    Notaras Lodge Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Notaras Lodge Pool & Spa Low Temperature Geothermal Facility Facility Notaras Lodge...

  16. Safford Pool & Spa Low Temperature Geothermal Facility | Open...

    Open Energy Information (Open El) [EERE & EIA]

    Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Safford Pool & Spa Low Temperature Geothermal Facility Facility Safford Sector Geothermal energy...

  17. Sawtooth Lodge Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Information (Open El) [EERE & EIA]

    Sawtooth Lodge Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Sawtooth Lodge Pool & Spa Low Temperature Geothermal Facility Facility Sawtooth Lodge...

  18. The Spa Pool & Spa Low Temperature Geothermal Facility | Open...

    Open Energy Information (Open El) [EERE & EIA]

    Spa Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name The Spa Pool & Spa Low Temperature Geothermal Facility Facility The Spa Sector Geothermal energy...

  19. Soap Lake Pool & Spa Low Temperature Geothermal Facility | Open...

    Open Energy Information (Open El) [EERE & EIA]

    Soap Lake Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Soap Lake Pool & Spa Low Temperature Geothermal Facility Facility Soap Lake Sector...

  20. Tenakee Pool & Spa Low Temperature Geothermal Facility | Open...

    Open Energy Information (Open El) [EERE & EIA]

    Tenakee Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Tenakee Pool & Spa Low Temperature Geothermal Facility Facility Tenakee Sector Geothermal...

  1. Greenbrier Pool & Spa Low Temperature Geothermal Facility | Open...

    Open Energy Information (Open El) [EERE & EIA]

    Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Greenbrier Pool & Spa Low Temperature Geothermal Facility Facility Greenbrier Sector Geothermal...

  2. Riverdale Resort Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Information (Open El) [EERE & EIA]

    Resort Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Riverdale Resort Pool & Spa Low Temperature Geothermal Facility Facility Riverdale Resort...

  3. Lake Elsinore Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Information (Open El) [EERE & EIA]

    Elsinore Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Lake Elsinore Pool & Spa Low Temperature Geothermal Facility Facility Lake Elsinore Sector...

  4. Green Canyon Hot Springs Pool & Spa Low Temperature Geothermal...

    Open Energy Information (Open El) [EERE & EIA]

    Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Green Canyon Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Green Canyon Hot...

  5. Aqua Caliente County Park Pool & Spa Low Temperature Geothermal...

    Open Energy Information (Open El) [EERE & EIA]

    Aqua Caliente County Park Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Aqua Caliente County Park Pool & Spa Low Temperature Geothermal Facility...

  6. 4 UR Guest Ranch Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Information (Open El) [EERE & EIA]

    UR Guest Ranch Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name 4 UR Guest Ranch Pool & Spa Low Temperature Geothermal Facility Facility 4 UR Guest...

  7. San Luis Bay Estates Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Information (Open El) [EERE & EIA]

    Estates Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name San Luis Bay Estates Pool & Spa Low Temperature Geothermal Facility Facility San Luis Bay...

  8. White Sulphur Hot Springs Pool & Spa Low Temperature Geothermal...

    Open Energy Information (Open El) [EERE & EIA]

    Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name White Sulphur Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility White...

  9. A Novel Approach to Spent Fuel Pool Decommissioning

    SciTech Connect (OSTI)

    R.L. Demmer; J.B. Panozzo; R.J. Christensen

    2008-09-01

    The Dresden Nuclear Power Station Unit 1 Spent Fuel Pool (SFP) (Exelon Generation Co.) was decommissioned using a new underwater coating strategy developed in cooperation with the Idaho National Laboratory (INL). This was the first time that a commercial nuclear power plant (NPP) SFP was decommissioned using this underwater coating approach. This approach has advantages in many aspects, particularly in reducing airborne contamination and in safer, more cost effective deactivation. The process was pioneered at the INL and used to decommission three SFPs with a total combined pool volume of over 900,000 gallons. The INL provided engineering support and shared project plans to successfully initiate the Dresden project. This report outlines the steps taken by the INL and Exelon on the pathway for this activity. The rationale used to select the underwater coating option and the advantages and disadvantages are shown. Special circumstances, such as the use of a remotely operated underwater vehicle to visually and radiologically map the pool areas that were not readily accessible, are discussed. Several specific areas where special equipment was employed are given and a lessons learned evaluation is included.

  10. Decommissioning the Dresden Unit 1 Spent Fuel Pool

    SciTech Connect (OSTI)

    Demmer, R.L.; Bargelt, R.J.; Panozzo, J.B.; Christensen, R.J.

    2006-07-01

    The Dresden Nuclear Power Station, Unit 1 Spent Fuel Pool (SFP) (Exelon Generation Co.) was decommissioned using a new underwater coating strategy developed in cooperation with the Idaho National Laboratory (INL). This was the first time that a commercial nuclear power plant (NPP) SFP was decommissioned using this underwater coating approach. This approach has advantages in many aspects, particularly in reducing airborne contamination and in safer, more cost effective deactivation. The process was pioneered at the INL and used to decommission three SFPs with a total combined pool volume of over 900,000 gallons. The INL provided engineering support and shared project plans to successfully initiate the Dresden project. This report outlines the steps taken by the INL and Exelon on the pathway for this activity. The rationale used to select the underwater coating option and the advantages and disadvantages are shown. Special circumstances, such as the use of a remotely operated underwater vehicle to map (visually and radiologically) the pool areas that were not readily accessible, are discussed. Several specific areas where special equipment was employed are given and a lessons learned evaluation is included. (authors)

  11. Contractor: Contract Number: Contract Type: Total Estimated

    Office of Environmental Management (EM)

    886,608 Computer Sciences Corporation DE-AC06-04RL14383 895,358 899,230 907,583 Cost Plus Award Fee 134,100,336 8,221,404 Fee Available Contract Period: Fee Information...

  12. Total Estimated Contract Cost: Contract Option Period: Performance

    Office of Environmental Management (EM)

    Contractor: Bechtel National Inc. Contract Number: DE-AC27-01RV14136 Contract Type: Cost Plus Award Fee NA Maximum Fee 599,588,540 Fee Available 102,622,325 10,868,785,789...

  13. EA-186 New England Power Pool | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    6 New England Power Pool EA-186 New England Power Pool Order authorizing New England Power Pool to export electric energy to Canada. EA-186 New England Power Pool (14.54 KB) More Documents & Publications EA-232 OGE Energy Resources Inc EA-220-A NRG Power Marketing, Inc

  14. Managing Swimming Pool Temperature for Energy Efficiency | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Managing Swimming Pool Temperature for Energy Efficiency Managing Swimming Pool Temperature for Energy Efficiency Managing Swimming Pool Temperature for Energy Efficiency The water temperature you desire for your swimming pool not only affects the size of the pool's heater, but also your heating costs if use a gas or heat pump pool heater. Pool water temperatures typically range from 78ºF to 82ºF. The American Red Cross recommends a temperature of 78ºF for competitive swimming.

  15. Fiscal Year 2007 Civilian Radioactive Waste Management Fee Adequacy Assessment Report

    Energy.gov [DOE]

    U.S. Department of Energy Office of Civilian Radioactive Waste Management Fee Adequacy Assessment Report is to present an analysis of the adequacy of the fee being paid by nuclear power utilities...

  16. Letter from DOE to URS | CH2M Oak Ridge LLC on Award Fee Determination...

    Office of Environmental Management (EM)

    DOE to URS | CH2M Oak Ridge LLC on Award Fee Determination for April to September 2015 Letter from DOE to URS | CH2M Oak Ridge LLC on Award Fee Determination for April to September ...

  17. Secretarial Determination of the Adequacy of the Nuclear Waste Fund Fee |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Secretarial Determination of the Adequacy of the Nuclear Waste Fund Fee Secretarial Determination of the Adequacy of the Nuclear Waste Fund Fee I adopt and approve the attached annual determination of the Director, Office of Standard Contract Management, that there is no reasonable basis at this time to conclude that either excess or insufficient funds are being collected and thus will not propose an adjustment to the fee to Congress; the fee will, therefore, remain at

  18. Waste Isolation Pilot Plant Contractor Receives 86 Percent of Available Fee

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    | Department of Energy Isolation Pilot Plant Contractor Receives 86 Percent of Available Fee Waste Isolation Pilot Plant Contractor Receives 86 Percent of Available Fee April 27, 2016 - 12:20pm Addthis Nuclear Waste Partnership received about 86 percent of the available fee for the performance period as the Waste Isolation Pilot Plant management and operations contractor. Nuclear Waste Partnership received about 86 percent of the available fee for the performance period as the Waste

  19. Spent fuel pool analysis using TRACE code

    SciTech Connect (OSTI)

    Sanchez-Saez, F.; Carlos, S.; Villanueva, J. F.; Martorell, S.

    2012-07-01

    The storage requirements of Spent Fuel Pools have been analyzed with the purpose to increase their rack capacities. In the past, the thermal limits have been mainly evaluated with conservative codes developed for this purpose, although some works can be found in which a best estimate code is used. The use of best estimate codes is interesting as they provide more realistic calculations and they have the capability of analyzing a wide range of transients that could affect the Spent Fuel Pool. Two of the most representative thermal-hydraulic codes are RELAP-5 and TRAC. Nowadays, TRACE code is being developed to make use of the more favorable characteristics of RELAP-5 and TRAC codes. Among the components coded in TRACE that can be used to construct the model, it is interesting to use the VESSEL component, which has the capacity of reproducing three dimensional phenomena. In this work, a thermal-hydraulic model of the Maine Yankee spent fuel pool using the TRACE code is developed. Such model has been used to perform a licensing calculation and the results obtained have been compared with experimental measurements made at the pool, showing a good agreement between the calculations predicted by TRACE and the experimental data. (authors)

  20. Weld pool oscillation during pulsed GTA welding

    SciTech Connect (OSTI)

    Aendenroomer, A.J.R.; Ouden, G. den

    1996-12-31

    This paper deals with weld pool oscillation during pulsed GTA welding and with the possibility to use this oscillation for in-process control of weld penetration. Welding experiments were carried out under different welding conditions. During welding the weld pool was triggered into oscillation by the normal welding pulses or by extra current pulses. The oscillation frequency was measured both during the pulse time and during the base time by analyzing the arc voltage variation using a Fast Fourier Transformation program. Optimal results are obtained when full penetration occurs during the pulse time and partial penetration during the base time. Under these conditions elliptical overlapping spot welds are formed. In the case of full penetration the weld pool oscillates in a low frequency mode (membrane oscillation), whereas in the case of partial penetration the weld pool oscillates in a high frequency mode (surface oscillation). Deviation from the optimal welding conditions occurs when high frequency oscillation is observed during both pulse time and base time (underpenetration) or when low frequency oscillation is observed during both pulse time and base time (overpenetration). In line with these results a penetration sensing system with feedback control was designed, based on the criterion that optimal weld penetration is achieved when two peaks are observed in the frequency distribution. The feasibility of this sensing system for orbital tube welding was confirmed by the results of experiments carried out under various welding conditions.

  1. Privacy Act Fees and Time Limits | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    | (NNSA) Fees and Time Limits The Act provides agencies to assess fees only for the cost of reproducing records. However, it is the policy of the DOE to provide an individual with one copy of his or her requested records free of charge. The Act does not stipulate a time frame for an agency to provide access to individual records; however, the DOE's regulation (10 CFR, Part 1008.7(b)) states "Every effort will be made to respond within ten working days of the date of receipt by the

  2. Award Fee Determination Scorecard Contractor: Advanced Technologies and Laboratories (ATL) International Inc.

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Advanced Technologies and Laboratories (ATL) International Inc. Contract: Laboratory Analytical Services and Testing Contract Contract Number: DE-AC27-10RV15051 Award Fee Period: January 1, 2015 to November 21, 2015 Basis of Evaluation: January 1, 2015 to November 21, 2015 Award Fee, Performance Evaluation and Measurement Plan Award Fee Available (PBI and SEA): $789,765.60 Award Fee Earned (PBI and SEA): $781,078.18 (98.9%) Award Fee Area Adjectival Ratings for each Performance Based Incentives

  3. POOL WATER TREATMENT AND COOLING SYSTEM DESCRIPTION DOCUMENT

    SciTech Connect (OSTI)

    V. King

    2000-06-19

    The Pool Water Treatment and Cooling System is located in the Waste Handling Building (WHB), and is comprised of various process subsystems designed to support waste handling operations. This system maintains the pool water temperature within an acceptable range, maintains water quality standards that support remote underwater operations and prevent corrosion, detects leakage from the pool liner, provides the capability to remove debris from the pool, controls the pool water level, and helps limit radiological exposure to personnel. The pool structure and liner, pool lighting, and the fuel staging racks in the pool are not within the scope of the Pool Water Treatment and Cooling System. Pool water temperature control is accomplished by circulating the pool water through heat exchangers. Adequate circulation and mixing of the pool water is provided to prevent localized thermal hotspots in the pool. Treatment of the pool water is accomplished by a water treatment system that circulates the pool water through filters, and ion exchange units. These water treatment units remove radioactive and non-radioactive particulate and dissolved solids from the water, thereby providing the water clarity needed to conduct waste handling operations. The system also controls pool water chemistry to prevent advanced corrosion of the pool liner, pool components, and fuel assemblies. Removal of radioactivity from the pool water contributes to the project ALARA (as low as is reasonably achievable) goals. A leak detection system is provided to detect and alarm leaks through the pool liner. The pool level control system monitors the water level to ensure that the minimum water level required for adequate radiological shielding is maintained. Through interface with a demineralized water system, adequate makeup is provided to compensate for loss of water inventory through evaporation and waste handling operations. Interface with the Site Radiological Monitoring System provides continuous

  4. Poole-frenkel piezoconductive element and sensor

    DOE Patents [OSTI]

    Habermehl, Scott D.

    2004-08-03

    A new class of highly sensitive piezoconductive strain sensor elements and sensors has been invented. The new elements function under conditions such that electrical conductivity is dominated by Poole-Frenkel transport. A substantial piezoconductive effect appears in this regime, allowing the new sensors to exhibit sensitivity to applied strain as much as two orders of magnitude in excess of prior art sensors based on doped silicon.

