National Library of Energy BETA

Sample records for dual overhead cam

  1. Self-latching eccentric cam for dual stroke compressor or pump

    DOE Patents [OSTI]

    Sisk, F.J.

    1985-01-22

    For a dual capacity refrigerant compressor of the type which has an eccentric cam rotatable on a crankpin between two opposite positions which changes the total eccentricity of the crankpin and cam so as to obtain two different stroke lengths, the rotation of the cam on the crankpin being effected by a reversal of motor operation, the cam moves through an angle of about 270[degree] around the crankpin so that a centrifugal force torque tending to hold the cam in place is available at least in the reduced stroke length position of the cam, and by providing lightening cavities and eccentric weightings, the center of mass of the cam can be shifted to obtain the centrifugal torque in the proper direction at both the maximum and reduced stroke positions. 7 figs.

  2. Self-latching eccentric cam for dual stroke compressor or pump

    DOE Patents [OSTI]

    Sisk, Francis J.

    1985-01-01

    For a dual capacity refrigerant compressor of the type which has an eccentric cam rotatable on a crankpin between two opposite positions which changes the total eccentricity of the crankpin and cam so as to obtain two different stroke lengths, the rotation of the cam on the crankpin being effected by a reversal of motor operation, the cam moves through an angle of about 270.degree. around the crankpin so that a centrifugal force torque tending to hold the cam in place is available at least in the reduced stroke length position of the cam, and by providing lightening cavities and eccentric weightings, the center of mass 74 of the cam can be shifted to obtain the centrifugal torque in the proper direction at both the maximum and reduced stroke positions.

  3. CAM microkernels

    Energy Science and Technology Software Center (OSTI)

    2009-02-09

    This is a set of microbernels based on the finite-volume dynamics of the Community Atmosphere Models (CAM) version 3.1.p2. Information on CAM can be found at the website: http://www.ccsm.uca.edu.models/atm-cam. CAM consists of public domain software with certain exceptions as outlind on the above website. The microkernles herein are based solely on the public domain portions of CAM and originat from code specifically in the directory: models/atm/cam/src/fv.

  4. Visiting CAMS

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    home / visiting cams Visiting CAMS Research Visitors The CAMS facility is open to researchers from around the world and has been an important training resource for the U.S. and international science community. As an institute within LLNL, CAMS has a strong track record in hosting under graduate and graduate students and post-doctoral researchers. Scientists and students are encouraged to participate in AMS runs analyzing their samples and, when possible, assist in the preparation of samples

  5. About CAMS

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    research in the external community. CAMS is a globally recognized, state-of-the-art AMS facility that has had wide-spread scientific, technological, and analytical...

  6. The NERSC CAM Benchmark

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    CAM The NERSC CAM Benchmark Complete Readme Overview Building and Optimization Running and Timing Performance Data Download Benchmark Last edited: 2015-01-06 14:32:44...

  7. The NERSC CAM Benchmark

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    CAM The NERSC CAM Benchmark Complete Readme Overview Building and Optimization Running and Timing Performance Data Download Benchmark Last edited: 2015-01-06 14:32:44

  8. Meet the CAMS Staff

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    meet the cams staff Meet the CAMS Staff Members of the CAMS staff standing near the 10 MV Tandem Van de Graaff Accelerator at CAMS, Lawrence Livermore National Laboratory. Members of the CAMS staff standing near the 10 MV Tandem Van de Graaff Accelerator at CAMS, Lawrence Livermore National Laboratory. Name Title E-mail Phone Graham Bench Director bench1@llnl.gov +1-925-423-5155 Taylor Broek Lawrence Scholar broek1@llnl.gov +1-925-422-9895 Thomas A. Brown Scientific Staff tabrown@llnl.gov

  9. VARIABLE-THROW CAM

    DOE Patents [OSTI]

    Godsil, E.C.; Robinson, E.Y.

    1963-07-16

    A variable-throw cam comprising inner and outer eccentric sleeves which are adjustably locked together is described. The cam throw is varied by unlocking the inner and outer sleeves, rotating the outer sleeve relative to the inner one until the desired throw is obtained, and locking the sleeves together again. The cam is useful in applications wherein a continuously-variable throw is required, e.g., ram-and-die pressing operations, cyclic fatigue testing of materials, etc. (AEC)

  10. The CAMS Accelerator Facility

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    to the production of biomedical carbon-14 samples. In addition, CAMS operates separate sample preparation laboratories for geological cosmogenic isotopes and for heavy element ...

  11. A Brief History of CAMS

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    a brief history of cams A Brief History of CAMS The Center for Accelerator Mass Spectrometry (CAMS) is the brainchild of Jay Davis, who envisioned the creation of a multi-purpose ...

  12. Chapter 13 - OVERHEAD AND GANTRY CRANES

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    3.0 - OVERHEAD AND GANTRY CRANES January 4, 2016 Rev 1 Page 1 CHAPTER 13.0 TABLE OF CONTENTS 13.0 OVERHEAD AND GANTRY CRANES .................................................................................. 3 13.1 SCOPE........................................................................................................3 13.2 GENERAL REQUIREMENTS ................................................................................................. 4 13.3 IMPLEMENTATION

  13. PreCam

    SciTech Connect (OSTI)

    Allam, Sahar S.; Tucker, Douglas L.

    2015-01-01

    The Dark Energy Survey (DES) will be taking the next step in probing the properties of Dark Energy and in understanding the physics of cosmic acceleration. A step towards the photometric calibration of DES is to have a quick, bright survey in the DES footprint (PreCam), using a pre-production set of the Dark Energy Camera (DECam) CCDs and a set of 100 mm×100 mm DES filters. The objective of the PreCam Survey is to create a network of calibrated DES grizY standard stars that will be used for DES nightly calibrations and to improve the DES global relative calibrations. Here, we describe the first year of PreCam observation, results, and photometric calibrations.

  14. Overhead-Aware-Best-Fit (OABF) Resource Allocation Algorithm for Minimizing VM Launching Overhead

    SciTech Connect (OSTI)

    Wu, Hao; Garzoglio, Gabriele; Ren, Shangping; Timm, Steven; Noh, Seo Young

    2014-11-11

    FermiCloud is a private cloud developed in Fermi National Accelerator Laboratory to provide elastic and on-demand resources for different scientific research experiments. The design goal of the FermiCloud is to automatically allocate resources for different scientific applications so that the QoS required by these applications is met and the operational cost of the FermiCloud is minimized. Our earlier research shows that VM launching overhead has large variations. If such variations are not taken into consideration when making resource allocation decisions, it may lead to poor performance and resource waste. In this paper, we show how we may use an VM launching overhead reference model to minimize VM launching overhead. In particular, we first present a training algorithm that automatically tunes a given refer- ence model to accurately reflect FermiCloud environment. Based on the tuned reference model for virtual machine launching overhead, we develop an overhead-aware-best-fit resource allocation algorithm that decides where and when to allocate resources so that the average virtual machine launching overhead is minimized. The experimental results indicate that the developed overhead-aware-best-fit resource allocation algorithm can significantly improved the VM launching time when large number of VMs are simultaneously launched.

  15. Hydraulic involute cam actuator

    DOE Patents [OSTI]

    Love, Lonnie J.; Lind, Randall F.

    2011-11-01

    Mechanical joints are provided in which the angle between a first coupled member and a second coupled member may be varied by mechanical actuators. In some embodiments the angle may be varied around a pivot axis in one plane and in some embodiments the angle may be varied around two pivot axes in two orthogonal planes. The joints typically utilize a cam assembly having two lobes with an involute surface. Actuators are configured to push against the lobes to vary the rotation angle between the first and second coupled member.

  16. CamSemi | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    CamSemi Jump to: navigation, search Name: CamSemi Place: Cambridge, United Kingdom Zip: CB4 1DL Product: CamSemi is developing a new generation of highly-intelligent, single chip...

  17. ARM - Instrument - cam-air

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    govInstrumentscam-air Documentation Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Error occurred. Instrument "cam-air" does not exist.

  18. Cam-controlled boring bar

    DOE Patents [OSTI]

    Glatthorn, Raymond H.

    1986-01-01

    A cam-controlled boring bar system (100) includes a first housing (152) which is rotatable about its longitudinal axis (154), and a second housing in the form of a cam-controlled slide (158) which is also rotatable about the axis (154) as well as being translatable therealong. A tool-holder (180) is mounted within the slide (158) for holding a single point cutting tool. Slide (158) has a rectangular configuration and is disposed within a rectangularly configured portion of the first housing (152). Arcuate cam slots (192) are defined within a side plate (172) of the housing (152), while cam followers (194) are mounted upon the cam slide (158) for cooperative engagement with the cam slots (192). In this manner, as the housing (152) and slide (158) rotate, and as the slide (158) also translates, a through-bore (14) having an hourglass configuration will be formed within a workpiece (16) which may be, for example, a nuclear reactor steam generator tube support plate.

  19. DOE-HDBK-1141-2001; Radiological Assessor Training, Overheads

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... Include: * Devices producing ionizing radiation * Sealed sources emitting ionizing radiation * Small particle accelerators * Electron-generating devices OT 12.5 Overhead 12.5 ...

  20. DOE-HDBK-1141-2001; Radiological Assessor Training, Overheads...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    OT 1.1 DOE-HDBK-1141-2001 Overhead 1.1 Regulatory Documents Objectives: * Identify the ... Guidance Documents (10 CFR Part 835) Two types: * Implementation guides * Technical ...

  1. Hazmat Cam Wireless Video System

    SciTech Connect (OSTI)

    Kevin L. Young

    2006-02-01

    This paper describes the Hazmat Cam Wireless Video System and its application to emergency response involving chemical, biological or radiological contamination. The Idaho National Laboratory designed the Hazmat Cam Wireless Video System to assist the National Guard Weapons of Mass Destruction - Civil Support Teams during their mission of emergency response to incidents involving weapons of mass destruction. The lightweight, handheld camera transmits encrypted, real-time video from inside a contaminated area, or hot-zone, to a command post located a safe distance away. The system includes a small wireless video camera, a true-diversity receiver, viewing console, and an optional extension link that allows the command post to be placed up to five miles from danger. It can be fully deployed by one person in a standalone configuration in less than 10 minutes. The complete system is battery powered. Each rechargeable camera battery powers the camera for 3 hours with the receiver and video monitor battery lasting 22 hours on a single charge. The camera transmits encrypted, low frequency analog video signals to a true-diversity receiver with three antennas. This unique combination of encryption and transmission technologies delivers encrypted, interference-free images to the command post under conditions where other wireless systems fail. The lightweight camera is completely waterproof for quick and easy decontamination after use. The Hazmat Cam Wireless Video System is currently being used by several National Guard Teams, the US Army, and by fire fighters. The system has been proven to greatly enhance situational awareness during the crucial, initial phase of a hazardous response allowing commanders to make better, faster, safer decisions.

  2. Mars Rover's ChemCam Instrument gets sharper vision

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Mars Rover's ChemCam Instrument gets sharper vision Mars Rover's ChemCam Instrument gets sharper vision NASA's Mars Curiosity Rover's "ChemCam" instrument just got a major ...

  3. Cam Wal Electric Coop, Inc | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Cam Wal Electric Coop, Inc Jump to: navigation, search Name: Cam Wal Electric Coop, Inc Place: South Dakota Phone Number: 605.649.7676 Website: www.cam-walnet.com Facebook:...

  4. Overhead-Aware-Best-Fit (OABF) Resource Allocation Algorithm for Minimizing

    Office of Scientific and Technical Information (OSTI)

    VM Launching Overhead (Conference) | SciTech Connect Conference: Overhead-Aware-Best-Fit (OABF) Resource Allocation Algorithm for Minimizing VM Launching Overhead Citation Details In-Document Search Title: Overhead-Aware-Best-Fit (OABF) Resource Allocation Algorithm for Minimizing VM Launching Overhead FermiCloud is a private cloud developed in Fermi National Accelerator Laboratory to provide elastic and on-demand resources for different scientific research experiments. The design goal of

  5. Report on Analyses of WAC Samples of Evaporator Overheads - 2004

    SciTech Connect (OSTI)

    Oji, L

    2005-03-18

    In November and December of 2004, the Tank Farm submitted annual samples from 2F, 2H and 3H Evaporator Overhead streams for characterization to verify compliance with the new Effluent Treatment Facility (ETF) Waste Acceptance Criteria (WAC) and to look for organic species. With the exception of slightly high ammonia in the 2F evaporator overheads and high radiation control guide number for the 3H and 2F evaporator overhead samples, all the overheads samples were found to be in compliance with the Effluent Treatment Facility WAC. The ammonium concentration in the 2F-evaporator overhead, at 33 mg/L, was above the ETF waste water collection tank (WWCT) limits of 28 mg/L. The RCG Number for the 3H and 2F evaporator samples at, respectively, 1.38E-02 and 8.24E-03 were higher than the WWCT limit of 7.69E-03. The analytical detection limits for americium-241 and radium-226 in the evaporator samples were not consistently met because of low WWCT detection limits and insufficient evaporator samples.

  6. Modeling Spatial Dependencies in High-Resolution Overhead Imagery

    SciTech Connect (OSTI)

    Cheriyadat, Anil M; Bright, Eddie A; Vatsavai, Raju

    2011-01-01

    Human settlement regions with different physical and socio-economic attributes exhibit unique spatial characteristics that are often illustrated in high-resolution overhead imageries. For example- size, shape and spatial arrangements of man-made structures are key attributes that vary with respect to the socioeconomic profile of the neighborhood. Successfully modeling these attributes is crucial in developing advanced image understanding systems for interpreting complex aerial scenes. In this paper we present three different approaches to model the spatial context in the overhead imagery. First, we show that the frequency domain of the image can be used to model the spatial context [1]. The shape of the spectral energy contours characterize the scene context and can be exploited as global features. Secondly, we explore a discriminative framework based on the Conditional Random Fields (CRF) [2] to model the spatial context in the overhead imagery. The features derived from the edge orientation distribution calculated for a neighborhood and the associated class labels are used as input features to model the spatial context. Our third approach is based on grouping spatially connected pixels based on the low-level edge primitives to form support-regions [3]. The statistical parameters generated from the support-region feature distributions characterize different geospatial neighborhoods. We apply our approaches on high-resolution overhead imageries. We show that proposed approaches characterize the spatial context in overhead imageries.

  7. Mars Rover's ChemCam Instrument gets

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Rover's ChemCam Instrument gets sharper vision May 21, 2015 Novel software update fixes autofocus glitch LOS ALAMOS, N.M., May 21, 2015-NASA's Mars Curiosity Rover's "ChemCam" instrument just got a major capability fix, as Los Alamos National Laboratory scientists uploaded a software repair for the auto-focus system on the instrument. "Last November we discovered that a small laser used to focus the ChemCam telescope on its targets had failed" said Roger Wiens, instrument

  8. ChemCam sends digital 'thumbs up'

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ChemCam sends digital 'thumbs up' ChemCam sends digital 'thumbs up' Members of the team got a digital thumbs up about the operational readiness of their instrument just hours after the rover landed on Martian soil. August 8, 2012 Researchers from LANL and the French Space Agency examine data from the Mars Science Laboratory Curiosity rover from inside the ChemCam Operations Center at NASA's Jet Propulsion Laboratory on Monday, Aug. 6, 2012, less than a day after the rover landed on Mars. The

  9. Operating Experience Level 3, Danger! Equipment Hits Overhead Lines

    Energy.gov [DOE]

    OE-3 2016-01: This Operating Experience Level 3 (OE-3) document provides information about a safety concern related to workers and operations at Department of Energy (DOE) facilities where equipment has struck overhead communication cables and energized power lines.

  10. Curiosity Mars Rover's ChemCam

    Energy.gov [DOE]

    To carry out its mission, the Curiosity Mars rover relies on the most advanced suite of instruments ever sent to the Martian surface –- among them, a laser-firing tool called the ChemCam.

  11. Model Documentation for the MiniCAM

    SciTech Connect (OSTI)

    Brenkert, Antoinette L.; Smith, Steven J.; Kim, Son H.; Pitcher, Hugh M.

    2003-07-17

    The MiniCAM, short for the Mini-Climate Assessment Model, is an integrated assessment model of moderate complexity focused on energy and agriculture sectors. The model produces emissions of greenhouse gases (carbon dioxide, methane and nitrous oxide) and other radiatively important substances such as sulfur dioxide. Through incorporation of the simple climate model MAGICC, the consequences of these emissions for climate change and sea-level rise can be examined. The MiniCAM is designed to be fast and flexible.

  12. Performance checks with the Alpha Sentry CAM

    SciTech Connect (OSTI)

    Rodgers, J.C.

    1994-08-01

    Before a CAM is put into service, it must be calibrated. The flow meter and detector must be calibrated with an external flow meter to provide accurate flow data, and the detector must be calibrated to produce accurate DPM data. Both flow and DPM data enter into the calculation of the Derived Air Concentration exposure (DAC-hr) by the CAM software. The focus of this report is on methods for checking that the DAC-hr alarm functionality has been properly calibrated and available in installed CAM instruments. The process begins with detector calibration. In order to calibrate the detector, the Alpha Sentry CAM is placed in an off-line calibration mode and detector efficiency calibration is selected. The user is prompted to enter the calibration source DPM and place the source in the CAM head. Upon latching the filter door with the source in place, a count is automatically initiated and completed. From the count data and the user entered DPM data, an efficiency is determined in the Alpha Sentry Manager (ASM) and stored in non-volatile memory in the CAM head electronics. This source is typically a plated {sup 239}Pu or {sup 241}Am source diffused into a stainless steel planchet.

  13. Recommended U-factors for swinging, overhead, and revolving doors

    SciTech Connect (OSTI)

    Carpenter, S.C.; Hogan, J.

    1996-11-01

    Doors are often an overlooked component in the thermal integrity of the building envelope. Although swinging doors represent a small portion of the shell in residential buildings, their U-factor is usually many times higher than those of walls or ceilings. In some commercial buildings, loading (overhead) doors represent a significant area of high heat loss. Contrary to common perception, there is a wide range in the design, type, and therefore thermal performance of doors. The 1997 ASHRAE Handbook of Fundamentals will contain expanded tables of door U-factors to account for these product variations. This paper presents the results of detailed computer simulations of door U-factors. Recommended U-factors for glazed and unglazed residential and commercial swinging doors and commercial/industrial overhead and revolving doors are presented.

  14. Effective Methods in Reducing Communication Overheads in Solving

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    0/2002 Yun (Helen) He, GHC2002 1 Effective Methods in Reducing Communication Overheads in Solving PDE Problems on Distributed-Memory Computer Architectures Chris Ding and Yun (Helen) He Lawrence Berkeley National Laboratory 10/10/2002 Yun (Helen) He, GHC2002 2 Outline n Introduction n Traditional Method n Ghost Cell Expansion (GCE) Method n GCE Algorithm n Diagonal Communication Elimination (DCE) Technique n Analysis of GCE Method n Message Volume n Communication Time

  15. Modeling the Virtual Machine Launching Overhead under Fermicloud

    SciTech Connect (OSTI)

    Garzoglio, Gabriele; Wu, Hao; Ren, Shangping; Timm, Steven; Bernabeu, Gerard; Noh, Seo-Young

    2014-11-12

    FermiCloud is a private cloud developed by the Fermi National Accelerator Laboratory for scientific workflows. The Cloud Bursting module of the FermiCloud enables the FermiCloud, when more computational resources are needed, to automatically launch virtual machines to available resources such as public clouds. One of the main challenges in developing the cloud bursting module is to decide when and where to launch a VM so that all resources are most effectively and efficiently utilized and the system performance is optimized. However, based on FermiCloud’s system operational data, the VM launching overhead is not a constant. It varies with physical resource (CPU, memory, I/O device) utilization at the time when a VM is launched. Hence, to make judicious decisions as to when and where a VM should be launched, a VM launch overhead reference model is needed. The paper is to develop a VM launch overhead reference model based on operational data we have obtained on FermiCloud and uses the reference model to guide the cloud bursting process.

  16. Parallel garbage collection without synchronization overhead. Technical report

    SciTech Connect (OSTI)

    Patel, J.H.

    1984-08-01

    Incremental garbage-collection schemes incur substantial overhead that is directly translated as reduced execution efficiency for the user. Parallel garbage-collection schemes implemented via time-slicing on a serial processor also incur this overhead, which might even be aggravated due to context switching. It is useful, therefore, to examine the possibility of implementing a parallel garbage-collection algorithm using a separate processor operating asynchronously with the main-list processor. The overhead in such a scheme arises from the synchronization necessary to manage the two processors, maintaining memory consistency. In this paper, the authors present an architecture and supporting parallel garbage-collection algorithms designed for a virtual memory system with separate processors for list processing and for garbage collection. Each processor has its own primary memory; in addition, there is a small common memory which both processors may access. Individual memories swap off a common secondary memory, but no locking mechanism is required. In particular, a page may reside in both memories simultaneously, and indeed may be accessed and modified freely by each processor. A secondary memory controller ensures consistency without necessitating numerous lockouts on the pages.

  17. Testing Cloud Microphysics Parameterizations in NCAR CAM5 with...

    Office of Scientific and Technical Information (OSTI)

    Title: Testing Cloud Microphysics Parameterizations in NCAR CAM5 with ISDAC and M-PACE Observations Arctic clouds simulated by the NCAR Community Atmospheric Model version 5 (CAM5) ...

  18. DER-CAM V3.10.5M

    Energy Science and Technology Software Center (OSTI)

    003010IBMPC04 Distributed Energy Resources Customer Adoption Model (DER-CAM), Investment & Planing Version 3.10.5.m

  19. Mars Rover's ChemCam Instrument gets sharper vision

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Mars Rover's ChemCam Instrument gets sharper vision Mars Rover's ChemCam Instrument gets sharper vision NASA's Mars Curiosity Rover's "ChemCam" instrument just got a major capability fix, as Los Alamos National Laboratory scientists uploaded a software repair for the auto-focus system on the instrument. May 21, 2015 SuperCam builds upon the successful capabilities demonstrated aboard the Curiosity Rover during NASA's current Mars Mission. Yellowjacket is the first rock targeted by

  20. Path-sensitive analysis for reducing rollback overheads

    DOE Patents [OSTI]

    O'Brien, John K.P.; Wang, Kai-Ting Amy; Yamashita, Mark; Zhuang, Xiaotong

    2014-07-22

    A mechanism is provided for path-sensitive analysis for reducing rollback overheads. The mechanism receives, in a compiler, program code to be compiled to form compiled code. The mechanism divides the code into basic blocks. The mechanism then determines a restore register set for each of the one or more basic blocks to form one or more restore register sets. The mechanism then stores the one or more register sets such that responsive to a rollback during execution of the compiled code. A rollback routine identifies a restore register set from the one or more restore register sets and restores registers identified in the identified restore register set.

  1. Steal Tree: Low-Overhead Tracing of Work Stealing Schedulers

    SciTech Connect (OSTI)

    Lifflander, Jonathan; Krishnamoorthy, Sriram; Kale, Laxmikant

    2013-06-16

    Work stealing is a popular approach to scheduling task-parallel programs. The flexibility inherent in work stealing when dealing with load imbalance results in seemingly irregular computation structures, complicating the study of its runtime behavior. In this paper, we present an approach to efficiently trace async-finish parallel programs scheduled using work stealing. We identify key properties that allow us to trace the execution of tasks with low time and space overheads. We also study the usefulness of the proposed schemes in supporting algorithms for data-race detection and retentive steal- ing presented in the literature. We demonstrate that the perturbation due to tracing is within the variation in the execution time with 99% confidence and the traces are concise, amounting to a few tens of kilobytes per thread in most cases. We also demonstrate that the traces enable significant reductions in the cost of detecting data races and result in low, stable space overheads in supporting retentive stealing for async-finish programs.

  2. ChemCam data abundant at Planetary Conference

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ChemCam data abundant at Planetary Conference ChemCam data abundant at Planetary Conference Members of the Mars Science Laboratory Curiosity rover ChemCam team will present more than two dozen posters and talks during the 44th Lunar and Planetary Science Conference. March 15, 2013 This image shows the ChemCam mast unit mounted on the Curiosity rover as it is being prepared in the clean room prior to the launch of NASA's Mars Science Laboratory mission. ChemCam fires a powerful laser that can

  3. Mars Rover's ChemCam Instrument gets sharper vision

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Mars Rover's ChemCam Instrument gets sharper vision Alumni Link: Opportunities, News and Resources for Former Employees Latest Issue:September 2015 all issues All Issues » submit Mars Rover's ChemCam Instrument gets sharper vision NASA's Mars Curiosity Rover's "ChemCam" instrument just got a major capability fix, as Los Alamos National Laboratory scientists uploaded a software repair for the auto-focus system on the instrument. July 1, 2015 Yellowjacket is the first rock targeted by

  4. LANL Researcher Roger Wiens Discusses ChemCam

    ScienceCinema (OSTI)

    Wiens, Roger

    2014-08-12

    Discussion of the ChemCam instrument on the Curiosity Rover that occurred during the NASA press conference prior to launch of the Mars Science Laboratory. The ChemCam instrument was developed by Los Alamos National Laboratory and the French Space Institute. Los Alamos National Laboratory researcher Roger Wiens discusses the instrument on this video. ChemCam uses a laser to "zap" features of the Martian landscape and then uses a spectrometer to gather information about the composition of the sample. ChemCam will help the Curiosity Rover determine whether Mars is or was habitable. The Rover is expected to touch down on the Red Planet on August 5, 2012.

  5. ChemCam all-women's operations day

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ChemCam all-women's operations day ChemCam all-women's operations day The Mars Curiosity Rover celebrated one year on the Red Planet, and to commemorate the event, ChemCam team members had an all-women operations day. June 30, 2014 Pictured from left to right are Cindy Little, Agnes Cousin, Nina Lanza, Dot Delapp and Hannah Pagel. Pictured from left to right are Cindy Little, Agnes Cousin, Nina Lanza, Dot Delapp and Hannah Pagel. ChemCam has played a crucial role in many of the rover's

  6. The mean climate of the Community Atmosphere Model (CAM4) in...

    Office of Scientific and Technical Information (OSTI)

    The finite volume dynamical core available in CAM3 is now the default due to its superior ... CAM3. In CAM4 the finite volume dynamical core leads to a degradation in the excessive ...

  7. GammaCam Technology Demonstration at ORNL Buildings 3026C and...

    Energy Savers

    GammaCam Technology Demonstration at ORNL Buildings 3026C and 3026D GammaCam Technology Demonstration at ORNL Buildings 3026C and 3026D The GammaCam system is an effective tool for ...

  8. Dual Career Services

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Options Dual Career Services Dual Career Services Los Alamos Lab recruits the best minds on the planet and offers job search information and assistance to our dual career...

  9. ChemCam data abundant at Planetary Conference

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ChemCam data abundant at Planetary Conference Members of the Mars Science Laboratory ... prepared in the clean room prior to the launch of NASA's Mars Science Laboratory mission. ...

  10. Engine testing of ceramic cam-roller followers

    SciTech Connect (OSTI)

    Kalish, Y. )

    1992-04-01

    For several years, DDC has been developing monolithic ceramic heat engine components. One of the components, developed for an application in our state-of-the-art on-highway, heavy-duty diesel engine, the Series 60, is a silicon nitride cam-roller follower. Prior to starting this program, each valve train component in the Series 60 was considered for conversion to a ceramic material. Many advantages and disadvantages (benefits and risks) were considered. From this effort, one component was selected, the cam-roller follower. Using a system design approach, a ceramic cam-roller follower offered functional improvement at a reasonable cost. The purpose of the project was to inspect and test 100 domestically produced silicon nitride cam-roller followers built to the requirements of the DDC series 60 engine.

  11. Engine testing of ceramic cam-roller followers. Final report

    SciTech Connect (OSTI)

    Kalish, Y.

    1992-04-01

    For several years, DDC has been developing monolithic ceramic heat engine components. One of the components, developed for an application in our state-of-the-art on-highway, heavy-duty diesel engine, the Series 60, is a silicon nitride cam-roller follower. Prior to starting this program, each valve train component in the Series 60 was considered for conversion to a ceramic material. Many advantages and disadvantages (benefits and risks) were considered. From this effort, one component was selected, the cam-roller follower. Using a system design approach, a ceramic cam-roller follower offered functional improvement at a reasonable cost. The purpose of the project was to inspect and test 100 domestically produced silicon nitride cam-roller followers built to the requirements of the DDC series 60 engine.

  12. Mechanism analysis of a cam driven rotary engine

    SciTech Connect (OSTI)

    Craven, R.; Cox, J.; Smith, J.E.; Ford, S.

    1988-01-01

    The plate cam rotary mechanism has application as an IC engine, a pump, a compressor or any similar device. The basic design and operating parameters are explained. The kinematic analysis provides the relationships necessary for a parametric cam track equation. Various parameters are explained and tracks for sinusoidal motion and dwell motion are computed. Various applications are discussed of how this mechanism may be employed. 6 references.

  13. Dark Energy Cam: Fermilab Expands Understanding of Expanding Universe |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Dark Energy Cam: Fermilab Expands Understanding of Expanding Universe Dark Energy Cam: Fermilab Expands Understanding of Expanding Universe March 12, 2012 - 12:06pm Addthis Researchers at Fermi National Lab team stand beside the 570-megapixels, five-ton Dark Energy camera, which will be capable of measuring the expansion of the universe - and developing better models about how dark energy works. | Photo by Reidar Hahn, Fermi National Lab Researchers at Fermi National Lab

  14. The pineapple genome and the evolution of CAM photosynthesis

    SciTech Connect (OSTI)

    Ming, Ray; VanBuren, Robert; Wai, Ching Man; Tang, Haibao; Schatz, Michael C.; Bowers, John E.; Lyons, Eric; Wang, Ming-Li; Chen, Jung; Biggers, Eric; Zhang, Jisen; Huang, Lixian; Zhang, Lingmao; Miao, Wenjing; Zhang, Jian; Ye, Zhangyao; Miao, Chenyong; Lin, Zhicong; Wang, Hao; Zhou, Hongye; Yim, Won C.; Priest, Henry D.; Zheng, Chunfang; Woodhouse, Margaret; Edger, Patrick P.; Guyot, Romain; Guo, Hao-Bo; Guo, Hong; Zheng, Guangyong; Singh, Ratnesh; Sharma, Anupma; Min, Xiangjia; Zheng, Yun; Lee, Hayan; Gurtowski, James; Sedlazeck, Fritz J.; Harkess, Alex; McKain, Michael R.; Liao, Zhenyang; Fang, Jingping; Liu, Juan; Zhang, Xiaodan; Zhang, Qing; Hu, Weichang; Qin, Yuan; Wang, Kai; Chen, Li-Yu; Shirley, Neil; Lin, Yann-Rong; Liu, Li-Yu; Hernandez, Alvaro G.; Wright, Chris L.; Bulone, Vincent; Tuskan, Gerald A.; Heath, Katy; Zee, Francis; Moore, Paul H.; Sunkar, Ramanjulu; Leebens-Mack, James H.; Mockler, Todd; Bennetzen, Jeffrey L.; Freeling, Michael; Sankoff, David; Paterson, Andrew H.; Zhu, Xinguang; Yang, Xiaohan; Smith, J. Andrew C.; Cushman, John C.; Paull, Robert E.; Yu, Qingyi

    2015-11-02

    Pineapple (Ananas comosus (L.) Merr.) is the most economically valuable crop possessing crassulacean acid metabolism (CAM), a photosynthetic carbon assimilation pathway with high water-use efficiency, and the second most important tropical fruit. We sequenced the genomes of pineapple varieties F153 and MD2 and a wild pineapple relative, Ananas bracteatus accession CB5. The pineapple genome has one fewer ancient whole-genome duplication event than sequenced grass genomes and a conserved karyotype with seven chromosomes from before the ρ duplication event. The pineapple lineage has transitioned from C3 photosynthesis to CAM, with CAM-related genes exhibiting a diel expression pattern in photosynthetic tissues. CAM pathway genes were enriched with cis-regulatory elements associated with the regulation of circadian clock genes, providing the first cis-regulatory link between CAM and circadian clock regulation. Lastly, we found pineapple CAM photosynthesis evolved by the reconfiguration of pathways in C3 plants, through the regulatory neofunctionalization of preexisting genes and not through the acquisition of neofunctionalized genes via whole-genome or tandem gene duplication.

  15. Development and application of composite overhead ground wire with optical fibers

    SciTech Connect (OSTI)

    Tsujimoto, K.; Kato, T.; Okazato, A.; Sakurada, H.

    1983-05-01

    A overhead ground wire composed with optical fibers has been developed, as well as the accessories and the joints. The overhead ground wire is provided with an aluminum pipe at the core thereof in which the optical fibers are inserted. The composite overhead ground wire with optical fibers was installed for the Kaga-Reinan 500 kV overhead transmission line in autumn, 1981 for the purposes of observing lightning and using as telecommunication line, as well. After the successful performance of the optical fiber, especially in view of transmission loss after installation, has been proved, the composite overhead ground wire is now being checked for the purposes as stated above. The ground wire was also installed for the Tsuruga Test Line at about the same time and investigations were started to confirm the reliability of the optical fiber to be over a long period of time under severe meteorological conditions such as strong winds and icing. The construction of the composite ground wire with optical fibers is such that the optical fibers contained therein are not restrained by the ground wire itself. This enables insertion and pulling out of optical fiber cables. Tests were conducted at certain sections of the Kaga-Reinan Line to confirm that there was no change in the performance of the optical fibers due to such operations of insertion and pulling out. This report briefly discusses the development of the composite ground wire with optical fibers, its installation and the test results.

  16. A Testing Platform for Validation of Overhead Conductor Aging Models and Understanding Thermal Limits

    SciTech Connect (OSTI)

    Irminger, Philip; Starke, Michael R; Dimitrovski, Aleksandar D; Young II, Marcus Aaron; Rizy, D Tom; Stovall, John P; Overholt, Philip N

    2014-01-01

    Power system equipment manufacturers and researchers continue to experiment with novel overhead electric conductor designs that support better conductor performance and address congestion issues. To address the technology gap in testing these novel designs, Oak Ridge National Laboratory constructed the Powerline Conductor Accelerated Testing (PCAT) facility to evaluate the performance of novel overhead conductors in an accelerated fashion in a field environment. Additionally, PCAT has the capability to test advanced sensors and measurement methods for accessing overhead conductor performance and condition. Equipped with extensive measurement and monitoring devices, PCAT provides a platform to improve/validate conductor computer models and assess the performance of novel conductors. The PCAT facility and its testing capabilities are described in this paper.

  17. The pineapple genome and the evolution of CAM photosynthesis

    DOE PAGES-Beta [OSTI]

    Ming, Ray; VanBuren, Robert; Wai, Ching Man; Tang, Haibao; Schatz, Michael C.; Bowers, John E.; Lyons, Eric; Wang, Ming-Li; Chen, Jung; Biggers, Eric; et al

    2015-11-02

    Pineapple (Ananas comosus (L.) Merr.) is the most economically valuable crop possessing crassulacean acid metabolism (CAM), a photosynthetic carbon assimilation pathway with high water-use efficiency, and the second most important tropical fruit. We sequenced the genomes of pineapple varieties F153 and MD2 and a wild pineapple relative, Ananas bracteatus accession CB5. The pineapple genome has one fewer ancient whole-genome duplication event than sequenced grass genomes and a conserved karyotype with seven chromosomes from before the ρ duplication event. The pineapple lineage has transitioned from C3 photosynthesis to CAM, with CAM-related genes exhibiting a diel expression pattern in photosynthetic tissues. CAMmore » pathway genes were enriched with cis-regulatory elements associated with the regulation of circadian clock genes, providing the first cis-regulatory link between CAM and circadian clock regulation. Lastly, we found pineapple CAM photosynthesis evolved by the reconfiguration of pathways in C3 plants, through the regulatory neofunctionalization of preexisting genes and not through the acquisition of neofunctionalized genes via whole-genome or tandem gene duplication.« less

  18. Dual capacity reciprocating compressor

    DOE Patents [OSTI]

    Wolfe, Robert W.

    1984-01-01

    A multi-cylinder compressor 10 particularly useful in connection with northern climate heat pumps and in which different capacities are available in accordance with reversing motor 16 rotation is provided with an eccentric cam 38 on a crank pin 34 under a fraction of the connecting rods, and arranged for rotation upon the crank pin between opposite positions 180.degree. apart so that with cam rotation on the crank pin such that the crank throw is at its normal maximum value all pistons pump at full capacity, and with rotation of the crank shaft in the opposite direction the cam moves to a circumferential position on the crank pin such that the overall crank throw is zero. Pistons 24 whose connecting rods 30 ride on a crank pin 36 without a cam pump their normal rate with either crank rotational direction. Thus a small clearance volume is provided for any piston that moves when in either capacity mode of operation.

  19. Dual capacity reciprocating compressor

    DOE Patents [OSTI]

    Wolfe, R.W.

    1984-10-30

    A multi-cylinder compressor particularly useful in connection with northern climate heat pumps and in which different capacities are available in accordance with reversing motor rotation is provided with an eccentric cam on a crank pin under a fraction of the connecting rods, and arranged for rotation upon the crank pin between opposite positions 180[degree] apart so that with cam rotation on the crank pin such that the crank throw is at its normal maximum value all pistons pump at full capacity, and with rotation of the crank shaft in the opposite direction the cam moves to a circumferential position on the crank pin such that the overall crank throw is zero. Pistons whose connecting rods ride on a crank pin without a cam pump their normal rate with either crank rotational direction. Thus a small clearance volume is provided for any piston that moves when in either capacity mode of operation. 6 figs.

  20. ChemCam is having a blast on Mars

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ChemCam Is Having A Blast On Mars Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue:November 2, 2016 all issues All Issues » submit ChemCam is having a blast on Mars Following the successful landing of the Mars rover Curiosity on August 5, Lab scientists and their French counterparts have already begun firing its onboard laser and collecting data. September 1, 2012 dummy image Read our archives Contacts Editor Linda Anderman Email

  1. Aerosol specification in single-column CAM5

    DOE PAGES-Beta [OSTI]

    Lebassi-Habtezion, B.; Caldwell, P.

    2014-11-17

    The ability to run a global climate model in single-column mode is very useful for testing model improvements because single-column models (SCMs) are inexpensive to run and easy to interpret. A major breakthrough in Version 5 of the Community Atmosphere Model (CAM5) is the inclusion of prognostic aerosol. Unfortunately, this improvement was not coordinated with the SCM version of CAM5 and as a result CAM5-SCM initializes aerosols to zero. In this study we explore the impact of running CAM5-SCM with aerosol initialized to zero (hereafter named Default) and test three potential fixes. The first fix is to use CAM5's prescribedmore » aerosol capability, which specifies aerosols at monthly climatological values. The second method is to prescribe aerosols at observed values. The third approach is to fix droplet and ice crystal numbers at prescribed values. We test our fixes in four different cloud regimes to ensure representativeness: subtropical drizzling stratocumulus (based on the DYCOMS RF02 case study), mixed-phase Arctic stratocumulus (using the MPACE-B case study), tropical shallow convection (using the RICO case study), and summertime mid-latitude continental convection (using the ARM95 case study). Stratiform cloud cases (DYCOMS RF02 and MPACE-B) were found to have a strong dependence on aerosol concentration, while convective cases (RICO and ARM95) were relatively insensitive to aerosol specification. This is perhaps expected because convective schemes in CAM5 do not currently use aerosol information. Adequate liquid water content in the MPACE-B case was only maintained when ice crystal number concentration was specified because the Meyers et al. (1992) deposition/condensation ice nucleation scheme used by CAM5 greatly overpredicts ice nucleation rates, causing clouds to rapidly glaciate. Surprisingly, predicted droplet concentrations for the ARM95 region in both SCM and global runs were around 25 cm−3, which is much lower than observed. This finding

  2. ChemCam laser first analyses yield beautiful results

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ChemCam laser first analyses ChemCam laser first analyses yield beautiful results The laser instrument has fired nearly 500 shots so far that have produced strong, clear data about the composition of the Martian surface. August 23, 2012 This photo mosaic shows the scour mark, dubbed Goulburn, left by the thrusters on the sky crane that helped lower NASA's Curiosity rover to the Red Planet. It is located 16 to 20 feet (5 to 6 meters) to the left of the rover's landing position. The sky crane

  3. Energy considerations in the Community Atmosphere Model (CAM)

    SciTech Connect (OSTI)

    Williamson, David L.; Olson, Jerry G.; Hannay, Cécile; Toniazzo, Thomas; Yudin, Valery; Taylor, Mark

    2015-06-30

    An error in the energy formulation in the Community Atmosphere Model (CAM) is identified and corrected. Ten year AMIP simulations are compared using the correct and incorrect energy formulations. Statistics of selected primary variables all indicate physically insignificant differences between the simulations, comparable to differences with simulations initialized with rounding sized perturbations. The two simulations are so similar mainly because of an inconsistency in the application of the incorrect energy formulation in the original CAM. CAM used the erroneous energy form to determine the states passed between the parameterizations, but used a form related to the correct formulation for the state passed from the parameterizations to the dynamical core. If the incorrect form is also used to determine the state passed to the dynamical core the simulations are significantly different. In addition, CAM uses the incorrect form for the global energy fixer, but that seems to be less important. The difference of the magnitude of the fixers using the correct and incorrect energy definitions is very small.

  4. Energy considerations in the Community Atmosphere Model (CAM)

    DOE PAGES-Beta [OSTI]

    Williamson, David L.; Olson, Jerry G.; Hannay, Cécile; Toniazzo, Thomas; Yudin, Valery; Taylor, Mark

    2015-06-30

    An error in the energy formulation in the Community Atmosphere Model (CAM) is identified and corrected. Ten year AMIP simulations are compared using the correct and incorrect energy formulations. Statistics of selected primary variables all indicate physically insignificant differences between the simulations, comparable to differences with simulations initialized with rounding sized perturbations. The two simulations are so similar mainly because of an inconsistency in the application of the incorrect energy formulation in the original CAM. CAM used the erroneous energy form to determine the states passed between the parameterizations, but used a form related to the correct formulation for themore » state passed from the parameterizations to the dynamical core. If the incorrect form is also used to determine the state passed to the dynamical core the simulations are significantly different. In addition, CAM uses the incorrect form for the global energy fixer, but that seems to be less important. The difference of the magnitude of the fixers using the correct and incorrect energy definitions is very small.« less

  5. Characterization Results For The 2013 HTF 3H Evaporator Overhead Samples

    SciTech Connect (OSTI)

    Washington, A. L. II

    2013-12-04

    This report tabulates the radiochemical analysis of the 3H evaporator overhead sample for {sup 137}Cs, {sup 90}Sr, and {sup 129}I to meet the requirements in the Effluent Treatment Project (ETP) Waste Acceptance Criteria (WAC) (rev. 6). This report identifies the sample receipt date, preparation method, and analysis performed in the accumulation of the listed values. All data was found to be within the ETP WAC (rev. 6) specification for the Waste Water Collection Tanks (WWCT).

  6. Compliance assurance monitoring (CAM) plans/illustrations for control devices with prevalent applicability

    SciTech Connect (OSTI)

    Ziolkowski, T.S.; Levy, J.A. Jr.

    1999-07-01

    The Compliance Assurance Monitoring (CAM) rule was promulgated on October 22, 1997 as 62 FR 54899. This rule generally requires that Title V facilities with active control devices apply CAM to pollutant-specific emission units to ensure that Federally enforceable emissions limitations are being met. At Title V permit renewal, smaller sources at Title V facilities also may become subject to CAM. EPA has published a draft Technical Guidance Document (TGD) for CAM (revised draft dated August 1998). This document contains applicability information, flow diagrams, indicator range development approach data, measurement system data, sample CAM plans, sample CAM illustrations, and other guidelines useful in meeting the CAM requirements for control devices on applicable pollutant-specific emission units. This poster paper illustrates CAM plans and provides illustrations of control devices likely to have prevalent CAM applicability. The poster contains a clear applicability diagram of the CAM requirements which guides the reader to other diagrams showing apparent CAM applicability for key major industry sources. Within the identified industrial sources, the most prevalent control devices have been researched and CAM plan elements displayed along with a short bibliography of references used to identify indicators and indicator ranges. Control devices currently not covered in the TGD are covered in this poster paper in addition to a couple of examples from the TGD (e.g., condensers, baghouses/dust collectors). Emphasis is given to control devices likely to be covered under CAM which have not been covered in the TGD. Examples of such control devices include sulfur recovery plant tail gas units and flue gas desulfurization units. Additionally, this poster paper graphically demonstrates a recommended approach to CAM plan development in a step-by-step manner with an explanation provided for each step.

  7. ChemCam rock laser for Mars Science Laboratory "Curiosity"

    ScienceCinema (OSTI)

    Wiens, Roger

    2014-08-12

    Los Alamos has a long history of space-related instruments, tied primarily to its role in defense-related treaty verification. Space-based detectors have helped determine the differences between signals from lightning bolts and potential nuclear explosions. LANL-developed gamma-ray detection instruments first revealed the existence of what we now know as gamma-ray bursts, an exciting area of astrophysical research. And the use of LANL instruments on varied space missions continues with such products as the ChemCam rock laser for NASA, shown here. The Engineering Model of the ChemCam Mars Science Laboratory rover instrument arrived at NASA's Jet Propulsion Laboratory on February 6, 2008. The Flight Model was shipped in August, 2010 for installation on the rover at JPL. ChemCam will use imaging and laser-induced breakdown spectroscopy (LIBS) to determine rock and soil compositions on Mars, up to 9 meters from the rover. The engineering model is being integrated into the rover test bed for the development and testing of the rover software. The actual flight model components were concurrently assembled at Los Alamos and in Toulouse, France. The Mars Science Laboratory is scheduled to launch in 2011. Animations courtesy of JPL/NASA.

  8. ChemCam Rock Laser for the Mars Science Laboratory

    ScienceCinema (OSTI)

    LANL

    2009-09-01

    Los Alamos has a long history of space-related instr... Los Alamos has a long history of space-related instruments, tied primarily to its role in defense-related treaty verification. Space-based detectors have helped determine the differences between signals from lightning bolts and potential nuclear explosions. LANL-developed gamma-ray detection instruments first revealed the existence of what we now know as gamma-ray bursts, an exciting area of astrophysical research. And the use of LANL instruments on varied space missions continues with such products as the ChemCam rock laser for NASA, shown here. The Engineering Model of the ChemCam Mars Science Laboratory rover instrument arrived at NASA's Jet Propulsion Laboratory on February 6, 2008. ChemCam will use imaging and laser-induced breakdown spectroscopy (LIBS) to determine rock and soil compositions on Mars, up to 9 meters from the rover. The engineering model is being integrated into the rover test bed for the development and testing of the rover software. The actual flight model components are concurrently being assembled at Los Alamos and in Toulouse, France, and will be delivered to JPL in July. The Mars Science Laboratory is scheduled to launch in 2009. Animations courtesy of JPL/NASA.

  9. Characterization Results for the 2014 HTF 3H & 2H Evaporator Overhead Samples

    SciTech Connect (OSTI)

    Washington, A.

    2015-05-11

    This report tabulates the radiochemical analysis of the 3H and 2H evaporator overhead samples for 137Cs, 90Sr, and 129I to meet the requirements in the Effluent Treatment Project (ETP) Waste Acceptance Criteria (WAC) (rev. 6). This report identifies the sample receipt date, preparation method, and analysis performed in the accumulation of the listed values. All data was found to be within the ETP WAC (rev. 6) specification for the Waste Water Collection Tanks (WWCT).

  10. Laser-Firing ChemCam Vital to Curiosity Rover's Tour of Mars | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Laser-Firing ChemCam Vital to Curiosity Rover's Tour of Mars Laser-Firing ChemCam Vital to Curiosity Rover's Tour of Mars March 6, 2014 - 2:00pm Addthis 1 of 4 Jean-Luc Lacour, an engineer at CEA France, created this artistic rendering of the ChemCam back in 2004. Looking at rocks and soil from a distance, ChemCam fires a high-powered laser to analyze the composition of vaporized materials from areas smaller than 1 millimeter on the surface of Martian rocks and soil as part of

  11. OSTIblog Articles in the ChemCam Topic | OSTI, US Dept of Energy Office of

    Office of Scientific and Technical Information (OSTI)

    Scientific and Technical Information ChemCam Topic Mars Science Laboratory Curiosity - ChemCam by Dr. William Watson 12 Sep, 2012 in Science Communications 4265 Caltech.png Mars Science Laboratory Curiosity - ChemCam Read more about 4265 How do you run chemical tests at a geologic site millions of miles away from you to see what the rocks and soil are made of? Curiosity's new instrument ChemCam, developed at Los Alamos National Laboratory, is designed to determine how much light is emitted

  12. OSTIblog Articles in the ChemCam Topic | OSTI, US Dept of Energy...

    Office of Scientific and Technical Information (OSTI)

    "Mechanical & System Engineering Challenges Associated with the Development of the ChemCam Instrument for the NASA Mars Science Laboratory" "Los Alamos National Laboratory: A ...

  13. Nucleic acid encoding DS-CAM proteins and products related thereto

    DOE Patents [OSTI]

    Korenberg, Julie R.

    2005-11-01

    In accordance with the present invention, there are provided Down Syndrome-Cell Adhesion Molecule (DS-CAM) proteins. Nucleic acid sequences encoding such proteins and assays employing same are also disclosed. The invention DS-CAM proteins can be employed in a variety of ways, for example, for the production of anti-DS-CAM antibodies thereto, in therapeutic compositions and methods employing such proteins and/or antibodies. DS-CAM proteins are also useful in bioassays to identify agonists and antagonists thereto.

  14. The ChemCam instrument for the 2011 Mars science laboratory mission...

    Office of Scientific and Technical Information (OSTI)

    for the 2011 Mars science laboratory mission: system requirements and performance Citation Details In-Document Search Title: The ChemCam instrument for the 2011 Mars science ...

  15. ChemCam laser sets its sights on first martian target

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    First martian target ChemCam laser sets its sights on first martian target The successful capture of ChemCam's first 10 photos sets the stage for the first test bursts of the instrument's rock-zapping laser in the near future. August 17, 2012 Curiosity zaps Mars for vital signs: ChemCam, designed by Lab team, looks for elements such as carbon, nitrogen, and oxygen, all of which are crucial for life. Curiosity zaps Mars for vital signs: ChemCam, designed by Lab team, looks for elements such as

  16. SMAC: A soft MAC to reduce control overhead and latency in CDMA-based AMI networks

    SciTech Connect (OSTI)

    Garlapati, Shravan; Kuruganti, Teja; Buehrer, Michael R.; Reed, Jeffrey H.

    2015-10-26

    The utilization of state-of-the-art 3G cellular CDMA technologies in a utility owned AMI network results in a large amount of control traffic relative to data traffic, increases the average packet delay and hence are not an appropriate choice for smart grid distribution applications. Like the CDG, we consider a utility owned cellular like CDMA network for smart grid distribution applications and classify the distribution smart grid data as scheduled data and random data. Also, we propose SMAC protocol, which changes its mode of operation based on the type of the data being collected to reduce the data collection latency and control overhead when compared to 3G cellular CDMA2000 MAC. The reduction in the data collection latency and control overhead aids in increasing the number of smart meters served by a base station within the periodic data collection interval, which further reduces the number of base stations needed by a utility or reduces the bandwidth needed to collect data from all the smart meters. The reduction in the number of base stations and/or the reduction in the data transmission bandwidth reduces the CAPital EXpenditure (CAPEX) and OPerational EXpenditure (OPEX) of the AMI network. Finally, the proposed SMAC protocol is analyzed using markov chain, analytical expressions for average throughput and average packet delay are derived, and simulation results are also provided to verify the analysis.

  17. SMAC: A soft MAC to reduce control overhead and latency in CDMA-based AMI networks

    DOE PAGES-Beta [OSTI]

    Garlapati, Shravan; Kuruganti, Teja; Buehrer, Michael R.; Reed, Jeffrey H.

    2015-10-26

    The utilization of state-of-the-art 3G cellular CDMA technologies in a utility owned AMI network results in a large amount of control traffic relative to data traffic, increases the average packet delay and hence are not an appropriate choice for smart grid distribution applications. Like the CDG, we consider a utility owned cellular like CDMA network for smart grid distribution applications and classify the distribution smart grid data as scheduled data and random data. Also, we propose SMAC protocol, which changes its mode of operation based on the type of the data being collected to reduce the data collection latency andmore » control overhead when compared to 3G cellular CDMA2000 MAC. The reduction in the data collection latency and control overhead aids in increasing the number of smart meters served by a base station within the periodic data collection interval, which further reduces the number of base stations needed by a utility or reduces the bandwidth needed to collect data from all the smart meters. The reduction in the number of base stations and/or the reduction in the data transmission bandwidth reduces the CAPital EXpenditure (CAPEX) and OPerational EXpenditure (OPEX) of the AMI network. Finally, the proposed SMAC protocol is analyzed using markov chain, analytical expressions for average throughput and average packet delay are derived, and simulation results are also provided to verify the analysis.« less

  18. A Prospective, Multicenter Study of Complementary/Alternative Medicine (CAM) Utilization During Definitive Radiation for Breast Cancer

    SciTech Connect (OSTI)

    Moran, Meena S.; Ma Shuangge; Jagsi, Reshma; Yang, Tzu-I Jonathan; Higgins, Susan A.; Department of Radiation Therapy, Shoreline Medical Center, Guilford, Connecticut ; Weidhaas, Joanne B.; Wilson, Lynn D.; Department of Radiation Therapy, Lawrence and Memorial Hospital, New London, Connecticut ; Lloyd, Shane; Peschel, Richard; Department of Radiation Therapy, Lawrence and Memorial Hospital, New London, Connecticut ; Gaudreau, Bryant; Rockwell, Sara

    2013-01-01

    Purpose: Although complementary and alternative medicine (CAM) utilization in breast cancer patients is reported to be high, there are few data on CAM practices in breast patients specifically during radiation. This prospective, multi-institutional study was conducted to define CAM utilization in breast cancer during definitive radiation. Materials/Methods: A validated CAM instrument with a self-skin assessment was administered to 360 Stage 0-III breast cancer patients from 5 centers during the last week of radiation. All data were analyzed to detect significant differences between users/nonusers. Results: CAM usage was reported in 54% of the study cohort (n=194/360). Of CAM users, 71% reported activity-based CAM (eg, Reiki, meditation), 26% topical CAM, and 45% oral CAM. Only 16% received advice/counseling from naturopathic/homeopathic/medical professionals before initiating CAM. CAM use significantly correlated with higher education level (P<.001), inversely correlated with concomitant hormone/radiation therapy use (P=.010), with a trend toward greater use in younger patients (P=.066). On multivariate analysis, level of education (OR: 6.821, 95% CI: 2.307-20.168, P<.001) and hormones/radiation therapy (OR: 0.573, 95% CI: 0.347-0.949, P=.031) independently predicted for CAM use. Significantly lower skin toxicity scores were reported in CAM users vs nonusers, respectively (mild: 34% vs 25%, severe: 17% vs 29%, P=.017). Conclusion: This is the first prospective study to assess CAM practices in breast patients during radiation, with definition of these practices as the first step for future investigation of CAM/radiation interactions. These results should alert radiation oncologists that a large percentage of breast cancer patients use CAM during radiation without disclosure or consideration for potential interactions, and should encourage increased awareness, communication, and documentation of CAM practices in patients undergoing radiation treatment for breast

  19. The Reliability Investigation on ACSR Splice Connector Systems Used in Overhead Power transmission Lines

    SciTech Connect (OSTI)

    Wang, Jy-An John; Jiang, Hao; Ren, Fei

    2012-01-01

    Due to material discontinuity and inherited forming mechanism from a crimped-type splice connector, the associated conductor-connector system is highly sensitive to system components aging, especially during high-temperature operations. Furthermore, due to the increase in power demand and limited investment in new infrastructure, existing overhead power transmission lines often need to operate at temperatures higher than the original designed values. This has led to the accelerated aging and degradation of conductor-connector systems. The implications of connector aging are two-fold: (1) significant increase in resistivity of the splice connector and (2) significant reduction in the connector clamping strength. Therefore, splice connectors are one of the weakest links in the electric power transmission infrastructure. In this paper we will discuss the reliability of splice connector systems, including both single stage and two stage splice connectors, used in ACSR conductor of transmission lines under high temperature operations.

  20. NIOSH alert: Request for assistance in preventing electrocutions of crane operators and crew members working near overhead power lines

    SciTech Connect (OSTI)

    1995-05-01

    In this alert, NIOSH warned that crane operators and crew members may be electrocuted when working near overhead power lines. Five cases were described which resulted in six electrocutions. Case 1 involved a 29 year old who pushed the crane cable on a 1 yard cement bucket into a 7,200 volt power line. Case 2 involved a 33 year old well driller who was electrocuted when a metal pipe lifted by a truck mounted crane contacted a 12,000 volt overhead power line. The third case involved a 24 year old forman for a telecommunications company who was electrocuted when he grabbed the door handle of a truck mounted crane whose boom was in contact with a 7,200 volt overhead power line. Case 4 involved a 37 year old construction laborer electrocuted while pulling a wire rope attached to a crane cable toward a load. The fifth case involved a 20 year old male truck driver and his 70 year old male employer who were electrocuted when the boom of a truck mounted crane contacted a 7,200 volt conductor of an overhead power line.

  1. Cam operated tool for proximate or remote holding of an object

    DOE Patents [OSTI]

    Schrum, Phillip B. (Jefferson Boro, PA); Gajdzak, George P. (Belle Vernon, PA)

    1997-01-01

    A tool for releasably holding an object includes a receptacle having an outer sleeve and a rotatable inner sleeve. The inner sleeve is coaxially positioned within the outer sleeve and includes a locking member. An insert which is adapted to be operably associated with the receptacle includes a cam. The cam includes a guide and a slot so that when the cam is inserted into the inner sleeve, the guide aligns the locking member with the slot allowing the locking member to engage the slog thereby holding the receptacle and the insert together.

  2. Quick Fix Gives Mars Rover's ChemCam Sharper Vision | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Quick Fix Gives Mars Rover's ChemCam Sharper Vision Quick Fix Gives Mars Rover's ChemCam Sharper Vision June 12, 2015 - 3:08pm Addthis This self-portrait of NASA's Curiosity Mars rover shows the vehicle at the "Mojave" site on Mount Sharp, combining dozens of images taken in January 2015. The circle visible at the top of the rover's mast is part of the ChemCam instrument developed in part by Los Alamos National Laboratory. | Photo courtesy of NASA/JPL-Caltech/MSSS This

  3. Simulation of Frontal Clouds Using the NCAR CAM3 during the ARM...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    of New York at Stony Brook Wu, Jingbo Stony Brook University Category: Modeling A case study is carried out to simulate the March 2-3 frontal clouds with the NCAR CAM3 as...

  4. ChemCam contributions to the Lunar and Planetary Science Conference

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Conference: ChemCam contributions to the Lunar and Planetary Science Conference Citation Details In-Document Search Title: ChemCam contributions to the Lunar and Planetary Science Conference Authors: Forni, O. [1] ; Mangold, N [2] ; Ollila, Ann M. [3] ; Anderson, R. [4] ; Berger, G. [5] ; Bridges, J. [6] ; Clegg, Samuel M. [3] ; Cousin, A. [1] ; Dietrich, W. [7] ; Dromart, G. [8] ; Gupta, S. [9] ; Lewin, E. [10] ; Fabre, C. [11] ; Gasnault, O. [1] ; Herkenhoff,

  5. Smart patch integration development of compression connector structural health monitoring in overhead transmission lines

    SciTech Connect (OSTI)

    Wang, Hong; Wang, Jy-An John; Ren, Fei; Chan, John

    2016-01-01

    Integration of smart patches into full-tension splice connectors in overhead power transmission lines was investigated. Lead zirconate titanate (PZT) -5A was used as a smart material and an aluminum beam was used as a host structure. Negative electrode termination was examined by using copper adhesive tape and direct bonding methods. Various commercial adhesives were studied for PZT integration onto the host structure. Aluminum beam specimens with integrated PZT smart patches were tested under thermal cycling at a temperature of 125 C, which is the higher-end temperature experienced by in-service aluminum conductor steel-reinforced cables. Electromechanical impedance (EMI) measurements were conducted at room temperature, and the root mean square deviation (RMSD) of the conductance signals was used to analyze the EMI data. It has been shown that the negative electrode method has an important effect on the performance of the integrated PZT. The PZT displayed more susceptibility to cracking when copper tape was used than when direct bonding was used. The reliability of PZT in direct bonding depended on the adhesives used in bonding layers. Although a hard alumina based adhesive can lead to cracking of the PZT, a high-temperature epoxy with adequate flexibility, such as Duralco 4538D, can provide the desired performance under target thermal cycling conditions. The RMSD parameter can characterize conductance signatures effectively. It also was demonstrated that RMSD can be used to quantify the fatigue of the PZT integration system, although RMSD is used primarily as a damage index in monitoring structural health.

