National Library of Energy BETA

Sample records for domestic manufacturing plants

  1. Pennsylvania Manufacturing Plants Recognized as Leaders in Energy...

    Office of Environmental Management (EM)

    Superior Energy Performance Pennsylvania Manufacturing Plants Recognized as Leaders in Energy Management Pennsylvania Manufacturing Plants Recognized as Leaders in Energy ...

  2. Volvo Trucks Manufacturing Plant in Virginia

    Energy.gov [DOE]

    Volvo Group North America’s 1.6-million-square-foot New River Valley Plant in Dublin, Virginia, is the company’s largest truck manufacturing plant in the world. The company has implemented many energy savings solutions as part of the Better Buildings, Better Plants Challenge.

  3. Commonwealth Aluminum: Manufacturer Conducts Plant-Wide Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Commonwealth Aluminum: Manufacturer Conducts Plant-Wide Energy Assessments at Two Aluminum Sheet Production Operations Commonwealth Aluminum: Manufacturer Conducts Plant-Wide ...

  4. DOE Offers Support for Innovative Manufacturing Plant That Will...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Offers Support for Innovative Manufacturing Plant That Will Produce High Quality Solar Silicon at Low Cost DOE Offers Support for Innovative Manufacturing Plant That Will Produce...

  5. Report to the President Capturing a Domestic Competitive Advantage in Advanced Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    REPORT TO THE PRESIDENT CAPTURING A DOMESTIC COMPETITIVE ADVANTAGE IN ADVANCED MANUFACTURING Report of the Advanced Manufacturing Partnership Steering Committee Annex 1: Technology Development Workstream Report Executive Office of the President President's Council of Advisors on Science and Technology JULY 2012 PREFACE In June 2011, the President established the Advanced Manufacturing Partnership (AMP), which is led by a Steering Committee that operates within the framework of the President's

  6. Report to the President: Capturing a Domestic Competitive Advantage in Advanced Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    REPORT TO THE PRESIDENT CAPTURING A DOMESTIC COMPETITIVE ADVANTAGE IN ADVANCED MANUFACTURING Report of the Advanced Manufacturing Partnership Steering Committee Annex 2: Shared Infrastructure and Facilities Workstream Report Executive Office of the President President's Council of Advisors on Science and Technology JULY 2012 PREFACE In June 2011, the President established the Advanced Manufacturing Partnership (AMP), which is led by a Steering Committee that operates within the framework of the

  7. Optical manufacturing requirements for an AVLIS plant

    SciTech Connect

    Primdahl, K.; Chow, R.; Taylor, J.R.

    1997-07-14

    A uranium enrichment plant utilizing Atomic Vapor Laser Isotope Separation (AVLIS) technology is currently being planned. Deployment of the Plant will require tens of thousands of commercial and custom optical components and subsystems. The Plant optical system will be expected to perform at a high level of optical efficiency and reliability in a high-average-power-laser production environment. During construction, demand for this large number of optics must be coordinated with the manufacturing capacity of the optical industry. The general requirements and approach to ensure supply of optical components is described. Dynamic planning and a closely coupled relationship with the optics industry will be required to control cost, schedule, and quality.

  8. Manufacturers in U.S. Energy Department's Better Plants Program...

    Office of Environmental Management (EM)

    Better Plants Program Save More Than 2 Billion in Energy Costs; Program Expands to Help America's Water Systems Manufacturers in U.S. Energy Department's Better Plants Program ...

  9. Analysis of Selected Provisions of the Domestic Manufacturing and Energy Jobs Act of 2010

    Reports and Publications

    2010-01-01

    This report responds to a letter dated August 16, 2010, from Janice Mays, Staff Director of the U.S. House of Representatives' Committee on Ways and Means, requesting that the U.S. Energy Information Administration (EIA) analyze several provisions included in the July 26, 2010, discussion draft of the Domestic Manufacturing and Energy Jobs Act of 2010.

  10. Insurance recovery for manufactured gas plant liabilities

    SciTech Connect

    Koch, G.S.; Wise, K.T.; Hanser, P.

    1997-04-15

    This article addresses insurance and liability issues arising from former manufactured gas plant sites. Three issues are discussed in detail: (1) how to place a value on a potential insurance recovery or damage award, (2) how to maximize recovery through litigation or settlement, and (3) how to mediate coverage disputes to avoid litigation. The first issue, valuing potential recovery, is discussed in the most detail. An approach is outlined which includes organizing policy data, evaluating site facts relevant to coverage, estimating site costs, estimating coverage likelihoods, and assessing the expected value of litigation. Probability and cost estimate data is provided to aid in assessments.

  11. Vermont Manufacturing Plant Opens with Support from the Recovery Act |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Vermont Manufacturing Plant Opens with Support from the Recovery Act Vermont Manufacturing Plant Opens with Support from the Recovery Act December 6, 2010 - 12:00am Addthis WASHINGTON, D.C. - U.S. Secretary of Energy Steven Chu issued a statement highlighting today's ribbon cutting event at SBE, Inc.'s new production plant in Barre, Vermont .The plant will manufacture electric vehicle direct current bus capacitors, components for next generation advanced vehicles. The

  12. Brighter Future for Kentucky Manufacturing Plants | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Brighter Future for Kentucky Manufacturing Plants Brighter Future for Kentucky Manufacturing Plants May 28, 2010 - 3:04pm Addthis Montaplast North America, Inc. is replacing almost 1,200 halide lights with high-efficiency fluorescent fixtures at its Frankfort, KY, facility. | Photo Courtesy of Montaplast | Montaplast North America, Inc. is replacing almost 1,200 halide lights with high-efficiency fluorescent fixtures at its Frankfort, KY, facility. | Photo Courtesy of Montaplast | Stephen Graff

  13. Nevada manufacturer installing geothermal power plant | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Nevada manufacturer installing geothermal power plant Nevada manufacturer installing geothermal power plant August 26, 2010 - 4:45pm Addthis Chemetall extracts lithium carbonate, a powder, from brine, a salty solution from within the earth. | Photo courtesy Chemetall Chemetall extracts lithium carbonate, a powder, from brine, a salty solution from within the earth. | Photo courtesy Chemetall Joshua DeLung Chemetall supplies materials for lithium-ion batteries for electric vehicles

  14. Table 35. U.S. Coal Consumption at Manufacturing Plants by North...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    U.S. Coal Consumption at Manufacturing Plants by North American Industry Classification ... Table 35. U.S. Coal Consumption at Manufacturing Plants by North American Industry ...

  15. Manufacturing Plants Incorporate Energy Efficiency into Business Model |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Plants Incorporate Energy Efficiency into Business Model Manufacturing Plants Incorporate Energy Efficiency into Business Model April 27, 2011 - 12:15pm Addthis Participants of the Superior Energy Performance certification program | Photo Courtesy of Texas Industries of the Future/Dave Bray Participants of the Superior Energy Performance certification program | Photo Courtesy of Texas Industries of the Future/Dave Bray Lowell Sachs Lead Technology Partnership Specialist,

  16. Pennsylvania Manufacturing Plants Recognized as Leaders in Energy Management

    Energy.gov [DOE]

    On April 7, 2015, the U.S. Department of Energy (DOE) recognized four Pennsylvania manufacturing plants owned by Curtiss-Wright, General Dynamics, Land O’Lakes, and Mack Trucks for their leadership in energy management by earning certification to Superior Energy Performance®.

  17. Advanced Li-Ion Polymer Battery Cell Manufacturing Plant in USA...

    Energy.gov [DOE] (indexed site)

    MB) More Documents & Publications Advanced Li-Ion Polymer Battery Cell Manufacturing Plant in USA Li-Ion Battery Cell Manufacturing 2010 DOE, Li-Ion Battery Cell Manufacturing

  18. Fact #828: July 7, 2014 Japanese Auto Manufacturers Increase Domestic Production for U.S. Sales

    Energy.gov [DOE]

    In 1980, all Japanese-brand vehicles sold in the U.S. were imported. By 1990, just over one-third of Japanese-brand vehicles sold in the U.S. were produced domestically in North America which...

  19. Low Temperature Fuel Cell and Electrolyzer Balance-of-Plant Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Needs | Department of Energy Fuel Cell and Electrolyzer Balance-of-Plant Manufacturing Needs Low Temperature Fuel Cell and Electrolyzer Balance-of-Plant Manufacturing Needs Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop in Washington, DC, August 11-12, 2011. Low Temperature Fuel Cell and Electrolyzer Balance-of-Plant Manufacturing Needs (1.13 MB) More Documents & Publications Manufacturing Cost Analysis of 10 kW and 25 kW Direct Hydrogen Polymer Electrolyte

  20. Advanced Li-Ion Polymer Battery Cell Manufacturing Plant in USA |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Li-Ion Polymer Battery Cell Manufacturing Plant in USA Advanced Li-Ion Polymer Battery Cell Manufacturing Plant in USA 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt001_es_koo_2012_p.pdf (2.94 MB) More Documents & Publications Advanced Li-Ion Polymer Battery Cell Manufacturing Plant in USA Li-Ion Battery Cell Manufacturing 2010 DOE, Li-Ion Battery Cell Manufacturing

  1. Assessment and remediation at former manufactured gas plants

    SciTech Connect

    Mehan, D.G.

    1995-12-01

    Over 1,000 former Manufactured Gas Plants (MGP) have been identified in the United States. Gal Plants were used to produce gas for lighting and heating from coal and oil from the mid-1800s until the 1950s. Former MGP sites are typically impacted by a variety of compounds that do not collectively lend themselves to {open_quotes}standard{close_quotes} assessment and remedial solutions. These compounds include the volatile organic compounds (VOCs) benzene, toluene, ethylbenzene, and xylene, a variety of semi-volatile organic compound, and inorganic compounds (iron and cyanide). The assessment of former MGP sites is complicated because many former sites are now located in developed and industrialized areas. MGP wastes and by-products were typically disposed on-site. Many modern buildings are now located over former MGP sites. Standard assessment tools such as augering and drilling tend to encounter former structures, making their use difficult and ineffective. Assessment by excavation and geophysical methods allows the acquisition of only shallow data. The remediation of impacted soils and ground water at former MGP sites poses significant challenges due to the differing characteristics of the typical MGP compounds. For example, soil vapor extraction and ground water treatment may decrease VOC concentrations, yet be ineffective on the inorganic and PAH compounds. Because of the variety of typical MGP associated wastes, risk assessment is a vital tool in assessing and selecting the appropriate remedial strategies. Several states have aggressively adopted clean-up programs that rely on risk assessment to determine the appropriate remedial strategy at former MGP sites. At numerous sites, no further action is employed because of the VOCs have attenuated over time, the PAH and inorganic compounds are relatively immobile, ground water contamination plumes are limited, and risk assessment indicates acceptable risks.

  2. Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Flow of Materials through Industry / Sustainable 1 Manufacturing 2 Technology Assessment 3 Contents 4 1. Introduction to the Technology/System ............................................................................................... 1 5 1.1 Supply chain and material flow analysis ....................................................................................... 1 6 2. Technology Assessment and Potential

  3. Wind Manufacturing Facilities

    Energy.gov [DOE]

    America's wind energy industry supports a growing domestic industrial base. Check out this map to find manufacturing facilities in your state. Last updated December 2013.

  4. Managing Your Energy: An ENERGY STAR(R) Guide for Identifying Energy Savings in Manufacturing Plants

    SciTech Connect

    Worrell, Ernst; Angelini, Tana; Masanet, Eric

    2010-07-27

    In the United States, industry spends over $100 billion annually to power its manufacturing plants. Companies also spend on maintenance, capital outlay, and energy services. Improving energy efficiency is vital to reduce these costs and increase earnings. Many cost-effective opportunities to reduce energy consumption are available, and this Energy Guide discusses energy-efficiency practices and energy-efficient technologies that can be applied over a broad spectrum of companies. Strategies in the guide address hot water and steam, compressed air, pumps, motors, fans, lighting, refrigeration, and heating, ventilation, and air conditioning. This guide includes descriptions of expected energy and cost savings, based on real-world applications, typical payback periods, and references to more detailed information. The information in this Energy Guide is intended to help energy and plant managers achieve cost-effective energy reductions while maintaining product quality. Further research on the economics of all measures--as well as on their applicability to different production practices?is needed to assess their cost effectiveness at individual plants.

  5. Domestic Material Content in Molten-Salt Concentrating Solar Power Plants

    SciTech Connect

    Turchi, Craig; Kurup, Parthiv; Akar, Sertac; Flores, Francisco

    2015-08-26

    This study lists material composition data for two concentrating solar power (CSP) plant designs: a molten-salt power tower and a hypothetical parabolic trough plant, both of which employ a molten salt for the heat transfer fluid (HTF) and thermal storage media. The two designs have equivalent generating and thermal energy storage capacities. The material content of the saltHTF trough plant was approximately 25% lower than a comparably sized conventional oil-HTF parabolic trough plant. The significant reduction in oil, salt, metal, and insulation mass by switching to a salt-HTF design is expected to reduce the capital cost and LCOE for the parabolic trough system.

  6. Report to the President on Capturing Domestic Competitive Advantage...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Report to the President on Capturing Domestic Competitive Advantage in Advanced Manufacturing Report to the President on Capturing Domestic Competitive Advantage in Advanced ...

  7. The ecological evaluation of surface water outfalls at a manufacturing plant in New Jersey

    SciTech Connect

    Harman, C.R.; Gilchrist, W.

    1995-12-31

    Historic metal machining operations at a manufacturing plant in northern New Jersey had resulted in the contamination of three surface water outfalls leading from the plant to a second-order stream used for trout fishing. The outfalls were fed by a combination of non-contact cooling water, stormwater runoff and groundwater infiltration. The outfalls ranged in length from 180 meters to 600 meters. All three of the outfalls pass through forested wetland areas and contained emergent wetland pockets. The ecological evaluation consisted of the collection of sediment samples to evaluate the extent of chemical contamination and the evaluation of the biological integrity of a portion of the surface water outfalls. Additionally, an ecological characterization of the surrounding habitat was prepared. Sediment sampling indicated elevated concentrations of antimony, cadmium, chromium, copper, lead, mercury, nickel, silver, and zinc. Nickel concentrations were the most significant, with concentrations ranging up to 9,850 mg/kg. PCB concentrations ranged between 0.45 mg/kg and 6.4 mg/kg. Elevated concentrations of metals and PCBs were detected to a sediment depth of 45 centimeters. To evaluate the potential for biological impacts from the metals in the sediments, a modified Rapid Bioassessment Protocol 1 evaluation was conducted on the macroinvertebrate population. The results of the evaluation indicated a very sparse macroinvertebrate community. Those organisms that were identified were typical of highly contaminated surface water system. The surrounding wetland systems appeared to be unaffected by the outfall contamination. Based on the results of the first phase of the ecological evaluation, a program of additional sediment sampling and further biological evaluation was prepared.

  8. Waste-minimization assessment for a paint-manufacturing plant. Environmental research brief

    SciTech Connect

    Kirsch, F.W.; Looby, G.P.

    1991-07-01

    The U.S. Environmental Protection Agency (EPA) has funded a pilot project to assist small- and medium-size manufacturers who want to minimize their generation of hazardous waste but who lack the expertise to do so. Waste Minimization Assessment Centers (WMACs) were established at selected universities and procedures were adapted from the EPA Waste Minimization Opportunity Assessment Manual (EPA/625/7-88/003, July 1988). The WMAC team at Colorado State University inspected a plant blending and mixing raw materials into paints, coatings, stains, and surface-treating products. For water-based paints, water, latex, resins, extenders, and pigments are mixed and blended. For oil-based paints, solvents replace water and latex, and plasticizers, tints, and thinners are also added. These batches are then transferred to let-down tanks where additional ingredients are incorporated. After testing, the paints meeting specifications are filtered, canned, labelled, and packaged for shipping. Hazardous wastes result when the mixing vessels, let-down tanks, and lines are cleaned. For example, cleaning a let-down tank after a water-based paint has been blended requires about 35 gal water; after a 400-gal tank for a solvent-based paint, about 5 gal mineral spirits. Because the spirits are sent off-site for recovery, most of the waste results from cleaning up after mixing water-based paint. This waste is hazardous because it contains mercury used as the bactericide. Although the plant reuses rinse water, recovers solvent, and has adopted other measures to reduce waste, the team report, detailing findings and recommendations, suggested that additional savings could result from installing a pipe cleaning system, using a solvent-recovery system based on distillation, and substituting an organic material for the mercury bactericide.

  9. A quantitative approach to the characterization of cumulative and average solvent exposure in paint manufacturing plants

    SciTech Connect

    Ford, D.P.; Schwartz, B.S.; Powell, S.; Nelson, T.; Keller, L.; Sides, S.; Agnew, J.; Bolla, K.; Bleecker, M. )

    1991-06-01

    Previous reports have attributed a range of neurobehavioral effects to low-level, occupational solvent exposure. These studies have generally been limited in their exposure assessments and have specifically lacked good estimates of exposure intensity. In the present study, the authors describe the development of two exposure variables that quantitatively integrate industrial hygiene sampling data with estimates of exposure duration--a cumulative exposure (CE) estimate and a lifetime weighted average exposure (LWAE) estimate. Detailed occupational histories were obtained from 187 workers at two paint manufacturing plants. Historic industrial hygiene sampling data for total hydrocarbons (a composite variable of the major neurotoxic solvents present) were grouped according to 20 uniform, temporally stable exposure zones, which had been defined during plant walk-through surveys. Sampling at the time of the study was used to characterize the few zones for which historic data were limited or unavailable. For each participant, the geometric mean total hydrocarbon level for each exposure zone worked in was multiplied by the duration of employment in that zone; the resulting products were summed over the working lifetime to create the CE variable. The CE variable was divided by the total duration of employment in solvent-exposed jobs to create the LWAE variable. The explanatory value of each participant's LWAE estimate in the regression of simple visual reaction time (a neurobehavioral test previously shown to be affected by chronic solvent exposure) on exposure was compared with that of several other exposure variables, including exposure duration and an exposure variable based on an ordinal ranking of the exposure zones.

  10. Ames expedited site characterization demonstration at the former manufactured gas plant site, Marshalltown, Iowa

    SciTech Connect

    Bevolo, A.J.; Kjartanson, B.H.; Wonder, J.D.

    1996-03-01

    The goal of the Ames Expedited Site Characterization (ESC) project is to evaluate and promote both innovative technologies (IT) and state-of-the-practice technologies (SOPT) for site characterization and monitoring. In April and May 1994, the ESC project conducted site characterization, technology comparison, and stakeholder demonstration activities at a former manufactured gas plant (FMGP) owned by Iowa Electric Services (IES) Utilities, Inc., in Marshalltown, Iowa. Three areas of technology were fielded at the Marshalltown FMGP site: geophysical, analytical and data integration. The geophysical technologies are designed to assess the subsurface geological conditions so that the location, fate and transport of the target contaminants may be assessed and forecasted. The analytical technologies/methods are designed to detect and quantify the target contaminants. The data integration technology area consists of hardware and software systems designed to integrate all the site information compiled and collected into a conceptual site model on a daily basis at the site; this conceptual model then becomes the decision-support tool. Simultaneous fielding of different methods within each of the three areas of technology provided data for direct comparison of the technologies fielded, both SOPT and IT. This document reports the results of the site characterization, technology comparison, and ESC demonstration activities associated with the Marshalltown FMGP site. 124 figs., 27 tabs.

  11. 2015 Domestic Uranium Production Report

    Gasoline and Diesel Fuel Update

    Domestic Uranium Production Report 2015 Domestic Uranium Production Report Release Date: May 5, 2016 Next Release Date: May 2017 Activity at U.S. Mills and In-Situ-Leach Plants ...

  12. Low Temperature Fuel Cell and Electrolyzer Balance-of-Plant Manufactur...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Requirement for Fuel Cell and Electrolyser BOP Manufacturing * Clean environment (No dust, VOCs, controlled humidity and temperature, etc.) * Safe process - high pressure gases, ...

  13. Geothermal Heat Pump Manufacturing Activities

    Annual Energy Outlook

    0 Geothermal heat pump domestic shipments by customer type, 2008 and 2009 (rated capacity ... Administration (EIA), Form EIA-902, "Annual Geothermal Heat Pump Manufacturers Survey

  14. Geothermal Heat Pump Manufacturing Activities

    Gasoline and Diesel Fuel Update

    1 Geothermal heat pump domestic shipments by sector and model type, 2009 (rated capacity ... Administration (EIA), Form EIA-902, "Annual Geothermal Heat Pump Manufacturers Survey

  15. Low Temperature Fuel Cell and Electrolyzer Balance-of-Plant Manufactur...

    Energy.gov [DOE] (indexed site)

    More Documents & Publications Manufacturing Cost Analysis of 10 kW and 25 kW Direct Hydrogen Polymer Electrolyte Membrane (PEM) Fuel Cell for Material Handling Applications 2011 ...

  16. Improving Energy Efficiency at U.S. Plastics Manufacturing Plants Summary Report and Case Studies

    SciTech Connect

    none,

    2010-06-25

    Industrial Technologies Programs BestPractices report based on a comprehensive plant assessment project with ITPs Industrial Assessment Center, The Society of the Plastics Industry, Inc., and several of its member companies.

  17. Commonwealth Aluminum: Manufacturer Conducts Plant-Wide Energy Assessments at Two Aluminum Sheet Production Operations

    Energy.gov [DOE]

    This case study describes how Commonwealth Industries (now Aleris Rolled Products) conducted plant-wide energy assessments at its aluminum sheet rolling mills in Lewisport, Kentucky, and Uhrichsville, Ohio, to improve process and energy efficiency.

  18. Advanced Manufacturing Office At-A-Glance

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ADVANCED MANUFACTURING OFFICE FY 2017 BUDGET AT-A-GLANCE The Advanced Manufacturing Office (AMO) brings together manufacturers, research institutions, suppliers, and universities to investigate manufacturing processes, information, and materials technologies critical to advance domestic manufacturing of clean energy products, and to support energy productivity across the entire manufacturing sector. What We Do The Advanced Manufacturing Offce uses an integrated approach that relies on three

  19. Energy Department Announces $150 Million in Tax Credits to Invest in U.S. Clean Energy Manufacturing

    Energy.gov [DOE]

    Domestic Manufacturing Projects to Support Renewable Energy Generation as well as Boost Building and Vehicle Efficiency

  20. Manufacturers in U.S. Energy Department’s Better Plants Program Save More Than $2 Billion in Energy Costs; Program Expands to Help America’s Water Systems

    Office of Energy Efficiency and Renewable Energy (EERE)

    Better Buildings, Better Plants Program manufacturers rack up an estimated $2.4 billion in cumulative energy cost savings over the last five years.

  1. Manufacturing demonstration of microbially mediated zinc sulfide nanoparticles in pilot-plant scale reactors

    DOE PAGES [OSTI]

    Moon, Ji-Won; Phelps, Tommy J.; Fitzgerald Jr, Curtis L.; Lind, Randall F.; Elkins, James G.; Jang, Gyoung Gug; Joshi, Pooran C.; Kidder, Michelle; Armstrong, Beth L.; Watkins, Thomas R.; et al

    2016-04-27

    The thermophilic anaerobic metal-reducing bacterium Thermoanaerobacter sp. X513 efficiently produces zinc sulfide (ZnS) nanoparticles (NPs) in laboratory-scale ( ≤24-L) reactors. To determine whether this process can be up-scaled and adapted for pilot-plant production while maintaining NP yield and quality, a series of meso-scale experiments were performed using 100-l and 900-l reactors. Pasteurization and N2-sparging replaced autoclaving and boiling for deoxygenating media in the transition from small-scale to pilot-plant reactors. Consecutive 100-L batches using new or recycled media produced ZnS NPs with highly reproducible ~2 nm average crystallite size (ACS) and yields of ~0.5g L-1, similar to small-scale batches. The 900-Lmore » pilot plant reactor produced ~ 320 g ZnS without process optimization or replacement of used medium; this quantity would be sufficient to form a ZnS thin film with ~120 nm thickness over 0.5 m width 13 km length. At all scales, the bacteria produced significant amounts of acetic, lactic and formic acids, which could be neutralized by the controlled addition of sodium hydroxide without the use of an organic pH buffer, eliminating 98% of the buffer chemical costs. In conclusion, the final NP products were characterized using XRD, ICP-OES, FTIR, DLS, and C/N analyses, which confirmed the growth medium without organic buffer enhanced the ZnS NP properties by reducing carbon and nitrogen surface coatings and supporting better dispersivity with similar ACS.« less

  2. Project proposals on the creation of Russian-American joint enterprise for investigation, development and manufacture of power plants on the basis of solid oxide fuel cells

    SciTech Connect

    Smotrov, N.V.; Kleschev, Yu.N.

    1996-04-01

    This paper describes a proposal for a joint Russian-American enterprise for performing scientific investigations, development, and manufacture of fuel cell power plants on the basis of the solid oxide fuel cell. RASOFCo. Russian-American Solid Oxide Fuel Cells Company. RASOFCo will provide the series output of the electrochemical generator (ECG) of 1kW power, then of 5kW and 10kW as well as the development and the output of 10kW power plant with the subsequent output of a power plant of greater power. An ECG based on solid oxide fuel cells uses methane as a fuel. Predicted technical characteristics, market analysis, assessment of potential demands for power plants of low power for Tyumentransgas, participants of the joint enterprise and their founding contributions, strategy for manufacture and financing, and management of RASOFCo are discussed.

  3. DOE Offers Support for Innovative Manufacturing Plant That Will Produce High Quality Solar Silicon at Low Cost

    Office of Energy Efficiency and Renewable Energy (EERE)

    Project to Create Significant Solar Manufacturing Efficiencies and is Expected to Generate Over 2,000 Jobs

  4. Sustainable Manufacturing

    Energy.gov [DOE] (indexed site)

    Workshop on Sustainable Manufacturing January 6-7, 2016 Portland, OR DOE Workshop on Sustainable Manufacturing January 6-7, 2016 Portland, OR Sustainable Manufacturing: Definitions ...

  5. Modeling plant-level industrial energy demand with the Manufacturing Energy Consumption Survey (MECS) database and the Longitudinal Research Database (LRD)

    SciTech Connect

    Boyd, G.A.; Neifer, M.J.; Ross, M.H.

    1992-08-01

    This report discusses Phase 1 of a project to help the US Department of Energy determine the applicability of the Manufacturing Energy Consumption Survey (MECS) database and the Longitudinal Research Database (LRD) for industrial modeling and analysis. Research was conducted at the US Bureau of the Census; disclosure of the MECS/LRD data used as a basis for this report was subject to the Bureau`s confidentiality restriction. The project is designed to examine the plant-level energy behavior of energy-intensive industries. In Phase 1, six industries at the four-digit standard industrial classification (SIC) level were studied. The utility of analyzing four-digit SIC samples at the plant level is mixed, but the plant-level structure of the MECS/LRD makes analyzing samples disaggregated below the four-digit level feasible, particularly when the MECS/LRD data are combined with trade association or other external data. When external data are used, the validity of using value of shipments as a measure of output for analyzing energy use can also be examined. Phase 1 results indicate that technical efficiency and the distribution of energy intensities vary significantly at the plant level. They also show that the six industries exhibit monopsony-like behavior; that is, energy prices vary significantly at the plant level, with lower prices being correlated with a higher level of energy consumption. Finally, they show to what degree selected energy-intensive products are manufactured outside their primary industry.

  6. Additive Manufacturing

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    MST » MST Research Programs » Additive Manufacturing Additive Manufacturing A method allowing unparalleled manufacturing control, data visualization, and high-value parts repair. Through additive manufacturing, Los Alamos is developing materials for the future. Taking complex manufacturing challenges from design to fabrication. A science and engineering approach for additive manufacturing solutions. Get Expertise John Carpenter Technical Staff Member Metallurgy Email Division Leader Materials

  7. U.S. Domestic

    Energy Information Administration (EIA) (indexed site)

    Domestic and Foreign Coal Distribution by State of Origin ...Energy Information Administration | Annual Coal Distribution Report 2013 Domestic and ...

