National Library of Energy BETA

Sample records for falco peregrinus anatum

  1. Microsoft Word - sensitive-species-table.docx

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    1. Sensitive Species Occurring or Potentially Occurring at LANL Scientific Name Common Name Protected Status 1 Potential to Occur 2 Gila pandora Rio Grande Chub NMS Moderate Falco peregrinus anatum American Peregrine Falcon NMT, FSOC High Falco peregrinus tundrius Arctic Peregrine Falcon NMT, FSOC Moderate Haliaeetus leucocephalus Bald Eagle NMT, S1 High Cynanthus latirostris magicus Broad-billed Hummingbird NMT Low Accipiter gentilis Northern Goshawk NMS, FSOC High Lanius ludovicianus

  2. CfA4: LIGHT CURVES FOR 94 TYPE Ia SUPERNOVAE (Journal Article...

    Office of Scientific and Technical Information (OSTI)

    Authors: Hicken, Malcolm ; Challis, Peter ; Kirshner, Robert P. ; Bakos, Gaspar ; Berlind, Perry ; Brown, Warren R. ; Caldwell, Nelson ; Calkins, Mike ; Falco, Emilio ; Fernandez, ...


    Office of Scientific and Technical Information (OSTI)

    Authors: Huchra, John P. ; Berlind, Perry ; Calkins, Michael ; Falco, Emilio ; Mink, Jessica D. ; Tokarz, Susan 1 ; Macri, Lucas M. 2 ; Masters, Karen L. 3 ; Jarrett, Thomas ...

  4. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... Filter by Author Falco, Emilio E. (6) Berlind, Perry (5) Berta, Zachory K. (5) Burke, ... Robert P. ; Foley, Ryan J. ; Berlind, Perry ; Bieryla, Allyson ; Calkins, Michael L. ; ...

  5. BooNE: Booster Neutrino Experiment

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Start the tour here... This tour was created by Jessica Falco in 2000 and updated by Kelly O'Hear in 2002. Jessica and Kelly were high school students who spent a summer at...

  6. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... Filter by Author Berlind, Perry (1) Calkins, Michael (1) Crook, Aidan C. (1) Cutri, Roc (1) Erdogdu, Pirin (1) Falco, Emilio (1) George, Teddy (1) Huchra, John P. (1) Hutcheson, ...

  7. An Improved Understanding of the Natural Resonances of Moonpools...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    doi:10.1017S0022112082000263 Evans, D.V., 1978. The Oscillating Water Column Wave-energy Device. IMA J. Appl. Math. 22, 423-433. doi:10.1093imamat22.4.423 Falco, A.F.O.,...

  8. Booster Neutrino Experiment - Virtual Tour

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Virtual Tour This series of pages about MiniBooNE will help you understand more about the what, why, and how of our experiment. When you begin the tour, a new window will open and you can use the next and back buttons to navigate. You may exit at any time by clicking on the "X" button in the upper right hand corner of the window. Start the tour here... This tour was created by Jessica Falco in 2000 and updated by Kelly O'Hear in 2002. Jessica and Kelly were high school students who

  9. Potential highwall use by raptors in coal mine reclamation

    SciTech Connect (OSTI)

    Waage, B.


    In 1982, Western Energy Company`s Rosebud Mine, located in southeastern Montana, received legal exception, {open_quotes}a first{close_quotes} in Montana to leave a standing mine highwall extending a native bluff. This bluff extension stands 110 feet high and 900 feet long. Normally, all highwalls by law are reduced to a 5:1 slope. This legal exception was accomplished with the support of several governmental agencies and was justified on the highwalls potential value for raptors. Enhancement measures undertaken on the highwall included the construction of three artificial eryies and the release of young prairie falcons (Falco mexicanus) employing hacking methods of the Peregrine Fund. The hack is now in its fourth year with a total of 46 young falcons having been released. Opportunities exist for creating a more diverse habitat for raptors and other cliff obligate species on reclaimed mine lands in the west. It is believed that this practical approach should be explored.

  10. Workshop on research needs and opportunities in high-temperature superconductivity held in Copper Mountain, Colorado in 19-20 August 1991. Final report, 1 Jun 91-30 Apr 92

    SciTech Connect (OSTI)

    Shaw, D.T.; Kroger, H.; Jin, S.; Gubser, D.U.; Falco, C.M.


    This is the report of the Workshop on New Research Opportunities in Superconductivity held at Copper Mountain, Colorado on August 19-20,1991. The workshop is a follow-up to two previous meetings to evaluate progress in superconductivity. The first, held at Copper Mountain, Colorado in 1983, focuses on low-temperature superconductors (LTS), while the second-in 1988 examined the progress of low-temperature materials and the potential of the then recently-discovered high-temperature superconductors (HTS). The summaries of these two superconductivity workshops were published in Cryogenics (July 1984, p.378; and November 1988, p.711). This workshop was the first in this series to concentrate largely on high-temperature superconductors. Its objectives were to identify the barriers limiting progress in high-temperature materials and to assess research areas that are ripe for important advances. The workshop was organized in four sessions, with Robert C.Dynes and Victor J. Emery leading the session on Fundamentals, Charles M. Falco and Donald U. Gubser leading the session on Materials, David K. Christen and Harry Kroger leading the session on Thin Films and Devices, and Sungho Jin and David T. Shaw leading the session on Bulk Materials and Large-Scale Applications. The organizational committee for the workshop consisted of David K. Christen, Alan F. Clark, Robert C. Dynes, Donald H. Liebenberg, David L. Nelson, and David T. Shaw (chair).


    SciTech Connect (OSTI)

    Jansen, Erik


    fewer detections (MacKenzie and Nichols 2004). I used occupancy models that allow for the possibility of imperfect detection and species abundance to improve estimates of occurrence probability (Royal 2004). I focused species-specific analyses on grassland birds with few detections: Cassin’s sparrow (Peucaea cassinii), eastern meadowlark (Sturnella magna), and upland sandpiper (Bartramia longicauda). Chapter III uses a multi-season dynamic site occupancy model that incorporates bird abundance to better estimate occurrence probability. 3) When I considered the topographic relief of the study sites, the proposed design of the wind facility and its location within the central U.S. migratory corridor, I expanded the study to investigate raptor abundance and flight behavior (Hoover 2002, Miller 2008). I developed a new survey technique that improved the accuracy of raptor flight height estimates and compared seasonal counts and flight heights at the plateau rim and areas further inland. I used counts and flight behaviors to calculate species-specific collision risk indices for raptors based on topographic features. I focused species-specific analyses on raptors with the highest counts: American kestrel (Falco sparverius), northern harrier (Circus cyaneus), red-tailed hawk (Buteo jamaicensis), Swainson’s hawk (Buteo swainsoni), and turkey vulture (Cathartes aura). Chapter IV describes patterns of seasonal raptor abundance and flight behavior and how topography modulates collision risk with proposed wind energy turbines. 4) Finally, for completeness, in Chapter V I summarize morning point count data for all species and provide estimates of relative composition and species diversity with the Shannon-Wiener Diversity Index (Shannon and Weaver 1949).