  6. Engineering task plan for rotary mode core sampling exhausters CAM high radiation interlock

    SciTech Connect (OSTI)

    BOGER, R.M.

    1999-05-19

    The Rotary Mode Core Sampling (RMCS) system is primarily made up of the Rotary Mode Core Sample Trucks (RMCST) and the RMCS Exhausters. During RMCS operations an Exhauster is connected to a tank riser and withdraws gases from the tank dome vapor space at approximately 200 Standard Cubic Feet per Minute (SCFM). The gases are passed through two High Efficiency Particulate Air (HEPA) filters before passing out the exhaust stack to the atmosphere. A Continuous Air Monitor (CAM) monitors the exhaust gases in the exhaust stack for beta particle and gamma radiation. The CAM has a high radiation alarm output and a detector fail alarm output. The CAM alarms are currently connected to the data logger only. The CAM alarms require operator response per procedure LMHC 1998 but no automatic functions are initiated by the CAM alarms. Currently, there are three events that can cause an automatic shut down of the Exhauster. These are, Low Tank Pressure, Highnow Stack Flow and High HEPA Filter Differential Pressure (DP).

  7. Performance Evaluation for Modular, Scalable Overhead Cooling Systems In Data Centers

    SciTech Connect (OSTI)

    Xu, TengFang T.

    2009-05-01

    installed in a data center. Such modular cooling systems are all scalable localized units, and will be evaluated in terms of their operating energy efficiency in a real data center, respectively, as compared to the energy efficiency of traditional legacy data center cooling systems. The technical objective of this project was to evaluate the energy performance of one of the four commercially available modular cooling systems installed in a data center in Sun Microsystems, Inc. This report is the result of a test plan that was developed with the industrial participants' input, including specific design and operating characteristics of the selected modular localized cooling solution provided by vendor 1. The technical evaluation included monitoring and measurement of selected parameters, and establishing and calculating energy efficiency metrics for the selected cooling product, which is a modular, scalable overhead cooling system. The system was tested in a hot/cold aisle environment without separation, or containment or the hot or cold aisles. The scope of this report is to quantify energy performance of the modular cooling unit in operation as it corresponds to a combination of varied server loads and inlet air temperatures. The information generated from this testing when combined with a concurrent research study to document the energy efficiency of the host data center's central chilled water cooling plant can be used to estimate potential energy savings from implementing modular cooling compared to conventional cooling in data centers.

  8. Calibrating the ChemCam LIBS for carbonate minerals on Mars

    SciTech Connect (OSTI)

    Wiens, Roger C; Clegg, Samuel M; Ollila, Ann M; Barefield, James E; Lanza, Nina; Newsom, Horton E

    2009-01-01

    The ChemCam instrument suite on board the NASA Mars Science Laboratory (MSL) rover includes the first LIBS instrument for extraterrestrial applications. Here we examine carbonate minerals in a simulated martian environment using the LIDS technique in order to better understand the in situ signature of these materials on Mars. Both chemical composition and rock type are determined using multivariate analysis (MVA) techniques. Composition is confirmed using scanning electron microscopy (SEM) techniques. Our initial results suggest that ChemCam can recognize and differentiate between carbonate materials on Mars.

  9. Mathematical model of the Beta Rand Cam{trademark} engine vane seals

    SciTech Connect (OSTI)

    Braden, C.H.; Thompson, G.J.; Smith, J.E.; Mucino, V.H.

    1996-12-31

    A mathematical model of the vane sealing mechanism is presented to determine how the loading on the seals will affect the performance of the Rand Cam{trademark} engine. Within the Rand Cam{trademark} engine, sacrificial linear seals in the vane are used as the main sealing mechanism to prevent blowby from one chamber to the next. Throughout this investigation a kinetostatic analysis, based upon Yamamoto`s Wankel apex seal analysis, is extended into three dimensions. The input data to the model can be varied to study the effects of seal dimensions, seal material, seal dynamics, and friction.

  10. ChemCam on Mars (Technical Report) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ChemCam on Mars Citation Details In-Document Search Title: ChemCam on Mars Authors: Clegg, Samuel M. [1] + Show Author Affiliations Los Alamos National Laboratory Publication Date: 2012-10-17 OSTI Identifier: 1053549 Report Number(s): LA-UR-12-25600 DOE Contract Number: AC52-06NA25396 Resource Type: Technical Report Research Org: Los Alamos National Laboratory (LANL) Sponsoring Org: NASA Country of Publication: United States Language: English Subject: Atomic & Molecular Physics(74) Word

  11. ChemCam findings hint at oxygen-rich past on Mars

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ChemCam findings hint at oxygen-rich past on Mars ChemCam findings hint at oxygen-rich past on Mars The discovery of manganese oxides in Martian rocks might tell us that the Red Planet was once more Earth-like than previously believed. June 27, 2016 The Curiosity rover examines the Kimberley formation in Gale crater, Mars. In front of the rover are two holes from the rover's sample-collection drill and several dark-toned features that have been cleared of dust (see inset images). These flat

  12. Ultra-scale vehicle tracking in low spatial-resolution and low frame-rate overhead video

    SciTech Connect (OSTI)

    Carrano, C J

    2009-05-20

    Overhead persistent surveillance systems are becoming more capable at acquiring wide-field image sequences for long time-spans. The need to exploit this data is becoming ever greater. The ability to track a single vehicle of interest or to track all the observable vehicles, which may number in the thousands, over large, cluttered regions while they persist in the imagery either in real-time or quickly on-demand is very desirable. With this ability we can begin to answer a number of interesting questions such as, what are normal traffic patterns in a particular region or where did that truck come from? There are many challenges associated with processing this type of data, some of which we will address in the paper. Wide-field image sequences are very large with many thousands of pixels on a side and are characterized by lower resolutions (e.g. worse than 0.5 meters/pixel) and lower frame rates (e.g. a few Hz or less). The objects in the scenery can vary in size, density, and contrast with respect to the background. At the same time the background scenery provides a number of clutter sources both man-made and natural. We describe our current implementation of an ultrascale capable multiple-vehicle tracking algorithm for overhead persistent surveillance imagery as well as discuss the tracking and timing performance of the currently implemented algorithm which is aimed at utilizing grayscale electrooptical image sequences alone for the track segment generation.

  13. Development of Integrated ASR Model Forcing Data and Their Applications to Improve CAM

    SciTech Connect (OSTI)

    Zhang, Minghua

    2016-01-01

    In this project, we have (1) improved the constrained variational analysis algorithm of ARM model forcing data, and (2) used the ARM forcing data to identify systematic biases in clouds and radiation in the CAM5 and design new physical parameterizations to improve it.

  14. Testing cloud microphysics parameterizations in NCAR CAM5 with ISDAC and M-PACE observations

    SciTech Connect (OSTI)

    Liu X.; Lin W.; Xie, S.; Boyle, J.; Klein, S. A.; Shi, X.; Wang, Z.; Ghan, S. J.; Earle, M.; Liu, P. S. K.; Zelenyuk, A.

    2011-12-24

    Arctic clouds simulated by the National Center for Atmospheric Research (NCAR) Community Atmospheric Model version 5 (CAM5) are evaluated with observations from the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Indirect and Semi-Direct Aerosol Campaign (ISDAC) and Mixed-Phase Arctic Cloud Experiment (M-PACE), which were conducted at its North Slope of Alaska site in April 2008 and October 2004, respectively. Model forecasts for the Arctic spring and fall seasons performed under the Cloud-Associated Parameterizations Testbed framework generally reproduce the spatial distributions of cloud fraction for single-layer boundary-layer mixed-phase stratocumulus and multilayer or deep frontal clouds. However, for low-level stratocumulus, the model significantly underestimates the observed cloud liquid water content in both seasons. As a result, CAM5 significantly underestimates the surface downward longwave radiative fluxes by 20-40 W m{sup -2}. Introducing a new ice nucleation parameterization slightly improves the model performance for low-level mixed-phase clouds by increasing cloud liquid water content through the reduction of the conversion rate from cloud liquid to ice by the Wegener-Bergeron-Findeisen process. The CAM5 single-column model testing shows that changing the instantaneous freezing temperature of rain to form snow from -5 C to -40 C causes a large increase in modeled cloud liquid water content through the slowing down of cloud liquid and rain-related processes (e.g., autoconversion of cloud liquid to rain). The underestimation of aerosol concentrations in CAM5 in the Arctic also plays an important role in the low bias of cloud liquid water in the single-layer mixed-phase clouds. In addition, numerical issues related to the coupling of model physics and time stepping in CAM5 are responsible for the model biases and will be explored in future studies.

  15. Dual Tank Fuel System

    DOE Patents [OSTI]

    Wagner, Richard William; Burkhard, James Frank; Dauer, Kenneth John

    1999-11-16

    A dual tank fuel system has primary and secondary fuel tanks, with the primary tank including a filler pipe to receive fuel and a discharge line to deliver fuel to an engine, and with a balance pipe interconnecting the primary tank and the secondary tank. The balance pipe opens close to the bottom of each tank to direct fuel from the primary tank to the secondary tank as the primary tank is filled, and to direct fuel from the secondary tank to the primary tank as fuel is discharged from the primary tank through the discharge line. A vent line has branches connected to each tank to direct fuel vapor from the tanks as the tanks are filled, and to admit air to the tanks as fuel is delivered to the engine.

  16. Dual surface interferometer

    DOE Patents [OSTI]

    Pardue, Robert M.; Williams, Richard R.

    1982-01-01

    A double-pass interferometer is provided which allows direct measurement of relative displacement between opposed surfaces. A conventional plane mirror interferometer may be modified by replacing the beam-measuring path cube-corner reflector with an additional quarter-wave plate. The beam path is altered to extend to an opposed plane mirrored surface and the reflected beam is placed in interference with a retained reference beam split from dual-beam source and retroreflected by a reference cube-corner reflector mounted stationary with the interferometer housing. This permits direct measurement of opposed mirror surfaces by laser interferometry while doubling the resolution as with a conventional double-pass plane mirror laser interferometer system.

  17. Dual surface interferometer

    DOE Patents [OSTI]

    Pardue, R.M.; Williams, R.R.

    1980-09-12

    A double-pass interferometer is provided which allows direct measurement of relative displacement between opposed surfaces. A conventional plane mirror interferometer may be modified by replacing the beam-measuring path cube-corner reflector with an additional quarterwave plate. The beam path is altered to extend to an opposed plane mirrored surface and the reflected beam is placed in interference with a retained reference beam split from dual-beam source and retroreflected by a reference cube-corner reflector mounted stationary with the interferometer housing. This permits direct measurement of opposed mirror surfaces by laser interferometry while doubling the resolution as with a conventional double-pass plane mirror laser interferometer system.

  18. Increasing the reliability of the shutdown of 500 - 750-kV overhead lines equipped with shunt reactors in an unsuccessful three-phase automatic repeated closure cycle

    SciTech Connect (OSTI)

    Kuz'micheva, K. I.; Merzlyakov, A. S.; Fokin, G. G.

    2013-05-15

    The reasons for circuit-breaker failures during repeated disconnection of 500 - 750 kV overhead lines with shunt reactors in a cycle of unsuccessful three-phase automatic reconnection (TARC) are analyzed. Recommendations are made for increasing the operating reliability of power transmission lines with shunt reactors when there is unsuccessful reconnection.

  19. Dual flapper valve assembly

    SciTech Connect (OSTI)

    Clary, S.R.; Giusti, F. Jr.; Sproul, R.M.

    1989-07-11

    This patent describes a dual flapper valve assembly for limiting the loss of completion fluid in connection with a well service operation. The valve assembly consists of: tubular support means defining a flow passage; a first flapper valve assembly connected in series flow relation with the support means, the first flapper valve assembly having a valve closure member movable between first and second positions for closing and opening the flow passage; a second flapper valve assembly connected in series flow relation in the support means, the second flapper valve assembly having a valve closure member movable between open and closed passage positions for closing and opening the flow passage; a prop sleeve mounted within the support means, the prop sleeve being movable from an extended position in which it props the closure member of one flapper valve in the open passage position to a retracted position in which the closure member is disengaged and released for movement to the closed passage position, the valve closure member of one of the flapper valve assemblies being engageable by a wash pipe extending through the flow passage to prop the valve closure member in the open passage position, and being movable to the closed passage position upon retraction of the wash pipe out of the flow passage.

  20. Modeling the corrosion of high-level waste containers: CAM-CRM interface

    SciTech Connect (OSTI)

    Farmer, J. C., LLNL

    1998-06-01

    A key component of the Engineered Barrier System (EBS) being designed for containment of spent-fuel and high-level waste at the proposed geological repository at Yucca Mountain, Nevada is a two-layer canister. In this particular design, the inner barrier is made of a corrosion resistant material (CRM) such as Alloy 825, 625 or C-22, while the outer barrier is made of a corrosion-allowance material (CAM) such as A516 or Monel 400. At the present time, Alloy C-22 and A516 are favored. This publication addresses the development of models to account for corrosion of Alloy C-22 surfaces exposed directly to the Near Field Environment (NFE), as well as to the exacerbated conditions in the CAM-CRM crevice.

  1. Modeling the corrosion of high-level waste containers: CAM-CRM interface

    SciTech Connect (OSTI)

    Farmer, J.C.; Bedrossian, P.J.; McCright, R.D.

    1998-06-01

    A key component of the Engineered Barrier System (EBS) being designed for containment of spent-fuel and high-level waste at the proposed geological respository at Yucca Mountain, Nevada is a two-layer canister. In this particular design, the inner barrier is made of a corrosion resistant material (CRM) such as Alloy 825, 625 or C-22, while the outer barrier is made of a corrosion-allowance material (CAM) such as A516 or Monel 400. At the present time, Alloy C-22 and A516 are favored. This publication addresses the development of models to account for corrosion of Alloy C-22 surfaces exposed directly to the Near Field Environmental (NFE), as well as to the exacerbated conditions in the CAM-CRM crevice.

  2. Algorithmically scalable block preconditioner for fully implicit shallow-water equations in CAM-SE

    DOE PAGES-Beta [OSTI]

    Lott, P. Aaron; Woodward, Carol S.; Evans, Katherine J.

    2014-10-19

    Performing accurate and efficient numerical simulation of global atmospheric climate models is challenging due to the disparate length and time scales over which physical processes interact. Implicit solvers enable the physical system to be integrated with a time step commensurate with processes being studied. The dominant cost of an implicit time step is the ancillary linear system solves, so we have developed a preconditioner aimed at improving the efficiency of these linear system solves. Our preconditioner is based on an approximate block factorization of the linearized shallow-water equations and has been implemented within the spectral element dynamical core within themore » Community Atmospheric Model (CAM-SE). Furthermore, in this paper we discuss the development and scalability of the preconditioner for a suite of test cases with the implicit shallow-water solver within CAM-SE.« less

  3. Algorithmically scalable block preconditioner for fully implicit shallow-water equations in CAM-SE

    SciTech Connect (OSTI)

    Lott, P. Aaron; Woodward, Carol S.; Evans, Katherine J.

    2014-10-19

    Performing accurate and efficient numerical simulation of global atmospheric climate models is challenging due to the disparate length and time scales over which physical processes interact. Implicit solvers enable the physical system to be integrated with a time step commensurate with processes being studied. The dominant cost of an implicit time step is the ancillary linear system solves, so we have developed a preconditioner aimed at improving the efficiency of these linear system solves. Our preconditioner is based on an approximate block factorization of the linearized shallow-water equations and has been implemented within the spectral element dynamical core within the Community Atmospheric Model (CAM-SE). Furthermore, in this paper we discuss the development and scalability of the preconditioner for a suite of test cases with the implicit shallow-water solver within CAM-SE.

  4. ChemCam for Mars Science Laboratory rover, undergoing pre-flight testing

    ScienceCinema (OSTI)

    None

    2014-08-12

    Los Alamos National Laboratory and partners developed a laser instrument, ChemCam, that will ride on the elevated mast of the Mars Science Laboratory rover Curiosity. The system allows Curiosity to "zap" rocks from a distance, reading their chemical composition through spectroscopic analysis. In this video, laboratory shaker-table testing of the instrument ensures that all of its components are solidly attached and resistant to damage from the rigors of launch, travel and landing.

  5. Laboratory Curiosity rover ChemCam team, including Los Alamos National Laboratory

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    first analyses yield beautiful results August 23, 2012 Curiosity beams back strong, clear data from 'scour' area on Martian surface LOS ALAMOS, NEW MEXICO, August 23, 2012-Members of the Mars Science Laboratory Curiosity rover ChemCam team, including Los Alamos National Laboratory scientists, squeezed in a little extra target practice after zapping the first fist-sized rock that was placed in the laser's crosshairs last weekend.Much to the delight of - 2 - the scientific team, the laser

  6. ChemCam follows the 'Yellowknife Road' to Martian wet area

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    'Yellowknife Road' to martian wet area ChemCam follows the 'Yellowknife Road' to martian wet area Researchers have tracked a trail of minerals that point to the prior presence of water at the Curiosity rover site on Mars. January 15, 2013 The Mars Science Laboratory's Curiosity Rover recently took this photo of the Martian landscape looking toward Mount Sharp while on its way toward Yellowknife Bay-an area where researchers have found minerals indicating the past presence of water. (NASA Photo)

  7. A roadmap for research on crassulacean acid metabolism (CAM) to enhance sustainable food and bioenergy production in a hotter, drier world

    SciTech Connect (OSTI)

    Yang, Xiaohan; Cushman, John C.; Borland, Anne M.; Edwards, Erika; Wullschleger, Stan D.; Tuskan, Gerald A.; Owen, Nick; Griffiths, Howard; Smith, J. Andrew C.; Cestari De Paoli, Henrique; Weston, David; Cottingham, Robert; Hartwell, James; Davis, Sarah C.; Silvera, Katia; Ming, Ray; Schlauch, Karen; Abraham, Paul E.; Stewart, J. Ryan; Guo, Hao -Bo; Nair, Sujithkumar S.; Ranjan, Priya; Palla, Kaitlin J.; Yin, Hengfu; Albion, Rebecca; Ha, Jungmin; Lim, Sung Don; Wone, Bernard W. M.; Yim, Won Cheol; Garcia, Travis; Mayer, Jesse A.; Petereit, Juli; Casey, Erin; Hettich, Robert L.; Ceusters, John; Ranjan, Priya; Palla, Kaitlin J.; Yin, Hengfu; Reyes-Garcia, Casandra; Andrade, Jose Luis; Freschi, Luciano; Beltran, Juan D.; Dever, Louisa V.; Boxall, Susanna F.; Waller, Jade; Davies, Jack; Bupphada, Phaitun; Kadu, Nirja; Winter, Klaus; Sage, Rowan F.; Aguilar, Cristobal N.; Schmutz, Jeremy; Jenkins, Jerry; Holtum, Joseph A.M.

    2015-07-07

    Crassulacean acid metabolism (CAM) is a specialized mode of photosynthesis that features nocturnal CO₂ uptake, facilitates increased water-use efficiency (WUE), and enables CAM plants to inhabit water-limited environments such as semi-arid deserts or seasonally dry forests. Human population growth and global climate change now present challenges for agricultural production systems to increase food, feed, forage, fiber, and fuel production. One approach to meet these challenges is to increase reliance on CAM crops, such as Agave and Opuntia, for biomass production on semi-arid, abandoned, marginal, or degraded agricultural lands. Major research efforts are now underway to assess the productivity of CAM crop species and to harness the WUE of CAM by engineering this pathway into existing food and bioenergy crops. An improved understanding of CAM gained through intensive and expanded research efforts has potential for high returns on research investment in the foreseeable future. To help realize the potential of sustainable dryland agricultural systems, it is necessary to address scientific questions related to the genomic features, regulatory mechanisms, and evolution of CAM; CAM-into-C3 engineering; and the production of CAM crops. Answering these questions requires collaborative efforts to build infrastructure for CAM model systems, field trials, mutant collections, and data management.

  8. A roadmap for research on crassulacean acid metabolism (CAM) to enhance sustainable food and bioenergy production in a hotter, drier world

    SciTech Connect (OSTI)

    Yang, Xiaohan; Cushman, John C.; Borland, Anne M.; Edwards, Erika; Wullschleger, Stan D.; Tuskan, Gerald A.; Owen, Nick; Griffiths, Howard; Smith, J. Andrew C.; Cestari De Paoli, Henrique; Weston, David; Cottingham, Robert; Hartwell, James; Davis, Sarah C.; Silvera, Katia; Ming, Ray; Schlauch, Karen; Abraham, Paul E.; Stewart, J. Ryan; Guo, Hao -Bo; Nair, Sujithkumar S.; Ranjan, Priya; Palla, Kaitlin J.; Yin, Hengfu; Albion, Rebecca; Ha, Jungmin; Lim, Sung Don; Wone, Bernard W. M.; Yim, Won Cheol; Garcia, Travis; Mayer, Jesse A.; Petereit, Juli; Casey, Erin; Hettich, Robert L.; Ceusters, John; Ranjan, Priya; Palla, Kaitlin J.; Yin, Hengfu; Reyes-Garcia, Casandra; Andrade, Jose Luis; Freschi, Luciano; Beltran, Juan D.; Dever, Louisa V.; Boxall, Susanna F.; Waller, Jade; Davies, Jack; Bupphada, Phaitun; Kadu, Nirja; Winter, Klaus; Sage, Rowan F.; Aguilar, Cristobal N.; Schmutz, Jeremy; Jenkins, Jerry; Holtum, Joseph A.M.

    2015-01-01

    Crassulacean acid metabolism (CAM) is a specialized mode of photosynthesis that features nocturnal CO₂ uptake, facilitates increased water-use efficiency (WUE), and enables CAM plants to inhabit water-limited environments such as semi-arid deserts or seasonally dry forests. Human population growth and global climate change now present challenges for agricultural production systems to increase food, feed, forage, fiber, and fuel production. One approach to meet these challenges is to increase reliance on CAM crops, such as Agave and Opuntia, for biomass production on semi-arid, abandoned, marginal, or degraded agricultural lands. Major research efforts are now underway to assess the productivity of CAM crop species and to harness the WUE of CAM by engineering this pathway into existing food and bioenergy crops. An improved understanding of CAM gained through intensive and expanded research efforts has potential for high returns on research investment in the foreseeable future. To help realize the potential of sustainable dryland agricultural systems, it is necessary to address scientific questions related to the genomic features, regulatory mechanisms, and evolution of CAM; CAM-into-C3 engineering; and the production of CAM crops. Answering these questions requires collaborative efforts to build infrastructure for CAM model systems, field trials, mutant collections, and data management.

  9. UWB dual burst transmit driver

    DOE Patents [OSTI]

    Dallum, Gregory E.; Pratt, Garth C.; Haugen, Peter C.; Zumstein, James M.; Vigars, Mark L.; Romero, Carlos E.

    2012-04-17

    A dual burst transmitter for ultra-wideband (UWB) communication systems generates a pair of precisely spaced RF bursts from a single trigger event. An input trigger pulse produces two oscillator trigger pulses, an initial pulse and a delayed pulse, in a dual trigger generator. The two oscillator trigger pulses drive a gated RF burst (power output) oscillator. A bias driver circuit gates the RF output oscillator on and off and sets the RF burst packet width. The bias driver also level shifts the drive signal to the level that is required for the RF output device.

  10. Dual porosity gas evolving electrode

    DOE Patents [OSTI]

    Townsend, C.W.

    1994-11-15

    A dual porosity electrode is described for use in thermoelectrochemical systems where simultaneous transport of gas and liquid into and/or out of the electrode is required. The electrode includes catalytic electrode particles having diameters ranging from about 25 to 100 angstroms. The catalytic electrode particles are anchored to a support network in clusters which have internal pores ranging in size from 25 to 100 angstroms. The pores between the clusters range in size from between about 1 to 20 microns. A method for making the dual porosity electrodes is also disclosed.

  11. Dual porosity gas evolving electrode

    DOE Patents [OSTI]

    Townsend, Carl W.

    1994-01-01

    A dual porosity electrode for use in thermoelectrochemical systems where simultaneous transport of gas and liquid into and/or out of the electrode is required. The electrode includes catalytic electrode particles having diameters ranging from about 25 to 100 angstroms. The catalytic electrode particles are anchored to a support network in clusters which have internal pores ranging in size from 25 to 100 angstroms. The pores between the clusters range in size from between about 1 to 20 microns. A method for making the dual porosity electrodes is also disclosed.

  12. A roadmap for research on crassulacean acid metabolism (CAM) to enhance sustainable food and bioenergy production in a hotter, drier world

    DOE PAGES-Beta [OSTI]

    Yang, Xiaohan; Cushman, John C.; Borland, Anne M.; Edwards, Erika; Wullschleger, Stan D.; Tuskan, Gerald A.; Owen, Nick; Griffiths, Howard; Smith, J. Andrew C.; Cestari De Paoli, Henrique; et al

    2015-01-01

    Crassulacean acid metabolism (CAM) is a specialized mode of photosynthesis that features nocturnal CO₂ uptake, facilitates increased water-use efficiency (WUE), and enables CAM plants to inhabit water-limited environments such as semi-arid deserts or seasonally dry forests. Human population growth and global climate change now present challenges for agricultural production systems to increase food, feed, forage, fiber, and fuel production. One approach to meet these challenges is to increase reliance on CAM crops, such as Agave and Opuntia, for biomass production on semi-arid, abandoned, marginal, or degraded agricultural lands. Major research efforts are now underway to assess the productivity of CAMmore » crop species and to harness the WUE of CAM by engineering this pathway into existing food and bioenergy crops. An improved understanding of CAM gained through intensive and expanded research efforts has potential for high returns on research investment in the foreseeable future. To help realize the potential of sustainable dryland agricultural systems, it is necessary to address scientific questions related to the genomic features, regulatory mechanisms, and evolution of CAM; CAM-into-C3 engineering; and the production of CAM crops. Answering these questions requires collaborative efforts to build infrastructure for CAM model systems, field trials, mutant collections, and data management.« less

  13. A spectral transform dynamical core option within the Community Atmosphere Model (CAM4)

    SciTech Connect (OSTI)

    Evans, Katherine J; Mahajan, Salil; Branstetter, Marcia L; McClean, Julie L.; Caron, Julie M.; Maltrud, Matthew E.; Hack, James J; Bader, David C; Neale, Rich

    2014-01-01

    A spectral transform dynamical core with an 85 spectral truncation resolution (T85) within the Community Atmosphere Model (CAM), version 4, is evaluated within the recently released Community Earth System Model, version 1.0 (CESM) global climate model. The spectral dynamical core option provides a well-known base within the climate model community from which to assess climate behavior and statistics, and its relative computational efficiency for smaller computing platforms allows it to be extended to perform climate length simulations using high-resolution configurations in the near term. To establish the characteristics of the CAM4 T85, an ensemble of simulations covering the present day observational period using forced sea surface temperatures and prescribed sea-ice extent are evaluated. Overall, the T85 ensemble attributes and biases are similar to a companion ensemble of simulations using the one degree finite volume (FV1) dynamical core, relative to observed and model derived datasets. Notable improvements with T85 compared to FV1 include the representation of wintertime Arctic sea level pressure and summer precipitation over the Western Indian subcontinent. The mean and spatial patterns of the land surface temperature trends over the AMIP period are generally well simulated with the T85 ensemble relative to observations, however the model is not able to capture the extent nor magnitude of changes in temperature extremes over the boreal summer, where the changes are most dramatic. Biases in the wintertime Arctic surface temperature and annual mean surface stress fields persist with T85 as with the CAM3 version of T85.

  14. Testing Cloud Microphysics Parameterizations in NCAR CAM5 with ISDAC and M-PACE Observations

    SciTech Connect (OSTI)

    Liu, Xiaohong; Xie, Shaocheng; Boyle, James; Klein, Stephen A.; Shi, Xiangjun; Wang, Zhien; Lin, Wuyin; Ghan, Steven J.; Earle, Michael; Liu, Peter; Zelenyuk, Alla

    2011-12-24

    Arctic clouds simulated by the NCAR Community Atmospheric Model version 5 (CAM5) are evaluated with observations from the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Indirect and Semi-Direct Aerosol Campaign (ISDAC) and Mixed-Phase Arctic Cloud Experiment (M-PACE), which were conducted at its North Slope of Alaska site in April 2008 and October 2004, respectively. Model forecasts for the Arctic Spring and Fall seasons performed under the Cloud- Associated Parameterizations Testbed (CAPT) framework generally reproduce the spatial distributions of cloud fraction for single-layer boundary layer mixed-phase stratocumulus, and multilayer or deep frontal clouds. However, for low-level clouds, the model significantly underestimates the observed cloud liquid water content in both seasons and cloud fraction in the Spring season. As a result, CAM5 significantly underestimates the surface downward longwave (LW) radiative fluxes by 20-40 W m-2. The model with a new ice nucleation parameterization moderately improves the model simulations by increasing cloud liquid water content in mixed-phase clouds through the reduction of the conversion rate from cloud liquid to ice by the Wegener-Bergeron- Findeisen (WBF) process. The CAM5 single column model testing shows that change in the homogeneous freezing temperature of rain to form snow from -5 C to -40 C has a substantial impact on the modeled liquid water content through the slowing-down of liquid and rain-related processes. In contrast, collections of cloud ice by snow and cloud liquid by rain are of minor importance for single-layer boundary layer mixed-phase clouds in the Arctic.

  15. Dual function conducting polymer diodes

    DOE Patents [OSTI]

    Heeger, Alan J.; Yu, Gang

    1996-01-01

    Dual function diodes based on conjugated organic polymer active layers are disclosed. When positively biased the diodes function as light emitters. When negatively biased they are highly efficient photodiodes. Methods of preparation and use of these diodes in displays and input/output devices are also disclosed.

  16. Dual shell pressure balanced vessel

    DOE Patents [OSTI]

    Fassbender, Alexander G.

    1992-01-01

    A dual-wall pressure balanced vessel for processing high viscosity slurries at high temperatures and pressures having an outer pressure vessel and an inner vessel with an annular space between the vessels pressurized at a pressure slightly less than or equivalent to the pressure within the inner vessel.

  17. DWARF IRREGULAR GALAXY LEO A: SUPRIME-CAM WIDE-FIELD STELLAR PHOTOMETRY

    SciTech Connect (OSTI)

    Stonkut?, Rima; Narbutis, Donatas; Vansevi?ius, Vladas; Arimoto, Nobuo; Hasegawa, Takashi; Tamura, Naoyuki

    2014-10-01

    We have surveyed a complete extent of Leo Aan apparently isolated gas-rich low-mass dwarf irregular galaxy in the Local Group. The B, V, and I passband CCD images (typical seeing ?0.''8) were obtained with the Subaru Telescope equipped with the Suprime-Cam mosaic camera. The wide-field (20' 24') photometry catalog of 38,856 objects (V ? 16-26 mag) is presented. This survey is also intended to serve as ''a finding chart'' for future imaging and spectroscopic observation programs of Leo A.

  18. EA-0962: Construction and Routine Operation of a 12-kilovolt Overhead Powerline and Formal Authorization for a 10-inch and 8-inch Fresh Water Pipeline Right-of-Way at Naval Petroleum Reserve No. 1, Kern County, California

    Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposal to install an overhead powerline extension from the U.S. Department of Energy's Naval Petroleum Reserve No. 1 (NPR-1) power source to the...

  19. CAMS Competencies

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    of Hiroshima and Chernobyl dosimetry; detection of signatures of nuclear fuel reprocessing for nonproliferation purposes; material analysis and modification studies; ...

  20. CAMS Capabilities

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    work-horse bioAMS spectrometer is currently a 1 MV accelerator mass spectrometer with a HPLC liquid sample interface (bioams.llnl.gov) . 14C and tritium analyses of biomedical...

  1. Simulations of arctic mixed-phase clouds in forecasts with CAM3 and AM2 for M-PACE

    DOE PAGES-Beta [OSTI]

    Xie, Shaocheng; Boyle, James; Klein, Stephen A.; Liu, Xiaohong; Ghan, Steven

    2008-02-27

    [1] Simulations of mixed-phase clouds in forecasts with the NCAR Atmosphere Model version 3 (CAM3) and the GFDL Atmospheric Model version 2 (AM2) for the Mixed-Phase Arctic Cloud Experiment (M-PACE) are performed using analysis data from numerical weather prediction centers. CAM3 significantly underestimates the observed boundary layer mixed-phase cloud fraction and cannot realistically simulate the variations of liquid water fraction with temperature and cloud height due to its oversimplified cloud microphysical scheme. In contrast, AM2 reasonably reproduces the observed boundary layer cloud fraction while its clouds contain much less cloud condensate than CAM3 and the observations. The simulation of themore » boundary layer mixed-phase clouds and their microphysical properties is considerably improved in CAM3 when a new physically based cloud microphysical scheme is used (CAM3LIU). The new scheme also leads to an improved simulation of the surface and top of the atmosphere longwave radiative fluxes. Sensitivity tests show that these results are not sensitive to the analysis data used for model initialization. Increasing model horizontal resolution helps capture the subgrid-scale features in Arctic frontal clouds but does not help improve the simulation of the single-layer boundary layer clouds. AM2 simulated cloud fraction and LWP are sensitive to the change in cloud ice number concentrations used in the Wegener-Bergeron-Findeisen process while CAM3LIU only shows moderate sensitivity in its cloud fields to this change. Furthermore, this paper shows that the Wegener-Bergeron-Findeisen process is important for these models to correctly simulate the observed features of mixed-phase clouds.« less

  2. Evaluation of tropical cloud and precipitation statistics of CAM3 using CloudSat and CALIPSO data

    SciTech Connect (OSTI)

    Zhang, Y; Klein, S; Boyle, J; Mace, G G

    2008-11-20

    The combined CloudSat and CALIPSO satellite observations provide the first simultaneous measurements of cloud and precipitation vertical structure, and are used to examine the representation of tropical clouds and precipitation in the Community Atmosphere Model Version 3 (CAM3). A simulator package utilizing a model-to-satellite approach facilitates comparison of model simulations to observations, and a revised clustering method is used to sort the subgrid-scale patterns of clouds and precipitation into principal cloud regimes. Results from weather forecasts performed with CAM3 suggest that the model underestimates the horizontal extent of low and mid-level clouds in subsidence regions, but overestimates that of high clouds in ascending regions. CAM3 strongly overestimates the frequency of occurrence of the deep convection with heavy precipitation regime, but underestimates the horizontal extent of clouds and precipitation at low and middle levels when this regime occurs. This suggests that the model overestimates convective precipitation and underestimates stratiform precipitation consistent with a previous study that used only precipitation observations. Tropical cloud regimes are also evaluated in a different version of the model, CAM3.5, which uses a highly entraining plume in the parameterization of deep convection. While the frequency of occurrence of the deep convection with heavy precipitation regime from CAM3.5 forecasts decreases, the incidence of the low clouds with precipitation and congestus regimes increases. As a result, the parameterization change does not reduce the frequency of precipitating convection that is far too high relative to observations. For both versions of CAM, clouds and precipitation are overly reflective at the frequency of the CloudSat radar and thin clouds that could be detected by the lidar only are underestimated.

  3. Modeling the corrosion of high-level waste containers: CAM-CRM interface

    SciTech Connect (OSTI)

    Bedrossian, P J; Farmer, J C; McCright, R D

    1998-06-01

    A key component of the Engineered Barrier System (EBS) being designed for containment of spent-fuel and high-level waste at the proposed geological repository at Yucca Mountain, Nevada is a two-layer canister. In this particular design, the inner barrier is made of a corrosion resistant material (CRM) such as Alloy 825, 625 or C-22, while the outer barrier is made of a corrosion-allowance material (CAM) such as A5 16 or Monel 400. At the present time, Alloy C-22 and A516 are favored. This publication addresses the development of models to account for corrosion of Alloy C-22 surfaces exposed directly to the Near Field Environment (NFE), as well as to the exacerbated conditions in the CAM-CRM crevice. [5]. Haynes International has published corrosion rates of Alloys 625 and C-22 in artificial crevice solutions (5-10 wt. % FeCl,) at various temperatures (25, 50 and 75 C) [6,7]. In this case, the observed rates for Alloy C-22 appear to be due to passive dissolution. It is believed that Alloy C-22 must be at an electrochemical potential above the repassivation potential to initiate localized corrosion.

  4. Modeling the corrosion of high-level waste containers CAM-CRM interface

    SciTech Connect (OSTI)

    Farmer, J.C.; McCright, M.

    1997-12-09

    A key component of the Engineered Barrier System (EBS) being designed for containment of spent-fuel and high-level waste at the proposed geological repository at Yucca Mountain, Nevada is a two-layer canister. In this particular design,the inner barrier is made of a corrosion resistant material (CRM) such as Alloy 625 and C-22, while the outer barrier is made of a corrosion allowance material (CAM) such as carbon steel or Monel 400. Initially, the containers will be hot and dry due to the heat generated by radioactive decay. However, the temperature will eventually drop to levels where both humid air and aqueous phase corrosion will be possible. As the outer barrier is penetrated, uniform corrosion of the CRM will be possible of exfoliated areas. The possibility of crevice formation between the CAM and CRM will also exist. In the case of either Alloy 625 or C-22, a crevice will have to form before significant penetration of the CRM can occur. Crevice corrosion of the CRMs has been well documented.

  5. Dual arm master controller concept

    SciTech Connect (OSTI)

    Kuban, D.P.; Perkins, G.S.

    1984-01-01

    The Advanced Servomanipulator (ASM) slave was designed with an anthropomorphic stance, gear/torque tube power drives, and modular construction. These features resulted in increased inertia, friction, and backlash relative to tape-driven manipulators. Studies were performed which addressed the human factors design and performance trade-offs associated with the corresponding master controller best suited for the ASM. The results of these studies, as well as the conceptual design of the dual arm master controller, are presented. 6 references, 3 figures.

  6. Dual Fluidized Bed Biomass Gasification

    SciTech Connect (OSTI)

    2005-09-30

    The dual fluidized bed reactor is a recirculating system in which one half of the unit operates as a steam pyrolysis device for biomass. The pyrolysis occurs by introducing biomass and steam to a hot fluidized bed of inert material such as coarse sand. Syngas is produced during the pyrolysis and exits the top of the reactor with the steam. A crossover arm, fed by gravity, moves sand and char from the pyrolyzer to the second fluidized bed. This sand bed uses blown air to combust the char. The exit stream from this side of the reactor is carbon dioxide, water and ash. There is a second gravity fed crossover arm to return sand to the pyrolysis side. The recirculating action of the sand and the char is the key to the operation of the dual fluidized bed reactor. The objective of the project was to design and construct a dual fluidized bed prototype reactor from literature information and in discussion with established experts in the field. That would be appropriate in scale and operation to measure the relative performance of the gasification of biomass and low ranked coals to produce a high quality synthesis gas with no dilution from nitrogen or combustion products.

  7. Assessment of (mu)grid distributed energy resource potential using DER-CAM and GIS

    SciTech Connect (OSTI)

    Edwards, Jennifer L.; Marnay, Chris; Bartholomew, Emily; Ouaglal, Boubekeur; Siddiqui, Afzal S.; LaCommare, Kristina S.H.

    2002-01-01

    This report outlines an approach to assess the local potential for deployment of distributed energy resources (DER), small power-generation installations located close to the point where the energy they produce will be consumed. Although local restraints, such as zoning, building codes, and on-site physical barriers are well-known frustrations to DER deployment, no analysis method has been developed to address them within a broad economic analysis framework. The approach developed here combines established economic optimization techniques embedded in the Distributed Energy Resource Customer Adoption Model (DER-CAM) with a geographic information system (GIS) analysis of local land-use constraint. An example case in the San Diego area is developed from a strictly customer perspective, based on the premise that future development of DER may take the form of microgrids ((mu)Grids) under the control of current utility customers. Beginning with assumptions about which customer combinations h ave complementary energy loads, a GIS was used to locate specific neighborhoods in the San Diego area with promising customer combinations. A detailed energy analysis was conducted for the commercial/residential area chosen covering both electrical and heat energy requirements. Under various scenarios, different combinations of natural gas reciprocating engines were chosen by DER-CAM, ranging in size from 25 kW to 500 kW, often with heat recovery or absorption cooling. These generators typically operate throughout the day and are supplemented by purchased electricity during late-night and early-morning hours, when utility time-of-use prices are lowest. Typical (mu)Grid scenarios displaced about 80 percent of their annual gas heat load through CHP. Self-generation together with absorption cooling dramatically reduce electricity purchases, which usually only occur during nighttime hours.

  8. The Aerodynamic, Dual- Wavelength Optical Spectrometer

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Aerodynamic, Dual- Wavelength Optical Spectrometer James C. Wilson Mechanical and ... 467. * Aerodynamic Particle Sizing - Wilson J.C., Liu B.Y.H., "Aerodynamic Particle ...

  9. Dual Functional Cathode Additives for Battery Technologies -...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Return to Search Dual Functional Cathode Additives for Battery Technologies Brookhaven ... activation of the cell of a lithium battery having a primary metal sulfide additive ...

  10. Confinement of quarks in dual superconductor models

    SciTech Connect (OSTI)

    Ripka, Georges

    2005-06-14

    We review some aspects and problems of quark confinement models which are based on a dual super-conductor description of the QCD vacuum.

  11. Method and system for dual resolution translation stage (Patent...

    Office of Scientific and Technical Information (OSTI)

    The dual resolution stage also includes an adjustable pivot block mechanically coupled to the stage assembly. The adjustable pivot block includes a pivot shaft. The dual resolution ...

  12. Development of Dual-Gated Bilayer Graphene Device Structures...

    Office of Scientific and Technical Information (OSTI)

    Development of Dual-Gated Bilayer Graphene Device Structures. Citation Details In-Document Search Title: Development of Dual-Gated Bilayer Graphene Device Structures. Abstract not ...

  13. Project Profile: Sensible Heat, Direct, Dual-Media Thermal Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Sensible Heat, Direct, Dual-Media Thermal Energy Storage Module Project Profile: Sensible Heat, Direct, Dual-Media Thermal Energy Storage Module Acciona logo Acciona Solar, under ...

  14. Project Profile: Indirect, Dual-Media, Phase Changing Material...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Indirect, Dual-Media, Phase Changing Material Modular Thermal Energy Storage System Project Profile: Indirect, Dual-Media, Phase Changing Material Modular Thermal Energy Storage ...

  15. Dual manifold heat pipe evaporator

    DOE Patents [OSTI]

    Adkins, D.R.; Rawlinson, K.S.

    1994-01-04

    An improved evaporator section is described for a dual manifold heat pipe. Both the upper and lower manifolds can have surfaces exposed to the heat source which evaporate the working fluid. The tubes in the tube bank between the manifolds have openings in their lower extensions into the lower manifold to provide for the transport of evaporated working fluid from the lower manifold into the tubes and from there on into the upper manifold and on to the condenser portion of the heat pipe. A wick structure lining the inner walls of the evaporator tubes extends into both the upper and lower manifolds. At least some of the tubes also have overflow tubes contained within them to carry condensed working fluid from the upper manifold to pass to the lower without spilling down the inside walls of the tubes. 1 figure.

  16. Dual manifold heat pipe evaporator

    DOE Patents [OSTI]

    Adkins, Douglas R. (Albuquerque, NM); Rawlinson, K. Scott (Albuquerque, NM)

    1994-01-01

    An improved evaporator section for a dual manifold heat pipe. Both the upper and lower manifolds can have surfaces exposed to the heat source which evaporate the working fluid. The tubes in the tube bank between the manifolds have openings in their lower extensions into the lower manifold to provide for the transport of evaporated working fluid from the lower manifold into the tubes and from there on into the upper manifold and on to the condenser portion of the heat pipe. A wick structure lining the inner walls of the evaporator tubes extends into both the upper and lower manifolds. At least some of the tubes also have overflow tubes contained within them to carry condensed working fluid from the upper manifold to pass to the lower without spilling down the inside walls of the tubes.

  17. Title V, compliance assurance monitoring (CAM), and the use of any credible evidence (ACE): The effects on compliance and enforcement in the future

    SciTech Connect (OSTI)

    Lowery, K.P.; Poffenberger, C.G.

    1997-12-31

    Under Title V, facilities are required to determine the compliance status of each air emission source with all applicable requirements. In addition, facilities are required to determine the methods that will be used to demonstrate on-going compliance with these requirements. Under Title V, it is no longer the responsibility of the regulator to determine whether a facility is in compliance; it is the facility`s responsibility to continuously prove they are in compliance. The CAM rule, as drafted, will implement the Enhanced Monitoring (EM) and periodic monitoring requirements of the 1990 Clean Air Act Amendments (CAAA). CAM will require facilities subject to Title V to develop CAM plans for specific emission units at the facility. CAM plans will include the methods that will be used to provide reasonable assurance of continuous compliance with applicable requirements. In addition, the EPA is also proposing to finalize portions of the 1993 EM rule that would allow the use of ACE to determine compliance with emission limits. Reference test methods are the only means currently available to determine compliance with emission limits. The EPA has indicated that, under the ACE rule, even data obtained via CAM will be considered credible evidence in determining the compliance status of a facility. CAM and Title V will require sources to submit large amounts of data to the regulatory agency. The data, upon submittal, are public record and can be used to indicate non-compliance under the ACE rule. Therefore, the burden shift associated with CAM and Title V, in conjunction with the use of ACE, will significantly increase the potential liability of industry. This paper discusses the implications Title V, CAM, and the ACE rule will have on industry as well as the possible effects the regulations will have on enforcement in the future. The paper will provide the perspectives of both plant managers and legal counsel.

  18. Evaluating Water Vapor in the NCAR CAM3 Climate Model with RRTMG/McICA using Modeled and Observed AIRS Spectral Radiances

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Evaluating Water Vapor in the NCAR CAM3 Climate Model with RRTMG/McICA using Modeled and Observed AIRS Spectral Radiances Michael J. Iacono, Atmospheric and Environmental Research, Inc., 131 Hartwell Avenue, Lexington, MA 02421 USA 1. Overview Objectives: * Evaluate water vapor and temperature simulation in two versions of CAM3 by comparing modeled and observed cloud-cleared AIRS spectral radiances. * Use spectral differences to verify comparisons between modeled water vapor and temperature and

  19. Financing, Overhead, and Profit: An In-Depth Discussion of Costs Associated with Third-Party Financing of Residential and Commercial Photovoltaic Systems

    SciTech Connect (OSTI)

    Feldman, D.; Friedman, B.; Margolis, R.

    2013-10-01

    Previous work quantifying the non-hardware balance-of-system costs -- or soft costs -- associated with building a residential or commercial photovoltaic (PV) system has left a significant portion unsegmented in an 'other soft costs' category. This report attempts to better quantify the 'other soft costs' by focusing on the financing, overhead, and profit of residential and commercial PV installations for a specific business model. This report presents results from a bottom-up data-collection and analysis of the upfront costs associated with developing, constructing, and arranging third-party-financed residential and commercial PV systems. It quantifies the indirect corporate costs required to install distributed PV systems as well as the transactional costs associated with arranging third-party financing.

  20. Parametric Behaviors of CLUBB in Simulations of Low Clouds in the Community Atmosphere Model (CAM)

    SciTech Connect (OSTI)

    Guo, Zhun; Wang, Minghuai; Qian, Yun; Larson, Vincent E.; Ghan, Steven J.; Ovchinnikov, Mikhail; Bogenschutz, Peter; Gettelman, A.; Zhou, Tianjun

    2015-07-03

    In this study, we investigate the sensitivity of simulated low clouds to 14 selected tunable parameters of Cloud Layers Unified By Binormals (CLUBB), a higher order closure (HOC) scheme, and 4 parameters of the Zhang-McFarlane (ZM) deep convection scheme in the Community Atmosphere Model version 5 (CAM5). A quasi-Monte Carlo (QMC) sampling approach is adopted to effectively explore the high-dimensional parameter space and a generalized linear model is applied to study the responses of simulated cloud fields to tunable parameters. Our results show that the variance in simulated low-cloud properties (cloud fraction and liquid water path) can be explained by the selected tunable parameters in two different ways: macrophysics itself and its interaction with microphysics. First, the parameters related to dynamic and thermodynamic turbulent structure and double Gaussians closure are found to be the most influential parameters for simulating low clouds. The spatial distributions of the parameter contributions show clear cloud-regime dependence. Second, because of the coupling between cloud macrophysics and cloud microphysics, the coefficient of the dissipation term in the total water variance equation is influential. This parameter affects the variance of in-cloud cloud water, which further influences microphysical process rates, such as autoconversion, and eventually low-cloud fraction. This study improves understanding of HOC behavior associated with parameter uncertainties and provides valuable insights for the interaction of macrophysics and microphysics.

  1. Transcriptome Analysis of Drought-Tolerant CAM plants Agave deserti and Agave tequilana

    SciTech Connect (OSTI)

    Gross, Stephen M.; Martin, Jeffrey A.; Simpson, June; Wang, Zhong; Visel, Axel

    2013-03-25

    Agaves are succulent monocotyledonous plants native to hot and arid environments of North America. Because of their adaptations to their environment, including crassulacean acid metabolism (CAM, a water-efficient form of photosynthesis) and existing technologies for ethanol production, agaves have gained attention both as potential lignocellulosic bioenergy feedstocks and models for exploring plant responses to abiotic stress. However, the lack of comprehensive Agave sequence datasets limits the scope of investigations into the molecular-genetic basis of Agave traits. Here, we present comprehensive, high quality de novo transcriptome assemblies of two Agave species, A. tequilana and A. deserti, from short-read RNA-seq data. Our analyses support completeness and accuracy of the de novo transcriptome assemblies, with each species having approximately 35,000 protein-coding genes. Comparison of agave proteomes to those of additional plant species identifies biological functions of gene families displaying sequence divergence in agave species. Additionally, we use RNA-seq data to gain insights into biological functions along the A. deserti juvenile leaf proximal-distal axis. Our work presents a foundation for further investigation of agave biology and their improvement for bioenergy development.

  2. Dual control active superconductive devices

    DOE Patents [OSTI]

    Martens, Jon S.; Beyer, James B.; Nordman, James E.; Hohenwarter, Gert K. G.

    1993-07-20

    A superconducting active device has dual control inputs and is constructed such that the output of the device is effectively a linear mix of the two input signals. The device is formed of a film of superconducting material on a substrate and has two main conduction channels, each of which includes a weak link region. A first control line extends adjacent to the weak link region in the first channel and a second control line extends adjacent to the weak link region in the second channel. The current flowing from the first channel flows through an internal control line which is also adjacent to the weak link region of the second channel. The weak link regions comprise small links of superconductor, separated by voids, through which the current flows in each channel. Current passed through the control lines causes magnetic flux vortices which propagate across the weak link regions and control the resistance of these regions. The output of the device taken across the input to the main channels and the output of the second main channel and the internal control line will constitute essentially a linear mix of the two input signals imposed on the two control lines. The device is especially suited to microwave applications since it has very low input capacitance, and is well suited to being formed of high temperature superconducting materials since all of the structures may be formed coplanar with one another on a substrate.

  3. Sensitivity of MJO to the CAPE lapse time in the NCAR CAM3

    SciTech Connect (OSTI)

    LIU, P.; Wang, B.; Meehl, Gerald, A.

    2007-09-05

    Weak and irregular boreal winter MJO in the NCAR CAM3 corresponds to very low CAPE background, which is caused by easy-to-occur and over-dominant deep convection indicating the deep convective scheme uses either too low CAPE threshold as triggering function or too large consumption rate of CAPE to close the scheme. Raising the CAPE threshold from default 70 J/kg to ten times large only enhances the CAPE background while fails to noticeably improve the wind mean state and the MJO. However, lengthening the CAPE lapse time from one to eight hours significantly improved the background in CAPE and winds, and salient features of the MJO. Variances, dominant periods and zonal wave numbers, power spectra and coherent propagating structure in winds and convection associated with MJO are ameliorated and comparable to the observations. Lengthening the CAPE lapse time to eight hours reduces dramatically the cloud base mass flux, which prevents effectively the deep convection from occurring prematurely. In this case, partitioning of deep to shallow convection in MJO active area is about 5:4.5 compared to over 9:0.5 in the control run. Latent heat is significantly enhanced below 600 hPa over the central Indian Ocean and the western Pacific. Such partitioning of deep and shallow convection is argued necessary for simulating realistic MJO features. Although the universal eight hours lies in the upper limit of that required by the quasi-equilibrium theory, a local CAPE lapse time for the parameterized cumulus convection will be more realistic.

  4. Representation of the Community Earth System Model (CESM1) CAM4-chem within the Chemistry-Climate Model Initiative (CCMI)

    DOE PAGES-Beta [OSTI]

    Tilmes, Simone; Lamarque, Jean -Francois; Emmons, Louisa K.; Kinnison, Doug E.; Marsh, Dan; Garcia, Rolando R.; Smith, Anne K.; Neely, Ryan R.; Conley, Andrew; Vitt, Francis; et al

    2016-05-20

    The Community Earth System Model (CESM1) CAM4-chem has been used to perform the Chemistry Climate Model Initiative (CCMI) reference and sensitivity simulations. In this model, the Community Atmospheric Model version 4 (CAM4) is fully coupled to tropospheric and stratospheric chemistry. Details and specifics of each configuration, including new developments and improvements are described. CESM1 CAM4-chem is a low-top model that reaches up to approximately 40 km and uses a horizontal resolution of 1.9° latitude and 2.5° longitude. For the specified dynamics experiments, the model is nudged to Modern-Era Retrospective Analysis for Research and Applications (MERRA) reanalysis. We summarize the performance ofmore » the three reference simulations suggested by CCMI, with a focus on the last 15 years of the simulation when most observations are available. Comparisons with selected data sets are employed to demonstrate the general performance of the model. We highlight new data sets that are suited for multi-model evaluation studies. Most important improvements of the model are the treatment of stratospheric aerosols and the corresponding adjustments for radiation and optics, the updated chemistry scheme including improved polar chemistry and stratospheric dynamics and improved dry deposition rates. These updates lead to a very good representation of tropospheric ozone within 20 % of values from available observations for most regions. In particular, the trend and magnitude of surface ozone is much improved compared to earlier versions of the model. Furthermore, stratospheric column ozone of the Southern Hemisphere in winter and spring is reasonably well represented. In conclusion, all experiments still underestimate CO most significantly in Northern Hemisphere spring and show a significant underestimation of hydrocarbons based on surface observations.« less

  5. Incorporating an advanced aerosol activation parameterization into WRF-CAM5: Model evaluation and parameterization intercomparison

    SciTech Connect (OSTI)

    Zhang, Yang; Zhang, Xin; Wang, Kai; He, Jian; Leung, Lai-Yung R.; Fan, Jiwen; Nenes, Athanasios

    2015-07-22

    Aerosol activation into cloud droplets is an important process that governs aerosol indirect effects. The advanced treatment of aerosol activation by Fountoukis and Nenes (2005) and its recent updates, collectively called the FN series, have been incorporated into a newly developed regional coupled climate-air quality model based on the Weather Research and Forecasting model with the physics package of the Community Atmosphere Model version 5 (WRF-CAM5) to simulate aerosol-cloud interactions in both resolved and convective clouds. The model is applied to East Asia for two full years of 2005 and 2010. A comprehensive model evaluation is performed for model predictions of meteorological, radiative, and cloud variables, chemical concentrations, and column mass abundances against satellite data and surface observations from air quality monitoring sites across East Asia. The model performs overall well for major meteorological variables including near-surface temperature, specific humidity, wind speed, precipitation, cloud fraction, precipitable water, downward shortwave and longwave radiation, and column mass abundances of CO, SO2, NO2, HCHO, and O3 in terms of both magnitudes and spatial distributions. Larger biases exist in the predictions of surface concentrations of CO and NOx at all sites and SO2, O3, PM2.5, and PM10 concentrations at some sites, aerosol optical depth, cloud condensation nuclei over ocean, cloud droplet number concentration (CDNC), cloud liquid and ice water path, and cloud optical thickness. Compared with the default Abdul-Razzack Ghan (2000) parameterization, simulations with the FN series produce ~107113% higher CDNC, with half of the difference attributable to the higher aerosol activation fraction by the FN series and the remaining half due to feedbacks in subsequent cloud microphysical processes. With the higher CDNC, the FN series are more skillful in simulating cloud water path, cloud optical thickness, downward shortwave radiation

  6. Dual-domain point diffraction interferometer

    DOE Patents [OSTI]

    Naulleau, Patrick P.; Goldberg, Kenneth Alan

    2000-01-01

    A hybrid spatial/temporal-domain point diffraction interferometer (referred to as the dual-domain PS/PDI) that is capable of suppressing the scattered-reference-light noise that hinders the conventional PS/PDI is provided. The dual-domain PS/PDI combines the separate noise-suppression capabilities of the widely-used phase-shifting and Fourier-transform fringe pattern analysis methods. The dual-domain PS/PDI relies on both a more restrictive implementation of the image plane PS/PDI mask and a new analysis method to be applied to the interferograms generated and recorded by the modified PS/PDI. The more restrictive PS/PDI mask guarantees the elimination of spatial-frequency crosstalk between the signal and the scattered-light noise arising from scattered-reference-light interfering with the test beam. The new dual-domain analysis method is then used to eliminate scattered-light noise arising from both the scattered-reference-light interfering with the test beam and the scattered-reference-light interfering with the "true" pinhole-diffracted reference light. The dual-domain analysis method has also been demonstrated to provide performance enhancement when using the non-optimized standard PS/PDI design. The dual-domain PS/PDI is essentially a three-tiered filtering system composed of lowpass spatial-filtering the test-beam electric field using the more restrictive PS/PDI mask, bandpass spatial-filtering the individual interferogram irradiance frames making up the phase-shifting series, and bandpass temporal-filtering the phase-shifting series as a whole.

  7. Dual waveband compact catadioptric imaging spectrometer

    DOE Patents [OSTI]

    Chrisp, Michael P.

    2012-12-25

    A catadioptric dual waveband imaging spectrometer that covers the visible through short-wave infrared, and the midwave infrared spectral regions, dispersing the visible through shortwave infrared with a zinc selenide grating and midwave infrared with a sapphire prism. The grating and prism are at the cold stop position, enabling the pupil to be split between them. The spectra for both wavebands are focused onto the relevant sections of a single dual waveband detector. Spatial keystone distortion is controlled to less than one tenth of a pixel over the full wavelength range, facilitating the matching of the spectra in the midwave infrared with the shorter wavelength region.

  8. Combustion and Emissions Performance of Dual-Fuel Gasoline and...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Combustion and Emissions Performance of Dual-Fuel Gasoline and Diesel HECC on a Multi-Cylinder Light Duty Diesel Engine Combustion and Emissions Performance of Dual-Fuel Gasoline ...

