National Library of Energy BETA

Sample records for district direct interconnection

  1. Pepco and PJM Interconnection Comments on District of Columbia...

    Energy Saver

    Interconnection Comments on District of Columbia Public Service Commission, Docket No. EO-05-01 Comments and Answer to Requests for Rehearing Pepco and PJM Interconnection Comments ...

  2. Pepco and PJM Interconnection Comments on District of Columbia Public

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Service Commission, Docket No. EO-05-01 Comments and Answer to Requests for Rehearing | Department of Energy Pepco and PJM Interconnection Comments on District of Columbia Public Service Commission, Docket No. EO-05-01 Comments and Answer to Requests for Rehearing Pepco and PJM Interconnection Comments on District of Columbia Public Service Commission, Docket No. EO-05-01 Comments and Answer to Requests for Rehearing Docket No. EO-05-01: In accordance with Order No. 202-06-1, issued by the

  3. Redding Direct Interconnection Project, Shasta County, California:

    SciTech Connect

    Not Available

    1986-01-01

    As required under the California Environemtnal Quality Act (CEQA), the City of Redding (City) has prepared an Environmental Impact report (EIR) for the proposed Direct interconnection Project. Western Area Power Administration (Western) is also required to prepare an environmental assessment (EA) under the National Environmental Policy Act (NEPA) due to its involvement in the Project. Since the City has alrady prepared their EIR, this EA will briefly summarize the impact assessment field work and findings from the City's EIR. The EIR is attached as an appendix to this EA. 21 refs., 20 figs., 10 tabs.

  4. Interconnect

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Interconnect Interconnect Edison employs the "Dragonfly" topology for the interconnection network. This topology is a group of interconnected local routers connected to other similar router groups by high speed global links. The groups are arranged such that data transfer from one group to another requires only one route through a global link. This topology is composed of circuit boards, copper and optical cables. Routers (represented by the Aries ASIC) are connected to other routers

  5. Interconnection

    Energy.gov [DOE]

    On December 2015, the Mississippi Public Service Commission (PSC) established net metering in the State accompanied by interconnection standards for distributed generator facilities. 

  6. Interconnect

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Interconnect Interconnect jaguar xt4 Hopper's "Gemini" network is connected in a 3D torus. Description Hopper's compute nodes are connected via a custom high-bandwidth, low-latency network provided by Cray. The connectivity is in the form of a "mesh" in which each node is connected to other nearby nodes like strands in a fishing net, except that the mesh extends in three dimensions. Each network node handles not only data destined for itself, but also data to be relayed to

  7. EIS-0389: Trinity Public Utility District Direct Interconnection, CA

    Energy.gov [DOE]

    This EIS analyzes DOE's decision to construct and operate proposed power transmission facilities in Trinity County, California.

  8. Direct Energy Services (District of Columbia) | Open Energy Informatio...

    OpenEI (Open Energy Information) [EERE & EIA]

    Direct Energy Services Place: District of Columbia References: EIA Form EIA-861 Final Data File for 2010 - File220101 EIA Form 861 Data Utility Id 54820 This article is a stub....

  9. Interconnection Coordination with Environment

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Topics * Interconnection Types - Large Generator Interconnect Procedures (LGIP) * ... Interconnection Types * Generators - Small Generator Interconnection Procedures (under ...

  10. Interconnection Panel

    Energy.gov [DOE]

    Presentation—given at at the Fall 2012 Federal Utility Partnership Working Group (FUPWG) meeting—discusses the interconnection panel, including an overview of the generation interconnection process (GIP), and interconnection agreements and their terms.

  11. Interconnection Standards

    Office of Energy Efficiency and Renewable Energy (EERE)

    NOTE: On March 2016, the NY Public Service Commission (PSC) modified the Standard Interconnection Requirements (SIR) increasing the maximum threshold for interconnection capacity of distributed...

  12. Interconnection Standards

    Energy.gov [DOE]

    The interconnection standards approved by the PUC also updated Nevada's net-metering policy, originally enacted in 1997. Previously, Nevada Revised Statute 704.774 addressed basic interconnection...

  13. Interconnection Standards

    Office of Energy Efficiency and Renewable Energy (EERE)

    Utilities must use an interconnection application and interconnection agreement approved by the IURC. A mutual indemnification provision and reasonable time limits on application review are inclu...

  14. Interconnection Guidelines

    Office of Energy Efficiency and Renewable Energy (EERE)

    South Carolina's interconnection guidelines apply to Progress Energy, Duke Energy, and South Carolina Electric and Gas.

  15. Interconnection Standards

    Energy.gov [DOE]

    Connecticut's interconnection guidelines, like FERC's standards, include provisions for three levels of systems:

  16. Interconnection Standards

    Office of Energy Efficiency and Renewable Energy (EERE)

    The interconnection rules set four levels of review for interconnection requests. A project must meet all of the requirements of a given classification in order to be eligible for that level of...

  17. Interconnection Standards

    Energy.gov [DOE]

    Utah’s interconnection rules are based on the Federal Energy Regulatory Commission’s (FERC) interconnection standards for small generators, adopted in May 2005 by FERC Order 2006. Utah's rules fo...

  18. Interconnection Guidelines

    Energy.gov [DOE]

    Under this process, an interconnection applicant must submit an application to the utility for an impact study, including a request for an estimate of the cost of interconnecting the proposed sys...

  19. Interconnection Standards

    Energy.gov [DOE]

    West Virginia's interconnection standards include two levels of review. The qualifications and application fees for each level are as follows:...

  20. Directed nanoscale self-assembly of molecular wires interconnecting nodal points using Monte Carlo simulations

    DOE PAGES [OSTI]

    Boscoboinik, A. M.; Manzi, S. J.; Tysoe, W. T.; Pereyra, V. D.; Boscoboinik, J. A.

    2015-09-10

    The influence of directing agents in the self-assembly of molecular wires to produce two-dimensional electronic nanoarchitectures is studied here using a Monte Carlo approach to simulate the effect of arbitrarily locating nodal points on a surface, from which the growth of self-assembled molecular wires can be nucleated. This is compared to experimental results reported for the self-assembly of molecular wires when 1,4-phenylenediisocyanide (PDI) is adsorbed on Au(111). The latter results in the formation of (Au-PDI)n organometallic chains, which were shown to be conductive when linked between gold nanoparticles on an insulating substrate. The present study analyzes, by means of stochasticmore » methods, the influence of variables that affect the growth and design of self-assembled conductive nanoarchitectures, such as the distance between nodes, coverage of the monomeric units that leads to the formation of the desired architectures, and the interaction between the monomeric units. As a result, this study proposes an approach and sets the stage for the production of complex 2D nanoarchitectures using a bottom-up strategy but including the use of current state-of-the-art top-down technology as an integral part of the self-assembly strategy.« less

  1. Directed nanoscale self-assembly of molecular wires interconnecting nodal points using Monte Carlo simulations

    SciTech Connect

    Boscoboinik, A. M.; Manzi, S. J.; Tysoe, W. T.; Pereyra, V. D.; Boscoboinik, J. A.

    2015-09-10

    The influence of directing agents in the self-assembly of molecular wires to produce two-dimensional electronic nanoarchitectures is studied here using a Monte Carlo approach to simulate the effect of arbitrarily locating nodal points on a surface, from which the growth of self-assembled molecular wires can be nucleated. This is compared to experimental results reported for the self-assembly of molecular wires when 1,4-phenylenediisocyanide (PDI) is adsorbed on Au(111). The latter results in the formation of (Au-PDI)n organometallic chains, which were shown to be conductive when linked between gold nanoparticles on an insulating substrate. The present study analyzes, by means of stochastic methods, the influence of variables that affect the growth and design of self-assembled conductive nanoarchitectures, such as the distance between nodes, coverage of the monomeric units that leads to the formation of the desired architectures, and the interaction between the monomeric units. As a result, this study proposes an approach and sets the stage for the production of complex 2D nanoarchitectures using a bottom-up strategy but including the use of current state-of-the-art top-down technology as an integral part of the self-assembly strategy.

  2. Interconnection Standards

    Office of Energy Efficiency and Renewable Energy (EERE)

    Interconnection contacts for the state's electric distribution utilities -- Atlantic City Electric, Rockland Electric, PSE&G, and Jersey Central Power and Light -- are available on the progra...

  3. Interconnection Standards

    Office of Energy Efficiency and Renewable Energy (EERE)

    Note: The North Carolina Utilities Commission approved revised interconnection standards in May 2015. The new standards used the Federal Energy Regulatory Commission's most recent Small Generator...

  4. Interconnection Standards

    Office of Energy Efficiency and Renewable Energy (EERE)

    Massachusetts' interconnection standards apply to all forms of distributed generation (DG), including renewables, and to all customers of the state's three investor-owned utilities (Unitil,...

  5. Interconnection Standards

    Energy.gov [DOE]

    Virginia has two interconnection standards: one for net-metered systems and one for systems that are not net-metered.

  6. Interconnection Standards

    Office of Energy Efficiency and Renewable Energy (EERE)

    NOTE: On February 2016, the PA Public Service Commission (PUC) issued a final rulemaking order amending interconnection regulation to reflect the increase in limits on customer generation capacity,...

  7. Interconnection Guidelines

    Energy.gov [DOE]

    Interconnected customers must comply with all relevant national standards, including those established by the Institute of Electrical and Electronic Engineers (IEEE), Underwriters Laboratories (U...

  8. Interconnection Guidelines

    Energy.gov [DOE]

    The state's utilities independently developed interconnection agreements for distributed generation (DG) prior to the ACC's ongoing proceeding to establish statewide standards. The Salt River Pro...

  9. Interconnection Standards

    Energy.gov [DOE]

    The Iowa Utilities Board (IUB) adopted rules for utilities in May 2010 for the interconnection of distributed generation facilities in Iowa.

  10. Interconnection Standards

    Energy.gov [DOE]

    Technical screens have been established for each level, and the Institute of Electrical and Electronics Engineers 1547 technical standard is used for all interconnections. Reasonable time frames ...

  11. Interconnection Guidelines

    Energy.gov [DOE]

    The Missouri Public Service Commission (PSC) adopted administrative rules for investor-owned utilities that included simplified interconnection standards, and electric cooperatives and municipal ...

  12. Interconnection Guidelines

    Energy.gov [DOE]

    Rocky Mountain Power (PacifiCorp) has developed an interconnection application for net metering. All other electric utilities in Wyoming -- investor-owned utilities and rural electric associations...

  13. Interconnection Guidelines

    Office of Energy Efficiency and Renewable Energy (EERE)

    Kansas adopted the Net Metering and Easy Connection Act in May 2009 (see K.S.A. 66-1263 through 66-1271), establishing interconnection guidelines and net metering for customer-owned generators.

  14. Interconnection Standards

    Energy.gov [DOE]

    Fees for interconnection requests increase with each Level. A Level 1 request must submit $50 fee; a Level 2 request must submit a fee of $50 plus $1/kW of generator capacity; a Level 3 request m...

  15. Interconnection Standards

    Office of Energy Efficiency and Renewable Energy (EERE)

    Note: The Public Utilities Commission of Ohio (PUCO) opened a docket (Case 12-2051-EL-RDR) to review interconnection rules for investor-owned utilities. The PUCO adopted amended rules for electric...

  16. Interconnection Guidelines

    Energy.gov [DOE]

    The interconnection guidelines state that the utility can require a customer to have liability insurance, if the insurance is easily available at a reasonable cost to the customer.  No external...

  17. Interconnection Guidelines

    Energy.gov [DOE]

    Delmarva, Delaware's only investor-owned electric utility, has four basic levels of interconnection based on system size and system type (inverter-based or non-inverter-based). In June 2011 the...

  18. Interconnection Guidelines

    Energy.gov [DOE]

    The Louisiana Public Service Commission (PSC) adopted rules for net metering and interconnection in November 2005. Louisiana's rules, based on those in place in Arkansas, require publicly-owned u...

  19. Interconnection Standards

    Office of Energy Efficiency and Renewable Energy (EERE)

    The new rules apply to interconnections of all types of distributed generation systems of less than 10 MW to the electric distribution system for all types of utilities -- investor-owned utilities...

  20. Interconnection Standards

    Energy.gov [DOE]

    Hawaii has established simplified interconnection rules for small renewables and separate rules for all other distributed generation (DG). For inverter-based systems up to 10 kilowatts (kW) in ca...

  1. Interconnection Standards

    Energy.gov [DOE]

    The PSC has published two sets of standard forms for interconnection, available on the program web site. One set pertains to systems smaller than 20 kW while the second set applies to larger syst...

  2. Interconnection Standards

    Office of Energy Efficiency and Renewable Energy (EERE)

    The revised standards provide for three separate levels of interconnection based on system capacity and other requirements. The first level, Tier 1 systems, applies generally to systems up to 25...

  3. Interconnection networks

    DOEpatents

    Faber, V.; Moore, J.W.

    1988-06-20

    A network of interconnected processors is formed from a vertex symmetric graph selected from graphs GAMMA/sub d/(k) with degree d, diameter k, and (d + 1)exclamation/ (d /minus/ k + 1)exclamation processors for each d greater than or equal to k and GAMMA/sub d/(k, /minus/1) with degree d /minus/ 1, diameter k + 1, and (d + 1)exclamation/(d /minus/ k + 1)exclamation processors for each d greater than or equal to k greater than or equal to 4. Each processor has an address formed by one of the permutations from a predetermined sequence of letters chosen a selected number of letters at a time, and an extended address formed by appending to the address the remaining ones of the predetermined sequence of letters. A plurality of transmission channels is provided from each of the processors, where each processor has one less channel than the selected number of letters forming the sequence. Where a network GAMMA/sub d/(k, /minus/1) is provided, no processor has a channel connected to form an edge in a direction delta/sub 1/. Each of the channels has an identification number selected from the sequence of letters and connected from a first processor having a first extended address to a second processor having a second address formed from a second extended address defined by moving to the front of the first extended address the letter found in the position within the first extended address defined by the channel identification number. The second address is then formed by selecting the first elements of the second extended address corresponding to the selected number used to form the address permutations. 9 figs.

  4. Electrical interconnect

    DOEpatents

    Frost, John S.; Brandt, Randolph J.; Hebert, Peter; Al Taher, Omar

    2015-10-06

    An interconnect includes a first set of connector pads, a second set of connector pads, and a continuous central portion. A first plurality of legs extends at a first angle from the continuous central portion. Each leg of the first plurality of legs is connected to a connector pad of a first set of connector pads. A second plurality of legs extends at a second angle from the continuous central portion. Each leg of the second plurality of legs is connected to a connector pad of the second set of connector pads. Gaps are defined between legs. The gaps enable movement of the first set of connector pads relative to the second set of connector pads.

  5. Interconnection Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Interconnection Resources Interconnection Resources Interconnection is the technical procedures and legal requirements surrounding energy customers' ability to connect their ...

  6. Advanced Interconnect Development

    SciTech Connect

    Yang, Z.G.; Maupin, G.; Simner, S.; Singh, P.; Stevenson, J.; Xia, G.

    2005-01-27

    The objectives of this project are to develop cost-effective, optimized materials for intermediate temperature SOFC interconnect and interconnect/electrode interface applications and identify and understand degradation processes in interconnects and at their interfaces with electrodes.

  7. Puerto Rico- Interconnection Standards

    Energy.gov [DOE]

    Customer-generators seeking to interconnect first submit a standardized "Evaluation Request" to PREPA to determine whether or not the system will qualify for the "Simple Interconnection Process...

  8. Interconnected semiconductor devices

    DOEpatents

    Grimmer, Derrick P.; Paulson, Kenneth R.; Gilbert, James R.

    1990-10-23

    Semiconductor layer and conductive layer formed on a flexible substrate, divided into individual devices and interconnected with one another in series by interconnection layers and penetrating terminals.

  9. Cascade solar cell having conductive interconnects

    DOEpatents

    Borden, Peter G.; Saxena, Ram R.

    1982-10-26

    Direct ohmic contact between the cells in an epitaxially grown cascade solar cell is obtained by means of conductive interconnects formed through grooves etched intermittently in the upper cell. The base of the upper cell is directly connected by the conductive interconnects to the emitter of the bottom cell. The conductive interconnects preferably terminate on a ledge formed in the base of the upper cell.

  10. Interconnection of thermal parameters, microstructure and mechanical properties in directionally solidified Sn–Sb lead-free solder alloys

    SciTech Connect

    Dias, Marcelino; Costa, Thiago; Rocha, Otávio; Spinelli, José E.; Cheung, Noé; Garcia, Amauri

    2015-08-15

    Considerable effort is being made to develop lead-free solders for assembling in environmental-conscious electronics, due to the inherent toxicity of Pb. The search for substitute alloys of Pb–Sn solders has increased in order to comply with different soldering purposes. The solder must not only meet the expected levels of electrical performance but may also have appropriate mechanical strength, with the absence of cracks in the solder joints. The Sn–Sb alloy system has a range of compositions that can be potentially included in the class of high temperature solders. This study aims to establish interrelations of solidification thermal parameters, microstructure and mechanical properties of Sn–Sb alloys (2 wt.%Sb and 5.5 wt.%Sb) samples, which were directionally solidified under cooling rates similar to those of reflow procedures in industrial practice. A complete high-cooling rate cellular growth is shown to be associated with the Sn–2.0 wt.%Sb alloy and a reverse dendrite-to-cell transition is observed for the Sn–5.5 wt.%Sb alloy. Strength and ductility of the Sn–2.0 wt.%Sb alloy are shown not to be affected by the cellular spacing. On the other hand, a considerable variation in these properties is associated with the cellular region of the Sn–5.5 wt.%Sb alloy casting. - Graphical abstract: Display Omitted - Highlights: • The microstructure of the Sn–2 wt.%Sb alloy is characterized by high-cooling rates cells. • Reverse dendrite > cell transition occurs for Sn–5.5 wt.%Sb alloy: cells prevail for cooling rates > 1.2 K/s. • Sn–5.5 wt.%Sb alloy: the dendritic region occurs for cooling rates < 0.9 K/s. • Sn–5.5 wt.%Sb alloy: tensile properties are improved with decreasing cellular spacing.

  11. Printed Module Interconnects

    SciTech Connect

    Stockert, Talysa R.; Fields, Jeremy D.; Pach, Gregory F.; Mauger, Scott A.; van Hest, Maikel F. A. M.

    2015-06-14

    Monolithic interconnects in photovoltaic modules connect adjacent cells in series, and are typically formed sequentially involving multiple deposition and scribing steps. Interconnect widths of 500 um every 10 mm result in 5% dead area, which does not contribute to power generation in an interconnected solar panel. This work expands on previous work that introduced an alternative interconnection method capable of producing interconnect widths less than 100 um. The interconnect is added to the module in a single step after deposition of the photovoltaic stack, eliminating the need for scribe alignment. This alternative method can be used for all types of thin film photovoltaic modules. Voltage addition with copper-indium-gallium-diselenide (CIGS) solar cells using a 2-scribe printed interconnect approach is demonstrated. Additionally, interconnect widths of 250 um are shown.

  12. Western Interconnection Synchrophasor Project

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Demonstration Project Western Interconnection Synchrophasor Project Resources & Links Demand Response Energy Efficiency Emerging Technologies Synchrophasor measurements are a...

  13. Perforation patterned electrical interconnects

    DOEpatents

    Frey, Jonathan

    2014-01-28

    This disclosure describes systems and methods for increasing the usable surface area of electrical contacts within a device, such as a thin film solid state device, through the implementation of electrically conductive interconnects. Embodiments described herein include the use of a plurality of electrically conductive interconnects that penetrate through a top contact layer, through one or more multiple layers, and into a bottom contact layer. The plurality of conductive interconnects may form horizontal and vertical cross-sectional patterns. The use of lasers to form the plurality of electrically conductive interconnects from reflowed layer material further aids in the manufacturing process of a device.

  14. Solar cell array interconnects

    DOEpatents

    Carey, Paul G.; Thompson, Jesse B.; Colella, Nicolas J.; Williams, Kenneth A.

    1995-01-01

    Electrical interconnects for solar cells or other electronic components using a silver-silicone paste or a lead-tin (Pb-Sn) no-clean fluxless solder cream, whereby the high breakage of thin (<6 mil thick) solar cells using conventional solder interconnect is eliminated. The interconnects of this invention employs copper strips which are secured to the solar cells by a silver-silicone conductive paste which can be used at room temperature, or by a Pb-Sn solder cream which eliminates undesired residue on the active surfaces of the solar cells. Electrical testing using the interconnects of this invention has shown that no degradation of the interconnects developed under high current testing, while providing a very low contact resistance value.

  15. Solar cell array interconnects

    DOEpatents

    Carey, P.G.; Thompson, J.B.; Colella, N.J.; Williams, K.A.

    1995-11-14

    Electrical interconnects are disclosed for solar cells or other electronic components using a silver-silicone paste or a lead-tin (Pb-Sn) no-clean fluxless solder cream, whereby the high breakage of thin (<6 mil thick) solar cells using conventional solder interconnect is eliminated. The interconnects of this invention employs copper strips which are secured to the solar cells by a silver-silicone conductive paste which can be used at room temperature, or by a Pb-Sn solder cream which eliminates undesired residue on the active surfaces of the solar cells. Electrical testing using the interconnects of this invention has shown that no degradation of the interconnects developed under high current testing, while providing a very low contact resistance value. 4 figs.

  16. Topic A Awardee: Eastern Interconnection Planning Collaborative...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Eastern Interconnection Planning Collaborative Topic A Awardee: Eastern Interconnection Planning Collaborative Eastern Interconnection Planning Collaborative The Eastern ...

  17. Eastern Interconnection Planning Collaborative News Release ...

    Energy Saver

    Eastern Interconnection Planning Collaborative News Release Eastern Interconnection Planning Collaborative News Release The Eastern Interconnection Planning Collaborative (EIPC) ...

  18. Micro-fluidic interconnect

    DOEpatents

    Okandan, Murat; Galambos, Paul C.; Benavides, Gilbert L.; Hetherington, Dale L.

    2006-02-28

    An apparatus for simultaneously aligning and interconnecting microfluidic ports is presented. Such interconnections are required to utilize microfluidic devices fabricated in Micro-Electromechanical-Systems (MEMS) technologies, that have multiple fluidic access ports (e.g. 100 micron diameter) within a small footprint, (e.g. 3 mm.times.6 mm). Fanout of the small ports of a microfluidic device to a larger diameter (e.g. 500 microns) facilitates packaging and interconnection of the microfluidic device to printed wiring boards, electronics packages, fluidic manifolds etc.

  19. Interconnection Standards for Small Generators

    Energy.gov [DOE]

    NOTE: On July 2016, FERC issued Order 827 revising the Small Generation Interconnection Agreement (SGIA) to require newly interconnecting small generators under 20 MW to ride through abnormal...

  20. Reliability of Electrical Interconnects (Presentation)

    SciTech Connect

    Devoto, D.

    2014-06-01

    This presentation discusses the status of NREL's research on the reliability of electrical interconnects.

  1. Direct use of geothermal energy, Elko, Nevada district heating. Final report

    SciTech Connect

    Lattin, M.W.; Hoppe, R.D.

    1983-06-01

    In early 1978 the US Department of Energy, under its Project Opportunity Notice program, granted financial assistance for a project to demonstrate the direct use application of geothermal energy in Elko, Nevada. The project is to provide geothermal energy to three different types of users: a commercial office building, a commercial laundry and a hotel/casino complex, all located in downtown Elko. The project included assessment of the geothermal resource potential, resource exploration drilling, production well drilling, installation of an energy distribution system, spent fluid disposal facility, and connection of the end users buildings. The project was completed in November 1982 and the three end users were brought online in December 1982. Elko Heat Company has been providing continuous service since this time.

  2. SOFC INTERCONNECT DEVELOPMENT

    SciTech Connect

    Diane M. England

    2004-03-16

    An interconnect for an SOFC stack is used to connect fuel cells into a stack. SOFC stacks are expected to run for 40,000 hours and 10 thermal cycles for the stationary application and 10,000 hours and 7000 thermal cycles for the transportation application. The interconnect of a stack must be economical and robust enough to survive the SOFC stack operation temperature of 750 C and must maintain the electrical connection to the fuel cells throughout the lifetime and under thermal cycling conditions. Ferritic and austenitic stainless steels, and nickel-based superalloys were investigated as possible interconnect materials for solid oxide fuel cell (SOFC) stacks. The alloys were thermally cycled in air and in a wet nitrogen-argon-hydrogen (N2-Ar-H2-H2O) atmosphere. Thermogravimetry was used to determine the parabolic oxidation rate constants of the alloys in both atmospheres. The area-specific resistance of the oxide scale and metal substrates were measured using a two-probe technique with platinum contacts. The study identifies two new interconnect designs which can be used with both bonded and compressive stack sealing mechanisms. The new interconnect designs offer a solution to chromium vaporization, which can lead to degradation of some (chromium-sensitive) SOFC cathodes.

  3. Central American electrical interconnection

    SciTech Connect

    Not Available

    1988-12-01

    A technical cooperation grant of $2.25 million, designed to strengthen the capacity of Central American countries to operate their regional interconnected electrical system, was announced by the Inter-American Development Bank (IDB). The grant, extended from the banks Fund for Special Operations, will help improve the capacity of the regions electric power companies to achieve economical, safe operation of the interconnected electric power systems. The funds will also be used to finance regional studies of the accords, procedures, regulations, and supervisory mechanisms for the system, as well as program development and data bases.

  4. Capillary interconnect device

    DOEpatents

    Renzi, Ronald F

    2013-11-19

    An interconnecting device for connecting a plurality of first fluid-bearing conduits to a corresponding plurality of second fluid-bearing conduits thereby providing fluid communication between the first fluid-bearing conduits and the second fluid-bearing conduits. The device includes a manifold and one or two ferrule plates that are held by compressive axial forces.

  5. Fuel cell system with interconnect

    DOEpatents

    Liu, Zhien; Goettler, Richard; Delaforce, Philip Mark

    2016-03-08

    The present invention includes a fuel cell system having an interconnect that reduces or eliminates diffusion (leakage) of fuel and oxidant by providing an increased densification, by forming the interconnect as a ceramic/metal composite.

  6. Interconnection-Wide Transmission Planning Initiative: Topic...

    Office of Environmental Management (EM)

    A, Interconnection-Level Analysis and Planning Interconnection-Wide Transmission Planning Initiative: Topic A, Interconnection-Level Analysis and Planning A description of the ...

  7. Renewable Systems Interconnection

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Juan J. Torres Manager, Energy Systems Analysis Sandia National Laboratories jjtorre@sandia.gov Renewable Systems Interconnection Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000. 2 Driving the market: Climate change Cost reductions Market Risk: As PV production approaches ~5% of installed generating capacity, grid impacts could create barriers to future growth. Significant

  8. North American Electric Reliability Corporation Interconnections...

    Energy Saver

    Map of the North American Electric Reliability Corporation Interconnection showing the ... MB) More Documents & Publications Interconnection Transmission Planning: Awards 2009 ...

  9. Southern California Edison Interconnection Process Challenges

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Southeastern Power Administration Southeastern Power Administration Southeastern Power Administration View All Maps Addthis

    Southern California Edison Interconnection Process Challenges Roger Salas P.E. Generation Interconnection Manager Southern California Edison Different Jurisdictional Tariffs  Three Interconnection Tariffs in CA  State of California Interconnection Tariff (CA Rule 21)  SCE's FERC Interconnection Tariff (WDAT)  TO Tariff (for transmission interconnected

  10. Interconnection Transmission Planning: Awards | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Interconnection Transmission Planning: Awards Interconnection Transmission Planning: Awards List of Interconnection Transmission Planning awards under the American Recovery and Reinvestment Act organized by interconnection including the organization and amount of Recovery Act funding Interconnection Transmission Planning: Awards (39.73 KB) More Documents & Publications EAC Recommendations for DOE Action Regarding Interconnection-Wide Planning - June 6, 2013 Report: Impacts of Demand-Side

  11. Integration of a waveguide self-electrooptic effect device and a vertically coupled interconnect waveguide

    DOEpatents

    Vawter, G. Allen

    2008-02-26

    A self-electrooptic effect device ("SEED") is integrated with waveguide interconnects through the use of vertical directional couplers. Light initially propagating in the interconnect waveguide is vertically coupled to the active waveguide layer of the SEED and, if the SEED is in the transparent state, the light is coupled back to the interconnect waveguide.