  8. Feasibility studies to establish at the Kazakhstan Ulba metallurgical plant the manufacturing capability to produce low-enriched uranium certified reference materials

    SciTech Connect

    Kuzminski, Jozef; Nesuhoff, J; Cratto, P; Pfennigwerth, G; Mikhailenko, A; Maliutina, I; Nations, J

    2009-01-01

    One of the salient features of the transition plan that the United States Department of Energy/National Nuclear Security Administration (DOE/NNSA) is presently implementing in the Former Soviet Union countries is the availability of uranium certified reference materials for calibration of nondestructive assay (NDA) measurement equipment. To address this challenge, DOE/NNSA and U.S. national laboratories have focused their cooperative efforts on establishing a reliable source for manufacturing, certifying, and supplying of such standards. The Ulba Metallurgical Plant (UMP), Kazakhstan, which processes large quantities of low-enriched uranium to produce ceramic fuel pellets for nuclear-powered reactors, is well situated to become a key supplier of low-enriched uranium certified reference materials for the country and Central Asia region. We have recently completed Phase I of a feasibility study to establish at UMP capabilities of manufacturing these standards. In this paper we will discuss details of a proposed methodology for uranium down-blending, material selection and characterization, and a proposed methodology of measurement by destructive (DA) and non-destructive (NDA) analysis to form a database for material certification by the competent State authorities in the Republic of Kazakhstan. In addition, we will discuss the prospect for manufacturing of such standards at UMP.

  9. Innovative Manufacturing Initiative Recognition Day

    Energy.gov [DOE]

    The Innovative Manufacturing Initiative (IMI) Recognition Day (held in Washington, DC on June 20, 2012) showcased IMI projects selected by the Energy Department to help American manufacturers dramatically increase the energy efficiency of their operations and reduce costs. Each project will advance transformational technologies and materials that can benefit a broad cross-section of the domestic economy. This event created a platform for inter-agency and industry networking and also raised awareness among congressional staff and private investors.

  10. Report to the President on Capturing Domestic Competitive Advantage in

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Advanced Manufacturing | Department of Energy Report to the President on Capturing Domestic Competitive Advantage in Advanced Manufacturing Report to the President on Capturing Domestic Competitive Advantage in Advanced Manufacturing pcast_july2012.pdf (1.75 MB) pcast_annex1_july2012.pdf (820.24 KB) pcast_annex2_july2012.pdf (481.41 KB) pcast_annex3_july2012.pdf (345.12 KB) More Documents & Publications Report to the President on Ensuring American Leadership in Advanced Manufacturing The

  11. Domestic Material Content in Molten-Salt Concentrating Solar...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Domestic Material Content in Molten-Salt Concentrating Solar Power Plants Craig Turchi, ... Energy, LLC This report is available at no cost from the National Renewable Energy ...

  12. Sustainable Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Principal Investigator (Presenter): Dr. Troy D. Marusich , CTO Washington, D.C. May 6-7, 2014 Third Wave Systems Inc. U.S. DOE Advanced Manufacturing Office Peer Review Meeting This presentation does not contain any proprietary, confidential, or otherwise restricted information. o Project Objective  What are you trying to do?  Develop and demonstrate a new manufacturing-informed design paradigm to dramatically improve manufacturing productivity, quality, and costs of machined components

  13. Manufacturing Glossary

    Annual Energy Outlook

    Energy Efficiency Web Site. If you need assistance in viewing this page, please call (202) 586-8800 Home > Energy Users > Energy Efficiency Page > Glossary for the Manufacturing...

  14. additive manufacturing

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    additive manufacturing - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power ...

  15. U.S. Wind Energy Manufacturing and Supply Chain: A Competitiveness Analysis

    SciTech Connect

    Fullenkamp, Patrick H; Holody, Diane S

    2014-06-15

    The goal of the project was to develop a greater understanding of the key factors determining wind energy component manufacturing costs and pricing on a global basis in order to enhance the competitiveness of U.S. manufacturers, and to reduce installed systems cost. Multiple stakeholders including DOE, turbine OEMs, and large component manufactures will all benefit by better understanding the factors determining domestic competitiveness in the emerging offshore and next generation land-based wind industries. Major objectives of this project were to: 1. Carry out global cost and process comparisons for 5MW jacket foundations, blades, towers, and permanent magnet generators; 2. Assess U.S. manufacturers’ competitiveness and potential for cost reduction; 3. Facilitate informed decision-making on investments in U.S. manufacturing; 4. Develop an industry scorecard representing the readiness of the U.S. manufacturers’ to produce components for the next generations of wind turbines, nominally 3MW land-based and 5MW offshore; 5. Disseminate results through the GLWN Wind Supply Chain GIS Map, a free website that is the most comprehensive public database of U.S. wind energy suppliers; 6. Identify areas and develop recommendations to DOE on potential R&D areas to target for increasing domestic manufacturing competitiveness, per DOE’s Clean Energy Manufacturing Initiative (CEMI). Lists of Deliverables 1. Cost Breakdown Competitive Analyses of four product categories: tower, jacket foundation, blade, and permanent magnet (PM) generator. The cost breakdown for each component includes a complete Bill of Materials with net weights; general process steps for labor; and burden adjusted by each manufacturer for their process categories of SGA (sales general and administrative), engineering, logistics cost to a common U.S. port, and profit. 2. Value Stream Map Competitiveness Analysis: A tool that illustrates both information and material flow from the point of getting a

  16. Domestic and Foreign Distribution

    Energy Information Administration (EIA) (indexed site)

    of U.S. Coal by State of Origin, 2008 Final May 2010 Domestic and Foreign Distribution of U.S. Coal by State of Origin, 2008 (Thousand Short Tons) State Region Domestic Foreign...

  17. U.S. Domestic

    Gasoline and Diesel Fuel Update

    2 Domestic and Foreign Distribution of U.S. Coal by State of Origin, 2012 (thousand short tons) Coal Exports Coal Origin State and Region Domestic Distribution By Coal Mines By...

  18. U.S. Domestic

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    1 Domestic and foreign distribution of U.S. coal by State of origin, 2011 (thousand short tons) Coal Exports Coal Origin State and Region Domestic Distribution By Coal Mines By...

  19. Manufacturing technologies

    SciTech Connect

    1995-09-01

    The Manufacturing Technologies Center is an integral part of Sandia National Laboratories, a multiprogram engineering and science laboratory, operated for the Department of Energy (DOE) with major facilities at Albuquerque, New Mexico, and Livermore, California. Our Center is at the core of Sandia`s Advanced Manufacturing effort which spans the entire product realization process.

  20. Advanced Manufacturing Office FY 2017 Budget At-A-Glance | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy About Us » Advanced Manufacturing Office FY 2017 Budget At-A-Glance Advanced Manufacturing Office FY 2017 Budget At-A-Glance The Advanced Manufacturing Office (AMO) brings together manufacturers, research institutions, suppliers, and universities to investigate manufacturing processes, information, and materials technologies critical to advance domestic manufacturing of clean energy products, and to support energy productivity across the entire manufacturing sector. AMO FY17

  1. First Solar Manufacturing Solar Modules

    Energy.gov [DOE]

    In this photograph, a First Solar associate handles photovoltaic materials at the company's Ohio manufacturing plant. First Solar is an industry partner with the U.S. Department of Energy Solar...

  2. Department of Energy to Invest $50 Million to Advance Domestic Solar

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Manufacturing Market, Achieve SunShot Goal | Department of Energy 50 Million to Advance Domestic Solar Manufacturing Market, Achieve SunShot Goal Department of Energy to Invest $50 Million to Advance Domestic Solar Manufacturing Market, Achieve SunShot Goal August 2, 2011 - 3:53pm Addthis August 2, 2011 Department of Energy to Invest $50 Million to Advance Domestic Solar Manufacturing Market, Achieve SunShot GoalSUNPATH Program Will Boost American Competitiveness, Lower Cost of Solar Energy

  3. Additive Manufacturing

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... laser-sintering) Optomec LENS MR-7 Sciaky EBAM 68 Non-metal additive manufacturing Powder bed FORMIGA P 110 PolyJet 3D ... Fused deposition modeling print technology MakerBot ...

  4. Advanced Manufacturing Office Update, November 2014 | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Better Plants Partners Celebrated at National Conference World's First 3D Printed Car Shows Additive Manufacturing Has Come of Age Partners in the Spotlight Schneider Electric ...

  5. Manufacturing Innovation Institute for Smart Manufacturing: Advanced...

    Energy.gov [DOE] (indexed site)

    Energy Manufacturing Innovation Institute, which will be focused on smart manufacturing. ... As part of President Obama's National Network for Manufacturing Innovation (NNMI) ...

  6. The President's Manufacturing Initiative

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    The President's Manufacturing Initiative Manufacturing Initiative Roadmap Workshop on Roadmap Workshop on Manufacturing R&D for Manufacturing R&D for the Hydrogen Economy the ...

  7. Static Sankey Diagram Full Sector Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Full Sector Manufacturing Static Sankey Diagram Full Sector Manufacturing The U.S. Manufacturing Sector Static Sankey diagram shows how total primary energy is used by U.S. manufacturing plants. Click on the Onsite Generation, Process Energy or Nonprocess Energy thumbnails below the diagram to see further detail on energy flows in manufacturing. Also, see the Dynamic Manufacturing Energy Sankey Tool to pan, zoom, and customize the manufacturing Sankey data and compare energy consumption across

  8. Crude Oil Domestic Production

    Energy Information Administration (EIA) (indexed site)

    Data Series: Crude Oil Domestic Production Refinery Crude Oil Inputs Refinery Gross Inputs Refinery Operable Capacity (Calendar Day) Refinery Percent Operable Utilization Net ...

  9. Exploring the Wind Manufacturing Map | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    growth in domestic manufacturing has increased the percentage of U.S.-built wind turbines installed in the United States from 35 percent in 2005-2006 to nearly 70 percent ...

  10. INDUSTRIAL SCALE DEMONSTRATION OF SMART MANUFACTURING ACHIEVING

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    TRANSFORMATIONAL ENERGY PRODUCTIVITY GAINS | Department of Energy INDUSTRIAL SCALE DEMONSTRATION OF SMART MANUFACTURING ACHIEVING TRANSFORMATIONAL ENERGY PRODUCTIVITY GAINS INDUSTRIAL SCALE DEMONSTRATION OF SMART MANUFACTURING ACHIEVING TRANSFORMATIONAL ENERGY PRODUCTIVITY GAINS University of Texas at Austin - Austin, TX A Smart Manufacturing (SM) platform can integrate information technology, performance metrics, and models and simulations driven by real-time plant sensor data. This

  11. Sustainable manufacturing Workshop: Workshop Summary Report

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    The DOE Office of Energy Efficiency and Renewable Energy (EERE)'s Advanced Manufacturing Office partners with industry, small business, universities, and other stakeholders to identify and invest in emerging technologies with the potential to create high-quality domestic manufacturing jobs and enhance the global competitiveness of the United States. This document was prepared for DOE/EERE's AMO as a collaborative effort between DOE AMO and Energetics Incorporated, Columbia, MD. Disclaimer This

  12. Domestic Wind Energy Workforce; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    Tegen, Suzanne

    2015-07-30

    A robust workforce is essential to growing domestic wind manufacturing capabilities. NREL researchers conducted research to better understand today's domestic wind workforce, projected needs for the future, and how existing and new education and training programs can meet future needs. This presentation provides an overview of this research and the accompanying industry survey, as well as the Energy Department's Career Maps, Jobs & Economic Development Impacts models, and the Wind for Schools project.

  13. Advanced Methods for Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Methods for Manufacturing Advanced Methods for Manufacturing The overall purpose of the AMM subprogram is to accelerate innovations that reduce the cost and schedule of constructing new nuclear plants and make fabrication of nuclear power plant components faster, cheaper, and more reliable. Based on past industry work and new stakeholder input, this effort will focus on opportunities that provide simplified, standardized, and labor-saving outcomes for manufacturing, fabrication, assembly, and

  14. Manufacturing Perspective

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    EOT_RT_Sub_Template.ppt | 1/6/2009 | 1 BOEING is a trademark of Boeing Management Company. Copyright © 2009 Boeing. All rights reserved. Compressed Hydrogen Storage Workshop Manufacturing Perspective Karl M. Nelson (karl.m.nelson@boeing.com) Boeing Research & Technology Engineering, Operations & Technology | Boeing Research & Technology Materials & Fabrication Technology EOT_RT_Sub_Template.ppt | 1/12/2009 | Structural Tech 2 Copyright © 2009 Boeing. All rights reserved. DOE

  15. Green Manufacturing

    SciTech Connect

    Patten, John

    2013-12-31

    Green Manufacturing Initiative (GMI): The initiative provides a conduit between the university and industry to facilitate cooperative research programs of mutual interest to support green (sustainable) goals and efforts. In addition to the operational savings that greener practices can bring, emerging market demands and governmental regulations are making the move to sustainable manufacturing a necessity for success. The funding supports collaborative activities among universities such as the University of Michigan, Michigan State University and Purdue University and among 40 companies to enhance economic and workforce development and provide the potential of technology transfer. WMU participants in the GMI activities included 20 faculty, over 25 students and many staff from across the College of Engineering and Applied Sciences; the College of Arts and Sciences' departments of Chemistry, Physics, Biology and Geology; the College of Business; the Environmental Research Institute; and the Environmental Studies Program. Many outside organizations also contribute to the GMI's success, including Southwest Michigan First; The Right Place of Grand Rapids, MI; Michigan Department of Environmental Quality; the Michigan Department of Energy, Labor and Economic Growth; and the Michigan Manufacturers Technical Center.

  16. Smart Manufacturing: Transforming American Manufacturing with Information

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Technology | Department of Energy Smart Manufacturing: Transforming American Manufacturing with Information Technology Smart Manufacturing: Transforming American Manufacturing with Information Technology June 30, 2016 - 4:30pm Addthis Watch the video above to learn more about how technologies developed by the smart manufacturing institute will make U.S. manufacturing more productive, energy efficient, and competitive. Our country is known for its culture of innovation. We are a country of

  17. Advanced Manufacturing Office: Smart Manufacturing Industry Day...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... Smart Manufacturing is a network data-driven process that combines innovative automation ... Smart Manufacturing is a network data-driven process that combines innovative automation ...

  18. Wind Manufacturing and Supply Chain | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Research & Development » Wind Manufacturing and Supply Chain Wind Manufacturing and Supply Chain The U.S. Department of Energy (DOE) works with wind technology suppliers to promote advanced manufacturing capabilities. Its goals are to increase reliability while lowering production costs, and to promote an industry that can meet all demands domestically while competing in the global market. The Wind Program supports industry partnerships and targeted R&D investments that integrate new

  19. Better Buildings, Better Plants: Volvo Boosting Energy Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Buildings, Better Plants: Volvo Boosting Energy Efficiency at Truck Manufacturing Facility Better Buildings, Better Plants: Volvo Boosting Energy Efficiency at Truck Manufacturing ...

  20. Advanced Manufacturing for a U.S. Clean Energy Economy (Fact Sheet)

    SciTech Connect

    Not Available

    2012-03-01

    This fact sheet is an overview of the U.S. Department of Energy's Advanced Manufacturing Office. Manufacturing is central to our economy, culture, and history. The industrial sector produces 11% of U.S. gross domestic product (GDP), employs 12 million people, and generates 57% of U.S. export value. However, U.S. industry consumes about one-third of all energy produced in the United States, and significant cost-effective energy efficiency and advanced manufacturing opportunities remain unexploited. As a critical component of the National Innovation Policy for Advanced Manufacturing, the U.S. Department of Energy's (DOE's) Advanced Manufacturing Office (AMO) is focused on creating a fertile environment for advanced manufacturing innovation, enabling vigorous domestic development of transformative manufacturing technologies, promoting coordinated public and private investment in precompetitive advanced manufacturing technology infrastructure, and facilitating the rapid scale-up and market penetration of advanced manufacturing technologies.

  1. Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Science & Innovation » Energy Efficiency » Manufacturing Manufacturing Manufacturing is how we convert raw materials, components, and parts into finished goods that meet our essential needs and make our lives easier. But what about clean energy manufacturing? Clean energy and advanced manufacturing have the potential to rejuvenate the U.S. manufacturing industry and open pathways to increased American competitiveness. Manufacturing is the lifeblood of the American economy -- providing jobs

  2. Low Temperature PEM Fuel Cell Manufacturing Needs

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Temperature PEM Fuel Cell Manufacturing Needs Presented by Duarte Sousa, PE Manufacturing Fuel Cell Manhattan Project  Cost drivers were identified for the following: * MEA * Plates * Balance of Plant (BOP) * Fuel Processing Manufacturing Fuel Cell Project - Phase 1 Note that this presentation will be MEA centric as this is the working group I represent...  MEA Cost Drivers Identified: Identifying MEA Cost Drivers * The MEA was readily identified as the major cost driver in a 10 kW

  3. Clean Energy Manufacturing Resources - Technology Maturation | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Maturation Clean Energy Manufacturing Resources - Technology Maturation Clean Energy Manufacturing Resources - Technology Maturation Find resources to help you commercialize and market your clean energy technology or product. For technology maturation, areas to consider include regulations and standards; exporting; product testing or demonstration; energy-efficient product qualifications; and energy efficiency and performance improvements for plants. For more resources, see the

  4. 2015 Domestic Uranium Production Report

    Annual Energy Outlook

    Domestic Uranium Production Report 2015 Domestic Uranium Production Report Release Date: May 5, 2016 Next Release Date: May 2017 State(s) 2003 2004 2005 2006 2007 2008 2009 2010 ...

  5. 2015 Domestic Uranium Production Report

    Annual Energy Outlook

    Domestic Uranium Production Report 2015 Domestic Uranium Production Report Release Date: May 5, 2016 Next Release Date: May 2017 Table 9. Summary production statistics of the U.S. ...

  6. U.S. Offshore Wind Manufacturing and Supply Chain Development

    SciTech Connect

    Hamilton, Bruce Duncan

    2013-02-22

    The objective of the report is to provide an assessment of the domestic supply chain and manufacturing infrastructure supporting the U.S. offshore wind market. The report provides baseline information and develops a strategy for future development of the supply chain required to support projected offshore wind deployment levels. A brief description of each of the key chapters includes: » Chapter 1: Offshore Wind Plant Costs and Anticipated Technology Advancements. Determines the cost breakdown of offshore wind plants and identifies technical trends and anticipated advancements in offshore wind manufacturing and construction. » Chapter 2: Potential Supply Chain Requirements and Opportunities. Provides an organized, analytical approach to identifying and bounding the uncertainties associated with a future U.S. offshore wind market. It projects potential component-level supply chain needs under three demand scenarios and identifies key supply chain challenges and opportunities facing the future U.S. market as well as current suppliers of the nation’s land-based wind market. » Chapter 3: Strategy for Future Development. Evaluates the gap or competitive advantage of adding manufacturing capacity in the U.S. vs. overseas, and evaluates examples of policies that have been successful . » Chapter 4: Pathways for Market Entry. Identifies technical and business pathways for market entry by potential suppliers of large-scale offshore turbine components and technical services. The report is intended for use by the following industry stakeholder groups: (a) Industry participants who seek baseline cost and supplier information for key component segments and the overall U.S. offshore wind market (Chapters 1 and 2). The component-level requirements and opportunities presented in Section 2.3 will be particularly useful in identifying market sizes, competition, and risks for the various component segments. (b) Federal, state, and local policymakers and economic development

  7. Panel on Advanced Manufacturing Technology Analysis

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    on Advanced Manufacturing Technology Analysis: Session 1- Impacts at the Unit Operations & Plant/Facility Levels Session 2 - Analysis Methodology & Tools AMO Peer Review Meeting June 14, 2016 Joe Cresko, DOE-AMO Alberta Carpenter, NREL William Morrow, LBNL Sachin Nimbalkar, ORNL Diane Graziano, ANL 1 Advanced Manufacturing - Impacts at the Unit Operations & Plant/Facility Levels - PH accounts for about 70% of all process energy 1 - Overall, process heating systems lose more than

  8. The Advanced Manufacturing Partnership and the Advanced Manufacturing...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    The Advanced Manufacturing Partnership and the Advanced Manufacturing National Program Office The Advanced Manufacturing Partnership and the Advanced Manufacturing National Program ...

  9. Bio-Manufacturing: A Strategic clean energy manufacturing opportunity...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Bio-Manufacturing: A Strategic clean energy manufacturing opportunity Bio-Manufacturing: A Strategic clean energy manufacturing opportunity Breakout Session 1: New Developments and ...

  10. Metal and Glass Manufacturers Reduce Costs by Increasing Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Process heating plays a key role in producing steel, aluminum, and glass and in ... More Documents & Publications Commonwealth Aluminum: Manufacturer Conducts Plant-Wide ...

  11. Manufacturing Demonstration Facility

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    to develop broad dissemination of additive manufacturing Industry Collaborations * ... 5 DOE-AMO 2015 Peer Review Understanding Additive Manufacturing Mainstream applications ...

  12. National Electrical Manufacturers Association

    Office of Environmental Management (EM)

    3, 2014) Dear Mr. Croley, The National Electrical Manufacturers Association (NEMA) thanks ... As you may know, NEMA is the trade association of choice for the electrical manufacturing ...

  13. Next Generation Manufacturing Processes

    Energy.gov [DOE]

    New process technologies can rejuvenate U.S. manufacturing. Novel processing concepts can open pathways to double net energy productivity, enabling rapid manufacture of energy-efficient, high...

  14. HPC4Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Lab capabilities Manufacturing domain expertise National mission and guidance Bringing HPC to U.S. Manufacturers Energy Efficient Processes Energy Efficient Products...

  15. Why Hydrogen? Hydrogen from Diverse Domestic Resources

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    from Diverse Domestic Resources Hydrogen from Diverse Domestic Resources Distributed Generation Transportation HIGH EFFICIENCY HIGH EFFICIENCY & RELIABILITY & RELIABILITY ZERONEAR...

  16. 48C Phase II Advanced Energy Manufacturing Tax Credit Program Selections |

    Energy.gov [DOE] (indexed site)

    Department of Energy Departments of Energy and the Treasury worked in partnership to develop, launch, and award the funds for 48C Advanced Energy Manufacturing Tax Credit program. The Advanced Energy Manufacturing Tax Credit authorized Treasury to provide developers with an investment tax credit of 30 percent for the manufacture of particular types of energy equipment. Funded at $2.3 billion, the tax credit was made available to 183 domestic clean energy manufacturing facilities during Phase

  17. Advanced Manufacturing Technician

    Energy.gov [DOE]

    Alternate Title(s):Manufacturing Production Technician; Electro-Mechanical Technician; Electronics Maintenance Technician  

  18. Advanced Manufacturing Office News

    SciTech Connect

    2013-08-08

    News stories about advanced manufacturing, events, and office accomplishments. Subscribe to receive updates.

  19. Cincinnati Incorporated- A Success Story in American Manufacturing

    Energy.gov [DOE]

    Cincinnati Incorporated, a fourth-generation-owned company, is one of the largest machine tool manufacturers in the United States, with almost 400 employees at its 500-thousand square foot plant and technical center. It’s also the first company in the manufacturing machine tool industry sector to enter the additive manufacturing arena.

  20. Photovoltaic manufacturing technology, Phase 1

    SciTech Connect

    Not Available

    1992-10-01

    This report describes subcontracted research by the Chronar Corporation, prepared by Advanced Photovoltaic Systems, Inc. (APS) for Phase 1 of the Photovoltaic Manufacturing Technology Development project. Amorphous silicon is chosen as the PV technology that Chronar Corporation and APS believe offers the greatest potential for manufacturing improvements, which, in turn, will result in significant cost reductions and performance improvements in photovoltaic products. The APS Eureka'' facility was chosen as the manufacturing system that can offer the possibility of achieving these production enhancements. The relationship of the Eureka'' facility to Chronar's batch'' plants is discussed. Five key areas are also identified that could meet the objectives of manufacturing potential that could lead to improved performance, reduced manufacturing costs, and significantly increased production. The projected long-term potential benefits of these areas are discussed, as well as problems that may impede the achievement of the hoped-for developments. A significant number of the problems discussed are of a generic nature and could be of general interest to the industry. The final section of this document addresses the cost and time estimates for achieving the solutions to the problems discussed earlier. Emphasis is placed on the number, type, and cost of the human resources required for the project.

  1. Underground Manufacturing Facility, Sterling, Virginia. Final report

    SciTech Connect

    Barlow, R.M.

    1981-09-25

    The author set out to build an earth-sheltered light manufacturing plant (to produce expanded polystyrene insulation) and also an earth-sheltered passive solar residence. Results are presented of waterproofing, thermal monitoring, and life cycle study on the plant. It is concluded that the added cost of providing a support for carrying the earth deadload far outweighs the energy savings. (DLC)

  2. Smart Manufacturing: Transforming American Manufacturing with...

    Energy Saver

    ... House fact sheet on President Obama's announcement of investments in new manufacturing hubs. Addthis Related Articles AMO to Issue FOA for New Innovation Institute on Smart ...

  3. Additive Manufacturing: Pursuing the Promise

    Energy.gov [DOE]

    Fact sheet overviewing additive manufacturing techniques that are projected to exert a profound impact on manufacturing.

  4. Cincinnati Incorporated - A Success Story in American Manufacturing |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Cincinnati Incorporated - A Success Story in American Manufacturing Cincinnati Incorporated - A Success Story in American Manufacturing April 15, 2015 - 1:33pm Addthis Cincinnati Incorporated, a fourth-generation-owned company, is one of the largest machine tool manufacturers in the United States, with almost 400 employees at its 500-thousand square foot plant and technical center. It's also the first company in the manufacturing machine tool industry sector to enter the

  5. Requirements for status for volume fuel cell manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Requirements & Status for Volume Fuel Cell Manufacturing DOE Hydrogen Program, Washington, DC July 13-14, 2005 Requirements for Manufactured Fuel Cells Customer Requirements: Commercial Plant Study - Volume: 250,000 fuel stacks per year - Cost: $30/kw net Requirements for Manufactured Fuel Cells Commercial Volume Manufacturing - Material Utilization: >85% - Controlled Environments (Humidity, temperature, dust) - Environmentally safe direct and indirect materials - Hydrogen safety - Make

  6. Domestic Uranium Production Report

    Gasoline and Diesel Fuel Update

    5. U.S. uranium in-situ-leach plants by owner, location, capacity, and operating status at end of the year, 2011-15 In-Situ-Leach plant owner In-Situ-Leach plant name County, state (existing and planned locations) Production capacity (pounds U3O8 per year) Operating status at end of the year 2011 2012 2013 2014 2015 AUC LLC Reno Creek Campbell, Wyoming 2,000,000 - - Developing Developing Partially Permitted and Licensed Azarga Uranium Corp Dewey Burdock Project Fall River and Custer, South

  7. The Advanced Manufacturing Partnership and the Advanced Manufacturing Program Office

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Advanced Manufacturing Partnership and the Advanced Manufacturing National Program Office Webcasts for Industry Advanced Manufacturing Office US Department of Energy Mike Molnar Chief Manufacturing Officer National Institute of Standards and Technology Carrie Houtman Senior Public Policy Manager Dow Chemical Overview * Advanced Manufacturing Activities * Advanced Manufacturing Partnership (AMP) * AMP Steering Committee * AMP Workstream Study Groups * Office of Manufacturing Policy (OMP) * NSTC

  8. Energy Use in Manufacturing

    Reports and Publications

    2006-01-01

    This report addresses both manufacturing energy consumption and characteristics of the manufacturing economy related to energy consumption. In addition, special sections on fuel switching capacity and energy-management activities between 1998 and 2002 are also featured in this report.

  9. Manufacturing Day 2015

    Energy.gov [DOE]

    All over the country, manufacturing companies and other organizations are preparing to host an anticipated 400,000 people who want to experience U.S. manufacturing up close and in person. On...

  10. Replacement Cost of Domestic Crude

    Energy Science and Technology Software Center

    1994-12-01

    The DEEPWATER model forecasts the replacement cost of domestic crude oil for 13 offshore regions in the lower 48 states. The replacement cost of domestic crude oil is the constant or levelized selling price that will recover the full expense of exploration, development, and productions with a reasonable return on capital.