  9. Quantifying the Uncertainties of Aerosol Indirect Effects and Impacts on Decadal-Scale Climate Variability in NCAR CAM5 and CESM1

    SciTech Connect (OSTI)

    Park, Sungsu

    2014-12-12

    The main goal of this project is to systematically quantify the major uncertainties of aerosol indirect effects due to the treatment of moist turbulent processes that drive aerosol activation, cloud macrophysics and microphysics in response to anthropogenic aerosol perturbations using the CAM5/CESM1. To achieve this goal, the P.I. hired a postdoctoral research scientist (Dr. Anna Fitch) who started her work from the Nov.1st.2012. In order to achieve the project goal, the first task that the Postdoc. and the P.I. did was to quantify the role of subgrid vertical velocity variance on the activation and nucleation of cloud liquid droplets and ice crystals and its impact on the aerosol indirect effect in CAM5. First, we analyzed various LES cases (from dry stable to cloud-topped PBL) to check whether this isotropic turbulence assumption used in CAM5 is really valid. It turned out that this isotropic turbulence assumption is not universally valid. Consequently, from the analysis of LES, we derived an empirical formulation relaxing the isotropic turbulence assumption used for the CAM5 aerosol activation and ice nucleation, and implemented the empirical formulation into CAM5/CESM1, and tested in the single-column and global simulation modes, and examined how it changed aerosol indirect effects in the CAM5/CESM1. These results were reported in the poster section in the 18th Annual CESM workshop held in Breckenridge, CO during Jun.17-20.2013. While we derived an empirical formulation from the analysis of couple of LES from the first task, the general applicability of that empirical formulation was questionable, because it was obtained from the limited number of LES simulations. The second task we did was to derive a more fundamental analytical formulation relating vertical velocity variance to TKE using other information starting from basic physical principles. This was a somewhat challenging subject, but if this could be done in a successful way, it could be directly

  10. A Universal Dual-Fuel Controller for OEM/Aftermarket Diesel Engineswith Comprehensive Fuel & Emission Control

    Energy.gov [DOE]

    Presents a universal dual fuel ratio controller designed to control the fueling and emissions of dual fuel systems

  11. The Meritor Dual Mode Hybrid Powertrain CRADA | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    The Meritor Dual Mode Hybrid Powertrain CRADA The Meritor Dual Mode Hybrid Powertrain CRADA 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting vss072_malikoupoulos_2012_o.pdf (1.34 MB) More Documents & Publications The ArvinMeritor Dual Mode Hybrid Powertrain (DMHP): Opportunities and Potential for Systems Optimization The Meritor Dual Mode Hybrid Powertrain CRADA Autonomous Intelligent Hybrid Propulsion Systems

  12. Coupled dual loop absorption heat pump

    DOE Patents [OSTI]

    Sarkisian, Paul H.; Reimann, Robert C.; Biermann, Wendell J.

    1985-01-01

    A coupled dual loop absorption system which utilizes two separate complete loops. Each individual loop operates at three temperatures and two pressures. This low temperature loop absorber and condenser are thermally coupled to the high temperature loop evaporator, and the high temperature loop condenser and absorber are thermally coupled to the low temperature generator.

  13. Modular synthesis of a dual metal-dual semiconductor nano-heterostructure

    DOE PAGES-Beta [OSTI]

    Amirav, Lilac; Oba, Fadekemi; Aloni, Shaul; Alivisatos, A. Paul

    2015-04-29

    Reported is the design and modular synthesis of a dual metal-dual semiconductor heterostructure with control over the dimensions and placement of its individual components. Analogous to molecular synthesis, colloidal synthesis is now evolving into a series of sequential synthetic procedures with separately optimized steps. Here we detail the challenges and parameters that must be considered when assembling such a multicomponent nanoparticle, and their solutions.

  14. Distributed Energy Resources Customer Adoption Model (DER-CAM), Investment & Planing Version 3.10.5.m

    Energy Science and Technology Software Center (OSTI)

    2014-04-01

    Version 3.10.5 is a multi-year Decision Support tool for Distributed Generation (DG). DER-CAM was initially created as an exclusively economic energy model, able to find the cost minimizing combination and operation profile of a set of DER technologies that meet heat and electric loads of a single building or microgrid for a typical test year. Now, version 3.10.5.m solves for a multiple-year horizon the technology choice question, the appropriate capacity for each selected technology asmorewell as the operational and investment schedule. Optimized investment decisions are based on techno-economic criteria, along with site information such as energy loads, economic forecast, and technology characterization. Version 3.10.5 contains: 1. a PV and battery degradation model and 2. variable performance for technologies. Efficiency, investment costs, etc. can vary over time and model technology breakthroughs and advancements.less

  15. Distributed Energy Resources Customer Adoption Model (DER-CAM), Investment & Planing Version 3.10.5.m

    SciTech Connect (OSTI)

    2014-04-01

    Version 3.10.5 is a multi-year Decision Support tool for Distributed Generation (DG). DER-CAM was initially created as an exclusively economic energy model, able to find the cost minimizing combination and operation profile of a set of DER technologies that meet heat and electric loads of a single building or microgrid for a typical test year. Now, version 3.10.5.m solves for a multiple-year horizon the technology choice question, the appropriate capacity for each selected technology as well as the operational and investment schedule. Optimized investment decisions are based on techno-economic criteria, along with site information such as energy loads, economic forecast, and technology characterization. Version 3.10.5 contains: 1. a PV and battery degradation model and 2. variable performance for technologies. Efficiency, investment costs, etc. can vary over time and model technology breakthroughs and advancements.

  16. Plug-in Electric Vehicle Interactions with a Small Office Building: An Economic Analysis using DER-CAM

    SciTech Connect (OSTI)

    Momber, Ilan; Gomez, Tomás; Venkataramanan, Giri; Stadler, Michael; Beer, Sebastian; Lai, Judy; Marnay, Chris; Battaglia, Vincent

    2010-06-01

    It is generally believed that plug-in electric vehicles (PEVs) offer environmental and energy security advantages compared to conventional vehicles. Policies are stimulating electric transportation deployment, and PEV adoption may grow significantly. New technology and business models are being developed to organize the PEV interface and their interaction with the wider grid. This paper analyzes the PEVs' integration into a building's Energy Management System (EMS), differentiating between vehicle to macrogrid (V2M) and vehicle to microgrid (V2m) applications. This relationship is modeled by the Distributed Energy Resources Customer Adoption Model (DER-CAM), which finds optimal equipment combinations to meet microgrid requirements at minimum cost, carbon footprint, or other criteria. Results derive battery value to the building and the possibility of a contractual affiliation sharing the benefit. Under simple annual fixed payments and energy exchange agreements, vehicles are primarily used to avoid peak demand charges supplying cheaper off-peak electricity to the building during workdays.

  17. Distributed Energy Resources Customer Adoption Model (DER-CAM), Investment & Planing Version 3.10.5.m

    Energy Science and Technology Software Center (OSTI)

    2014-04-01

    Version 3.10.5 is a multi-year Decision Support tool for Distributed Generation (DG). DER-CAM was initially created as an exclusively economic energy model, able to find the cost minimizing combination and operation profile of a set of DER technologies that meet heat and electric loads of a single building or microgrid for a typical test year. Now, version 3.10.5.m solves for a multiple-year horizon the technology choice question, the appropriate capacity for each selected technology asmore » well as the operational and investment schedule. Optimized investment decisions are based on techno-economic criteria, along with site information such as energy loads, economic forecast, and technology characterization. Version 3.10.5 contains: 1. a PV and battery degradation model and 2. variable performance for technologies. Efficiency, investment costs, etc. can vary over time and model technology breakthroughs and advancements.« less

  18. The effect of horizontal resolution on simulation quality in the Community Atmospheric Model, CAM5.1

    SciTech Connect (OSTI)

    Wehner, Michael F.; Reed, Kevin A.; Li, Fuyu; Prabhat, -; Bacmeister, Julio; Chen, Cheng -Ta; Paciorek, Christopher; Gleckler, Peter J.; Sperber, Kenneth R.; Collins, William D.; Gettelman, Andrew; Jablonowski, Christiane

    2014-11-05

    We present an analysis of version 5.1 of the Community Atmospheric Model (CAM5.1) at a high horizontal resolution. Intercomparison of this global model at approximately 0.25°, 1°, and 2° is presented for extreme daily precipitation as well as for a suite of seasonal mean fields. In general, extreme precipitation amounts are larger in high resolution than in lower-resolution configurations. In many but not all locations and/or seasons, extreme daily precipitation rates in the high-resolution configuration are higher and more realistic. The high-resolution configuration produces tropical cyclones up to category 5 on the Saffir-Simpson scale and a comparison to observations reveals both realistic and unrealistic model behavior. In the absence of extensive model tuning at high resolution, simulation of many of the mean fields analyzed in this study is degraded compared to the tuned lower-resolution public released version of the model.

  19. Assessing the CAM5 Physics Suite in the WRF-Chem Model: Implementation, Resolution Sensitivity, and a First Evaluation for a Regional Case Study

    SciTech Connect (OSTI)

    Ma, Po-Lun; Rasch, Philip J.; Fast, Jerome D.; Easter, Richard C.; Gustafson, William I.; Liu, Xiaohong; Ghan, Steven J.; Singh, Balwinder

    2014-05-06

    A suite of physical parameterizations (deep and shallow convection, turbulent boundary layer, aerosols, cloud microphysics, and cloud fraction) from the global climate model Community Atmosphere Model version 5.1 (CAM5) has been implemented in the regional model Weather Research and Forecasting with chemistry (WRF-Chem). A downscaling modeling framework with consistent physics has also been established in which both global and regional simulations use the same emissions and surface fluxes. The WRF-Chem model with the CAM5 physics suite is run at multiple horizontal resolutions over a domain encompassing the northern Pacific Ocean, northeast Asia, and northwest North America for April 2008 when the ARCTAS, ARCPAC, and ISDAC field campaigns took place. These simulations are evaluated against field campaign measurements, satellite retrievals, and ground-based observations, and are compared with simulations that use a set of common WRF-Chem Parameterizations. This manuscript describes the implementation of the CAM5 physics suite in WRF-Chem provides an overview of the modeling framework and an initial evaluation of the simulated meteorology, clouds, and aerosols, and quantifies the resolution dependence of the cloud and aerosol parameterizations. We demonstrate that some of the CAM5 biases, such as high estimates of cloud susceptibility to aerosols and the underestimation of aerosol concentrations in the Arctic, can be reduced simply by increasing horizontal resolution. We also show that the CAM5 physics suite performs similarly to a set of parameterizations commonly used in WRF-Chem, but produces higher ice and liquid water condensate amounts and near-surface black carbon concentration. Further evaluations that use other mesoscale model parameterizations and perform other case studies are needed to infer whether one parameterization consistently produces results more consistent with observations.

  20. Adaptive upscaling with the dual mesh method

    SciTech Connect (OSTI)

    Guerillot, D.; Verdiere, S.

    1997-08-01

    The objective of this paper is to demonstrate that upscaling should be calculated during the flow simulation instead of trying to enhance the a priori upscaling methods. Hence, counter-examples are given to motivate our approach, the so-called Dual Mesh Method. The main steps of this numerical algorithm are recalled. Applications illustrate the necessity to consider different average relative permeability values depending on the direction in space. Moreover, these values could be different for the same average saturation. This proves that an a priori upscaling cannot be the answer even in homogeneous cases because of the {open_quotes}dynamical heterogeneity{close_quotes} created by the saturation profile. Other examples show the efficiency of the Dual Mesh Method applied to heterogeneous medium and to an actual field case in South America.

  1. Dual Axis Radiographic Hydrodynamic Test Facility

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    DARHT DARHT Facility: A critical component of stockpile stewardship A new research frontier awaits! Our door is open and we thrive on mutually beneficial partnerships, collaborations that drive innovations and new technologies. April 12, 2012 Dominic Tafoya and Dave Honaberger prepare a refurbished DARHT (Dual Axis Radiographic Hydrotest Facility) 2nd axis accelerator cell for magnetic axis alignment measurements. Contact Group Leader Terry Priestley (505) 665-1330 Email Deputy Group Leader Tim

  2. Twisted covariant noncommutative self-dual gravity

    SciTech Connect (OSTI)

    Estrada-Jimenez, S.; Garcia-Compean, H.; Obregon, O.; Ramirez, C.

    2008-12-15

    A twisted covariant formulation of noncommutative self-dual gravity is presented. The formulation for constructing twisted noncommutative Yang-Mills theories is used. It is shown that the noncommutative torsion is solved at any order of the {theta} expansion in terms of the tetrad and some extra fields of the theory. In the process the first order expansion in {theta} for the Plebanski action is explicitly obtained.

  3. dual-function | netl.doe.gov

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Novel Dual Functional Membrane for Controlling Carbon Dioxide Emissions from Fossil Fueled Power Plants Project No.: FG26-04NT42120 Microstructure of the composite membrane Overview of the microstructure of the composite membrane comprising of: (1) a commericially available tubular or hollow fiber ceramic support; (2) a mesoporous surfactant-templated silica sub-layer with pore size 15-50 Å; and (3) a Microporous aminosilicate gas separation membrane layer with pore size 4-10 Å. This completed

  4. Fabrication of dual porosity electrode structure

    DOE Patents [OSTI]

    Smith, James L.; Kucera, Eugenia H.

    1991-01-01

    A substantially entirely fibrous ceramic which may have dual porosity of both micro and macro pores. Total porosity may be 60-75% by volume. A method of spraying a slurry perpendicularly to an ambient stream of air is disclosed along with a method of removing binders without altering the fiber morphology. Adding fine ceramic particulates to the green ceramic fibers enhances the sintering characteristics of the fibers.

  5. Fabrication of dual porosity electrode structure

    DOE Patents [OSTI]

    Smith, J.L.; Kucera, E.H.

    1991-02-12

    A substantially entirely fibrous ceramic is described which may have dual porosity of both micro and macro pores. Total porosity may be 60-75% by volume. A method of spraying a slurry perpendicularly to an ambient stream of air is disclosed along with a method of removing binders without altering the fiber morphology. Adding fine ceramic particulates to the green ceramic fibers enhances the sintering characteristics of the fibers. 3 figures.

  6. Inorganic dual-layer microporous supported membranes

    DOE Patents [OSTI]

    Brinker, C. Jeffrey; Tsai, Chung-Yi; Lu, Yungfeng

    2003-03-25

    The present invention provides for a dual-layer inorganic microporous membrane capable of molecular sieving, and methods for production of the membranes. The inorganic microporous supported membrane includes a porous substrate which supports a first inorganic porous membrane having an average pore size of less than about 25 .ANG. and a second inorganic porous membrane coating the first inorganic membrane having an average pore size of less than about 6 .ANG.. The dual-layered membrane is produced by contacting the porous substrate with a surfactant-template polymeric sol, resulting in a surfactant sol coated membrane support. The surfactant sol coated membrane support is dried, producing a surfactant-templated polymer-coated substrate which is calcined to produce an intermediate layer surfactant-templated membrane. The intermediate layer surfactant-templated membrane is then contacted with a second polymeric sol producing a polymeric sol coated substrate which is dried producing an inorganic polymeric coated substrate. The inorganic polymeric coated substrate is then calcined producing an inorganic dual-layered microporous supported membrane in accordance with the present invention.

  7. Dual fueling of a Caterpillar 3406 diesel engine

    SciTech Connect (OSTI)

    Bell, S.R.; Midkiff, K.C.; Doughty, G.; Brett, C.E.

    1996-05-01

    A Caterpillar 3406 turbocharged diesel engine was converted to operate in a dual-fuel mode and was evaluated for performance and emission characteristics for both diesel and natural gas operation. Full load power was achieved with dual fueling without knock. Similar fuel efficiencies were obtained with dual fueling a high loads, but efficiencies were lower for low loads. Bosch smoke numbers were reduced by over 50% with dual fueling for all cases investigated. NO{sub x} emissions were found to be lower at low loads and at high speeds under high load. CO emissions were significantly increased for dual fueling while CO{sub 2} concentrations in the exhaust were reduced for dual fueling.

  8. A Sensitivity Study of Radiative Fluxes at the Top of Atmosphere to Cloud-Microphysics and Aerosol Parameters in the Community Atmosphere Model CAM5

    SciTech Connect (OSTI)

    Zhao, Chun; Liu, Xiaohong; Qian, Yun; Yoon, Jin-Ho; Hou, Zhangshuan; Lin, Guang; McFarlane, Sally A.; Wang, Hailong; Yang, Ben; Ma, Po-Lun; Yan, Huiping; Bao, Jie

    2013-11-08

    In this study, we investigated the sensitivity of net radiative fluxes (FNET) at the top of atmosphere (TOA) to 16 selected uncertain parameters mainly related to the cloud microphysics and aerosol schemes in the Community Atmosphere Model version 5 (CAM5). We adopted a quasi-Monte Carlo (QMC) sampling approach to effectively explore the high dimensional parameter space. The output response variables (e.g., FNET) were simulated using CAM5 for each parameter set, and then evaluated using generalized linear model analysis. In response to the perturbations of these 16 parameters, the CAM5-simulated global annual mean FNET ranges from -9.8 to 3.5 W m-2 compared to the CAM5-simulated FNET of 1.9 W m-2 with the default parameter values. Variance-based sensitivity analysis was conducted to show the relative contributions of individual parameter perturbation to the global FNET variance. The results indicate that the changes in the global mean FNET are dominated by those of cloud forcing (CF) within the parameter ranges being investigated. The size threshold parameter related to auto-conversion of cloud ice to snow is confirmed as one of the most influential parameters for FNET in the CAM5 simulation. The strong heterogeneous geographic distribution of FNET variation shows parameters have a clear localized effect over regions where they are acting. However, some parameters also have non-local impacts on FNET variance. Although external factors, such as perturbations of anthropogenic and natural emissions, largely affect FNET variations at the regional scale, their impact is weaker than that of model internal parameters in terms of simulating global mean FNET in this study. The interactions among the 16 selected parameters contribute a relatively small portion of the total FNET variations over most regions of the globe. This study helps us better understand the CAM5 model behavior associated with parameter uncertainties, which will aid the next step of reducing model

  9. Dual-Beam Sample Preparation | Materials Science | NREL

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Dual-Beam Sample Preparation Materials characterization is an essential strength of the focused-ion beam (FIB) platform. Material can be removed or added while observing the evolution of the surface topography features of the specimen with ion beam stimulated secondary electrons NREL's dual-beam focused-ion beam workstation for fabricating microscopy samples and nanostructures. The dual-beam focused-ion-beam (FIB) workstation consists of a FIB column and a scanning electron microscope (SEM)

  10. DARHT: Dual-Axis Radiographic Hydrodynamic Test Facility

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    DARHT: Dual-Axis Radiographic Hydrodynamic Test Facility DARHT: Dual-Axis Radiographic Hydrodynamic Test Facility DARHT, supports a critical component of LANL's primary mission: to ensure the safety, security, and effectiveness of nuclear weapons in our nation's stockpile. Los Alamos scientists built DARHT, the world's most powerful x-ray machine, to analyze mockups of nuclear weapons. At the Los Alamos National Laboratory (LANL), the Dual-Axis Radiographic Hydrodynamic Test Facility, or DARHT,

  11. Dual initiation strip charge apparatus and methods for making...

    Office of Scientific and Technical Information (OSTI)

    A Dual Initiation Strip Charge (DISC) apparatus is initiated by a single initiation source and detonates a strip of explosive charge at two separate contacts. The reflection of ...

  12. Method and system for dual resolution translation stage

    DOE Patents [OSTI]

    Halpin, John Michael

    2014-04-22

    A dual resolution translation stage includes a stage assembly operable to receive an optical element and a low resolution adjustment device mechanically coupled to the stage assembly. The dual resolution stage also includes an adjustable pivot block mechanically coupled to the stage assembly. The adjustable pivot block includes a pivot shaft. The dual resolution stage further includes a lever arm mechanically coupled to the adjustable pivot block. The lever arm is operable to pivot about the pivot shaft. The dual resolution stage additionally includes a high resolution adjustment device mechanically coupled to the lever arm and the stage assembly.

  13. ARM: AOS: Dual Column Cloud Condensation Nuclei Counter (Dataset...

    Office of Scientific and Technical Information (OSTI)

    AOS: Dual Column Cloud Condensation Nuclei Counter Authors: Derek Hageman ; Bill Behrens ; Scott Smith ; Janek Uin ; Janek Uin ; Cynthia Salwen ; Cynthia Salwen ; Annette Koontz ; ...

  14. Low and high Temperature Dual Thermoelectric Generation Waste...

    Energy.gov (indexed) [DOE]

    Developing a low and high temperature dual thermoelectric generation waste heat recovery ... Development of Cost-Competitive Advanced Thermoelectric Generators for Direct Conversion ...

  15. Characterization of Dual-Fuel Reactivity Controlled Compression...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    (RCCI) Using Hydrated Ethanol and Diesel Fuel Characterization of Dual-Fuel Reactivity Controlled Compression Ignition (RCCI) Using Hydrated Ethanol and Diesel Fuel This study ...

  16. A dual mass flux framework for boundary layer convection

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    A dual mass flux framework for boundary layer convection Neggers, Roel European Centre for Medium-range Weather Forecasts (ECMWF) Category: Modeling A new convective boundary layer...

  17. Gravity Duals of Lifshitz-Like Fixed Points (Journal Article...

    Office of Scientific and Technical Information (OSTI)

    This work can be considered a small step towards making useful dual descriptions of such critical points. Authors: Kachru, Shamit ; Stanford U., Phys. Dept. SLAC ; Liu, Xiao ; ...

  18. Quantifying the impact of sub-grid surface wind variability on sea salt and dust emissions in CAM5

    DOE PAGES-Beta [OSTI]

    Zhang, Kai; Zhao, Chun; Wan, Hui; Qian, Yun; Easter, Richard C.; Ghan, Steven J.; Sakaguchi, Koichi; Liu, Xiaohong

    2016-02-12

    This paper evaluates the impact of sub-grid variability of surface wind on sea salt and dust emissions in the Community Atmosphere Model version 5 (CAM5). The basic strategy is to calculate emission fluxes multiple times, using different wind speed samples of a Weibull probability distribution derived from model-predicted grid-box mean quantities. In order to derive the Weibull distribution, the sub-grid standard deviation of surface wind speed is estimated by taking into account four mechanisms: turbulence under neutral and stable conditions, dry convective eddies, moist convective eddies over the ocean, and air motions induced by mesoscale systems and fine-scale topography overmore » land. The contributions of turbulence and dry convective eddy are parameterized using schemes from the literature. Wind variabilities caused by moist convective eddies and fine-scale topography are estimated using empirical relationships derived from an operational weather analysis data set at 15 km resolution. The estimated sub-grid standard deviations of surface wind speed agree well with reference results derived from 1 year of global weather analysis at 15 km resolution and from two regional model simulations with 3 km grid spacing.The wind-distribution-based emission calculations are implemented in CAM5. In terms of computational cost, the increase in total simulation time turns out to be less than 3 %. Simulations at 2° resolution indicate that sub-grid wind variability has relatively small impacts (about 7 % increase) on the global annual mean emission of sea salt aerosols, but considerable influence on the emission of dust. Among the considered mechanisms, dry convective eddies and mesoscale flows associated with topography are major causes of dust emission enhancement. With all the four mechanisms included and without additional adjustment of uncertain parameters in the model, the simulated global and annual mean dust emission increase by about 50 % compared to the

  19. Precipitation characteristics of CAM5 physics at mesoscale resolution during MC3E and the impact of convective timescale choice

    DOE PAGES-Beta [OSTI]

    Gustafson, William I.; Ma, Po-Lun; Singh, Balwinder

    2014-12-17

    The physics suite of the Community Atmosphere Model version 5 (CAM5) has recently been implemented in the Weather Research and Forecasting (WRF) model to explore the behavior of the parameterization suite at high resolution and in the more controlled setting of a limited area model. The initial paper documenting this capability characterized the behavior for northern high latitude conditions. This present paper characterizes the precipitation characteristics for continental, mid-latitude, springtime conditions during the Midlatitude Continental Convective Clouds Experiment (MC3E) over the central United States. This period exhibited a range of convective conditions from those driven strongly by large-scale synoptic regimesmore » to more locally driven convection. The study focuses on the precipitation behavior at 32 km grid spacing to better anticipate how the physics will behave in the global model when used at similar grid spacing in the coming years. Importantly, one change to the Zhang-McFarlane deep convective parameterization when implemented in WRF was to make the convective timescale parameter an explicit function of grid spacing. This study examines the sensitivity of the precipitation to the default value of the convective timescale in WRF, which is 600 seconds for 32 km grid spacing, to the value of 3600 seconds used for 2 degree grid spacing in CAM5. For comparison, an infinite convective timescale is also used. The results show that the 600 second timescale gives the most accurate precipitation over the central United States in terms of rain amount. However, this setting has the worst precipitation diurnal cycle, with the convection too tightly linked to the daytime surface heating. Longer timescales greatly improve the diurnal cycle but result in less precipitation and produce a low bias. An analysis of rain rates shows the accurate precipitation amount with the shorter timescale is assembled from an over abundance of drizzle combined with too

  20. Precipitation characteristics of CAM5 physics at mesoscale resolution during MC3E and the impact of convective timescale choice

    SciTech Connect (OSTI)

    Gustafson, William I.; Ma, Po-Lun; Singh, Balwinder

    2014-12-01

    The physics suite of the Community Atmosphere Model version 5 (CAM5) has recently been implemented in the Weather Research and Forecasting (WRF) model to explore the behavior of the parameterization suite at high resolution and in the more controlled setting of a limited area model. The initial paper documenting this capability characterized the behavior for northern high latitude conditions. This present paper characterizes the precipitation characteristics for continental, mid-latitude, springtime conditions during the Midlatitude Continental Convective Clouds Experiment (MC3E) over the central United States. This period exhibited a range of convective conditions from those driven strongly by large-scale synoptic regimes to more locally driven convection. The study focuses on the precipitation behavior at 32 km grid spacing to better anticipate how the physics will behave in the global model when used at similar grid spacing in the coming years. Importantly, one change to the Zhang-McFarlane deep convective parameterization when implemented in WRF was to make the convective timescale parameter an explicit function of grid spacing. This study examines the sensitivity of the precipitation to the default value of the convective timescale in WRF, which is 600 seconds for 32 km grid spacing, to the value of 3600 seconds used for 2 degree grid spacing in CAM5. For comparison, an infinite convective timescale is also used. The results show that the 600 second timescale gives the most accurate precipitation over the central United States in terms of rain amount. However, this setting has the worst precipitation diurnal cycle, with the convection too tightly linked to the daytime surface heating. Longer timescales greatly improve the diurnal cycle but result in less precipitation and produce a low bias. An analysis of rain rates shows the accurate precipitation amount with the shorter timescale is assembled from an over abundance of drizzle combined with too little heavy

  1. Precipitation characteristics of CAM5 physics at mesoscale resolution during MC3E and the impact of convective timescale choice

    SciTech Connect (OSTI)

    Gustafson, William I.; Ma, Po-Lun; Singh, Balwinder

    2014-12-17

    The physics suite of the Community Atmosphere Model version 5 (CAM5) has recently been implemented in the Weather Research and Forecasting (WRF) model to explore the behavior of the parameterization suite at high resolution and in the more controlled setting of a limited area model. The initial paper documenting this capability characterized the behavior for northern high latitude conditions. This present paper characterizes the precipitation characteristics for continental, mid-latitude, springtime conditions during the Midlatitude Continental Convective Clouds Experiment (MC3E) over the central United States. This period exhibited a range of convective conditions from those driven strongly by large-scale synoptic regimes to more locally driven convection. The study focuses on the precipitation behavior at 32 km grid spacing to better anticipate how the physics will behave in the global model when used at similar grid spacing in the coming years. Importantly, one change to the Zhang-McFarlane deep convective parameterization when implemented in WRF was to make the convective timescale parameter an explicit function of grid spacing. This study examines the sensitivity of the precipitation to the default value of the convective timescale in WRF, which is 600 seconds for 32 km grid spacing, to the value of 3600 seconds used for 2 degree grid spacing in CAM5. For comparison, an infinite convective timescale is also used. The results show that the 600 second timescale gives the most accurate precipitation over the central United States in terms of rain amount. However, this setting has the worst precipitation diurnal cycle, with the convection too tightly linked to the daytime surface heating. Longer timescales greatly improve the diurnal cycle but result in less precipitation and produce a low bias. An analysis of rain rates shows the accurate precipitation amount with the shorter timescale is assembled from an over abundance of drizzle combined with too little heavy

  2. Dual stage active magnetic regenerator and method

    DOE Patents [OSTI]

    Pecharsky, Vitalij K.; Gschneidner, Jr., Karl A.

    1999-03-30

    A dual stage active magnetic regenerator refrigerator as well as method using the Joule-Brayton thermodynamic cycle includes a high temperature stage refrigerant comprising DyAl.sub.2 or (Dy.sub.1-x Er.sub.x)Al.sub.2 where x is selected to be greater than 0 and less than about 0.3 in combination with a low temperature stage comprising (Dy.sub.1-x Er.sub.x)Al.sub.2 where x is selected to be greater than about 0.5 and less than 1 to provide significantly improved refrigeration efficiency in the liquefaction of gaseous hydrogen.

  3. Dual stage active magnetic regenerator and method

    DOE Patents [OSTI]

    Pecharsky, V.K.; Gschneidner, K.A. Jr.

    1999-03-30

    A dual stage active magnetic regenerator refrigerator as well as method using the Joule-Brayton thermodynamic cycle includes a high temperature stage refrigerant comprising DyAl{sub 2} or (Dy{sub 1{minus}x}Er{sub x})Al{sub 2} where x is selected to be greater than 0 and less than about 0.3 in combination with a low temperature stage comprising (Dy{sub 1{minus}x}Er{sub x})Al{sub 2} where x is selected to be greater than about 0.5 and less than 1 to provide significantly improved refrigeration efficiency in the liquefaction of gaseous hydrogen. 17 figs.

  4. A Multiscale Modeling Framework Model (Superparameterized CAM5) with a Higher-Order Turbulence Closure: Model Description and Low-Cloud Simulations

    SciTech Connect (OSTI)

    Wang, Minghuai; Larson, Vincent E.; Ghan, Steven J.; Ovchinnikov, Mikhail; Schanen, D.; Xiao, Heng; Liu, Xiaohong; Rasch, Philip J.; Guo, Zhun

    2015-06-01

    In this study, a higher-order turbulence closure scheme, called Cloud Layers Unified by Binormals (CLUBB), is implemented into a Multi-scale Modeling Framework (MMF) model to improve low cloud simulations. The performance of CLUBB in MMF simulations with two different microphysics configurations (one-moment cloud microphysics without aerosol treatment and two-moment cloud microphysics coupled with aerosol treatment) is evaluated against observations and further compared with results from the Community Atmosphere Model, Version 5 (CAM5) with conventional cloud parameterizations. CLUBB is found to improve low cloud simulations in the MMF, and the improvement is particularly evident in the stratocumulus-to-cumulus transition regions. Compared to the single-moment cloud microphysics, CLUBB with two-moment microphysics produces clouds that are closer to the coast, and agrees better with observations. In the stratocumulus-to cumulus transition regions, CLUBB with two-moment cloud microphysics produces shortwave cloud forcing in better agreement with observations, while CLUBB with single moment cloud microphysics overestimates shortwave cloud forcing. CLUBB is further found to produce quantitatively similar improvements in the MMF and CAM5, with slightly better performance in the MMF simulations (e.g., MMF with CLUBB generally produces low clouds that are closer to the coast than CAM5 with CLUBB). Improved low cloud simulations in MMF make it an even more attractive tool for studying aerosol-cloud-precipitation interactions.

  5. An ensemble constrained variational analysis of atmospheric forcing data and its application to evaluate clouds in CAM5: Ensemble 3DCVA and Its Application

    DOE PAGES-Beta [OSTI]

    Tang, Shuaiqi; Zhang, Minghua; Xie, Shaocheng

    2016-01-05

    Large-scale atmospheric forcing data can greatly impact the simulations of atmospheric process models including Large Eddy Simulations (LES), Cloud Resolving Models (CRMs) and Single-Column Models (SCMs), and impact the development of physical parameterizations in global climate models. This study describes the development of an ensemble variationally constrained objective analysis of atmospheric large-scale forcing data and its application to evaluate the cloud biases in the Community Atmospheric Model (CAM5). Sensitivities of the variational objective analysis to background data, error covariance matrix and constraint variables are described and used to quantify the uncertainties in the large-scale forcing data. Application of the ensemblemore » forcing in the CAM5 SCM during March 2000 intensive operational period (IOP) at the Southern Great Plains (SGP) of the Atmospheric Radiation Measurement (ARM) program shows systematic biases in the model simulations that cannot be explained by the uncertainty of large-scale forcing data, which points to the deficiencies of physical parameterizations. The SCM is shown to overestimate high clouds and underestimate low clouds. These biases are found to also exist in the global simulation of CAM5 when it is compared with satellite data.« less

  6. STAR FORMATION AT 4 < z < 6 FROM THE SPITZER LARGE AREA SURVEY WITH HYPER-SUPRIME-CAM (SPLASH)

    SciTech Connect (OSTI)

    Steinhardt, Charles L.; Capak, Peter; Masters, Dan; Petric, Andreea; Speagle, Josh S.; Silverman, John D.; Carollo, Marcella; Dunlop, James; Hashimoto, Yasuhiro; Hsieh, Bau-Ching; Lin, Lihwai; Lin, Yen-Ting; Le Floc'h, Emeric; Lee, Nicholas; Sanders, Dave; McCracken, Henry J.; Nagao, Tohru; Salvato, Mara; and others

    2014-08-20

    Using the first 50% of data collected for the Spitzer Large Area Survey with Hyper-Suprime-Cam observations on the 1.8deg{sup 2} Cosmological Evolution Survey we estimate the masses and star formation rates of 3398 M {sub *} > 10{sup 10} M {sub ?} star-forming galaxies at 4 < z < 6 with a substantial population up to M {sub *} ? 10{sup 11.5} M {sub ?}. We find that the strong correlation between stellar mass and star formation rate seen at lower redshift (the ''main sequence'' of star-forming galaxies) extends to z ? 6. The observed relation and scatter is consistent with a continued increase in star formation rate at fixed mass in line with extrapolations from lower-redshift observations. It is difficult to explain this continued correlation, especially for the most massive systems, unless the most massive galaxies are forming stars near their Eddington-limited rate from their first collapse. Furthermore, we find no evidence for moderate quenching at higher masses, indicating quenching either has not occurred prior to z ? 6 or else occurs rapidly, so that few galaxies are visible in transition between star-forming and quenched.

  7. The effect of horizontal resolution on simulation quality in the Community Atmospheric Model, CAM5.1

    DOE PAGES-Beta [OSTI]

    Wehner, Michael F.; Reed, Kevin A.; Li, Fuyu; Prabhat, -; Bacmeister, Julio; Chen, Cheng -Ta; Paciorek, Christopher; Gleckler, Peter J.; Sperber, Kenneth R.; Collins, William D.; et al

    2014-11-05

    We present an analysis of version 5.1 of the Community Atmospheric Model (CAM5.1) at a high horizontal resolution. Intercomparison of this global model at approximately 0.25°, 1°, and 2° is presented for extreme daily precipitation as well as for a suite of seasonal mean fields. In general, extreme precipitation amounts are larger in high resolution than in lower-resolution configurations. In many but not all locations and/or seasons, extreme daily precipitation rates in the high-resolution configuration are higher and more realistic. The high-resolution configuration produces tropical cyclones up to category 5 on the Saffir-Simpson scale and a comparison to observations revealsmore » both realistic and unrealistic model behavior. In the absence of extensive model tuning at high resolution, simulation of many of the mean fields analyzed in this study is degraded compared to the tuned lower-resolution public released version of the model.« less

  8. Dual fuel control of a high speed turbocharged diesel engine

    SciTech Connect (OSTI)

    Few, P.C.; Sardari, P.

    1987-01-01

    The modification of a Ford 7600 turbocharged diesel engine to a dual fuel engine using methane as the supplementary fuel has been carried out. The paper describes the preliminary work of dual fuel control. Two systems are examined and their behaviour is presented.

  9. Tubular ceramic-carbonate dual-phase membranes and methods of manufacture thereof

    DOE Patents [OSTI]

    Lin, Jerry Y. S.; Ortiz-Landeros, Jose; Dong, Xue-Liang

    2016-05-03

    Embodiments for a tubular ceramic-carbonate dual-phase membrane and methods for manufacturing the tubular ceramic-carbonate dual-phase membrane are disclosed.

  10. Dual LED/incandescent security fixture

    DOE Patents [OSTI]

    Gauna, Kevin Wayne

    2005-06-21

    A dual LED and incandescent security lighting system uses a hybrid approach to LED illumination. It combines an ambient LED illuminator with a standard incandescent lamp on a motion control sensor. The LED illuminator will activate with the onset of darkness (daylight control) and typically remain on during the course of the night ("always on"). The LED illumination, typically amber, is sufficient to provide low to moderate level lighting coverage to the wall and ground area adjacent to and under the fixture. The incandescent lamp is integrated with a motion control circuit and sensor. When movement in the field of view is detected (after darkness), the incandescent lamp is switched on, providing an increased level of illumination to the area. Instead of an "always on" LED illuminator, the LEDs may also be switched off when the incandescent lamp is switched on.

  11. Dual-keel electrodynamic maglev system

    DOE Patents [OSTI]

    He, J.L.; Wang, Z.; Rote, D.M.; Coffey, H.T.; Hull, J.R.; Mulcahy, T.M.; Cal, Y.

    1996-12-24

    A propulsion and stabilization system is disclosed with a plurality of superconducting magnetic devices affixed to the dual-keels of a vehicle, where the superconducting magnetic devices produce a magnetic field when energized. The system also includes a plurality of figure-eight shaped null-flux coils affixed to opposing vertical sides of slots in a guideway. The figure-eight shaped null-flux coils are vertically oriented, laterally cross-connected in parallel, longitudinally connected in series, and continue the length of the vertical slots providing levitation and guidance force. An external power source energizes the figure-eight shaped null-flux coils to create a magnetic traveling wave that interacts with the magnetic field produced by the superconducting magnets to impart motion to the vehicle. 6 figs.

  12. Dual-keel electrodynamic maglev system

    DOE Patents [OSTI]

    He, Jianliang; Wang, Zian; Rote, Donald M.; Coffey, Howard T.; Hull, John R.; Mulcahy, Thomas M.; Cal, Yigang

    1996-01-01

    A propulsion and stabilization system with a plurality of superconducting magnetic devices affixed to the dual-keels of a vehicle, where the superconducting magnetic devices produce a magnetic field when energized. The system also includes a plurality of figure-eight shaped null-flux coils affixed to opposing vertical sides of slots in a guideway. The figure-eight shaped null-flux coils are vertically oriented, laterally cross-connected in parallel, longitudinally connected in series, and continue the length of the vertical slots providing levitation and guidance force. An external power source energizes the figure-eight shaped null-flux coils to create a magnetic traveling wave that interacts with the magnetic field produced by the superconducting magnets to impart motion to the vehicle.

  13. Dual power, constant speed electric motor system

    DOE Patents [OSTI]

    Kirschbaum, H.S.

    1984-07-31

    A dual capacity permanent split capacitor electric motor system is provided with a stator having main and auxiliary windings. The main stator winding includes two winding sections which are connected in parallel with each other and across a pair of line terminals while the auxiliary winding is connected in series with a capacitor to form a circuit branch which is connected between the line terminals for operation at a first output power level. Switching means are provided to reconnect the main stator winding sections in series with each other and in series with a second capacitor to form a circuit branch which is connected between the line terminals while the stator auxiliary winding is connected directly between the line terminals for operation at a second output power level. Automatic rotation reversal occurs when the motor switches from the first to the second output power level. 6 figs.

  14. Dual power, constant speed electric motor system

    DOE Patents [OSTI]

    Kirschbaum, Herbert S.

    1984-01-01

    A dual capacity permanent split capacitor electric motor system is provided with a stator having main and auxiliary windings. The main stator winding includes two winding sections which are connected in parallel with each other and across a pair of line terminals while the auxiliary winding is connected in series with a capacitor to form a circuit branch which is connected between the line terminals for operation at a first output power level. Switching means are provided to reconnect the main stator winding sections in series with each other and in series with a second capacitor to form a circuit branch which is connected between the line terminals while the stator auxiliary winding is connected directly between the line terminals for operation at a second output power level. Automatic rotation reversal occurs when the motor switches from the first to the second output power level.

  15. Dual-fueling turbocharged diesels with ethanol

    SciTech Connect (OSTI)

    Cruz, J.M.; Rotz, C.A.; Watson, D.H.

    1982-09-01

    Spray addition and carburetion methods were tested for dual-fueling a turbocharged, 65 kW diesel tractor. Approximately 30 percent of the fuel energy for the tractor was supplied by spraying ethanol into the intake air and about 46 percent by carburetion with little affect on the engine thermal efficiency. Further substitution of diesel fuel with ethanol was limited by knock. As the amount of ethanol fed into the engine was increased, ignition apparently changed from the steady burning process which normally occurs in a diesel engine to a rapid explosion which caused knock. The best fuel for the spray approach was a 50 percent ethanol/water solution and with the carburetor it was an 80 percent ethanol/water solution.

  16. Dual-fueling turbocharged diesels with ethanol

    SciTech Connect (OSTI)

    Cruz, J.M.; Rotz, C.A.; Watson, D.H.

    1982-09-01

    Spray addition and carburetion methods were tested for dual-fueling a turbocharged, 65 kW diesel tractor. Approximately 30 percent of the fuel energy for the tractor was supplied by spraying ethanol into the intake air and about 46 percent by carburetion with little affect on the engine thermal efficiency. Further substitution of diesel fuel with ethanol was limited by knock. As the amount of ethanol fed into the engine was increased, ignition apparently changed from the steady burning process which normally occurs in a diesel engine to a rapid explosion which caused knock. The best fuel for the spray approach was a 50 percent ethanol/water solution and with the carburetor it was an 80 percent ethanol/water solution. (Refs. 6).

  17. Dual liquid and gas chromatograph system

    DOE Patents [OSTI]

    Gay, D.D.

    A chromatographic system is described that utilizes one detection system for gas chromatographic and micro-liquid chromatographic determinations. The detection system is a direct-current, atmospheric-pressure, helium plasma emission spectrometer. The detector utilizes a nontransparent plasma source unit which contains the plasma region and two side-arms which receive effluents from the micro-liquid chromatograph and the gas chromatograph. The dual nature of this chromatographic system offers: (1) extreme flexibility in the samples to be examined; (2) extreme low sensitivity; (3) element selectivity; (4) long-term stability; (5) direct correlation of data from the liquid and gas samples; (6) simpler operation than with individual liquid and gas chromatographs, each with different detection systems; and (7) cheaper than a commercial liquid chromatograph and a gas chromatograph.

  18. Microelectromechanical dual-mass resonator structure

    DOE Patents [OSTI]

    Dyck, Christopher W.; Allen, James J.; Huber, Robert J.

    2002-01-01

    A dual-mass microelectromechanical (MEM) resonator structure is disclosed in which a first mass is suspended above a substrate and driven to move along a linear or curved path by a parallel-plate electrostatic actuator. A second mass, which is also suspended and coupled to the first mass by a plurality of springs is driven by motion of the first mass. Various modes of operation of the MEM structure are possible, including resonant and antiresonant modes, and a contacting mode. In each mode of operation, the motion induced in the second mass can be in the range of several microns up to more than 50 .mu.m while the first mass has a much smaller displacement on the order of one micron or less. The MEM structure has applications for forming microsensors that detect strain, acceleration, rotation or movement.

  19. Dual pricing algorithm in ISO markets

    DOE PAGES-Beta [OSTI]

    O'Neill, Richard P.; Castillo, Anya; Eldridge, Brent; Hytowitz, Robin Broder

    2016-10-10

    The challenge to create efficient market clearing prices in centralized day-ahead electricity markets arises from inherent non-convexities in unit commitment problems. When this aspect is ignored, marginal prices may result in economic losses to market participants who are part of the welfare maximizing solution. In this essay, we present an axiomatic approach to efficient prices and cost allocation for a revenue neutral and non-confiscatory day-ahead market. Current cost allocation practices do not adequately attribute costs based on transparent cost causation criteria. Instead we propose an ex post multi-part pricing scheme, which we refer to as the Dual Pricing Algorithm. Lastly,more » our approach can be incorporated into current dayahead markets without altering the market equilibrium.« less

  20. Dual liquid and gas chromatograph system

    DOE Patents [OSTI]

    Gay, Don D.

    1985-01-01

    A chromatographic system that utilizes one detection system for gas chromatographic and micro-liquid chromatographic determinations. The detection system is a direct-current, atmospheric-pressure, helium plasma emission spectrometer. The detector utilizes a non-transparent plasma source unit which contains the plasma region and two side-arms which receive effluents from the micro-liquid chromatograph and the gas chromatograph. The dual nature of this chromatographic system offers: (1) extreme flexibility in the samples to be examined; (2) extremely low sensitivity; (3) element selectivity; (4) long-term stability; (5) direct correlation of data from the liquid and gas samples; (6) simpler operation than with individual liquid and gas chromatographs, each with different detection systems; and (7) cheaper than a commercial liquid chromatograph and a gas chromatograph.

  1. Comments on shielding for dual energy accelerators

    SciTech Connect (OSTI)

    Rossi, M. C.; Lincoln, H. M.; Quarin, D. J.; Zwicker, R. D.

    2008-06-15

    Determination of shielding requirements for medical linear accelerators has been greatly facilitated by the publication of the National Council on Radiation Protection and Measurements (NCRP) latest guidelines on this subject in NCRP Report No. 151. In the present report the authors review their own recent experience with patient treatments on conventional dual energy linear accelerators to examine the various input parameters needed to follow the NCRP guidelines. Some discussion is included of workloads, occupancy, use factors, and field size, with the effects of intensity modulated radiotherapy (IMRT) treatments included. Studies of collimator settings showed average values of 13.1x16.2 cm{sup 2} for 6 MV and 14.1x16.8 cm{sup 2} for 18 MV conventional ports, and corresponding average unblocked areas of 228 and 254 cm{sup 2}, respectively. With an average of 77% of the field area unblocked, this gives a mean irradiated area of 196 cm{sup 2} for the 18 MV beam, which dominates shielding considerations for most dual energy machines. Assuming conservatively small room dimensions, a gantry bin angle of 18 deg. was found to represent a reasonable unit for tabulation of use factors. For conventional 18 MV treatments it was found that the usual treatment angles of 0, 90, 180, and 270 deg. were still favored, and use factors of 0.25 represent reasonable estimates for these beams. As expected, the IMRT fields (all at 6 MV) showed a high degree of gantry angle randomization, with no bin having a use factor in excess of 0.10. It is concluded that unless a significant number of patients are treated with high energy IMRT, the traditional use factors of 0.25 are appropriate for the dominant high energy beam.

  2. Aerosol Effects on Cirrus through Ice Nucleation in the Community Atmosphere Model CAM5 with a Statistical Cirrus Scheme

    SciTech Connect (OSTI)

    Wang, Minghuai; Liu, Xiaohong; Zhang, Kai; Comstock, Jennifer M.

    2014-09-01

    A statistical cirrus cloud scheme that tracks ice saturation ratio in the clear-sky and cloudy portion of a grid box separately has been implemented into NCAR CAM5 to provide a consistent treatment of ice nucleation and cloud formation. Simulated ice supersaturation and ice crystal number concentrations strongly depend on the number concentrations of heterogeneous ice nuclei (IN), subgrid temperature formulas and the number concentration of sulfate particles participating in homogeneous freezing, while simulated ice water content is insensitive to these perturbations. 1% to 10% dust particles serving as heterogeneous IN is 20 found to produce ice supersaturaiton in better agreement with observations. Introducing a subgrid temperature perturbation based on long-term aircraft observations of meso-scale motion produces a better hemispheric contrast in ice supersaturation compared to observations. Heterogeneous IN from dust particles significantly alter the net radiative fluxes at the top of atmosphere (TOA) (-0.24 to -1.59 W m-2) with a significant clear-sky longwave component (0.01 to -0.55 W m-2). Different cirrus treatments significantly perturb the net TOA anthropogenic aerosol forcing from -1.21 W m-2 to -1.54 W m-2, with a standard deviation of 0.10 W m-2. Aerosol effects on cirrus clouds exert an even larger impact on the atmospheric component of the radiative fluxes (two or three times the changes in the TOA radiative fluxes) and therefore on the hydrology cycle through the fast atmosphere response. This points to the urgent need to quantify aerosol effects on cirrus clouds through ice nucleation and how these further affect the hydrological cycle.

  3. Parametric Sensitivity Analysis of Precipitation at Global and Local Scales in the Community Atmosphere Model CAM5

    DOE PAGES-Beta [OSTI]

    Qian, Yun; Yan, Huiping; Hou, Zhangshuan; Johannesson, G.; Klein, Stephen A.; Lucas, Donald; Neale, Richard; Rasch, Philip J.; Swiler, Laura P.; Tannahill, John; et al

    2015-04-10

    We investigate the sensitivity of precipitation characteristics (mean, extreme and diurnal cycle) to a set of uncertain parameters that influence the qualitative and quantitative behavior of the cloud and aerosol processes in the Community Atmosphere Model (CAM5). We adopt both the Latin hypercube and quasi-Monte Carlo sampling approaches to effectively explore the high-dimensional parameter space and then conduct two large sets of simulations. One set consists of 1100 simulations (cloud ensemble) perturbing 22 parameters related to cloud physics and convection, and the other set consists of 256 simulations (aerosol ensemble) focusing on 16 parameters related to aerosols and cloud microphysics.more » Results show that for the 22 parameters perturbed in the cloud ensemble, the six having the greatest influences on the global mean precipitation are identified, three of which (related to the deep convection scheme) are the primary contributors to the total variance of the phase and amplitude of the precipitation diurnal cycle over land. The extreme precipitation characteristics are sensitive to a fewer number of parameters. The precipitation does not always respond monotonically to parameter change. The influence of individual parameters does not depend on the sampling approaches or concomitant parameters selected. Generally the GLM is able to explain more of the parametric sensitivity of global precipitation than local or regional features. The total explained variance for precipitation is primarily due to contributions from the individual parameters (75-90% in total). The total variance shows a significant seasonal variability in the mid-latitude continental regions, but very small in tropical continental regions.« less

  4. Parametric Sensitivity Analysis of Precipitation at Global and Local Scales in the Community Atmosphere Model CAM5

    SciTech Connect (OSTI)

    Qian, Yun; Yan, Huiping; Hou, Zhangshuan; Johannesson, G.; Klein, Stephen A.; Lucas, Donald; Neale, Richard; Rasch, Philip J.; Swiler, Laura P.; Tannahill, John; Wang, Hailong; Wang, Minghuai; Zhao, Chun

    2015-04-10

    We investigate the sensitivity of precipitation characteristics (mean, extreme and diurnal cycle) to a set of uncertain parameters that influence the qualitative and quantitative behavior of the cloud and aerosol processes in the Community Atmosphere Model (CAM5). We adopt both the Latin hypercube and quasi-Monte Carlo sampling approaches to effectively explore the high-dimensional parameter space and then conduct two large sets of simulations. One set consists of 1100 simulations (cloud ensemble) perturbing 22 parameters related to cloud physics and convection, and the other set consists of 256 simulations (aerosol ensemble) focusing on 16 parameters related to aerosols and cloud microphysics. Results show that for the 22 parameters perturbed in the cloud ensemble, the six having the greatest influences on the global mean precipitation are identified, three of which (related to the deep convection scheme) are the primary contributors to the total variance of the phase and amplitude of the precipitation diurnal cycle over land. The extreme precipitation characteristics are sensitive to a fewer number of parameters. The precipitation does not always respond monotonically to parameter change. The influence of individual parameters does not depend on the sampling approaches or concomitant parameters selected. Generally the GLM is able to explain more of the parametric sensitivity of global precipitation than local or regional features. The total explained variance for precipitation is primarily due to contributions from the individual parameters (75-90% in total). The total variance shows a significant seasonal variability in the mid-latitude continental regions, but very small in tropical continental regions.

  5. ENO1 promotes tumor proliferation and cell adhesion mediated drug resistance (CAM-DR) in Non-Hodgkin's Lymphomas

    SciTech Connect (OSTI)

    Zhu, Xinghua; Miao, Xiaobing; Wu, Yaxun; Li, Chunsun; Guo, Yan; Liu, Yushan; Chen, Yali; Lu, Xiaoyun; Wang, Yuchan; He, Song

    2015-07-15

    Enolases are glycolytic enzymes responsible for the ATP-generated conversion of 2-phosphoglycerate to phosphoenolpyruvate. In addition to the glycolytic function, Enolase 1 (ENO1) has been reported up-regulation in several tumor tissues. In this study, we investigated the expression and biologic function of ENO1 in Non-Hodgkin's Lymphomas (NHLs). Clinically, by western blot analysis we observed that ENO1 expression was apparently higher in diffuse large B-cell lymphoma than in the reactive lymphoid tissues. Subsequently, immunohistochemical staining of 144 NHLs suggested that the expression of ENO1 was significantly lower in the indolent lymphomas compared with the progressive lymphomas. Further, we identified ENO1 as an independent prognostic factor, and it was significantly correlated with overall survival of NHL patients. In addition, we found that ENO1 could promote cell proliferation, regulate cell cycle associated gene and PI3K/AKT signaling pathway in NHLs. Finally, we verified that ENO1 participated in the process of lymphoma cell adhesion mediated drug resistance (CAM-DR). Adhesion to FN or HS5 cells significantly protected OCI-Ly8 and Daudi cells from cytotoxicity compared with those cultured in suspension, and these effects were attenuated when transfected with ENO1-siRNA. Based on the study, we propose that inhibition of ENO1 expression may be a novel strategy for therapy for NHLs patients, and it may be a target for drug resistance. - Highlights: • ENO1 expression is reversely correlated with clinical outcomes of patients with NHLs. • ENO1 promotes the proliferation of NHL cells. • ENO1 regulates cell adhesion mediated drug resistance.

  6. Fuel reactivity effects on the efficiency and operational window of dual-fuel compression ignition engines

    SciTech Connect (OSTI)

    Splitter, Derek A; Reitz, Rolf

    2014-01-01

    Fuel reactivity effects on the efficiency and operational window of dual-fuel compression ignition engines

  7. Lean NOx Reduction with Dual Layer LNT/SCR Catalysts

    Energy.gov [DOE]

    Results show that a series of dual layer catalysts with a bottom layer of LNT catalyst and a top layer of SCR catalyst can carry out coupled ammonia generation and NOx reduction, achieving high NOx conversion with minimal ammonia slip

  8. York Electric Cooperative- Dual Fuel Heat Pump Rebate Program

    Energy.gov [DOE]

    York Electric Cooperative, Inc. (YEC) offers a $200 rebate to members who install a dual fuel heat pump in homes or businesses. The rebates are for primary residences, commercial, and industrial...

  9. EIS-0228: Dual Axis Radiographic Hydrodynamic Test (DARHT) Facility

    Energy.gov [DOE]

    This EIS evaluates the potential environmental impact of a proposal to construct and operate the Dual Axis Radiographic Hydrodynamic Test (DARHT) facility at Los Alamos National Laboratory (LANL)...

  10. Slant-hole collimator, dual mode sterotactic localization method

    DOE Patents [OSTI]

    Weisenberger, Andrew G.

    2002-01-01

    The use of a slant-hole collimator in the gamma camera of dual mode stereotactic localization apparatus allows the acquisition of a stereo pair of scintimammographic images without repositioning of the gamma camera between image acquisitions.

  11. NREL: Measurements and Characterization - Dual-Beam Sample Preparation

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    The FIB is equipped with a gas injection system (GIS) platinum metal deposition capability ... dual beam FIB showing nano deposition with GIS of Pt contacts to a single GaN nanowire. ...

  12. Parameterized reduced-order models using hyper-dual numbers....

    Office of Scientific and Technical Information (OSTI)

    This report presents a methodology for developing parameterized ROMs, which is based on Craig-Bampton component mode synthesis and the use of hyper-dual numbers to calculate the ...

  13. HCCI Load Expansion Opportunities using a Fully Variable HVA Research Engine to Guide Development of a Production Intent Cam-based VVA Engine: The Low Load Limit

    SciTech Connect (OSTI)

    Weall, Adam J; Szybist, James P; Edwards, Kevin Dean; Foster, Matthew; Confer, Keith; Moore, Wayne

    2012-01-01

    While the potential emissions and efficiency benefits of HCCI combustion are well known, realizing the potentials on a production intent engine presents numerous challenges. In this study we focus on identifying challenges and opportunities associated with a production intent cam-based variable valve actuation (VVA) system on a multi-cylinder engine in comparison to a fully flexible, naturally aspirated, hydraulic valve actuation (HVA) system on a single-cylinder engine, with both platforms sharing the same GDI fueling system and engine geometry. The multi-cylinder production intent VVA system uses a 2-step cam technology with wide authority cam phasing, allowing adjustments to be made to the negative valve overlap (NVO) duration but not the valve opening durations. On the single cylinder HVA engine, the valve opening duration and lift are variable in addition to the NVO duration. The content of this paper is limited to the low-medium operating load region at 2000rpm. Using different injection strategies, including the NVO pilot injection approach, the single-cylinder engine is operated over a load range from 160-390 kPa net IMEP at 2000 rpm. Changes to valve opening duration on the single-cylinder HVA engine illustrate opportunities for load expansion and efficiency improvement at certain conditions. For instance, the low load limit can be extended on the HVA engine by reducing breathing and operating closer to a stoichiometric air fuel ratio (AFR) by using valve deactivation. The naturally aspirated engine used here without external EGR confirmed that as operating load increases the emissions of NOx increases due to combustion temperature. NOx emissions are found to be one limitation to the maximum load limitation, the other being high pressure rise rate. It is found that the configuration of the production intent cam-based system represents a good compromise between valve lift and duration in the low to medium load region. Changing the extent of charge motion

  14. HCCI Load Expansion Opportunities Using a Fully Variable HVA Research Engine to Guide Developments of a Production Intent Cam-Based VVA Engine: The Low Load Limit

    SciTech Connect (OSTI)

    Weall, Adam J; Szybist, James P; Edwards, Kevin Dean; Foster, Matthew; Confer, Keith; Moore, Wayne

    2012-01-01

    While the potential emissions and efficiency benefits of HCCI combustion are well known, realizing the potentials on a production intent engine presents numerous challenges. In this study we focus on identifying challenges and opportunities associated with a production intent cam-based variable valve actuation (VVA) system on a multi-cylinder engine in comparison to a fully flexible, naturally aspirated, hydraulic valve actuation (HVA) system on a single-cylinder engine, with both platforms sharing the same GDI fueling system and engine geometry. The multi-cylinder production intent VVA system uses a 2-step cam technology with wide authority cam phasing, allowing adjustments to be made to the negative valve overlap (NVO) duration but not the valve opening durations. On the single cylinder HVA engine, the valve opening duration and lift are variable in addition to the NVO duration. The content of this paper is limited to the low-medium operating load region at 2000rpm. Using different injection strategies, including the NVO pilot injection approach, the single-cylinder engine is operated over a load range from 160-390 kPa net IMEP at 2000 rpm. Changes to valve opening duration on the single-cylinder HVA engine illustrate opportunities for load expansion and efficiency improvement at certain conditions. For instance, the low load limit can be extended on the HVA engine by reducing breathing and operating closer to a stoichiometric air fuel ratio (AFR) by using valve deactivation. The naturally aspirated engine used here without external EGR confirmed that as operating load increases the emissions of NOx increases due to combustion temperature. NOx emissions are found to be one limitation to the maximum load limitation, the other being high pressure rise rate. It is found that the configuration of the production intent cam-based system represents a good compromise between valve lift and duration in the low to medium load region. Changing the extent of charge motion

  15. The potential for distributed generation in Japanese prototype buildings: A DER-CAM analysis of policy, tariff design, building energy use, and technology development (Japanese translation)

    SciTech Connect (OSTI)

    Zhou, Nan; Marnay, Chris; Firestone, Ryan; Gao, Weijun; Nishida, Masaru

    2004-10-15

    The August 2003 blackout of the northeastern U.S. and CANADA caused great economic losses and inconvenience to New York City and other affected areas. The blackout was a warning to the rest of the world that the ability of conventional power systems to meet growing electricity demand is questionable. Failure of large power systems can lead to serious emergencies. Introduction of on-site generation, renewable energy such as solar and wind power and the effective utilization of exhaust heat is needed, to meet the growing energy demands of the residential and commercial sectors. Additional benefit can be achieved by integrating these distributed technologies into distributed energy resource (DER) systems. This work demonstrates a method for choosing and designing economically optimal DER systems. An additional purpose of this research is to establish a database of energy tariffs, DER technology cost and performance characteristics, and building energy consumption for Japan. This research builds on prior DER studies at the Ernest Orlando Lawrence Berkeley National Laboratory (LBNL) and with their associates in the Consortium for Electric Reliability Technology Solutions (CERTS) and operation, including the development of the microgrid concept, and the DER selection optimization program, the Distributed Energy Resources Customer Adoption Model (DER-CAM). DER-CAM is a tool designed to find the optimal combination of installed equipment and an idealized operating schedule to minimize a site's energy bills, given performance and cost data on available DER technologies, utility tariffs, and site electrical and thermal loads over a test period, usually an historic year. Since hourly electric and thermal energy data are rarely available, they are typically developed by building simulation for each of six end use loads used to model the building: electric-only loads, space heating, space cooling, refrigeration, water heating, and natural-gas-only loads. DER-CAM provides a

  16. Fuel cell having dual electrode anode or cathode

    DOE Patents [OSTI]

    Findl, Eugene

    1985-01-01

    A fuel cell that is characterized by including a dual electrode anode that is operable to simultaneously electro-oxidize a gaseous fuel and a liquid fuel. In alternative embodiments, a fuel cell having a single electrode anode is provided with a dual electrode cathode that is operable to simultaneously reduce a gaseous oxidant and a liquid oxidant to electro-oxidize a fuel supplied to the cell.