  12. Fuel cell system with interconnect

    SciTech Connect

    Liu, Zhien; Goettler, Richard

    2015-09-29

    The present invention includes a fuel cell system having a plurality of adjacent electrochemical cells formed of an anode layer, a cathode layer spaced apart from the anode layer, and an electrolyte layer disposed between the anode layer and the cathode layer. The fuel cell system also includes at least one interconnect, the interconnect being structured to conduct free electrons between adjacent electrochemical cells. Each interconnect includes a primary conductor embedded within the electrolyte layer and structured to conduct the free electrons.

  13. Fuel cell system with interconnect

    SciTech Connect

    Goettler, Richard; Liu, Zhien

    2015-08-11

    The present invention includes a fuel cell system having a plurality of adjacent electrochemical cells formed of an anode layer, a cathode layer spaced apart from the anode layer, and an electrolyte layer disposed between the anode layer and the cathode layer. The fuel cell system also includes at least one interconnect, the interconnect being structured to conduct free electrons between adjacent electrochemical cells. Each interconnect includes a primary conductor embedded within the electrolyte layer and structured to conduct the free electrons.

  14. Fuel cell system with interconnect

    SciTech Connect

    Goettler, Richard; Liu, Zhien

    2015-03-10

    The present invention includes a fuel cell system having a plurality of adjacent electrochemical cells formed of an anode layer, a cathode layer spaced apart from the anode layer, and an electrolyte layer disposed between the anode layer and the cathode layer. The fuel cell system also includes at least one interconnect, the interconnect being structured to conduct free electrons between adjacent electrochemical cells. Each interconnect includes a primary conductor embedded within the electrolyte layer and structured to conduct the free electrons.

  15. Interconnection of Distributed Energy Resources

    Energy.gov [DOE] (indexed site)

    Dave Narang Principal Engineer, NREL March 30, 2016 2 Discussion Topics * Distribution System Interconnections - Part 1 o Background o Distribution Systems Overview o Electric ...

  16. Interconnection Agreements for Onsite Generation

    Energy.gov [DOE]

    Presentation covers Interconnection Agreements for Onsite Generation and is given at the Spring 2011 Federal Utility Partnership Working Group (FUPWG) meeting.

  17. GSA-Utility Interconnection Agreements

    Energy.gov [DOE]

    Presentation—given at at the Fall 2012 Federal Utility Partnership Working Group (FUPWG) meeting—covers the General Service Administration's (GSA's) utility interconnection agreements.

  18. Learn More About Interconnections | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Learn More About Interconnections Learn More About Interconnections Learn More About Interconnections EASTERN INTERCONNECTION North America is comprised of two major and three minor alternating current (AC) power grids or "interconnections." The Eastern Interconnection reaches from Central Canada Eastward to the Atlantic coast (excluding Québec), South to Florida and West to the foot of the Rockies (excluding most of Texas). All of the electric utilities in the Eastern Interconnection

  19. Solid-state energy storage module employing integrated interconnect board

    DOEpatents

    Rouillard, Jean; Comte, Christophe; Daigle, Dominik; Hagen, Ronald A.; Knudson, Orlin B.; Morin, Andre; Ranger, Michel; Ross, Guy; Rouillard, Roger; St-Germain, Philippe; Sudano, Anthony; Turgeon, Thomas A.

    2003-11-04

    The present invention is directed to an improved electrochemical energy storage device. The electrochemical energy storage device includes a number of solid-state, thin-film electrochemical cells which are selectively interconnected in series or parallel through use of an integrated interconnect board. The interconnect board is typically disposed within a sealed housing which also houses the electrochemical cells, and includes a first contact and a second contact respectively coupled to first and second power terminals of the energy storage device. The interconnect board advantageously provides for selective series or parallel connectivity with the electrochemical cells, irrespective of electrochemical cell position within the housing. Fuses and various electrical and electromechanical devices, such as bypass, equalization, and communication devices for example, may also be mounted to the interconnect board and selectively connected to the electrochemical cells.

  20. Enhanced Modeling and Monitoring Tools for Distributed PV Interconnection

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Enhanced Modeling and Monitoring Tools for Distributed PV Interconnection" Mark Rawson, Sacramento Municipal Utility District and David Pinney, National Rural Electric Cooperative Association with introductory remarks by Rick Thompson, Greentech Media May 28, 2014 2 Purpose of Today's Meeting * Foster stakeholder collaboration and awareness o Learn about Green Tech Media's (GTM) new Grid Edge Initiative, Rick Thompson, GTM * Hear an example of how a municipal utility is planning for solar

  1. Process for electrically interconnecting electrodes

    DOEpatents

    Carey, Paul G.; Thompson, Jesse B.; Colella, Nicolas J.; Williams, Kenneth A.

    2002-01-01

    Electrical interconnects for solar cells or other electronic components using a silver-silicone paste or a lead-tin (Pb--Sn) no-clean fluxless solder cream, whereby the high breakage of thin (<6 mil thick) solar cells using conventional solder interconnect is eliminated. The interconnects of this invention employs copper strips which are secured to the solar cells by a silver-silicone conductive paste which can be used at room temperature, or by a Pb--Sn solder cream which eliminates undesired residue on the active surfaces of the solar cells. Electrical testing using the interconnects of this invention has shown that no degradation of the interconnects developed under high current testing, while providing a very low contact resistance value.

  2. Anodization control for barrier-oxide thinning and 3D interconnected...

    Office of Scientific and Technical Information (OSTI)

    Anodization control for barrier-oxide thinning and 3D interconnected pores and direct electrodeposition of nanowire networks on native aluminium substrates Citation Details...

  3. U.S. Virgin Islands Establishes Interconnection Standards to...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Establishes Interconnection Standards to Clear the Way for Grid Interconnection U.S. Virgin Islands Establishes Interconnection Standards to Clear the Way for Grid Interconnection ...

  4. Susanville District Heating District Heating Low Temperature...

    OpenEI (Open Energy Information) [EERE & EIA]

    Susanville District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Susanville District Heating District Heating Low Temperature...

  5. Performance of Utility Interconnected Photovoltaic Inverters

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    of Utility Interconnected Photovoltaic Inverters Operating Beyond Typical Modes of ... penetration of utility interconnected photovoltaic (PV) inverters can affect the utility ...

  6. Kinsus Interconnect Technology Corp | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Kinsus Interconnect Technology Corp Jump to: navigation, search Name: Kinsus Interconnect Technology Corp Place: Taiwan Sector: Solar Product: Engaged in the manufacture of chip...

  7. Distributed PV Interconnection: Recent Analysis Findings

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    survey of utility interconnection practices. o SEPA finds that utilities confront common challenges as they move towards more streamlined interconnection application ...

  8. Overview of the Distributed Generation Interconnection Collaborative

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    effort focused on distributed PV interconnection: - Data and informational gapsneeds ... anticipated rise in distributed PV interconnection Based on stakeholder input and ...

  9. Interconnection-Wide Transmission Planning Initiative: Topic...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    State Agency Input Regarding Electric Resource and Transmission Planning in the Texas Interconnection Interconnection-Wide Transmission Planning Initiative: Topic B, State Agency ...

  10. Interconnection-Wide Transmission Planning Initiative - Meeting...

    Office of Environmental Management (EM)

    Interconnection-Wide Transmission Planning Initiative - Meeting Calendars Interconnection-Wide Transmission Planning Initiative - Meeting Calendars Click on the links below to ...

  11. Distributed PV Interconnection Recent Analysis Findings

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Thank you for joining the Distributed Generation Interconnection Collaborative ... which each will discuss recent research and analysis findings related to interconnection. ...

  12. Interconnection-Wide Transmission Planning Initiative: Topic...

    Energy Saver

    Eastern Interconnection on Electric Resource Planning and Priorities Interconnection-Wide Transmission Planning Initiative: Topic B, Cooperation Among States in the Eastern ...

  13. Interconnection-Wide Transmission Planning Initiative: Topic...

    Energy Saver

    Western Interconnection on Electric Resource Planning and Priorities Interconnection-Wide Transmission Planning Initiative: Topic B, Cooperation Among States in the Western ...

  14. Eastern Interconnection Planning Collaborative News Release

    Energy Saver

    314-753-6200 Eastern Interconnection Grid Planning Authorities to Study Set of Stakeholder-Identified Electric System Futures The Eastern Interconnection Planning Collaborative ...

  15. General Electric: Universal Interconnection System Development

    SciTech Connect

    Not Available

    2003-10-01

    Summarizes General Electric's work under contract to DOE's Distribution and Interconnection R&D, including the development of a virtual test bed and a universal interconnection system design.

  16. Distributed PV Interconnection Screening Procedures and Online...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Distributed PV Interconnection Screening Procedures and Online Tools" Joel Dickinson with ... Engineer Solar Initiatives Distributed PV Interconnection Screening and Online Tools Salt ...

  17. New Mexico Interconnection Manual | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Manual Jump to: navigation, search OpenEI Reference LibraryAdd to library General: New Mexico Interconnection Manual Abstract This manual sets forth common interconnection...

  18. Release Resistant Electrical Interconnections For Mems Devices

    DOEpatents

    Peterson, Kenneth A.; Garrett, Stephen E.; Reber, Cathleen A.

    2005-02-22

    A release resistant electrical interconnection comprising a gold-based electrical conductor compression bonded directly to a highly-doped polysilicon bonding pad in a MEMS, IMEMS, or MOEMS device, without using any intermediate layers of aluminum, titanium, solder, or conductive adhesive disposed in-between the conductor and polysilicon pad. After the initial compression bond has been formed, subsequent heat treatment of the joint above 363 C creates a liquid eutectic phase at the bondline comprising gold plus approximately 3 wt % silicon, which, upon re-solidification, significantly improves the bond strength by reforming and enhancing the initial bond. This type of electrical interconnection is resistant to chemical attack from acids used for releasing MEMS elements (HF, HCL), thereby enabling the use of a "package-first, release-second" sequence for fabricating MEMS devices. Likewise, the bond strength of an Au--Ge compression bond may be increased by forming a transient liquid eutectic phase comprising Au-12 wt % Ge.

  19. Interconnection of bundled solid oxide fuel cells

    DOEpatents

    Brown, Michael; Bessette, II, Norman F; Litka, Anthony F; Schmidt, Douglas S

    2014-01-14

    A system and method for electrically interconnecting a plurality of fuel cells to provide dense packing of the fuel cells. Each one of the plurality of fuel cells has a plurality of discrete electrical connection points along an outer surface. Electrical connections are made directly between the discrete electrical connection points of adjacent fuel cells so that the fuel cells can be packed more densely. Fuel cells have at least one outer electrode and at least one discrete interconnection to an inner electrode, wherein the outer electrode is one of a cathode and and anode and wherein the inner electrode is the other of the cathode and the anode. In tubular solid oxide fuel cells the discrete electrical connection points are spaced along the length of the fuel cell.

  20. Renewable Systems Interconnection: Executive Summary

    SciTech Connect

    Kroposki, B.; Margolis, R.; Kuswa, G.; Torres, J.; Bower, W.; Key, T.; Ton, D.

    2008-02-01

    The U.S. Department of Energy launched the Renewable Systems Interconnection (RSI) study in 2007 to address the challenges to high penetrations of distributed renewable energy technologies. The RSI study consists of 14 additional reports.

  1. Manufacturing of planar ceramic interconnects

    SciTech Connect

    Armstrong, B.L.; Coffey, G.W.; Meinhardt, K.D.; Armstrong, T.R.

    1996-12-31

    The fabrication of ceramic interconnects for solid oxide fuel cells (SOFC) and separator plates for electrochemical separation devices has been a perennial challenge facing developers. Electrochemical vapor deposition (EVD), plasma spraying, pressing, tape casting and tape calendering are processes that are typically utilized to fabricate separator plates or interconnects for the various SOFC designs and electrochemical separation devices. For sake of brevity and the selection of a planar fuel cell or gas separation device design, pressing will be the only fabrication technique discussed here. This paper reports on the effect of the characteristics of two doped lanthanum manganite powders used in the initial studies as a planar porous separator for a fuel cell cathode and as a dense interconnect for an oxygen generator.

  2. Solid-state energy storage module employing integrated interconnect board

    DOEpatents

    Rouillard, Jean; Comte, Christophe; Daigle, Dominik; Hagen, Ronald A.; Knudson, Orlin B.; Morin, Andre; Ranger, Michel; Ross, Guy; Rouillard, Roger; St-Germain, Philippe; Sudano, Anthony; Turgeon, Thomas A.

    2000-01-01

    The present invention is directed to an improved electrochemical energy storage device. The electrochemical energy storage device includes a number of solid-state, thin-film electrochemical cells which are selectively interconnected in series or parallel through use of an integrated interconnect board. The interconnect board is typically disposed within a sealed housing which also houses the electrochemical cells, and includes a first contact and a second contact respectively coupled to first and second power terminals of the energy storage device. The interconnect board advantageously provides for selective series or parallel connectivity with the electrochemical cells, irrespective of electrochemical cell position within the housing. In one embodiment, a sheet of conductive material is processed by employing a known milling, stamping, or chemical etching technique to include a connection pattern which provides for flexible and selective interconnecting of individual electrochemical cells within the housing, which may be a hermetically sealed housing. Fuses and various electrical and electro-mechanical devices, such as bypass, equalization, and communication devices for example, may also be mounted to the interconnect board and selectively connected to the electrochemical cells.

  3. Mitigation Measures for Distributed PV Interconnection

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... by 7 utilities in U.S. 22 Interconnection Topologies - Tap Existing Low Voltage Distribution Circuit 23 Ranged from 12.47 to 34.5 kV. Interconnection Topologies - Build ...

  4. EAC Recommendations for DOE Action Regarding Interconnection...

    Energy.gov [DOE] (indexed site)

    Interconnection-Wide Planning, approved at the June 5-6, 2013 EAC Meeting. EAC Recommendations for DOE Action on Interconnection-Wide Planning - June 6, 2013 (147.93 KB) More ...

  5. Sandia Energy - Permitting, Inspection, and Interconnection

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Permitting, Inspection, and Interconnection Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Solar Market Transformation Permitting, Inspection, and...

  6. Formation of interconnections to microfluidic devices

    DOEpatents

    Matzke, Carolyn M.; Ashby, Carol I. H.; Griego, Leonardo

    2003-07-29

    A method is disclosed to form external interconnections to a microfluidic device for coupling of a fluid or light or both into a microchannel of the device. This method can be used to form optical or fluidic interconnections to microchannels previously formed on a substrate, or to form both the interconnections and microchannels during the same process steps. The optical and fluidic interconnections are formed parallel to the plane of the substrate, and are fluid tight.

  7. NREL: Technology Deployment - Distributed Generation Interconnection

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Collaborative Distributed Generation Interconnection Collaborative Become a Member DGIC members are included in quarterly informational meetings and discussions related to distributed PV interconnection practices, research, and innovation. For more information, contact Kristen Ardani. Subscribe to DGIC Updates Learn about upcoming webinars and other DGIC announcements. NREL facilitates the Distributed Generation Interconnection Collaborative (DGIC) with support from the Smart Electric Power

  8. Flexible interconnects for fuel cell stacks

    DOEpatents

    Lenz, David J.; Chung, Brandon W.; Pham, Ai Quoc

    2004-11-09

    An interconnect that facilitates electrical connection and mechanical support with minimal mechanical stress for fuel cell stacks. The interconnects are flexible and provide mechanically robust fuel cell stacks with higher stack performance at lower cost. The flexible interconnects replace the prior rigid rib interconnects with flexible "fingers" or contact pads which will accommodate the imperfect flatness of the ceramic fuel cells. Also, the mechanical stress of stacked fuel cells will be smaller due to the flexibility of the fingers. The interconnects can be one-sided or double-sided.

  9. Interconnection-Wide Transmission Planning Initiative: Topic A,

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Interconnection-Level Analysis and Planning | Department of Energy A, Interconnection-Level Analysis and Planning Interconnection-Wide Transmission Planning Initiative: Topic A, Interconnection-Level Analysis and Planning A description of the requirements for Topic A for all Interconnections under the Interconnection-Wide Transmission Planning Initiative, part of the American Recovery and Reinvestment Act. Interconnection-Wide Transmission Planning Initiative: Topic A, Interconnection-Level

  10. Interconnection-Wide Transmission Planning Initiative - Meeting Calendars |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Interconnection-Wide Transmission Planning Initiative - Meeting Calendars Interconnection-Wide Transmission Planning Initiative - Meeting Calendars Click on the links below to access each awardee's meeting and events calendar. Eastern Interconnection Topic A Awardee: Eastern Interconnection Planning Collaborative Topic B Awardee: Eastern Interconnection States' Planning Council Western Interconnection Topic A Awardee: Western Electricity Coordinating Council Topic B

  11. Double interconnection fuel cell array

    DOEpatents

    Draper, R.; Zymboly, G.E.

    1993-12-28

    A fuel cell array is made, containing number of tubular, elongated fuel cells which are placed next to each other in rows (A, B, C, D), where each cell contains inner electrodes and outer electrodes, with solid electrolyte between the electrodes, where the electrolyte and outer electrode are discontinuous, having two portions, and providing at least two opposed discontinuities which contain at least two oppositely opposed interconnections contacting the inner electrode, each cell having only three metallic felt electrical connectors which contact surrounding cells, where each row is electrically connected to the other. 5 figures.

  12. Double interconnection fuel cell array

    DOEpatents

    Draper, Robert; Zymboly, Gregory E.

    1993-01-01

    A fuel cell array (10) is made, containing number of tubular, elongated fuel cells (12) which are placed next to each other in rows (A, B, C, D), where each cell contains inner electrodes (14) and outer electrodes (18 and 18'), with solid electrolyte (16 and 16') between the electrodes, where the electrolyte and outer electrode are discontinuous, having two portions, and providing at least two opposed discontinuities which contain at least two oppositely opposed interconnections (20 and 20') contacting the inner electrode (14), each cell (12) having only three metallic felt electrical connectors (22) which contact surrounding cells, where each row is electrically connected to the other.

  13. Direct

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    and the pollutant emission is hence directly proportional to the bulk neutral density. Simultaneously monitoring the total emission at 1040 nm and the neutral contaminant...

  14. NREL: Technology Deployment - DGIC Interconnection Insights

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    DGIC Interconnection Insights The Distributed Generation Interconnection Collaborative (DGIC) Insights provide answers to questions posed by DGIC participants, deliver timely updates on pressing interconnection issues, and disseminates analysis findings to inform decision making and planning. Utility Owned Roof Top Solar March 2016 by Kristen Ardani, National Renewable Energy Laboratory (NREL) These leaders are pioneering utility-owned rooftop solar programs to broaden the reach of solar PV

  15. Directions

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Hilton Santa Fe Buffalo Thunder at (505) 455-5555 for shuttle information from the airport and downtown Santa Fe. Driving Directions to Hilton Santa Fe Buffalo Thunder Hilton...

  16. Renewable Energy Interconnection and Storage - Technical Aspects...

    OpenEI (Open Energy Information) [EERE & EIA]

    Interconnection and Storage - Technical Aspects Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Spain Installed Wind Capacity Website Focus Area: Renewable Energy...

  17. Learn More About Interconnections | Department of Energy

    Office of Environmental Management (EM)

    The Eastern Interconnection reaches from Central Canada Eastward to the Atlantic coast (excluding Qubec), South to Florida and West to the foot of the Rockies (excluding most of ...

  18. RAPID/Geothermal/Transmission Siting & Interconnection | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    to the public for compensation. See AS 42.05.990(5) for additional information. NA Geothermal Transmission Siting & Interconnection in California California Energy...

  19. Webinar: Understanding the Interconnection and Transmission Service...

    Energy.gov [DOE] (indexed site)

    Area Power Administration, this Web seminar will answer the following questions: What is the large generator interconnection procedure? How is transmission service requested? ...

  20. PUCT DG Interconnection Manual | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook: PUCT DG Interconnection ManualPermittingRegulatory GuidanceGuideHandbook...

  1. North American Electric Reliability Corporation Interconnections...

    Energy.gov [DOE] (indexed site)

    Map of the North American Electric Reliability Corporation Interconnection showing the Eastern, Western, and Teaxs Interconnectins. North American Electric Reliability Corporation...

  2. Recent Development of SOFC Metallic Interconnect

    SciTech Connect

    Wu JW, Liu XB

    2010-04-01

    Interest in solid oxide fuel cells (SOFC) stems from their higher eciencies and lower levels of emitted pollu- tants, compared to traditional power production methods. Interconnects are a critical part in SOFC stacks, which connect cells in series electrically, and also separate air or oxygen at the cathode side from fuel at the anode side. Therefore, the requirements of interconnects are the most demanding, i:e:, to maintain high elec- trical conductivity, good stability in both reducing and oxidizing atmospheres, and close coecient of thermal expansion (CTE) match and good compatibility with other SOFC ceramic components. The paper reviewed the interconnect materials, and coatings for metallic interconnect materials.

  3. Generation Interconnection and Deliverability Allocation Procedures...

    OpenEI (Open Energy Information) [EERE & EIA]

    Interconnection and Deliverability Allocation Procedures Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- Permit ApplicationPermit Application:...

  4. Updating Technical Screens for PV Interconnection: Preprint

    SciTech Connect

    Coddington, M.; Ellis, A.; Lynn, K.; Razon, A.; Key, T.; Kroposki, B.; Mather, B.; Hill, R.; Nicole, K.; Smith, J.

    2012-08-01

    Solar photovoltaics (PV) is the dominant type of distributed generation (DG) technology interconnected to electric distribution systems in the United States, and deployment of PV systems continues to increase rapidly. Considering the rapid growth and widespread deployment of PV systems in United States electric distribution grids, it is important that interconnection procedures be as streamlined as possible to avoid unnecessary interconnection studies, costs, and delays. Because many PV interconnection applications involve high penetration scenarios, the process needs to allow for a sufficiently rigorous technical evaluation to identify and address possible system impacts. Existing interconnection procedures are designed to balance the need for efficiency and technical rigor for all DG. However, there is an implicit expectation that those procedures will be updated over time in order to remain relevant with respect to evolving standards, technology, and practical experience. Modifications to interconnection screens and procedures must focus on maintaining or improving safety and reliability, as well as accurately allocating costs and improving expediency of the interconnection process. This paper evaluates the origins and usefulness of the capacity penetration screen, offers potential short-term solutions which could effectively allow fast-track interconnection to many PV system applications, and considers longer-term solutions for increasing PV deployment levels in a safe and reliable manner while reducing or eliminating the emphasis on the penetration screen.

  5. Tevatron low-beta quadrupole triplet interconnects

    SciTech Connect

    Oleck, A.R.; Carson, J.A.; Koepke, K.; Sorenson, D.

    1992-04-01

    Installation of cold iron quadrupole magnets in the Low Beta (Superconducting High-Luminosity) upgrade at Fermilab required a newly designed magnet interconnect. The interconnect design and construction experience is presented. Considered are the connections carrying cryogenic fluids, beam vacuum, insulating vacuum, superconducting bus leads, their insulation and mechanical support. Details of the assembly and assembly experience are presented. 2 refs.

  6. Topic A Awardee: Eastern Interconnection Planning Collaborative

    Energy.gov [DOE]

    The Eastern Interconnection Planning Collaborative (EIPC) was initiated by a coalition of regional Planning Authorities. These Planning Authorities are entities listed on the NERC compliance registry as Planning Authorities and represent the entire Eastern Interconnection. The EIPC was founded to be a broad-based, transparent collaborative process among all interested stakeholders.

  7. Mitigation Measures for Distributed PV Interconnection

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Mitigation Measures for Distributed Interconnection" Michael Coddington with National Renewable Energy Laboratory and Robert Broderick with Sandia National Laboratories July 9, 2014 2 Speakers Michael Coddington Principal Investigator Distributed Grid Integration NREL Robert Broderick Technical Lead Distributed Grid Integration Programs Sandia National Laboratories Kristen Ardani Solar Analyst, (today's moderator) NREL 3 INTERCONNECTION, SCREENING & MITIGATION PRACTICES OF 21 UTILITIES

  8. Durability of Metallic Interconnects and Protective Coatings

    SciTech Connect

    Yang, Zhenguo; Stevenson, Jeffry W.

    2009-12-15

    To build up a useful voltage, a number of solid oxide fuel cells (SOFCs) are electrically connected into series in a stack via interconnects, which are placed between adjacent cells. In addition to functioning as a bi-polar electrical connector, the interconnect also acts as a separator plate that separates the fuel at the anode side of one cell from the air at the cathode side on an adjacent cell. During SOFC operation at the high temperatures, the interconnects are thus simultaneously exposed to the oxidizing air at one side and a reducing fuel that can be either hydrogen or hydrocarbon at the other. Besides, they are in contact with adjacent components, such as electrodes or electrical contacts, seals, etc. With steady reduction in SOFC operating temperatures into the low or intermediate range 600-850oC, oxidation resistant alloys are often used to construct interconnects. However, the metallic interconnects may degrade via interactions at their interfaces with surrounding environments or adjacent components, potentially affecting the stability and performance of interconnects and the SOFC stacks. Thus protection layers are applied to metallic interconnects that also intend to mitigate or prevent chromium migration into cells and the cell poisoning. This chapter provides a comprehensive review of materials for metallic interconnects, their degradation and coating protection.

  9. Elko County School District District Heating Low Temperature...

    OpenEI (Open Energy Information) [EERE & EIA]

    Elko County School District District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Elko County School District District Heating Low Temperature...

  10. Kethcum District Heating District Heating Low Temperature Geothermal...

    OpenEI (Open Energy Information) [EERE & EIA]

    Kethcum District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Kethcum District Heating District Heating Low Temperature Geothermal...

  11. Midland District Heating District Heating Low Temperature Geothermal...

    OpenEI (Open Energy Information) [EERE & EIA]

    Midland District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Midland District Heating District Heating Low Temperature Geothermal...

  12. Pagosa Springs District Heating District Heating Low Temperature...

    OpenEI (Open Energy Information) [EERE & EIA]

    Pagosa Springs District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Pagosa Springs District Heating District Heating Low...

  13. Philip District Heating District Heating Low Temperature Geothermal...

    OpenEI (Open Energy Information) [EERE & EIA]

    Philip District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Philip District Heating District Heating Low Temperature Geothermal...

  14. Warm Springs Water District District Heating Low Temperature...

    OpenEI (Open Energy Information) [EERE & EIA]

    Water District District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Warm Springs Water District District Heating Low Temperature Geothermal...

  15. Revised Record of Decision for the Electrical Interconnection of the Summit/Westward Project

    SciTech Connect

    N /A

    2004-10-21

    The Bonneville Power Administration (BPA) has decided to amend its July 25, 2003, Record of Decision (ROD) regarding the proposed Summit/Westward Project (Project) to offer contract terms for an optional interconnection of this Project into the Federal Columbia River Transmission System (FCRTS). Under this optional interconnection plan, BPA would integrate electric power from the Project into the FCRTS at a point adjacent to Clatskanie People's Utility District (CPUD) existing Wauna Substation. In order to deliver power to this location, CPUD would develop a new substation (Bradbury Substation) at a site near the Project and a new 230-kV transmission line from there to CPUD's Wauna Substation, which is already connected to the FCRTS. As part of this revised decision, BPA will facilitate CPUD development of the Bradbury-Wauna transmission line by allowing joint use of BPA right-of-way. This will involve reconstructing a section of BPA's 115-kV Allston-Astoria No. 1 transmission line from single-circuit H-frame wood-pole design to double-circuit single metal pole design. Terms of BPA participation in CPUD's development of the Bradbury-Wauna transmission line will be documented in a Construction Agreement. This optional interconnection plan is in addition to BPA's previous offer for interconnection of the Project at BPA's Allston Substation, as documented in the July 25, 2003, ROD. As with the initial interconnection plan, the decision to offer terms to interconnect the Project through the optional interconnection plan is consistent with BPA's Business Plan Final Environmental Impact Statement (BP EIS) (DOE/EIS-0183, June 1995), and the Business Plan Record of Decision (BP ROD, August 1995). This decision thus is similarly tiered to the Business Plan ROD.