  11. Fuel Cell Manufacturing: American Energy and Manufacturing Competitive...

    Energy.gov [DOE] (indexed site)

    Presentation on fuel cell manufacturing by Sunita Satyapal at the American Energy and Manufacturing Competitiveness Summit on December 12, 2013. Fuel Cell Manufacturing (2.61 MB) ...

  12. Manufacturing Demonstration Facility

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Manufacturing Demonstration Facility Bill Peter Director, Manufacturing Demonstration Facility Oak Ridge National Laboratory Advanced Manufacturing Office Peer Review June 14-15, 2016 This presentation does not contain any proprietary, confidential, or otherwise restricted information. Today, ORNL is a leading science and energy laboratory The Manufacturing Demonstration Facility at Oak Ridge National Laboratory * R&D in materials, systems, and computational applications to develop broad of

  13. NREL: Innovation Impact - Manufacturing

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Manufacturing Menu Home Home Solar Solar Wind Wind Analysis Analysis Bioenergy Bioenergy Buildings Buildings Transportation Transportation Manufacturing Manufacturing Energy Systems Integration Energy Systems Integration Increasing U.S. Market Share in Solar Photovoltaic Manufacturing Close From 2000 to 2010, global shipments of solar cells and modules grew 53%, a wave that China and Taiwan rode to increase their combined market share from less than 2% to 54%. Meanwhile, U.S. market share

  14. Manufacturing Innovation Topics Workshop

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Advanced Manufacturing Office (AMO) and the Office of the Secretary of Defense Manufacturing Technology Program (OSD ManTech) will host a workshop to discuss AMO's recent Request for Information (RFI) on Clean Energy Manufacturing Topic Areas as well as the recent areas of interest announced by OSD ManTech for a new Manufacturing Innovation Institute on October 8-9, 2014 in Fort Worth, TX.

  15. Wind power manufacturing and supply chain summit USA.

    SciTech Connect

    Hill, Roger Ray

    2010-12-01

    The area of wind turbine component manufacturing represents a business opportunity in the wind energy industry. Modern wind turbines can provide large amounts of electricity, cleanly and reliably, at prices competitive with any other new electricity source. Over the next twenty years, the US market for wind power is expected to continue to grow, as is the domestic content of installed turbines, driving demand for American-made components. Between 2005 and 2009, components manufactured domestically grew eight-fold to reach 50 percent of the value of new wind turbines installed in the U.S. in 2009. While that growth is impressive, the industry expects domestic content to continue to grow, creating new opportunities for suppliers. In addition, ever-growing wind power markets around the world provide opportunities for new export markets.

  16. Additive Manufacturing Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Additive Manufacturing 1 Technology Assessment 2 1. Contents 3 1. Introduction to the Technology/System ............................................................................................... 2 4 1.1 Introduction to Additive Manufacturing ....................................................................................... 2 5 1.2 Additive Manufacturing Processes ............................................................................................... 2 6 1.3 Benefits of Additive

  17. Manufacturing Fuel Cell Manhattan Project

    Office of Energy Efficiency and Renewable Energy (EERE)

    This document communicates the major fuel cell manufacturing cost drivers, gaps, and industry best practices, as well as recommends manufacturing projects to advance fuel cell manufacturing.

  18. Fuel Cell Manufacturing: American Energy and Manufacturing Competitiveness Summit

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation on fuel cell manufacturing by Sunita Satyapal at the American Energy and Manufacturing Competitiveness Summit on December 12, 2013.

  19. The Advanced Manufacturing Partnership and the Advanced Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    National Program Office | Department of Energy The Advanced Manufacturing Partnership and the Advanced Manufacturing National Program Office The Advanced Manufacturing Partnership and the Advanced Manufacturing National Program Office This presentation describes the Advanced Manufacturing Partnership from its beginning as a recommendation of the President's Council of Advisers on Science and Technology to its development and organization. The Advanced Manufacturing Partnership and the

  20. Energy Department Invests $13 Million in U.S. Solar Manufacturing |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Invests $13 Million in U.S. Solar Manufacturing Energy Department Invests $13 Million in U.S. Solar Manufacturing December 18, 2013 - 12:00am Addthis The Energy Department on December 11 announced more than $13 million in funding for five projects to strengthen domestic solar manufacturing and speed commercialization of efficient, affordable photovoltaic and concentrating solar power technologies. As part of the Energy Department's SunShot Initiative, these awards will

  1. Energy Department Offers $25 Million for U.S. Solar Manufacturing |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Offers $25 Million for U.S. Solar Manufacturing Energy Department Offers $25 Million for U.S. Solar Manufacturing February 19, 2014 - 12:00am Addthis The Energy Department announced on February 12 that it is offering $25 million in new funding to boost domestic solar manufacturing and speed up the commercialization of efficient, affordable photovoltaic (PV) and concentrating solar power technologies. This funding, provided by the Energy Department's SunShot Initiative in

  2. Forest products: Fiber loading for paper manufacturing

    SciTech Connect

    1999-09-29

    Fact sheet on manufacturing filler during paper manufacturing written for the NICE3 Program. With its new fiber loading process, Voith Sulzer, Inc., is greatly improving the efficiency of paper production and recycling. Fiber loading produces precipitated calcium carbonate (PCC) filler in the pulp recycling process at costs below conventional means. Fiber loading allows papermakers to use as much filler, like PCC, as possible because it costs 80% less than fiber. In addition, increased filler and fines retention due to fiber loading reduces the quantity of greenhouse gas emissions, deinking sludge, and other waste while substantially lowering energy costs. Currently, the most efficient way to produce PCC as filler is to make it in a satellite plant adjacent to a paper mill. Satellite plants exist near large scale paper mills (producing 700 tons per day) because the demand at large mills justifies building a costly ($15 million, average) satellite plant. This new fiber loading process combines the PCC manufacturing technology used in a satellite plant with the pulp processing operations of a paper mill. It is 33% less expensive to augment an existing paper mill with fiber loading technology than to build a satellite plant for the same purpose. This technology is applicable to the manufacturing of all printing and writing paper, regardless of the size or capacity of the paper mill.

  3. 2015 Domestic Uranium Production Report

    Energy Information Administration (EIA) (indexed site)

    7. Employment in the U.S. uranium production industry by state, 2003-15" "person-years" ... Administration: Form EIA-851A, ""Domestic Uranium Production Report"" (2003-15)." "10

  4. 2014 Domestic Uranium Production Report

    Energy Information Administration (EIA) (indexed site)

    Domestic Uranium Production Report 2015 Domestic Uranium Production Report Release Date: May 5, 2016 Next Release Date: May 2017 2011 2012 2013 2014 2015 AUC LLC Reno Creek Campbell, Wyoming 2,000,000 - - Developing Developing Partially Permitted and Licensed Azarga Uranium Corp Dewey Burdock Project Fall River and Custer, South Dakota 1,000,000 Undeveloped Developing Developing Partially Permitted And Licensed Partially Permitted And Licensed Cameco Crow Butte Operation Dawes, Nebraska

  5. Energy Department Announces $2 Million to Develop Supply Chain, Manufacturing Competitiveness Analysis for Hydrogen and Fuel Cell Technologies

    Energy.gov [DOE]

    The Energy Department today announced up to $2 million to develop the domestic supply chain for hydrogen and fuel cell technologies and study the competitiveness of U.S. hydrogen and fuel cell system and component manufacturing.

  6. Roll to Roll Manufacturing

    SciTech Connect

    Daniel, Claus

    2015-06-09

    ORNL researchers are developing roll to roll technologies for manufacturing, automotive, and clean energy applications in collaboration with industry partners such as Eastman Kodak.

  7. Manufacturing R&D

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    processes and reduce the cost of manufacturing components and systems for hydrogen production and delivery, hydrogen storage, and fuel cells for transportation, stationary, and ...

  8. Manufacturing | Department of Energy

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    in the production of clean energy technologies like electric vehicles, LED bulbs and solar panels. The Department is also working with manufacturers to increase their energy...

  9. Additive Manufacturing: Going Mainstream

    Office of Energy Efficiency and Renewable Energy (EERE)

    Additive manufacturing, or 3D printing, is receiving attention from media, investment communities and governments around the world transforming it from obscurity to something to be talked about.

  10. Plants & Animals

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Plants & Animals Plants & Animals Plant and animal monitoring is performed to determine whether Laboratory operations are impacting human health via the food chain. February 2, 2015 A rabbit on LANL land. A rabbit on Los Alamos National Laboratory land. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email We sample many plants and animals, including wild and domestic crops, game animals, fish, and food products from

  11. A program to develop the domestic natural gas industry in Indonesia: Case history of two World Bank projects

    SciTech Connect

    Klass, D.L. ); Khwaja, S. )

    1991-01-01

    Indonesia depends heavily on revenues from the export of LNG and oil, the availability of which appears to be decreasing. It is therefore making a strong effort to accelerate development of a domestic natural gas industry. A high priority has been given to the conversion of power plants and city gas systems, including local industries and commercial facilities, from liquid fuels to natural gas. This will release more oil for export, help to meet the objectives of Repelita V, and provide substantial environmental benefits. The World Bank recently provided loans to the Indonesian Government for two projects that are aimed at substituting natural gas for oil and manufactured gas in domestic markets. One project involves expansion of the gas distribution systems of Indonesia's natural gas utility (PGN) in three cities: Jakarta and Bogor in Java, and Medan in Sumatra. The project also includes training programs for PGN staff and an energy pricing policy study to be carried out by Indonesia's Ministry of Mines and Energy. The second project involves expansion of the supply of natural gas for Surabaya and twelve other towns in its vicinity in East Java, and further expansion of Medan's supply system. Technical assistance will be provided to enhance the skills ofPGN and the Ministry of Mines and Energy, and a Gas Technology Unit similar to the Institute of Gas Technology will be established at Indonesia's Research and Development Center for Oil and Gas (LEMIGAS) in Jakarta. 14 refs., 3 figs., 11 tabs.

  12. Domestic Uranium Production Report

    Gasoline and Diesel Fuel Update

    3. U.S. uranium concentrate production, shipments, and sales, 2003-15 Activity at U.S. mills and In-Situ-Leach plants 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 Estimated contained U3O8 (thousand pounds) Ore from Mines and Stockpiles Fed to Mills1 0 W W W 0 W W W W W W W 0 Other Feed Materials 2 W W W W W W W W W W W W W Total Mill Feed W W W W W W W W W W W W W Uranium Concentrate Produced at U.S. Mills (thousand pounds U3O8) W W W W W W W W W W W W W Uranium Concentrate

  13. Clean Energy Manufacturing Initiative

    SciTech Connect

    2013-04-01

    The initiative will strategically focus and rally EERE’s clean energy technology offices and Advanced Manufacturing Office around the urgent competitive opportunity for the United States to be the leader in the clean energy manufacturing industries and jobs of today and tomorrow.

  14. Manufacturing Innovation in the DOE

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Manufacturing Innovation in the DOE January 13, 2014 Mark Johnson Director Advanced Manufacturing Office manufacturing.energy.gov Advanced Manufacturing Office (AMO) manufacturing.energy.gov 2 What is Advanced Manufacturing? A family of activities that: * Depend on the use and coordination of information, automation, computation, software, sensing, and networking; and/or * Make use of cutting edge materials and emerging capabilities. Advanced Manufacturing involves both: * New ways to

  15. FY 2012 Honeywell Federal Manufacturing & Technologies, LLC, PER Summary |

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration | (NNSA) Honeywell Federal Manufacturing & Technologies, LLC, PER Summary SUMMARY OF FY 2012 HONEYWELL FEDERAL MANUFACTURING & TECHNOLOGIES, LLC, AWARD FEE DETERMINATION Total Available Fee Total Fee Earned % $41,951,011 $40,706,111 97% Honeywell Federal Manufacturing & Technologies, LLC, the management and operating contractor for the Kansas City Plant, earned an "Excellent" rating in Program, Operations, and Institutional

  16. Advanced Manufacturing Office Update, January 2015 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    January 2015 Advanced Manufacturing Office Update, January 2015 January 26, 2015 - 2:00pm Addthis In This Issue Featured Articles Expert Panel Releases Final Report on Strengthening Advanced Manufacturing in America 3D Printed Shelby Cobra Demonstrates Further Advances in Additive Manufacturing Partners in the Spotlight Legrand Energy Marathon Leads to Big Savings Better Plants Welcomes First Five Wastewater Treatment Partners Third Volvo Facility Certified to Superior Energy Performance Honda

  17. Static Sankey Diagram of Nonprocess Energy in U.S. Manufacturing Sector |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Nonprocess Energy in U.S. Manufacturing Sector Static Sankey Diagram of Nonprocess Energy in U.S. Manufacturing Sector The Nonprocess Energy Static Sankey diagram shows how energy is used for supporting functions by U.S. manufacturing plants. Click on the Full Sector, Onsite Generation, and Process Energy thumbnails below the diagram to see further detail on energy flows in manufacturing. Also, see the Dynamic Manufacturing Energy Sankey Tool to pan, zoom, and customize

  18. Static Sankey Diagram of Onsite Generation in U.S. Manufacturing Sector |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Onsite Generation in U.S. Manufacturing Sector Static Sankey Diagram of Onsite Generation in U.S. Manufacturing Sector The Onsite Generation Static Sankey diagram shows how steam and electricity are generated by U.S. manufacturing plants. Click on the Full Sector, Process Energy, and Nonprocess Energy thumbnails below the diagram to see further detail on energy flows in manufacturing. Also, see the Dynamic Manufacturing Energy Sankey Tool to pan, zoom, and customize the

  19. State Support of Domestic Production

    SciTech Connect

    Amy Wright

    2007-12-30

    This project was developed in response to a cooperative agreement offering by the U.S. Department of Energy (DOE) and the National Energy Technology Laboratory (NETL) under the State Support of Domestic Production DE-FC26-04NT15456. The Interstate Oil and Gas Compact Commission (IOGCC) performed efforts in support of State programs related to the security, reliability and growth if our nation's domestic production of oil and natural gas. The project objectives were to improve the States ability to monitor the security of oil and gas operations; to maximize the production of domestic oil and natural gas thereby minimizing the threat to national security posed by interruptions in energy imports; to assist States in developing and maintaining high standards of environmental protection; to assist in addressing issues that limit the capacity of the industry; to promote the deployment of the appropriate application of technology for regulatory efficiency; and to inform the public about emerging energy issues.

  20. Advanced Vehicles Manufacturing Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects DOE-LPO_ATVM-Economic-Growth_Thumbnail.png DRIVING ECONOMIC GROWTH: ADVANCED TECHNOLOGY VEHICLES

  1. EERE Success Story-Washington: Battery Manufacturer Brings Material...

    Energy Saver

    EERE Success Story-Washington: Battery Manufacturer Brings ... and other energy storage devices that can be used ... Project Overview Positive Impact EnerG2's new plant will ...

  2. Virginia Manufacturer Keeps Jobs Local By Embracing Energy Efficiency

    Energy.gov [DOE]

    Volvo Trucks’ New River Valley (NRV) plant, located in Dublin, Virginia, is the company’s largest truck manufacturing facility in the world—and the plant’s senior management aims to keep it that way.

  3. 2015 Domestic Uranium Production Report

    Energy Information Administration (EIA) (indexed site)

    Domestic Uranium Production Report 2015 Domestic Uranium Production Report Release Date: May 5, 2016 Next Release Date: May 2017 million pounds U 3 O 8 $0 to $30 per pound $0 to $50 per pound $0 to $100 per pound $0 to $30 per pound $0 to $50 per pound $0 to $100 per pound Properties with Exploration Completed, Exploration Continuing, and Only Assessment Work W W 154.6 24.3 W 151.6 Properties Under Development for Production and Development Drilling W 38.2 W W 38.2 W Mines in Production W 19.2 W

  4. Advanced Battery Manufacturing Making Strides in Oregon | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Advanced Battery Manufacturing Making Strides in Oregon Advanced Battery Manufacturing Making Strides in Oregon February 16, 2012 - 12:09pm Addthis EnerG2 Ribbon Cutting Ceremony for new battery materials plant in Albany, Oregon. Photo courtesy of the Vehicle Technologies Program EnerG2 Ribbon Cutting Ceremony for new battery materials plant in Albany, Oregon. Photo courtesy of the Vehicle Technologies Program What are the key facts? Through the Recovery Act, the Department has

  5. Advanced Manufacturing Office Update, July 2015 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    5 Advanced Manufacturing Office Update, July 2015 July 7, 2015 - 4:05pm Addthis In This Issue Featured Articles Institute for Advanced Composites Manufacturing Innovation Launched 2015 Better Buildings Summit Celebrates Continued Energy and Cost Savings DOE Recognizes High-Achieving Better Plants and Superior Energy Performance Partners AMO Peer Review Highlights Cutting-Edge Energy Efficiency Projects Partners in the Spotlight Better Plants Welcomes Six New Partners Schneider Electric Certifies

  6. Better Plants

    Energy.gov [DOE]

    Leading manufacturers and industrial-scale energy-using organizations demonstrate their commitment to improving energy performance by signing a voluntary pledge to reduce their energy intensity by 25% over a ten year period. The U.S. Department of Energys Better Buildings, Better Plants Program is an important partnership which consists of approximately 150 industrial companies, representing about 2,300 facilities and close to 11% of the total U.S. manufacturing energy footprint as well as several water and wastewater treatment organizations.

  7. Innovative Manufacturing Initiative Project Selections

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Department announced nearly $23 million for 12 projects across the country to advance technologies aimed at helping American manufacturers dramatically increase the energy efficiency of their manufacturing facilities, lower costs, and develop new manufacturing technologies.

  8. Renewable Energy Manufacturing Program

    Energy.gov [DOE]

    Note: The initial application deadline for the Renewable Energy Manufacturing Program is June 30, 2016. Applications will be accepted following that date only if there are remaining funds available...

  9. 700 bar COPV Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Bar COPV Manufacturing - IACMI 24 August 2016 Brian Rice (UDRI) IACMI CGS Director 2 IACMI NNMI Network Plus: * Photonics (NY) (DOD) * Flexible Electronics (CA) (DOD) Expected: * Functional Fabrics (DOD) * Smart Manufacturing (DOE) 3 IACMI Shared RD&D facilities will support industry 4 IACMI An integrated approach is required 5 IACMI Economic Development Council A Platform for State Economic Collaboration Each state deploys hundreds of millions of dollars annually to create jobs and

  10. Hydroprocessing catalyst manufacture

    SciTech Connect

    Lostaglio, V.J.; Carruthers, J.D.

    1985-01-01

    Hydroprocessing catalysts for the oil-refining industry have undergone significant improvements since the oil shortages of the late 1970's. Spurred by the need for refiners to process heavy, sour feeds, catalyst manufacturers have developed technology to meet these changing demands. Current manufacturing techniques in the production of substrate and final catalyst are reviewed. New approach to the production of resid hydrotreatment catalysts are considered.

  11. NREL: Innovation Impact - Manufacturing

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Buildings Menu Home Home Solar Solar Wind Wind Analysis Analysis Bioenergy Bioenergy Buildings Buildings Transportation Transportation Manufacturing Manufacturing Energy Systems Integration Energy Systems Integration Buildings Use 40% of U.S. Energy Close Americans spend $400 billion annually to power homes and commercial buildings. An estimated $80 billion could be saved through energy efficiency. Close NREL's net-zero-energy Research Support Facility employs cutting-edge energy efficiency

  12. Major manufacturing and mining investment projects

    SciTech Connect

    Not Available

    1986-01-01

    This book lists manufacturing and mining investment projects with development costs of $5 million or more. Manufacturing projects are classified in accordance with the Australian Bureau of Statistics' Australian Standard Industrial Classification (ASIC) and mining projects by broad mineral categories. The book includes information on the nature of each project, its location and timing, the company of joint venture name, whether the investment is at a new site or at an existing site, the type of product, the value of the annual output, production, employment, past and future costs and the composition (structure and plant) of the investment.

  13. Los Alamos to team with Procter & Gamble in clean energy manufacturing...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Potential study areas could include equipping manufacturing plants with cost-effective renewable energy sources, implementing innovative recycling and re-use streams and new...

  14. Voluntary Protection Program Onsite Review, Honeywell Federal Manufacturing and Technologies- November 2008

    Office of Energy Efficiency and Renewable Energy (EERE)

    Evaluation to determine whether Honeywell Federal Manufacturing and Technologies' Kansas City Plant is continuing to perform at a level deserving DOE-VPP Star recognition.

  15. Advanced Materials Manufacturing (AMM) Session

    Energy.gov [DOE] (indexed site)

    ... Advanced Manufacturing Office (AMO) manufacturing.energy.gov 12 An AMM InstituteConsortium Approach Offers... ComputationalExperimentalBig Data Synergies: The AMM ...

  16. Laser Manufacturing | GE Global Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Home > Impact > Advanced Laser Manufacturing Tools Deliver Higher Performance Click to ... Advanced Laser Manufacturing Tools Deliver Higher Performance In a research lab looking ...

  17. Manufacturing Consumption of Energy 1994

    Energy Information Administration (EIA) (indexed site)

    (MECS) > MECS 1994 Combined Consumption and Fuel Switching Manufacturing Energy Consumption Survey 1994 (Combined Consumption and Fuel Switching) Manufacturing Energy Consumption...

  18. Innovative Manufacturing Initiative Recognition Day

    Energy.gov [DOE]

    The Innovative Manufacturing Initiative (IMI) Recognition Day (held in Washington, DC on June 20, 2012) showcased IMI projects selected by the Energy Department to help American manufacturers...

  19. Manufacturing Demonstration Facility Workshop Videos | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Manufacturing Demonstration Facility Workshop Videos Manufacturing Demonstration Facility Workshop Videos Dr. Leo Christodoulou, Program Manager, EERE Advanced Manufacturing ...

  20. Advanced Manufacture of Reflectors

    SciTech Connect

    Angel, Roger

    2014-12-17

    The main project objective has been to develop an advanced gravity sag method for molding large glass solar reflectors with either line or point focus, and with long or short focal length. The method involves taking standard sized squares of glass, 1.65 m x 1.65 m, and shaping them by gravity sag into precision steel molds. The method is designed for high volume manufacture when incorporated into a production line with separate pre-heating and cooling. The performance objectives for the self-supporting glass mirrors made by this project include mirror optical accuracy of 2 mrad root mean square (RMS), requiring surface slope errors <1 mrad rms, a target not met by current production of solar reflectors. Our objective also included development of new methods for rapidly shaping glass mirrors and coating them for higher reflectivity and soil resistance. Reflectivity of 95% for a glass mirror with anti-soil coating was targeted, compared to the present ~94% with no anti-soil coating. Our mirror cost objective is ~$20/m2 in 2020, a significant reduction compared to the present ~$35/m2 for solar trough mirrors produced for trough solar plants. During the first year a custom batch furnace was built to develop the method with high power radiative heating to simulate transfer of glass into a hot slumping zone in a production line. To preserve the original high polish of the float glass on both front and back surfaces, as required for a second surface mirror, the mold surface is machined to the required shape as grooves which intersect the glass at cusps, reducing the mold contact area to significantly less than 1%. The mold surface is gold-plated to reflect thermal radiation. Optical metrology of glass replicas made with the system has been carried out with a novel, custom-built test system. This test provides collimated, vertically-oriented parallel beams from a linear array of co-aligned lasers translated in a perpendicular direction across the reflector. Deviations of

  1. Assessment of Unglazed Solar Domestic Water Heaters

    SciTech Connect

    Burch, J.; Salasovich, J.; Hillman, T.

    2005-12-01

    Conference paper investigating cost-performance tradeoffs in replacing glazed collectors with unglazed collectors in solar domestic water heating systems.

  2. 2015 Domestic Uranium Production Report

    Energy Information Administration (EIA) (indexed site)

    Domestic Uranium Production Report 2015 Domestic Uranium Production Report Release Date: May 5, 2016 Next Release Date: May 2017 Number of Holes Feet (thousand) Number of Holes Feet (thousand) Number of Holes Feet (thousand) 2003 NA NA NA NA W W 2004 W W W W 2,185 1,249 2005 W W W W 3,143 1,668 2006 1,473 821 3,430 1,892 4,903 2,713 2007 4,351 2,200 4,996 2,946 9,347 5,146 2008 5,198 2,543 4,157 2,551 9,355 5,093 2009 1,790 1,051 3,889 2,691 5,679 3,742 2010 2,439 1,460 4,770 3,444 7,209 4,904

  3. 2015 Domestic Uranium Production Report

    Energy Information Administration (EIA) (indexed site)

    7 2015 Domestic Uranium Production Report Release Date: May 5, 2016 Next Release Date: May 2017 Capacity (short tons of ore per day) 2011 2012 2013 2014 2015 Anfield Resources Shootaring Canyon Uranium Mill Garfield, Utah 750 Standby Standby Standby Standby Standby EFR White Mesa LLC White Mesa Mill San Juan, Utah 2,000 Operating Operating Operating- Processing Alternate Feed Operating- Processing Alternate Feed Operating- Processing Alternate Feed Energy Fuels Wyoming Inc Sheep Mountain

  4. EERE Announces up to $2M for Clean Energy Supply Chain and Manufacturing Competitiveness Analysis for Hydrogen and Fuel Cell Technologies

    Energy.gov [DOE]

    The Energy Department has selected three projects to receive up to $2 million in new funding for analysis of the hydrogen and fuel cells domestic supply chain and manufacturing competitiveness.

  5. Supply Chain and Blade Manufacturing Considerations in the Global Wind Industry

    Energy.gov [DOE]

    Over the past decade, significant wind manufacturing capacity has been built in the United States in response to an increasingly large domestic market. Recent U.S. manufacturing production levels exceed anticipated near-term domestic demand for select parts of the supply chain, in part due to policy uncertainty, and this is resulting in some restructuring in the industry. Factor location decisions are influenced by a combination of quantitative and qualitative factors; proximity to end-markets is often a key consideration, especially for manufacturers of large wind turbine components. Technology advancements in the wind sector are continuing , and larger blade designs are being pursued in the market, which may increase U.S.-based manufacturing opportunities.

  6. Manufacturing Laboratory (Fact Sheet)

    SciTech Connect

    Not Available

    2011-10-01

    This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Manufacturing Laboratory at the Energy Systems Integration Facility. The Manufacturing Laboratory at NREL's Energy Systems Integration Facility (ESIF) focuses on developing methods and technologies that will assist manufacturers of hydrogen and fuel cell technologies, as well as other renewable energy technologies, to scale up their manufacturing capabilities to volumes that meet DOE and industry targets. Specifically, the manufacturing activity is currently focused on developing and validating quality control techniques to assist manufacturers of low temperature and high temperature fuel cells in the transition from low to high volume production methods for cells and stacks. Capabilities include initial proof-of-concept studies through prototype system development and in-line validation. Existing diagnostic capabilities address a wide range of materials, including polymer films, carbon and catalyst coatings, carbon fiber papers and wovens, and multi-layer assemblies of these materials, as well as ceramic-based materials in pre- or post-fired forms. Work leading to the development of non-contact, non-destructive techniques to measure critical dimensional and functional properties of fuel cell and other materials, and validation of those techniques on the continuous processing line. This work will be supported by materials provided by our partners. Looking forward, the equipment in the laboratory is set up to be modified and extended to provide processing capabilities such as coating, casting, and deposition of functional layers, as well as associated processes such as drying or curing. In addition, continuous processes are used for components of organic and thin film photovoltaics (PV) as well as battery technologies, so synergies with these important areas will be explored.

  7. Photovoltaic manufacturing technology

    SciTech Connect

    Wohlgemuth, J.H.; Whitehouse, D.; Wiedeman, S.; Catalano, A.W.; Oswald, R. )

    1991-12-01

    This report identifies steps leading to manufacturing large volumes of low-cost, large-area photovoltaic (PV) modules. Both crystalline silicon and amorphous silicon technologies were studied. Cost reductions for each step were estimated and compared to Solarex Corporation's manufacturing costs. A cost model, a simple version of the SAMICS methodology developed by the Jet Propulsion Laboratory (JPL), projected PV selling prices. Actual costs of materials, labor, product yield, etc., were used in the cost model. The JPL cost model compared potential ways of lowering costs. Solarex identified the most difficult technical challenges that, if overcome, would reduce costs. Preliminary research plans were developed to solve the technical problems. 13 refs.