  5. Retail Demand Response in Southwest Power Pool

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    LBNL-1470E Retail Demand Response in Southwest Power Pool Ranjit Bharvirkar, Grayson Heffner and Charles Goldman Lawrence Berkeley National Laboratory Environmental Energy Technologies Division January 2009 The work described in this report was funded by the Office of Electricity Delivery and Energy Reliability, Permitting, Siting and Analysis of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Disclaimer This document was

  6. Jandy Pool Products: Proposed Penalty (2010-CE-1111)

    Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that Jandy Pool Products, Inc. failed to certify a variety of pool heaters as compliant with the applicable energy conservation standards.

  7. EA-98-A Western Systems Power Pool | Department of Energy

    Energy Savers

    energy to Canada PDF icon EA-98-A Western Systems Power Pool More Documents & Publications EA-364 Noble Americas Gas & Power Corporation EA-098 Western Systems Power Pool EA-98-I...

  8. Behavior of Spent Nuclear Fuel in Water Pool Storage

    Office of Scientific and Technical Information (OSTI)

    Behavior of Spent Nuclear Fuel in Water Pool Storage A. 0; Johnson, jr. , I ..: . Prepared ... I . , I BEHAVIOR OF SPENT NUCLEAR FUEL I N WATER POOL STORAGE by A. B. Johnson, J r . ...

  9. Behavior of spent nuclear fuel in water pool storage (Technical...

    Office of Scientific and Technical Information (OSTI)

    Behavior of spent nuclear fuel in water pool storage Citation Details In-Document Search Title: Behavior of spent nuclear fuel in water pool storage You are accessing a document ...

  10. Heat Pump Swimming Pool Heaters | Department of Energy

    Energy Savers

    Pump Swimming Pool Heaters Heat Pump Swimming Pool Heaters How a heat pump works. How a heat pump works. How They Work Heat pumps use electricity to capture heat and move it from ...

  11. Installing and Operating an Efficient Swimming Pool Pump | Department...

    Energy.gov (indexed) [DOE]

    size pump, you can consult a pool supplier's design chart. Using the chart, match the hydraulic characteristics of the pump to both the piping and the pool's flow characteristics....

  12. Barge Truck Total

    Annual Energy Outlook

    Barge Truck Total delivered cost per short ton Shipments with transportation rates over total shipments Total delivered cost per short ton Shipments with transportation rates over...

  13. Heat Pump Swimming Pool Heaters | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Heat Pump Swimming Pool Heaters Heat Pump Swimming Pool Heaters How a heat pump works. How a heat pump works. How They Work Heat pumps use electricity to capture heat and move it from one place to another. They don't generate heat. As the pool pump circulates the swimming pool's water, the water drawn from the pool passes through a filter and the heat pump heater. The heat pump heater has a fan that draws in the outside air and directs it over the evaporator coil. Liquid refrigerant within the

  14. Installing and Operating an Efficient Swimming Pool Pump | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Installing and Operating an Efficient Swimming Pool Pump Installing and Operating an Efficient Swimming Pool Pump Photo courtesy iStockphoto.com Photo courtesy iStockphoto.com You can save energy and maintain a comfortable swimming pool temperature by using a smaller, higher efficiency pump and by operating it less. In a study of 120 pools by the Center for Energy Conservation at Florida Atlantic University, some pool owners saved as much as 75% of their original pumping bill when

  15. A method of measuring a molten metal liquid pool volume

    DOE Patents [OSTI]

    Garcia, G.V.; Carlson, N.M., Donaldson, A.D.

    1990-12-12

    A method of measuring a molten metal liquid pool volume and in particular molten titanium liquid pools, including the steps of (a) generating an ultrasonic wave at the surface of the molten metal liquid pool, (b) shining a light on the surface of a molten metal liquid pool, (c) detecting a change in the frequency of light, (d) detecting an ultrasonic wave echo at the surface of the molten metal liquid pool, and (e) computing the volume of the molten metal liquid. 3 figs.

  16. Total Crude by Pipeline

    U.S. Energy Information Administration (EIA) (indexed site)

    Product: Total Crude by All Transport Methods Domestic Crude by All Transport Methods Foreign Crude by All Transport Methods Total Crude by Pipeline Domestic Crude by Pipeline Foreign Crude by Pipeline Total Crude by Tanker Domestic Crude by Tanker Foreign Crude by Tanker Total Crude by Barge Domestic Crude by Barge Foreign Crude by Barge Total Crude by Tank Cars (Rail) Domestic Crude by Tank Cars (Rail) Foreign Crude by Tank Cars (Rail) Total Crude by Trucks Domestic Crude by Trucks Foreign

  17. DOE Completes Annual Determination of the Adequacy of the Nuclear Waste Fund Fee

    Energy.gov [DOE]

    As required by the Nuclear Waste Policy Act of 1982 (NWPA), DOE has completed its annual review of the adequacy of the Nuclear Waste Fund fee.

  18. ,"Total Natural Gas Consumption

    U.S. Energy Information Administration (EIA) (indexed site)

    Gas Consumption (billion cubic feet)",,,,,"Natural Gas Energy Intensity (cubic feetsquare foot)" ,"Total ","Space Heating","Water Heating","Cook- ing","Other","Total ","Space...

  19. Barkell's Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Information (Open El) [EERE & EIA]

    Spa Low Temperature Geothermal Facility Facility Barkell's Hot Springs Sector Geothermal energy Type Pool and Spa Location Silver Star, Montana Coordinates 45.690204,...

  20. Suppression Pool Mixing and Condensation Tests in PUMA Facility

    SciTech Connect (OSTI)

    Ling Cheng; Kyoung Suk Woo; Mamoru Ishii; Jaehyok Lim; Han, James

    2006-07-01

    Condensation of steam with non-condensable in the form of jet flow or bubbly flow inside the suppression pool is an important phenomenon on determining the containment pressure of a passively safe boiling water reactor. 32 cases of pool mixing and condensation test have been performed in Purdue University Multi-Dimensional Integral Test Assembly (PUMA) facility under the sponsor of the U.S. Nuclear Regulatory Commission to investigate thermal stratification and pool mixing inside the suppression pool during the reactor blowdown period. The test boundary conditions, such as the steam flow rate, the noncondensable gas flow rate, the initial water temperature, the pool initial pressure and the vent opening submergence depth, which covers a wide range of prototype (SBWR-600) conditions during Loss of Coolant Accident (LOCA) were obtained from the RELAP5 calculation. The test results show that steam is quickly condensed at the exit of the vent opening. For pure steam injection or low noncondensable injection cases, only the portion above the vent opening in the suppression pool is heated up by buoyant plumes. The water below the vent opening can be heated up slowly through conduction. The test results also show that the degree of thermal stratification in suppression pool is affected by the vent opening submergence depth, the pool initial pressure and the steam injection rate. And it is slightly affected by the initial water temperature. From these tests it is concluded that the pool mixing is strongly affected by the noncondensable gas flow rate. (authors)

  1. Rendezvous in the Rockies Pool & Spa Low Temperature Geothermal...

    Open Energy Information (Open El) [EERE & EIA]

    Rendezvous in the Rockies Sector Geothermal energy Type Pool and Spa Location Buena Vista, Colorado Coordinates 38.8422178, -106.1311288 Show Map Loading map......

  2. The Tropical Warm Pool International Cloud Experiment: Overview

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    The Tropical Warm Pool International Cloud Experiment: Overview May, Peter Bureau or Meteorology Research Centre Mather, James Pacific Northwest National Laboratory Jakob,...

  3. Pan Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Information (Open El) [EERE & EIA]

    Facility Facility Pan Hot Springs Sector Geothermal energy Type Pool and Spa Location Big Bear City, California Coordinates 34.2611183, -116.84503 Show Map Loading map......

  4. Esalen Institute Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Information (Open El) [EERE & EIA]

    Facility Facility Esalen Institute Sector Geothermal energy Type Pool and Spa Location Big Sur, California Coordinates 36.270241, -121.8074545 Show Map Loading map......

  5. Camp Preventorium Hot Springs Pool & Spa Low Temperature Geothermal...

    Open Energy Information (Open El) [EERE & EIA]

    Camp Preventorium Hot Springs Sector Geothermal energy Type Pool and Spa Location Big Bend, California Coordinates 39.6982182, -121.4608015 Show Map Loading map......

  6. Breitenbush Community Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Information (Open El) [EERE & EIA]

    Facility Breitenbush Community Sector Geothermal energy Type Pool and Spa Location Detroit, Oregon Coordinates 44.7340108, -122.1497982 Show Map Loading map......

  7. Glenwood Springs Vapor Caves Pool & Spa Low Temperature Geothermal...

    Open Energy Information (Open El) [EERE & EIA]

    & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Glenwood Springs Vapor Caves Pool & Spa Low Temperature Geothermal Facility Facility Glenwood Springs...

  8. Saratoga Springs Resort Pool & Spa Low Temperature Geothermal...

    Open Energy Information (Open El) [EERE & EIA]

    & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Saratoga Springs Resort Pool & Spa Low Temperature Geothermal Facility Facility Saratoga Springs...

  9. Manley Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Information (Open El) [EERE & EIA]

    & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Manley Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Manley Hot Springs Sector...

  10. Roosevelt Warm Springs Institute for Rehab. Pool & Spa Low Temperature...

    Open Energy Information (Open El) [EERE & EIA]

    Low Temperature Geothermal Facility Jump to: navigation, search Name Roosevelt Warm Springs Institute for Rehab. Pool & Spa Low Temperature Geothermal Facility Facility...

  11. Hot Sulphur Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Information (Open El) [EERE & EIA]

    & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Hot Sulphur Springs Pool & Spa Low Temperature Geothermal Facility Facility Hot Sulphur Springs Sector...

  12. Saratoga Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Information (Open El) [EERE & EIA]

    & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Saratoga Springs Pool & Spa Low Temperature Geothermal Facility Facility Saratoga Springs Sector...

  13. Salida Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Information (Open El) [EERE & EIA]

    Facility Facility Salida Hot Springs Sector Geothermal energy Type Pool and Spa Location Salida, Colorado Coordinates 38.5347193, -105.9989022 Show Map Loading map......

  14. Astoria Mineral Hot Springs Pool & Spa Low Temperature Geothermal...

    Open Energy Information (Open El) [EERE & EIA]

    Astoria Mineral Hot Springs Sector Geothermal energy Type Pool and Spa Location Jackson, Wyoming Coordinates 43.4799291, -110.7624282 Show Map Loading map......

  15. Mimbres Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Information (Open El) [EERE & EIA]

    Spa Low Temperature Geothermal Facility Facility Mimbres Hot Springs Sector Geothermal energy Type Pool and Spa Location Silver City, New Mexico Coordinates 32.770075,...

  16. Charles Motel & Bathhouse Pool & Spa Low Temperature Geothermal...

    Open Energy Information (Open El) [EERE & EIA]

    Temperature Geothermal Facility Facility Charles Motel & Bathhouse Sector Geothermal energy Type Pool and Spa Location Truth or Consequences, New Mexico Coordinates 33.1284047,...

  17. Faywood Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Information (Open El) [EERE & EIA]

    Spa Low Temperature Geothermal Facility Facility Faywood Hot Springs Sector Geothermal energy Type Pool and Spa Location Faywood, New Mexico Coordinates Show Map Loading map......

  18. Riverbend Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Information (Open El) [EERE & EIA]

    Low Temperature Geothermal Facility Facility Riverbend Hot Springs Sector Geothermal energy Type Pool and Spa Location Truth or Consequences, New Mexico Coordinates 33.1284047,...

  19. Ojo Caliente Resort Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Information (Open El) [EERE & EIA]

    Spa Low Temperature Geothermal Facility Facility Ojo Caliente Resort Sector Geothermal energy Type Pool and Spa Location Ojo Caliente, New Mexico Coordinates Show Map Loading...

  20. The Wilderness Lodge Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Information (Open El) [EERE & EIA]

    Low Temperature Geothermal Facility Facility The Wilderness Lodge Sector Geothermal energy Type Pool and Spa Location Silver City, New Mexico Coordinates 32.770075,...

  1. Bubbles Hot Spring Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Information (Open El) [EERE & EIA]

    Spa Low Temperature Geothermal Facility Facility Bubbles Hot Spring Sector Geothermal energy Type Pool and Spa Location Catron County, New Mexico Coordinates 34.1515173,...

  2. Indian Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Information (Open El) [EERE & EIA]

    & Spa Low Temperature Geothermal Facility Facility Indian Springs Sector Geothermal energy Type Pool and Spa Location Truth or Consequences, New Mexico Coordinates 33.1284047,...

  3. Marshall Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Information (Open El) [EERE & EIA]

    Low Temperature Geothermal Facility Facility Marshall Hot Springs Sector Geothermal energy Type Pool and Spa Location Truth or Consequences, New Mexico Coordinates 33.1284047,...

  4. Sierra Grande Lodge Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Information (Open El) [EERE & EIA]

    Spa Low Temperature Geothermal Facility Facility Sierra Grande Lodge Sector Geothermal energy Type Pool and Spa Location Truth or Consequences, New Mexico Coordinates 33.1284047,...

  5. Multi-institutional Pooled Analysis on Adjuvant Chemoradiation...

    Office of Scientific and Technical Information (OSTI)

    in Pancreatic Cancer Citation Details In-Document Search Title: Multi-institutional Pooled Analysis on Adjuvant Chemoradiation in Pancreatic Cancer Purpose: To determine ...

  6. Jemez Springs Bathhouse Pool & Spa Low Temperature Geothermal...

    Open Energy Information (Open El) [EERE & EIA]

    Springs Bathhouse Sector Geothermal energy Type Pool and Spa Location Jemez Springs, New Mexico Coordinates 35.7686356, -106.692258 Show Map Loading map......

  7. Pah Temple Pool & Spa Low Temperature Geothermal Facility | Open...

    Open Energy Information (Open El) [EERE & EIA]

    Facility Facility Pah Temple Sector Geothermal energy Type Pool and Spa Location Hurricane, Utah Coordinates 37.1752607, -113.2899484 Show Map Loading map......

  8. Indian Springs Natatorium Pool & Spa Low Temperature Geothermal...

    Open Energy Information (Open El) [EERE & EIA]

    Indian Springs Natatorium Sector Geothermal energy Type Pool and Spa Location American Falls, Idaho Coordinates 42.7860226, -112.8544377 Show Map Loading map......