  16. Interconnection-Wide Transmission Planning Initiative: Topic B, Cooperation

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Among States in the Eastern Interconnection on Electric Resource Planning and Priorities | Department of Energy Eastern Interconnection on Electric Resource Planning and Priorities Interconnection-Wide Transmission Planning Initiative: Topic B, Cooperation Among States in the Eastern Interconnection on Electric Resource Planning and Priorities A description of the requirements for Topic B for the Eastern Interconnection under the Interconnection-Wide Transmission Planning Initiative, part of

  17. Interconnection-Wide Transmission Planning Initiative: Topic B, Cooperation

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Among States in the Western Interconnection on Electric Resource Planning and Priorities | Department of Energy Western Interconnection on Electric Resource Planning and Priorities Interconnection-Wide Transmission Planning Initiative: Topic B, Cooperation Among States in the Western Interconnection on Electric Resource Planning and Priorities A description of the requirements for Topic B for the Western Interconnection under the Interconnection-Wide Transmission Planning Initiative, part of

  18. Interconnection-Wide Transmission Planning Initiative: Topic B, State

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Agency Input Regarding Electric Resource and Transmission Planning in the Texas Interconnection | Department of Energy State Agency Input Regarding Electric Resource and Transmission Planning in the Texas Interconnection Interconnection-Wide Transmission Planning Initiative: Topic B, State Agency Input Regarding Electric Resource and Transmission Planning in the Texas Interconnection A description of the requirements for Topic B for the Texas Interconnect under the Interconnection-Wide

  19. Accelerating Fatigue Testing for Cu Ribbon Interconnects | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Accelerating Fatigue Testing for Cu Ribbon Interconnects Accelerating Fatigue Testing for Cu Ribbon Interconnects Presented at the 2013 Photovoltaic Module Reliability Workshop; ...

  20. Solar Energy to Benefit from New FERC Interconnection Procedures...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    the adoption of new "fast track" rules to make the interconnection process ... the adoption of new "fast track" rules to make the interconnection process ...

  1. National Offshore Wind Energy Grid Interconnection Study (NOWEGIS...

    Energy Saver

    National Offshore Wind Energy Grid Interconnection Study (NOWEGIS) National Offshore Wind Energy Grid Interconnection Study (NOWEGIS) The National Offshore Wind Energy Grid ...

  2. Response from PJM Interconnection LLC and Pepco to Department...

    Energy Saver

    Interconnection LLC and Pepco to Department of Energy Request for Information Concerning the Potential Need for Potomac River Station Generation Response from PJM Interconnection ...

  3. Topic B Awardee: Eastern Interconnection States' Planning Council...

    Energy.gov [DOE] (indexed site)

    The Eastern Interconnection States' Planning Council (EISPC) is an historic endeavor ... to create an unprecedented collaborative among the states in the Eastern Interconnection. ...

  4. Improving Data Transparency for the Distributed PV Interconnection...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    June 3, 2015 "Improving Data Transparency for the Distributed PV Interconnection Process: ... how data reporting requirements for interconnection vary across States, how tracking and ...

  5. "Interconnection","NERC Regional Assesment Area","Net Internal...

    Energy Information Administration (EIA) (indexed site)

    projected" "megawatts and percent" "Interconnection","NERC Regional Assesment Area","Net ... 2016E","2016 2017E" "Eastern Interconnection","FRCC",39699,42001,36229,41449,42493...

  6. New Report Characterizes Existing Offshore Wind Grid Interconnection...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Characterizes Existing Offshore Wind Grid Interconnection Capabilities New Report Characterizes Existing Offshore Wind Grid Interconnection Capabilities September 3, 2014 - 10:49am ...

  7. FERC Order No. 2003 Appendix 5 - Optional Interconnection Study...

    OpenEI (Open Energy Information) [EERE & EIA]

    5 - Optional Interconnection Study Agreement Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: FERC Order No. 2003 Appendix 5 - Optional Interconnection...

  8. RAPID/Geothermal/Transmission Siting & Interconnection/California...

    OpenEI (Open Energy Information) [EERE & EIA]

    of the application process. Following the necessary interconnection studies, CAISO will enter into a Generator Interconnection Agreement with the developer. California Energy...

  9. Method for fabricating an interconnected array of semiconductor devices

    DOEpatents

    Grimmer, Derrick P.; Paulson, Kenneth R.; Gilbert, James R.

    1989-10-10

    Semiconductor layer and conductive layer formed on a flexible substrate, divided into individual devices and interconnected with one another in series by interconnection layers and penetrating terminals.

  10. FERC Order No. 792 - Interconnection Agreement | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    FERC Order No. 792 - Interconnection Agreement Abstract FERC Order No. 792, Small Generator Interconnection Agreement, current through June 3, 2013. Form Type Other Form Topic...

  11. FERC Order No. 792 - Interconnection Request | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    792 - Interconnection RequestLegal Abstract FERC Order No. 792, Attachment 2, Small Generator Interconnection Request Form, current through June 3, 2014. Published NA Year...

  12. Mitigation Measures for Distributed PV Interconnection

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... No surprise we're seeing most of the interconnection requests are the most common distribution voltage, the 1247 KV. But you can also see we've got a tail function out here on the ...

  13. Distributed Solar Interconnection Challenges and Best Practices

    Energy.gov [DOE]

    The continued growth of the distributed solar market in the United States has spurred electric utilities, regulators, and stakeholders to consider improvements to distributed generation (DG) interconnection processes. More than 475,000 solar energy systems were interconnected in the U.S. by the end of 2013, but 1 million are expected by the end of 2017. Based on the SunShot Initiative's current trajectory, permitting, inspection, and interconnection (PII) soft costs are expected to drop from a current cost of $0.17/watt to $0.14/watt by 2020. While the actual cost metrics for utility PII are undetermined, they are real. A survey and interviews conducted by Solar Electric Power Association (SEPA) in 2014 have uncovered utility initiatives to lower the administrative costs of DG interconnection, making the process of connecting to the grid simpler and more transparent for customers.

  14. RAPID/BulkTransmission/Transmission Siting & Interconnection...

    OpenEI (Open Energy Information) [EERE & EIA]

    federal review). Bulk Transmission Transmission Siting & Interconnection in New Mexico New Mexico Statutes (N.M.S.) 62-9-1, 62-9-3(B), and 62-9-3.2 No Location Permit may be...

  15. PJM Interconnection, LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    LLC Jump to: navigation, search Name: PJM Interconnection, LLC Place: Norristown, PA References: SGIC1 This article is a stub. You can help OpenEI by expanding it. PJM...

  16. Interconnecting gold islands with DNA origami

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Interconnecting gold islands with DNA origami Authors: Ding, B., Wu, H., Xu, W., Zhao, Z., Liu, Y., Yu, H., and Yan, H. Title: Interconnecting gold islands with DNA origami Source: Nano Lett. Year: 2010 Volume: 10 Pages: 5065-5069 ABSTRACT: Scaffolded DNA origami has recently emerged as a versatile, programmable method to fold DNA into arbitrarily shaped nanostructures that are spatially addressable, with sub-10-nm resolution. Toward functional DNA nanotechnology, one of the key challenges is to

  17. Frequency Instability Problems in North American Interconnections

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Frequency Instability Problems in North American Interconnections May 1, 2011 DOE/NETL-2011/1473 Frequency Instability Problems in North American Interconnections Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness

  18. Distributed PV Interconnection Recent Analysis Findings

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Recent Analysis Findings Page 1 of 18 Kristen Ardani, Miriam Makhyoun Page 1 of 18 [Speaker: Kristen Ardani] Cover Slide: Good afternoon, everyone. Thank you for joining the Distributed Generation Interconnection Collaborative informational webinar. Today, we are kicking off 2015 with a joint presentation from SEPA and NREL, in which each will discuss recent research and analysis findings related to interconnection. Slide 2: So really, the purpose of today's meeting is to hear recent research

  19. Distributed PV Interconnection: Recent Analysis Findings

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    January 21, 2015 "NREL and SEPA Recent Analysis Findings" Miriam Makhyoun, Solar Electric Power Association (SEPA) Kristen Ardani, National Renewable Energy Laboratory (NREL) 2 Purpose of Today's Meeting * Hear results from SEPA's recent survey of utility interconnection practices. o SEPA finds that utilities confront common challenges as they move towards more streamlined interconnection application processing. * Hear NREL results of forthcoming DGIC data collection and analysis,

  20. Eastern Interconnection Planning Collaborative News Release

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    NEWS RELEASE FOR IMMEDIATE RELEASE May 23, 2011 Contact: David Whiteley d.a.whiteley@att.net 314-753-6200 Eastern Interconnection Grid Planning Authorities to Study Set of Stakeholder-Identified Electric System Futures The Eastern Interconnection Planning Collaborative (EIPC) today announced that its diverse array of stakeholders has reached consensus on the final set of "resource expansion futures" to be studied as part of the electric system transmission planning effort funded by

  1. Alternative Interconnect Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Alternative Interconnect Manufacturing Alternative Interconnect Manufacturing Lead Performer: Vadient Optics LLC - Eugene, OR DOE Total Funding: $150,000 Project Term: February 22, 2016 - November 21, 2016 Funding Type: SBIR PROJECT OBJECTIVE Vadient Optics proposes to develop and demonstrate a practical commercial manufacturing route for its flexible, low-cost additive manufacturing process used to efficiently fabricate complex and highly efficient light-extraction optics for a variety of SSL

  2. Innovation in the Interconnection Application Process

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Innovation in the Interconnection Application Process" Ken Parks, SDG&E and Bob Woerner, PG&E April 2, 2014 2 Purpose of Today's Meeting * Learn about recent innovations in the distributed PV interconnection process * Examine how certain challenges related to increased demand for distributed PV can be addressed through revised application processes and procedures * Hear specific examples from electric utilities in mature solar markets (SDG&E and PG&E) 3 Speakers Ken Parks

  3. Accelerating Fatigue Testing for Cu Ribbon Interconnects (Presentation)

    SciTech Connect

    Bosco, N.; Silverman, T.; Wohlgemuth , J.; Kurtz, S.; Inoue, M.; Sakurai, K.; Shioda, T.; Zenkoh, H.; Miyashita, M.; Tadanori, T.; Suzuki, S.

    2013-05-01

    This presentation describes fatigue experiments and discusses dynamic mechanical loading for Cu ribbon interconnects.

  4. NREL Variability Analysis for the Western Interconnect (Presentation)

    SciTech Connect

    Milligan, M.; Kirby, B.; King, J.

    2011-07-01

    This presentation investigates the effects of several Energy Imbalance Markets implementations in the Western Interconnect.

  5. EIS-0389: Notice of Intent To Prepare an Environmental Impact Statement and Conduct Scoping Meetings; Notice of Floodplain and Wetlands Involvement

    Energy.gov [DOE]

    Construction and Operation of the Trinity Public Utility District Direct Interconnection Project, Trinity County, California

  6. Advanced Platform for Development and Evaluation of Grid Interconnection

    Office of Scientific and Technical Information (OSTI)

    Systems Using Hardware-in-the-Loop: Part III - Grid Interconnection System Evaluator (Technical Report) | SciTech Connect Technical Report: Advanced Platform for Development and Evaluation of Grid Interconnection Systems Using Hardware-in-the-Loop: Part III - Grid Interconnection System Evaluator Citation Details In-Document Search Title: Advanced Platform for Development and Evaluation of Grid Interconnection Systems Using Hardware-in-the-Loop: Part III - Grid Interconnection System

  7. Advanced Platform for Development and Evaluation of Grid Interconnection

    Office of Scientific and Technical Information (OSTI)

    Systems Using Hardware-in-the-Loop: Part III -- Grid Interconnection System Evaluator: Preprint (Conference) | SciTech Connect Conference: Advanced Platform for Development and Evaluation of Grid Interconnection Systems Using Hardware-in-the-Loop: Part III -- Grid Interconnection System Evaluator: Preprint Citation Details In-Document Search Title: Advanced Platform for Development and Evaluation of Grid Interconnection Systems Using Hardware-in-the-Loop: Part III -- Grid Interconnection

  8. SPIDERS Bi-Directional Charging Station Interconnection Testing

    SciTech Connect

    Simpson, M.

    2013-09-01

    The Smart Power Infrastructure Demonstration for Energy Reliability and Security (SPIDERS) program is a multi-year Department of Defense-Department of Energy (DOE) collaborative effort that will demonstrate integration of renewables into island-able microgrids using on-site generation control, demand response, and energy storage with robust security features at multiple installations. Fort Carson, Colorado, will be the initial development and demonstration site for use of plug-in electric vehicles as energy storage (also known as vehicle-to-grid or V2G).

  9. Automotion of domain walls for spintronic interconnects

    SciTech Connect

    Nikonov, Dmitri E.; Manipatruni, Sasikanth; Young, Ian A.

    2014-06-07

    We simulate “automotion,” the transport of a magnetic domain wall under the influence of demagnetization and magnetic anisotropy, in nanoscale spintronic interconnects. In contrast to spin transfer driven magnetic domain wall motion, the proposed interconnects operate without longitudinal charge current transfer, with only a transient current pulse at domain wall creation and have favorable scaling down to the 20 nm dimension. Cases of both in-plane and out-of-plane magnetization are considered. Analytical dependence of the velocity of domain walls on the angle of magnetization are compared with full micromagnetic simulations. Deceleration, attenuation and disappearance, and reflection of domain walls are demonstrated through simulation. Dependences of the magnetization angle on the current pulse parameters are studied. The energy and delay analysis suggests that automotion is an attractive option for spintronic logic interconnects.

  10. Interconnection Testing of Distributed Resources: Preprint

    SciTech Connect

    Kroposki, B.; Basso, T.; DeBlasio, R.

    2004-02-01

    With the publication of IEEE 1547-2003(TM) Standard for Interconnecting Distributed Resources With Electric Power Systems, the electric power industry has a need to develop tests and procedures to verify that interconnection equipment meets 1547 technical requirements. A new standard, IEEE P1547.1(TM), is being written to give detailed tests and procedures for confirming that equipment meets the interconnection requirements. The National Renewable Energy Laboratory has been validating test procedures being developed as part of IEEE P1547.1. As work progresses on the validation of those procedures, information and test reports are passed on to the working group of IEEE P1547.1 for future revisions.

  11. Planarization of metal films for multilevel interconnects

    DOEpatents

    Tuckerman, David B.

    1987-01-01

    In the fabrication of multilevel integrated circuits, each metal layer is anarized by heating to momentarily melt the layer. The layer is melted by sweeping laser pulses of suitable width, typically about 1 microsecond duration, over the layer in small increments. The planarization of each metal layer eliminates irregular and discontinuous conditions between successive layers. The planarization method is particularly applicable to circuits having ground or power planes and allows for multilevel interconnects. Dielectric layers can also be planarized to produce a fully planar multilevel interconnect structure. The method is useful for the fabrication of VLSI circuits, particularly for wafer-scale integration.

  12. Planarization of metal films for multilevel interconnects

    DOEpatents

    Tuckerman, D.B.

    1989-03-21

    In the fabrication of multilevel integrated circuits, each metal layer is planarized by heating to momentarily melt the layer. The layer is melted by sweeping laser pulses of suitable width, typically about 1 microsecond duration, over the layer in small increments. The planarization of each metal layer eliminates irregular and discontinuous conditions between successive layers. The planarization method is particularly applicable to circuits having ground or power planes and allows for multilevel interconnects. Dielectric layers can also be planarized to produce a fully planar multilevel interconnect structure. The method is useful for the fabrication of VLSI circuits, particularly for wafer-scale integration. 6 figs.

  13. Planarization of metal films for multilevel interconnects

    DOEpatents

    Tuckerman, D.B.

    1985-06-24

    In the fabrication of multilevel integrated circuits, each metal layer is planarized by heating to momentarily melt the layer. The layer is melted by sweeping lase pulses of suitable width, typically about 1 microsecond duration, over the layer in small increments. The planarization of each metal layer eliminates irregular and discontinuous conditions between successive layers. The planarization method is particularly applicable to circuits having ground or power planes and allows for multilevel interconnects. Dielectric layers can also be planarized to produce a fully planar multilevel interconnect structure. The method is useful for the fabrication of VLSI circuits, particularly for wafer-scale integration.

  14. Planarization of metal films for multilevel interconnects

    DOEpatents

    Tuckerman, David B.

    1989-01-01

    In the fabrication of multilevel integrated circuits, each metal layer is anarized by heating to momentarily melt the layer. The layer is melted by sweeping laser pulses of suitable width, typically about 1 microsecond duration, over the layer in small increments. The planarization of each metal layer eliminates irregular and discontinuous conditions between successive layers. The planarization method is particularly applicable to circuits having ground or power planes and allows for multilevel interconnects. Dielectric layers can also be planarized to produce a fully planar multilevel interconnect structure. The method is useful for the fabrication of VLSI circuits, particularly for wafer-scale integration.

  15. Planarization of metal films for multilevel interconnects

    DOEpatents

    Tuckerman, D.B.

    1985-08-23

    In the fabrication of multilevel integrated circuits, each metal layer is planarized by heating to momentarily melt the layer. The layer is melted by sweeping laser pulses of suitable width, typically about 1 microsecond duration, over the layer in small increments. The planarization of each metal layer eliminates irregular and discontinuous conditions between successive layers. The planarization method is particularly applicable to circuits having ground or power planes and allows for multilevel interconnects. Dielectric layers can also be planarized to produce a fully planar multilevel interconnect structure. The method is useful for the fabrication of VLSI circuits, particularly for wafer-scale integration.

  16. Oxygen assisted interconnection of silver nanoparticles with femtosecond laser radiation

    SciTech Connect

    Huang, H.; Zhou, Y.; Duley, W. W.

    2015-12-14

    Ablation of silver (Ag) nanoparticles in the direction of laser polarization is achieved by utilizing femtosecond laser irradiation in air at laser fluence ranging from ∼2 mJ/cm{sup 2} to ∼14 mJ/cm{sup 2}. This directional ablation is attributed to localized surface plasmon induced localized electric field enhancement. Scanning electron microscopy observations of the irradiated particles in different gases and at different pressures indicate that the ablation is further enhanced by oxygen in the air. This may be due to the external heating via the reactions of its dissociation product, atomic oxygen, with the surface of Ag particles, while the ablated Ag is not oxidized. Further experimental observations show that the ablated material re-deposits near the irradiated particles and results in the extension of the particles in laser polarization direction, facilitating the interconnection of two well-separated nanoparticles.

  17. Electric network interconnection of Mashreq Arab Countries

    SciTech Connect

    El-Amin, I.M.; Al-Shehri, A.M.; Opoku, G.; Al-Baiyat, S.A.; Zedan, F.M.

    1994-12-01

    Power system interconnection is a well established practice for a variety of technical and economical reasons. Several interconnected networks exist worldwide for a number of factors. Some of these networks cross international boundaries. This presentation discusses the future developments of the power systems of Mashreq Arab Countries (MAC). MAC consists of Bahrain, Egypt, Iraq, Jordan, Kuwait, Lebanon, Oman, Qatar, Saudi Arabia, United Arab Emirates (UAE), and Yemen. Mac power systems are operated by government or semigovernment bodies. Many of these countries have national or regional electric grids but are generally isolated from each other. With the exception of Saudi Arabia power systems, which employ 60 Hz, all other MAC utilities use 50 Hz frequency. Each country is served by one utility, except Saudi Arabia, which is served by four major utilities and some smaller utilities serving remote towns and small load centers. The major utilities are the Saudi Consolidated electric Company in the Eastern Province (SCECO East), SCECO Center, SCECO West, and SCECO South. These are the ones considered in this study. The energy resources in MAC are varied. Countries such as Egypt, Iraq, and Syria have significant hydro resources.The gulf countries and Iraq have abundant fossil fuel, The variation in energy resources as well as the characteristics of the electric load make it essential to look into interconnections beyond the national boundaries. Most of the existing or planned interconnections involve few power systems. A study involving 12 countries and over 20 utilities with different characteristics represents a very large scale undertaking.

  18. Wisconsin's 3rd congressional district: Energy Resources | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    district Able Energy Co. Biogas Direct LCC Coulee Area Renewable Energy Coulee Region Bio Fuels LLC Dairyland Power Cooperative INOV8 International Inc Polymer Technology Corp...

  19. Interconnect assembly for an electronic assembly and assembly method therefor

    DOEpatents

    Gerbsch, Erich William

    2003-06-10

    An interconnect assembly and method for a semiconductor device, in which the interconnect assembly can be used in lieu of wirebond connections to form an electronic assembly. The interconnect assembly includes first and second interconnect members. The first interconnect member has a first surface with a first contact and a second surface with a second contact electrically connected to the first contact, while the second interconnect member has a flexible finger contacting the second contact of the first interconnect member. The first interconnect member is adapted to be aligned and registered with a semiconductor device having a contact on a first surface thereof, so that the first contact of the first interconnect member electrically contacts the contact of the semiconductor device. Consequently, the assembly method does not require any wirebonds, but instead merely entails aligning and registering the first interconnect member with the semiconductor device so that the contacts of the first interconnect member and the semiconductor device make electrically contact, and then contacting the second contact of the first interconnect member with the flexible finger of the second interconnect member.

  20. National Offshore Wind Energy Grid Interconnection Study Executive Summary

    SciTech Connect

    Daniel, John P.; Liu, Shu; Ibanez, Eduardo; Pennock, Ken; Reed, Gregory; Hanes, Spencer

    2014-07-30

    The National Offshore Wind Energy Grid Interconnection Study (NOWEGIS) considers the availability and potential impacts of interconnecting large amounts of offshore wind energy into the transmission system of the lower 48 contiguous United States.

  1. National Offshore Wind Energy Grid Interconnection Study Full Report

    SciTech Connect

    Daniel, John P.; Liu, Shu; Ibanez, Eduardo; Pennock, Ken; Reed, Gregory; Hanes, Spencer

    2014-07-30

    The National Offshore Wind Energy Grid Interconnection Study (NOWEGIS) considers the availability and potential impacts of interconnecting large amounts of offshore wind energy into the transmission system of the lower 48 contiguous United States.

  2. High temperature solid electrolyte fuel cell configurations and interconnections

    DOEpatents

    Isenberg, Arnold O.

    1984-01-01

    High temperature fuel cell configurations and interconnections are made including annular cells having a solid electrolyte sandwiched between thin film electrodes. The cells are electrically interconnected along an elongated axial outer surface.

  3. EAC Recommendations for DOE Action Regarding Interconnection-Wide Planning

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    - June 6, 2013 | Department of Energy Interconnection-Wide Planning - June 6, 2013 EAC Recommendations for DOE Action Regarding Interconnection-Wide Planning - June 6, 2013 EAC Recommendations for DOE Action Regarding Interconnection-Wide Planning, approved at the June 5-6, 2013 EAC Meeting. EAC Recommendations for DOE Action on Interconnection-Wide Planning - June 6, 2013 (147.93 KB) More Documents & Publications Electricity Advisory Committee Meeting Presentations October 2011 -

  4. Recovery Act Interconnection Transmission Planning | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Recovery Act Interconnection Transmission Planning Recovery Act Interconnection Transmission Planning View a Map of the Interconnections View a Map of the Interconnections Robust and reliable transmission and distribution networks are essential to achieving the Administration's clean energy goals, including the development, integration, and delivery of new renewable and other low-carbon resources in the electricity sector, and the use of these resources to displace petroleum-based fuels in the

  5. Innovation and Success in Solar Net Metering and Interconnection...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Net Metering and Interconnection Innovation and Success in Solar Net Metering and ... More Documents & Publications webinarinnovationnetmeteringinterconnection.doc ...

  6. Architecture for on-die interconnect

    DOEpatents

    Khare, Surhud; More, Ankit; Somasekhar, Dinesh; Dunning, David S.

    2016-03-15

    In an embodiment, an apparatus includes: a plurality of islands configured on a semiconductor die, each of the plurality of islands having a plurality of cores; and a plurality of network switches configured on the semiconductor die and each associated with one of the plurality of islands, where each network switch includes a plurality of output ports, a first set of the output ports are each to couple to the associated network switch of an island via a point-to-point interconnect and a second set of the output ports are each to couple to the associated network switches of a plurality of islands via a point-to-multipoint interconnect. Other embodiments are described and claimed.

  7. Development of Interconnect Technologies for Particle Detectors

    SciTech Connect

    Tripathi, Mani

    2015-01-29

    This final report covers the three years of this grant, for the funding period 9/1/2010 - 8/31/2013. The project consisted of generic detector R&D work at UC Davis, with an emphasis on developing interconnect technologies for applications in HEP. Much of the work is done at our Facility for Interconnect Technologies (FIT) at UC Davis. FIT was established using ARRA funds, with further studies supported by this grant. Besides generic R&D work at UC Davis, FIT is engaged in providing bump bonding help to several DOE supported detector R&D efforts. Some of the developmental work was also supported by funding from other sources: continuing CMS project funds and the Linear Collider R&D funds. The latter program is now terminated. The three year program saw a good deal of progress on several fronts, which are reported here.

  8. Overview of Western's Interconnected Bulk Electric System

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Western's Interconnected Bulk Electric System Western Area Power Admin. Objectives * Describe Western Area Power Administration Region and Facilities Overview * Explain Fundamentals of Electricity, Power Transformers and Transmission Lines * Discuss Overview of the Bulk Electric System (BES) * Objectives Review Western's Service Area Western marketing areas and offices 3 Wholesale Power Services * Markets 10,479 MW from 56 Federal hydropower projects owned by Bureau of Reclamation (BOR) , Army

  9. Micro-fluidic interconnect - Energy Innovation Portal

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    7,004,198 Site Map Printable Version Share this resource About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners (27) Visual Patent Search Success Stories Find More Like This Return to Search Micro-fluidic interconnect United

  10. Performance testing of small interconnected wind systems

    SciTech Connect

    Park, G.L.; Krauss, O.; Miller, J.

    1984-05-01

    There is a need for performance information on small windmills intended for interconnected operation with utility distribution service. The owner or prospective buyer needs the data to estimate economic viability and service reliability, while the utility needs it to determine interconnection arrangements, maintain quality of power delivered by its line, and to answer customer inquiries. No existing testing program provides all the information needed, although the Rocky Flats test site comes close. To fill this need for Michigan, Consumers Power Company and the Michigan Electric Cooperative Association helped support a two-year program at Michigan State University involving extensive performance testing of an Enertech 1500 and a 4-kW Dakota with a Gemini inverter. The performance study suggested measurements necessary to characterize SWECS for interconnected operation. They include SWECS energy output to a-c line, miles of wind passing the rotor, var-hour metering for average var consumption, and recording watt, current, and voltmeters to assess SWECS output variability. Added instruments for waveform measurement (to assess power quality) are also needed. Typical data taken at the MSU test site are used to illustrate the techniques and preliminary data from a current project is given. Finally, conclusions about SWECS performance are listed.

  11. Thin-film chip-to-substrate interconnect and methods for making same

    DOEpatents

    Tuckerman, D.B.

    1988-06-06

    Integrated circuit chips are electrically connected to a silicon wafer interconnection substrate. Thin film wiring is fabricated down bevelled edges of the chips. A subtractive wire fabrication method uses a series of masks and etching steps to form wires in a metal layer. An additive method direct laser writes or deposits very thin lines which can then be plated up to form wires. A quasi-additive or subtractive/additive method forms a pattern of trenches to expose a metal surface which can nucleate subsequent electrolytic deposition of wires. Low inductance interconnections on a 25 micron pitch (1600 wires on a 1 cm square chip) can be produced. The thin film hybrid interconnect eliminates solder joints or welds, and minimizes the levels of metallization. Advantages include good electrical properties, very high wiring density, excellent backside contact, compactness, and high thermal and mechanical reliability. 6 figs.

  12. Thin-film chip-to-substrate interconnect and methods for making same

    DOEpatents

    Tuckerman, David B.

    1991-01-01

    Integrated circuit chips are electrically connected to a silica wafer interconnection substrate. Thin film wiring is fabricated down bevelled edges of the chips. A subtractive wire fabrication method uses a series of masks and etching steps to form wires in a metal layer. An additive method direct laser writes or deposits very thin metal lines which can then be plated up to form wires. A quasi-additive or subtractive/additive method forms a pattern of trenches to expose a metal surface which can nucleate subsequent electrolytic deposition of wires. Low inductance interconnections on a 25 micron pitch (1600 wires on a 1 cm square chip) can be produced. The thin film hybrid interconnect eliminates solder joints or welds, and minimizes the levels of metallization. Advantages include good electrical properties, very high wiring density, excellent backside contact, compactness, and high thermal and mechanical reliability.

  13. Project Profile: The Sacramento Municipal Utility District Consumnes Power Plant Solar Augmentation Project

    Energy.gov [DOE]

    -- This project is inactive -- The Sacramento Municipal Utility District (SMUD), under the Concentrating Solar Power (CSP) Heat Integration for Baseload Renewable Energy Development (HIBRED) program, is demonstrating a hybrid CSP solar energy system that takes advantage of an existing electrical generator for its power block and transmission interconnection.

  14. Gold-based electrical interconnections for microelectronic devices

    DOEpatents

    Peterson, Kenneth A.; Garrett, Stephen E.; Reber, Cathleen A.; Watson, Robert D.