  8. Advanced Manufacture of Reflectors

    Energy.gov [DOE]

    The Advance Manufacture of Reflectors fact sheet describes a SunShot Initiative project being conducted research team led by the University of Arizona, which is working to develop a novel method for shaping float glass. The technique developed by this research team can drastically reduce the time required for the shaping step. By enabling mass production of solar concentrating mirrors at high speed, this project should lead to improved performance and as much as a 40% reduction in manufacturing costs for reflectors made in very high volume.

  9. Manufacturing Fuel Cell Manhattan Project

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    to DOE Fuel Cell Manufacturing Workshop 2011 John Christensen, PE NREL Consultant DOE Fuel Cell Market Transformation Support August 11, 2011 Manufacturing Fuel Cell Manhattan Project √ Identify manufacturing cost drivers to achieve affordability √ Identify best practices in fuel cell manufacturing technology √ Identify manufacturing technology gaps √ Identify FC projects to address these gaps MFCMP Objectives Completed Final Report due out Nov 2010 B2PCOE Montana Tech SME's Industry

  10. Energy Department Recognizes 11 Manufacturers for Energy Efficiency Achievements

    Energy.gov [DOE]

    Building on the Administration’s efforts to double energy productivity and help American businesses save money by saving energy, the Energy Department today recognized 11 companies that have met ambitious energy-efficiency goals through the Better Buildings, Better Plants Program. Across the country, manufacturers spend more than $200 billion each year to power their plants.

  11. Drug development and manufacturing

    DOEpatents

    Warner, Benjamin P.; McCleskey, T. Mark; Burrell, Anthony K.

    2015-10-13

    X-ray fluorescence (XRF) spectrometry has been used for detecting binding events and measuring binding selectivities between chemicals and receptors. XRF may also be used for estimating the therapeutic index of a chemical, for estimating the binding selectivity of a chemical versus chemical analogs, for measuring post-translational modifications of proteins, and for drug manufacturing.

  12. Solar Thermal Collector Manufacturing Activities

    Annual Energy Outlook

    1 Distribution of domestic solar thermal collector shipments (thousand square feet) 2008 ... Source: U.S. Energy Information Administration, Form EIA-63A, "Annual Solar Thermal ...

  13. Solar Thermal Collector Manufacturing Activities

    Annual Energy Outlook

    Annual shipments of solar thermal collectors by source, 2000 - 2009 Imports Domestically ... Source: U.S. Energy Information Administration, Form EIA-63A, "Annual Solar Thermal ...

  14. Bio-Manufacturing: A Strategic clean energy manufacturing opportunity

    Energy.gov [DOE]

    Breakout Session 1: New Developments and Hot Topics Session 1-A: Biomass and the U.S. Competitive Advantages for Manufacturing Clean Energy Products Libby Wayman, Director, EERE Clean Energy Manufacturing Initiative

  15. Material Design, Selection, and Manufacturing Methods for System Sustainment

    SciTech Connect

    David Sowder, Jim Lula, Curtis Marshall

    2010-02-18

    This paper describes a material selection and validation process proven to be successful for manufacturing high-reliability long-life product. The National Secure Manufacturing Center business unit of the Kansas City Plant (herein called KCP) designs and manufactures complex electrical and mechanical components used in extreme environments. The material manufacturing heritage is founded in the systems design to manufacturing practices that support the U.S. Department of Energy’s National Nuclear Security Administration (DOE/NNSA). Material Engineers at KCP work with the systems designers to recommend materials, develop test methods, perform analytical analysis of test data, define cradle to grave needs, present final selection and fielding. The KCP material engineers typically will maintain cost control by utilizing commercial products when possible, but have the resources and to develop and produce unique formulations as necessary. This approach is currently being used to mature technologies to manufacture materials with improved characteristics using nano-composite filler materials that will enhance system design and production. For some products the engineers plan and carry out science-based life-cycle material surveillance processes. Recent examples of the approach include refurbished manufacturing of the high voltage power supplies for cockpit displays in operational aircraft; dry film lubricant application to improve bearing life for guided munitions gyroscope gimbals, ceramic substrate design for electrical circuit manufacturing, and tailored polymeric materials for various systems. The following examples show evidence of KCP concurrent design-to-manufacturing techniques used to achieve system solutions that satisfy or exceed demanding requirements.

  16. Kawasaki Plant Systems Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Systems Ltd Jump to: navigation, search Name: Kawasaki Plant Systems Ltd Place: Kobe, Japan Zip: 650-8670 Sector: Biomass, Services, Solar Product: Engineers, manufactures, and...

  17. Better Plants Program Overview

    SciTech Connect

    2015-09-30

    The U.S. Department of Energy’s (DOE’s) Better Buildings, Better Plants Program is a voluntary partnership initiative to drive significant energy efficiency improvement across energy intensive companies and organizations. 157 leading manufacturers and public water and wastewater treatment utilities are partnering with DOE through Better Plants to improve energy efficiency, slash carbon emissions, and cut energy costs.

  18. Contribution to Nanotechnology Manufacturing

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    shares Nano 50 award for directed assembly September 3, 2008 Contribution to Nanotechnology Manufacturing LOS ALAMOS, New Mexico, September 3, 2008-A team of scientists spanning three institutions, including Los Alamos National Laboratory, has discovered a more efficient way of fusing charge-carrying electrical contacts to tiny "nanowires" of silicon to create the nanotechnology at the heart of potential future advances in modern electronics, sensing, and energy collection. Nanotech

  19. Flexibility in Biofuel Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Flexibility in Biofuel Manufacturing Dan Gaspar Sustainable Transportation Summit July 12, 2016 Fuel selection overview If we identify the critical fuel properties and target values that maximize efficiency and emissions performance for a given engine architecture, then fuels that have properties with those values (regardless of chemical composition) will provide comparable performance Governing Co-Optima hypotheses: There are engine architectures and strategies that provide higher thermodynamic

  20. National Electrical Manufacturers Association

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    July 24, 2014 VIA EMAIL TO: Regulatory.Review@hq.doe.gov Steven Croley, General Counsel Office of the General Counsel U.S. Department of Energy 1000 Independence Avenue SW., Washington, DC 20585 NEMA Comments on DOE Reducing Regulatory Burden RFI 79 Fed.Reg. 28518 (July 3, 2014) Dear Mr. Croley, The National Electrical Manufacturers Association (NEMA) thanks you for the opportunity to provide comments on the Department of Energy's efforts to make its regulatory program more effective and less

  1. The manufacture and performance of homogeneous microstructure SBR MOX fuel

    SciTech Connect

    Barker, Matthew A.; Stephenson, Keith; Weston, Rebecca

    2007-07-01

    In the early 1980's, British experience in the manufacture of mixed-oxide fast reactor fuel was used to develop a new thermal MOX manufacturing route called the Short Binder-less Route (SBR). Laboratory- scale development led to the manufacture of commercial PWR fuel in a small pilot plant, and the construction of the full-scale dual-line Sellafield MOX Plant (SMP). SMP's first MOX assemblies are now under irradiation. SBR MOX is manufactured with 100% co-milled feedstock, leading to a microstructure dominated by a solid solution of (U,Pu)O{sub 2} at the nominal enrichment. A comprehensive fuel performance research programme has demonstrated the benign performance of SBR MOX up to 54 MWd/kgHM. In particular, the homogeneous microstructure is believed to be instrumental in the favourable fission gas retention and PCI resistance properties. (authors)

  2. Manufactured Homes Tool

    Energy Science and Technology Software Center

    2005-03-09

    The MH Tool software is designed to evaluate existing and new manufactured homes for structural adequacy in high winds. Users define design elements of a manufactured home and then select the hazard(s) for analysis. MH Tool then calculates and reports structural analysis results for the specified design and hazard Method of Solution: Design engineers input information (geometries, materials, etc.) describing the structure of a manufactured home, from which the software automatically creates a mathematical model.more » Windows, doors, and interior walls can be added to the initial design. HUD Code loads (wind, snow loads, interior live loads, etc.) are automatically applied. A finite element analysis is automatically performed using a third party solver to find forces and stresses throughout the structure. The designer may then employ components of strength (and cost) most appropriate for the loads that must be carried at each location, and then re-run the analysis for verification. If forces and stresses are still within tolerable limits (such as the HUD requirements), construction costs would be reduced without sacrificing quality.« less

  3. Fuel Oil Use in Manufacturing

    Energy Information Administration (EIA) (indexed site)

    logo Return to: Manufacturing Home Page Fuel Oil Facts Oil Price Effect Fuel Switching Actual Fuel Switching Storage Capacity Fuel Oil Use in Manufacturing Why Look at Fuel Oil?...

  4. Additive Manufacturing for Fuel Cells

    Energy.gov [DOE]

    Blake Marshall, AMO's lead for Additive Manufacturing Technologies, will provide an overview of current R&D activities in additive manufacturing and its application to fuel cell prototyping and...

  5. NREL: Energy Analysis - Manufacturing Analysis

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Recent Publications "Economic Measurements of Polysilicon for the Photovoltaic Industry: Market Competition and Manufacturing Competitiveness" IEEE Journal of Photovoltaics Supply Chain and Blade Manufacturing Considerations in the Global Wind Industry Economic Development Impact of 1,000 MW of Wind Energy in Texas Manufacturing Analysis With world-class manufacturing analysis capabilities, NREL analyzes clean energy industry trends; cost, price, and performance trends; market and

  6. ITP Nanomanufacturing: Nanomanufacturing Portfolio: Manufacturing...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Use of Nanomaterials, January 2011 ITP Nanomanufacturing: Nanomanufacturing Portfolio: Manufacturing Processes and Applications to Accelerate Commercial Use of Nanomaterials, ...

  7. Energy 101: Clean Energy Manufacturing

    SciTech Connect

    2015-07-09

    Most of us have a basic understanding of manufacturing. It's how we convert raw materials, components, and parts into finished goods that meet our essential needs and make our lives easier. But what about clean energy manufacturing? Clean energy and advanced manufacturing have the potential to rejuvenate the U.S. manufacturing industry and open pathways to increased American competitiveness. Watch this video to learn more about this exciting movement and to see some of these innovations in action.

  8. Electrolyzer Manufacturing Progress and Challenges

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    * Proton Commercialization Status: PEM Electrolysis * Current Manufacturing Limitations: ... service * Broad understanding of PEM Electrolysis systems and markets 4 Proton ...

  9. Energy 101: Clean Energy Manufacturing

    Energy.gov [DOE]

    Most of us have a basic understanding of manufacturing. It's how we convert raw materials, components, and parts into finished goods that meet our essential needs and make our lives easier. But what about clean energy manufacturing? Clean energy and advanced manufacturing have the potential to rejuvenate the U.S. manufacturing industry and open pathways to increased American competitiveness. Watch this video to learn more about this exciting movement and to see some of these innovations in action.

  10. Advanced Manufacturing Office Update, September 2014 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    September 2014 Advanced Manufacturing Office Update, September 2014 September 18, 2014 - 4:34pm Addthis In This Issue Featured Article Veterans Receive Valuable Advanced Manufacturing Training under AMO-Sponsored Internship Partners in the Spotlight Iowa Water and Wastewater Operators Seek SEP Certification in New Pilot Program Darigold Steps Up to the Better Plants Challenge Velocys Advances Small-Scale Gas-to-Liquid Technology with AMO Support HARBEC's $52,000 Annual Energy Savings under SEP

  11. Supporting Texas Manufacturing to Save Energy Now Program | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy State and Utility Engagement Activities » Supporting Texas Manufacturing to Save Energy Now Program Supporting Texas Manufacturing to Save Energy Now Program Texas The industrial sector in Texas is very energy intensive, with approximately 53% of all energy consumed in the state occurring in industrial plants. Therefore, Texas industrials have a great opportunity to reduce their energy intensity and related carbon emissions. In 2009, the U.S. Department of Energy's (DOE's) Advanced

  12. Smart Domestic Appliances Provide Flexibility for Sustainable...

    OpenEI (Open Energy Information) [EERE & EIA]

    URI: cleanenergysolutions.orgcontentsmart-domestic-appliances-provide-fle Language: English Policies: "Deployment Programs,Regulations" is not in the list of possible...

  13. Seeking New Approaches to Investigate Domestication Events |...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Seeking New Approaches to Investigate Domestication Events Monday, October 29, 2012 - 3:30am SSRL Bldg. 137, Rm. 322 Krish Seetah, Stanford University, Department of Anthropology...

  14. MECS 2006 - All Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    All Manufacturing MECS 2006 - All Manufacturing Manufacturing Energy and Carbon Footprint - Sector: All Manufacturing (NAICS 31-33) with Total Energy Input, October 2012 (MECS 2006) All available footprints and supporting documents Manufacturing Energy and Carbon Footprint All Manufacturing (NAICS 31-33) (120.28 KB) More Documents & Publications All Manufacturing (2010 MECS) MECS 2006 - Alumina and Aluminum MECS 2006 - Cement

  15. Out of Bounds Additive Manufacturing

    SciTech Connect

    Holshouser, Chris [Lockheed Martin Corporation; Newell, Clint [Lockheed Martin Corporation; Palas, Sid [Lockheed Martin Corporation; Love, Lonnie J [ORNL; Kunc, Vlastimil [ORNL; Lind, Randall F [ORNL; Lloyd, Peter D [ORNL; Rowe, John C [ORNL; Blue, Craig A [ORNL; Duty, Chad E [ORNL; Peter, William H [ORNL; Dehoff, Ryan R [ORNL

    2013-01-01

    Lockheed Martin and Oak Ridge National Laboratory are working on an additive manufacturing (AM) system capable of manufacturing components measured not in terms of inches or feet, but multiple yards in all dimensions with the potential to manufacture parts that are completely unbounded in size.

  16. Out of bounds additive manufacturing

    DOE PAGES [OSTI]

    Holshouser, Chris; Newell, Clint; Palas, Sid; Love, Lonnie J.; Kunc, Vlastimil; Lind, Randall F.; Lloyd, Peter D.; Rowe, John C.; Blue, Craig A.; Duty, Chad E.; et al

    2013-03-01

    Lockheed Martin and Oak Ridge National Laboratory are working on an additive manufacturing system capable of manufacturing components measured not in terms of inches or feet, but multiple yards in all dimensions with the potential to manufacture parts that are completely unbounded in size.

  17. 2014 Domestic Uranium Production Report

    Energy Information Administration (EIA) (indexed site)

    5. U.S. uranium in-situ-leach plants by owner, location, capacity, and operating status at end of the year, 2011-15" "In-Situ-Leach Plant Owner","In-Situ-Leach Plant Name","County, State (existing and planned locations)","Production Capacity (pounds U3O8 per year)","Operating Status at End of the Year" ,,,,2011,2012,2013,2014,2015 "AUC LLC","Reno Creek","Campbell,

  18. Domestic Uranium Production Report - Quarterly

    Gasoline and Diesel Fuel Update

    4. U.S. uranium in-situ-leach plants by owner, location, capacity, and operating status Operating status at the end of In-situ-leach plant owner In-situ-leach plant name County, state (existing and planned locations) Production capacity (pounds U3O8 per year) 2015 1st quarter 2016 2nd quarter 2016 AUC LLC Reno Creek Campbell, Wyoming 2,000,000 Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Azarga Uranium Corp Dewey Burdock Project Fall River

  19. Innovative Manufacturing Initiative Recognition Day, Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Publications Innovative Manufacturing Initiative Recognition Day Advanced Manufacturing Office Overview Unlocking the Potential of Additive Manufacturing in the Fuel Cells Industry

  20. Manufacturing Energy Consumption Survey (MECS) - Analysis & Projection...

    Energy Information Administration (EIA) (indexed site)

    Residential - RECS Transportation DOE Uses MECS Data Manufacturing Energy and Carbon Footprints Associated Analysis Manufacturing Energy Sankey Diagrams Manufacturing Energy Flows ...

  1. GE's Digital Marketplace to Revolutionize Manufacturing | GE...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Manufacturing Commons" - a global ecosystem for manufacturing businesses The Commons ... The project aims to build an expansive manufacturing ecosystem, with the goal of having ...

  2. Manufacturing Energy Consumption Survey (MECS) - Analysis & Projection...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    That increase in supply has in turn lowered the price of natural gas to manufacturers Manufacturing Energy Consumption Data Show Large Reductions in Both Manufacturing Energy Use ...

  3. Additive Manufacturing: Pursuing the Promise | Department of...

    Energy.gov [DOE] (indexed site)

    Fact sheet overviewing additive manufacturing techniques that are projected to exert a profound impact on manufacturing. Additive Manufacturing: Pursuing the Promise More Documents...

  4. FHP Manufacturing Company Geothermal | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    FHP Manufacturing Company Geothermal Jump to: navigation, search Name: FHP Manufacturing Company: Geothermal Place: Florida Sector: Geothermal energy Product: FHP Manufacturing...

  5. Teksun PV Manufacturing Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Teksun PV Manufacturing Inc Jump to: navigation, search Logo: Teksun PV Manufacturing Inc Name: Teksun PV Manufacturing Inc Address: 401 Congress Ave Place: Austin, Texas Zip:...

  6. Solar Manufacturing Technology | Department of Energy

    Office of Environmental Management (EM)

    Technology to Market Solar Manufacturing Technology Solar Manufacturing Technology The SunShot Solar Manufacturing Technology (SolarMat) program funds the development of ...

  7. WORKSHOP: SUSTAINABILITY IN MANUFACTURING AGENDA AND OVERVIEW...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    WORKSHOP: SUSTAINABILITY IN MANUFACTURING AGENDA AND OVERVIEW WORKSHOP: SUSTAINABILITY IN MANUFACTURING AGENDA AND OVERVIEW PDF icon Sustainable Manufacturing Workshop Agenda.pdf ...

  8. About the Clean Energy Manufacturing Initiative | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    About the Clean Energy Manufacturing Initiative About the Clean Energy Manufacturing Initiative The Clean Energy Manufacturing Initiative (CEMI) is a U.S. Department of Energy ...

  9. clean energy manufacturing | netl.doe.gov

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Clean Energy Manufacturing Initiative The Clean Energy Manufacturing Initiative is a strategic integration and commitment of manufacturing efforts across the DOE Office of Energy ...

  10. 2015 Domestic Uranium Production Report

    Energy Information Administration (EIA) (indexed site)

    9 2015 Domestic Uranium Production Report Release Date: May 5, 2016 Next Release Date: May 2017 Year Exploration Mining Milling Processing Reclamation Total 2003 W W W W 117 321 2004 18 108 W W 121 420 2005 79 149 142 154 124 648 2006 188 121 W W 155 755 2007 375 378 107 216 155 1,231 2008 457 558 W W 154 1,563 2009 175 441 W W 162 1,096 2010 211 400 W W 125 1,073 2011 208 462 W W 102 1,191 2012 161 462 W W 179 1,196 2013 149 392 W W 199 1,156 2014 86 246 W W 161 787 2015 58 251 W W 116 625

  11. 2015 Domestic Uranium Production Report

    Energy Information Administration (EIA) (indexed site)

    5 2015 Domestic Uranium Production Report Release Date: May 5, 2016 Next Release Date: May 2017 Production / Mining Method 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 (estimated contained thousand pounds U 3 O 8 ) W W W W W W W W W W W W W (estimated contained thousand pounds U 3 O 8 ) 0 0 0 0 0 0 0 0 0 0 0 0 0 (thousand pounds U 3 O 8 ) W W 2,681 4,259 W W W W W W W W W (thousand pounds U 3 O 8 ) W W W W W W W W W W W W W (thousand pounds U 3 O 8 ) E2,200 2,452 3,045 4,692

  12. Better Buildings, Better Plants:

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Buildings, Better Plants: AMO Technical Assistance Overview Andre de Fontaine This presentation does not contain any proprietary, confidential, or otherwise restricted information. 2 | Advanced Manufacturing Office Better Buildings, Better Plants Overview  Better Buildings, Better Plants is a national, voluntary industrial energy efficiency leadership initiative.  It is a key component of the President's Better Buildings Initiative, which seeks to improve the energy efficiency of

  13. Manufacturing High Temperature Systems

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Manufacturing and Scale Up Challenges Joseph Hartvigsen Ceramatec, Inc. National Renewable Energy Laboratory Golden, CO February 28, 2014 Antipode Assertions * Electric power generation is not the limitation - To misquote Jay Leno "Use all you want, we'll make more" - http://atomicinsights.com/2013/02/use-all-the-electricity-you-want-well-make-more.html * High electric costs come from working the demand curve from below rather than above * "Grid Storage" is a misleading

  14. Materials from 2014 SunShot Summit Breakout Session: Looking Ahead: PV Manufacturing in 10 Years

    Office of Energy Efficiency and Renewable Energy (EERE)

    This was a breakout session at the 2014 SunShot Grand Challenge Summit and Peer Review. The global PV manufacturing landscape has undergone significant changes in the past decade, from geographic and economic changes in the supply chain to a significant increase in PV module production by fewer manufacturers. The lessons learned over the last decade will guide the future of this growing industry. This session explored the future of PV manufacturing over the next 5 to 10 years, both domestic and abroad. Expert panelists provided their insights and perspectives across three thematic areas: a vision of PV manufacturing, including the level of integration and the factory of the future; value-adding attributes of PV products; and the geographic concentration of PV manufacturing.

  15. AMO Celebrates Manufacturing Day Across the Country

    Office of Energy Efficiency and Renewable Energy (EERE)

    On October 7, 2016, manufacturers across the country opened their doors and hosted events in honor of Manufacturing Day.  Manufacturing Day is a celebration of modern manufacturing meant to inspire...

  16. Smart Manufacturing Innovation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Smart Manufacturing Innovation Smart Manufacturing Innovation Addthis Find out how advanced technologies developed by our latest institute will make U.S. manufacturing more productive, energy efficient, and competitive. Learn more about advanced manufacturing

  17. Domestic Uranium Production Report - Quarterly

    Gasoline and Diesel Fuel Update

    2. Number of uranium mills and plants producing uranium concentrate in the United States Uranium concentrate processing facilities End of Mills - conventional milling 1 Mills - other operations 2 In-situ-leach plants 3 Byproduct recovery plants 4 Total 1996 0 2 5 2 9 1997 0 3 6 2 11 1998 0 2 6 1 9 1999 1 2 4 0 7 2000 1 2 3 0 6 2001 0 1 3 0 4 2002 0 1 2 0 3 2003 0 0 2 0 2 2004 0 0 3 0 3 2005 0 1 3 0 4 2006 0 1 5 0 6 2007 0 1 5 0 6 2008 1 0 6 0 7 2009 0 1 3 0 4 2010 1 0 4 0 5 2011 1 0 5 0 6 2012 1

  18. Oak Ridge Centers for Manufacturing Technology - The Manufacturing...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    The Manufacturing Skills Campus Another of the inputs came from Garry Whitley, President of the Atomic Trades and Labor Council, since retired. Garry and I have worked together...

  19. Oak Ridge Centers for Manufacturing Technology ? The Manufacturing...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    The Manufacturing Skills Campus Another of the inputs came from Garry Whitley, President of the Atomic Trades and Labor Council, since retired. Garry and I have worked together...

  20. Understanding Manufacturing Energy and Carbon Footprints, October...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Understanding Manufacturing Energy and Carbon Footprints, October 2012 Understanding Manufacturing Energy and Carbon Footprints, October 2012 understandingenergyfootprints2012.p...

  1. National Electrical Manufacturers Association Comment | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Comment National Electrical Manufacturers Association Comment The National Electrical Manufacturers Association (NEMA) appreciates the opportunity to provide the attached comments ...

  2. Nakagawa Electric Machinery Manufacturer | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    navigation, search Name: Nakagawa Electric Machinery Manufacturer Place: Saku, Nagano, Japan Product: A company engages in electrical equipment manufacture. Coordinates:...

  3. Clean Energy Manufacturing Initiative: Increasing American Competitive...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Manufacturing Initiative: Increasing American Competitiveness Through Innovation Clean ... Manufacturing Initiative (CEMI), a collaborative effort between the federal government, ...

  4. Clean Energy Manufacturing Initiative Midwest Regional Summit...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Breakout Session Summary (372.05 KB) More Documents & Publications Fiber Reinforced Polymer Composite Manufacturing Workshop Multimaterial Joining Workshop Manufacturing ...

  5. Semiconductor Manufacturing International Corp SMIC | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Manufacturing International Corp SMIC Jump to: navigation, search Name: Semiconductor Manufacturing International Corp (SMIC) Place: Shanghai, Shanghai Municipality, China Zip:...

  6. Advanced Manufacturing Office (Formerly Industrial Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Manufacturing Office (Formerly Industrial Technologies Program) Advanced Manufacturing Office (Formerly Industrial Technologies Program) Presented at the NREL Hydrogen and Fuel ...

  7. Institute for Advanced Composites Manufacturing Innovation Holds...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Institute for Advanced Composites Manufacturing Innovation Holds Second Membership Meeting Institute for Advanced Composites Manufacturing Innovation Holds Second Membership Meeting ...

  8. Manufacturing Demonstration Facilities Workshop Agenda, March...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Manufacturing Demonstration Facilities Workshop Marriott Springhill Suites O'Hare - ... mechanics of the Manufacturing Demonstration Facility (MDF) concept and the ...

  9. Clean Energy Manufacturing Innovation Institute for Composites...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Clean Energy Manufacturing Innovation Institute for Composites Materials and Structures Clean Energy Manufacturing Innovation Institute for Composites Materials and Structures ...

  10. clean energy manufacturing | netl.doe.gov

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Clean Energy Manufacturing Initiative The Clean Energy Manufacturing Initiative is a strategic integration and commitment of manufacturing efforts across the DOE Office of Energy Efficiency & Renewable Energy's (EERE's) clean energy technology offices and Advanced Manufacturing Office, focusing on American competitiveness in clean energy manufacturing. Clean Energy Manufacturing Initiative: http://www1.eere.energy.gov/energymanufacturing

  11. Manufacturing consumption of energy 1994

    SciTech Connect

    1997-12-01

    This report provides estimates on energy consumption in the manufacturing sector of the U.S. economy based on data from the Manufacturing Energy Consumption Survey. The sample used in this report represented about 250,000 of the largest manufacturing establishments which account for approximately 98 percent of U.S. economic output from manufacturing, and an expected similar proportion of manufacturing energy use. The amount of energy use was collected for all operations of each establishment surveyed. Highlights of the report include profiles for the four major energy-consuming industries (petroleum refining, chemical, paper, and primary metal industries), and an analysis of the effects of changes in the natural gas and electricity markets on the manufacturing sector. Seven appendices are included to provide detailed background information. 10 figs., 51 tabs.

  12. 2015 Domestic Uranium Production Report

    Energy Information Administration (EIA) (indexed site)

    11 2015 Domestic Uranium Production Report Release Date: May 5, 2016 Next Release Date: May 2017 Total Land and Other 2003 W W 31.3 NA NA NA W 2004 10.6 27.8 48.4 NA NA NA 86.9 2005 18.1 58.2 59.7 NA NA NA 136.0 2006 40.1 65.9 115.2 41.0 23.3 50.9 221.2 2007 67.5 90.4 178.2 77.7 50.3 50.2 336.2 2008 81.9 221.2 164.4 65.2 50.2 49.1 467.6 2009 35.4 141.0 104.0 17.3 24.2 62.4 280.5 2010 44.6 133.3 99.5 20.2 34.5 44.7 277.3 2011 53.6 168.8 96.8 19.6 43.5 33.7 319.2 2012 66.6 186.9 99.4 16.8 33.3

  13. Manufacturing consumption of energy 1991

    SciTech Connect

    Not Available

    1994-12-01

    This report provides estimates on energy consumption in the manufacturing sector of the US economy. These estimates are based on data from the 1991 Manufacturing Energy Consumption Survey (MECS). This survey--administered by the Energy End Use and Integrated Statistics Division, Office of Energy Markets and End Use, Energy Information Administration (EIA)--is the most comprehensive source of national-level data on energy-related information for the manufacturing industries.