  17. Fuel cell having dual electrode anode or cathode

    DOE Patents [OSTI]

    Findl, E.

    1984-04-10

    A fuel cell that is characterized by including a dual electrode anode that is operable to simultaneously electro-oxidize a gaseous fuel and a liquid fuel. In alternative embodiments, a fuel cell having a single electrode anode is provided with a dual electrode cathode that is operable to simultaneously reduce a gaseous oxidant and a liquid oxidant to electro-oxidize a fuel supplied to the cell.

  18. Postmortem validation of breast density using dual-energy mammography

    SciTech Connect (OSTI)

    Molloi, Sabee Ducote, Justin L.; Ding, Huanjun; Feig, Stephen A.

    2014-08-15

    Purpose: Mammographic density has been shown to be an indicator of breast cancer risk and also reduces the sensitivity of screening mammography. Currently, there is no accepted standard for measuring breast density. Dual energy mammography has been proposed as a technique for accurate measurement of breast density. The purpose of this study is to validate its accuracy in postmortem breasts and compare it with other existing techniques. Methods: Forty postmortem breasts were imaged using a dual energy mammography system. Glandular and adipose equivalent phantoms of uniform thickness were used to calibrate a dual energy basis decomposition algorithm. Dual energy decomposition was applied after scatter correction to calculate breast density. Breast density was also estimated using radiologist reader assessment, standard histogram thresholding and a fuzzy C-mean algorithm. Chemical analysis was used as the reference standard to assess the accuracy of different techniques to measure breast composition. Results: Breast density measurements using radiologist reader assessment, standard histogram thresholding, fuzzy C-mean algorithm, and dual energy were in good agreement with the measured fibroglandular volume fraction using chemical analysis. The standard error estimates using radiologist reader assessment, standard histogram thresholding, fuzzy C-mean, and dual energy were 9.9%, 8.6%, 7.2%, and 4.7%, respectively. Conclusions: The results indicate that dual energy mammography can be used to accurately measure breast density. The variability in breast density estimation using dual energy mammography was lower than reader assessment rankings, standard histogram thresholding, and fuzzy C-mean algorithm. Improved quantification of breast density is expected to further enhance its utility as a risk factor for breast cancer.

  19. The design and synthesis of heterostructured quantum dots with dual

    Office of Scientific and Technical Information (OSTI)

    emission in the visible and infrared (Journal Article) | SciTech Connect The design and synthesis of heterostructured quantum dots with dual emission in the visible and infrared Citation Details In-Document Search Title: The design and synthesis of heterostructured quantum dots with dual emission in the visible and infrared The unique optical properties exhibited by visible emitting core/shell quantum dots with especially thick shells are the focus of widespread study, but have yet to be

  20. Dual-domain lateral shearing interferometer

    DOE Patents [OSTI]

    Naulleau, Patrick P.; Goldberg, Kenneth Alan

    2004-03-16

    The phase-shifting point diffraction interferometer (PS/PDI) was developed to address the problem of at-wavelength metrology of extreme ultraviolet (EUV) optical systems. Although extremely accurate, the fact that the PS/PDI is limited to use with coherent EUV sources, such as undulator radiation, is a drawback for its widespread use. An alternative to the PS/PDI, with relaxed coherence requirements, is lateral shearing interferometry (LSI). The use of a cross-grating, carrier-frequency configuration to characterize a large-field 4.times.-reduction EUV lithography optic is demonstrated. The results obtained are directly compared with PS/PDI measurements. A defocused implementation of the lateral shearing interferometer in which an image-plane filter allows both phase-shifting and Fourier wavefront recovery. The two wavefront recovery methods can be combined in a dual-domain technique providing suppression of noise added by self-interference of high-frequency components in the test-optic wavefront.

  1. Dual excitation acoustic paramagnetic logging tool

    DOE Patents [OSTI]

    Vail, III, William B.

    1989-01-01

    New methods and apparatus are disclosed which allow measurement of the presence of oil and water in gelogical formations using a new physical effect called the Acoustic Paramagnetic Logging Effect (APLE). The presence of petroleum in formation causes a slight increase in the earth's magnetic field in the vicinity of the reservoir. This is the phenomena of paramagnetism. Application of an acoustic source to a geological formation at the Larmor frequency of the nucleous present causes the paramagnetism of the formation to disappear. This results in a decrease in the earth's magnetic field in the vicinity of the oil bearing formation. Repetitively frequency sweeping the acoustic source through the Larmor frequency of the nucleons present (approx. 2 kHz) causes an amplitude modulation of the earth's magnetic field which is a consequence of the APLE. The amplitude modulation of the earth's magnetic field is measured with an induction coil gradiometer and provides a direct measure of the amount of oil and water in the excitation zone of the formation. The phase of the signal is used to infer the longitudinal relaxation times of the fluids present, which results in the ability in general to separate oil and water and to measure the viscosity of the oil present. Such measurements may be preformed in open boreholes and in cased well bores. The Dual Excitation Acoustic Paramagnetic Logging Tool employing two acoustic sources is also described.

  2. Dual excitation acoustic paramagnetic logging tool

    DOE Patents [OSTI]

    Vail, W.B. III.

    1989-02-14

    New methods and apparatus are disclosed which allow measurement of the presence of oil and water in geological formations using a new physical effect called the Acoustic Paramagnetic Logging Effect (APLE). The presence of petroleum in formation causes a slight increase in the earth's magnetic field in the vicinity of the reservoir. This is the phenomena of paramagnetism. Application of an acoustic source to a geological formation at the Larmor frequency of the nucleons present causes the paramagnetism of the formation to disappear. This results in a decrease in the earth's magnetic field in the vicinity of the oil bearing formation. Repetitively frequency sweeping the acoustic source through the Larmor frequency of the nucleons present (approx. 2 kHz) causes an amplitude modulation of the earth's magnetic field which is a consequence of the APLE. The amplitude modulation of the earth's magnetic field is measured with an induction coil gradiometer and provides a direct measure of the amount of oil and water in the excitation zone of the formation. The phase of the signal is used to infer the longitudinal relaxation times of the fluids present, which results in the ability in general to separate oil and water and to measure the viscosity of the oil present. Such measurements may be performed in open boreholes and in cased well bores. The Dual Excitation Acoustic Paramagnetic Logging Tool employing two acoustic sources is also described. 6 figs.

  3. Dual mode stereotactic localization method and application

    DOE Patents [OSTI]

    Keppel, Cynthia E.; Barbosa, Fernando Jorge; Majewski, Stanislaw

    2002-01-01

    The invention described herein combines the structural digital X-ray image provided by conventional stereotactic core biopsy instruments with the additional functional metabolic gamma imaging obtained with a dedicated compact gamma imaging mini-camera. Before the procedure, the patient is injected with an appropriate radiopharmaceutical. The radiopharmaceutical uptake distribution within the breast under compression in a conventional examination table expressed by the intensity of gamma emissions is obtained for comparison (co-registration) with the digital mammography (X-ray) image. This dual modality mode of operation greatly increases the functionality of existing stereotactic biopsy devices by yielding a much smaller number of false positives than would be produced using X-ray images alone. The ability to obtain both the X-ray mammographic image and the nuclear-based medicine gamma image using a single device is made possible largely through the use of a novel, small and movable gamma imaging camera that permits its incorporation into the same table or system as that currently utilized to obtain X-ray based mammographic images for localization of lesions.

  4. Molecular Foundry Bay Cam

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Baycam The Molecular Foundry is a Department of Energy-funded nanoscience research facility at Berkeley Lab that provides users from around the world with access to cutting-edge expertise and instrumentation in a collaborative, multidisciplinary environment. twitter instagram facebook

  5. Dual-Fuel Truck Fleet: Start-Up Experience

    SciTech Connect (OSTI)

    NREL

    1998-09-30

    Although dual-fuel engine technology has been in development and limited use for several years, it has only recently moved toward full-scale operational capability for heavy-duty truck applications. Unlike a bifuel engine, which has two separate fuel systems that are used one at a time, a dual-fuel engine uses two fuel systems simultaneously. One of California's South Coast Air Quality Management District (SCAQMD) current programs is a demonstration of dual-fuel engine technology in heavy-duty trucks. These trucks are being studied as part of the National Renewable Energy Laboratory's (NREL's) Alternative Fuel Truck Program. This report describes the start-up experience from the program.

  6. Effects of Pre-Existing Ice Crystals on Cirrus Clouds and Comparison between Different Ice Nucleation Parameterizations with the Community Atmosphere Model (CAM5)

    SciTech Connect (OSTI)

    Shi, Xiangjun; Liu, Xiaohong; Zhang, Kai

    2015-01-01

    In order to improve the treatment of ice nucleation in a more realistic manner in the Community Atmospheric Model version 5.3 (CAM5.3), the effects of preexisting ice crystals on ice nucleation in cirrus clouds are considered. In addition, by considering the in-cloud variability in ice saturation ratio, homogeneous nucleation takes place spatially only in a portion of cirrus cloud rather than in the whole area of cirrus cloud. With these improvements, the two unphysical limiters used in the representation of ice nucleation are removed. Compared to observations, the ice number concentrations and the probability distributions of ice number concentration are both improved with the updated treatment. The preexisting ice crystals significantly reduce ice number concentrations in cirrus clouds, especially at mid- to high latitudes in the upper troposphere (by a factor of ~10). Furthermore, the contribution of heterogeneous ice nucleation to cirrus ice crystal number increases considerably.Besides the default ice nucleation parameterization of Liu and Penner (2005, hereafter LP) in CAM5.3, two other ice nucleation parameterizations of Barahona and Nenes (2009, hereafter BN) and Kärcher et al. (2006, hereafter KL) are implemented in CAM5.3 for the comparison. In-cloud ice crystal number concentration, percentage contribution from heterogeneous ice nucleation to total ice crystal number, and preexisting ice effects simulated by the three ice nucleation parameterizations have similar patterns in the simulations with present-day aerosol emissions. However, the change (present-day minus pre-industrial times) in global annual mean column ice number concentration from the KL parameterization (3.24×106 m-2) is obviously less than that from the LP (8.46×106 m-2) and BN (5.62×106 m-2) parameterizations. As a result, experiment using the KL parameterization predicts a much smaller anthropogenic aerosol longwave indirect forcing (0.24 W m-2) than that using the LP (0.46 W m-2

  7. Dual output acoustic wave sensor for molecular identification

    DOE Patents [OSTI]

    Frye, Gregory C.; Martin, Stephen J.

    1991-01-01

    A method of identification and quantification of absorbed chemical species by measuring changes in both the velocity and the attenuation of an acoustic wave traveling through a thin film into which the chemical species is sorbed. The dual output response provides two independent sensor responses from a single sensing device thereby providing twice as much information as a single output sensor. This dual output technique and analysis allows a single sensor to provide both the concentration and the identity of a chemical species or permits the number of sensors required for mixtures to be reduced by a factor of two.

  8. Dual fiber microprobe for mapping elemental distributions in biological cells

    DOE Patents [OSTI]

    Martin, Rodger C [Powell, TN; Martin, Madhavi Z [Powell, TN

    2007-07-31

    Laser-induced breakdown spectroscopy (LIBS) is applied on a microscale for in situ elemental analysis and spatial mapping in biological cells. A high power laser beam is focused onto a cell surface using a dual branching optical fiber probe for optical excitation of the cell constituents. Dual spectrometers and ICCD detectors capture the emission spectra from the excited cell(s). Repeated probing or repositioning of the laser beam with respect to the cell can provide 2-D or 3-D mapping of the cell.

  9. Exploring Avionics Using Dual Cool Jets | GE Global Research

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Exploring Next Generation Avionics Using Dual Cool Jets Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Exploring Next Generation Avionics Using Dual Cool Jets Ankit Kalani 2015.08.12 Heat is a byproduct of operating electronics. If not managed properly, it can severely affect the reliability and performance of the

  10. Dual design resistor for high voltage conditioning and transmission lines

    DOE Patents [OSTI]

    Siggins, Timothy Lynn; Murray, Charles W.; Walker, Richard L.

    2007-01-23

    A dual resistor for eliminating the requirement for two different value resistors. The dual resistor includes a conditioning resistor at a high resistance value and a run resistor at a low resistance value. The run resistor can travel inside the conditioning resistor. The run resistor is capable of being advanced by a drive assembly until an electrical path is completed through the run resistor thereby shorting out the conditioning resistor and allowing the lower resistance run resistor to take over as the current carrier.

  11. Dual-Axis Resonance Testing of Wind Turbine Blades - Energy Innovation...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Return to Search Dual-Axis Resonance Testing of Wind Turbine Blades National Renewable ... of time needed to fatigue test wind turbine blades.
    Dual-axis testing can ...

  12. Control Strategy for a Dual Loop EGR System to Meet Euro 6 and...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Control Strategy for a Dual Loop EGR System to Meet Euro 6 and Beyond Control Strategy for a Dual Loop EGR System to Meet Euro 6 and Beyond Presentation given at the 2009 DEER ...

  13. Dual role of Fe dopants in enhancing stability and charge transfer...

    Office of Scientific and Technical Information (OSTI)

    Dual role of Fe dopants in enhancing stability and charge transfer in ( Li 0.8 Fe 0.2 ) ... Title: Dual role of Fe dopants in enhancing stability and charge transfer in ( Li 0.8 Fe ...

  14. Toward large N thermal QCD from dual gravity: The heavy quarkonium...

    Office of Scientific and Technical Information (OSTI)

    Toward large N thermal QCD from dual gravity: The heavy quarkonium potential Citation Details In-Document Search Title: Toward large N thermal QCD from dual gravity: The heavy ...

  15. Development of Dual-Fuel Engine for Class 8 Applications | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Dual-Fuel Engine for Class 8 Applications Development of Dual-Fuel Engine for Class 8 Applications Highlights roadmap towards 55% brake thermal efficiency and progress to meet ...

  16. TESTING OF THE DUAL ROTARY FILTER SYSTEM

    SciTech Connect (OSTI)

    Herman, D.; Fowley, M.; Stefanko, D.

    2011-08-29

    The Savannah River National Laboratory (SRNL) installed and tested two hydraulically connected SpinTek rotary microfilter (RMF) units to determine the behavior of a multiple filter system. Both units were successfully controlled by a control scheme written in DELTA-V architecture by Savannah River Remediation (SRR) Process Control Engineering personnel. The control system was tuned to provide satisfactory response to changing conditions during the operation of the multi-filter system. Stability was maintained through the startup and shutdown of one of the filter units while the second was still in operation. The installation configuration originally proposed by the Small Colum Ion Exchange (SCIX) project of independent filter and motor mountings may be susceptible to vibration. Significant stiffening of the filter and motor mounts was required to minimize the vibration. Alignment of the motor to the filter was a challenge in this test configuration. The deployment configuration must be easy to manipulate and allow for fine adjustment. An analysis of the vibration signature of the test system identified critical speeds. Whether it corresponds to the resonance frequency of a rotor radial vibration mode that was excited by rotor unbalance is uncertain based upon the measurements. A relative motion series should be completed on the filter with the final shaft configuration to determine if the resonances exist in the final filter design. The instrumentation selected for deployment, including the concentrate discharge control valve and flow meters, performed well. Automation of the valve control integrated well with the control scheme and when used in concert with the other control variables, allowed automated control of the dual RMF system. The one area of concern with the instrumentation was the condition resulting when the filtrate flow meter operated with less than three gpm. This low flow was at the lower range of performance for the flow meter. This should not be

  17. Low and high Temperature Dual Thermoelectric Generation Waste Heat Recovery System for Light-Duty Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE)

    Developing a low and high temperature dual thermoelectric generation waste heat recovery system for light-duty vehicles.

  18. Dual Axis Radiographic Hydrodynamic Test | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration Dual Axis Radiographic Hydrodynamic Test NNSA releases Stockpile Stewardship Program quarterly experiments summary WASHIGTON, DC. - The National Nuclear Security Administration today released its current quarterly summary of experiments conducted as part of its science-based Stockpile Stewardship Program. The experiments carried out within the program are used in combination with complex computational models

  19. Wrought stainless steels -- Dual marking and corrosion evaluation

    SciTech Connect (OSTI)

    Kobrin, G.; Lilly, J.; MacDiarmid, J.; Moniz, B.

    1999-10-01

    Prior to the 1980s, the commonly used type 300 austenitic series stainless steels (SS) in the chemical process industry were available in two grades: those with regular carbon content (straight grades) and those with extra-low carbon content (L-grades). When welding the straight grades, it was possible to sensitize the base metal adjacent to the weld. The carbon combines with the chromium at the grain boundaries, leaving a zone depleted of chromium, below the minimum required for SS, adjacent to the grain boundaries. Even a relatively mild corrosive environment then is able to selectively attack this region along grain boundaries. The dual-marked grades (types 304/304L and 316/316L) appeared, with the carbon content of an L-grade and the strength of a straight grade. Initially, there was no national code acceptance for dual marked grades. Designers were obliged to use L-grade stress values. To get around this, people were known to grind off the unacceptable part of the dual marking designation and deliver whatever grade was initially specified. ASME International now has formally stated that dual-marked grades may be used at straight grade stresses for all product forms and piping to 1,000 F (540 C).

  20. A tandem-based compact dual-energy gamma generator

    SciTech Connect (OSTI)

    Persaud, A.; Kwan, J.W.; Leitner, M.; Leung, K.N.; Ludewigt, B.; Tanaka, N.; Waldron, W.; Wilde, S.; Antolak, A.J.; Morse, D.H.; Raber, T.

    2009-11-11

    A dual-energy tandem-type gamma generator has been developed at E.O. Lawrence Berkeley National Laboratory and Sandia National Laboratories. The tandem accelerator geometry allows higher energy nuclear reactions to be reached, thereby allowing more flexible generation of MeV-energy gammas for active interrogation applications.

  1. Differentially pumped dual linear quadrupole ion trap mass spectrometer

    DOE Patents [OSTI]

    Owen, Benjamin C.; Kenttamaa, Hilkka I.

    2015-10-20

    The present disclosure provides a new tandem mass spectrometer and methods of using the same for analyzing charged particles. The differentially pumped dual linear quadrupole ion trap mass spectrometer of the present disclose includes a combination of two linear quadrupole (LQIT) mass spectrometers with differentially pumped vacuum chambers.

  2. Dual aperture dipole magnet with second harmonic component

    DOE Patents [OSTI]

    Praeg, W.F.

    1983-08-31

    An improved dual aperture dipole electromagnet includes a second-harmonic frequency magnetic guide field winding which surrounds first harmonic frequency magnetic guide field windings associated with each aperture. The second harmonic winding and the first harmonic windings cooperate to produce resultant magnetic waveforms in the apertures which have extended acceleration and shortened reset portions of electromagnet operation.

  3. Dual aperture dipole magnet with second harmonic component

    DOE Patents [OSTI]

    Praeg, Walter F.

    1985-01-01

    An improved dual aperture dipole electromagnet includes a second-harmonic frequency magnetic guide field winding which surrounds first harmonic frequency magnetic guide field windings associated with each aperture. The second harmonic winding and the first harmonic windings cooperate to produce resultant magnetic waveforms in the apertures which have extended acceleration and shortened reset portions of electromagnet operation.

  4. Reduce overhead by using outside services

    SciTech Connect (OSTI)

    Sanchez, R.O.

    1996-09-01

    This document, after giving a summary of Sandia`s mission, describes technology transfer efforts and accomplishments at Sandia. This includes information on their user facilities: the combustion research facility, the national solar thermal test facility, and the electronics quality and reliability center.

  5. INTEGRATED VERTICAL AND OVERHEAD DECONTAMINATION (IVOD) SYSTEM

    SciTech Connect (OSTI)

    M.A. Ebadian, Ph.D.

    2001-01-01

    The deactivation and decommissioning of 1200 buildings within the U.S. Department of Energy-Office of Environmental Management complex will require the disposition of a large quantity of contaminated concrete and metal surfaces. It has been estimated that 23 million cubic meters of concrete and over 600,000 tons of metal will need disposition. The disposition of such large quantities of material presents difficulties in the area of decontamination and characterization. The final disposition of this large amount of material will take time and money as well as risk to the D&D work force. A single automated system that would decontaminate and characterize surfaces in one step would not only reduce the schedule and decrease cost during D&D operations but would also protect the D&D workers from unnecessary exposures to contaminated surfaces. This report summarizes the activities performed during FY00 and describes the planned activities for FY01. Accomplishments for FY00 include the following: Development and field-testing of characterization system; Completion of Title III design of deployment platform and decontamination unit; In-house testing of deployment platform and decontamination unit; Completion of system integration design; Identification of deployment site; and Completion of test plan document for deployment of IVOD at Rancho Seco nuclear power facility.

  6. Oak Ridge D and D Plan 3515 Project - Technology Review (2007) and GammaCam Technology Demonstration for Characterizing Building 3515 at Oak Ridge (2007)

    SciTech Connect (OSTI)

    Byrne-Kelly, D.; Hart, A.; Brown, Ch.; Jordan, D.; Phillips, E.

    2008-07-01

    This paper presents the results from the Characterization, Decontamination and Decommissioning (CD and D) Study performed by MSE Technology Application, Inc. (MSE) to assist the U.S. Department of Energy (DOE) and Oak Ridge National Laboratory (ORNL) in the preparation of a Project Execution Plan and Remediation Plan for Building 3515 at ORNL. Primary objectives of this study were to identify innovative CD and D technologies and methodologies and recommend alternatives applicable to the CD and D of Building 3515. Building 3515 is a small heavily shielded concrete and cement block structure centrally located in the Bethel Valley portion of the ORNL. The building's interior is extensively contaminated with Cesium 137 (Cs-137), the primary contaminant of concern. A previous attempt to characterize the building was limited to general interior area radiation exposure level measurements and a few surface smears gathered by inserting monitoring equipment into the building on long poles. Consequently, the spatial distribution of the gamma radiation source inside the building was not determined. A subsequent plan for D and D of the building presented a high risk of worker radiation dose in excess of as low as reasonably achievable (ALARA) because the source of the interior gamma radiation field is not completely understood and conventional practices required workers to be in close proximity of the building. As part of an initial literature search, MSE reviewed new generation gamma source characterization technologies and identified the GammaCam{sup TM} portable gamma ray imaging system as an innovative technology applicable to locating the dominant gamma ray sources within the building. The GammaCam{sup TM} gamma-ray imaging system is a commercially available technology marketed by the EDO Corporation. This system consists of a sensor head with a co-aligned camera and a portable computer. The system is designed to provide two-dimensional spatial mappings of gamma ray

  7. Development and Use of the Dual-Mode Plasma Torch

    SciTech Connect (OSTI)

    Womack, R.; Shuey, M.

    2002-02-26

    After several years of development, a commercially available high-temperature treatment system has been developed and installed that treats heterogeneous low-level radioactive waste. High temperature plasma processing, unique torch design and operating features make it feasible to achieve a volume reduced, permanent, high integrity waste form while eliminating the personnel exposure and costs associated with conventional sorting, characterizing and handling. Plasma technology can also be used to treat previous conditioned waste packages that no longer meet the current acceptance criteria for final disposal. Plasma treatment can result, in many cases, in a substantial volume reduction, which lowers the final disposal costs. This paper covers the recently patented dual mode plasma torch design(1), the lessons learned that fostered its development and the advantages it brings to radioactive waste processing. This paper also provides current full scale Plasma Arc Centrifugal Treatment (PACT) project status and how the dual mode torch is being used in the PACT system.

  8. Advanced regenerator testing in the Raytheon dual-use cryocoolerr

    SciTech Connect (OSTI)

    Schaefer, B. R.; Bellis, L.; Ellis, M. J.; Conrad, T. J.

    2014-01-29

    Significant progress has been made on the Raytheon low cost space cryocooler called the Dual-Use Cryocooler (DUC). Most notably, the DUC has been integrated and tested with an advanced regenerator. The advanced regenerator is a drop-in replacement for stainless steel screens and has shown significant thermodynamic performance improvements. This paper will compare the performance of two different regenerators and explain the benefits of the advanced regenerator.

  9. Dual Tokamak with Alternating Current Inductive Plasma Formation and

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Sustainment | Princeton Plasma Physics Lab Dual Tokamak with Alternating Current Inductive Plasma Formation and Sustainment Two vertically separated but connected tokamak plasma regions, termed respectively (1) the plasma formation region and (2) the fusion reaction region, share a common torroidal vacuum vessel and a common toroidal field coil system. Poloidal field coils and solenoidal coils adjacent to the plasma formation region are driven by pulsed ac electrical current to inductively

  10. Retractable pin dual in-line package test clip

    DOE Patents [OSTI]

    Bandzuch, Gregory S.; Kosslow, William J.

    1996-01-01

    This invention is a Dual In-Line Package (DIP) test clip for use when troubleshooting circuits containing DIP integrated circuits. This test clip is a significant improvement over existing DIP test clips in that it has retractable pins which will permit troubleshooting without risk of accidentally shorting adjacent pins together when moving probes to different pins on energized circuits or when the probe is accidentally bumped while taking measurements.

  11. Dual-phase Cr-Ta alloys for structural applications

    DOE Patents [OSTI]

    Liu, Chain T.; Brady, Michael P.; Zhu, Jiahong; Tortorelli, Peter F.

    2001-01-01

    Dual phase alloys of chromium containing 2 to 11 atomic percent tantalum with minor amounts of Mo, Cr, Ti, Y, La, Cr, Si and Ge are disclosed. These alloys contain two phases including Laves phase and Cr-rich solid solution in either eutectic structures or dispersed Laves phase particles in the Cr-rich solid solution matrix. The alloys have superior mechanical properties at high temperature and good oxidation resistance when heated to above 1000.degree. C. in air.

  12. Dual ion beam assisted deposition of biaxially textured template layers

    DOE Patents [OSTI]

    Groves, James R.; Arendt, Paul N.; Hammond, Robert H.

    2005-05-31

    The present invention is directed towards a process and apparatus for epitaxial deposition of a material, e.g., a layer of MgO, onto a substrate such as a flexible metal substrate, using dual ion beams for the ion beam assisted deposition whereby thick layers can be deposited without degradation of the desired properties by the material. The ability to deposit thicker layers without loss of properties provides a significantly broader deposition window for the process.

  13. Dual fuel combustion in a turbocharged diesel engine

    SciTech Connect (OSTI)

    Few, P.C.; Newlyn, H.A.

    1987-01-01

    The modification of a turbocharged diesel engine to a dual-fuel engine using methane as the supplementary fuel has been carried out. The effect of the gaseous fuel in a turbo-charged diesel engine has been investigated by means of a heat release study and a computer program already developed at Leicester Polytechnic. It is used in order to examine the rate of heat released under any operational condition.

  14. Development of a high-output dual-fuel engine

    SciTech Connect (OSTI)

    Danyluk, P.R. . Fairbanks Morse Engineering Division)

    1993-10-01

    This paper presents the results of a new dual-fuel engine development program. The engine is the largest commercially available in terms of power output (650 hp/cyl) and features very low emissions (1 g/hp-hr NO[sub x]) and excellent fuel consumption (43 percent thermal efficiency). A two-cylinder turbocharged prototype was designed and built for the initial development. Results from testing on 18-cylinder production versions are also reported.

  15. Integrated process and dual-function catalyst for olefin epoxidation

    DOE Patents [OSTI]

    Zhou, Bing (Cranbury, NJ); Rueter, Michael (Plymouth Meeting, PA)

    2003-01-01

    The invention discloses a dual-functional catalyst composition and an integrated process for production of olefin epoxides including propylene oxide by catalytic reaction of hydrogen peroxide from hydrogen and oxygen with olefin feeds such as propylene. The epoxides and hydrogen peroxide are preferably produced simultaneously in situ. The dual-functional catalyst comprises noble metal crystallites with dimensions on the nanometer scale (on the order of <1 nm to 10 nm), specially dispersed on titanium silicalite substrate particles. The dual functional catalyst catalyzes both the direct reaction of hydrogen and oxygen to generate hydrogen peroxide intermediate on the noble metal catalyst surface and the reaction of the hydrogen peroxide intermediate with the propylene feed to generate propylene oxide product. Combining both these functions in a single catalyst provides a very efficient integrated process operable below the flammability limits of hydrogen and highly selective for the production of hydrogen peroxide to produce olefin oxides such as propylene oxide without formation of undesired co-products.

  16. Impact of horizontal resolution on simulation of precipitation extremes in an aqua-planet version of the Community Atmosphere Model (CAM)

    SciTech Connect (OSTI)

    Li, F.; Collins, W.D.; Wehner, M.F.; Williamson, D.L.; Olson, J.G.; Algieri, C.

    2011-03-01

    One key question regarding current climate models is whether the projection of climate extremes converges to a realistic representation as the spatial and temporal resolutions of the model are increased. Ideally the model extreme statistics should approach a fixed distribution once the resolutions are commensurate with the characteristic length and time scales of the processes governing the formation of the extreme phenomena of interest. In this study, a series of AGCM runs with idealized 'aquaplanet-steady-state' boundary conditions have been performed with the Community Atmosphere Model CAM3 to investigate the effect of horizontal resolution on climate extreme simulations. The use of the aquaplanet framework highlights the roles of model physics and dynamics and removes any apparent convergence in extreme statistics due to better resolution of surface boundary conditions and other external inputs. Assessed at a same large spatial scale, the results show that the horizontal resolution and time step have strong effects on the simulations of precipitation extremes. The horizontal resolution has a much stronger impact on precipitation extremes than on mean precipitation. Updrafts are strongly correlated with extreme precipitation at tropics at all the resolutions, while positive low-tropospheric temperature anomalies are associated with extreme precipitation at mid-latitudes.

  17. The potential for distributed generation in Japanese prototype buildings: A DER-CAM analysis of policy, tariff design, building energy use, and technology development (English Version)

    SciTech Connect (OSTI)

    Zhou, Nan; Marnay, Chris; Firestone, Ryan; Gao, Weijun; Nishida, Masaru

    2004-10-15

    The August 2003 blackout of the northeastern U.S. and CANADA caused great economic losses and inconvenience to New York City and other affected areas. The blackout was a warning to the rest of the world that the ability of conventional power systems to meet growing electricity demand is questionable. Failure of large power systems can lead to serious emergencies. Introduction of on-site generation, renewable energy such as solar and wind power and the effective utilization of exhaust heat is needed, to meet the growing energy demands of the residential and commercial sectors. Additional benefit can be achieved by integrating these distributed technologies into distributed energy resource (DER) systems. This work demonstrates a method for choosing and designing economically optimal DER systems. An additional purpose of this research is to establish a database of energy tariffs, DER technology cost and performance characteristics, and building energy consumption for Japan. This research builds on prior DER studies at the Ernest Orlando Lawrence Berkeley National Laboratory (LBNL) and with their associates in the Consortium for Electric Reliability Technology Solutions (CERTS) and operation, including the development of the microgrid concept, and the DER selection optimization program, the Distributed Energy Resources Customer Adoption Model (DER-CAM). DER-CAM is a tool designed to find the optimal combination of installed equipment and an idealized operating schedule to minimize a site's energy bills, given performance and cost data on available DER technologies, utility tariffs, and site electrical and thermal loads over a test period, usually an historic year. Since hourly electric and thermal energy data are rarely available, they are typically developed by building simulation for each of six end use loads used to model the building: electric-only loads, space heating, space cooling, refrigeration, water heating, and natural-gas-only loads. DER-CAM provides a

  18. Dual Integrated Appliances as an Energy and Safety Solution for Low Income

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Weatherization Webinar | Department of Energy Dual Integrated Appliances as an Energy and Safety Solution for Low Income Weatherization Webinar Dual Integrated Appliances as an Energy and Safety Solution for Low Income Weatherization Webinar Slides from the Building America webinar presented by the NorthernSTAR team. webinar_northernstar_dual_appliances_20111019.pdf (9.61 MB) More Documents & Publications Building America Expert Meeting: Recommendations for Applying Water Heaters in

  19. The Power of Integrators, Financiers, and Insurers to Reduce Proliferation Risks: Nuclear Dual-Use Goods

    SciTech Connect (OSTI)

    Weise, Rachel A.; Hund, Gretchen

    2015-05-01

    Globalization of manufacturing supply chains has changed the nature of nuclear proliferation. Before 1991, nonproliferation efforts focused almost exclusively on limiting the spread of materials and equipment specifically designed for nuclear use -- reactors, centrifuges, and fissile material. Dual-use items, those items with both nuclear and non-nuclear applications, were not closely scrutinized or controlled. However, in 1991 the international community discovered that Iraq had developed a fairly sophisticated nuclear weapons program by importing dual-use items; this discovery spurred the international community to increase controls on dual-use technologies. Despite these international efforts, dual-use items are still a challenge for those seeking to limit proliferation.

  20. Dual Exchange in PCN-333: A Facile Strategy to Chemically Robust...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Dual Exchange in PCN-333: A Facile Strategy to Chemically Robust Mesoporous Chromium Metal-Organic Framework with Functional Groups Previous Next List Park, Jihye; Feng, Dawei; ...

  1. POLICY GUIDANCE MEMORANDUM #11A Approval Process for Dual Compensation Waivers for Reemployed Annuitants

    Energy.gov [DOE]

    Process to  grant dual compensation (salary-offset) waivers to reemployed annuitants who work on a limited basis without reduction to their retirement annuity.

  2. Dual Fuel Conversion System for Diesel Engines: Inventions and Innovation Project Fact Sheet

    SciTech Connect (OSTI)

    Wogsland, J.

    2001-01-25

    Project fact sheet written for the Inventions and Innovation Program about a new dual fuel conversion system allows diesel fuel switching with clean burning natural gas.

  3. A Manufacturing Cost Analysis Relevant to Single-and Dual-Junction...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Manufacturing Cost Analysis Relevant to Single- and Dual-Junction Photovoltaic Cells ... (MOVPE): o Representative III-V photovoltaic devices and process flows are ...

  4. Dual-circuit, multiple-effect refrigeration system and method

    DOE Patents [OSTI]

    DeVault, Robert C.

    1995-01-01

    A dual circuit absorption refrigeration system comprising a high temperature single-effect refrigeration loop and a lower temperature double-effect refrigeration loop separate from one another and provided with a double-condenser coupling therebetween. The high temperature condenser of the single-effect refrigeration loop is double coupled to both of the generators in the double-effect refrigeration loop to improve internal heat recovery and a heat and mass transfer additive such as 2-ethyl-1-hexanol is used in the lower temperature double-effect refrigeration loop to improve the performance of the absorber in the double-effect refrigeration loop.

  5. Dual-wavelength InP quantum dot lasers

    SciTech Connect (OSTI)

    Shutts, S.; Smowton, P. M.; Krysa, A. B.

    2014-06-16

    We have demonstrated a two-section dual-wavelength diode laser incorporating distributed Bragg reflectors, with a peak-wavelength separation of 62.5?nm at 300?K. Each lasing wavelength has a different temperature dependence, providing a difference-tuning of 0.11?nm/K. We discuss the mechanisms governing the light output of the two competing modes and explain how the short wavelength can be relatively insensitive to output changes at the longer wavelength. Starting from an initial condition when the output at both wavelengths are equal, a 500% increase in the long wavelength output causes the short wavelength output to fall by only 6%.

  6. Dual-frequency glow discharges in atmospheric helium

    SciTech Connect (OSTI)

    Huang, Xiaojiang; Guo, Ying; Dai, Lu; Zhang, Jing; Shi, J. J.

    2015-10-15

    In this paper, the dual-frequency (DF) glow discharges in atmospheric helium were experimented by electrical and optical measurements in terms of current voltage characteristics and optical emission intensity. It is shown that the waveforms of applied voltages or discharge currents are the results of low frequency (LF) waveforms added to high frequency (HF) waveforms. The HF mainly influences discharge currents, and the LF mainly influences applied voltages. The gas temperatures of DF discharges are mainly affected by HF power rather than LF power.

  7. Exclusive J/{psi} electroproduction in a dual model

    SciTech Connect (OSTI)

    Fiore, R.; Jenkovszky, L. L.; Magas, V. K.; Melis, S.; Prokudin, A.

    2009-12-01

    Exclusive J/{psi} electroproduction is studied in the framework of the analytic S-matrix theory. The differential and integrated elastic cross sections are calculated using the modified dual amplitude with Mandelstam analyticity model. The model is applied to the description of the available experimental data and proves to be valid in a wide region of the kinematical variables s, t, and Q{sup 2}. Our amplitude can be used also as a universal background parametrization for the extraction of tiny resonance signals.

  8. Gauge theories on hyperbolic spaces and dual wormhole instabilities

    SciTech Connect (OSTI)

    Buchel, Alex

    2004-09-15

    We study supergravity duals of strongly coupled four-dimensional gauge theories formulated on compact quotients of hyperbolic spaces. The resulting background geometries are represented by Euclidean wormholes, which complicate establishing the precise gauge theory/string theory correspondence dictionary. These backgrounds suffer from the nonperturbative instabilities arising from the D3D3-bar pair-production in the background four-form potential. We discuss conditions for suppressing this Schwingerlike instability. We find that Euclidean wormholes arising in this construction develop a naked singularity before they can be stabilized.

  9. Dual Axis Radiographic Hydrodynamic Test Facility | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | (NNSA) Dual Axis Radiographic Hydrodynamic Test Facility An integral part of the national hydrotest program, the DARHT is the world's most powerful x-ray machine. DARHT consists of two electron accelerators oriented at right angles to one another. Each accelerator creates a powerful electron beam that is focused onto a metal target which converts the kinetic energy of the electron beam into high energy x or gamma-rays. The x-ray dose from one DARHT accelerator is

  10. Dual-purpose desalting, RO versus MSF an economic comparison

    SciTech Connect (OSTI)

    Brandt, D.C.; Battey, R.F.

    1983-01-01

    Capital and annual operating costs are estimated for producing water using three combinations of seawater reverse osmosis and gas turbines. The costs and operating parameters were developed for Middle East conditions assuming a Red Sea water source. The plants were designed to produce 37,850 m/sup 3//d (10 mgd) of potable water and to export 50,000 kW of power. The reverse osmosis plant utilizes energy recovery and was designed with full pretreatment for a surface water supply. Electricity is provided by either gas turbines, steam turbines, or combined cycle plants. Power and water costs developed for these systems were compared to costs for conventional, dual-purpose MSF/steam turbine plants for the same water and power production. These evaluations considered two levels of fuel costs. The results of this study show the significant effect of fuel costs on process selection and on water and power costs. Capital and operating costs were 20 to 28 percent less and 23 to 33 percent less, respectively, for the RO/gas turbine and RO/combined cycle plants as compared to conventional, dual-purpose MSF steam turbine plants. In addition to economics, the merits of the systems are discussed relative to delivery, ease and flexibility of operation, turndown capability, and so forth.

  11. Does SEGUE/SDSS indicate a dual galactic halo?

    SciTech Connect (OSTI)

    Schönrich, Ralph; Asplund, Martin; Casagrande, Luca

    2014-05-01

    We re-examine recent claims of observational evidence for a dual Galactic halo in SEGUE/SDSS data, and trace them back to improper error treatment and neglect of selection effects. In particular, the detection of a vertical abundance gradient in the halo can be explained as a metallicity bias in distance. A similar bias and the impact of disk contamination affect the sample of blue horizontal branch stars. These examples highlight why non-volume complete samples require forward modeling from theoretical models or extensive bias-corrections. We also show how observational uncertainties produce the specific non-Gaussianity in the observed azimuthal velocity distribution of halo stars, which can be erroneously identified as two Gaussian components. A single kinematic component yields an excellent fit to the observed data, when we model the measurement process including distance uncertainties. Furthermore, we show that sample differences in proper motion space are the direct consequence of kinematic cuts and are enhanced when distance estimates are less accurate. Thus, their presence is neither proof of a separate population nor a measure of reliability for the applied distances. We conclude that currently there is no evidence from SEGUE/SDSS that would favor a dual Galactic halo over a single halo that is full of substructure.

  12. Development of a multi-resource alternate energy facility (addition of dual-fuel). Final technical report

    SciTech Connect (OSTI)

    Keel, J.S.

    1982-11-03

    This report describes the use of compressed natural gas (methane) in a dual fuel 1979 Jeep pick-up truck. Descriptions of the compressor and the dual-fuel conversion equipment are attached. (DMC)

  13. Dual manifold system and method for fluid transfer

    DOE Patents [OSTI]

    Doktycz, Mitchel J.; Bryan, William Louis; Kress, Reid

    2003-05-27

    A dual-manifold assembly is provided for the rapid, parallel transfer of liquid reagents from a microtiter plate to a solid state microelectronic device having biological sensors integrated thereon. The assembly includes aspiration and dispense manifolds connected by a plurality of conduits. In operation, the aspiration manifold is actuated such that the aspiration manifold is seated onto an array of reagent-filled wells of the microtiter plate. The wells are pressurized to force reagent through conduits toward the dispense manifold. A pressure pulse provided by a standard ink-jet printhead ejects nanoliter-to-picoliter droplets of reagent through an array of printhead orifices and onto test sites on the surface of the microelectronic device.

  14. Dual manifold system and method for fluid transfer

    DOE Patents [OSTI]

    Doktycz, Mitchel J.; Bryan, William Louis; Kress, Reid

    2003-09-30

    A dual-manifold assembly is provided for the rapid, parallel transfer of liquid reagents from a microtiter plate to a solid state microelectronic device having biological sensors integrated thereon. The assembly includes aspiration and dispense manifolds connected by a plurality of conduits. In operation, the aspiration manifold is actuated such that the aspiration manifold is seated onto an array of reagent-filled wells of the microtiter plate. The wells are pressurized to force reagent through conduits toward the dispense manifold. A pressure pulse provided by a standard ink-jet printhead ejects nanoliter-to-picoliter droplets of reagent through an array of printhead orifices and onto test sites on the surface of the microelectronic device.

  15. Representing ductile damage with the dual domain material point method

    DOE PAGES-Beta [OSTI]

    Long, C. C.; Zhang, D. Z.; Bronkhorst, C. A.; Gray, III, G. T.

    2015-12-14

    In this study, we incorporate a ductile damage material model into a computational framework based on the Dual Domain Material Point (DDMP) method. As an example, simulations of a flyer plate experiment involving ductile void growth and material failure are performed. The results are compared with experiments performed on high purity tantalum. We also compare the numerical results obtained from the DDMP method with those obtained from the traditional Material Point Method (MPM). Effects of an overstress model, artificial viscosity, and physical viscosity are investigated. Our results show that a physical bulk viscosity and overstress model are important in thismore » impact and failure problem, while physical shear viscosity and artificial shock viscosity have negligible effects. A simple numerical procedure with guaranteed convergence is introduced to solve for the equilibrium plastic state from the ductile damage model.« less

  16. Representing ductile damage with the dual domain material point method

    SciTech Connect (OSTI)

    Long, C. C.; Zhang, D. Z.; Bronkhorst, C. A.; Gray, III, G. T.

    2015-12-14

    In this study, we incorporate a ductile damage material model into a computational framework based on the Dual Domain Material Point (DDMP) method. As an example, simulations of a flyer plate experiment involving ductile void growth and material failure are performed. The results are compared with experiments performed on high purity tantalum. We also compare the numerical results obtained from the DDMP method with those obtained from the traditional Material Point Method (MPM). Effects of an overstress model, artificial viscosity, and physical viscosity are investigated. Our results show that a physical bulk viscosity and overstress model are important in this impact and failure problem, while physical shear viscosity and artificial shock viscosity have negligible effects. A simple numerical procedure with guaranteed convergence is introduced to solve for the equilibrium plastic state from the ductile damage model.

  17. DARHT status and preparations for dual-axis hydrotesting (u)

    SciTech Connect (OSTI)

    Bowman, David W

    2010-01-01

    The status of the DARHT facility, including a history of events that have taken place since the end of the DARHT Second Axis Refurbishment Project, is discussed. Technical and operational enhancements that have been made will be addressed, and recent technical challenges, such as the RF noise in the kicker region, are discussed. Historical data on reliability of the second axis is discussed, as well as operational changes made to enhance reliability. In addition, the path forward for integrating the second axis into overall DARHT operations in preparation for a hydrotest is addressed. Timing integration tests are accompanied by a series of tests to evaluate neutron contamination and cross-axis scatter, with attempts being made to provide adequate shielding to minimize the effects of neutrons and cross-beam scatter. The discussion includes results of the testing performed to-date, and concludes with a discussion of the path forward for dual-axis hydrotesting at DARHT.

  18. Parameterized reduced-order models using hyper-dual numbers.

    SciTech Connect (OSTI)

    Fike, Jeffrey A.; Brake, Matthew Robert

    2013-10-01

    The goal of most computational simulations is to accurately predict the behavior of a real, physical system. Accurate predictions often require very computationally expensive analyses and so reduced order models (ROMs) are commonly used. ROMs aim to reduce the computational cost of the simulations while still providing accurate results by including all of the salient physics of the real system in the ROM. However, real, physical systems often deviate from the idealized models used in simulations due to variations in manufacturing or other factors. One approach to this issue is to create a parameterized model in order to characterize the effect of perturbations from the nominal model on the behavior of the system. This report presents a methodology for developing parameterized ROMs, which is based on Craig-Bampton component mode synthesis and the use of hyper-dual numbers to calculate the derivatives necessary for the parameterization.

  19. Dual annular rotating "windowed" nuclear reflector reactor control system

    DOE Patents [OSTI]

    Jacox, Michael G.; Drexler, Robert L.; Hunt, Robert N. M.; Lake, James A.

    1994-01-01

    A nuclear reactor control system is provided in a nuclear reactor having a core operating in the fast neutron energy spectrum where criticality control is achieved by neutron leakage. The control system includes dual annular, rotatable reflector rings. There are two reflector rings: an inner reflector ring and an outer reflector ring. The reflectors are concentrically assembled, surround the reactor core, and each reflector ring includes a plurality of openings. The openings in each ring are capable of being aligned or non-aligned with each other. Independent driving means for each of the annular reflector rings is provided so that reactor criticality can be initiated and controlled by rotation of either reflector ring such that the extent of alignment of the openings in each ring controls the reflection of neutrons from the core.

  20. Investigation of plasma diagnostics using a dual frequency harmonic technique

    SciTech Connect (OSTI)

    Kim, Dong-Hwan; Kim, Young-Do; Cho, Sung-Won; Kim, Yu-Sin; Chung, Chin-Wook

    2014-09-07

    Plasma diagnostic methods using harmonic currents analysis of electrostatic probes were experimentally investigated to understand the differences in their measurement of the plasma parameters. When dual frequency voltage (ω{sub 1},ω{sub 2}) was applied to a probe, various harmonic currents (ω{sub 1}, 2ω{sub 1},ω{sub 2}, 2ω{sub 2},ω{sub 2}±ω{sub 1},ω{sub 2}±2ω{sub 1}) were generated due to the non-linearity of the probe sheath. The electron temperature can be obtained from the ratio of the two harmonics of the probe currents. According to the combinations of the two harmonics, the sensitivities in the measurement of the electron temperature differed, and this results in a difference of the electron temperature. From experiments and simulation, it is shown that this difference is caused by the systematic and random noise.

  1. Iterative Self-Dual Reconstruction on Radar Image Recovery

    SciTech Connect (OSTI)

    Martins, Charles; Medeiros, Fatima; Ushizima, Daniela; Bezerra, Francisco; Marques, Regis; Mascarenhas, Nelson

    2010-05-21

    Imaging systems as ultrasound, sonar, laser and synthetic aperture radar (SAR) are subjected to speckle noise during image acquisition. Before analyzing these images, it is often necessary to remove the speckle noise using filters. We combine properties of two mathematical morphology filters with speckle statistics to propose a signal-dependent noise filter to multiplicative noise. We describe a multiscale scheme that preserves sharp edges while it smooths homogeneous areas, by combining local statistics with two mathematical morphology filters: the alternating sequential and the self-dual reconstruction algorithms. The experimental results show that the proposed approach is less sensitive to varying window sizes when applied to simulated and real SAR images in comparison with standard filters.

  2. Slowly Varying Dilaton Cosmologies and Their Field Theory Duals

    SciTech Connect (OSTI)

    Awad, Adel; Das, Sumit R.; Ghosh, Archisman; Oh, Jae-Hyuk; Trivedi, Sandip P.; /Tata Inst. /Stanford U., ITP /SLAC

    2011-06-28

    We consider a deformation of the AdS{sub 5} x S{sup 5} solution of IIB supergravity obtained by taking the boundary value of the dilaton to be time dependent. The time dependence is taken to be slowly varying on the AdS scale thereby introducing a small parameter {epsilon}. The boundary dilaton has a profile which asymptotes to a constant in the far past and future and attains a minimum value at intermediate times. We construct the sugra solution to first non-trivial order in {epsilon}, and find that it is smooth, horizon free, and asymptotically AdS{sub 5} x S{sup 5} in the far future. When the intermediate values of the dilaton becomes small enough the curvature becomes of order the string scale and the sugra approximation breaks down. The resulting dynamics is analysed in the dual SU(N) gauge theory on S{sup 3} with a time dependent coupling constant which varies slowly. When N{epsilon} << 1, we find that a quantum adiabatic approximation is applicable, and use it to argue that at late times the geometry becomes smooth AdS{sub 5} x S{sup 5} again. When N{epsilon} >> 1, we formulate a classical adiabatic perturbation theory based on coherent states which arises in the large N limit. For large values of the tHooft coupling this reproduces the supergravity results. For small 'tHooft coupling the coherent state calculations become involved and we cannot reach a definite conclusion. We argue that the final state should have a dual description which is mostly smooth AdS5 space with the possible presence of a small black hole.

  3. Hexahedral mesh generation via the dual arrangement of surfaces

    SciTech Connect (OSTI)

    Mitchell, S.A.; Tautges, T.J.

    1997-12-31

    Given a general three-dimensional geometry with a prescribed quadrilateral surface mesh, the authors consider the problem of constructing a hexahedral mesh of the geometry whose boundary is exactly the prescribed surface mesh. Due to the specialized topology of hexahedra, this problem is more difficult than the analogous one for tetrahedra. Folklore has maintained that a surface mesh must have a constrained structure in order for there to exist a compatible hexahedral mesh. However, they have proof that a surface mesh need only satisfy mild parity conditions, depending on the topology of the three-dimensional geometry, for there to exist a compatible hexahedral mesh. The proof is based on the realization that a hexahedral mesh is dual to an arrangement of surfaces, and the quadrilateral surface mesh is dual to the arrangement of curves bounding these surfaces. The proof is constructive and they are currently developing an algorithm called Whisker Weaving (WW) that mirrors the proof steps. Given the bounding curves, WW builds the topological structure of an arrangement of surfaces having those curves as its boundary. WW progresses in an advancing front manner. Certain local rules are applied to avoid structures that lead to poor mesh quality. Also, after the arrangement is constructed, additional surfaces are inserted to separate features, so e.g., no two hexahedra share more than one quadrilateral face. The algorithm has generated meshes for certain non-trivial problems, but is currently unreliable. The authors are exploring strategies for consistently selecting which portion of the surface arrangement to advance based on the existence proof. This should lead us to a robust algorithm for arbitrary geometries and surface meshes.

  4. CAMS AnalysisApplication.xlsx

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Instructions: Please complete Section I (PI/Collaborator) & Section II (including Billing Contact) SECTION I - Principal Investigator/Collaborator PI/Collaborator Name: Department: Phone Fax Email SECTION II- Analysis/Project Information AMS: Type of Nuclide: Microprobe Project Title: - $ Y/N Agency: Grant Number: SECTION III- Contract/Grants/Administrator (Authorizing Individual) Name: Title: Address: City/State/Zip: Phone Fax Email Billing Contact (Individual that would authorize invoices

  5. Dual-axis high-data-rate atom interferometer via cold ensemble exchange

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Journal Article: Dual-axis high-data-rate atom interferometer via cold ensemble exchange Citation Details In-Document Search Title: Dual-axis high-data-rate atom interferometer via cold ensemble exchange We demonstrate a dual-axis accelerometer and gyroscope atom interferometer, which can form the building blocks of a six-axis inertial measurement unit. By recapturing the atoms after the interferometer sequence, we maintain a large atom number at high data

  6. Improved proton computed tomography by dual modality image reconstruction

    SciTech Connect (OSTI)

    Hansen, David C. Bassler, Niels; Petersen, Jørgen Breede Baltzer; Sørensen, Thomas Sangild

    2014-03-15

    Purpose: Proton computed tomography (CT) is a promising image modality for improving the stopping power estimates and dose calculations for particle therapy. However, the finite range of about 33 cm of water of most commercial proton therapy systems limits the sites that can be scanned from a full 360° rotation. In this paper the authors propose a method to overcome the problem using a dual modality reconstruction (DMR) combining the proton data with a cone-beam x-ray prior. Methods: A Catphan 600 phantom was scanned using a cone beam x-ray CT scanner. A digital replica of the phantom was created in the Monte Carlo code Geant4 and a 360° proton CT scan was simulated, storing the entrance and exit position and momentum vector of every proton. Proton CT images were reconstructed using a varying number of angles from the scan. The proton CT images were reconstructed using a constrained nonlinear conjugate gradient algorithm, minimizing total variation and the x-ray CT prior while remaining consistent with the proton projection data. The proton histories were reconstructed along curved cubic-spline paths. Results: The spatial resolution of the cone beam CT prior was retained for the fully sampled case and the 90° interval case, with the MTF = 0.5 (modulation transfer function) ranging from 5.22 to 5.65 linepairs/cm. In the 45° interval case, the MTF = 0.5 dropped to 3.91 linepairs/cm For the fully sampled DMR, the maximal root mean square (RMS) error was 0.006 in units of relative stopping power. For the limited angle cases the maximal RMS error was 0.18, an almost five-fold improvement over the cone beam CT estimate. Conclusions: Dual modality reconstruction yields the high spatial resolution of cone beam x-ray CT while maintaining the improved stopping power estimation of proton CT. In the case of limited angles, the use of prior image proton CT greatly improves the resolution and stopping power estimate, but does not fully achieve the quality of a 360

  7. A Manufacturing Cost Analysis Relevant to Single- and Dual-Junction...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    A Manufacturing Cost Analysis Relevant to Single- and Dual-Junction Photovoltaic Cells Fabricated with III-Vs and III-Vs Grown on Silicon A Manufacturing Cost Analysis Relevant to ...

  8. Dual modulation laser line-locking technique for wavelength modulation spectroscopy

    DOE Patents [OSTI]

    Bomse, David S.; Hovde, D. Christian; Silver, Joel A.

    2002-01-01

    Disclosed are a method and apparatus for dual modulation of an optical spectroscopy laser. Demodulation is accomplished in a manner resulting in measurement of absorbance of a gas species, as well as stabilization of laser wavelength and baseline noise reduction.

  9. Toward the AdS/CFT gravity dual for high energy collisions. II...

    Office of Scientific and Technical Information (OSTI)

    II. The stress tensor on the boundary Citation Details In-Document Search Title: Toward the AdSCFT gravity dual for high energy collisions. II. The stress tensor on the boundary ...

  10. Preliminary Report on Dual-Purpose Canister Disposal Alternatives (FY13)

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report documents the first phase of a multi-year project to understand the technical feasibility and logistical implications of direct disposal of spent nuclear fuel in existing dual-purpose canisters (DPCs) and other types of storage casks.

  11. A Nonproliferation Third Party for Dual-use Industries - Legal Issues for Consideration

    SciTech Connect (OSTI)

    Morris, Frederic A.; Seward, Amy M.; Kurzrok, Andrew J.

    2012-10-01

    This paper discusses legal issues in connection with formation of a “third party” to facilitate information sharing and best practices by companies in nuclear-related dual-use industries.

  12. On-chip dual-comb based on quantum cascade laser frequency combs

    SciTech Connect (OSTI)

    Villares, G. Wolf, J.; Kazakov, D.; Süess, M. J.; Beck, M.; Faist, J.; Hugi, A.

    2015-12-21

    Dual-comb spectroscopy is emerging as an appealing application of mid-infrared frequency combs for high-resolution molecular spectroscopy, as it leverages on the unique coherence properties of frequency combs. Here, we present an on-chip dual-comb source based on mid-infrared quantum cascade laser frequency combs. Control of the combs repetition and offset frequencies is obtained by integrating micro-heaters next to each laser. We show that a full control of the dual-comb system is possible, by measuring a multi-heterodyne beating corresponding to an optical bandwidth of 32 cm{sup −1} centered at 1330 cm{sup −1} (7.52 μm), demonstrating that this device represents a critical step towards compact dual-comb systems.

  13. A Universal Dual-Fuel Controller for OEM/Aftermarket Diesel Engineswit...

    Energy.gov (indexed) [DOE]

    KB) More Documents & Publications Active DPF for Off-Road Particulate Matter (PM) Control Propane-Diesel Dual Fuel for CO2 and Nox Reduction DPF for a Tractor Auxiliary Power Unit

  14. NREL and CSEM Jointly Set New Efficiency Record with Dual-Junction...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    and Microtechnology (CSEM) have jointly set a new world record for converting non-concentrated (1-sun) sunlight into electricity using a dual-junction III-VSi solar cell. ...

  15. Source book for planning nuclear dual-purpose electric/distillation desalination plants

    SciTech Connect (OSTI)

    Reed, S.A.

    1981-02-01

    A source book on nuclear dual-purpose electric/distillation desalination plants was prepared to assist government and other planners in preparing broad evaluations of proposed applications of dual-purpose plants. The document is divided into five major sections. Section 1 presents general discussions relating to the benefits of dual-purpose plants, and spectrum for water-to-power ratios. Section 2 presents information on commercial nuclear plants manufactured by US manufacturers. Section 3 gives information on distillation desalting processes and equipment. Section 4 presents a discussion on feedwater pretreatment and scale control. Section 5 deals with methods for coupling the distillation and electrical generating plants to operate in the dual mode.

  16. Final joint environmental assessment for the construction and routine operation of a 12-kilovolt (KV) overhead powerline right-of-way, and formal authorization for a 10-inch and 8-inch fresh water pipeline right-of-way, Naval Petroleum Reserve No. 1, Kern County, California

    SciTech Connect (OSTI)

    Not Available

    1994-10-01

    The purpose and need of the proposed action, which is the installation of an overhead powerline extension from an Naval Petroleum Reserve No. 1 (NPR-1) power source to the WKWD Station A, is to significantly reduce NPR-1`s overall utility costs. While the proposed action is independently justified on its own merits and is not tied to the proposed NPR-1 Cogeneration Facility, the proposed action would enable DOE to tie the NPR-1 fresh water pumps at Station A into the existing NPR-1 electrical distribution system. With the completion of the cogeneration facility in late 1994 or early 1995, the proposed action would save additional utility costs. This report deals with the environmental impacts of the construction of the powerline and the water pipeline. In addition, information is given about property rights and attaining permission to cross the property of proposed affected owners.