    2002-01-01

    A method of making an electrical interconnection from a microelectronic device to a package, comprising ball or wedge compression bonding a gold-based conductor directly to a silicon surface, such as a polysilicon bonding pad in a MEMS or IMEMS device, without using layers of aluminum or titanium disposed in-between the conductor and the silicon surface. After compression bonding, optional heating of the bond above 363 C. allows formation of a liquid gold-silicon eutectic phase containing approximately 3% (by weight) silicon, which significantly improves the bond strength by reforming and enhancing the initial compression bond. The same process can be used for improving the bond strength of Au--Ge bonds by forming a liquid Au-12Ge eutectic phase.

  15. Development of Ceramic Interconnect Materials for SOFC

    SciTech Connect

    Yoon, Kyung J.; Stevenson, Jeffry W.; Marina, Olga A.

    2010-08-05

    Currently, acceptor-doped lanthanum chromite is the state-of-the-art ceramic interconnect material for high temperature solid oxide fuel cells (SOFCs) due to its fairly good electronic conductivity and chemical stability in both oxidizing and reducing atmospheres, and thermal compatibility with other cell components. The major challenge for acceptor-doped lanthanum chromite for SOFC interconnect applications is its inferior sintering behavior in air, which has been attributed to the development of a thin layer of Cr2O3 at the interparticle necks during the initial stages of sintering. In addition, lanthanum chromite is reactive with YSZ electrolyte at high temperatures, forming a highly resistive lanthanum zirconate phase (La2Zr2O7), which further complicates co-firing processes. Acceptor-doped yttrium chromite is considered to be one of the promising alternatives to acceptor-doped lanthanum chromite because it is more stable with respect to the formation of hydroxides in SOFC operating conditions, and the formation of impurity phases can be effectively avoided at co-firing temperatures. In addition, calcium-doped yttrium chromite exhibits higher mechanical strength than lanthanum chromite-based materials. The major drawback of yttrium chromite is considered to be its lower electrical conductivity than lanthanum chromite. The properties of yttrium chromites could possibly be improved and optimized by partial substitution of chromium with various transition metals. During FY10, PNNL investigated the effect of various transition metal doping on chemical stability, sintering and thermal expansion behavior, microstructure, electronic and ionic conductivity, and chemical compatibility with other cell components to develop the optimized ceramic interconnect material.

  16. Repairable chip bonding/interconnect process

    DOEpatents

    Bernhardt, A.F.; Contolini, R.J.; Malba, V.; Riddle, R.A.

    1997-08-05

    A repairable, chip-to-board interconnect process which addresses cost and testability issues in the multi-chip modules is disclosed. This process can be carried out using a chip-on-sacrificial-substrate technique, involving laser processing. This process avoids the curing/solvent evolution problems encountered in prior approaches, as well is resolving prior plating problems and the requirements for fillets. For repairable high speed chip-to-board connection, transmission lines can be formed on the sides of the chip from chip bond pads, ending in a gull wing at the bottom of the chip for subsequent solder. 10 figs.

  17. Updating Interconnection Screens for PV System Integration

    SciTech Connect

    Coddington, M.; Mather, B.; Kroposki, B.; Lynn, K.; Razon, A.; Ellis, A.; Hill, R.; Key, T.; Nicole, K.; Smith, J.

    2012-02-01

    This white paper evaluates the origins and usefulness of the capacity penetration screen, offer short-term solutions which could effectively allow fast-track interconnection to many PV system applications, and considers longer-term solutions for increasing PV deployment levels in a safe and reliable manner while reducing or eliminating the emphasis on the penetration screen. Short-term and longer-term alternatives approaches are offered as examples; however, specific modifications to screening procedures should be discussed with stakeholders and must ultimately be adopted by state and federal regulatory bodies.

  18. Repairable chip bonding/interconnect process

    DOEpatents

    Bernhardt, Anthony F.; Contolini, Robert J.; Malba, Vincent; Riddle, Robert A.

    1997-01-01

    A repairable, chip-to-board interconnect process which addresses cost and testability issues in the multi-chip modules. This process can be carried out using a chip-on-sacrificial-substrate technique, involving laser processing. This process avoids the curing/solvent evolution problems encountered in prior approaches, as well is resolving prior plating problems and the requirements for fillets. For repairable high speed chip-to-board connection, transmission lines can be formed on the sides of the chip from chip bond pads, ending in a gull wing at the bottom of the chip for subsequent solder.

  19. Environmental Regulation Impacts on Eastern Interconnection Performance

    SciTech Connect

    Markham, Penn N; Liu, Yilu; Young II, Marcus Aaron

    2013-07-01

    In the United States, recent environmental regulations will likely result in the removal of nearly 30 GW of oil and coal-fired generation from the power grid, mostly in the Eastern Interconnection (EI). The effects of this transition on voltage stability and transmission line flows have previously not been studied from a system-wide perspective. This report discusses the results of power flow studies designed to simulate the evolution of the EI over the next few years as traditional generation sources are replaced with environmentally friendlier ones such as natural gas and wind.

  20. Category:Congressional Districts | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    19th congressional district California's 1st congressional district California's 20th congressional district California's 21st congressional district California's 22nd...

  1. Method of doping interconnections for electrochemical cells

    DOEpatents

    Pal, Uday B.; Singhal, Subhash C.; Moon, David M.; Folser, George R.

    1990-01-01

    A dense, electronically conductive interconnection layer 26 is bonded on a porous, tubular, electronically conductive air electrode structure 16, optionally supported by a ceramic support 22, by (A) forming a layer of oxide particles of at least one of the metals Ca, Sr, Co, Ba or Mg on a part 24 of a first surface of the air electrode 16, (B) heating the electrode structure, (C) applying a halide vapor containing at least lanthanum halide and chromium halide to the first surface and applying a source of oxygen to a second opposite surface of the air electrode so that they contact at said first surface, to cause a reaction of the oxygen and halide and cause a dense lanthanum-chromium oxide structure to grow, from the first electrode surface, between and around the oxide particles, where the metal oxide particles get incoporated into the lanthanum-chromium oxide structure as it grows thicker with time, and the metal ions in the oxide particles diffuse into the bulk of the lanthamum-chromium oxide structure, to provide a dense, top, interconnection layer 26 on top of the air electrode 16. A solid electrolyte layer 18 can be applied to the uncovered portion of the air electrode, and a fuel electrode 20 can be applied to the solid electrolyte, to provide an electrochemical cell 10.

  2. National Offshore Wind Energy Grid Interconnection Study

    SciTech Connect

    Daniel, John P.; Liu, Shu; Ibanez, Eduardo; Pennock, Ken; Reed, Greg; Hanes, Spencer

    2014-07-30

    The National Offshore Wind Energy Grid Interconnection Study (NOWEGIS) considers the availability and potential impacts of interconnecting large amounts of offshore wind energy into the transmission system of the lower 48 contiguous United States. A total of 54GW of offshore wind was assumed to be the target for the analyses conducted. A variety of issues are considered including: the anticipated staging of offshore wind; the offshore wind resource availability; offshore wind energy power production profiles; offshore wind variability; present and potential technologies for collection and delivery of offshore wind energy to the onshore grid; potential impacts to existing utility systems most likely to receive large amounts of offshore wind; and regulatory influences on offshore wind development. The technologies considered the reliability of various high-voltage ac (HVAC) and high-voltage dc (HVDC) technology options and configurations. The utility system impacts of GW-scale integration of offshore wind are considered from an operational steady-state perspective and from a regional and national production cost perspective.

  3. Missouri Clean Energy District

    Energy.gov [DOE]

    In July 2010 Missouri enacted the Property Assessed Clean Energy Act, which led to the creation of the statewide Missouri Clean Energy District (MCED) in January 2011.

  4. District cooling gets hot

    SciTech Connect

    Seeley, R.S.

    1996-07-01

    Utilities across the country are adopting cool storage methods, such as ice-storage and chilled-water tanks, as an economical and environmentally safe way to provide cooling for cities and towns. The use of district cooling, in which cold water or steam is pumped to absorption chillers and then to buildings via a central community chiller plant, is growing strongly in the US. In Chicago, San Diego, Pittsburgh, Baltimore, and elsewhere, independent district-energy companies and utilities are refurbishing neglected district-heating systems and adding district cooling, a technology first developed approximately 35 years ago.

  5. Current Solutions: Recent Experience in Interconnecting Distributed Energy Resources

    SciTech Connect

    Johnson, M.

    2003-09-01

    This report catalogues selected real-world technical experiences of utilities and customers that have interconnected distributed energy assets with the electric grid. This study was initiated to assess the actual technical practices for interconnecting distributed generation and had a particular focus on the technical issues covered under the Institute of Electrical and Electronics Engineers (IEEE) 1547(TM) Standard for Interconnecting Distributed Resources With Electric Power Systems.

  6. Enhanced Modeling and Monitoring Tools for Distributed PV Interconnection

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Enhanced Modeling and Monitoring Tools for Distributed PV Interconnection Page 1 of 27 Kristen Ardani, Rick Thompson, Mark Rawson, David Pinney Page 1 of 27 [Speaker: Kristen Ardani] Cover Slide: Thank you everyone for joining us today for the DG Interconnection Collaborative's informational webinar. The focus of today's presentation will be on enhanced modeling and monitoring tools for distributed PV interconnection. We have a guest speaker from Green Tech Media (GTM) today, Rick Thompson. So

  7. New Report Characterizes Existing Offshore Wind Grid Interconnection

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Capabilities | Department of Energy Characterizes Existing Offshore Wind Grid Interconnection Capabilities New Report Characterizes Existing Offshore Wind Grid Interconnection Capabilities September 3, 2014 - 10:49am Addthis The Energy Department today released the first National Offshore Wind Energy Grid Interconnection Study (NOWEGIS). The NOWEGIS investigated the key economic and technological factors that will influence the integration of offshore wind energy onto the national grid.

  8. Advanced Platform for Development and Evaluation of Grid Interconnection

    Office of Scientific and Technical Information (OSTI)

    Systems Using Hardware-in-the-Loop (Poster) (Conference) | SciTech Connect Advanced Platform for Development and Evaluation of Grid Interconnection Systems Using Hardware-in-the-Loop (Poster) Citation Details In-Document Search Title: Advanced Platform for Development and Evaluation of Grid Interconnection Systems Using Hardware-in-the-Loop (Poster) This poster describes a Grid Interconnection System Evaluator (GISE) that leverages hardware-in-the-loop (HIL) simulation techniques to rapidly

  9. Title 16 USC 824a Interconnection and Coordination of Facilities...

    OpenEI (Open Energy Information) [EERE & EIA]

    a Interconnection and Coordination of Facilities, Emergencies, Transmission to Foreign Countries Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document-...

  10. Physics of Failure of Electrical Interconnects | Department of...

    Energy.gov [DOE] (indexed site)

    Annual Merit Review and Peer Evaluation Meeting ape036devoto2012p.pdf (851.05 KB) More Documents & Publications Reliability of Electrical Interconnects Physics of Failure

  11. Physics of Failure of Electrical Interconnects | Department of...

    Energy.gov [DOE] (indexed site)

    Program Annual Merit Review and Peer Evaluation ape036devoto2011p.pdf (402.27 KB) More Documents & Publications Physics of Failure of Electrical Interconnects Reliability

  12. Institute of Electrical and Electronics Engineers: Interconnection Standards Development

    SciTech Connect

    Not Available

    2003-10-01

    Summarizes the work of the Institute of Electrical and Electronics Engineers 1547 Working Group to develop a set of standards to guide the interconnection of distributed generation.

  13. EA-1989: Cliffrose Solar Energy Interconnection Project, Mohave...

    Energy.gov [DOE] (indexed site)

    the potential environmental impacts of interconnecting the proposed Cliffrose Solar Energy Project in Mohave County, Arizona, to Western's transmission system at the existing...

  14. Community Wind Handbook/Research Interconnecting behind Your...

    OpenEI (Open Energy Information) [EERE & EIA]

    your local utility. Most utilities and other electricity providers require you to enter into a formal agreement with them before you are allowed to interconnect your wind...

  15. EA-2018: Front Range-Midway Solar Interconnection Project; El...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Western Area Power Administration prepared an EA that analyzes the potential environmental impacts of interconnecting a proposed photovoltaic solar facility adjacent to Western's ...

  16. Optical system properties of a reconfigurable MEMS interconnect...

    Office of Scientific and Technical Information (OSTI)

    system properties of a reconfigurable MEMS interconnect. Citation Details In-Document ... Sponsoring Org: USDOE Country of Publication: United States Language: English Subject: 42 ...

  17. Power System Generation and Inter-Connection Planning Model ...

    OpenEI (Open Energy Information) [EERE & EIA]

    Generation and Inter-Connection Planning Model (SUPER) AgencyCompany Organization: Latin American Energy Organization Sector: Energy Focus Area: Renewable Energy, Hydro...

  18. Microgrid V2G Charging Station Interconnection Testing (Presentation)

    SciTech Connect

    Simpson, M.

    2013-07-01

    This presentation by Mike Simpson of the National Renewable Energy Laboratory (NREL) describes NREL's microgrid vehicle-to-grid charging station interconnection testing.

  19. South West Interconnected System SWIS | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    search Name: South West Interconnected System (SWIS) Place: Perth, Western Australia, Australia Zip: 6000 Product: Utility serving South West Australia, a subsidiary of...

  20. Energy and Water in the Western and Texas Interconnects

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    in the Western and Texas Interconnects - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future ...

  1. Virtual interconnection platform initiative scoping study

    SciTech Connect

    Liu, Yong; Kou, Gefei; Pan, Zuohong; Liu, Yilu; King Jr., Thomas J.

    2016-01-01

    Due to security and liability concerns, the research community has limited access to realistic large-scale power grid models to test and validate new operation and control methodologies. It is also difficult for industry to evaluate the relative value of competing new tools without a common platform for comparison. This report proposes to develop a large-scale virtual power grid model that retains basic features and represents future trends of major U.S. electric interconnections. This model will include realistic power flow and dynamics information as well as a relevant geospatial distribution of assets. This model will be made widely available to the research community for various power system stability and control studies and can be used as a common platform for comparing the efficacies of various new technologies.

  2. FUNDAMENTAL STUDIES OF THE DURABILITY OF MATERIALS FOR INTERCONNECTS IN SOLID OXIDE FUEL CELLS

    SciTech Connect

    Frederick S. Pettit; Gerald H. Meier

    2003-06-30

    This report describes the result of the first eight months of effort on a project directed at improving metallic interconnect materials for solid oxide fuel cells (SOFCs). The results include cyclic oxidation studies of a group of ferritic alloys, which are candidate interconnect materials. The exposures have been carried out in simulated fuel cell atmospheres. The oxidation morphologies have been characterized and the ASR has been measured for the oxide scales. The effect of fuel cell electric current density on chromia growth rates has been considered The thermomechanical behavior of the scales has been investigated by stress measurements using x-ray diffraction and interfacial fracture toughness measurements using indentation. The ultimate goal of this thrust is to use knowledge of changes in oxide thickness, stress and adhesion to develop accelerated testing methods for evaluating SOFC interconnect alloys. Finally a theoretical assessment of the potential for use of ''new'' metallic materials as interconnect materials has been conducted and is presented in this report. Alloys being considered include materials based on pure nickel, materials based on the ''Invar'' concept, and coated materials to optimize properties in both the anode and cathode gases.

  3. Communication Requirements and Interconnect Optimization forHigh-End Scientific Applications

    SciTech Connect

    Kamil, Shoaib; Oliker, Leonid; Pinar, Ali; Shalf, John

    2007-11-12

    The path towards realizing peta-scale computing isincreasingly dependent on building supercomputers with unprecedentednumbers of processors. To prevent the interconnect from dominating theoverall cost of these ultra-scale systems, there is a critical need forhigh-performance network solutions whose costs scale linearly with systemsize. This work makes several unique contributions towards attaining thatgoal. First, we conduct one of the broadest studies to date of high-endapplication communication requirements, whose computational methodsinclude: finite-difference, lattice-bolzmann, particle in cell, sparselinear algebra, particle mesh ewald, and FFT-based solvers. Toefficiently collect this data, we use the IPM (Integrated PerformanceMonitoring) profiling layer to gather detailed messaging statistics withminimal impact to code performance. Using the derived communicationcharacterizations, we next present fit-trees interconnects, a novelapproach for designing network infrastructure at a fraction of thecomponent cost of traditional fat-tree solutions. Finally, we propose theHybrid Flexibly Assignable Switch Topology (HFAST) infrastructure, whichuses both passive (circuit) and active (packet) commodity switchcomponents to dynamically reconfigure interconnects to suit thetopological requirements of scientific applications. Overall ourexploration leads to a promising directions for practically addressingthe interconnect requirements of future peta-scale systems.

  4. Updating Small Generator Interconnection Procedures for New Market Conditions

    SciTech Connect

    Coddington, M.; Fox, K.; Stanfield, S.; Varnado, L.; Culley, T.; Sheehan, M.

    2012-12-01

    Federal and state regulators are faced with the challenge of keeping interconnection procedures updated against a backdrop of evolving technology, new codes and standards, and considerably transformed market conditions. This report is intended to educate policymakers and stakeholders on beneficial reforms that will keep interconnection processes efficient and cost-effective while maintaining a safe and reliable power system.

  5. Solar panel with interconnects and masking structure, and method

    SciTech Connect

    Gaddy, E.M.; Dominguez, R.

    1991-04-30

    This patent describes a solar panel. It includes: solar cells having radiation absorbing surface and opposed back surfaces; conducting means for interconnecting the solar cells; a transparent superstrate upon one surface of which radiation absorbing surfaces are mounted; and means upon a surface of the transparent superstrate for masking the interconnecting means.

  6. District of Columbia - Compare - U.S. Energy Information Administration

    Energy Information Administration (EIA) (indexed site)

    (EIA) District of Columbia District of Columbia

  7. District of Columbia - Rankings - U.S. Energy Information Administration

    Energy Information Administration (EIA) (indexed site)

    (EIA) District of Columbia District of Columbia

  8. District of Columbia - Search - U.S. Energy Information Administration

    Energy Information Administration (EIA) (indexed site)

    (EIA) District of Columbia District of Columbia

  9. Solid-state energy storage module employing integrated interconnect board

    DOEpatents

    Rouillard, Jean; Comte, Christophe; Daigle, Dominik; Hagen, Ronald A.; Knudson, Orlin B.; Morin, Andre; Ranger, Michel; Ross, Guy; Rouillard, Roger; St-Germain, Philippe; Sudano, Anthony; Turgeon, Thomas A.

    2004-09-28

    An electrochemical energy storage device includes a number of solid-state thin-film electrochemical cells which are selectively interconnected in series or parallel through use of an integrated interconnect board. The interconnect board is typically disposed within a sealed housing which also houses the electrochemical cells, and includes a first contact and a second contact respectively coupled to first and second power terminals of the energy storage device. The interconnect board advantageously provides for selective series or parallel connectivity with the electrochemical cells, irrespective of electrochemical cell position within the housing. Fuses and various electrical and electro-mechanical devices, such as bypass, equalization, and communication devices for example, may also be mounted to the interconnect board and selectively connected to the electrochemical cells.

  10. Fuel cell electrode interconnect contact material encapsulation and method

    DOEpatents

    Derose, Anthony J.; Haltiner, Jr., Karl J.; Gudyka, Russell A.; Bonadies, Joseph V.; Silvis, Thomas W.

    2016-05-31

    A fuel cell stack includes a plurality of fuel cell cassettes each including a fuel cell with an anode and a cathode. Each fuel cell cassette also includes an electrode interconnect adjacent to the anode or the cathode for providing electrical communication between an adjacent fuel cell cassette and the anode or the cathode. The interconnect includes a plurality of electrode interconnect protrusions defining a flow passage along the anode or the cathode for communicating oxidant or fuel to the anode or the cathode. An electrically conductive material is disposed between at least one of the electrode interconnect protrusions and the anode or the cathode in order to provide a stable electrical contact between the electrode interconnect and the anode or cathode. An encapsulating arrangement segregates the electrically conductive material from the flow passage thereby, preventing volatilization of the electrically conductive material in use of the fuel cell stack.

  11. Energy and water in the Western and Texas interconnects.

    SciTech Connect

    Tidwell, Vincent Carroll

    2010-08-01

    The Department of Energy's Office of Electricity has initiated a $60M program to assist the electric industry in interconnection-level analysis and planning. The objective of this effort is to facilitate the development or strengthening of capabilities in each of the three interconnections serving the lower 48 states of the United States, to prepare analyses of transmission requirements under a broad range of alternative futures and develop long-term interconnection-wide transmission expansion plans. The interconnections are the Western Interconnection, the Eastern Interconnection, and the Texas Interconnection. One element of this program address the support and development of an integrated energy-water Decision Support System (DSS) that will enable planners in the Western and Texas Interconnections to analyze the potential implications of water stress for transmission and resource planning (the Eastern Interconnection is not participating in this element). Specific objectives include: (1) Develop an integrated Energy-Water Decision Support System (DSS) that will enable planners in the Western and Texas Interconnections to analyze the potential implications of water stress for transmission and resource planning. (2) Pursue the formulation and development of the Energy-Water DSS through a strongly collaborative process between members of this proposal team and the Western Electricity Coordinating Council (WECC), Western Governors Association (WGA), the Electric Reliability Council of Texas (ERCOT) and their associated stakeholder teams. (3) Exercise the Energy-Water DSS to investigate water stress implications of the transmission planning scenarios put forward by WECC, WGA, and ERCOT. The goals of this project are: (1) Develop an integrated Energy-Water Decision Support System (DSS) that will enable planners to analyze the potential implications of water stress for transmission and resource planning. (2) Pursue the formulation and development of the Energy

  12. Geothermal District Heating Economics

    Energy Science and Technology Software Center

    1995-07-12

    GEOCITY is a large-scale simulation model which combines both engineering and economic submodels to systematically calculate the cost of geothermal district heating systems for space heating, hot-water heating, and process heating based upon hydrothermal geothermal resources. The GEOCITY program simulates the entire production, distribution, and waste disposal process for geothermal district heating systems, but does not include the cost of radiators, convectors, or other in-house heating systems. GEOCITY calculates the cost of district heating basedmore » on the climate, population, and heat demand of the district; characteristics of the geothermal resource and distance from the distribution center; well-drilling costs; design of the distribution system; tax rates; and financial conditions.« less

  13. Frequency Instability Problems in North American Interconnections

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... FERC Federal Energy Regulatory Commission HVDC High voltage direct current Hz Hertz ISO ... achieved by using high voltage direct current (HVDC) lines and back-to-back HVDC links. ...

  14. PP-82-3 The Joint Owners of the Highgate Interconnection Facilities...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    3 The Joint Owners of the Highgate Interconnection Facilities PP-82-3 The Joint Owners of the Highgate Interconnection Facilities Presidential Permit authorizing The Joint Owners ...

  15. Bipolar plating of metal contacts onto oxide interconnection for solid oxide electrochemical cell

    DOEpatents

    Isenberg, Arnold O.

    1987-01-01

    Disclosed is a method of forming an adherent metal deposit on a conducting layer of a tube sealed at one end. The tube is immersed with the sealed end down into an aqueous solution containing ions of the metal to be deposited. An ionically conducting aqueous fluid is placed inside the tube and a direct current is passed from a cathode inside the tube to an anode outside the tube. Also disclosed is a multi-layered solid oxide fuel cell tube which consists of an inner porous ceramic support tube, a porous air electrode covering the support tube, a non-porous electrolyte covering a portion of the air electrode, a non-porous conducting interconnection covering the remaining portion of the electrode, and a metal deposit on the interconnection.

  16. Bipolar plating of metal contacts onto oxide interconnection for solid oxide electrochemical cell

    DOEpatents

    Isenberg, A.O.

    1987-03-10

    Disclosed is a method of forming an adherent metal deposit on a conducting layer of a tube sealed at one end. The tube is immersed with the sealed end down into an aqueous solution containing ions of the metal to be deposited. An ionically conducting aqueous fluid is placed inside the tube and a direct current is passed from a cathode inside the tube to an anode outside the tube. Also disclosed is a multi-layered solid oxide fuel cell tube which consists of an inner porous ceramic support tube, a porous air electrode covering the support tube, a non-porous electrolyte covering a portion of the air electrode, a non-porous conducting interconnection covering the remaining portion of the electrode, and a metal deposit on the interconnection. 1 fig.

  17. Interconnecting PV on NYC's Secondary Network Distribution System

    Office of Energy Efficiency and Renewable Energy (EERE)

    To assess ways to improve the interconnection process, NREL conducted a four-part study with support from DOE. The NREL team then compiled the final reports from each study into this report.

  18. seca-core-tech-sofc-interconnect | netl.doe.gov

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Ceramic Interconnects Coatings PDF-2.5MB - Elangovan Alloy Development PDF-1.3MB - James Rakowski New Investigation Results of Crofer 22 APU PDF-3.5MB - Hojda Oxidation...

  19. Topic B Awardee: Eastern Interconnection States' Planning Council

    Energy.gov [DOE]

    The Eastern Interconnection States' Planning Council (EISPC) is an historic endeavor initially funded by an award from the United States Department of Energy (DOE) pursuant to a provision of the American Recovery and Reinvestment Act (ARRA).

  20. U.S. Army Fort Carson Interconnection Agreement | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    for the U.S. Army Fort Carson photovoltaic (PV) project financed through a power ... U.S. Army Fort Carson Interconnection Agreement Fort Carson Photovoltaic System U.S. Army ...

  1. Utility-Interconnected Photovoltaic Systems STEVENS III,JOHN...

    Office of Scientific and Technical Information (OSTI)

    STEVENS III,JOHN W.; BONN,RUSSELL H.; GINN,JERRY W.; GONZALEZ,SIGIFREDO; KERN,GREG 14 SOLAR ENERGY; 24 POWER TRANSMISSION AND DISTRIBUTION; INTERCONNECTED POWER SYSTEMS;...

  2. Interconnecting PV on New York City's Secondary Network Distribution System

    SciTech Connect

    Anderson, K.; Coddington, M.; Burman, K.; Hayter, S.; Kroposki, B.; Watson, A.

    2009-12-01

    This study describes technical assistance provided by NREL to help New York City and Con Edison improve the interconnection of distributed PV systems on a secondary network distribution system.

  3. Fan-In Communications On A Cray Gemini Interconnect (Conference...

    Office of Scientific and Technical Information (OSTI)

    Using the Cray Gemini interconnect as our platform, we present a study of an important class of communication operations the fan-in communication pattern. By its nature, fan-in ...

  4. U.S. Geothermal Signs Interconnection Agreement for Neal Hot...

    OpenEI (Open Energy Information) [EERE & EIA]

    Project Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: U.S. Geothermal Signs Interconnection Agreement for Neal Hot Springs Power Project Abstract...

  5. Advanced Unit Commitment Strategies in the United States Eastern Interconnection

    SciTech Connect

    Meibom, P.; Larsen, H. V.; Barth, R.; Brand, H.; Tuohy, A.; Ela, E.

    2011-08-01

    This project sought to evaluate the impacts of high wind penetrations on the U.S. Eastern Interconnection and analyze how different unit commitment strategies may affect these impacts.

  6. FERC Order No. 2003 Appendix 6 - Large Generator Interconnection...

    OpenEI (Open Energy Information) [EERE & EIA]

    FERC Order No. 2003 Appendix 6 - Large Generator Interconnection Agreement Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: FERC Order No. 2003 Appendix 6 -...

  7. Public Utility District #1 Of Jefferson County

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Commissioners July 2,2008 Dana Roberts, District 1 M. Kelly Hays, District 2 Wayne G. King, District 3 Mark Gendron, Vice President Northwest Requirements Marketing James G....

  8. BLM Prineville District Office | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Prineville District Office Jump to: navigation, search Name: BLM Prineville District Office Place: Prineville, Oregon References: BLM Prineville District Office Directory1 This...

  9. BLM Vale District Office | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Vale District Office Jump to: navigation, search Name: BLM Vale District Office Place: Vale, Oregon ParentHolding Organization: BLM References: BLM Vale District Office...

  10. Westlands Water District | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Westlands Water District Jump to: navigation, search Name: Westlands Water District Place: California Sector: Solar Product: Water district in central California which administers...

  11. Southern Nevada Health District | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Health District Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Southern Nevada Health District Author Southern Nevada Health District Published...