  14. Revolutionizing Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Revolutionizing Manufacturing Revolutionizing Manufacturing Addthis Saving Energy and Resources 1 of 4 Saving Energy and Resources Thanks to additive manufacturing technology, Oak Ridge National Laboratory was able to fabricate a robotic hand with less energy use and material waste. The novel, lightweight, low-cost fluid powered hand was selected for a 2012 R&D 100 award. | Photo courtesy of Oak Ridge National Laboratory. Partnering with Industry 2 of 4 Partnering with Industry The Energy

  15. Transformational Manufacturing | Argonne National Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Transformational Manufacturing Argonne's new Advanced Battery Materials Synthesis and Manufacturing R&D Program focuses on scalable process R&D to produce advanced battery materials in sufficient quantity for industrial testing. The U.S. manufacturing industry consumes more than 30 quadrillion Btu of energy per year, directly employs about 12 million people and generates another 7 million jobs in related businesses. Argonne is working with industry to develop innovative and

  16. The Clean Energy Manufacturing Initiative

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Clean Energy Manufacturing Initiative (CEMI) is a U.S. Department of Energy (DOE)- wide commitment to innovation and breaking down market barriers in order to enhance U.S. manufacturing competitiveness while advancing the nation's energy goals. As part of its mission, CEMI builds partnerships around strategic priorities to increase U.S. clean energy manufacturing competitiveness. This requires an "all-hands-on-deck" approach that involves the nation's private and public sectors,

  17. Manufacturing Spotlight: Boosting American Competitiveness

    Energy.gov [DOE]

    Find out how the Energy Department is helping bring new clean energy technologies to the marketplace and make manufacturing processes more energy efficient.

  18. Manufacturing Consumption of Energy 1994

    Energy Information Administration (EIA) (indexed site)

    the CM, the ASM contains two components. The first component is the mail portion, a probability sample of manufacturing establishments selected from the list of establishments...

  19. The Clean Energy Manufacturing Initiative

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    by ensuring critical feedback from the production phase to invention and discovery. Additive manufacturing is just one of several technologies advanced by the Energy...

  20. Manufacturing Consumption of Energy 1994

    Energy Information Administration (EIA) (indexed site)

    Natural Gas to Residual Fuel Oil, by Industry Group and Selected Industries, 1994 369 Energy Information AdministrationManufacturing Consumption of Energy 1994 SIC Residual...

  1. Solar Thermal Collector Manufacturing Activities

    Annual Energy Outlook

    4 Average thermal performance rating of solar thermal collectors by type shipped in 2009 ... Administration, Form EIA-63A, "Annual Solar Thermal Collector Manufacturers Survey." ...

  2. Solar Thermal Collector Manufacturing Activities

    Annual Energy Outlook

    5 Shipments of complete solar thermal collector systems, 2008 and 2009 Shipment ... Administration, Form EIA-63A, "Annual Solar Thermal Collector Manufacturers Survey."

  3. Geothermal Heat Pump Manufacturing Activities

    Annual Energy Outlook

    8 Geothermal heat pump shipments by origin, 2008 and 2009 (rated capacity in tons) Origin ... Administration (EIA), Form EIA-902, "Annual Geothermal Heat Pump Manufacturers Survey

  4. Geothermal Heat Pump Manufacturing Activities

    Annual Energy Outlook

    Geothermal heat pump shipments by model type, 2000 - 2009 (number of units) ARI-320 ... Administration (EIA), Form EIA-902, "Annual Geothermal Heat Pump Manufacturers Survey."

  5. Geothermal Heat Pump Manufacturing Activities

    Gasoline and Diesel Fuel Update

    Rated capacity of geothermal heat pump shipments by model type, 2000 - 2009 (tons) ARI-320 ... Administration (EIA), Form EIA-902, "Annual Geothermal Heat Pump Manufacturers Survey."

  6. Manufacturing Consumption of Energy 1994

    Energy Information Administration (EIA) (indexed site)

    Detailed Tables 28 Energy Information AdministrationManufacturing Consumption of Energy 1994 1. In previous MECS, the term "primary energy" was used to denote the "first use" of...

  7. Manufacturing Consumption of Energy 1994

    Energy Information Administration (EIA) (indexed site)

    energy data used in this report do not reflect adjustments for losses in electricity generation or transmission. 1 The manufacturing sector is composed of establishments classified...

  8. Energy-Efficient Manufactured Homes

    Energy.gov [DOE]

    Like site-built homes, new manufactured homes (formerly known as mobile homes) can be designed for energy efficiency and renewable energy.

  9. Advanced Manufacturing | Department of Energy

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    The U.S. Department of Energy funds the research, development, and demonstration of highly ... that enable the development and demonstration of advanced manufacturing ...

  10. Manufacturing Fuel Cell Manhattan Project

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Manufacturing Fuel Cell Manhattan Project Presented by the Benchmarking and Best Practices ... in providing valued information on affordable and implementable fuel cell technology. ...

  11. Manufacturing Innovation in the DOE

    Energy.gov [DOE] (indexed site)

    Products Swung to historic deficit, lost 13 of workforce Data Source: http:www.census.govforeign-tradePress-Releaseft900index.html Advanced Manufacturing Office (AMO) ...

  12. Table 22. Domestic Crude Oil First Purchase Prices for Selected...

    Energy Information Administration (EIA) (indexed site)

    Form EIA-182, "Domestic Crude Oil First Purchase Report." 22. Domestic Crude Oil First Purchase Prices for Selected Crude Streams 44 Energy Information Administration ...

  13. Opportunities and Domestic Barriers to Clean Energy Investment...

    OpenEI (Open Energy Information) [EERE & EIA]

    and Domestic Barriers to Clean Energy Investment in Chile Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Opportunities and Domestic Barriers to Clean Energy Investment...

  14. 2nd Quarter 2016 Domestic Uranium Production Report

    Energy Information Administration (EIA) (indexed site)

    Administration: Form EIA-851A and Form EIA-851Q, ""Domestic Uranium Production Report.""" " U.S. Energy Information Administration Domestic Uranium Production Report 2nd Quarter

  15. 2nd Quarter 2016 Domestic Uranium Production Report

    Energy Information Administration (EIA) (indexed site)

    EIA-851Q, ""Domestic Uranium Production Report.""" "Source: U.S. Energy Information Administration: Form EIA-851A and Form EIA-851Q, ""Domestic Uranium Production Report.""" " ...

  16. Model Simulating Real Domestic Hot Water Use - Building America...

    Energy Saver

    Model Simulating Real Domestic Hot Water Use - Building America Top Innovation Model Simulating Real Domestic Hot Water Use - Building America Top Innovation Image of a pipe ...

  17. Advanced Manufacturing Office Update, March 2015 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    March 2015 Advanced Manufacturing Office Update, March 2015 March 30, 2015 - 3:13pm Addthis In This Issue Featured Articles Better Plants Welcomes New Partners from Diverse Sectors Better Plants Challenge Partners Share Energy-Saving Solutions Harbec Receives 2014 Environmental Excellence Award from New York State AMO and Industry News Heat Exchange Materials Research Advances Accomplishments Highlighted at Critical Materials Institute Annual Peer Review Benefits of Combined Heat and Power

  18. Overview of enrichment plant safeguards

    SciTech Connect

    Swindle, D.W. Jr.; Wheeler, L.E.

    1982-01-01

    The relationship of enrichment plant safeguards to US nonproliferation objectives and to the operation and management of enrichment facilities is reviewed. During the review, the major components of both domestic and international safeguards systems for enrichment plants are discussed. In discussing domestic safeguards systems, examples of the technology currently in use to support nuclear materials accountability are described including the measurement methods, procedures and equipment used for weighing, sampling, chemical and isotopic analyses and nondestructive assay techniques. Also discussed is how the information obtained as part of the nuclear material accountancy task is useful to enrichment plant operations. International material accountancy verification and containment/surveillance concepts for enrichment plants are discussed, and the technologies presently being developed for international safeguards in enrichment plants are identified and the current development status is reported.

  19. Domestic Uranium Production Report - Quarterly - Energy Information...

    Energy Information Administration (EIA) (indexed site)

    All Nuclear Reports Domestic Uranium Production Report - Quarterly Data for 2nd Quarter ... was produced at seven U.S. uranium facilities, one more than in the first quarter ...

  20. Manufacturing Cost Levelization Model – A User’s Guide

    SciTech Connect

    Morrow, William R.; Shehabi, Arman; Smith, Sarah Josephine

    2015-08-01

    The Manufacturing Cost Levelization Model is a cost-performance techno-economic model that estimates total large-scale manufacturing costs for necessary to produce a given product. It is designed to provide production cost estimates for technology researchers to help guide technology research and development towards an eventual cost-effective product. The model presented in this user’s guide is generic and can be tailored to the manufacturing of any product, including the generation of electricity (as a product). This flexibility, however, requires the user to develop the processes and process efficiencies that represents a full-scale manufacturing facility. The generic model is comprised of several modules that estimate variable costs (material, labor, and operating), fixed costs (capital & maintenance), financing structures (debt and equity financing), and tax implications (taxable income after equipment and building depreciation, debt interest payments, and expenses) of a notional manufacturing plant. A cash-flow method is used to estimate a selling price necessary for the manufacturing plant to recover its total cost of production. A levelized unit sales price ($ per unit of product) is determined by dividing the net-present value of the manufacturing plant’s expenses ($) by the net present value of its product output. A user defined production schedule drives the cash-flow method that determines the levelized unit price. In addition, an analyst can increase the levelized unit price to include a gross profit margin to estimate a product sales price. This model allows an analyst to understand the effect that any input variables could have on the cost of manufacturing a product. In addition, the tool is able to perform sensitivity analysis, which can be used to identify the key variables and assumptions that have the greatest influence on the levelized costs. This component is intended to help technology researchers focus their research attention on tasks

  1. Energy Department Supports Manufacturing Day

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Energy Department’s Office of Energy Efficiency and Renewable Energy (EERE) is supporting Manufacturing Day—a nationwide event that opens the doors of nearly 2000 manufacturing companies to the public—with visits to sites in the Midwest.

  2. Solar Manufacturing Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Solar Manufacturing Projects Solar Manufacturing Projects Solar Manufacturing Projects Solar Manufacturing Projects Solar Manufacturing Projects Solar Manufacturing Projects SOLAR MANUFACTURING 1 PROJECT in 1 LOCATION 1,000 MW GENERATION CAPACITY 1,927,000 MWh PROJECTED ANNUAL GENERATION * 1,100,000 METRIC TONS OF CO2 EMISSIONS PREVENTED ANNUALLY ALL FIGURES AS OF MARCH 2015 * Calculated using the project's and NREL Technology specific capacity factors. For cases in which NREL's capacity factors

  3. Advanced Manufacturing Office (Formerly Industrial Technologies Program) |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Manufacturing Office (Formerly Industrial Technologies Program) Advanced Manufacturing Office (Formerly Industrial Technologies Program) Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop in Washington, DC, August 11-12, 2011. DOE's Advanced Manufacturing Office (85.03 KB) More Documents & Publications Innovative Manufacturing Initiative Recognition Day Manufacturing Demonstration Facilities Workshop Agenda, March 2012 Advanced Manufacturing

  4. All Manufacturing (2010 MECS) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    All Manufacturing (2010 MECS) All Manufacturing (2010 MECS) Manufacturing Energy and Carbon Footprint for All Manufacturing Sector (NAICS 31-33) Energy use data source: 2010 EIA MECS (with adjustments) Footprint Last Revised: June 2015 View footprints for other sectors here. Manufacturing Energy and Carbon Footprint All Manufacturing (111.63 KB) More Documents & Publications Cement (2010 MECS) Chemicals (2010 MECS) Computers, Electronics and Electrical Equipment (2010 MECS) Manufacturing

  5. Energy-Related Carbon Dioxide Emissions in U.S. Manufacturing

    Reports and Publications

    2006-01-01

    Based on the Manufacturing Energy Consumption Survey (MECS) conducted by the U.S. Department of Energy, Energy Information Administration (EIA), this paper presents historical energy-related carbon dioxide emission estimates for energy-intensive sub-sectors and 23 industries. Estimates are based on surveys of more than 15,000 manufacturing plants in 1991, 1994, 1998, and 2002. EIA is currently developing its collection of manufacturing data for 2006.

  6. Better Plants Program Partners | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Better Plants Program Partners Better Plants Program Partners Regional distribution of Better Plants partner facilities. Regional distribution of Better Plants partner facilities. Better Plants Logo.jpg DOE recognizes the following companies for their commitment to reducing the energy intensity of their U.S. manufacturing operations by 25% or more within 10 years. These Better Plants Program Partners set ambitious goals, establish energy management plans, and report progress annually to DOE.

  7. Compressed Air System Enhancement Increase Efficiency and Provides Energy Savings at a Circuit Board Manufacturer

    SciTech Connect

    2001-06-01

    This case study is one in a series on industrial firms who are implementing energy efficient technologies and system improvements into their manufacturing processes. This case study documents the activities, savings, and lessons learned on the circuit board manufacturer (Sanmina Plant) project.

  8. Economic analysis for controlling water pollution in the paint manufacturing industry

    SciTech Connect

    Not Available

    1981-01-01

    The document is the result of a study of the paint manufacturing industry. It will serve as guidance for State and local authorities in controlling the discharge of pollutants by plants within the paint manufacturing industry as the Agency has exempted the industry from regulation under Paragraph 8(a) (iv) of the Settlement Agreement.

  9. Secure Fuels from Domestic Resources- Oil Shale and Tar Sands

    Office of Energy Efficiency and Renewable Energy (EERE)

    Profiles of Companies Engaged in Domestic Oil Shale and Tar Sands Resource and Technology Development

  10. Clean Energy Manufacturing Initiative | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Clean Energy Manufacturing Initiative Clean Energy Manufacturing Initiative Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity Video Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity Video Industrial efficiency and low-cost energy resources are key components to increasing U.S. energy productivity and makes the U.S. manufacturing sector more competitive. Companies find a competitive advantage in implementing efficiency

  11. Advanced Technology Vehicles Manufacturing Incentive Program | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Technology Vehicles Manufacturing Incentive Program Advanced Technology Vehicles Manufacturing Incentive Program A fact sheet detailling the advanced technology vehicles manufacturing incentive program. Advanced Technology Vehicles Manufacturing Incentive Program (1.49 MB) More Documents & Publications Advanced Technology Vehicles Manufacturing Incentive Program MEMA: Comments MEMA: Letter

  12. Manufacturers' View on Benchmarking and Disclosure

    Gasoline and Diesel Fuel Update

    Association of Electrical and Medical Imaging Equipment Manufacturers Manufacturing Solutions for Energy Efficiency in Buildings Patrick Hughes Policy Director, High Performance Buildings National Electrical Manufacturers Association The Association of Electrical and Medical Imaging Equipment Manufacturers What is NEMA? The Association of Electrical Equipment and Medical Imaging Manufacturers Which policies encourage energy efficiency in buildings? Energy Savings Performance Contracts Tax

  13. Laser Manufacturing | GE Global Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Laser Manufacturing at GE Global Research Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Laser Manufacturing at GE Global Research Learn how laser sintering, an additive laser manufacturing process practiced at GE Global Research, makes parts from metal powder. You Might Also Like Munich_interior_V 10 Years ON: From

  14. Better Buildings, Better Plants: Volvo Boosting Energy Efficiency at Truck

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Manufacturing Facility | Department of Energy Better Buildings, Better Plants: Volvo Boosting Energy Efficiency at Truck Manufacturing Facility Better Buildings, Better Plants: Volvo Boosting Energy Efficiency at Truck Manufacturing Facility April 10, 2014 - 5:30pm Addthis Thumbs up for Energy Efficiency 1 of 4 Thumbs up for Energy Efficiency Deputy Assistant Secretary for Energy Efficiency Kathleen Hogan (center) visits the Volvo Trucks New River Valley (NRV) plant in Dublin, Virginia last

  15. A Not-So-Cheesy Approach to Clean Energy Manufacturing | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy A Not-So-Cheesy Approach to Clean Energy Manufacturing A Not-So-Cheesy Approach to Clean Energy Manufacturing May 30, 2012 - 6:24pm Addthis Betin Incorporated's generator converts gas from the plant's anaerobic digester into electricity. | Courtesy of Montchevré. Betin Incorporated's generator converts gas from the plant's anaerobic digester into electricity. | Courtesy of Montchevré. Kristin Swineford Communication Specialist, Weatherization and Intergovernmental Programs What

  16. SEP Success Story: A Not-So-Cheesy Approach to Clean Energy Manufacturing |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy A Not-So-Cheesy Approach to Clean Energy Manufacturing SEP Success Story: A Not-So-Cheesy Approach to Clean Energy Manufacturing May 30, 2012 - 5:17pm Addthis Betin Incorporated's generator converts gas from the plant's anaerobic digester into electricity. | Courtesy of Montchevré. Betin Incorporated's generator converts gas from the plant's anaerobic digester into electricity. | Courtesy of Montchevré. With investments from the Recovery Act, Betin Incorporated (the

  17. EERE Success Story-Nationwide: EERE Program Leads to U.S. Manufacturers

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Saving $1 Billion | Department of Energy EERE Program Leads to U.S. Manufacturers Saving $1 Billion EERE Success Story-Nationwide: EERE Program Leads to U.S. Manufacturers Saving $1 Billion November 18, 2013 - 12:00am Addthis The Better Buildings, Better Plants Program (Better Plants) is a national partnership initiative that challenges industry to set and meet ambitious energy-saving targets. Through Better Plants, more than 1,750 plants across the United States have saved about $1 billion

  18. The President's Manufacturing Initiative | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Presentation prepared by Dale Hall for the Roadmap Workshop on Manufacturing R&D for the ... Manufacturing National Program Office Roadmap on Manufacturing R&D for the Hydrogen ...

  19. CFL Manufacturers: ENERGY STAR Letters

    Energy.gov [DOE]

    DOE issued letters to 25 manufacturers of compact fluorescent lamps (CFLs) involving various models after PEARL Cycle 9 testing indicated that the models do not meet the ENERGY STAR specification and, therefore, are disqualified from the ENERGY STAR Program.

  20. PEM Stack Manufacturing: Industry Status

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    © 2009 BALLARD POWER SYSTEMS INC. ALL RIGHTS RESERVED JULY 2009 B U I L D I N G A C L E A N E N E R G Y G R O W T H C O M P A N Y B A L L A R D P O W E R S Y S T E M S PEM Stack Manufacturing: Industry Status Duarte R. Sousa, PE August 11, 2011 AUGUST 2009 P A G E 2 Overview of PEM Stack Manufacturing MEA Manufacturing Plate Manufacturing Stack Assembly Stack Conditioning and Testing Package and Ship For each of the four main processes, the following will be provided: 1. A brief history of

  1. 2014 Manufacturing Energy Consumption Survey

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    U S C E N S U S B U R E A U 2014 Manufacturing Energy Consumption Survey Sponsored by the Energy Information Administration U.S. Department of Energy Administered and Compiled by ...

  2. Alternative Energy Manufacturing Tax Credit

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Alternative Energy Manufacturing Tax Credit is a nonrefundable tax credit for up to 100% of new state tax revenues (including state, corporate, sales, and withholding taxes) over the life of a...

  3. Solar Thermal Collector Manufacturing Activities

    Annual Energy Outlook

    U.S. Total 74 88 Percent of Total Sales Revenue Number of Companies Source: U.S. Energy Information Administration, Form EIA-63A, "Annual Solar Thermal Collector Manufacturers ...

  4. Manufacturing means jobs ? Mike Arms

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Manufacturing Means Jobs - Mike Arms Mike Arms and I usually meet and say hello at the East Tennessee Economic Council meetings each Friday morning at 7:30 a.m. This unique meeting...

  5. Manufacturing Consumption of Energy 1994

    Energy Information Administration (EIA) (indexed site)

    2(94) Distribution Category UC-950 Manufacturing Consumption of Energy 1994 December 1997 Energy Information Administration Office of Energy Markets and End Use U.S. Department of...

  6. Energy Department's Texas Pantex Plant to Save Over $2 Million...

    Office of Environmental Management (EM)

    For more information about the Pantex Plant, please see: http:www.pantex.com. Addthis Related Articles DOE Distributes Energy-Saving Tools to Help Manufacturers Save Energy ...

  7. Tennessee: U.S. Automaker Improves Plant's Performance, Saves...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    A central element of SEP is to implement the global energy management standard, ISO 50001, ... manufacturing plant-implementing the ISO 50001 energy management system (EnMS) ...

  8. Energy At Work: Plant Expansion Creates Job Opportunities in...

    Energy.gov [DOE] (indexed site)

    DuPont's newly expanded solar manufacturing plant in Circleville, Ohio, produces thin film materials to strengthen the durability of solar panels. To support the expansion project, ...

  9. Secretary Chu Visits Advanced Battery Plant in Michigan, Announces...

    Office of Environmental Management (EM)

    What are the key facts? Thirty new manufacturing plants across the country for electric vehicle batteries and components - including A123 in Michigan - were supported through the ...

  10. Manufacturing R&D

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    D The Manufacturing R&D sub-program in the Fuel Cell Technologies Office (FCTO) improves processes and reduces the cost of manufacturing components and systems for hydrogen production and delivery, hydrogen storage, and fuel cells for transportation, stationary, and portable applications. Scaling up production of today's hydrogen and fuel cell components and systems (currently built using laboratory-scale fabrication technologies) to high- volume commercially-viable products is challenging.

  11. Phytozome Comparative Plant Genomics Portal

    SciTech Connect

    Goodstein, David; Batra, Sajeev; Carlson, Joseph; Hayes, Richard; Phillips, Jeremy; Shu, Shengqiang; Schmutz, Jeremy; Rokhsar, Daniel

    2014-09-09

    The Dept. of Energy Joint Genome Institute is a genomics user facility supporting DOE mission science in the areas of Bioenergy, Carbon Cycling, and Biogeochemistry. The Plant Program at the JGI applies genomic, analytical, computational and informatics platforms and methods to: 1. Understand and accelerate the improvement (domestication) of bioenergy crops 2. Characterize and moderate plant response to climate change 3. Use comparative genomics to identify constrained elements and infer gene function 4. Build high quality genomic resource platforms of JGI Plant Flagship genomes for functional and experimental work 5. Expand functional genomic resources for Plant Flagship genomes

  12. Advanced Qualification of Additive Manufacturing Workshop

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Additive Manufacturing Workshop Poster Abstract Submission - deadline July 10, 2015 Advanced Qualification of Additive Manufacturing Materials using in situ sensors, diagnostics...

  13. Third Annual American Energy and Manufacturing Competitiveness...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    and included showpieces highlighting advanced composites manufacturing and large scale additive manufacturing. Image: Photo courtesy of Attlee Photography View All Galleries

  14. 2010 Manufacturing Energy and Carbon Footprints: Definitions...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Manufacturing Energy and Carbon Footprints: Definitions and Assumptions This 13-page document defines key terms and details assumptions and references used in the Manufacturing ...

  15. ITP Nanomanufacturing: Manufacturing of Surfaces with Nanoscale...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Manufacturing of Surfaces with Nanoscale and Microscale Features ITP Nanomanufacturing: Manufacturing of Surfaces with Nanoscale and Microscale Features superhydrophobicsurfaces.p...

  16. Energy Intensity Indicators: Manufacturing Energy Intensity

    Energy.gov [DOE]

    The manufacturing sector comprises 18 industry sectors, generally defined at the three-digit level of the North American Industrial Classification System (NAICS). The manufacturing energy data...

  17. Electric Drive Component Manufacturing Facilities | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Component Manufacturing Facilities Electric Drive Component Manufacturing Facilities 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review ...

  18. Electric Drive Component Manufacturing Facilities | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Component Manufacturing Facilities Electric Drive Component Manufacturing Facilities 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review ...

  19. Miraial formerly Kakizaki Manufacturing | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    to: navigation, search Name: Miraial (formerly Kakizaki Manufacturing) Place: Tokyo, Japan Zip: 171-0021 Product: Manufacturer of wafer handling products and other components...

  20. Testing, Manufacturing, and Component Development Projects |...

    Office of Environmental Management (EM)

    Testing, Manufacturing, and Component Development Projects This report covers the Wind and Water Power Technologies Office's testing, manufacturing, and component development ...

  1. Energy Department Invests in Innovative Manufacturing Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    in Innovative Manufacturing Technologies Energy Department Invests in Innovative Manufacturing Technologies June 13, 2012 - 12:00am Addthis The Energy Department announced on June...

  2. Foreword: Additive Manufacturing: Interrelationships of Fabrication...

    Office of Scientific and Technical Information (OSTI)

    Moreover, a variety of fields such as aerospace, military, automotive, and biomedical are employing this manufacturing technique as a way to decrease costs, increase manufacturing ...

  3. Wind Energy & Manufacturing | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Energy & Manufacturing Jump to: navigation, search Blades manufactured at Gamesa's factory in Ebensburg, Pennsylvania, will be delivered to wind farms across the United...

  4. Manufacturing Consumption of Energy 1991--Combined Consumption...

    Energy Information Administration (EIA) (indexed site)

    call 202-586-8800 for help. Return to Energy Information Administration Home Page. Home > Energy Users > Manufacturing > Consumption and Fuel Switching Manufacturing Consumption of...

  5. American Wind Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    American Wind Manufacturing Addthis 1 of 9 Nordex USA -- a global manufacturer of wind turbines -- delivered and installed turbine components for the Power County Wind...

  6. FY 2008 Honeywell Federal Manufacturing & Technologies, LLC,...

    National Nuclear Security Administration (NNSA)

    FY 2008 Honeywell Federal Manufacturing & Technologies, LLC, PER Summary SUMMARY OF FY 2008 HONEYWELL FEDERAL MANUFACTURING & TECHNOLOGIES, LLC, AWARD FEE DETERMINATION Total ...

  7. FY 2010 Honeywell Federal Manufacturing & Technologies, LLC,...

    National Nuclear Security Administration (NNSA)

    FY 2010 Honeywell Federal Manufacturing & Technologies, LLC, PER Summary SUMMARY OF FY 2010 HONEYWELL FEDERAL MANUFACTURING & TECHNOLOGIES, LLC, AWARD FEE DETERMINATION Total ...

  8. FY 2009 Honeywell Federal Manufacturing & Technologies, LLC,...

    National Nuclear Security Administration (NNSA)

    FY 2009 Honeywell Federal Manufacturing & Technologies, LLC, PER Summary SUMMARY OF FY 2009 HONEYWELL FEDERAL MANUFACTURING & TECHNOLOGIES, LLC, AWARD FEE DETERMINATION Total ...

  9. FY 2006 Honeywell Federal Manufacturing & Technologies, LLC,...

    National Nuclear Security Administration (NNSA)

    FY 2006 Honeywell Federal Manufacturing & Technologies, LLC, PER Summary SUMMARY OF FY 2006 HONEYWELL FEDERAL MANUFACTURING & TECHNOLOGIES, LLC, AWARD FEE DETERMINATION Total ...

  10. FY 2007 Honeywell Federal Manufacturing & Technologies, LLC,...

    National Nuclear Security Administration (NNSA)

    FY 2007 Honeywell Federal Manufacturing & Technologies, LLC, PER Summary SUMMARY OF FY 2007 HONEYWELL FEDERAL MANUFACTURING & TECHNOLOGIES, LLC, AWARD FEE DETERMINATION Total ...

  11. FY 2011 Honeywell Federal Manufacturing & Technologies, LLC,...

    National Nuclear Security Administration (NNSA)

    FY 2011 Honeywell Federal Manufacturing & Technologies, LLC, PER Summary SUMMARY OF FY 2011 HONEYWELL FEDERAL MANUFACTURING & TECHNOLOGIES, LLC, AWARD FEE DETERMINATION Total ...

  12. Oak Ridge Centers for Manufacturing Technology - Partnership...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Impact on the Semiconductor Industry, part 2 The Oak Ridge Centers for Manufacturing Technology in partnership with SEMATECH (Semiconductor Manufacturing TECHnology) had...