  17. Diagnostic quality of mammograms obtained with a new low-radiation-dose dual-screen and dual-emulsion film combination

    SciTech Connect (OSTI)

    Wojtasek, D.A.; Teixidor, H.S.; Govoni, A.F.; Gareen, I.F. )

    1990-02-01

    We evaluated the image quality of mammograms made by using a new dual-screen, dual-emulsion film combination (Kodak Min-R Fast screen, T-Mat Mll film) that permits reduction of radiation exposure by approximately 50% when compared with a standard single-screen, single-emulsion film system (Kodak Min-R screen, OM-1 film). This new film has been improved when compared with earlier T-Mat M film, including the introduction of an inert dye to reduce light crossover to essentially 0%. Mammogram pairs made with the dual-emulsion film combination and the standard single-emulsion film combination were obtained in 50 patients otherwise undergoing routine mammography. The image pairs were randomized and evaluated by three radiologists who used a three-point scale (better, same, or worse). Each pair was evaluated with regard to parenchymal contrast, sharpness, and latitude, as well as the number and sharpness of calcifications (n = 19) and sharpness of masses (n = 12) when present. All three observers found the dual-emulsion film combination to be better than or the same as the standard with regard to parenchymal sharpness (94-100%), the number and sharpness of calcifications (98-100%), and sharpness of masses (100%). Two observers found the dual-emulsion film combination to be significantly worse (p less than .05) than the standard with respect to parenchymal contrast (72%, 86%), and all three observers rated it significantly worse for film latitude (14 to 42%). Our results suggest that this new dual-emulsion film combination that allows mammography to be performed with less radiation exposure can be used without loss of image quality.

  18. Cyclic Combustion Variations in Dual Fuel Partially Premixed Pilot-Ignited Natural Gas Engines

    SciTech Connect (OSTI)

    Srinivasan, K. K.; Krishnan, S. R.; Qi, Y.

    2012-05-09

    Dual fuel pilot ignited natural gas engines are identified as an efficient and viable alternative to conventional diesel engines. This paper examines cyclic combustion fluctuations in conventional dual fuel and in dual fuel partially premixed low temperature combustion (LTC). Conventional dual fueling with 95% (energy basis) natural gas (NG) substitution reduces NOx emissions by almost 90%t relative to straight diesel operation; however, this is accompanied by 98% increase in HC emissions, 10 percentage points reduction in fuel conversion efficiency (FCE) and 12 percentage points increase in COVimep. Dual fuel LTC is achieved by injection of a small amount of diesel fuel (2-3 percent on an energy basis) to ignite a premixed natural gas₋air mixture to attain very low NOx emissions (less than 0.2 g/kWh). Cyclic variations in both combustion modes were analyzed by observing the cyclic fluctuations in start of combustion (SOC), peak cylinder pressures (Pmax), combustion phasing (Ca50), and the separation between the diesel injection event and Ca50 (termed "relative combustion phasing" ). For conventional dual fueling, as % NG increases, Pmax decreases, SOC and Ca50 are delayed, and cyclic variations increase. For dual fuel LTC, as diesel injection timing is advanced from 20° to 60° BTDC, the relative combustion phasing is identified as an important combustion parameter along with SoC, Pmax, and CaPmax. For both combustion modes, cyclic variations were characterized by alternating slow and fast burn cycles, especially at high %NG and advanced injection timings. Finally, heat release return maps were analyzed to demonstrate thermal management strategies as an effective tool to mitigate cyclic combustion variations, especially in dual fuel LTC.

  19. Advanced Materials for Reversible Solid Oxide Fuel Cell (RSOFC), Dual Mode

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Operation with Low Degradation | Department of Energy for Reversible Solid Oxide Fuel Cell (RSOFC), Dual Mode Operation with Low Degradation Advanced Materials for Reversible Solid Oxide Fuel Cell (RSOFC), Dual Mode Operation with Low Degradation Presented at the Department of Energy Fuel Cell Projects Kickoff Meeting, September 1 - October 1, 2009 petri_versa%20_power_kickoff.pdf (3.53 MB) More Documents & Publications Reversible Fuel Cells Workshop Summary Report Progress on the

  20. Design and Synthesis of Heterostructured Quantum Dots with Dual Emission in

    Office of Scientific and Technical Information (OSTI)

    the Visible and Infrared (Journal Article) | SciTech Connect Design and Synthesis of Heterostructured Quantum Dots with Dual Emission in the Visible and Infrared Citation Details In-Document Search Title: Design and Synthesis of Heterostructured Quantum Dots with Dual Emission in the Visible and Infrared Authors: Lin, Qianglu ; Makarov, Nikolay S. ; Koh, Weon-kyu ; Velizhanin, Kirill A. ; Cirloganu, Claudiu M. ; Luo, Hongmei ; Klimov, Victor I. ; Pietryga, Jeffrey M. Publication Date:

  1. Producing thin film photovoltaic modules with high integrity interconnects and dual layer contacts

    DOE Patents [OSTI]

    Jansen, Kai W.; Maley, Nagi

    2000-01-01

    High performance photovoltaic modules are produced with improved interconnects by a special process. Advantageously, the photovoltaic modules have a dual layer back (rear) contact and a front contact with at least one layer. The front contact and the inner layer of the back contact can comprise a transparent conductive oxide. The outer layer of the back contact can comprise a metal or metal oxide. The front contact can also have a dielectric layer. In one form, the dual layer back contact comprises a zinc oxide inner layer and an aluminum outer layer and the front contact comprises a tin oxide inner layer and a silicon dioxide dielectric outer layer. One or more amorphous silicon-containing thin film semiconductors can be deposited between the front and back contacts. The contacts can be positioned between a substrate and an optional superstrate. During production, the transparent conductive oxide layer of the front contact is scribed by a laser, then the amorphous silicon-containing semiconductors and inner layer of the dual layer back contact are simultaneously scribed and trenched (drilled) by the laser and the trench is subsequently filled with the same metal as the outer layer of the dual layer back contact to provide a superb mechanical and electrical interconnect between the front contact and the outer layer of the dual layer back contact. The outer layer of the dual layer back contact can then be scribed by the laser. For enhanced environmental protection, the photovoltaic modules can be encapsulated.

  2. Producing thin film photovoltaic modules with high integrity interconnects and dual layer contacts

    DOE Patents [OSTI]

    Jansen, Kai W.; Maley, Nagi

    2001-01-01

    High performance photovoltaic modules are produced with improved interconnects by a special process. Advantageously, the photovoltaic modules have a dual layer back (rear) contact and a front contact with at least one layer. The front contact and the inner layer of the back contact can comprise a transparent conductive oxide. The outer layer of the back contact can comprise a metal or metal oxide. The front contact can also have a dielectric layer. In one form, the dual layer back contact comprises a zinc oxide inner layer and an aluminum outer layer and the front contact comprises a tin oxide inner layer and a silicon dioxide dielectric outer layer. One or more amorphous silicon-containing thin film semiconductors can be deposited between the front and back contacts. The contacts can be positioned between a substrate and an optional superstrate. During production, the transparent conductive oxide layer of the front contact is scribed by a laser, then the amorphous silicon-containing semiconductors and inner layer of the dual layer back contact are simultaneously scribed and trenched (drilled) by the laser and the trench is subsequently filled with the same metal as the outer layer of the dual layer back contact to provide a superb mechanical and electrical interconnect between the front contact and the outer layer of the dual layer back contact. The outer layer of the dual layer back contact can then be scribed by the laser. For enhanced environmental protection, the photovoltaic modules can be encapsulated.

  3. Dual variational principles for nonlinear traveling waves in multifluid plasmas

    SciTech Connect (OSTI)

    Webb, G. M.; McKenzie, J. F.; Mace, R. L.; Ko, C. M.; Zank, G. P.

    2007-08-15

    A Hamiltonian description of nonlinear, obliquely propagating traveling waves in a charge neutral, electron-proton, multifluid plasma is developed. The governing equations are written as a dual spatial Hamiltonian system. In the first formulation, the Hamiltonian is identified with the longitudinal, x-momentum flux integral P{sub x}=const, in which the energy integral {epsilon}={epsilon}{sub 0} acts as a constraint, and the Hamiltonian evolution operator is d/dx, where x is the position coordinate in the wave frame. In the second Hamiltonian formulation, the Hamiltonian is proportional to the conserved energy integral {epsilon}, in which the momentum integral P{sub x}=const acts as a constraint, and the Hamiltonian evolution operator d/d{tau}=u{sub x}d/dx is the Lagrangian time derivative where u{sub x} is the x component of the electron and proton fluids. The analysis is facilitated by using the de Hoffman-Teller frame of magnetohydrodynamic shock theory to simplify the transverse electron and proton momentum equations. The system is exactly integrable in cases in which the total transverse momentum fluxes of the system are zero in the de Hoffman-Teller frame. The implications of this constraint for the Alfven Mach number of the traveling wave are discussed. The physical conditions for the formation of whistler oscillitons based on the whistler dispersion equation are discussed.

  4. Indirect-fired gas turbine dual fuel cell power cycle

    DOE Patents [OSTI]

    Micheli, Paul L.; Williams, Mark C.; Sudhoff, Frederick A.

    1996-01-01

    A fuel cell and gas turbine combined cycle system which includes dual fuel cell cycles combined with a gas turbine cycle wherein a solid oxide fuel cell cycle operated at a pressure of between 6 to 15 atms tops the turbine cycle and is used to produce CO.sub.2 for a molten carbonate fuel cell cycle which bottoms the turbine and is operated at essentially atmospheric pressure. A high pressure combustor is used to combust the excess fuel from the topping fuel cell cycle to further heat the pressurized gas driving the turbine. A low pressure combustor is used to combust the excess fuel from the bottoming fuel cell to reheat the gas stream passing out of the turbine which is used to preheat the pressurized air stream entering the topping fuel cell before passing into the bottoming fuel cell cathode. The CO.sub.2 generated in the solid oxide fuel cell cycle cascades through the system to the molten carbonate fuel cell cycle cathode.

  5. DUAL HALOS AND FORMATION OF EARLY-TYPE GALAXIES

    SciTech Connect (OSTI)

    Park, Hong Soo; Lee, Myung Gyoon E-mail: mglee@astro.snu.ac.kr

    2013-08-20

    We present a determination of the two-dimensional shape parameters of the blue and red globular cluster systems (GCSs) in a large number of elliptical galaxies and lenticular galaxies (early-type galaxies, called ETGs). We use a homogeneous data set of the globular clusters in 23 ETGs obtained from the HST/ACS Virgo Cluster Survey. The position angles of both blue and red GCSs show a correlation with those of the stellar light distribution, showing that the major axes of the GCSs are well aligned with those of their host galaxies. However, the shapes of the red GCSs show a tight correlation with the stellar light distribution as well as with the rotation property of their host galaxies, while the shapes of the blue GCSs do much less. These provide clear geometric evidence that the origins of the blue and red globular clusters are distinct and that ETGs may have dual halos: a blue (metal-poor) halo and a red (metal-rich) halo. These two halos show significant differences in metallicity, structure, and kinematics, indicating that they are formed in two distinguishable ways. The red halos might have formed via dissipational processes with rotation, while the blue halos are through accretion.

  6. Dual curvature acoustically damped concentrating collector. Final technical report

    SciTech Connect (OSTI)

    Smith, G.A.; Rausch, R.A.

    1980-05-01

    A development program was conducted to investigate the design and performance parameters of a novel, dual curvature, concentrating solar collector. The reflector of the solar collector is achieved with a stretched-film reflective surface that approximates a hyperbolic paraboloid and is capable of line-focusing at concentration ratios ranging from 10 to 20X. A prototype collector was designed based on analytical and experimental component trade-off activities as well as economic analyses of solar thermal heating and cooling systems incorporating this type of collector. A prototype collector incorporating six 0.66 x 1.22 m (2 x 4 ft) was fabricated and subjected to a limited thermal efficiency test program. A peak efficiency of 36% at 121/sup 0/C (250/sup 0/F) was achieved based upon the gross aperture area. Commercialization activities were conducted, including estimated production costs of $134.44/m/sup 2/ ($12.49/ft/sup 2/) for the collector assembly (including a local suntracker and controls) and $24.33/m/sup 2/ ($2.26/ft/sup 2/) for the reflector subassembly.

  7. Static-stress analysis of dual-axis confinement vessel

    SciTech Connect (OSTI)

    Bultman, D.H.

    1992-11-01

    This study evaluates the static-pressure containment capability of a 6-ft-diameter, spherical vessel, made of HSLA-100 steel, to be used for high-explosive (HE) containment. The confinement vessel is designed for use with the Dual-Axis Radiographic Hydrotest Facility (DARHT) being developed at Los Alamos National Laboratory. Two sets of openings in the vessel are covered with x-ray transparent covers to allow radiographic imaging of an explosion as it occurs inside the vessel. The confinement vessel is analyzed as a pressure vessel based on the ASME Boiler and Pressure Vessel Code, Section VIII, Division 1, and the Welding Research Council Bulletin, WRC-107. Combined stresses resulting from internal pressure and external loads on nozzles are calculated and compared with the allowable stresses for HSLA-100 steel. Results confirm that the shell and nozzles of the confinement vessel are adequately designed to safely contain the maximum residual pressure of 1675 psi that would result from an HE charge of 24.2 kg detonated in a vacuum. Shell stresses at the shell-to-nozzle interface, produced from external loads on the nozzles, were less than 400 psi. The maximum combined stress resulting from the internal pressure plus external loads was 16,070 psi, which is less than half the allowable stress of 42,375 psi for HSLA-100 steel.

  8. Static-stress analysis of dual-axis safety vessel

    SciTech Connect (OSTI)

    Bultman, D.H.

    1992-11-01

    An 8-ft-diameter safety vessel, made of HSLA-100 steel, is evaluated to determine its ability to contain the quasi-static residual pressure from a high-explosive (HE) blast. The safety vessel is designed for use with the Dual-Axis Radiographic Hydrotest (DARHT) facility being developed at Los Alamos National Laboratory. A smaller confinement vessel fits inside the safety vessel and contains the actual explosion, and the safety vessel functions as a second layer of containment in the unlikely case of a confinement vessel leak. The safety vessel is analyzed as a pressure vessel based on the ASME Boiler and Pressure Vessel Code, Section VIII, Division 1, and the Welding Research Council Bulletin, WRC107. Combined stresses that result from internal pressure and external loads on nozzles are calculated and compared to the allowable stresses for HSLA-100 steel. Results confirm that the shell and nozzle components are adequately designed for a static pressure of 830 psi, plus the maximum expected external loads. Shell stresses at the shellto-nozzle interface, produced from external loads on the nozzles, were less than 700 psi. The maximum combined stress resulting from the internal pressure plus external loads was 17,384 psi, which is significantly less than the allowable stress of 42,375 psi for HSLA-100 steel.

  9. Dual-etalon, cavity-ring-down, frequency comb spectroscopy.

    SciTech Connect (OSTI)

    Strecker, Kevin E.; Chandler, David W.

    2010-10-01

    The 'dual etalon frequency comb spectrometer' is a novel low cost spectometer with limited moving parts. A broad band light source (pulsed laser, LED, lamp ...) is split into two beam paths. One travels through an etalon and a sample gas, while the second arm is just an etalon cavity, and the two beams are recombined onto a single detector. If the free spectral ranges (FSR) of the two cavities are not identical, the intensity pattern at the detector with consist of a series of heterodyne frequencies. Each mode out of the sample arm etalon with have a unique frequency in RF (radio-frequency) range, where modern electronics can easily record the signals. By monitoring these RF beat frequencies we can then determine when an optical frequencies is absorbed. The resolution is set by the FSR of the cavity, typically 10 MHz, with a bandwidth up to 100s of cm{sup -1}. In this report, the new spectrometer is described in detail and demonstration experiments on Iodine absorption are carried out. Further we discuss powerful potential next generation steps to developing this into a point sensor for monitoring combustion by-products, environmental pollutants, and warfare agents.

  10. Dual energy scanning beam laminographic x-radiography

    DOE Patents [OSTI]

    Majewski, Stanislaw; Wojcik, Randolph F.

    1998-01-01

    A multiple x-ray energy level imaging system includes a scanning x-ray beam and two detector design having a first low x-ray energy sensitive detector and a second high x-ray energy sensitive detector. The low x-ray energy detector is placed next to or in front of the high x-ray energy detector. The low energy sensitive detector has small stopping power for x-rays. The lower energy x-rays are absorbed and converted into electrical signals while the majority of the higher energy x-rays pass through undetected. The high energy sensitive detector has a large stopping power for x-rays as well as it having a filter placed between it and the object to absorb the lower energy x-rays. In a second embodiment; a single energy sensitive detector is provided which provides an output signal proportional to the amount of energy in each individual x-ray it absorbed. It can then have an electronic threshold or thresholds set to select two or more energy ranges for the images. By having multiple detectors located at different positions, a dual energy laminography system is possible.

  11. Dual energy scanning beam laminographic x-radiography

    DOE Patents [OSTI]

    Majewski, S.; Wojcik, R.F.

    1998-04-21

    A multiple x-ray energy level imaging system includes a scanning x-ray beam and two detector design having a first low x-ray energy sensitive detector and a second high x-ray energy sensitive detector. The low x-ray energy detector is placed next to or in front of the high x-ray energy detector. The low energy sensitive detector has small stopping power for x-rays. The lower energy x-rays are absorbed and converted into electrical signals while the majority of the higher energy x-rays pass through undetected. The high energy sensitive detector has a large stopping power for x-rays as well as it having a filter placed between it and the object to absorb the lower energy x-rays. In a second embodiment; a single energy sensitive detector is provided which provides an output signal proportional to the amount of energy in each individual x-ray it absorbed. It can then have an electronic threshold or thresholds set to select two or more energy ranges for the images. By having multiple detectors located at different positions, a dual energy laminography system is possible. 6 figs.

  12. Application of an online-coupled regional climate model, WRF-CAM5, over East Asia for examination of ice nucleation schemes. Part II. Sensitivity to heterogeneous ice nucleation parameterizations and dust emissions

    SciTech Connect (OSTI)

    Zhang, Yang; Chen, Ying; Fan, Jiwen; Leung, Lai -Yung

    2015-09-14

    Aerosol particles can affect cloud microphysical properties by serving as ice nuclei (IN). Large uncertainties exist in the ice nucleation parameterizations (INPs) used in current climate models. In this Part II paper, to examine the sensitivity of the model predictions to different heterogeneous INPs, WRF-CAM5 simulation using the INP of Niemand et al. (N12) [1] is conducted over East Asia for two full years, 2006 and 2011, and compared with simulation using the INP of Meyers et al. (M92) [2], which is the original INP used in CAM5. M92 calculates the nucleated ice particle concentration as a function of ice supersaturation, while N12 represents the nucleated ice particle concentration as a function of temperature and the number concentrations and surface areas of dust particles. Compared to M92, the WRF-CAM5 simulation with N12 produces significantly higher nucleated ice crystal number concentrations (ICNCs) in the northern domain where dust sources are located, leading to significantly higher cloud ice number and mass concentrations and ice water path, but the opposite is true in the southern domain where temperatures and moistures play a more important role in ice formation. Overall, the simulation with N12 gives lower downward shortwave radiation but higher downward longwave radiation, cloud liquid water path, cloud droplet number concentrations, and cloud optical depth. The increase in cloud optical depth and the decrease in downward solar flux result in a stronger shortwave and longwave cloud forcing, and decreases temperature at 2-m and precipitation. Changes in temperature and radiation lower surface concentrations of OH, O₃, SO₄²⁻, and PM2.5, but increase surface concentrations of CO, NO₂, and SO₂ over most of the domain. By acting as cloud condensation nuclei (CCN) and IN, dust particles have different impacts on cloud water and ice number concentrations, radiation, and temperature at 2-m and precipitation depending on

  13. Application of an online-coupled regional climate model, WRF-CAM5, over East Asia for examination of ice nucleation schemes. Part II. Sensitivity to heterogeneous ice nucleation parameterizations and dust emissions

    DOE PAGES-Beta [OSTI]

    Zhang, Yang; Chen, Ying; Fan, Jiwen; Leung, Lai -Yung

    2015-09-14

    Aerosol particles can affect cloud microphysical properties by serving as ice nuclei (IN). Large uncertainties exist in the ice nucleation parameterizations (INPs) used in current climate models. In this Part II paper, to examine the sensitivity of the model predictions to different heterogeneous INPs, WRF-CAM5 simulation using the INP of Niemand et al. (N12) [1] is conducted over East Asia for two full years, 2006 and 2011, and compared with simulation using the INP of Meyers et al. (M92) [2], which is the original INP used in CAM5. M92 calculates the nucleated ice particle concentration as a function of icemore » supersaturation, while N12 represents the nucleated ice particle concentration as a function of temperature and the number concentrations and surface areas of dust particles. Compared to M92, the WRF-CAM5 simulation with N12 produces significantly higher nucleated ice crystal number concentrations (ICNCs) in the northern domain where dust sources are located, leading to significantly higher cloud ice number and mass concentrations and ice water path, but the opposite is true in the southern domain where temperatures and moistures play a more important role in ice formation. Overall, the simulation with N12 gives lower downward shortwave radiation but higher downward longwave radiation, cloud liquid water path, cloud droplet number concentrations, and cloud optical depth. The increase in cloud optical depth and the decrease in downward solar flux result in a stronger shortwave and longwave cloud forcing, and decreases temperature at 2-m and precipitation. Changes in temperature and radiation lower surface concentrations of OH, O₃, SO₄²⁻, and PM2.5, but increase surface concentrations of CO, NO₂, and SO₂ over most of the domain. By acting as cloud condensation nuclei (CCN) and IN, dust particles have different impacts on cloud water and ice number concentrations, radiation, and temperature at 2-m and precipitation depending on whether the

  14. Dual energy CT for attenuation correction with PET/CT

    SciTech Connect (OSTI)

    Xia, Ting; Alessio, Adam M.; Kinahan, Paul E.

    2014-01-15

    Purpose: The authors evaluate the energy dependent noise and bias properties of monoenergetic images synthesized from dual-energy CT (DECT) acquisitions. These monoenergetic images can be used to estimate attenuation coefficients at energies suitable for positron emission tomography (PET) and single-photon emission computed tomography (SPECT) imaging. This is becoming more relevant with the increased use of quantitative imaging by PET/CT and SPECT/CT scanners. There are, however, potential variations in the noise and bias of synthesized monoenergetic images as a function of energy. Methods: The authors used analytic approximations and simulations to estimate the noise and bias of synthesized monoenergetic images of water-filled cylinders with different shapes and the NURBS-based cardiac-torso (NCAT) phantom from 40 to 520 keV, the range of SPECT and PET energies. The dual-kVp spectra were based on the GE Lightspeed VCT scanner at 80 and 140 kVp with added filtration of 0.5 mm Cu. The authors evaluated strategies of noise suppression with sinogram smoothing and dose minimization with reduction of tube currents at the two kVp settings. The authors compared the impact of DECT-based attenuation correction with single-kVp CT-based attenuation correction on PET quantitation for the NCAT phantom for soft tissue and high-Z materials of bone and iodine contrast enhancement. Results: Both analytic calculations and simulations displayed the expected minimum noise value for a synthesized monoenergetic image at an energy between the mean energies of the two spectra. In addition the authors found that the normalized coefficient of variation in the synthesized attenuation map increased with energy but reached a plateau near 160 keV, and then remained constant with increasing energy up to 511 keV and beyond. The bias was minimal, as the linear attenuation coefficients of the synthesized monoenergetic images were within 2.4% of the known true values across the entire energy range

  15. Dual energy CT for attenuation correction with PET/CT

    SciTech Connect (OSTI)

    Xia, Ting; Alessio, Adam M.; Kinahan, Paul E.

    2014-01-15

    Purpose: The authors evaluate the energy dependent noise and bias properties of monoenergetic images synthesized from dual-energy CT (DECT) acquisitions. These monoenergetic images can be used to estimate attenuation coefficients at energies suitable for positron emission tomography (PET) and single-photon emission computed tomography (SPECT) imaging. This is becoming more relevant with the increased use of quantitative imaging by PET/CT and SPECT/CT scanners. There are, however, potential variations in the noise and bias of synthesized monoenergetic images as a function of energy. Methods: The authors used analytic approximations and simulations to estimate the noise and bias of synthesized monoenergetic images of water-filled cylinders with different shapes and the NURBS-based cardiac-torso (NCAT) phantom from 40 to 520 keV, the range of SPECT and PET energies. The dual-kVp spectra were based on the GE Lightspeed VCT scanner at 80 and 140 kVp with added filtration of 0.5 mm Cu. The authors evaluated strategies of noise suppression with sinogram smoothing and dose minimization with reduction of tube currents at the two kVp settings. The authors compared the impact of DECT-based attenuation correction with single-kVp CT-based attenuation correction on PET quantitation for the NCAT phantom for soft tissue and high-Z materials of bone and iodine contrast enhancement. Results: Both analytic calculations and simulations displayed the expected minimum noise value for a synthesized monoenergetic image at an energy between the mean energies of the two spectra. In addition the authors found that the normalized coefficient of variation in the synthesized attenuation map increased with energy but reached a plateau near 160 keV, and then remained constant with increasing energy up to 511 keV and beyond. The bias was minimal, as the linear attenuation coefficients of the synthesized monoenergetic images were within 2.4% of the known true values across the entire energy range

  16. Sample Analysis Code System for the Dual Channel Counter.

    Energy Science and Technology Software Center (OSTI)

    1994-09-14

    Version 00 RADCOMPT automates gross alpha and gross beta sample analysis calculations and, in many cases, warns the technologist when a hazard level is being approached or when it has been exceeded. The RADCOMPT program is unique in that it corrects for crosstalk between channels, and in this way provides increased accuracy and efficiency. Even though it is designed explicitly for the analyses of air samples and wipe samples, it can also be used formore » other sample types. It is designed to be used with a dual channel counter (in which one channel is used for alpha detection and the other for beta detection), but may be used with two single channel counters employed for the same purpose. In addition, it provides an automated means for the execution of the following radiological sample analyses protocol: A. Calibration of the counting system B. Calculation of sample activity or air activity concentrations (with the activities of air activity concentrations at the top and bottom of the two-sided 95 percent confidence interval also specified). C. Determination of minimum sample counting times required for detection and/or quantification of specified alpha and beta activities or air activity concentrations. In addition, alternate counting times are determined for alternate activities such that the specified alpha and beta activities are at the top of the 95% confidence interval, increasing the confidence that the activities measured are below the specified limits. D. Calculation of the minimum detectable activities or air activity concentrations. E. Determination of air sample volumes required for detection and/or quantification of specified alpha and beta air activity concentrations. F. Calculation of long-lived activities or air activity concentrations based on radon daughter and thoron daughter decay. G. Calculation of employees DAC-Hours and estimated Committed Effective Dose Equivalent. H. Varying calibration constants (to coincide with possible adjustments to

  17. THE CASE FOR THE DUAL HALO OF THE MILKY WAY

    SciTech Connect (OSTI)

    Beers, Timothy C.; Lee, Young Sun; Carollo, Daniela; Norris, John E.; Freeman, Ken C. E-mail: lee@pa.msu.edu E-mail: jen@mso.anu.edu.au; and others

    2012-02-10

    Carollo et al. have recently resolved the stellar population of the Milky Way halo into at least two distinct components, an inner halo and an outer halo. This result has been criticized by Schoenrich et al., who claim that the retrograde signature associated with the outer halo is due to the adoption of faulty distances. We refute this claim, and demonstrate that the Schoenrich et al. photometric distances are themselves flawed because they adopted an incorrect main-sequence absolute magnitude relationship from the work of Ivezic et al. When compared to the recommended relation from Ivezic et al., which is tied to a Milky Way globular cluster distance scale and accounts for age and metallicity effects, the relation adopted by Schoenrich et al. yields up to 18% shorter distances for stars near the main-sequence turnoff (TO). Use of the correct relationship yields agreement between the distances assigned by Carollo et al. and Ivezic et al. for low-metallicity dwarfs to within 6%-10%. Schoenrich et al. also point out that intermediate-gravity stars (3.5 {<=}log g < 4.0) with colors redder than the TO region are likely misclassified, with which we concur. We implement a new procedure to reassign luminosity classifications for the TO stars that require it. New derivations of the rotational behavior demonstrate that the retrograde signature and high velocity dispersion of the outer-halo population remain. We summarize additional lines of evidence for a dual halo, including a test of the retrograde signature based on proper motions alone, and conclude that the preponderance of evidence strongly rejects the single-halo interpretation.

  18. Dual shell pressure balanced reactor vessel. Final project report

    SciTech Connect (OSTI)

    Robertus, R.J.; Fassbender, A.G.

    1994-10-01

    The Department of Energy`s Office of Energy Research (OER) has previously provided support for the development of several chemical processes, including supercritical water oxidation, liquefaction, and aqueous hazardous waste destruction, where chemical and phase transformations are conducted at high pressure and temperature. These and many other commercial processes require a pressure vessel capable of operating in a corrosive environment where safety and economy are important requirements. Pacific Northwest Laboratory (PNL) engineers have recently developed and patented (U.S. patent 5,167,930 December 1, 1992) a concept for a novel Dual Shell Pressure Balanced Vessel (DSPBV) which could solve a number of these problems. The technology could be immediately useful in continuing commercialization of an R&D 100 award-winning technology, Sludge-to-oil Reactor System (STORS), originally developed through funding by OER. Innotek Corporation is a small business that would be one logical end-user of the DSPBV reactor technology. Innotek is working with several major U.S. engineering firms to evaluate the potential of this technology in the disposal of wastes from sewage treatment plants. PNL entered into a CRADA with Innotek to build a bench-scale demonstration reactor and test the system to advance the economic feasibility of a variety of high pressure chemical processes. Hydrothermal processing of corrosive substances on a large scale can now be made significantly safer and more economical through use of the DSPBV. Hydrothermal chemical reactions such as wet-air oxidation and supercritical water oxidation occur in a highly corrosive environment inside a pressure vessel. Average corrosion rates from 23 to 80 miles per year have been reported by Rice (1994) and Latanision (1993).

  19. DUAL SUPERMASSIVE BLACK HOLE CANDIDATES IN THE AGN AND GALAXY EVOLUTION SURVEY

    SciTech Connect (OSTI)

    Comerford, Julia M.; Schluns, Kyle; Greene, Jenny E.; Cool, Richard J.

    2013-11-01

    Dual supermassive black holes (SMBHs) with kiloparsec-scale separations in merger-remnant galaxies are informative tracers of galaxy evolution, but the avenue for identifying them in large numbers for such studies is not yet clear. One promising approach is to target spectroscopic signatures of systems where both SMBHs are fueled as dual active galactic nuclei (AGNs), or where one SMBH is fueled as an offset AGN. Dual AGNs may produce double-peaked narrow AGN emission lines, while offset AGNs may produce single-peaked narrow AGN emission lines with line-of-sight velocity offsets relative to the host galaxy. We search for such dual and offset systems among 173 Type 2 AGNs at z < 0.37 in the AGN and Galaxy Evolution Survey (AGES), and we find two double-peaked AGNs and five offset AGN candidates. When we compare these results to a similar search of the DEEP2 Galaxy Redshift Survey and match the two samples in color, absolute magnitude, and minimum velocity offset, we find that the fraction of AGNs that are dual SMBH candidates increases from z = 0.25 to z = 0.7 by a factor of ?6 (from 2/70 to 16/91, or 2.9{sup +3.6}{sub -1.9}% to 18{sup +5}{sub -5}%). This may be associated with the rise in the galaxy merger fraction over the same cosmic time. As further evidence for a link with galaxy mergers, the AGES offset and dual AGN candidates are tentatively ?3 times more likely than the overall AGN population to reside in a host galaxy that has a companion galaxy (from 16/173 to 2/7, or 9{sup +3}{sub -2}% to 29{sub -19}{sup +26}%). Follow-up observations of the seven offset and dual AGN candidates in AGES will definitively distinguish velocity offsets produced by dual SMBHs from those produced by narrow-line region kinematics, and will help sharpen our observational approach to detecting dual SMBHs.

  20. Inspection report: the Department of Energy's export licensing process for dual-use and munitions commodities

    SciTech Connect (OSTI)

    Friedman, Gregory H.

    1999-05-01

    Export of commodities, encouraged by both the private sector and the Federal Government, helps to improve our position in the global economy and is in the national interest of the US. However, exports of commodities or technologies, without regard to whether they may significantly contribute to the military potential of individual countries or combination of countries or enhance the proliferation of weapons of mass destruction, may adversely affect the national security of the US. The Federal Government, therefore, implements several laws, Executive Orders, and regulations to control the export of certain commodities and technologies. These commodities and technologies require a license for export. Some of the controlled items are designated as ''dual-use,'' that is, commodities and technologies that have both civilian and military application. Some dual-use commodities are designated as ''nuclear dual-use''--items controlled for nuclear nonproliferation purposes. Another group of controlled commodities is designated as munitions, which are goods and technologies that have solely military uses. The Department of Energy (Energy) conducts reviews of export license applications for nuclear dual-use items and certain munitions. On August 26, 1998, the Chairman of the Senate Committee on Governmental Affairs requested that the Inspectors General from the Departments of Commerce, Defense, Energy, State, and Treasury, and the Central Intelligence Agency (CIA), update and expand on a 1993 interagency review conducted by the Inspectors General of the Departments of Commerce, Defense, Energy, and State of the export licensing processes for dual-use and munitions commodities.

  1. Dual capacity compressor with reversible motor and controls arrangement therefor

    DOE Patents [OSTI]

    Sisk, Francis J.

    1980-12-02

    A hermetic reciprocating compressor such as may be used in heat pump applications is provided for dual capacity operation by providing the crankpin of the crankshaft with an eccentric ring rotatably mounted thereon, and with the end of the connecting rod opposite the piston encompassing the outer circumference of the eccentric ring, with means limiting the rotation of the eccentric ring upon the crankpin between one end point and an opposite angularly displaced end point to provide different values of eccentricity depending upon which end point the eccentric ring is rotated to upon the crankpin, and a reversible motor in the hermetic shell of the compressor for rotating the crankshaft, the motor operating in one direction effecting the angular displacement of the eccentric ring relative to the crankpin to the one end point, and in the opposite direction effecting the angular displacement of the eccentric ring relative to the crankpin to the opposite end point, this arrangement automatically giving different stroke lengths depending upon the direction of motor rotation. The mechanical structure of the arrangement may take various forms including at least one in which any impact of reversal is reduced by utilizing lubricant passages and chambers at the interface area of the crankpin and eccentric ring to provide a dashpot effect. In the main intended application of the arrangement according to the invention, that is, in a refrigerating or air conditioning system, it is desirable to insure a delay during reversal of the direction of compressor operation. A control arrangement is provided in which the control system controls the direction of motor operation in accordance with temperature conditions, the system including control means for effecting operation in a low capacity direction or alternatively in a high capacity direction in response to one set, and another set, respectively, of temperature conditions and with timer means delaying a restart of the compressor

  2. The Case for the Dual Halo of the Milky Way

    SciTech Connect (OSTI)

    Beers, Timothy C.; Carollo, Daniela; Ivezic, Zeljko; An, Deokkeun; Chiba, Masashi; Norris, John E.; Freeman, Ken C.; Lee, Young Sun; Munn, Jeffrey A.; Fiorentin, Paola Re; Sivarani, Thirupathi; /Bangalore, Indian Inst. Astrophys. /Kentucky U.

    2011-04-01

    similar to those previously derived. An additional test of the reality of the retrograde signature is provided, based exclusively on the observed proper motions of low-metallicity stars. Further evidence for a complex halo comes from inspection of the metallicity distribution function of the Carollo et al. sample as a function of distance from the Galactic plane. We summarize additional lines of evidence for a dual halo, based on different stellar samples from the SDSS and other surveys. We conclude that the overwhelming body of evidence rejects the single-halo interpretation beyond reasonable doubt.

  3. Dual fuel Russian urban transit buses: Economical reduced emissions. Export trade information

    SciTech Connect (OSTI)

    1998-01-01

    This study, conducted by Caterpillar, was funded by the US Trade and Development Agency. The scope of this project was to examine the financial and environmental aspects of introducing new alternative fuel engines to the buses of Russia`s public transportation system. The report consists of the following: (1) executive summary; (2) background/overview; (3) 3306 design, development, test; (4) electronic governed engines; (5) Moscow bus testing; (6) conclusions; (7) appendices. The appendices include: (1) Caterpillar emissions lab report; (2) dyno tests -- dual fuel data sheets; (3) 3360 horizontal engine lub tilt test; (4) 1000 hour endurance test -- engine operator sheets; (5) 1000 hour endurance test -- 250 hour check; (6) Caterpillar dual fuel electronic engines; (7) product description -- dual fuel electronic governed engines; (8) California Environmental Protection Agency -- certification of caterpillar electronic governed engines; (9) annual payback data.

  4. Turbine airfoil with dual wall formed from inner and outer layers separated by a compliant structure

    DOE Patents [OSTI]

    Campbell; Christian X. , Morrison; Jay A.

    2011-12-20

    A turbine airfoil usable in a turbine engine with a cooling system and a compliant dual wall configuration configured to enable thermal expansion between inner and outer layers while eliminating stress formation is disclosed. The compliant dual wall configuration may be formed a dual wall formed from inner and outer layers separated by a compliant structure. The compliant structure may be configured such that the outer layer may thermally expand without limitation by the inner layer. The compliant structure may be formed from a plurality of pedestals positioned generally parallel with each other. The pedestals may include a first foot attached to a first end of the pedestal and extending in a first direction aligned with the outer layer, and may include a second foot attached to a second end of the pedestal and extending in a second direction aligned with the inner layer.

  5. Measurement of breast tissue composition with dual energy cone-beam computed tomography: A postmortem study

    SciTech Connect (OSTI)

    Ding Huanjun; Ducote, Justin L.; Molloi, Sabee

    2013-06-15

    Purpose: To investigate the feasibility of a three-material compositional measurement of water, lipid, and protein content of breast tissue with dual kVp cone-beam computed tomography (CT) for diagnostic purposes. Methods: Simulations were performed on a flat panel-based computed tomography system with a dual kVp technique in order to guide the selection of experimental acquisition parameters. The expected errors induced by using the proposed calibration materials were also estimated by simulation. Twenty pairs of postmortem breast samples were imaged with a flat-panel based dual kVp cone-beam CT system, followed by image-based material decomposition using calibration data obtained from a three-material phantom consisting of water, vegetable oil, and polyoxymethylene plastic. The tissue samples were then chemically decomposed into their respective water, lipid, and protein contents after imaging to allow direct comparison with data from dual energy decomposition. Results: Guided by results from simulation, the beam energies for the dual kVp cone-beam CT system were selected to be 50 and 120 kVp with the mean glandular dose divided equally between each exposure. The simulation also suggested that the use of polyoxymethylene as the calibration material for the measurement of pure protein may introduce an error of -11.0%. However, the tissue decomposition experiments, which employed a calibration phantom made out of water, oil, and polyoxymethylene, exhibited strong correlation with data from the chemical analysis. The average root-mean-square percentage error for water, lipid, and protein contents was 3.58% as compared with chemical analysis. Conclusions: The results of this study suggest that the water, lipid, and protein contents can be accurately measured using dual kVp cone-beam CT. The tissue compositional information may improve the sensitivity and specificity for breast cancer diagnosis.

  6. NREL and CSEM Jointly Set New Efficiency Record with Dual-Junction Solar

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Cell | PV | NREL and CSEM Jointly Set New Efficiency Record with Dual-Junction Solar Cell January 5, 2016 Scientists at the Energy Department's National Renewable Energy Laboratory (NREL) and at the Swiss Center for Electronics and Microtechnology (CSEM) have jointly set a new world record for converting non-concentrated (1-sun) sunlight into electricity using a dual-junction III-V/Si solar cell. The newly certified record conversion efficiency of 29.8 percent was set using a top cell made

  7. Pre-Combustion Carbon Dioxide Capture by a New Dual Phase Ceramic-Carbonate Membrane Reactor

    SciTech Connect (OSTI)

    Lin, Jerry

    2014-09-30

    This report documents synthesis, characterization and carbon dioxide permeation and separation properties of a new group of ceramic-carbonate dual-phase membranes and results of a laboratory study on their application for water gas shift reaction with carbon dioxide separation. A series of ceramic-carbonate dual phase membranes with various oxygen ionic or mixed ionic and electronic conducting metal oxide materials in disk, tube, symmetric, and asymmetric geometric configurations was developed. These membranes, with the thickness of 10 μm to 1.5 mm, show CO2 permeance in the range of 0.5-5×10-7 mol·m-2·s-1·Pa-1 in 500-900oC and measured CO2/N2 selectivity of up to 3000. CO2 permeation mechanism and factors that affect CO2 permeation through the dual-phase membranes have been identified. A reliable CO2 permeation model was developed. A robust method was established for the optimization of the microstructures of ceramic-carbonate membranes. The ceramic-carbonate membranes exhibit high stability for high temperature CO2 separations and water gas shift reaction. Water gas shift reaction in the dual-phase membrane reactors was studied by both modeling and experiments. It is found that high temperature syngas water gas shift reaction in tubular ceramic-carbonate dual phase membrane reactor is feasible even without catalyst. The membrane reactor exhibits good CO2 permeation flux, high thermal and chemical stability and high thermal shock resistance. Reaction and separation conditions in the membrane reactor to produce hydrogen of 93% purity and CO2 stream of >95% purity, with 90% CO2 capture have been identified. Integration of the ceramic-carbonate dual-phase membrane reactor with IGCC process for carbon dioxide capture was analyzed. A methodology was developed to identify optimum operation conditions for a membrane tube of given dimensions that would treat coal syngas with targeted performance. The calculation results show that the dual-phase membrane reactor could

  8. Dual-rotor, radial-flux, toroidally-wound, permanent-magnet machine

    DOE Patents [OSTI]

    Qu, Ronghai; Lipo, Thomas A.

    2005-08-02

    The present invention provides a novel dual-rotor, radial-flux, toroidally-wound, permanent-magnet machine. The present invention improves electrical machine torque density and efficiency. At least one concentric surface-mounted permanent magnet dual-rotor is located inside and outside of a torus-shaped stator with back-to-back windings, respectively. The machine substantially improves machine efficiency by reducing the end windings and boosts the torque density by at least doubling the air gap and optimizing the machine aspect ratio.

  9. Target duality in N= 8 superconformal mechanics and the coupling of dual pairs

    SciTech Connect (OSTI)

    Gonzales, Marcelo; Lechtenfeld, Olaf; Centre for Quantum Engineering and Space-Time Research, Leibniz Universität Hannover, Welfengarten 1, 30167 Hannover

    2013-07-15

    We couple dual pairs of N= 8 superconformal mechanics with conical targets of dimension d and 8−d. The superconformal coupling generates an oscillator-type potential on each of the two target factors, with a frequency depending on the respective dual coordinates. In the case of the inhomogeneous (3,8,5) model, which entails a monopole background, it is necessary to add an extra supermultiplet of constants for half of the supersymmetry. The N= 4 analog, joining an inhomogeneous (1,4,3) with a (3,4,1) multiplet, is also analyzed in detail.

  10. NREL and CSEM Jointly Set New Efficiency Record with Dual-Junction Solar

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Cell - News Releases | NREL NREL and CSEM Jointly Set New Efficiency Record with Dual-Junction Solar Cell January 5, 2016 Scientists at the Energy Department's National Renewable Energy Laboratory (NREL) and at the Swiss Center for Electronics and Microtechnology (CSEM) have jointly set a new world record for converting non-concentrated (1-sun) sunlight into electricity using a dual-junction III-V/Si solar cell. The newly certified record conversion efficiency of 29.8 percent was set using a

  11. A study on dual readout crystal calorimeter for hadron and jet energy measurement at a future lepton collider

    SciTech Connect (OSTI)

    Yeh, G.P.; /Fermilab

    2010-01-01

    Studies of requirements and specifications of crystals are necessary to develop a new generation of crystals for dual readout crystal hadron or total absorption calorimeter. This is a short and basic study of the characteristics and hadron energy measurement of PbWO4 and BGO crystals for scintillation and Cerenkov Dual Readout hadron calorimeter.

  12. System-Level Logistics for Dual Purpose Canister Disposal

    SciTech Connect (OSTI)

    Kalinina, Elena A.

    2014-06-03

    The analysis presented in this report investigated how the direct disposal of dual purpose canisters (DPCs) may be affected by the use of standard transportation aging and disposal canisters (STADs), early or late start of the repository, and the repository emplacement thermal power limits. The impacts were evaluated with regard to the availability of the DPCs for emplacement, achievable repository acceptance rates, additional storage required at an interim storage facility (ISF) and additional emplacement time compared to the corresponding repackaging scenarios, and fuel age at emplacement. The result of this analysis demonstrated that the biggest difference in the availability of UNF for emplacement between the DPC-only loading scenario and the DPCs and STADs loading scenario is for a repository start date of 2036 with a 6 kW thermal power limit. The differences are also seen in the availability of UNF for emplacement between the DPC-only loading scenario and the DPCs and STADs loading scenario for the alternative with a 6 kW thermal limit and a 2048 start date, and for the alternatives with a 10 kW thermal limit and 2036 and 2048 start dates. The alternatives with disposal of UNF in both DPCs and STADs did not require additional storage, regardless of the repository acceptance rate, as compared to the reference repackaging case. In comparison to the reference repackaging case, alternatives with the 18 kW emplacement thermal limit required little to no additional emplacement time, regardless of the repository start time, the fuel loading scenario, or the repository acceptance rate. Alternatives with the 10 kW emplacement thermal limit and the DPCs and STADs fuel loading scenario required some additional emplacement time. The most significant decrease in additional emplacement time occurred in the alternative with the 6 kW thermal limit and the 2036 repository starting date. The average fuel age at emplacement ranges from 46 to 88 years. The maximum fuel age at

  13. Iterative image-domain decomposition for dual-energy CT

    SciTech Connect (OSTI)

    Niu, Tianye; Dong, Xue; Petrongolo, Michael; Zhu, Lei

    2014-04-15

    Purpose: Dual energy CT (DECT) imaging plays an important role in advanced imaging applications due to its capability of material decomposition. Direct decomposition via matrix inversion suffers from significant degradation of image signal-to-noise ratios, which reduces clinical values of DECT. Existing denoising algorithms achieve suboptimal performance since they suppress image noise either before or after the decomposition and do not fully explore the noise statistical properties of the decomposition process. In this work, the authors propose an iterative image-domain decomposition method for noise suppression in DECT, using the full variance-covariance matrix of the decomposed images. Methods: The proposed algorithm is formulated in the form of least-square estimation with smoothness regularization. Based on the design principles of a best linear unbiased estimator, the authors include the inverse of the estimated variance-covariance matrix of the decomposed images as the penalty weight in the least-square term. The regularization term enforces the image smoothness by calculating the square sum of neighboring pixel value differences. To retain the boundary sharpness of the decomposed images, the authors detect the edges in the CT images before decomposition. These edge pixels have small weights in the calculation of the regularization term. Distinct from the existing denoising algorithms applied on the images before or after decomposition, the method has an iterative process for noise suppression, with decomposition performed in each iteration. The authors implement the proposed algorithm using a standard conjugate gradient algorithm. The method performance is evaluated using an evaluation phantom (Catphan600) and an anthropomorphic head phantom. The results are compared with those generated using direct matrix inversion with no noise suppression, a denoising method applied on the decomposed images, and an existing algorithm with similar formulation as the

  14. A Preliminary Cost Study of the Dual Mode Inverter Controller

    SciTech Connect (OSTI)

    McKeever, J.W.

    2005-01-28

    In 1998, the Power Electronics and Electric Machinery Research Center (PEEMRC) at the Oak Ridge National Laboratory (ORNL) started a program to investigate alternate field weakening schemes for permanent magnet (PM) motors. The adjective ''alternate'' was used because at that time, outside research emphasis was on motors with interior-mounted PMs (IPMs). The PEEMRC emphasis was placed on motors with surface-mounted PMs (SPMs) because of the relative ease of manufacturing SPM motors compared with the IPM motors. Today the PEEMRC is continuing research on SPMs while examining the IPMs that have been developed by industry. Out of this task--the goal of which was to find ways to drive PM motors that inherently have low inductance at high speeds where their back-emf exceeds the supply voltage--ORNL developed and demonstrated the dual mode inverter control (DMIC) [1,2] method of field weakening for SPM motors. The predecessor of DMIC is conventional phase advance (CPA), which was developed by UQM Technologies, Inc. [3]. Fig. 1 shows the three sets of anti-parallel thyristors in the dashed box that comprise the DMIC. If one removes the dashed box by shorting each set of anti-parallel thyristors, the configuration becomes a conventional full bridge inverter on the left driving a three phase motor on the right. CPA may be used to drive this configuration ORNL's initial analyses of CPA and DMIC were based on driving motors with trapezoidal back-emfs [4-6], obtained using double layer lapped stator windings with one slot per pole per phase. A PM motor with a sinusoidal back-emf obtained with two poles per slot per phase has been analyzed under DMIC operation as a University of Tennessee-Knoxville (UTK) doctoral dissertation [7]. In the process of this research, ORNL has completed an analysis that explains and quantifies the role of inductance in these methods of control. The Appendix includes information on the equations for the three components of phase inductance, L{sub gap

  15. Comparison of Propane and Methane Performance and Emissions in a Turbocharged Direct Injection Dual Fuel Engine

    SciTech Connect (OSTI)

    Gibson, C. M.; Polk, A. C.; Shoemaker, N. T.; Srinivasan, K. K.; Krishnan, S. R.

    2011-01-01

    With increasingly restrictive NO x and particulate matter emissions standards, the recent discovery of new natural gas reserves, and the possibility of producing propane efficiently from biomass sources, dual fueling strategies have become more attractive. This paper presents experimental results from dual fuel operation of a four-cylinder turbocharged direct injection (DI) diesel engine with propane or methane (a natural gas surrogate) as the primary fuel and diesel as the ignition source. Experiments were performed with the stock engine control unit at a constant speed of 1800 rpm, and a wide range of brake mean effective pressures (BMEPs) (2.7-11.6 bars) and percent energy substitutions (PESs) of C 3 H 8 and CH 4. Brake thermal efficiencies (BTEs) and emissions (NO x, smoke, total hydrocarbons (THCs), CO, and CO 2) were measured. Maximum PES levels of about 80-95% with CH 4 and 40-92% with C 3 H 8 were achieved. Maximum PES was limited by poor combustion efficiencies and engine misfire at low loads for both C 3 H 8 and CH 4, and the onset of knock above 9 bar BMEP for C 3 H 8. While dual fuel BTEs were lower than straight diesel BTEs at low loads, they approached diesel BTE values at high loads. For dual fuel operation, NO x and smoke reductions (from diesel values) were as high as 66-68% and 97%, respectively, but CO and THC emissions were significantly higher with increasing PES at all engine loads

  16. Crosstalk elimination in the detection of dual-beam optical tweezers by spatial filtering

    SciTech Connect (OSTI)

    Ott, Dino; Oddershede, Lene B.; Reihani, S. Nader S.

    2014-05-15

    In dual-beam optical tweezers, the accuracy of position and force measurements is often compromised by crosstalk between the two detected signals, this crosstalk leading to systematic and significant errors on the measured forces and distances. This is true both for dual-beam optical traps where the splitting of the two traps is done by polarization optics and for dual optical traps constructed by other methods, e.g., holographic tweezers. If the two traps are orthogonally polarized, most often crosstalk is minimized by inserting polarization optics in front of the detector; however, this method is not perfect because of the de-polarization of the trapping beam introduced by the required high numerical aperture optics. Here we present a simple and easy-to-implement method to efficiently eliminate crosstalk. The method is based on spatial filtering by simply inserting a pinhole at the correct position and is highly compatible with standard back focal plane photodiode based detection of position and force. Our spatial filtering method reduces crosstalk up to five times better than polarization filtering alone. The effectiveness is dependent on pinhole size and distance between the traps and is here quantified experimentally and reproduced by theoretical modeling. The method here proposed will improve the accuracy of force-distance measurements, e.g., of single molecules, performed by dual-beam optical traps and hence give much more scientific value for the experimental efforts.

  17. Dual Axis Radiographic Hydrodynamic Test Facility mitigation action plan. Annual report for 1998

    SciTech Connect (OSTI)

    Haagenstad, T.

    1999-01-15

    This Mitigation Action Plan Annual Report (MAPAR) has been prepared as part of implementing the Dual Axis Radiographic Hydrodynamic Test Facility (DARHT) Mitigation Action Plan (MAP) to protect workers, soils, water, and biotic and cultural resources in and around the facility.

  18. Application of an online-coupled regional climate model, WRF-CAM5, over East Asia for examination of ice nucleation schemes: Part I. Comprehensive model evaluation and trend analysis for 2006 and 2011

    SciTech Connect (OSTI)

    Chen, Ying; Zhang, Yang; Fan, Jiwen; Leung, Lai -Yung; Zhang, Qiang; He, Kebin

    2015-08-18

    Online-coupled climate and chemistry models are necessary to realistically represent the interactions between climate variables and chemical species and accurately simulate aerosol direct and indirect effects on cloud, precipitation, and radiation. In this Part I of a two-part paper, simulations from the Weather Research and Forecasting model coupled with the physics package of Community Atmosphere Model (WRF-CAM5) are conducted with the default heterogeneous ice nucleation parameterization over East Asia for two full years: 2006 and 2011. A comprehensive model evaluation is performed using satellite and surface observations. The model shows an overall acceptable performance for major meteorological variables at the surface and in the boundary layer, as well as column variables (e.g., precipitation, cloud fraction, precipitating water vapor, downward longwave and shortwave radiation). Moderate to large biases exist for cloud condensation nuclei over oceanic areas, cloud variables (e.g., cloud droplet number concentration, cloud liquid and ice water paths, cloud optical depth, longwave and shortwave cloud forcing). These biases indicate a need to improve the model treatments for cloud processes, especially cloud droplets and ice nucleation, as well as to reduce uncertainty in the satellite retrievals. The model simulates well the column abundances of chemical species except for column SO2 but relatively poor for surface concentrations of several species such as CO, NO2, SO2, PM2.5, and PM10. Several reasons could contribute to the underestimation of major chemical species in East Asia including underestimations of anthropogenic emissions and natural dust emissions, uncertainties in the spatial and vertical distributions of the anthropogenic emissions, as well as biases in meteorological, radiative, and cloud predictions. Despite moderate to large biases in the chemical predictions, the model performance is

  19. Application of an online-coupled regional climate model, WRF-CAM5, over East Asia for examination of ice nucleation schemes: Part I. Comprehensive model evaluation and trend analysis for 2006 and 2011

    DOE PAGES-Beta [OSTI]

    Chen, Ying; Zhang, Yang; Fan, Jiwen; Leung, Lai -Yung; Zhang, Qiang; He, Kebin

    2015-08-18

    Online-coupled climate and chemistry models are necessary to realistically represent the interactions between climate variables and chemical species and accurately simulate aerosol direct and indirect effects on cloud, precipitation, and radiation. In this Part I of a two-part paper, simulations from the Weather Research and Forecasting model coupled with the physics package of Community Atmosphere Model (WRF-CAM5) are conducted with the default heterogeneous ice nucleation parameterization over East Asia for two full years: 2006 and 2011. A comprehensive model evaluation is performed using satellite and surface observations. The model shows an overall acceptable performance for major meteorological variables at themore » surface and in the boundary layer, as well as column variables (e.g., precipitation, cloud fraction, precipitating water vapor, downward longwave and shortwave radiation). Moderate to large biases exist for cloud condensation nuclei over oceanic areas, cloud variables (e.g., cloud droplet number concentration, cloud liquid and ice water paths, cloud optical depth, longwave and shortwave cloud forcing). These biases indicate a need to improve the model treatments for cloud processes, especially cloud droplets and ice nucleation, as well as to reduce uncertainty in the satellite retrievals. The model simulates well the column abundances of chemical species except for column SO2 but relatively poor for surface concentrations of several species such as CO, NO2, SO2, PM2.5, and PM10. Several reasons could contribute to the underestimation of major chemical species in East Asia including underestimations of anthropogenic emissions and natural dust emissions, uncertainties in the spatial and vertical distributions of the anthropogenic emissions, as well as biases in meteorological, radiative, and cloud predictions. Despite moderate to large biases in the chemical predictions, the model performance is generally consistent with or even better than that

  20. WE-A-BRF-01: Dual-Energy CT Imaging in Diagnostic Imaging and Radiation Therapy

    SciTech Connect (OSTI)

    Molloi, S; Li, B; Yin, F; Chen, H

    2014-06-15

    The quantification accuracy of dual-energy imaging is influenced by the fundamentals of x-ray physics, system geometry, data acquisition hardware/protocol, system calibration, and image processing technique. This symposium will provide updates on the following advanced application areas: Mammography. Volumetric breast density techniques based on standard mammograms require estimation of breast thickness, which is difficult to accurately measure. By comparison, calculation of breast density using dual energy mammography does not require measurement of breast thickness. Dual energy mammography has been implemented using both energy integrating flat panel detectors in conjunction with beam energy switching and energy resolved photon counting detectors. These techniques have been optimized using simulation studies and validated using physical phantoms and postmortem breasts. Chemical decomposition was used as the gold standard for volumetric breast density measurement in postmortem breasts. Breast density measurements have also been compared with results from four-category BI-RADS density rankings, standard image thresholding and Fuzzy k-mean clustering techniques. These studies indicate that dual energy mammography can be used to accurately measure volumetric breast density. Cardiovascular CT. The predicative accuracy of risk models for recurrent stroke and cardiac arrest depends heavily on accurate differentiation of thrombus or calcium from iodine in left atrial appendage or coronary arteries. The amount of energy separation is constrained by image noise; therefore, optimal kVp, beam filtration, and balanced flux are essential for the quantification accuracy of iodine and calcium. The basis materials are combined linearly to generate monochromatic energy images, where CT# accuracy and CNR are energy dependent. With optimal monochromatic energy, the mean iodine concentration for the thrombus, circulatory stasis, and control groups are significantly different. Risk

  1. Synthesis of ZSM-23/ZSM-22 intergrowth zeolite with a novel dual-template strategy

    SciTech Connect (OSTI)

    Wang, Bingchun, E-mail: wangbc@dicp.ac.cn [National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China) [National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Tian, Zhijian, E-mail: tianz@dicp.ac.cn [National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China) [National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Li, Peng; Wang, Lei; Xu, Yunpeng; Qu, Wei; Ma, Huaijun; Xu, Zhusheng [National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China)] [National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Lin, Liwu [State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China)] [State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China)

    2009-12-15

    ZSM-23/ZSM-22 intergrowth zeolite with fixed proportion of 60%ZSM-23/40%ZSM-22 has been synthesized with a novel dual-template strategy. The products were characterized by X-ray diffraction and scanning electron microscopy. Dimethylamine and diethylamine were used together as a dual-template system. The molar ratio of diethylamine to dimethylamine, which was changed with the type of aluminum source, was the key factor for the synthesis of intergrowth zeolites. A molar ratio of diethylamine to dimethylamine of 1:24 could result in an ZSM-23/ZSM-22 intergrowth zeolite if aluminum sulfate was used as aluminum source, whereas a molar ratio of diethylamine to dimethylamine of 1:12 was required to get an ZSM-23/ZSM-22 intergrowth zeolite if sodium metaaluminate was used. Furthermore, fluoride anion could be involved in the process as a crystallization promoter.

  2. DualTrust: A Distributed Trust Model for Swarm-Based Autonomic Computing Systems

    SciTech Connect (OSTI)

    Maiden, Wendy M.; Dionysiou, Ioanna; Frincke, Deborah A.; Fink, Glenn A.; Bakken, David E.

    2011-02-01

    For autonomic computing systems that utilize mobile agents and ant colony algorithms for their sensor layer, trust management is important for the acceptance of the mobile agent sensors and to protect the system from malicious behavior by insiders and entities that have penetrated network defenses. This paper examines the trust relationships, evidence, and decisions in a representative system and finds that by monitoring the trustworthiness of the autonomic managers rather than the swarming sensors, the trust management problem becomes much more scalable and still serves to protect the swarm. We then propose the DualTrust conceptual trust model. By addressing the autonomic manager’s bi-directional primary relationships in the ACS architecture, DualTrust is able to monitor the trustworthiness of the autonomic managers, protect the sensor swarm in a scalable manner, and provide global trust awareness for the orchestrating autonomic manager.