  12. Distributed PV Interconnection Screening Procedures and Online Tools

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Screening Procedures and Online Tools Page 1 of 9 Kristen Ardani, Joel Dickinson, Max Berger, David Crowell, Jeff Dickinson, Kelly Webster Page 1 of 9 [Speaker: Kristen Ardani] Cover Slide: Thank you everyone for joining us today for the DG Interconnection Collaborative. My name is Kristen Ardani,I'm an analyst here at NREL and the lead facilitator of the DGIC. We are fortunate today to have speakers Joel Dickinson of Salt River Project. We are going to discuss distributed PV interconnection

  13. Distributed PV Interconnection Screening Procedures and Online Tools

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Distributed PV Interconnection Screening Procedures and Online Tools" Joel Dickinson with Salt River Project Solar Initiatives Group August 27, 2014 2 Speakers Joel Dickinson Sr. Engineer Salt River Project Kristen Ardani Solar Analyst National Renewable Energy Laboratory (DGIC moderator) August 27th, 2014 Joel Dickinson, P.E. Sr. Engineer Solar Initiatives Distributed PV Interconnection Screening and Online Tools Salt River Project  Established in 1903 after Theodore Roosevelt signed

  14. Developing Generic Dynamic Models for the 2030 Eastern Interconnection Grid

    SciTech Connect

    Kou, Gefei; Hadley, Stanton W; Markham, Penn N; Liu, Yilu

    2013-12-01

    The Eastern Interconnection Planning Collaborative (EIPC) has built three major power flow cases for the 2030 Eastern Interconnection (EI) based on various levels of energy/environmental policy conditions, technology advances, and load growth. Using the power flow cases, this report documents the process of developing the generic 2030 dynamic models using typical dynamic parameters. The constructed model was validated indirectly using the synchronized phasor measurements by removing the wind generation temporarily.

  15. Final Report - Streamlined and Standardized Permitting and Interconnection

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Processes for Rooftop PV in Puerto Rico | Department of Energy Streamlined and Standardized Permitting and Interconnection Processes for Rooftop PV in Puerto Rico Final Report - Streamlined and Standardized Permitting and Interconnection Processes for Rooftop PV in Puerto Rico Awardee: Puerto Rico Energy Affairs Administration Location: San Juan, Puerto Rico Subprogram: Soft Costs Funding Program: Rooftop Solar Challenge 1 The plan to transform the rooftop photovoltaic (PV) market in Puerto

  16. EA-1990: Ridgenose Solar Energy Interconnection Facility, Mohave County, Arizona

    Energy.gov [DOE]

    DOE’s Western Area Power Administration (Desert Southwest Region) is preparing an EA that will assess the potential environmental impacts of a proposal to interconnect the planned Ridgenose Solar Energy Project to Western’s transmission system. Western’s actions could include constructing less than a mile of new transmission line from the solar facility to an existing substation, constructing an interconnection substation, and adding, moving, or modifying structures.

  17. National Electric Transmission Study 2006 Western Interconnection Analysis

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Western Interconnection 2006 Congestion Assessment Study Prepared by the Western Congestion Analysis Task Force May 08, 2006 2 Western Interconnection 2006 Congestion Study - DOE Task 3 - 1. 2008 Modeling Study 2. 2015 Modeling Study - 2015 Planned Resource Development (IRPs and RPS) 3. W.I. Historical Path Usage Studies - 1999 thru 2005 - Physical congestion - Commercial congestion 3 WCATF Modeling Studies ABB Gridview Model * Model uses WECC 2005 L&R load forecast, modified with NPCC data

  18. CHP: Connecting the Gap between Markets and Utility Interconnection and

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Tariff Practices, 2006 | Department of Energy CHP: Connecting the Gap between Markets and Utility Interconnection and Tariff Practices, 2006 CHP: Connecting the Gap between Markets and Utility Interconnection and Tariff Practices, 2006 The adoption of combined heat and power (CHP) systems by American industries has made substantial strides in the last few years. The purpose of this report is threefold: one, to expose still existent barriers to entry for proposed CHP facilities; secondarily,

  19. Oxidation Resistant, Cr Retaining, Electrically Conductive Coatings on Metallic Alloys for SOFC Interconnects

    SciTech Connect

    Vladimir Gorokhovsky

    2008-03-31

    This report describes significant results from an on-going, collaborative effort to enable the use of inexpensive metallic alloys as interconnects in planar solid oxide fuel cells (SOFCs) through the use of advanced coating technologies. Arcomac Surface Engineering, LLC, under the leadership of Dr. Vladimir Gorokhovsky, is investigating filtered-arc and filtered-arc plasma-assisted hybrid coating deposition technologies to promote oxidation resistance, eliminate Cr volatility, and stabilize the electrical conductivity of both standard and specialty steel alloys of interest for SOFC metallic interconnect (IC) applications. Arcomac has successfully developed technologies and processes to deposit coatings with excellent adhesion, which have demonstrated a substantial increase in high temperature oxidation resistance, stabilization of low Area Specific Resistance values and significantly decrease Cr volatility. An extensive matrix of deposition processes, coating compositions and architectures was evaluated. Technical performance of coated and uncoated sample coupons during exposures to SOFC interconnect-relevant conditions is discussed, and promising future directions are considered. Cost analyses have been prepared based on assessment of plasma processing parameters, which demonstrate the feasibility of the proposed surface engineering process for SOFC metallic IC applications.

  20. Electronic interconnects and devices with topological surface states and methods for fabricating same

    DOEpatents

    Yazdani, Ali; Ong, N. Phuan; Cava, Robert J.

    2016-05-03

    An interconnect is disclosed with enhanced immunity of electrical conductivity to defects. The interconnect includes a material with charge carriers having topological surface states. Also disclosed is a method for fabricating such interconnects. Also disclosed is an integrated circuit including such interconnects. Also disclosed is a gated electronic device including a material with charge carriers having topological surface states.

  1. Metro Wastewater Reclamation District Biomass Facility | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Wastewater Reclamation District Biomass Facility Jump to: navigation, search Name Metro Wastewater Reclamation District Biomass Facility Facility Metro Wastewater Reclamation...

  2. Secondary Network Distribution Systems Background and Issues Related to the Interconnection of Distributed Resources

    SciTech Connect

    Behnke, M.; Erdman, W.; Horgan, S.; Dawson, D.; Feero, W.; Soudi, F.; Smith, D.; Whitaker, C.; Kroposki, B.

    2005-07-01

    This document addresses the technical considerations associated with the interconnection of distributed resources (DR) with secondary network distribution systems. It provides an overview of the characteristics of distribution systems and interconnection requirements and identifies unique issues specific to network interconnections. It also identifies the network-specific interconnection issues for which test protocols should be developed. Recommended criteria and requirements for the interconnection of DR with network distribution systems are presented.

  3. Antireflection Coating Design for Series Interconnected Multi-Junction Solar Cells

    SciTech Connect

    AIKEN,DANIEL J.

    1999-11-29

    AR coating design for multi-junction solar cells can be more challenging than in the single junction case. Reasons for this are discussed. Analytical expressions used to optimize AR coatings for single junction solar cells are extended for use in monolithic, series interconnected multi-junction solar cell AR coating design. The result is an analytical expression which relates the solar cell performance (through J{sub SC}) directly to the AR coating design through the device reflectance. It is also illustrated how AR coating design can be used to provide an additional degree of freedom for current matching multi-junction devices.

  4. Net Metering and Interconnection Procedures-- Incorporating Best Practices

    SciTech Connect

    Jason Keyes, Kevin Fox, Joseph Wiedman, Staff at North Carolina Solar Center

    2009-04-01

    State utility commissions and utilities themselves are actively developing and revising their procedures for the interconnection and net metering of distributed generation. However, the procedures most often used by regulators and utilities as models have not been updated in the past three years, in which time most of the distributed solar facilities in the United States have been installed. In that period, the Interstate Renewable Energy Council (IREC) has been a participant in more than thirty state utility commission rulemakings regarding interconnection and net metering of distributed generation. With the knowledge gained from this experience, IREC has updated its model procedures to incorporate current best practices. This paper presents the most significant changes made to IREC’s model interconnection and net metering procedures.

  5. Fan-In Communications On A Cray Gemini Interconnect

    SciTech Connect

    Jones, Terry R; Settlemyer, Bradley W

    2014-01-01

    Using the Cray Gemini interconnect as our platform, we present a study of an important class of communication operations the fan-in communication pattern. By its nature, fan-in communications form hot spots that present significant challenges for any interconnect fabric and communication software stack. Yet despite the inherent challenges, these communication patterns are common in both applications (which often perform reductions and other collective operations that include fan-in communication such as barriers) and system software (where they assume an important role within parallel file systems and other components requiring high-bandwidth or low-latency I/O). Our study determines the effectiveness of differing clientserver fan-in strategies. We describe fan-in performance in terms of aggregate bandwidth in the presence of varying degrees of congestion, as well as several other key attributes. Comparison numbers are presented for the Cray Aries interconnect. Finally, we provide recommended communication strategies based on our findings.

  6. Advancements in Distributed Generation Issues: Interconnection, Modeling, and Tariffs

    SciTech Connect

    Thomas, H.; Kroposki, B.; Basso, T.; Treanton, B. G.

    2007-01-01

    The California Energy Commission is cost-sharing research with the Department of Energy through the National Renewable Energy Laboratory to address distributed energy resources (DER) topics. These efforts include developing interconnection and power management technologies, modeling the impacts of interconnecting DER with an area electric power system, and evaluating possible modifications to rate policies and tariffs. As a result, a DER interconnection device has been developed and tested. A workshop reviewed the status and issues of advanced power electronic devices. Software simulations used validated models of distribution circuits that incorporated DER, and tests and measurements of actual circuits with and without DER systems are being conducted to validate these models. Current policies affecting DER were reviewed and rate making policies to support deployment of DER through public utility rates and policies were identified. These advancements are expected to support the continued and expanded use of DER systems.

  7. Blueprint for financing geothermal district heating in California

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Technical Report: Blueprint for financing geothermal district heating in California Citation Details In-Document Search Title: Blueprint for financing geothermal district heating in California The current legal and investment climate surrounding geothermal development is depicted. Changes that would make the climate more favorable to direct heat geothermal development are recommended. The Boise, Susanville, and Brady Hot Springs projects are analyzed.

  8. Spintronic switches for ultra low energy global interconnects

    SciTech Connect

    Sharad, Mrigank Roy, Kaushik

    2014-05-07

    We present ultra-low energy interconnect design using nano-scale spin-torque (ST) switches for global data-links. Emerging spin-torque phenomena can lead to ultra-low-voltage, high-speed current-mode magnetic-switches. ST-switches can simultaneously provide large trans-impedance gain by employing magnetic tunnel junctions, to convert current-mode signals into large-swing voltage levels. Such device-characteristics can be used in the design of energy-efficient current-mode global interconnects.

  9. IEEE 1547 Series of Standards: Interconnection Issues; Preprint

    SciTech Connect

    Basso, T.; DeBlasio, R.

    2003-09-01

    IEEE 1547TM 2003 Standard for Interconnecting Distributed Resources With Electric Power Systems is the first in the 1547 series of planned interconnection standards. Major issues and a wealth of constructive dialogue arose during 1547 development. There was also a perceived increased vitality in updating complementary IEEE standards and developing additional standards to accommodate modern electrical and electronics systems and improved grid communications and operations. Power engineers and other stakeholders looking to the future are poised to incorporate 1547 into their knowledge base to help transform our nation's aging distribution systems while alleviating some of the burden on existing transmission systems.

  10. International District Energy Association

    Energy.gov [DOE]

    Since its formation in 1909, the International District Energy Association (IDEA) has served as a principal industry advocate and management resource for owners, operators, developers, and suppliers of district heating and cooling systems in cities, campuses, bases, and healthcare facilities. Today, with over 1,400 members in 26 countries, IDEA continues to organize high-quality technical conferences that inform, connect, and advance the industry toward higher energy efficiency and lower carbon emissions through innovation and investment in scalable sustainable solutions. With the support of DOE, IDEA performs industry research and market analysis to foster high impact projects and help transform the U.S. energy industry. IDEA was an active participant in the original Vision and Roadmap process and has continued to partner with DOE on combined heat and power (CHP) efforts across the country.

  11. Interconnecting PV on New York City's Secondary Network Distribution System

    SciTech Connect

    Anderson, K; Coddington, M; Burman, K; Hayter, S; Kroposki, B; Watson, and A

    2009-11-01

    The U.S. Department of Energy (DOE) has teamed with cities across the country through the Solar America Cities (SAC) partnership program to help reduce barriers and accelerate implementation of solar energy. The New York City SAC team is a partnership between the City University of New York (CUNY), the New York City Mayor s Office of Long-term Planning and Sustainability, and the New York City Economic Development Corporation (NYCEDC).The New York City SAC team is working with DOE s National Renewable Energy Laboratory (NREL) and Con Edison, the local utility, to develop a roadmap for photovoltaic (PV) installations in the five boroughs. The city set a goal to increase its installed PV capacity from1.1 MW in 2005 to 8.1 MW by 2015 (the maximum allowed in 2005). A key barrier to reaching this goal, however, is the complexity of the interconnection process with the local utility. Unique challenges are associated with connecting distributed PV systems to secondary network distribution systems (simplified to networks in this report). Although most areas of the country use simpler radial distribution systems to distribute electricity, larger metropolitan areas like New York City typically use networks to increase reliability in large load centers. Unlike the radial distribution system, where each customer receives power through a single line, a network uses a grid of interconnected lines to deliver power to each customer through several parallel circuits and sources. This redundancy improves reliability, but it also requires more complicated coordination and protection schemes that can be disrupted by energy exported from distributed PV systems. Currently, Con Edison studies each potential PV system in New York City to evaluate the system s impact on the network, but this is time consuming for utility engineers and may delay the customer s project or add cost for larger installations. City leaders would like to streamline this process to facilitate faster, simpler, and

  12. District Technical Sergeant | Y-12 National Security Complex

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    District Technical Sergeant District Technical Sergeant A Manhattan Engineering District technical sergeant looks over nearly completed construction at Y-12.

  13. Downtown district cooling: A 21st century approach

    SciTech Connect

    1995-12-01

    On December 1, 1992, the Board of Directors of the Metropolitan Pier and Exposition Authority (MPEA) met on Chicago`s historic Navy Pier and ushered in a new era of competition for energy supply in Chicago. The MPEA, a state agency created for the purposes of promoting and operating fair and exposition facilities within the Chicago area (including the McCormick Place exposition center and Navy Pier), voted to accept a third-party proposal to provide district heating and cooling services to the existing McCormick Place facilities and a million square feet of new exposition space. The winning bidder was a joint venture between Trigen Energy, the nation`s largest provider of district energy services, and Peoples Gas, the gas distribution company which serves Chicago. This vote culminated two years of effort by the Energy Division of Chicago`s Department of Environment to analyze the feasibility and promote the implementation of a district energy system to serve the expanded McCormick Place and its environs in the South Loop neighborhood. Initial services began in November, 1993, with a new hot and cold water piping system interconnecting the three existing exhibition facilities. The final buildout of the system, with a combined peak demand predicted at 160 MMBtu of heating and 15,920 tons of and cooling, is scheduled for completion in the summer of 1997.

  14. ,"Total District Heat Consumption (trillion Btu)",,,,,"District...

    Energy Information Administration (EIA) (indexed site)

    Heat Consumption (trillion Btu)",,,,,"District Heat Energy Intensity (thousand Btusquare foot)" ,"Total ","Space Heating","Water Heating","Cook- ing","Other","Total ","Space...

  15. Solar Energy to Benefit from New FERC Interconnection Procedures

    Energy.gov [DOE]

    As a major win for solar and testament to the impact of Department of Energys SunShot Initiative funded research at the national labs, this past month Federal Energy Regulatory Commission announced the adoption of new fast track rules to make the interconnection process dramatically cheaper and faster for small wholesale energy projects, representing a major improvement with nationwide impacts.

  16. Hermetic aluminum radio frequency interconnection and method for making

    DOEpatents

    Kilgo, Riley D.; Kovacic, Larry; Brow, Richard K.

    2000-01-01

    The present invention provides a light-weight, hermetic coaxial radio-frequency (RF) interconnection having an electrically conductive outer housing made of aluminum or an aluminum alloy, a central electrical conductor made of ferrous or non-ferrous material, and a cylinder of dielectric material comprising a low-melting-temperature, high-thermal-expansion aluminophosphate glass composition for hermetically sealing between the aluminum-alloy outer housing and the ferrous or non-ferrous center conductor. The entire RF interconnection assembly is made permanently hermetic by thermally fusing the center conductor, glass, and housing concurrently by bringing the glass to the melt point by way of exposure to an atmospheric temperature sufficient to melt the glass, less than 540.degree. C., but that does not melt the center conductor or the outer aluminum or aluminum alloy housing. The composition of the glass used is controlled to provide a suitable low dielectric constant so that an appropriate electrical characteristic impedance, for example 50 ohms, can be achieved for an electrical interconnection that performs well at high radio frequencies and also provides an interconnection maintaining a relatively small physical size.

  17. EA-1989: Cliffrose Solar Energy Interconnection Project, Mohave County, Arizona

    Energy.gov [DOE]

    DOE’s Western Area Power Administration (Western) is preparing an EA that will assess the potential environmental impacts of interconnecting the proposed Cliffrose Solar Energy Project in Mohave County, Arizona, to Western’s transmission system at the existing Griffith Substation. Additional information is available at http://www.wapa.gov/dsw/environment/CliffroseSolarEnergyProject.html.

  18. On the Path to SunShot- Interconnection Process

    Energy.gov [DOE]

    In the On the Path to SunShot report series, the Emerging Issues and Challenges with Integrating High Levels of Solar into the Distribution System report highlights improvements needed to current solar interconnection processes, associated standards and codes, and compensation mechanisms. This work is critical to facilitating distributed PV deployment so they embrace PV’s contributions to system-wide operations.

  19. Toward Interpreting Failure in Sintered-Silver Interconnection Systems

    SciTech Connect

    Wereszczak, Andrew A; Waters, Shirley B

    2016-01-01

    The mechanical strength and subsequent reliability of a sintered-silver interconnection system is a function of numerous independent parameters. That system is still undergoing process development. Most of those parameters (e.g., choice of plating) are arguably and unfortunately taken for granted and are independent of the silver s cohesive strength. To explore such effects, shear strength testing and failure analyses were completed on a simple, mock sintered-silver interconnection system consisting of bonding two DBC ceramic substrates. Silver and gold platings were part of the test matrix, as was pre-drying strategies, and the consideration of stencil-printing vs. screen-printing. Shear strength of sintered-silver interconnect systems was found to be was insensitive to the choice of plating, drying practice, and printing method provided careful and consistent processing of the sintered-silver are practiced. But if the service stress in sintered silver interconnect systems is anticipated to exceed ~ 60 MPa, then the system will likely fail.

  20. Interconnection economics of small power systems -- A case study

    SciTech Connect

    Bloethe, W.G.; Thakar, H.C. [Sargent and Lundy, Chicago, IL (United States); Kim, L.C. [Sarawak Electricity Supply Corp., Kuching (Malaysia); Samin, S. [PT PLN Persero, Jakarta (Indonesia)

    1996-11-01

    The advantages of interconnecting large electric power systems has been almost universally accepted in those parts of North America that are not geographically isolated. However, interconnecting power systems can result in significant economic advantages, even in those parts of the world where power systems are small and widely separated. This paper examines two small, isolated power systems on the island of Borneo in Southeast Asia. The Malaysian State of Srawak lies on the north coast of Borneo. With an area of 123,156 square km (47,555 square mi.) and population of 1.7 million, it is the largest, but most sparsely populated, state in the Federation of Malaysia. Its neighbor to the south is the Indonesian Province of West Kalimantan. A study examining the feasibility of interconnecting these two power systems was undertaken in 1994 as a part of the Association of Southeast Asian Nations (ASEAN) initiative to interconnect the power systems in the region. The ASEAN region is characterized by rapidly growing economies and rapid load growth.

  1. 10 Year Transmission Plan for the Western Electricity Interconnection Released

    Energy.gov [DOE]

    The Western Electricity Coordinating Council (WECC) announced the release of its first 10-Year Regional Transmission Plan (Plan) for the Western Interconnection. The Office of Electricity Delivery and Energy Reliability awarded WECC a $14.5 million grant under the American Recovery and Reinvestment Act to expand on its transmission planning activities.

  2. District of Columbia: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    (District of Columbia) Glacial Energy Holdings (District of Columbia) Hess Retail Natural Gas and Elec. Acctg. (District of Columbia) Integrys Energy Services, Inc. (District...

  3. Plastic deformation in Al (Cu) interconnects stressed by electromigration and studied by synchrotron polychromatic X-ray microdiffraction

    SciTech Connect

    Advanced Light Source; UCLA; Chen, Kai; Chen, Kai; Tamura, Nobumichi; Valek, Bryan C.; Tu, King-Ning

    2008-05-14

    We report here an in-depth synchrotron radiation based white beam X-ray microdiffraction study of plasticity in individual grains of an Al (Cu) interconnect during the early stage of electromigration. The study shows a rearrangement of the geometrically necessary dislocations (GND) in bamboo typed grains during that stage. We find that about 90percent of the GNDs are oriented so that their line direction is the closest to the current flow direction. In non-bamboo typed grains, the Laue peak positions shift, indicating that the grains rotate. An analysis in terms of force directions has been carried out and is consistent with observed electromigration induced grain rotation and bending.

  4. File:08-CA-b - CAISO Interconnection Request Process.pdf | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    8-CA-b - CAISO Interconnection Request Process.pdf Jump to: navigation, search File File history File usage Metadata File:08-CA-b - CAISO Interconnection Request Process.pdf Size...

  5. Highlights of SunShot Projects_Interconnection as Part of a Strategic...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Highlights of SunShot Projects Interconnection Page 1 of 25 as Part of a Strategic ... us for today's webinar of the DG Interconnection Collaborative, the topic that we are ...

  6. BLM Burns District Office | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Burns District Office Jump to: navigation, search Name: BLM Burns District Office Place: Hines, Oregon References: BLM Burns District Office1 This article is a stub. You can help...

  7. BLM Elko District Office | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Elko District Office Jump to: navigation, search Name: BLM Elko District Office Place: Elko, Nevada References: BLM Elko District Office Website1 This article is a stub. You can...

  8. Compare All CBECS Activities: District Heat Use

    Energy Information Administration (EIA) (indexed site)

    District Heat Use Compare Activities by ... District Heat Use Total District Heat Consumption by Building Type Commercial buildings in the U.S. used a total of approximately 433...

  9. Reliability assessment of autonomous power systems incorporating HVDC interconnection links

    SciTech Connect

    Dialynas, E.N.; Koskolos, N.C.; Agoris, D.

    1996-01-01

    The objective of this paper is to present an improved computational method for the overall reliability assessment of autonomous power systems that may or may not contain HVdc interconnection links. This is a hybrid method based on a Monte-Carlo simulation sequential approach which incorporates an analytical approach for the reliability modeling of the HVdc transmission links. The developed models and techniques have been implemented into a computer program that can be used to simulate the operational practices and characteristics of the overall system under study efficiently and realistically. A set of reliability indices are calculated for each load-point of interest and the entire system while a set of additional indices is calculated for quantifying the reliability performance of the interconnection links under the specified operating requirements. The analysis of a practical system is also included for a number of studies representing its various operating and design characteristics.

  10. Modular cryogenic interconnects for multi-qubit devices

    SciTech Connect

    Colless, J. I.; Reilly, D. J.

    2014-11-15

    We have developed a modular interconnect platform for the control and readout of multiple solid-state qubits at cryogenic temperatures. The setup provides 74 filtered dc-bias connections, 32 control and readout connections with ?3 dB frequency above 5 GHz, and 4 microwave feed lines that allow low loss (less than 3 dB) transmission 10 GHz. The incorporation of a radio-frequency interposer enables the platform to be separated into two printed circuit boards, decoupling the simple board that is bonded to the qubit chip from the multilayer board that incorporates expensive connectors and components. This modular approach lifts the burden of duplicating complex interconnect circuits for every prototype device. We report the performance of this platform at milli-Kelvin temperatures, including signal transmission and crosstalk measurements.

  11. Using Synchrophasors for Frequency Response Analysis in the Western Interconnection

    SciTech Connect

    Kosterev, Dmitry; Davies, Donald; Etingov, Pavel V.; Silverstein, Alison; Eto, Joseph H.

    2014-10-19

    Frequency response has received a lot of attention in recent years at the national level, which culminated in the development and approval of NERC BAL-003-1 Frequency Response and Frequency Bias Setting Reliability Standard. WECC JSIS, NASPI, BPA, CERTS and PNNL collaborate on the common goals to deliver to the industry applications for frequency response analysis at interconnection, Balancing Authority and individual power plant levels. This paper describes a Frequency Response Analysis Tool that has been used for establishing a frequency response baseline for the Western Interconnection. This paper describes how synchrophasor data is used in for determination of generator characteristics – frequency responsive, under load control or baseloaded. This paper also discusses and provides an example of how the frequency response distribution can impact power pick-up on major transmission paths.

  12. Series interconnected photovoltaic cells and method for making same

    DOEpatents

    Albright, S.P.; Chamberlin, R.R.; Thompson, R.A.

    1995-01-31

    A novel photovoltaic module and method for constructing the same are disclosed. The module includes a plurality of photovoltaic cells formed on a substrate and laterally separated by interconnection regions. Each cell includes a bottom electrode, a photoactive layer and a top electrode layer. Adjacent cells are connected in electrical series by way of a conductive-buffer line. The buffer line is also useful in protecting the bottom electrode against severing during downstream layer cutting processes. 11 figs.

  13. Dynamic Model Validation with Governor Deadband on the Eastern Interconnection

    SciTech Connect

    Kou, Gefei; Hadley, Stanton W; Liu, Yilu

    2014-04-01

    This report documents the efforts to perform dynamic model validation on the Eastern Interconnection (EI) by modeling governor deadband. An on-peak EI dynamic model is modified to represent governor deadband characteristics. Simulation results are compared with synchrophasor measurements collected by the Frequency Monitoring Network (FNET/GridEye). The comparison shows that by modeling governor deadband the simulated frequency response can closely align with the actual system response.

  14. Synthesis of micro-sized interconnected Si-C composites

    DOEpatents

    Wang, Donghai; Yi, Ran; Dai, Fang

    2016-02-23

    Embodiments provide a method of producing micro-sized Si--C composites or doped Si--C and Si alloy-C with interconnected nanoscle Si and C building blocks through converting commercially available SiO.sub.x (0

  15. SOFC Interconnect and Compressive Seal Development at PNNL

    SciTech Connect

    Chou, Y S.; Yang, Z Gary; Singh, Prabhakar; Stevenson, Jeffry W.; Xia, Gordon

    2005-11-01

    The development of solid oxide fuel cell (SOFC) technology represents an opportunity to achieve significant improvements in energy conversion efficiency and reduction of undesirable emissions. However, many technical challenges still need to be overcome before the utilization of the advantages of SOFC can take place. These challenges include the need for improved interconnects and seals for planar SOFC stacks. In this paper, we briefly summarize recent progress at PNNL in these two research areas.

  16. Formation of interconnections to microfluidic devices - Energy Innovation

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Portal 99,436 Site Map Printable Version Share this resource About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners (27) Visual Patent Search Success Stories Find More Like This Return to Search Formation of interconnections

  17. Impact of High Solar Penetration in the Western Interconnection

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    High Solar Penetration in the Western Interconnection Debra Lew National Renewable Energy Laboratory Nicholas Miller, Kara Clark, Gary Jordan, and Zhi Gao GE Energy Technical Report NREL/TP-5500-49667 December 2010 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov

  18. Litchfield Correctional Center District Heating Low Temperature...

    OpenEI (Open Energy Information) [EERE & EIA]

    Litchfield Correctional Center District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Litchfield Correctional Center District Heating Low Temperature...

  19. Merced Irrigation District | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Irrigation District Place: California Website: mercedid.com Twitter: @MercedID Facebook: https:www.facebook.comMercedIrrigationDistrict Outage Hotline: 209-722-3041...

  20. Twin Falls District | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    District Jump to: navigation, search Name: BML Twin Falls District Office Address: 2536 Kimberly Road Place: Twin Falls, ID Zip: 83301 Phone Number: 208-736-2350 Website:...

  1. BLM Boise District Office | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Boise District Office Jump to: navigation, search Name: BLM Boise District Office Abbreviation: Boise Place: Boise, Idaho ParentHolding Organization: BLM Idaho State Office...

  2. BLM Winnemucca District Office | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Winnemucca District Office Jump to: navigation, search Name: BLM Winnemucca District Office Abbreviation: Winnemucca Address: 5100 E. Winnemucca Blvd. Place: Winnemucca, Nevada...