  9. Stroppel Hotel Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Information (Open El) [EERE & EIA]

    & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Stroppel Hotel Pool & Spa Low Temperature Geothermal Facility Facility Stroppel Hotel Sector...

  10. Low Temperature Direct Use Pool & Spa Geothermal Facilities ...

    Open Energy Information (Open El) [EERE & EIA]

    to: navigation, search No facilities found CSV Retrieved from "http:en.openei.orgwindex.php?titleLowTemperatureDirectUsePool%26SpaGeothermalFacilities&oldid305628...

  11. Whitmore Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Information (Open El) [EERE & EIA]

    Facility Whitmore Hot Springs Sector Geothermal energy Type Pool and Spa Location Bishop, California Coordinates 37.3635404, -118.3951101 Show Map Loading map......

  12. Artesian Bathhouse and RV Park Pool & Spa Low Temperature Geothermal...

    Open Energy Information (Open El) [EERE & EIA]

    Bathhouse and RV Park Sector Geothermal energy Type Pool and Spa Location Truth or Consequences, New Mexico Coordinates 33.1284047, -107.2528069 Show Map Loading map......

  13. Sycamore Hot Spring Resort Pool & Spa Low Temperature Geothermal...

    Open Energy Information (Open El) [EERE & EIA]

    Facility Sycamore Hot Spring Resort Sector Geothermal energy Type Pool and Spa Location San Luis Obispo County, California Coordinates 35.3102296, -120.4357631 Show Map...

  14. 1986 Federal Interim Storage fee study: a technical and economic analysis

    SciTech Connect (OSTI)

    Not Available

    1986-09-01

    JAI examined alternative methods for structuring charges for federal interim storage (FIS) services and concluded that the combined interests of the Department and the users would be best served, and costs most appropriately recovered, by a two-part fee involving an Initial Payment upon execution of a contract for FIS services followed by a Final Payment upon delivery of the spent fuel to the Department. The Initial Payment would be an advance payment covering the pro rata share of preoperational costs, including (1) the capital costs of the required transfer facilities and storage area, (2) development costs, (3) government administrative costs including storage fund management, (4) impact aid payments made in accordance with Section 136(e) of the Act, and (5) module costs (i.e., storage casks, drywells or silos). The Final Payment would be made at the time of delivery of the spent fuel to the Department and would be calculated to cover the sum of the following: (1) any under- or over-estimation in the costs used to calculate the Initial Payment of the fee (including savings due to rod consolidation), and (2) the total estimated cost of operation and decommissioning of the FIS facilities (including government administrative costs, storage fund management and impact aid). The module costs were included in the Initial Payment to preclude the possible need to obtain appropriations for federal funds to support the purchase of the modules in advance of receipt of the Final Payment. Charges for the transport of spent fuel from the reactor site to FIS facilities would be separately assessed at actual cost since these will be specific to each reactor site and destination.

  15. 1985 Federal Interim Storage Fee Study: a technical and economic analysis

    SciTech Connect (OSTI)

    Not Available

    1985-09-01

    JAI examined alternative methods for structuring charges for FIS services and concluded that the combined interests of the Deaprtment and the users would be best served, and costs most appropriately recovered, by a two-part fee involving an Initial Payment upon execution of a contract for FIS services followed by a Final Payment upon delivery of the spent fuel to the Department. The Initial Payment would be an advance payment covering the pro rata share of preoperational costs, including (1) the capital costs of the required transfer facilities and storage area, (2) development costs, (3) government administrative costs including storage fund management, (4) impact aid payments made in accordance with section 136(e) of the Act, and (5) module costs (i.e., storage casks, drywells or silos). The Final Payment would be made at the time of delivery of the spent fuel to the Department and would be calculated to cover the sum of the following: (1) any under-or over-estimation in the costs used to calculate the Initial Payment of the fee (including savings due to rod consolidation), and (2) the total estimated cost of operation and decommissioning of the FIS facilities (including government administrative costs, storage fund management and impact aid). The module costs were included in the Initial Payment to preclude the possible need to obtain appropriations for federal funds to support the purchase of the modules in advance of receipt of the Final Payment. Charges for the transport of spent fuel from the reactor site to FIS facilities would be separately assessed at actual cost since these will be specific to each reactor site and destination.

  16. Control of Gas Tungsten Arc welding pool shape by trace element addition to the weld pool

    DOE Patents [OSTI]

    Heiple, C.R.; Burgardt, P.

    1984-03-13

    An improved process for Gas Tungsten Arc welding maximizes the depth/width ratio of the weld pool by adding a sufficient amount of a surface active element to insure inward fluid flow, resulting in deep, narrow welds. The process is especially useful to eliminate variable weld penetration and shape in GTA welding of steels and stainless steels, particularly by using a sulfur-doped weld wire in a cold wire feed technique.

  17. Fact #901: November 30, 2015 States Assessing Fees on Electric Vehicles to Make Up For Lost Fuel Tax Revenue- Dataset

    Energy.gov [DOE]

    Excel file and dataset for States Assessing Fees on Electric Vehicles to Make Up For Lost Fuel Tax Revenue

  18. Total Estimated Contract Cost: Contract Option Period: Maximum...

    Office of Environmental Management (EM)

    & Wilcox Conversion Services, LLC Contract Number: DE-AC30-11CC40015 Contract Type: Cost Plus Award Fee EM Contractor Fee September 2015 Site: Portsmouth Paducah Project Office...

  19. Total Estimated Contract Cost: Contract Option Period: Maximum...

    Office of Environmental Management (EM)

    LLC Contract Number: DE-AC30-11CC40015 Contract Type: Cost Plus Award Fee EM Contractor Fee December 2015 Site: Portsmouth Paducah Project Office Contract Name: Operation of DUF6

  20. The Tropical Warm Pool International Cloud Experiment

    SciTech Connect (OSTI)

    May, Peter T.; Mather, James H.; Vaughan, Geraint; Jakob, Christian; McFarquhar, Greg; Bower, Keith; Mace, Gerald G.

    2008-05-01

    One of the most complete data sets describing tropical convection ever collected will result from the upcoming Tropical Warm Pool International Cloud Experiment (TWP-ICE) in the area around Darwin, Northern Australia in January and February 2006. The aims of the experiment, which will be operated in conjunction with the DOE Atmospheric Radiation Measurement (ARM) site in Darwin, will be to examine convective cloud systems from their initial stages through to the decay of the cirrus generated and to measure their impact on the environment. The experiment will include an unprecedented network of ground-based observations (soundings, active and passive remote sensors) combined with low, mid and high altitude aircraft for in-situ and remote sensing measurements. A crucial outcome of the experiment will be a data set suitable to provide the forcing and evaluation data required by cloud resolving and single column models as well as global climate models (GCMs) with the aim to contribute to parameterization development. This data set will provide the necessary link between the observed cloud properties and the models that are attempting to simulate them. The experiment is a large multi-agency experiment including substantial contributions from the United States DOE ARM program, ARM-UAV program, NASA, the Australian Bureau of Meteorology, CSIRO, EU programs and many universities.

  1. Irradiation of Microbes from Spent Nuclear Fuel Storage Pool Environments

    SciTech Connect (OSTI)

    Breckenridge, C.R.; Watkins, C.S.; Bruhn, D.F.; Roberto, F.F.; Tsang, M.N.; Pinhero, P.J.; Brey, R.F.; Wright, R.N.; Windes, W.F.

    1999-09-03

    Microbes have been isolated and identified from spent nuclear fuel storage pools at the Idaho National Engineering and Environmental Laboratory (INEEL). Included among these are Corynebacterium aquaticum, Pseudomonas putida, Comamonas acidovorans, Gluconobacter cerinus, Micrococcus diversus, Rhodococcus rhodochrous, and two strains of sulfate-reducing bacteria (SRB). We examined the sensitivity of these microbes to a variety of total exposures of radiation generated by a 6-MeV linear accelerator (LINAC). The advantage of using a LINAC is that it provides a relatively quick screen of radiation tolerance. In the first set of experiments, we exposed each of the aforementioned microbes along with four additional microbes, pseudomonas aeruginosa, Micrococcus luteus, Escherchia coli, and Deinococcus radiodurans to exposures of 5 x 10{sup 3} and 6 x 10{sup 4} rad. All microbial specimens withstood the lower exposure with little or no reduction in cell population. Upon exposing the microbes to the larger dose of 6 x 10{sup 4} rad, we observed two distinct groupings: microbes that demonstrate resistance to radiation, and microbes that display intolerance through a dramatic reduction from their initial population. Microbes in the radiation tolerant grouping were exposed to 1.1 x 10{sup 5} rad to examine the extent of their resistance. We observe a correlation between radiation resistance and gram stain. The gram-positive species we examined seem to demonstrate a greater radiation resistance.

  2. Loss of spent fuel pool cooling PRA: Model and results

    SciTech Connect (OSTI)

    Siu, N.; Khericha, S.; Conroy, S.; Beck, S.; Blackman, H.

    1996-09-01

    This letter report documents models for quantifying the likelihood of loss of spent fuel pool cooling; models for identifying post-boiling scenarios that lead to core damage; qualitative and quantitative results generated for a selected plant that account for plant design and operational practices; a comparison of these results and those generated from earlier studies; and a review of available data on spent fuel pool accidents. The results of this study show that for a representative two-unit boiling water reactor, the annual probability of spent fuel pool boiling is 5 {times} 10{sup {minus}5} and the annual probability of flooding associated with loss of spent fuel pool cooling scenarios is 1 {times} 10{sup {minus}3}. Qualitative arguments are provided to show that the likelihood of core damage due to spent fuel pool boiling accidents is low for most US commercial nuclear power plants. It is also shown that, depending on the design characteristics of a given plant, the likelihood of either: (a) core damage due to spent fuel pool-associated flooding, or (b) spent fuel damage due to pool dryout, may not be negligible.

  3. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) (indexed site)

    . Fuel Oil Expenditures by Census Region for Non-Mall Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per...

  4. ,"Total Fuel Oil Consumption

    U.S. Energy Information Administration (EIA) (indexed site)

    0. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for Non-Mall Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  5. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) (indexed site)

    4. Fuel Oil Expenditures by Census Region, 1999" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per Square Foot"...

  6. Total Space Heat-

    Gasoline and Diesel Fuel Update

    Commercial Buildings Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration...

  7. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) (indexed site)

    A. Fuel Oil Expenditures by Census Region for All Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per...

  8. ,"Total Fuel Oil Consumption

    U.S. Energy Information Administration (EIA) (indexed site)

    A. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for All Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  9. Total Space Heat-

    Gasoline and Diesel Fuel Update

    Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings...

  10. Total Space Heat-

    Gasoline and Diesel Fuel Update

    Released: September, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings*...

  11. ARM - Field Campaign - Tropical Warm Pool - International Cloud Experiment

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    (TWP-ICE) govCampaignsTropical Warm Pool - International Cloud Experiment (TWP-ICE) Campaign Links TWP-ICE Website ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Tropical Warm Pool - International Cloud Experiment (TWP-ICE) 2006.01.21 - 2006.02.13 Website : http://www.arm.gov/campaigns/twpice/ Lead Scientist : Peter May For data sets, see below. Abstract The Tropical Warm Pool - International Cloud

  12. Parallel Total Energy

    Energy Science and Technology Software Center (OSTI)

    2004-10-21

    This is a total energy electronic structure code using Local Density Approximation (LDA) of the density funtional theory. It uses the plane wave as the wave function basis set. It can sue both the norm conserving pseudopotentials and the ultra soft pseudopotentials. It can relax the atomic positions according to the total energy. It is a parallel code using MP1.

  13. MELCOR Model of the Spent Fuel Pool of Fukushima Dai-ichi Unit 4

    SciTech Connect (OSTI)

    Carbajo, Juan J

    2012-01-01

    Unit 4 of the Fukushima Dai-ichi Nuclear Power Plant suffered a hydrogen explosion at 6:00 am on March 15, 2011, exactly 3.64 days after the earthquake hit the plant and the off-site power was lost. The earthquake occurred on March 11 at 2:47 pm. Since the reactor of this Unit 4 was defueled on November 29, 2010, and all its fuel was stored in the spent fuel pool (SFP4), it was first believed that the explosion was caused by hydrogen generated by the spent fuel, in particular, by the recently discharged core. The hypothetical scenario was: power was lost, cooling to the SFP4 water was lost, pool water heated/boiled, water level decreased, fuel was uncovered, hot Zircaloy reacted with steam, hydrogen was generated and accumulated above the pool, and the explosion occurred. Recent analyses of the radioisotopes present in the water of the SFP4 and underwater video indicated that this scenario did not occur - the fuel in this pool was not damaged and was never uncovered the hydrogen of the explosion was apparently generated in Unit 3 and transported through exhaust ducts that shared the same chimney with Unit 4. This paper will try to answer the following questions: Could that hypothetical scenario in the SFP4 had occurred? Could the spent fuel in the SPF4 generate enough hydrogen to produce the explosion that occurred 3.64 days after the earthquake? Given the magnitude of the explosion, it was estimated that at least 150 kg of hydrogen had to be generated. As part of the investigations of this accident, MELCOR models of the SFP4 were prepared and a series of calculations were completed. The latest version of MELCOR, version 2.1 (Ref. 1), was employed in these calculations. The spent fuel pool option for BWR fuel was selected in MELCOR. The MELCOR model of the SFP4 consists of a total of 1535 fuel assemblies out of which 548 assemblies are from the core defueled on Nov. 29, 2010, 783 assemblies are older assemblies, and 204 are new/fresh assemblies. The total decay

  14. EM's Oak Ridge Cleanup Contractor Earns 93 Percent of Available Fee |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Oak Ridge Cleanup Contractor Earns 93 Percent of Available Fee EM's Oak Ridge Cleanup Contractor Earns 93 Percent of Available Fee July 28, 2016 - 12:45pm Addthis UCOR’s K-27 Building demolition project, pictured here, is ahead of schedule with actual costs projected to be less than planned, according to OREM’s correspondence regarding the contractor’s fee determination. UCOR's K-27 Building demolition project, pictured here, is ahead of schedule with

  15. ARM - Tropical Warm Pool - International Cloud Experiment (TWP...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Tropical Warm Pool - International Cloud Experiment (TWP-ICE) twp-ice-big One of the most complete data sets of tropical cirrus and convection observations ever collected will ...