  3. Protein–ligand interactions investigated by thermal shift assays (TSA) and dual polarization interferometry (DPI)

    SciTech Connect (OSTI)

    Grøftehauge, Morten K. Hajizadeh, Nelly R.; Swann, Marcus J.; Pohl, Ehmke

    2015-01-01

    The biophysical characterization of protein–ligand interactions in solution using techniques such as thermal shift assay, or on surfaces using, for example, dual polarization interferometry, plays an increasingly important role in complementing crystal structure determinations. Over the last decades, a wide range of biophysical techniques investigating protein–ligand interactions have become indispensable tools to complement high-resolution crystal structure determinations. Current approaches in solution range from high-throughput-capable methods such as thermal shift assays (TSA) to highly accurate techniques including microscale thermophoresis (MST) and isothermal titration calorimetry (ITC) that can provide a full thermodynamic description of binding events. Surface-based methods such as surface plasmon resonance (SPR) and dual polarization interferometry (DPI) allow real-time measurements and can provide kinetic parameters as well as binding constants. DPI provides additional spatial information about the binding event. Here, an account is presented of new developments and recent applications of TSA and DPI connected to crystallography.

  4. Sun-Relative Pointing for Dual-Axis Solar Trackers Employing Azimuth and Elevation Rotations

    DOE PAGES-Beta [OSTI]

    Riley, Daniel; Hansen, Clifford W.

    2014-12-30

    Dual axis trackers employing azimuth and elevation rotations are common in the field of photovoltaic (PV) energy generation. Accurate sun-tracking algorithms are widely available. However, a steering algorithm has not been available to accurately point the tracker away from the sun such that a vector projection of the sun beam onto the tracker face falls along a desired path relative to the tracker face. We have developed an algorithm which produces the appropriate azimuth and elevation angles for a dual axis tracker when given the sun position, desired angle of incidence, and the desired projection of the sun beam ontomore » the tracker face. Development of this algorithm was inspired by the need to accurately steer a tracker to desired sun-relative positions in order to better characterize the electro-optical properties of PV and CPV modules.« less

  5. An image quality comparison of standard and dual-side read CR systems for pediatric radiology

    SciTech Connect (OSTI)

    Monnin, P.; Holzer, Z.; Wolf, R.; Neitzel, U.; Vock, P.; Gudinchet, F.; Verdun, F.R.

    2006-02-15

    An objective analysis of image quality parameters was performed for a computed radiography (CR) system using both standard single-side and prototype dual-side read plates. The pre-sampled modulation transfer function (MTF), noise power spectrum (NPS), and detective quantum efficiency (DQE) for the systems were determined at three different beam qualities representative of pediatric chest radiography, at an entrance detector air kerma of 5 {mu}Gy. The NPS and DQE measurements were realized under clinically relevant x-ray spectra for pediatric radiology, including x-ray scatter radiations. Compared to the standard single-side read system, the MTF for the dual-side read system is reduced, but this is offset by a significant decrease in image noise, resulting in a marked increase in DQE (+40%) in the low spatial frequency range. Thus, for the same image quality, the new technology permits the CR system to be used at a reduced dose level.

  6. Bimodal wireless sensing with dual-channel wide bandgap heterostructure varactors

    SciTech Connect (OSTI)

    Deen, David A.; Osinsky, Andrei; Miller, Ross

    2014-03-03

    A capacitive wireless sensing scheme is developed that utilizes an AlN/GaN-based dual-channel varactor. The dual-channel heterostructure affords two capacitance plateaus within the capacitance-voltage (CV) characteristic, owing to the two parallel two-dimensional electron gases (2DEGs) located at respective AlN/GaN interfaces. The capacitance plateaus are leveraged for the definition of two resonant states of the sensor when implemented in an inductively-coupled resonant LRC network for wireless readout. The physics-based CV model is compared with published experimental results, which serve as a basis for the sensor embodiment. The bimodal resonant sensor is befitting for a broad application space ranging from gas, electrostatic, and piezoelectric sensors to biological and chemical detection.

  7. Tracking formulas and strategies for a receiver oriented dual-axis tracking toroidal heliostat

    SciTech Connect (OSTI)

    Guo, Minghuan; Wang, Zhifeng; Liang, Wenfeng; Zhang, Xiliang; Zang, Chuncheng; Lu, Zhenwu; Wei, Xiudong

    2010-06-15

    A 4 m x 4 m toroidal heliostat with receiver oriented dual-axis tracking, also called spinning-elevation tracking, was developed as an auxiliary heat source for a hydrogen production system. A series of spinning-elevation tracking formulas have been derived for this heliostat. This included basic tracking formulas, a formula for the elevation angle for heliostat with a mirror-pivot offset, and a more general formula for the biased elevation angle. This paper presents the new tracking formulas in detail and analyzes the accuracy of applying a simplifying approximation. The numerical results show these receiver oriented dual-axis tracking formula approximations are accurate to within 2.5 x 10{sup -6} m in image plane. Some practical tracking strategies are discussed briefly. Solar images from the toroidal heliostat at selected times are also presented. (author)

  8. Sun-Relative Pointing for Dual-Axis Solar Trackers Employing Azimuth and Elevation Rotations

    SciTech Connect (OSTI)

    Riley, Daniel; Hansen, Clifford W.

    2014-12-30

    Dual axis trackers employing azimuth and elevation rotations are common in the field of photovoltaic (PV) energy generation. Accurate sun-tracking algorithms are widely available. However, a steering algorithm has not been available to accurately point the tracker away from the sun such that a vector projection of the sun beam onto the tracker face falls along a desired path relative to the tracker face. We have developed an algorithm which produces the appropriate azimuth and elevation angles for a dual axis tracker when given the sun position, desired angle of incidence, and the desired projection of the sun beam onto the tracker face. Development of this algorithm was inspired by the need to accurately steer a tracker to desired sun-relative positions in order to better characterize the electro-optical properties of PV and CPV modules.

  9. Using dual-energy x-ray imaging to enhance automated lung tumor tracking during real-time adaptive radiotherapy

    SciTech Connect (OSTI)

    Menten, Martin J. Fast, Martin F.; Nill, Simeon; Oelfke, Uwe

    2015-12-15

    Purpose: Real-time, markerless localization of lung tumors with kV imaging is often inhibited by ribs obscuring the tumor and poor soft-tissue contrast. This study investigates the use of dual-energy imaging, which can generate radiographs with reduced bone visibility, to enhance automated lung tumor tracking for real-time adaptive radiotherapy. Methods: kV images of an anthropomorphic breathing chest phantom were experimentally acquired and radiographs of actual lung cancer patients were Monte-Carlo-simulated at three imaging settings: low-energy (70 kVp, 1.5 mAs), high-energy (140 kVp, 2.5 mAs, 1 mm additional tin filtration), and clinical (120 kVp, 0.25 mAs). Regular dual-energy images were calculated by weighted logarithmic subtraction of high- and low-energy images and filter-free dual-energy images were generated from clinical and low-energy radiographs. The weighting factor to calculate the dual-energy images was determined by means of a novel objective score. The usefulness of dual-energy imaging for real-time tracking with an automated template matching algorithm was investigated. Results: Regular dual-energy imaging was able to increase tracking accuracy in left–right images of the anthropomorphic phantom as well as in 7 out of 24 investigated patient cases. Tracking accuracy remained comparable in three cases and decreased in five cases. Filter-free dual-energy imaging was only able to increase accuracy in 2 out of 24 cases. In four cases no change in accuracy was observed and tracking accuracy worsened in nine cases. In 9 out of 24 cases, it was not possible to define a tracking template due to poor soft-tissue contrast regardless of input images. The mean localization errors using clinical, regular dual-energy, and filter-free dual-energy radiographs were 3.85, 3.32, and 5.24 mm, respectively. Tracking success was dependent on tumor position, tumor size, imaging beam angle, and patient size. Conclusions: This study has highlighted the influence of

  10. On two-parameter models of photon cross sections: Application to dual-energy CT imaging

    SciTech Connect (OSTI)

    Williamson, Jeffrey F.; Li Sicong; Devic, Slobodan; Whiting, Bruce R.; Lerma, Fritz A.

    2006-11-15

    The goal of this study is to evaluate the theoretically achievable accuracy in estimating photon cross sections at low energies (20-1000 keV) from idealized dual-energy x-ray computed tomography (CT) images. Cross-section estimation from dual-energy measurements requires a model that can accurately represent photon cross sections of any biological material as a function of energy by specifying only two characteristic parameters of the underlying material, e.g., effective atomic number and density. This paper evaluates the accuracy of two commonly used two-parameter cross-section models for postprocessing idealized measurements derived from dual-energy CT images. The parametric fit model (PFM) accounts for electron-binding effects and photoelectric absorption by power functions in atomic number and energy and scattering by the Klein-Nishina cross section. The basis-vector model (BVM) assumes that attenuation coefficients of any biological substance can be approximated by a linear combination of mass attenuation coefficients of two dissimilar basis substances. Both PFM and BVM were fit to a modern cross-section library for a range of elements and mixtures representative of naturally occurring biological materials (Z=2-20). The PFM model, in conjunction with the effective atomic number approximation, yields estimated the total linear cross-section estimates with mean absolute and maximum error ranges of 0.6%-2.2% and 1%-6%, respectively. The corresponding error ranges for BVM estimates were 0.02%-0.15% and 0.1%-0.5%. However, for photoelectric absorption frequency, the PFM absolute mean and maximum errors were 10.8%-22.4% and 29%-50%, compared with corresponding BVM errors of 0.4%-11.3% and 0.5%-17.0%, respectively. Both models were found to exhibit similar sensitivities to image-intensity measurement uncertainties. Of the two models, BVM is the most promising approach for realizing dual-energy CT cross-section measurement.

  11. Nonlinear periodic waves solutions of the nonlinear self-dual network equations

    SciTech Connect (OSTI)

    Laptev, Denis V. Bogdan, Mikhail M.

    2014-04-15

    The new classes of periodic solutions of nonlinear self-dual network equations describing the breather and soliton lattices, expressed in terms of the Jacobi elliptic functions have been obtained. The dependences of the frequencies on energy have been found. Numerical simulations of soliton lattice demonstrate their stability in the ideal lattice and the breather lattice instability in the dissipative lattice. However, the lifetime of such structures in the dissipative lattice can be extended through the application of ac driving terms.

  12. Preliminary experimental investigation of a complex dual-band high power microwave source

    SciTech Connect (OSTI)

    Zhang, Xiaoping Li, Yangmei; Li, Zhiqiang; Zhong, Huihuang; Qian, Baoliang

    2015-10-15

    In order to promote the power conversion efficiency of a magnetically insulated transmission line oscillator (MILO) and obtain microwaves in dual bands, an axially extracted C-band virtual cathode oscillator (VCO) with multiple resonant cavities is introduced to partially utilize the load current of an S-band MILO. The formed novel dual-band high power microwave source called MILO and VCO is investigated with simulation and experimentally. A dual-band radiation antenna is designed to effectively radiate microwaves generated by the MILO and the VCO, respectively, while avoiding them being influenced by the microwave reflection and diffraction. The preliminary experimental results measured by the dual-band diagnostic system show that both the MILO and the VCO operate normally under repeated shots. A microwave of 2.1 GHz, 1.70 GW is generated from the MILO and a 0.37 GW microwave at frequencies of 4.1 GHz and 3.8 GHz is generated from the VCO under the condition of about 440 kV and 35 kA. Compared with a single MILO (10.6%), a MILO and VCO achieves higher total power and efficiency (13.4%) in both S and C bands, indicating that the load current of the MILO partially couples into the beam-wave interaction in the VCO and then contributes to the output microwaves. However, more works are needed regarding the spectrum purification of the VCO and promotion of the output power of both the MILO and the VCO.

  13. Computational Study of Cycle--to--Cycle Variation in Dual--Fuel Engines

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    | Argonne Leadership Computing Facility Study of Cycle--to--Cycle Variation in Dual--Fuel Engines PI Name: Ravichandra Jupudi PI Email: ravichandra.js@ge.com Institution: General Electric Global Research Allocation Program: ALCC Allocation Hours at ALCF: 25 Million Year: 2016 Research Domain: Engineering Premixed staged combustion (PSC), where fuel is burned in stages, is a new technology that has the potential to improve efficiency while reducing pollutant formation in combustion turbine

  14. Electrical and mechanical design criteria for EHV and UHV: overhead...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Report Number(s): DOERA2133-01 DOE Contract Number: AC01-77ET29236 Resource Type: Technical Report Research Org: Main (Charles T.), Inc., Boston, MA (USA) Country of Publication: ...

  15. Fault isolation through no-overhead link level CRC

    DOE Patents [OSTI]

    Chen, Dong; Coteus, Paul W.; Gara, Alan G.

    2007-04-24

    A fault isolation technique for checking the accuracy of data packets transmitted between nodes of a parallel processor. An independent crc is kept of all data sent from one processor to another, and received from one processor to another. At the end of each checkpoint, the crcs are compared. If they do not match, there was an error. The crcs may be cleared and restarted at each checkpoint. In the preferred embodiment, the basic functionality is to calculate a CRC of all packet data that has been successfully transmitted across a given link. This CRC is done on both ends of the link, thereby allowing an independent check on all data believed to have been correctly transmitted. Preferably, all links have this CRC coverage, and the CRC used in this link level check is different from that used in the packet transfer protocol. This independent check, if successfully passed, virtually eliminates the possibility that any data errors were missed during the previous transfer period.

  16. DOE-HDBK-1141-2001; Radiological Assessor Training, Overheads

    Energy Savers

    Uses for Accelerators * Basic research * Production of radioisotopes * Generation of bremsstrahlung for radiography * Induction of fusion * Pumping for lasers * Detoxification of ...

  17. Evaluation of Instrumentation and Dynamic Thermal Ratings for Overhead Lines

    SciTech Connect (OSTI)

    Phillips, A.

    2013-01-31

    In 2010, a project was initiated through a partnership between the Department of Energy (DOE) and the New York Power Authority (NYPA) to evaluate EPRI's rating technology and instrumentation that can be used to monitor the thermal states of transmission lines and provide the required real-time data for real-time rating calculations. The project included the installation and maintenance of various instruments at three 230 kV line sites in northern New York. The instruments were monitored, and data collection and rating calculations were performed for about a three year period.

  18. Two linear time, low overhead algorithms for graph layout

    Energy Science and Technology Software Center (OSTI)

    2008-01-10

    The software comprises two algorithms designed to perform a 2D layout of a graph structure in time linear with respect to the vertices and edges in the graph, whereas most other layout algorithms have a running time that is quadratic with respect to the number of vertices or greater. Although these layout algorithms run in a fraction of the time as their competitors, they provide competitive results when applied to most real-world graphs. These algorithmsmore » also have a low constant running time and small memory footprint, making them useful for small to large graphs.« less

  19. Method for continuously recovering metals using a dual zone chemical reactor

    DOE Patents [OSTI]

    Bronson, M.C.

    1995-02-14

    A dual zone chemical reactor continuously processes metal-containing materials while regenerating and circulating a liquid carrier. The starting materials are fed into a first reaction zone of a vessel containing a molten salt carrier. The starting materials react to form a metal product and a by-product that dissolves in the molten salt that flows to a second reaction zone in the reaction vessel. The second reaction zone is partitioned from, but in fluid communication with, the first reaction zone. The liquid carrier continuously circulates along a pathway between the first reaction zone and the second reaction zone. A reactive gas is introduced into the second reaction zone to react with the reaction by-product to generate the molten salt. The metal product, the gaseous waste products, and the excess liquid carrier are removed without interrupting the operation of the reactor. The design of the dual zone reactor can be adapted to combine a plurality of liquid carrier regeneration zones in a multiple dual zone chemical reactor for production scale processing. 6 figs.

  20. Method for continuously recovering metals using a dual zone chemical reactor

    DOE Patents [OSTI]

    Bronson, Mark C. (Livermore, CA)

    1995-01-01

    A dual zone chemical reactor continuously processes metal-containing materials while regenerating and circulating a liquid carrier. The starting materials are fed into a first reaction zone of a vessel containing a molten salt carrier. The starting materials react to form a metal product and a by-product that dissolves in the molten salt that flows to a second reaction zone in the reaction vessel. The second reaction zone is partitioned from, but in fluid communication with, the first reaction zone. The liquid carrier continuously circulates along a pathway between the first reaction zone and the second reaction zone. A reactive gas is introduced into the second reaction zone to react with the reaction by-product to generate the molten salt. The metal product, the gaseous waste products, and the excess liquid carrier are removed without interrupting the operation of the reactor. The design of the dual zone reactor can be adapted to combine a plurality of liquid carrier regeneration zones in a multiple dual zone chemical reactor for production scale processing.

  1. An Analysis of Dual Zone Loading for Shipping Spent Nuclear Fuel

    SciTech Connect (OSTI)

    Allen, William Christopher; Yim, Man-Sung

    2007-07-01

    The bumps current fuel assembly designs can achieve exceeds the fuel assembly burnups the current fleet of shipping casks can ship. One method of handling this situation which has been proposed is regionalized loading. This concept involves administratively separating the fuel basket of a shipping cask into two or more regions and loading fuel with different burnup, cooling times and enrichments into these regions. To evaluate how regionalized loading patterns might affect shipping spent nuclear fuel in comparison to uniform loading, a test case study was performed using fuel assemblies discharged from an actual nuclear plant and a shipping cask licensed by the NRC. Using the same fuel assemblies and shipping cask, results were obtained assuming a uniform loading pattern and compared to the results obtained assuming a dual zone loading pattern. Source terms for the analysis were generated using SAS2 and the dose levels were calculated using MCNPS. The analysis showed that the dual zone loading reduced the amount of time required to ship the given quantity of fuel by roughly thirty percent compared to the uniform loading. The average dose rate to the transportation workers and the public due to the implementation of dual zone loading increased. Implications of these increases are discussed. (authors)

  2. Correlation of FEA Prediction And Experiments On Dual-Phase Steel Automotive Rails

    SciTech Connect (OSTI)

    Du, C.; Chen, X. M.; Lim, T.; Chang, T.; Xiao, P.; Liu, S.-D.

    2007-05-17

    The North American Auto/Steel Partnership (A/SP) High-Strength Steel Forming Project Team has been studying the impact of advanced high-strength steels on stamping of structural components. Tooling was built to evaluate the effect of different grades of dual-phase steels on rail type stampings. The formed panels were laser scanned and the amount of springback was measured against the design intention. FEA simulation of the forming process was carried out to validate the numerical modeling techniques in the large and complex dual-phase steel stampings. The materials used in the study were Dual-Phase (DP) Steels DP600, DP780 and DP980. The FEA solver used was LS-Dyna version 971. The simulation results were correlated with the measurement data under various forming conditions including forming methods, trimming, binder and pad pressures. Reasonably good correlations were obtained across different grades of steels in terms of flange opening angles, wall opening angles, twist angles and dimensional deviations.

  3. WE-E-BRE-04: Dual Focal Spot Dose Painting for Precision Preclinical Radiobiological Investigations

    SciTech Connect (OSTI)

    Stewart, J; Lindsay, P; Jaffray, D

    2014-06-15

    Purpose: Recent progress in small animal radiotherapy systems has provided the foundation for delivering the heterogeneous, millimeter scale dose distributions demanded by preclinical radiobiology investigations. Despite advances in preclinical dose planning, delivery of highly heterogeneous dose distributions is constrained by the fixed collimation systems and large x-ray focal spot common in small animal radiotherapy systems. This work proposes a dual focal spot dose optimization and delivery method with a large x-ray focal spot used to deliver homogeneous dose regions and a small focal spot to paint spatially heterogeneous dose regions. Methods: Two-dimensional dose kernels were measured for a 1 mm circular collimator with radiochromic film at 10 mm depth in a solid water phantom for the small and large x-ray focal spots on a recently developed small animal microirradiator. These kernels were used in an optimization framework which segmented a desired dose distribution into low- and high-spatial frequency regions for delivery by the large and small focal spot, respectively. For each region, the method determined an optimal set of stage positions and beam-on times. The method was demonstrated by optimizing a bullseye pattern consisting of 0.75 mm radius circular target and 0.5 and 1.0 mm wide rings alternating between 0 and 2 Gy. Results: Compared to a large focal spot technique, the dual focal spot technique improved the optimized dose distribution: 69.2% of the optimized dose was within 0.5 Gy of the intended dose for the large focal spot, compared to 80.6% for the dual focal spot method. The dual focal spot design required 14.0 minutes of optimization, and will require 178.3 minutes for automated delivery. Conclusion: The dual focal spot optimization and delivery framework is a novel option for delivering conformal and heterogeneous dose distributions at the preclinical level and provides a new experimental option for unique radiobiological investigations

  4. Where does streamwater come from in low-relief forested watersheds? A dual-isotope approach

    DOE PAGES-Beta [OSTI]

    Klaus, J.; McDonnell, J. J.; Jackson, C. R.; Du, E.; Griffiths, N. A.

    2015-01-08

    The time and geographic sources of streamwater in low-relief watersheds are poorly understood. This is partly due to the difficult combination of low runoff coefficients and often damped streamwater isotopic signals precluding traditional hydrograph separation and convolution integral approaches. Here we present a dual-isotope approach involving 18O and 2H of water in a low-angle forested watershed to determine streamwater source components and then build a conceptual model of streamflow generation. We focus on three headwater lowland sub-catchments draining the Savannah River Site in South Carolina, USA. Our results for a 3-year sampling period show that the slopes of the meteoricmore » water lines/evaporation water lines (MWLs/EWLs) of the catchment water sources can be used to extract information on runoff sources in ways not considered before. Our dual-isotope approach was able to identify unique hillslope, riparian and deep groundwater, and streamflow compositions. Thus, the streams showed strong evaporative enrichment compared to the local meteoric water line (δ2H = 7.15 · δ18O +9.28‰) with slopes of 2.52, 2.84, and 2.86. Based on the unique and unambiguous slopes of the EWLs of the different water cycle components and the isotopic time series of the individual components, we were able to show how the riparian zone controls baseflow in this system and how the riparian zone "resets" the stable isotope composition of the observed streams in our low-angle, forested watersheds. Although this approach is limited in terms of quantifying mixing percentages between different end-members, our dual-isotope approach enabled the extraction of hydrologically useful information in a region with little change in individual isotope time series.« less

  5. The algebra of dual -1 Hahn polynomials and the Clebsch-Gordan problem of sl{sub -1}(2)

    SciTech Connect (OSTI)

    Genest, Vincent X.; Vinet, Luc; Zhedanov, Alexei

    2013-02-15

    The algebra H of the dual -1 Hahn polynomials is derived and shown to arise in the Clebsch-Gordan problem of sl{sub -1}(2). The dual -1 Hahn polynomials are the bispectral polynomials of a discrete argument obtained from the q{yields}-1 limit of the dual q-Hahn polynomials. The Hopf algebra sl{sub -1}(2) has four generators including an involution, it is also a q{yields}-1 limit of the quantum algebra sl{sub q}(2) and furthermore, the dynamical algebra of the parabose oscillator. The algebra H, a two-parameter generalization of u(2) with an involution as additional generator, is first derived from the recurrence relation of the -1 Hahn polynomials. It is then shown that H can be realized in terms of the generators of two added sl{sub -1}(2) algebras, so that the Clebsch-Gordan coefficients of sl{sub -1}(2) are dual -1 Hahn polynomials. An irreducible representation of H involving five-diagonal matrices and connected to the difference equation of the dual -1 Hahn polynomials is constructed.

  6. Dual-mode self-validating resistance/Johnson noise thermometer system

    DOE Patents [OSTI]

    Shepard, Robert L.; Blalock, Theron V.; Roberts, Michael J.

    1993-01-01

    A dual-mode Johnson noise and DC resistance thermometer capable of use in control systems where prompt indications of temperature changes and long term accuracy are needed. A resistance-inductance-capacitance (RLC) tuned circuit produces a continuous voltage signal for Johnson noise temperature measurement. The RLC circuit provides a mean-squared noise voltage that depends only on the capacitance used and the temperature of the sensor. The sensor has four leads for simultaneous coupling to a noise signal processor and to a DC resistance signal processor.

  7. Integration of progressive hedging and dual decomposition in stochastic integer programs

    DOE PAGES-Beta [OSTI]

    Watson, Jean -Paul; Guo, Ge; Hackebeil, Gabriel; Ryan, Sarah M.; Woodruff, David L.

    2015-04-07

    We present a method for integrating the Progressive Hedging (PH) algorithm and the Dual Decomposition (DD) algorithm of Carøe and Schultz for stochastic mixed-integer programs. Based on the correspondence between lower bounds obtained with PH and DD, a method to transform weights from PH to Lagrange multipliers in DD is found. Fast progress in early iterations of PH speeds up convergence of DD to an exact solution. As a result, we report computational results on server location and unit commitment instances.

  8. Note: A novel dual-channel time-of-flight mass spectrometer for photoelectron imaging spectroscopy

    SciTech Connect (OSTI)

    Qin Zhengbo; Wu Xia; Tang Zichao [State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China)

    2013-06-15

    A novel dual-channel time-of-flight mass spectrometer (D-TOFMS) has been designed to select anions in the photoelectron imaging measurements. In this instrument, the radiation laser can be triggered precisely to overlap with the selected ion cloud at the first-order space focusing plane. Compared with that of the conventional single channel TOFMS, the in situ mass selection performance of D-TOFMS is significantly improved. Preliminary experiment results are presented for the mass-selected photodetachment spectrum of F{sup -} to demonstrate the capability of the instrument.

  9. Efficacy of fixed filtration for rapid kVp-switching dual energy x-ray systems

    SciTech Connect (OSTI)

    Yao, Yuan; Wang, Adam S.; Pelc, Norbert J.; Department of Radiology, Stanford University, Stanford, California 94305; Department of Electrical Engineering, Stanford University, Stanford, California 94305

    2014-03-15

    Purpose: Dose efficiency of dual kVp imaging can be improved if the two beams are filtered to remove photons in the common part of their spectra, thereby increasing spectral separation. While there are a number of advantages to rapid kVp-switching for dual energy, it may not be feasible to have two different filters for the two spectra. Therefore, the authors are interested in whether a fixed added filter can improve the dose efficiency of kVp-switching dual energy x-ray systems. Methods: The authors hypothesized that a K-edge filter would provide the energy selectivity needed to remove overlap of the spectra and hence increase the precision of material separation at constant dose. Preliminary simulations were done using calcium and water basis materials and 80 and 140 kVp x-ray spectra. Precision of the decomposition was evaluated based on the propagation of the Poisson noise through the decomposition function. Considering availability and cost, the authors chose a commercial Gd{sub 2}O{sub 2}S screen as the filter for their experimental validation. Experiments were conducted on a table-top system using a phantom with various thicknesses of acrylic and copper and 70 and 125 kVp x-ray spectra. The authors kept the phantom exposure roughly constant with and without filtration by adjusting the tube current. The filtered and unfiltered raw data of both low and high energy were decomposed into basis material and the variance of the decomposition for each thickness pair was calculated. To evaluate the filtration performance, the authors measured the ratio of material decomposition variance with and without filtration. Results: Simulation results show that the ideal filter material depends on the object composition and thickness, and ranges across the lanthanide series, with higher atomic number filters being preferred for more attenuating objects. Variance reduction increases with filter thickness, and substantial reductions (40%) can be achieved with a 2 loss in

  10. Dual-ion-beam sputter deposition of TiN films

    SciTech Connect (OSTI)

    Valentini, A.; Quaranta, F.; Penza, M. ); Vasanelli, L. ); Battaglin, G. )

    1991-05-15

    A dual-ion-beam technique for the deposition of TiN thin films is described. The metal-atom flux is supplied by sputtering a titanium target with an inert ion beam, while the reactive flux is supplied directly to the growing film by a low-energy ion beam. Results are presented for titanium films deposited at room temperature under a range of {ital N}{sup +}{sub 2} ion bombardment to form TiN. Analysis gives the incorporation of nitrogen, the background gas contamination, and the optical and electrical properties of TiN films.

  11. Process for whole cell saccharification of lignocelluloses to sugars using a dual bioreactor system

    DOE Patents [OSTI]

    Lu, Jue; Okeke, Benedict

    2012-03-27

    The present invention describes a process for saccharification of lignocelluloses to sugars using whole microbial cells, which are enriched from cultures inoculated with paper mill waste water, wood processing waste and soil. A three-member bacterial consortium is selected as a potent microbial inocula and immobilized on inedible plant fibers for biomass saccharification. The present invention further relates the design of a dual bioreactor system, with various biocarriers for enzyme immobilization and repeated use. Sugars are continuously removed eliminating end-product inhibition and consumption by cell.

  12. Light-splitting photovoltaic system utilizing two dual-junction solar cells

    SciTech Connect (OSTI)

    Xiong, Kanglin; Yang, Hui; Lu, Shulong; Dong, Jianrong; Zhou, Taofei; Wang, Rongxin; Jiang, Desheng

    2010-12-15

    There are many difficulties limiting the further development of monolithic multi-junction solar cells, such as the growth of lattice-mismatched material and the current matching constraint. As an alternative approach, the light-splitting photovoltaic system is investigated intensively in different aspects, including the energy loss mechanism and the choice of energy bandgaps of solar cells. Based on the investigation, a two-dual junction system has been implemented employing lattice-matched GaInP/GaAs and InGaAsP/InGaAs cells grown epitaxially on GaAs and InP substrates, respectively. (author)

  13. Dual Selectivity Expressed in [2+2+1] Dynamic Clipping of Unsymmetrical [2]Catenanes

    SciTech Connect (OSTI)

    Liu, Yi

    2010-06-11

    A {pi}-templated dynamic [2+2+1] clipping protocol is established for the synthesis of [2]catenanes from two parts dialdehyde, two parts diamine and one part tetracationic cyclophane. It is further diversified for the selective formation of an unsymmetrical [2]catenane showing great translational selectivity by employing two different dialdehydes in a one-pot reaction. The dual selectivity and the dynamic nature are verified by {sup 1}H NMR spectroscopy, X-ray single crystal structural studies and exchange experiments.

  14. NREL, CSEM Jointly Set New Efficiency Record with Dual-Junction Solar Cell

    SciTech Connect (OSTI)

    2016-01-01

    Scientists set a new world record for converting non-concentrated sunlight into electricity using a dual-junction III-V/Si solar cell. National Renewable Energy Laboratory (NREL) and Swiss Center for Electronics and Microtechnology (CSEM) scientists have collaborated to create a novel tandem solar cell that operates at 29.8% conversion efficiency under non-concentrator (1-sun) conditions. In comparison, the 1-sun efficiency of a silicon (Si) single-junction solar cell is probably still a few years away from converging on its practical limit of about 26%.

  15. High strength, low carbon, dual phase steel rods and wires and process for making same

    DOE Patents [OSTI]

    Thomas, Gareth; Nakagawa, Alvin H.

    1986-01-01

    A high strength, high ductility, low carbon, dual phase steel wire, bar or rod and process for making the same is provided. The steel wire, bar or rod is produced by cold drawing to the desired diameter in a single multipass operation a low carbon steel composition characterized by a duplex microstructure consisting essentially of a strong second phase dispersed in a soft ferrite matrix with a microstructure and morphology having sufficient cold formability to allow reductions in cross-sectional area of up to about 99.9%. Tensile strengths of at least 120 ksi to over 400 ksi may be obtained.

  16. Final Technical Report - Integrated Hydrogeophysical and Hydrogeologic Driven Parameter Upscaling for Dual-Domain Transport Modeling

    SciTech Connect (OSTI)

    Shafer, John M

    2012-11-05

    The three major components of this research were: 1. Application of minimally invasive, cost effective hydrogeophysical techniques (surface and borehole), to generate fine scale (~1m or less) 3D estimates of subsurface heterogeneity. Heterogeneity is defined as spatial variability in hydraulic conductivity and/or hydrolithologic zones. 2. Integration of the fine scale characterization of hydrogeologic parameters with the hydrogeologic facies to upscale the finer scale assessment of heterogeneity to field scale. 3. Determination of the relationship between dual-domain parameters and practical characterization data.

  17. Dual initiation strip charge apparatus and methods for making and implementing the same

    DOE Patents [OSTI]

    Jakaboski, Juan-Carlos; Todd,; Steven N.; Polisar, Stephen; Hughs, Chance

    2011-03-22

    A Dual Initiation Strip Charge (DISC) apparatus is initiated by a single initiation source and detonates a strip of explosive charge at two separate contacts. The reflection of explosively induced stresses meet and create a fracture and breach a target along a generally single fracture contour and produce generally fragment-free scattering and no spallation. Methods for making and implementing a DISC apparatus provide numerous advantages over previous methods of creating explosive charges by utilizing steps for rapid prototyping; by implementing efficient steps and designs for metering consistent, repeatable, and controlled amount of high explosive; and by utilizing readily available materials.

  18. Nitrogen-sensitized dual phase titanate/titania for visible-light driven phenol degradation

    SciTech Connect (OSTI)

    Cheng, Yu Hua; Subramaniam, Vishnu P.; Gong, Dangguo; Tang, Yuxin; Highfield, James; Pehkonen, Simo O.; Pichat, Pierre; Chen, Zhong

    2012-12-15

    A dual-phase material (DP-160) comprising hydrated titanate (H{sub 2}Ti{sub 3}O{sub 7}{center_dot}xH{sub 2}O) and anatase (TiO{sub 2}) was synthesized in a low-temperature one-pot process in the presence of triethylamine (TEA) as the N-source. The unique structure exhibits strong visible light absorption. The chromophore is linked to Ti-N bonds derived from both surface sensitization and sub-surface (bulk) doping. From transmission electron microscope (TEM) and textural studies by N{sub 2} physisorption, the composite exists as mesoporous particles with a grain size of {approx}20 nm and mean pore diameter of 3.5 nm, responsible for the high surface area ({approx}180 m{sup 2}/g). DP-160 demonstrated photocatalytic activity in the degradation of phenol under visible light ({lambda}>420 nm). The activity of the composite was further enhanced by a small addition (0.001 M) of H{sub 2}O{sub 2}, which also gave rise to some visible light activity in the control samples. This effect is believed to be associated with the surface peroxo-titanate complex. GC-MS analyses showed that the intermediate products of phenol degradation induced by visible light irradiation of DP-160 did not differ from those obtained by UV (band-gap) irradiation of TiO{sub 2}. The overall performance of the composite is attributed to efficient excitation via inter-band states (due to N-doping), surface sensitization, improved adsorptive properties of aromatic compounds due to the N-carbonaceous overlayer, and the presence of heterojunctions that are known to promote directional charge transfer in other mixed-phase titanias like Degussa P25. - graphical abstract: Nitrogen-sensitized dual phase titanate/titania photocatalyst showing extended visible light absorption and efficient photocatalytic degradation of phenol. Highlights: Black-Right-Pointing-Pointer Low temperature one-pot synthesis of visible light active dual phase photocatalyst. Black-Right-Pointing-Pointer The dual phase consists of

  19. Dual-etalon cavity ring-down frequency-comb spectroscopy with broad band light source

    DOE Patents [OSTI]

    Chandler, David W; Strecker, Kevin E

    2014-04-01

    In an embodiment, a dual-etalon cavity-ring-down frequency-comb spectrometer system is described. A broad band light source is split into two beams. One beam travels through a first etalon and a sample under test, while the other beam travels through a second etalon, and the two beams are recombined onto a single detector. If the free spectral ranges ("FSR") of the two etalons are not identical, the interference pattern at the detector will consist of a series of beat frequencies. By monitoring these beat frequencies, optical frequencies where light is absorbed may be determined.

  20. Dual-frequency terahertz emission from splitting filaments induced by lens tilting in air

    SciTech Connect (OSTI)

    Zhang, Zhelin; Chen, Yanping Yang, Liu; Yuan, Xiaohui; Liu, Feng; Chen, Min; Xu, Jianqiu; Zhang, Jie; Sheng, Zhengming

    2014-09-08

    Dual-frequency terahertz radiation from air-plasma filaments produced with two-color lasers in air has been demonstrated experimentally. When a focusing lens is tilted for a few degrees, it is shown that the laser filament evolves from a single one to two sub-filaments. Two independent terahertz sources emitted from the sub-filaments with different frequencies and polarizations are identified, where the frequency of terahertz waves from the trailing sub-filament is higher than that from the leading sub-filament.

  1. An advanced economizer controller for dual-duct air-handling systems -- with a case application

    SciTech Connect (OSTI)

    Liu, M.; Claridge, D.E.; Park, B.Y.

    1997-12-31

    A heating penalty is expected when economizers are applied to dual-duct air-handling systems. The heating penalty can be even higher than the cooling savings when the hot airflow is higher than the cold airflow. To avoid the excessive heating penalty, advanced economizers are developed in this paper. The application of the advanced economizer has resulted in savings of $7,000/yr in one 95,000-ft{sup 2} (8,800-m{sup 2}) school building since 1993. The impacts of cold and hot deck settings on the energy consumption are also discussed.

  2. The dual-bed hydrogen production process as being developed by the Florida Solar Energy Center. Process study

    SciTech Connect (OSTI)

    DiPietro, J.P.; Skolnik, E.G.

    1997-06-01

    Clovis Linkous of the Florida Solar Energy Center is developing a dual-bed hydrogen production process. The idea is to break the water splitting process into two separate chemical reactions, each with roughly {1/2} the electrochemical potential of direct water dissociation. This enables the dual-bed process to utilize a much broader range of sunlight photons than conventional photoelectrochemical (PEC) systems. However, it requires twice as many photons per unit of hydrogen produced. The purpose of this analysis is to evaluate and quantify the trade-offs presented by the dual bed process and determine if it holds economic potential as a hydrogen production technology. The capital cost of a /solar-based water dissociation system is roughly proportional to the solar collection surface area. Thus, the economics rely on how much hydrogen can be produced per unit of solar insolation.

  3. Plasma characteristics of single- and dual-electrode ion source systems utilized in low-energy ion extraction

    SciTech Connect (OSTI)

    Vasquez, M. R.; Tokumura, S.; Kasuya, T.; Wada, M.

    2014-02-15

    Discharge characteristics in the upstream as well as in the downstream regions of a 50-eV positive ion beam were measured along the beam axis. Single- and dual-electrode configurations made of 0.1-mm diameter tungsten wires were tested. By varying the upstream discharge parameters, the shape of the sheath edge around the extractors, which can either be planar or cylindrical, can be controlled. The sheath eventually affected the simultaneous extraction of ions and neutralizing electrons. The dual-electrode configuration at the lower discharge current, revealed a homogeneous discharge downstream. At this condition, the edge of the sheath can be inferred to be planar which allowed the uniform extraction and propagation of low-energy ions at longer distances. The dual-electrode configuration was capable of transmitting low-energy ions up to 70 mm downstream.

  4. Mars Rover's ChemCam Instrument gets

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Novel software update fixes autofocus glitch LOS ALAMOS, N.M., May 21, 2015-NASA's Mars ... last week to install the new software on Mars. "We think we will actually have better ...

  5. Cam Cal - Version 1.0

    Energy Science and Technology Software Center (OSTI)

    2011-01-14

    The camcal package provides camera calibration utilities and C++ drivers to support visual targeting within the Umbra framework. The camera calibration model combines a 4-parameter distortion model, an intrinsic matrix and an extrinsic matrix representation. A table look up allows all of these matrices to be updated based upon a "zoom" parameter which moves between 0 (full -wide) and 1(full-zoom). The software includes a TclfTk Gui tool for calibrating zoom cameras, camera functions for implementingmore » the active sketch visual targeting paradigm, and a SoS (System of System) class that wraps up this functionality.« less

  6. FLUID PRESSURE AND CAM OPERATED VACUUM VALVE

    DOE Patents [OSTI]

    Batzer, T.H.

    1963-11-26

    An ultra-high vacuum valve that is bakable, reusable, and capable of being quickly opened and closed is described. A translationally movable valve gate having an annular ridge is adapted to contact an annular soft metal gasket disposed at the valve seat such that the soft metal gasket extends beyond the annular ridge on all sides. The valve gate is closed, by first laterally aligning the valve gate with the valve seat and then bringing the valve gate and valve seat into seating contact by the translational movement of a ramp-like wedging means that engages similar ramp-like stractures at the base of the valve gate to force the valve gate into essentially pressureless contact with the annular soft metal gasket. This gasket is then pressurized from beneath by a fluid thereby effecting a vacuura tight seal between the gasket and the ridge. (AEC)

  7. Microsoft Word - hoti_2014_cam.docx

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    1: Segregated nature of WANs, with network devices grouped in layers managed by their forwarding technology. Traffic Optimization in Multi-Layered WANs using SDN Henrique Rodrigues 1 , Inder Monga 2 , Abhinava Sadasivarao 3 , Sharfuddin Syed 3 , Chin Guok 2 , Eric Pouyoul 2 , Chris Liou 3 , Tajana Rosing 1 1 University of California, San Diego La Jolla, CA, USA 2 Energy Sciences Network Berkeley, CA, USA 3 Infinera Corporation Sunnyvale, CA, USA Abstract - Wide area networks (WAN) forward

  8. CAMS Center for Accelerator Mass Spectrometry

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    of the art instrumentation, to develop and apply unique, ultra-sensitive isotope ratio measurement and ion beam analytical techniques to address a broad spectrum of scientific...

  9. Spectroscopy diagnostic of dual-frequency capacitively coupled CHF{sub 3}/Ar plasma

    SciTech Connect (OSTI)

    Liu, Wen-Yao; Du, Yong-Quan [Laboratory of Plasma Physical Chemistry, Dalian University of Technology, Dalian 116024 (China)] [Laboratory of Plasma Physical Chemistry, Dalian University of Technology, Dalian 116024 (China); Liu, Yong-Xin; Liu, Jia; Zhao, Tian-Liang; Wang, You-Nian [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)] [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Xu, Yong; Li, Xiao-Song; Zhu, Ai-Min [Laboratory of Plasma Physical Chemistry, Dalian University of Technology, Dalian 116024 (China) [Laboratory of Plasma Physical Chemistry, Dalian University of Technology, Dalian 116024 (China); School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)

    2013-11-15

    A combined spectroscopic method of absorption, actinometry, and relative optical emission intensity is employed to determine the absolute CF{sub 2} density, the relative F and H densities, H atom excitation temperature and the electron density in dual-frequency (60/2 MHz) capacitively coupled CHF{sub 3}/Ar plasmas. The effects of different control parameters, such as high-frequency (HF) power, low-frequency (LF) power, gas pressure, gap length and content of CHF{sub 3}, on the concentration of radical CF{sub 2}, F, and H and excitation temperature are discussed, respectively. It is found that the concentration of CF{sub 2} is strongly dependent on the HF power, operating pressure and the proportion of CHF{sub 3} in feed gas, while it is almost independent of the LF power and the gap length. A higher concentration ratio of F to CF{sub 2} could be obtained in dual-frequency discharge case. Finally, the generation and decay mechanisms of CF{sub 2} and F were also discussed.

  10. Recognition of chromatin by the plant alkaloid, ellipticine as a dual binder

    SciTech Connect (OSTI)

    Banerjee, Amrita; Sanyal, Sulagna; Majumder, Parijat; Chakraborty, Payal; Jana, Kuladip; Dasgupta, Dipak

    2015-07-10

    Recognition of core histone components of chromatin along with chromosomal DNA by a class of small molecule modulators is worth examining to evaluate their intracellular mode of action. A plant alkaloid ellipticine (ELP) which is a putative anticancer agent has so far been reported to function via DNA intercalation, association with topoisomerase II and binding to telomere region. However, its effect upon the potential intracellular target, chromatin is hitherto unreported. Here we have characterized the biomolecular recognition between ELP and different hierarchical levels of chromatin. The significant result is that in addition to DNA, it binds to core histone(s) and can be categorized as a ‘dual binder’. As a sequel to binding with histone(s) and core octamer, it alters post-translational histone acetylation marks. We have further demonstrated that it has the potential to modulate gene expression thereby regulating several key biological processes such as nuclear organization, transcription, translation and histone modifications. - Highlights: • Ellipticine acts a dual binder binding to both DNA and core histone(s). • It induces structural perturbations in chromatin, chromatosome and histone octamer. • It alters histones acetylation and affects global gene expression.

  11. Welding Induced Alignment Distortion in Dual-in-Line LD Packages

    SciTech Connect (OSTI)

    Liu, Wenning N.; Sun, Xin; Khaleel, Mohammad A.; Shi, Frank G.

    2007-11-11

    The tolerance for the movement of a single mode fiber relative to the laser is extremely tight, a submicron movement can often lead to a significant misalignment and thus the reduction in the power coupled into the fiber. Among various fiber pigtailing assembly technologies, pulsed laser welding is the method with submicron accuracy and is most conducive to automation. However, the melting-solidification process during laser welding can often distort the pre-achieved fiber-optic alignment. This Welding-Induced-Alignment-Distortion (WIAD) is a serious concern and significantly affects the yield for single mode fiber pigtailing to a semiconductor laser. In this paper, effect of laser welding sequence on WIAD in a dual-in-line packager is numerically investigated by means of Finite Element Method (FEM). Optimal welding sequence may minimize WIAD in dual-in-line package. Additionally, unsymmetrical space between fiber and U-channel induced by laser welding of U-channelto-plate in DIP LD packages is found to have obvious effect on WIAD.

  12. Counter-propagating dual-trap optical tweezers based on linear momentum conservation

    SciTech Connect (OSTI)

    Ribezzi-Crivellari, M.; Huguet, J. M.; Ritort, F.

    2013-04-15

    We present a dual-trap optical tweezers setup which directly measures forces using linear momentum conservation. The setup uses a counter-propagating geometry, which allows momentum measurement on each beam separately. The experimental advantages of this setup include low drift due to all-optical manipulation, and a robust calibration (independent of the features of the trapped object or buffer medium) due to the force measurement method. Although this design does not attain the high-resolution of some co-propagating setups, we show that it can be used to perform different single molecule measurements: fluctuation-based molecular stiffness characterization at different forces and hopping experiments on molecular hairpins. Remarkably, in our setup it is possible to manipulate very short tethers (such as molecular hairpins with short handles) down to the limit where beads are almost in contact. The setup is used to illustrate a novel method for measuring the stiffness of optical traps and tethers on the basis of equilibrium force fluctuations, i.e., without the need of measuring the force vs molecular extension curve. This method is of general interest for dual trap optical tweezers setups and can be extended to setups which do not directly measure forces.

  13. Microstructure evolution and mechanical behavior of a high strength dual-phase steel under monotonic loading

    SciTech Connect (OSTI)

    Nesterova, E.V.; Bouvier, S.; Bacroix, B.

    2015-02-15

    Transmission electron microscopy (TEM) microstructures of a high-strength dual-phase steel DP800 have been examined after moderate plastic deformations in simple shear and uniaxial tension. Special attention has been paid to the effect of the intergranular hard phase (martensite) on the microstructure evolution in the near-grain boundary regions. Quantitative parameters of dislocation patterning have been determined and compared with the similar characteristics of previously examined single-phase steels. The dislocation patterning in the interiors of the ferrite grains in DP800 steel is found to be similar to that already observed in the single-phase IF (Interstitial Free) steel whereas the martensite-affected zones present a delay in patterning and display very high gradients of continuous (gradual) disorientations associated with local internal stresses. The above stresses are shown to control the work-hardening of dual-phase materials at moderate strains for monotonic loading and are assumed to influence their microstructure evolution and mechanical behavior under strain-path changes. - Highlights: • The microstructure evolution has been studied by TEM in a DP800 steel. • It is influenced by both martensite and dislocations in the initial state. • The DP800 steel presents a high work-hardening rate due to internal stresses.

  14. Temperature dependent dual hydrogen sensor response of Pd nanoparticle decorated Al doped ZnO surfaces

    SciTech Connect (OSTI)

    Gupta, D.; Barman, P. B.; Hazra, S. K.; Dutta, D.; Kumar, M.; Som, T.

    2015-10-28

    Sputter deposited Al doped ZnO (AZO) thin films exhibit a dual hydrogen sensing response in the temperature range 40 °C–150 °C after surface modifications with palladium nanoparticles. The unmodified AZO films showed no response in hydrogen in the temperature range 40 °C–150 °C. The operational temperature windows on the low and high temperature sides have been estimated by isolating the semiconductor-to-metal transition temperature zone of the sensor device. The gas response pattern was modeled by considering various adsorption isotherms, which revealed the dominance of heterogeneous adsorption characteristics. The Arrhenius adsorption barrier showed dual variation with change in hydrogen gas concentration on either side of the semiconductor-to-metal transition. A detailed analysis of the hydrogen gas response pattern by considering the changes in nano palladium due to hydrogen adsorption, and semiconductor-to-metal transition of nanocrystalline Al doped ZnO layer due to temperature, along with material characterization studies by glancing incidence X-ray diffraction, atomic force microscopy, and transmission electron microscopy, are presented.

  15. Turbine-scale wind field measurements using dual-Doppler lidar

    SciTech Connect (OSTI)

    Newsom, Rob K.; Berg, Larry K.; Shaw, William J.; Fischer, Marc

    2015-02-01

    Spatially resolved measurements of micro-scale winds are retrieved using scanning dual-Doppler lidar, and validated against independent in situ wind measurements. Data for this study were obtained during a month-long field campaign conducted at a site in north-central Oklahoma in November of 2010. Observational platforms include one heavily instrumented 60-m meteorological tower and two scanning coherent Doppler lidars. The lidars were configured to perform coordinated dual-Doppler scans surrounding the 60-m tower, and the resulting radial velocity observations were processed to retrieve the 3-component velocity vector field on surfaces defined by the intersecting scan planes. Raw radial velocity measurements from the lidars were calibrated by direct comparison to a sonic anemometer located at the 60 m level on the tower. Wind retrievals were performed using both calibrated and uncalibrated measurements, and validated against the 60-m sonic anemometer observations. Retrievals using uncalibrated radial velocity data show a significant slow bias in the wind speed of about 14%; whereas the retrievals using the calibrated data show a much smaller slow bias of 1.2%. Retrievals using either the calibrated or uncalibrated data exhibit negligible bias in the wind direction (<0.2o), and excellent correlation in the wind speeds (>0.96).

  16. Application of High Performance Computing for Simulating Cycle-to-Cycle Variation in Dual-Fuel Combustion Engines

    DOE PAGES-Beta [OSTI]

    Jupudi, Ravichandra S.; Finney, Charles E.A.; Primus, Roy; Wijeyakulasuriya, Sameera; Klingbeil, Adam E.; Tamma, Bhaskar; Stoyanov, Miroslav K.

    2016-04-05

    Interest in operational cost reduction is driving engine manufacturers to consider lower-cost fuel substitution in heavy-duty diesel engines. These dual-fuel (DF) engines could be operated either in diesel-only mode or operated with premixed natural gas (NG) ignited by a pilot flame of compression-ignited direct-injected diesel fuel. One promising application is that of large-bore, medium-speed engines such as those used in locomotives. With realistic natural gas substitution levels in the fleet of locomotives currently in service, such fuel substitution could result in billions of dollars of savings annually in the US alone. However, under certain conditions, dual-fuel operation can result inmore » increased cycle-to-cycle variability (CCV) during combustion, resulting in variations in cylinder pressure and work extraction. In certain situations, the CCV of dual-fuel operation can be notably higher than that of diesel-only combustion under similar operating conditions. Excessive CCV can limit the NG substitution rate and operating range of a dual-fuel engine by increasing emissions and reducing engine stability, reliability and fuel efficiency via incomplete natural-gas combustion. Running multiple engine cycles in series to simulate CCV can be quite time consuming. Hence innovative modelling techniques and large computing resources are needed to investigate the factors affecting CCV in dual-fuel engines. This paper discusses the use of the High Performance Computing resource Titan, at the Oak Ridge Leadership Computing Facility at Oak Ridge National Laboratory, to investigate cycle-to-cycle combustion variability of a dual-fuel engine. The CONVERGE CFD software was used to simulate multiple, parallel single cycles of dual-fuel combustion with perturbed operating parameters and boundary conditions. These perturbations are imposed according to a sparse grids sampling of the parameter space. The sampling scheme chosen is similar to a design of experiments method

  17. Visible light stimulating dual-wavelength emission and O vacancy involved energy transfer behavior in luminescence for coaxial nanocable arrays

    SciTech Connect (OSTI)

    Yang, Lei, E-mail: nanoyang@qq.com [College of Materials Science and Engineering, Hunan University, Changsha 410082 (China); Hunan Province Key Laboratory for Spray Deposition Technology and Application, Hunan University, Changsha 410082 (China); Dong, Jiazhang; Jiang, Zhongcheng [College of Materials Science and Engineering, Hunan University, Changsha 410082 (China); Pan, Anlian; Zhuang, Xiujuan [Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, Hunan University, Changsha 410082 (China)

    2014-06-14

    We report a strategy to investigate O vacancy (V{sub O}) involved energy transfer and dual-wavelength yellow emission in coaxial nanocable. By electric field deposition and subsequent sol-gel template approach, ZnO:Tb/Y{sub 2}O{sub 3}:Eu coaxial nanocable arrays are synthesized. After visible light excitation, system is promoted to O vacancy charge transfer state of V{sub O}(0/+). In the following cross relaxation, energy transfer from V{sub O} to the excitation energy level of Tb{sup 3+} in ZnO:Tb core area. While in Y{sub 2}O{sub 3}:Eu shell area, energy transfer to the excitation energy level of Eu{sup 3+}. Subsequently, dual-wavelength emission is observed. By constructing nanocable with dual-wavelength emission, yellow luminescence is obtained. Adjust doping concentration of Eu{sup 3+} or Tb{sup 3+} in the range of 0.010.05, chromaticity coordinates of ZnO:Tb/Y{sub 2}O{sub 3}:Eu nanocable stably stays at yellow region in color space except ZnO:Tb{sub 0.01}/Y{sub 2}O{sub 3}:Eu{sub 0.01}. As Vo states act as media in energy transfer process in nanocablers, visible light can stimulate dual-wavelength emissions. Yellow luminescent nanocable arrays will have great applications in light-emitting diode luminescence.

  18. The impact of quantum dot filling on dual-band optical transitions via intermediate quantum states

    SciTech Connect (OSTI)

    Wu, Jiang; Passmore, Brandon; Manasreh, M. O.

    2015-08-28

    InAs/GaAs quantum dot infrared photodetectors with different doping levels were investigated to understand the effect of quantum dot filling on both intraband and interband optical transitions. The electron filling of self-assembled InAs quantum dots was varied by direct doping of quantum dots with different concentrations. Photoresponse in the near infrared and middle wavelength infrared spectral region was observed from samples with low quantum dot filling. Although undoped quantum dots were favored for interband transitions with the absence of a second optical excitation in the near infrared region, doped quantum dots were preferred to improve intraband transitions in the middle wavelength infrared region. As a result, partial filling of quantum dot was required, to the extent of maintaining a low dark current, to enhance the dual-band photoresponse through the confined electron states.

  19. Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies

    DOE PAGES-Beta [OSTI]

    Zhang, Yuping; Li, Tongtong; Chen, Qi; Zhang, Huiyun; O’Hara, John F.; Abele, Ethan; Taylor, Antoinette J.; Chen, Hou-Tong; Azad, Abul K.

    2015-12-22

    We design a dual-band absorber formed by combining two cross-shaped metallic resonators of different sizes within a super-unit-cell arranged in mirror symmetry. Simulations indicate that absorption efficiencies greater than 99% can be achieved at two different frequencies under normal incidence. We also employ a design scheme with graphene integration, which allows independent tuning of individual absorption frequencies by electrostatically changing the Fermi energy of the graphene layer. High absorbance is maintained over a wide incident angle range up to 50 degrees for both TE and TM polarizations. Thus, it enables a promising way to design electrically tunable absorbers, which maymore » contribute toward the realization of frequency selective detectors for sensing applications.« less

  20. High-throughput, dual probe biological assays based on single molecule detection

    DOE Patents [OSTI]

    Hollars, Christopher W.; Huser, Thomas R.; Lane, Stephen M.; Balhorn, Rodney L.; Bakajin, Olgica; Darrow, Christopher; Satcher, Jr., Joe H.

    2006-07-11

    A method and apparatus with the sensitivity to detect and identify single target molecules through the localization of dual, fluorescently labeled probe molecules. This can be accomplished through specific attachment of the taget to a surface or in a two-dimensional (2D) flowing fluid sheet having approximate dimensions of 0.5 .mu.m.times.100 .mu.m.times.100 .mu.m. A device using these methods would have 10.sup.3 10.sup.4 greater throughput than previous one-dimensional (1D) micro-stream devices having 1 .mu.m.sup.3 interrogation volumes and would for the first time allow immuno- and DNA assays at ultra-low (femtomolar) concentrations to be performed in short time periods (.about.10 minutes). The use of novel labels (such as metal or semiconductor nanoparticles) may be incorporated to further extend the sensitivity possibly into the attomolar range.

  1. Dual bed reactor for the study of catalytic biomass tars conversion

    SciTech Connect (OSTI)

    Ammendola, P.; Piriou, B.; Lisi, L.; Ruoppolo, G.; Chirone, R.; Russo, G.

    2010-04-15

    A dual fixed bed laboratory scale set up has been used to compare the activity of a novel Rh/LaCoO{sub 3}/Al{sub 2}O{sub 3} catalyst to that of dolomite, olivine and Ni/Al{sub 2}O{sub 3}, typical catalysts used in fluidized bed biomass gasification, to convert tars produced during biomass devolatilization stage. The experimental apparatus allows the catalyst to be operated under controlled conditions of temperature and with a real gas mixture obtained by the pyrolysis of the biomass carried out in a separate fixed bed reactor operated under a selected and controlled heating up rate. The proposed catalyst exhibits much better performances than conventional catalysts tested. It is able to completely convert tars and also to strongly decrease coke formation due to its good redox properties. (author)

  2. Note: High-efficiency broadband acoustic energy harvesting using Helmholtz resonator and dual piezoelectric cantilever beams

    SciTech Connect (OSTI)

    Yang, Aichao; Li, Ping Wen, Yumei; Lu, Caijiang; Peng, Xiao; He, Wei; Zhang, Jitao; Wang, Decai; Yang, Feng

    2014-06-15

    A high-efficiency broadband acoustic energy harvester consisting of a compliant-top-plate Helmholtz resonator (HR) and dual piezoelectric cantilever beams is proposed. Due to the high mechanical quality factor of beams and the strong multimode coupling of HR cavity, top plate and beams, the high efficiency in a broad bandwidth is obtained. Experiment exhibits that the proposed harvester at 170–206 Hz has 28–188 times higher efficiency than the conventional harvester using a HR with a piezoelectric composite diaphragm. For input acoustic pressure of 2.0 Pa, the proposed harvester exhibits 0.137–1.43 mW output power corresponding to 0.035–0.36 μW cm{sup −3} volume power density at 170–206 Hz.

  3. Effects of gas pressure on 60/13.56 MHz dual-frequency capacitively coupled plasmas

    SciTech Connect (OSTI)

    Yuan, Q. H.; Yin, G. Q. [Key Laboratory of Atomic and Molecular Physics and Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070 (China); Xin, Y.; Ning, Z. Y. [School of Physical Science and Technology, Suzhou University, SuZhou 215006 (China)

    2011-05-15

    The electron energy probability functions (EEPFs) were measured with increasing gas pressure in 60/13.56 MHz dual-frequency capacitively coupled plasma (DF-CCP) using compensated Langmiur electrostatic probe. The transition pressure of heating mode from collisionless to collisional heating in 60/13.56 MHz DF-CCP is found to be significantly lower than that in 13.56 MHz single-frequency CCP. As the pressure increases, the EEPFs change from bi-Maxwellian to Druyvesteyn type which is similar with that in 60 MHz single-frequency CCP. The pressure dependence of electron densities, effective electron temperatures, floating potentials, and plasma potentials in 60/13.56 MHz DF-CCP were measured and were compared with that in 60 MHz single-frequency CCP. The pressure dependence of these plasma parameters in 60/13.56 MHz DF-CCP is similar with that in 60 MHz single-frequency CCP.