  3. Alternative Fuels Data Center: Metropolitan Utilities District...

    Alternative Fuels and Advanced Vehicles Data Center

    Metropolitan Utilities District Fuels Vehicles With Natural Gas to someone by E-mail Share Alternative Fuels Data Center: Metropolitan Utilities District Fuels Vehicles With ...

  4. District Energy Technologies | Department of Energy

    Office of Environmental Management (EM)

    through the centralized system. District energy systems often operate with combined heat and power (CHP) and waste heat recovery technologies. Learn more about district energy...

  5. California's 43rd congressional district: Energy Resources |...

    OpenEI (Open Energy Information) [EERE & EIA]

    can help OpenEI by expanding it. This page represents a congressional district in California. Registered Energy Companies in California's 43rd congressional district Ecosystem...

  6. California's 21st congressional district: Energy Resources |...

    OpenEI (Open Energy Information) [EERE & EIA]

    can help OpenEI by expanding it. This page represents a congressional district in California. Registered Energy Companies in California's 21st congressional district Agrimass...

  7. California's 41st congressional district: Energy Resources |...

    OpenEI (Open Energy Information) [EERE & EIA]

    can help OpenEI by expanding it. This page represents a congressional district in California. Registered Energy Companies in California's 41st congressional district BCL...

  8. California's 18th congressional district: Energy Resources |...

    OpenEI (Open Energy Information) [EERE & EIA]

    can help OpenEI by expanding it. This page represents a congressional district in California. Registered Energy Companies in California's 18th congressional district 1st Light...

  9. California's 38th congressional district: Energy Resources |...

    OpenEI (Open Energy Information) [EERE & EIA]

    can help OpenEI by expanding it. This page represents a congressional district in California. Registered Energy Companies in California's 38th congressional district California...

  10. California's 45th congressional district: Energy Resources |...

    OpenEI (Open Energy Information) [EERE & EIA]

    can help OpenEI by expanding it. This page represents a congressional district in California. Registered Energy Companies in California's 45th congressional district Chuckawalla...

  11. Pascoag Utility District | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    search Name: Pascoag Utility District Place: Rhode Island Website: www.pud-ri.org Twitter: @PascoagUtility Facebook: https:www.facebook.comPascoagUtilityDistrict Outage...

  12. California's 42nd congressional district: Energy Resources |...

    OpenEI (Open Energy Information) [EERE & EIA]

    district Inland Empire Utilities Agency IEUA Scheuten Solar USA Inc US South Coast Air Quality Management District SCAQMD Western Ethanol Company LLC Utility Companies in...

  13. Dawson Power District | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Dawson Power District Jump to: navigation, search Name: Dawson Power District Place: Nebraska Phone Number: 308-324-2386 Website: dawsonpower.com Twitter: @DawsonPower Facebook:...

  14. Montana Association of Conservation Districts Webpage | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Districts Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Montana Association of Conservation Districts Webpage Abstract Homepage of...

  15. Massachusetts's 2nd congressional district: Energy Resources...

    OpenEI (Open Energy Information) [EERE & EIA]

    can help OpenEI by expanding it. This page represents a congressional district in Massachusetts. Registered Energy Companies in Massachusetts's 2nd congressional district Alyra...

  16. Manzanita Estates District Heating Low Temperature Geothermal...

    OpenEI (Open Energy Information) [EERE & EIA]

    Manzanita Estates District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Manzanita Estates District Heating Low Temperature Geothermal Facility...

  17. Connecticut's 3rd congressional district: Energy Resources |...

    OpenEI (Open Energy Information) [EERE & EIA]

    can help OpenEI by expanding it. This page represents a congressional district in Connecticut. Registered Energy Companies in Connecticut's 3rd congressional district Avalence...

  18. Connecticut's 2nd congressional district: Energy Resources |...

    OpenEI (Open Energy Information) [EERE & EIA]

    can help OpenEI by expanding it. This page represents a congressional district in Connecticut. US Recovery Act Smart Grid Projects in Connecticut's 2nd congressional district...

  19. Chromium Vaporization Reduction by Nickel Coatings For SOEC Interconnect Materials

    SciTech Connect

    Michael V. Glazoff; Sergey N. Rashkeev; J. Stephen Herring

    2014-09-01

    The vaporization of Cr-rich volatile species from interconnect materials is a major source of degradation that limits the lifetime of planar solid oxide devices systems with metallic interconnects, including Solid Oxide Electrolysis Cells, or SOECs. Some metallic coatings (Ni, Co, and Cu) significantly reduce the Cr release from interconnects and slow down the oxide scale growth on the steel substrate. To shed additional light upon the mechanisms of such protection and find a suitable coating material for ferritic stainless steel materials, we used a combination of first-principles calculations, thermodynamics, and diffusion modeling to investigate which factors determine the quality of the Ni metallic coating at stainless steel interconnector. We found that the Cr migration in Ni coating is determined by a delicate combination of the nickel oxidation, Cr diffusion, and phase transformation processes. Although the formation of Cr2O3 oxide is more exothermic than that of NiO, the kinetic rate of the chromia formation in the coating layer and its surface is significantly reduced by the low mobility of Cr in nickel oxide and in NiCr2O4 spinel. These results are in a good agreement with diffusion modeling for Cr diffusion through Ni coating layer on the ferritic 441 steel substrate.

  20. Monolithically interconnected GaAs solar cells: A new interconnection technology for high voltage solar cell output

    SciTech Connect

    Dinetta, L.C.; Hannon, M.H.

    1995-10-01

    Photovoltaic linear concentrator arrays can benefit from high performance solar cell technologies being developed at AstroPower. Specifically, these are the integration of thin GaAs solar cell and epitaxial lateral overgrowth technologies with the application of monolithically interconnected solar cell (MISC) techniques. This MISC array has several advantages which make it ideal for space concentrator systems. These are high system voltage, reliable low cost monolithically formed interconnections, design flexibility, costs that are independent of array voltage, and low power loss from shorts, opens, and impact damage. This concentrator solar cell will incorporate the benefits of light trapping by growing the device active layers over a low-cost, simple, PECVD deposited silicon/silicon dioxide Bragg reflector. The high voltage-low current output results in minimal 12R losses while properly designing the device allows for minimal shading and resistance losses. It is possible to obtain open circuit voltages as high as 67 volts/cm of solar cell length with existing technology. The projected power density for the high performance device is 5 kW/m for an AMO efficiency of 26% at 1 5X. Concentrator solar cell arrays are necessary to meet the power requirements of specific mission platforms and can supply high voltage power for electric propulsion systems. It is anticipated that the high efficiency, GaAs monolithically interconnected linear concentrator solar cell array will enjoy widespread application for space based solar power needs. Additional applications include remote man-portable or ultra-light unmanned air vehicle (UAV) power supplies where high power per area, high radiation hardness and a high bus voltage or low bus current are important. The monolithic approach has a number of inherent advantages, including reduced cost per interconnect and increased reliability of array connections. There is also a high potential for a large number of consumer products.

  1. Boise geothermal district heating system

    SciTech Connect

    Hanson, P.J.

    1985-10-01

    This document describes the Boise geothermal district heating project from preliminary feasibility studies completed in 1979 to a fully operational system by 1983. The report includes information about the two local governments that participated in the project - the City of Boise, Idaho and the Boise Warm Springs Water District. It also discusses the federal funding sources; the financial studies; the feasibility studies conducted; the general system planning and design; design of detailed system components; the legal issues involved in production; geological analysis of the resource area; distribution and disposal; the program to market system services; and the methods of retrofitting buildings to use geothermal hot water for space heating. Technically this report describes the Boise City district heating system based on 170/sup 0/F water, a 4000 gpm production system, a 41,000 foot pipeline system, and system economies. Comparable data are also provided for the Boise Warm Springs Water District. 62 figs., 31 tabs.

  2. Turlock Irrigation District- PV Rebate

    Energy.gov [DOE]

    Turlock Irrigation District (TID) offers an incentive program to their customers who install solar photovoltaic (PV) systems. In keeping with the terms of the California Solar Initiative, the inc...

  3. Missouri School District Charges Up

    Energy.gov [DOE]

    Missouri's Lee's Summit R-7 school district's distribution fleet was tired. Many of the vehicles had racked up more than 300,000 miles and made frequent trips to the shop to repair the 20 plus-year-old parts.

  4. Cut set-based risk and reliability analysis for arbitrarily interconnected networks

    DOEpatents

    Wyss, Gregory D.

    2000-01-01

    Method for computing all-terminal reliability for arbitrarily interconnected networks such as the United States public switched telephone network. The method includes an efficient search algorithm to generate minimal cut sets for nonhierarchical networks directly from the network connectivity diagram. Efficiency of the search algorithm stems in part from its basis on only link failures. The method also includes a novel quantification scheme that likewise reduces computational effort associated with assessing network reliability based on traditional risk importance measures. Vast reductions in computational effort are realized since combinatorial expansion and subsequent Boolean reduction steps are eliminated through analysis of network segmentations using a technique of assuming node failures to occur on only one side of a break in the network, and repeating the technique for all minimal cut sets generated with the search algorithm. The method functions equally well for planar and non-planar networks.

  5. Preliminary business plan: Plzen district heating system upgrade

    SciTech Connect

    1996-06-01

    The district heating system of the City of Plzen, Czech Republic, needs to have physical upgrades to replace aging equipment and to comply with upcoming environmental regulations. Also, its ownership and management are being changed as a result of privatization. As majority owner, the City has the primary goal of ensuring that the heating needs of its customers are met as reliably and cost-effectively as possible. This preliminary business plan is part of the detailed analysis (5 reports in all) done to assist the City in deciding the issues. Preparation included investigation of ownership, management, and technology alternatives; estimation of market value of assets and investment requirements; and forecasting of future cash flow. The district heating system consists of the Central Plzen cogeneration plant, two interconnected heating plants [one supplying both hot water and steam], three satellite heating plants, and cooperative agreements with three industrial facilities generating steam and hot water. Most of the plants are coal-fired, with some peaking units fired by fuel oil.

  6. Novel Composite Materials for SOFC Cathode-Interconnect Contact

    SciTech Connect

    J. H. Zhu

    2009-07-31

    This report summarized the research efforts and major conclusions of our University Coal Research Project, which focused on developing a new class of electrically-conductive, Cr-blocking, damage-tolerant Ag-perovksite composite materials for the cathode-interconnect contact of intermediate-temperature solid oxide fuel cell (SOFC) stacks. The Ag evaporation rate increased linearly with air flow rate initially and became constant for the air flow rate {ge} {approx} 1.0 cm {center_dot} s{sup -1}. An activation energy of 280 KJ.mol{sup -1} was obtained for Ag evaporation in both air and Ar+5%H{sub 2}+3%H{sub 2}O. The exposure environment had no measurable influence on the Ag evaporation rate as well as its dependence on the gas flow rate, while different surface morphological features were developed after thermal exposure in the oxidizing and reducing environments. Pure Ag is too volatile at the SOFC operating temperature and its evaporation rate needs to be reduced to facilitate its application as the cathode-interconnect contact. Based on extensive evaporation testing, it was found that none of the alloying additions reduced the evaporation rate of Ag over the long-term exposure, except the noble metals Au, Pt, and Pd; however, these noble elements are too expensive to justify their practical use in contact materials. Furthermore, the addition of La{sub 0.8}Sr{sub 0.2}MnO{sub 3} (LSM) into Ag to form a composite material also did not significantly modify the Ag evaporation rate. The Ag-perovskite composites with the perovskite being either (La{sub 0.6}Sr{sub 0.4})(Co{sub 0.8}Fe{sub 0.2})O{sub 3} (LSCF) or LSM were systematically evaluated as the contact material between the ferritic interconnect alloy Crofer 22 APU and the LSM cathode. The area specific resistances (ASRs) of the test specimens were shown to be highly dependent on the volume percentage and the type of the perovskite present in the composite contact material as well as the amount of thermal cycling

  7. Evaluation of a Functional Interconnect System for SOFC's

    SciTech Connect

    Matthew Bender; James Rakowski

    2010-12-31

    The overall objective of this project was to validate the concept and application of a functional interconnect, based on a ferritic stainless steel, for a solid oxide fuel cell through manufacturing trials, laboratory testing, and field experience. The materials of construction and their surfaces were to be optimized for the particular service conditions and include low-cost ferritic stainless steels, novel postprocess treatments, and third-party coatings. This work aimed to optimize specific aspects of substrate alloy chemistry and to study the effects of long-term exposures on resistive oxide film structure and chemistry, interaction with applied surface coatings, and effectiveness of novel surface treatments.

  8. Series interconnected photovoltaic cells and method for making same

    DOEpatents

    Albright, Scot P.; Chamberlin, Rhodes R.; Thompson, Roger A.

    1995-01-01

    A novel photovoltaic module (10) and method for constructing the same are disclosed. The module (10) includes a plurality of photovoltaic cells (12) formed on a substrate (14) and laterally separated by interconnection regions (15). Each cell (12) includes a bottom electrode (16), a photoactive layer (18) and a top electrode layer (20). Adjacent cells (12) are connected in electrical series by way of a conductive-buffer line (22). The buffer line (22) is also useful in protecting the bottom electrode (16) against severing during downstream layer cutting processes.

  9. Triaxial Stress Distributions in Cu / low-k Interconnect Features

    SciTech Connect

    C Murray; P Besser; E Ryan; J Jordan-Sweet

    2011-12-31

    The distribution of triaxial stresses within single damascene Cu/organosilicate interconnect structures as a function of linewidth, ranging from 45 to 250 nm, was measured using x-ray diffraction. Least-squares minimization techniques were employed to determine the volume-averaged stress tensors of the Cu features. Longitudinal Cu stress values increased for linewidths below 100 nm, while transverse stresses decreased with decreasing linewidth below 100 nm due to the interplay between the Cu microstructure and the feature geometry. Large tensile out-of-plane stresses were observed in all of the lines demonstrating the constraint imposed by the barrier layers that encapsulate the Cu.

  10. Production process for advanced space satellite system cables/interconnects.

    SciTech Connect

    Mendoza, Luis A.

    2007-12-01

    This production process was generated for the satellite system program cables/interconnects group, which in essences had no well defined production process. The driver for the development of a formalized process was based on the set backs, problem areas, challenges, and need improvements faced from within the program at Sandia National Laboratories. In addition, the formal production process was developed from the Master's program of Engineering Management for New Mexico Institute of Mining and Technology in Socorro New Mexico and submitted as a thesis to meet the institute's graduating requirements.

  11. Final Report on Transmission Pricing in the Western Interconnection

    SciTech Connect

    Douglas C. Larson; Lawrence Nordell

    2003-06-25

    Under this project, the Committee on Regional Electric Power Cooperation (CREPC) of the Western Interstate Energy Board developed a ''western pricing and congestion management proposal'' in order to foster efficient wholesale power markets and efficient use and expansion of the transmission grid. Drafts of this paper provided useful information to states/provinces in the Western Interconnection as Western Regional Transmission Organization (RTO) transmission pricing proposals have continued to evolve. Throughout the project there has been a gradual, but incomplete agreement on pricing systems to be used by RTOs in the West.

  12. Western Interconnection Energy Imbalance Market Status and Prospects (Presentation)

    SciTech Connect

    Milligan, M.; Kirby, B.; King, J.; Beuning, S.

    2011-10-01

    This presentation describes how a new wholesale electricity market for energy imbalance ancillary services could be implemented and operated. Some conclusions of this presentation are: (1) Method for calculating additional reserve requirements due to wind and solar production; (2) EIM results in substantial reduction in reserves requirements and ramping demand; (3) Reduced participation reduces benefits for all but reduces the benefits to non-participants the most; (4) Full participation leads to maximum benefit across the Western Interconnection, up to 42% of total reserve requirement; and (5) Regional EIM implementations have smaller but substantial benefits.

  13. National Offshore Wind Energy Grid Interconnection Study - Executive Summary

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Offshore Wind Energy Grid Interconnection Study Executive Summary DOE Award No. EE-0005365 ABB, Inc. 12040 Regency Pkwy. Suite 200 Cary, NC 27518-7708 Project Period: 10/11 - 04/14 Authors: John P. Daniel Dr. Shu Liu Dr. Eduardo Ibanez (Principal Investigator) ABB, Inc. National Renewable Energy Laboratory ABB, Inc. 919-856-2473 303-384-6926 940 Main Campus Dr. shu.liu@us.abb.com eduardo.ibanez@nrel.gov Raleigh, NC 27606 919-856-3306 john.daniel@us.abb.com Ken Pennock Dr. Gregory Reed Spencer

  14. Electrical isolation of component cells in monolithically interconnected modules

    DOEpatents

    Wanlass, Mark W.

    2001-01-01

    A monolithically interconnected photovoltaic module having cells which are electrically connected which comprises a substrate, a plurality of cells formed over the substrate, each cell including a primary absorber layer having a light receiving surface and a p-region, formed with a p-type dopant, and an n-region formed with an n-type dopant adjacent the p-region to form a single pn-junction, and a cell isolation diode layer having a p-region, formed with a p-type dopant, and an n-region formed with an n-type dopant adjacent the p-region to form a single pn-junction, the diode layer intervening the substrate and the absorber layer wherein the absorber and diode interfacial regions of a same conductivity type orientation, the diode layer having a reverse-breakdown voltage sufficient to prevent inter-cell shunting, and each cell electrically isolated from adjacent cells with a vertical trench trough the pn-junction of the diode layer, interconnects disposed in the trenches contacting the absorber regions of adjacent cells which are doped an opposite conductivity type, and electrical contacts.

  15. EIS-0103: New England/Hydro-Quebec 450-kV Direct Current Transmission Line Interconnection

    Energy.gov [DOE]

    The Economic Regulatory Administration prepared this statement to evaluate the environmental impacts of the construction, maintenance, and operation of a 57-mile transmission line from Monroe, New Hampshire, to the U.S./Canadian border for the purpose of economic exchange of power and increased reliability. Phase 2 of this project is detailed in EIS-0129.

  16. Improving Data Transparency for the Distributed PV Interconnection Process: Emergent Utility Practices and State Requirements

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    June 3, 2015 "Improving Data Transparency for the Distributed PV Interconnection Process: Emergent Utility Practices and State Requirements" Joslyn Sato, Hawaiian Electric Companies Michael Conway, Borrego Solar Systems, Inc. Kristen Ardani and Emerson Reiter, National Renewable Energy Laboratory (NREL) 2 Purpose of Today's Meeting * Learn how data reporting requirements for interconnection vary across States, how tracking and data reporting for interconnection requests is evolving

  17. Highlights of SunShot Projects_Interconnection as Part of a Strategic Resource Planning Process

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Highlights of SunShot Projects Interconnection Page 1 of 25 as Part of a Strategic Resource Planning Process Virginia Lacy, Mark Dyson, Kristen Ardani, Alison Kling Page 1 of 25 [Speaker: Kristen Ardani] Cover Slide: Thank you everyone for joining us for today's webinar of the DG Interconnection Collaborative, the topic that we are going to discuss are Highlights of SunShot Projects, Interconnection as Part of a Strategic Resource Plannig Process. Today we are going to hear from RMI, Virginia

  18. BLM Battle Mountain District Office | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Mountain District Office Jump to: navigation, search Logo: BLM Battle Mountain District Office Name: BLM Battle Mountain District Office Abbreviation: Battle Mountain Address: 50...

  19. PP-174 Imperial Irrigation District | Department of Energy

    Energy Saver

    4 Imperial Irrigation District PP-174 Imperial Irrigation District Presidential permit authorizing Imperial Irrigation District to construct, operate, and maintain electric ...

  20. Okaloosa Gas District Smart Grid RFI: Addressing Policy and Logistical...

    Energy Saver

    Okaloosa Gas District (The District) an Independent Special District of the State of Florida is appreciative of the opportunity to submit for your consideration the following ...

  1. Bureau Valley School District Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Valley School District Wind Farm Jump to: navigation, search Name Bureau Valley School District Wind Farm Facility Bureau Valley School District Sector Wind energy Facility Type...

  2. Table 5a. Total District Heat Consumption per Effective Occupied...

    Energy Information Administration (EIA) (indexed site)

    a. Total District Heat Consumption per Effective Occupied Square Foot, 1992 Building Characteristics All Buildings Using District Heat (thousand) Total District Heat Consumption...

  3. Comparing Germany's and California's Interconnection Processes for PV Systems (White Paper)

    SciTech Connect

    Tweedie, A.; Doris, E.

    2011-07-01

    Establishing interconnection to the grid is a recognized barrier to the deployment of distributed energy generation. This report compares interconnection processes for photovoltaic projects in California and Germany. This report summarizes the steps of the interconnection process for developers and utilities, the average length of time utilities take to process applications, and paperwork required of project developers. Based on a review of the available literature, this report finds that while the interconnection procedures and timelines are similar in California and Germany, differences in the legal and regulatory frameworks are substantial.

  4. Generation Interconnection Policies and Wind Power: A Discussion of Issues, Problems, and Potential Solutions

    SciTech Connect

    Porter, K.; Fink, S.; Mudd, C.; DeCesaro, J.

    2009-01-01

    This report describes the adoption and implementation of FERC Order 2003 and the reasons for the sharp rise in generation interconnection filings in recent years.

  5. Systems Using Hardware-in-the-Loop: Part III -- Grid Interconnection...

    Office of Scientific and Technical Information (OSTI)

    B.; Shirazi, M.; Coddington, M.; Kroposki, B. 24 POWER TRANSMISSION AND DISTRIBUTION; 32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION ELECTRICITY; GRID; ICS; INTERCONNECTION;...

  6. NMAC 17.9.568 Interconnection of Generating Facilities with a...

    OpenEI (Open Energy Information) [EERE & EIA]

    a Rated Capacity up to and including 10 MWLegal Abstract These rules outline the procedures for interconnection of generating facilities with a rated capacity up to and...

  7. Motion to Intervene and Initial Comments of PJM Interconnection, L.L.C. |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Initial Comments of PJM Interconnection, L.L.C. Motion to Intervene and Initial Comments of PJM Interconnection, L.L.C. Motion to Intervene and Initial Comments of PJM Interconnection, L.L.C. On January 5, 2009, ITC Transmission filed with the Department of Energy a request to amend Presidential Permit PP-230-3, which authorizes ITC to own and operate specified electric transmission facilities at the Bunce Creek station that interconnect ITC with Hydro One Networks Inc

  8. WECC releases its first-ever transmission plan for the Western Interconnection

    Energy.gov [DOE]

    The Western Electricity Coordinating Council (WECC) announced the release of its first 10-Year Regional Transmission Plan (Plan) for the Western Interconnection.

  9. Catalytic bipolar interconnection plate for use in a fuel cell

    DOEpatents

    Lessing, P.A.

    1996-03-05

    A bipolar interconnection plate is described for use between adjacent fuel cell units in a stacked fuel cell assembly. Each plate is manufactured from an intermetallic composition, examples of which include NiAl or Ni{sub 3}Al which can catalyze steam reforming of hydrocarbons. Distributed within the intermetallic structure of the plate is a ceramic filler composition. The plate includes a first side with gas flow channels therein and a second side with fuel flow channels therein. A protective coating is applied to the first side, with exemplary coatings including strontium-doped or calcium-doped lanthanum chromite. To produce the plate, Ni and Al powders are combined with the filler composition, compressed at a pressure of about 10,000--30,000 psi, and heated to about 600--1000 C. The coating is then applied to the first side of the completed plate using liquid injection plasma deposition or other deposition techniques. 6 figs.

  10. Catalytic bipolar interconnection plate for use in a fuel cell

    DOEpatents

    Lessing, Paul A.

    1996-01-01

    A bipolar interconnection plate for use between adjacent fuel cell units in a stacked fuel cell assembly. Each plate is manufactured from an intermetallic composition, examples of which include NiAl or Ni.sub.3 Al which can catalyze steam reforming of hydrocarbons. Distributed within the intermetallic structure of the plate is a ceramic filler composition. The plate includes a first side with gas flow channels therein and a second side with fuel flow channels therein. A protective coating is applied to the first side, with exemplary coatings including strontium-doped or calcium-doped lanthanum chromite. To produce the plate, Ni and Al powders are combined with the filler composition, compressed at a pressure of about 10,000-30,000 psi, and heated to about 600.degree.-1000.degree. C. The coating is then applied to the first side of the completed plate using liquid injection plasma deposition or other deposition techniques.

  11. Geothermal Power and Interconnection: The Economics of Getting to Market

    SciTech Connect

    Hurlbut, D.

    2012-04-01

    This report provides a baseline description of the transmission issues affecting geothermal technologies. The report begins with a comprehensive overview of the grid, how it is planned, how it is used, and how it is paid for. The report then overlays onto this 'big picture' three types of geothermal technologies: conventional hydrothermal systems; emerging technologies such as enhanced engineered geothermal systems (EGS) and geopressured geothermal; and geothermal co-production with existing oil and gas wells. Each category of geothermal technology has its own set of interconnection issues, and these are examined separately for each. The report draws conclusions about each technology's market affinities as defined by factors related to transmission and distribution infrastructure. It finishes with an assessment of selected markets with known geothermal potential, identifying those that offer the best prospects for near-term commercial development and for demonstration projects.

  12. California Local Air Districts | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    by District Phone Number: Varies by local district Website: www.arb.ca.govcapcoaroster.h This article is a stub. You can help OpenEI by expanding it. References Retrieved from...

  13. Low Temperature Direct Use District Heating Geothermal Facilities...

    OpenEI (Open Energy Information) [EERE & EIA]

    >

    Temperature: 79.0u00b0C, 174.0u00b0FnFlow: 4,000 gpm, 15,160 LminnAnnual Generation: 66.2 x109 Btuyrn

    ","title":"Boise City...

  14. Massachusetts's 7th congressional district: Energy Resources...

    OpenEI (Open Energy Information) [EERE & EIA]

    Networking Organizations in Massachusetts's 7th congressional district Northeast Energy Efficiency Partnerships, Inc Registered Energy Companies in Massachusetts's 7th...

  15. Designs for maximum utilization of district heating systems ...

    Office of Scientific and Technical Information (OSTI)

    AND UTILIZATION; DISTRICT HEATING; DESIGN; ECONOMIC ANALYSIS; GEOTHERMAL DISTRICT HEATING; COST; EFFICIENCY; SENSITIVITY; ECONOMICS; GEOTHERMAL HEATING; HEATING Geothermal ...

  16. Analysis of U.S Interconnection and Net-Metering Policy

    SciTech Connect

    Haynes, Rusty; Cook, Chris

    2006-07-01

    Historically, the absence of interconnection standards has been one of the primary barriers to the deployment of distributed generation (DG) in the United States. Although significant progress in the development of interconnection standards was achieved at both the federal and state levels in 2005, interconnection policy and net-metering policy continue to confound regulators, lawmakers, DG businesses, clean-energy advocates and consumers. For this reason it is critical to keep track of developments related to these issues.The North Carolina Solar Center (NCSC) is home to two Interstate Renewable Energy Council (IREC) projects -- the National Interconnection Project and the Database of State Incentives for Renewable Energy (DSIRE). This paper will present the major federal and state level policy developments in interconnection and net metering in 2005 and early 2006. It will also present conclusions based an analysis of data collected by these two projects.

  17. Directives Tools

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    Useful links and resources for Directives Writers, Directives Point of Contact (DPCs), Subject Matter Experts (SMEs), and Draft Directive Reviewers.

  18. Energy Department Explores Deep Direct Use | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Explores Deep Direct Use Energy Department Explores Deep Direct Use Cascaded uses of geothermal energy include district heating and industrial uses as well as agricultural applications like greenhouses and fisheries. Cascaded uses of geothermal energy include district heating and industrial uses as well as agricultural applications like greenhouses and fisheries. Deep Direct Use (DDU) geothermal applications utilize natural geothermal fluid for a full spectrum of cascading uses, including

  19. A State-Level Comparison of Processes and Timelines for Distributed Photovoltaic Interconnection in the United States

    SciTech Connect

    Ardani, K.; Davidson, C.; Margolis, R.; Nobler, E.

    2015-01-01

    This report presents results from an analysis of distributed photovoltaic (PV) interconnection and deployment processes in the United States.

  20. Assessment of Industrial Load for Demand Response across Western Interconnect

    SciTech Connect

    Alkadi, Nasr E; Starke, Michael R; Ma, Ookie

    2013-11-01

    Demand response (DR) has the ability to both increase power grid reliability and potentially reduce operating system costs. Understanding the role of demand response in grid modeling has been difficult due to complex nature of the load characteristics compared to the modeled generation and the variation in load types. This is particularly true of industrial loads, where hundreds of different industries exist with varying availability for demand response. We present a framework considering industrial loads for the development of availability profiles that can provide more regional understanding and can be inserted into analysis software for further study. The developed framework utilizes a number of different informational resources, algorithms, and real-world measurements to perform a bottom-up approach in the development of a new database with representation of the potential demand response resource in the industrial sector across the U.S. This tool houses statistical values of energy and demand response (DR) potential by industrial plant and geospatially locates the information for aggregation for different territories without proprietary information. This report will discuss this framework and the analyzed quantities of demand response for Western Interconnect (WI) in support of evaluation of the cost production modeling with power grid modeling efforts of demand response.