  16. Sam's Family Spa Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Information (Open El) [EERE & EIA]

    of Technology's Geo-Heat Center Retrieved from "http:en.openei.orgwindex.php?titleSam%27sFamilySpaPool%26SpaLowTemperatureGeothermalFacility&oldid305482" ...

  17. Fuel assembly transfer basket for pool type nuclear reactor vessels

    DOE Patents [OSTI]

    Fanning, Alan W.; Ramsour, Nicholas L.

    1991-01-01

    A fuel assembly transfer basket for a pool type, liquid metal cooled nuclear reactor having a side access loading and unloading port for receiving and relinquishing fuel assemblies during transfer.

  18. Woody's Feather River Hot Springs Pool & Spa Low Temperature...

    Open Energy Information (Open El) [EERE & EIA]

    of Technology's Geo-Heat Center Retrieved from "http:en.openei.orgwindex.php?titleWoody%27sFeatherRiverHotSpringsPool%26SpaLowTemperatureGeothermalFacility&oldid3...

  19. Heat Pump Swimming Pool Heaters | Department of Energy

    Energy.gov (indexed) [DOE]

    How a heat pump works. How a heat pump works. How They Work Heat pumps use electricity to capture heat and move it from one place to another. They don't generate heat. As the pool...

  20. Stay Above Water with an Efficient Swimming Pool

    Energy.gov [DOE]

    All eyes were on the pool recently for swimming's 2009 World Championships in Rome. As a former competitive swimmer (though I was a dog-paddler compared to the likes of Michael Phelps and Ariana...

  1. EA-1111: K Pool Fish Rearing, Hanford Site, Richland, Washington

    Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposal to enter into a use permit or lease agreement with the Yakama Indian Nation or other parties who would rear fish in the 100-K Area Pools.

  2. Comment to NOI re Retrospective Risk Pooling Program For Suppliers

    Energy.gov [DOE]

    Comment by Cameco Resources On Retrospective Risk Pooling Program For Suppliers, 75 Fed. Reg. 43945 (July 27, 2010), Section 934 Rule Making. As discussed below, Cameco believes that producers and...

  3. Summary Max Total Units

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Summary Max Total Units *If All Splits, No Rack Units **If Only FW, AC Splits 1000 52 28 28 2000 87 59 35 3000 61 33 15 4000 61 33 15 Totals 261 153 93 ***Costs $1,957,500.00 $1,147,500.00 $697,500.00 Notes: added several refrigerants removed bins from analysis removed R-22 from list 1000lb, no Glycol, CO2 or ammonia Seawater R-404A only * includes seawater units ** no seawater units included *** Costs = (total units) X (estimate of $7500 per unit) 1000lb, air cooled split systems, fresh water

  4. Atmospheric Radiation Measurement Tropical Warm Pool International Cloud Experiment

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Tropical Warm Pool International Cloud Experiment General Description The Tropical Warm Pool - International Cloud Experiment (TWP-ICE) was a collaborative effort led by the U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) Program and the Australian Bureau of Meteorology. Beginning January 21 and ending February 14, 2006, the experiment was conducted in the region near the ARM Climate Research Facility in Darwin, Northern Australia. This permanent facility is fully equipped

  5. ARM - Publications: Science Team Meeting Documents: Tropical Warm Pool

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    International Cloud Experiment Tropical Warm Pool International Cloud Experiment May, Peter Bureau or Meteorology Research Centre Mather, James Pacific Northwest National Laboratory Jakob, Christian BMRC One of the most complete data sets describing tropical convection ever collected will result from the upcoming Tropical Warm Pool International Cloud Experiment (TWPICE) in the area around Darwin in late 2005 and early 2006. The aims of the experiment will be to examine convective cloud

  6. Weld pool oscillation during GTA welding of mild steel

    SciTech Connect (OSTI)

    Xiao, Y.H.; Ouden, G. den . Dept. of Materials Science and Engineering)

    1993-08-01

    In this paper the results are reported of a study dealing with the oscillation behavior of weld pools in the case of GTA bead-on-plate welding of mild steel, Fe 360. During welding, the weld pool was brought into oscillation by applying short current pulses, and the oscillation frequency and amplitude were measured by monitoring the arc voltage. It was found that the oscillation of the partially penetrated weld pool is dominated by one of two different oscillation modes (Mode 1 and Mode 2) depending on the welding conditions, whereas the oscillation of the fully penetrated weld pool is characterized by a third oscillation mode (Mode 3). It is possible to maintain partially penetrated weld pool oscillation in Mode 1 by choosing appropriate welding conditions. Under these conditions, an abrupt decrease in oscillation frequency occurs when the weld pool transfers from partial penetration to full penetration. Thus, weld penetration can be in-process controlled by monitoring the oscillation frequency during welding.

  7. Retail Demand Response in Southwest Power Pool

    SciTech Connect (OSTI)

    Bharvirkar, Ranjit; Heffner, Grayson; Goldman, Charles

    2009-01-30

    In 2007, the Southwest Power Pool (SPP) formed the Customer Response Task Force (CRTF) to identify barriers to deploying demand response (DR) resources in wholesale markets and develop policies to overcome these barriers. One of the initiatives of this Task Force was to develop more detailed information on existing retail DR programs and dynamic pricing tariffs, program rules, and utility operating practices. This report describes the results of a comprehensive survey conducted by LBNL in support of the Customer Response Task Force and discusses policy implications for integrating legacy retail DR programs and dynamic pricing tariffs into wholesale markets in the SPP region. LBNL conducted a detailed survey of existing DR programs and dynamic pricing tariffs administered by SPP's member utilities. Survey respondents were asked to provide information on advance notice requirements to customers, operational triggers used to call events (e.g. system emergencies, market conditions, local emergencies), use of these DR resources to meet planning reserves requirements, DR resource availability (e.g. seasonal, annual), participant incentive structures, and monitoring and verification (M&V) protocols. Nearly all of the 30 load-serving entities in SPP responded to the survey. Of this group, fourteen SPP member utilities administer 36 DR programs, five dynamic pricing tariffs, and six voluntary customer response initiatives. These existing DR programs and dynamic pricing tariffs have a peak demand reduction potential of 1,552 MW. Other major findings of this study are: o About 81percent of available DR is from interruptible rate tariffs offered to large commercial and industrial customers, while direct load control (DLC) programs account for ~;;14percent. o Arkansas accounts for ~;;50percent of the DR resources in the SPP footprint; these DR resources are primarily managed by cooperatives. o Publicly-owned cooperatives accounted for 54percent of the existing DR resources

  8. Total Space Heat-

    Gasoline and Diesel Fuel Update

    Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other...

  9. J Bar L Guest Ranch Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Information (Open El) [EERE & EIA]

    Ranch Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name J Bar L Guest Ranch Pool & Spa Low Temperature Geothermal Facility Facility J Bar L Guest...

  10. DeMaris Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Information (Open El) [EERE & EIA]

    DeMaris Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name DeMaris Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility...

  11. ARM - Measurement - Total carbon

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    carbon ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Total carbon The total concentration of carbon in all its organic and non-organic forms. Categories Atmospheric Carbon, Aerosols Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including

  12. FY 1997 performance evaluation and incentive fee agreement. Annual report

    SciTech Connect (OSTI)

    1997-04-01

    FY 1997 represents the second full year utilizing a results-oriented, performance-based contract. This document describes the critical outcomes, objectives, performance indicators, expected levels of performance, and the basis for the evaluation of PNNL performance for Oct. 1, 1996-Sept. 30, 1997, as required by Articles H-24 and H-25 of the contract. Section I provides the information regarding the determination of the overall performance rating for PNNL. In Section II, six critical outcomes were defined that serve as basis for overall management of PNNL: environmental molecular sciences laboratory, environmental technology, scientific excellence, environment/safety & health operations, leadership/management, and economic development (create new businesses). Section III describes the commitments for documenting and reporting PNNL self-evaluation. In Section IV, it is stated that discussions regarding FY97 fee are still ongoing.

  13. GC Commits to Transparency on Nuclear Waste Fund Fee Adequacy Decisions

    Energy.gov [DOE]

    Consistent with the Administration's commitment to transparency, DOE General Counsel Scott Blake Harris has decided that all future determinations as to the adequacy of the Nuclear Waste Fund fee...

  14. City of Santa Monica- Building Permit Fee Waiver for Solar Projects

    Energy.gov [DOE]

    In early 2002, the City of Santa Monica began waiving building permit fees for solar energy systems. In December 2008, after months of working with industry trainers, solar contractors and staff...

  15. NMAC 20.2.71 Air Quality Operating Permit Emissions Fees | Open...

    Open Energy Information (Open El) [EERE & EIA]

    1 Air Quality Operating Permit Emissions Fees Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: NMAC 20.2.71 Air Quality...

  16. Title 43 CFR 3203.12 What Fees Must I Pay to Nominate Lands?...

    Open Energy Information (Open El) [EERE & EIA]

    .12 What Fees Must I Pay to Nominate Lands? Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- Federal RegulationFederal Regulation: Title 43 CFR...

  17. H.A.R. 19-102 - Fee Schedule for the Issuance of a Permit to...

    Open Energy Information (Open El) [EERE & EIA]

    search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: H.A.R. 19-102 - Fee Schedule for the Issuance of a Permit to Perform Work on State...

  18. EM Richland Operations Office Contractor Earns 97 Percent of Available Fee

    Energy.gov [DOE]

    RICHLAND, Wash. – EM’s Richland Operations Office (RL) issued its fiscal year 2015 fee determination for Hanford Site contractor CH2M HILL Plateau Remediation Company (CH2M).

  19. 16 TAC, part 1, chapter 3, rule 3.78 Fees and Financial Security...

    Open Energy Information (Open El) [EERE & EIA]

    LibraryAdd to library Legal Document- RegulationRegulation: 16 TAC, part 1, chapter 3, rule 3.78 Fees and Financial Security RequirementsLegal Abstract These regulations...

  20. I.C. 42-221 - Appropriation of Water Fees | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: I.C. 42-221 - Appropriation of Water FeesLegal Abstract This statutory section provides for...

  1. Award Fee Determination Scorecard Contractor: G4S Government Solutions, Inc. - Wackenhut Services

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Award Fee Determination Scorecard Contractor: G4S Government Solutions, Inc. - Wackenhut Services Incorporated (WSI) Contract: Protective Force Security Services Contract Number: DE-AC30-10CC60025 Award Period: October 1, 2013 - September 30, 2014 Basis of Evaluation: Award Fee Plan The contractor is required to provide, operate, and maintain an armed and uniformed protective force for the physical protection of U.S. Department of Energy (DOE) security interests and other such related duties at

  2. Reclamation fee on coal production: an example of federal regulatory taxation

    SciTech Connect (OSTI)

    Reese, C.E.

    1983-09-01

    The coal mining reclamation fee is part of the federal government's efforts to regulate the strip mining of coal and to use proceeds from the fee for land use and pollution control problems associated with abandoned mines. Authorized by the 1977 Surface Mining Contol and Reclamation Act rather than the Internal Revenue Code, the exaction is still shown to be both a regulatory and a severance tax. 41 references. (DCK)

  3. Cost-plus-award-fee contracts-Federal Acquisition Circular 2005-37

    Office of Energy Efficiency and Renewable Energy (EERE)

    With the issuance of Federal Acquisition Circular 2005-37, the FAR now requires, in addition to previous requirements, several new actions in using and administering a cost-plus-award-fee contract. Attached are the pre and post Federal Acquisition Circular 2005-37 requirements for using and administering cost-plus-award-fee contracts. Changes to current Departmental guidance are being considered and will be disseminated in future communications.

  4. Total DOE/NNSA

    National Nuclear Security Administration (NNSA)

    8 Actuals 2009 Actuals 2010 Actuals 2011 Actuals 2012 Actuals 2013 Actuals 2014 Actuals 2015 Actuals Total DOE/NNSA 4,385 4,151 4,240 4,862 5,154 5,476 7,170 7,593 Total non-NNSA 3,925 4,017 4,005 3,821 3,875 3,974 3,826 3765 Total Facility 8,310 8,168 8,245 8,683 9,029 9,450 10,996 11,358 non-NNSA includes DOE offices and Strategic Parternship Projects (SPP) employees NNSA M&O Employee Reporting

  5. Effluent fees: policy considerations on a source of revenue for infrastructure financing. Technical report

    SciTech Connect (OSTI)

    Casey, P.

    1988-01-01

    This project is part of the National Network for Environmental Management Studies conducted under the auspices of the Office of Cooperative Environmental Management - U.S. Environmental Protection Agency. With the phasing out of EPA's construction grants program and the implementation of State Revolving Funds (SRF's), it appears that more money will be needed for the financing of waste-water treatment facilities in the next twenty years. Infrastructure needs for waste-water treatment facilities will increase significantly due to required replacement and upgrading needs, while user fees may be significantly understated due to years of capital subsidies. With Federal seed capital for the SRF's stopping after 1994, alternative sources of funding will be necessary. An effluent fee program could both offer a way to make the polluter pay and provide a reliable financing mechanism for the SRF's. The paper discusses the experience of effluent fees in Europe, and proposes an effluent fee program that would provide needed capital to the State Revolving Fund. The fee would be tied into the National Pollutant Discharge Elimination System permits through gradual implementation. Various options for setting the fee and enforcement procedures are also discussed.

  6. Water inventory management in condenser pool of boiling water reactor

    DOE Patents [OSTI]

    Gluntz, Douglas M.

    1996-01-01

    An improved system for managing the water inventory in the condenser pool of a boiling water reactor has means for raising the level of the upper surface of the condenser pool water without adding water to the isolation pool. A tank filled with water is installed in a chamber of the condenser pool. The water-filled tank contains one or more holes or openings at its lowermost periphery and is connected via piping and a passive-type valve (e.g., squib valve) to a high-pressure gas-charged pneumatic tank of appropriate volume. The valve is normally closed, but can be opened at an appropriate time following a loss-of-coolant accident. When the valve opens, high-pressure gas inside the pneumatic tank is released to flow passively through the piping to pressurize the interior of the water-filled tank. In so doing, the initial water contents of the tank are expelled through the openings, causing the water level in the condenser pool to rise. This increases the volume of water available to be boiled off by heat conducted from the passive containment cooling heat exchangers. 4 figs.