  13. Advanced Battery Manufacturing Facilities and Equipment Program...

    Energy.gov [DOE] (indexed site)

    More Documents & Publications Advanced Battery Manufacturing Facilities and Equipment Program Advanced Battery Manufacturing Facilities and Equipment Program Fact Sheet: Grid-Scale ...

  14. Advanced Battery Manufacturing Facilities and Equipment Program...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    D.C. PDF icon esarravt002flicker2010p.pdf More Documents & Publications Advanced Battery Manufacturing Facilities and Equipment Program Advanced Battery Manufacturing...

  15. Advanced Technology Vehicles Manufacturing Loan Program | Department...

    Office of Environmental Management (EM)

    Technology Vehicles Manufacturing Loan Program Advanced Technology Vehicles Manufacturing Loan Program ATVM-Program-Application-Overview.pdf More Documents & Publications ATVM...

  16. Clean Energy Manufacturing Initiative Southeast Regional Summit...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Clean Energy Manufacturing Initiative Southeast Regional Summit Clean Energy Manufacturing Initiative Southeast Regional Summit July 9, 2015 8:30AM to 6:00PM EDT Renaissance...

  17. Industrial Activities at DOE: Efficiency, Manufacturing, Process...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Industrial Activities at DOE: Efficiency, Manufacturing, Process, and Materials R&D Industrial Activities at DOE: Efficiency, Manufacturing, Process, and Materials R&D Overview of ...

  18. Processing and Manufacturing Equipment | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Processing and Manufacturing Equipment Jump to: navigation, search TODO: Add description List of Processing and Manufacturing Equipment Incentives Retrieved from "http:...

  19. Technologies Enabling Agile Manufacturing (TEAM) ? an ORCMT...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Technologies Enabling Agile Manufacturing (TEAM) - An ORCMT success story Technologies Enabling Agile Manufacturing (TEAM) was one of the larger programs to come from the...

  20. Bio Solutions Manufacturing Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Solutions Manufacturing Inc Jump to: navigation, search Name: Bio Solutions Manufacturing Inc Place: Las Vegas, Nevada Zip: 89103 Product: Waste-to-energy bioremediation developer....

  1. DOE - Office of Legacy Management -- Manufacturing Laboratories...

    Office of Legacy Management (LM)

    Manufacturing Laboratories Inc - MA 0-04 FUSRAP Considered Sites Site: MANUFACTURING LABORATORIES, INC. (MA.0-04 ) Eliminated from further consideration under FUSRAP Designated...

  2. Chung Hsin Electric Machinery Manufacturing Corporation CHEM...

    OpenEI (Open Energy Information) [EERE & EIA]

    Chung Hsin Electric Machinery Manufacturing Corporation CHEM Jump to: navigation, search Name: Chung Hsin Electric & Machinery Manufacturing Corporation (CHEM) Place: Taoyuan...

  3. Leitner Shriram Manufacturing Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Manufacturing Ltd Jump to: navigation, search Name: Leitner Shriram Manufacturing Ltd Place: Chennai, Tamil Nadu, India Zip: 600095 Sector: Wind energy Product: Chennai-based JV...

  4. Advanced Qualification of Additive Manufacturing Materials Workshop

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Advanced Qualification of Additive Manufacturing Materials Workshop Advanced Qualification of Additive Manufacturing Materials Workshop WHEN: Jul 20, 2015 8:30 AM - Jul 21, 2015...

  5. Aurora Photovoltaics Manufacturing | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Photovoltaics Manufacturing Jump to: navigation, search Name: Aurora Photovoltaics Manufacturing Place: Lawrenceville, New Jersey Zip: 8648 Sector: Solar Product: A subsidiary of...

  6. Stronger Manufacturers' Energy Efficiency Standards for Residential...

    Energy Saver

    Stronger Manufacturers' Energy Efficiency Standards for Residential Air Conditioners Go Into Effect Today Stronger Manufacturers' Energy Efficiency Standards for Residential Air ...

  7. China Shandong Penglai Electric Power Equipment Manufacturing...

    OpenEI (Open Energy Information) [EERE & EIA]

    Penglai Electric Power Equipment Manufacturing Jump to: navigation, search Name: China Shandong Penglai Electric Power Equipment Manufacturing Place: Penglai, Shandong Province,...

  8. Manufacturing Institutes Exhibit American Innovation at Hannover...

    Office of Environmental Management (EM)

    Manufacturing Institutes Exhibit American Innovation at Hannover Messe Manufacturing Institutes Exhibit American Innovation at Hannover Messe April 25, 2016 - 4:30pm Addthis The ...

  9. FACTSHEET: Next Generation Power Electronics Manufacturing Innovation...

    Energy.gov [DOE] (indexed site)

    a public-private manufacturing innovation institute for next generation power electronics. ... network of up to 45 manufacturing innovation institutes that help make America a ...

  10. Advanced Manufacturing Office and Potential Technologies for...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    for Clean Energy Manufacturing Innovation October 8, 2014 DOEDOD Planning ... is a leader in advanced manufacturing innovation and implementing the National Network ...

  11. Energy Conservation Standards for Manufactured Housing. Notice...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    EERE-2009-BT-BC-0021 RIN: 1904-AC11 Energy Conservation Standards for Manufactured ... which directs DOE to establish energy conservation standards for manufactured housing. ...

  12. Manufacturing Energy and Carbon Footprint References | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Manufacturing Energy and Carbon Footprint References footprintreferences.pdf (309.04 KB) More Documents & Publications 2010 Manufacturing Energy and Carbon Footprints: References ...

  13. Clean Energy Manufacturing Funding Opportunities | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Funding Opportunities Clean Energy Manufacturing Funding Opportunities To accomplish the goals of the Clean Energy Manufacturing Initiative (CEMI), the U.S. Department of Energy ...

  14. Manufacturing Demonstration Facility Workshop | Department of...

    Energy.gov [DOE] (indexed site)

    March 12, 2012 The Manufacturing Demonstration Facility Workshop (held in Chicago, IL, on ... aspects of planning a series of Manufacturing Demonstration Facilities (MDFs). ...

  15. Manufacturing Demonstration Facilities Workshop Agenda, March...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Manufacturing Demonstration Facilities Workshop Agenda, March 2012 mdfworkshopagenda.pdf (263.06 KB) More Documents & Publications Manufacturing Demonstration Facility Workshop ...

  16. Manufacturing Innovation Institute for Smart Manufacturing: Advanced Sensors, Controls, Platforms, and Modeling for Manufacturing

    Energy.gov [DOE]

    Office: Advanced ManufacturingPost date: 9/15/15Original Closing Date for Applications: Jan 29, 2016 A mandatory Concept Paper is due 11/04/2015 at 5:00pm ET.

  17. Worldwide Energy and Manufacturing USA Inc formerly Worldwide...

    OpenEI (Open Energy Information) [EERE & EIA]

    and Manufacturing USA Inc formerly Worldwide Manufacturing USA Jump to: navigation, search Name: Worldwide Energy and Manufacturing USA Inc (formerly Worldwide Manufacturing USA)...

  18. Final Report- Improved Large Aperture Collector Manufacturing

    Energy.gov [DOE]

    Solar Thermal Electric (STE) power generation is facing significant challenges from other sources of renewable energy; their advances have made it more and more difficult for solar thermal to remain a cost effective alternative in the United States. The primary advantage of STE is the thermal storage capability, which allows plants to continue producing electricity long after the sun has set. While it is necessary for the industry to fully develop this storage technology, it is also critical that significant cost reductions are found in the solar field construction and installation. If STE is to be competitive, these cost reductions must be recognized not only in the design and manufacture of the collectors, but also in the assembly and installation of the solar field. The goal of this project was to evaluate the current state of the art parabolic trough collector field and develop an improved field that can be installed for

  19. Office of Domestic and International Health Studies

    Energy.gov [DOE]

    The Office of Domestic and International Health Studies engages in the conduct of international scientific studies that may provide new knowledge and information about the human response to ionizing radiation in the workplace or people exposed in communities as a result of nuclear accidents, including providing health and environmental monitoring services to populations specified by law.

  20. Sustainable Manufacturing via Multi-Scale, Physics-Based Process Modeling and Manufacturing- Informed Design

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Manufacturing ADVANCED MANUFACTURING OFFICE Sustainable Manufacturing via Multi-Scale, Physics-Based Process Modeling and Manufacturing- Informed Design Improving Product and Manufacturing Process Design through a More Accurate and Widely Applicable Modeling Framework. This project aims to fll the knowledge gap between upstream design and downstream manufacturing processes by developing a manufacturing-informed design framework enabled by multi-scale, physics-based process models. This framework

  1. Oak Ridge Manufacturing Demonstration Facility (MDF)

    Energy.gov [DOE]

    The Manufacturing Demonstration Facility (MDF) is a collaborative manufacturing community that shares a common RD&D infrastructure. This shared infrastructure provides affordable access to advanced physical and virtual tools for rapidly demonstrating new manufacturing technologies and optimizing critical processes. Oak Ridge National Laboratory is home to AMO's MDF focused on Additive Manufacturing and Low-cost Carbon Fiber.

  2. Oak Ridge Manufacturing Demonstration Facility (MDF)

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Manufacturing Demonstration Facility (MDF) is a collabora­tive manufacturing community that shares a common RD&D infrastructure. This shared infrastructure provides affordable access to advanced physical and virtual tools for rapidly demonstrating new manufacturing technologies and optimizing critical processes. Oak Ridge National Laboratory is home to AMO's MDF focused on Additive Manufacturing and Low-cost Carbon Fiber.

  3. Metrology for Fuel Cell Manufacturing

    SciTech Connect

    Stocker, Michael; Stanfield, Eric

    2015-02-04

    The project was divided into three subprojects. The first subproject is Fuel Cell Manufacturing Variability and Its Impact on Performance. The objective was to determine if flow field channel dimensional variability has an impact on fuel cell performance. The second subproject is Non-contact Sensor Evaluation for Bipolar Plate Manufacturing Process Control and Smart Assembly of Fuel Cell Stacks. The objective was to enable cost reduction in the manufacture of fuel cell plates by providing a rapid non-contact measurement system for in-line process control. The third subproject is Optical Scatterfield Metrology for Online Catalyst Coating Inspection of PEM Soft Goods. The objective was to evaluate the suitability of Optical Scatterfield Microscopy as a viable measurement tool for in situ process control of catalyst coatings.

  4. Method for manufacturing glass frit

    DOEpatents

    Budrick, Ronald G.; King, Frank T.; Nolen, Jr., Robert L.; Solomon, David E.

    1977-01-01

    A method of manufacturing a glass frit for use in the manufacture of uniform glass microspheres to serve as containers for laser fusion fuel to be exposed to laser energy which includes the formation of a glass gel which is then dried, pulverized, and very accurately sized to particles in a range of, for example, 125 to 149 micrometers. The particles contain an occluded material such as urea which expands when heated. The sized particles are washed, dried, and subjected to heat to control the moisture content prior to being introduced into a system to form microspheres.

  5. Manufacturing Pre-Solicitation Transcript

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    DEPARTMENT OF ENERGY HYDROGEN PROGRAM MANUFACTURING R&D PRE-SOLICITATION MEETING FRIDAY, MAY 18, 2007 CRYSTAL GATEWAY MARRIOTT 1700 JEFFERSON DAVIS HIGHWAY SALONS 5 AND 6 ARLINGTON, VA. 22202 2 A G E N D A 1:00 p.m. Welcome and Opening Remarks JoAnn Milliken, Chief Engineer, U.S. DOE Hydrogen Program 1:05 p.m. FOA Application Process and Anticipated Timeline Jill Gruber, Project Officer, U.S. DOE Hydrogen Program, Golden Field Office 1:30 p.m. Manufacturing FOA Proposed Scope and Topics Pete

  6. NOVEL COMPOSITE MEMBRANES FOR HYDROGEN SEPARATION IN GASIFICATION PROCESSES IN VISION 21 ENERGY PLANTS

    SciTech Connect

    Michael Schwartz

    2004-01-01

    ITN Energy Systems, along with its team members, the Idaho National Engineering and Environmental Laboratory, Nexant Consulting, Argonne National Laboratory and Praxair, propose to develop a novel composite membrane structure for hydrogen separation as a key technology module within the future ''Vision 21'' fossil fuel plants. The ITN team is taking a novel approach to hydrogen separation membrane technology where fundamental engineering material development is fully integrated into fabrication designs; combining functionally graded materials, monolithic module concept and plasma spray manufacturing techniques. The technology is based on the use of Ion Conducting Ceramic Membranes (ICCM) for the selective transport of hydrogen. The membranes are comprised of composites consisting of a proton conducting ceramic and a second metallic phase to promote electrical conductivity. Functional grading of the membrane components allows the fabrication of individual membrane layers of different materials, microstructures and functions directly into a monolithic module. Plasma spray techniques, common in industrial manufacturing, are well suited for fabricating ICCM hydrogen separation modules inexpensively, yielding compact membrane modules that are amenable to large scale, continuous manufacturing with low costs. This program will develop and evaluate composite membranes and catalysts for hydrogen separation. Components of the monolithic modules will be fabricated by plasma spray processing. The engineering and economic characteristics of the proposed ICCM approach, including system integration issues, will also be assessed. This will result in a complete evaluation of the technical and economic feasibility of ICCM hydrogen separation for implementation within the ''Vision 21'' fossil fuel plant. The ICCM hydrogen separation technology is targeted for use within the gasification module of the ''Vision 21'' fossil fuel plant. The high performance and low-cost manufacturing of

  7. Novel Composite Membranes for Hydrogen Separation in Gasification Processes in Vision 21 Energy Plants

    SciTech Connect

    Schwartz, Michael

    2001-11-06

    ITN Energy Systems, Inc. (ITN) and its partners, the Idaho National Engineering and Environmental Laboratory, Argonne National Laboratory, Nexant Consulting, LLC and Praxair, Inc. are developing composite membranes for hydrogen separation as a key technology module within the future ''Vision 21'' fossil fuel plants. The ITN team is pursuing a novel approach to hydrogen separation membrane technology where fundamental engineering material development is fully integrated into module fabrication designs; combining functionally-graded materials, monolithic module concept and thermal spray manufacturing techniques. The technology is based on the use of Ion Conducting Ceramic Membranes (ICCM) for the selective transport of hydrogen. The membranes are comprised of composites consisting of a proton conducting ceramic and a second metallic phase to promote electrical conductivity. Functional grading of the membrane components allows for the fabrication of individual membrane layers of different materials, microstructures and functions directly into a monolithic module. Plasma spray techniques, common in industrial manufacturing, are well suited for fabricating ICCM hydrogen separation modules inexpensively, yielding compact membrane modules that are amenable to large scale, continuous manufacturing techniques with low costs. The engineering and economic characteristics of the proposed ICCM approach, including system integration issues, are being assessed. This will result in an evaluation of the technical and economic feasibility of the proposed ICCM hydrogen separation approach for implementation within the ''Vision 21'' fossil fuel plant. The ICCM hydrogen separation technology is targeted for use within the gasification module of the ''Vision 21'' fossil fuel plant. The high performance and low-cost manufacturing of the proposed technology will benefit the deployment of ''Vision 21'' fossil fuel plant processes by improving the energy efficiency, flexibility and

  8. NOVEL COMPOSITE MEMBRANES FOR HYDROGEN SEPARATION IN GASIFICATION PROCESSES IN VISION 21 ENERGY PLANTS

    SciTech Connect

    Michael Schwartz

    2003-10-01

    ITN Energy Systems, along with its team members, the Idaho National Engineering and Environmental Laboratory, Nexant Consulting, Argonne National Laboratory and Praxair, propose to develop a novel composite membrane structure for hydrogen separation as a key technology module within the future ''Vision 21'' fossil fuel plants. The ITN team is taking a novel approach to hydrogen separation membrane technology where fundamental engineering material development is fully integrated into fabrication designs; combining functionally graded materials, monolithic module concept and plasma spray manufacturing techniques. The technology is based on the use of Ion Conducting Ceramic Membranes (ICCM) for the selective transport of hydrogen. The membranes are comprised of composites consisting of a proton conducting ceramic and a second metallic phase to promote electrical conductivity. Functional grading of the membrane components allows the fabrication of individual membrane layers of different materials, microstructures and functions directly into a monolithic module. Plasma spray techniques, common in industrial manufacturing, are well suited for fabricating ICCM hydrogen separation modules inexpensively, yielding compact membrane modules that are amenable to large scale, continuous manufacturing with low costs. This program will develop and evaluate composite membranes and catalysts for hydrogen separation. Components of the monolithic modules will be fabricated by plasma spray processing. The engineering and economic characteristics of the proposed ICCM approach, including system integration issues, will also be assessed. This will result in a complete evaluation of the technical and economic feasibility of ICCM hydrogen separation for implementation within the ''Vision 21'' fossil fuel plant. The ICCM hydrogen separation technology is targeted for use within the gasification module of the ''Vision 21'' fossil fuel plant. The high performance and low-cost manufacturing of

  9. NOVEL COMPOSITE MEMBRANES FOR HYDROGEN SEPARATION IN GASIFICATION PROCESSES IN VISION 21 ENERGY PLANTS

    SciTech Connect

    Michael Schwartz

    2003-07-01

    ITN Energy Systems, along with its team members, the Idaho National Engineering and Environmental Laboratory, Nexant Consulting, Argonne National Laboratory and Praxair, propose to develop a novel composite membrane structure for hydrogen separation as a key technology module within the future ''Vision 21'' fossil fuel plants. The ITN team is taking a novel approach to hydrogen separation membrane technology where fundamental engineering material development is fully integrated into fabrication designs; combining functionally graded materials, monolithic module concept and plasma spray manufacturing techniques. The technology is based on the use of Ion Conducting Ceramic Membranes (ICCM) for the selective transport of hydrogen. The membranes are comprised of composites consisting of a proton conducting ceramic and a second metallic phase to promote electrical conductivity. Functional grading of the membrane components allows the fabrication of individual membrane layers of different materials, microstructures and functions directly into a monolithic module. Plasma spray techniques, common in industrial manufacturing, are well suited for fabricating ICCM hydrogen separation modules inexpensively, yielding compact membrane modules that are amenable to large scale, continuous manufacturing with low costs. This program will develop and evaluate composite membranes and catalysts for hydrogen separation. Components of the monolithic modules will be fabricated by plasma spray processing. The engineering and economic characteristics of the proposed ICCM approach, including system integration issues, will also be assessed. This will result in a complete evaluation of the technical and economic feasibility of ICCM hydrogen separation for implementation within the ''Vision 21'' fossil fuel plant. The ICCM hydrogen separation technology is targeted for use within the gasification module of the ''Vision 21'' fossil fuel plant. The high performance and low-cost manufacturing of

  10. White House Announces Eighth Manufacturing Innovation Institute |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy White House Announces Eighth Manufacturing Innovation Institute White House Announces Eighth Manufacturing Innovation Institute April 6, 2016 - 4:49pm Addthis On Thursday, April 1, the White House announced a new institute which will focus on revolutionary fibers and textile manufacturing. This new institute is the eighth manufacturing hub to be awarded as part of the National Network for Manufacturing Innovation (NNMI). Collectively, the federal government's commitment

  11. Manufacturing Energy and Carbon Footprints Scope

    Energy.gov [DOE] (indexed site)

    Manufacturing Energy and Carbon Footprint Scope The footprint analysis looks at a large subset of U.S. manufacturing, with the objective of capturing the bulk share of energy consumption and carbon emissions. Table 1 lists the fifteen manufacturing sectors selected for analysis; a sixteenth footprint has also been prepared for the entire manufacturing sector. Manufacturing sectors are listed by their respective NAICS (North American Industry Classification System) codes. NAICS descriptions of

  12. Manufacturing Energy and Carbon Footprints (2006 MECS)

    Energy.gov [DOE]

    Energy and Carbon Footprints provide a mapping of energy from supply to end use in manufacturing. They show us where energy is used and lost—and where greenhouse gases (GHGs) are emitted. Footprints are available below for 15 manufacturing sectors (representing 94% of all manufacturing energy use) and for U.S. manufacturing as a whole. Analysis of these footprints is also available in the U.S. Manufacturing Energy Use and Greenhouse Gas Emissions Analysis report.

  13. Explore Careers in Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Manufacturing Explore Careers in Manufacturing The Advanced Manufacturing Office (AMO) invests in public-private research and development partnerships and encourages a culture of continuous improvement in corporate energy management to bring about a transformation in U.S. manufacturing. The Advanced Manufacturing Office (AMO) invests in public-private research and development partnerships and encourages a culture of continuous improvement in corporate energy management to bring about a

  14. Manufacturing Success Stories | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Manufacturing Success Stories Manufacturing Success Stories RSS The Office of Energy Efficiency and Renewable Energy's (EERE) successes in developing technologies and processes for more efficient energy management systems create big opportunities for energy savings and new jobs in manufacturing. Explore EERE's manufacturing success stories below. August 17, 2016 Distillation columns like this one are used in a variety of chemical manufacturing applications. Photo courtesy of Organic Chemistry

  15. Domestic Coal Distribution 2009 Q1 by Destination State: Alabama

    Energy Information Administration (EIA) (indexed site)

    4 Domestic Coal Distribution 2009 Q1 by Destination State: Alabama (1000 Short Tons) 1 64 Domestic Coal Distribution 2009 Q1 by Destination State: Alabama (1000 Short Tons)...

  16. Domestic Coal Distribution 2009 Q2 by Destination State: Alabama

    Energy Information Administration (EIA) (indexed site)

    61 Domestic Coal Distribution 2009 Q2 by Destination State: Alabama (1000 Short Tons) 1 61 Domestic Coal Distribution 2009 Q2 by Destination State: Alabama (1000 Short Tons)...

  17. ENERGY USE AND DOMESTIC HOT WATER CONSUMPTION Final Report

    Office of Scientific and Technical Information (OSTI)

    USE AND DOMESTIC HOT WATER CONSUMPTION Final Report Phase 1 Prepared for THE N E W YORK ... operating data on combined domestic hot water @HW) and heating systems to be used in ...

  18. Keynote Address: Ali Zaidi, the White House Domestic Policy Council...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Ali Zaidi, the White House Domestic Policy Council Keynote Address: Ali Zaidi, the White House Domestic Policy Council May 21, 2014 2:05PM to 2:30PM PDT Pacific Ballroom Keynote...

  19. Manufacturing Challenges for BOP and Graphite Stack Components

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ENTEGRIS PROPRIETARY AND CONFIDENTIAL Feb 28, 2014 Manufacturing Challenges for BOP & Graphite Stack Components CONFIDENTIAL | 2 Areas of Development  C.T.E  Semi Dissipative Materials  Impregnation of Metal into Graphite - Titanium  Chemical Vapor Deposition/Physical Vapor Deposition  Silicon Carbide  Graphene CONFIDENTIAL | 3 Balance of Plant Manifold Assembly  Material selection process  High-density Polyethylene (HDPE)  Polyoxymethylene (POM)  Polyamide (PA)

  20. Advanced Manufacturing Office Update, July 2014 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    4 Advanced Manufacturing Office Update, July 2014 July 14, 2014 - 4:00pm Addthis In This Issue Featured Article Cummins Achieves Dramatic Energy Savings through DOE Collaboration Partners in the Spotlight Legrand and UTC Suppliers Join Better Plants Seven Industry Partners Focus on Improving Water Efficiency in a Better Buildings Challenge Pilot Nissan, 3M, and Schneider Electric Highlight the Benefits of SEP at IETC 2014 DOE Collaboration Enables 3D Printed Car Challenge AMO and Industry News

  1. U.S. Energy Information Administration (EIA) - Manufacturing

    Energy Information Administration (EIA) (indexed site)

    Preliminary estimates show that U.S. manufacturing energy consumption increased between 2010 and 2014 U.S. Energy Information Administration - EIA - Independent Statistics and Analysis Sources & Uses Petroleum & Other Liquids Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas Exploration and reserves, storage, imports and exports, production, prices, sales. Electricity Sales, revenue and prices, power plants, fuel

  2. Johnson Controls Inc. Domestic Advanced Battery Industry Creation Project |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Johnson Controls Inc. Domestic Advanced Battery Industry Creation Project Johnson Controls Inc. Domestic Advanced Battery Industry Creation Project 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt019_es_ellerman_2012_p.pdf (1.19 MB) More Documents & Publications Johnson Controls Inc. Domestic Advanced Battery Industry Creation Project Johnson Controls Inc. Domestic Advanced Battery

  3. Montana Domestic Sewage Treatment Lagoons General Permit | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    GuidanceSupplemental Material Abstract Example authorization of Domestic Sewage Treatment Lagoons General Permit. Author Montana Department of Environmental Quality -...

  4. Montana Notice of Intent: Domestic Sewage Treatment Lagoons General...

    OpenEI (Open Energy Information) [EERE & EIA]

    Abstract Provides instructions for submitting an NOI for Domestic Sewage Treatment Lagoons General Permit. Author Montana Department of Environmental Quality -...

  5. Process for manufacturing multilayer capacitors

    DOEpatents

    Lauf, Robert J.; Holcombe, Cressie E.; Dykes, Norman L.

    1996-01-01

    The invention is directed to a method of manufacture of multilayer electrical components, especially capacitors, and components made by such a method. High capacitance dielectric materials and low cost metallizations layered with such dielectrics may be fabricated as multilayer electrical components by sintering the metallizations and the dielectrics during the fabrication process by application of microwave radiation.

  6. Process for manufacturing multilayer capacitors

    DOEpatents

    Lauf, R.J.; Holcombe, C.E.; Dykes, N.L.

    1996-01-02

    The invention is directed to a method of manufacture of multilayer electrical components, especially capacitors, and components made by such a method. High capacitance dielectric materials and low cost metallizations layered with such dielectrics may be fabricated as multilayer electrical components by sintering the metallizations and the dielectrics during the fabrication process by application of microwave radiation. 4 figs.

  7. Heat treating of manufactured components

    SciTech Connect

    Ripley, Edward B.

    2012-05-22

    An apparatus for heat treating manufactured components using microwave energy and microwave susceptor material is disclosed. The system typically includes an insulating vessel placed within a microwave applicator chamber. A moderating material is positioned inside the insulating vessel so that a substantial portion of the exterior surface of each component for heat treating is in contact with the moderating material.

  8. Experiences on IGSCC crack manufacturing

    SciTech Connect

    Veron, P.

    1997-02-01

    The author presents his experience in manufacturing IGSCC realistic defects, mainly in INCONEL 600 MA Steam Generator Tubes. From that experience he extracts some knowledge about this cracking (influence of chemistry in the environment, stress state, crack growth rate, and occurrence in laboratory condition of break before leak).

  9. Keynote Address: Ali Zaidi, the White House Domestic Policy Council |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Ali Zaidi, the White House Domestic Policy Council Keynote Address: Ali Zaidi, the White House Domestic Policy Council May 21, 2014 2:05PM to 2:30PM PDT Pacific Ballroom Keynote address by Ali Zaidi, Deputy Director for Energy Policy, the White House Domestic Policy Council

  10. Pollution prevention assessment for a manufacturer of food service equipment

    SciTech Connect

    Edwards, H.W.; Kostrzewa, M.F.; Looby, G.P.

    1995-09-01

    The US Environmental Protection Agency (EPA) has funded a pilot project to assist small and medium-size manufacturers who want to minimize their generation of waste but who lack the expertise to do so. In an effort to assist these manufacturers Waste Minimization Assessment Centers (WMACs) were established at selected universities and procedures were adapted from the EPA Waste Minimization Opportunity Assessment Manual. The WMAC team at Colorado State University performed an assessment at a plant that manufacturers commercial food service equipment. Raw materials used by the plant include stainless steel, mild steel, aluminum, and copper and brass. Operations performing in the plant include cutting, forming, bending, welding, polishing, painting, and assembly The team`s report, detailing findings and recommendations, indicated that paint-related wastes (organic solvents) are generated in large quantities and that significant cost savings could be achieved by retrofitting the water curtain paint spray booth to operate as a dry filter paint booth. Toluene could be replaced by a less toxic solvent. This Research Brief was developed by the principal investigators and EPA`s National Risk Management Research Laboratory, Cincinnati, OH, to announce key findings of an ongoing research project that is fully documented in a separate report of the same title available from University City Science Center.