  1. Mashreq Arab interconnected power system potential for economic energy trading

    SciTech Connect

    Al-Shehri, A.M.; El-Amin, I.M.; Opoku, G.; Al-Baiyat, S.A.; Zedan, F.M.

    1994-12-01

    The Mashreq Arab countries covered in this study are Bahrain, Egypt, Jordan, Lebanon, Oman, Qatar, Saudi Arabia, Syria, the United Arab Emirates, and Yemen. A feasibility study for the interconnection of the electrical networks of the Mashreq Arab countries, sponsored by the Arab Fund, was completed in June 1992. Each country is served by one utility except Saudi Arabia, which is served by four major utilities and some smaller utilities serving remote towns and small load centers. The major utilities are the Saudi consolidated electric Company in the Eastern Province (SCECO East), SCECO Center, SCECO West, and SCECO South. These are the ones considered in this study. The Mashreq Arab region has a considerable mix of energy resources. Egypt and Syria have some limited amounts of hydropower resources, and the Arabian Gulf region is abundant in fossil fuel reserves. Owing to the differences in energy production costs, a potential exists for substantial energy trading between electric utilities in the region. The major objective of this project is to study the feasibility of electric energy trading between the Mashreq Arab countries. The basis, assumptions, and methodologies on which this energy trading study is based relate to the results and conclusions arising out of the previous study, power plant characteristics and costs, assumptions on economic parameters, rules for economy energy exchange, etc. This paper presents the basis, methodology, and major findings of the study.

  2. Geothermal Power and Interconnection: The Economics of Getting to Market

    SciTech Connect

    Hurlbut, David

    2012-04-23

    This report provides a baseline description of the transmission issues affecting geothermal technologies. It is intended for geothermal experts in either the private or public sector who are less familiar with how the electricity system operates beyond the geothermal plant. The report begins with a comprehensive overview of the grid, how it is planned, how it is used, and how it is paid for. The report then overlays onto this "big picture" three types of geothermal technologies: conventional hydrothermal systems; emerging technologies such as enhanced engineered geothermal systems (EGS) and geopressured geothermal; and geothermal co-production with existing oil and gas wells. Each category of geothermal technology has its own set of interconnection issues, and these are examined separately for each. The report draws conclusions about each technology’s market affinities as defined by factors related to transmission and distribution infrastructure. It finishes with an assessment of selected markets with known geothermal potential, identifying those that offer the best prospects for near-term commercial development and for demonstration projects.

  3. Lassen Municipal Utility District- PV Rebate Program

    Energy.gov [DOE]

    Systems must be interconnected and must meet all other requirements detailed in the program guidelines. Homes wishing to receive a rebate must have an LMUD administered energy audit performed and...

  4. Solid oxide fuel cell with internal reforming, catalyzed interconnect for use therewith, and methods

    DOEpatents

    Liu, Di-Jia; Guan, Jie; Minh, Nguyen

    2010-06-08

    A catalyzed interconnect for an SOFC electrically connects an anode and an anodic current collector and comprises a metallic substrate, which provides space between the anode and anodic current collector for fuel gas flow over at least a portion of the anode, and a catalytic coating on the metallic substrate comprising a catalyst for catalyzing hydrocarbon fuel in the fuel gas to hydrogen rich reformate. An SOFC including the catalyzed anodic inter-connect, a method for operating an SOFC, and a method for making a catalyzed anodic interconnect are also disclosed.

  5. EIS-0389: Record of Decision and Floodplain Statement of Findings...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    The Western Area Power Administration intends to construct the Trinity Public Utilities District (PUD) Direct Interconnection Project (Project) in Trinity County, California. PDF...

  6. EIS-0389: Mitigation Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Action Plan EIS-0389: Mitigation Action Plan Trinity Public Utilities District Direct Interconnection Project Western Area Power Administration (Western) proposes to...

  7. Advanced Platform for Development and Evaluation of Grid Interconnection Systems Using Hardware-in-the-Loop: Part III -- Grid Interconnection System Evaluator: Preprint

    SciTech Connect

    Lundstrom, B.; Shirazi, M.; Coddington, M.; Kroposki, B.

    2013-01-01

    This paper, presented at the IEEE Green Technologies Conference 2013, describes a Grid Interconnection System Evaluator (GISE) that leverages hardware-in-the-loop (HIL) simulation techniques to rapidly evaluate the grid interconnection standard conformance of an ICS according to the procedures in IEEE Std 1547.1 (TM). The architecture and test sequencing of this evaluation tool, along with a set of representative ICS test results from three different photovoltaic (PV) inverters, are presented. The GISE adds to the National Renewable Energy Laboratory's (NREL) evaluation platform that now allows for rapid development of ICS control algorithms using controller HIL (CHIL) techniques, the ability to test the dc input characteristics of PV-based ICSs through the use of a PV simulator capable of simulating real-world dynamics using power HIL (PHIL), and evaluation of ICS grid interconnection conformance.

  8. Advanced Platform for Development and Evaluation of Grid Interconnection Systems Using Hardware-in-the-Loop: Part III - Grid Interconnection System Evaluator

    SciTech Connect

    Lundstrom, B.; Shirazi, M.; Coddington, M.; Kroposki, B.

    2013-01-01

    This paper describes a Grid Interconnection System Evaluator (GISE) that leverages hardware-in-the-loop (HIL) simulation techniques to rapidly evaluate the grid interconnection standard conformance of an ICS according to the procedures in IEEE Std 1547.1. The architecture and test sequencing of this evaluation tool, along with a set of representative ICS test results from three different photovoltaic (PV) inverters, are presented. The GISE adds to the National Renewable Energy Laboratory's (NREL) evaluation platform that now allows for rapid development of ICS control algorithms using controller HIL (CHIL) techniques, the ability to test the dc input characteristics of PV-based ICSs through the use of a PV simulator capable of simulating real-world dynamics using power HIL (PHIL), and evaluation of ICS grid interconnection conformance.

  9. IEEE 1547 and 2030 Standards for Distributed Energy Resources Interconnection and Interoperability with the Electricity Grid

    SciTech Connect

    Basso, T.

    2014-12-01

    Public-private partnerships have been a mainstay of the U.S. Department of Energy and the National Renewable Energy Laboratory (DOE/NREL) approach to research and development. These partnerships also include technology development that enables grid modernization and distributed energy resources (DER) advancement, especially renewable energy systems integration with the grid. Through DOE/NREL and industry support of Institute of Electrical and Electronics Engineers (IEEE) standards development, the IEEE 1547 series of standards has helped shape the way utilities and other businesses have worked together to realize increasing amounts of DER interconnected with the distribution grid. And more recently, the IEEE 2030 series of standards is helping to further realize greater implementation of communications and information technologies that provide interoperability solutions for enhanced integration of DER and loads with the grid. For these standards development partnerships, for approximately $1 of federal funding, industry partnering has contributed $5. In this report, the status update is presented for the American National Standards IEEE 1547 and IEEE 2030 series of standards. A short synopsis of the history of the 1547 standards is first presented, then the current status and future direction of the ongoing standards development activities are discussed.

  10. Degradation of solid oxide fuel cell metallic interconnects in fuels containing sulfur

    SciTech Connect

    Ziomek-Moroz, M.; Hawk, Jeffrey A.

    2005-01-01

    Hydrogen is the main fuel for all types of fuel cells except direct methanol fuel cells. Hydrogen can be generated from all manner of fossil fuels, including coal, natural gas, diesel, gasoline, other hydrocarbons, and oxygenates (e.g., methanol, ethanol, butanol, etc.). Impurities in the fuel can cause significant performance problems and sulfur, in particular, can decrease the cell performance of fuel cells, including solid oxide fuel cells (SOFC). In the SOFC, the high (800-1000°C) operating temperature yields advantages (e.g., internal fuel reforming) and disadvantages (e.g., material selection and degradation problems). Significant progress in reducing the operating temperature of the SOFC from ~1000 ºC to ~750 ºC may allow less expensive metallic materials to be used for interconnects and as balance of plant (BOP) materials. This paper provides insight on the material performance of nickel, ferritic steels, and nickel-based alloys in fuels containing sulfur, primarily in the form of H2S, and seeks to quantify the extent of possible degradation due to sulfur in the gas stream.

  11. InGaAs monolithic interconnected modules (MIM)

    SciTech Connect

    Fatemi, N.S.; Jenkins, P.P.; Weizer, V.G.; Hoffman, R.W. Jr.; Wilt, D.M.; Scheiman, D.; Brinker, D.; Murray, C.S.; Riley, D.

    1997-12-31

    A monolithic interconnected module (MIM) structure has been developed for thermophotovoltaic (TPV) applications. The MIM device consists of many individual InGaAs cells series-connected on a single semi-insulating (S.I.) InP substrate. An infrared (IR) back surface reflector (BSR), placed on the rear surface of the substrate, returns the unused portion of the TPV radiator output spectrum back to the emitter for recycling, thereby providing for high system efficiencies. Also, the use of a BSR obviates the need to use a separate filtering element. As a result, MIMs are exposed to the entire emitter output, thereby maximizing output power density. MIMs with an active area of 1 x 1-cm were comprised of 15 cells monolithically connected in series. Both lattice-matched and lattice-mismatched InGaAs/InP devices were produced, with bandgaps of 0.74 and 0.55 eV, respectively. The 0.74-eV modules demonstrated an open-circuit voltage (Voc) of 6.158 V and a fill factor of 74.2% at a short-circuit current (Jsc) of 842 mA/cm{sup 2}, under flashlamp testing. The 0.55-eV modules demonstrated a Voc of 4.849 V and a fill factor of 57.8% at a Jsc of 3.87 A/cm{sup 2}. IR reflectance measurements (i.e., {lambda} > 2 {micro}m) of these devices indicated a reflectivity of {ge} 83%. Latest electrical and optical performance results for the MIMs will be presented.

  12. Microsoft Word - Nogales Interconnection Project Commments-FPAA...

    Office of Environmental Management (EM)

    Mexican utilities, FPAA believes that the costs of the Project should be born entirely by those merchants and utilities who will be the direct beneficiaries of those transactions. ...

  13. RAPID/Geothermal/Transmission Siting & Interconnection/Hawaii...

    OpenEI (Open Energy Information) [EERE & EIA]

    plant or equipment, or any part thereof, directly or indirectly for public use...for production, conveyance, transmission, delivery, or furnishing of light, power, heat, cold,...

  14. Photovoltaic Systems Interconnected onto Secondary Network Distribution Systems – Success Stories

    Energy.gov [DOE]

    This report examines six case studies of photovoltaic (PV) systems integrated into secondary network systems. The six PV systems were chosen for evaluation because they are interconnected to secondary network systems located in four major Solar America Cities.

  15. Solid oxide fuel cell with single material for electrodes and interconnect

    DOEpatents

    McPheeters, Charles C.; Nelson, Paul A.; Dees, Dennis W.

    1994-01-01

    A solid oxide fuel cell having a plurality of individual cells. A solid oxide fuel cell has an anode and a cathode with electrolyte disposed therebetween, and the anode, cathode and interconnect elements are comprised of substantially one material.

  16. Oahu Wind Integration and Transmission Study (OWITS): Hawaiian Islands Transmission Interconnection Project

    SciTech Connect

    Woodford, D.

    2011-02-01

    This report provides an independent review included an initial evaluation of the technical configuration and capital costs of establishing an undersea cable system and examining impacts to the existing electric transmission systems as a result of interconnecting the islands.

  17. Phase 2 Report: Oahu Wind Integration and Transmission Study (OWITS); Hawaiian Islands Transmission Interconnection Project

    SciTech Connect

    Woodford, D.

    2011-02-01

    This report provides an independent review including an initial evaluation of the technical configuration and capital costs of establishing an undersea cable system and examining impacts to the existing electric transmission systems as a result of interconnecting the islands

  18. EIS-0438: Interconnection of the Proposed Hermosa West Wind Farm Project, Albany County, Wyoming

    Energy.gov [DOE]

    After the applicant withdrew its request to interconnect the proposed Hermosa West Wind Farm Project with Western Area Power Administration’s transmission system, Western cancelled preparation of an EIS to evaluate the potential environmental impacts of the proposal.

  19. EIS-0485: Interconnection of the Grande Prairie Wind Farm, Holt County, Nebraska

    Energy.gov [DOE]

    DOE’s Western Area Power Administration prepared an EIS to evaluate the environmental impacts of interconnecting the proposed Grande Prairie Wind Farm, in Holt County, near O’Neill, Nebraska, to Western’s power transmission system.

  20. Preliminary Response of PJM Interconnection, L.L.C. to the Operating...

    Energy.gov [DOE] (indexed site)

    on any such additional filing that Mirant may make. Preliminary Response of PJM Interconnection, L.L.C. to the Operating Plan of Mirant Potomac River, LLC (291.61 KB) More ...

  1. EA-2018: Front Range-Midway Solar Interconnection Project; El Paso County, Colorado

    Energy.gov [DOE]

    Western Area Power Administration is preparing an EA that analyzes the potential environmental impacts of interconnecting a proposed photovoltaic solar facility adjacent to Western’s existing Midway Substation in El Paso County, Colorado.

  2. The Relevance of Generation Interconnection Procedures to Feed-in Tariffs in the United States

    SciTech Connect

    Fink, Sari; Porter, Kevin; Rogers, Jennifer

    2010-10-01

    Feed-in tariffs (FITs) have been used to promote renewable electricity development in over 40 countries throughout the past two decades. These policies generally provide guaranteed prices for the full system output from eligible generators for a fixed time period (typically 15–20 years). Due in part to the success of FIT policies in Europe, some jurisdictions in the United States are considering implementing similar policies, and a few have already put such policies in place. This report is intended to offer some guidance to policymakers and regulators on how generator interconnection procedures may affect the implementation of FITs and how state generator interconnection procedures can be formulated to support state renewable energy objectives. This report is based on a literature review of model interconnection procedures formulated by several organizations, as well as other documents that have reviewed, commented on, and in some cases, ranked state interconnection procedures.

  3. Relevance of Generation Interconnection Procedures to Feed-in Tariffs in the United States

    SciTech Connect

    Fink, S.; Porter, K.; Rogers, J.

    2010-10-01

    Feed-in tariffs (FITs) have been used to promote renewable electricity development in over 40 countries throughout the past two decades. These policies generally provide guaranteed prices for the full system output from eligible generators for a fixed time period (typically 15-20 years). Due in part to the success of FIT policies in Europe, some jurisdictions in the United States are considering implementing similar policies, and a few have already put such policies in place. This report is intended to offer some guidance to policymakers and regulators on how generator interconnection procedures may affect the implementation of FITs and how state generator interconnection procedures can be formulated to support state renewable energy objectives. This report is based on a literature review of model interconnection procedures formulated by several organizations, as well as other documents that have reviewed, commented on, and in some cases, ranked state interconnection procedures.

  4. EIS-0437: Interconnection of the Buffalo Ridge III Wind Project, Brookings and Deuel Counties, South Dakota

    Energy.gov [DOE]

    This EIS evaluates the environmental impacts of a proposal to interconnect the Heartland Wind, LLC, proposed Buffalo Ridge III Wind Project in Brookings and Deuel Counties, South Dakota, to DOE’s Western Area Power Administration transmission system.

  5. Innovative Distributed Power Grid Interconnection and Control Systems: Final Report, December 11, 2000 - August 30, 2005

    SciTech Connect

    DePodesta, K.; Birlingmair, D.; West, R.

    2006-03-01

    The contract goal was to further advance distributed generation in the marketplace by making installations more cost-effective and compatible with existing systems. This was achieved by developing innovative grid interconnection and control systems.

  6. High-performance parallel processors based on star-coupled wavelength division multiplexing optical interconnects

    DOEpatents

    Deri, Robert J.; DeGroot, Anthony J.; Haigh, Ronald E.

    2002-01-01

    As the performance of individual elements within parallel processing systems increases, increased communication capability between distributed processor and memory elements is required. There is great interest in using fiber optics to improve interconnect communication beyond that attainable using electronic technology. Several groups have considered WDM, star-coupled optical interconnects. The invention uses a fiber optic transceiver to provide low latency, high bandwidth channels for such interconnects using a robust multimode fiber technology. Instruction-level simulation is used to quantify the bandwidth, latency, and concurrency required for such interconnects to scale to 256 nodes, each operating at 1 GFLOPS performance. Performance scales have been shown to .apprxeq.100 GFLOPS for scientific application kernels using a small number of wavelengths (8 to 32), only one wavelength received per node, and achievable optoelectronic bandwidth and latency.

  7. On the State of the Art of Metal Interconnects for SOFC Application

    SciTech Connect

    Jablonski@netl.doe.gov

    2011-02-27

    One of the recent developments for Solid Oxide Fuel Cells (SOFC) is oxide component materials capable of operating at lower temperatures such as 700-800C. This lower temperature range has provided for the consideration of metallic interconnects which have several advantages over ceramic interconnects: low cost, ease in manufacturing, and high conductivity. Most metals and alloys will oxidize under both the anode and cathode conditions within an SOFC, thus a chief requirement is that the base metal oxide scale must be electrically conductive since this constitutes the majority of the electrical resistance in a metallic interconnect. Common high temperature alloys form scales that contain chrome, silicon and aluminum oxides among others. Under SOFC operating conditions chrome oxide is a semi-conductor while silicon and aluminum oxides are insulators. In this talk we will review the evolution in candidate alloys and surface modifications which constitute an engineered solution for SOFC interconnect applications.

  8. Determination of Interfacial Adhesion Strength between Oxide Scale and Substrate for Metallic SOFC Interconnects

    SciTech Connect

    Sun, Xin; Liu, Wenning N.; Stephens, Elizabeth V.; Khaleel, Mohammad A.

    2008-01-21

    The interfacial adhesion strength between the oxide scale and the substrate is crucial to the reliability and durability of metallic interconnects in SOFC operating environments. It is necessary, therefore, to establish a methodology to quantify the interfacial adhesion strength between the oxide scale and the metallic interconnect substrate, and furthermore to design and optimize the interconnect material as well as the coating materials to meet the design life of an SOFC system. In this paper, we present an integrated experimental/analytical methodology for quantifying the interfacial adhesion strength between oxide scale and a ferritic stainless steel interconnect. Stair-stepping indentation tests are used in conjunction with subsequent finite element analyses to predict the interfacial strength between the oxide scale and Crofer 22 APU substrate.

  9. Transmission Constraints and Congestion in the Western and Eastern Interconnections, 2009-2012 (January 2014)

    Energy.gov [DOE]

    The "Transmission Constraints and Congestion in the Western and Eastern Interconnections, 2009-2012" document is a compilation of publicly-available data on transmission constraints and congestion for the period 2009 through 2012.

  10. Record of Decision for the Electrical Interconnection of the Windy Point Wind Energy Project.

    SciTech Connect

    United States. Bonneville Power Administration.

    2006-11-01

    The Bonneville Power Administration (BPA) has decided to offer contract terms for interconnection of 250 megawatts (MW) of power to be generated by the proposed Windy Point Wind Energy Project (Wind Project) into the Federal Columbia River Transmission System (FCRTS). Windy Point Partners, LLC (WPP) propose to construct and operate the proposed Wind Project and has requested interconnection to the FCRTS. The Wind Project will be interconnected at BPA's Rock Creek Substation, which is under construction in Klickitat County, Washington. The Rock Creek Substation will provide transmission access for the Wind Project to BPA's Wautoma-John Day No.1 500-kilovolt (kV) transmission line. BPA's decision to offer terms to interconnect the Wind Project is consistent with BPA's Business Plan Final Environmental Impact Statement (BP EIS) (DOE/EIS-0183, June 1995), and the Business Plan Record of Decision (BP ROD, August 15, 1995). This decision thus is tiered to the BP ROD.

  11. Response from PJM Interconnection LLC and Pepco to Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Request for Information Concerning the Potential Need for Potomac River Station Generation | Department of Energy PJM Interconnection LLC and Pepco to Department of Energy Request for Information Concerning the Potential Need for Potomac River Station Generation Response from PJM Interconnection LLC and Pepco to Department of Energy Request for Information Concerning the Potential Need for Potomac River Station Generation Docket No. EO-05-01: This letter will respond to your request for

  12. Validation of IEEE P1547.1 Interconnection Test Procedures: ASCO 7000 Soft Load Transfer System

    SciTech Connect

    Kroposki, B.; Englebretson, S.; Pink, C.; Daley, J.; Siciliano, R.; Hinton, D.

    2003-09-01

    This report presents the preliminary results of testing the ASCO 7000 Soft Load Transfer System according to IEEE P1547.1 procedures. The ASCO system interconnects synchronous generators with the electric power system and provides monitoring and control for the generator and grid connection through extensive protective functions. The purpose of this testing is to evaluate and give feedback on the contents of IEEE Draft Standard P1547.1 Conformance Tests Procedures for Equipment Interconnecting Distributed Resources With Electric Power Systems.

  13. Improving Data Transparency for the Distributed PV Interconnection Process: Emergent Utility Practices and State Requirements Transcript

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Improving Data Transparency for the Distributed PV Page 1 of 21 Interconnection Process Emergent Utility Practices and State Requirements Kristen Adrani, Emerson Reiter, Joslyn Sato, Michael Conway Page 1 of 21 [Speaker: Kristen Ardani] Cover Slide: Thank you everyone for joining us for today's quarterly meeting of the Distributed Generation Interconnection Collaborative, or the DGIC. My name is Kristen Ardani. I'm a solar analyst here at NREL and I'll be moderating today's discussion. The topic

  14. Integration of distributed resources in electric utility systems: Current interconnection practice and unified approach. Final report

    SciTech Connect

    Barker, P.; Leskan, T.; Zaininger, H.; Smith, D.

    1998-11-01

    Deregulation of the electric utility industry, new state and federal programs, and technology developments are making distributed resources (DR) an increasingly utilized option to provide capacity for growing or heavily loaded electric power systems. Optimal DR placement near loads provides benefits not attainable from bulk generation system additions. These include reduced loading of the T and D system, reduced losses, voltage support, and T and D equipment upgrade deferments. The purpose of this document is to review existing interconnection practices and present interconnection guidelines are relevant to the protection, control, and data acquisition requirements for the interconnection of distributed resources to the utility system. This is to include protection performance requirements, data collection and reporting requirements, on-line communication requirements, and ongoing periodic documentation requirements. This document also provides guidelines for the practical placement and sizing of resources as pertinent to determining the interconnection equipment and system control requirements. The material contained herein has been organized into 4 sections dealing with application issues, existing practices, a unified interconnection approach, and future work. Section 2 of the report discusses the application issues associated with distributed resources and deals with various engineering issues such as overcurrent protection, voltage regulation, and islanding. Section 3 summarizes the existing utility interconnection practices and guidelines as determined from the documents provided by participating utilities. Section 4 presents a unified interconnection approach that is intended to serve as a guide for interconnection of distributed resources to the utility system. And finally, Section 5 outlines possible future areas of study to expand upon the topics discussed in this report.

  15. Central Lincoln People's Utility District - Residential Energy...

    Energy.gov [DOE] (indexed site)

    electric Program Info Sector Name Utility Administrator Central Lincoln People(tm)s Utility District Website http:clpud.orgrebate-information State Oregon Program Type...

  16. Truckee Donner Public Utility District - Energy Conservation...

    Energy.gov [DOE] (indexed site)

    rebates 10,000 Program Info Sector Name Utility Administrator Truckee Donner Public Utility District Website http:www.tdpud.org State California Program Type Rebate...

  17. Pennsylvania's 14th congressional district: Energy Resources...

    OpenEI (Open Energy Information) [EERE & EIA]

    district Alcoa BPL Global Enerlogics Networks IBACOS Kurt J Lesker Company PNC Financial Services Plextronics Plextronics Inc Propel IT Inc. Siemens Westinghouse Power...

  18. Connecticut's 5th congressional district: Energy Resources |...

    OpenEI (Open Energy Information) [EERE & EIA]

    in Connecticut. Registered Energy Companies in Connecticut's 5th congressional district Efficiency Lighting & Maintenance Inc Electro Energy Inc FuelCell Energy Inc FuelCell...

  19. Photovoltaic System in Philadelphia Center City District

    Energy.gov [DOE]

    This photograph features a 3-kilowatt photovoltaic (PV) installation on the roof of a building in the Center City District of Philadelphia, Pennsylvania.

  20. Douglas County School District Success Story

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    district in the state, had mounting maintenance needs and failing infrastructure with aging buildings. This was compounded by a budget already stretched to the limit, declining...

  1. California's 19th congressional district: Energy Resources |...

    OpenEI (Open Energy Information) [EERE & EIA]

    Chowchilla Biomass Facility Fresno Biomass Facility Madera Biomass Facility SPI Sonora Biomass Facility Utility Companies in California's 19th congressional district Modesto...

  2. California's 46th congressional district: Energy Resources |...

    OpenEI (Open Energy Information) [EERE & EIA]

    in California's 46th congressional district 808 Investments LLC All Valley Solar Allegro Biodiesel Corporation Altra Inc American Elements Amonix Inc Assured Power and...

  3. Empire District Electric- Residential Energy Efficiency Rebate

    Energy.gov [DOE]

    The Empire District Electric Company offers rebates for customers who construct highly efficient homes and purchase efficient central air conditioners. Eligible customers include residential...

  4. California's 47th congressional district: Energy Resources |...

    OpenEI (Open Energy Information) [EERE & EIA]

    US Recovery Act Smart Grid Projects in California's 47th congressional district City of Anaheim Smart Grid Project Registered Energy Companies in California's 47th...

  5. California's 40th congressional district: Energy Resources |...

    OpenEI (Open Energy Information) [EERE & EIA]

    US Recovery Act Smart Grid Projects in California's 40th congressional district City of Anaheim Smart Grid Project Registered Energy Companies in California's 40th...

  6. Massachusetts's 10th congressional district: Energy Resources...

    OpenEI (Open Energy Information) [EERE & EIA]

    Registered Energy Companies in Massachusetts's 10th congressional district AXI LLC BioEnergy International LLC Bluestone Energy Services Ltd Eco Power Solutions Heliotronics...

  7. California's 20th congressional district: Energy Resources |...

    OpenEI (Open Energy Information) [EERE & EIA]

    California. Registered Energy Companies in California's 20th congressional district BioEnergy Solutions BES Castle Cooke Inc Great Valley Ethanol LLC Mt Poso Cogeneration Pacific...

  8. California's 22nd congressional district: Energy Resources |...

    OpenEI (Open Energy Information) [EERE & EIA]

    22nd congressional district Advanced Conservation Systems Bill Robinson (Train2Build) BioEnergy Solutions BES California Sunrise Alternative Energy Development LLC Castle Cooke Inc...

  9. Connecticut's 1st congressional district: Energy Resources |...

    OpenEI (Open Energy Information) [EERE & EIA]

    1st congressional district Aztech Engineers Connecticut Light and Power Infinity Fuel Cell and Hydrogen Inc LiquidPiston Inc Nxegen SmartPower United Technologies Corp...

  10. Turlock Irrigation District | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    @TurlockID Facebook: https:www.facebook.compagesTurlock-Irrigation-District112344728820408 Outage Hotline: 209-883-8301 or (209) 892-4936 (from Patterson) Outage Map:...

  11. Pennsylvania's 1st congressional district: Energy Resources ...

    OpenEI (Open Energy Information) [EERE & EIA]

    in Pennsylvania's 1st congressional district PECO Energy Co Retrieved from "http:en.openei.orgwindex.php?titlePennsylvania%27s1stcongressionaldistrict&oldid198299...

  12. Pennsylvania's 13th congressional district: Energy Resources...

    OpenEI (Open Energy Information) [EERE & EIA]

    in Pennsylvania's 13th congressional district PECO Energy Co Retrieved from "http:en.openei.orgwindex.php?titlePennsylvania%27s13thcongressionaldistrict&oldid198281...

  13. California's 28th congressional district: Energy Resources |...

    OpenEI (Open Energy Information) [EERE & EIA]

    in California's 28th congressional district Angeleno Group Retrieved from "http:en.openei.orgwindex.php?titleCalifornia%27s28thcongressionaldistrict&oldid181514...