  7. Water inventory management in condenser pool of boiling water reactor

    DOE Patents [OSTI]

    Gluntz, D.M.

    1996-03-12

    An improved system for managing the water inventory in the condenser pool of a boiling water reactor has means for raising the level of the upper surface of the condenser pool water without adding water to the isolation pool. A tank filled with water is installed in a chamber of the condenser pool. The water-filled tank contains one or more holes or openings at its lowermost periphery and is connected via piping and a passive-type valve (e.g., squib valve) to a high-pressure gas-charged pneumatic tank of appropriate volume. The valve is normally closed, but can be opened at an appropriate time following a loss-of-coolant accident. When the valve opens, high-pressure gas inside the pneumatic tank is released to flow passively through the piping to pressurize the interior of the water-filled tank. In so doing, the initial water contents of the tank are expelled through the openings, causing the water level in the condenser pool to rise. This increases the volume of water available to be boiled off by heat conducted from the passive containment cooling heat exchangers. 4 figs.

  8. Measure Guideline: Replacing Single-Speed Pool Pumps with Variable Speed Pumps for Energy Savings

    SciTech Connect (OSTI)

    Hunt, A.; Easley, S.

    2012-05-01

    The report evaluates potential energy savings by replacing traditional single-speed pool pumps with variable speed pool pumps, and provide a basic cost comparison between continued uses of traditional pumps verses new pumps. A simple step-by-step process for inspecting the pool area and installing a new pool pump follows.

  9. Measure Guideline. Replacing Single-Speed Pool Pumps with Variable Speed Pumps for Energy Savings

    SciTech Connect (OSTI)

    Hunt, A.; Easley, S.

    2012-05-01

    This measure guideline evaluates potential energy savings by replacing traditional single-speed pool pumps with variable speed pool pumps, and provides a basic cost comparison between continued uses of traditional pumps verses new pumps. A simple step-by-step process for inspecting the pool area and installing a new pool pump follows.

  10. Payment Of the New Mexico Environment Department- Hazardous Waste Bureau Annual Business and Generation Fees Calendar Year 2011

    SciTech Connect (OSTI)

    Juarez, Catherine L.

    2012-08-31

    The purpose of this letter is to transmit to the New Mexico Environment Department-Hazardous Waste Bureau (NMED-HWB), the Los alamos National Laboratory (LANL) Annual Business and Generation Fees for calendar year 2011. These fees are required pursuant to the provisions of New Mexico Hazardous Waste Act, Chapter 74, Article 4, NMSA (as amended). The Laboratory's Fenton Hill Facility did not generate any hazardous waste during the entire year, and is not required to pay a fee for calendar year 2011. The enclosed fee represents the amount for a single facility owned by the Department of Energy and co-operated by the Los Alamos National Security, LLC (LANS).

  11. 21 briefing pages total

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    briefing pages total p. 1 Reservist Differential Briefing U.S. Office of Personnel Management December 11, 2009 p. 2 Agenda - Introduction of Speakers - Background - References/Tools - Overview of Reservist Differential Authority - Qualifying Active Duty Service and Military Orders - Understanding Military Leave and Earnings Statements p. 3 Background 5 U.S.C. 5538 (Section 751 of the Omnibus Appropriations Act, 2009, March 11, 2009) (Public Law 111-8) Law requires OPM to consult with DOD Law

  12. Total Estimated Contract Price: Contract Option Periods: Performance

    Office of Environmental Management (EM)

    Price: Contract Option Periods: Performance Period Fee Earned Base Period "A" $0 Base Period "B" Option 1 Option 2 Option 3 Cumulative Fee $0 $855,207 $142,771 $171,325 $175,563 $180,237 $185,312 Fee Available $44,562,457 Base Contract Period: November 21, 2016 to September 20, 2018 Fee Information Option Period 1 : September 21, 2018 to September 20, 2019 Option Period 2: September 21, 2019 to September 20, 2020 Option Period 3: September 21, 2020 to September 20, 2021

  13. Update on use of mine pool water for power generation.

    SciTech Connect (OSTI)

    Veil, J. A.; Puder, M. G.; Environmental Science Division

    2006-09-30

    In 2004, nearly 90 percent of the country's electricity was generated at power plants using steam-based systems (EIA 2005). Electricity generation at steam electric plants requires a cooling system to condense the steam. With the exception of a few plants using air-cooled condensers, most U.S. steam electric power plants use water for cooling. Water usage occurs through once-through cooling or as make-up water in a closed-cycle system (generally involving one or more cooling towers). According to a U.S. Geological Survey report, the steam electric power industry withdrew about 136 billion gallons per day of fresh water in 2000 (USGS 2005). This is almost the identical volume withdrawn for irrigation purposes. In addition to fresh water withdrawals, the steam electric power industry withdrew about 60 billion gallons per day of saline water. Many parts of the United States are facing fresh water shortages. Even areas that traditionally have had adequate water supplies are reaching capacity limits. New or expanded steam electric power plants frequently need to turn to non-traditional alternate sources of water for cooling. This report examines one type of alternate water source-groundwater collected in underground pools associated with coal mines (referred to as mine pool water in this report). In 2003, the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) funded Argonne National Laboratory (Argonne) to evaluate the feasibility of using mine pool water in Pennsylvania and West Virginia. That report (Veil et al. 2003) identified six small power plants in northeastern Pennsylvania (the Anthracite region) that had been using mine pool water for over a decade. It also reported on a pilot study underway at Exelon's Limerick Generating Station in southeastern Pennsylvania that involved release of water from a mine located about 70 miles upstream from the plant. The water flowed down the Schuylkill River and augmented the natural flow so that

  14. Measurements in large pool fires with an actively cooled calorimeter

    SciTech Connect (OSTI)

    Koski, J.A.; Wix, S.D.

    1995-12-31

    The pool fire thermal test described in Safety Series 6 published by the International Atomic Energy Agency (IAEA) or Title 10, Code of Federal Regulations, Part 71 (10CFR71) in the United States is one of the most difficult tests that a container for larger ``Type B`` quantities of nuclear materials must pass. If retests of a container are required, costly redesign and project delays can result. Accurate measurements and modeling of the pool fire environment will ultimately lower container costs by assuring that containers past the pool fire test on the first attempt. Experiments indicate that the object size or surface temperature of the container can play a role in determining local heat fluxes that are beyond the effects predicted from the simple radiative heat transfer laws. An analytical model described by Nicolette and Larson 1990 can be used to understand many of these effects. In this model a gray gas represents soot particles present in the flame structure. Close to the container surface, these soot particles are convectively and radiatively cooled and interact with incident energy from the surrounding fire. This cooler soot cloud effectively prevents some thermal radiation from reaching the container surface, reducing the surface heat flux below the value predicted by a transparent medium model. With some empirical constants, the model suggested by Nicolette and Larson can be used to more accurately simulate the pool fire environment. Properly formulated, the gray gas approaches also fast enough to be used with standard commercial computer codes to analyze shipping containers. To calibrate this type of model, accurate experimental measurements of radiative absorption coefficients, flame temperatures, and other parameters are necessary. A goal of the calorimeter measurements described here is to obtain such parameters so that a fast, useful design tool for large pool fires can be constructed.

  15. Letter from DOE to URS | CH2M Oak Ridge LLC on Award Fee Determination for April to September 2015

    Energy.gov [DOE]

    DOE's Oak Ridge Environmental Management Office told URS | CH2M Oak Ridge LLC (UCOR) in a letter that it had completed its evaluation of the company's performance for the award fee period of April to September 2015 and determined that UCOR earned a fee of more than $4.4 million for the period.

  16. Paducah and DUF6 Award Fees Determined for Three Prime Contracts |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Paducah and DUF6 Award Fees Determined for Three Prime Contracts Paducah and DUF6 Award Fees Determined for Three Prime Contracts April 27, 2016 - 12:45pm Addthis A Swift & Staley heavy equipment operator loads a salt spreader at Paducah’s C-732 Salt Storage Facility. A Swift & Staley heavy equipment operator loads a salt spreader at Paducah's C-732 Salt Storage Facility. LEXINGTON, Ky. - EM has completed final performance evaluations of two prime

  17. Fact #901: November 30, 2015 States Assessing Fees on Electric Vehicles to

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Make Up For Lost Fuel Tax Revenue | Department of Energy 1: November 30, 2015 States Assessing Fees on Electric Vehicles to Make Up For Lost Fuel Tax Revenue Fact #901: November 30, 2015 States Assessing Fees on Electric Vehicles to Make Up For Lost Fuel Tax Revenue SUBSCRIBE to the Fact of the Week The maintenance of our highways has traditionally been funded from a combination of Federal and state taxes collected at the pump from the sale of motor fuels. Because electric vehicles (EVs) do

  18. LCG Persistency Framework (CORAL, COOL, POOL): Status and Outlook

    SciTech Connect (OSTI)

    Valassi, A.; Clemencic, M.; Dykstra, D.; Frank, M.; Front, D.; Govi, G.; Kalkhof, A.; Loth, A.; Nowak, M.; Pokorski, W.; Salnikov, A.; Schmidt, S.A.; Trentadue, R.; Wache, M.; Xie, Z.; /Princeton U.

    2012-04-19

    The Persistency Framework consists of three software packages (CORAL, COOL and POOL) addressing the data access requirements of the LHC experiments in different areas. It is the result of the collaboration between the CERN IT Department and the three experiments (ATLAS, CMS and LHCb) that use this software to access their data. POOL is a hybrid technology store for C++ objects, metadata catalogs and collections. CORAL is a relational database abstraction layer with an SQL-free API. COOL provides specific software tools and components for the handling of conditions data. This paper reports on the status and outlook of the project and reviews in detail the usage of each package in the three experiments.

  19. Regional cooperation to establish a pooled spare parts inventory system

    SciTech Connect (OSTI)

    Deutsch, R.W.; Chung, B.H.; Chu, I.H.; Bromenschenkel, K.E.

    1985-01-01

    Traditionally, United States electric utilities have had informal agreements to share their spare parts with other utilities when emergency situations arise and the affected utility plant has no spare parts to perform a repair. The part(s) used in the repair are replaced later by the borrowing utility. It was recognized several years ago that formal agreements among a large number of utilities would better serve the objectives of these utilities to ensure equipment and spare parts are available if needed. The purpose of this paper is to describe in some detail a pooled spare parts inventory system in existence in the United States and recommend a method of extending the pooling system concept to the Pacific Basin Nuclear Countries.

  20. Performance of concrete members subjected to large hydrocarbon pool fires

    DOE PAGES-Beta [OSTI]

    Zwiers, Renata I.; Morgan, Bruce J.

    1989-01-01

    The authors discuss an investigation to determine analytically if the performance of concrete beams and columns in a hydrocarbon pool test fire would differ significantly from their performance in a standard test fire. The investigation consisted of a finite element analysis to obtain temperature distributions in typical cross sections, a comparison of the resulting temperature distribution in the cross section, and a strength analysis of a beam based on temperature distribution data. Results of the investigation are reported.

  1. Tunable molten oxide pool assisted plasma-melter vitrification systems

    DOE Patents [OSTI]

    Titus, Charles H.; Cohn, Daniel R.; Surma, Jeffrey E.

    1998-01-01

    The present invention provides tunable waste conversion systems and apparatus which have the advantage of highly robust operation and which provide complete or substantially complete conversion of a wide range of waste streams into useful gas and a stable, nonleachable solid product at a single location with greatly reduced air pollution to meet air quality standards. The systems provide the capability for highly efficient conversion of waste into high quality combustible gas and for high efficiency conversion of the gas into electricity by utilizing a high efficiency gas turbine or an internal combustion engine. The solid product can be suitable for various commercial applications. Alternatively, the solid product stream, which is a safe, stable material, may be disposed of without special considerations as hazardous material. In the preferred embodiment, the arc plasma furnace and joule heated melter are formed as a fully integrated unit with a common melt pool having circuit arrangements for the simultaneous independently controllable operation of both the arc plasma and the joule heated portions of the unit without interference with one another. The preferred configuration of this embodiment of the invention utilizes two arc plasma electrodes with an elongated chamber for the molten pool such that the molten pool is capable of providing conducting paths between electrodes. The apparatus may additionally be employed with reduced use or without further use of the gases generated by the conversion process. The apparatus may be employed as a net energy or net electricity producing unit where use of an auxiliary fuel provides the required level of electricity production. Methods and apparatus for converting metals, non-glass forming waste streams and low-ash producing inorganics into a useful gas are also provided. The methods and apparatus for such conversion include the use of a molten oxide pool having predetermined electrical, thermal and physical

  2. Thermal Cooling Limits of Sbotaged Spent Fuel Pools

    SciTech Connect (OSTI)

    Dr. Thomas G. Hughes; Dr. Thomas F. Lin

    2010-09-10

    To develop the understanding and predictive measures of the post “loss of water inventory” hazardous conditions as a result of the natural and/or terrorist acts to the spent fuel pool of a nuclear plant. This includes the thermal cooling limits to the spent fuel assembly (before the onset of the zircaloy ignition and combustion), and the ignition, combustion, and the subsequent propagation of zircaloy fire from one fuel assembly to others

  3. Solar swimming pool heating -- A copper collector after 26 years

    SciTech Connect (OSTI)

    Winter, F. de

    1999-07-01

    This paper is a progress report and a technology overview for a do-it-yourself solar swimming pool heater built by the author. Since March 1973 the heater has operated successfully day in day out for over 26 years, as a simple component in the pool circulation system, for three successive homeowners. The heater project was sponsored by the Copper Development Association (CDA), and used a copper flat plate collector design mounted on a small building, which provided both the roofing and the solar collection function. The heater was built in Pasadena, California, at 34.2 degrees north latitude and 118.2 degrees west longitude. A do-it-yourself manual was written so others could build such heaters, and about 100,000 copies of this manual have been distributed. The manual has helped many to get a better understanding of solar energy, has allowed many around the world to build similar swimming pool heater, and caused this author to get into the solar energy field.