  11. Japanese suppliers in transition from domestic nuclear reactor vendors to international suppliers

    SciTech Connect

    Forsberg, C.W.; Reich, W.J.; Rowan, W.J.

    1994-06-27

    Japan is emerging as a major leader and exporter of nuclear power technology. In the 1990s, Japan has the largest and strongest nuclear power supply industry worldwide as a result of the largest domestic nuclear power plant construction program. The Japanese nuclear power supply industry has moved from dependence on foreign technology to developing, design, building, and operating its own power plants. This report describes the Japanese nuclear power supply industry and examines one supplier--the Mitsubishi group--to develop an understanding of the supply industry and its relationship to the utilities, government, and other organizations.

  12. Assessment of U.S. Manufacturing Capability for Next-Generation Wind Turbine Drivetrains

    SciTech Connect

    Cotrell, J.; Stelhy, T.

    2013-09-01

    Robust U.S. wind turbine manufacturing capabilities and supply chains are important for the United States to reduce the cost of electricity generated from wind turbines. These capabilities and supply chains are also critical to the invention and commercialization of new wind turbine technologies while providing high-quality jobs. The development of advanced drivetrain technologies for windturbine applications is advancing the state of the art for drivetrain design by producing higher capacity and operating reliability than conventional drivetrains. Advanced drivetrain technologies such as medium-speed and direct-drive generators, silicon-carbide (SiC) IGBT-based power electronics, and high torque density speed increasers require different manufacturing and supply chaincapabilities that present both risks and opportunities for U.S. wind turbine manufacturers and the wind industry as a whole. The primary objective of this project is to assess how advanced drivetrain technologies and trends will impact U.S. wind turbine manufacturing and its supply chains. The U.S. Department of Energy and other industry participants will use the information from this study toidentify domestic manufacturing gaps, barriers, and opportunities for developing U.S. wind turbine manufacturing capabilities and supply chains for next-generation drivetrain technologies. This report also includes recommendations for prioritizing technology areas for possible investments by public, private, or nonprofit entities that will reduce the cost of wind-generated electricity. Suchinvestments foster opportunities to invent and commercialize new wind turbine technologies, and provide high-quality jobs in the United States.

  13. Advanced Manufacturing Initiative Improves Turbine Blade Productivity...

    Energy.gov [DOE] (indexed site)

    and create U.S. jobs by improving labor productivity in wind turbine blade construction. ... Certain components of wind turbine blades are naturally more suitable to domestic ...

  14. Report to the President: Capturing a Domestic Competitive Advantage...

    Energy.gov [DOE] (indexed site)

    ... provide human capital to advanced manufacturing companies ... Manufacturing Programs at Research Universities, Standards ... Difficult to secure work visas for international students to ...

  15. DOE Offers Support for Innovative Manufacturing Plant That Will...

    Energy Saver

    Their vertically integrated process, from raw materials processing all the way through solar cell production, uses lower cost (50 percent less expensive) lower quality materials ...

  16. Agenda: Fiber Reinforced Polymer Composite Manufacturing Workshop

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Advanced Manufacturing Office (AMO) manufacturing.energy.gov 3 Morning Agenda 9:00am - 9:05am Welcome Mark Johnson Director, Advanced Manufacturing Office 9:05am - 9:20am Clean Energy Manufacturing Initiative David Danielson Assistant Secretary Energy Efficiency and Renewable Energy 9:20am - 9:50am Advanced Manufacturing Office Overview and Review of RFI Results Mark Johnson Director, Advanced Manufacturing Office 9:50am - 10:30am Panel Discussion: DOE Perspectives Mark Shuart, Advanced

  17. Manufacturing

    Office of Environmental Management (EM)

    ... to show up in the market place (aluminum, carbon fiber). ... the US. The intent of the studies 103 was to help shape ... 106 107 108 Figure 2: Process flow diagrams to ...

  18. Process for Low Cost Domestic Production of LIB Cathode Materials

    SciTech Connect

    Thurston, Anthony

    2012-10-31

    The objective of the research was to determine the best low cost method for the large scale production of the Nickel-Cobalt-Manganese (NCM) layered cathode materials. The research and development focused on scaling up the licensed technology from Argonne National Laboratory in BASFs battery material pilot plant in Beachwood Ohio. Since BASF did not have experience with the large scale production of the NCM cathode materials there was a significant amount of development that was needed to support BASFs already existing research program. During the three year period BASF was able to develop and validate production processes for the NCM 111, 523 and 424 materials as well as begin development of the High Energy NCM. BASF also used this time period to provide free cathode material samples to numerous manufactures, OEMs and research companies in order to validate the ma-terials. The success of the project can be demonstrated by the construction of the production plant in Elyria Ohio and the successful operation of that facility. The benefit of the project to the public will begin to be apparent as soon as material from the production plant is being used in electric vehicles.

  19. Manufacturing of Plutonium Tensile Specimens

    SciTech Connect

    Knapp, Cameron M

    2012-08-01

    Details workflow conducted to manufacture high density alpha Plutonium tensile specimens to support Los Alamos National Laboratory's science campaigns. Introduces topics including the metallurgical challenge of Plutonium and the use of high performance super-computing to drive design. Addresses the utilization of Abaqus finite element analysis, programmable computer numerical controlled (CNC) machining, as well as glove box ergonomics and safety in order to design a process that will yield high quality Plutonium tensile specimens.

  20. Additive Manufacturing: Pursuing the Promise

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Lower energy intensity: These techniques save energy by eliminating production steps, using substantially less material, enabling reuse of by-products, and producing lighter products. Remanufacturing parts through advanced additive manufacturing and surface treatment processes can also return end-of-life products to as-new condition, 1 using only 2-25% of the energy required to make new parts. 2 * Less waste: Building objects up layer by layer, instead of traditional machining processes that cut

  1. Energy Efficient Thermoplastic Composite Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Boeing Research & Technology (Marc Matsen) U.S. DOE Advanced Manufacturing Office Program Review Meeting Washington, D.C. June 14-15, 2016 This presentation does not contain any proprietary, confidential, or otherwise restricted information. Project Objective  The objective of the project is to establish an effective and affordable method to lay- up and consolidate/join large thermoplastic composite aerospace structure with cycle times measured in minutes rather than hours.  Composite

  2. High Pressure Hydrogen Tank Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Workshop High Pressure Hydrogen Tank Manufacturing Mark Leavitt Quantum Fuel Systems Technologies Worldwide, Inc. August 11, 2011 This presentation does not contain any proprietary, confidential, or otherwise restricted information History of Innovations... Announced breakthrough in all-composite lightweight, high capacity, low-cost fuel storage technologies. * Developed a series of robust, OEM compatible electronic control products. Developed H 2 storage system for SunLine Tran-sit Hythane®

  3. IMHEX fuel cell repeat component manufacturing continuous improvement accomplishments

    SciTech Connect

    Jakaitis, L.A.; Petraglia, V.J.; Bryson, E.S.

    1996-12-31

    M-C Power is taking a power generation technology that has been proven in the laboratory and is making it a commercially competitive product. There are many areas in which this technology required scale up and refinement to reach the market entry goals for the IMHEX{reg_sign} molten carbonate fuel cell power plant. One of the primary areas that needed to be addressed was the manufacturing of the fuel cell stack. Up to this point, the fuel cell stack and associated components were virtually hand made for each system to be tested. M-C Power has now continuously manufactured the repeat components for three 250 kW stacks. M-C Power`s manufacturing strategy integrated both evolutionary and revolutionary improvements into its comprehensive commercialization effort. M-C Power`s objectives were to analyze and continuously improve stack component manufacturing and assembly techniques consistent with established specifications and commercial scale production requirements. Evolutionary improvements are those which naturally occur as the production rates are increased and experience is gained. Examples of evolutionary (learning curve) improvements included reducing scrap rates and decreasing raw material costs by buying in large quantities. Revolutionary improvements result in significant design and process changes to meet cost and performance requirements of the market entry system. Revolutionary changes often involve identifying new methods and developing designs to accommodate the new process. Based upon our accomplishments, M-C Power was able to reduce the cost of continuously manufactured fuel cell repeat components from the first to third 250 kW stack by 63%. This paper documents the continuous improvement accomplishments realized by M-C Power during IMHEX{reg_sign} fuel cell repeat component manufacturing.

  4. Artisan Manufacturing: Order (2010-CW-0712)

    Energy.gov [DOE]

    DOE ordered Artisan Manufacturing Company, Inc., to pay a $5,000 civil penalty after finding Artisan Manufacturing had failed to certify that certain models of faucets comply with the applicable water conservation standard.

  5. Refrigerator Manufacturers: Order (2013-CE-5341)

    Energy.gov [DOE]

    DOE ordered Refrigerator Manufacturers, LLC to pay a $8,000 civil penalty after finding Refrigerator Manufacturers had failed to certify that certain models of walk-in cooler and freezer components comply with the applicable energy conservation standards.

  6. Clean Energy Manufacturing Incentive Grant Program

    Energy.gov [DOE]

    "Clean energy manufacturer" is defined as a biofuel producer, a manufacturer of renewable energy or nuclear equipment/products, or "products used for energy conservation, storage, or grid efficie...

  7. Advanced Methods for Manufacturing Newsletter- Issue 2

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Advanced Methods for Manufacturing (AMM) newsletter includes information about selected projects pertaining to additive manufacturing, concrete technologies, and welding innovations currently funded by the Department of Energy’s Office of Nuclear Energy.

  8. Summit Manufacturing: Case Closure (2010-SE-0303)

    Energy.gov [DOE]

    DOE closed this case against Summit Manufacturing, Inc. without civil penalty after Summit Manufacturing provided information that the non-compliant products were not sold in the United States.

  9. NREL: Photovoltaics Research - Awards for Photovoltaic Manufacturing...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Awards for Photovoltaic Manufacturing R&D The following research efforts within the PV Manufacturing R&D Project were honored with prestigious industry awards. 1995-AstroPower (now ...

  10. Thin-Film Solar Cell Manufacturing

    Energy.gov [DOE]

    In this b-roll, thin-film photovoltaic cells are manufactured and deployed in Arizona. Steps shown in the manufacturing process include the screen printing of conductive material onto laminated...

  11. National Manufacturing Day | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    anticipated 400,000 people who want to experience U.S. manufacturing up close and in person. On October 2, the U.S. Department of Commerce's fourth annual Manufacturing Day will...

  12. Goodman Manufacturing: Order (2012-CE-1509)

    Energy.gov [DOE]

    DOE ordered Goodman Manufacturing Company L.P. to pay an $8,000 civil penalty after finding Goodman Manufacturing had failed to certify that certain room air conditioners comply with the applicable energy conservation standard.

  13. Goodman Manufacturing: Proposed Penalty (2011-SE-4301)

    Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that Goodman Manufacturing manufactured and distributed noncompliant basic model CPC180* commercial package air conditioners in the U.S.

  14. FACT SHEET: 48C MANUFACTURING TAX CREDITS

    Energy.gov [DOE]

    The Advanced Energy Manufacturing Tax Credit Program is helping build a robust U.S. manufacturing capacity to supply clean energy projects with American-made parts and equipment. On February 7,...

  15. Advanced Methods for Manufacturing Newslettter- Issue 3

    Energy.gov [DOE]

    The Advanced Methods for Manufacturing newsletter includes information about selected projects pertaining to additive manufacturing, concrete technologies, welding innovations and imaging techniques for design reconstruction currently funded by the Department of Energy's Office of Nuclear Energy.

  16. USA Manufacturing: Order (2013-CE-5336)

    Energy.gov [DOE]

    DOE ordered USA Manufacturing to pay a $8,000 civil penalty after finding USA Manufacturing had failed to certify that certain models of walk-in cooler and freezer components comply with the applicable energy conservation standards.

  17. Energy & Manufacturing Workforce Training Topics List - Version...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    & Manufacturing Workforce Training Topics List - Version 1.7 (02.11.14) Energy & Manufacturing Workforce Training Topics List - Version 1.7 (02.11.14) View this searchable list of ...

  18. AMO Hosted Workshop on Composite Manufacturing

    Energy.gov [DOE]

    The U.S. Department of Energy's Advanced Manufacturing Office will host a workshop on Fiber Reinforced Polymer Composite Manufacturing on January 13, 2014 at the Hilton Crystal City in Arlington, VA.

  19. Fuel Cell Technologies Manufacturing Related Links

    Energy.gov [DOE]

    The following resources provide details about U.S. Department of Energy-funded fuel cell technologies manufacturing activities, other EERE and federal manufacturing activities and initiatives, research plans and roadmaps, workshops, and additional related links.

  20. Manufacturing in the Clean Energy Race

    ScienceCinema

    Danielson, David; Jackson, Keoki; Johnson, Mark; Wince-Smith, Deborah L.

    2016-06-24

    There is an energy and manufacturing revolution in the world today. Here is what the United States Department of Energy has done through collaborations in pursuit of American prosperity in the energy and manufacturing industry of tomorrow.

  1. Imperial Manufacturing: Order (2013-CE-5322)

    Energy.gov [DOE]

    DOE ordered Imperial Manufacturing, Inc. to pay a $8,000 civil penalty after finding Imperial Manufacturing had failed to certify that certain models of walk-in cooler and freezer components comply with the applicable energy conservation standards.

  2. Performance of the biose cascade-INEL manufactured solar home

    SciTech Connect

    Lau, A S; Liebelt, K H; Scofield, M P; Shinn, N R

    1980-01-01

    Two manufactured active solar homes using air collectors and rock storage were designed, bult and are being tested. The cooperative, DOE-funded project involves. Boise Cascade Corporation and the Idaho National Engineering Laboratory (INEL). The two primary goals of the project are to develop an active solar heating system that is cost-effective now, and to provide significant market penetration through the involvement of Boise Cascade, a major manufacturer of factory built houses. A brief discussion of the houses and solar systems is included, with more detailed discussion of the desktop-computer based data acquisition system and initial performance results. The 1979 cooling season data indicated a need for modifications to achieve adequate cooling system performance. Data from the heating season showed good agreement with calculations, especially the house heat loss coefficient. However, solar heating fractions were lower than predicted and an examination of the collector operating efficiency showed the collector losses to be approximately three times higher than predicted. Tests are underway to better understand the large collection losses. Comparison of the performance data and f-chart predictions shows significant differences, with predicted solar fractions being lower than actual. The solar domestic hot water preheating system performed reasonably well, with significant thermal losses noticed from the auxiliary hot water heater. Recommendations are made for the design of solar air-heating systems.

  3. Solar Assembly Line at Manufacturing Facility

    Energy.gov [DOE]

    In this photograph, an associate oversees the automatic sorting of solar cells after final tests at a BP manufacturing facility.

  4. Biodiesel Outlook - An Engine Manufacturer's Perspective | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Outlook - An Engine Manufacturer's Perspective Biodiesel Outlook - An Engine ... More Documents & Publications Biodiesel ASTM Update and Future Technical Needs Recent ...

  5. 2014 Manufacturing Energy and Carbon Footprints: Scope

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Scope The energy and carbon footprint analysis examines fifteen individual manufacturing sectors that together consume 95% of U.S. manufacturing primary energy consumption and account for 94% of U.S. manufacturing combustion greenhouse gas (GHG) emissions. Manufacturing sectors are defined by their respective NAICS (North American Industry Classification System) codes. i Individual sectors were selected for analysis based on their relative energy intensities, contribution to the U.S. economy,

  6. Manufacturing Energy and Carbon Footprints Scope

    Energy.gov [DOE]

    List of manufacturing sectors selected for analysis along with North American Industry Classification System (NAICS) code descriptions

  7. Additive Manufacturing - Materials by Design - Energy Innovation...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Additive Manufacturing - Materials by Design Lawrence Livermore National Laboratory ... Send Message Lawrence Livermore National Laboratory Industrial Partnerships Office Visit ...

  8. Solid Oxide Fuel Cell Manufacturing Overview

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Cell Manufacturing Overview Hydrogen and Fuel Cell Technologies Manufacturing R&D Workshop August 11-12, 2011 Washington, DC Mark Richards, Eric Tang, Randy Petri Copyright © 2011 Versa Power Systems. All Rights Reserved. 2 Contents  Manufacturing development dependencies  SOFC elements  Cell manufacturing processes - Materials - Forming - Conditioning  Stack assembly  Quality control and testing  VPS projected cost reductions in SECA Copyright © 2011 Versa Power Systems.

  9. Secure Manufacturing | Y-12 National Security Complex

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    the most difficult manufacturability and development obstacles; protecting classified and proprietary materials, components, and information; developing unique ...

  10. Clean Energy Manufacturing Initiative Industrial Efficiency and...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Industrial Efficiency and Energy Productivity Video Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity Video Addthis Description Industrial ...

  11. Advanced Manufacturing Initiative Improves Turbine Blade Productivity |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Advanced Manufacturing Initiative Improves Turbine Blade Productivity Advanced Manufacturing Initiative Improves Turbine Blade Productivity May 20, 2011 - 2:56pm Addthis This is an excerpt from the Second Quarter 2011 edition of the Wind Program R&D Newsletter. The Advanced Manufacturing Initiative (AMI) at DOE's Sandia National Laboratories is working with industry to improve manufacturing processes and create U.S. jobs by improving labor productivity in wind

  12. Alternative Interconnect Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Alternative Interconnect Manufacturing Alternative Interconnect Manufacturing Lead Performer: Vadient Optics LLC - Eugene, OR DOE Total Funding: $150,000 Project Term: February 22, 2016 - November 21, 2016 Funding Type: SBIR PROJECT OBJECTIVE Vadient Optics proposes to develop and demonstrate a practical commercial manufacturing route for its flexible, low-cost additive manufacturing process used to efficiently fabricate complex and highly efficient light-extraction optics for a variety of SSL

  13. advanced manufacturing office | netl.doe.gov

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Advanced Manufacturing Office The U.S. Department of Energy (DOE) funds the research, development, and demonstration of highly efficient and innovative manufacturing technologies. DOE has supported the development of more than 250 energy-saving industrial technologies that have been commercialized since 1976. DOE is also working to create a network of Manufacturing Innovation Institutes, each of which will create collaborative communities to target a unique technology in advanced manufacturing.

  14. Clean Energy Manufacturing Innovation Institute for Composite...

    Energy.gov [DOE] (indexed site)

    and Fuel Cell Technologies Research, Development, and Demonstrations Funding Opportunity Announcement Webinar Slides Fiber Reinforced Polymer Composite Manufacturing Workshop

  15. Clean Energy Manufacturing Analysis Center Webinar

    Energy.gov [DOE]

    The U.S. Department of Energy offers a webinar to address clean energy manufacturing on April 5. Register today!

  16. A National Strategic Plan For Advanced Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE)

    A National Strategic Plan For Advanced Manufacturing February 2012 Executive Office of the President National Science and Technology Council

  17. Webinar: Additive Manufacturing for Fuel Cells

    Energy.gov [DOE]

    Video recording and text version of the webinar titled "Additive Manufacturing for Fuel Cells," originally presented on February 11, 2014.

  18. DOE Announces Manufacturing Training for Cleantech Entrepreneurs |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy DOE Announces Manufacturing Training for Cleantech Entrepreneurs DOE Announces Manufacturing Training for Cleantech Entrepreneurs September 30, 2016 - 10:22am Addthis On Thursday, September 29, the Energy Department announced the new Build4Scale Manufacturing Training for Cleantech Entrepreneurs at the 2016 MForesight National Summit in Washington, D.C. Build4Scale helps entrepreneurs build their clean energy products by providing training on manufacturing fundamentals

  19. Manufacturing Leadership Council recognizes advancements at KCNSC |

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration | (NNSA) Manufacturing Leadership Council recognizes advancements at KCNSC Wednesday, July 20, 2016 - 11:01am Team members from the Kansas City National Security Campus took back three Manufacturing Leadership Awards from the ceremony in Carlsbad, CA. The spotlight was shining on the Kansas City National Security Campus (KCNSC) on June 8 at the Manufacturing Leadership Awards Summit. The Manufacturing Leadership Council recognized KCNSC's achievements

  20. Brawley 10 MW Geothermal Plant Plant Manual for Southern California Edison Company and Union Oil Company of California. Volume IV. Equipment Data

    SciTech Connect

    1980-11-28

    This volume covers Equipment Data. This volume has technical presentations on each piece of plant equipment. it also references manufacturer's instruction books and drawing lists.

  1. The Clean Energy Manufacturing Initiative: Dissolving Silos

    ScienceCinema

    Danielson, David; Orr, Lynn; Sarkar, Reuben; Zayas, Jose; Johnson, Mark

    2016-07-12

    DOE’s work is closely tied to manufacturing because manufacturing is an important part of technology innovation and commercialization. Find out how DOE – through the Clean Energy Manufacturing Initiative – is helping America lead the clean energy revolution.

  2. Manufacturing Demonstration Facilities Workshop Agenda, March 2012 |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Workshop Agenda, March 2012 Manufacturing Demonstration Facilities Workshop Agenda, March 2012 mdf_workshop_agenda.pdf (263.06 KB) More Documents & Publications Manufacturing Demonstration Facility Workshop Critical Materials Workshop Agenda Innovative Manufacturing Initiatives Recognition Day Agenda

  3. Method for automatically evaluating a transition from a batch manufacturing technique to a lean manufacturing technique

    DOEpatents

    Ivezic, Nenad; Potok, Thomas E.

    2003-09-30

    A method for automatically evaluating a manufacturing technique comprises the steps of: receiving from a user manufacturing process step parameters characterizing a manufacturing process; accepting from the user a selection for an analysis of a particular lean manufacturing technique; automatically compiling process step data for each process step in the manufacturing process; automatically calculating process metrics from a summation of the compiled process step data for each process step; and, presenting the automatically calculated process metrics to the user. A method for evaluating a transition from a batch manufacturing technique to a lean manufacturing technique can comprise the steps of: collecting manufacturing process step characterization parameters; selecting a lean manufacturing technique for analysis; communicating the selected lean manufacturing technique and the manufacturing process step characterization parameters to an automatic manufacturing technique evaluation engine having a mathematical model for generating manufacturing technique evaluation data; and, using the lean manufacturing technique evaluation data to determine whether to transition from an existing manufacturing technique to the selected lean manufacturing technique.

  4. 1991 Manufacturing Consumption of Energy 1991 Executive Summary

    Energy Information Administration (EIA) (indexed site)

    Summary The Manufacturing Consumption of Energy 1991 report presents statistics about the energy consumption of the manufacturing sector, based on the 1991 Manufacturing Energy...

  5. $23.5 Million Investment in Innovative Manufacturing Projects...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    23.5 Million Investment in Innovative Manufacturing Projects Supports the New Clean Energy Manufacturing Initiative 23.5 Million Investment in Innovative Manufacturing Projects ...

  6. Notice of Intent (NOI): Clean Energy Manufacturing Innovation...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Innovation Institute on Smart Manufacturing: Advanced Sensors, Controls, Platforms and Modeling for Manufacturing Notice of Intent (NOI): Clean Energy Manufacturing Innovation ...

  7. Genomic Aspects of Research Involving Polyploid Plants

    SciTech Connect

    Yang, Xiaohan [ORNL; Ye, Chuyu [ORNL; Tschaplinski, Timothy J [ORNL; Wullschleger, Stan D [ORNL; Tuskan, Gerald A [ORNL

    2011-01-01

    Almost all extant plant species have spontaneously doubled their genomes at least once in their evolutionary histories, resulting in polyploidy which provided a rich genomic resource for evolutionary processes. Moreover, superior polyploid clones have been created during the process of crop domestication. Polyploid plants generated by evolutionary processes and/or crop domestication have been the intentional or serendipitous focus of research dealing with the dynamics and consequences of genome evolution. One of the new trends in genomics research is to create synthetic polyploid plants which provide materials for studying the initial genomic changes/responses immediately after polyploid formation. Polyploid plants are also used in functional genomics research to study gene expression in a complex genomic background. In this review, we summarize the recent progress in genomics research involving ancient, young, and synthetic polyploid plants, with a focus on genome size evolution, genomics diversity, genomic rearrangement, genetic and epigenetic changes in duplicated genes, gene discovery, and comparative genomics. Implications on plant sciences including evolution, functional genomics, and plant breeding are presented. It is anticipated that polyploids will be a regular subject of genomics research in the foreseeable future as the rapid advances in DNA sequencing technology create unprecedented opportunities for discovering and monitoring genomic and transcriptomic changes in polyploid plants. The fast accumulation of knowledge on polyploid formation, maintenance, and divergence at whole-genome and subgenome levels will not only help plant biologists understand how plants have evolved and diversified, but also assist plant breeders in designing new strategies for crop improvement.

  8. Ohio Advanced Energy Manufacturing Center

    SciTech Connect

    Kimberly Gibson; Mark Norfolk

    2012-07-30

    The program goal of the Ohio Advanced Energy Manufacturing Center (OAEMC) is to support advanced energy manufacturing and to create responsive manufacturing clusters that will support the production of advanced energy and energy-efficient products to help ensure the nation's energy and environmental security. This goal cuts across a number of existing industry segments critical to the nation's future. Many of the advanced energy businesses are starting to make the transition from technology development to commercial production. Historically, this transition from laboratory prototypes through initial production for early adopters to full production for mass markets has taken several years. Developing and implementing manufacturing technology to enable production at a price point the market will accept is a key step. Since these start-up operations are configured to advance the technology readiness of the core energy technology, they have neither the expertise nor the resources to address manufacturing readiness issues they encounter as the technology advances toward market entry. Given the economic realities of today's business environment, finding ways to accelerate this transition can make the difference between success and failure for a new product or business. The advanced energy industry touches a wide range of industry segments that are not accustomed to working together in complex supply chains to serve large markets such as automotive and construction. During its first three years, the Center has catalyzed the communication between companies and industry groups that serve the wide range of advanced energy markets. The Center has also found areas of common concern, and worked to help companies address these concerns on a segment or industry basis rather than having each company work to solve common problems individually. EWI worked with three industries through public-private partnerships to sew together disparate segments helping to promote overall industry

  9. Process for manufacturing tantalum capacitors

    DOEpatents

    Lauf, Robert J.; Holcombe, Cressie E.; Dykes, Norman L.

    1993-01-01

    A process for manufacturing tantalum capacitors in which microwave energy is used to sinter a tantalum powder compact in order to achieve higher surface area and improved dielectric strength. The process comprises cold pressing tantalum powder with organic binders and lubricants to form a porous compact. After removal of the organics, the tantalum compact is heated to 1300.degree. to 2000.degree. C. by applying microwave radiation. Said compact is then anodized to form a dielectric oxide layer and infiltrated with a conductive material such as MnO.sub.2. Wire leads are then attached to form a capacitor to said capacitor is hermetically packaged to form the finished product.

  10. Method for manufacturing magnetohydrodynamic electrodes

    DOEpatents

    Killpatrick, D.H.; Thresh, H.R.

    1980-06-24

    A method of manufacturing electrodes for use in a magnetohydrodynamic (MHD) generator is described comprising the steps of preparing a billet having a core of a first metal, a tubular sleeve of a second metal, and an outer sheath of an extrusile metal; evacuating the space between the parts of the assembled billet; extruding the billet; and removing the outer jacket. The extruded bar may be made into electrodes by cutting and bending to the shape required for an MHD channel frame. The method forms a bond between the first metal of the core and the second metal of the sleeve strong enough to withstand a hot and corrosive environment.

  11. Process for manufacturing tantalum capacitors

    DOEpatents

    Lauf, R.J.; Holcombe, C.E.; Dykes, N.L.

    1993-02-02

    A process for manufacturing tantalum capacitors in which microwave energy is used to sinter a tantalum powder compact in order to achieve higher surface area and improved dielectric strength. The process comprises cold pressing tantalum powder with organic binders and lubricants to form a porous compact. After removal of the organics, the tantalum compact is heated to 1,300 to 2,000 C by applying microwave radiation. Said compact is then anodized to form a dielectric oxide layer and infiltrated with a conductive material such as MnO[sub 2]. Wire leads are then attached to form a capacitor to said capacitor is hermetically packaged to form the finished product.