  14. California's 37th congressional district: Energy Resources |...

    OpenEI (Open Energy Information) [EERE & EIA]

    37th congressional district Angeleno Group Hydrogen Ventures Retrieved from "http:en.openei.orgwindex.php?titleCalifornia%27s37thcongressionaldistrict&oldid181534...

  15. Pennsylvania's 8th congressional district: Energy Resources ...

    OpenEI (Open Energy Information) [EERE & EIA]

    in Pennsylvania's 8th congressional district PECO Energy Co Retrieved from "http:en.openei.orgwindex.php?titlePennsylvania%27s8thcongressionaldistrict&oldid198313...

  16. California's 26th congressional district: Energy Resources |...

    OpenEI (Open Energy Information) [EERE & EIA]

    in California's 26th congressional district Angeleno Group Retrieved from "http:en.openei.orgwindex.php?titleCalifornia%27s26thcongressionaldistrict&oldid181511...

  17. California's 35th congressional district: Energy Resources |...

    OpenEI (Open Energy Information) [EERE & EIA]

    in California's 35th congressional district Angeleno Group Retrieved from "http:en.openei.orgwindex.php?titleCalifornia%27s35thcongressionaldistrict&oldid181530...

  18. California's 33rd congressional district: Energy Resources |...

    OpenEI (Open Energy Information) [EERE & EIA]

    in California's 33rd congressional district Angeleno Group Retrieved from "http:en.openei.orgwindex.php?titleCalifornia%27s33rdcongressionaldistrict&oldid181527...

  19. California's 32nd congressional district: Energy Resources |...

    OpenEI (Open Energy Information) [EERE & EIA]

    in California's 32nd congressional district Angeleno Group Retrieved from "http:en.openei.orgwindex.php?titleCalifornia%27s32ndcongressionaldistrict&oldid181525...

  20. California's 31st congressional district: Energy Resources |...

    OpenEI (Open Energy Information) [EERE & EIA]

    in California's 31st congressional district Angeleno Group Retrieved from "http:en.openei.orgwindex.php?titleCalifornia%27s31stcongressionaldistrict&oldid181523...

  1. California's 34th congressional district: Energy Resources |...

    OpenEI (Open Energy Information) [EERE & EIA]

    in California's 34th congressional district Angeleno Group Retrieved from "http:en.openei.orgwindex.php?titleCalifornia%27s34thcongressionaldistrict&oldid181528...

  2. California's 23rd congressional district: Energy Resources |...

    OpenEI (Open Energy Information) [EERE & EIA]

    23rd congressional district NGEN Partners LLC (Southern California) Retrieved from "http:en.openei.orgwindex.php?titleCalifornia%27s23rdcongressionaldistrict&oldid181505...

  3. California's 36th congressional district: Energy Resources |...

    OpenEI (Open Energy Information) [EERE & EIA]

    in California's 36th congressional district Angeleno Group Retrieved from "http:en.openei.orgwindex.php?titleCalifornia%27s36thcongressionaldistrict&oldid181532...

  4. California's 39th congressional district: Energy Resources |...

    OpenEI (Open Energy Information) [EERE & EIA]

    39th congressional district Angeleno Group Hydrogen Ventures Retrieved from "http:en.openei.orgwindex.php?titleCalifornia%27s39thcongressionaldistrict&oldid181537...

  5. Pennsylvania's 9th congressional district: Energy Resources ...

    OpenEI (Open Energy Information) [EERE & EIA]

    Registered Energy Companies in Pennsylvania's 9th congressional district Energex Pellet Fuel Inc Retrieved from "http:en.openei.orgwindex.php?titlePennsylvania%27s9thc...

  6. Pennsylvania's 19th congressional district: Energy Resources...

    OpenEI (Open Energy Information) [EERE & EIA]

    Registered Energy Companies in Pennsylvania's 19th congressional district Carlisle Construction Materials Enginuity Energy, LLC Keystone Biofuels PaceControls LLC Soy Energy...

  7. Nevada Irrigation District | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    search Name: Nevada Irrigation District Place: California Website: nidwater.com Outage Hotline: (530) 273-6185 References: EIA Form EIA-861 Final Data File for 2010 -...

  8. TWDB Groundwater Conservation Districts website | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    TWDB Groundwater Conservation Districts website Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: TWDB Groundwater Conservation...

  9. Korea District Heating Corporation | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Korea (Republic) Zip: 463 908 Product: Korea-based organisation seeking to promote energy conservation and improve living standards through the efficient use of district...

  10. Pennsylvania's 17th congressional district: Energy Resources...

    OpenEI (Open Energy Information) [EERE & EIA]

    Registered Energy Companies in Pennsylvania's 17th congressional district Agra Bio Fuels Independence Biofuels Inc Pennsylvania Department of Environmental Protection DEP...

  11. Putnam District, Connecticut: Energy Resources | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Putnam District, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.9257629, -71.9104934 Show Map Loading map......

  12. Pennsylvania's 5th congressional district: Energy Resources ...

    OpenEI (Open Energy Information) [EERE & EIA]

    Solarity Energy Generation Facilities in Pennsylvania's 5th congressional district Montgomery Biomass Facility Retrieved from "http:en.openei.orgwindex.php?titlePennsylvania...

  13. Geothermal Direct-Use — Meeting Water Quality Standards

    Energy.gov [DOE]

    Geothermal direct-use applications—such as greenhouses, district and space heating, and aquaculture—can easily meet local and federal water quality standards, which help protect our environment.

  14. Geothermal Direct-Use — Meeting Clean Air Standards

    Energy.gov [DOE]

    Geothermal direct-use applications—such as greenhouses, district and space heating, and aquaculture—can easily meet local and federal clean air standards, which help protect our environment.

  15. Final Scientific/Technical Report for Building Transmission Capacity in the Western Interconnection to Support a Low Carbon Future

    SciTech Connect

    Amanda Ormond; Merrisa Walker

    2011-03-31

    The Building Transmission Capacity grant activities focused on educating both policy makers (primarily at Public Utility Commissions) and utilities across the West. Western Grid Group (WGG), the grant recipient, chose three methods to reach these audiences - direct outreach, a website that contains information on policies and strategies to integrate more variable generation resources, and a report - The Best of the West, Policies and Practices to Support Transition to a Lower-Carbon Electric Sector in the Western Interconnection and that highlights what is working in the West. While all avenues for education are effective the Best of the West report is the first west-wide assessment of its kind. The report details incremental changes that are working to integrate variable generation but it also expounds on what fundamental or transformative changes are needed to get to the 20% wind penetration and beyond.

  16. Property:ManagingDistrictOffice | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    ManagingDistrictOffice Jump to: navigation, search Property Name ManagingDistrictOffice Property Type Page Pages using the property "ManagingDistrictOffice" Showing 25 pages using...

  17. Buckeye Water C&D District | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Buckeye Water C&D District (Redirected from Buckeye Irrigation District) Jump to: navigation, search Name: Buckeye Water C&D District Place: Arizona Phone Number: 623-386-2196...

  18. LBNL: Architecture 2030 District Program and Small Commercial Toolkit |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy LBNL: Architecture 2030 District Program and Small Commercial Toolkit LBNL: Architecture 2030 District Program and Small Commercial Toolkit LBNL: Architecture 2030 District Program and Small Commercial Toolkit Lead Performer: Lawrence Berkeley National Laboratory - Berkeley, CA Partners: - Architecture 2030 - Santa Fe, NM - Cleveland 2030 District - Cleveland, OH - Green Building Alliance/Pittsburgh 2030 District - Pittsburgh, PA - Seattle 2030 District - Seattle, WA -

  19. Boulder Valley School District (Colorado) Power Purchase Agreement...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Boulder Valley School District (Colorado) Power Purchase Agreement Case Study Boulder Valley School District (Colorado) Power Purchase Agreement Case Study Boulder Valley School ...

  20. Texas's 6th congressional district: Energy Resources | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    by expanding it. This page represents a congressional district in Texas. Registered Energy Companies in Texas's 6th congressional district Corsicana Chemical Company Demilec...

  1. Warren Estates District Heating Low Temperature Geothermal Facility...

    OpenEI (Open Energy Information) [EERE & EIA]

    Warren Estates District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Warren Estates District Heating Low Temperature Geothermal Facility Facility...

  2. Idaho Capitol Mall District Heating Low Temperature Geothermal...

    OpenEI (Open Energy Information) [EERE & EIA]

    Idaho Capitol Mall District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Idaho Capitol Mall District Heating Low Temperature Geothermal Facility...

  3. Fort Boise Veteran's Hospital District Heating Low Temperature...

    OpenEI (Open Energy Information) [EERE & EIA]

    Fort Boise Veteran's Hospital District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Fort Boise Veteran's Hospital District Heating Low Temperature...

  4. New Jersey's 2nd congressional district: Energy Resources | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    district in New Jersey. Registered Energy Companies in New Jersey's 2nd congressional district Bartholomew Heating and Cooling Fishermen s Energy Fishermen s Energy of New...

  5. Maine's 2nd congressional district: Energy Resources | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    You can help OpenEI by expanding it. This page represents a congressional district in Maine. Registered Energy Companies in Maine's 2nd congressional district Evergreen Wind...

  6. Washington Gas Energy Services (District of Columbia) | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Washington Gas Energy Services (District of Columbia) Jump to: navigation, search Name: Washington Gas Energy Services Place: District of Columbia References: EIA Form EIA-861...

  7. BLM California Desert District Office | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    California Desert District Office Jump to: navigation, search Name: California Desert District Office Address: 22835 Calle San Juan De Los Lagos Place: Moreno Valley, CA Zip: 92553...

  8. BLM Central California District Office | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Central California District Office Jump to: navigation, search Name: BLM Central California District Office Address: 2800 Cottage Way, Suite W-1623 Place: Sacramento, CA Zip: 95825...

  9. Texas's 19th congressional district: Energy Resources | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    district in Texas. Registered Energy Companies in Texas's 19th congressional district Big Daddy s Biodiesel Inc Cratech Inc Horn Wind Lauren Engineers amp Constructors Levelland...

  10. Iowa's 2nd congressional district: Energy Resources | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    district in Iowa. Registered Energy Companies in Iowa's 2nd congressional district Big River Resources LLC EnerGenetics International First BTU Iowa Renewable Energy LLC...

  11. Valley Center Municipal Water District | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Valley Center Municipal Water District Jump to: navigation, search Name: Valley Center Municipal Water District Place: Valley Center, California Zip: 92082 Product: VCMWD is the...

  12. Washington's 3rd congressional district: Energy Resources | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    can help OpenEI by expanding it. This page represents a congressional district in Washington. Registered Research Institutions in Washington's 3rd congressional district WSU...

  13. Yuliangwan Hydropower of Hongjiang District Co Ltd | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Yuliangwan Hydropower of Hongjiang District Co Ltd Jump to: navigation, search Name: Yuliangwan Hydropower of Hongjiang District Co Ltd Place: Huaihua, Hunan Province, China Zip:...

  14. Hess Retail Natural Gas and Elec. Acctg. (District of Columbia...

    OpenEI (Open Energy Information) [EERE & EIA]

    Hess Retail Natural Gas and Elec. Acctg. (District of Columbia) Jump to: navigation, search Name: Hess Retail Natural Gas and Elec. Acctg. Place: District of Columbia References:...

  15. North Carolina's 6th congressional district: Energy Resources...

    OpenEI (Open Energy Information) [EERE & EIA]

    You can help OpenEI by expanding it. This page represents a congressional district in North Carolina. Registered Energy Companies in North Carolina's 6th congressional district...

  16. North Carolina's 3rd congressional district: Energy Resources...

    OpenEI (Open Energy Information) [EERE & EIA]

    You can help OpenEI by expanding it. This page represents a congressional district in North Carolina. Registered Energy Companies in North Carolina's 3rd congressional district...

  17. Ground Water Management District Rules | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Water Management District Rules Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Ground Water Management District Rules Abstract This webpage provides...

  18. Washington's 8th congressional district: Energy Resources | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Energy Companies in Washington's 8th congressional district GreenFoot Technologies Prometheus Energy Sunreps Utility Companies in Washington's 8th congressional district Alder...

  19. Sacramento Municipal Utility District Solar Array | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Municipal Utility District Solar Array Sector Solar Facility Type Ground-mounted fixed tilt Owner EnXco Developer EnXco Energy Purchaser Sacramento Municipal Utility District...

  20. Noble Americas Energy Solutions LLC (District of Columbia) |...

    OpenEI (Open Energy Information) [EERE & EIA]

    District of Columbia) Jump to: navigation, search Name: Noble Americas Energy Solutions LLC Place: District of Columbia References: EIA Form EIA-861 Final Data File for 2010 -...

  1. Virginia's 3rd congressional district: Energy Resources | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    You can help OpenEI by expanding it. This page represents a congressional district in Virginia. Registered Energy Companies in Virginia's 3rd congressional district Enviva...

  2. Virginia's 9th congressional district: Energy Resources | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    You can help OpenEI by expanding it. This page represents a congressional district in Virginia. Registered Energy Companies in Virginia's 9th congressional district Evatran LLC...

  3. Virginia's 7th congressional district: Energy Resources | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    You can help OpenEI by expanding it. This page represents a congressional district in Virginia. Registered Energy Companies in Virginia's 7th congressional district Enviva...

  4. Louisiana's 5th congressional district: Energy Resources | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Act Smart Grid Projects in Louisiana's 5th congressional district Cleco Power LLC Smart Grid Project Registered Energy Companies in Louisiana's 5th congressional district...

  5. Louisiana's 7th congressional district: Energy Resources | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Projects in Louisiana's 7th congressional district Lafayette Consolidated Government, LA Smart Grid Project Energy Generation Facilities in Louisiana's 7th congressional district...

  6. Arkansas's 1st congressional district: Energy Resources | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Act Smart Grid Projects in Arkansas's 1st congressional district Woodruff Electric Smart Grid Project Utility Companies in Arkansas's 1st congressional district City Water...

  7. Tennessee's 9th congressional district: Energy Resources | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Projects in Tennessee's 9th congressional district Memphis Light, Gas and Water Division Smart Grid Project Registered Energy Companies in Tennessee's 9th congressional district...

  8. New Hampshire's 2nd congressional district: Energy Resources...

    OpenEI (Open Energy Information) [EERE & EIA]

    You can help OpenEI by expanding it. This page represents a congressional district in New Hampshire. Registered Energy Companies in New Hampshire's 2nd congressional district...

  9. US South Coast Air Quality Management District SCAQMD | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    South Coast Air Quality Management District SCAQMD Jump to: navigation, search Name: US South Coast Air Quality Management District (SCAQMD) Place: Diamond Bar, California Zip: CA...

  10. Cedarville School District Retrofit of Heating and Cooling Systems...

    Energy Saver

    Cedarville School District Retrofit of Heating and Cooling Systems with Geothermal Heat Pumpsand Ground Source Water Loops Cedarville School District Retrofit of Heating and...

  11. Virginia's 1st congressional district: Energy Resources | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Virginia's 1st congressional district Delta T Corporation E85 Inc Virginia Biodiesel Refinery Utility Companies in Virginia's 1st congressional district Rappahannock Electric Coop...

  12. California's 5th congressional district: Energy Resources | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    5th congressional district Sacramento Municipal Utility District Retrieved from "http:en.openei.orgwindex.php?titleCalifornia%27s5thcongressionaldistrict&oldid181571...

  13. Washington's 2nd congressional district: Energy Resources | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Biofuels LLC Energy Generation Facilities in Washington's 2nd congressional district S.P. Everett Biomass Facility Utility Companies in Washington's 2nd congressional district...

  14. Hawaii Conservation District Use Application (DLNR CDUA Form...

    OpenEI (Open Energy Information) [EERE & EIA]

    Conservation District Use Application (DLNR CDUA Form) Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Hawaii Conservation District Use Application (DLNR...

  15. Kings River Conservation District (KRCD) Solar Farm Solar Power...

    OpenEI (Open Energy Information) [EERE & EIA]

    River Conservation District (KRCD) Solar Farm Solar Power Plant Jump to: navigation, search Name Kings River Conservation District (KRCD) Solar Farm Solar Power Plant Facility...

  16. Texas's 12th congressional district: Energy Resources | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    You can help OpenEI by expanding it. This page represents a congressional district in Texas. Registered Energy Companies in Texas's 12th congressional district Aecom Government...

  17. School District Success Story-A Performance Contracting Program...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    School District Success Story-A Performance Contracting Program School District Success Story-A Performance Contracting Program Provides an overview case study of Douglas County,...

  18. Prices by Sales Type, PAD District, and Selected States

    Energy Information Administration (EIA) (indexed site)

    Type, PAD District, and Selected States 224 Energy Information Administration Petroleum Marketing Annual 1997 Table 39. No. 2 Distillate a Prices by Sales Type, PAD District, and...

  19. Prices by Sales Type, PAD District, and Selected States

    Energy Information Administration (EIA) (indexed site)

    Type, PAD District, and Selected States 224 Energy Information Administration Petroleum Marketing Annual 1996 Table 39. No. 2 Distillate a Prices by Sales Type, PAD District, and...

  20. Devonshire Energy, LLC (District of Columbia) | Open Energy Informatio...

    OpenEI (Open Energy Information) [EERE & EIA]

    Devonshire Energy, LLC (District of Columbia) Jump to: navigation, search Name: Devonshire Energy, LLC Place: District of Columbia References: EIA Form EIA-861 Final Data File for...

  1. BLM Color Country District Office | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Color Country District Office Jump to: navigation, search Name: BLM Color Country District Office Place: Cedar City, Utah ParentHolding Organization: BLM References: BLM Color...

  2. Utah's 3rd congressional district: Energy Resources | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    district in Utah. Registered Energy Companies in Utah's 3rd congressional district Better Biodiesel Composite Tower Solutions Domestic Energy Partners Evergreen Clean Energy FT...

  3. Kansas's 3rd congressional district: Energy Resources | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    You can help OpenEI by expanding it. This page represents a congressional district in Kansas. Registered Energy Companies in Kansas's 3rd congressional district Clean Energy...

  4. Integrating district cooling with cogeneration

    SciTech Connect

    Spurr, M.

    1996-11-01

    Chillers can be driven with cogenerated thermal energy, thereby offering the potential to increase utilization of cogeneration throughout the year. However, cogeneration decreases electric output compared to condensing power generation in power plants using a steam cycle (steam turbine or gas turbine combined cycle plants). The foregone electric production increases with increasing temperature of heat recovery. Given a range of conditions for key variables (such as cogeneration utilization, chiller utilization, cost of fuel, value of electricity, value of heat and temperature of heat recovered), how do technology alternatives for combining district cooling with cogeneration compare? This paper summarizes key findings from a report recently published by the International Energy Agency which examines the energy efficiency and economics of alternatives for combining cogeneration technology options (gas turbine simple cycle, diesel engine, steam turbine, gas turbine combined cycle) with chiller options (electric centrifugal, steam turbine centrifugal one-stage steam absorption, two-stage steam absorption, hot water absorption).

  5. Interconnecting network for switching data packets and method for switching data packets

    DOEpatents

    Benner, Alan Frederic; Minkenberg, Cyriel Johan Agnes; Stunkel, Craig Brian

    2010-05-25

    The interconnecting network for switching data packets, having data and flow control information, comprises a local packet switch element (S1) with local input buffers (I(1,1) . . . I(1,y)) for buffering the incoming data packets, a remote packet switch element (S2) with remote input buffers (I(2,1) . . . I(2,y)) for buffering the incoming data packets, and data lines (L) for interconnecting the local and the remote packet switch elements (S1, S2). The interconnecting network further comprises a local and a remote arbiter (A1, A2) which are connected via control lines (CL) to the input buffers (I(1,1) . . . I(1,y), I(2,1) . . . I(2,y)), and which are formed such that they can provide that the flow control information is transmitted via the data lines (L) and the control lines (CL).

  6. LaCrO{sub 3}-dispersed Cr for metallic interconnect of planar SOFC

    SciTech Connect

    Song, Rak-Hyun; Shin, Dong Ryul; Dokiya, Masayuki

    1996-12-31

    In the planar SOFC, the interconnect materials plays two roles as an electrical connection and as a gas separation plate in a cell stack. The interconnect materials must be chemically stable in reducing and oxidizing environments, and have high electronic conductivity, high thermal conductivity, matching thermal expansion with an electrolyte, high mechanical strength, good fabricability, and gas tightness. Lanthanum chromite so far has been mainly used as interconnect materials in planar SOFC. However, the ceramic materials are very weak in mechanical strength and have poor machining property as compared with metal. Also the metallic materials have high electronic conductivity and high thermal conductivity. Recently some researchers have studied metallic interconnects such as Al{sub 2}O{sub 3}/Inconel 600 cermet, Ni-20Cr coated with (LaSr)CoO{sub 3}, and Y{sub 2}O{sub 3-} or La{sub 2}O{sub 3}-dispersed Cr alloy. These alloys have still some problems because Ni-based alloys have high thermal expansion, the added Al{sub 2}O{sub 3}, Y{sub 2}O{sub 3} and La{sub 2}O{sub 3} to metals have no electronic conductivity, and the oxide formed on the surface of Cr alloy has high volatility. To solve these problems, in this study, LaCrO{sub 3}-dispersed Cr for metallic interconnect of planar SOFC was investigated. The LaCrO{sub 3}-dispersed Cr can be one candidate of metallic interconnect because LaCrO{sub 3} possesses electronic conductivity and Cr metal has relatively low thermal expansion. The content of 25 vol.% LaCrO{sub 3} Was selected on the basis of a theoretically calculated thermal expansion. The thermal expansion, electrical and oxidation properties were examined and the results were discussed as related to SOFC requirements.

  7. Development of Readout Interconnections for the Si-W Calorimeter of SiD

    SciTech Connect

    Woods, M.; Fields, R.G.; Holbrook, B.; Lander, R.L.; Moskaleva, A.; Neher, C.; Pasner, J.; Tripathi, M.; Brau, J.E.; Frey, R.E.; Strom, D.; Breidenbach, M.; Freytag, D.; Haller, G.; Herbst, R.; Nelson, T.; Schier, S.; Schumm, B.; /UC, Santa Cruz

    2012-09-14

    The SiD collaboration is developing a Si-W sampling electromagnetic calorimeter, with anticipated application for the International Linear Collider. Assembling the modules for such a detector will involve special bonding technologies for the interconnections, especially for attaching a silicon detector wafer to a flex cable readout bus. We review the interconnect technologies involved, including oxidation removal processes, pad surface preparation, solder ball selection and placement, and bond quality assurance. Our results show that solder ball bonding is a promising technique for the Si-W ECAL, and unresolved issues are being addressed.

  8. Preliminary Response of PJM Interconnection, L.L.C. to the Operating Plan

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Mirant Potomac River, LLC | Department of Energy Response of PJM Interconnection, L.L.C. to the Operating Plan of Mirant Potomac River, LLC Preliminary Response of PJM Interconnection, L.L.C. to the Operating Plan of Mirant Potomac River, LLC Docket No. EO-05-01. In summary, PJM understands the difficulty facing the Department in having to balance the important conflicting interests presented here. However, PJM does not regard Option A as anywhere close to striking the correct balance.

  9. Method of bonding an interconnection layer on an electrode of an electrochemical cell

    DOEpatents

    Pal, Uday B.; Isenberg, Arnold O.; Folser, George R.

    1992-01-01

    An electrochemical cell containing an air electrode (16), contacting electrolyte and electronically conductive interconnection layer (26), and a fuel electrode, has the interconnection layer (26) attached by: (A) applying a thin, closely packed, discrete layer of LaCrO.sub.3 particles (30), doped with an element selected from the group consisting of Ca, Sr, Co, Ba, Mg and their mixtures on a portion of the air electrode, and then (B) electrochemical vapor depositing a dense skeletal structure (32) between and around the doped LaCrO.sub.3 particles (30).

  10. Method of bonding an interconnection layer on an electrode of an electrochemical cell

    DOEpatents

    Pal, U.B.; Isenberg, A.O.; Folser, G.R.

    1992-01-14

    An electrochemical cell containing an air electrode, contacting electrolyte and electronically conductive interconnection layer, and a fuel electrode, has the interconnection layer attached by: (A) applying a thin, closely packed, discrete layer of LaCrO[sub 3] particles, doped with an element selected from the group consisting of Ca, Sr, Co, Ba, Mg and their mixtures on a portion of the air electrode, and then (B) electrochemical vapor depositing a dense skeletal structure between and around the doped LaCrO[sub 3] particles. 2 figs.

  11. Wind/PV Generation for Frequency Regulation and Oscillation Damping in the Eastern Interconnection

    SciTech Connect

    Liu, Yong; Gracia, Jose R; Hadley, Stanton W; Liu, Yilu

    2013-12-01

    This report presents the control of renewable energy sources, including the variable-speed wind generators and solar photovoltaic (PV) generators, for frequency regulation and inter-area oscillation damping in the U.S. Eastern Interconnection (EI). In this report, based on the user-defined wind/PV generator electrical control model and the 16,000-bus Eastern Interconnection dynamic model, the additional controllers for frequency regulation and inter-area oscillation damping are developed and incorporated and the potential contributions of renewable energy sources to the EI system frequency regulation and inter-area oscillation damping are evaluated.

  12. Planarization of metal films for multilevel interconnects by pulsed laser heating

    DOEpatents

    Tuckerman, David B.

    1987-01-01

    In the fabrication of multilevel integrated circuits, each metal layer is planarized by heating to momentarily melt the layer. The layer is melted by sweeping laser pulses of suitable width, typically about 1 microsecond duration, over the layer in small increments. The planarization of each metal layer eliminates irregular and discontinuous conditions between successive layers. The planarization method is particularly applicable to circuits having ground or power planes and allows for multilevel interconnects. Dielectric layers can also be planarized to produce a fully planar multilevel interconnect structure. The method is useful for the fabrication of VLSI circuits, particularly for wafer-scale integration.

  13. Agent-Based Simulation for Interconnection-Scale Renewable Integration and Demand Response Studies

    SciTech Connect

    Chassin, David P.; Behboodi, Sahand; Crawford, Curran; Djilali, Ned

    2015-12-23

    This paper collects and synthesizes the technical requirements, implementation, and validation methods for quasi-steady agent-based simulations of interconnectionscale models with particular attention to the integration of renewable generation and controllable loads. Approaches for modeling aggregated controllable loads are presented and placed in the same control and economic modeling framework as generation resources for interconnection planning studies. Model performance is examined with system parameters that are typical for an interconnection approximately the size of the Western Electricity Coordinating Council (WECC) and a control area about 1/100 the size of the system. These results are used to demonstrate and validate the methods presented.

  14. Local Option- Special Improvement Districts

    Energy.gov [DOE]

    NOTE: In 2010, the Federal Housing Finance Agency (FHFA), which has authority over mortgage underwriters Fannie Mae and Freddie Mac, directed these enterprises against purchasing mortgages of homes...

  15. NREL Variability and Reserves Analysis for the Western Interconnect (Presentation)

    SciTech Connect

    Milligan, M.; King, J.

    2011-10-01

    Additional variability and uncertainty increase reserve requirements. In this light, this presentation discusses how use of generation reserves can be optimized for managing variability and uncertainty. Conclusions of this presentation are: (1) Provided a method for calculating additional reserve requirements due to wind and solar production; (2) Method is based on statistical analysis of historical time series data; (3) Reserves are dynamic, produced for each hour; (4) Reserve time series are calculated from and synchronized to simulation data; (5) PROMOD can not model directly, but workarounds exist for regulation and spin; and (6) Other production modeling packages have varying capability for reserves modeling.

  16. Tonopah Irrigation District | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    District Place: Arizona Phone Number: (480) 610-8741 Website: www.krsaline.comtidtid.html Outage Hotline: 480.610.8741 References: EIA Form EIA-861 Final Data File for 2010 -...

  17. Butler Public Power District | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Nebraska Phone Number: 402-367-3081 or 402-367-3082 Website: www.butlerppd.com Facebook: https:www.facebook.compagesButler-Public-Power-District176407425708968 Outage...

  18. Merced Irrigation District- PV Buydown Program

    Energy.gov [DOE]

    Merced Irrigation District (MID) offers its residential, commercial and non-profit customers a rebate for installing solar electric photovoltaic (PV) systems on their homes and offices. For 2015,...

  19. Pennsylvania's 12th congressional district: Energy Resources...

    OpenEI (Open Energy Information) [EERE & EIA]

    th congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a...

  20. The Metropolitan Water District of Southern California

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    SW Washington, DC 20585-0121 QERcomments@hq.doe.gov Comments on the Department of Energy's Quadrennial Energy Review: Water-Energy Nexus The Metropolitan Water District of Southern ...