  4. Environmental Assessment -- Test Area North pool stabilization project update

    SciTech Connect (OSTI)

    1997-08-01

    The purpose of this Environmental Assessment (EA) is to update the ``Test Area North Pool Stabilization Project`` EA (DOE/EA-1050) and finding of no significant impact (FONSI) issued May 6, 1996. This update analyzes the environmental and health impacts of a drying process for the Three Mile Island (TMI) nuclear reactor core debris canisters now stored underwater in a facility on the Idaho National Engineering and Environmental Laboratory (INEEL). A drying process was analyzed in the predecision versions of the EA released in 1995 but that particular process was determined to be ineffective and dropped from the EA/FONSI issued May 6, 1996. A new drying process was subsequently developed and is analyzed in Section 2.1.2 of this document. As did the 1996 EA, this update analyzes the environmental and health impacts of removing various radioactive materials from underwater storage, dewatering these materials, constructing a new interim dry storage facility, and transporting and placing the materials into the new facility. Also, as did the 1996 EA, this EA analyzes the removal, treatment and disposal of water from the pool, and placement of the facility into a safe, standby condition. The entire action would take place within the boundaries of the INEEL. The materials are currently stored underwater in the Test Area North (TAN) building 607 pool, the new interim dry storage facility would be constructed at the Idaho Chemical Processing Plant (ICPP) which is about 25 miles south of TAN.

  5. Kah-nee-ta Pool & Spa Low Temperature Geothermal Facility | Open...

    Open Energy Information (Open El) [EERE & EIA]

    Kah-nee-ta Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Kah-nee-ta Pool & Spa Low Temperature Geothermal Facility Facility Kah-nee-ta Sector...

  6. Determination of Total Petroleum Hydrocarbons (TPH) Using Total Carbon Analysis

    SciTech Connect (OSTI)

    Ekechukwu, A.A.

    2002-05-10

    Several methods have been proposed to replace the Freon(TM)-extraction method to determine total petroleum hydrocarbon (TPH) content. For reasons of cost, sensitivity, precision, or simplicity, none of the replacement methods are feasible for analysis of radioactive samples at our facility. We have developed a method to measure total petroleum hydrocarbon content in aqueous sample matrixes using total organic carbon (total carbon) determination. The total carbon content (TC1) of the sample is measured using a total organic carbon analyzer. The sample is then contacted with a small volume of non-pokar solvent to extract the total petroleum hydrocarbons. The total carbon content of the resultant aqueous phase of the extracted sample (TC2) is measured. Total petroleum hydrocarbon content is calculated (TPH = TC1-TC2). The resultant data are consistent with results obtained using Freon(TM) extraction followed by infrared absorbance.

  7. Request for Proposals for Final Energy Service Company Selection from Pre-Qualified Pool Documents

    Office of Energy Efficiency and Renewable Energy (EERE)

    Information and documents about the Request for Proposals to select an Energy Service Company from a pre-qualified pool.

  8. U.S. Total Exports

    U.S. Energy Information Administration (EIA) (indexed site)

    Total To Barbados Total To Brazil Freeport, TX Sabine Pass, LA Total to Canada Eastport, ID Calais, ME Detroit, MI Marysville, MI Port Huron, MI Crosby, ND Portal, ND Sault St. Marie, MI St. Clair, MI Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Morgan, MT Sherwood, ND Pittsburg, NH Buffalo, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to Egypt Freeport, TX Total to

  9. U.S. Total Exports

    U.S. Energy Information Administration (EIA) (indexed site)

    Sabine Pass, LA Total To Barbados Miami, FL Total To Brazil Freeport, TX Sabine Pass, LA Total to Canada Eastport, ID Calais, ME Detroit, MI Marysville, MI Port Huron, MI Portal, ND Sault St. Marie, MI St. Clair, MI Noyes, MN Babb, MT Havre, MT Port of Morgan, MT Sherwood, ND Pittsburg, NH Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to Dominican Republic Sabine Pass, LA Total

  10. Energy Storage for Power Systems Applications: A Regional Assessment for the Northwest Power Pool (NWPP)

    SciTech Connect (OSTI)

    Kintner-Meyer, Michael CW; Balducci, Patrick J.; Jin, Chunlian; Nguyen, Tony B.; Elizondo, Marcelo A.; Viswanathan, Vilayanur V.; Guo, Xinxin; Tuffner, Francis K.

    2010-04-01

    Wind production, which has expanded rapidly in recent years, could be an important element in the future efficient management of the electric power system; however, wind energy generation is uncontrollable and intermittent in nature. Thus, while wind power represents a significant opportunity to the Bonneville Power Administration (BPA), integrating high levels of wind resources into the power system will bring great challenges to generation scheduling and in the provision of ancillary services. This report addresses several key questions in the broader discussion on the integration of renewable energy resources in the Pacific Northwest power grid. More specifically, it addresses the following questions: a) how much total reserve or balancing requirements are necessary to accommodate the simulated expansion of intermittent renewable energy resources during the 2019 time horizon, and b) what are the most cost effective technological solutions for meeting load balancing requirements in the Northwest Power Pool (NWPP).

  11. Office of Inspector General report on audit of Department of Energy management and operating contractor available fees

    SciTech Connect (OSTI)

    1996-05-01

    The Office of Procurement and Assistance Management has proposed changes to the method used to annually calculate and negotiate ``for profit`` management and operating contractor available fees. This proposal will increase contractor fees in exchange for the contractor`s purported assumption of additional risk. In 1991, the Department, through the Accountability Rule, increased contractor fees as an incentive to improve contractor performance and accountability. Despite the lack of measurable benefits of this effort, the Department is crafting a new fee policy which will, depending upon how it is executed, increase fees above the amount provided through the Accountability Rule as an incentive to the Department`s management and operating contractors. The objective of the audit was to determine whether the Department`s proposed change to the fee structure for determining management and operating contractor fees will be cost effective. This report describes the study`s approach, its findings and recommendations, management and auditor comments, and includes appendices with further data.

  12. EM’s West Valley Cleanup Contactor Receives 85 Percent of Available Fee Award

    Energy.gov [DOE]

    EST VALLEY, N.Y. – EM announced that the contractor at its West Valley Demonstration Project (WVDP) cleanup earned $250,000, or nearly 85 percent of the available fee award of $295,495 for the six-month period ending Feb. 29 this year.

  13. Total Eolica | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Eolica Jump to: navigation, search Name: Total Eolica Place: Spain Product: Project developer References: Total Eolica1 This article is a stub. You can help OpenEI by expanding...

  14. Total

    U.S. Energy Information Administration (EIA) (indexed site)

    1,001 to 5,000 2,777 8,041 10,232 2.9 786 56 5,001 to 10,000 1,229 8,900 9,225 7.2 965 62 10,001 to 25,000 884 14,105 14,189 16.0 994 65 25,001 to 50,000 332 11,917 11,327 35.9 1,052 72 50,001 to 100,000 199 13,918 12,345 69.9 1,127 80 100,001 to 200,000 90 12,415 11,310 137.9 1,098 89 200,001 to 500,000 38 10,724 10,356 284.2 1,035 99 Over 500,000 8 7,074 9,196 885.0 769 117 Principal building activity Education 389 12,239 10,885 31.5 1,124 53 Food sales 177 1,252 1,172 7.1 1,067 121 Food

  15. Total

    U.S. Energy Information Administration (EIA) (indexed site)

    1,001 to 5,000 2,777 8,041 10,232 2.9 786 56 5,001 to 10,000 1,229 8,900 9,225 7.2 965 62 10,001 to 25,000 884 14,105 14,189 16.0 994 65 25,001 to 50,000 332 11,917 11,327 35.9 1,052 72 50,001 to 100,000 199 13,918 12,345 69.9 1,127 80 100,001 to 200,000 90 12,415 11,310 137.9 1,098 89 200,001 to 500,000 38 10,724 10,356 284.2 1,035 99 Over 500,000 8 7,074 9,196 885.0 769 117 Principal building activity Education 389 12,239 10,885 31.5 1,124 53 Food sales 177 1,252 1,172 7.1 1,067 121 Food

  16. Total

    U.S. Energy Information Administration (EIA) (indexed site)

    Median square feet per building (thousand) Median square feet per worker Median operating hours per week Median age of buildings (years) All buildings 5,557 87,093 88,182 5.0 1,029 50 32 Building floorspace (square feet) 1,001 to 5,000 2,777 8,041 10,232 2.8 821 49 37 5,001 to 10,000 1,229 8,900 9,225 7.0 1,167 50 31 10,001 to 25,000 884 14,105 14,189 15.0 1,444 56 32 25,001 to 50,000 332 11,917 11,327 35.0 1,461 60 29 50,001 to 100,000 199 13,918 12,345 67.0 1,442 60 26 100,001 to 200,000 90

  17. Total

    Gasoline and Diesel Fuel Update

    Fuel Oil, Greater than 500 ppm Sulfur Residual Fuel Oil Lubricants Asphalt and Road Oil Other Products Period: Annual (as of January 1) Download Series History Download ...

  18. Total

    Gasoline and Diesel Fuel Update

    of photovoltaic module shipments, 2015 (peak kilowatts) Source Disposition Source: U.S. Energy Information Administration, Form EIA-63B, 'Annual Photovoltaic CellModule ...

  19. Total..........................................................

    U.S. Energy Information Administration (EIA) (indexed site)

    ... Housing Units (millions) UrbanRural Location (as Self-Reported) Living Space ... Housing Units (millions) UrbanRural Location (as Self-Reported) Living Space ...

  20. Total..........................................................

    U.S. Energy Information Administration (EIA) (indexed site)

    ... Housing Units (millions) UrbanRural Location (as Self-Reported) City Town Suburbs Rural ... Housing Units (millions) UrbanRural Location (as Self-Reported) City Town Suburbs Rural ...

  1. Total..........................................................

    Annual Energy Outlook

    Living Space Characteristics Detached Attached Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC3.2 ...

  2. Total..........................................................

    U.S. Energy Information Administration (EIA) (indexed site)

    ... 111.1 20.6 15.1 5.5 Do Not Have Cooling Equipment...... 17.8 4.0 2.4 1.7 Have Cooling Equipment...... 93.3 ...

  3. Total..........................................................

    Annual Energy Outlook

    ... Average Square Feet per Apartment in a -- Apartments (millions) Major Outside Wall Construction Siding (Aluminum, Vinyl, Steel)...... 35.3 3.5 1,286 1,090 325 852 786 461 ...

  4. Total

    Gasoline and Diesel Fuel Update

    ... District heat 48 5,964 8,230 124.9 725 87 District chilled water 54 4,608 5,742 85.4 803 ... Natural gas 12 732 1,048 61.5 699 67 District chilled water 54 4,608 5,742 85.4 803 87 ...

  5. Total..............................................

    U.S. Energy Information Administration (EIA) (indexed site)

    111.1 86.6 2,720 1,970 1,310 1,941 1,475 821 1,059 944 554 Census Region and Division Northeast.................................... 20.6 13.9 3,224 2,173 836 2,219 1,619 583 903 830 Q New England.......................... 5.5 3.6 3,365 2,154 313 2,634 1,826 Q 951 940 Q Middle Atlantic........................ 15.1 10.3 3,167 2,181 1,049 2,188 1,603 582 Q Q Q Midwest...................................... 25.6 21.0 2,823 2,239 1,624 2,356 1,669 1,336 1,081 961 778 East North

  6. Total...........................................................

    U.S. Energy Information Administration (EIA) (indexed site)

    Q Million U.S. Housing Units Renter- Occupied Housing Units (millions) Type of Renter-Occupied Housing Unit U.S. Housing Units (millions Single-Family Units Apartments in Buildings With-- Living Space Characteristics Detached Attached Table HC4.2 Living Space Characteristics by Renter-Occupied Housing Units, 2005 2 to 4 Units 5 or More Units Mobile Homes Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing

  7. Total............................................................

    U.S. Energy Information Administration (EIA) (indexed site)

  8. Total.............................................................

    U.S. Energy Information Administration (EIA) (indexed site)

    26.7 28.8 20.6 13.1 22.0 16.6 38.6 Personal Computers Do Not Use a Personal Computer........... 35.5 17.1 10.8 4.2 1.8 1.6 10.3 20.6 Use a Personal Computer....................... 75.6 9.6 18.0 16.4 11.3 20.3 6.4 17.9 Most-Used Personal Computer Type of PC Desk-top Model.................................. 58.6 7.6 14.2 13.1 9.2 14.6 5.0 14.5 Laptop Model...................................... 16.9 2.0 3.8 3.3 2.1 5.7 1.3 3.5 Hours Turned on Per Week Less than 2 Hours..............................