  4. Solar Photo Catalytic Hydrogen Production from water using a dual bed photosystem

    SciTech Connect (OSTI)

    Florida Solar Energy Center

    2003-03-30

    A body of work was performed in which the feasibility of photocatalytically decomposing water into its constituent elements using a dual bed, or modular photosystem, under solar radiation was investigated. The system envisioned consists of two modules, each consisting of a shallow, flat, sealed container, in which microscopic photocatalytic particles are immobilized. The photocatalysts absorb light, generating free electrons and lattice vacancy holes, which are capable of performing reductive and oxidative chemistry, respectively. The photocatalysts would be chosen as to whether they specifically promote H{sub 2} or O{sub 2} evolution in their respective containers. An aqueous solution containing a redox mediator is pumped between the two chambers in order to transfer electron equivalents from one reaction to the other.

  5. Controlled rolling process for dual phase steels and application to rod, wire, sheet and other shapes

    DOE Patents [OSTI]

    Thomas, G.; Ahn, J.H.; Kim, N.J.

    1986-10-28

    An improved, energy efficient, hot rolling method for direct production of cold formable dual-phase steel is provided. The steel is heated to completely austenitize it and then continuously hot rolled and cooled down into the ferrite-austenite two phase region to a temperature which is just below the effective Ar[sub 3] temperature. The hot rolled steel is then rapidly quenched to provide an alloy containing strong, tough lath martensite (fibers) in a ductile soft ferrite matrix. The method is particularly useful for providing rods in which form the alloy is capable of being drawn into high strength wire or the like in a cold drawing operation without any intermediate annealing or patenting, and has excellent strength, ductility and fatigue characteristics. 3 figs.

  6. Dual-sensor technique for characterization of carrier lifetime decay transients in semiconductors

    SciTech Connect (OSTI)

    Ahrenkiel, R. K.; Johnston, S. W.; Kuciauskas, D.; Tynan, Jerry

    2014-12-07

    This work addresses the frequent discrepancy between transient photoconductive (PC) decay and transient photoluminescence (PL) decay. With this dual- sensor technique, one measures the transient PC and PL decay simultaneously with the same incident light pulse, removing injection-level uncertainty. Photoconductive decay measures the transient photoconductivity, Δσ(t). PCD senses carriers released from shallow traps as well as the photo-generated electron-hole pairs. In addition, variations in carrier mobility with injection level (and time) contribute to the decay time. PL decay senses only electron-hole recombination via photon emission. Theory and experiment will show that the time dependence of the two techniques can be quite different at high injection.

  7. Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies

    SciTech Connect (OSTI)

    Zhang, Yuping; Li, Tongtong; Chen, Qi; Zhang, Huiyun; O’Hara, John F.; Abele, Ethan; Taylor, Antoinette J.; Chen, Hou-Tong; Azad, Abul K.

    2015-12-22

    We design a dual-band absorber formed by combining two cross-shaped metallic resonators of different sizes within a super-unit-cell arranged in mirror symmetry. Simulations indicate that absorption efficiencies greater than 99% can be achieved at two different frequencies under normal incidence. We also employ a design scheme with graphene integration, which allows independent tuning of individual absorption frequencies by electrostatically changing the Fermi energy of the graphene layer. High absorbance is maintained over a wide incident angle range up to 50 degrees for both TE and TM polarizations. Thus, it enables a promising way to design electrically tunable absorbers, which may contribute toward the realization of frequency selective detectors for sensing applications.

  8. Dual-axis high-data-rate atom interferometer via cold ensemble exchange

    SciTech Connect (OSTI)

    Rakholia, Akash V.; McGuinness, Hayden J.; Biedermann, Grant W.

    2014-11-24

    We demonstrate a dual-axis accelerometer and gyroscope atom interferometer, which can form the building blocks of a six-axis inertial measurement unit. By recapturing the atoms after the interferometer sequence, we maintain a large atom number at high data rates of 50 to 100 measurements per second. Two cold ensembles are formed in trap zones located a few centimeters apart and are launched toward one another. During their ballistic trajectory, they are interrogated with a stimulated Raman sequence, detected, and recaptured in the opposing trap zone. As a result, we achieve sensitivities at ?g/ ?Hz and ?rad/s/ ?Hz levels, making this a compelling prospect for expanding the use of atom interferometer inertial sensors beyond benign laboratory environments.

  9. Dual-axis high-data-rate atom interferometer via cold ensemble exchange

    DOE PAGES-Beta [OSTI]

    Rakholia, Akash V.; McGuinness, Hayden J.; Biedermann, Grant W.

    2014-11-24

    We demonstrate a dual-axis accelerometer and gyroscope atom interferometer, which can form the building blocks of a six-axis inertial measurement unit. By recapturing the atoms after the interferometer sequence, we maintain a large atom number at high data rates of 50 to 100 measurements per second. Two cold ensembles are formed in trap zones located a few centimeters apart and are launched toward one another. During their ballistic trajectory, they are interrogated with a stimulated Raman sequence, detected, and recaptured in the opposing trap zone. As a result, we achieve sensitivities at μg/ √Hz and μrad/s/ √Hz levels, making thismore » a compelling prospect for expanding the use of atom interferometer inertial sensors beyond benign laboratory environments.« less

  10. Fat to muscle ratio measurements with dual energy x-ray absorbtiometry

    DOE PAGES-Beta [OSTI]

    Chen, A.; Luo, J.; Wang, A.; Broadbent, C.; Zhong, J.; Dilmanian, F. A.; Zafonte, F.; Zhong, Z.

    2015-03-14

    Accurate measurement of the fat-to-muscle ratio in animal model is important for obesity research. In addition, an efficient way to measure the fat to muscle ratio in animal model using dual-energy absorptiometry is presented in this paper. A radioactive source exciting x-ray fluorescence from a target material is used to provide the two x-ray energies needed. The x-rays, after transmitting through the sample, are measured with an energy-sensitive Ge detector. Phantoms and specimens were measured. The results showed that the method was sensitive to the fat to muscle ratios with good linearity. A standard deviation of a few percent inmore » the fat to muscle ratio could be observed with the x-ray dose of 0.001 mGy.« less

  11. Dual-completion design for HP/HT corrosive oil well, Villafortuna-Trecate Italy

    SciTech Connect (OSTI)

    Cerruti, S.E.

    1994-12-31

    Villafortuna-Trecate (Italy) oil field is one of the deepest hydrocarbon deposit in production with a reservoir pressure over 15 Ksi, bottom hole temperature in the range of 380 F and corrosive environment due the presence of carbon dioxide and hydrogen sulfide in the production fluids. The design of Villafortuna-Trecate completions requested effort in the selection of appropriate equipment and materials that would enhance the safety, longevity and production capacity of the wells. The paper will discuss the dual completion design outlining the supporting logic and concepts together with the equipment innovations utilized. It includes discussion on tubing material and design, tubing connection, wellhead equipment, completion schemes and related equipment, annulus fluid and displacement technique. Quality control aspects are also discussed. It should serve as a general example of conditions unique to deep, high pressure, high temperature corrosive wells and should be of interest to engineers facing a similar task.

  12. Dual annular rotating [open quotes]windowed[close quotes] nuclear reflector reactor control system

    DOE Patents [OSTI]

    Jacox, M.G.; Drexler, R.L.; Hunt, R.N.M.; Lake, J.A.

    1994-03-29

    A nuclear reactor control system is provided in a nuclear reactor having a core operating in the fast neutron energy spectrum where criticality control is achieved by neutron leakage. The control system includes dual annular, rotatable reflector rings. There are two reflector rings: an inner reflector ring and an outer reflector ring. The reflectors are concentrically assembled, surround the reactor core, and each reflector ring includes a plurality of openings. The openings in each ring are capable of being aligned or non-aligned with each other. Independent driving means for each of the annular reflector rings is provided so that reactor criticality can be initiated and controlled by rotation of either reflector ring such that the extent of alignment of the openings in each ring controls the reflection of neutrons from the core. 4 figures.

  13. A Dual Channel X-ray Spectrometer for Fast Ignition Research

    SciTech Connect (OSTI)

    Akli, K U; Patel, P K; Van Maren, R; Stephens, R B; Key, M H; Higginson, D P; Westover, B; Chen, C D; Mackinnon, A J; Bartal, T; Beg, F N; Chawla, S; Fedosejevs, R; Freeman, R R; Hey, D S; Kemp, G E; LePape, S; Link, A; Ma, T; MacPhee, A G; McLean, H S; Ping, Y; Tsui, Y Y; Van Woerkom, L D; Wei, M S; Yabuuchi, T

    2010-04-19

    A new Dual Channel Highly Ordered Pyrolytic Graphite (DC-HOPG) x-ray spectrometer was developed to study laser-generated electron beam transport. The instrument uses a pair of graphite crystals and has the advantage of simultaneously detecting self emission from low-Z materials in first diffraction order and high-Z materials in second order. The emissions from the target are detected using a pair of parallel imaging plates positioned in a such way that the noise from background is minimized and the mosaic focusing is achieved. Initial tests of the diagnostic on Titan laser (I {approx} 10{sup 20} W/cm{sup 2}, {tau} = 0.7 ps) show excellent signal-to-noise ratio (SNR) > 1000 for the low energy channel and SNR > 400 for the high energy channel.

  14. Quasi-phase-matching of the dual-band nonlinear left-handed metamaterial

    SciTech Connect (OSTI)

    Liu, Yahong Song, Kun; Gu, Shuai; Liu, Zhaojun; Guo, Lei; Zhao, Xiaopeng; Zhou, Xin

    2014-11-17

    We demonstrate a type of nonlinear meta-atom creating a dual-band nonlinear left-handed metamaterial (DNLHM). The DNLHM operates at two distinct left-handed frequency bands where there is an interval of one octave between the two center frequencies. Under the illumination of a high-power signal at the first left-handed frequency band corresponding to fundamental frequency (FF), second-harmonic generation (SHG) is observed at the second left-handed band. This means that our DNLHM supports backward-propagating waves both at FF and second-harmonic (SH) frequency. We also experimentally demonstrate quasi-phase-matching configurations for the backward SHG. This fancy parametric process can significantly transmits the SH generated by an incident FF wave.

  15. Spherically symmetric self-dual Yang-Mills instantons on curved backgrounds in all even dimensions

    SciTech Connect (OSTI)

    Radu, Eugen; Tchrakian, D. H.; Yang Yisong

    2008-02-15

    We present several different classes of self-dual Yang-Mills instantons in all even d-dimensional backgrounds with Euclidean signature. In d=4p+2 the only solutions we found are on constant curvature dS (de Sitter) and AdS (anti-de Sitter) backgrounds and are evaluated in closed form. In d=4p an interesting class of instantons are given on black hole backgrounds. One class of solutions are (Euclidean) time-independent and spherically symmetric in d-1 dimensions, and the other class are spherically symmetric in all d dimensions. Some of the solutions in the former class are evaluated numerically, all the rest being given in closed form. Analytic proofs of existence covering all numerically evaluated solutions are given. All instantons studied have finite action and vanishing energy momentum tensor and do not disturb the geometry.

  16. Controlled rolling process for dual phase steels and application to rod, wire, sheet and other shapes

    DOE Patents [OSTI]

    Thomas, Gareth; Ahn, Jae-Hwan; Kim, Nack-Joon

    1986-01-01

    An improved, energy efficient, hot rolling method for direct production of cold formable dual-phase steel is provided. The steel is heated to completely austenitize it and then continuously hot rolled and cooled down into the ferrite-austenite two phase region to a temperature which is just below the effective Ar.sub.3 temperature. The hot rolled steel is then rapidly quenched to provide an alloy containing strong, tough lath martensite (fibers) in a ductile soft ferrite matrix. The method is particularly useful for providing rods in which form the alloy is capable of being drawn into high strength wire or the like in a cold drawing operation without any intermediate annealing or patenting, and has excellent strength, ductility and fatigue characteristics.

  17. Enhanced transportation of energetic electrons in dual-frequency atmospheric microplasmas

    SciTech Connect (OSTI)

    Kwon, H. C.; Kim, H. Y.; Won, I. H.; Lee, H. Wk.; Shin, H. K.; Lee, J. K.

    2013-02-15

    A comparative study of electron kinetics between single-frequency (SF) microplasmas and their equivalent dual-frequency (DF) microplasmas with matching effective frequencies in atmospheric-pressure helium discharges was performed using particle-in-cell simulation with a Monte Carlo collision. The effective-frequency concept helps in analyzing DF microplasmas in a fashion similar to SF microplasmas with effective parameters. In this study, the plasma characteristics such as the plasma potential, density, and electron energy probability functions of the SF microplasma and its DF counterpart were almost the same. However, the oscillating sheath edge was pushed further into the electrode for a substantial fraction of the time and the sheath width decreased in DF microplasmas. As a result, the transportation of the energetic electrons ({epsilon} > 4 eV) usable for tailoring the surface chemistry in atmospheric microplasmas is enhanced in DF microplasmas as compared to SF microplasmas.

  18. Shock loading characteristics of Zr and Ti metals using dual beam velocimeter

    SciTech Connect (OSTI)

    Saxena, A. K. Kaushik, T. C.; Gupta, Satish C.

    2015-08-21

    The characteristics of titanium and zirconium metal foils under shock loading have been studied up to 16 GPa and 12 GPa pressure, respectively, using portable electric gun setup as projectile launcher. In these experiments, the capabilities of a single Fabry-Perot velocimeter have been enhanced by implementing it in dual beam mode to record the two velocity profiles on a single streak camera. The measured equation of state data for both the metals have been found to be well in agreement with the reported Hugoniot, within experimental accuracies. A phase transition from α to ω phase has been detected near to 11.4 GPa for titanium and 8.2 GPa for zirconium in the rising part of target-glass interface velocity profile.

  19. Dual axis translation apparatus and system for translating an optical beam and related method

    DOE Patents [OSTI]

    Cassidy, Kelly

    1991-01-01

    A dual axis translation device and system in accordance with this invention, for translating an optical beam along both an x-axis and a y-axis which are perpendicular to one another, has a beam directing means acting on said optical beam for directing the beam along a particular path transverse to said x and y axes. An arrangement supporting said beam directing means for movement in the x and y direction within a given plane is provided. The arrangement includes a first means for translating said beam directing means along the x-axis in said given plane in order to translate the beam along said x-axis. The arrangement comprises a second means for translating said beam directing means along the y-axis in said given plane in order to translate the beam along said y-axis.

  20. A Dual Regime Reactive Transport Model for Simulation of High Level Waste Tank Closure Scenarios - 13375

    SciTech Connect (OSTI)

    Sarkar, Sohini; Kosson, David S.; Brown, Kevin; Garrabrants, Andrew C.; Meeussen, Hans; Van der Sloot, Hans

    2013-07-01

    A numerical simulation framework is presented in this paper for estimating evolution of pH and release of major species from grout within high-level waste tanks after closure. This model was developed as part of the Cementitious Barriers Partnership. The reactive transport model consists of two parts - (1) transport of species, and (2) chemical reactions. The closure grout can be assumed to have varying extents of cracking and composition for performance assessment purposes. The partially or completely degraded grouted tank is idealized as a dual regime system comprising of a mobile region having solid materials with cracks and macro-pores, and an immobile/stagnant region having solid matrix with micropores. The transport profiles of the species are calculated by incorporating advection of species through the mobile region, diffusion of species through the immobile/stagnant region, and exchange of species between the mobile and immobile regions. A geochemical speciation code in conjunction with the pH dependent test data for a grout material is used to obtain a mineral set that best describes the trends in the test data of the major species. The dual regime reactive transport model predictions are compared with the release data from an up-flow column percolation test. The coupled model is then used to assess effects of crack state of the structure, rate and composition of the infiltrating water on the pH evolution at the grout-waste interface. The coupled reactive transport model developed in this work can be used as part of the performance assessment process for evaluating potential risks from leaching of a cracked tank containing elements of human health and environmental concern. (authors)

  1. Microstructure and properties of pipeline steel with a ferrite/martensite dual-phase microstructure

    SciTech Connect (OSTI)

    Li Rutao Zuo Xiurong Hu Yueyue Wang Zhenwei Hu, Dingxu

    2011-08-15

    In order to satisfy the transportation of the crude oil and gas in severe environmental conditions, a ferrite/martensite dual-phase pipeline steel has been developed. After a forming process and double submerged arc welding, the microstructure of the base metal, heat affected zone and weld metal was characterized using scanning electron microscopy and transmission electron microscopy. The pipe showed good deformability and an excellent combination of high strength and toughness, which is suitable for a pipeline subjected to the progressive and abrupt ground movement. The base metal having a ferrite/martensite dual-phase microstructure exhibited excellent mechanical properties in terms of uniform elongation of 7.5%, yield ratio of 0.78, strain hardening exponent of 0.145, an impact energy of 286 J at - 10 deg. C and a shear area of 98% at 0 deg. C in the drop weight tear test. The tensile strength and impact energy of the weld metal didn't significantly reduce, because of the intragranularly nucleated acicular ferrites microstructure, leading to high strength and toughness in weld metal. The heat affected zone contained complete quenching zone and incomplete quenching zone, which exhibited excellent low temperature toughness of 239 J at - 10 deg. C. - Research Highlights: {yields}The pipe with ferrite/martensite microstructure shows high deformability. {yields}The base metal of the pipe consists of ferrite and martensite. {yields}Heat affected zone shows excellent low temperature toughness. {yields}Weld metal mainly consists of intragranularly nucleated acicular ferrites. {yields}Weld metal shows excellent low temperature toughness and high strength.

  2. Project Title: Radiochemical Analysis by High Sensitivity Dual-Optic Micro X-ray Fluorescence

    SciTech Connect (OSTI)

    Havrilla, George J.; Gao, Ning

    2002-06-01

    A novel dual-optic micro X-ray fluorescence instrument will be developed to do radiochemical analysis of high-level radioactive wastes at DOE sites such as Savannah River Site and Hanford. This concept incorporates new X-ray optical elements such as monolithic polycapillaries and double bent crystals, which focus X-rays. The polycapillary optic can be used to focus X-rays emitted by the X-ray tube thereby increasing the X-ray flux on the sample over 1000 times. Polycapillaries will also be used to collect the X-rays from the excitation site and screen the radiation background from the radioactive species in the specimen. This dual-optic approach significantly reduces the background and increases the analyte signal thereby increasing the sensitivity of the analysis. A doubly bent crystal used as the focusing optic produces focused monochromatic X-ray excitation, which eliminates the bremsstrahlung background from the X-ray source. The coupling of the doubly bent crystal for monochromatic excitation with a polycapillary for signal collection can effectively eliminate the noise background and radiation background from the specimen. The integration of these X-ray optics increases the signal-to-noise and thereby increases the sensitivity of the analysis for low-level analytes. This work will address a key need for radiochemical analysis of high-level waste using a non-destructive, multi-element, and rapid method in a radiation environment. There is significant potential that this instrumentation could be capable of on-line analysis for process waste stream characterization at DOE sites.

  3. Merger-driven fueling of active galactic nuclei: Six dual and of AGNs discovered with Chandra and Hubble Space Telescope observations

    DOE PAGES-Beta [OSTI]

    Comerford, Julia M.; Pooley, David; Barrows, R. Scott; Greene, Jenny E.; Zakamska, Nadia L.; Madejski, Greg M.; Cooper, Michael C.

    2015-06-19

    Dual active galactic nuclei (AGNs) and offset AGNs are kpc-scale separation supermassive black holes pairs created during galaxy mergers, where both or one of the black holes are AGNs, respectively. These dual and offset AGNs are valuable probes of the link between mergers and AGNs but are challenging to identify. Here we present Chandra/ACIS observations of 12 optically selected dual AGN candidates atmore » $$z\\lt 0.34$$, where we use the X-rays to identify AGNs. We also present Hubble Space Telescope/Wide Field Camera 3 observations of 10 of these candidates, which reveal any stellar bulges accompanying the AGNs. We discover a dual AGN system with separation $${\\rm \\Delta }x=2.2$$ kpc, where the two stellar bulges have coincident [O iii] λ5007 and X-ray sources. This system is an extremely minor merger (460:1) that may include a dwarf galaxy hosting an intermediate mass black hole. We also find six single AGNs, and five systems that are either dual or offset AGNs with separations $${\\rm \\Delta }x\\lt 10$$ kpc. Four of the six dual AGNs and dual/offset AGNs are in ongoing major mergers, and these AGNs are 10 times more luminous, on average, than the single AGNs in our sample. This hints that major mergers may preferentially trigger higher luminosity AGNs. Further, we find that confirmed dual AGNs have hard X-ray luminosities that are half of those of single AGNs at fixed [O III] λ5007 luminosity, on average. Lastly, this could be explained by high densities of gas funneled to galaxy centers during mergers, and emphasizes the need for deeper X-ray observations of dual AGN candidates.« less

  4. TU-F-18A-09: CT Number Stability Across Patient Sizes Using Virtual-Monoenergetic Dual-Energy CT

    SciTech Connect (OSTI)

    Michalak, G; Grimes, J; Fletcher, J; McCollough, C; Halaweish, A

    2014-06-15

    Purpose: Virtual-monoenergetic imaging uses dual-energy CT data to synthesize images corresponding to a single photon energy, thereby reducing beam-hardening artifacts. This work evaluated the ability of a commercial virtual-monoenergetic algorithm to achieve stable CT numbers across patient sizes. Methods: Test objects containing a range of iodine and calcium hydroxyapatite concentrations were placed inside 8 torso-shaped water phantoms, ranging in lateral width from 15 to 50 cm, and scanned on a dual-source CT system (Siemens Somatom Force). Single-energy scans were acquired from 70-150 kV in 10 kV increments; dual-energy scans were acquired using 4 energy pairs (low energy: 70, 80, 90, and 100 kV; high energy: 150 kV + 0.6 mm Sn). CTDIvol was matched for all single- and dual-energy scans for a given phantom size. All scans used 128×0.6 mm collimation and were reconstructed with 1-mm thickness at 0.8-mm increment and a medium smooth body kernel. Monoenergetic images were generated using commercial software (syngo Via Dual Energy, VA30). Iodine contrast was calculated as the difference in mean iodine and water CT numbers from respective regions-of-interest in 10 consecutive images. Results: CT numbers remained stable as phantom width varied from 15 to 50 cm for all dual-energy data sets (except for at 50 cm using 70/150Sn due to photon starvation effects). Relative to the 15 cm phantom, iodine contrast was within 5.2% of the 70 keV value for phantom sizes up to 45 cm. At 90/150Sn, photon starvation did not occur at 50 cm, and iodine contrast in the 50-cm phantom was within 1.4% of the 15-cm phantom. Conclusion: Monoenergetic imaging, as implemented in the evaluated commercial system, eliminated the variation in CT numbers due to patient size, and may provide more accurate data for quantitative tasks, including radiation therapy treatment planning. Siemens Healthcare.

  5. Dual energy CT: How well can pseudo-monochromatic imaging reduce metal artifacts?

    SciTech Connect (OSTI)

    Kuchenbecker, Stefan Faby, Sebastian; Sawall, Stefan; Kachelrieß, Marc; Lell, Michael

    2015-02-15

    Purpose: Dual Energy CT (DECT) provides so-called monoenergetic images based on a linear combination of the original polychromatic images. At certain patient-specific energy levels, corresponding to certain patient- and slice-dependent linear combination weights, e.g., E = 160 keV corresponds to α = 1.57, a significant reduction of metal artifacts may be observed. The authors aimed at analyzing the method for its artifact reduction capabilities to identify its limitations. The results are compared with raw data-based processing. Methods: Clinical DECT uses a simplified version of monochromatic imaging by linearly combining the low and the high kV images and by assigning an energy to that linear combination. Those pseudo-monochromatic images can be used by radiologists to obtain images with reduced metal artifacts. The authors analyzed the underlying physics and carried out a series expansion of the polychromatic attenuation equations. The resulting nonlinear terms are responsible for the artifacts, but they are not linearly related between the low and the high kV scan: A linear combination of both images cannot eliminate the nonlinearities, it can only reduce their impact. Scattered radiation yields additional noncanceling nonlinearities. This method is compared to raw data-based artifact correction methods. To quantify the artifact reduction potential of pseudo-monochromatic images, they simulated the FORBILD abdomen phantom with metal implants, and they assessed patient data sets of a clinical dual source CT system (100, 140 kV Sn) containing artifacts induced by a highly concentrated contrast agent bolus and by metal. In each case, they manually selected an optimal α and compared it to a raw data-based material decomposition in case of simulation, to raw data-based material decomposition of inconsistent rays in case of the patient data set containing contrast agent, and to the frequency split normalized metal artifact reduction in case of the metal

  6. Dual-cavity mode converter for a fundamental mode output in an over-moded relativistic backward-wave oscillator

    SciTech Connect (OSTI)

    Li, Jiawei; Huang, Wenhua; Xiao, Renzhen; Bai, Xianchen; Zhang, Yuchuan; Zhang, Xiaowei; Shao, Hao; Chen, Changhua; Zhu, Qi

    2015-03-16

    A dual-cavity TM{sub 02}–TM{sub 01} mode converter is designed for a dual-mode operation over-moded relativistic backward-wave oscillator. With the converter, the fundamental mode output is achieved. Particle-in-cell simulation shows that the efficiency of beam-wave conversion was over 46% and a pureTM{sub 01} mode output was obtained. Effects of end reflection provided by the mode converter were studied. Adequate TM{sub 01} mode feedback provided by the converter enhances conversion efficiency. The distance between the mode converter and extraction cavity critically affect the generation of microwaves depending on the reflection phase of TM{sub 01} mode feedback.

  7. Proposal of a gigawatt-class L/Ku dual-band magnetically insulated transmission line oscillator

    SciTech Connect (OSTI)

    Ju, J.-C. Fan, Y.-W.; Shu, T.; Zhong, H.-H.

    2014-10-15

    We present a gigawatt (GW)-class magnetically insulated transmission line oscillator (MILO) which is capable of generating dual-band high power microwaves (HPMs). The proposed device, deriving from previously studied complex MILO and dual-frequency MILO, is designed to produce two HPMs in L-band and Ku-band, respectively. It is found in particle-in-cell (PIC) simulation that when the diode voltage is 610 kV, HPMs with frequencies of 1.72 GHz and 14.6 GHz can be achieved with powers of 3.3 GW and 2.4 GW, respectively. The corresponding total power conversion efficiency is approximately 12.8%. Power difference of the two generated HPMs is approximately 1.4 dB, and frequency difference of them reaches a level as high as ∼10 dB.

  8. Safety of natural gas dual-fueled vehicles: Addendum to safety analysis of natural gas vehicles transiting highway tunnels

    SciTech Connect (OSTI)

    Shaaban, S.H.; Zalak, V.M. )

    1991-01-01

    A safety analysis was performed to assess the relative hazard of vehicles containing both compressed natural gas (CNG) and gasoline, referred to as dual-fueled vehicles, compared to the hazard of a dedicated CNG vehicle. This study expands upon previous work that examined the safety of CNG vehicles transiting highway tunnels. The approach was to examine operational data, test results and to perform thermal analyses to determine if there are any synergistic effects where the total consequences of fuel release might be greater than the sum of the two fuels released separately. This study concluded that a dual-fueled vehicle poses a slightly greater risk than a dedicated CNG vehicle; however, this marginal increase in risk is small and is within the bounds of risk posed by gasoline-powered vehicles. 4 refs.

  9. An ECT/ERT dual-modality sensor for oil-water two-phase flow measurement

    SciTech Connect (OSTI)

    Wang, Pitao; Wang, Huaxiang; Sun, Benyuan; Cui, Ziqiang; Huang, Wenrui

    2014-04-11

    This paper presents a new sensor for ECT/ERT dual-modality system which can simultaneously obtain the permittivity and conductivity of the materials in the pipeline. Quasi-static electromagnetic fields are produced by the inner electrodes array sensor of electrical capacitance tomography (ECT) system. The results of simulation show that the data of permittivity and conductivity can be simultaneously obtained from the same measurement electrode and the fusion of two kinds of data may improve the quality of the reconstructed images. For uniform oil-water mixtures, the performance of designed dual-modality sensor for measuring the various oil fractions has been tested on representative data and the results of experiments show that the designed sensor broadens the measurement range compared to single modality.

  10. Effect of Dual-Function Nano-Structured Silicon Oxide Thin Film on Multi-Junction Solar Cells

    SciTech Connect (OSTI)

    Yan, B.; Sivec, L.; Yue, G.; Jiang, C. S.; Yang, J.; Guha, S.

    2011-01-01

    We present our recent study of using nano-structured hydrogenated silicon oxide films (nc-SiO{sub x}:H) as a dual-function layer in multi-junction solar cells. The nc-SiO{sub x}:H films were deposited using very high frequency glow discharge of a SiH{sub 4} (or Si{sub 2}H{sub 6}), CO{sub 2}, PH{sub 3}, and H{sub 2} gas mixture. By optimizing deposition parameters, we obtained 'dual function' nc-SiO{sub x}:H material characterized by a conductivity suitable for use as an n layer and optical properties suitable for use as an inter-reflection layer. We tested the nc-SiO{sub x}:H by replacing the normal n-type material in the tunnel junction of a multi-junction structure. The advantage of the dual-function nc-SiO{sub x}:H layer is twofold; one is to simplify the cell structure, and the other is to reduce any optical loss associated with the inter-reflection layer. Quantum efficiency measurements show the gain in top cell current is equal to or greater than the loss in bottom cell current for a-Si:H/nc-Si:H structures. In addition, a thinner a-Si:H top cell with the nc-SiO{sub x}:H n layer improves the top-cell stability, thereby providing higher stabilized solar cell efficiency. We also used the dual-function layer between the middle and the bottom cells in a-Si:H/a-SiGe:H/nc-Si:H triple-junction structures. The gain in the middle cell current is {approx}1.0 mA/cm{sup 2}, leading to an initial active-area efficiency of 14.8%.

  11. Designing Dual-functionalized Gels for Self-reconfiguration and Autonomous Motion

    DOE PAGES-Beta [OSTI]

    Kuksenok, Olga; Balazs, Anna C.

    2015-04-30

    Human motion is enabled by the concerted expansion and contraction of interconnected muscles that are powered by inherent biochemical reactions. One of the challenges in the field of biomimicry is eliciting this form of motion from purely synthetic materials, which typically do not generate internalized reactions to drive mechanical action. Moreover, for practical applications, this bio-inspired motion must be readily controllable. Herein, we develop a computational model to design a new class of polymer gels where structural reconfigurations and internalized reactions are intimately linked to produce autonomous motion, which can be directed with light. These gels contain both spirobenzopyran (SP)more » chromophores and the ruthenium catalysts that drive the oscillatory Belousov-Zhabotinsky (BZ) reaction. Importantly, both the SP moieties and the BZ reaction are photosensitive. When these dual-functionalized gels are exposed to non-uniform illumination, the localized contraction of the gel (due to the SP moieties) in the presence of traveling chemical waves (due to the BZ reaction) leads to new forms of spontaneous, self-sustained movement, which cannot be achieved by either of the mono-functionalized networks.« less

  12. A dual phased approach for bioremediation of petroleum contaminated soil and ground water

    SciTech Connect (OSTI)

    Kennel, N.D.; Maher, A.; Buckallew, B.

    1994-12-31

    A case study will be presented to demonstrate an effective and timely method of site remediation which yields complete contaminant destruction rather than the contaminant transfer that traditional ground water extraction and treatment techniques result in. By utilizing bioremediation at this site, the client was able to completely degrade the contamination beneath the property, and in the process avoid future liability from transfer of the contamination to another party (i.e. landfill) or phase (i.e. liquid to vapor through air stripping). The provisions of a real estate transaction involving a former service station site in Central Iowa stipulated that the site be remediated prior to title transfer. Previous Environmental Investigative activities revealed significant soil and ground water contamination resulting from over 50 years of diesel and gasoline fuel storage and dispensing operations at the site. Microbial Environmental Services, Inc. (MES) utilized a dual phased bioremediation approach to meet regulatory clean-up guidelines in order for a timely property transfer to occur. To facilitate and expedite ground water remediation, contaminated soil was excavated and remediated via Advanced Biological Surface Treatment (ABST) techniques. ABST techniques are utilized by MES to treat excavated soil in closed cell to control emissions and treatment conditions. Following contaminant source removal, ground water was extracted and treated in a submerged, fixed film, flow through 1,000 gallon fixed film bioreactor at a rate of 2.5 gallons per minute.

  13. The design and synthesis of heterostructured quantum dots with dual emission in the visible and infrared

    DOE PAGES-Beta [OSTI]

    Lin, Qianglu; Makarov, Nikolay S.; Koh, Weon-kyu; Velizhanin, Kirill A.; Cirloganu, Claudiu M.; Luo, Hongmei; Klimov, Victor I.; Pietryga, Jeffrey M.

    2014-11-26

    The unique optical properties exhibited by visible emitting core/shell quantum dots with especially thick shells are the focus of widespread study, but have yet to be realized in infrared (IR) -active nanostructures. We apply an effective-mass model to identify PbSe/CdSe core/shell quantum dots as a promising system for achieving this goal. We then synthesize colloidal PbSe/CdSe quantum dots with shell thicknesses of up to 4 nm that exhibit unusually slow hole intra-band relaxation from shell to core states, as evidenced by the emergence of dual emission, i.e., IR photoluminescence from the PbSe core observed simultaneously with visible emission from themore » CdSe shell. In addition to the large shell thickness, the development of slowed intraband relaxation is facilitated by the existence of a sharp core-shell interface without discernible alloying. Growth of thick shells without interfacial alloying or incidental formation of homogenous CdSe nanocrystals was accomplished using insights attained via a systematic study of the dynamics of the cation-exchange synthesis of both PbSe/CdSe as well as the related system PbS/CdS. Finally, we show that the efficiency of the visible photoluminescence can be greatly enhanced by inorganic passivation.« less

  14. The design and synthesis of heterostructured quantum dots with dual emission in the visible and infrared

    SciTech Connect (OSTI)

    Lin, Qianglu; Makarov, Nikolay S.; Koh, Weon-kyu; Velizhanin, Kirill A.; Cirloganu, Claudiu M.; Luo, Hongmei; Klimov, Victor I.; Pietryga, Jeffrey M.

    2014-11-26

    The unique optical properties exhibited by visible emitting core/shell quantum dots with especially thick shells are the focus of widespread study, but have yet to be realized in infrared (IR) -active nanostructures. We apply an effective-mass model to identify PbSe/CdSe core/shell quantum dots as a promising system for achieving this goal. We then synthesize colloidal PbSe/CdSe quantum dots with shell thicknesses of up to 4 nm that exhibit unusually slow hole intra-band relaxation from shell to core states, as evidenced by the emergence of dual emission, i.e., IR photoluminescence from the PbSe core observed simultaneously with visible emission from the CdSe shell. In addition to the large shell thickness, the development of slowed intraband relaxation is facilitated by the existence of a sharp core-shell interface without discernible alloying. Growth of thick shells without interfacial alloying or incidental formation of homogenous CdSe nanocrystals was accomplished using insights attained via a systematic study of the dynamics of the cation-exchange synthesis of both PbSe/CdSe as well as the related system PbS/CdS. Finally, we show that the efficiency of the visible photoluminescence can be greatly enhanced by inorganic passivation.

  15. Mapping hidden aircraft defects with dual-band infrared computed tomography

    SciTech Connect (OSTI)

    Del Grande, N.K.; Durbin, P.F.

    1995-04-03

    Infrared computed tomography (IRCT) is a promising, non-contact, nondestructive evaluation tool used to inspect the mechanical integrity of large structures. We describe on-site, proof-of-principle demonstrations of IRCt to inspect defective metallic and composite structures. The IRCT system captures time sequences of heat-stimulated, dual-band infrared (DBIR) thermal maps for flash-heated and naturally-heated targets. Our VIEW algorithms produce co-registered thermal, thermal inertia, and thermal-timegram maps from which we quantify the percent metal-loss corrosion damage for airframes and the defect sites, depths, and host-material physical properties for composite structures. The IRCT method clarifies the type of defect, e.g., corrosion, fabrication, foreign-material insert, delamination, unbond, void, and quantifies the amount of damage from the defect, e.g., the percent metal-loss from corrosion in metal structures, the depth, thickness, and areal extent of heat damage in multi-layered composite materials. Potential long-term benefits of IRCT technology are in-service monitoring of incipient corrosion damage, to avoid catastrophic failure and production-monitoring of cure states for composite materials.

  16. Modeling the Interaction Between Hydraulic and Natural Fractures Using Dual-Lattice Discrete Element Method

    SciTech Connect (OSTI)

    Zhou, Jing; Huang, Hai; Deo, Milind

    2015-10-01

    The interaction between hydraulic fractures (HF) and natural fractures (NF) will lead to complex fracture networks due to the branching and merging of natural and hydraulic fractures in unconventional reservoirs. In this paper, a newly developed hydraulic fracturing simulator based on discrete element method is used to predict the generation of complex fracture network in the presence of pre-existing natural fractures. By coupling geomechanics and reservoir flow within a dual lattice system, this simulator can effectively capture the poro-elastic effects and fluid leakoff into the formation. When HFs are intercepting single or multiple NFs, complex mechanisms such as direct crossing, arresting, dilating and branching can be simulated. Based on the model, the effects of injected fluid rate and viscosity, the orientation and permeability of NFs and stress anisotropy on the HF-NF interaction process are investigated. Combined impacts from multiple parameters are also examined in the paper. The numerical results show that large values of stress anisotropy, intercepting angle, injection rate and viscosity will impede the opening of NFs.

  17. Dual-wavelength millimeter-wave radar measurements of cirrus clouds

    SciTech Connect (OSTI)

    Sekelsky, S.M.; Firda, J.M.; McIntosh, R.E.

    1996-04-01

    In April 1994, the University of Massachusetts` 33-GHz/95-GHz Cloud Profiling Radar System (CPRS) participated in the multi-sensor Remote Cloud Sensing (RCS) Intensive Operation Period (IOP), which was conducted at the Southern Great Plains Cloud and Radiation Testbed (CART). During the 3-week experiment, CPRS measured a variety of cloud types and severe weather. In the context of global warming, the most significant measurements are dual-frequency observations of cirrus clouds, which may eventually be used to estimate ice crystal size and shape. Much of the cirrus data collected with CPRS show differences between 33-GHz and 95-GHz reflectivity measurements that are correlated with Doppler estimates of fall velocity. Because of the small range of reflectivity differences, a precise calibration of the radar is required and differential attenuation must also be removed from the data. Depolarization, which is an indicator of crystal shape, was also observed in several clouds. In this abstract we present examples of Mie scattering from cirrus and estimates of differential attenuation due to water vapor and oxygen that were derived from CART radiosonde measurements.

  18. Imaging system for cardiac planar imaging using a dedicated dual-head gamma camera

    SciTech Connect (OSTI)

    Majewski, Stanislaw; Umeno, Marc M.

    2011-09-13

    A cardiac imaging system employing dual gamma imaging heads co-registered with one another to provide two dynamic simultaneous views of the heart sector of a patient torso. A first gamma imaging head is positioned in a first orientation with respect to the heart sector and a second gamma imaging head is positioned in a second orientation with respect to the heart sector. An adjustment arrangement is capable of adjusting the distance between the separate imaging heads and the angle between the heads. With the angle between the imaging heads set to 180 degrees and operating in a range of 140-159 keV and at a rate of up to 500kHz, the imaging heads are co-registered to produce simultaneous dynamic recording of two stereotactic views of the heart. The use of co-registered imaging heads maximizes the uniformity of detection sensitivity of blood flow in and around the heart over the whole heart volume and minimizes radiation absorption effects. A normalization/image fusion technique is implemented pixel-by-corresponding pixel to increase signal for any cardiac region viewed in two images obtained from the two opposed detector heads for the same time bin. The imaging system is capable of producing enhanced first pass studies, bloodpool studies including planar, gated and non-gated EKG studies, planar EKG perfusion studies, and planar hot spot imaging.

  19. Dual axis radiographic hydrodynamic test facility. Final environmental impact statement, Volume 2: Public comments and responses

    SciTech Connect (OSTI)

    1995-08-01

    On May 12, 1995, the U.S. Department of Energy (DOE) issued the draft Dual Axis Radiographic Hydrodynamic Test Facility Environmental Impact Statement (DARHT EIS) for review by the State of New Mexico, Indian Tribes, local governments, other Federal agencies, and the general public. DOE invited comments on the accuracy and adequacy of the draft EIS and any other matters pertaining to their environmental reviews. The formal comment period ran for 45 days, to June 26, 1995, although DOE indicated that late comments would be considered to the extent possible. As part of the public comment process, DOE held two public hearings in Los Alamos and Santa Fe, New Mexico, on May 31 and June 1, 1995. In addition, DOE made the draft classified supplement to the DARHT EIS available for review by appropriately cleared individuals with a need to know the classified information. Reviewers of the classified material included the State of New Mexico, the U.S. Environmental Protection Agency, the Department of Defense, and certain Indian Tribes. Volume 2 of the final DARHT EIS contains three chapters. Chapter 1 includes a collective summary of the comments received and DOE`s response. Chapter 2 contains the full text of the public comments on the draft DARHT EIS received by DOE. Chapter 3 contains DOE`s responses to the public comments and an indication as to how the comments were considered in the final EIS.

  20. Electrically and magnetically dual-driven Janus particles for handwriting-enabled electronic paper

    SciTech Connect (OSTI)

    Komazaki, Y. Hirama, H.; Torii, T.

    2015-04-21

    In this work, we describe the synthesis of novel electrically and magnetically dual-driven Janus particles for a handwriting-enabled twisting ball display via the microfluidic technique. One hemisphere of the Janus particles contains a charge control agent, which allows the display color to be controlled by applying a voltage and superparamagnetic nanoparticles, allows handwriting by applying a magnetic field to the display. We fabricated a twisting ball display utilizing these Janus particles and tested the electric color control and handwriting using a magnet. As a result, the display was capable of permitting handwriting with a small magnet in addition to conventional color control using an applied voltage (80 V). Handwriting performance was improved by increasing the concentration of superparamagnetic nanoparticles and was determined to be possible even when 80 V was applied across the electrodes for 4 wt. % superparamagnetic nanoparticles in one hemisphere. This improvement was impossible when the concentration was reduced to 2 wt. % superparamagnetic nanoparticles. The technology presented in our work can be applied to low-cost, lightweight, highly visible, and energy-saving electronic message boards and large whiteboards because the large-size display can be fabricated easily due to its simple structure.

  1. Solar photocatalytic H{sub 2} production from water using a dual bed photosystem

    SciTech Connect (OSTI)

    Linkous, C.A.

    1995-09-01

    This work entails the use of photocatalytic particles in a dual bed configuration so as to effect the solar-driven decomposition of water to its constituent elements, particularly hydrogen. The system envisioned would consist of two modules, each consisting of a shallow, flat, sealed container, in which micron-sized photocatalytic particles are immobilized. An aqueous solution containing a redox mediator is pumped between the two chambers. Different photoparticles and catalysts are chosen for their respective modules so as to effect oxidative water-splitting in one vessel to evolve oxygen gas, and reductive water-splitting in the other to evolve hydrogen. This is a direct photoconversion scheme that breaks down the energetic requirement for water decomposition into a 2-photon process, and enables separate production of hydrogen and oxygen. Various n-type and p-type semiconductors will be employed as photoparticles in the O{sub 2}- and H{sub 2}-evolving beds, respectively. Catalysts will also be evaluated to selectively promote the 4 half-cell reactions. On the microscopic level, there are many ways to configure the arrangement of catalyst and photoparticle. It is also important to determine whether the particles should be immobilized on an electronically conducting or insulating surface. Theoretical calculations of hydrogen production rates that include the energy band structure of free and immobilized particles are expected to provide guidance as to how the microstructure of the particles should be configured.

  2. A lightweight high performance dual-axis gimbal for space applications

    SciTech Connect (OSTI)

    Pines, D.J.; Hakala, D.B.; Malueg, R.

    1995-05-05

    This paper describes the design, development and performance of a lightweight precision gimbal with dual-axis slew capability to be used in a closed-loop optical tracking system at Lawrence Livermore National Laboratory-LLNL. The motivation for the development of this gimbal originates from the need to acquire and accurately localize warm objects (T{approximately}500 K) in a cluttered background. The design of the gimbal is centered around meeting the following performance requirements: pointing accuracy with control < 35 {mu}rad-(1-{omega}); slew capability > 0.2 rad/sec; mechanical weight < 5 kg. These performance requirements are derived by attempting to track a single target from multiple satellites in low Earth orbit using a mid-wave infrared camera. Key components in the gimbal hardware that are essential to meeting the performance objectives include a nickel plated beryllium mirro, an accurate lightweight capacitive pickoff device for angular measurement about the elevation axis, a 16-bit coarse/fine resolver for angular measurement about the azimuth axis, a toroidally wound motor with low hysteresis for providing torque about the azimuth axis, and the selection of beryllium parts to insure high stiffness to weight ratios and more efficient thermal conductivity. Each of these elements are discussed in detail to illustrate the design trades performed to meet the tracking and slewing requirements demanded. Preliminary experimental results are also given for various commanded tracking maneuvers.

  3. Development of a MEMS dual-axis differential capacitance floating element shear stress sensor

    SciTech Connect (OSTI)

    Barnard, Casey; Griffin, Benjamin

    2015-09-01

    A single-axis MEMS wall shear stress sensor with differential capacitive transduction method is produced. Using a synchronous modulation and demodulation interface circuit, the system is capable of making real time measurements of both mean and fluctuating wall shear stress. A sensitivity of 3.44 mV/Pa is achieved, with linearity in response demonstrated up to testing limit of 2 Pa. Minimum detectable signals of 340 μPa at 100 Hz and 120 μPa at 1 kHz are indicated, with a resonance of 3.5 kHz. Multiple full scale wind tunnel tests are performed, producing spectral measurements of turbulent boundary layers in wind speeds ranging up to 0.5 Ma (18 Pa of mean wall shear stress). The compact packaging allows for minimally invasive installation, and has proven relatively robust over multiple testing events. Temperature sensitivity, likely due to poor CTE matching of packaged materials, is an ongoing concern being addressed. These successes are being directly leveraged into a development plan for a dual-axis wall shear stress sensor, capable of producing true vector estimates at the wall.

  4. Field emission spectroscopy evidence for dual-barrier electron tunnelling in nanographite

    SciTech Connect (OSTI)

    Bandurin, D. A.; Kleshch, V. I.; Mingels, S.; Ltzenkirchen-Hecht, D.; Mller, G.; Obraztsov, A. N.

    2015-06-08

    Nanocarbon films with upstanding flake-like graphite crystallites of nanometre thickness were fabricated by carbon condensation from a methanehydrogen gas mixture activated by a direct-current discharge. The nanographite (NG) crystallites are composed of a few graphene layers. The adjacent atomic layers are connected partially at the edges of the crystallites to form strongly curved graphene structures. The extraordinary field emission (FE) properties were revealed for the NG films with an average current density of a few mA/cm{sup 2}, reproducibly obtained at a macroscopic applied field of about 1?V/?m. The integral FE currentvoltage curves and electron spectra (FEES) of NG cathodes with multiple emitters were measured in a triode configuration. Most remarkably, above a threshold field, two peaks were revealed in FEES with different field-dependent shifts to lower energies. This behaviour evidences electron emission through a dual potential barrier, corresponding to carboncarbon heterostructure formed as a result of the graphene bending.

  5. Particle formation and its control in dual frequency plasma etching reactors

    SciTech Connect (OSTI)

    Kim, Munsu; Cheong, Hee-Woon; Whang, Ki-Woong

    2015-07-15

    The behavior of a particle cloud in plasma etching reactors at the moment when radio frequency (RF) power changes, that is, turning off and transition steps, was observed using the laser-light-scattering method. Two types of reactors, dual-frequency capacitively coupled plasma (CCP) and the hybrid CCP/inductively coupled plasma (ICP), were set up for experiments. In the hybrid CCP/ICP reactor (hereafter ICP reactor), the position and shape of the cloud were strongly dependent on the RF frequency. The particle cloud becomes larger and approaches the electrode as the RF frequency increases. By turning the lower frequency power off later with a small delay time, the particle cloud is made to move away from the electrode. Maintaining lower frequency RF power only was also helpful to reduce the particle cloud size during this transition step. In the ICP reactor, a sufficient bias power is necessary to make a particle trap appear. A similar particle cloud to that in the CCP reactor was observed around the sheath region of the lower electrode. The authors can also use the low-frequency effect to move the particle cloud away from the substrate holder if two or more bias powers are applied to the substrate holder. The dependence of the particle behavior on the RF frequencies suggests that choosing the proper frequency at the right moment during RF power changes can reduce particle contamination effectively.

  6. Designing Dual-functionalized Gels for Self-reconfiguration and Autonomous Motion

    SciTech Connect (OSTI)

    Kuksenok, Olga; Balazs, Anna C.

    2015-04-30

    Human motion is enabled by the concerted expansion and contraction of interconnected muscles that are powered by inherent biochemical reactions. One of the challenges in the field of biomimicry is eliciting this form of motion from purely synthetic materials, which typically do not generate internalized reactions to drive mechanical action. Moreover, for practical applications, this bio-inspired motion must be readily controllable. Herein, we develop a computational model to design a new class of polymer gels where structural reconfigurations and internalized reactions are intimately linked to produce autonomous motion, which can be directed with light. These gels contain both spirobenzopyran (SP) chromophores and the ruthenium catalysts that drive the oscillatory Belousov-Zhabotinsky (BZ) reaction. Importantly, both the SP moieties and the BZ reaction are photosensitive. When these dual-functionalized gels are exposed to non-uniform illumination, the localized contraction of the gel (due to the SP moieties) in the presence of traveling chemical waves (due to the BZ reaction) leads to new forms of spontaneous, self-sustained movement, which cannot be achieved by either of the mono-functionalized networks.

  7. System-independent characterization of materials using dual-energy computed tomography

    DOE PAGES-Beta [OSTI]

    Azevedo, Stephen G.; Martz, Jr., Harry E.; Aufderheide, III, Maurice B.; Brown, William D.; Champley, Kyle M.; Kallman, Jeffrey S.; Roberson, G. Patrick; Schneberk, Daniel; Seetho, Isaac M.; Smith, Jerel A.

    2016-02-01

    In this study, we present a new decomposition approach for dual-energy computed tomography (DECT) called SIRZ that provides precise and accurate material description, independent of the scanner, over diagnostic energy ranges (30 to 200 keV). System independence is achieved by explicitly including a scanner-specific spectral description in the decomposition method, and a new X-ray-relevant feature space. The feature space consists of electron density, ρe, and a new effective atomic number, Ze, which is based on published X-ray cross sections. Reference materials are used in conjunction with the system spectral response so that additional beam-hardening correction is not necessary. The techniquemore » is tested against other methods on DECT data of known specimens scanned by diverse spectra and systems. Uncertainties in accuracy and precision are less than 3% and 2% respectively for the (ρe, Ze) results compared to prior methods that are inaccurate and imprecise (over 9%).« less

  8. Method to improve cancerous lesion detection sensitivity in a dedicated dual-head scintimammography system

    DOE Patents [OSTI]

    Kieper, Douglas Arthur; Majewski, Stanislaw; Welch, Benjamin L.

    2012-07-03

    An improved method for enhancing the contrast between background and lesion areas of a breast undergoing dual-head scintimammographic examination comprising: 1) acquiring a pair of digital images from a pair of small FOV or mini gamma cameras compressing the breast under examination from opposing sides; 2) inverting one of the pair of images to align or co-register with the other of the images to obtain co-registered pixel values; 3) normalizing the pair of images pixel-by-pixel by dividing pixel values from each of the two acquired images and the co-registered image by the average count per pixel in the entire breast area of the corresponding detector; and 4) multiplying the number of counts in each pixel by the value obtained in step 3 to produce a normalization enhanced two dimensional contrast map. This enhanced (increased contrast) contrast map enhances the visibility of minor local increases (uptakes) of activity over the background and therefore improves lesion detection sensitivity, especially of small lesions.

  9. Method to improve cancerous lesion detection sensitivity in a dedicated dual-head scintimammography system

    DOE Patents [OSTI]

    Kieper, Douglas Arthur; Majewski, Stanislaw; Welch, Benjamin L.

    2008-10-28

    An improved method for enhancing the contrast between background and lesion areas of a breast undergoing dual-head scintimammographic examination comprising: 1) acquiring a pair of digital images from a pair of small FOV or mini gamma cameras compressing the breast under examination from opposing sides; 2) inverting one of the pair of images to align or co-register with the other of the images to obtain co-registered pixel values; 3) normalizing the pair of images pixel-by-pixel by dividing pixel values from each of the two acquired images and the co-registered image by the average count per pixel in the entire breast area of the corresponding detector; and 4) multiplying the number of counts in each pixel by the value obtained in step 3 to produce a normalization enhanced two dimensional contrast map. This enhanced (increased contrast) contrast map enhances the visibility of minor local increases (uptakes) of activity over the background and therefore improves lesion detection sensitivity, especially of small lesions.

  10. Scaling studies with the dual crystal spectrometer at the OMEGA-EP laser facility

    SciTech Connect (OSTI)

    Szabo, C. I.; Feldman, U.; Workman, J.; Flippo, K.; Seely, J. F.; Hudson, L. T.; Henins, A.

    2010-10-15

    The dual crystal spectrometer (DCS) is an approved diagnostic at the OMEGA and the OMEGA-EP laser facilities for the measurement of high energy x-rays in the 11-90 keV energy range, e.g., for verification of the x-ray spectrum of backlighter targets of point projection radiography experiments. DCS has two cylindrically bent transmission crystal channels with image plate detectors at distances behind the crystals close to the size of the respective Rowland circle diameters taking advantage of the focusing effect of the cylindrically bent geometry. DCS, with a source to crystal distance of 1.2 m, provides the required energy dispersion for simultaneous detection of x-rays in a low energy channel (11-45 keV) and a high-energy channel (19-90 keV). A scaling study is described for varied pulse length with unchanged laser conditions (energy, focusing). The study shows that the K{alpha} line intensity is not strongly dependent on the length of the laser pulse.

  11. Operational experience and evaluation of a dual-element stretched-membrane heliostat

    SciTech Connect (OSTI)

    Strachan, J.W.; Van Der Geest, J.

    1994-01-01

    A dual-element, stretched-membrane central receiver heliostat was designed and manufactured in 1989, by a private US company engaged in the development of commercial central receiver solar technology. The two-module collector, with a collection area of 97.5 m{sup 2}, extends stretched-membrane mirror technology on several fronts with face-down stow capability and a digital controller that integrates tracking and focusing control on a single programmable control board. The solar collector was installed at Sandia`s National Solar Thermal Test Facility in Albuquerque, New Mexico and evaluated over a three-and-a-half year period which ended in September 1993. The measured performance and the operational and maintenance characteristics of this commercial prototype are the subject of this report. The results of beam quality measurements, tracking repeatability tests, measurements of beam movement in elevated winds, performance tests of the focusing system, and all-day beam quality and tracking tests are presented, and the authors offer a detailed discussion of the knowledge gained through operation and maintenance and of the improvements made or suggested to the heliostat`s design.

  12. Linearly Organized Turbulence Structures Observed Over a Suburban Area by Dual-Doppler Lidar

    SciTech Connect (OSTI)

    Newsom, Rob K.; Calhoun, Ron; Ligon, David; Allwine, K Jerry

    2008-04-01

    Dual-Doppler lidar observations are used to investigate the structure and evolution of surface layer flow over a suburban area. The observations were made during the Joint Urban 2003 (JU2003) field experiment in Oklahoma City in the summer of 2003. This study focuses specifically on a 10-hour sequence of scan data beginning shortly after noon local time on July 7, 2003. During this period two coherent Doppler lidars performed overlapping low elevation angle sector scans upwind and south of Oklahoma Citys central business district (CBD). Radial velocity data from the two lidars are processed to reveal the structure and evolution of the horizontal velocity field in the surface layer throughout the afternoon and evening transition periods. The retrieved velocity fields clearly show a tendency for turbulence structures to be elongated in the direction of the mean flow throughout the entire 10-hour study period. As the stratification changed from unstable to weakly stable the turbulence structures became increasingly more linearly organized, and the cross-stream separation between high- and low-speed regoins decreased. The spatially resolved velocity fields are used to estimate streamwise and cross-stream turbulence length scales as functions of stability.

  13. Feasibility study of a dual detector configuration concept for simultaneous megavoltage imaging and dose verification in radiotherapy

    SciTech Connect (OSTI)

    Deshpande, Shrikant; McNamara, Aimee L.; Holloway, Lois; Metcalfe, Peter; Vial, Philip

    2015-04-15

    Purpose: To test the feasibility of a dual detector concept for comprehensive verification of external beam radiotherapy. Specifically, the authors test the hypothesis that a portal imaging device coupled to a 2D dosimeter provides a system capable of simultaneous imaging and dose verification, and that the presence of each device does not significantly detract from the performance of the other. Methods: The dual detector configuration comprised of a standard radiotherapy electronic portal imaging device (EPID) positioned directly on top of an ionization-chamber array (ICA) with 2 cm solid water buildup material (between EPID and ICA) and 5 cm solid backscatter material. The dose response characteristics of the ICA and the imaging performance of the EPID in the dual detector configuration were compared to the performance in their respective reference clinical configurations. The reference clinical configurations were 6 cm solid water buildup material, an ICA, and 5 cm solid water backscatter material as the reference dosimetry configuration, and an EPID with no additional buildup or solid backscatter material as the reference imaging configuration. The dose response of the ICA was evaluated by measuring the detectors response with respect to off-axis position, field size, and transit object thickness. Clinical dosimetry performance was evaluated by measuring a range of clinical intensity-modulated radiation therapy (IMRT) beams in transit and nontransit geometries. The imaging performance of the EPID was evaluated quantitatively by measuring the contrast-to-noise ratio (CNR) and spatial resolution. Images of an anthropomorphic phantom were also used for qualitative assessment. Results: The measured off-axis and field size response with the ICA in both transit and nontransit geometries for both dual detector configuration and reference dosimetry configuration agreed to within 1%. Transit dose response as a function of object thickness agreed to within 0.5%. All

  14. Inspection of the Department`s export licensing process for dual-use and munitions commodities

    SciTech Connect (OSTI)

    Not Available

    1993-08-10

    The purpose of our inspection was to review the Department of Energy`s (Energy) export licensing process for dual-use and military (munitions) commodities subject to nuclear nonproliferation controls. Specifically, we reviewed Energy`s authorities, procedures, and policies pertaining to the export licensing process and examined procedures for safeguarding data transmitted between Energy and other agencies involved in the export licensing process. We also reviewed Energy`s role as a member of the Subgroup on Nuclear Export Coordination. Our review of the sample of 60 export cases did not find evidence to lead us to believe that Energy`s recommendations for these cases were inappropriate or incorrect. We identified, however, problems regarding management systems associated with the export license review process. We found that without documentation supporting export licensing decisions by the Export Control Operations Division (ECOD), we could not determine whether ECOD analysts considered all required criteria in their review of export cases referred to Energy. For example, we found that the ECOD did not retain records documenting the bases for its advice, recommendations, or decisions regarding its reviews of export license cases or revisions to lists of controlled commodities and, therefore, was not in compliance with certain provisions of the Export Administration Act, as amended, and Energy records management directives. Additionally, we found that the degree of compliance by Energy with the export licensing review criteria contained in the Export Administration Regulations and the Nuclear Non-Proliferation Act of 1978 could not be determined because ECOD did not retain records documenting the bases for its advice and recommendations on export cases.

  15. Dual Layer Monolith ATR of Pyrolysis Oil for Distributed Synthesis Gas Production

    SciTech Connect (OSTI)

    Lawal, Adeniyi

    2012-09-29

    We have successfully demonstrated a novel reactor technology, based on BASF dual layer monolith catalyst, for miniaturizing the autothermal reforming of pyrolysis oil to syngas, the second and most critical of the three steps for thermochemically converting biomass waste to liquid transportation fuel. The technology was applied to aged as well as fresh samples of pyrolysis oil derived from five different biomass feedstocks, namely switch-grass, sawdust, hardwood/softwood, golden rod and maple. Optimization of process conditions in conjunction with innovative reactor system design enabled the minimization of carbon deposit and control of the H2/CO ratio of the product gas. A comprehensive techno-economic analysis of the integrated process using in part, experimental data from the project, indicates (1) net energy recovery of 49% accounting for all losses and external energy input, (2) weight of diesel oil produced as a percent of the biomass to be ~14%, and (3) for a demonstration size biomass to Fischer-Tropsch liquid plant of ~ 2000 daily barrels of diesel, the price of the diesel produced is ~$3.30 per gallon, ex. tax. However, the extension of catalyst life is critical to the realization of the projected economics. Catalyst deactivation was observed and the modes of deactivation, both reversible and irreversible were identified. An effective catalyst regeneration strategy was successfully demonstrated for reversible catalyst deactivation while a catalyst preservation strategy was proposed for preventing irreversible catalyst deactivation. Future work should therefore be focused on extending the catalyst life, and a successful demonstration of an extended (> 500 on-stream hours) catalyst life would affirm the commercial viability of the process.