  12. Manufacturing method of photonic crystal

    DOEpatents

    Park, In Sung; Lee, Tae Ho; Ahn, Jin Ho; Biswas, Rana; Constant, Kristen P.; Ho, Kai-Ming; Lee, Jae-Hwang

    2013-01-29

    A manufacturing method of a photonic crystal is provided. In the method, a high-refractive-index material is conformally deposited on an exposed portion of a periodic template composed of a low-refractive-index material by an atomic layer deposition process so that a difference in refractive indices or dielectric constants between the template and adjacent air becomes greater, which makes it possible to form a three-dimensional photonic crystal having a superior photonic bandgap. Herein, the three-dimensional structure may be prepared by a layer-by-layer method.

  13. Cogasification of coal and other domestic fuels

    SciTech Connect

    Green, A.; Mullin, J.; Zanardi, M.; Peres, S.

    1996-12-31

    Almost all new additions to electrical generation in the USA are natural gas combined cycle systems (NGCC) systems. This trend reflects the development of high efficiency gas turbines (GT), low capital, operation and maintenance of NGCC systems and optimism as to natural gas resources. With utility deregulation these developments will seriously restrict long term use of coal and other solid fuels unless a los cost integrated gasifier (IG) fed by low cost feedstocks can be coupled with a CC system. This study mainly considers on-site cogasification of coal with other domestic fuels in an indirectly heated gasifier as a long term strategy for lowering the effective costs of IGGT systems. The authors also consider cocombustion of coal with other low cost domestic fuels as a near term strategy for minimizing fuel costs for competitiveness under utility deregulation. These fuel blending approaches both make use of common fast copyrolysis processes. They examine fast copyrolysis from a molecular point of view searching for advantageous feedstock blends. The authors conclude that blending coal with complementary coals, biomass, MSW or natural gas would be useful in near term cocombustion systems and long term integrated cogasification combined cycle or cogeneration systems.

  14. New Manufacturing Method for Paper filler and Fiber Material

    SciTech Connect

    Doelle, Klaus

    2011-11-22

    The study compares commercial available filler products with a new developed “Hybrid Fiber Filler Composite Material” and how main structural, optical and strength properties are affected by increasing the filler content of at least 5% over commercial values. The study consists of: (i) an overview of paper filler materials used in the paper production process, (ii) discusses the manufacturing technology of lime based filler materials for paper applications, (iii) gives an overview of new emerging paper filler technologies, (iv) discusses a filler evaluation of commercial available digital printing paper products, (v) reports from a detailed handsheet study and 12” pilot plant paper machine trial runs with the new Hybrid Fiber Filler Composite Material, and (vi) evaluates and compares commercial filler products and the new Hybrid Fiber Filler Composite Material with a life cycle analyses that explains manufacturing, economic and environmental benefits as they are applied to uncoated digital printing papers.

  15. From South Carolina to Massachusetts, Recovery Act Boosts Domestic Wind |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy From South Carolina to Massachusetts, Recovery Act Boosts Domestic Wind From South Carolina to Massachusetts, Recovery Act Boosts Domestic Wind November 2, 2010 - 5:02pm Addthis Jacques Beaudry-Losique Director, Wind & Water Program Last week, Clemson University broke ground on a facility critical to the expansion of domestic wind power. At a converted Navy base in North Charleston, this one-of-a-kind center will test large drivetrains - the machinery that converts

  16. Model Simulating Real Domestic Hot Water Use - Building America Top

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Innovation | Department of Energy Model Simulating Real Domestic Hot Water Use - Building America Top Innovation Model Simulating Real Domestic Hot Water Use - Building America Top Innovation Image of a pipe insulation.jpg As progress continues with high-R, tightly sealed thermal enclosures, domestic hot water becomes an increasingly important energy use in high-performance homes. This Top Innovation describes Building America research by Alliance for Residential Building Innovation and the

  17. Additive manufacturing of hybrid circuits

    DOE PAGES [OSTI]

    Bell, Nelson S.; Sarobol, Pylin; Cook, Adam; Clem, Paul G.; Keicher, David M.; Hirschfeld, Deidre; Hall, Aaron Christopher

    2016-03-26

    There is a rising interest in developing functional electronics using additively manufactured components. Considerations in materials selection and pathways to forming hybrid circuits and devices must demonstrate useful electronic function; must enable integration; and must complement the complex shape, low cost, high volume, and high functionality of structural but generally electronically passive additively manufactured components. This article reviews several emerging technologies being used in industry and research/development to provide integration advantages of fabricating multilayer hybrid circuits or devices. First, we review a maskless, noncontact, direct write (DW) technology that excels in the deposition of metallic colloid inks for electrical interconnects.more » Second, we review a complementary technology, aerosol deposition (AD), which excels in the deposition of metallic and ceramic powder as consolidated, thick conformal coatings and is additionally patternable through masking. As a result, we show examples of hybrid circuits/devices integrated beyond 2-D planes, using combinations of DW or AD processes and conventional, established processes.« less

  18. Table 21. Domestic Crude Oil First Purchase Prices

    Energy Information Administration (EIA) (indexed site)

    Administration Petroleum Marketing Annual 1996 41 Table 21. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) - Continued Year Month PAD District II...

  19. Table 21. Domestic Crude Oil First Purchase Prices

    Energy Information Administration (EIA) (indexed site)

    AdministrationPetroleum Marketing Annual 1998 41 Table 21. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) - Continued Year Month PAD District II...

  20. Table 22. Domestic Crude Oil First Purchase Prices for Selected...

    Energy Information Administration (EIA) (indexed site)

    data. Source: Energy Information Administration, Form EIA-182, "Domestic Crude Oil First Purchase Report." 44 Energy Information AdministrationPetroleum Marketing Annual...

  1. Table 21. Domestic Crude Oil First Purchase Prices

    Energy Information Administration (EIA) (indexed site)

    Administration Petroleum Marketing Annual 1995 41 Table 21. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) - Continued Year Month PAD District II...

  2. Table 22. Domestic Crude Oil First Purchase Prices for Selected...

    Energy Information Administration (EIA) (indexed site)

    data. Source: Energy Information Administration, Form EIA-182, "Domestic Crude Oil First Purchase Report." 44 Energy Information Administration Petroleum Marketing Annual...

  3. ORISE: Securing the Golden State from threats foreign and domestic

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ORISE helps California emergency planners with innovative training on state and local levels To protect the state of California from both foreign and domestic threats, ORISE ...

  4. NNSA Successfully Converts Third Domestic Research Reactor in...

    National Nuclear Security Administration (NNSA)

    Successfully Converts Third Domestic Research Reactor in the Last Year September 13, 2007 ... converted the 1-kilowatt materials test reactor (PUR-1) at Purdue University in Indiana ...

  5. American Chemical Society International-Domestic Student Summit

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Chemical Society International-Domestic Student Summit - Sandia Energy Energy Search Icon ... ARPA-E Basic Energy Sciences Materials Sciences and Engineering Chemical Sciences ...

  6. Acquisition Letter on Contractor Domestic Extended Personnel Assignments

    Energy.gov [DOE]

    The attached Acquisition Letter has been issued to provide guidance on the Department's policy governing reimbursement of costs associated with contractor domestic extended personnel assignments.

  7. 2nd Quarter 2016 Domestic Uranium Production Report

    Annual Energy Outlook

    Next Release Date: November 2016 Table 1. Total production of uranium concentrate in the ... Administration: Form EIA-851A and Form EIA-851Q, "Domestic Uranium Production Report."

  8. 2nd Quarter 2016 Domestic Uranium Production Report

    Energy Information Administration (EIA) (indexed site)

    Figure 1. Uranium concentrate production in the United States, 1996 - 2nd quarter 2016 ... Administration: Form EIA-851A and Form EIA-851Q, "Domestic Uranium Production Report."

  9. Domestic Hot Water Event Schedule Generator - Energy Innovation...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Efficiency Building Energy Efficiency Find More Like This Return to Search Domestic Hot Water Event Schedule Generator National Renewable Energy Laboratory Contact NREL About This...

  10. Crude Oil Prices Table 21. Domestic Crude Oil First Purchase...

    Energy Information Administration (EIA) (indexed site)

    Information Administration Petroleum Marketing Annual 1995 41 Table 21. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) - Continued Year Month PAD District II...

  11. Policy Analysis of Water Availability and Use Issues for Domestic...

    Office of Scientific and Technical Information (OSTI)

    Policy Analysis of Water Availability and Use Issues for Domestic Oil Shale and Oil Sands Development Citation Details In-Document Search Title: Policy Analysis of Water ...

  12. Montana Domestic Sewage Treatment Lagoons General Permit Information...

    OpenEI (Open Energy Information) [EERE & EIA]

    Lagoons General Permit Information Citation Montana Department of Environmental Quality - Water Protection Bureau. 72012. Montana Domestic Sewage Treatment Lagoons General Permit...

  13. Montana Domestic Sewage Treatment Lagoons General Permit Fact...

    OpenEI (Open Energy Information) [EERE & EIA]

    Lagoons General Permit Fact Sheet Citation Montana Department of Environmental Quality - Water Protection Bureau. 82012. Montana Domestic Sewage Treatment Lagoons General Permit...

  14. Montana Notice of Intent: Domestic Sewage Treatment Lagoons General...

    OpenEI (Open Energy Information) [EERE & EIA]

    Reference LibraryAdd to library Form: Montana Notice of Intent: Domestic Sewage Treatment Lagoons General Permit (MDEQ Form NOI) Abstract Form to be completed by owner or...

  15. Maricopa Assn. of Governments - PV and Solar Domestic Water Heating...

    Energy.gov [DOE] (indexed site)

    June 18, 2003, MAG passed permit submission requirements for residential solar domestic water heating systems. This is in addition to the existing standards for residential and...

  16. Webtrends Archives by Fiscal Year - Advanced Manufacturing Office...

    Energy.gov [DOE] (indexed site)

    Advanced Manufacturing Office, Webtrends archives by fiscal year. Advanced Manufacturing FY09 (2.15 MB) Advanced Manufacturing FY10 (2.13 MB) Advanced Manufacturing FY11 (2.13 MB) ...

  17. Non-Space Heating Electrical Consumption in Manufactured Homes: Residential Construction Demonstration Project Cycle II : Final Report.

    SciTech Connect

    Onisko, Stephen A.; Roos, Carolyn; Baylon, David

    1993-06-01

    This report summarizes submeter data of the non-space heating electrical energy use in a sample of manufactured homes. These homes were built to Super Good Cents insulation standards in 1988 and 1989 under the auspices of RCDP Cycle 2 of the Bonneville Power Administration. They were designed to incorporate innovations in insulation and manufacturing techniques developed to encourage energy conservation in this important housing type. Domestic water heating (DWH) and other non-space heat energy consumption, however, were not generally affected by RCDP specifications. The purpose of this study is to establish a baseline for energy conservation in these areas and to present a method for estimating total energy saving benefits associated with these end uses. The information used in this summary was drawn from occupant-read submeters and manufacturersupplied specifications of building shell components, appliances and water heaters. Information was also drawn from a field review of ventilation systems and building characteristics. The occupant survey included a census of appliances and occupant behavior in these manufactured homes. A total of 150 manufactured homes were built under this program by eight manufacturers. An additional 35 homes were recruited as a control group. Of the original 185 houses, approximately 150 had some usable submeter data for domestic hot water and 126 had usable submeter data for all other nonheating consumption. These samples were used as the basis for all consumption analysis. The energy use characteristics of these manufactured homes were compared with that of a similar sample of RCDP site-built homes. In general, the manufactured homes were somewhat smaller and had fewer occupants than the site-built homes. The degree to which seasonal variations were present in non-space heat uses was reviewed.

  18. MANUFACTURING CALIFORNIA LAWRENCE BERKELEY LAB POC David Chen

    Office of Environmental Management (EM)

    Instrument Manufacturing for Measuring and Testing Electricity and Electrical Signals ... 335991 All Other Miscellaneous Electrical Equipment and Component Manufacturing ...

  19. Notice of Intent (NOI): Clean Energy Manufacturing Innovation Institute on

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Smart Manufacturing: Advanced Sensors, Controls, Platforms and Modeling for Manufacturing | Department of Energy Clean Energy Manufacturing Innovation Institute on Smart Manufacturing: Advanced Sensors, Controls, Platforms and Modeling for Manufacturing Notice of Intent (NOI): Clean Energy Manufacturing Innovation Institute on Smart Manufacturing: Advanced Sensors, Controls, Platforms and Modeling for Manufacturing December 11, 2014 - 11:30am Addthis The purpose of this Notice of Intent is

  20. President Obama Announces New Public-Private Manufacturing Innovation...

    Energy.gov [DOE] (indexed site)

    Department's manufacturing innovation institute for next generation power electronics. ... to lead a manufacturing innovation institute for next generation power electronics. ...

  1. Manufacturing Energy and Carbon Footprint Definitions and Assumptions...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Definitions and Assumptions, October 2012 Manufacturing Energy and Carbon Footprint ... More Documents & Publications Understanding Manufacturing Energy and Carbon Footprints, ...

  2. Method for manufacturing magnetohydrodynamic electrodes

    DOEpatents

    Killpatrick, Don H.; Thresh, Henry R.

    1982-01-01

    A method of manufacturing electrodes for use in a magnetohydrodynamic (MHD) generator comprising the steps of preparing a billet having a core 10 of a first metal, a tubular sleeve 12 of a second metal, and an outer sheath 14, 16, 18 of an extrusile metal; evacuating the space between the parts of the assembled billet; extruding the billet; and removing the outer jacket 14. The extruded bar may be made into electrodes by cutting and bending to the shape required for an MDH channel frame. The method forms a bond between the first metal of the core 10 and the second metal of the sleeve 12 strong enough to withstand a hot and corrosive environment.

  3. Means of manufacturing annular arrays

    DOEpatents

    Day, R.A.

    1985-10-10

    A method is described for manufacturing an annular acoustic transducer array from a plate of transducer material, which enables production of precision aligned arrays at low cost. The circular plate is sawed along at least two lines that are radial to the axis of the plate. At steps along each radial cut, the plate is rotated first in one direction and then in an opposite direction by a predetermined angle such as slightly less than 90/sup 0/. The cuts result in the forming of several largely ring-shaped lands, each largely ring-shaped land being joined to the other rings of different radii by thin portions of the plate, and each ring being cut into segments. The bridges that join different rings hold the transducer together until it can be mounted on a lens.

  4. Manufactured caverns in carbonate rock

    DOEpatents

    Bruce, David A.; Falta, Ronald W.; Castle, James W.; Murdoch, Lawrence C.

    2007-01-02

    Disclosed is a process for manufacturing underground caverns suitable in one embodiment for storage of large volumes of gaseous or liquid materials. The method is an acid dissolution process that can be utilized to form caverns in carbonate rock formations. The caverns can be used to store large quantities of materials near transportation facilities or destination markets. The caverns can be used for storage of materials including fossil fuels, such as natural gas, refined products formed from fossil fuels, or waste materials, such as hazardous waste materials. The caverns can also be utilized for applications involving human access such as recreation or research. The method can also be utilized to form calcium chloride as a by-product of the cavern formation process.

  5. Photovoltaic manufacturing technology, Phase 1

    SciTech Connect

    Somberg, H. )

    1991-11-01

    This report describes existing integrated processes for solar cell manufacturing and lists as the primary opportunity for improvement the following areas: low-cost silicon sheets with improved characteristics; improved large-scale and automated solar cell processes that can lead to cell efficiencies in the range of 14% (encapsulated) for direct-cast wafers; improved handling and lamination of large-area modules for the emerging utility market. The proposed solutions can lead to finished module costs on the order of $1.55 per square meter or a selling price of less than $2.00/Watt. The problems that may be considered generic to the industry and that have been addressed in this work are as follows: gettering and passivation of silicon wafers; spray-on passivation layers; dual antireflection coatings; ink-jet printing of metallizations; and automated handling of large-area modules and associated vertical lamination. 14 refs.

  6. USCAR LEP ESST Advanced Manufacturing

    SciTech Connect

    Lazarus, L.J.

    2000-09-25

    The objective of this task was to provide processing information data summaries on powder metallurgy (PM) alloys that meet the partner requirements for the production of low mass, highly accurate, near-net-shape powertrain components. This required modification to existing ISO machinability test procedures and development of a new drilling test procedure. These summaries could then be presented in a web page format. When combined with information generated from the USCAR CRADA this would allow chemical, metallurgical, and machining data on PM alloys to be available to all engineering and manufacturing personnel that have access to in-house networks. The web page format also allows for the additions of other wrought materials, making this a valuable tool to the technical staffs.

  7. Wind Turbine Manufacturing Process Monitoring

    SciTech Connect

    Waseem Faidi; Chris Nafis; Shatil Sinha; Chandra Yerramalli; Anthony Waas; Suresh Advani; John Gangloff; Pavel Simacek

    2012-04-26

    To develop a practical inline inspection that could be used in combination with automated composite material placement equipment to economically manufacture high performance and reliable carbon composite wind turbine blade spar caps. The approach technical feasibility and cost benefit will be assessed to provide a solid basis for further development and implementation in the wind turbine industry. The program is focused on the following technology development: (1) Develop in-line monitoring methods, using optical metrology and ultrasound inspection, and perform a demonstration in the lab. This includes development of the approach and performing appropriate demonstration in the lab; (2) Develop methods to predict composite strength reduction due to defects; and (3) Develop process models to predict defects from leading indicators found in the uncured composites.

  8. Advanced manufacturing: Technology and international competitiveness

    SciTech Connect

    Tesar, A.

    1995-02-01

    Dramatic changes in the competitiveness of German and Japanese manufacturing have been most evident since 1988. All three countries are now facing similar challenges, and these challenges are clearly observed in human capital issues. Our comparison of human capital issues in German, Japanese, and US manufacturing leads us to the following key judgments: Manufacturing workforces are undergoing significant changes due to advanced manufacturing technologies. As companies are forced to develop and apply these technologies, the constituency of the manufacturing workforce (especially educational requirements, contingent labor, job content, and continuing knowledge development) is being dramatically and irreversibly altered. The new workforce requirements which result due to advanced manufacturing require a higher level of worker sophistication and responsibility.

  9. LANL names new head of Plutonium Science and Manufacturing

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Jeff Yarbrough joins Los Alamos from B&W Pantex LANL names new head of Plutonium Science and Manufacturing Jeff Yarbrough joins Los Alamos from the B&W Pantex plant in Amarillo, Texas. March 2, 2012 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory

  10. Manufacturing Barriers to High Temperature PEM Commercialization |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Barriers to High Temperature PEM Commercialization Manufacturing Barriers to High Temperature PEM Commercialization Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop in Washington, DC, August 11-12, 2011. Manufacturing Barriers to High Temperature PEM Commercialization (785.02 KB) More Documents & Publications PBI-Phosphoric Acid Based Membrane Electrode Assemblies: Status Update MCFC and PAFC R&D Workshop Summary Report 2012 Pathways to

  11. Clean Energy Manufacturing Reports | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Reports Clean Energy Manufacturing Reports The Clean Energy Manufacturing Initiative develops competitiveness analysis and strategies that inform R&D investments and other efforts needed to address key barriers to growing U.S. clean energy manufacturing competitiveness. This unprecedented competitiveness analysis evaluates the costs of producing clean energy products in the U.S. compared to competitor nations to understand factory location decisions and identify key drivers to U.S. clean

  12. Cincinnati Big Area Additive Manufacturing (BAAM)

    SciTech Connect

    Duty, Chad E.; Love, Lonnie J.

    2015-03-04

    Oak Ridge National Laboratory (ORNL) worked with Cincinnati Incorporated (CI) to demonstrate Big Area Additive Manufacturing which increases the speed of the additive manufacturing (AM) process by over 1000X, increases the size of parts by over 10X and shows a cost reduction of over 100X. ORNL worked with CI to transition the Big Area Additive Manufacturing (BAAM) technology from a proof-of-principle (TRL 2-3) demonstration to a prototype product stage (TRL 7-8).

  13. Fiber Reinforced Polymer Composite Manufacturing Workshop

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fiber Reinforced Polymer Composite Manufacturing Workshop January 13, 2014 Participant Provided Discussion Starter Presentations Advanced Manufacturing Office (AMO) manufacturing.energy.gov 2 Disclaimer This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the

  14. Working with SRNL - The Advanced Manufacturing Collaborative

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    4/2016 SEARCH SRNL GO The Advanced Manufacturing Collaborative Academia Government Industry AMC Leadership Contact AMC Home SRNL Home Working with SRNL The Advanced Manufacturing Collaborative For over 50 years, the Savannah River National Laboratory (SRNL) has been providing the science behind nuclear chemical manufacturing at the Savannah River Site (SRS), a sprawling nuclear complex that was once part of our nation's Cold War. Time has changed the mission at SRS from nuclear production for

  15. Advanced Qualification of Additive Manufacturing Workshop

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Additive Manufacturing Workshop Advanced Qualification of Additive Manufacturing Materials (AM) Workshop Our goal is to define opportunities and research gaps within additive manufacturing (AM) and to engage the broader scientific/engineering community to discuss future research directions. thumbnail of thumbnail of Contact Institute Director Dr. Alexander V. Balatsky Institute for Materials Science (505) 665-0077 Email Deputy Director Dr. Jennifer S. Martinez Institute for Materials Science

  16. Advanced Blade Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Blade Manufacturing Advanced Blade Manufacturing While the blades of a turbine may be one of the most recognizable features of any wind installation, they also represent one of the largest physical challenges in the manufacturing process. Turbine blades can reach up to 75 meters (250 feet) in length, and will continue to increase in size as the demand for renewable energy grows and as wind turbines are deployed offshore. Because of their size and aerodynamic complexity, wind turbine blades are

  17. Advanced Drivetrain Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Drivetrain Manufacturing Advanced Drivetrain Manufacturing The U.S. Department of Energy (DOE) supports advanced manufacturing techniques that are leading to the "next-generation" of more reliable, affordable, and efficient wind turbine drivetrains. As turbines continue to increase in size, each and every component must also be scaled to meet the demands for renewable energy. What is the Drivetrain? The drivetrain of a wind turbine is composed of the gearbox and the generator, the

  18. Clean Energy Manufacturing Resources - Technology Feasibility | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Feasibility Clean Energy Manufacturing Resources - Technology Feasibility Clean Energy Manufacturing Resources - Technology Feasibility Find resources to help you evaluate the feasibility of your idea for a new clean energy technology or product. For determining feasibility, areas to consider include U.S. Department of Energy (DOE) priorities, licensing, R&D funding, and strategic project partnerships. For more resources, see the Clean Energy Manufacturing Federal Resource

  19. Smart Manufacturing Innovation Institute: Overview, Goals and...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... o A manufacturing platform architecture, based on an open-standards, open- ... facilities Transition Plan o Sustainability plan for the proposed Institute past ...

  20. Industrial Scale Demonstration of Smart Manufacturing Achieving...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    While many U.S. manufacturing operations utilize ... time across an entire production operation are rare in ... systems can be applied is in the management of waste heat. ...

  1. Batteries - Materials Processing and Manufacturing Breakout session

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    performance safety * Organic solvent vs. dry ... Areas Being Discussed * Li metal manufacturing * Variability ... establish a transparent framework for an open forum ...

  2. Solid State Lighting OLED Manufacturing Roundtable Summary

    SciTech Connect

    none,

    2010-03-31

    Summary of a meeting of OLED experts to develop proposed priority tasks for the Manufacturing R&D initiative, including task descriptions, discussion points, recommendations, and presentation highlights.

  3. Advanced Materials Manufacturing and Innovative Technologies...

    Energy Saver

    Director, Office of Research & Development November 12, 2014 Advanced Materials Manufacturing and Innovative Technologies for Natural Gas Pipeline Systems and Components DOE ...

  4. Breaking Barriers in Polymer Additive Manufacturing (Conference...

    Office of Scientific and Technical Information (OSTI)

    Additive Manufacturing (AM) enables the creation of complex structures directly from a computer-aided design (CAD). There are limitations that prevent the technology from realizing ...

  5. National Electrical Manufacturers Association (NEMA) Response...

    Energy.gov [DOE] (indexed site)

    National Electrical Manufacturers Association (NEMA) submits the enclised comments regarding the Smart Grid RFI: Addressing Policy and Logistical Challeneges National Electrical ...

  6. National Electrical Manufacturers Association Ex Parte Memorandum...

    Office of Environmental Management (EM)

    Ex Parte Memorandum National Electrical Manufacturers Association Ex Parte Memorandum This memorandum memorializes a communication involving NEMA Ballast and Driver Section members ...

  7. Upcoming Clean Energy Manufacturing Initiative (CEMI) Southeast...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    interested in identifying opportunities that strengthen regional and national clean energy manufacturing competitiveness in the hydrogen and fuel cells sector to attend the event. ...

  8. additive manufacturing | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    The Manufacturing Leadership Council recognized KCNSC's achievements with awards in three categories, including Big Data & Advanced Analytics Leadership,... Labs in NNSA lead the ...

  9. Solid State Lighting LED Manufacturing Roundtable Summary

    SciTech Connect

    none,

    2010-03-31

    Summary of a meeting of LED experts to develop proposed priority tasks for the Manufacturing R&D initiative, including task descriptions, discussion points, recommendations, and presentation highlights.

  10. Energy-Related Carbon Emissions in Manufacturing

    Reports and Publications

    2000-01-01

    Energy-related carbon emissions in manufacturing analysis and issues related to the energy use, energy efficiency, and carbon emission indicators.

  11. Manufacturing Process for OLED Integrated Substrate

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Approach: Internal Extraction Layer (IEL): In-situ generation of nano-sized high optical index particles in a float glass manufacturing process without reheating the glass. ...

  12. Dispatchable Distributed Generation: Manufacturing's Role in...

    Energy.gov [DOE] (indexed site)

    Advanced Manufacturing Office (AMO) held a workshop in Austin, Texas at the Embassy Suites ... More Documents & Publications 2008 Texas State Energy Plan Application to Export Electric ...

  13. Derived Annual Estimates of Manufacturing Energy Consumption...

    Energy Information Administration (EIA) (indexed site)

    > Derived Annual Estimates - Executive Summary Derived Annual Estimates of Manufacturing Energy Consumption, 1974-1988 Figure showing Derived Estimates Executive Summary This...

  14. Advanced Qualification of Additive Manufacturing Workshop

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    To increase acceptance of additive manufacturing as a viable processing method, pathways ... Included in this Gordon style workshop will be panel discussions with the invited ...

  15. Advanced Qualification of Additive Manufacturing Materials Workshop

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    To increase acceptance of additive manufacturing as a viable processing method, pathways ... Included in this Gordon style workshop will be panel discussions with the invited ...

  16. Advanced Manufacturing Office Overview | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    More Documents & Publications Microwave and Radio Frequency Workshop Manufacturing Demonstration Facility Workshop Microwave (MW) and Radio Frequency (RF) as Enabling Technologies ...

  17. advanced manufacturing office | netl.doe.gov

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    DOE has supported the development of more than 250 energy-saving industrial technologies that ... collaborative communities to target a unique technology in advanced manufacturing. ...

  18. Manufacturing Ecosystems and Keystone Technologies (Text Version)

    Energy.gov [DOE]

    This is a text version of the Manufacturing Ecosystems and Keystone Technologies video, originally presented on March 12, 2012 at the MDF Workshop held in Chicago, Illinois.

  19. Welcome and Advanced Manufacturing Partnership (Text Version)

    Energy.gov [DOE]

    This is a text version of the Welcome and Advanced Manufacturing Partnership video, originally presented on March 12, 2012 at the MDF Workshop held in Chicago, Illinois.

  20. Microstructural Properties of Gamma Titanium Aluminide Manufactured...

    Office of Scientific and Technical Information (OSTI)

    COMPOUNDS In recent years, Electron Beam Melting (EBM) has matured as a technology for additive manufacturing of dense metal parts. The parts are built by additive consolidation...