  9. Total..............................................................

    U.S. Energy Information Administration (EIA) (indexed site)

    ,171 1,618 1,031 845 630 401 Census Region and Division Northeast................................................... 20.6 2,334 1,664 562 911 649 220 New England.......................................... 5.5 2,472 1,680 265 1,057 719 113 Middle Atlantic........................................ 15.1 2,284 1,658 670 864 627 254 Midwest...................................................... 25.6 2,421 1,927 1,360 981 781 551 East North Central.................................. 17.7 2,483 1,926 1,269

  10. Total..............................................................

    U.S. Energy Information Administration (EIA) (indexed site)

    Do Not Have Cooling Equipment................ 17.8 5.3 4.7 2.8 1.9 3.1 3.6 7.5 Have Cooling Equipment............................. 93.3 21.5 24.1 17.8 11.2 18.8 13.0 31.1 Use Cooling Equipment.............................. 91.4 21.0 23.5 17.4 11.0 18.6 12.6 30.3 Have Equipment But Do Not Use it............. 1.9 0.5 0.6 0.4 Q Q 0.5 0.8 Type of Air-Conditioning Equipment 1, 2 Central System.......................................... 65.9 11.0 16.5 13.5 8.7 16.1 6.4 17.2 Without a Heat

  11. Total...............................................................

    U.S. Energy Information Administration (EIA) (indexed site)

    20.6 25.6 40.7 24.2 Personal Computers Do Not Use a Personal Computer ........... 35.5 6.9 8.1 14.2 6.4 Use a Personal Computer......................... 75.6 13.7 17.5 26.6 17.8 Number of Desktop PCs 1.......................................................... 50.3 9.3 11.9 18.2 11.0 2.......................................................... 16.2 2.9 3.5 5.5 4.4 3 or More............................................. 9.0 1.5 2.1 2.9 2.5 Number of Laptop PCs

  12. Total...............................................................

    U.S. Energy Information Administration (EIA) (indexed site)

    0.7 21.7 6.9 12.1 Personal Computers Do Not Use a Personal Computer ........... 35.5 14.2 7.2 2.8 4.2 Use a Personal Computer......................... 75.6 26.6 14.5 4.1 7.9 Number of Desktop PCs 1.......................................................... 50.3 18.2 10.0 2.9 5.3 2.......................................................... 16.2 5.5 3.0 0.7 1.8 3 or More............................................. 9.0 2.9 1.5 0.5 0.8 Number of Laptop PCs

  13. Total...............................................................

    U.S. Energy Information Administration (EIA) (indexed site)

    26.7 28.8 20.6 13.1 22.0 16.6 38.6 Personal Computers Do Not Use a Personal Computer ........... 35.5 17.1 10.8 4.2 1.8 1.6 10.3 20.6 Use a Personal Computer......................... 75.6 9.6 18.0 16.4 11.3 20.3 6.4 17.9 Number of Desktop PCs 1.......................................................... 50.3 8.3 14.2 11.4 7.2 9.2 5.3 14.2 2.......................................................... 16.2 0.9 2.6 3.7 2.9 6.2 0.8 2.6 3 or More............................................. 9.0 0.4 1.2

  14. Total...............................................................

    U.S. Energy Information Administration (EIA) (indexed site)

    Do Not Have Cooling Equipment................. 17.8 5.3 4.7 2.8 1.9 3.1 3.6 7.5 Have Cooling Equipment.............................. 93.3 21.5 24.1 17.8 11.2 18.8 13.0 31.1 Use Cooling Equipment............................... 91.4 21.0 23.5 17.4 11.0 18.6 12.6 30.3 Have Equipment But Do Not Use it............. 1.9 0.5 0.6 0.4 Q Q 0.5 0.8 Air-Conditioning Equipment 1, 2 Central System............................................ 65.9 11.0 16.5 13.5 8.7 16.1 6.4 17.2 Without a Heat

  15. Total...............................................................

    U.S. Energy Information Administration (EIA) (indexed site)

    47.1 19.0 22.7 22.3 Personal Computers Do Not Use a Personal Computer ........... 35.5 16.9 6.5 4.6 7.6 Use a Personal Computer......................... 75.6 30.3 12.5 18.1 14.7 Number of Desktop PCs 1.......................................................... 50.3 21.1 8.3 10.7 10.1 2.......................................................... 16.2 6.2 2.8 4.1 3.0 3 or More............................................. 9.0 2.9 1.4 3.2 1.6 Number of Laptop PCs

  16. Total................................................................

    U.S. Energy Information Administration (EIA) (indexed site)

    111.1 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Do Not Have Space Heating Equipment....... 1.2 0.5 0.3 0.2 Q 0.2 0.3 0.6 Have Main Space Heating Equipment.......... 109.8 26.2 28.5 20.4 13.0 21.8 16.3 37.9 Use Main Space Heating Equipment............ 109.1 25.9 28.1 20.3 12.9 21.8 16.0 37.3 Have Equipment But Do Not Use It.............. 0.8 0.3 0.3 Q Q N 0.4 0.6 Main Heating Fuel and Equipment Natural Gas.................................................. 58.2 12.2 14.4 11.3 7.1 13.2 7.6 18.3 Central

  17. Total.................................................................

    U.S. Energy Information Administration (EIA) (indexed site)

    49.2 15.1 15.6 11.1 7.0 5.2 8.0 Have Cooling Equipment............................... 93.3 31.3 15.1 15.6 11.1 7.0 5.2 8.0 Use Cooling Equipment................................ 91.4 30.4 14.6 15.4 11.1 6.9 5.2 7.9 Have Equipment But Do Not Use it............... 1.9 1.0 0.5 Q Q Q Q Q Do Not Have Cooling Equipment................... 17.8 17.8 N N N N N N Air-Conditioning Equipment 1, 2 Central System............................................. 65.9 3.9 15.1 15.6 11.1 7.0 5.2 8.0 Without a Heat

  18. Total.................................................................

    U.S. Energy Information Administration (EIA) (indexed site)

    14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Do Not Have Space Heating Equipment........ 1.2 N Q Q 0.2 0.4 0.2 0.2 Q Have Main Space Heating Equipment........... 109.8 14.7 7.4 12.4 12.2 18.5 18.3 17.1 9.2 Use Main Space Heating Equipment............. 109.1 14.6 7.3 12.4 12.2 18.2 18.2 17.1 9.1 Have Equipment But Do Not Use It............... 0.8 Q Q Q Q 0.3 Q N Q Main Heating Fuel and Equipment Natural Gas................................................... 58.2 9.2 4.9 7.8 7.1 8.8 8.4 7.8 4.2 Central

  19. Total.................................................................

    U.S. Energy Information Administration (EIA) (indexed site)

    26.7 28.8 20.6 13.1 22.0 16.6 38.6 Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day.............................. 8.2 2.9 2.5 1.3 0.5 1.0 2.4 4.6 2 Times A Day........................................... 24.6 6.5 7.0 4.3 3.2 3.6 4.8 10.3 Once a Day................................................ 42.3 8.8 9.8 8.7 5.1 10.0 5.0 12.9 A Few Times Each Week........................... 27.2 5.6 7.2 4.7 3.3 6.3 3.2 7.5 About Once a Week................................... 3.9 1.1 1.1

  20. Total..................................................................

    U.S. Energy Information Administration (EIA) (indexed site)

    78.1 64.1 4.2 1.8 2.3 5.7 Do Not Have Cooling Equipment..................... 17.8 11.3 9.3 0.6 Q 0.4 0.9 Have Cooling Equipment................................. 93.3 66.8 54.7 3.6 1.7 1.9 4.8 Use Cooling Equipment.................................. 91.4 65.8 54.0 3.6 1.7 1.9 4.7 Have Equipment But Do Not Use it................. 1.9 1.1 0.8 Q N Q Q Type of Air-Conditioning Equipment 1, 2 Central System.............................................. 65.9 51.7 43.9 2.5 0.7 1.6 3.1 Without a Heat

  1. Total..................................................................

    U.S. Energy Information Administration (EIA) (indexed site)

    33.0 8.0 3.4 5.9 14.4 1.2 Do Not Have Cooling Equipment..................... 17.8 6.5 1.6 0.9 1.3 2.4 0.2 Have Cooling Equipment................................. 93.3 26.5 6.5 2.5 4.6 12.0 1.0 Use Cooling Equipment.................................. 91.4 25.7 6.3 2.5 4.4 11.7 0.8 Have Equipment But Do Not Use it................. 1.9 0.8 Q Q 0.2 0.3 Q Type of Air-Conditioning Equipment 1, 2 Central System.............................................. 65.9 14.1 3.6 1.5 2.1 6.4 0.6 Without a Heat

  2. Total..................................................................

    U.S. Energy Information Administration (EIA) (indexed site)

    . 111.1 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Do Not Have Cooling Equipment..................... 17.8 3.9 1.8 2.2 2.1 3.1 2.6 1.7 0.4 Have Cooling Equipment................................. 93.3 10.8 5.6 10.3 10.4 15.8 16.0 15.6 8.8 Use Cooling Equipment.................................. 91.4 10.6 5.5 10.3 10.3 15.3 15.7 15.3 8.6 Have Equipment But Do Not Use it................. 1.9 Q Q Q Q 0.6 0.4 0.3 Q Type of Air-Conditioning Equipment 1, 2 Central

  3. Total...................................................................

    U.S. Energy Information Administration (EIA) (indexed site)

    15.2 7.8 1.0 1.2 3.3 1.9 For Two Housing Units............................. 0.9 Q N Q 0.6 N Heat Pump.................................................. 9.2 7.4 0.3 Q 0.7 0.5 Portable Electric Heater............................... 1.6 0.8 Q Q Q 0.3 Other Equipment......................................... 1.9 0.7 Q Q 0.7 Q Fuel Oil........................................................... 7.7 5.5 0.4 0.8 0.9 0.2 Steam or Hot Water System........................ 4.7 2.9 Q 0.7 0.8 N For One Housing

  4. Total...................................................................

    U.S. Energy Information Administration (EIA) (indexed site)

    Air-Conditioning Equipment 1, 2 Central System............................................... 65.9 47.5 4.0 2.8 7.9 3.7 Without a Heat Pump.................................. 53.5 37.8 3.4 2.2 7.0 3.1 With a Heat Pump....................................... 12.3 9.7 0.6 0.5 1.0 0.6 Window/Wall Units.......................................... 28.9 14.9 2.3 3.5 6.0 2.1 1 Unit........................................................... 14.5 6.6 1.0 1.6 4.2 1.2 2

  5. Total...................................................................

    U.S. Energy Information Administration (EIA) (indexed site)

    Type of Air-Conditioning Equipment 1, 2 Central System.............................................. 65.9 47.5 4.0 2.8 7.9 3.7 Without a Heat Pump.................................. 53.5 37.8 3.4 2.2 7.0 3.1 With a Heat Pump....................................... 12.3 9.7 0.6 0.5 1.0 0.6 Window/Wall Units........................................ 28.9 14.9 2.3 3.5 6.0 2.1 1 Unit........................................................... 14.5 6.6 1.0 1.6 4.2 1.2 2

  6. Total....................................................................

    U.S. Energy Information Administration (EIA) (indexed site)

    14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Household Size 1 Person.......................................................... 30.0 4.6 2.5 3.7 3.2 5.4 5.5 3.7 1.6 2 Persons......................................................... 34.8 4.3 1.9 4.4 4.1 5.9 5.3 5.5 3.4 3 Persons......................................................... 18.4 2.5 1.3 1.7 1.9 2.9 3.5 2.8 1.6 4 Persons......................................................... 15.9 1.9 0.8 1.5 1.6 3.0 2.5 3.1 1.4 5

  7. Total.......................................................................

    U.S. Energy Information Administration (EIA) (indexed site)

    0.6 15.1 5.5 Personal Computers Do Not Use a Personal Computer ................... 35.5 6.9 5.3 1.6 Use a Personal Computer................................ 75.6 13.7 9.8 3.9 Number of Desktop PCs 1.................................................................. 50.3 9.3 6.8 2.5 2.................................................................. 16.2 2.9 1.9 1.0 3 or More..................................................... 9.0 1.5 1.1 0.4 Number of Laptop PCs

  8. Total.......................................................................

    U.S. Energy Information Administration (EIA) (indexed site)

    5.6 17.7 7.9 Personal Computers Do Not Use a Personal Computer ................... 35.5 8.1 5.6 2.5 Use a Personal Computer................................ 75.6 17.5 12.1 5.4 Number of Desktop PCs 1.................................................................. 50.3 11.9 8.4 3.4 2.................................................................. 16.2 3.5 2.2 1.3 3 or More..................................................... 9.0 2.1 1.5 0.6 Number of Laptop PCs

  9. Total.......................................................................

    U.S. Energy Information Administration (EIA) (indexed site)

    4.2 7.6 16.6 Personal Computers Do Not Use a Personal Computer ................... 35.5 6.4 2.2 4.2 Use a Personal Computer................................ 75.6 17.8 5.3 12.5 Number of Desktop PCs 1.................................................................. 50.3 11.0 3.4 7.6 2.................................................................. 16.2 4.4 1.3 3.1 3 or More..................................................... 9.0 2.5 0.7 1.8 Number of Laptop PCs

  10. Total........................................................................

    U.S. Energy Information Administration (EIA) (indexed site)

    25.6 40.7 24.2 Do Not Have Space Heating Equipment............... 1.2 Q Q Q 0.7 Have Main Space Heating Equipment.................. 109.8 20.5 25.6 40.3 23.4 Use Main Space Heating Equipment.................... 109.1 20.5 25.6 40.1 22.9 Have Equipment But Do Not Use It...................... 0.8 N N Q 0.6 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 11.4 18.4 13.6 14.7 Central Warm-Air Furnace................................ 44.7 6.1

  11. Total........................................................................

    U.S. Energy Information Administration (EIA) (indexed site)

    5.6 17.7 7.9 Do Not Have Space Heating Equipment............... 1.2 Q Q N Have Main Space Heating Equipment.................. 109.8 25.6 17.7 7.9 Use Main Space Heating Equipment.................... 109.1 25.6 17.7 7.9 Have Equipment But Do Not Use It...................... 0.8 N N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 18.4 13.1 5.3 Central Warm-Air Furnace................................ 44.7 16.2 11.6 4.7 For One Housing

  12. Total........................................................................

    U.S. Energy Information Administration (EIA) (indexed site)

    0.7 21.7 6.9 12.1 Do Not Have Space Heating Equipment............... 1.2 Q Q N Q Have Main Space Heating Equipment.................. 109.8 40.3 21.4 6.9 12.0 Use Main Space Heating Equipment.................... 109.1 40.1 21.2 6.9 12.0 Have Equipment But Do Not Use It...................... 0.8 Q Q N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 13.6 5.6 2.3 5.7 Central Warm-Air Furnace................................ 44.7 11.0 4.4

  13. Total........................................................................

    U.S. Energy Information Administration (EIA) (indexed site)

    7.1 7.0 8.0 12.1 Do Not Have Space Heating Equipment............... 1.2 Q Q Q 0.2 Have Main Space Heating Equipment.................. 109.8 7.1 6.8 7.9 11.9 Use Main Space Heating Equipment.................... 109.1 7.1 6.6 7.9 11.4 Have Equipment But Do Not Use It...................... 0.8 N Q N 0.5 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 3.8 0.4 3.8 8.4 Central Warm-Air Furnace................................ 44.7 1.8 Q 3.1 6.0

  14. Total...........................................................................

    U.S. Energy Information Administration (EIA) (indexed site)

    0.6 15.1 5.5 Do Not Have Cooling Equipment............................. 17.8 4.0 2.4 1.7 Have Cooling Equipment.......................................... 93.3 16.5 12.8 3.8 Use Cooling Equipment........................................... 91.4 16.3 12.6 3.7 Have Equipment But Do Not Use it.......................... 1.9 0.3 Q Q Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 6.0 5.2 0.8 Without a Heat

  15. Total...........................................................................

    U.S. Energy Information Administration (EIA) (indexed site)