  16. MONICA: a compact, portable dual gamma camera system for mouse whole-body imaging

    SciTech Connect (OSTI)

    Choyke, Peter L.; Xia, Wenze; Seidel, Jurgen; Kakareka, John W.; Pohida, Thomas J.; Milenic, Diane E.; Proffitt, James; Majewski, Stan; Weisenberger, Andrew G.; Green, Michael V.

    2010-04-01

    Introduction We describe a compact, portable dual-gamma camera system (named "MONICA" for MObile Nuclear Imaging CAmeras) for visualizing and analyzing the whole-body biodistribution of putative diagnostic and therapeutic single photon emitting radiotracers in animals the size of mice. Methods Two identical, miniature pixelated NaI(Tl) gamma cameras were fabricated and installed ?looking up? through the tabletop of a compact portable cart. Mice are placed directly on the tabletop for imaging. Camera imaging performance was evaluated with phantoms and field performance was evaluated in a weeklong In-111 imaging study performed in a mouse tumor xenograft model. Results Tc-99m performance measurements, using a photopeak energy window of 140 keV?10%, yielded the following results: spatial resolution (FWHM at 1 cm), 2.2 mm; sensitivity, 149 cps (counts per seconds)/MBq (5.5 cps/μCi); energy resolution (FWHM, full width at half maximum), 10.8%; count rate linearity (count rate vs. activity), r2=0.99 for 0?185 MBq (0?5 mCi) in the field of view (FOV); spatial uniformity, <3% count rate variation across the FOV. Tumor and whole-body distributions of the In-111 agent were well visualized in all animals in 5-min images acquired throughout the 168-h study period. Conclusion Performance measurements indicate that MONICA is well suited to whole-body single photon mouse imaging. The field study suggests that inter-device communications and user-oriented interfaces included in the MONICA design facilitate use of the system in practice. We believe that MONICA may be particularly useful early in the (cancer) drug development cycle where basic whole-body biodistribution data can direct future development of the agent under study and where logistical factors, e.g., limited imaging space, portability and, potentially, cost are important.

  17. COMPARISON OF EXPERIMENTAL RESULTS TO CFD MODELS FOR BLENDING IN A TANK USING DUAL OPPOSING JETS

    SciTech Connect (OSTI)

    Leishear, R.

    2011-08-07

    Research has been completed in a pilot scale, eight foot diameter tank to investigate blending, using a pump with dual opposing jets. The jets re-circulate fluids in the tank to promote blending when fluids are added to the tank. Different jet diameters and different horizontal and vertical orientations of the jets were investigated. In all, eighty five tests were performed both in a tank without internal obstructions and a tank with vertical obstructions similar to a tube bank in a heat exchanger. These obstructions provided scale models of several miles of two inch diameter, serpentine, vertical cooling coils below the liquid surface for a full scale, 1.3 million gallon, liquid radioactive waste storage tank. Two types of tests were performed. One type of test used a tracer fluid, which was homogeneously blended into solution. Data were statistically evaluated to determine blending times for solutions of different density and viscosity, and the blending times were successfully compared to computational fluid dynamics (CFD) models. The other type of test blended solutions of different viscosity. For example, in one test a half tank of water was added to a half tank of a more viscous, concentrated salt solution. In this case, the fluid mechanics of the blending process was noted to significantly change due to stratification of fluids. CFD models for stratification were not investigated. This paper is the fourth in a series of papers resulting from this research (Leishear, et.al. [1- 4]), and this paper documents final test results, statistical analysis of the data, a comparison of experimental results to CFD models, and scale-up of the results to a full scale tank.

  18. TU-F-18A-02: Iterative Image-Domain Decomposition for Dual-Energy CT

    SciTech Connect (OSTI)

    Niu, T; Dong, X; Petrongolo, M; Zhu, L

    2014-06-15

    Purpose: Dual energy CT (DECT) imaging plays an important role in advanced imaging applications due to its material decomposition capability. Direct decomposition via matrix inversion suffers from significant degradation of image signal-to-noise ratios, which reduces clinical value. Existing de-noising algorithms achieve suboptimal performance since they suppress image noise either before or after the decomposition and do not fully explore the noise statistical properties of the decomposition process. We propose an iterative image-domain decomposition method for noise suppression in DECT, using the full variance-covariance matrix of the decomposed images. Methods: The proposed algorithm is formulated in the form of least-square estimation with smoothness regularization. It includes the inverse of the estimated variance-covariance matrix of the decomposed images as the penalty weight in the least-square term. Performance is evaluated using an evaluation phantom (Catphan 600) and an anthropomorphic head phantom. Results are compared to those generated using direct matrix inversion with no noise suppression, a de-noising method applied on the decomposed images, and an existing algorithm with similar formulation but with an edge-preserving regularization term. Results: On the Catphan phantom, our method retains the same spatial resolution as the CT images before decomposition while reducing the noise standard deviation of decomposed images by over 98%. The other methods either degrade spatial resolution or achieve less low-contrast detectability. Also, our method yields lower electron density measurement error than direct matrix inversion and reduces error variation by over 97%. On the head phantom, it reduces the noise standard deviation of decomposed images by over 97% without blurring the sinus structures. Conclusion: We propose an iterative image-domain decomposition method for DECT. The method combines noise suppression and material decomposition into an iterative

  19. Dual chamber system providing simultaneous etch and deposition on opposing substrate sides for growing low defect density epitaxial layers

    DOE Patents [OSTI]

    Kulkarni, Nagraj S. (Knoxville, TN); Kasica, Richard J. (Ashburn, VA) ,

    2011-03-08

    A dual-chamber reactor can include a housing enclosing a volume having a divider therein, where the divider defines a first chamber and a second chamber. The divider can include a substrate holder that supports at least one substrate and exposes a first side of the substrate to the first chamber and a second side of the substrate to the second chamber. The first chamber can include an inlet for delivering at least one reagent to the first chamber for forming a film on the first side of the substrate, and the second chamber can include a removal device for removing material from the second side of the substrate.

  20. Effect of bulk electric field reversal on the bounce resonance heating in dual-frequency capacitively coupled electronegative plasmas

    SciTech Connect (OSTI)

    Liu Yongxin; Zhang Quanzhi; Liu Jia; Song Yuanhong; Wang Younian [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Bogaerts, Annemie [Department of Chemistry, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, BE-2610 Wilrijk-Antwerp (Belgium)

    2012-09-10

    The electron bounce resonance heating (BRH) in dual-frequency capacitively coupled plasmas operated in oxygen and argon has been studied by different experimental methods. In comparison with the electropositive argon discharge, the BRH in an electronegative discharge occurs at larger electrode gaps. Kinetic particle simulations reveal that in the oxygen discharge, the bulk electric field becomes quite strong and is out of phase with the sheath field. Therefore, it retards the resonant electrons when traversing the bulk, resulting in a suppressed BRH. This effect becomes more pronounced at lower high-frequency power, when the discharge mode changes from electropositive to electronegative.

  1. Electrically tunable zero dispersion wavelengths in photonic crystal fibers filled with a dual frequency addressable liquid crystal

    SciTech Connect (OSTI)

    Wahle, Markus Kitzerow, Heinz-Siegfried

    2015-11-16

    We present a liquid crystal (LC) infiltrated photonic crystal fiber, which enables the electrical tuning of the position of zero dispersion wavelengths (ZDWs). A dual frequency addressable liquid crystal is aligned perpendicular on the inclusion walls of a photonic crystal fiber, which results in an escaped radial director field. The orientation of the LC is controlled by applying an external electric field. Due to the high index of the liquid crystal the fiber guides light by the photonic band gap effect. Multiple ZDWs exist in the visible and near infrared. The positions of the ZDWs can be either blue or red shifted depending on the frequency of the applied voltage.

  2. Heating mode transition in a hybrid direct current/dual-frequency capacitively coupled CF{sub 4} discharge

    SciTech Connect (OSTI)

    Zhang, Quan-Zhi; Wang, You-Nian; Bogaerts, Annemie

    2014-06-14

    Computer simulations based on the particle-in-cell/Monte Carlo collision method are performed to study the plasma characteristics and especially the transition in electron heating mechanisms in a hybrid direct current (dc)/dual-frequency (DF) capacitively coupled CF{sub 4} discharge. When applying a superposed dc voltage, the plasma density first increases, then decreases, and finally increases again, which is in good agreement with experiments. This trend can be explained by the transition between the four main heating modes, i.e., DF coupling, dc and DF coupling, dc source dominant heating, and secondary electron dominant heating.

  3. EM reconstruction of dual isotope PET using staggered injections and prompt gamma positron emitters

    SciTech Connect (OSTI)

    Andreyev, Andriy; Sitek, Arkadiusz; Celler, Anna

    2014-02-15

    Purpose: The aim of dual isotope positron emission tomography (DIPET) is to create two separate images of two coinjected PET radiotracers. DIPET shortens the duration of the study, reduces patient discomfort, and produces perfectly coregistered images compared to the case when two radiotracers would be imaged independently (sequential PET studies). Reconstruction of data from such simultaneous acquisition of two PET radiotracers is difficult because positron decay of any isotope creates only 511 keV photons; therefore, the isotopes cannot be differentiated based on the detected energy. Methods: Recently, the authors have proposed a DIPET technique that uses a combination of radiotracer A which is a pure positron emitter (such as{sup 18}F or {sup 11}C) and radiotracer B in which positron decay is accompanied by the emission of a high-energy (HE) prompt gamma (such as {sup 38}K or {sup 60}Cu). Events that are detected as triple coincidences of HE gammas with the corresponding two 511 keV photons allow the authors to identify the lines-of-response (LORs) of isotope B. These LORs are used to separate the two intertwined distributions, using a dedicated image reconstruction algorithm. In this work the authors propose a new version of the DIPET EM-based reconstruction algorithm that allows the authors to include an additional, independent estimate of radiotracer A distribution which may be obtained if radioisotopes are administered using a staggered injections method. In this work the method is tested on simple simulations of static PET acquisitions. Results: The authors’ experiments performed using Monte-Carlo simulations with static acquisitions demonstrate that the combined method provides better results (crosstalk errors decrease by up to 50%) than the positron-gamma DIPET method or staggered injections alone. Conclusions: The authors demonstrate that the authors’ new EM algorithm which combines information from triple coincidences with prompt gammas and

  4. Dual Axis Radiographic Hydrodynamic Test Facility mitigation action plan. Annual report for 1997

    SciTech Connect (OSTI)

    Haagenstad, H.T.

    1998-01-15

    This Mitigation Action Plan Annual Report (MAPAR) has been prepared by the US Department of Energy (DOE) as part of implementing the Dual Axis Radiographic Hydrodynamic Test Facility (DARHT) Mitigation Action Plan (MAP). This MAPAR provides a status on specific DARHT facility design- and construction-related mitigation actions that have been initiated in order to fulfill DOE`s commitments under the DARHT MAP. The functions of the DARHT MAP are to (1) document potentially adverse environmental impacts of the Phased Containment Option delineated in the Final EIS, (2) identify commitments made in the Final EIS and ROD to mitigate those potential impacts, and (3) establish Action Plans to carry out each commitment (DOE 1996). The DARHT MAP is divided into eight sections. Sections 1--5 provide background information regarding the NEPA review of the DARHT project and an introduction to the associated MAP. Section 6 references the Mitigation Action Summary Table which summaries the potential impacts and mitigation measures; indicates whether the mitigation is design-, construction-, or operational-related; the organization responsible for the mitigation measure; and the projected or actual completion data for each mitigation measure. Sections 7 and 8 discuss the Mitigation Action Plan Annual Report and Tracking System commitment and the Potential Impacts, Commitments, and Action Plans respectively. Under Section 8, potential impacts are categorized into five areas of concern: General Environment, including impacts to air and water; Soils, especially impacts affecting soil loss and contamination; Biotic Resources, especially impacts affecting threatened and endangered species; Cultural/Paleontological Resources, especially impacts affecting the archeological site known as Nake`muu; and Human Health and Safety, especially impacts pertaining to noise and radiation. Each potential impact includes a brief statement of the nature of the impact and its cause(s). The commitment

  5. Dual mechanical behaviour of hydrogen in stressed silicon nitride thin films

    SciTech Connect (OSTI)

    Volpi, F. Braccini, M.; Pasturel, A.; Devos, A.; Raymond, G.; Morin, P.

    2014-07-28

    In the present article, we report a study on the mechanical behaviour displayed by hydrogen atoms and pores in silicon nitride (SiN) films. A simple three-phase model is proposed to relate the physical properties (stiffness, film stress, mass density, etc.) of hydrogenated nanoporous SiN thin films to the volume fractions of hydrogen and pores. This model is then applied to experimental data extracted from films deposited by plasma enhanced chemical vapour deposition, where hydrogen content, stress, and mass densities range widely from 11% to 30%, ?2.8 to 1.5?GPa, and 2.0 to 2.8?g/cm{sup 3}, respectively. Starting from the conventional plotting of film's Young's modulus against film porosity, we first propose to correct the conventional calculation of porosity volume fraction with the hydrogen content, thus taking into account both hydrogen mass and concentration. The weight of this hydrogen-correction is found to evolve linearly with hydrogen concentration in tensile films (in accordance with a simple mass correction of the film density calculation), but a clear discontinuity is observed toward compressive stresses. Then, the effective volume occupied by hydrogen atoms is calculated taking account of the bond type (N-H or Si-H bonds), thus allowing a precise extraction of the hydrogen volume fraction. These calculations applied to tensile films show that both volume fractions of hydrogen and porosity are similar in magnitude and randomly distributed against Young's modulus. However, the expected linear dependence of the Young's modulus is clearly observed when both volume fractions are added. Finally, we show that the stiffer behaviour of compressive films cannot be only explained on the basis of this (hydrogen?+?porosity) volume fraction. Indeed this stiffness difference relies on a dual mechanical behaviour displayed by hydrogen atoms against the film stress state: while they participate to the stiffness in compressive films, hydrogen atoms mainly behave like

  6. Analysis of Ignition Behavior in a Turbocharged Direct Injection Dual Fuel Engine Using Propane and Methane as Primary Fuels

    SciTech Connect (OSTI)

    Polk, A. C.; Gibson, C. M.; Shoemaker, N. T.; Srinivasan, K. K.; Krishnan, S. R.

    2013-05-24

    This paper presents experimental analyses of the ignition delay (ID) behavior for diesel-ignited propane and diesel-ignited methane dual fuel combustion. Two sets of experiments were performed at a constant speed (1800 rev/min) using a 4-cylinder direct injection diesel engine with the stock ECU and a wastegated turbocharger. First, the effects of fuel-air equivalence ratios (© pilot ¼ 0.2-0.6 and © overall ¼ 0.2-0.9) on IDs were quantified. Second, the effects of gaseous fuel percent energy substitution (PES) and brake mean effective pressure (BMEP) (from 2.5 to 10 bar) on IDs were investigated. With constant © pilot (> 0.5), increasing © overall with propane initially decreased ID but eventually led to premature propane autoignition; however, the corresponding effects with methane were relatively minor. Cyclic variations in the start of combustion (SOC) increased with increasing © overall (at constant © pilot), more significantly for propane than for methane. With increasing PES at constant BMEP, the ID showed a nonlinear (initially increasing and later decreasing) trend at low BMEPs for propane but a linearly decreasing trend at high BMEPs. For methane, increasing PES only increased IDs at all BMEPs. At low BMEPs, increasing PES led to significantly higher cyclic SOC variations and SOC advancement for both propane and methane. Finally, the engine ignition delay (EID) was also shown to be a useful metric to understand the influence of ID on dual fuel combustion.

  7. Simultaneous measurement of temperature and emissivity of lunar regolith simulant using dual-channel millimeter-wave radiometry

    SciTech Connect (OSTI)

    McCloy, J. S.; Sundaram, S. K.; Matyas, J.; Woskov, P. P.

    2011-01-01

    Millimeter wave (MMW) radiometry can be used for simultaneous measurement of emissivity and temperature of materials under extreme environments (high temperature, pressure, and corrosive environments). The state-of-the-art dual channel MMW passive radiometer with active interferometric capabilities at 137 GHz described here allows for radiometric measurements of sample temperature and emissivity up to at least 1600 °C with simultaneous measurement of sample surface dynamics. These capabilities have been used to demonstrate dynamic measurement of melting of powders of simulated lunar regolith and static measurement of emissivity of solid samples. The paper presents the theoretical background and basis for the dual-receiver system, describes the hardware in detail, and demonstrates the data analysis. Post-experiment analysis of emissivity versus temperature allows further extraction from the radiometric data of millimeter wave viewing beam coupling factors, which provide corroboratory evidence to the interferometric data of the process dynamics observed. Finally, these results show the promise of the MMW system for extracting quantitative and qualitative process parameters for industrial processes and access to real-time dynamics of materials behavior in extreme environments.

  8. Shut-off of a geopressured water channel behind casing via coiled tubing utilizing a dual slurry cement system: A case history

    SciTech Connect (OSTI)

    Nowak, T.W.; Lange, K.J.; Grant, W.H.; Patout, T.S.

    1995-12-31

    This paper presents a case history involving a unique dual cement system to shut off a geopressured water channel behind casing utilizing coiled tubing. The channeling problem was identified and documented using water flow logging techniques. Logging indicated the lower gravel packed selective could produce salt water if perforated without eliminating the suspected water channel. Reserves did not warrant a major rig workover, making a non-rig workover via coiled tubing the only viable option to repair the well. A unique dual cement system tested on a hesitation squeeze schedule pumped through coiled tubing with extremely limited thickening time was necessary to repair the primary cement job.

  9. Anatomical noise in contrast-enhanced digital mammography. Part II. Dual-energy imaging

    SciTech Connect (OSTI)

    Hill, Melissa L.; Yaffe, Martin J.; Mainprize, James G.; Carton, Ann-Katherine; Saab-Puong, Sylvie; Iordache, R?zvan; Muller, Serge; Jong, Roberta A.; Dromain, Clarisse

    2013-08-15

    Purpose: Dual-energy (DE) contrast-enhanced digital mammography (CEDM) uses an iodinated contrast agent in combination with digital mammography (DM) to evaluate lesions on the basis of tumor angiogenesis. In DE imaging, low-energy (LE) and high-energy (HE) images are acquired after contrast administration and their logarithms are subtracted to cancel the appearance of normal breast tissue. Often there is incomplete signal cancellation in the subtracted images, creating a background clutter that can impair lesion detection. This is the second component of a two-part report on anatomical noise in CEDM. In Part I the authors characterized the anatomical noise for single-energy (SE) temporal subtraction CEDM by a power law, with model parameters ? and ?. In this work the authors quantify the anatomical noise in DE CEDM clinical images and compare this with the noise in SE CEDM. The influence on the anatomical noise of the presence of iodine in the breast, the timing of imaging postcontrast administration, and the x-ray energy used for acquisition are each evaluated.Methods: The power law parameters, ? and ?, were measured from unprocessed LE and HE images and from DE subtracted images to quantify the anatomical noise. A total of 98 DE CEDM cases acquired in a previous clinical pilot study were assessed. Conventional DM images from 75 of the women were evaluated for comparison with DE CEDM. The influence of the imaging technique on anatomical noise was determined from an analysis of differences between the power law parameters as measured in DM, LE, HE, and DE subtracted images for each subject.Results: In DE CEDM, weighted image subtraction lowers ? to about 1.1 from 3.2 and 3.1 in LE and HE unprocessed images, respectively. The presence of iodine has a small but significant effect in LE images, reducing ? by about 0.07 compared to DM, with ? unchanged. Increasing the x-ray energy, from that typical in DM to a HE beam, significantly decreases ? by about 2 10{sup ?5

  10. JOINT-INDUSTRY PARTNERSHIP TO DEVELOP A HOLLOW SPHERE DUAL-GRADIENT DRILLING SYSTEM

    SciTech Connect (OSTI)

    William C. Maurer; Colin Ruan; Greg Deskins

    2003-05-01

    Maurer Technology Inc. (MTI) formed a joint-industry partnership to fund the development of a hollow sphere dual-gradient drilling (DGD) system. Phase I consisted of collecting, compiling, analyzing, and distributing information and data regarding a new DGD system for use by the oil and gas industry. Near the end of Phase I, DOE provided funding to the project that was used to conduct a series of critical follow-on tests investigating sphere separation in weighted waterbase and oilbase muds. Drilling costs in deep water are high because seawater pressure on the ocean floor creates a situation where many strings of casing are required due to the relatively close spacing between fracture and pore pressure curves. Approximately $100 million have been spent during the past five years on DGD systems that place pumps on the seafloor to reduce these drilling problems by reducing the annulus fluid pressure at the bottom of the riser. BP estimates that a DGD system can save $9 million per well in the Thunderhorse Field and Conoco estimates it can save $5 to $15 million per well in its deepwater operations. Unfortunately, previous DGD development projects have been unsuccessful due to the high costs ($20 to $50 million) and reliability problems with seafloor pump systems. MTI has been developing a simple DGD system concept that would pump hollow glass spheres into the bottom of the riser to reduce density of the mud in the riser. This eliminates the requirement for seafloor pumps and replaces them with low cost mud pumps, shale shakers, and other oilfield equipment that can be operated on the rig by conventional crews. A $1.8 million Phase I joint-industry project funded by five service companies and three operators showed that hollow spheres could be pumped well, but difficulties were encountered in separating the spheres from a polymer mud supplied by Halliburton due to the high viscosity of this mud at the low shear rates encountered on oilfield shale shaker screens. As a

  11. Dual-mode resonant instabilities of the surface dust-acoustic wave in a Lorentzian plasma slab

    SciTech Connect (OSTI)

    Lee, Myoung-Jae; Jung, Young-Dae

    2015-08-15

    The dual-mode resonant instabilities of the dust-acoustic surface wave propagating at the plasma-vacuum interfaces of the generalized Lorentzian dusty plasma slab are kinetically investigated. The dispersion relation is derived for the two propagation modes: symmetric and anti-symmetric waves. We have found that the temporal growth rate of the resonant instability increases with an increase of the slab thickness for both modes. Especially, the nonthermality of plasmas enhances the growth rate of the anti-symmetric resonant wave, and the nonthermal effect is enhanced as the slab thickness is increased. It is also found that the growth rate increases with increasing angular frequency of the rotating dust grain due to the enhanced resonant energy exchange.

  12. Ultra-broadband and compact polarization splitter based on gold filled dual-core photonic crystal fiber

    SciTech Connect (OSTI)

    Khaleque, Abdul Hattori, Haroldo T.

    2015-10-14

    A polarization splitter based on gold filled dual-core photonic crystal fiber (DC-PCF) that can work from 1420 nm to 1980 nm (560 nm bandwidth) is proposed in this work. The splitter has an extinction ratio lower than −20 dB over a large bandwidth with a total length of 254.6 μm. The key principle of operation of the splitter is the induced change in the refractive index of the y-odd mode when it is coupled to the second order plasmonic mode, while other supermodes are weakly affected by the plasmonic mode. The proposed broadband and compact polarization splitter may find applications in communications and sensing, being capable of working in the infrared and mid-infrared wavelength ranges.

  13. Theoretical investigation of the design and performance of a dual energy (kV and MV) radiotherapy imager

    SciTech Connect (OSTI)

    Liu, Langechuan; Antonuk, Larry E. El-Mohri, Youcef; Zhao, Qihua; Jiang, Hao

    2015-04-15

    Purpose: In modern radiotherapy treatment rooms, megavoltage (MV) portal imaging and kilovoltage (kV) cone-beam CT (CBCT) imaging are performed using various active matrix flat-panel imager (AMFPI) designs. To expand the clinical utility of MV and kV imaging, MV AMFPIs incorporating thick, segmented scintillators and, separately, kV imaging using a beams eye view geometry have been investigated by a number of groups. Motivated by these previous studies, it is of interest to explore to what extent it is possible to preserve the benefits of kV and MV imaging using a single AMFPI design, given the considerably different x ray energy spectra used for kV and MV imaging. In this paper, considerations for the design of such a dual energy imager are explored through examination of the performance of a variety of hypothetical AMFPIs based on x ray converters employing segmented scintillators. Methods: Contrast, noise, and contrast-to-noise ratio performances were characterized through simulation modeling of CBCT imaging, while modulation transfer function, Swank factor, and signal performance were characterized through simulation modeling of planar imaging. The simulations were based on a previously reported hybrid modeling technique (accounting for both radiation and optical effects), augmented through modeling of electronic additive noise. All designs employed BGO scintillator material with thicknesses ranging from 0.25 to 4 cm and element-to-element pitches ranging from 0.508 to 1.016 mm. A series of studies were performed under both kV and MV imaging conditions to determine the most advantageous imager configuration (involving front or rear x ray illumination and use of a mirror or black reflector), converter design (pitch and thickness), and operating mode (pitch-binning combination). Results: Under the assumptions of the present study, the most advantageous imager design was found to employ rear illumination of the converter in combination with a black reflector

  14. Communication: Electronic and transport properties of molecular junctions under a finite bias: A dual mean field approach

    SciTech Connect (OSTI)

    Liu, Shuanglong; Feng, Yuan Ping; Zhang, Chun; Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543

    2013-11-21

    We show that when a molecular junction is under an external bias, its properties cannot be uniquely determined by the total electron density in the same manner as the density functional theory for ground state properties. In order to correctly incorporate bias-induced nonequilibrium effects, we present a dual mean field (DMF) approach. The key idea is that the total electron density together with the density of current-carrying electrons are sufficient to determine the properties of the system. Two mean fields, one for current-carrying electrons and the other one for equilibrium electrons can then be derived. Calculations for a graphene nanoribbon junction show that compared with the commonly used ab initio transport theory, the DMF approach could significantly reduce the electric current at low biases due to the non-equilibrium corrections to the mean field potential in the scattering region.

  15. Dual function armchair graphene nanoribbon-based spin-photodetector: Optical spin-valve and light helicity detector

    SciTech Connect (OSTI)

    Ostovari, Fatemeh; Moravvej-Farshi, Mohammad Kazem

    2014-08-18

    We show an armchair graphene nanoribbon channel connected between asymmetric ferromagnetic source-drain structure—i.e., p-type Co/Au/graphene source and n-type Co/Cu/graphene drain—can operate as dual function spin-photodetector, under zero external biases at room temperature. It can function as an optical spin-valve with magnetoresistance of greater than 60% and responsivity as high as 25.12 A/mW, when irradiated by an un-polarized light of energy ∼3.03 eV. Under a circularly polarized illumination, this optical spin-valve can also operate as a light helicity detector. The calculated magnetoresistances for right and left circularly polarized lights are both greater than 60%.

  16. An AOTF-based dual-modality hyperspectral imaging system (DMHSI) capable of simultaneous fluorescence and reflectance imaging

    SciTech Connect (OSTI)

    Martin, Matthew E; Wabuyele, Musundi B; Panjehpour, Masoud {Nmn}; Overholt, Bergein F; Kennel, Steve J; Cunningham, Glenn; Vo Dinh, Tuan

    2006-03-01

    An acousto-optic tunable filter (AOTF)-based system for dual-modality hyperspectral imaging (DMHSI) has been developed for use in characterization of normal and malignant mouse tissue. The system consists of a laser, endoscope, AOTF, and two cameras coupled with optics and electronics. Initial results show that the system can delineate normal and malignant mouse tissues real-time. The analysis shows that malignant tissues consistently exhibit less fluorescent intensity in the wavelength band from 440 to 540nm with a peak intensity of around 490nm. The analysis also shows key spectroscopic differences between normal and malignant tissues. Further, these results are compared to real-time spectroscopic data and show good correlation.

  17. Dual isotope notch observer for isotope identification, assay and imaging with mono-energetic gamma-ray sources

    DOE Patents [OSTI]

    Barty, Christopher P.J.

    2013-02-05

    A dual isotope notch observer for isotope identification, assay and imaging with mono-energetic gamma-ray sources includes a detector arrangement consists of three detectors downstream from the object under observation. The latter detector, which operates as a beam monitor, is an integrating detector that monitors the total beam power arriving at its surface. The first detector and the middle detector each include an integrating detector surrounding a foil. The foils of these two detectors are made of the same atomic material, but each foil is a different isotope, e.g., the first foil may comprise U235 and second foil may comprise U238. The integrating detectors surrounding these pieces of foil measure the total power scattered from the foil and can be similar in composition to the final beam monitor. Non-resonant photons will, after calibration, scatter equally from both foils.

  18. Dual-Fuel Combustion Turbine Provides Reliable Power to U.S. Navy Submarine Base New London in Groton, Connecticut

    SciTech Connect (OSTI)

    Halverson, Mark A.)

    2002-01-01

    In keeping with a long-standing tradition of running Base utilities as a business, the U.S. Navy Submarine Base New London installed a dual-fuel combustion turbine with a heat recovery boiler. The 5-megawatt (MW) gas- and oil-fired combustion turbine sits within the Lower Base area, just off the shores of the Thames River. The U.S. Navy owns, operates, and maintains the combined heat and power (CHP) plant, which provides power to the Navy?s nuclear submarines when they are in port and to the Navy?s training facilities at the Submarine Base. Heat recovered from the turbine is used to produce steam for use in Base housing, medical facilities, and laundries. In FY00, the Navy estimates that it will save over $500,000 per year as a result of the combined heat and power unit.

  19. Super-resolution nanofabrication with metal-ion doped hybrid material through an optical dual-beam approach

    SciTech Connect (OSTI)

    Cao, Yaoyu; Li, Xiangping; Gu, Min

    2014-12-29

    We apply an optical dual-beam approach to a metal-ion doped hybrid material to achieve nanofeatures beyond the optical diffraction limit. By spatially inhibiting the photoreduction and the photopolymerization, we realize a nano-line, consisting of polymer matrix and in-situ generated gold nanoparticles, with a lateral size of sub 100?nm, corresponding to a factor of 7 improvement compared to the diffraction limit. With the existence of gold nanoparticles, a plasmon enhanced super-resolution fabrication mechanism in the hybrid material is observed, which benefits in a further reduction in size of the fabricated feature. The demonstrated nanofeature in hybrid materials paves the way for realizing functional nanostructures.

  20. Dual acceptor doping and aging effect of p-ZnO:(Na, N) nanorod thin films by spray pyrolysis

    SciTech Connect (OSTI)

    Swapna, R. E-mail: santhoshmc@nitt.edu; Amiruddin, R. E-mail: santhoshmc@nitt.edu; Santhosh Kumar, M. C. E-mail: santhoshmc@nitt.edu

    2014-01-28

    An attempt has been made to realize p-type ZnO by dual acceptor doping (Na-N) into ZnO thin films. Na and N doped ZnO thin films of different concentrations (0 to 8 at.%) have been grown by spray pyrolysis at 623 K. The grown films on glass substrate have been characterized by X-ray diffraction (XRD), Hall measurement, UV-Vis spectrophotometer, Photoluminescence (PL) and Energy dispersive spectroscopy (EDS) to validate the p-type conduction. The surface morphology and roughness of the ZnO:(Na, N) films are studied by scanning electron microscopy (SEM) and atomic force microscopy (AFM), respectively. Hall measurement shows that all the films exhibit p-type conductivity except for 0 at.% Na-N doped ZnO film. The obtained resistivity (5.60×10{sup −2} Ω cm) and hole concentration (3.15×10{sup 18} cm{sup −3}) for the best dual acceptor doped film is 6 at.%. It has been predicted that (Na{sub Zn}−N{sub O}) acceptor complex is responsible for the p-type conduction. The p-type conductivity of the ZnO:(Na, N) films is stable even after 6 months. The crystallinity of the films has been studied by XRD. Energy dispersive spectroscopy (EDS) confirms the presence of Na and N in 6 at.% ZnO:(Na, N) film. Photoluminescence (PL) spectra of ZnO:(Na, N) films show NBE and deep level emissions in the UV and visible regions, respectively. The ZnO:(Na, N) films exhibit a high transmittance about 90% in the visible region.

  1. Dual Phase Li4 Ti5O12TiO2 Nanowire Arrays As Integrated Anodes For High-rate Lithium-ion Batteries

    SciTech Connect (OSTI)

    Liao, Jin; Chabot, Victor; Gu, Meng; Wang, Chong M.; Xiao, Xingcheng; Chen, Zhongwei

    2014-08-19

    Lithium titanate (Li4Ti5O12) is well known as a zero strain material inherently, which provides excellent long cycle stability as a negative electrode for lithium ion batteries. However, the low specific capacity (175 mA h g?1) limits it to power batteries although the low electrical conductivity is another intrinsic issue need to be solved. In this work, we developed a facile hydrothermal and ion-exchange route to synthesize the self-supported dual-phase Li4Ti5O12TiO2 nanowire arrays to further improve its capacity as well as rate capability. The ratio of Li4Ti5O12 to TiO2 in the dual phase Li4Ti5O12TiO2 nanowire is around 2:1. The introduction of TiO2 into Li4Ti5O12 increases the specific capacity. More importantly, by interface design, it creates a dual-phase nanostructure with high grain boundary density that facilitates both electron and Li ion transport. Compared with phase-pure nanowire Li4Ti5O12 and TiO2 nanaowire arrays, the dual-phase nanowire electrode yielded superior rate capability (135.5 at 5 C, 129.4 at 10 C, 120.2 at 20 C and 115.5 mA h g?1 at 30 C). In-situ transmission electron microscope clearly shows the near zero deformation of the dual phase structure, which explains its excellent cycle stability.

  2. Characterizing energy dependence and count rate performance of a dual scintillator fiber-optic detector for computed tomography

    SciTech Connect (OSTI)

    Hoerner, Matthew R. Stepusin, Elliott J.; Hyer, Daniel E.; Hintenlang, David E.

    2015-03-15

    Purpose: Kilovoltage (kV) x-rays pose a significant challenge for radiation dosimetry. In the kV energy range, even small differences in material composition can result in significant variations in the absorbed energy between soft tissue and the detector. In addition, the use of electronic systems in light detection has demonstrated measurement losses at high photon fluence rates incident to the detector. This study investigated the feasibility of using a novel dual scintillator detector and whether its response to changes in beam energy from scatter and hardening is readily quantified. The detector incorporates a tissue-equivalent plastic scintillator and a gadolinium oxysulfide scintillator, which has a higher sensitivity to scatter x-rays. Methods: The detector was constructed by coupling two scintillators: (1) small cylindrical plastic scintillator, 500 μm in diameter and 2 mm in length, and (2) 100 micron sheet of gadolinium oxysulfide 500 μm in diameter, each to a 2 m long optical fiber, which acts as a light guide to transmit scintillation photons from the sensitive element to a photomultiplier tube. Count rate linearity data were obtained from a wide range of exposure rates delivered from a radiological x-ray tube by adjusting the tube current. The data were fitted to a nonparalyzable dead time model to characterize the time response. The true counting rate was related to the reference free air dose air rate measured with a 0.6 cm{sup 3} Radcal{sup ®} thimble chamber as described in AAPM Report No. 111. Secondary electron and photon spectra were evaluated using Monte Carlo techniques to analyze ionization quenching and photon energy-absorption characteristics from free-in-air and in phantom measurements. The depth/energy dependence of the detector was characterized using a computed tomography dose index QA phantom consisting of nested adult head and body segments. The phantom provided up to 32 cm of acrylic with a compatible 0.6 cm{sup 3} calibrated

  3. Technical Note: Relation between dual-energy subtraction of CT images for electron density calibration and virtual monochromatic imaging

    SciTech Connect (OSTI)

    Saito, Masatoshi

    2015-07-15

    Purpose: For accurate tissue inhomogeneity correction in radiotherapy treatment planning, the author previously proposed a simple conversion of the energy-subtracted computed tomography (CT) number to an electron density (ΔHU–ρ{sub e} conversion), which provides a single linear relationship between ΔHU and ρ{sub e} over a wide ρ{sub e} range. The purpose of the present study was to reveal the relation between the ΔHU image for ρ{sub e} calibration and a virtually monochromatic CT image by performing numerical analyses based on the basis material decomposition in dual-energy CT. Methods: The author determined the weighting factor, α{sub 0}, of the ΔHU–ρ{sub e} conversion through numerical analyses of the International Commission on Radiation Units and Measurements Report-46 human body tissues using their attenuation coefficients and given ρ{sub e} values. Another weighting factor, α(E), for synthesizing a virtual monochromatic CT image from high- and low-kV CT images, was also calculated in the energy range of 0.03 < E < 5 MeV, assuming that cortical bone and water were the basis materials. The mass attenuation coefficients for these materials were obtained using the XCOM photon cross sections database. The effective x-ray energies used to calculate the attenuation were chosen to imitate a dual-source CT scanner operated at 80–140 and 100–140 kV/Sn. Results: The determined α{sub 0} values were 0.455 for 80–140 kV/Sn and 0.743 for 100–140 kV/Sn. These values coincided almost perfectly with the respective maximal points of the calculated α(E) curves located at approximately 1 MeV, in which the photon-matter interaction in human body tissues is exclusively the incoherent (Compton) scattering. Conclusions: The ΔHU image could be regarded substantially as a CT image acquired with monoenergetic 1-MeV photons, which provides a linear relationship between CT numbers and electron densities.

  4. Preliminary research on overmoded high-power millimeter-wave Cerenkov generator with dual-cavity reflector in low guiding magnetic field

    SciTech Connect (OSTI)

    Ye, Hu; Wu, Ping; Chen, Changhua; Ning, Hui; Tan, Weibing; Teng, Yan; Shi, Yanchao; Song, Zhimin; Cao, Yibing; Du, Zhaoyu

    2015-12-15

    This paper presents preliminary research on a V-band overmoded Cerenkov generator with dual-cavity reflector operating in a low guiding magnetic field. It is found that the fluctuation of the electron envelope in the low guiding magnetic field can be predicted using an equivalent coaxial model of a foilless diode, and a dual-cavity reflector based on the model matching method can provide strong reflection at the front end of the overmoded structures so that any microwave power that leaks into the diode region can be effectively suppressed. Numerical simulations indicate that the control of the beam envelope and the use of the dual-cavity reflector ease generator operation in the low guiding magnetic field. In the experimental research, the fluctuation of the annular electron beam with the outer radius of 7.5 mm measures approximately 0.7 mm, which is in good agreement with the theoretical results. The disturbance caused by power leaking from the overmoded slow wave structure is eliminated by the dual-cavity reflector. With accurate fabrication and assembly processes, an operating frequency of 61.6 GHz is attained by the fifth harmonic heterodyne method, and the output power is measured to be approximately 123 MW by the far-field measurement method at a diode voltage of 445 kV, a beam current of 4.45 kA, and under a guiding magnetic field of 1.45 T. The output mode is measured using an array of neon flash bulbs, and the pulse shortening phenomenon is both observed and analyzed.

  5. A dual chelating solgel synthesis of BaTiO{sub 3} nanoparticles with effective photocatalytic activity for removing humic acid from water

    SciTech Connect (OSTI)

    Wang, Peigong; Fan, Caimei; Wang, Yawen; Ding, Guangyue; Yuan, Peihong

    2013-02-15

    Graphical abstract: The cubic phase BaTiO{sub 3} nanoparticles can be obtained at 600 C and changed into tetragonal phase at 900 C by a dual chelating solgel method, and the photocatalytic activities of the photocatalysts calcined at different temperatures were investigated by the removal of humic acid (HA) from water under UV light irradiation. Highlights: ? The humic acid in water was firstly degradated by BaTiO{sub 3} photocatalyst. ? The cubic BaTiO{sub 3} was obtained and changed into tetragonal phase at lower temperature. ? The chelating agents had an important influence on the phase formation of BaTiO{sub 3}. ? The tetragonal phase BaTiO{sub 3} calcined at 900 C exhibited higher photocatalytic activity under UV irradiation. -- Abstract: In this paper, a dual chelating solgel method was used to synthesize BaTiO{sub 3} nanoparticles by using acetylacetone and citric acid as chelating agents. The samples calcined at different temperatures were analyzed by thermogravimetric and differential thermal analysis (TG-DTA), X-ray diffraction (XRD), X-ray photoelectron spectra (XPS), scanning electron microscope (SEM) and UVvis diffuse reflectance spectra (UVvis). The results indicated that cubic phase BaTiO{sub 3} nanoparticles about 19.6 nm can be obtained at 600 C and changed into tetragonal phase at 900 C about 97.1 nm. All the BaTiO{sub 3} nanoparticles showed effective photocatalytic activities on the removal of humic acid (HA) under UV light irradiation. A comparison of single (acetylacetone or citric acid) and dual chelating (acetylacetone and citric acid) synthetic processes was also studied and the results demonstrated that the dual chelating agents indeed reduced phase transformation temperature from cubic to tetragonal BaTiO{sub 3}.

  6. Modeling of single event transients with dual double-exponential current sources: Implications for logic cell characterization

    DOE PAGES-Beta [OSTI]

    Black, Dolores Archuleta; Robinson, William H.; Wilcox, Ian Zachary; Limbrick, Daniel B.; Black, Jeffrey D.

    2015-08-07

    Single event effects (SEE) are a reliability concern for modern microelectronics. Bit corruptions can be caused by single event upsets (SEUs) in the storage cells or by sampling single event transients (SETs) from a logic path. Likewise, an accurate prediction of soft error susceptibility from SETs requires good models to convert collected charge into compact descriptions of the current injection process. This paper describes a simple, yet effective, method to model the current waveform resulting from a charge collection event for SET circuit simulations. The model uses two double-exponential current sources in parallel, and the results illustrate why a conventionalmore » model based on one double-exponential source can be incomplete. Furthermore, a small set of logic cells with varying input conditions, drive strength, and output loading are simulated to extract the parameters for the dual double-exponential current sources. As a result, the parameters are based upon both the node capacitance and the restoring current (i.e., drive strength) of the logic cell.« less

  7. Fully automated dual-frequency three-pulse-echo 2DIR spectrometer accessing spectral range from 800 to 4000 wavenumbers

    SciTech Connect (OSTI)

    Leger, Joel D.; Nyby, Clara M.; Varner, Clyde; Tang, Jianan; Rubtsova, Natalia I.; Yue, Yuankai; Kireev, Victor V.; Burtsev, Viacheslav D.; Qasim, Layla N.; Rubtsov, Igor V.; Rubtsov, Grigory I.

    2014-08-15

    A novel dual-frequency two-dimensional infrared instrument is designed and built that permits three-pulse heterodyned echo measurements of any cross-peak within a spectral range from 800 to 4000 cm{sup −1} to be performed in a fully automated fashion. The superior sensitivity of the instrument is achieved by a combination of spectral interferometry, phase cycling, and closed-loop phase stabilization accurate to ∼70 as. The anharmonicity of smaller than 10{sup −4} cm{sup −1} was recorded for strong carbonyl stretching modes using 800 laser shot accumulations. The novel design of the phase stabilization scheme permits tuning polarizations of the mid-infrared (m-IR) pulses, thus supporting measurements of the angles between vibrational transition dipoles. The automatic frequency tuning is achieved by implementing beam direction stabilization schemes for each m-IR beam, providing better than 50 μrad beam stability, and novel scheme for setting the phase-matching geometry for the m-IR beams at the sample. The errors in the cross-peak amplitudes associated with imperfect phase matching conditions and alignment are found to be at the level of 20%. The instrument can be used by non-specialists in ultrafast spectroscopy.

  8. Experimental and numerical investigations of electron density in low-pressure dual-frequency capacitively coupled oxygen discharges

    SciTech Connect (OSTI)

    Liu, Jia; Wen, De-Qi; Liu, Yong-Xin; Gao, Fei; Lu, Wen-Qi; Wang, You-Nian [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)] [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)

    2013-11-15

    The electron density is measured in low-pressure dual-frequency (2/60 MHz) capacitively coupled oxygen discharges by utilizing a floating hairpin probe. The dependence of electron density at the discharge center on the high frequency (HF) power, low frequency (LF) power, and gas pressure are investigated in detail. A (1D) particle-in-cell/Monte Carlo method is developed to calculate the time-averaged electron density at the discharge center and the simulation results are compared with the experimental ones, and general agreements are achieved. With increasing HF power, the electron density linearly increases. The electron density exhibits different changes with the LF power at different HF powers. At low HF powers (e.g., 30 W in our experiment), the electron density increases with increasing LF power while the electron density decreases with increasing LF power at relatively high HF powers (e.g., 120 W in our experiment). With increasing gas pressure the electron density first increases rapidly to reach a maximum value and then decreases slowly due to the combined effect of the production process by the ionization and the loss processes including the surface and volume losses.

  9. Electrodeposition, characterization and morphological investigations of NiFe/Cu multilayers prepared by pulsed galvanostatic, dual bath technique

    SciTech Connect (OSTI)

    Esmaili, S.; Bahrololoom, M.E.; Kavanagh, K.L.

    2011-02-15

    NiFe/Cu multilayers were grown sequentially by pulsed electrodeposition on copper (Cu) substrates. The layers were prepared in galvanostatic mode using a dual bath technique. The morphology, thickness, roughness and composition of the layers were studied using scanning electron microscopy, scanning transmission electron microscopy with energy dispersive X-ray spectroscopy, X-ray diffraction and atomic force microscopy. Analysis showed that the resulting multilayers were continuous layers with a root mean square roughness of 30 nm and a grain size of 20-60 nm. The Cu substrate and the electrodeposited Cu layer were preferentially (200) oriented while the NiFe layers were polycrystalline but with a preferred (200) texture. The thinnest multilayers produced were 20/40, NiFe/Cu, respectively. - Research Highlights: {yields} Thin MLs of Cu and Py can be ED utilizing a pulsed-galvanostatic, DBT. {yields} The resulting multilayers were continuous layers with an rms of 30 nm. {yields} The smallest average thickness achieved by DBT was 40 nm/20 nm for Cu/NiFe.

  10. Volatility characterization of nanoparticles from single and dual-fuel low temperature combustion in compression ignition engines

    DOE PAGES-Beta [OSTI]

    Lucachick, Glenn; Curran, Scott; Storey, John Morse; Prikhodko, Vitaly Y.; Northrop, William F.

    2016-03-10

    Our work explores the volatility of particles produced from two diesel low temperature combustion (LTC) modes proposed for high-efficiency compression ignition engines. It also explores mechanisms of particulate formation and growth upon dilution in the near-tailpipe environment. Moreover, the number distribution of exhaust particles from low- and mid-load dual-fuel reactivity controlled compression ignition (RCCI) and single-fuel premixed charge compression ignition (PPCI) modes were experimentally studied over a gradient of dilution temperature. Particle volatility of select particle diameters was investigated using volatility tandem differential mobility analysis (V-TDMA). Evaporation rates for exhaust particles were compared with V-TDMA results for candidate pure n-alkanesmore » to identify species with similar volatility characteristics. The results show that LTC particles are mostly comprised of material with volatility similar to engine oil alkanes. V-TDMA results were used as inputs to an aerosol condensation and evaporation model to support the finding that smaller particles in the distribution are comprised of lower volatility material than large particles under primary dilution conditions. Although the results show that saturation levels are high enough to drive condensation of alkanes onto existing particles under the dilution conditions investigated, they are not high We conclude that observed particles from LTC operation must grow from low concentrations of highly non-volatile compounds present in the exhaust.« less

  11. Achievement of high coercivity in sintered R-Fe-B magnets based on misch-metal by dual alloy method

    SciTech Connect (OSTI)

    Niu, E Wang, Zhen-Xi; Chen, Zhi-An; Rao, Xiao-Lei; Hu, Bo-Ping; Chen, Guo-An; Zhao, Yu-Gang; Zhang, Jin

    2014-03-21

    The R-Fe-B (R, rare earth) sintered magnets prepared with different ratio of alloys of MM-Fe-B (MM, misch-metal) and Nd-Fe-B by dual alloy method were investigated. As expected, the high ratio of MM-Fe-B alloy degrades the hard magnetic properties heavily with intrinsic coercivity lower than 5 kOe. When the atomic ratio MM/R???21.5% the magnetic properties can reach a practical level of B{sub r}???12.1 kGs, H{sub cj}???10.7 kOe, and (BH){sub max}???34.0 MGOe. And the effect of H{sub cj} enhancement by the grain boundary diffusion process is obvious when MM/R???21.5%. It is revealed that the decrement of intrinsic magnetic properties of R{sub 2}Fe{sub 14}B matrix phase is not the main reason of the degradation of the magnets with high MM ratio. The change of deteriorated microstructure together with phase component plays fundamental roles in low H{sub cj}. In high MM ratio magnets, (a) after annealing, Ce atoms inside main phase are inclined to be segregated in the outer layer of the main phase grains; (b) there is no thin layer of Ce-rich phase as an analogue of Nd-rich phase to separate main phase grains; (c) excessive Ce tends to form CeFe{sub 2} grains.

  12. Quantum transport of two-species Dirac fermions in dual-gated three-dimensional topological insulators

    DOE PAGES-Beta [OSTI]

    Xu, Yang; Miotkowski, Ireneusz; Chen, Yong P.

    2016-05-04

    Topological insulators are a novel class of quantum matter with a gapped insulating bulk, yet gapless spin-helical Dirac fermion conducting surface states. Here, we report local and non-local electrical and magneto transport measurements in dual-gated BiSbTeSe2 thin film topological insulator devices, with conduction dominated by the spatially separated top and bottom surfaces, each hosting a single species of Dirac fermions with independent gate control over the carrier type and density. We observe many intriguing quantum transport phenomena in such a fully tunable two-species topological Dirac gas, including a zero-magnetic-field minimum conductivity close to twice the conductance quantum at the doublemore » Dirac point, a series of ambipolar two-component half-integer Dirac quantum Hall states and an electron-hole total filling factor zero state (with a zero-Hall plateau), exhibiting dissipationless (chiral) and dissipative (non-chiral) edge conduction, respectively. As a result, such a system paves the way to explore rich physics, ranging from topological magnetoelectric effects to exciton condensation.« less

  13. Modeling of single event transients with dual double-exponential current sources: Implications for logic cell characterization

    DOE PAGES-Beta [OSTI]

    Black, Dolores A.; Robinson, William H.; Limbrick, Daniel B.; Black, Jeffrey D.; Wilcox, Ian Z.

    2015-08-07

    Single event effects (SEE) are a reliability concern for modern microelectronics. Bit corruptions can be caused by single event upsets (SEUs) in the storage cells or by sampling single event transients (SETs) from a logic path. An accurate prediction of soft error susceptibility from SETs requires good models to convert collected charge into compact descriptions of the current injection process. This paper describes a simple, yet effective, method to model the current waveform resulting from a charge collection event for SET circuit simulations. The model uses two double-exponential current sources in parallel, and the results illustrate why a conventional modelmore » based on one double-exponential source can be incomplete. A small set of logic cells with varying input conditions, drive strength, and output loading are simulated to extract the parameters for the dual double-exponential current sources. Furthermore, the parameters are based upon both the node capacitance and the restoring current (i.e., drive strength) of the logic cell.« less

  14. RADIOISOTOPE-DRIVEN DUAL-MODE PROPULSION SYSTEM FOR CUBESAT-SCALE PAYLOADS TO THE OUTER PLANETS

    SciTech Connect (OSTI)

    N. D. Jerred; T. M. Howe; S. D. Howe; A. Rajguru

    2014-02-01

    It is apparent the cost of planetary exploration is rising as mission budgets declining. Currently small scientific beds geared to performing limited tasks are being developed and launched into low earth orbit (LEO) in the form of small-scale satellite units, i.e., CubeSats. These micro- and nano-satellites are gaining popularity among the university and science communities due to their relatively low cost and design flexibility. To date these small units have been limited to performing tasks in LEO utilizing solar-based power. If a reasonable propulsion system could be developed, these CubeSat platforms could perform exploration of various extra-terrestrial bodies within the solar system engaging a broader range of researchers. Additionally, being mindful of mass, smaller cheaper launch vehicles (approximately 1,000 kgs to LEO) can be targeted. Thus, in effect, allows for beneficial exploration to be conducted within limited budgets. Researchers at the Center for Space Nuclear Research (CSNR) are proposing a low mass, radioisotope-based, dual-mode propulsion system capable of extending the exploration realm of these CubeSats out of LEO.

  15. High-resolution line-shape spectroscopy during a laser pulse based on Dual-Broad-Band-CARS interferometry

    SciTech Connect (OSTI)

    Vereschagin, Konstantin A; Vereschagin, Alexey K; Smirnov, Valery V; Stelmakh, O M; Fabelinskii, V I; Clauss, W; Klimenko, D N; Oschwald, M E-mail: Al_Vereshchagin@mail.r E-mail: stelmakh@kapella.gpi.r

    2006-07-31

    A high-resolution spectroscopic method is developed for recording Raman spectra of molecular transitions in transient objects during a laser pulse with a resolution of {approx}0.1 cm{sup -1}. The method is based on CARS spectroscopy using a Fabry-Perot interferometer for spectral analysis of the CARS signal and detecting a circular interferometric pattern on a two-dimensional multichannel photodetector. It is shown that the use of the Dual-Broad-Band-CARS configuration to obtain the CARS process provides the efficient averaging of the spectral-amplitude noise of the CARS signal generated by a laser pulse and, in combination with the angular integration of the two-dimensional interference pattern, considerably improves the quality of interferograms. The method was tested upon diagnostics of the transient oxygen-hydrogen flame where information on the shapes of spectral lines of the Q-branch of hydrogen molecules required for measuring temperature was simultaneously obtained and used. (special issue devoted to the 90th anniversary of a.m. prokhorov)

  16. Modeling of single event transients with dual double-exponential current sources: Implications for logic cell characterization

    SciTech Connect (OSTI)

    Black, Dolores Archuleta; Robinson, William H.; Wilcox, Ian Zachary; Limbrick, Daniel B.; Black, Jeffrey D.

    2015-08-07

    Single event effects (SEE) are a reliability concern for modern microelectronics. Bit corruptions can be caused by single event upsets (SEUs) in the storage cells or by sampling single event transients (SETs) from a logic path. Likewise, an accurate prediction of soft error susceptibility from SETs requires good models to convert collected charge into compact descriptions of the current injection process. This paper describes a simple, yet effective, method to model the current waveform resulting from a charge collection event for SET circuit simulations. The model uses two double-exponential current sources in parallel, and the results illustrate why a conventional model based on one double-exponential source can be incomplete. Furthermore, a small set of logic cells with varying input conditions, drive strength, and output loading are simulated to extract the parameters for the dual double-exponential current sources. As a result, the parameters are based upon both the node capacitance and the restoring current (i.e., drive strength) of the logic cell.

  17. Modeling of single event transients with dual double-exponential current sources: Implications for logic cell characterization

    SciTech Connect (OSTI)

    Black, Dolores A.; Robinson, William H.; Limbrick, Daniel B.; Black, Jeffrey D.; Wilcox, Ian Z.

    2015-08-07

    Single event effects (SEE) are a reliability concern for modern microelectronics. Bit corruptions can be caused by single event upsets (SEUs) in the storage cells or by sampling single event transients (SETs) from a logic path. An accurate prediction of soft error susceptibility from SETs requires good models to convert collected charge into compact descriptions of the current injection process. This paper describes a simple, yet effective, method to model the current waveform resulting from a charge collection event for SET circuit simulations. The model uses two double-exponential current sources in parallel, and the results illustrate why a conventional model based on one double-exponential source can be incomplete. A small set of logic cells with varying input conditions, drive strength, and output loading are simulated to extract the parameters for the dual double-exponential current sources. Furthermore, the parameters are based upon both the node capacitance and the restoring current (i.e., drive strength) of the logic cell.

  18. Synthesis and evaluation of novel [alpha]-heteroaryl-phenylpropanoic acid derivatives as PPAR[alpha/gamma] dual agonists

    SciTech Connect (OSTI)

    Casimiro-Garcia, Agustin; Bigge, Christopher F.; Davis, Jo Ann; Padalino, Teresa; Pulaski, James; Ohren, Jeffrey F.; McConnell, Patrick; Kane, Christopher D.; Royer, Lori J.; Stevens, Kimberly A.; Auerbach, Bruce; Collard, Wendy; McGregor, Christine; Song, Kun; Pfizer

    2010-09-27

    The synthesis of a new series of phenylpropanoic acid derivatives incorporating an heteroaryl group at the {alpha}-position and their evaluation for binding and activation of PPAR{alpha} and PPAR{gamma} are presented in this report. Among the new compounds, (S)-3-{l_brace}4-[3-(5-methyl-2-phenyl-oxazol-4-yl)-propyl]-phenyl{r_brace}-2-1,2,3-triazol-2-yl-propionic acid (17j), was identified as a potent human PPAR{alpha}/{gamma} dual agonist (EC{sub 50} = 0.013 and 0.061 {micro}M, respectively) with demonstrated oral bioavailability in rat and dog. 17j was shown to decrease insulin levels, plasma glucose, and triglycerides in the ZDF female rat model. In the human apolipoprotein A-1/CETP transgenic mouse model 17j produced increases in hApoA1 and HDL-C and decreases in plasma triglycerides. The increased potency for binding and activation of both PPAR subtypes observed with 17j when compared to previous analogs in this series was explained based on results derived from crystallographic and modeling studies.

  19. Humidity Effect on Nanoscale Electrochemistry in Solid Silver Ion Conductors and the Dual Nature of Its Locality

    DOE PAGES-Beta [OSTI]

    Yang, Sangmo; Strelcov, Evgheni; Paranthaman, Mariappan Parans; Tselev, Alexander; Noh, Tae Won; Kalinin, Sergei V.

    2015-01-07

    Scanning probe microscopy (SPM) is a powerful tool to investigate electrochemistry in nanoscale volumes. While most SPM-based studies have focused on reactions at the tip-surface junction, charge and mass conservation requires coupled and intrinsically non-local cathodic and anodic processes that can be significantly affected by ambient humidity. Here, we explore the role of water in both cathodic and anodic processes, associated charge transport, and topographic volume changes depending on the polarity of tip bias. The first-order reversal curve current-voltage technique combined with simultaneous detection of the sample topography, referred to as FORC-IVz, was applied to a silver solid ion conductor.more » We found that the protons generated from water affect silver ionic conduction, silver particle formation and dissolution, and mechanical integrity of the material. This work highlights the dual nature (simultaneously local and non-local) of electrochemical SPM studies, which should be considered for comprehensive understanding of nanoscale electrochemistry.« less

  20. A dual-channel, curved-crystal spectrograph for petawatt laser, x-ray backlighter source studies

    SciTech Connect (OSTI)

    Theobald, W.; Stoeckl, C.; Jaanimagi, P. A.; Nilson, P. M.; Storm, M.; Meyerhofer, D. D.; Sangster, T. C.; Hey, D.; MacKinnon, A. J.; Park, H.-S.; Patel, P. K.; Shepherd, R.; Snavely, R. A.; Key, M. H.; King, J. A.; Zhang, B.; Stephens, R. B.; Akli, K. U.; Highbarger, K.; Daskalova, R. L.; and others

    2009-08-15

    A dual-channel, curved-crystal spectrograph was designed to measure time-integrated x-ray spectra in the {approx}1.5 to 2 keV range (6.2-8.2 A wavelength) from small-mass, thin-foil targets irradiated by the VULCAN petawatt laser focused up to 4x10{sup 20} W/cm{sup 2}. The spectrograph consists of two cylindrically curved potassium-acid-phthalate crystals bent in the meridional plane to increase the spectral range by a factor of {approx}10 compared to a flat crystal. The device acquires single-shot x-ray spectra with good signal-to-background ratios in the hard x-ray background environment of petawatt laser-plasma interactions. The peak spectral energies of the aluminum He{sub {alpha}} and Ly{sub {alpha}} resonance lines were {approx}1.8 and {approx}1.0 mJ/eV sr ({approx}0.4 and 0.25 J/A sr), respectively, for 220 J, 10 ps laser irradiation.