    5.6 17.7 7.9 Do Not Have Cooling Equipment............................. 17.8 2.1 1.8 0.3 Have Cooling Equipment.......................................... 93.3 23.5 16.0 7.5 Use Cooling Equipment........................................... 91.4 23.4 15.9 7.5 Have Equipment But Do Not Use it.......................... 1.9 Q Q Q Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 17.3 11.3 6.0 Without a Heat

  16. Total...........................................................................

    U.S. Energy Information Administration (EIA) (indexed site)

    4.2 7.6 16.6 Do Not Have Cooling Equipment............................. 17.8 10.3 3.1 7.3 Have Cooling Equipment.......................................... 93.3 13.9 4.5 9.4 Use Cooling Equipment........................................... 91.4 12.9 4.3 8.5 Have Equipment But Do Not Use it.......................... 1.9 1.0 Q 0.8 Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 10.5 3.9 6.5 Without a Heat

  17. Total.............................................................................

    U.S. Energy Information Administration (EIA) (indexed site)

    Do Not Have Cooling Equipment............................... 17.8 4.0 2.1 1.4 10.3 Have Cooling Equipment............................................ 93.3 16.5 23.5 39.3 13.9 Use Cooling Equipment............................................. 91.4 16.3 23.4 38.9 12.9 Have Equipment But Do Not Use it............................ 1.9 0.3 Q 0.5 1.0 Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 6.0 17.3 32.1 10.5 Without a Heat

  18. Total.............................................................................

    U.S. Energy Information Administration (EIA) (indexed site)

    Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 1.2 1.0 0.2 2 Times A Day...................................................... 24.6 4.0 2.7 1.2 Once a Day........................................................... 42.3 7.9 5.4 2.5 A Few Times Each Week...................................... 27.2 6.0 4.8 1.2 About Once a Week.............................................. 3.9 0.6 0.5 Q Less Than Once a

  19. Total.............................................................................

    U.S. Energy Information Administration (EIA) (indexed site)

    Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 1.4 1.0 0.4 2 Times A Day...................................................... 24.6 5.8 3.5 2.3 Once a Day........................................................... 42.3 10.7 7.8 2.9 A Few Times Each Week...................................... 27.2 5.6 4.0 1.6 About Once a Week.............................................. 3.9 0.9 0.6 0.3 Less Than Once a

  20. Total.............................................................................

    U.S. Energy Information Administration (EIA) (indexed site)

    Do Not Have Cooling Equipment............................... 17.8 2.1 1.8 0.3 Have Cooling Equipment............................................ 93.3 23.5 16.0 7.5 Use Cooling Equipment............................................. 91.4 23.4 15.9 7.5 Have Equipment But Do Not Use it............................ 1.9 Q Q Q Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 17.3 11.3 6.0 Without a Heat

  1. Total.............................................................................

    U.S. Energy Information Administration (EIA) (indexed site)

    Do Not Have Cooling Equipment............................... 17.8 1.4 0.8 0.2 0.3 Have Cooling Equipment............................................ 93.3 39.3 20.9 6.7 11.8 Use Cooling Equipment............................................. 91.4 38.9 20.7 6.6 11.7 Have Equipment But Do Not Use it............................ 1.9 0.5 Q Q Q Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 32.1 17.6 5.2 9.3 Without a Heat

  2. Total.............................................................................

    U.S. Energy Information Administration (EIA) (indexed site)

    Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 2.6 0.7 1.9 2 Times A Day...................................................... 24.6 6.6 2.0 4.6 Once a Day........................................................... 42.3 8.8 2.9 5.8 A Few Times Each Week...................................... 27.2 4.7 1.5 3.1 About Once a Week.............................................. 3.9 0.7 Q 0.6 Less Than Once a

  3. Total.............................................................................

    U.S. Energy Information Administration (EIA) (indexed site)

    Do Not Have Cooling Equipment............................... 17.8 10.3 3.1 7.3 Have Cooling Equipment............................................ 93.3 13.9 4.5 9.4 Use Cooling Equipment............................................. 91.4 12.9 4.3 8.5 Have Equipment But Do Not Use it............................ 1.9 1.0 Q 0.8 Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 10.5 3.9 6.5 Without a Heat

  4. Total.............................................................................

    U.S. Energy Information Administration (EIA) (indexed site)

    Do Not Have Cooling Equipment............................... 17.8 8.5 2.7 2.6 4.0 Have Cooling Equipment............................................ 93.3 38.6 16.2 20.1 18.4 Use Cooling Equipment............................................. 91.4 37.8 15.9 19.8 18.0 Have Equipment But Do Not Use it............................ 1.9 0.9 0.3 0.3 0.4 Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 25.8 10.9 16.6 12.5 Without a Heat

  5. Total..............................................................................

    U.S. Energy Information Administration (EIA) (indexed site)

    20.6 25.6 40.7 24.2 Do Not Have Cooling Equipment................................ 17.8 4.0 2.1 1.4 10.3 Have Cooling Equipment............................................. 93.3 16.5 23.5 39.3 13.9 Use Cooling Equipment.............................................. 91.4 16.3 23.4 38.9 12.9 Have Equipment But Do Not Use it............................. 1.9 0.3 Q 0.5 1.0 Air-Conditioning Equipment 1, 2 Central System........................................................... 65.9 6.0 17.3 32.1 10.5

  6. Total..............................................................................

    U.S. Energy Information Administration (EIA) (indexed site)

    0.7 21.7 6.9 12.1 Do Not Have Cooling Equipment................................ 17.8 1.4 0.8 0.2 0.3 Have Cooling Equipment............................................. 93.3 39.3 20.9 6.7 11.8 Use Cooling Equipment.............................................. 91.4 38.9 20.7 6.6 11.7 Have Equipment But Do Not Use it............................. 1.9 0.5 Q Q Q Air-Conditioning Equipment 1, 2 Central System........................................................... 65.9 32.1 17.6 5.2 9.3 Without a

  7. Total..............................................................................

    U.S. Energy Information Administration (EIA) (indexed site)

    111.1 7.1 7.0 8.0 12.1 Personal Computers Do Not Use a Personal Computer .......................... 35.5 3.0 2.0 2.7 3.1 Use a Personal Computer....................................... 75.6 4.2 5.0 5.3 9.0 Number of Desktop PCs 1......................................................................... 50.3 3.1 3.4 3.4 5.4 2......................................................................... 16.2 0.7 1.1 1.2 2.2 3 or More............................................................ 9.0 0.3

  8. Total..............................................................................

    U.S. Energy Information Administration (EIA) (indexed site)

    7.1 19.0 22.7 22.3 Do Not Have Cooling Equipment................................ 17.8 8.5 2.7 2.6 4.0 Have Cooling Equipment............................................. 93.3 38.6 16.2 20.1 18.4 Use Cooling Equipment.............................................. 91.4 37.8 15.9 19.8 18.0 Have Equipment But Do Not Use it............................. 1.9 0.9 0.3 0.3 0.4 Air-Conditioning Equipment 1, 2 Central System........................................................... 65.9 25.8 10.9 16.6 12.5

  9. Total.................................................................................

    U.S. Energy Information Administration (EIA) (indexed site)

    7.1 7.0 8.0 12.1 Do Not Have Cooling Equipment................................... 17.8 1.8 Q Q 4.9 Have Cooling Equipment................................................ 93.3 5.3 7.0 7.8 7.2 Use Cooling Equipment................................................. 91.4 5.3 7.0 7.7 6.6 Have Equipment But Do Not Use it............................... 1.9 Q N Q 0.6 Air-Conditioning Equipment 1, 2 Central System.............................................................. 65.9 1.1 6.4 6.4 5.4 Without a

  10. Total....................................................................................

    U.S. Energy Information Administration (EIA) (indexed site)

    25.6 40.7 24.2 Personal Computers Do Not Use a Personal Computer.................................. 35.5 6.9 8.1 14.2 6.4 Use a Personal Computer.............................................. 75.6 13.7 17.5 26.6 17.8 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 10.4 14.1 20.5 13.7 Laptop Model............................................................. 16.9 3.3 3.4 6.1 4.1 Hours Turned on Per Week Less than 2

  11. Total....................................................................................

    U.S. Energy Information Administration (EIA) (indexed site)

    5.6 17.7 7.9 Personal Computers Do Not Use a Personal Computer.................................. 35.5 8.1 5.6 2.5 Use a Personal Computer.............................................. 75.6 17.5 12.1 5.4 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 14.1 10.0 4.0 Laptop Model............................................................. 16.9 3.4 2.1 1.3 Hours Turned on Per Week Less than 2

  12. Total....................................................................................

    U.S. Energy Information Administration (EIA) (indexed site)

    Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day................................................. 8.2 3.0 1.6 0.3 1.1 2 Times A Day.............................................................. 24.6 8.3 4.2 1.3 2.7 Once a Day................................................................... 42.3 15.0 8.1 2.7 4.2 A Few Times Each Week............................................. 27.2 10.9 6.0 1.8 3.1 About Once a Week..................................................... 3.9

  13. Total....................................................................................

    U.S. Energy Information Administration (EIA) (indexed site)

    Personal Computers Do Not Use a Personal Computer.................................. 35.5 14.2 7.2 2.8 4.2 Use a Personal Computer.............................................. 75.6 26.6 14.5 4.1 7.9 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 20.5 11.0 3.4 6.1 Laptop Model............................................................. 16.9 6.1 3.5 0.7 1.9 Hours Turned on Per Week Less than 2

  14. Total....................................................................................

    U.S. Energy Information Administration (EIA) (indexed site)

    4.2 7.6 16.6 Personal Computers Do Not Use a Personal Computer.................................. 35.5 6.4 2.2 4.2 Use a Personal Computer.............................................. 75.6 17.8 5.3 12.5 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 13.7 4.2 9.5 Laptop Model............................................................. 16.9 4.1 1.1 3.0 Hours Turned on Per Week Less than 2

  15. Total....................................................................................

    U.S. Energy Information Administration (EIA) (indexed site)

    Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day................................................. 8.2 3.7 1.6 1.4 1.5 2 Times A Day.............................................................. 24.6 10.8 4.1 4.3 5.5 Once a Day................................................................... 42.3 17.0 7.2 8.7 9.3 A Few Times Each Week............................................. 27.2 11.4 4.7 6.4 4.8 About Once a Week.....................................................

  16. Total....................................................................................

    U.S. Energy Information Administration (EIA) (indexed site)

    111.1 47.1 19.0 22.7 22.3 Personal Computers Do Not Use a Personal Computer.................................. 35.5 16.9 6.5 4.6 7.6 Use a Personal Computer.............................................. 75.6 30.3 12.5 18.1 14.7 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 22.9 9.8 14.1 11.9 Laptop Model............................................................. 16.9 7.4 2.7 4.0 2.9 Hours Turned on Per Week Less than 2

  17. Total.........................................................................................

    U.S. Energy Information Administration (EIA) (indexed site)

    ..... 111.1 7.1 7.0 8.0 12.1 Personal Computers Do Not Use a Personal Computer...................................... 35.5 3.0 2.0 2.7 3.1 Use a Personal Computer.................................................. 75.6 4.2 5.0 5.3 9.0 Most-Used Personal Computer Type of PC Desk-top Model............................................................. 58.6 3.2 3.9 4.0 6.7 Laptop Model................................................................. 16.9 1.0 1.1 1.3 2.4 Hours Turned on Per Week Less

  18. Report on Audit of Department of Energy Management and Operating Contractor Available Fees, IG-0390

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    AUDIT OF DEPARTMENT OF ENERGY MANAGEMENT AND OPERATING CONTRACTOR AVAILABLE FEES The Office of Inspector General wants to make the distribution of its reports as customer friendly and cost effective as possible. Therefore, this report will be available electronically through the Internet five to seven days after publication at the following alternative address: Department of Energy Headquarters Gopher gopher.hr.doe.gov Department of Energy Headquarters Anonymous FTP vm1.hqadmin.doe.gov

  19. The Phoenix series large scale LNG pool fire experiments.

    SciTech Connect (OSTI)

    Simpson, Richard B.; Jensen, Richard Pearson; Demosthenous, Byron; Luketa, Anay Josephine; Ricks, Allen Joseph; Hightower, Marion Michael; Blanchat, Thomas K.; Helmick, Paul H.; Tieszen, Sheldon Robert; Deola, Regina Anne; Mercier, Jeffrey Alan; Suo-Anttila, Jill Marie; Miller, Timothy J.

    2010-12-01

    The increasing demand for natural gas could increase the number and frequency of Liquefied Natural Gas (LNG) tanker deliveries to ports across the United States. Because of the increasing number of shipments and the number of possible new facilities, concerns about the potential safety of the public and property from an accidental, and even more importantly intentional spills, have increased. While improvements have been made over the past decade in assessing hazards from LNG spills, the existing experimental data is much smaller in size and scale than many postulated large accidental and intentional spills. Since the physics and hazards from a fire change with fire size, there are concerns about the adequacy of current hazard prediction techniques for large LNG spills and fires. To address these concerns, Congress funded the Department of Energy (DOE) in 2008 to conduct a series of laboratory and large-scale LNG pool fire experiments at Sandia National Laboratories (Sandia) in Albuquerque, New Mexico. This report presents the test data and results of both sets of fire experiments. A series of five reduced-scale (gas burner) tests (yielding 27 sets of data) were conducted in 2007 and 2008 at Sandia's Thermal Test Complex (TTC) to assess flame height to fire diameter ratios as a function of nondimensional heat release rates for extrapolation to large-scale LNG fires. The large-scale LNG pool fire experiments were conducted in a 120 m diameter pond specially designed and constructed in Sandia's Area III large-scale test complex. Two fire tests of LNG spills of 21 and 81 m in diameter were conducted in 2009 to improve the understanding of flame height, smoke production, and burn rate and therefore the physics and hazards of large LNG spills and fires.

  20. A Horizontal Well Program for the Upper Miocene 26R Pool, Elk Hills Field, California

    SciTech Connect (OSTI)

    Reid, S.A.; Kuespert, J.G.; McJannet, G.S.

    1992-07-01

    The goals of this paper are to (1) summarize the complex geologic and reservoir characteristics of the 26R Pool, (2) note those characteristics and criteria that would make this Pool ideally suited for horizontal well technology, (3) discuss the evolution of horizontal drilling technology and our corresponding development of knowledge about the 26R Pool, and (4) discuss how our objectives have been achieved by utilizing horizontal wells. (VC)